aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/ChangeLog5
-rw-r--r--src/algebra/Makefile.in3
-rw-r--r--src/algebra/Makefile.pamphlet3
-rw-r--r--src/algebra/catdef.spad.pamphlet12
-rw-r--r--src/share/algebra/browse.daase2162
-rw-r--r--src/share/algebra/category.daase2992
-rw-r--r--src/share/algebra/compress.daase1304
-rw-r--r--src/share/algebra/interp.daase9267
-rw-r--r--src/share/algebra/operation.daase32796
9 files changed, 24284 insertions, 24260 deletions
diff --git a/src/ChangeLog b/src/ChangeLog
index 7e92aae9..3bcdbb1f 100644
--- a/src/ChangeLog
+++ b/src/ChangeLog
@@ -1,3 +1,8 @@
+2008-05-25 Gabriel Dos Reis <gdr@cs.tamu.edu>
+
+ * algebra/catdef.spad.pamphlet (OrderedSemiGroup): New.
+ * algebra/Makefile.pamphlet (axiom_algebra_layer_1): Include OSGROUP.
+
2008-05-24 Gabriel Dos Reis <gdr@cs.tamu.edu>
* interp/i-coerce.boot (retract2Specialization): Leave if object
diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in
index 59ca6433..60409632 100644
--- a/src/algebra/Makefile.in
+++ b/src/algebra/Makefile.in
@@ -378,7 +378,8 @@ axiom_algebra_layer_1 = \
AGG AGG- IEVALAB IEVALAB- FORTCAT ITUPLE \
PATAB PPCURVE PSCURVE REAL RESLATC RETRACT \
RETRACT- SEGCAT BINDING SYNTAX BMODULE LOGIC \
- LOGIC- EVALAB EVALAB- FEVALAB FEVALAB- BYTE
+ LOGIC- EVALAB EVALAB- FEVALAB FEVALAB- BYTE \
+ OSGROUP
axiom_algebra_layer_1_nrlibs = \
$(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_1))
diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet
index 28596791..0012c422 100644
--- a/src/algebra/Makefile.pamphlet
+++ b/src/algebra/Makefile.pamphlet
@@ -218,7 +218,8 @@ axiom_algebra_layer_1 = \
AGG AGG- IEVALAB IEVALAB- FORTCAT ITUPLE \
PATAB PPCURVE PSCURVE REAL RESLATC RETRACT \
RETRACT- SEGCAT BINDING SYNTAX BMODULE LOGIC \
- LOGIC- EVALAB EVALAB- FEVALAB FEVALAB- BYTE
+ LOGIC- EVALAB EVALAB- FEVALAB FEVALAB- BYTE \
+ OSGROUP
axiom_algebra_layer_1_nrlibs = \
$(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_1))
diff --git a/src/algebra/catdef.spad.pamphlet b/src/algebra/catdef.spad.pamphlet
index 58198cd9..403716e4 100644
--- a/src/algebra/catdef.spad.pamphlet
+++ b/src/algebra/catdef.spad.pamphlet
@@ -2920,6 +2920,18 @@ OrderedAbelianMonoidSup(): Category == OrderedCancellationAbelianMonoid with
OrderedAbelianSemiGroup(): Category == Join(OrderedSet, AbelianSemiGroup)
@
+
+\section{The Ordered Semigroup Category}
+<<category OSGROUP OrderedSemiGroup>>=
+)abbrev category OSGROUP OrderedSemiGroup
+++ Author: Gabriel Dos Reis
+++ Date Create May 25, 2008
+++ Date Last Updated: May 25, 2008
+++ Description: Semigroups with compatible ordering.
+OrderedSemiGroup(): Category == Join(OrderedSet, SemiGroup)
+@
+
+@
\section{category OCAMON OrderedCancellationAbelianMonoid}
<<category OCAMON OrderedCancellationAbelianMonoid>>=
)abbrev category OCAMON OrderedCancellationAbelianMonoid
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 48298217..4d0cc8d6 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2238314 . 3420122812)
+(2241087 . 3420735370)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4255 . T) (-4254 . T) (-1996 . T))
+((-4256 . T) (-4255 . T) (-1332 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,23 +46,23 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4251 . T) (-4249 . T) (-4248 . T) ((-4256 "*") . T) (-4247 . T) (-4252 . T) (-4246 . T) (-1996 . T))
+((-4252 . T) (-4250 . T) (-4249 . T) ((-4257 "*") . T) (-4248 . T) (-4253 . T) (-4247 . T) (-1332 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
NIL
NIL
-(-31 R -1346)
+(-31 R -3834)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))))
+((|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))
(-32 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4254)))
+((|HasAttribute| |#1| (QUOTE -4255)))
(-33)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
-((-1996 . T))
+((-1332 . T))
NIL
(-34)
((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}.")))
@@ -70,7 +70,7 @@ NIL
NIL
(-35 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4254 . T) (-4255 . T) (-1996 . T))
+((-4255 . T) (-4256 . T) (-1332 . T))
NIL
(-36 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
@@ -78,20 +78,20 @@ NIL
NIL
(-37 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
-((-4248 . T) (-4249 . T) (-4251 . T))
+((-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-38 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-39 -1346 UP UPUP -2238)
+(-39 -3834 UP UPUP -3703)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4247 |has| (-385 |#2|) (-341)) (-4252 |has| (-385 |#2|) (-341)) (-4246 |has| (-385 |#2|) (-341)) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| (-385 |#2|) (QUOTE (-136))) (|HasCategory| (-385 |#2|) (QUOTE (-138))) (|HasCategory| (-385 |#2|) (QUOTE (-327))) (-3309 (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-346))) (-3309 (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (-3309 (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-385 |#2|) (QUOTE (-327))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3309 (|HasCategory| (-385 |#2|) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))))
-(-40 R -1346)
+((-4248 |has| (-385 |#2|) (-341)) (-4253 |has| (-385 |#2|) (-341)) (-4247 |has| (-385 |#2|) (-341)) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| (-385 |#2|) (QUOTE (-136))) (|HasCategory| (-385 |#2|) (QUOTE (-138))) (|HasCategory| (-385 |#2|) (QUOTE (-327))) (-3279 (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-346))) (-3279 (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (-3279 (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-327))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3279 (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))))
+(-40 R -3834)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|)))))
(-41 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -102,31 +102,31 @@ NIL
((|HasCategory| |#1| (QUOTE (-286))))
(-43 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4251 |has| |#1| (-517)) (-4249 . T) (-4248 . T))
+((-4252 |has| |#1| (-517)) (-4250 . T) (-4249 . T))
((|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517))))
(-44 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4254 . T) (-4255 . T))
-((-3309 (-12 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3946) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3946) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|))))))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (-12 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3946) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4256 . T))
+((-3279 (-12 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3423) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2544) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3423) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2544) (|devaluate| |#2|))))))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3423) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2544) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
(-45 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))))
(-46 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4248 . T) (-4249 . T) (-4251 . T))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-47)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| $ (QUOTE (-976))) (|HasCategory| $ (LIST (QUOTE -967) (QUOTE (-525)))))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| $ (QUOTE (-977))) (|HasCategory| $ (LIST (QUOTE -968) (QUOTE (-525)))))
(-48)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
NIL
(-49 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4251 . T))
+((-4252 . T))
NIL
(-50 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -140,7 +140,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-53 |Base| R -1346)
+(-53 |Base| R -3834)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -150,7 +150,7 @@ NIL
NIL
(-55 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4254 . T) (-4255 . T) (-1996 . T))
+((-4255 . T) (-4256 . T) (-1332 . T))
NIL
(-56 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
@@ -158,65 +158,65 @@ NIL
NIL
(-57 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4255 . T) (-4254 . T))
-((-3309 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3309 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4256 . T) (-4255 . T))
+((-3279 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3279 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-58 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
-(-59 -1310)
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-59 -3800)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-60 -1310)
+(-60 -3800)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-61 -1310)
+(-61 -3800)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -1310)
+(-62 -3800)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-63 -1310)
+(-63 -3800)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -1310)
+(-64 -3800)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -1310)
+(-65 -3800)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -1310)
+(-66 -3800)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-67 -1310)
+(-67 -3800)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-68 -1310)
+(-68 -3800)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -1310)
+(-69 -3800)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-70 -1310)
+(-70 -3800)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-71 -1310)
+(-71 -3800)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-72 -1310)
+(-72 -3800)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -228,55 +228,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-75 -1310)
+(-75 -3800)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-76 -1310)
+(-76 -3800)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-77 -1310)
+(-77 -3800)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-78 -1310)
+(-78 -3800)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-79 -1310)
+(-79 -3800)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -1310)
+(-80 -3800)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -1310)
+(-81 -3800)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-82 -1310)
+(-82 -3800)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -1310)
+(-83 -3800)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -1310)
+(-84 -3800)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -1310)
+(-85 -3800)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -1310)
+(-86 -3800)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-87 -1310)
+(-87 -3800)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -286,8 +286,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-341))))
(-89 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-90 S)
((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}.")))
NIL
@@ -298,15 +298,15 @@ NIL
NIL
(-92)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4254 . T))
+((-4255 . T))
NIL
(-93)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4254 . T) ((-4256 "*") . T) (-4255 . T) (-4251 . T) (-4249 . T) (-4248 . T) (-4247 . T) (-4252 . T) (-4246 . T) (-4245 . T) (-4244 . T) (-4243 . T) (-4242 . T) (-4250 . T) (-4253 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4241 . T))
+((-4255 . T) ((-4257 "*") . T) (-4256 . T) (-4252 . T) (-4250 . T) (-4249 . T) (-4248 . T) (-4253 . T) (-4247 . T) (-4246 . T) (-4245 . T) (-4244 . T) (-4243 . T) (-4251 . T) (-4254 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4242 . T))
NIL
(-94 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4251 . T))
+((-4252 . T))
NIL
(-95 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -322,15 +322,15 @@ NIL
NIL
(-98 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-99 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4256 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4257 "*"))))
(-100)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4254 . T))
+((-4255 . T))
NIL
(-101 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -338,12 +338,12 @@ NIL
NIL
(-102 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4255 . T) (-1996 . T))
+((-4256 . T) (-1332 . T))
NIL
(-103)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| (-525) (QUOTE (-843))) (|HasCategory| (-525) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-952))) (|HasCategory| (-525) (QUOTE (-762))) (-3309 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1066))) (|HasCategory| (-525) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1090)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-843)))) (|HasCategory| (-525) (QUOTE (-136)))))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-3279 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1067))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136)))))
(-104)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -354,11 +354,11 @@ NIL
NIL
(-106)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4255 . T) (-4254 . T))
-((-12 (|HasCategory| (-108) (QUOTE (-1019))) (|HasCategory| (-108) (LIST (QUOTE -288) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-108) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-108) (QUOTE (-1019))) (|HasCategory| (-108) (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4256 . T) (-4255 . T))
+((-12 (|HasCategory| (-108) (QUOTE (-1020))) (|HasCategory| (-108) (LIST (QUOTE -288) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-108) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-108) (QUOTE (-1020))) (|HasCategory| (-108) (LIST (QUOTE -566) (QUOTE (-798)))))
(-107 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4249 . T) (-4248 . T))
+((-4250 . T) (-4249 . T))
NIL
(-108)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (^ (($ $) "\\spad{^ n} returns the negation of \\spad{n}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
@@ -372,25 +372,25 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-111 -1346 UP)
+(-111 -3834 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-112 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-113 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| (-112 |#1|) (QUOTE (-843))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| (-112 |#1|) (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-138))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-112 |#1|) (QUOTE (-952))) (|HasCategory| (-112 |#1|) (QUOTE (-762))) (-3309 (|HasCategory| (-112 |#1|) (QUOTE (-762))) (|HasCategory| (-112 |#1|) (QUOTE (-789)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (QUOTE (-1066))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (QUOTE (-213))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -486) (QUOTE (-1090)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -265) (LIST (QUOTE -112) (|devaluate| |#1|)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (QUOTE (-286))) (|HasCategory| (-112 |#1|) (QUOTE (-510))) (|HasCategory| (-112 |#1|) (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-843)))) (|HasCategory| (-112 |#1|) (QUOTE (-136)))))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| (-112 |#1|) (QUOTE (-844))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-112 |#1|) (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-138))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-112 |#1|) (QUOTE (-953))) (|HasCategory| (-112 |#1|) (QUOTE (-762))) (-3279 (|HasCategory| (-112 |#1|) (QUOTE (-762))) (|HasCategory| (-112 |#1|) (QUOTE (-789)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (QUOTE (-1067))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (QUOTE (-213))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -265) (LIST (QUOTE -112) (|devaluate| |#1|)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (QUOTE (-286))) (|HasCategory| (-112 |#1|) (QUOTE (-510))) (|HasCategory| (-112 |#1|) (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-844)))) (|HasCategory| (-112 |#1|) (QUOTE (-136)))))
(-114 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4255)))
+((|HasAttribute| |#1| (QUOTE -4256)))
(-115 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
-((-1996 . T))
+((-1332 . T))
NIL
(-116 UP)
((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive.")))
@@ -398,15 +398,15 @@ NIL
NIL
(-117 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-118 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-119)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4255 . T) (-4254 . T) (-1996 . T))
+((-4256 . T) (-4255 . T) (-1332 . T))
NIL
(-120 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -414,20 +414,20 @@ NIL
NIL
(-121 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4254 . T) (-4255 . T) (-1996 . T))
+((-4255 . T) (-4256 . T) (-1332 . T))
NIL
(-122 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-123 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-124)
((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes.")))
-((-4255 . T) (-4254 . T))
-((-3309 (-12 (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (-12 (|HasCategory| (-125) (QUOTE (-1019))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125)))))) (-3309 (-12 (|HasCategory| (-125) (QUOTE (-1019))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (|HasCategory| (-125) (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-125) (LIST (QUOTE -567) (QUOTE (-501)))) (-3309 (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-125) (QUOTE (-1019)))) (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-125) (QUOTE (-1019))) (-12 (|HasCategory| (-125) (QUOTE (-1019))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (|HasCategory| (-125) (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4256 . T) (-4255 . T))
+((-3279 (-12 (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (-12 (|HasCategory| (-125) (QUOTE (-1020))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125)))))) (-3279 (-12 (|HasCategory| (-125) (QUOTE (-1020))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (|HasCategory| (-125) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-125) (LIST (QUOTE -567) (QUOTE (-501)))) (-3279 (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-125) (QUOTE (-1020)))) (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-125) (QUOTE (-1020))) (-12 (|HasCategory| (-125) (QUOTE (-1020))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (|HasCategory| (-125) (LIST (QUOTE -566) (QUOTE (-798)))))
(-125)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -442,13 +442,13 @@ NIL
NIL
(-128)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4256 "*") . T))
+(((-4257 "*") . T))
NIL
-(-129 |minix| -3339 S T$)
+(-129 |minix| -3481 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-130 |minix| -3339 R)
+(-130 |minix| -3481 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -458,8 +458,8 @@ NIL
NIL
(-132)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4254 . T) (-4244 . T) (-4255 . T))
-((-3309 (-12 (|HasCategory| (-135) (QUOTE (-346))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1019))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-135) (QUOTE (-346))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1019))) (-12 (|HasCategory| (-135) (QUOTE (-1019))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4245 . T) (-4256 . T))
+((-3279 (-12 (|HasCategory| (-135) (QUOTE (-346))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-135) (QUOTE (-346))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798)))))
(-133 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -474,7 +474,7 @@ NIL
NIL
(-136)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4251 . T))
+((-4252 . T))
NIL
(-137 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -482,9 +482,9 @@ NIL
NIL
(-138)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4251 . T))
+((-4252 . T))
NIL
-(-139 -1346 UP UPUP)
+(-139 -3834 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -495,14 +495,14 @@ NIL
(-141 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasAttribute| |#1| (QUOTE -4254)))
+((|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasAttribute| |#1| (QUOTE -4255)))
(-142 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
-((-1996 . T))
+((-1332 . T))
NIL
(-143 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4249 . T) (-4248 . T) (-4251 . T))
+((-4250 . T) (-4249 . T) (-4252 . T))
NIL
(-144)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -516,7 +516,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-147 R -1346)
+(-147 R -3834)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -543,10 +543,10 @@ NIL
(-153 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasCategory| |#2| (QUOTE (-985))) (|HasCategory| |#2| (QUOTE (-952))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasAttribute| |#2| (QUOTE -4250)) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-789))))
+((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-953))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasAttribute| |#2| (QUOTE -4251)) (|HasAttribute| |#2| (QUOTE -4254)) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-789))))
(-154 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4247 -3309 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4250 |has| |#1| (-6 -4250)) (-4253 |has| |#1| (-6 -4253)) (-2047 . T) (-1996 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 -3279 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4251 |has| |#1| (-6 -4251)) (-4254 |has| |#1| (-6 -4254)) (-1377 . T) (-1332 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-155 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -558,8 +558,8 @@ NIL
NIL
(-157 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4247 -3309 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4250 |has| |#1| (-6 -4250)) (-4253 |has| |#1| (-6 -4253)) (-2047 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3309 (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-213))) (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-346)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-770)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-952)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-1112)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-843))))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-843)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-843)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-843))))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3309 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-517)))) (-3309 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-985))) (-12 (|HasCategory| |#1| (QUOTE (-985))) (|HasCategory| |#1| (QUOTE (-1112)))) (|HasCategory| |#1| (QUOTE (-510))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-843))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-341)))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-213))) (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasAttribute| |#1| (QUOTE -4250)) (|HasAttribute| |#1| (QUOTE -4253)) (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090))))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-327)))))
+((-4248 -3279 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4251 |has| |#1| (-6 -4251)) (-4254 |has| |#1| (-6 -4254)) (-1377 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3279 (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-213))) (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-346)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-770)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-953)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-844))))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-844))))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3279 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-517)))) (-3279 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-986))) (-12 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-510))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341)))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-213))) (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasAttribute| |#1| (QUOTE -4251)) (|HasAttribute| |#1| (QUOTE -4254)) (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091))))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-327)))))
(-158 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -570,11 +570,11 @@ NIL
NIL
(-160)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+(((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-161 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4256 "*") . T) (-4247 . T) (-4252 . T) (-4246 . T) (-4248 . T) (-4249 . T) (-4251 . T))
+(((-4257 "*") . T) (-4248 . T) (-4253 . T) (-4247 . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-162)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -591,7 +591,7 @@ NIL
(-165 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-886 |#2|) (LIST (QUOTE -820) (|devaluate| |#1|))))
+((|HasCategory| (-887 |#2|) (LIST (QUOTE -821) (|devaluate| |#1|))))
(-166 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}")))
NIL
@@ -608,7 +608,7 @@ NIL
((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor")))
NIL
NIL
-(-170 R -1346)
+(-170 R -3834)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -712,19 +712,19 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-196 -1346 UP UPUP R)
+(-196 -3834 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-197 -1346 FP)
+(-197 -3834 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-198)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| (-525) (QUOTE (-843))) (|HasCategory| (-525) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-952))) (|HasCategory| (-525) (QUOTE (-762))) (-3309 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1066))) (|HasCategory| (-525) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1090)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-843)))) (|HasCategory| (-525) (QUOTE (-136)))))
-(-199 R -1346)
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-3279 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1067))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136)))))
+(-199 R -3834)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -738,19 +738,19 @@ NIL
NIL
(-202 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-203 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4251 . T))
+((-4252 . T))
NIL
-(-204 R -1346)
+(-204 R -3834)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-205)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-2038 . T) (-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-1369 . T) (-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-206)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -758,23 +758,23 @@ NIL
NIL
(-207 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4256 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4257 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-208 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-209 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4255 . T) (-1996 . T))
+((-4256 . T) (-1332 . T))
NIL
(-210 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-213))))
+((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-213))))
(-211 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4251 . T))
+((-4252 . T))
NIL
(-212 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -782,36 +782,36 @@ NIL
NIL
(-213)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4251 . T))
+((-4252 . T))
NIL
(-214 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4254)))
+((|HasAttribute| |#1| (QUOTE -4255)))
(-215 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4255 . T) (-1996 . T))
+((-4256 . T) (-1332 . T))
NIL
(-216)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-217 S -3339 R)
+(-217 S -3481 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787))) (|HasAttribute| |#3| (QUOTE -4251)) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (QUOTE (-1019))))
-(-218 -3339 R)
+((|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787))) (|HasAttribute| |#3| (QUOTE -4252)) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-1020))))
+(-218 -3481 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4248 |has| |#2| (-976)) (-4249 |has| |#2| (-976)) (-4251 |has| |#2| (-6 -4251)) ((-4256 "*") |has| |#2| (-160)) (-4254 . T) (-1996 . T))
+((-4249 |has| |#2| (-977)) (-4250 |has| |#2| (-977)) (-4252 |has| |#2| (-6 -4252)) ((-4257 "*") |has| |#2| (-160)) (-4255 . T) (-1332 . T))
NIL
-(-219 -3339 A B)
+(-219 -3481 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-220 -3339 R)
+(-220 -3481 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4248 |has| |#2| (-976)) (-4249 |has| |#2| (-976)) (-4251 |has| |#2| (-6 -4251)) ((-4256 "*") |has| |#2| (-160)) (-4254 . T))
-((-3309 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))))) (-3309 (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (QUOTE (-341))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-735))) (-3309 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-160))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-976)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019))))) (-3309 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (|HasCategory| |#2| (QUOTE (-669))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-3309 (|HasCategory| |#2| (QUOTE (-976))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019)))) (|HasAttribute| |#2| (QUOTE -4251)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4249 |has| |#2| (-977)) (-4250 |has| |#2| (-977)) (-4252 |has| |#2| (-6 -4252)) ((-4257 "*") |has| |#2| (-160)) (-4255 . T))
+((-3279 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3279 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (QUOTE (-341))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-735))) (-3279 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-160))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020))))) (-3279 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-3279 (|HasCategory| |#2| (QUOTE (-977))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))
(-221)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -822,47 +822,47 @@ NIL
NIL
(-223)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4247 . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-224 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
-((-1996 . T))
+((-1332 . T))
NIL
(-225 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}")))
-((-4255 . T) (-4254 . T))
-((-3309 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3309 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4256 . T) (-4255 . T))
+((-3279 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3279 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-226 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-227 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4256 "*") |has| |#2| (-160)) (-4247 |has| |#2| (-517)) (-4252 |has| |#2| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#2| (QUOTE (-843))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3309 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3309 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-136)))))
+(((-4257 "*") |has| |#2| (-160)) (-4248 |has| |#2| (-517)) (-4253 |has| |#2| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#2| (QUOTE (-844))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3279 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3279 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
(-228)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")))
NIL
NIL
(-229 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4251 -3309 (-1341 (|has| |#4| (-976)) (|has| |#4| (-213))) (-1341 (|has| |#4| (-976)) (|has| |#4| (-834 (-1090)))) (|has| |#4| (-6 -4251)) (-1341 (|has| |#4| (-976)) (|has| |#4| (-588 (-525))))) (-4248 |has| |#4| (-976)) (-4249 |has| |#4| (-976)) ((-4256 "*") |has| |#4| (-160)) (-4254 . T))
-((-3309 (-12 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-976))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -834) (QUOTE (-1090)))))) (|HasCategory| |#4| (QUOTE (-341))) (-3309 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (QUOTE (-976)))) (-3309 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-341)))) (|HasCategory| |#4| (QUOTE (-976))) (|HasCategory| |#4| (QUOTE (-735))) (-3309 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (QUOTE (-787)))) (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (QUOTE (-160))) (-3309 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-976)))) (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3309 (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-976)))) (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-160)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-213)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-341)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-346)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-735)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-787)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-976)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-1019))))) (-3309 (-12 (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-976))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#4| (QUOTE (-669))) (-12 (|HasCategory| |#4| (QUOTE (-976))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-976))) (|HasCategory| |#4| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-976)))) (-3309 (|HasCategory| |#4| (QUOTE (-976))) (-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525)))))) (-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-1019)))) (-3309 (|HasAttribute| |#4| (QUOTE -4251)) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-976)))) (-12 (|HasCategory| |#4| (QUOTE (-976))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-976))) (|HasCategory| |#4| (LIST (QUOTE -834) (QUOTE (-1090)))))) (|HasCategory| |#4| (QUOTE (-126))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4252 -3279 (-3830 (|has| |#4| (-977)) (|has| |#4| (-213))) (-3830 (|has| |#4| (-977)) (|has| |#4| (-835 (-1091)))) (|has| |#4| (-6 -4252)) (-3830 (|has| |#4| (-977)) (|has| |#4| (-588 (-525))))) (-4249 |has| |#4| (-977)) (-4250 |has| |#4| (-977)) ((-4257 "*") |has| |#4| (-160)) (-4255 . T))
+((-3279 (-12 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-669))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#4| (QUOTE (-341))) (-3279 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (QUOTE (-977)))) (-3279 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-341)))) (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (QUOTE (-735))) (-3279 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (QUOTE (-787)))) (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (QUOTE (-669))) (|HasCategory| |#4| (QUOTE (-160))) (-3279 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-977)))) (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3279 (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-160)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-213)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-341)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-346)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-669)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-735)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-787)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-977)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-1020))))) (-3279 (-12 (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-669))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (-3279 (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (|HasCategory| |#4| (QUOTE (-669))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3279 (|HasCategory| |#4| (QUOTE (-977))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-1020)))) (-3279 (|HasAttribute| |#4| (QUOTE -4252)) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#4| (QUOTE (-126))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-798)))))
(-230 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4251 -3309 (-1341 (|has| |#3| (-976)) (|has| |#3| (-213))) (-1341 (|has| |#3| (-976)) (|has| |#3| (-834 (-1090)))) (|has| |#3| (-6 -4251)) (-1341 (|has| |#3| (-976)) (|has| |#3| (-588 (-525))))) (-4248 |has| |#3| (-976)) (-4249 |has| |#3| (-976)) ((-4256 "*") |has| |#3| (-160)) (-4254 . T))
-((-3309 (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))))) (|HasCategory| |#3| (QUOTE (-341))) (-3309 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-976)))) (-3309 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (QUOTE (-735))) (-3309 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787)))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-160))) (-3309 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-976)))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3309 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-976)))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-160)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-213)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-346)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-976)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1019))))) (-3309 (-12 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-669))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-976)))) (-3309 (|HasCategory| |#3| (QUOTE (-976))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525)))))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1019)))) (-3309 (|HasAttribute| |#3| (QUOTE -4251)) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-976)))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4252 -3279 (-3830 (|has| |#3| (-977)) (|has| |#3| (-213))) (-3830 (|has| |#3| (-977)) (|has| |#3| (-835 (-1091)))) (|has| |#3| (-6 -4252)) (-3830 (|has| |#3| (-977)) (|has| |#3| (-588 (-525))))) (-4249 |has| |#3| (-977)) (-4250 |has| |#3| (-977)) ((-4257 "*") |has| |#3| (-160)) (-4255 . T))
+((-3279 (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#3| (QUOTE (-341))) (-3279 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3279 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-735))) (-3279 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787)))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-160))) (-3279 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3279 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-160)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-213)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-346)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-669)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020))))) (-3279 (-12 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-3279 (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-669))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3279 (|HasCategory| |#3| (QUOTE (-977))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020)))) (-3279 (|HasAttribute| |#3| (QUOTE -4252)) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798)))))
(-231 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-213))))
(-232 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
NIL
(-233 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4254 . T) (-4255 . T) (-1996 . T))
+((-4255 . T) (-4256 . T) (-1332 . T))
NIL
(-234)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -902,8 +902,8 @@ NIL
NIL
(-243 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-843))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#3| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#3| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#3| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
(-244 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -948,11 +948,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-255 R -1346)
+(-255 R -3834)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-256 R -1346)
+(-256 R -3834)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -971,10 +971,10 @@ NIL
(-260 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1019))))
+((|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))))
(-261 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4255 . T) (-1996 . T))
+((-4256 . T) (-1332 . T))
NIL
(-262 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -995,18 +995,18 @@ NIL
(-266 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4255)))
+((|HasAttribute| |#1| (QUOTE -4256)))
(-267 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-268 S R |Mod| -3988 -1932 |exactQuo|)
+(-268 S R |Mod| -3879 -3743 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-269)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4247 . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-270)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -1022,21 +1022,21 @@ NIL
NIL
(-273 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4251 -3309 (|has| |#1| (-976)) (|has| |#1| (-450))) (-4248 |has| |#1| (-976)) (-4249 |has| |#1| (-976)))
-((|HasCategory| |#1| (QUOTE (-341))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-976)))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-976)))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-976)))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-976)))) (-3309 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669)))) (|HasCategory| |#1| (QUOTE (-450))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-1019)))) (-3309 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-1031)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-281))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-450)))) (-3309 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669)))) (-3309 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-976)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))))
+((-4252 -3279 (|has| |#1| (-977)) (|has| |#1| (-450))) (-4249 |has| |#1| (-977)) (-4250 |has| |#1| (-977)))
+((|HasCategory| |#1| (QUOTE (-341))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-977)))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-977)))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-977)))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-977)))) (-3279 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669)))) (|HasCategory| |#1| (QUOTE (-450))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1020)))) (-3279 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-1032)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-281))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-450)))) (-3279 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669)))) (-3279 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-977)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))))
(-274 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3946) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|)))))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1019))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3423) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2544) (|devaluate| |#2|)))))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
(-275)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-276 -1346 S)
+(-276 -3834 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-277 E -1346)
+(-277 E -3834)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
@@ -1051,7 +1051,7 @@ NIL
(-280 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-976))))
+((|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-977))))
(-281)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
@@ -1074,7 +1074,7 @@ NIL
NIL
(-286)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-287 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1084,7 +1084,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-289 -1346)
+(-289 -3834)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1094,8 +1094,8 @@ NIL
NIL
(-291 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-843))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-952))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-762))) (-3309 (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-762))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-789)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-1066))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-213))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -486) (QUOTE (-1090)) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -288) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (LIST (QUOTE -265) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1158) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-286))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-510))) (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-789))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-843))) (|HasCategory| $ (QUOTE (-136)))) (-3309 (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (-12 (|HasCategory| (-1158 |#1| |#2| |#3| |#4|) (QUOTE (-843))) (|HasCategory| $ (QUOTE (-136))))))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-953))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-762))) (-3279 (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-762))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-789)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-1067))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-213))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -288) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -265) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-286))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-510))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-789))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (|HasCategory| $ (QUOTE (-136)))) (-3279 (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (|HasCategory| $ (QUOTE (-136))))))
(-292 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1106,9 +1106,9 @@ NIL
NIL
(-294 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4251 -3309 (-1341 (|has| |#1| (-976)) (|has| |#1| (-588 (-525)))) (-12 (|has| |#1| (-517)) (-3309 (-1341 (|has| |#1| (-976)) (|has| |#1| (-588 (-525)))) (|has| |#1| (-976)) (|has| |#1| (-450)))) (|has| |#1| (-976)) (|has| |#1| (-450))) (-4249 |has| |#1| (-160)) (-4248 |has| |#1| (-160)) ((-4256 "*") |has| |#1| (-517)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-517)) (-4246 |has| |#1| (-517)))
-((-3309 (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (-3309 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-976)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-3309 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-1031)))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525))))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-976)))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-976)))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-976)))) (-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517)))) (-3309 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-517)))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (-3309 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525))))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1031)))) (-3309 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))))) (-3309 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1031)))) (-3309 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))))) (-3309 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-976)))) (-3309 (-12 (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1031))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| $ (QUOTE (-976))) (|HasCategory| $ (LIST (QUOTE -967) (QUOTE (-525)))))
-(-295 R -1346)
+((-4252 -3279 (-3830 (|has| |#1| (-977)) (|has| |#1| (-588 (-525)))) (-12 (|has| |#1| (-517)) (-3279 (-3830 (|has| |#1| (-977)) (|has| |#1| (-588 (-525)))) (|has| |#1| (-977)) (|has| |#1| (-450)))) (|has| |#1| (-977)) (|has| |#1| (-450))) (-4250 |has| |#1| (-160)) (-4249 |has| |#1| (-160)) ((-4257 "*") |has| |#1| (-517)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-517)) (-4247 |has| |#1| (-517)))
+((-3279 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (-3279 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-3279 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-1032)))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517)))) (-3279 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-517)))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (-3279 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1032)))) (-3279 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))))) (-3279 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1032)))) (-3279 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))))) (-3279 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-977)))) (-3279 (-12 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| $ (QUOTE (-977))) (|HasCategory| $ (LIST (QUOTE -968) (QUOTE (-525)))))
+(-295 R -3834)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
@@ -1118,8 +1118,8 @@ NIL
NIL
(-297 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-341))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1908) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3309 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -3766) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -4104) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|)))))))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1270) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3279 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2650) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2383) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))))
(-298 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1130,7 +1130,7 @@ NIL
NIL
(-300 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4249 . T) (-4248 . T))
+((-4250 . T) (-4249 . T))
((|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-734))))
(-301 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
@@ -1146,19 +1146,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))))
(-304 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4248 . T) (-4249 . T) (-4251 . T))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-305 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4255 . T) (-4254 . T))
-((-3309 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3309 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
-(-306 S -1346)
+((-4256 . T) (-4255 . T))
+((-3279 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3279 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-306 S -3834)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-346))))
-(-307 -1346)
+(-307 -3834)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-308)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm.")))
@@ -1176,54 +1176,54 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-312 S -1346 UP UPUP R)
+(-312 S -3834 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-313 -1346 UP UPUP R)
+(-313 -3834 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-314 -1346 UP UPUP R)
+(-314 -3834 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
(-315 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|))))
+((|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|))))
(-316 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
(-317 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-357)))) (|HasCategory| $ (QUOTE (-976))) (|HasCategory| $ (LIST (QUOTE -967) (QUOTE (-525)))))
+((-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-357)))) (|HasCategory| $ (QUOTE (-977))) (|HasCategory| $ (LIST (QUOTE -968) (QUOTE (-525)))))
(-318 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-319 S -1346 UP UPUP)
+(-319 S -3834 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-341))))
-(-320 -1346 UP UPUP)
+(-320 -3834 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4247 |has| (-385 |#2|) (-341)) (-4252 |has| (-385 |#2|) (-341)) (-4246 |has| (-385 |#2|) (-341)) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 |has| (-385 |#2|) (-341)) (-4253 |has| (-385 |#2|) (-341)) (-4247 |has| (-385 |#2|) (-341)) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-321 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((-3309 (|HasCategory| (-844 |#1|) (QUOTE (-136))) (|HasCategory| (-844 |#1|) (QUOTE (-346)))) (|HasCategory| (-844 |#1|) (QUOTE (-138))) (|HasCategory| (-844 |#1|) (QUOTE (-346))) (|HasCategory| (-844 |#1|) (QUOTE (-136))))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((-3279 (|HasCategory| (-845 |#1|) (QUOTE (-136))) (|HasCategory| (-845 |#1|) (QUOTE (-346)))) (|HasCategory| (-845 |#1|) (QUOTE (-138))) (|HasCategory| (-845 |#1|) (QUOTE (-346))) (|HasCategory| (-845 |#1|) (QUOTE (-136))))
(-322 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((-3309 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((-3279 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
(-323 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((-3309 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((-3279 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
(-324 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1238,33 +1238,33 @@ NIL
NIL
(-327)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-328 R UP -1346)
+(-328 R UP -3834)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-329 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((-3309 (|HasCategory| (-844 |#1|) (QUOTE (-136))) (|HasCategory| (-844 |#1|) (QUOTE (-346)))) (|HasCategory| (-844 |#1|) (QUOTE (-138))) (|HasCategory| (-844 |#1|) (QUOTE (-346))) (|HasCategory| (-844 |#1|) (QUOTE (-136))))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((-3279 (|HasCategory| (-845 |#1|) (QUOTE (-136))) (|HasCategory| (-845 |#1|) (QUOTE (-346)))) (|HasCategory| (-845 |#1|) (QUOTE (-138))) (|HasCategory| (-845 |#1|) (QUOTE (-346))) (|HasCategory| (-845 |#1|) (QUOTE (-136))))
(-330 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((-3309 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((-3279 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
(-331 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((-3309 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((-3279 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
(-332 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((-3309 (|HasCategory| (-844 |#1|) (QUOTE (-136))) (|HasCategory| (-844 |#1|) (QUOTE (-346)))) (|HasCategory| (-844 |#1|) (QUOTE (-138))) (|HasCategory| (-844 |#1|) (QUOTE (-346))) (|HasCategory| (-844 |#1|) (QUOTE (-136))))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((-3279 (|HasCategory| (-845 |#1|) (QUOTE (-136))) (|HasCategory| (-845 |#1|) (QUOTE (-346)))) (|HasCategory| (-845 |#1|) (QUOTE (-138))) (|HasCategory| (-845 |#1|) (QUOTE (-346))) (|HasCategory| (-845 |#1|) (QUOTE (-136))))
(-333 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((-3309 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
-(-334 -1346 GF)
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((-3279 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
+(-334 -3834 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1272,21 +1272,21 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-336 -1346 FP FPP)
+(-336 -3834 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-337 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((-3309 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((-3279 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136))))
(-338 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-339 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4251 . T))
+((-4252 . T))
NIL
(-340 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1294,7 +1294,7 @@ NIL
NIL
(-341)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-342 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
@@ -1310,7 +1310,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-517))))
(-345 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4251 |has| |#1| (-517)) (-4249 . T) (-4248 . T))
+((-4252 |has| |#1| (-517)) (-4250 . T) (-4249 . T))
NIL
(-346)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1322,7 +1322,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-341))))
(-348 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4248 . T) (-4249 . T) (-4251 . T))
+((-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-349 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1331,14 +1331,14 @@ NIL
(-350 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4255)) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1019))))
+((|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))))
(-351 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4254 . T) (-1996 . T))
+((-4255 . T) (-1332 . T))
NIL
(-352 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4249 . T) (-4248 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4250 . T) (-4249 . T))
NIL
(-353 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1350,7 +1350,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))))
(-355 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4251 . T))
+((-4252 . T))
NIL
(-356 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1358,7 +1358,7 @@ NIL
NIL
(-357)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4237 . T) (-4245 . T) (-2038 . T) (-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4238 . T) (-4246 . T) (-1369 . T) (-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-358 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1366,23 +1366,23 @@ NIL
NIL
(-359 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4249 . T) (-4248 . T))
+((-4250 . T) (-4249 . T))
((|HasCategory| |#1| (QUOTE (-160))))
(-360 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4249 . T) (-4248 . T))
+((-4250 . T) (-4249 . T))
NIL
(-361)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-1996 . T))
+((-1332 . T))
NIL
(-362)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-1996 . T))
+((-1332 . T))
NIL
(-363 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4249 . T) (-4248 . T))
+((-4250 . T) (-4249 . T))
((|HasCategory| |#1| (QUOTE (-160))))
(-364 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
@@ -1390,7 +1390,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-789))))
(-365)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-366)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1402,13 +1402,13 @@ NIL
NIL
(-368 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4249 . T) (-4248 . T))
+((-4250 . T) (-4249 . T))
NIL
(-369)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-370 -1346 UP UPUP R)
+(-370 -3834 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1422,27 +1422,27 @@ NIL
NIL
(-373)
((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
-((-1996 . T))
+((-1332 . T))
NIL
(-374)
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-1996 . T))
+((-1332 . T))
NIL
(-375)
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
-(-376 -1310 |returnType| -4031 |symbols|)
+(-376 -3800 |returnType| -3525 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-377 -1346 UP)
+(-377 -3834 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
(-378 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
-((-1996 . T))
+((-1332 . T))
NIL
(-379 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
@@ -1450,15 +1450,15 @@ NIL
NIL
(-380)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-381 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4237)) (|HasAttribute| |#1| (QUOTE -4245)))
+((|HasAttribute| |#1| (QUOTE -4238)) (|HasAttribute| |#1| (QUOTE -4246)))
(-382)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-2038 . T) (-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-1369 . T) (-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-383 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1470,20 +1470,20 @@ NIL
NIL
(-385 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4241 -12 (|has| |#1| (-6 -4252)) (|has| |#1| (-429)) (|has| |#1| (-6 -4241))) (-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-762))) (-3309 (|HasCategory| |#1| (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-789)))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1066))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770))))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-510))) (-12 (|HasAttribute| |#1| (QUOTE -4252)) (|HasAttribute| |#1| (QUOTE -4241)) (|HasCategory| |#1| (QUOTE (-429)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136)))))
+((-4242 -12 (|has| |#1| (-6 -4253)) (|has| |#1| (-429)) (|has| |#1| (-6 -4242))) (-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-762))) (-3279 (|HasCategory| |#1| (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-789)))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1067))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770))))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-510))) (-12 (|HasAttribute| |#1| (QUOTE -4253)) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-429)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
(-386 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
(-387 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4248 . T) (-4249 . T) (-4251 . T))
+((-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-388 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))))
+((|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))
(-389 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
@@ -1492,14 +1492,14 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-391 R -1346 UP A)
+(-391 R -3834 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4251 . T))
+((-4252 . T))
NIL
-(-392 R -1346 UP A |ibasis|)
+(-392 R -3834 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -967) (|devaluate| |#2|))))
+((|HasCategory| |#4| (LIST (QUOTE -968) (|devaluate| |#2|))))
(-393 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
@@ -1510,12 +1510,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-341))))
(-395 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4251 |has| |#1| (-517)) (-4249 . T) (-4248 . T))
+((-4252 |has| |#1| (-517)) (-4250 . T) (-4249 . T))
NIL
(-396 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1090)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -288) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -265) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-1130))) (-3309 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-952))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-429))))
+((-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -288) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -265) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-1131))) (-3279 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-429))))
(-397 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
@@ -1542,37 +1542,37 @@ NIL
((|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-346))))
(-403 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4254 . T) (-4244 . T) (-4255 . T) (-1996 . T))
+((-4255 . T) (-4245 . T) (-4256 . T) (-1332 . T))
NIL
-(-404 R -1346)
+(-404 R -3834)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-405 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4241 -12 (|has| |#1| (-6 -4241)) (|has| |#2| (-6 -4241))) (-4248 . T) (-4249 . T) (-4251 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4241)) (|HasAttribute| |#2| (QUOTE -4241))))
-(-406 R -1346)
+((-4242 -12 (|has| |#1| (-6 -4242)) (|has| |#2| (-6 -4242))) (-4249 . T) (-4250 . T) (-4252 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4242)) (|HasAttribute| |#2| (QUOTE -4242))))
+(-406 R -3834)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
(-407 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-1031))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))))
+((|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-1032))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))))
(-408 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4251 -3309 (|has| |#1| (-976)) (|has| |#1| (-450))) (-4249 |has| |#1| (-160)) (-4248 |has| |#1| (-160)) ((-4256 "*") |has| |#1| (-517)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-517)) (-4246 |has| |#1| (-517)) (-1996 . T))
+((-4252 -3279 (|has| |#1| (-977)) (|has| |#1| (-450))) (-4250 |has| |#1| (-160)) (-4249 |has| |#1| (-160)) ((-4257 "*") |has| |#1| (-517)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-517)) (-4247 |has| |#1| (-517)) (-1332 . T))
NIL
-(-409 R -1346)
+(-409 R -3834)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-410 R -1346)
+(-410 R -3834)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-411 R -1346)
+(-411 R -3834)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1580,10 +1580,10 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-413 R -1346 UP)
+(-413 R -3834 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-47)))))
+((|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-47)))))
(-414)
((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
@@ -1598,17 +1598,17 @@ NIL
NIL
(-417)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-1996 . T))
+((-1332 . T))
NIL
(-418)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-1996 . T))
+((-1332 . T))
NIL
(-419 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-420 R UP -1346)
+(-420 R UP -3834)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1646,16 +1646,16 @@ NIL
NIL
(-429)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-430 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4251 |has| (-385 (-886 |#1|)) (-517)) (-4249 . T) (-4248 . T))
-((|HasCategory| (-385 (-886 |#1|)) (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| (-385 (-886 |#1|)) (QUOTE (-517))))
+((-4252 |has| (-385 (-887 |#1|)) (-517)) (-4250 . T) (-4249 . T))
+((|HasCategory| (-385 (-887 |#1|)) (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| (-385 (-887 |#1|)) (QUOTE (-517))))
(-431 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4256 "*") |has| |#2| (-160)) (-4247 |has| |#2| (-517)) (-4252 |has| |#2| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#2| (QUOTE (-843))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3309 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3309 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-136)))))
+(((-4257 "*") |has| |#2| (-160)) (-4248 |has| |#2| (-517)) (-4253 |has| |#2| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#2| (QUOTE (-844))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3279 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3279 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
(-432 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1682,7 +1682,7 @@ NIL
NIL
(-438 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4249 . T) (-4248 . T))
+((-4250 . T) (-4249 . T))
NIL
(-439 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1690,8 +1690,8 @@ NIL
NIL
(-440 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4255 . T) (-4254 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4256 . T) (-4255 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-798)))))
(-441 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
@@ -1720,7 +1720,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-448 |lv| -1346 R)
+(-448 |lv| -3834 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1730,45 +1730,45 @@ NIL
NIL
(-450)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (^ (($ $ (|Integer|)) "\\spad{x^n} returns \\spad{x} raised to the integer power \\spad{n}.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4251 . T))
+((-4252 . T))
NIL
(-451 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-341))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1908) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3309 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -3766) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -4104) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|)))))))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1270) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3279 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2650) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2383) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))))
(-452 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4255 . T))
-((-12 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3946) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|)))))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-789))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4256 . T))
+((-12 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3423) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2544) (|devaluate| |#2|)))))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-789))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
(-453 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4255 . T) (-4254 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4256 . T) (-4255 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-798)))))
(-454)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-455 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3946) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|)))))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1019))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3423) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2544) (|devaluate| |#2|)))))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
(-456)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-457 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4256 "*") |has| |#2| (-160)) (-4247 |has| |#2| (-517)) (-4252 |has| |#2| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#2| (QUOTE (-843))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3309 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3309 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-136)))))
-(-458 -3339 S)
+(((-4257 "*") |has| |#2| (-160)) (-4248 |has| |#2| (-517)) (-4253 |has| |#2| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#2| (QUOTE (-844))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3279 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3279 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
+(-458 -3481 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4248 |has| |#2| (-976)) (-4249 |has| |#2| (-976)) (-4251 |has| |#2| (-6 -4251)) ((-4256 "*") |has| |#2| (-160)) (-4254 . T))
-((-3309 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))))) (-3309 (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (QUOTE (-341))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-735))) (-3309 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-160))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-976)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019))))) (-3309 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (|HasCategory| |#2| (QUOTE (-669))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-3309 (|HasCategory| |#2| (QUOTE (-976))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019)))) (|HasAttribute| |#2| (QUOTE -4251)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4249 |has| |#2| (-977)) (-4250 |has| |#2| (-977)) (-4252 |has| |#2| (-6 -4252)) ((-4257 "*") |has| |#2| (-160)) (-4255 . T))
+((-3279 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3279 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (QUOTE (-341))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-735))) (-3279 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-160))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020))))) (-3279 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-3279 (|HasCategory| |#2| (QUOTE (-977))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))
(-459 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
-(-460 -1346 UP UPUP R)
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-460 -3834 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1778,15 +1778,15 @@ NIL
NIL
(-462)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| (-525) (QUOTE (-843))) (|HasCategory| (-525) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-952))) (|HasCategory| (-525) (QUOTE (-762))) (-3309 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1066))) (|HasCategory| (-525) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1090)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-843)))) (|HasCategory| (-525) (QUOTE (-136)))))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-3279 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1067))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136)))))
(-463 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4254)) (|HasAttribute| |#1| (QUOTE -4255)) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))))
+((|HasAttribute| |#1| (QUOTE -4255)) (|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))
(-464 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
-((-1996 . T))
+((-1332 . T))
NIL
(-465 S)
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
@@ -1796,34 +1796,34 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-467 -1346 UP |AlExt| |AlPol|)
+(-467 -3834 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-468)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| $ (QUOTE (-976))) (|HasCategory| $ (LIST (QUOTE -967) (QUOTE (-525)))))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| $ (QUOTE (-977))) (|HasCategory| $ (LIST (QUOTE -968) (QUOTE (-525)))))
(-469 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4255 . T) (-4254 . T))
-((-3309 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3309 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4256 . T) (-4255 . T))
+((-3279 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3279 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-470 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-471 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-472 R UP -1346)
+(-472 R UP -3834)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-473 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4255 . T) (-4254 . T))
-((-12 (|HasCategory| (-108) (QUOTE (-1019))) (|HasCategory| (-108) (LIST (QUOTE -288) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-108) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-108) (QUOTE (-1019))) (|HasCategory| (-108) (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4256 . T) (-4255 . T))
+((-12 (|HasCategory| (-108) (QUOTE (-1020))) (|HasCategory| (-108) (LIST (QUOTE -288) (QUOTE (-108))))) (|HasCategory| (-108) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-108) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-108) (QUOTE (-1020))) (|HasCategory| (-108) (LIST (QUOTE -566) (QUOTE (-798)))))
(-474 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
@@ -1836,10 +1836,10 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-477 -1346 |Expon| |VarSet| |DPoly|)
+(-477 -3834 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-1090)))))
+((|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-1091)))))
(-478 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
@@ -1882,32 +1882,32 @@ NIL
((|HasCategory| |#2| (QUOTE (-734))))
(-488 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4255 . T) (-4254 . T))
-((-3309 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3309 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4256 . T) (-4255 . T))
+((-3279 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3279 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-489 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((-3309 (|HasCategory| (-538 |#1|) (QUOTE (-136))) (|HasCategory| (-538 |#1|) (QUOTE (-346)))) (|HasCategory| (-538 |#1|) (QUOTE (-138))) (|HasCategory| (-538 |#1|) (QUOTE (-346))) (|HasCategory| (-538 |#1|) (QUOTE (-136))))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((-3279 (|HasCategory| (-538 |#1|) (QUOTE (-136))) (|HasCategory| (-538 |#1|) (QUOTE (-346)))) (|HasCategory| (-538 |#1|) (QUOTE (-138))) (|HasCategory| (-538 |#1|) (QUOTE (-346))) (|HasCategory| (-538 |#1|) (QUOTE (-136))))
(-490 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-491 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4255 . T) (-4254 . T))
-((-3309 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3309 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4256 . T) (-4255 . T))
+((-3279 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3279 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-492 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4255)))
+((|HasAttribute| |#3| (QUOTE -4256)))
(-493 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4255)))
+((|HasAttribute| |#7| (QUOTE -4256)))
(-494 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4256 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4257 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-495 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
@@ -1920,7 +1920,7 @@ NIL
((|constructor| (NIL "converts entire exponents to OutputForm")))
NIL
NIL
-(-498 K -1346 |Par|)
+(-498 K -3834 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -1940,7 +1940,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-503 K -1346 |Par|)
+(-503 K -3834 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -1970,17 +1970,17 @@ NIL
NIL
(-510)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4252 . T) (-4253 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4253 . T) (-4254 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-511 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3946) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|)))))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1019))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))))
-(-512 R -1346)
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3423) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2544) (|devaluate| |#2|)))))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
+(-512 R -3834)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-513 R0 -1346 UP UPUP R)
+(-513 R0 -3834 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -1990,7 +1990,7 @@ NIL
NIL
(-515 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-2038 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-1369 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-516 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -1998,9 +1998,9 @@ NIL
NIL
(-517)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-518 R -1346)
+(-518 R -3834)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
@@ -2012,7 +2012,7 @@ NIL
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-521 R -1346 L)
+(-521 R -3834 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -602) (|devaluate| |#2|))))
@@ -2020,31 +2020,31 @@ NIL
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-523 -1346 UP UPUP R)
+(-523 -3834 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-524 -1346 UP)
+(-524 -3834 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
(-525)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4236 . T) (-4242 . T) (-4246 . T) (-4241 . T) (-4252 . T) (-4253 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4237 . T) (-4243 . T) (-4247 . T) (-4242 . T) (-4253 . T) (-4254 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-526)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-527 R -1346 L)
+(-527 R -3834 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -602) (|devaluate| |#2|))))
-(-528 R -1346)
+(-528 R -3834)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1054)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-578)))))
-(-529 -1346 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-578)))))
+(-529 -3834 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2052,54 +2052,54 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-531 -1346)
+(-531 -3834)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-532 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-2038 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-1369 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-533)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-534 R -1346)
+(-534 R -3834)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-263))) (|HasCategory| |#2| (QUOTE (-578))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-263)))) (|HasCategory| |#1| (QUOTE (-517))))
-(-535 -1346 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-263))) (|HasCategory| |#2| (QUOTE (-578))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-263)))) (|HasCategory| |#1| (QUOTE (-517))))
+(-535 -3834 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-536 R -1346)
+(-536 R -3834)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
(-537 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-538 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
((|HasCategory| $ (QUOTE (-138))) (|HasCategory| $ (QUOTE (-136))) (|HasCategory| $ (QUOTE (-346))))
(-539)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-540 R -1346)
+(-540 R -3834)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-541 E -1346)
+(-541 E -3834)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-542 -1346)
+(-542 -3834)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4249 . T) (-4248 . T))
-((|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-1090)))))
+((-4250 . T) (-4249 . T))
+((|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-1091)))))
(-543 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
@@ -2122,19 +2122,19 @@ NIL
NIL
(-548 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4255 . T) (-4254 . T))
-((-3309 (-12 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1019))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (-3309 (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-797)))) (-12 (|HasCategory| (-135) (QUOTE (-1019))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (-3309 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1019)))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1019))) (-12 (|HasCategory| (-135) (QUOTE (-1019))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4256 . T) (-4255 . T))
+((-3279 (-12 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (-3279 (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (-3279 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020)))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798)))))
(-549 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-550 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))) (|HasCategory| (-525) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1908) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))) (|HasCategory| (-525) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1270) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))))
(-551 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4249 |has| |#1| (-517)) (-4248 |has| |#1| (-517)) ((-4256 "*") |has| |#1| (-517)) (-4247 |has| |#1| (-517)) (-4251 . T))
+((-4250 |has| |#1| (-517)) (-4249 |has| |#1| (-517)) ((-4257 "*") |has| |#1| (-517)) (-4248 |has| |#1| (-517)) (-4252 . T))
((|HasCategory| |#1| (QUOTE (-517))))
(-552 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
@@ -2144,7 +2144,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-554 R -1346 FG)
+(-554 R -3834 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2154,15 +2154,15 @@ NIL
NIL
(-556 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4255 . T) (-4254 . T))
-((-3309 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3309 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-976))) (-12 (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-976)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4256 . T) (-4255 . T))
+((-3279 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3279 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-557 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4255)) (|HasCategory| |#2| (QUOTE (-789))) (|HasAttribute| |#1| (QUOTE -4254)) (|HasCategory| |#3| (QUOTE (-1019))))
+((|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#2| (QUOTE (-789))) (|HasAttribute| |#1| (QUOTE -4255)) (|HasCategory| |#3| (QUOTE (-1020))))
(-558 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
-((-1996 . T))
+((-1332 . T))
NIL
(-559)
((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode.")))
@@ -2170,19 +2170,19 @@ NIL
NIL
(-560 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4251 -3309 (-1341 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))) (-4249 . T) (-4248 . T))
-((-3309 (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))))
+((-4252 -3279 (-3830 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))) (-4250 . T) (-4249 . T))
+((-3279 (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))))
(-561 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3946) (QUOTE (-1073))) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| (-1073) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3423) (QUOTE (-1074))) (LIST (QUOTE |:|) (QUOTE -2544) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| (-1074) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (LIST (QUOTE -566) (QUOTE (-798)))))
(-562 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-563 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4255 . T) (-1996 . T))
+((-4256 . T) (-1332 . T))
NIL
(-564 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
@@ -2191,7 +2191,7 @@ NIL
(-565 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))))
+((|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))))
(-566 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
@@ -2200,7 +2200,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-568 -1346 UP)
+(-568 -3834 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2210,20 +2210,20 @@ NIL
NIL
(-570 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4251 . T))
+((-4252 . T))
NIL
(-571 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4248 . T) (-4249 . T) (-4251 . T))
+((-4249 . T) (-4250 . T) (-4252 . T))
((|HasCategory| |#1| (QUOTE (-787))))
-(-572 R -1346)
+(-572 R -3834)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
(-573 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4249 . T) (-4248 . T) ((-4256 "*") . T) (-4247 . T) (-4251 . T))
-((|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))))
+((-4250 . T) (-4249 . T) ((-4257 "*") . T) (-4248 . T) (-4252 . T))
+((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))
(-574 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
@@ -2234,7 +2234,7 @@ NIL
NIL
(-576 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4251 . T))
+((-4252 . T))
NIL
(-577 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
@@ -2244,30 +2244,30 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-579 R -1346)
+(-579 R -3834)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-580 |lv| -1346)
+(-580 |lv| -3834)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-581)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4255 . T))
-((-12 (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3946) (QUOTE (-1073))) (LIST (QUOTE |:|) (QUOTE -2511) (QUOTE (-51))))))) (-3309 (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (QUOTE (-1019))) (|HasCategory| (-51) (QUOTE (-1019)))) (-3309 (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-51) (QUOTE (-1019))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1019))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-1073) (QUOTE (-789))) (-3309 (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-51) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4256 . T))
+((-12 (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3423) (QUOTE (-1074))) (LIST (QUOTE |:|) (QUOTE -2544) (QUOTE (-51))))))) (-3279 (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (QUOTE (-1020))) (|HasCategory| (-51) (QUOTE (-1020)))) (-3279 (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-1074) (QUOTE (-789))) (-3279 (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))))
(-582 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-341))))
(-583 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4249 . T) (-4248 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4250 . T) (-4249 . T))
NIL
(-584 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4251 -3309 (-1341 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))) (-4249 . T) (-4248 . T))
-((-3309 (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))))
+((-4252 -3279 (-3830 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))) (-4250 . T) (-4249 . T))
+((-3279 (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))))
(-585 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
@@ -2279,10 +2279,10 @@ NIL
(-587 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2480 (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-341))))
+((-1825 (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-341))))
(-588 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4251 . T))
+((-4252 . T))
NIL
(-589 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
@@ -2298,12 +2298,12 @@ NIL
NIL
(-592 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4255 . T) (-4254 . T))
-((-3309 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3309 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-770))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4256 . T) (-4255 . T))
+((-3279 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3279 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-770))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-593 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-594 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
@@ -2315,39 +2315,39 @@ NIL
(-596 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4255)))
+((|HasAttribute| |#1| (QUOTE -4256)))
(-597 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
-((-1996 . T))
+((-1332 . T))
NIL
-(-598 R -1346 L)
+(-598 R -3834 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
(-599 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341))))
+((-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341))))
(-600 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341))))
+((-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341))))
(-601 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-341))))
(-602 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4248 . T) (-4249 . T) (-4251 . T))
+((-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-603 -1346 UP)
+(-603 -3834 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-604 A -1254)
+(-604 A -1748)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341))))
+((-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341))))
(-605 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
@@ -2362,7 +2362,7 @@ NIL
NIL
(-608 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4249 . T) (-4248 . T))
+((-4250 . T) (-4249 . T))
((|HasCategory| |#1| (QUOTE (-733))))
(-609 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
@@ -2370,7 +2370,7 @@ NIL
NIL
(-610 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4249 . T) (-4248 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4250 . T) (-4249 . T))
((|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-160))))
(-611 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
@@ -2378,13 +2378,13 @@ NIL
NIL
(-612 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4255 . T) (-4254 . T) (-1996 . T))
+((-4256 . T) (-4255 . T) (-1332 . T))
NIL
-(-613 -1346)
+(-613 -3834)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-614 -1346 |Row| |Col| M)
+(-614 -3834 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
@@ -2394,8 +2394,8 @@ NIL
NIL
(-616 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4251 . T) (-4254 . T) (-4248 . T) (-4249 . T))
-((|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE (-4256 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (-3309 (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-517))) (-3309 (|HasAttribute| |#2| (QUOTE (-4256 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-160))))
+((-4252 . T) (-4255 . T) (-4249 . T) (-4250 . T))
+((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE (-4257 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (-3279 (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-517))) (-3279 (|HasAttribute| |#2| (QUOTE (-4257 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-160))))
(-617 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
@@ -2406,12 +2406,12 @@ NIL
NIL
(-619 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
-((-1996 . T))
+((-1332 . T))
NIL
(-620 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((-3309 (-12 (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (QUOTE (-976))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-3279 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-621 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
@@ -2447,10 +2447,10 @@ NIL
(-629 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4256 "*"))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-517))))
+((|HasAttribute| |#2| (QUOTE (-4257 "*"))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-517))))
(-630 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4254 . T) (-4255 . T) (-1996 . T))
+((-4255 . T) (-4256 . T) (-1332 . T))
NIL
(-631 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
@@ -2458,13 +2458,13 @@ NIL
((|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))))
(-632 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4254 . T) (-4255 . T))
-((-3309 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4256 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4256 . T))
+((-3279 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4257 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-633 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-634 S -1346 FLAF FLAS)
+(-634 S -3834 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2474,11 +2474,11 @@ NIL
NIL
(-636)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4247 . T) (-4252 |has| (-641) (-341)) (-4246 |has| (-641) (-341)) (-2047 . T) (-4253 |has| (-641) (-6 -4253)) (-4250 |has| (-641) (-6 -4250)) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| (-641) (QUOTE (-138))) (|HasCategory| (-641) (QUOTE (-136))) (|HasCategory| (-641) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-641) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-641) (QUOTE (-346))) (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-641) (QUOTE (-213))) (-3309 (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-327)))) (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (LIST (QUOTE -265) (QUOTE (-641)) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -288) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -486) (QUOTE (-1090)) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| (-641) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| (-641) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| (-641) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (-3309 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-327)))) (|HasCategory| (-641) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-641) (QUOTE (-952))) (|HasCategory| (-641) (QUOTE (-1112))) (-12 (|HasCategory| (-641) (QUOTE (-933))) (|HasCategory| (-641) (QUOTE (-1112)))) (-3309 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-843)))) (|HasCategory| (-641) (QUOTE (-341))) (-12 (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (QUOTE (-843))))) (-3309 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-843)))) (-12 (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-843)))) (-12 (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (QUOTE (-843))))) (|HasCategory| (-641) (QUOTE (-510))) (-12 (|HasCategory| (-641) (QUOTE (-985))) (|HasCategory| (-641) (QUOTE (-1112)))) (|HasCategory| (-641) (QUOTE (-985))) (-3309 (|HasCategory| (-641) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-641) (QUOTE (-341)))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-843))) (-3309 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-843)))) (|HasCategory| (-641) (QUOTE (-341)))) (-3309 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-843)))) (|HasCategory| (-641) (QUOTE (-517)))) (-12 (|HasCategory| (-641) (QUOTE (-213))) (|HasCategory| (-641) (QUOTE (-341)))) (-12 (|HasCategory| (-641) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-641) (QUOTE (-341)))) (|HasCategory| (-641) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-641) (QUOTE (-789))) (|HasCategory| (-641) (QUOTE (-517))) (|HasAttribute| (-641) (QUOTE -4253)) (|HasAttribute| (-641) (QUOTE -4250)) (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-843)))) (|HasCategory| (-641) (QUOTE (-136)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-843)))) (|HasCategory| (-641) (QUOTE (-327)))))
+((-4248 . T) (-4253 |has| (-641) (-341)) (-4247 |has| (-641) (-341)) (-1377 . T) (-4254 |has| (-641) (-6 -4254)) (-4251 |has| (-641) (-6 -4251)) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| (-641) (QUOTE (-138))) (|HasCategory| (-641) (QUOTE (-136))) (|HasCategory| (-641) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-641) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-641) (QUOTE (-346))) (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-641) (QUOTE (-213))) (-3279 (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-327)))) (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (LIST (QUOTE -265) (QUOTE (-641)) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -288) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-641) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-641) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-641) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (-3279 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-327)))) (|HasCategory| (-641) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-641) (QUOTE (-953))) (|HasCategory| (-641) (QUOTE (-1113))) (-12 (|HasCategory| (-641) (QUOTE (-934))) (|HasCategory| (-641) (QUOTE (-1113)))) (-3279 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-341))) (-12 (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (QUOTE (-844))))) (-3279 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (-12 (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-844)))) (-12 (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (QUOTE (-844))))) (|HasCategory| (-641) (QUOTE (-510))) (-12 (|HasCategory| (-641) (QUOTE (-986))) (|HasCategory| (-641) (QUOTE (-1113)))) (|HasCategory| (-641) (QUOTE (-986))) (-3279 (|HasCategory| (-641) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-641) (QUOTE (-341)))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844))) (-3279 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-341)))) (-3279 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-517)))) (-12 (|HasCategory| (-641) (QUOTE (-213))) (|HasCategory| (-641) (QUOTE (-341)))) (-12 (|HasCategory| (-641) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-641) (QUOTE (-341)))) (|HasCategory| (-641) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-641) (QUOTE (-789))) (|HasCategory| (-641) (QUOTE (-517))) (|HasAttribute| (-641) (QUOTE -4254)) (|HasAttribute| (-641) (QUOTE -4251)) (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-136)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-327)))))
(-637 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4255 . T) (-1996 . T))
+((-4256 . T) (-1332 . T))
NIL
(-638 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
@@ -2488,13 +2488,13 @@ NIL
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-640 OV E -1346 PG)
+(-640 OV E -3834 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-641)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-2038 . T) (-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-1369 . T) (-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-642 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2502,7 +2502,7 @@ NIL
NIL
(-643)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4253 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4254 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-644 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
@@ -2524,7 +2524,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-649 S -1424 I)
+(-649 S -2093 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2534,7 +2534,7 @@ NIL
NIL
(-651 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4248 . T) (-4249 . T) (-4251 . T))
+((-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-652 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
@@ -2544,25 +2544,25 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-654 R |Mod| -3988 -1932 |exactQuo|)
+(-654 R |Mod| -3879 -3743 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-655 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4250 |has| |#1| (-341)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-327))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4251 |has| |#1| (-341)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-327))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
(-656 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-657 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4249 |has| |#1| (-160)) (-4248 |has| |#1| (-160)) (-4251 . T))
+((-4250 |has| |#1| (-160)) (-4249 |has| |#1| (-160)) (-4252 . T))
((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))))
-(-658 R |Mod| -3988 -1932 |exactQuo|)
+(-658 R |Mod| -3879 -3743 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4251 . T))
+((-4252 . T))
NIL
(-659 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
@@ -2570,11 +2570,11 @@ NIL
NIL
(-660 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4249 . T) (-4248 . T))
+((-4250 . T) (-4249 . T))
NIL
-(-661 -1346)
+(-661 -3834)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4251 . T))
+((-4252 . T))
NIL
(-662 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
@@ -2598,7 +2598,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-327))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))))
(-667 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4247 |has| |#1| (-341)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 |has| |#1| (-341)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-668 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
@@ -2608,7 +2608,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-670 -1346 UP)
+(-670 -3834 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2626,8 +2626,8 @@ NIL
NIL
(-674 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4256 "*") |has| |#2| (-160)) (-4247 |has| |#2| (-517)) (-4252 |has| |#2| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#2| (QUOTE (-843))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3309 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3309 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-799 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-136)))))
+(((-4257 "*") |has| |#2| (-160)) (-4248 |has| |#2| (-517)) (-4253 |has| |#2| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#2| (QUOTE (-844))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3279 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3279 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
(-675 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2642,16 +2642,16 @@ NIL
NIL
(-678 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4249 |has| |#1| (-160)) (-4248 |has| |#1| (-160)) (-4251 . T))
+((-4250 |has| |#1| (-160)) (-4249 |has| |#1| (-160)) (-4252 . T))
((-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-789))))
(-679 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4244 . T) (-4255 . T) (-1996 . T))
+((-4245 . T) (-4256 . T) (-1332 . T))
NIL
(-680 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4254 . T) (-4244 . T) (-4255 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4255 . T) (-4245 . T) (-4256 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
(-681)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
@@ -2662,7 +2662,7 @@ NIL
NIL
(-683 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4249 . T) (-4248 . T) (-4251 . T))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4250 . T) (-4249 . T) (-4252 . T))
NIL
(-684 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2678,7 +2678,7 @@ NIL
NIL
(-687 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4249 . T) (-4248 . T))
+((-4250 . T) (-4249 . T))
NIL
(-688)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
@@ -2760,15 +2760,15 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-708 -1346)
+(-708 -3834)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-709 P -1346)
+(-709 P -3834)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-710 UP -1346)
+(-710 UP -3834)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -2782,9 +2782,9 @@ NIL
NIL
(-713)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4256 "*") . T))
+(((-4257 "*") . T))
NIL
-(-714 R -1346)
+(-714 R -3834)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -2804,7 +2804,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-719 -1346 |ExtF| |SUEx| |ExtP| |n|)
+(-719 -3834 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -2818,28 +2818,28 @@ NIL
NIL
(-722 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-843))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1090))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1090))))) (-3309 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1090)))) (-2480 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1090)))))) (-3309 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1090)))) (-2480 (|HasCategory| |#1| (QUOTE (-510)))) (-2480 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1090)))) (-2480 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525))))) (-2480 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1090)))) (-2480 (|HasCategory| |#1| (LIST (QUOTE -924) (QUOTE (-525))))))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091))))) (-3279 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))) (-1825 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))))) (-3279 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))) (-1825 (|HasCategory| |#1| (QUOTE (-510)))) (-1825 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))) (-1825 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525))))) (-1825 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))) (-1825 (|HasCategory| |#1| (LIST (QUOTE -925) (QUOTE (-525))))))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
(-723 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
(-724 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4250 |has| |#1| (-341)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4251 |has| |#1| (-341)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
(-725 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))
(-726 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4255 . T) (-4254 . T) (-1996 . T))
+((-4256 . T) (-4255 . T) (-1332 . T))
NIL
(-727 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-789)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-976))) (|HasCategory| |#1| (QUOTE (-160))))
+((-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-789)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-160))))
(-728)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
@@ -2883,28 +2883,28 @@ NIL
(-738 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-985))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-346))))
+((|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-346))))
(-739 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4248 . T) (-4249 . T) (-4251 . T))
+((-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-740 -3309 R OS S)
+(-740 -3279 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
(-741 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (-3309 (|HasCategory| (-930 |#1|) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3309 (|HasCategory| (-930 |#1|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-985))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| (-930 |#1|) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-930 |#1|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))))
+((-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (-3279 (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3279 (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))
(-742)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-743 R -1346 L)
+(-743 R -3834 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-744 R -1346)
+(-744 R -3834)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -2912,7 +2912,7 @@ NIL
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-746 R -1346)
+(-746 R -3834)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -2920,11 +2920,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-748 -1346 UP UPUP R)
+(-748 -3834 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-749 -1346 UP L LQ)
+(-749 -3834 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -2932,41 +2932,41 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-751 -1346 UP L LQ)
+(-751 -3834 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-752 -1346 UP)
+(-752 -3834 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-753 -1346 L UP A LO)
+(-753 -3834 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-754 -1346 UP)
+(-754 -3834 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-755 -1346 LO)
+(-755 -3834 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-756 -1346 LODO)
+(-756 -3834 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-757 -3339 S |f|)
+(-757 -3481 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4248 |has| |#2| (-976)) (-4249 |has| |#2| (-976)) (-4251 |has| |#2| (-6 -4251)) ((-4256 "*") |has| |#2| (-160)) (-4254 . T))
-((-3309 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))))) (-3309 (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (QUOTE (-341))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-735))) (-3309 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-160))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-976)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-976)))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019))))) (-3309 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-976)))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090))))) (|HasCategory| |#2| (QUOTE (-669))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-3309 (|HasCategory| |#2| (QUOTE (-976))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1019)))) (|HasAttribute| |#2| (QUOTE -4251)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4249 |has| |#2| (-977)) (-4250 |has| |#2| (-977)) (-4252 |has| |#2| (-6 -4252)) ((-4257 "*") |has| |#2| (-160)) (-4255 . T))
+((-3279 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3279 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (QUOTE (-341))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-735))) (-3279 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-160))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020))))) (-3279 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-3279 (|HasCategory| |#2| (QUOTE (-977))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))
(-758 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-843))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-760 (-1090)) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-760 (-1090)) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-760 (-1090)) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-760 (-1090)) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-760 (-1090)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-760 (-1091)) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-760 (-1091)) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-760 (-1091)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-760 (-1091)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-760 (-1091)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
(-759 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring.")))
-(((-4256 "*") |has| |#2| (-341)) (-4247 |has| |#2| (-341)) (-4252 |has| |#2| (-341)) (-4246 |has| |#2| (-341)) (-4251 . T) (-4249 . T) (-4248 . T))
+(((-4257 "*") |has| |#2| (-341)) (-4248 |has| |#2| (-341)) (-4253 |has| |#2| (-341)) (-4247 |has| |#2| (-341)) (-4252 . T) (-4250 . T) (-4249 . T))
((|HasCategory| |#2| (QUOTE (-341))))
(-760 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
@@ -2978,7 +2978,7 @@ NIL
NIL
(-762)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-763)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
@@ -3006,7 +3006,7 @@ NIL
NIL
(-769 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4248 . T) (-4249 . T) (-4251 . T))
+((-4249 . T) (-4250 . T) (-4252 . T))
((|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-213))))
(-770)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
@@ -3018,7 +3018,7 @@ NIL
NIL
(-772 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4254 . T) (-4244 . T) (-4255 . T) (-1996 . T))
+((-4255 . T) (-4245 . T) (-4256 . T) (-1332 . T))
NIL
(-773)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
@@ -3030,11 +3030,11 @@ NIL
NIL
(-775 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4251 |has| |#1| (-787)))
-((|HasCategory| |#1| (QUOTE (-787))) (-3309 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-510))) (-3309 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-21))))
+((-4252 |has| |#1| (-787)))
+((|HasCategory| |#1| (QUOTE (-787))) (-3279 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-510))) (-3279 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-21))))
(-776 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4249 |has| |#1| (-160)) (-4248 |has| |#1| (-160)) (-4251 . T))
+((-4250 |has| |#1| (-160)) (-4249 |has| |#1| (-160)) (-4252 . T))
((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))))
(-777)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
@@ -3058,13 +3058,13 @@ NIL
NIL
(-782 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4251 |has| |#1| (-787)))
-((|HasCategory| |#1| (QUOTE (-787))) (-3309 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-510))) (-3309 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-21))))
+((-4252 |has| |#1| (-787)))
+((|HasCategory| |#1| (QUOTE (-787))) (-3279 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-510))) (-3279 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-21))))
(-783)
((|constructor| (NIL "Ordered finite sets.")))
NIL
NIL
-(-784 -3339 S)
+(-784 -3481 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3078,7 +3078,7 @@ NIL
NIL
(-787)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4251 . T))
+((-4252 . T))
NIL
(-788 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
@@ -3094,1635 +3094,1639 @@ NIL
((|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))))
(-791 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4248 . T) (-4249 . T) (-4251 . T))
+((-4249 . T) (-4250 . T) (-4252 . T))
NIL
(-792 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517))))
-(-793 R |sigma| -3626)
+(-793 R |sigma| -3058)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341))))
-(-794 |x| R |sigma| -3626)
+((-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341))))
+(-794 |x| R |sigma| -3058)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial.")))
-((-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-341))))
+((-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-341))))
(-795 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))
(-796)
-((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
+((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
NIL
(-797)
-((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
+((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
(-798)
+((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
+NIL
+NIL
+(-799)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-799 |VariableList|)
+(-800 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-800 R |vl| |wl| |wtlevel|)
+(-801 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights")))
-((-4249 |has| |#1| (-160)) (-4248 |has| |#1| (-160)) (-4251 . T))
+((-4250 |has| |#1| (-160)) (-4249 |has| |#1| (-160)) (-4252 . T))
((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))))
-(-801 R PS UP)
+(-802 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-802 R |x| |pt|)
+(-803 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-803 |p|)
+(-804 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-804 |p|)
+(-805 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-805 |p|)
+(-806 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| (-804 |#1|) (QUOTE (-843))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| (-804 |#1|) (QUOTE (-136))) (|HasCategory| (-804 |#1|) (QUOTE (-138))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-804 |#1|) (QUOTE (-952))) (|HasCategory| (-804 |#1|) (QUOTE (-762))) (-3309 (|HasCategory| (-804 |#1|) (QUOTE (-762))) (|HasCategory| (-804 |#1|) (QUOTE (-789)))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-804 |#1|) (QUOTE (-1066))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-804 |#1|) (QUOTE (-213))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -486) (QUOTE (-1090)) (LIST (QUOTE -804) (|devaluate| |#1|)))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -804) (|devaluate| |#1|)))) (|HasCategory| (-804 |#1|) (LIST (QUOTE -265) (LIST (QUOTE -804) (|devaluate| |#1|)) (LIST (QUOTE -804) (|devaluate| |#1|)))) (|HasCategory| (-804 |#1|) (QUOTE (-286))) (|HasCategory| (-804 |#1|) (QUOTE (-510))) (|HasCategory| (-804 |#1|) (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-804 |#1|) (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-804 |#1|) (QUOTE (-843)))) (|HasCategory| (-804 |#1|) (QUOTE (-136)))))
-(-806 |p| PADIC)
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| (-805 |#1|) (QUOTE (-844))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-805 |#1|) (QUOTE (-136))) (|HasCategory| (-805 |#1|) (QUOTE (-138))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-805 |#1|) (QUOTE (-953))) (|HasCategory| (-805 |#1|) (QUOTE (-762))) (-3279 (|HasCategory| (-805 |#1|) (QUOTE (-762))) (|HasCategory| (-805 |#1|) (QUOTE (-789)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-805 |#1|) (QUOTE (-1067))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-805 |#1|) (QUOTE (-213))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -805) (|devaluate| |#1|)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -805) (|devaluate| |#1|)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -265) (LIST (QUOTE -805) (|devaluate| |#1|)) (LIST (QUOTE -805) (|devaluate| |#1|)))) (|HasCategory| (-805 |#1|) (QUOTE (-286))) (|HasCategory| (-805 |#1|) (QUOTE (-510))) (|HasCategory| (-805 |#1|) (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-805 |#1|) (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-805 |#1|) (QUOTE (-844)))) (|HasCategory| (-805 |#1|) (QUOTE (-136)))))
+(-807 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-952))) (|HasCategory| |#2| (QUOTE (-762))) (-3309 (|HasCategory| |#2| (QUOTE (-762))) (|HasCategory| |#2| (QUOTE (-789)))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-136)))))
-(-807 S T$)
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-953))) (|HasCategory| |#2| (QUOTE (-762))) (-3279 (|HasCategory| |#2| (QUOTE (-762))) (|HasCategory| |#2| (QUOTE (-789)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
+(-808 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))))
-(-808)
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))))
+(-809)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
NIL
-(-809)
+(-810)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-810 CF1 CF2)
+(-811 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-811 |ComponentFunction|)
+(-812 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-812 CF1 CF2)
+(-813 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-813 |ComponentFunction|)
+(-814 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-814)
+(-815)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-815 CF1 CF2)
+(-816 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-816 |ComponentFunction|)
+(-817 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-817)
+(-818)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}")))
NIL
NIL
-(-818 R)
+(-819 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-819 R S L)
+(-820 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-820 S)
+(-821 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-821 |Base| |Subject| |Pat|)
+(-822 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2480 (|HasCategory| |#2| (QUOTE (-976)))) (-2480 (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-1090)))))) (-12 (|HasCategory| |#2| (QUOTE (-976))) (-2480 (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-1090)))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-1090)))))
-(-822 R A B)
+((-12 (-1825 (|HasCategory| |#2| (QUOTE (-977)))) (-1825 (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091)))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (-1825 (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091)))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091)))))
+(-823 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-823 R S)
+(-824 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-824 R -1424)
+(-825 R -2093)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-825 R S)
+(-826 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-826 R)
+(-827 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-827 |VarSet|)
+(-828 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-828 UP R)
+(-829 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented")))
NIL
NIL
-(-829)
+(-830)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-830 UP -1346)
+(-831 UP -3834)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-831)
+(-832)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
NIL
NIL
-(-832)
+(-833)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-833 A S)
+(-834 A S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-834 S)
+(-835 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4251 . T))
+((-4252 . T))
NIL
-(-835 S)
+(-836 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
-(-836 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-837 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-837 S)
+(-838 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4251 . T))
+((-4252 . T))
NIL
-(-838 S)
+(-839 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-839 S)
+(-840 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4251 . T))
-((-3309 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-789)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-789))))
-(-840 R E |VarSet| S)
+((-4252 . T))
+((-3279 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-789)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-789))))
+(-841 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-841 R S)
+(-842 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-842 S)
+(-843 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-136))))
-(-843)
+(-844)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-844 |p|)
+(-845 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
((|HasCategory| $ (QUOTE (-138))) (|HasCategory| $ (QUOTE (-136))) (|HasCategory| $ (QUOTE (-346))))
-(-845 R0 -1346 UP UPUP R)
+(-846 R0 -3834 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-846 UP UPUP R)
+(-847 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-847 UP UPUP)
+(-848 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-848 R)
+(-849 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-849 R)
+(-850 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-850 E OV R P)
+(-851 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-851)
+(-852)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-852 -1346)
+(-853 -3834)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-853 R)
+(-854 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-854)
+(-855)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-855)
+(-856)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4256 "*") . T))
+(((-4257 "*") . T))
NIL
-(-856 -1346 P)
+(-857 -3834 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-857 |xx| -1346)
+(-858 |xx| -3834)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
-(-858 R |Var| |Expon| GR)
+(-859 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-859 S)
+(-860 S)
((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-860)
+(-861)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-861)
+(-862)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
NIL
NIL
-(-862)
+(-863)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-863 R -1346)
+(-864 R -3834)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-864)
+(-865)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-865 S A B)
+(-866 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-866 S R -1346)
+(-867 S R -3834)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-867 I)
+(-868 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-868 S E)
+(-869 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-869 S R L)
+(-870 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-870 S E V R P)
+(-871 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -820) (|devaluate| |#1|))))
-(-871 R -1346 -1424)
+((|HasCategory| |#3| (LIST (QUOTE -821) (|devaluate| |#1|))))
+(-872 R -3834 -2093)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-872 -1424)
+(-873 -2093)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-873 S R Q)
+(-874 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-874 S)
+(-875 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-875 S R P)
+(-876 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-876)
+(-877)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}.")))
NIL
NIL
-(-877 R)
+(-878 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4255 . T) (-4254 . T))
-((-3309 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3309 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-976))) (-12 (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-976)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
-(-878 |lv| R)
+((-4256 . T) (-4255 . T))
+((-3279 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3279 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-879 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-879 |TheField| |ThePols|)
+(-880 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
((|HasCategory| |#1| (QUOTE (-787))))
-(-880 R S)
+(-881 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-881 |x| R)
+(-882 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-882 S R E |VarSet|)
+(-883 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-843))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#4| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#4| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-789))))
-(-883 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-844))) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#4| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#4| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-789))))
+(-884 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
NIL
-(-884 E V R P -1346)
+(-885 E V R P -3834)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-885 E |Vars| R P S)
+(-886 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-886 R)
+(-887 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-843))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-1090) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136)))))
-(-887 E V R P -1346)
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(-888 E V R P -3834)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-429))))
-(-888)
+(-889)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-889 R L)
+(-890 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}.")))
NIL
NIL
-(-890 A B)
+(-891 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-891 S)
+(-892 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4255 . T) (-4254 . T))
-((-3309 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3309 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
-(-892)
+((-4256 . T) (-4255 . T))
+((-3279 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3279 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-893)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-893 -1346)
+(-894 -3834)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-894 I)
+(-895 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-895)
+(-896)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-896 R E)
+(-897 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-126)))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4252)))
-(-897 A B)
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-126)))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)))
+(-898 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4251 -12 (|has| |#2| (-450)) (|has| |#1| (-450))))
-((-3309 (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669))))) (-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-346)))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))))
-(-898)
+((-4252 -12 (|has| |#2| (-450)) (|has| |#1| (-450))))
+((-3279 (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669))))) (-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-346)))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))))
+(-899)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-899 T$)
+(-900 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the varible name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
-(-900)
+((|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-901)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")))
NIL
NIL
-(-901 S)
+(-902 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4254 . T) (-4255 . T) (-1996 . T))
+((-4255 . T) (-4256 . T) (-1332 . T))
NIL
-(-902 R |polR|)
+(-903 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
((|HasCategory| |#1| (QUOTE (-429))))
-(-903)
+(-904)
((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-904 S |Coef| |Expon| |Var|)
+(-905 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-905 |Coef| |Expon| |Var|)
+(-906 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4248 . T) (-4249 . T) (-4251 . T))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-906)
+(-907)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-907 S R E |VarSet| P)
+(-908 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
((|HasCategory| |#2| (QUOTE (-517))))
-(-908 R E |VarSet| P)
+(-909 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4254 . T) (-1996 . T))
+((-4255 . T) (-1332 . T))
NIL
-(-909 R E V P)
+(-910 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-286)))) (|HasCategory| |#1| (QUOTE (-429))))
-(-910 K)
+(-911 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-911 |VarSet| E RC P)
+(-912 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-912 R)
+(-913 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4255 . T) (-4254 . T) (-1996 . T))
+((-4256 . T) (-4255 . T) (-1332 . T))
NIL
-(-913 R1 R2)
+(-914 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-914 R)
+(-915 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-915 K)
+(-916 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-916 R E OV PPR)
+(-917 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-917 K R UP -1346)
+(-918 K R UP -3834)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-918 |vl| |nv|)
+(-919 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-919 R |Var| |Expon| |Dpoly|)
+(-920 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-286)))))
-(-920 R E V P TS)
+(-921 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-921)
+(-922)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation.")))
NIL
NIL
-(-922 A B R S)
+(-923 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-923 A S)
+(-924 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-952))) (|HasCategory| |#2| (QUOTE (-762))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1066))))
-(-924 S)
+((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-953))) (|HasCategory| |#2| (QUOTE (-762))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1067))))
+(-925 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-1996 . T) (-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-1332 . T) (-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-925 |n| K)
+(-926 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-926 S)
+(-927 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4254 . T) (-4255 . T) (-1996 . T))
+((-4255 . T) (-4256 . T) (-1332 . T))
NIL
-(-927 S R)
+(-928 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-985))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-269))))
-(-928 R)
+((|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-269))))
+(-929 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4247 |has| |#1| (-269)) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 |has| |#1| (-269)) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-929 QR R QS S)
+(-930 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-930 R)
+(-931 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4247 |has| |#1| (-269)) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341))) (-3309 (|HasCategory| |#1| (QUOTE (-269))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-269))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-985))) (|HasCategory| |#1| (QUOTE (-510))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))))
-(-931 S)
-((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
+((-4248 |has| |#1| (-269)) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341))) (-3279 (|HasCategory| |#1| (QUOTE (-269))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-269))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-510))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))))
(-932 S)
+((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-933 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-933)
+(-934)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-934 -1346 UP UPUP |radicnd| |n|)
+(-935 -3834 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4247 |has| (-385 |#2|) (-341)) (-4252 |has| (-385 |#2|) (-341)) (-4246 |has| (-385 |#2|) (-341)) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| (-385 |#2|) (QUOTE (-136))) (|HasCategory| (-385 |#2|) (QUOTE (-138))) (|HasCategory| (-385 |#2|) (QUOTE (-327))) (-3309 (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-346))) (-3309 (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (-3309 (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-385 |#2|) (QUOTE (-327))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3309 (|HasCategory| (-385 |#2|) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))))
-(-935 |bb|)
+((-4248 |has| (-385 |#2|) (-341)) (-4253 |has| (-385 |#2|) (-341)) (-4247 |has| (-385 |#2|) (-341)) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| (-385 |#2|) (QUOTE (-136))) (|HasCategory| (-385 |#2|) (QUOTE (-138))) (|HasCategory| (-385 |#2|) (QUOTE (-327))) (-3279 (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-346))) (-3279 (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (-3279 (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-327))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3279 (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))))
+(-936 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| (-525) (QUOTE (-843))) (|HasCategory| (-525) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-952))) (|HasCategory| (-525) (QUOTE (-762))) (-3309 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1066))) (|HasCategory| (-525) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1090)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-843)))) (|HasCategory| (-525) (QUOTE (-136)))))
-(-936)
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-3279 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1067))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136)))))
+(-937)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-937)
+(-938)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-938 RP)
+(-939 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-939 S)
+(-940 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-940 A S)
+(-941 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4255)) (|HasCategory| |#2| (QUOTE (-1019))))
-(-941 S)
+((|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#2| (QUOTE (-1020))))
+(-942 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
-((-1996 . T))
+((-1332 . T))
NIL
-(-942 S)
+(-943 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-943)
+(-944)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4247 . T) (-4252 . T) (-4246 . T) (-4249 . T) (-4248 . T) ((-4256 "*") . T) (-4251 . T))
+((-4248 . T) (-4253 . T) (-4247 . T) (-4250 . T) (-4249 . T) ((-4257 "*") . T) (-4252 . T))
NIL
-(-944 R -1346)
+(-945 R -3834)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-945 R -1346)
+(-946 R -3834)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-946 -1346 UP)
+(-947 -3834 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-947 -1346 UP)
+(-948 -3834 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-948 S)
+(-949 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-949 F1 UP UPUP R F2)
+(-950 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented")))
NIL
NIL
-(-950 |Pol|)
+(-951 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-951 |Pol|)
+(-952 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-952)
+(-953)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-953)
+(-954)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-954 |TheField|)
+(-955 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4247 . T) (-4252 . T) (-4246 . T) (-4249 . T) (-4248 . T) ((-4256 "*") . T) (-4251 . T))
-((-3309 (|HasCategory| (-385 (-525)) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-385 (-525)) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 (-525)) (LIST (QUOTE -967) (QUOTE (-525)))))
-(-955 -1346 L)
+((-4248 . T) (-4253 . T) (-4247 . T) (-4250 . T) (-4249 . T) ((-4257 "*") . T) (-4252 . T))
+((-3279 (|HasCategory| (-385 (-525)) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-385 (-525)) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 (-525)) (LIST (QUOTE -968) (QUOTE (-525)))))
+(-956 -3834 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-956 S)
+(-957 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1019))))
-(-957 R E V P)
+((|HasCategory| |#1| (QUOTE (-1020))))
+(-958 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4255 . T) (-4254 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-797)))))
-(-958 R)
+((-4256 . T) (-4255 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-959 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4256 "*"))))
-(-959 R)
+((|HasAttribute| |#1| (QUOTE (-4257 "*"))))
+(-960 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-286))))
-(-960 S)
+(-961 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-961)
+(-962)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-962 S)
+(-963 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-963 S)
+(-964 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-964 -1346 |Expon| |VarSet| |FPol| |LFPol|)
+(-965 -3834 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+(((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-965)
+(-966)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3946) (QUOTE (-1090))) (LIST (QUOTE |:|) (QUOTE -2511) (QUOTE (-51))))))) (-3309 (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (QUOTE (-1019))) (|HasCategory| (-51) (QUOTE (-1019)))) (-3309 (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-51) (QUOTE (-1019))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1019))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (QUOTE (-1019))) (|HasCategory| (-1090) (QUOTE (-789))) (|HasCategory| (-51) (QUOTE (-1019))) (-3309 (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (LIST (QUOTE -566) (QUOTE (-797)))))
-(-966 A S)
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3423) (QUOTE (-1091))) (LIST (QUOTE |:|) (QUOTE -2544) (QUOTE (-51))))))) (-3279 (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (QUOTE (-1020))) (|HasCategory| (-51) (QUOTE (-1020)))) (-3279 (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (QUOTE (-1020))) (|HasCategory| (-1091) (QUOTE (-789))) (|HasCategory| (-51) (QUOTE (-1020))) (-3279 (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))))
+(-967 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-967 S)
+(-968 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-968 Q R)
+(-969 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-969)
+(-970)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-970 UP)
+(-971 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-971 R)
+(-972 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-972 R)
+(-973 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-973 R |ls|)
+(-974 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4255 . T) (-4254 . T))
-((-12 (|HasCategory| (-722 |#1| (-799 |#2|)) (QUOTE (-1019))) (|HasCategory| (-722 |#1| (-799 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -722) (|devaluate| |#1|) (LIST (QUOTE -799) (|devaluate| |#2|)))))) (|HasCategory| (-722 |#1| (-799 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-722 |#1| (-799 |#2|)) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| (-799 |#2|) (QUOTE (-346))) (|HasCategory| (-722 |#1| (-799 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))))
-(-974)
+((-4256 . T) (-4255 . T))
+((-12 (|HasCategory| (-722 |#1| (-800 |#2|)) (QUOTE (-1020))) (|HasCategory| (-722 |#1| (-800 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -722) (|devaluate| |#1|) (LIST (QUOTE -800) (|devaluate| |#2|)))))) (|HasCategory| (-722 |#1| (-800 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-722 |#1| (-800 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| (-800 |#2|) (QUOTE (-346))) (|HasCategory| (-722 |#1| (-800 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
+(-975)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-975 S)
+(-976 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-976)
+(-977)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4251 . T))
+((-4252 . T))
NIL
-(-977 |xx| -1346)
+(-978 |xx| -3834)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-978 S |m| |n| R |Row| |Col|)
+(-979 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
((|HasCategory| |#4| (QUOTE (-286))) (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (QUOTE (-517))) (|HasCategory| |#4| (QUOTE (-160))))
-(-979 |m| |n| R |Row| |Col|)
+(-980 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4254 . T) (-1996 . T) (-4249 . T) (-4248 . T))
+((-4255 . T) (-1332 . T) (-4250 . T) (-4249 . T))
NIL
-(-980 |m| |n| R)
+(-981 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4254 . T) (-4249 . T) (-4248 . T))
-((-3309 (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-501)))) (-3309 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (QUOTE (-286))) (|HasCategory| |#3| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-797)))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))))
-(-981 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4255 . T) (-4250 . T) (-4249 . T))
+((-3279 (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-501)))) (-3279 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (QUOTE (-286))) (|HasCategory| |#3| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))))
+(-982 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-982 R)
+(-983 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-983)
+(-984)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-984 S)
+(-985 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-985)
+(-986)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-986 |TheField| |ThePolDom|)
+(-987 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-987)
+(-988)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4242 . T) (-4246 . T) (-4241 . T) (-4252 . T) (-4253 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4243 . T) (-4247 . T) (-4242 . T) (-4253 . T) (-4254 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-988)
+(-989)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3946) (QUOTE (-1090))) (LIST (QUOTE |:|) (QUOTE -2511) (QUOTE (-51))))))) (-3309 (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (QUOTE (-1019))) (|HasCategory| (-51) (QUOTE (-1019)))) (-3309 (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-51) (QUOTE (-1019))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1019))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (QUOTE (-1019))) (|HasCategory| (-1090) (QUOTE (-789))) (|HasCategory| (-51) (QUOTE (-1019))) (-3309 (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (LIST (QUOTE -566) (QUOTE (-797)))))
-(-989 S R E V)
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3423) (QUOTE (-1091))) (LIST (QUOTE |:|) (QUOTE -2544) (QUOTE (-51))))))) (-3279 (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (QUOTE (-1020))) (|HasCategory| (-51) (QUOTE (-1020)))) (-3279 (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (QUOTE (-1020))) (|HasCategory| (-1091) (QUOTE (-789))) (|HasCategory| (-51) (QUOTE (-1020))) (-3279 (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))))
+(-990 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -924) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-1090)))))
-(-990 R E V)
+((|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -925) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-1091)))))
+(-991 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
NIL
-(-991 S |TheField| |ThePols|)
+(-992 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-992 |TheField| |ThePols|)
+(-993 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-993 R E V P TS)
+(-994 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-994 S R E V P)
+(-995 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-995 R E V P)
+(-996 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4255 . T) (-4254 . T) (-1996 . T))
+((-4256 . T) (-4255 . T) (-1332 . T))
NIL
-(-996 R E V P TS)
+(-997 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-997 |f|)
+(-998 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-998 |Base| R -1346)
+(-999 |Base| R -3834)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-999 |Base| R -1346)
+(-1000 |Base| R -3834)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
-(-1000 R |ls|)
+(-1001 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1001 UP SAE UPA)
+(-1002 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1002 R UP M)
+(-1003 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4247 |has| |#1| (-341)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-327)))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090))))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))))
-(-1003 UP SAE UPA)
+((-4248 |has| |#1| (-341)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-327)))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091))))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))))
+(-1004 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1004)
+(-1005)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-1005 S)
+(-1006 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-1006)
+(-1007)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-1007 R)
+(-1008 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1008 R)
+(-1009 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-843))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1009 (-1090)) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-1009 (-1090)) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-1009 (-1090)) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-1009 (-1090)) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-1009 (-1090)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136)))))
-(-1009 S)
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1010 (-1091)) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1010 (-1091)) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1010 (-1091)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1010 (-1091)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1010 (-1091)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(-1010 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1010 R S)
+(-1011 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-787))))
-(-1011 R S)
+(-1012 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1012 S)
+(-1013 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1019))))
-(-1013 S)
+((|HasCategory| |#1| (QUOTE (-1020))))
+(-1014 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
-((-1996 . T))
+((-1332 . T))
NIL
-(-1014 S)
+(-1015 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (QUOTE (-1019))))
-(-1015 S L)
+((|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (QUOTE (-1020))))
+(-1016 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
-((-1996 . T))
+((-1332 . T))
NIL
-(-1016 A S)
+(-1017 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1017 S)
+(-1018 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4244 . T) (-1996 . T))
+((-4245 . T) (-1332 . T))
NIL
-(-1018 S)
+(-1019 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1019)
+(-1020)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1020 |m| |n|)
+(-1021 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1021 S)
+(-1022 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4254 . T) (-4244 . T) (-4255 . T))
-((-3309 (-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-789))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
-(-1022 |Str| |Sym| |Int| |Flt| |Expr|)
+((-4255 . T) (-4245 . T) (-4256 . T))
+((-3279 (-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-1023 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1023)
+(-1024)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1024 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1025 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1025 R FS)
+(-1026 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1026 R E V P TS)
+(-1027 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1027 R E V P TS)
+(-1028 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1028 R E V P)
+(-1029 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4255 . T) (-4254 . T) (-1996 . T))
+((-4256 . T) (-4255 . T) (-1332 . T))
NIL
-(-1029)
+(-1030)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1030 S)
+(-1031 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1031)
+(-1032)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (^ (($ $ (|PositiveInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1032 |dimtot| |dim1| S)
+(-1033 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4248 |has| |#3| (-976)) (-4249 |has| |#3| (-976)) (-4251 |has| |#3| (-6 -4251)) ((-4256 "*") |has| |#3| (-160)) (-4254 . T))
-((-3309 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))))) (-3309 (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1019)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-976)))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#3| (QUOTE (-341))) (-3309 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-976)))) (-3309 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (QUOTE (-735))) (-3309 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787)))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-160))) (-3309 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-976)))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3309 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (QUOTE (-1019)))) (-3309 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-976)))) (-3309 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-976)))) (-3309 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-976)))) (-3309 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-976)))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-126)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-160)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-213)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-346)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-976)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1019))))) (-3309 (-12 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-976)))) (-12 (|HasCategory| |#3| (QUOTE (-976))) (|HasCategory| |#3| (LIST (QUOTE -834) (QUOTE (-1090))))) (|HasCategory| |#3| (QUOTE (-669))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525))))) (-3309 (|HasCategory| |#3| (QUOTE (-976))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -967) (QUOTE (-525)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1019)))) (|HasAttribute| |#3| (QUOTE -4251)) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1019))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-797)))))
-(-1033 R |x|)
+((-4249 |has| |#3| (-977)) (-4250 |has| |#3| (-977)) (-4252 |has| |#3| (-6 -4252)) ((-4257 "*") |has| |#3| (-160)) (-4255 . T))
+((-3279 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3279 (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#3| (QUOTE (-341))) (-3279 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3279 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-735))) (-3279 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787)))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-160))) (-3279 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3279 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-1020)))) (-3279 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3279 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3279 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3279 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-126)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-160)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-213)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-346)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-669)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020))))) (-3279 (-12 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-3279 (|HasCategory| |#3| (QUOTE (-977))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020)))) (|HasAttribute| |#3| (QUOTE -4252)) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-1034 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-429))))
-(-1034 R -1346)
+(-1035 R -3834)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1035 R)
+(-1036 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1036)
+(-1037)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1037)
+(-1038)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4242 . T) (-4246 . T) (-4241 . T) (-4252 . T) (-4253 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4243 . T) (-4247 . T) (-4242 . T) (-4253 . T) (-4254 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-1038 S)
+(-1039 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4254 . T) (-4255 . T) (-1996 . T))
+((-4255 . T) (-4256 . T) (-1332 . T))
NIL
-(-1039 S |ndim| R |Row| |Col|)
+(-1040 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-341))) (|HasAttribute| |#3| (QUOTE (-4256 "*"))) (|HasCategory| |#3| (QUOTE (-160))))
-(-1040 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-341))) (|HasAttribute| |#3| (QUOTE (-4257 "*"))) (|HasCategory| |#3| (QUOTE (-160))))
+(-1041 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-1996 . T) (-4254 . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-1332 . T) (-4255 . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-1041 R |Row| |Col| M)
+(-1042 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1042 R |VarSet|)
+(-1043 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-843))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136)))))
-(-1043 |Coef| |Var| SMP)
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(-1044 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341))))
-(-1044 R E V P)
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341))))
+(-1045 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4255 . T) (-4254 . T) (-1996 . T))
+((-4256 . T) (-4255 . T) (-1332 . T))
NIL
-(-1045 UP -1346)
+(-1046 UP -3834)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1046 R)
+(-1047 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1047 R)
+(-1048 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1048 R)
+(-1049 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1049 S A)
+(-1050 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented")))
NIL
((|HasCategory| |#1| (QUOTE (-789))))
-(-1050 R)
+(-1051 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1051 R)
+(-1052 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1052)
+(-1053)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1053)
+(-1054)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1054)
+(-1055)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1055 V C)
+(-1056 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1056 V C)
+(-1057 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| (-1055 |#1| |#2|) (LIST (QUOTE -288) (LIST (QUOTE -1055) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1019)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1019))) (-3309 (|HasCategory| (-1055 |#1| |#2|) (LIST (QUOTE -566) (QUOTE (-797)))) (-12 (|HasCategory| (-1055 |#1| |#2|) (LIST (QUOTE -288) (LIST (QUOTE -1055) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1019))))) (|HasCategory| (-1055 |#1| |#2|) (LIST (QUOTE -566) (QUOTE (-797)))))
-(-1057 |ndim| R)
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| (-1056 |#1| |#2|) (LIST (QUOTE -288) (LIST (QUOTE -1056) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-1020)))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-1020))) (-3279 (|HasCategory| (-1056 |#1| |#2|) (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| (-1056 |#1| |#2|) (LIST (QUOTE -288) (LIST (QUOTE -1056) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-1020))))) (|HasCategory| (-1056 |#1| |#2|) (LIST (QUOTE -566) (QUOTE (-798)))))
+(-1058 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")))
-((-4251 . T) (-4243 |has| |#2| (-6 (-4256 "*"))) (-4254 . T) (-4248 . T) (-4249 . T))
-((|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE (-4256 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (-3309 (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-341))) (-3309 (|HasAttribute| |#2| (QUOTE (-4256 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-160))))
-(-1058 S)
+((-4252 . T) (-4244 |has| |#2| (-6 (-4257 "*"))) (-4255 . T) (-4249 . T) (-4250 . T))
+((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE (-4257 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (-3279 (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-341))) (-3279 (|HasAttribute| |#2| (QUOTE (-4257 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-160))))
+(-1059 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1059)
+(-1060)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4255 . T) (-4254 . T) (-1996 . T))
+((-4256 . T) (-4255 . T) (-1332 . T))
NIL
-(-1060 R E V P TS)
+(-1061 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1061 R E V P)
+(-1062 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4255 . T) (-4254 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-797)))))
-(-1062 S)
+((-4256 . T) (-4255 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-1063 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
-(-1063 A S)
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-1064 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1064 S)
+(-1065 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
-((-1996 . T))
+((-1332 . T))
NIL
-(-1065 |Key| |Ent| |dent|)
+(-1066 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4255 . T))
-((-12 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3946) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|)))))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-789))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))))
-(-1066)
+((-4256 . T))
+((-12 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3423) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2544) (|devaluate| |#2|)))))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-789))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
+(-1067)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1067 |Coef|)
+(-1068 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1068 S)
+(-1069 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}.")))
NIL
NIL
-(-1069 A B)
+(-1070 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-1070 A B C)
+(-1071 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.")))
NIL
NIL
-(-1071 S)
+(-1072 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4255 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
-(-1072)
+((-4256 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-1073)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4255 . T) (-4254 . T) (-1996 . T))
+((-4256 . T) (-4255 . T) (-1332 . T))
NIL
-(-1073)
+(-1074)
NIL
-((-4255 . T) (-4254 . T))
-((-3309 (-12 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1019))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1019))) (-12 (|HasCategory| (-135) (QUOTE (-1019))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-797)))))
-(-1074 |Entry|)
+((-4256 . T) (-4255 . T))
+((-3279 (-12 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798)))))
+(-1075 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3946) (QUOTE (-1073))) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#1|)))))) (-3309 (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-1019)))) (-3309 (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (QUOTE (-1019))) (|HasCategory| (-1073) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (LIST (QUOTE -566) (QUOTE (-797)))))
-(-1075 A)
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3423) (QUOTE (-1074))) (LIST (QUOTE |:|) (QUOTE -2544) (|devaluate| |#1|)))))) (-3279 (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-1020)))) (-3279 (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (QUOTE (-1020))) (|HasCategory| (-1074) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (LIST (QUOTE -566) (QUOTE (-798)))))
+(-1076 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
((|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))
-(-1076 |Coef|)
+(-1077 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1077 |Coef|)
+(-1078 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1078 R UP)
+(-1079 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-286))))
-(-1079 |n| R)
+(-1080 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1080 S1 S2)
+(-1081 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1081 |Coef| |var| |cen|)
+(-1082 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4256 "*") -3309 (-1341 (|has| |#1| (-341)) (|has| (-1088 |#1| |#2| |#3|) (-762))) (|has| |#1| (-160)) (-1341 (|has| |#1| (-341)) (|has| (-1088 |#1| |#2| |#3|) (-843)))) (-4247 -3309 (-1341 (|has| |#1| (-341)) (|has| (-1088 |#1| |#2| |#3|) (-762))) (|has| |#1| (-517)) (-1341 (|has| |#1| (-341)) (|has| (-1088 |#1| |#2| |#3|) (-843)))) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T))
-((-3309 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1090)) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3309 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3309 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-138)))) (-3309 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))))) (-3309 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1031))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-341)))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-3309 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341))))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1090)) (LIST (QUOTE -1088) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1908) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3309 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -3766) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -4104) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-136))) (-3309 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-517)))) (-3309 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3309 (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-160)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1088 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))))
-(-1082 R -1346)
+(((-4257 "*") -3279 (-3830 (|has| |#1| (-341)) (|has| (-1089 |#1| |#2| |#3|) (-762))) (|has| |#1| (-160)) (-3830 (|has| |#1| (-341)) (|has| (-1089 |#1| |#2| |#3|) (-844)))) (-4248 -3279 (-3830 (|has| |#1| (-341)) (|has| (-1089 |#1| |#2| |#3|) (-762))) (|has| |#1| (-517)) (-3830 (|has| |#1| (-341)) (|has| (-1089 |#1| |#2| |#3|) (-844)))) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T))
+((-3279 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3279 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3279 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-138)))) (-3279 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))))) (-3279 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1032))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-3279 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341))))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1270) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3279 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2650) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2383) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-136))) (-3279 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-517)))) (-3279 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3279 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-160)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(-1083 R -3834)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1083 R)
+(-1084 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1084 R S)
+(-1085 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1085 E OV R P)
+(-1086 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1086 R)
+(-1087 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4250 |has| |#1| (-341)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1066))) (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136)))))
-(-1087 |Coef| |var| |cen|)
-((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-341))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1908) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3309 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -3766) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -4104) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|)))))))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4251 |has| |#1| (-341)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))))
(-1088 |Coef| |var| |cen|)
+((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1270) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3279 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2650) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2383) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))))
+(-1089 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|)))) (|HasCategory| (-713) (QUOTE (-1031))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasSignature| |#1| (LIST (QUOTE -1908) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasCategory| |#1| (QUOTE (-341))) (-3309 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -3766) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -4104) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|)))))))
-(-1089)
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|)))) (|HasCategory| (-713) (QUOTE (-1032))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasSignature| |#1| (LIST (QUOTE -1270) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasCategory| |#1| (QUOTE (-341))) (-3279 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2650) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2383) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))))
+(-1090)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1090)
+(-1091)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1091 R)
+(-1092 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}.")))
NIL
NIL
-(-1092 R)
+(-1093 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-6 -4252)) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| (-903) (QUOTE (-126))) (|HasCategory| |#1| (QUOTE (-517)))) (-3309 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4252)))
-(-1093)
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| (-904) (QUOTE (-126))) (|HasCategory| |#1| (QUOTE (-517)))) (-3279 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)))
+(-1094)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1094)
+(-1095)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1095)
+(-1096)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} building complete representation of Spad programs as objects of a term algebra built from ground terms of type integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity in a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} Symbol,{} String,{} SExpression. See Also: SExpression,{} SetCategory. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1096 R)
+(-1097 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1097)
+(-1098)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1098 S)
+(-1099 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1099 S)
+(-1100 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1100 |Key| |Entry|)
+(-1101 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4254 . T) (-4255 . T))
-((-12 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3946) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2511) (|devaluate| |#2|)))))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-1019)))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1019))) (-3309 (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-797)))) (|HasCategory| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (LIST (QUOTE -566) (QUOTE (-797)))))
-(-1101 R)
+((-4255 . T) (-4256 . T))
+((-12 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3423) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2544) (|devaluate| |#2|)))))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-3279 (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))))
+(-1102 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1102 S |Key| |Entry|)
+(-1103 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1103 |Key| |Entry|)
+(-1104 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4255 . T) (-1996 . T))
+((-4256 . T) (-1332 . T))
NIL
-(-1104 |Key| |Entry|)
+(-1105 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1105)
+(-1106)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1106 S)
+(-1107 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1107)
+(-1108)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format.")))
NIL
NIL
-(-1108)
+(-1109)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1109 R)
+(-1110 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1110)
+(-1111)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1111 S)
+(-1112 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1112)
+(-1113)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1113 S)
-((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4255 . T) (-4254 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1019))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
(-1114 S)
+((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
+((-4256 . T) (-4255 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-1115 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1115)
+(-1116)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1116 R -1346)
+(-1117 R -3834)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1117 R |Row| |Col| M)
+(-1118 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1118 R -1346)
+(-1119 R -3834)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -826) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -820) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -820) (|devaluate| |#1|)))))
-(-1119 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -821) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -821) (|devaluate| |#1|)))))
+(-1120 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-346))))
-(-1120 R E V P)
+(-1121 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4255 . T) (-4254 . T) (-1996 . T))
+((-4256 . T) (-4255 . T) (-1332 . T))
NIL
-(-1121 |Coef|)
+(-1122 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341))))
-(-1122 |Curve|)
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341))))
+(-1123 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1123)
+(-1124)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1124 S)
+(-1125 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a")))
NIL
-((|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
-(-1125 -1346)
+((|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-1126 -3834)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1126)
+(-1127)
((|constructor| (NIL "The fundamental Type.")))
-((-1996 . T))
+((-1332 . T))
NIL
-(-1127 S)
+(-1128 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
((|HasCategory| |#1| (QUOTE (-789))))
-(-1128)
+(-1129)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1129 S)
+(-1130 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1130)
+(-1131)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-1131 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1132 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1132 |Coef|)
+(-1133 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-1133 S |Coef| UTS)
+(-1134 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-341))))
-(-1134 |Coef| UTS)
+(-1135 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-1996 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-1332 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-1135 |Coef| UTS)
+(-1136 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T))
-((-3309 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-843)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-952)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-1090)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3309 (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-136))))) (-3309 (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-138))))) (-3309 (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-213)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1031))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-843)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-1090))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-952)))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1090)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1908) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3309 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -3766) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -4104) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789)))) (|HasCategory| |#2| (QUOTE (-843))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-286)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-136))))))
-(-1136 |Coef| |var| |cen|)
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T))
+((-3279 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-953)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3279 (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-136))))) (-3279 (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-138))))) (-3279 (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-213)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1032))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-953)))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1270) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3279 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2650) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2383) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789)))) (|HasCategory| |#2| (QUOTE (-844))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-286)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-136))))))
+(-1137 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4256 "*") -3309 (-1341 (|has| |#1| (-341)) (|has| (-1164 |#1| |#2| |#3|) (-762))) (|has| |#1| (-160)) (-1341 (|has| |#1| (-341)) (|has| (-1164 |#1| |#2| |#3|) (-843)))) (-4247 -3309 (-1341 (|has| |#1| (-341)) (|has| (-1164 |#1| |#2| |#3|) (-762))) (|has| |#1| (-517)) (-1341 (|has| |#1| (-341)) (|has| (-1164 |#1| |#2| |#3|) (-843)))) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T))
-((-3309 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1090)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3309 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3309 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-138)))) (-3309 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))))) (-3309 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1031))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-1090)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-952))) (|HasCategory| |#1| (QUOTE (-341)))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-3309 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341))))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-1066))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1090)) (LIST (QUOTE -1164) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1908) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3309 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -3766) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -4104) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-136))) (-3309 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-517)))) (-3309 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3309 (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-160)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1164 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))))
-(-1137 ZP)
+(((-4257 "*") -3279 (-3830 (|has| |#1| (-341)) (|has| (-1165 |#1| |#2| |#3|) (-762))) (|has| |#1| (-160)) (-3830 (|has| |#1| (-341)) (|has| (-1165 |#1| |#2| |#3|) (-844)))) (-4248 -3279 (-3830 (|has| |#1| (-341)) (|has| (-1165 |#1| |#2| |#3|) (-762))) (|has| |#1| (-517)) (-3830 (|has| |#1| (-341)) (|has| (-1165 |#1| |#2| |#3|) (-844)))) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T))
+((-3279 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3279 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3279 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-138)))) (-3279 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))))) (-3279 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1032))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-3279 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341))))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1270) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3279 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2650) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2383) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-136))) (-3279 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-517)))) (-3279 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3279 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-160)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))))
+(-1138 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1138 R S)
+(-1139 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
((|HasCategory| |#1| (QUOTE (-787))))
-(-1139 S)
+(-1140 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (QUOTE (-1019))))
-(-1140 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (QUOTE (-1020))))
+(-1141 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1141 R Q UP)
+(-1142 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1142 R UP)
+(-1143 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1143 R UP)
+(-1144 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1144 R U)
+(-1145 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1145 |x| R)
+(-1146 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
-(((-4256 "*") |has| |#2| (-160)) (-4247 |has| |#2| (-517)) (-4250 |has| |#2| (-341)) (-4252 |has| |#2| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#2| (QUOTE (-843))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -820) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-357))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -820) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -820) (QUOTE (-525))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-357)))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -826) (QUOTE (-525)))))) (-12 (|HasCategory| (-1004) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (-3309 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3309 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-843)))) (-3309 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1066))) (|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (-3309 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (-3309 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-843)))) (|HasCategory| |#2| (QUOTE (-136)))))
-(-1146 R PR S PS)
+(((-4257 "*") |has| |#2| (-160)) (-4248 |has| |#2| (-517)) (-4251 |has| |#2| (-341)) (-4253 |has| |#2| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-3279 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3279 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3279 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3279 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3279 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136)))))
+(-1147 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1147 S R)
+(-1148 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-1066))))
-(-1148 R)
+((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-1067))))
+(-1149 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4250 |has| |#1| (-341)) (-4252 |has| |#1| (-6 -4252)) (-4249 . T) (-4248 . T) (-4251 . T))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4251 |has| |#1| (-341)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T))
NIL
-(-1149 S |Coef| |Expon|)
+(-1150 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1031))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1908) (LIST (|devaluate| |#2|) (QUOTE (-1090))))))
-(-1150 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1032))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1270) (LIST (|devaluate| |#2|) (QUOTE (-1091))))))
+(-1151 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4248 . T) (-4249 . T) (-4251 . T))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-1151 RC P)
+(-1152 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1152 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1153 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1153 |Coef|)
+(-1154 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-1154 S |Coef| ULS)
+(-1155 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1155 |Coef| ULS)
+(-1156 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-1156 |Coef| ULS)
+(-1157 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-341))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1908) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3309 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -3766) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -4104) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))
-(-1157 |Coef| |var| |cen|)
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1270) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3279 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2650) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2383) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))
+(-1158 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4252 |has| |#1| (-341)) (-4246 |has| |#1| (-341)) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1031))) (|HasCategory| |#1| (QUOTE (-341))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3309 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1908) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3309 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -3766) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -4104) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|)))))))
-(-1158 R FE |var| |cen|)
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3279 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1270) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3279 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2650) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2383) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))))
+(-1159 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4256 "*") |has| (-1157 |#2| |#3| |#4|) (-160)) (-4247 |has| (-1157 |#2| |#3| |#4|) (-517)) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| (-1157 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1157 |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1157 |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1157 |#2| |#3| |#4|) (QUOTE (-160))) (|HasCategory| (-1157 |#2| |#3| |#4|) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1157 |#2| |#3| |#4|) (LIST (QUOTE -967) (QUOTE (-525)))) (|HasCategory| (-1157 |#2| |#3| |#4|) (QUOTE (-341))) (|HasCategory| (-1157 |#2| |#3| |#4|) (QUOTE (-429))) (-3309 (|HasCategory| (-1157 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1157 |#2| |#3| |#4|) (LIST (QUOTE -967) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| (-1157 |#2| |#3| |#4|) (QUOTE (-517))))
-(-1159 A S)
+(((-4257 "*") |has| (-1158 |#2| |#3| |#4|) (-160)) (-4248 |has| (-1158 |#2| |#3| |#4|) (-517)) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| (-1158 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-160))) (|HasCategory| (-1158 |#2| |#3| |#4|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-341))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-429))) (-3279 (|HasCategory| (-1158 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-517))))
+(-1160 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4255)))
-(-1160 S)
+((|HasAttribute| |#1| (QUOTE -4256)))
+(-1161 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
-((-1996 . T))
+((-1332 . T))
NIL
-(-1161 |Coef1| |Coef2| UTS1 UTS2)
+(-1162 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1162 S |Coef|)
+(-1163 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-892))) (|HasCategory| |#2| (QUOTE (-1112))) (|HasSignature| |#2| (LIST (QUOTE -4104) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3766) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1090))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))))
-(-1163 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-893))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasSignature| |#2| (LIST (QUOTE -2383) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2650) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1091))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))))
+(-1164 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4248 . T) (-4249 . T) (-4251 . T))
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-1164 |Coef| |var| |cen|)
+(-1165 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4256 "*") |has| |#1| (-160)) (-4247 |has| |#1| (-517)) (-4248 . T) (-4249 . T) (-4251 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3309 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -834) (QUOTE (-1090)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|)))) (|HasCategory| (-713) (QUOTE (-1031))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasSignature| |#1| (LIST (QUOTE -1908) (LIST (|devaluate| |#1|) (QUOTE (-1090)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasCategory| |#1| (QUOTE (-341))) (-3309 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-892))) (|HasCategory| |#1| (QUOTE (-1112))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -3766) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1090))))) (|HasSignature| |#1| (LIST (QUOTE -4104) (LIST (LIST (QUOTE -592) (QUOTE (-1090))) (|devaluate| |#1|)))))))
-(-1165 |Coef| UTS)
+(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4249 . T) (-4250 . T) (-4252 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3279 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|)))) (|HasCategory| (-713) (QUOTE (-1032))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasSignature| |#1| (LIST (QUOTE -1270) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasCategory| |#1| (QUOTE (-341))) (-3279 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2650) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2383) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))))
+(-1166 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1166 -1346 UP L UTS)
+(-1167 -3834 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-517))))
-(-1167)
+(-1168)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
-((-1996 . T))
+((-1332 . T))
NIL
-(-1168 |sym|)
+(-1169 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1169 S R)
+(-1170 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-933))) (|HasCategory| |#2| (QUOTE (-976))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1170 R)
+((|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1171 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4255 . T) (-4254 . T) (-1996 . T))
+((-4256 . T) (-4255 . T) (-1332 . T))
NIL
-(-1171 A B)
+(-1172 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1172 R)
+(-1173 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4255 . T) (-4254 . T))
-((-3309 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3309 (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3309 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-976))) (-12 (|HasCategory| |#1| (QUOTE (-933))) (|HasCategory| |#1| (QUOTE (-976)))) (-12 (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-797)))))
-(-1173)
+((-4256 . T) (-4255 . T))
+((-3279 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3279 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3279 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-1174)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1174)
+(-1175)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1175)
+(-1176)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1176)
+(-1177)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1177)
+(-1178)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1178 A S)
+(-1179 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1179 S)
+(-1180 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4249 . T) (-4248 . T))
+((-4250 . T) (-4249 . T))
NIL
-(-1180 R)
+(-1181 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1181 K R UP -1346)
+(-1182 K R UP -3834)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-1182 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1183 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights")))
-((-4249 |has| |#1| (-160)) (-4248 |has| |#1| (-160)) (-4251 . T))
+((-4250 |has| |#1| (-160)) (-4249 |has| |#1| (-160)) (-4252 . T))
((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))))
-(-1183 R E V P)
+(-1184 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4255 . T) (-4254 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-797)))))
-(-1184 R)
+((-4256 . T) (-4255 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-798)))))
+(-1185 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}.")))
-((-4248 . T) (-4249 . T) (-4251 . T))
+((-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-1185 |vl| R)
+(-1186 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4251 . T) (-4247 |has| |#2| (-6 -4247)) (-4249 . T) (-4248 . T))
-((|HasCategory| |#2| (QUOTE (-160))) (|HasAttribute| |#2| (QUOTE -4247)))
-(-1186 R |VarSet| XPOLY)
+((-4252 . T) (-4248 |has| |#2| (-6 -4248)) (-4250 . T) (-4249 . T))
+((|HasCategory| |#2| (QUOTE (-160))) (|HasAttribute| |#2| (QUOTE -4248)))
+(-1187 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1187 |vl| R)
+(-1188 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4247 |has| |#2| (-6 -4247)) (-4249 . T) (-4248 . T) (-4251 . T))
+((-4248 |has| |#2| (-6 -4248)) (-4250 . T) (-4249 . T) (-4252 . T))
NIL
-(-1188 S -1346)
+(-1189 S -3834)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))))
-(-1189 -1346)
+(-1190 -3834)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4246 . T) (-4252 . T) (-4247 . T) ((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
-(-1190 |VarSet| R)
+(-1191 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4247 |has| |#2| (-6 -4247)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -660) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasAttribute| |#2| (QUOTE -4247)))
-(-1191 |vl| R)
+((-4248 |has| |#2| (-6 -4248)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -660) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasAttribute| |#2| (QUOTE -4248)))
+(-1192 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4247 |has| |#2| (-6 -4247)) (-4249 . T) (-4248 . T) (-4251 . T))
+((-4248 |has| |#2| (-6 -4248)) (-4250 . T) (-4249 . T) (-4252 . T))
NIL
-(-1192 R)
+(-1193 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4247 |has| |#1| (-6 -4247)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#1| (QUOTE (-160))) (|HasAttribute| |#1| (QUOTE -4247)))
-(-1193 R E)
+((-4248 |has| |#1| (-6 -4248)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#1| (QUOTE (-160))) (|HasAttribute| |#1| (QUOTE -4248)))
+(-1194 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4251 . T) (-4252 |has| |#1| (-6 -4252)) (-4247 |has| |#1| (-6 -4247)) (-4249 . T) (-4248 . T))
-((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasAttribute| |#1| (QUOTE -4251)) (|HasAttribute| |#1| (QUOTE -4252)) (|HasAttribute| |#1| (QUOTE -4247)))
-(-1194 |VarSet| R)
+((-4252 . T) (-4253 |has| |#1| (-6 -4253)) (-4248 |has| |#1| (-6 -4248)) (-4250 . T) (-4249 . T))
+((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasAttribute| |#1| (QUOTE -4252)) (|HasAttribute| |#1| (QUOTE -4253)) (|HasAttribute| |#1| (QUOTE -4248)))
+(-1195 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4247 |has| |#2| (-6 -4247)) (-4249 . T) (-4248 . T) (-4251 . T))
-((|HasCategory| |#2| (QUOTE (-160))) (|HasAttribute| |#2| (QUOTE -4247)))
-(-1195 A)
+((-4248 |has| |#2| (-6 -4248)) (-4250 . T) (-4249 . T) (-4252 . T))
+((|HasCategory| |#2| (QUOTE (-160))) (|HasAttribute| |#2| (QUOTE -4248)))
+(-1196 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1196 R |ls| |ls2|)
+(-1197 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1197 R)
+(-1198 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1198 |p|)
+(-1199 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4256 "*") . T) (-4248 . T) (-4249 . T) (-4251 . T))
+(((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T))
NIL
NIL
NIL
@@ -4740,4 +4744,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2238294 2238299 2238304 2238309) (-2 NIL 2238274 2238279 2238284 2238289) (-1 NIL 2238254 2238259 2238264 2238269) (0 NIL 2238234 2238239 2238244 2238249) (-1198 "ZMOD.spad" 2238043 2238056 2238172 2238229) (-1197 "ZLINDEP.spad" 2237087 2237098 2238033 2238038) (-1196 "ZDSOLVE.spad" 2226936 2226958 2237077 2237082) (-1195 "YSTREAM.spad" 2226429 2226440 2226926 2226931) (-1194 "XRPOLY.spad" 2225649 2225669 2226285 2226354) (-1193 "XPR.spad" 2223378 2223391 2225367 2225466) (-1192 "XPOLY.spad" 2222933 2222944 2223234 2223303) (-1191 "XPOLYC.spad" 2222250 2222266 2222859 2222928) (-1190 "XPBWPOLY.spad" 2220687 2220707 2222030 2222099) (-1189 "XF.spad" 2219148 2219163 2220589 2220682) (-1188 "XF.spad" 2217589 2217606 2219032 2219037) (-1187 "XFALG.spad" 2214613 2214629 2217515 2217584) (-1186 "XEXPPKG.spad" 2213864 2213890 2214603 2214608) (-1185 "XDPOLY.spad" 2213478 2213494 2213720 2213789) (-1184 "XALG.spad" 2213076 2213087 2213434 2213473) (-1183 "WUTSET.spad" 2208915 2208932 2212722 2212749) (-1182 "WP.spad" 2207929 2207973 2208773 2208840) (-1181 "WFFINTBS.spad" 2205492 2205514 2207919 2207924) (-1180 "WEIER.spad" 2203706 2203717 2205482 2205487) (-1179 "VSPACE.spad" 2203379 2203390 2203674 2203701) (-1178 "VSPACE.spad" 2203072 2203085 2203369 2203374) (-1177 "VOID.spad" 2202662 2202671 2203062 2203067) (-1176 "VIEW.spad" 2200284 2200293 2202652 2202657) (-1175 "VIEWDEF.spad" 2195481 2195490 2200274 2200279) (-1174 "VIEW3D.spad" 2179316 2179325 2195471 2195476) (-1173 "VIEW2D.spad" 2167053 2167062 2179306 2179311) (-1172 "VECTOR.spad" 2165730 2165741 2165981 2166008) (-1171 "VECTOR2.spad" 2164357 2164370 2165720 2165725) (-1170 "VECTCAT.spad" 2162245 2162256 2164313 2164352) (-1169 "VECTCAT.spad" 2159954 2159967 2162024 2162029) (-1168 "VARIABLE.spad" 2159734 2159749 2159944 2159949) (-1167 "UTYPE.spad" 2159368 2159377 2159714 2159729) (-1166 "UTSODETL.spad" 2158661 2158685 2159324 2159329) (-1165 "UTSODE.spad" 2156849 2156869 2158651 2158656) (-1164 "UTS.spad" 2151638 2151666 2155316 2155413) (-1163 "UTSCAT.spad" 2149089 2149105 2151536 2151633) (-1162 "UTSCAT.spad" 2146184 2146202 2148633 2148638) (-1161 "UTS2.spad" 2145777 2145812 2146174 2146179) (-1160 "URAGG.spad" 2140399 2140410 2145757 2145772) (-1159 "URAGG.spad" 2134995 2135008 2140355 2140360) (-1158 "UPXSSING.spad" 2132641 2132667 2134079 2134212) (-1157 "UPXS.spad" 2129668 2129696 2130773 2130922) (-1156 "UPXSCONS.spad" 2127425 2127445 2127800 2127949) (-1155 "UPXSCCA.spad" 2125883 2125903 2127271 2127420) (-1154 "UPXSCCA.spad" 2124483 2124505 2125873 2125878) (-1153 "UPXSCAT.spad" 2123064 2123080 2124329 2124478) (-1152 "UPXS2.spad" 2122605 2122658 2123054 2123059) (-1151 "UPSQFREE.spad" 2121017 2121031 2122595 2122600) (-1150 "UPSCAT.spad" 2118610 2118634 2120915 2121012) (-1149 "UPSCAT.spad" 2115909 2115935 2118216 2118221) (-1148 "UPOLYC.spad" 2110887 2110898 2115751 2115904) (-1147 "UPOLYC.spad" 2105757 2105770 2110623 2110628) (-1146 "UPOLYC2.spad" 2105226 2105245 2105747 2105752) (-1145 "UP.spad" 2102271 2102286 2102779 2102932) (-1144 "UPMP.spad" 2101161 2101174 2102261 2102266) (-1143 "UPDIVP.spad" 2100724 2100738 2101151 2101156) (-1142 "UPDECOMP.spad" 2098961 2098975 2100714 2100719) (-1141 "UPCDEN.spad" 2098168 2098184 2098951 2098956) (-1140 "UP2.spad" 2097530 2097551 2098158 2098163) (-1139 "UNISEG.spad" 2096883 2096894 2097449 2097454) (-1138 "UNISEG2.spad" 2096376 2096389 2096839 2096844) (-1137 "UNIFACT.spad" 2095477 2095489 2096366 2096371) (-1136 "ULS.spad" 2086036 2086064 2087129 2087558) (-1135 "ULSCONS.spad" 2080079 2080099 2080451 2080600) (-1134 "ULSCCAT.spad" 2077676 2077696 2079899 2080074) (-1133 "ULSCCAT.spad" 2075407 2075429 2077632 2077637) (-1132 "ULSCAT.spad" 2073623 2073639 2075253 2075402) (-1131 "ULS2.spad" 2073135 2073188 2073613 2073618) (-1130 "UFD.spad" 2072200 2072209 2073061 2073130) (-1129 "UFD.spad" 2071327 2071338 2072190 2072195) (-1128 "UDVO.spad" 2070174 2070183 2071317 2071322) (-1127 "UDPO.spad" 2067601 2067612 2070130 2070135) (-1126 "TYPE.spad" 2067523 2067532 2067581 2067596) (-1125 "TWOFACT.spad" 2066173 2066188 2067513 2067518) (-1124 "TUPLE.spad" 2065559 2065570 2066072 2066077) (-1123 "TUBETOOL.spad" 2062396 2062405 2065549 2065554) (-1122 "TUBE.spad" 2061037 2061054 2062386 2062391) (-1121 "TS.spad" 2059626 2059642 2060602 2060699) (-1120 "TSETCAT.spad" 2046741 2046758 2059582 2059621) (-1119 "TSETCAT.spad" 2033854 2033873 2046697 2046702) (-1118 "TRMANIP.spad" 2028220 2028237 2033560 2033565) (-1117 "TRIMAT.spad" 2027179 2027204 2028210 2028215) (-1116 "TRIGMNIP.spad" 2025696 2025713 2027169 2027174) (-1115 "TRIGCAT.spad" 2025208 2025217 2025686 2025691) (-1114 "TRIGCAT.spad" 2024718 2024729 2025198 2025203) (-1113 "TREE.spad" 2023289 2023300 2024325 2024352) (-1112 "TRANFUN.spad" 2023120 2023129 2023279 2023284) (-1111 "TRANFUN.spad" 2022949 2022960 2023110 2023115) (-1110 "TOPSP.spad" 2022623 2022632 2022939 2022944) (-1109 "TOOLSIGN.spad" 2022286 2022297 2022613 2022618) (-1108 "TEXTFILE.spad" 2020843 2020852 2022276 2022281) (-1107 "TEX.spad" 2017860 2017869 2020833 2020838) (-1106 "TEX1.spad" 2017416 2017427 2017850 2017855) (-1105 "TEMUTL.spad" 2016971 2016980 2017406 2017411) (-1104 "TBCMPPK.spad" 2015064 2015087 2016961 2016966) (-1103 "TBAGG.spad" 2014088 2014111 2015032 2015059) (-1102 "TBAGG.spad" 2013132 2013157 2014078 2014083) (-1101 "TANEXP.spad" 2012508 2012519 2013122 2013127) (-1100 "TABLE.spad" 2010919 2010942 2011189 2011216) (-1099 "TABLEAU.spad" 2010400 2010411 2010909 2010914) (-1098 "TABLBUMP.spad" 2007183 2007194 2010390 2010395) (-1097 "SYSTEM.spad" 2006457 2006466 2007173 2007178) (-1096 "SYSSOLP.spad" 2003930 2003941 2006447 2006452) (-1095 "SYNTAX.spad" 2000122 2000131 2003920 2003925) (-1094 "SYMTAB.spad" 1998178 1998187 2000112 2000117) (-1093 "SYMS.spad" 1994163 1994172 1998168 1998173) (-1092 "SYMPOLY.spad" 1993173 1993184 1993255 1993382) (-1091 "SYMFUNC.spad" 1992648 1992659 1993163 1993168) (-1090 "SYMBOL.spad" 1989984 1989993 1992638 1992643) (-1089 "SWITCH.spad" 1986741 1986750 1989974 1989979) (-1088 "SUTS.spad" 1983640 1983668 1985208 1985305) (-1087 "SUPXS.spad" 1980654 1980682 1981772 1981921) (-1086 "SUP.spad" 1977426 1977437 1978207 1978360) (-1085 "SUPFRACF.spad" 1976531 1976549 1977416 1977421) (-1084 "SUP2.spad" 1975921 1975934 1976521 1976526) (-1083 "SUMRF.spad" 1974887 1974898 1975911 1975916) (-1082 "SUMFS.spad" 1974520 1974537 1974877 1974882) (-1081 "SULS.spad" 1965066 1965094 1966172 1966601) (-1080 "SUCH.spad" 1964746 1964761 1965056 1965061) (-1079 "SUBSPACE.spad" 1956753 1956768 1964736 1964741) (-1078 "SUBRESP.spad" 1955913 1955927 1956709 1956714) (-1077 "STTF.spad" 1952012 1952028 1955903 1955908) (-1076 "STTFNC.spad" 1948480 1948496 1952002 1952007) (-1075 "STTAYLOR.spad" 1940878 1940889 1948361 1948366) (-1074 "STRTBL.spad" 1939383 1939400 1939532 1939559) (-1073 "STRING.spad" 1938792 1938801 1938806 1938833) (-1072 "STRICAT.spad" 1938568 1938577 1938748 1938787) (-1071 "STREAM.spad" 1935336 1935347 1938093 1938108) (-1070 "STREAM3.spad" 1934881 1934896 1935326 1935331) (-1069 "STREAM2.spad" 1933949 1933962 1934871 1934876) (-1068 "STREAM1.spad" 1933653 1933664 1933939 1933944) (-1067 "STINPROD.spad" 1932559 1932575 1933643 1933648) (-1066 "STEP.spad" 1931760 1931769 1932549 1932554) (-1065 "STBL.spad" 1930286 1930314 1930453 1930468) (-1064 "STAGG.spad" 1929351 1929362 1930266 1930281) (-1063 "STAGG.spad" 1928424 1928437 1929341 1929346) (-1062 "STACK.spad" 1927775 1927786 1928031 1928058) (-1061 "SREGSET.spad" 1925479 1925496 1927421 1927448) (-1060 "SRDCMPK.spad" 1924024 1924044 1925469 1925474) (-1059 "SRAGG.spad" 1919109 1919118 1923980 1924019) (-1058 "SRAGG.spad" 1914226 1914237 1919099 1919104) (-1057 "SQMATRIX.spad" 1911852 1911870 1912760 1912847) (-1056 "SPLTREE.spad" 1906404 1906417 1911288 1911315) (-1055 "SPLNODE.spad" 1902992 1903005 1906394 1906399) (-1054 "SPFCAT.spad" 1901769 1901778 1902982 1902987) (-1053 "SPECOUT.spad" 1900319 1900328 1901759 1901764) (-1052 "spad-parser.spad" 1899784 1899793 1900309 1900314) (-1051 "SPACEC.spad" 1883797 1883808 1899774 1899779) (-1050 "SPACE3.spad" 1883573 1883584 1883787 1883792) (-1049 "SORTPAK.spad" 1883118 1883131 1883529 1883534) (-1048 "SOLVETRA.spad" 1880875 1880886 1883108 1883113) (-1047 "SOLVESER.spad" 1879395 1879406 1880865 1880870) (-1046 "SOLVERAD.spad" 1875405 1875416 1879385 1879390) (-1045 "SOLVEFOR.spad" 1873825 1873843 1875395 1875400) (-1044 "SNTSCAT.spad" 1873413 1873430 1873781 1873820) (-1043 "SMTS.spad" 1871673 1871699 1872978 1873075) (-1042 "SMP.spad" 1869115 1869135 1869505 1869632) (-1041 "SMITH.spad" 1867958 1867983 1869105 1869110) (-1040 "SMATCAT.spad" 1866056 1866086 1867890 1867953) (-1039 "SMATCAT.spad" 1864098 1864130 1865934 1865939) (-1038 "SKAGG.spad" 1863047 1863058 1864054 1864093) (-1037 "SINT.spad" 1861355 1861364 1862913 1863042) (-1036 "SIMPAN.spad" 1861083 1861092 1861345 1861350) (-1035 "SIGNRF.spad" 1860191 1860202 1861073 1861078) (-1034 "SIGNEF.spad" 1859460 1859477 1860181 1860186) (-1033 "SHP.spad" 1857378 1857393 1859416 1859421) (-1032 "SHDP.spad" 1848768 1848795 1849277 1849406) (-1031 "SGROUP.spad" 1848234 1848243 1848758 1848763) (-1030 "SGROUP.spad" 1847698 1847709 1848224 1848229) (-1029 "SGCF.spad" 1840579 1840588 1847688 1847693) (-1028 "SFRTCAT.spad" 1839495 1839512 1840535 1840574) (-1027 "SFRGCD.spad" 1838558 1838578 1839485 1839490) (-1026 "SFQCMPK.spad" 1833195 1833215 1838548 1838553) (-1025 "SFORT.spad" 1832630 1832644 1833185 1833190) (-1024 "SEXOF.spad" 1832473 1832513 1832620 1832625) (-1023 "SEX.spad" 1832365 1832374 1832463 1832468) (-1022 "SEXCAT.spad" 1829469 1829509 1832355 1832360) (-1021 "SET.spad" 1827769 1827780 1828890 1828929) (-1020 "SETMN.spad" 1826203 1826220 1827759 1827764) (-1019 "SETCAT.spad" 1825688 1825697 1826193 1826198) (-1018 "SETCAT.spad" 1825171 1825182 1825678 1825683) (-1017 "SETAGG.spad" 1821694 1821705 1825139 1825166) (-1016 "SETAGG.spad" 1818237 1818250 1821684 1821689) (-1015 "SEGXCAT.spad" 1817349 1817362 1818217 1818232) (-1014 "SEG.spad" 1817162 1817173 1817268 1817273) (-1013 "SEGCAT.spad" 1815981 1815992 1817142 1817157) (-1012 "SEGBIND.spad" 1815053 1815064 1815936 1815941) (-1011 "SEGBIND2.spad" 1814749 1814762 1815043 1815048) (-1010 "SEG2.spad" 1814174 1814187 1814705 1814710) (-1009 "SDVAR.spad" 1813450 1813461 1814164 1814169) (-1008 "SDPOL.spad" 1810843 1810854 1811134 1811261) (-1007 "SCPKG.spad" 1808922 1808933 1810833 1810838) (-1006 "SCOPE.spad" 1808067 1808076 1808912 1808917) (-1005 "SCACHE.spad" 1806749 1806760 1808057 1808062) (-1004 "SAOS.spad" 1806621 1806630 1806739 1806744) (-1003 "SAERFFC.spad" 1806334 1806354 1806611 1806616) (-1002 "SAE.spad" 1804512 1804528 1805123 1805258) (-1001 "SAEFACT.spad" 1804213 1804233 1804502 1804507) (-1000 "RURPK.spad" 1801854 1801870 1804203 1804208) (-999 "RULESET.spad" 1801296 1801319 1801844 1801849) (-998 "RULE.spad" 1799501 1799524 1801286 1801291) (-997 "RULECOLD.spad" 1799354 1799366 1799491 1799496) (-996 "RSETGCD.spad" 1795733 1795752 1799344 1799349) (-995 "RSETCAT.spad" 1785506 1785522 1795689 1795728) (-994 "RSETCAT.spad" 1775311 1775329 1785496 1785501) (-993 "RSDCMPK.spad" 1773764 1773783 1775301 1775306) (-992 "RRCC.spad" 1772149 1772178 1773754 1773759) (-991 "RRCC.spad" 1770532 1770563 1772139 1772144) (-990 "RPOLCAT.spad" 1749893 1749907 1770400 1770527) (-989 "RPOLCAT.spad" 1728969 1728985 1749478 1749483) (-988 "ROUTINE.spad" 1724833 1724841 1727616 1727643) (-987 "ROMAN.spad" 1724066 1724074 1724699 1724828) (-986 "ROIRC.spad" 1723147 1723178 1724056 1724061) (-985 "RNS.spad" 1722051 1722059 1723049 1723142) (-984 "RNS.spad" 1721041 1721051 1722041 1722046) (-983 "RNG.spad" 1720777 1720785 1721031 1721036) (-982 "RMODULE.spad" 1720416 1720426 1720767 1720772) (-981 "RMCAT2.spad" 1719825 1719881 1720406 1720411) (-980 "RMATRIX.spad" 1718505 1718523 1718992 1719031) (-979 "RMATCAT.spad" 1714027 1714057 1718449 1718500) (-978 "RMATCAT.spad" 1709451 1709483 1713875 1713880) (-977 "RINTERP.spad" 1709340 1709359 1709441 1709446) (-976 "RING.spad" 1708698 1708706 1709320 1709335) (-975 "RING.spad" 1708064 1708074 1708688 1708693) (-974 "RIDIST.spad" 1707449 1707457 1708054 1708059) (-973 "RGCHAIN.spad" 1706029 1706044 1706934 1706961) (-972 "RF.spad" 1703644 1703654 1706019 1706024) (-971 "RFFACTOR.spad" 1703107 1703117 1703634 1703639) (-970 "RFFACT.spad" 1702843 1702854 1703097 1703102) (-969 "RFDIST.spad" 1701832 1701840 1702833 1702838) (-968 "RETSOL.spad" 1701250 1701262 1701822 1701827) (-967 "RETRACT.spad" 1700600 1700610 1701240 1701245) (-966 "RETRACT.spad" 1699948 1699960 1700590 1700595) (-965 "RESULT.spad" 1698009 1698017 1698595 1698622) (-964 "RESRING.spad" 1697357 1697403 1697947 1698004) (-963 "RESLATC.spad" 1696682 1696692 1697347 1697352) (-962 "REPSQ.spad" 1696412 1696422 1696672 1696677) (-961 "REP.spad" 1693965 1693973 1696402 1696407) (-960 "REPDB.spad" 1693671 1693681 1693955 1693960) (-959 "REP2.spad" 1683244 1683254 1693513 1693518) (-958 "REP1.spad" 1677235 1677245 1683194 1683199) (-957 "REGSET.spad" 1675033 1675049 1676881 1676908) (-956 "REF.spad" 1674363 1674373 1674988 1674993) (-955 "REDORDER.spad" 1673540 1673556 1674353 1674358) (-954 "RECLOS.spad" 1672330 1672349 1673033 1673126) (-953 "REALSOLV.spad" 1671463 1671471 1672320 1672325) (-952 "REAL.spad" 1671336 1671344 1671453 1671458) (-951 "REAL0Q.spad" 1668619 1668633 1671326 1671331) (-950 "REAL0.spad" 1665448 1665462 1668609 1668614) (-949 "RDIV.spad" 1665100 1665124 1665438 1665443) (-948 "RDIST.spad" 1664664 1664674 1665090 1665095) (-947 "RDETRS.spad" 1663461 1663478 1664654 1664659) (-946 "RDETR.spad" 1661569 1661586 1663451 1663456) (-945 "RDEEFS.spad" 1660643 1660659 1661559 1661564) (-944 "RDEEF.spad" 1659640 1659656 1660633 1660638) (-943 "RCFIELD.spad" 1656827 1656835 1659542 1659635) (-942 "RCFIELD.spad" 1654100 1654110 1656817 1656822) (-941 "RCAGG.spad" 1652003 1652013 1654080 1654095) (-940 "RCAGG.spad" 1649843 1649855 1651922 1651927) (-939 "RATRET.spad" 1649204 1649214 1649833 1649838) (-938 "RATFACT.spad" 1648897 1648908 1649194 1649199) (-937 "RANDSRC.spad" 1648217 1648225 1648887 1648892) (-936 "RADUTIL.spad" 1647972 1647980 1648207 1648212) (-935 "RADIX.spad" 1644765 1644778 1646442 1646535) (-934 "RADFF.spad" 1643182 1643218 1643300 1643456) (-933 "RADCAT.spad" 1642776 1642784 1643172 1643177) (-932 "RADCAT.spad" 1642368 1642378 1642766 1642771) (-931 "QUEUE.spad" 1641711 1641721 1641975 1642002) (-930 "QUAT.spad" 1640297 1640307 1640639 1640704) (-929 "QUATCT2.spad" 1639916 1639934 1640287 1640292) (-928 "QUATCAT.spad" 1638081 1638091 1639846 1639911) (-927 "QUATCAT.spad" 1635998 1636010 1637765 1637770) (-926 "QUAGG.spad" 1634812 1634822 1635954 1635993) (-925 "QFORM.spad" 1634275 1634289 1634802 1634807) (-924 "QFCAT.spad" 1632966 1632976 1634165 1634270) (-923 "QFCAT.spad" 1631263 1631275 1632464 1632469) (-922 "QFCAT2.spad" 1630954 1630970 1631253 1631258) (-921 "QEQUAT.spad" 1630511 1630519 1630944 1630949) (-920 "QCMPACK.spad" 1625258 1625277 1630501 1630506) (-919 "QALGSET.spad" 1621333 1621365 1625172 1625177) (-918 "QALGSET2.spad" 1619329 1619347 1621323 1621328) (-917 "PWFFINTB.spad" 1616639 1616660 1619319 1619324) (-916 "PUSHVAR.spad" 1615968 1615987 1616629 1616634) (-915 "PTRANFN.spad" 1612094 1612104 1615958 1615963) (-914 "PTPACK.spad" 1609182 1609192 1612084 1612089) (-913 "PTFUNC2.spad" 1609003 1609017 1609172 1609177) (-912 "PTCAT.spad" 1608085 1608095 1608959 1608998) (-911 "PSQFR.spad" 1607392 1607416 1608075 1608080) (-910 "PSEUDLIN.spad" 1606250 1606260 1607382 1607387) (-909 "PSETPK.spad" 1591683 1591699 1606128 1606133) (-908 "PSETCAT.spad" 1585591 1585614 1591651 1591678) (-907 "PSETCAT.spad" 1579485 1579510 1585547 1585552) (-906 "PSCURVE.spad" 1578468 1578476 1579475 1579480) (-905 "PSCAT.spad" 1577235 1577264 1578366 1578463) (-904 "PSCAT.spad" 1576092 1576123 1577225 1577230) (-903 "PRTITION.spad" 1574935 1574943 1576082 1576087) (-902 "PRS.spad" 1564497 1564514 1574891 1574896) (-901 "PRQAGG.spad" 1563916 1563926 1564453 1564492) (-900 "PROPLOG.spad" 1563319 1563327 1563906 1563911) (-899 "PROPFRML.spad" 1561184 1561195 1563255 1563260) (-898 "PROPERTY.spad" 1560678 1560686 1561174 1561179) (-897 "PRODUCT.spad" 1558358 1558370 1558644 1558699) (-896 "PR.spad" 1556747 1556759 1557452 1557579) (-895 "PRINT.spad" 1556499 1556507 1556737 1556742) (-894 "PRIMES.spad" 1554750 1554760 1556489 1556494) (-893 "PRIMELT.spad" 1552731 1552745 1554740 1554745) (-892 "PRIMCAT.spad" 1552354 1552362 1552721 1552726) (-891 "PRIMARR.spad" 1551359 1551369 1551537 1551564) (-890 "PRIMARR2.spad" 1550082 1550094 1551349 1551354) (-889 "PREASSOC.spad" 1549454 1549466 1550072 1550077) (-888 "PPCURVE.spad" 1548591 1548599 1549444 1549449) (-887 "POLYROOT.spad" 1547363 1547385 1548547 1548552) (-886 "POLY.spad" 1544663 1544673 1545180 1545307) (-885 "POLYLIFT.spad" 1543924 1543947 1544653 1544658) (-884 "POLYCATQ.spad" 1542026 1542048 1543914 1543919) (-883 "POLYCAT.spad" 1535432 1535453 1541894 1542021) (-882 "POLYCAT.spad" 1528140 1528163 1534604 1534609) (-881 "POLY2UP.spad" 1527588 1527602 1528130 1528135) (-880 "POLY2.spad" 1527183 1527195 1527578 1527583) (-879 "POLUTIL.spad" 1526124 1526153 1527139 1527144) (-878 "POLTOPOL.spad" 1524872 1524887 1526114 1526119) (-877 "POINT.spad" 1523713 1523723 1523800 1523827) (-876 "PNTHEORY.spad" 1520379 1520387 1523703 1523708) (-875 "PMTOOLS.spad" 1519136 1519150 1520369 1520374) (-874 "PMSYM.spad" 1518681 1518691 1519126 1519131) (-873 "PMQFCAT.spad" 1518268 1518282 1518671 1518676) (-872 "PMPRED.spad" 1517737 1517751 1518258 1518263) (-871 "PMPREDFS.spad" 1517181 1517203 1517727 1517732) (-870 "PMPLCAT.spad" 1516251 1516269 1517113 1517118) (-869 "PMLSAGG.spad" 1515832 1515846 1516241 1516246) (-868 "PMKERNEL.spad" 1515399 1515411 1515822 1515827) (-867 "PMINS.spad" 1514975 1514985 1515389 1515394) (-866 "PMFS.spad" 1514548 1514566 1514965 1514970) (-865 "PMDOWN.spad" 1513834 1513848 1514538 1514543) (-864 "PMASS.spad" 1512846 1512854 1513824 1513829) (-863 "PMASSFS.spad" 1511815 1511831 1512836 1512841) (-862 "PLOTTOOL.spad" 1511595 1511603 1511805 1511810) (-861 "PLOT.spad" 1506426 1506434 1511585 1511590) (-860 "PLOT3D.spad" 1502846 1502854 1506416 1506421) (-859 "PLOT1.spad" 1501987 1501997 1502836 1502841) (-858 "PLEQN.spad" 1489203 1489230 1501977 1501982) (-857 "PINTERP.spad" 1488819 1488838 1489193 1489198) (-856 "PINTERPA.spad" 1488601 1488617 1488809 1488814) (-855 "PI.spad" 1488208 1488216 1488575 1488596) (-854 "PID.spad" 1487164 1487172 1488134 1488203) (-853 "PICOERCE.spad" 1486821 1486831 1487154 1487159) (-852 "PGROEB.spad" 1485418 1485432 1486811 1486816) (-851 "PGE.spad" 1476671 1476679 1485408 1485413) (-850 "PGCD.spad" 1475553 1475570 1476661 1476666) (-849 "PFRPAC.spad" 1474696 1474706 1475543 1475548) (-848 "PFR.spad" 1471353 1471363 1474598 1474691) (-847 "PFOTOOLS.spad" 1470611 1470627 1471343 1471348) (-846 "PFOQ.spad" 1469981 1469999 1470601 1470606) (-845 "PFO.spad" 1469400 1469427 1469971 1469976) (-844 "PF.spad" 1468974 1468986 1469205 1469298) (-843 "PFECAT.spad" 1466640 1466648 1468900 1468969) (-842 "PFECAT.spad" 1464334 1464344 1466596 1466601) (-841 "PFBRU.spad" 1462204 1462216 1464324 1464329) (-840 "PFBR.spad" 1459742 1459765 1462194 1462199) (-839 "PERM.spad" 1455423 1455433 1459572 1459587) (-838 "PERMGRP.spad" 1450159 1450169 1455413 1455418) (-837 "PERMCAT.spad" 1448711 1448721 1450139 1450154) (-836 "PERMAN.spad" 1447243 1447257 1448701 1448706) (-835 "PENDTREE.spad" 1446516 1446526 1446872 1446877) (-834 "PDRING.spad" 1445007 1445017 1446496 1446511) (-833 "PDRING.spad" 1443506 1443518 1444997 1445002) (-832 "PDEPROB.spad" 1442463 1442471 1443496 1443501) (-831 "PDEPACK.spad" 1436465 1436473 1442453 1442458) (-830 "PDECOMP.spad" 1435927 1435944 1436455 1436460) (-829 "PDECAT.spad" 1434281 1434289 1435917 1435922) (-828 "PCOMP.spad" 1434132 1434145 1434271 1434276) (-827 "PBWLB.spad" 1432714 1432731 1434122 1434127) (-826 "PATTERN.spad" 1427145 1427155 1432704 1432709) (-825 "PATTERN2.spad" 1426881 1426893 1427135 1427140) (-824 "PATTERN1.spad" 1425183 1425199 1426871 1426876) (-823 "PATRES.spad" 1422730 1422742 1425173 1425178) (-822 "PATRES2.spad" 1422392 1422406 1422720 1422725) (-821 "PATMATCH.spad" 1420554 1420585 1422105 1422110) (-820 "PATMAB.spad" 1419979 1419989 1420544 1420549) (-819 "PATLRES.spad" 1419063 1419077 1419969 1419974) (-818 "PATAB.spad" 1418827 1418837 1419053 1419058) (-817 "PARTPERM.spad" 1416189 1416197 1418817 1418822) (-816 "PARSURF.spad" 1415617 1415645 1416179 1416184) (-815 "PARSU2.spad" 1415412 1415428 1415607 1415612) (-814 "script-parser.spad" 1414932 1414940 1415402 1415407) (-813 "PARSCURV.spad" 1414360 1414388 1414922 1414927) (-812 "PARSC2.spad" 1414149 1414165 1414350 1414355) (-811 "PARPCURV.spad" 1413607 1413635 1414139 1414144) (-810 "PARPC2.spad" 1413396 1413412 1413597 1413602) (-809 "PAN2EXPR.spad" 1412808 1412816 1413386 1413391) (-808 "PALETTE.spad" 1411778 1411786 1412798 1412803) (-807 "PAIR.spad" 1410761 1410774 1411366 1411371) (-806 "PADICRC.spad" 1408094 1408112 1409269 1409362) (-805 "PADICRAT.spad" 1406112 1406124 1406333 1406426) (-804 "PADIC.spad" 1405807 1405819 1406038 1406107) (-803 "PADICCT.spad" 1404348 1404360 1405733 1405802) (-802 "PADEPAC.spad" 1403027 1403046 1404338 1404343) (-801 "PADE.spad" 1401767 1401783 1403017 1403022) (-800 "OWP.spad" 1400751 1400781 1401625 1401692) (-799 "OVAR.spad" 1400532 1400555 1400741 1400746) (-798 "OUT.spad" 1399616 1399624 1400522 1400527) (-797 "OUTFORM.spad" 1389030 1389038 1399606 1399611) (-796 "OSI.spad" 1388505 1388513 1389020 1389025) (-795 "ORTHPOL.spad" 1386966 1386976 1388422 1388427) (-794 "OREUP.spad" 1386326 1386354 1386648 1386687) (-793 "ORESUP.spad" 1385627 1385651 1386008 1386047) (-792 "OREPCTO.spad" 1383446 1383458 1385547 1385552) (-791 "OREPCAT.spad" 1377503 1377513 1383402 1383441) (-790 "OREPCAT.spad" 1371450 1371462 1377351 1377356) (-789 "ORDSET.spad" 1370616 1370624 1371440 1371445) (-788 "ORDSET.spad" 1369780 1369790 1370606 1370611) (-787 "ORDRING.spad" 1369170 1369178 1369760 1369775) (-786 "ORDRING.spad" 1368568 1368578 1369160 1369165) (-785 "ORDMON.spad" 1368423 1368431 1368558 1368563) (-784 "ORDFUNS.spad" 1367549 1367565 1368413 1368418) (-783 "ORDFIN.spad" 1367483 1367491 1367539 1367544) (-782 "ORDCOMP.spad" 1365951 1365961 1367033 1367062) (-781 "ORDCOMP2.spad" 1365236 1365248 1365941 1365946) (-780 "OPTPROB.spad" 1363816 1363824 1365226 1365231) (-779 "OPTPACK.spad" 1356201 1356209 1363806 1363811) (-778 "OPTCAT.spad" 1353876 1353884 1356191 1356196) (-777 "OPQUERY.spad" 1353425 1353433 1353866 1353871) (-776 "OP.spad" 1353167 1353177 1353247 1353314) (-775 "ONECOMP.spad" 1351915 1351925 1352717 1352746) (-774 "ONECOMP2.spad" 1351333 1351345 1351905 1351910) (-773 "OMSERVER.spad" 1350335 1350343 1351323 1351328) (-772 "OMSAGG.spad" 1350111 1350121 1350279 1350330) (-771 "OMPKG.spad" 1348723 1348731 1350101 1350106) (-770 "OM.spad" 1347688 1347696 1348713 1348718) (-769 "OMLO.spad" 1347113 1347125 1347574 1347613) (-768 "OMEXPR.spad" 1346947 1346957 1347103 1347108) (-767 "OMERR.spad" 1346490 1346498 1346937 1346942) (-766 "OMERRK.spad" 1345524 1345532 1346480 1346485) (-765 "OMENC.spad" 1344868 1344876 1345514 1345519) (-764 "OMDEV.spad" 1339157 1339165 1344858 1344863) (-763 "OMCONN.spad" 1338566 1338574 1339147 1339152) (-762 "OINTDOM.spad" 1338329 1338337 1338492 1338561) (-761 "OFMONOID.spad" 1334516 1334526 1338319 1338324) (-760 "ODVAR.spad" 1333777 1333787 1334506 1334511) (-759 "ODR.spad" 1333225 1333251 1333589 1333738) (-758 "ODPOL.spad" 1330574 1330584 1330914 1331041) (-757 "ODP.spad" 1322100 1322120 1322473 1322602) (-756 "ODETOOLS.spad" 1320683 1320702 1322090 1322095) (-755 "ODESYS.spad" 1318333 1318350 1320673 1320678) (-754 "ODERTRIC.spad" 1314274 1314291 1318290 1318295) (-753 "ODERED.spad" 1313661 1313685 1314264 1314269) (-752 "ODERAT.spad" 1311212 1311229 1313651 1313656) (-751 "ODEPRRIC.spad" 1308103 1308125 1311202 1311207) (-750 "ODEPROB.spad" 1307302 1307310 1308093 1308098) (-749 "ODEPRIM.spad" 1304576 1304598 1307292 1307297) (-748 "ODEPAL.spad" 1303952 1303976 1304566 1304571) (-747 "ODEPACK.spad" 1290554 1290562 1303942 1303947) (-746 "ODEINT.spad" 1289985 1290001 1290544 1290549) (-745 "ODEIFTBL.spad" 1287380 1287388 1289975 1289980) (-744 "ODEEF.spad" 1282747 1282763 1287370 1287375) (-743 "ODECONST.spad" 1282266 1282284 1282737 1282742) (-742 "ODECAT.spad" 1280862 1280870 1282256 1282261) (-741 "OCT.spad" 1279009 1279019 1279725 1279764) (-740 "OCTCT2.spad" 1278653 1278674 1278999 1279004) (-739 "OC.spad" 1276427 1276437 1278609 1278648) (-738 "OC.spad" 1273927 1273939 1276111 1276116) (-737 "OCAMON.spad" 1273775 1273783 1273917 1273922) (-736 "OASGP.spad" 1273590 1273598 1273765 1273770) (-735 "OAMONS.spad" 1273110 1273118 1273580 1273585) (-734 "OAMON.spad" 1272971 1272979 1273100 1273105) (-733 "OAGROUP.spad" 1272833 1272841 1272961 1272966) (-732 "NUMTUBE.spad" 1272420 1272436 1272823 1272828) (-731 "NUMQUAD.spad" 1260282 1260290 1272410 1272415) (-730 "NUMODE.spad" 1251418 1251426 1260272 1260277) (-729 "NUMINT.spad" 1248976 1248984 1251408 1251413) (-728 "NUMFMT.spad" 1247816 1247824 1248966 1248971) (-727 "NUMERIC.spad" 1239889 1239899 1247622 1247627) (-726 "NTSCAT.spad" 1238379 1238395 1239845 1239884) (-725 "NTPOLFN.spad" 1237924 1237934 1238296 1238301) (-724 "NSUP.spad" 1230937 1230947 1235477 1235630) (-723 "NSUP2.spad" 1230329 1230341 1230927 1230932) (-722 "NSMP.spad" 1226528 1226547 1226836 1226963) (-721 "NREP.spad" 1224900 1224914 1226518 1226523) (-720 "NPCOEF.spad" 1224146 1224166 1224890 1224895) (-719 "NORMRETR.spad" 1223744 1223783 1224136 1224141) (-718 "NORMPK.spad" 1221646 1221665 1223734 1223739) (-717 "NORMMA.spad" 1221334 1221360 1221636 1221641) (-716 "NONE.spad" 1221075 1221083 1221324 1221329) (-715 "NONE1.spad" 1220751 1220761 1221065 1221070) (-714 "NODE1.spad" 1220220 1220236 1220741 1220746) (-713 "NNI.spad" 1219107 1219115 1220194 1220215) (-712 "NLINSOL.spad" 1217729 1217739 1219097 1219102) (-711 "NIPROB.spad" 1216212 1216220 1217719 1217724) (-710 "NFINTBAS.spad" 1213672 1213689 1216202 1216207) (-709 "NCODIV.spad" 1211870 1211886 1213662 1213667) (-708 "NCNTFRAC.spad" 1211512 1211526 1211860 1211865) (-707 "NCEP.spad" 1209672 1209686 1211502 1211507) (-706 "NASRING.spad" 1209268 1209276 1209662 1209667) (-705 "NASRING.spad" 1208862 1208872 1209258 1209263) (-704 "NARNG.spad" 1208206 1208214 1208852 1208857) (-703 "NARNG.spad" 1207548 1207558 1208196 1208201) (-702 "NAGSP.spad" 1206621 1206629 1207538 1207543) (-701 "NAGS.spad" 1196146 1196154 1206611 1206616) (-700 "NAGF07.spad" 1194539 1194547 1196136 1196141) (-699 "NAGF04.spad" 1188771 1188779 1194529 1194534) (-698 "NAGF02.spad" 1182580 1182588 1188761 1188766) (-697 "NAGF01.spad" 1178183 1178191 1182570 1182575) (-696 "NAGE04.spad" 1171643 1171651 1178173 1178178) (-695 "NAGE02.spad" 1161985 1161993 1171633 1171638) (-694 "NAGE01.spad" 1157869 1157877 1161975 1161980) (-693 "NAGD03.spad" 1155789 1155797 1157859 1157864) (-692 "NAGD02.spad" 1148320 1148328 1155779 1155784) (-691 "NAGD01.spad" 1142433 1142441 1148310 1148315) (-690 "NAGC06.spad" 1138220 1138228 1142423 1142428) (-689 "NAGC05.spad" 1136689 1136697 1138210 1138215) (-688 "NAGC02.spad" 1135944 1135952 1136679 1136684) (-687 "NAALG.spad" 1135479 1135489 1135912 1135939) (-686 "NAALG.spad" 1135034 1135046 1135469 1135474) (-685 "MULTSQFR.spad" 1131992 1132009 1135024 1135029) (-684 "MULTFACT.spad" 1131375 1131392 1131982 1131987) (-683 "MTSCAT.spad" 1129409 1129430 1131273 1131370) (-682 "MTHING.spad" 1129066 1129076 1129399 1129404) (-681 "MSYSCMD.spad" 1128500 1128508 1129056 1129061) (-680 "MSET.spad" 1126442 1126452 1128206 1128245) (-679 "MSETAGG.spad" 1126275 1126285 1126398 1126437) (-678 "MRING.spad" 1123246 1123258 1125983 1126050) (-677 "MRF2.spad" 1122814 1122828 1123236 1123241) (-676 "MRATFAC.spad" 1122360 1122377 1122804 1122809) (-675 "MPRFF.spad" 1120390 1120409 1122350 1122355) (-674 "MPOLY.spad" 1117828 1117843 1118187 1118314) (-673 "MPCPF.spad" 1117092 1117111 1117818 1117823) (-672 "MPC3.spad" 1116907 1116947 1117082 1117087) (-671 "MPC2.spad" 1116549 1116582 1116897 1116902) (-670 "MONOTOOL.spad" 1114884 1114901 1116539 1116544) (-669 "MONOID.spad" 1114058 1114066 1114874 1114879) (-668 "MONOID.spad" 1113230 1113240 1114048 1114053) (-667 "MONOGEN.spad" 1111976 1111989 1113090 1113225) (-666 "MONOGEN.spad" 1110744 1110759 1111860 1111865) (-665 "MONADWU.spad" 1108758 1108766 1110734 1110739) (-664 "MONADWU.spad" 1106770 1106780 1108748 1108753) (-663 "MONAD.spad" 1105914 1105922 1106760 1106765) (-662 "MONAD.spad" 1105056 1105066 1105904 1105909) (-661 "MOEBIUS.spad" 1103742 1103756 1105036 1105051) (-660 "MODULE.spad" 1103612 1103622 1103710 1103737) (-659 "MODULE.spad" 1103502 1103514 1103602 1103607) (-658 "MODRING.spad" 1102833 1102872 1103482 1103497) (-657 "MODOP.spad" 1101492 1101504 1102655 1102722) (-656 "MODMONOM.spad" 1101024 1101042 1101482 1101487) (-655 "MODMON.spad" 1097729 1097745 1098505 1098658) (-654 "MODFIELD.spad" 1097087 1097126 1097631 1097724) (-653 "MMLFORM.spad" 1095947 1095955 1097077 1097082) (-652 "MMAP.spad" 1095687 1095721 1095937 1095942) (-651 "MLO.spad" 1094114 1094124 1095643 1095682) (-650 "MLIFT.spad" 1092686 1092703 1094104 1094109) (-649 "MKUCFUNC.spad" 1092219 1092237 1092676 1092681) (-648 "MKRECORD.spad" 1091821 1091834 1092209 1092214) (-647 "MKFUNC.spad" 1091202 1091212 1091811 1091816) (-646 "MKFLCFN.spad" 1090158 1090168 1091192 1091197) (-645 "MKCHSET.spad" 1089934 1089944 1090148 1090153) (-644 "MKBCFUNC.spad" 1089419 1089437 1089924 1089929) (-643 "MINT.spad" 1088858 1088866 1089321 1089414) (-642 "MHROWRED.spad" 1087359 1087369 1088848 1088853) (-641 "MFLOAT.spad" 1085804 1085812 1087249 1087354) (-640 "MFINFACT.spad" 1085204 1085226 1085794 1085799) (-639 "MESH.spad" 1082936 1082944 1085194 1085199) (-638 "MDDFACT.spad" 1081129 1081139 1082926 1082931) (-637 "MDAGG.spad" 1080404 1080414 1081097 1081124) (-636 "MCMPLX.spad" 1076384 1076392 1076998 1077199) (-635 "MCDEN.spad" 1075592 1075604 1076374 1076379) (-634 "MCALCFN.spad" 1072694 1072720 1075582 1075587) (-633 "MATSTOR.spad" 1069970 1069980 1072684 1072689) (-632 "MATRIX.spad" 1068674 1068684 1069158 1069185) (-631 "MATLIN.spad" 1066000 1066024 1068558 1068563) (-630 "MATCAT.spad" 1057573 1057595 1065956 1065995) (-629 "MATCAT.spad" 1049030 1049054 1057415 1057420) (-628 "MATCAT2.spad" 1048298 1048346 1049020 1049025) (-627 "MAPPKG3.spad" 1047197 1047211 1048288 1048293) (-626 "MAPPKG2.spad" 1046531 1046543 1047187 1047192) (-625 "MAPPKG1.spad" 1045349 1045359 1046521 1046526) (-624 "MAPHACK3.spad" 1045157 1045171 1045339 1045344) (-623 "MAPHACK2.spad" 1044922 1044934 1045147 1045152) (-622 "MAPHACK1.spad" 1044552 1044562 1044912 1044917) (-621 "MAGMA.spad" 1042342 1042359 1044542 1044547) (-620 "M3D.spad" 1040040 1040050 1041722 1041727) (-619 "LZSTAGG.spad" 1037258 1037268 1040020 1040035) (-618 "LZSTAGG.spad" 1034484 1034496 1037248 1037253) (-617 "LWORD.spad" 1031189 1031206 1034474 1034479) (-616 "LSQM.spad" 1029417 1029431 1029815 1029866) (-615 "LSPP.spad" 1028950 1028967 1029407 1029412) (-614 "LSMP.spad" 1027790 1027818 1028940 1028945) (-613 "LSMP1.spad" 1025594 1025608 1027780 1027785) (-612 "LSAGG.spad" 1025251 1025261 1025550 1025589) (-611 "LSAGG.spad" 1024940 1024952 1025241 1025246) (-610 "LPOLY.spad" 1023894 1023913 1024796 1024865) (-609 "LPEFRAC.spad" 1023151 1023161 1023884 1023889) (-608 "LO.spad" 1022552 1022566 1023085 1023112) (-607 "LOGIC.spad" 1022154 1022162 1022542 1022547) (-606 "LOGIC.spad" 1021754 1021764 1022144 1022149) (-605 "LODOOPS.spad" 1020672 1020684 1021744 1021749) (-604 "LODO.spad" 1020058 1020074 1020354 1020393) (-603 "LODOF.spad" 1019102 1019119 1020015 1020020) (-602 "LODOCAT.spad" 1017760 1017770 1019058 1019097) (-601 "LODOCAT.spad" 1016416 1016428 1017716 1017721) (-600 "LODO2.spad" 1015691 1015703 1016098 1016137) (-599 "LODO1.spad" 1015093 1015103 1015373 1015412) (-598 "LODEEF.spad" 1013865 1013883 1015083 1015088) (-597 "LNAGG.spad" 1009657 1009667 1013845 1013860) (-596 "LNAGG.spad" 1005423 1005435 1009613 1009618) (-595 "LMOPS.spad" 1002159 1002176 1005413 1005418) (-594 "LMODULE.spad" 1001801 1001811 1002149 1002154) (-593 "LMDICT.spad" 1001084 1001094 1001352 1001379) (-592 "LIST.spad" 998802 998812 1000231 1000258) (-591 "LIST3.spad" 998093 998107 998792 998797) (-590 "LIST2.spad" 996733 996745 998083 998088) (-589 "LIST2MAP.spad" 993610 993622 996723 996728) (-588 "LINEXP.spad" 993042 993052 993590 993605) (-587 "LINDEP.spad" 991819 991831 992954 992959) (-586 "LIMITRF.spad" 989733 989743 991809 991814) (-585 "LIMITPS.spad" 988616 988629 989723 989728) (-584 "LIE.spad" 986630 986642 987906 988051) (-583 "LIECAT.spad" 986106 986116 986556 986625) (-582 "LIECAT.spad" 985610 985622 986062 986067) (-581 "LIB.spad" 983658 983666 984269 984284) (-580 "LGROBP.spad" 981011 981030 983648 983653) (-579 "LF.spad" 979930 979946 981001 981006) (-578 "LFCAT.spad" 978949 978957 979920 979925) (-577 "LEXTRIPK.spad" 974452 974467 978939 978944) (-576 "LEXP.spad" 972455 972482 974432 974447) (-575 "LEADCDET.spad" 970839 970856 972445 972450) (-574 "LAZM3PK.spad" 969543 969565 970829 970834) (-573 "LAUPOL.spad" 968234 968247 969138 969207) (-572 "LAPLACE.spad" 967807 967823 968224 968229) (-571 "LA.spad" 967247 967261 967729 967768) (-570 "LALG.spad" 967023 967033 967227 967242) (-569 "LALG.spad" 966807 966819 967013 967018) (-568 "KOVACIC.spad" 965520 965537 966797 966802) (-567 "KONVERT.spad" 965242 965252 965510 965515) (-566 "KOERCE.spad" 964979 964989 965232 965237) (-565 "KERNEL.spad" 963514 963524 964763 964768) (-564 "KERNEL2.spad" 963217 963229 963504 963509) (-563 "KDAGG.spad" 962308 962330 963185 963212) (-562 "KDAGG.spad" 961419 961443 962298 962303) (-561 "KAFILE.spad" 960382 960398 960617 960644) (-560 "JORDAN.spad" 958209 958221 959672 959817) (-559 "JAVACODE.spad" 957975 957983 958199 958204) (-558 "IXAGG.spad" 956088 956112 957955 957970) (-557 "IXAGG.spad" 954066 954092 955935 955940) (-556 "IVECTOR.spad" 952839 952854 952994 953021) (-555 "ITUPLE.spad" 951984 951994 952829 952834) (-554 "ITRIGMNP.spad" 950795 950814 951974 951979) (-553 "ITFUN3.spad" 950289 950303 950785 950790) (-552 "ITFUN2.spad" 950019 950031 950279 950284) (-551 "ITAYLOR.spad" 947811 947826 949855 949980) (-550 "ISUPS.spad" 940222 940237 946785 946882) (-549 "ISUMP.spad" 939719 939735 940212 940217) (-548 "ISTRING.spad" 938722 938735 938888 938915) (-547 "IRURPK.spad" 937435 937454 938712 938717) (-546 "IRSN.spad" 935395 935403 937425 937430) (-545 "IRRF2F.spad" 933870 933880 935351 935356) (-544 "IRREDFFX.spad" 933471 933482 933860 933865) (-543 "IROOT.spad" 931802 931812 933461 933466) (-542 "IR.spad" 929592 929606 931658 931685) (-541 "IR2.spad" 928612 928628 929582 929587) (-540 "IR2F.spad" 927812 927828 928602 928607) (-539 "IPRNTPK.spad" 927572 927580 927802 927807) (-538 "IPF.spad" 927137 927149 927377 927470) (-537 "IPADIC.spad" 926898 926924 927063 927132) (-536 "INVLAPLA.spad" 926543 926559 926888 926893) (-535 "INTTR.spad" 919789 919806 926533 926538) (-534 "INTTOOLS.spad" 917501 917517 919364 919369) (-533 "INTSLPE.spad" 916807 916815 917491 917496) (-532 "INTRVL.spad" 916373 916383 916721 916802) (-531 "INTRF.spad" 914737 914751 916363 916368) (-530 "INTRET.spad" 914169 914179 914727 914732) (-529 "INTRAT.spad" 912844 912861 914159 914164) (-528 "INTPM.spad" 911207 911223 912487 912492) (-527 "INTPAF.spad" 908975 908993 911139 911144) (-526 "INTPACK.spad" 899285 899293 908965 908970) (-525 "INT.spad" 898646 898654 899139 899280) (-524 "INTHERTR.spad" 897912 897929 898636 898641) (-523 "INTHERAL.spad" 897578 897602 897902 897907) (-522 "INTHEORY.spad" 893991 893999 897568 897573) (-521 "INTG0.spad" 887454 887472 893923 893928) (-520 "INTFTBL.spad" 881483 881491 887444 887449) (-519 "INTFACT.spad" 880542 880552 881473 881478) (-518 "INTEF.spad" 878857 878873 880532 880537) (-517 "INTDOM.spad" 877472 877480 878783 878852) (-516 "INTDOM.spad" 876149 876159 877462 877467) (-515 "INTCAT.spad" 874402 874412 876063 876144) (-514 "INTBIT.spad" 873905 873913 874392 874397) (-513 "INTALG.spad" 873087 873114 873895 873900) (-512 "INTAF.spad" 872579 872595 873077 873082) (-511 "INTABL.spad" 871097 871128 871260 871287) (-510 "INS.spad" 868493 868501 870999 871092) (-509 "INS.spad" 865975 865985 868483 868488) (-508 "INPSIGN.spad" 865409 865422 865965 865970) (-507 "INPRODPF.spad" 864475 864494 865399 865404) (-506 "INPRODFF.spad" 863533 863557 864465 864470) (-505 "INNMFACT.spad" 862504 862521 863523 863528) (-504 "INMODGCD.spad" 861988 862018 862494 862499) (-503 "INFSP.spad" 860273 860295 861978 861983) (-502 "INFPROD0.spad" 859323 859342 860263 860268) (-501 "INFORM.spad" 856591 856599 859313 859318) (-500 "INFORM1.spad" 856216 856226 856581 856586) (-499 "INFINITY.spad" 855768 855776 856206 856211) (-498 "INEP.spad" 854300 854322 855758 855763) (-497 "INDE.spad" 854206 854223 854290 854295) (-496 "INCRMAPS.spad" 853627 853637 854196 854201) (-495 "INBFF.spad" 849397 849408 853617 853622) (-494 "IMATRIX.spad" 848342 848368 848854 848881) (-493 "IMATQF.spad" 847436 847480 848298 848303) (-492 "IMATLIN.spad" 846041 846065 847392 847397) (-491 "ILIST.spad" 844697 844712 845224 845251) (-490 "IIARRAY2.spad" 844085 844123 844304 844331) (-489 "IFF.spad" 843495 843511 843766 843859) (-488 "IFARRAY.spad" 840982 840997 842678 842705) (-487 "IFAMON.spad" 840844 840861 840938 840943) (-486 "IEVALAB.spad" 840233 840245 840834 840839) (-485 "IEVALAB.spad" 839620 839634 840223 840228) (-484 "IDPO.spad" 839418 839430 839610 839615) (-483 "IDPOAMS.spad" 839174 839186 839408 839413) (-482 "IDPOAM.spad" 838894 838906 839164 839169) (-481 "IDPC.spad" 837828 837840 838884 838889) (-480 "IDPAM.spad" 837573 837585 837818 837823) (-479 "IDPAG.spad" 837320 837332 837563 837568) (-478 "IDECOMP.spad" 834557 834575 837310 837315) (-477 "IDEAL.spad" 829480 829519 834492 834497) (-476 "ICDEN.spad" 828631 828647 829470 829475) (-475 "ICARD.spad" 827820 827828 828621 828626) (-474 "IBPTOOLS.spad" 826413 826430 827810 827815) (-473 "IBITS.spad" 825612 825625 826049 826076) (-472 "IBATOOL.spad" 822487 822506 825602 825607) (-471 "IBACHIN.spad" 820974 820989 822477 822482) (-470 "IARRAY2.spad" 819962 819988 820581 820608) (-469 "IARRAY1.spad" 819007 819022 819145 819172) (-468 "IAN.spad" 817222 817230 818825 818918) (-467 "IALGFACT.spad" 816823 816856 817212 817217) (-466 "HYPCAT.spad" 816247 816255 816813 816818) (-465 "HYPCAT.spad" 815669 815679 816237 816242) (-464 "HOAGG.spad" 812927 812937 815649 815664) (-463 "HOAGG.spad" 809970 809982 812694 812699) (-462 "HEXADEC.spad" 807842 807850 808440 808533) (-461 "HEUGCD.spad" 806857 806868 807832 807837) (-460 "HELLFDIV.spad" 806447 806471 806847 806852) (-459 "HEAP.spad" 805839 805849 806054 806081) (-458 "HDP.spad" 797361 797377 797738 797867) (-457 "HDMP.spad" 794540 794555 795158 795285) (-456 "HB.spad" 792777 792785 794530 794535) (-455 "HASHTBL.spad" 791247 791278 791458 791485) (-454 "HACKPI.spad" 790730 790738 791149 791242) (-453 "GTSET.spad" 789669 789685 790376 790403) (-452 "GSTBL.spad" 788188 788223 788362 788377) (-451 "GSERIES.spad" 785355 785382 786320 786469) (-450 "GROUP.spad" 784529 784537 785335 785350) (-449 "GROUP.spad" 783711 783721 784519 784524) (-448 "GROEBSOL.spad" 782199 782220 783701 783706) (-447 "GRMOD.spad" 780770 780782 782189 782194) (-446 "GRMOD.spad" 779339 779353 780760 780765) (-445 "GRIMAGE.spad" 771944 771952 779329 779334) (-444 "GRDEF.spad" 770323 770331 771934 771939) (-443 "GRAY.spad" 768782 768790 770313 770318) (-442 "GRALG.spad" 767829 767841 768772 768777) (-441 "GRALG.spad" 766874 766888 767819 767824) (-440 "GPOLSET.spad" 766328 766351 766556 766583) (-439 "GOSPER.spad" 765593 765611 766318 766323) (-438 "GMODPOL.spad" 764731 764758 765561 765588) (-437 "GHENSEL.spad" 763800 763814 764721 764726) (-436 "GENUPS.spad" 759901 759914 763790 763795) (-435 "GENUFACT.spad" 759478 759488 759891 759896) (-434 "GENPGCD.spad" 759062 759079 759468 759473) (-433 "GENMFACT.spad" 758514 758533 759052 759057) (-432 "GENEEZ.spad" 756453 756466 758504 758509) (-431 "GDMP.spad" 753474 753491 754250 754377) (-430 "GCNAALG.spad" 747369 747396 753268 753335) (-429 "GCDDOM.spad" 746541 746549 747295 747364) (-428 "GCDDOM.spad" 745775 745785 746531 746536) (-427 "GB.spad" 743293 743331 745731 745736) (-426 "GBINTERN.spad" 739313 739351 743283 743288) (-425 "GBF.spad" 735070 735108 739303 739308) (-424 "GBEUCLID.spad" 732944 732982 735060 735065) (-423 "GAUSSFAC.spad" 732241 732249 732934 732939) (-422 "GALUTIL.spad" 730563 730573 732197 732202) (-421 "GALPOLYU.spad" 729009 729022 730553 730558) (-420 "GALFACTU.spad" 727174 727193 728999 729004) (-419 "GALFACT.spad" 717307 717318 727164 727169) (-418 "FVFUN.spad" 714320 714328 717287 717302) (-417 "FVC.spad" 713362 713370 714300 714315) (-416 "FUNCTION.spad" 713211 713223 713352 713357) (-415 "FT.spad" 711423 711431 713201 713206) (-414 "FTEM.spad" 710586 710594 711413 711418) (-413 "FSUPFACT.spad" 709487 709506 710523 710528) (-412 "FST.spad" 707573 707581 709477 709482) (-411 "FSRED.spad" 707051 707067 707563 707568) (-410 "FSPRMELT.spad" 705875 705891 707008 707013) (-409 "FSPECF.spad" 703952 703968 705865 705870) (-408 "FS.spad" 698003 698013 703716 703947) (-407 "FS.spad" 691845 691857 697560 697565) (-406 "FSINT.spad" 691503 691519 691835 691840) (-405 "FSERIES.spad" 690690 690702 691323 691422) (-404 "FSCINT.spad" 690003 690019 690680 690685) (-403 "FSAGG.spad" 689108 689118 689947 689998) (-402 "FSAGG.spad" 688187 688199 689028 689033) (-401 "FSAGG2.spad" 686886 686902 688177 688182) (-400 "FS2UPS.spad" 681275 681309 686876 686881) (-399 "FS2.spad" 680920 680936 681265 681270) (-398 "FS2EXPXP.spad" 680043 680066 680910 680915) (-397 "FRUTIL.spad" 678985 678995 680033 680038) (-396 "FR.spad" 672682 672692 678012 678081) (-395 "FRNAALG.spad" 667769 667779 672624 672677) (-394 "FRNAALG.spad" 662868 662880 667725 667730) (-393 "FRNAAF2.spad" 662322 662340 662858 662863) (-392 "FRMOD.spad" 661717 661747 662254 662259) (-391 "FRIDEAL.spad" 660912 660933 661697 661712) (-390 "FRIDEAL2.spad" 660514 660546 660902 660907) (-389 "FRETRCT.spad" 660025 660035 660504 660509) (-388 "FRETRCT.spad" 659404 659416 659885 659890) (-387 "FRAMALG.spad" 657732 657745 659360 659399) (-386 "FRAMALG.spad" 656092 656107 657722 657727) (-385 "FRAC.spad" 653195 653205 653598 653771) (-384 "FRAC2.spad" 652798 652810 653185 653190) (-383 "FR2.spad" 652132 652144 652788 652793) (-382 "FPS.spad" 648941 648949 652022 652127) (-381 "FPS.spad" 645778 645788 648861 648866) (-380 "FPC.spad" 644820 644828 645680 645773) (-379 "FPC.spad" 643948 643958 644810 644815) (-378 "FPATMAB.spad" 643700 643710 643928 643943) (-377 "FPARFRAC.spad" 642173 642190 643690 643695) (-376 "FORTRAN.spad" 640679 640722 642163 642168) (-375 "FORT.spad" 639608 639616 640669 640674) (-374 "FORTFN.spad" 636768 636776 639588 639603) (-373 "FORTCAT.spad" 636442 636450 636748 636763) (-372 "FORMULA.spad" 633780 633788 636432 636437) (-371 "FORMULA1.spad" 633259 633269 633770 633775) (-370 "FORDER.spad" 632950 632974 633249 633254) (-369 "FOP.spad" 632151 632159 632940 632945) (-368 "FNLA.spad" 631575 631597 632119 632146) (-367 "FNCAT.spad" 629903 629911 631565 631570) (-366 "FNAME.spad" 629795 629803 629893 629898) (-365 "FMTC.spad" 629593 629601 629721 629790) (-364 "FMONOID.spad" 626648 626658 629549 629554) (-363 "FM.spad" 626343 626355 626582 626609) (-362 "FMFUN.spad" 623363 623371 626323 626338) (-361 "FMC.spad" 622405 622413 623343 623358) (-360 "FMCAT.spad" 620059 620077 622373 622400) (-359 "FM1.spad" 619416 619428 619993 620020) (-358 "FLOATRP.spad" 617137 617151 619406 619411) (-357 "FLOAT.spad" 610301 610309 617003 617132) (-356 "FLOATCP.spad" 607718 607732 610291 610296) (-355 "FLINEXP.spad" 607430 607440 607698 607713) (-354 "FLINEXP.spad" 607096 607108 607366 607371) (-353 "FLASORT.spad" 606416 606428 607086 607091) (-352 "FLALG.spad" 604062 604081 606342 606411) (-351 "FLAGG.spad" 601068 601078 604030 604057) (-350 "FLAGG.spad" 597987 597999 600951 600956) (-349 "FLAGG2.spad" 596668 596684 597977 597982) (-348 "FINRALG.spad" 594697 594710 596624 596663) (-347 "FINRALG.spad" 592652 592667 594581 594586) (-346 "FINITE.spad" 591804 591812 592642 592647) (-345 "FINAALG.spad" 580785 580795 591746 591799) (-344 "FINAALG.spad" 569778 569790 580741 580746) (-343 "FILE.spad" 569361 569371 569768 569773) (-342 "FILECAT.spad" 567879 567896 569351 569356) (-341 "FIELD.spad" 567285 567293 567781 567874) (-340 "FIELD.spad" 566777 566787 567275 567280) (-339 "FGROUP.spad" 565386 565396 566757 566772) (-338 "FGLMICPK.spad" 564173 564188 565376 565381) (-337 "FFX.spad" 563548 563563 563889 563982) (-336 "FFSLPE.spad" 563037 563058 563538 563543) (-335 "FFPOLY.spad" 554289 554300 563027 563032) (-334 "FFPOLY2.spad" 553349 553366 554279 554284) (-333 "FFP.spad" 552746 552766 553065 553158) (-332 "FF.spad" 552194 552210 552427 552520) (-331 "FFNBX.spad" 550706 550726 551910 552003) (-330 "FFNBP.spad" 549219 549236 550422 550515) (-329 "FFNB.spad" 547684 547705 548900 548993) (-328 "FFINTBAS.spad" 545098 545117 547674 547679) (-327 "FFIELDC.spad" 542673 542681 545000 545093) (-326 "FFIELDC.spad" 540334 540344 542663 542668) (-325 "FFHOM.spad" 539082 539099 540324 540329) (-324 "FFF.spad" 536517 536528 539072 539077) (-323 "FFCGX.spad" 535364 535384 536233 536326) (-322 "FFCGP.spad" 534253 534273 535080 535173) (-321 "FFCG.spad" 533045 533066 533934 534027) (-320 "FFCAT.spad" 525946 525968 532884 533040) (-319 "FFCAT.spad" 518926 518950 525866 525871) (-318 "FFCAT2.spad" 518671 518711 518916 518921) (-317 "FEXPR.spad" 510384 510430 518431 518470) (-316 "FEVALAB.spad" 510090 510100 510374 510379) (-315 "FEVALAB.spad" 509581 509593 509867 509872) (-314 "FDIV.spad" 509023 509047 509571 509576) (-313 "FDIVCAT.spad" 507065 507089 509013 509018) (-312 "FDIVCAT.spad" 505105 505131 507055 507060) (-311 "FDIV2.spad" 504759 504799 505095 505100) (-310 "FCPAK1.spad" 503312 503320 504749 504754) (-309 "FCOMP.spad" 502691 502701 503302 503307) (-308 "FC.spad" 492516 492524 502681 502686) (-307 "FAXF.spad" 485451 485465 492418 492511) (-306 "FAXF.spad" 478438 478454 485407 485412) (-305 "FARRAY.spad" 476584 476594 477621 477648) (-304 "FAMR.spad" 474704 474716 476482 476579) (-303 "FAMR.spad" 472808 472822 474588 474593) (-302 "FAMONOID.spad" 472458 472468 472762 472767) (-301 "FAMONC.spad" 470680 470692 472448 472453) (-300 "FAGROUP.spad" 470286 470296 470576 470603) (-299 "FACUTIL.spad" 468482 468499 470276 470281) (-298 "FACTFUNC.spad" 467658 467668 468472 468477) (-297 "EXPUPXS.spad" 464491 464514 465790 465939) (-296 "EXPRTUBE.spad" 461719 461727 464481 464486) (-295 "EXPRODE.spad" 458591 458607 461709 461714) (-294 "EXPR.spad" 453893 453903 454607 455010) (-293 "EXPR2UPS.spad" 449985 449998 453883 453888) (-292 "EXPR2.spad" 449688 449700 449975 449980) (-291 "EXPEXPAN.spad" 446629 446654 447263 447356) (-290 "EXIT.spad" 446300 446308 446619 446624) (-289 "EVALCYC.spad" 445758 445772 446290 446295) (-288 "EVALAB.spad" 445322 445332 445748 445753) (-287 "EVALAB.spad" 444884 444896 445312 445317) (-286 "EUCDOM.spad" 442426 442434 444810 444879) (-285 "EUCDOM.spad" 440030 440040 442416 442421) (-284 "ESTOOLS.spad" 431870 431878 440020 440025) (-283 "ESTOOLS2.spad" 431471 431485 431860 431865) (-282 "ESTOOLS1.spad" 431156 431167 431461 431466) (-281 "ES.spad" 423703 423711 431146 431151) (-280 "ES.spad" 416158 416168 423603 423608) (-279 "ESCONT.spad" 412931 412939 416148 416153) (-278 "ESCONT1.spad" 412680 412692 412921 412926) (-277 "ES2.spad" 412175 412191 412670 412675) (-276 "ES1.spad" 411741 411757 412165 412170) (-275 "ERROR.spad" 409062 409070 411731 411736) (-274 "EQTBL.spad" 407534 407556 407743 407770) (-273 "EQ.spad" 402418 402428 405217 405326) (-272 "EQ2.spad" 402134 402146 402408 402413) (-271 "EP.spad" 398448 398458 402124 402129) (-270 "ENV.spad" 397150 397158 398438 398443) (-269 "ENTIRER.spad" 396818 396826 397094 397145) (-268 "EMR.spad" 396019 396060 396744 396813) (-267 "ELTAGG.spad" 394259 394278 396009 396014) (-266 "ELTAGG.spad" 392463 392484 394215 394220) (-265 "ELTAB.spad" 391910 391928 392453 392458) (-264 "ELFUTS.spad" 391289 391308 391900 391905) (-263 "ELEMFUN.spad" 390978 390986 391279 391284) (-262 "ELEMFUN.spad" 390665 390675 390968 390973) (-261 "ELAGG.spad" 388596 388606 390633 390660) (-260 "ELAGG.spad" 386476 386488 388515 388520) (-259 "ELABEXPR.spad" 385407 385415 386466 386471) (-258 "EFUPXS.spad" 382183 382213 385363 385368) (-257 "EFULS.spad" 379019 379042 382139 382144) (-256 "EFSTRUC.spad" 376974 376990 379009 379014) (-255 "EF.spad" 371740 371756 376964 376969) (-254 "EAB.spad" 370016 370024 371730 371735) (-253 "E04UCFA.spad" 369552 369560 370006 370011) (-252 "E04NAFA.spad" 369129 369137 369542 369547) (-251 "E04MBFA.spad" 368709 368717 369119 369124) (-250 "E04JAFA.spad" 368245 368253 368699 368704) (-249 "E04GCFA.spad" 367781 367789 368235 368240) (-248 "E04FDFA.spad" 367317 367325 367771 367776) (-247 "E04DGFA.spad" 366853 366861 367307 367312) (-246 "E04AGNT.spad" 362695 362703 366843 366848) (-245 "DVARCAT.spad" 359380 359390 362685 362690) (-244 "DVARCAT.spad" 356063 356075 359370 359375) (-243 "DSMP.spad" 353497 353511 353802 353929) (-242 "DROPT.spad" 347442 347450 353487 353492) (-241 "DROPT1.spad" 347105 347115 347432 347437) (-240 "DROPT0.spad" 341932 341940 347095 347100) (-239 "DRAWPT.spad" 340087 340095 341922 341927) (-238 "DRAW.spad" 332687 332700 340077 340082) (-237 "DRAWHACK.spad" 331995 332005 332677 332682) (-236 "DRAWCX.spad" 329437 329445 331985 331990) (-235 "DRAWCURV.spad" 328974 328989 329427 329432) (-234 "DRAWCFUN.spad" 318146 318154 328964 328969) (-233 "DQAGG.spad" 316302 316312 318102 318141) (-232 "DPOLCAT.spad" 311643 311659 316170 316297) (-231 "DPOLCAT.spad" 307070 307088 311599 311604) (-230 "DPMO.spad" 301057 301073 301195 301491) (-229 "DPMM.spad" 295057 295075 295182 295478) (-228 "DOMAIN.spad" 294328 294336 295047 295052) (-227 "DMP.spad" 291553 291568 292125 292252) (-226 "DLP.spad" 290901 290911 291543 291548) (-225 "DLIST.spad" 289313 289323 290084 290111) (-224 "DLAGG.spad" 287714 287724 289293 289308) (-223 "DIVRING.spad" 287161 287169 287658 287709) (-222 "DIVRING.spad" 286652 286662 287151 287156) (-221 "DISPLAY.spad" 284832 284840 286642 286647) (-220 "DIRPROD.spad" 276091 276107 276731 276860) (-219 "DIRPROD2.spad" 274899 274917 276081 276086) (-218 "DIRPCAT.spad" 273831 273847 274753 274894) (-217 "DIRPCAT.spad" 272503 272521 273427 273432) (-216 "DIOSP.spad" 271328 271336 272493 272498) (-215 "DIOPS.spad" 270300 270310 271296 271323) (-214 "DIOPS.spad" 269258 269270 270256 270261) (-213 "DIFRING.spad" 268550 268558 269238 269253) (-212 "DIFRING.spad" 267850 267860 268540 268545) (-211 "DIFEXT.spad" 267009 267019 267830 267845) (-210 "DIFEXT.spad" 266085 266097 266908 266913) (-209 "DIAGG.spad" 265703 265713 266053 266080) (-208 "DIAGG.spad" 265341 265353 265693 265698) (-207 "DHMATRIX.spad" 263645 263655 264798 264825) (-206 "DFSFUN.spad" 257053 257061 263635 263640) (-205 "DFLOAT.spad" 253576 253584 256943 257048) (-204 "DFINTTLS.spad" 251785 251801 253566 253571) (-203 "DERHAM.spad" 249695 249727 251765 251780) (-202 "DEQUEUE.spad" 249013 249023 249302 249329) (-201 "DEGRED.spad" 248628 248642 249003 249008) (-200 "DEFINTRF.spad" 246153 246163 248618 248623) (-199 "DEFINTEF.spad" 244649 244665 246143 246148) (-198 "DECIMAL.spad" 242533 242541 243119 243212) (-197 "DDFACT.spad" 240332 240349 242523 242528) (-196 "DBLRESP.spad" 239930 239954 240322 240327) (-195 "DBASE.spad" 238502 238512 239920 239925) (-194 "D03FAFA.spad" 238330 238338 238492 238497) (-193 "D03EEFA.spad" 238150 238158 238320 238325) (-192 "D03AGNT.spad" 237230 237238 238140 238145) (-191 "D02EJFA.spad" 236692 236700 237220 237225) (-190 "D02CJFA.spad" 236170 236178 236682 236687) (-189 "D02BHFA.spad" 235660 235668 236160 236165) (-188 "D02BBFA.spad" 235150 235158 235650 235655) (-187 "D02AGNT.spad" 229954 229962 235140 235145) (-186 "D01WGTS.spad" 228273 228281 229944 229949) (-185 "D01TRNS.spad" 228250 228258 228263 228268) (-184 "D01GBFA.spad" 227772 227780 228240 228245) (-183 "D01FCFA.spad" 227294 227302 227762 227767) (-182 "D01ASFA.spad" 226762 226770 227284 227289) (-181 "D01AQFA.spad" 226208 226216 226752 226757) (-180 "D01APFA.spad" 225632 225640 226198 226203) (-179 "D01ANFA.spad" 225126 225134 225622 225627) (-178 "D01AMFA.spad" 224636 224644 225116 225121) (-177 "D01ALFA.spad" 224176 224184 224626 224631) (-176 "D01AKFA.spad" 223702 223710 224166 224171) (-175 "D01AJFA.spad" 223225 223233 223692 223697) (-174 "D01AGNT.spad" 219284 219292 223215 223220) (-173 "CYCLOTOM.spad" 218790 218798 219274 219279) (-172 "CYCLES.spad" 215622 215630 218780 218785) (-171 "CVMP.spad" 215039 215049 215612 215617) (-170 "CTRIGMNP.spad" 213529 213545 215029 215034) (-169 "CTORCALL.spad" 213117 213125 213519 213524) (-168 "CSTTOOLS.spad" 212360 212373 213107 213112) (-167 "CRFP.spad" 206064 206077 212350 212355) (-166 "CRAPACK.spad" 205107 205117 206054 206059) (-165 "CPMATCH.spad" 204607 204622 205032 205037) (-164 "CPIMA.spad" 204312 204331 204597 204602) (-163 "COORDSYS.spad" 199205 199215 204302 204307) (-162 "CONTOUR.spad" 198607 198615 199195 199200) (-161 "CONTFRAC.spad" 194219 194229 198509 198602) (-160 "COMRING.spad" 193893 193901 194157 194214) (-159 "COMPPROP.spad" 193407 193415 193883 193888) (-158 "COMPLPAT.spad" 193174 193189 193397 193402) (-157 "COMPLEX.spad" 187207 187217 187451 187712) (-156 "COMPLEX2.spad" 186920 186932 187197 187202) (-155 "COMPFACT.spad" 186522 186536 186910 186915) (-154 "COMPCAT.spad" 184578 184588 186244 186517) (-153 "COMPCAT.spad" 182341 182353 184009 184014) (-152 "COMMUPC.spad" 182087 182105 182331 182336) (-151 "COMMONOP.spad" 181620 181628 182077 182082) (-150 "COMM.spad" 181429 181437 181610 181615) (-149 "COMBOPC.spad" 180334 180342 181419 181424) (-148 "COMBINAT.spad" 179079 179089 180324 180329) (-147 "COMBF.spad" 176447 176463 179069 179074) (-146 "COLOR.spad" 175284 175292 176437 176442) (-145 "CMPLXRT.spad" 174993 175010 175274 175279) (-144 "CLIP.spad" 171085 171093 174983 174988) (-143 "CLIF.spad" 169724 169740 171041 171080) (-142 "CLAGG.spad" 166199 166209 169704 169719) (-141 "CLAGG.spad" 162555 162567 166062 166067) (-140 "CINTSLPE.spad" 161880 161893 162545 162550) (-139 "CHVAR.spad" 159958 159980 161870 161875) (-138 "CHARZ.spad" 159873 159881 159938 159953) (-137 "CHARPOL.spad" 159381 159391 159863 159868) (-136 "CHARNZ.spad" 159134 159142 159361 159376) (-135 "CHAR.spad" 157002 157010 159124 159129) (-134 "CFCAT.spad" 156318 156326 156992 156997) (-133 "CDEN.spad" 155476 155490 156308 156313) (-132 "CCLASS.spad" 153625 153633 154887 154926) (-131 "CATEGORY.spad" 153404 153412 153615 153620) (-130 "CARTEN.spad" 148507 148531 153394 153399) (-129 "CARTEN2.spad" 147893 147920 148497 148502) (-128 "CARD.spad" 145182 145190 147867 147888) (-127 "CACHSET.spad" 144804 144812 145172 145177) (-126 "CABMON.spad" 144357 144365 144794 144799) (-125 "BYTE.spad" 143751 143759 144347 144352) (-124 "BYTEARY.spad" 142826 142834 142920 142947) (-123 "BTREE.spad" 141895 141905 142433 142460) (-122 "BTOURN.spad" 140898 140908 141502 141529) (-121 "BTCAT.spad" 140274 140284 140854 140893) (-120 "BTCAT.spad" 139682 139694 140264 140269) (-119 "BTAGG.spad" 138698 138706 139638 139677) (-118 "BTAGG.spad" 137746 137756 138688 138693) (-117 "BSTREE.spad" 136481 136491 137353 137380) (-116 "BRILL.spad" 134676 134687 136471 136476) (-115 "BRAGG.spad" 133590 133600 134656 134671) (-114 "BRAGG.spad" 132478 132490 133546 133551) (-113 "BPADICRT.spad" 130462 130474 130717 130810) (-112 "BPADIC.spad" 130126 130138 130388 130457) (-111 "BOUNDZRO.spad" 129782 129799 130116 130121) (-110 "BOP.spad" 125246 125254 129772 129777) (-109 "BOP1.spad" 122632 122642 125202 125207) (-108 "BOOLEAN.spad" 121895 121903 122622 122627) (-107 "BMODULE.spad" 121607 121619 121863 121890) (-106 "BITS.spad" 121026 121034 121243 121270) (-105 "BINFILE.spad" 120369 120377 121016 121021) (-104 "BINDING.spad" 119788 119796 120359 120364) (-103 "BINARY.spad" 117681 117689 118258 118351) (-102 "BGAGG.spad" 116866 116876 117649 117676) (-101 "BGAGG.spad" 116071 116083 116856 116861) (-100 "BFUNCT.spad" 115635 115643 116051 116066) (-99 "BEZOUT.spad" 114770 114796 115585 115590) (-98 "BBTREE.spad" 111590 111599 114377 114404) (-97 "BASTYPE.spad" 111263 111270 111580 111585) (-96 "BASTYPE.spad" 110934 110943 111253 111258) (-95 "BALFACT.spad" 110374 110386 110924 110929) (-94 "AUTOMOR.spad" 109821 109830 110354 110369) (-93 "ATTREG.spad" 106540 106547 109573 109816) (-92 "ATTRBUT.spad" 102563 102570 106520 106535) (-91 "ATRIG.spad" 102033 102040 102553 102558) (-90 "ATRIG.spad" 101501 101510 102023 102028) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2241067 2241072 2241077 2241082) (-2 NIL 2241047 2241052 2241057 2241062) (-1 NIL 2241027 2241032 2241037 2241042) (0 NIL 2241007 2241012 2241017 2241022) (-1199 "ZMOD.spad" 2240816 2240829 2240945 2241002) (-1198 "ZLINDEP.spad" 2239860 2239871 2240806 2240811) (-1197 "ZDSOLVE.spad" 2229709 2229731 2239850 2239855) (-1196 "YSTREAM.spad" 2229202 2229213 2229699 2229704) (-1195 "XRPOLY.spad" 2228422 2228442 2229058 2229127) (-1194 "XPR.spad" 2226151 2226164 2228140 2228239) (-1193 "XPOLY.spad" 2225706 2225717 2226007 2226076) (-1192 "XPOLYC.spad" 2225023 2225039 2225632 2225701) (-1191 "XPBWPOLY.spad" 2223460 2223480 2224803 2224872) (-1190 "XF.spad" 2221921 2221936 2223362 2223455) (-1189 "XF.spad" 2220362 2220379 2221805 2221810) (-1188 "XFALG.spad" 2217386 2217402 2220288 2220357) (-1187 "XEXPPKG.spad" 2216637 2216663 2217376 2217381) (-1186 "XDPOLY.spad" 2216251 2216267 2216493 2216562) (-1185 "XALG.spad" 2215849 2215860 2216207 2216246) (-1184 "WUTSET.spad" 2211688 2211705 2215495 2215522) (-1183 "WP.spad" 2210702 2210746 2211546 2211613) (-1182 "WFFINTBS.spad" 2208265 2208287 2210692 2210697) (-1181 "WEIER.spad" 2206479 2206490 2208255 2208260) (-1180 "VSPACE.spad" 2206152 2206163 2206447 2206474) (-1179 "VSPACE.spad" 2205845 2205858 2206142 2206147) (-1178 "VOID.spad" 2205435 2205444 2205835 2205840) (-1177 "VIEW.spad" 2203057 2203066 2205425 2205430) (-1176 "VIEWDEF.spad" 2198254 2198263 2203047 2203052) (-1175 "VIEW3D.spad" 2182089 2182098 2198244 2198249) (-1174 "VIEW2D.spad" 2169826 2169835 2182079 2182084) (-1173 "VECTOR.spad" 2168503 2168514 2168754 2168781) (-1172 "VECTOR2.spad" 2167130 2167143 2168493 2168498) (-1171 "VECTCAT.spad" 2165018 2165029 2167086 2167125) (-1170 "VECTCAT.spad" 2162727 2162740 2164797 2164802) (-1169 "VARIABLE.spad" 2162507 2162522 2162717 2162722) (-1168 "UTYPE.spad" 2162141 2162150 2162487 2162502) (-1167 "UTSODETL.spad" 2161434 2161458 2162097 2162102) (-1166 "UTSODE.spad" 2159622 2159642 2161424 2161429) (-1165 "UTS.spad" 2154411 2154439 2158089 2158186) (-1164 "UTSCAT.spad" 2151862 2151878 2154309 2154406) (-1163 "UTSCAT.spad" 2148957 2148975 2151406 2151411) (-1162 "UTS2.spad" 2148550 2148585 2148947 2148952) (-1161 "URAGG.spad" 2143172 2143183 2148530 2148545) (-1160 "URAGG.spad" 2137768 2137781 2143128 2143133) (-1159 "UPXSSING.spad" 2135414 2135440 2136852 2136985) (-1158 "UPXS.spad" 2132441 2132469 2133546 2133695) (-1157 "UPXSCONS.spad" 2130198 2130218 2130573 2130722) (-1156 "UPXSCCA.spad" 2128656 2128676 2130044 2130193) (-1155 "UPXSCCA.spad" 2127256 2127278 2128646 2128651) (-1154 "UPXSCAT.spad" 2125837 2125853 2127102 2127251) (-1153 "UPXS2.spad" 2125378 2125431 2125827 2125832) (-1152 "UPSQFREE.spad" 2123790 2123804 2125368 2125373) (-1151 "UPSCAT.spad" 2121383 2121407 2123688 2123785) (-1150 "UPSCAT.spad" 2118682 2118708 2120989 2120994) (-1149 "UPOLYC.spad" 2113660 2113671 2118524 2118677) (-1148 "UPOLYC.spad" 2108530 2108543 2113396 2113401) (-1147 "UPOLYC2.spad" 2107999 2108018 2108520 2108525) (-1146 "UP.spad" 2105044 2105059 2105552 2105705) (-1145 "UPMP.spad" 2103934 2103947 2105034 2105039) (-1144 "UPDIVP.spad" 2103497 2103511 2103924 2103929) (-1143 "UPDECOMP.spad" 2101734 2101748 2103487 2103492) (-1142 "UPCDEN.spad" 2100941 2100957 2101724 2101729) (-1141 "UP2.spad" 2100303 2100324 2100931 2100936) (-1140 "UNISEG.spad" 2099656 2099667 2100222 2100227) (-1139 "UNISEG2.spad" 2099149 2099162 2099612 2099617) (-1138 "UNIFACT.spad" 2098250 2098262 2099139 2099144) (-1137 "ULS.spad" 2088809 2088837 2089902 2090331) (-1136 "ULSCONS.spad" 2082852 2082872 2083224 2083373) (-1135 "ULSCCAT.spad" 2080449 2080469 2082672 2082847) (-1134 "ULSCCAT.spad" 2078180 2078202 2080405 2080410) (-1133 "ULSCAT.spad" 2076396 2076412 2078026 2078175) (-1132 "ULS2.spad" 2075908 2075961 2076386 2076391) (-1131 "UFD.spad" 2074973 2074982 2075834 2075903) (-1130 "UFD.spad" 2074100 2074111 2074963 2074968) (-1129 "UDVO.spad" 2072947 2072956 2074090 2074095) (-1128 "UDPO.spad" 2070374 2070385 2072903 2072908) (-1127 "TYPE.spad" 2070296 2070305 2070354 2070369) (-1126 "TWOFACT.spad" 2068946 2068961 2070286 2070291) (-1125 "TUPLE.spad" 2068332 2068343 2068845 2068850) (-1124 "TUBETOOL.spad" 2065169 2065178 2068322 2068327) (-1123 "TUBE.spad" 2063810 2063827 2065159 2065164) (-1122 "TS.spad" 2062399 2062415 2063375 2063472) (-1121 "TSETCAT.spad" 2049514 2049531 2062355 2062394) (-1120 "TSETCAT.spad" 2036627 2036646 2049470 2049475) (-1119 "TRMANIP.spad" 2030993 2031010 2036333 2036338) (-1118 "TRIMAT.spad" 2029952 2029977 2030983 2030988) (-1117 "TRIGMNIP.spad" 2028469 2028486 2029942 2029947) (-1116 "TRIGCAT.spad" 2027981 2027990 2028459 2028464) (-1115 "TRIGCAT.spad" 2027491 2027502 2027971 2027976) (-1114 "TREE.spad" 2026062 2026073 2027098 2027125) (-1113 "TRANFUN.spad" 2025893 2025902 2026052 2026057) (-1112 "TRANFUN.spad" 2025722 2025733 2025883 2025888) (-1111 "TOPSP.spad" 2025396 2025405 2025712 2025717) (-1110 "TOOLSIGN.spad" 2025059 2025070 2025386 2025391) (-1109 "TEXTFILE.spad" 2023616 2023625 2025049 2025054) (-1108 "TEX.spad" 2020633 2020642 2023606 2023611) (-1107 "TEX1.spad" 2020189 2020200 2020623 2020628) (-1106 "TEMUTL.spad" 2019744 2019753 2020179 2020184) (-1105 "TBCMPPK.spad" 2017837 2017860 2019734 2019739) (-1104 "TBAGG.spad" 2016861 2016884 2017805 2017832) (-1103 "TBAGG.spad" 2015905 2015930 2016851 2016856) (-1102 "TANEXP.spad" 2015281 2015292 2015895 2015900) (-1101 "TABLE.spad" 2013692 2013715 2013962 2013989) (-1100 "TABLEAU.spad" 2013173 2013184 2013682 2013687) (-1099 "TABLBUMP.spad" 2009956 2009967 2013163 2013168) (-1098 "SYSTEM.spad" 2009230 2009239 2009946 2009951) (-1097 "SYSSOLP.spad" 2006703 2006714 2009220 2009225) (-1096 "SYNTAX.spad" 2002895 2002904 2006693 2006698) (-1095 "SYMTAB.spad" 2000951 2000960 2002885 2002890) (-1094 "SYMS.spad" 1996936 1996945 2000941 2000946) (-1093 "SYMPOLY.spad" 1995946 1995957 1996028 1996155) (-1092 "SYMFUNC.spad" 1995421 1995432 1995936 1995941) (-1091 "SYMBOL.spad" 1992757 1992766 1995411 1995416) (-1090 "SWITCH.spad" 1989514 1989523 1992747 1992752) (-1089 "SUTS.spad" 1986413 1986441 1987981 1988078) (-1088 "SUPXS.spad" 1983427 1983455 1984545 1984694) (-1087 "SUP.spad" 1980199 1980210 1980980 1981133) (-1086 "SUPFRACF.spad" 1979304 1979322 1980189 1980194) (-1085 "SUP2.spad" 1978694 1978707 1979294 1979299) (-1084 "SUMRF.spad" 1977660 1977671 1978684 1978689) (-1083 "SUMFS.spad" 1977293 1977310 1977650 1977655) (-1082 "SULS.spad" 1967839 1967867 1968945 1969374) (-1081 "SUCH.spad" 1967519 1967534 1967829 1967834) (-1080 "SUBSPACE.spad" 1959526 1959541 1967509 1967514) (-1079 "SUBRESP.spad" 1958686 1958700 1959482 1959487) (-1078 "STTF.spad" 1954785 1954801 1958676 1958681) (-1077 "STTFNC.spad" 1951253 1951269 1954775 1954780) (-1076 "STTAYLOR.spad" 1943651 1943662 1951134 1951139) (-1075 "STRTBL.spad" 1942156 1942173 1942305 1942332) (-1074 "STRING.spad" 1941565 1941574 1941579 1941606) (-1073 "STRICAT.spad" 1941341 1941350 1941521 1941560) (-1072 "STREAM.spad" 1938109 1938120 1940866 1940881) (-1071 "STREAM3.spad" 1937654 1937669 1938099 1938104) (-1070 "STREAM2.spad" 1936722 1936735 1937644 1937649) (-1069 "STREAM1.spad" 1936426 1936437 1936712 1936717) (-1068 "STINPROD.spad" 1935332 1935348 1936416 1936421) (-1067 "STEP.spad" 1934533 1934542 1935322 1935327) (-1066 "STBL.spad" 1933059 1933087 1933226 1933241) (-1065 "STAGG.spad" 1932124 1932135 1933039 1933054) (-1064 "STAGG.spad" 1931197 1931210 1932114 1932119) (-1063 "STACK.spad" 1930548 1930559 1930804 1930831) (-1062 "SREGSET.spad" 1928252 1928269 1930194 1930221) (-1061 "SRDCMPK.spad" 1926797 1926817 1928242 1928247) (-1060 "SRAGG.spad" 1921882 1921891 1926753 1926792) (-1059 "SRAGG.spad" 1916999 1917010 1921872 1921877) (-1058 "SQMATRIX.spad" 1914625 1914643 1915533 1915620) (-1057 "SPLTREE.spad" 1909177 1909190 1914061 1914088) (-1056 "SPLNODE.spad" 1905765 1905778 1909167 1909172) (-1055 "SPFCAT.spad" 1904542 1904551 1905755 1905760) (-1054 "SPECOUT.spad" 1903092 1903101 1904532 1904537) (-1053 "spad-parser.spad" 1902557 1902566 1903082 1903087) (-1052 "SPACEC.spad" 1886570 1886581 1902547 1902552) (-1051 "SPACE3.spad" 1886346 1886357 1886560 1886565) (-1050 "SORTPAK.spad" 1885891 1885904 1886302 1886307) (-1049 "SOLVETRA.spad" 1883648 1883659 1885881 1885886) (-1048 "SOLVESER.spad" 1882168 1882179 1883638 1883643) (-1047 "SOLVERAD.spad" 1878178 1878189 1882158 1882163) (-1046 "SOLVEFOR.spad" 1876598 1876616 1878168 1878173) (-1045 "SNTSCAT.spad" 1876186 1876203 1876554 1876593) (-1044 "SMTS.spad" 1874446 1874472 1875751 1875848) (-1043 "SMP.spad" 1871888 1871908 1872278 1872405) (-1042 "SMITH.spad" 1870731 1870756 1871878 1871883) (-1041 "SMATCAT.spad" 1868829 1868859 1870663 1870726) (-1040 "SMATCAT.spad" 1866871 1866903 1868707 1868712) (-1039 "SKAGG.spad" 1865820 1865831 1866827 1866866) (-1038 "SINT.spad" 1864128 1864137 1865686 1865815) (-1037 "SIMPAN.spad" 1863856 1863865 1864118 1864123) (-1036 "SIGNRF.spad" 1862964 1862975 1863846 1863851) (-1035 "SIGNEF.spad" 1862233 1862250 1862954 1862959) (-1034 "SHP.spad" 1860151 1860166 1862189 1862194) (-1033 "SHDP.spad" 1851187 1851214 1851696 1851825) (-1032 "SGROUP.spad" 1850653 1850662 1851177 1851182) (-1031 "SGROUP.spad" 1850117 1850128 1850643 1850648) (-1030 "SGCF.spad" 1842998 1843007 1850107 1850112) (-1029 "SFRTCAT.spad" 1841914 1841931 1842954 1842993) (-1028 "SFRGCD.spad" 1840977 1840997 1841904 1841909) (-1027 "SFQCMPK.spad" 1835614 1835634 1840967 1840972) (-1026 "SFORT.spad" 1835049 1835063 1835604 1835609) (-1025 "SEXOF.spad" 1834892 1834932 1835039 1835044) (-1024 "SEX.spad" 1834784 1834793 1834882 1834887) (-1023 "SEXCAT.spad" 1831888 1831928 1834774 1834779) (-1022 "SET.spad" 1830188 1830199 1831309 1831348) (-1021 "SETMN.spad" 1828622 1828639 1830178 1830183) (-1020 "SETCAT.spad" 1828107 1828116 1828612 1828617) (-1019 "SETCAT.spad" 1827590 1827601 1828097 1828102) (-1018 "SETAGG.spad" 1824113 1824124 1827558 1827585) (-1017 "SETAGG.spad" 1820656 1820669 1824103 1824108) (-1016 "SEGXCAT.spad" 1819768 1819781 1820636 1820651) (-1015 "SEG.spad" 1819581 1819592 1819687 1819692) (-1014 "SEGCAT.spad" 1818400 1818411 1819561 1819576) (-1013 "SEGBIND.spad" 1817472 1817483 1818355 1818360) (-1012 "SEGBIND2.spad" 1817168 1817181 1817462 1817467) (-1011 "SEG2.spad" 1816593 1816606 1817124 1817129) (-1010 "SDVAR.spad" 1815869 1815880 1816583 1816588) (-1009 "SDPOL.spad" 1813262 1813273 1813553 1813680) (-1008 "SCPKG.spad" 1811341 1811352 1813252 1813257) (-1007 "SCOPE.spad" 1810486 1810495 1811331 1811336) (-1006 "SCACHE.spad" 1809168 1809179 1810476 1810481) (-1005 "SAOS.spad" 1809040 1809049 1809158 1809163) (-1004 "SAERFFC.spad" 1808753 1808773 1809030 1809035) (-1003 "SAE.spad" 1806931 1806947 1807542 1807677) (-1002 "SAEFACT.spad" 1806632 1806652 1806921 1806926) (-1001 "RURPK.spad" 1804273 1804289 1806622 1806627) (-1000 "RULESET.spad" 1803714 1803738 1804263 1804268) (-999 "RULE.spad" 1801919 1801942 1803704 1803709) (-998 "RULECOLD.spad" 1801772 1801784 1801909 1801914) (-997 "RSETGCD.spad" 1798151 1798170 1801762 1801767) (-996 "RSETCAT.spad" 1787924 1787940 1798107 1798146) (-995 "RSETCAT.spad" 1777729 1777747 1787914 1787919) (-994 "RSDCMPK.spad" 1776182 1776201 1777719 1777724) (-993 "RRCC.spad" 1774567 1774596 1776172 1776177) (-992 "RRCC.spad" 1772950 1772981 1774557 1774562) (-991 "RPOLCAT.spad" 1752311 1752325 1772818 1772945) (-990 "RPOLCAT.spad" 1731387 1731403 1751896 1751901) (-989 "ROUTINE.spad" 1727251 1727259 1730034 1730061) (-988 "ROMAN.spad" 1726484 1726492 1727117 1727246) (-987 "ROIRC.spad" 1725565 1725596 1726474 1726479) (-986 "RNS.spad" 1724469 1724477 1725467 1725560) (-985 "RNS.spad" 1723459 1723469 1724459 1724464) (-984 "RNG.spad" 1723195 1723203 1723449 1723454) (-983 "RMODULE.spad" 1722834 1722844 1723185 1723190) (-982 "RMCAT2.spad" 1722243 1722299 1722824 1722829) (-981 "RMATRIX.spad" 1720923 1720941 1721410 1721449) (-980 "RMATCAT.spad" 1716445 1716475 1720867 1720918) (-979 "RMATCAT.spad" 1711869 1711901 1716293 1716298) (-978 "RINTERP.spad" 1711758 1711777 1711859 1711864) (-977 "RING.spad" 1711116 1711124 1711738 1711753) (-976 "RING.spad" 1710482 1710492 1711106 1711111) (-975 "RIDIST.spad" 1709867 1709875 1710472 1710477) (-974 "RGCHAIN.spad" 1708447 1708462 1709352 1709379) (-973 "RF.spad" 1706062 1706072 1708437 1708442) (-972 "RFFACTOR.spad" 1705525 1705535 1706052 1706057) (-971 "RFFACT.spad" 1705261 1705272 1705515 1705520) (-970 "RFDIST.spad" 1704250 1704258 1705251 1705256) (-969 "RETSOL.spad" 1703668 1703680 1704240 1704245) (-968 "RETRACT.spad" 1703018 1703028 1703658 1703663) (-967 "RETRACT.spad" 1702366 1702378 1703008 1703013) (-966 "RESULT.spad" 1700427 1700435 1701013 1701040) (-965 "RESRING.spad" 1699775 1699821 1700365 1700422) (-964 "RESLATC.spad" 1699100 1699110 1699765 1699770) (-963 "REPSQ.spad" 1698830 1698840 1699090 1699095) (-962 "REP.spad" 1696383 1696391 1698820 1698825) (-961 "REPDB.spad" 1696089 1696099 1696373 1696378) (-960 "REP2.spad" 1685662 1685672 1695931 1695936) (-959 "REP1.spad" 1679653 1679663 1685612 1685617) (-958 "REGSET.spad" 1677451 1677467 1679299 1679326) (-957 "REF.spad" 1676781 1676791 1677406 1677411) (-956 "REDORDER.spad" 1675958 1675974 1676771 1676776) (-955 "RECLOS.spad" 1674748 1674767 1675451 1675544) (-954 "REALSOLV.spad" 1673881 1673889 1674738 1674743) (-953 "REAL.spad" 1673754 1673762 1673871 1673876) (-952 "REAL0Q.spad" 1671037 1671051 1673744 1673749) (-951 "REAL0.spad" 1667866 1667880 1671027 1671032) (-950 "RDIV.spad" 1667518 1667542 1667856 1667861) (-949 "RDIST.spad" 1667082 1667092 1667508 1667513) (-948 "RDETRS.spad" 1665879 1665896 1667072 1667077) (-947 "RDETR.spad" 1663987 1664004 1665869 1665874) (-946 "RDEEFS.spad" 1663061 1663077 1663977 1663982) (-945 "RDEEF.spad" 1662058 1662074 1663051 1663056) (-944 "RCFIELD.spad" 1659245 1659253 1661960 1662053) (-943 "RCFIELD.spad" 1656518 1656528 1659235 1659240) (-942 "RCAGG.spad" 1654421 1654431 1656498 1656513) (-941 "RCAGG.spad" 1652261 1652273 1654340 1654345) (-940 "RATRET.spad" 1651622 1651632 1652251 1652256) (-939 "RATFACT.spad" 1651315 1651326 1651612 1651617) (-938 "RANDSRC.spad" 1650635 1650643 1651305 1651310) (-937 "RADUTIL.spad" 1650390 1650398 1650625 1650630) (-936 "RADIX.spad" 1647183 1647196 1648860 1648953) (-935 "RADFF.spad" 1645600 1645636 1645718 1645874) (-934 "RADCAT.spad" 1645194 1645202 1645590 1645595) (-933 "RADCAT.spad" 1644786 1644796 1645184 1645189) (-932 "QUEUE.spad" 1644129 1644139 1644393 1644420) (-931 "QUAT.spad" 1642715 1642725 1643057 1643122) (-930 "QUATCT2.spad" 1642334 1642352 1642705 1642710) (-929 "QUATCAT.spad" 1640499 1640509 1642264 1642329) (-928 "QUATCAT.spad" 1638416 1638428 1640183 1640188) (-927 "QUAGG.spad" 1637230 1637240 1638372 1638411) (-926 "QFORM.spad" 1636693 1636707 1637220 1637225) (-925 "QFCAT.spad" 1635384 1635394 1636583 1636688) (-924 "QFCAT.spad" 1633681 1633693 1634882 1634887) (-923 "QFCAT2.spad" 1633372 1633388 1633671 1633676) (-922 "QEQUAT.spad" 1632929 1632937 1633362 1633367) (-921 "QCMPACK.spad" 1627676 1627695 1632919 1632924) (-920 "QALGSET.spad" 1623751 1623783 1627590 1627595) (-919 "QALGSET2.spad" 1621747 1621765 1623741 1623746) (-918 "PWFFINTB.spad" 1619057 1619078 1621737 1621742) (-917 "PUSHVAR.spad" 1618386 1618405 1619047 1619052) (-916 "PTRANFN.spad" 1614512 1614522 1618376 1618381) (-915 "PTPACK.spad" 1611600 1611610 1614502 1614507) (-914 "PTFUNC2.spad" 1611421 1611435 1611590 1611595) (-913 "PTCAT.spad" 1610503 1610513 1611377 1611416) (-912 "PSQFR.spad" 1609810 1609834 1610493 1610498) (-911 "PSEUDLIN.spad" 1608668 1608678 1609800 1609805) (-910 "PSETPK.spad" 1594101 1594117 1608546 1608551) (-909 "PSETCAT.spad" 1588009 1588032 1594069 1594096) (-908 "PSETCAT.spad" 1581903 1581928 1587965 1587970) (-907 "PSCURVE.spad" 1580886 1580894 1581893 1581898) (-906 "PSCAT.spad" 1579653 1579682 1580784 1580881) (-905 "PSCAT.spad" 1578510 1578541 1579643 1579648) (-904 "PRTITION.spad" 1577353 1577361 1578500 1578505) (-903 "PRS.spad" 1566915 1566932 1577309 1577314) (-902 "PRQAGG.spad" 1566334 1566344 1566871 1566910) (-901 "PROPLOG.spad" 1565737 1565745 1566324 1566329) (-900 "PROPFRML.spad" 1563602 1563613 1565673 1565678) (-899 "PROPERTY.spad" 1563096 1563104 1563592 1563597) (-898 "PRODUCT.spad" 1560776 1560788 1561062 1561117) (-897 "PR.spad" 1559165 1559177 1559870 1559997) (-896 "PRINT.spad" 1558917 1558925 1559155 1559160) (-895 "PRIMES.spad" 1557168 1557178 1558907 1558912) (-894 "PRIMELT.spad" 1555149 1555163 1557158 1557163) (-893 "PRIMCAT.spad" 1554772 1554780 1555139 1555144) (-892 "PRIMARR.spad" 1553777 1553787 1553955 1553982) (-891 "PRIMARR2.spad" 1552500 1552512 1553767 1553772) (-890 "PREASSOC.spad" 1551872 1551884 1552490 1552495) (-889 "PPCURVE.spad" 1551009 1551017 1551862 1551867) (-888 "POLYROOT.spad" 1549781 1549803 1550965 1550970) (-887 "POLY.spad" 1547081 1547091 1547598 1547725) (-886 "POLYLIFT.spad" 1546342 1546365 1547071 1547076) (-885 "POLYCATQ.spad" 1544444 1544466 1546332 1546337) (-884 "POLYCAT.spad" 1537850 1537871 1544312 1544439) (-883 "POLYCAT.spad" 1530558 1530581 1537022 1537027) (-882 "POLY2UP.spad" 1530006 1530020 1530548 1530553) (-881 "POLY2.spad" 1529601 1529613 1529996 1530001) (-880 "POLUTIL.spad" 1528542 1528571 1529557 1529562) (-879 "POLTOPOL.spad" 1527290 1527305 1528532 1528537) (-878 "POINT.spad" 1526131 1526141 1526218 1526245) (-877 "PNTHEORY.spad" 1522797 1522805 1526121 1526126) (-876 "PMTOOLS.spad" 1521554 1521568 1522787 1522792) (-875 "PMSYM.spad" 1521099 1521109 1521544 1521549) (-874 "PMQFCAT.spad" 1520686 1520700 1521089 1521094) (-873 "PMPRED.spad" 1520155 1520169 1520676 1520681) (-872 "PMPREDFS.spad" 1519599 1519621 1520145 1520150) (-871 "PMPLCAT.spad" 1518669 1518687 1519531 1519536) (-870 "PMLSAGG.spad" 1518250 1518264 1518659 1518664) (-869 "PMKERNEL.spad" 1517817 1517829 1518240 1518245) (-868 "PMINS.spad" 1517393 1517403 1517807 1517812) (-867 "PMFS.spad" 1516966 1516984 1517383 1517388) (-866 "PMDOWN.spad" 1516252 1516266 1516956 1516961) (-865 "PMASS.spad" 1515264 1515272 1516242 1516247) (-864 "PMASSFS.spad" 1514233 1514249 1515254 1515259) (-863 "PLOTTOOL.spad" 1514013 1514021 1514223 1514228) (-862 "PLOT.spad" 1508844 1508852 1514003 1514008) (-861 "PLOT3D.spad" 1505264 1505272 1508834 1508839) (-860 "PLOT1.spad" 1504405 1504415 1505254 1505259) (-859 "PLEQN.spad" 1491621 1491648 1504395 1504400) (-858 "PINTERP.spad" 1491237 1491256 1491611 1491616) (-857 "PINTERPA.spad" 1491019 1491035 1491227 1491232) (-856 "PI.spad" 1490626 1490634 1490993 1491014) (-855 "PID.spad" 1489582 1489590 1490552 1490621) (-854 "PICOERCE.spad" 1489239 1489249 1489572 1489577) (-853 "PGROEB.spad" 1487836 1487850 1489229 1489234) (-852 "PGE.spad" 1479089 1479097 1487826 1487831) (-851 "PGCD.spad" 1477971 1477988 1479079 1479084) (-850 "PFRPAC.spad" 1477114 1477124 1477961 1477966) (-849 "PFR.spad" 1473771 1473781 1477016 1477109) (-848 "PFOTOOLS.spad" 1473029 1473045 1473761 1473766) (-847 "PFOQ.spad" 1472399 1472417 1473019 1473024) (-846 "PFO.spad" 1471818 1471845 1472389 1472394) (-845 "PF.spad" 1471392 1471404 1471623 1471716) (-844 "PFECAT.spad" 1469058 1469066 1471318 1471387) (-843 "PFECAT.spad" 1466752 1466762 1469014 1469019) (-842 "PFBRU.spad" 1464622 1464634 1466742 1466747) (-841 "PFBR.spad" 1462160 1462183 1464612 1464617) (-840 "PERM.spad" 1457841 1457851 1461990 1462005) (-839 "PERMGRP.spad" 1452577 1452587 1457831 1457836) (-838 "PERMCAT.spad" 1451129 1451139 1452557 1452572) (-837 "PERMAN.spad" 1449661 1449675 1451119 1451124) (-836 "PENDTREE.spad" 1448934 1448944 1449290 1449295) (-835 "PDRING.spad" 1447425 1447435 1448914 1448929) (-834 "PDRING.spad" 1445924 1445936 1447415 1447420) (-833 "PDEPROB.spad" 1444881 1444889 1445914 1445919) (-832 "PDEPACK.spad" 1438883 1438891 1444871 1444876) (-831 "PDECOMP.spad" 1438345 1438362 1438873 1438878) (-830 "PDECAT.spad" 1436699 1436707 1438335 1438340) (-829 "PCOMP.spad" 1436550 1436563 1436689 1436694) (-828 "PBWLB.spad" 1435132 1435149 1436540 1436545) (-827 "PATTERN.spad" 1429563 1429573 1435122 1435127) (-826 "PATTERN2.spad" 1429299 1429311 1429553 1429558) (-825 "PATTERN1.spad" 1427601 1427617 1429289 1429294) (-824 "PATRES.spad" 1425148 1425160 1427591 1427596) (-823 "PATRES2.spad" 1424810 1424824 1425138 1425143) (-822 "PATMATCH.spad" 1422972 1423003 1424523 1424528) (-821 "PATMAB.spad" 1422397 1422407 1422962 1422967) (-820 "PATLRES.spad" 1421481 1421495 1422387 1422392) (-819 "PATAB.spad" 1421245 1421255 1421471 1421476) (-818 "PARTPERM.spad" 1418607 1418615 1421235 1421240) (-817 "PARSURF.spad" 1418035 1418063 1418597 1418602) (-816 "PARSU2.spad" 1417830 1417846 1418025 1418030) (-815 "script-parser.spad" 1417350 1417358 1417820 1417825) (-814 "PARSCURV.spad" 1416778 1416806 1417340 1417345) (-813 "PARSC2.spad" 1416567 1416583 1416768 1416773) (-812 "PARPCURV.spad" 1416025 1416053 1416557 1416562) (-811 "PARPC2.spad" 1415814 1415830 1416015 1416020) (-810 "PAN2EXPR.spad" 1415226 1415234 1415804 1415809) (-809 "PALETTE.spad" 1414196 1414204 1415216 1415221) (-808 "PAIR.spad" 1413179 1413192 1413784 1413789) (-807 "PADICRC.spad" 1410512 1410530 1411687 1411780) (-806 "PADICRAT.spad" 1408530 1408542 1408751 1408844) (-805 "PADIC.spad" 1408225 1408237 1408456 1408525) (-804 "PADICCT.spad" 1406766 1406778 1408151 1408220) (-803 "PADEPAC.spad" 1405445 1405464 1406756 1406761) (-802 "PADE.spad" 1404185 1404201 1405435 1405440) (-801 "OWP.spad" 1403169 1403199 1404043 1404110) (-800 "OVAR.spad" 1402950 1402973 1403159 1403164) (-799 "OUT.spad" 1402034 1402042 1402940 1402945) (-798 "OUTFORM.spad" 1391448 1391456 1402024 1402029) (-797 "OSI.spad" 1390923 1390931 1391438 1391443) (-796 "OSGROUP.spad" 1390841 1390849 1390913 1390918) (-795 "ORTHPOL.spad" 1389302 1389312 1390758 1390763) (-794 "OREUP.spad" 1388662 1388690 1388984 1389023) (-793 "ORESUP.spad" 1387963 1387987 1388344 1388383) (-792 "OREPCTO.spad" 1385782 1385794 1387883 1387888) (-791 "OREPCAT.spad" 1379839 1379849 1385738 1385777) (-790 "OREPCAT.spad" 1373786 1373798 1379687 1379692) (-789 "ORDSET.spad" 1372952 1372960 1373776 1373781) (-788 "ORDSET.spad" 1372116 1372126 1372942 1372947) (-787 "ORDRING.spad" 1371506 1371514 1372096 1372111) (-786 "ORDRING.spad" 1370904 1370914 1371496 1371501) (-785 "ORDMON.spad" 1370759 1370767 1370894 1370899) (-784 "ORDFUNS.spad" 1369885 1369901 1370749 1370754) (-783 "ORDFIN.spad" 1369819 1369827 1369875 1369880) (-782 "ORDCOMP.spad" 1368287 1368297 1369369 1369398) (-781 "ORDCOMP2.spad" 1367572 1367584 1368277 1368282) (-780 "OPTPROB.spad" 1366152 1366160 1367562 1367567) (-779 "OPTPACK.spad" 1358537 1358545 1366142 1366147) (-778 "OPTCAT.spad" 1356212 1356220 1358527 1358532) (-777 "OPQUERY.spad" 1355761 1355769 1356202 1356207) (-776 "OP.spad" 1355503 1355513 1355583 1355650) (-775 "ONECOMP.spad" 1354251 1354261 1355053 1355082) (-774 "ONECOMP2.spad" 1353669 1353681 1354241 1354246) (-773 "OMSERVER.spad" 1352671 1352679 1353659 1353664) (-772 "OMSAGG.spad" 1352447 1352457 1352615 1352666) (-771 "OMPKG.spad" 1351059 1351067 1352437 1352442) (-770 "OM.spad" 1350024 1350032 1351049 1351054) (-769 "OMLO.spad" 1349449 1349461 1349910 1349949) (-768 "OMEXPR.spad" 1349283 1349293 1349439 1349444) (-767 "OMERR.spad" 1348826 1348834 1349273 1349278) (-766 "OMERRK.spad" 1347860 1347868 1348816 1348821) (-765 "OMENC.spad" 1347204 1347212 1347850 1347855) (-764 "OMDEV.spad" 1341493 1341501 1347194 1347199) (-763 "OMCONN.spad" 1340902 1340910 1341483 1341488) (-762 "OINTDOM.spad" 1340665 1340673 1340828 1340897) (-761 "OFMONOID.spad" 1336852 1336862 1340655 1340660) (-760 "ODVAR.spad" 1336113 1336123 1336842 1336847) (-759 "ODR.spad" 1335561 1335587 1335925 1336074) (-758 "ODPOL.spad" 1332910 1332920 1333250 1333377) (-757 "ODP.spad" 1324082 1324102 1324455 1324584) (-756 "ODETOOLS.spad" 1322665 1322684 1324072 1324077) (-755 "ODESYS.spad" 1320315 1320332 1322655 1322660) (-754 "ODERTRIC.spad" 1316256 1316273 1320272 1320277) (-753 "ODERED.spad" 1315643 1315667 1316246 1316251) (-752 "ODERAT.spad" 1313194 1313211 1315633 1315638) (-751 "ODEPRRIC.spad" 1310085 1310107 1313184 1313189) (-750 "ODEPROB.spad" 1309284 1309292 1310075 1310080) (-749 "ODEPRIM.spad" 1306558 1306580 1309274 1309279) (-748 "ODEPAL.spad" 1305934 1305958 1306548 1306553) (-747 "ODEPACK.spad" 1292536 1292544 1305924 1305929) (-746 "ODEINT.spad" 1291967 1291983 1292526 1292531) (-745 "ODEIFTBL.spad" 1289362 1289370 1291957 1291962) (-744 "ODEEF.spad" 1284729 1284745 1289352 1289357) (-743 "ODECONST.spad" 1284248 1284266 1284719 1284724) (-742 "ODECAT.spad" 1282844 1282852 1284238 1284243) (-741 "OCT.spad" 1280991 1281001 1281707 1281746) (-740 "OCTCT2.spad" 1280635 1280656 1280981 1280986) (-739 "OC.spad" 1278409 1278419 1280591 1280630) (-738 "OC.spad" 1275909 1275921 1278093 1278098) (-737 "OCAMON.spad" 1275757 1275765 1275899 1275904) (-736 "OASGP.spad" 1275572 1275580 1275747 1275752) (-735 "OAMONS.spad" 1275092 1275100 1275562 1275567) (-734 "OAMON.spad" 1274953 1274961 1275082 1275087) (-733 "OAGROUP.spad" 1274815 1274823 1274943 1274948) (-732 "NUMTUBE.spad" 1274402 1274418 1274805 1274810) (-731 "NUMQUAD.spad" 1262264 1262272 1274392 1274397) (-730 "NUMODE.spad" 1253400 1253408 1262254 1262259) (-729 "NUMINT.spad" 1250958 1250966 1253390 1253395) (-728 "NUMFMT.spad" 1249798 1249806 1250948 1250953) (-727 "NUMERIC.spad" 1241871 1241881 1249604 1249609) (-726 "NTSCAT.spad" 1240361 1240377 1241827 1241866) (-725 "NTPOLFN.spad" 1239906 1239916 1240278 1240283) (-724 "NSUP.spad" 1232919 1232929 1237459 1237612) (-723 "NSUP2.spad" 1232311 1232323 1232909 1232914) (-722 "NSMP.spad" 1228510 1228529 1228818 1228945) (-721 "NREP.spad" 1226882 1226896 1228500 1228505) (-720 "NPCOEF.spad" 1226128 1226148 1226872 1226877) (-719 "NORMRETR.spad" 1225726 1225765 1226118 1226123) (-718 "NORMPK.spad" 1223628 1223647 1225716 1225721) (-717 "NORMMA.spad" 1223316 1223342 1223618 1223623) (-716 "NONE.spad" 1223057 1223065 1223306 1223311) (-715 "NONE1.spad" 1222733 1222743 1223047 1223052) (-714 "NODE1.spad" 1222202 1222218 1222723 1222728) (-713 "NNI.spad" 1221089 1221097 1222176 1222197) (-712 "NLINSOL.spad" 1219711 1219721 1221079 1221084) (-711 "NIPROB.spad" 1218194 1218202 1219701 1219706) (-710 "NFINTBAS.spad" 1215654 1215671 1218184 1218189) (-709 "NCODIV.spad" 1213852 1213868 1215644 1215649) (-708 "NCNTFRAC.spad" 1213494 1213508 1213842 1213847) (-707 "NCEP.spad" 1211654 1211668 1213484 1213489) (-706 "NASRING.spad" 1211250 1211258 1211644 1211649) (-705 "NASRING.spad" 1210844 1210854 1211240 1211245) (-704 "NARNG.spad" 1210188 1210196 1210834 1210839) (-703 "NARNG.spad" 1209530 1209540 1210178 1210183) (-702 "NAGSP.spad" 1208603 1208611 1209520 1209525) (-701 "NAGS.spad" 1198128 1198136 1208593 1208598) (-700 "NAGF07.spad" 1196521 1196529 1198118 1198123) (-699 "NAGF04.spad" 1190753 1190761 1196511 1196516) (-698 "NAGF02.spad" 1184562 1184570 1190743 1190748) (-697 "NAGF01.spad" 1180165 1180173 1184552 1184557) (-696 "NAGE04.spad" 1173625 1173633 1180155 1180160) (-695 "NAGE02.spad" 1163967 1163975 1173615 1173620) (-694 "NAGE01.spad" 1159851 1159859 1163957 1163962) (-693 "NAGD03.spad" 1157771 1157779 1159841 1159846) (-692 "NAGD02.spad" 1150302 1150310 1157761 1157766) (-691 "NAGD01.spad" 1144415 1144423 1150292 1150297) (-690 "NAGC06.spad" 1140202 1140210 1144405 1144410) (-689 "NAGC05.spad" 1138671 1138679 1140192 1140197) (-688 "NAGC02.spad" 1137926 1137934 1138661 1138666) (-687 "NAALG.spad" 1137461 1137471 1137894 1137921) (-686 "NAALG.spad" 1137016 1137028 1137451 1137456) (-685 "MULTSQFR.spad" 1133974 1133991 1137006 1137011) (-684 "MULTFACT.spad" 1133357 1133374 1133964 1133969) (-683 "MTSCAT.spad" 1131391 1131412 1133255 1133352) (-682 "MTHING.spad" 1131048 1131058 1131381 1131386) (-681 "MSYSCMD.spad" 1130482 1130490 1131038 1131043) (-680 "MSET.spad" 1128424 1128434 1130188 1130227) (-679 "MSETAGG.spad" 1128257 1128267 1128380 1128419) (-678 "MRING.spad" 1125228 1125240 1127965 1128032) (-677 "MRF2.spad" 1124796 1124810 1125218 1125223) (-676 "MRATFAC.spad" 1124342 1124359 1124786 1124791) (-675 "MPRFF.spad" 1122372 1122391 1124332 1124337) (-674 "MPOLY.spad" 1119810 1119825 1120169 1120296) (-673 "MPCPF.spad" 1119074 1119093 1119800 1119805) (-672 "MPC3.spad" 1118889 1118929 1119064 1119069) (-671 "MPC2.spad" 1118531 1118564 1118879 1118884) (-670 "MONOTOOL.spad" 1116866 1116883 1118521 1118526) (-669 "MONOID.spad" 1116040 1116048 1116856 1116861) (-668 "MONOID.spad" 1115212 1115222 1116030 1116035) (-667 "MONOGEN.spad" 1113958 1113971 1115072 1115207) (-666 "MONOGEN.spad" 1112726 1112741 1113842 1113847) (-665 "MONADWU.spad" 1110740 1110748 1112716 1112721) (-664 "MONADWU.spad" 1108752 1108762 1110730 1110735) (-663 "MONAD.spad" 1107896 1107904 1108742 1108747) (-662 "MONAD.spad" 1107038 1107048 1107886 1107891) (-661 "MOEBIUS.spad" 1105724 1105738 1107018 1107033) (-660 "MODULE.spad" 1105594 1105604 1105692 1105719) (-659 "MODULE.spad" 1105484 1105496 1105584 1105589) (-658 "MODRING.spad" 1104815 1104854 1105464 1105479) (-657 "MODOP.spad" 1103474 1103486 1104637 1104704) (-656 "MODMONOM.spad" 1103006 1103024 1103464 1103469) (-655 "MODMON.spad" 1099711 1099727 1100487 1100640) (-654 "MODFIELD.spad" 1099069 1099108 1099613 1099706) (-653 "MMLFORM.spad" 1097929 1097937 1099059 1099064) (-652 "MMAP.spad" 1097669 1097703 1097919 1097924) (-651 "MLO.spad" 1096096 1096106 1097625 1097664) (-650 "MLIFT.spad" 1094668 1094685 1096086 1096091) (-649 "MKUCFUNC.spad" 1094201 1094219 1094658 1094663) (-648 "MKRECORD.spad" 1093803 1093816 1094191 1094196) (-647 "MKFUNC.spad" 1093184 1093194 1093793 1093798) (-646 "MKFLCFN.spad" 1092140 1092150 1093174 1093179) (-645 "MKCHSET.spad" 1091916 1091926 1092130 1092135) (-644 "MKBCFUNC.spad" 1091401 1091419 1091906 1091911) (-643 "MINT.spad" 1090840 1090848 1091303 1091396) (-642 "MHROWRED.spad" 1089341 1089351 1090830 1090835) (-641 "MFLOAT.spad" 1087786 1087794 1089231 1089336) (-640 "MFINFACT.spad" 1087186 1087208 1087776 1087781) (-639 "MESH.spad" 1084918 1084926 1087176 1087181) (-638 "MDDFACT.spad" 1083111 1083121 1084908 1084913) (-637 "MDAGG.spad" 1082386 1082396 1083079 1083106) (-636 "MCMPLX.spad" 1078366 1078374 1078980 1079181) (-635 "MCDEN.spad" 1077574 1077586 1078356 1078361) (-634 "MCALCFN.spad" 1074676 1074702 1077564 1077569) (-633 "MATSTOR.spad" 1071952 1071962 1074666 1074671) (-632 "MATRIX.spad" 1070656 1070666 1071140 1071167) (-631 "MATLIN.spad" 1067982 1068006 1070540 1070545) (-630 "MATCAT.spad" 1059555 1059577 1067938 1067977) (-629 "MATCAT.spad" 1051012 1051036 1059397 1059402) (-628 "MATCAT2.spad" 1050280 1050328 1051002 1051007) (-627 "MAPPKG3.spad" 1049179 1049193 1050270 1050275) (-626 "MAPPKG2.spad" 1048513 1048525 1049169 1049174) (-625 "MAPPKG1.spad" 1047331 1047341 1048503 1048508) (-624 "MAPHACK3.spad" 1047139 1047153 1047321 1047326) (-623 "MAPHACK2.spad" 1046904 1046916 1047129 1047134) (-622 "MAPHACK1.spad" 1046534 1046544 1046894 1046899) (-621 "MAGMA.spad" 1044324 1044341 1046524 1046529) (-620 "M3D.spad" 1042022 1042032 1043704 1043709) (-619 "LZSTAGG.spad" 1039240 1039250 1042002 1042017) (-618 "LZSTAGG.spad" 1036466 1036478 1039230 1039235) (-617 "LWORD.spad" 1033171 1033188 1036456 1036461) (-616 "LSQM.spad" 1031399 1031413 1031797 1031848) (-615 "LSPP.spad" 1030932 1030949 1031389 1031394) (-614 "LSMP.spad" 1029772 1029800 1030922 1030927) (-613 "LSMP1.spad" 1027576 1027590 1029762 1029767) (-612 "LSAGG.spad" 1027233 1027243 1027532 1027571) (-611 "LSAGG.spad" 1026922 1026934 1027223 1027228) (-610 "LPOLY.spad" 1025876 1025895 1026778 1026847) (-609 "LPEFRAC.spad" 1025133 1025143 1025866 1025871) (-608 "LO.spad" 1024534 1024548 1025067 1025094) (-607 "LOGIC.spad" 1024136 1024144 1024524 1024529) (-606 "LOGIC.spad" 1023736 1023746 1024126 1024131) (-605 "LODOOPS.spad" 1022654 1022666 1023726 1023731) (-604 "LODO.spad" 1022040 1022056 1022336 1022375) (-603 "LODOF.spad" 1021084 1021101 1021997 1022002) (-602 "LODOCAT.spad" 1019742 1019752 1021040 1021079) (-601 "LODOCAT.spad" 1018398 1018410 1019698 1019703) (-600 "LODO2.spad" 1017673 1017685 1018080 1018119) (-599 "LODO1.spad" 1017075 1017085 1017355 1017394) (-598 "LODEEF.spad" 1015847 1015865 1017065 1017070) (-597 "LNAGG.spad" 1011639 1011649 1015827 1015842) (-596 "LNAGG.spad" 1007405 1007417 1011595 1011600) (-595 "LMOPS.spad" 1004141 1004158 1007395 1007400) (-594 "LMODULE.spad" 1003783 1003793 1004131 1004136) (-593 "LMDICT.spad" 1003066 1003076 1003334 1003361) (-592 "LIST.spad" 1000784 1000794 1002213 1002240) (-591 "LIST3.spad" 1000075 1000089 1000774 1000779) (-590 "LIST2.spad" 998715 998727 1000065 1000070) (-589 "LIST2MAP.spad" 995592 995604 998705 998710) (-588 "LINEXP.spad" 995024 995034 995572 995587) (-587 "LINDEP.spad" 993801 993813 994936 994941) (-586 "LIMITRF.spad" 991715 991725 993791 993796) (-585 "LIMITPS.spad" 990598 990611 991705 991710) (-584 "LIE.spad" 988612 988624 989888 990033) (-583 "LIECAT.spad" 988088 988098 988538 988607) (-582 "LIECAT.spad" 987592 987604 988044 988049) (-581 "LIB.spad" 985640 985648 986251 986266) (-580 "LGROBP.spad" 982993 983012 985630 985635) (-579 "LF.spad" 981912 981928 982983 982988) (-578 "LFCAT.spad" 980931 980939 981902 981907) (-577 "LEXTRIPK.spad" 976434 976449 980921 980926) (-576 "LEXP.spad" 974437 974464 976414 976429) (-575 "LEADCDET.spad" 972821 972838 974427 974432) (-574 "LAZM3PK.spad" 971525 971547 972811 972816) (-573 "LAUPOL.spad" 970216 970229 971120 971189) (-572 "LAPLACE.spad" 969789 969805 970206 970211) (-571 "LA.spad" 969229 969243 969711 969750) (-570 "LALG.spad" 969005 969015 969209 969224) (-569 "LALG.spad" 968789 968801 968995 969000) (-568 "KOVACIC.spad" 967502 967519 968779 968784) (-567 "KONVERT.spad" 967224 967234 967492 967497) (-566 "KOERCE.spad" 966961 966971 967214 967219) (-565 "KERNEL.spad" 965496 965506 966745 966750) (-564 "KERNEL2.spad" 965199 965211 965486 965491) (-563 "KDAGG.spad" 964290 964312 965167 965194) (-562 "KDAGG.spad" 963401 963425 964280 964285) (-561 "KAFILE.spad" 962364 962380 962599 962626) (-560 "JORDAN.spad" 960191 960203 961654 961799) (-559 "JAVACODE.spad" 959957 959965 960181 960186) (-558 "IXAGG.spad" 958070 958094 959937 959952) (-557 "IXAGG.spad" 956048 956074 957917 957922) (-556 "IVECTOR.spad" 954821 954836 954976 955003) (-555 "ITUPLE.spad" 953966 953976 954811 954816) (-554 "ITRIGMNP.spad" 952777 952796 953956 953961) (-553 "ITFUN3.spad" 952271 952285 952767 952772) (-552 "ITFUN2.spad" 952001 952013 952261 952266) (-551 "ITAYLOR.spad" 949793 949808 951837 951962) (-550 "ISUPS.spad" 942204 942219 948767 948864) (-549 "ISUMP.spad" 941701 941717 942194 942199) (-548 "ISTRING.spad" 940704 940717 940870 940897) (-547 "IRURPK.spad" 939417 939436 940694 940699) (-546 "IRSN.spad" 937377 937385 939407 939412) (-545 "IRRF2F.spad" 935852 935862 937333 937338) (-544 "IRREDFFX.spad" 935453 935464 935842 935847) (-543 "IROOT.spad" 933784 933794 935443 935448) (-542 "IR.spad" 931574 931588 933640 933667) (-541 "IR2.spad" 930594 930610 931564 931569) (-540 "IR2F.spad" 929794 929810 930584 930589) (-539 "IPRNTPK.spad" 929554 929562 929784 929789) (-538 "IPF.spad" 929119 929131 929359 929452) (-537 "IPADIC.spad" 928880 928906 929045 929114) (-536 "INVLAPLA.spad" 928525 928541 928870 928875) (-535 "INTTR.spad" 921771 921788 928515 928520) (-534 "INTTOOLS.spad" 919483 919499 921346 921351) (-533 "INTSLPE.spad" 918789 918797 919473 919478) (-532 "INTRVL.spad" 918355 918365 918703 918784) (-531 "INTRF.spad" 916719 916733 918345 918350) (-530 "INTRET.spad" 916151 916161 916709 916714) (-529 "INTRAT.spad" 914826 914843 916141 916146) (-528 "INTPM.spad" 913189 913205 914469 914474) (-527 "INTPAF.spad" 910957 910975 913121 913126) (-526 "INTPACK.spad" 901267 901275 910947 910952) (-525 "INT.spad" 900628 900636 901121 901262) (-524 "INTHERTR.spad" 899894 899911 900618 900623) (-523 "INTHERAL.spad" 899560 899584 899884 899889) (-522 "INTHEORY.spad" 895973 895981 899550 899555) (-521 "INTG0.spad" 889436 889454 895905 895910) (-520 "INTFTBL.spad" 883465 883473 889426 889431) (-519 "INTFACT.spad" 882524 882534 883455 883460) (-518 "INTEF.spad" 880839 880855 882514 882519) (-517 "INTDOM.spad" 879454 879462 880765 880834) (-516 "INTDOM.spad" 878131 878141 879444 879449) (-515 "INTCAT.spad" 876384 876394 878045 878126) (-514 "INTBIT.spad" 875887 875895 876374 876379) (-513 "INTALG.spad" 875069 875096 875877 875882) (-512 "INTAF.spad" 874561 874577 875059 875064) (-511 "INTABL.spad" 873079 873110 873242 873269) (-510 "INS.spad" 870475 870483 872981 873074) (-509 "INS.spad" 867957 867967 870465 870470) (-508 "INPSIGN.spad" 867391 867404 867947 867952) (-507 "INPRODPF.spad" 866457 866476 867381 867386) (-506 "INPRODFF.spad" 865515 865539 866447 866452) (-505 "INNMFACT.spad" 864486 864503 865505 865510) (-504 "INMODGCD.spad" 863970 864000 864476 864481) (-503 "INFSP.spad" 862255 862277 863960 863965) (-502 "INFPROD0.spad" 861305 861324 862245 862250) (-501 "INFORM.spad" 858573 858581 861295 861300) (-500 "INFORM1.spad" 858198 858208 858563 858568) (-499 "INFINITY.spad" 857750 857758 858188 858193) (-498 "INEP.spad" 856282 856304 857740 857745) (-497 "INDE.spad" 856188 856205 856272 856277) (-496 "INCRMAPS.spad" 855609 855619 856178 856183) (-495 "INBFF.spad" 851379 851390 855599 855604) (-494 "IMATRIX.spad" 850324 850350 850836 850863) (-493 "IMATQF.spad" 849418 849462 850280 850285) (-492 "IMATLIN.spad" 848023 848047 849374 849379) (-491 "ILIST.spad" 846679 846694 847206 847233) (-490 "IIARRAY2.spad" 846067 846105 846286 846313) (-489 "IFF.spad" 845477 845493 845748 845841) (-488 "IFARRAY.spad" 842964 842979 844660 844687) (-487 "IFAMON.spad" 842826 842843 842920 842925) (-486 "IEVALAB.spad" 842215 842227 842816 842821) (-485 "IEVALAB.spad" 841602 841616 842205 842210) (-484 "IDPO.spad" 841400 841412 841592 841597) (-483 "IDPOAMS.spad" 841156 841168 841390 841395) (-482 "IDPOAM.spad" 840876 840888 841146 841151) (-481 "IDPC.spad" 839810 839822 840866 840871) (-480 "IDPAM.spad" 839555 839567 839800 839805) (-479 "IDPAG.spad" 839302 839314 839545 839550) (-478 "IDECOMP.spad" 836539 836557 839292 839297) (-477 "IDEAL.spad" 831462 831501 836474 836479) (-476 "ICDEN.spad" 830613 830629 831452 831457) (-475 "ICARD.spad" 829802 829810 830603 830608) (-474 "IBPTOOLS.spad" 828395 828412 829792 829797) (-473 "IBITS.spad" 827594 827607 828031 828058) (-472 "IBATOOL.spad" 824469 824488 827584 827589) (-471 "IBACHIN.spad" 822956 822971 824459 824464) (-470 "IARRAY2.spad" 821944 821970 822563 822590) (-469 "IARRAY1.spad" 820989 821004 821127 821154) (-468 "IAN.spad" 819204 819212 820807 820900) (-467 "IALGFACT.spad" 818805 818838 819194 819199) (-466 "HYPCAT.spad" 818229 818237 818795 818800) (-465 "HYPCAT.spad" 817651 817661 818219 818224) (-464 "HOAGG.spad" 814909 814919 817631 817646) (-463 "HOAGG.spad" 811952 811964 814676 814681) (-462 "HEXADEC.spad" 809824 809832 810422 810515) (-461 "HEUGCD.spad" 808839 808850 809814 809819) (-460 "HELLFDIV.spad" 808429 808453 808829 808834) (-459 "HEAP.spad" 807821 807831 808036 808063) (-458 "HDP.spad" 798989 799005 799366 799495) (-457 "HDMP.spad" 796168 796183 796786 796913) (-456 "HB.spad" 794405 794413 796158 796163) (-455 "HASHTBL.spad" 792875 792906 793086 793113) (-454 "HACKPI.spad" 792358 792366 792777 792870) (-453 "GTSET.spad" 791297 791313 792004 792031) (-452 "GSTBL.spad" 789816 789851 789990 790005) (-451 "GSERIES.spad" 786983 787010 787948 788097) (-450 "GROUP.spad" 786157 786165 786963 786978) (-449 "GROUP.spad" 785339 785349 786147 786152) (-448 "GROEBSOL.spad" 783827 783848 785329 785334) (-447 "GRMOD.spad" 782398 782410 783817 783822) (-446 "GRMOD.spad" 780967 780981 782388 782393) (-445 "GRIMAGE.spad" 773572 773580 780957 780962) (-444 "GRDEF.spad" 771951 771959 773562 773567) (-443 "GRAY.spad" 770410 770418 771941 771946) (-442 "GRALG.spad" 769457 769469 770400 770405) (-441 "GRALG.spad" 768502 768516 769447 769452) (-440 "GPOLSET.spad" 767956 767979 768184 768211) (-439 "GOSPER.spad" 767221 767239 767946 767951) (-438 "GMODPOL.spad" 766359 766386 767189 767216) (-437 "GHENSEL.spad" 765428 765442 766349 766354) (-436 "GENUPS.spad" 761529 761542 765418 765423) (-435 "GENUFACT.spad" 761106 761116 761519 761524) (-434 "GENPGCD.spad" 760690 760707 761096 761101) (-433 "GENMFACT.spad" 760142 760161 760680 760685) (-432 "GENEEZ.spad" 758081 758094 760132 760137) (-431 "GDMP.spad" 755102 755119 755878 756005) (-430 "GCNAALG.spad" 748997 749024 754896 754963) (-429 "GCDDOM.spad" 748169 748177 748923 748992) (-428 "GCDDOM.spad" 747403 747413 748159 748164) (-427 "GB.spad" 744921 744959 747359 747364) (-426 "GBINTERN.spad" 740941 740979 744911 744916) (-425 "GBF.spad" 736698 736736 740931 740936) (-424 "GBEUCLID.spad" 734572 734610 736688 736693) (-423 "GAUSSFAC.spad" 733869 733877 734562 734567) (-422 "GALUTIL.spad" 732191 732201 733825 733830) (-421 "GALPOLYU.spad" 730637 730650 732181 732186) (-420 "GALFACTU.spad" 728802 728821 730627 730632) (-419 "GALFACT.spad" 718935 718946 728792 728797) (-418 "FVFUN.spad" 715948 715956 718915 718930) (-417 "FVC.spad" 714990 714998 715928 715943) (-416 "FUNCTION.spad" 714839 714851 714980 714985) (-415 "FT.spad" 713051 713059 714829 714834) (-414 "FTEM.spad" 712214 712222 713041 713046) (-413 "FSUPFACT.spad" 711115 711134 712151 712156) (-412 "FST.spad" 709201 709209 711105 711110) (-411 "FSRED.spad" 708679 708695 709191 709196) (-410 "FSPRMELT.spad" 707503 707519 708636 708641) (-409 "FSPECF.spad" 705580 705596 707493 707498) (-408 "FS.spad" 699631 699641 705344 705575) (-407 "FS.spad" 693473 693485 699188 699193) (-406 "FSINT.spad" 693131 693147 693463 693468) (-405 "FSERIES.spad" 692318 692330 692951 693050) (-404 "FSCINT.spad" 691631 691647 692308 692313) (-403 "FSAGG.spad" 690736 690746 691575 691626) (-402 "FSAGG.spad" 689815 689827 690656 690661) (-401 "FSAGG2.spad" 688514 688530 689805 689810) (-400 "FS2UPS.spad" 682903 682937 688504 688509) (-399 "FS2.spad" 682548 682564 682893 682898) (-398 "FS2EXPXP.spad" 681671 681694 682538 682543) (-397 "FRUTIL.spad" 680613 680623 681661 681666) (-396 "FR.spad" 674310 674320 679640 679709) (-395 "FRNAALG.spad" 669397 669407 674252 674305) (-394 "FRNAALG.spad" 664496 664508 669353 669358) (-393 "FRNAAF2.spad" 663950 663968 664486 664491) (-392 "FRMOD.spad" 663345 663375 663882 663887) (-391 "FRIDEAL.spad" 662540 662561 663325 663340) (-390 "FRIDEAL2.spad" 662142 662174 662530 662535) (-389 "FRETRCT.spad" 661653 661663 662132 662137) (-388 "FRETRCT.spad" 661032 661044 661513 661518) (-387 "FRAMALG.spad" 659360 659373 660988 661027) (-386 "FRAMALG.spad" 657720 657735 659350 659355) (-385 "FRAC.spad" 654823 654833 655226 655399) (-384 "FRAC2.spad" 654426 654438 654813 654818) (-383 "FR2.spad" 653760 653772 654416 654421) (-382 "FPS.spad" 650569 650577 653650 653755) (-381 "FPS.spad" 647406 647416 650489 650494) (-380 "FPC.spad" 646448 646456 647308 647401) (-379 "FPC.spad" 645576 645586 646438 646443) (-378 "FPATMAB.spad" 645328 645338 645556 645571) (-377 "FPARFRAC.spad" 643801 643818 645318 645323) (-376 "FORTRAN.spad" 642307 642350 643791 643796) (-375 "FORT.spad" 641236 641244 642297 642302) (-374 "FORTFN.spad" 638396 638404 641216 641231) (-373 "FORTCAT.spad" 638070 638078 638376 638391) (-372 "FORMULA.spad" 635408 635416 638060 638065) (-371 "FORMULA1.spad" 634887 634897 635398 635403) (-370 "FORDER.spad" 634578 634602 634877 634882) (-369 "FOP.spad" 633779 633787 634568 634573) (-368 "FNLA.spad" 633203 633225 633747 633774) (-367 "FNCAT.spad" 631531 631539 633193 633198) (-366 "FNAME.spad" 631423 631431 631521 631526) (-365 "FMTC.spad" 631221 631229 631349 631418) (-364 "FMONOID.spad" 628276 628286 631177 631182) (-363 "FM.spad" 627971 627983 628210 628237) (-362 "FMFUN.spad" 624991 624999 627951 627966) (-361 "FMC.spad" 624033 624041 624971 624986) (-360 "FMCAT.spad" 621687 621705 624001 624028) (-359 "FM1.spad" 621044 621056 621621 621648) (-358 "FLOATRP.spad" 618765 618779 621034 621039) (-357 "FLOAT.spad" 611929 611937 618631 618760) (-356 "FLOATCP.spad" 609346 609360 611919 611924) (-355 "FLINEXP.spad" 609058 609068 609326 609341) (-354 "FLINEXP.spad" 608724 608736 608994 608999) (-353 "FLASORT.spad" 608044 608056 608714 608719) (-352 "FLALG.spad" 605690 605709 607970 608039) (-351 "FLAGG.spad" 602696 602706 605658 605685) (-350 "FLAGG.spad" 599615 599627 602579 602584) (-349 "FLAGG2.spad" 598296 598312 599605 599610) (-348 "FINRALG.spad" 596325 596338 598252 598291) (-347 "FINRALG.spad" 594280 594295 596209 596214) (-346 "FINITE.spad" 593432 593440 594270 594275) (-345 "FINAALG.spad" 582413 582423 593374 593427) (-344 "FINAALG.spad" 571406 571418 582369 582374) (-343 "FILE.spad" 570989 570999 571396 571401) (-342 "FILECAT.spad" 569507 569524 570979 570984) (-341 "FIELD.spad" 568913 568921 569409 569502) (-340 "FIELD.spad" 568405 568415 568903 568908) (-339 "FGROUP.spad" 567014 567024 568385 568400) (-338 "FGLMICPK.spad" 565801 565816 567004 567009) (-337 "FFX.spad" 565176 565191 565517 565610) (-336 "FFSLPE.spad" 564665 564686 565166 565171) (-335 "FFPOLY.spad" 555917 555928 564655 564660) (-334 "FFPOLY2.spad" 554977 554994 555907 555912) (-333 "FFP.spad" 554374 554394 554693 554786) (-332 "FF.spad" 553822 553838 554055 554148) (-331 "FFNBX.spad" 552334 552354 553538 553631) (-330 "FFNBP.spad" 550847 550864 552050 552143) (-329 "FFNB.spad" 549312 549333 550528 550621) (-328 "FFINTBAS.spad" 546726 546745 549302 549307) (-327 "FFIELDC.spad" 544301 544309 546628 546721) (-326 "FFIELDC.spad" 541962 541972 544291 544296) (-325 "FFHOM.spad" 540710 540727 541952 541957) (-324 "FFF.spad" 538145 538156 540700 540705) (-323 "FFCGX.spad" 536992 537012 537861 537954) (-322 "FFCGP.spad" 535881 535901 536708 536801) (-321 "FFCG.spad" 534673 534694 535562 535655) (-320 "FFCAT.spad" 527574 527596 534512 534668) (-319 "FFCAT.spad" 520554 520578 527494 527499) (-318 "FFCAT2.spad" 520299 520339 520544 520549) (-317 "FEXPR.spad" 512012 512058 520059 520098) (-316 "FEVALAB.spad" 511718 511728 512002 512007) (-315 "FEVALAB.spad" 511209 511221 511495 511500) (-314 "FDIV.spad" 510651 510675 511199 511204) (-313 "FDIVCAT.spad" 508693 508717 510641 510646) (-312 "FDIVCAT.spad" 506733 506759 508683 508688) (-311 "FDIV2.spad" 506387 506427 506723 506728) (-310 "FCPAK1.spad" 504940 504948 506377 506382) (-309 "FCOMP.spad" 504319 504329 504930 504935) (-308 "FC.spad" 494144 494152 504309 504314) (-307 "FAXF.spad" 487079 487093 494046 494139) (-306 "FAXF.spad" 480066 480082 487035 487040) (-305 "FARRAY.spad" 478212 478222 479249 479276) (-304 "FAMR.spad" 476332 476344 478110 478207) (-303 "FAMR.spad" 474436 474450 476216 476221) (-302 "FAMONOID.spad" 474086 474096 474390 474395) (-301 "FAMONC.spad" 472308 472320 474076 474081) (-300 "FAGROUP.spad" 471914 471924 472204 472231) (-299 "FACUTIL.spad" 470110 470127 471904 471909) (-298 "FACTFUNC.spad" 469286 469296 470100 470105) (-297 "EXPUPXS.spad" 466119 466142 467418 467567) (-296 "EXPRTUBE.spad" 463347 463355 466109 466114) (-295 "EXPRODE.spad" 460219 460235 463337 463342) (-294 "EXPR.spad" 455521 455531 456235 456638) (-293 "EXPR2UPS.spad" 451613 451626 455511 455516) (-292 "EXPR2.spad" 451316 451328 451603 451608) (-291 "EXPEXPAN.spad" 448257 448282 448891 448984) (-290 "EXIT.spad" 447928 447936 448247 448252) (-289 "EVALCYC.spad" 447386 447400 447918 447923) (-288 "EVALAB.spad" 446950 446960 447376 447381) (-287 "EVALAB.spad" 446512 446524 446940 446945) (-286 "EUCDOM.spad" 444054 444062 446438 446507) (-285 "EUCDOM.spad" 441658 441668 444044 444049) (-284 "ESTOOLS.spad" 433498 433506 441648 441653) (-283 "ESTOOLS2.spad" 433099 433113 433488 433493) (-282 "ESTOOLS1.spad" 432784 432795 433089 433094) (-281 "ES.spad" 425331 425339 432774 432779) (-280 "ES.spad" 417786 417796 425231 425236) (-279 "ESCONT.spad" 414559 414567 417776 417781) (-278 "ESCONT1.spad" 414308 414320 414549 414554) (-277 "ES2.spad" 413803 413819 414298 414303) (-276 "ES1.spad" 413369 413385 413793 413798) (-275 "ERROR.spad" 410690 410698 413359 413364) (-274 "EQTBL.spad" 409162 409184 409371 409398) (-273 "EQ.spad" 404046 404056 406845 406954) (-272 "EQ2.spad" 403762 403774 404036 404041) (-271 "EP.spad" 400076 400086 403752 403757) (-270 "ENV.spad" 398778 398786 400066 400071) (-269 "ENTIRER.spad" 398446 398454 398722 398773) (-268 "EMR.spad" 397647 397688 398372 398441) (-267 "ELTAGG.spad" 395887 395906 397637 397642) (-266 "ELTAGG.spad" 394091 394112 395843 395848) (-265 "ELTAB.spad" 393538 393556 394081 394086) (-264 "ELFUTS.spad" 392917 392936 393528 393533) (-263 "ELEMFUN.spad" 392606 392614 392907 392912) (-262 "ELEMFUN.spad" 392293 392303 392596 392601) (-261 "ELAGG.spad" 390224 390234 392261 392288) (-260 "ELAGG.spad" 388104 388116 390143 390148) (-259 "ELABEXPR.spad" 387035 387043 388094 388099) (-258 "EFUPXS.spad" 383811 383841 386991 386996) (-257 "EFULS.spad" 380647 380670 383767 383772) (-256 "EFSTRUC.spad" 378602 378618 380637 380642) (-255 "EF.spad" 373368 373384 378592 378597) (-254 "EAB.spad" 371644 371652 373358 373363) (-253 "E04UCFA.spad" 371180 371188 371634 371639) (-252 "E04NAFA.spad" 370757 370765 371170 371175) (-251 "E04MBFA.spad" 370337 370345 370747 370752) (-250 "E04JAFA.spad" 369873 369881 370327 370332) (-249 "E04GCFA.spad" 369409 369417 369863 369868) (-248 "E04FDFA.spad" 368945 368953 369399 369404) (-247 "E04DGFA.spad" 368481 368489 368935 368940) (-246 "E04AGNT.spad" 364323 364331 368471 368476) (-245 "DVARCAT.spad" 361008 361018 364313 364318) (-244 "DVARCAT.spad" 357691 357703 360998 361003) (-243 "DSMP.spad" 355125 355139 355430 355557) (-242 "DROPT.spad" 349070 349078 355115 355120) (-241 "DROPT1.spad" 348733 348743 349060 349065) (-240 "DROPT0.spad" 343560 343568 348723 348728) (-239 "DRAWPT.spad" 341715 341723 343550 343555) (-238 "DRAW.spad" 334315 334328 341705 341710) (-237 "DRAWHACK.spad" 333623 333633 334305 334310) (-236 "DRAWCX.spad" 331065 331073 333613 333618) (-235 "DRAWCURV.spad" 330602 330617 331055 331060) (-234 "DRAWCFUN.spad" 319774 319782 330592 330597) (-233 "DQAGG.spad" 317930 317940 319730 319769) (-232 "DPOLCAT.spad" 313271 313287 317798 317925) (-231 "DPOLCAT.spad" 308698 308716 313227 313232) (-230 "DPMO.spad" 302048 302064 302186 302482) (-229 "DPMM.spad" 295411 295429 295536 295832) (-228 "DOMAIN.spad" 294682 294690 295401 295406) (-227 "DMP.spad" 291907 291922 292479 292606) (-226 "DLP.spad" 291255 291265 291897 291902) (-225 "DLIST.spad" 289667 289677 290438 290465) (-224 "DLAGG.spad" 288068 288078 289647 289662) (-223 "DIVRING.spad" 287515 287523 288012 288063) (-222 "DIVRING.spad" 287006 287016 287505 287510) (-221 "DISPLAY.spad" 285186 285194 286996 287001) (-220 "DIRPROD.spad" 276091 276107 276731 276860) (-219 "DIRPROD2.spad" 274899 274917 276081 276086) (-218 "DIRPCAT.spad" 273831 273847 274753 274894) (-217 "DIRPCAT.spad" 272503 272521 273427 273432) (-216 "DIOSP.spad" 271328 271336 272493 272498) (-215 "DIOPS.spad" 270300 270310 271296 271323) (-214 "DIOPS.spad" 269258 269270 270256 270261) (-213 "DIFRING.spad" 268550 268558 269238 269253) (-212 "DIFRING.spad" 267850 267860 268540 268545) (-211 "DIFEXT.spad" 267009 267019 267830 267845) (-210 "DIFEXT.spad" 266085 266097 266908 266913) (-209 "DIAGG.spad" 265703 265713 266053 266080) (-208 "DIAGG.spad" 265341 265353 265693 265698) (-207 "DHMATRIX.spad" 263645 263655 264798 264825) (-206 "DFSFUN.spad" 257053 257061 263635 263640) (-205 "DFLOAT.spad" 253576 253584 256943 257048) (-204 "DFINTTLS.spad" 251785 251801 253566 253571) (-203 "DERHAM.spad" 249695 249727 251765 251780) (-202 "DEQUEUE.spad" 249013 249023 249302 249329) (-201 "DEGRED.spad" 248628 248642 249003 249008) (-200 "DEFINTRF.spad" 246153 246163 248618 248623) (-199 "DEFINTEF.spad" 244649 244665 246143 246148) (-198 "DECIMAL.spad" 242533 242541 243119 243212) (-197 "DDFACT.spad" 240332 240349 242523 242528) (-196 "DBLRESP.spad" 239930 239954 240322 240327) (-195 "DBASE.spad" 238502 238512 239920 239925) (-194 "D03FAFA.spad" 238330 238338 238492 238497) (-193 "D03EEFA.spad" 238150 238158 238320 238325) (-192 "D03AGNT.spad" 237230 237238 238140 238145) (-191 "D02EJFA.spad" 236692 236700 237220 237225) (-190 "D02CJFA.spad" 236170 236178 236682 236687) (-189 "D02BHFA.spad" 235660 235668 236160 236165) (-188 "D02BBFA.spad" 235150 235158 235650 235655) (-187 "D02AGNT.spad" 229954 229962 235140 235145) (-186 "D01WGTS.spad" 228273 228281 229944 229949) (-185 "D01TRNS.spad" 228250 228258 228263 228268) (-184 "D01GBFA.spad" 227772 227780 228240 228245) (-183 "D01FCFA.spad" 227294 227302 227762 227767) (-182 "D01ASFA.spad" 226762 226770 227284 227289) (-181 "D01AQFA.spad" 226208 226216 226752 226757) (-180 "D01APFA.spad" 225632 225640 226198 226203) (-179 "D01ANFA.spad" 225126 225134 225622 225627) (-178 "D01AMFA.spad" 224636 224644 225116 225121) (-177 "D01ALFA.spad" 224176 224184 224626 224631) (-176 "D01AKFA.spad" 223702 223710 224166 224171) (-175 "D01AJFA.spad" 223225 223233 223692 223697) (-174 "D01AGNT.spad" 219284 219292 223215 223220) (-173 "CYCLOTOM.spad" 218790 218798 219274 219279) (-172 "CYCLES.spad" 215622 215630 218780 218785) (-171 "CVMP.spad" 215039 215049 215612 215617) (-170 "CTRIGMNP.spad" 213529 213545 215029 215034) (-169 "CTORCALL.spad" 213117 213125 213519 213524) (-168 "CSTTOOLS.spad" 212360 212373 213107 213112) (-167 "CRFP.spad" 206064 206077 212350 212355) (-166 "CRAPACK.spad" 205107 205117 206054 206059) (-165 "CPMATCH.spad" 204607 204622 205032 205037) (-164 "CPIMA.spad" 204312 204331 204597 204602) (-163 "COORDSYS.spad" 199205 199215 204302 204307) (-162 "CONTOUR.spad" 198607 198615 199195 199200) (-161 "CONTFRAC.spad" 194219 194229 198509 198602) (-160 "COMRING.spad" 193893 193901 194157 194214) (-159 "COMPPROP.spad" 193407 193415 193883 193888) (-158 "COMPLPAT.spad" 193174 193189 193397 193402) (-157 "COMPLEX.spad" 187207 187217 187451 187712) (-156 "COMPLEX2.spad" 186920 186932 187197 187202) (-155 "COMPFACT.spad" 186522 186536 186910 186915) (-154 "COMPCAT.spad" 184578 184588 186244 186517) (-153 "COMPCAT.spad" 182341 182353 184009 184014) (-152 "COMMUPC.spad" 182087 182105 182331 182336) (-151 "COMMONOP.spad" 181620 181628 182077 182082) (-150 "COMM.spad" 181429 181437 181610 181615) (-149 "COMBOPC.spad" 180334 180342 181419 181424) (-148 "COMBINAT.spad" 179079 179089 180324 180329) (-147 "COMBF.spad" 176447 176463 179069 179074) (-146 "COLOR.spad" 175284 175292 176437 176442) (-145 "CMPLXRT.spad" 174993 175010 175274 175279) (-144 "CLIP.spad" 171085 171093 174983 174988) (-143 "CLIF.spad" 169724 169740 171041 171080) (-142 "CLAGG.spad" 166199 166209 169704 169719) (-141 "CLAGG.spad" 162555 162567 166062 166067) (-140 "CINTSLPE.spad" 161880 161893 162545 162550) (-139 "CHVAR.spad" 159958 159980 161870 161875) (-138 "CHARZ.spad" 159873 159881 159938 159953) (-137 "CHARPOL.spad" 159381 159391 159863 159868) (-136 "CHARNZ.spad" 159134 159142 159361 159376) (-135 "CHAR.spad" 157002 157010 159124 159129) (-134 "CFCAT.spad" 156318 156326 156992 156997) (-133 "CDEN.spad" 155476 155490 156308 156313) (-132 "CCLASS.spad" 153625 153633 154887 154926) (-131 "CATEGORY.spad" 153404 153412 153615 153620) (-130 "CARTEN.spad" 148507 148531 153394 153399) (-129 "CARTEN2.spad" 147893 147920 148497 148502) (-128 "CARD.spad" 145182 145190 147867 147888) (-127 "CACHSET.spad" 144804 144812 145172 145177) (-126 "CABMON.spad" 144357 144365 144794 144799) (-125 "BYTE.spad" 143751 143759 144347 144352) (-124 "BYTEARY.spad" 142826 142834 142920 142947) (-123 "BTREE.spad" 141895 141905 142433 142460) (-122 "BTOURN.spad" 140898 140908 141502 141529) (-121 "BTCAT.spad" 140274 140284 140854 140893) (-120 "BTCAT.spad" 139682 139694 140264 140269) (-119 "BTAGG.spad" 138698 138706 139638 139677) (-118 "BTAGG.spad" 137746 137756 138688 138693) (-117 "BSTREE.spad" 136481 136491 137353 137380) (-116 "BRILL.spad" 134676 134687 136471 136476) (-115 "BRAGG.spad" 133590 133600 134656 134671) (-114 "BRAGG.spad" 132478 132490 133546 133551) (-113 "BPADICRT.spad" 130462 130474 130717 130810) (-112 "BPADIC.spad" 130126 130138 130388 130457) (-111 "BOUNDZRO.spad" 129782 129799 130116 130121) (-110 "BOP.spad" 125246 125254 129772 129777) (-109 "BOP1.spad" 122632 122642 125202 125207) (-108 "BOOLEAN.spad" 121895 121903 122622 122627) (-107 "BMODULE.spad" 121607 121619 121863 121890) (-106 "BITS.spad" 121026 121034 121243 121270) (-105 "BINFILE.spad" 120369 120377 121016 121021) (-104 "BINDING.spad" 119788 119796 120359 120364) (-103 "BINARY.spad" 117681 117689 118258 118351) (-102 "BGAGG.spad" 116866 116876 117649 117676) (-101 "BGAGG.spad" 116071 116083 116856 116861) (-100 "BFUNCT.spad" 115635 115643 116051 116066) (-99 "BEZOUT.spad" 114770 114796 115585 115590) (-98 "BBTREE.spad" 111590 111599 114377 114404) (-97 "BASTYPE.spad" 111263 111270 111580 111585) (-96 "BASTYPE.spad" 110934 110943 111253 111258) (-95 "BALFACT.spad" 110374 110386 110924 110929) (-94 "AUTOMOR.spad" 109821 109830 110354 110369) (-93 "ATTREG.spad" 106540 106547 109573 109816) (-92 "ATTRBUT.spad" 102563 102570 106520 106535) (-91 "ATRIG.spad" 102033 102040 102553 102558) (-90 "ATRIG.spad" 101501 101510 102023 102028) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 086bea99..45987bd5 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,163 +1,163 @@
-(142797 . 3420122817)
-(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((#0=(-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) #0#) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))))
+(143277 . 3420735376)
+(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) #0#) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))))
(((|#2| |#2|) . T))
((((-525)) . T))
-((($ $) -3309 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) ((|#2| |#2|) . T) ((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))))
+((($ $) -3279 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))) ((|#2| |#2|) . T) ((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))))
((($) . T))
(((|#1|) . T))
((($) . T) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#2|) . T))
-((($) -3309 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) ((|#2|) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))))
-(|has| |#1| (-843))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
+((($) -3279 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))) ((|#2|) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))))
+(|has| |#1| (-844))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
((($) . T) (((-385 (-525))) . T))
((($) . T))
((($) . T))
(((|#2| |#2|) . T))
((((-135)) . T))
-((((-501)) . T) (((-1073)) . T) (((-205)) . T) (((-357)) . T) (((-826 (-357))) . T))
-(((|#1|) . T))
-((((-205)) . T) (((-797)) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#1|) . T))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-787)))
-((($ $) . T) ((#0=(-385 (-525)) #0#) -3309 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1| |#1|) . T))
-(-3309 (|has| |#1| (-762)) (|has| |#1| (-789)))
-((((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T))
-((((-797)) . T))
-((((-797)) . T))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-517)))
+((((-501)) . T) (((-1074)) . T) (((-205)) . T) (((-357)) . T) (((-827 (-357))) . T))
+(((|#1|) . T))
+((((-205)) . T) (((-798)) . T))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#1|) . T))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-787)))
+((($ $) . T) ((#0=(-385 (-525)) #0#) -3279 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1| |#1|) . T))
+(-3279 (|has| |#1| (-762)) (|has| |#1| (-789)))
+((((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) (((-525)) |has| |#1| (-968 (-525))) ((|#1|) . T))
+((((-798)) . T))
+((((-798)) . T))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-517)))
(|has| |#1| (-787))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1| |#2| |#3|) . T))
(((|#4|) . T))
-((($) . T) (((-385 (-525))) -3309 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
-((((-797)) . T))
-((((-797)) |has| |#1| (-1019)))
+((($) . T) (((-385 (-525))) -3279 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
+((((-798)) . T))
+((((-798)) |has| |#1| (-1020)))
(((|#1|) . T) ((|#2|) . T))
-(((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
-(((|#2| (-458 (-4140 |#1|) (-713))) . T))
-(((|#1| (-497 (-1090))) . T))
-(((#0=(-804 |#1|) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+(((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(((|#2| (-458 (-3596 |#1|) (-713))) . T))
+(((|#1| (-497 (-1091))) . T))
+(((#0=(-805 |#1|) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
(|has| |#4| (-346))
(|has| |#3| (-346))
(((|#1|) . T))
-((((-804 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
+((((-805 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
(((|#1| |#2|) . T))
((($) . T))
(|has| |#1| (-136))
(|has| |#1| (-138))
(|has| |#1| (-517))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-517)))
((($) . T))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
((($) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T))
((($) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-((((-797)) . T))
-((((-797)) . T))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+((((-798)) . T))
+((((-798)) . T))
((((-385 (-525))) . T) (($) . T))
-((((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-341)) (($) . T) ((|#1|) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1165 |#1| |#2| |#3|)) |has| |#1| (-341)) (($) . T) ((|#1|) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
(((|#1|) . T))
-(((|#1|) . T) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T))
+(((|#1|) . T) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T))
(((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) (($) . T))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(((|#1| |#2|) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#1|) . T))
-(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3309 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))))
+(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3279 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
(((|#1|) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3309 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))))
-((($) -3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3279 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((($) -3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
-(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))))
+(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
((($ $) . T))
(((|#2|) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3309 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3279 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
((($) . T))
(|has| |#1| (-346))
(((|#1|) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-((((-797)) . T))
-((((-797)) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+((((-798)) . T))
+((((-798)) . T))
(((|#1| |#2|) . T))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976)))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976)))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-835 (-1091))) (|has| |#1| (-977)))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-835 (-1091))) (|has| |#1| (-977)))
(((|#1| |#1|) . T))
(|has| |#1| (-517))
-(((|#2| |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-288 |#2|))) (((-1090) |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-486 (-1090) |#2|))))
+(((|#2| |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-288 |#2|))) (((-1091) |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-486 (-1091) |#2|))))
((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-787)))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-787)))
((($ $) . T) ((#0=(-385 (-525)) #0#) . T))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
-(|has| |#1| (-1019))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
-(|has| |#1| (-1019))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(|has| |#1| (-1020))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(|has| |#1| (-1020))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(|has| |#1| (-787))
((($) . T) (((-385 (-525))) . T))
(((|#1|) . T))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-327)))
-(-3309 (|has| |#4| (-735)) (|has| |#4| (-787)))
-(-3309 (|has| |#4| (-735)) (|has| |#4| (-787)))
-(-3309 (|has| |#3| (-735)) (|has| |#3| (-787)))
-(-3309 (|has| |#3| (-735)) (|has| |#3| (-787)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-3279 (|has| |#4| (-735)) (|has| |#4| (-787)))
+(-3279 (|has| |#4| (-735)) (|has| |#4| (-787)))
+(-3279 (|has| |#3| (-735)) (|has| |#3| (-787)))
+(-3279 (|has| |#3| (-735)) (|has| |#3| (-787)))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-1019))
-(|has| |#1| (-1019))
-(((|#1| (-1090) (-1009 (-1090)) (-497 (-1009 (-1090)))) . T))
+(|has| |#1| (-1020))
+(|has| |#1| (-1020))
+(((|#1| (-1091) (-1010 (-1091)) (-497 (-1010 (-1091)))) . T))
((((-525) |#1|) . T))
((((-525)) . T))
((((-525)) . T))
-((((-844 |#1|)) . T))
+((((-845 |#1|)) . T))
(((|#1| (-497 |#2|)) . T))
((((-525)) . T))
((((-525)) . T))
(((|#1|) . T))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976)))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(((|#1| (-713)) . T))
(|has| |#2| (-735))
-(-3309 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-3279 (|has| |#2| (-735)) (|has| |#2| (-787)))
(|has| |#2| (-787))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1073) |#1|) . T))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
+((((-1074) |#1|) . T))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(((|#1|) . T))
(((|#3| (-713)) . T))
(|has| |#1| (-138))
(|has| |#1| (-136))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
-(|has| |#1| (-1019))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
+(|has| |#1| (-1020))
((((-385 (-525))) . T) (((-525)) . T))
-((((-1090) |#2|) |has| |#2| (-486 (-1090) |#2|)) ((|#2| |#2|) |has| |#2| (-288 |#2|)))
+((((-1091) |#2|) |has| |#2| (-486 (-1091) |#2|)) ((|#2| |#2|) |has| |#2| (-288 |#2|)))
((((-385 (-525))) . T) (((-525)) . T))
(((|#1|) . T) (($) . T))
((((-525)) . T))
((((-525)) . T))
-((($) -3309 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160)))
+((($) -3279 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160)))
((((-525)) . T))
((((-525)) . T))
-(((#0=(-641) (-1086 #0#)) . T))
+(((#0=(-641) (-1087 #0#)) . T))
((((-385 (-525))) . T) (($) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
((((-525) |#1|) . T))
@@ -166,269 +166,269 @@
(|has| |#2| (-341))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-797)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-((((-1073) |#1|) . T))
+((((-798)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+((((-1074) |#1|) . T))
(((|#3| |#3|) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
(((|#1| |#1|) . T))
-(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))))
-((($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
-(((|#1|) . T))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))))
-((($) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((($) -3309 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) ((|#2|) -3309 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976))))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
+(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
+((($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+(((|#1|) . T))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
+((($) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -3279 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977))) ((|#2|) -3279 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
((((-525) |#1|) . T))
-((((-157 (-205))) |has| |#1| (-952)) (((-157 (-357))) |has| |#1| (-952)) (((-501)) |has| |#1| (-567 (-501))) (((-1086 |#1|)) . T) (((-826 (-525))) |has| |#1| (-567 (-826 (-525)))) (((-826 (-357))) |has| |#1| (-567 (-826 (-357)))))
-((((-797)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#1|) . T))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-787)))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-787)))
-((((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3309 (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#2|) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
-(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3309 (|has| |#1| (-341)) (|has| |#1| (-517))))
+((((-157 (-205))) |has| |#1| (-953)) (((-157 (-357))) |has| |#1| (-953)) (((-501)) |has| |#1| (-567 (-501))) (((-1087 |#1|)) . T) (((-827 (-525))) |has| |#1| (-567 (-827 (-525)))) (((-827 (-357))) |has| |#1| (-567 (-827 (-357)))))
+((((-798)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#1|) . T))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-787)))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-787)))
+((((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3279 (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#2|) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
+(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3279 (|has| |#1| (-341)) (|has| |#1| (-517))))
(|has| |#1| (-341))
-(-12 (|has| |#4| (-213)) (|has| |#4| (-976)))
-(-12 (|has| |#3| (-213)) (|has| |#3| (-976)))
-(-3309 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-976)))
-(-3309 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976)))
-((((-797)) . T))
+(-12 (|has| |#4| (-213)) (|has| |#4| (-977)))
+(-12 (|has| |#3| (-213)) (|has| |#3| (-977)))
+(-3279 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-977)))
+(-3279 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+((((-798)) . T))
(((|#1|) . T))
-((((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T))
+((((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) (((-525)) |has| |#1| (-968 (-525))) ((|#1|) . T))
(((|#1|) . T) (((-525)) |has| |#1| (-588 (-525))))
-(((|#2|) . T) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) . T))
+(((|#2|) . T) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) . T))
(|has| |#1| (-517))
(|has| |#1| (-517))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(((|#1|) . T))
(|has| |#1| (-517))
(|has| |#1| (-517))
(|has| |#1| (-517))
((((-641)) . T))
(((|#1|) . T))
-(-12 (|has| |#1| (-933)) (|has| |#1| (-1112)))
+(-12 (|has| |#1| (-934)) (|has| |#1| (-1113)))
(((|#2|) . T) (($) . T) (((-385 (-525))) . T))
-(-12 (|has| |#1| (-1019)) (|has| |#2| (-1019)))
+(-12 (|has| |#1| (-1020)) (|has| |#2| (-1020)))
((($) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T))
-((((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-341)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T))
+((((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-341)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T))
(((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) (($) . T))
-(((|#3| |#3|) -3309 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-976))) (($ $) |has| |#3| (-160)))
-(((|#4| |#4|) -3309 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-976))) (($ $) |has| |#4| (-160)))
+(((|#3| |#3|) -3279 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))) (($ $) |has| |#3| (-160)))
+(((|#4| |#4|) -3279 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-977))) (($ $) |has| |#4| (-160)))
(((|#1|) . T))
(((|#2|) . T))
-((((-501)) |has| |#2| (-567 (-501))) (((-826 (-357))) |has| |#2| (-567 (-826 (-357)))) (((-826 (-525))) |has| |#2| (-567 (-826 (-525)))))
-((((-797)) . T))
+((((-501)) |has| |#2| (-567 (-501))) (((-827 (-357))) |has| |#2| (-567 (-827 (-357)))) (((-827 (-525))) |has| |#2| (-567 (-827 (-525)))))
+((((-798)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-797)) . T))
-((((-501)) |has| |#1| (-567 (-501))) (((-826 (-357))) |has| |#1| (-567 (-826 (-357)))) (((-826 (-525))) |has| |#1| (-567 (-826 (-525)))))
-((((-797)) . T))
-(((|#3|) -3309 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-976))) (($) |has| |#3| (-160)))
-(((|#4|) -3309 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-976))) (($) |has| |#4| (-160)))
-((((-797)) . T))
-((((-501)) . T) (((-525)) . T) (((-826 (-525))) . T) (((-357)) . T) (((-205)) . T))
-(((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))))
+((((-798)) . T))
+((((-501)) |has| |#1| (-567 (-501))) (((-827 (-357))) |has| |#1| (-567 (-827 (-357)))) (((-827 (-525))) |has| |#1| (-567 (-827 (-525)))))
+((((-798)) . T))
+(((|#3|) -3279 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))) (($) |has| |#3| (-160)))
+(((|#4|) -3279 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-977))) (($) |has| |#4| (-160)))
+((((-798)) . T))
+((((-501)) . T) (((-525)) . T) (((-827 (-525))) . T) (((-357)) . T) (((-205)) . T))
+(((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))))
((($) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T))
((((-385 $) (-385 $)) |has| |#2| (-517)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) . T))
+((((-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) . T))
(((|#1|) . T))
-(|has| |#2| (-843))
-((((-1073) (-51)) . T))
+(|has| |#2| (-844))
+((((-1074) (-51)) . T))
((((-525)) |has| #0=(-385 |#2|) (-588 (-525))) ((#0#) . T))
-((((-501)) . T) (((-205)) . T) (((-357)) . T) (((-826 (-357))) . T))
-((((-797)) . T))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976)))
+((((-501)) . T) (((-205)) . T) (((-357)) . T) (((-827 (-357))) . T))
+((((-798)) . T))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-835 (-1091))) (|has| |#1| (-977)))
(((|#1|) |has| |#1| (-160)))
(((|#1| $) |has| |#1| (-265 |#1| |#1|)))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
((((-385 (-525))) . T) (($) . T))
((((-385 (-525))) . T) (($) . T))
-((((-797)) . T))
+((((-798)) . T))
(|has| |#1| (-789))
-(|has| |#1| (-1019))
+(|has| |#1| (-1020))
(((|#1|) . T))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
((((-125)) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3309 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3279 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
((((-125)) . T))
-((($) -3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((($) -3309 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -3279 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(|has| |#1| (-213))
-((($) -3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-(((|#1| (-497 (-760 (-1090)))) . T))
-(((|#1| (-903)) . T))
-(((#0=(-804 |#1|) $) |has| #0# (-265 #0# #0#)))
+((($) -3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+(((|#1| (-497 (-760 (-1091)))) . T))
+(((|#1| (-904)) . T))
+(((#0=(-805 |#1|) $) |has| #0# (-265 #0# #0#)))
((((-525) |#4|) . T))
((((-525) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1066))
-((((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) . T))
-(|has| (-1158 |#1| |#2| |#3| |#4|) (-136))
-(|has| (-1158 |#1| |#2| |#3| |#4|) (-138))
+(|has| |#1| (-1067))
+((((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) . T))
+(|has| (-1159 |#1| |#2| |#3| |#4|) (-136))
+(|has| (-1159 |#1| |#2| |#3| |#4|) (-138))
(|has| |#1| (-136))
(|has| |#1| (-138))
(((|#1|) |has| |#1| (-160)))
-((((-1090)) -12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976))))
+((((-1091)) -12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977))))
(((|#2|) . T))
-(|has| |#1| (-1019))
-((((-1073) |#1|) . T))
+(|has| |#1| (-1020))
+((((-1074) |#1|) . T))
(((|#1|) . T))
(((|#2|) . T) (((-525)) |has| |#2| (-588 (-525))))
(|has| |#2| (-346))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-976)))
-((((-797)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((#0=(-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) #0#) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))))
+(((|#2|) |has| |#2| (-977)))
+((((-798)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) #0#) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))))
(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((#0=(-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) #0#) |has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((#0=(-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) #0#) |has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))))
((((-525) |#1|) . T))
-((((-797)) . T))
-((((-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#2| (-567 (-501)))) (((-826 (-357))) -12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357))))) (((-826 (-525))) -12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525))))))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#2| (-567 (-501)))) (((-827 (-357))) -12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357))))) (((-827 (-525))) -12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525))))))
+((((-798)) . T))
+((((-798)) . T))
((($) . T))
-((($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+((($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
((($) . T))
((($) . T))
((($) . T))
-((($) -3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((((-797)) . T))
-((((-797)) . T))
-(|has| (-1157 |#2| |#3| |#4|) (-138))
-(|has| (-1157 |#2| |#3| |#4|) (-136))
-(((|#2|) |has| |#2| (-1019)) (((-525)) -12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019))) (((-385 (-525))) -12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019))))
+((($) -3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((((-798)) . T))
+((((-798)) . T))
+(|has| (-1158 |#2| |#3| |#4|) (-138))
+(|has| (-1158 |#2| |#3| |#4|) (-136))
+(((|#2|) |has| |#2| (-1020)) (((-525)) -12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) (((-385 (-525))) -12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020))))
(((|#1|) . T))
-(|has| |#1| (-1019))
-((((-797)) . T))
+(|has| |#1| (-1020))
+((((-798)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976)))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-835 (-1091))) (|has| |#1| (-977)))
(((|#1|) . T))
((((-525) |#1|) . T))
(((|#2|) |has| |#2| (-160)))
(((|#1|) |has| |#1| (-160)))
(((|#1|) . T))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-787)))
-((((-797)) |has| |#1| (-1019)))
-(-3309 (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976)) (|has| |#1| (-1031)))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-327)))
-((((-844 |#1|)) . T))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-787)))
+((((-798)) |has| |#1| (-1020)))
+(-3279 (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-835 (-1091))) (|has| |#1| (-977)) (|has| |#1| (-1032)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-327)))
+((((-845 |#1|)) . T))
((((-385 |#2|) |#3|) . T))
(|has| |#1| (-15 * (|#1| (-525) |#1|)))
((((-385 (-525))) . T) (($) . T))
(|has| |#1| (-789))
(((|#1|) . T) (($) . T))
((((-385 (-525))) . T) (($) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#1|) . T))
((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517)))
(|has| |#1| (-341))
-(-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))
+(-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))
(|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))
(|has| |#1| (-341))
((((-525)) . T))
(|has| |#1| (-15 * (|#1| (-713) |#1|)))
-((((-1057 |#2| (-385 (-886 |#1|)))) . T) (((-385 (-886 |#1|))) . T))
+((((-1058 |#2| (-385 (-887 |#1|)))) . T) (((-385 (-887 |#1|))) . T))
((($) . T))
(((|#1|) |has| |#1| (-160)) (($) . T))
(((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) (($) . T))
(((|#1|) . T))
((((-525) |#1|) . T))
(((|#2|) . T))
-(-3309 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))
-(-3309 (|has| |#2| (-735)) (|has| |#2| (-787)))
-(-3309 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-3279 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-3279 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-3279 (|has| |#2| (-735)) (|has| |#2| (-787)))
(((|#1|) . T))
-((((-1090)) -12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976))))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+((((-1091)) -12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(-12 (|has| |#1| (-341)) (|has| |#2| (-762)))
-(-3309 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517)))
-(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-517))))
+(-3279 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517)))
+(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-517))))
((($ $) |has| |#1| (-517)))
-(((#0=(-641) (-1086 #0#)) . T))
-((((-797)) . T))
-((((-797)) . T) (((-1172 |#4|)) . T))
-((((-797)) . T) (((-1172 |#3|)) . T))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3309 (|has| |#1| (-160)) (|has| |#1| (-517))))
+(((#0=(-641) (-1087 #0#)) . T))
+((((-798)) . T))
+((((-798)) . T) (((-1173 |#4|)) . T))
+((((-798)) . T) (((-1173 |#3|)) . T))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3279 (|has| |#1| (-160)) (|has| |#1| (-517))))
((($) |has| |#1| (-517)))
-((((-797)) . T))
-((($) . T))
-((($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((#1=(-1164 |#1| |#2| |#3|) #1#) |has| |#1| (-341)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
-((($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
-((($) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) . T))
-(((|#1|) . T) (($) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
-(((|#3|) |has| |#3| (-976)))
-((($) -3309 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-(|has| |#1| (-1019))
+((((-798)) . T))
+((($) . T))
+((($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((#1=(-1165 |#1| |#2| |#3|) #1#) |has| |#1| (-341)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
+((($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+((($) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1165 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) . T))
+(((|#1|) . T) (($) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
+(((|#3|) |has| |#3| (-977)))
+((($) -3279 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+(|has| |#1| (-1020))
(((|#2| (-761 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-341))
((((-385 $) (-385 $)) |has| |#1| (-517)) (($ $) . T) ((|#1| |#1|) . T))
-(((#0=(-1004) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-844 |#1|)) . T))
+(((#0=(-1005) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((((-845 |#1|)) . T))
((((-135)) . T))
((((-135)) . T))
-(((|#3|) |has| |#3| (-1019)) (((-525)) -12 (|has| |#3| (-967 (-525))) (|has| |#3| (-1019))) (((-385 (-525))) -12 (|has| |#3| (-967 (-385 (-525)))) (|has| |#3| (-1019))))
-((((-797)) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+(((|#3|) |has| |#3| (-1020)) (((-525)) -12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020))) (((-385 (-525))) -12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020))))
+((((-798)) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
(((|#1|) . T))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
-((((-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) . T))
+((((-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) . T))
(|has| |#1| (-341))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-787)))
-((((-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|)))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-787)))
+((((-1091) |#1|) |has| |#1| (-486 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|)))
(|has| |#2| (-762))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-787))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
-((((-797)) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+((((-798)) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
((((-501)) |has| |#1| (-567 (-501))))
(((|#1| |#2|) . T))
-((((-1090)) -12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090)))))
-((((-1073) |#1|) . T))
+((((-1091)) -12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1091)))))
+((((-1074) |#1|) . T))
(((|#1| |#2| |#3| (-497 |#3|)) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
(|has| |#1| (-346))
(|has| |#1| (-346))
(|has| |#1| (-346))
-((((-797)) . T))
+((((-798)) . T))
(((|#1|) . T))
-(-3309 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))
+(-3279 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
(|has| |#1| (-346))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
((((-525)) . T))
((((-525)) . T))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))
-((((-797)) . T))
-((((-797)) . T))
-(-12 (|has| |#2| (-213)) (|has| |#2| (-976)))
-((((-1090) #0=(-804 |#1|)) |has| #0# (-486 (-1090) #0#)) ((#0# #0#) |has| #0# (-288 #0#)))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+((((-798)) . T))
+((((-798)) . T))
+(-12 (|has| |#2| (-213)) (|has| |#2| (-977)))
+((((-1091) #0=(-805 |#1|)) |has| #0# (-486 (-1091) #0#)) ((#0# #0#) |has| #0# (-288 #0#)))
(((|#1|) . T))
((((-525) |#4|) . T))
((((-525) |#3|) . T))
(((|#1|) . T) (((-525)) |has| |#1| (-588 (-525))))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976)))
-((((-1158 |#1| |#2| |#3| |#4|)) . T))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+((((-1159 |#1| |#2| |#3| |#4|)) . T))
((((-385 (-525))) . T) (((-525)) . T))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1|) . T))
(((|#1|) . T))
((($) . T) (((-525)) . T) (((-385 (-525))) . T))
@@ -440,95 +440,95 @@
(((|#1|) . T))
(((|#1|) . T))
(((#0=(-525) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))))
+(((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))))
(((|#1|) . T) (($) . T) (((-385 (-525))) . T))
(((|#1|) |has| |#1| (-517)))
((((-525) |#4|) . T))
((((-525) |#3|) . T))
-((((-797)) . T))
+((((-798)) . T))
((((-525)) . T) (((-385 (-525))) . T) (($) . T))
-((((-797)) . T))
+((((-798)) . T))
((((-525) |#1|) . T))
(((|#1|) . T))
-((($ $) . T) ((#0=(-799 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((#0=(-800 |#1|) $) . T) ((#0# |#2|) . T))
((($) . T))
-((($ $) . T) ((#0=(-1090) $) . T) ((#0# |#1|) . T))
+((($ $) . T) ((#0=(-1091) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-160)))
-((($) -3309 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) ((|#2|) |has| |#2| (-160)) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))))
-(((|#2| |#2|) -3309 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976))) (($ $) |has| |#2| (-160)))
+((($) -3279 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))) ((|#2|) |has| |#2| (-160)) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))))
+(((|#2| |#2|) -3279 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($ $) |has| |#2| (-160)))
((((-135)) . T))
(((|#1|) . T))
(-12 (|has| |#1| (-346)) (|has| |#2| (-346)))
-((((-797)) . T))
-(((|#2|) -3309 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976))) (($) |has| |#2| (-160)))
+((((-798)) . T))
+(((|#2|) -3279 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($) |has| |#2| (-160)))
(((|#1|) . T))
-((((-797)) . T))
-(|has| |#1| (-1019))
+((((-798)) . T))
+(|has| |#1| (-1020))
(|has| $ (-138))
((((-525) |#1|) . T))
-((($) -3309 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517))) (((-385 (-525))) -3309 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
-((((-1090)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090)))))
+((($) -3279 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517))) (((-385 (-525))) -3279 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
+((((-1091)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091)))))
(|has| |#1| (-341))
-(-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))
+(-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))
(|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))
(|has| |#1| (-341))
(|has| |#1| (-15 * (|#1| (-713) |#1|)))
(((|#1|) . T))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
-((((-797)) . T))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+((((-798)) . T))
((((-525) (-125)) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))
-(((|#2| (-497 (-799 |#1|))) . T))
-((((-797)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#1|) . T))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(((|#2| (-497 (-800 |#1|))) . T))
+((((-798)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#1|) . T))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
((((-538 |#1|)) . T))
((($) . T))
(((|#1|) . T) (($) . T))
((((-525)) |has| |#1| (-588 (-525))) ((|#1|) . T))
(((|#4|) . T))
(((|#3|) . T))
-((((-804 |#1|)) . T) (($) . T) (((-385 (-525))) . T))
-((((-1090)) -12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976))))
+((((-805 |#1|)) . T) (($) . T) (((-385 (-525))) . T))
+((((-1091)) -12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977))))
(((|#1|) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
((((-525) |#2|) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-517))))
-((($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((#1=(-1088 |#1| |#2| |#3|) #1#) |has| |#1| (-341)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
-((($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
-(((|#2|) |has| |#2| (-976)))
-(|has| |#1| (-1019))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3309 (|has| |#1| (-160)) (|has| |#1| (-517))))
-((($) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) . T))
-(((|#1|) . T) (($) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
-((($) -3309 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-517))))
+((($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((#1=(-1089 |#1| |#2| |#3|) #1#) |has| |#1| (-341)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
+((($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+(((|#2|) |has| |#2| (-977)))
+(|has| |#1| (-1020))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3279 (|has| |#1| (-160)) (|has| |#1| (-517))))
+((($) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) . T))
+(((|#1|) . T) (($) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
+((($) -3279 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#1|) |has| |#1| (-160)) (($) . T))
(((|#1|) . T))
-(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3309 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))))
-((((-797)) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3309 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))))
+(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3279 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((((-798)) . T))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3279 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))))
-(((#0=(-1004) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3309 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
+(((#0=(-1005) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3279 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
((($) . T))
(((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) (($) . T))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(((|#2|) |has| |#1| (-341)))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1019)) (((-525)) -12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019))) (((-385 (-525))) -12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019))))
+(((|#2|) |has| |#2| (-1020)) (((-525)) -12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) (((-385 (-525))) -12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020))))
((((-525) |#1|) . T))
-((((-797)) . T))
+((((-798)) . T))
((((-385 |#2|) |#3|) . T))
(((|#1| (-385 (-525))) . T))
((((-385 (-525))) . T) (($) . T))
@@ -538,144 +538,144 @@
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-136))
(|has| |#1| (-138))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3309 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))))
-((($) -3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3279 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((($) -3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
((((-385 (-525))) . T) (($) . T))
((((-385 (-525))) . T) (($) . T))
((((-385 (-525))) . T) (($) . T))
-(((|#2| |#3| (-799 |#1|)) . T))
-((((-1090)) |has| |#2| (-834 (-1090))))
+(((|#2| |#3| (-800 |#1|)) . T))
+((((-1091)) |has| |#2| (-835 (-1091))))
(((|#1|) . T))
(((|#1| (-497 |#2|) |#2|) . T))
-(((|#1| (-713) (-1004)) . T))
+(((|#1| (-713) (-1005)) . T))
((((-385 (-525))) |has| |#2| (-341)) (($) . T))
-(((|#1| (-497 (-1009 (-1090))) (-1009 (-1090))) . T))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
+(((|#1| (-497 (-1010 (-1091))) (-1010 (-1091))) . T))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(((|#1|) . T))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976)))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(|has| |#2| (-735))
-(-3309 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-3279 (|has| |#2| (-735)) (|has| |#2| (-787)))
(|has| |#1| (-346))
(|has| |#1| (-346))
(|has| |#1| (-346))
(|has| |#2| (-787))
-((((-827 |#1|)) . T) (((-761 |#1|)) . T))
-((((-761 (-1090))) . T))
+((((-828 |#1|)) . T) (((-761 |#1|)) . T))
+((((-761 (-1091))) . T))
(((|#1|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
((((-592 (-525))) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-501)) . T) (((-826 (-525))) . T) (((-357)) . T) (((-205)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-501)) . T) (((-827 (-525))) . T) (((-357)) . T) (((-205)) . T))
(|has| |#1| (-213))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
((($ $) . T))
(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-((((-1164 |#1| |#2| |#3|) $) -12 (|has| (-1164 |#1| |#2| |#3|) (-265 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341))) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+((((-1165 |#1| |#2| |#3|) $) -12 (|has| (-1165 |#1| |#2| |#3|) (-265 (-1165 |#1| |#2| |#3|) (-1165 |#1| |#2| |#3|))) (|has| |#1| (-341))) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1|) . T))
-((((-1055 |#1| |#2|)) |has| (-1055 |#1| |#2|) (-288 (-1055 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))
-(((|#2|) . T) (((-525)) |has| |#2| (-967 (-525))) (((-385 (-525))) |has| |#2| (-967 (-385 (-525)))))
-(((|#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))))
-(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))))
+((((-1056 |#1| |#2|)) |has| (-1056 |#1| |#2|) (-288 (-1056 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
+(((|#2|) . T) (((-525)) |has| |#2| (-968 (-525))) (((-385 (-525))) |has| |#2| (-968 (-385 (-525)))))
+(((|#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))
+(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
-(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))))
(((|#2|) . T))
-((((-797)) -3309 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-566 (-797))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019))) (((-1172 |#2|)) . T))
+((((-798)) -3279 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-566 (-798))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020))) (((-1173 |#2|)) . T))
(((|#1|) |has| |#1| (-160)))
((((-525)) . T))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))))
-((($) -3309 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
+((($) -3279 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
((((-525) (-135)) . T))
-((($) -3309 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) ((|#2|) -3309 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976))))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-976)))
+((($) -3279 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977))) ((|#2|) -3279 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
(((|#1|) . T))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-976)))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
(((|#2|) |has| |#1| (-341)))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -3309 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160)))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#1| (-497 #0=(-1090)) #0#) . T))
+((($) -3279 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160)))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#1| (-497 #0=(-1091)) #0#) . T))
(((|#1|) . T) (($) . T))
(|has| |#4| (-160))
(|has| |#3| (-160))
-(((#0=(-385 (-886 |#1|)) #0#) . T))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
-(|has| |#1| (-1019))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
-(|has| |#1| (-1019))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019))))
+(((#0=(-385 (-887 |#1|)) #0#) . T))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(|has| |#1| (-1020))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(|has| |#1| (-1020))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(((|#1| |#1|) |has| |#1| (-160)))
-((($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+((($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1|) . T))
-((((-385 (-886 |#1|))) . T))
+((((-385 (-887 |#1|))) . T))
((((-525) (-125)) . T))
(((|#1|) |has| |#1| (-160)))
((((-125)) . T))
-((($) -3309 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
-((((-797)) . T))
-((((-1158 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-976)) (((-525)) -12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))))
+((($) -3279 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+((((-798)) . T))
+((((-1159 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-977)) (((-525)) -12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))))
(((|#1| |#2|) . T))
-(-3309 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976)))
+(-3279 (|has| |#3| (-160)) (|has| |#3| (-669)) (|has| |#3| (-787)) (|has| |#3| (-977)))
(|has| |#3| (-735))
-(-3309 (|has| |#3| (-735)) (|has| |#3| (-787)))
+(-3279 (|has| |#3| (-735)) (|has| |#3| (-787)))
(|has| |#3| (-787))
-((((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3309 (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#2|) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
-(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3309 (|has| |#1| (-341)) (|has| |#1| (-517))))
+((((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3279 (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#2|) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
+(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3279 (|has| |#1| (-341)) (|has| |#1| (-517))))
(((|#2|) . T))
((((-525) (-125)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
((((-525) |#2|) . T))
-(((|#1| (-1071 |#1|)) |has| |#1| (-787)))
-(|has| |#1| (-1019))
-(((|#1|) . T))
-(-12 (|has| |#1| (-341)) (|has| |#2| (-1066)))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(|has| |#1| (-1019))
-(((|#2|) . T))
-((((-501)) |has| |#2| (-567 (-501))) (((-826 (-357))) |has| |#2| (-567 (-826 (-357)))) (((-826 (-525))) |has| |#2| (-567 (-826 (-525)))))
-(((|#4|) -3309 (|has| |#4| (-160)) (|has| |#4| (-341))))
-(((|#3|) -3309 (|has| |#3| (-160)) (|has| |#3| (-341))))
-((((-797)) . T))
-(((|#1|) . T))
-(-3309 (|has| |#2| (-429)) (|has| |#2| (-843)))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-843)))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-843)))
-((($ $) . T) ((#0=(-1090) $) |has| |#1| (-213)) ((#0# |#1|) |has| |#1| (-213)) ((#1=(-760 (-1090)) |#1|) . T) ((#1# $) . T))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-843)))
+(((|#1| (-1072 |#1|)) |has| |#1| (-787)))
+(|has| |#1| (-1020))
+(((|#1|) . T))
+(-12 (|has| |#1| (-341)) (|has| |#2| (-1067)))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(|has| |#1| (-1020))
+(((|#2|) . T))
+((((-501)) |has| |#2| (-567 (-501))) (((-827 (-357))) |has| |#2| (-567 (-827 (-357)))) (((-827 (-525))) |has| |#2| (-567 (-827 (-525)))))
+(((|#4|) -3279 (|has| |#4| (-160)) (|has| |#4| (-341))))
+(((|#3|) -3279 (|has| |#3| (-160)) (|has| |#3| (-341))))
+((((-798)) . T))
+(((|#1|) . T))
+(-3279 (|has| |#2| (-429)) (|has| |#2| (-844)))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-844)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-844)))
+((($ $) . T) ((#0=(-1091) $) |has| |#1| (-213)) ((#0# |#1|) |has| |#1| (-213)) ((#1=(-760 (-1091)) |#1|) . T) ((#1# $) . T))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-844)))
((((-525) |#2|) . T))
-((((-797)) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-((($) -3309 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976))) ((|#3|) -3309 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-976))))
+((((-798)) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+((($) -3279 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977))) ((|#3|) -3279 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))))
((((-525) |#1|) . T))
(|has| (-385 |#2|) (-138))
(|has| (-385 |#2|) (-136))
@@ -683,50 +683,50 @@
(|has| |#1| (-37 (-385 (-525))))
(((|#1|) . T))
(((|#2|) . T) (($) . T) (((-385 (-525))) . T))
-((((-797)) . T))
+((((-798)) . T))
(|has| |#1| (-517))
(|has| |#1| (-517))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-((((-797)) . T))
-((((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+((((-798)) . T))
+((((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) . T))
(|has| |#1| (-37 (-385 (-525))))
-((((-366) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) . T))
+((((-366) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) . T))
(|has| |#1| (-37 (-385 (-525))))
-(|has| |#2| (-1066))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(|has| |#2| (-1067))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-517)))
(((|#1|) . T))
-((((-366) (-1073)) . T))
+((((-366) (-1074)) . T))
(|has| |#1| (-517))
((((-112 |#1|)) . T))
((((-125)) . T))
((((-525) |#1|) . T))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(((|#2|) . T))
-((((-797)) . T))
+((((-798)) . T))
((((-761 |#1|)) . T))
(((|#2|) |has| |#2| (-160)))
-((((-1090) (-51)) . T))
+((((-1091) (-51)) . T))
(((|#1|) . T))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-517))
(((|#1|) |has| |#1| (-160)))
-((((-797)) . T))
+((((-798)) . T))
((((-501)) |has| |#1| (-567 (-501))))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(((|#2|) |has| |#2| (-288 |#2|)))
(((#0=(-525) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(((|#1| (-1086 |#1|)) . T))
+(((|#1| (-1087 |#1|)) . T))
(|has| $ (-138))
(((|#2|) . T))
(((#0=(-525) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T))
((($) . T) (((-525)) . T) (((-385 (-525))) . T))
(|has| |#2| (-346))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
@@ -734,94 +734,94 @@
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
((((-525)) . T) (((-385 (-525))) . T) (($) . T))
-((((-1088 |#1| |#2| |#3|) $) -12 (|has| (-1088 |#1| |#2| |#3|) (-265 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341))) (($ $) . T))
-((((-797)) . T))
-((((-797)) . T))
-((($) . T) (((-385 (-525))) -3309 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
+((((-1089 |#1| |#2| |#3|) $) -12 (|has| (-1089 |#1| |#2| |#3|) (-265 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|))) (|has| |#1| (-341))) (($ $) . T))
+((((-798)) . T))
+((((-798)) . T))
+((($) . T) (((-385 (-525))) -3279 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
((((-501)) |has| |#1| (-567 (-501))))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
((($ $) . T))
((($ $) . T))
-((((-797)) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((#0=(-1164 |#1| |#2| |#3|) #0#) -12 (|has| (-1164 |#1| |#2| |#3|) (-288 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341))) (((-1090) #0#) -12 (|has| (-1164 |#1| |#2| |#3|) (-486 (-1090) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341))))
-(-12 (|has| |#1| (-1019)) (|has| |#2| (-1019)))
+((((-798)) . T))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((#0=(-1165 |#1| |#2| |#3|) #0#) -12 (|has| (-1165 |#1| |#2| |#3|) (-288 (-1165 |#1| |#2| |#3|))) (|has| |#1| (-341))) (((-1091) #0#) -12 (|has| (-1165 |#1| |#2| |#3|) (-486 (-1091) (-1165 |#1| |#2| |#3|))) (|has| |#1| (-341))))
+(-12 (|has| |#1| (-1020)) (|has| |#2| (-1020)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) -3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
((((-385 (-525))) . T) (((-525)) . T))
((((-525) (-135)) . T))
((((-135)) . T))
(((|#1|) . T))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-976)))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
((((-108)) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
((((-108)) . T))
(((|#1|) . T))
-((((-501)) |has| |#1| (-567 (-501))) (((-205)) . #0=(|has| |#1| (-952))) (((-357)) . #0#))
-((((-797)) . T))
+((((-501)) |has| |#1| (-567 (-501))) (((-205)) . #0=(|has| |#1| (-953))) (((-357)) . #0#))
+((((-798)) . T))
(|has| |#1| (-762))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(|has| |#1| (-789))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-517)))
(|has| |#1| (-517))
-(|has| |#1| (-843))
-(((|#1|) . T))
-(|has| |#1| (-1019))
-((((-797)) . T))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-517)))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-(((|#1| (-1172 |#1|) (-1172 |#1|)) . T))
+(|has| |#1| (-844))
+(((|#1|) . T))
+(|has| |#1| (-1020))
+((((-798)) . T))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-517)))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+(((|#1| (-1173 |#1|) (-1173 |#1|)) . T))
((((-525) (-135)) . T))
((($) . T))
-(-3309 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-976)))
-(-3309 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976)))
-((((-797)) . T))
-(|has| |#1| (-1019))
-(((|#1| (-903)) . T))
+(-3279 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-977)))
+(-3279 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+((((-798)) . T))
+(|has| |#1| (-1020))
+(((|#1| (-904)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-3309 (|has| |#2| (-735)) (|has| |#2| (-787)))
-(-3309 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-3279 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-3279 (|has| |#2| (-735)) (|has| |#2| (-787)))
(-12 (|has| |#1| (-450)) (|has| |#2| (-450)))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976)))
-(-3309 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-3279 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))
(((|#1|) . T))
(|has| |#2| (-735))
-(-3309 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-3279 (|has| |#2| (-735)) (|has| |#2| (-787)))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(|has| |#2| (-787))
(-12 (|has| |#1| (-735)) (|has| |#2| (-735)))
(-12 (|has| |#1| (-735)) (|has| |#2| (-735)))
(((|#1| |#2|) . T))
(((|#2|) |has| |#2| (-160)))
(((|#1|) |has| |#1| (-160)))
-((((-797)) . T))
+((((-798)) . T))
(|has| |#1| (-327))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-385 (-525))) . T) (($) . T))
-((($) . T) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) . T))
+((($) . T) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) . T))
(|has| |#1| (-770))
-((((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T))
-(|has| |#1| (-1019))
+((((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) (((-525)) |has| |#1| (-968 (-525))) ((|#1|) . T))
+(|has| |#1| (-1020))
(((|#1| $) |has| |#1| (-265 |#1| |#1|)))
((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517)))
((($) |has| |#1| (-517)))
-(((|#4|) |has| |#4| (-1019)))
-(((|#3|) |has| |#3| (-1019)))
+(((|#4|) |has| |#4| (-1020)))
+(((|#3|) |has| |#3| (-1020)))
(|has| |#3| (-346))
-(((|#1|) . T) (((-797)) . T))
-((((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3309 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
-(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3309 (|has| |#1| (-341)) (|has| |#1| (-517))))
-((((-797)) . T))
+(((|#1|) . T) (((-798)) . T))
+((((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3279 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1165 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
+(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3279 (|has| |#1| (-341)) (|has| |#1| (-517))))
+((((-798)) . T))
((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#2|) . T))
(((|#1| |#1|) |has| |#1| (-160)))
@@ -830,69 +830,69 @@
(((|#1|) . T))
(((|#1|) |has| |#1| (-160)))
((((-385 (-525))) . T) (((-525)) . T))
-((($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
-((($) -3309 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))
+((($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+((($) -3279 (|has| |#1| (-160)) (|has| |#1| (-517))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
((((-135)) . T))
(((|#1|) . T))
((((-135)) . T))
-((($) -3309 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976))) ((|#2|) -3309 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976))))
+((($) -3279 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977))) ((|#2|) -3279 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))))
((((-135)) . T))
(((|#1| |#2| |#3|) . T))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-976)))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
(|has| $ (-138))
(|has| $ (-138))
-(|has| |#1| (-1019))
-((((-797)) . T))
+(|has| |#1| (-1020))
+((((-798)) . T))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-450)) (|has| |#1| (-517)) (|has| |#1| (-976)) (|has| |#1| (-1031)))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-450)) (|has| |#1| (-517)) (|has| |#1| (-977)) (|has| |#1| (-1032)))
((($ $) |has| |#1| (-265 $ $)) ((|#1| $) |has| |#1| (-265 |#1| |#1|)))
(((|#1| (-385 (-525))) . T))
(((|#1|) . T))
-((((-1090)) . T))
+((((-1091)) . T))
(|has| |#1| (-517))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-517)))
(|has| |#1| (-517))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
-((((-797)) . T))
+((((-798)) . T))
(|has| |#2| (-136))
(|has| |#2| (-138))
(((|#2|) . T) (($) . T))
(|has| |#1| (-138))
(|has| |#1| (-136))
(|has| |#4| (-787))
-(((|#2| (-220 (-4140 |#1|) (-713)) (-799 |#1|)) . T))
+(((|#2| (-220 (-3596 |#1|) (-713)) (-800 |#1|)) . T))
(|has| |#3| (-787))
(((|#1| (-497 |#3|) |#3|) . T))
(|has| |#1| (-138))
(|has| |#1| (-136))
(((#0=(-385 (-525)) #0#) |has| |#2| (-341)) (($ $) . T))
-((((-804 |#1|)) . T))
+((((-805 |#1|)) . T))
(|has| |#1| (-138))
(|has| |#1| (-346))
(|has| |#1| (-346))
(|has| |#1| (-346))
(|has| |#1| (-136))
((((-385 (-525))) |has| |#2| (-341)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(-3309 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))
-(-3309 (|has| |#1| (-327)) (|has| |#1| (-346)))
-((((-1057 |#2| |#1|)) . T) ((|#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(-3279 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-3279 (|has| |#1| (-327)) (|has| |#1| (-346)))
+((((-1058 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-160))
(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-213)) (|has| |#2| (-976)))
-(((|#2|) . T) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-(-3309 (|has| |#3| (-735)) (|has| |#3| (-787)))
-(-3309 (|has| |#3| (-735)) (|has| |#3| (-787)))
-((((-797)) . T))
+(-12 (|has| |#2| (-213)) (|has| |#2| (-977)))
+(((|#2|) . T) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+(-3279 (|has| |#3| (-735)) (|has| |#3| (-787)))
+(-3279 (|has| |#3| (-735)) (|has| |#3| (-787)))
+((((-798)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
(((|#1|) . T) (($) . T))
((((-641)) . T))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976)))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(|has| |#1| (-517))
(((|#1|) . T))
(((|#1|) . T))
@@ -900,52 +900,52 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1090) (-51)) . T))
-((((-797)) . T))
-((((-501)) . T) (((-826 (-525))) . T) (((-357)) . T) (((-205)) . T))
+((((-1091) (-51)) . T))
+((((-798)) . T))
+((((-501)) . T) (((-827 (-525))) . T) (((-357)) . T) (((-205)) . T))
(((|#1|) . T))
-((((-797)) . T))
-((((-501)) . T) (((-826 (-525))) . T) (((-357)) . T) (((-205)) . T))
+((((-798)) . T))
+((((-501)) . T) (((-827 (-525))) . T) (((-357)) . T) (((-205)) . T))
(((|#1| (-525)) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1| (-385 (-525))) . T))
(((|#3|) . T) (((-565 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
((($ $) . T) ((|#2| $) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
-(((#0=(-1088 |#1| |#2| |#3|) #0#) -12 (|has| (-1088 |#1| |#2| |#3|) (-288 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341))) (((-1090) #0#) -12 (|has| (-1088 |#1| |#2| |#3|) (-486 (-1090) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341))))
+(((#0=(-1089 |#1| |#2| |#3|) #0#) -12 (|has| (-1089 |#1| |#2| |#3|) (-288 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-341))) (((-1091) #0#) -12 (|has| (-1089 |#1| |#2| |#3|) (-486 (-1091) (-1089 |#1| |#2| |#3|))) (|has| |#1| (-341))))
((((-525)) . T) (($) . T) (((-385 (-525))) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) (((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) |has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))))
-((((-797)) . T))
+(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) (((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) |has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))))
+((((-798)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T))
-((((-1090) (-51)) . T))
+((((-1091) (-51)) . T))
(((|#3|) . T))
-((($ $) . T) ((#0=(-799 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((#0=(-800 |#1|) $) . T) ((#0# |#2|) . T))
(|has| |#1| (-770))
-(|has| |#1| (-1019))
-(((|#2| |#2|) -3309 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976))) (($ $) |has| |#2| (-160)))
-(((|#2|) -3309 (|has| |#2| (-160)) (|has| |#2| (-341))))
-((((-525) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -3309 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976))) (($) |has| |#2| (-160)))
+(|has| |#1| (-1020))
+(((|#2| |#2|) -3279 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($ $) |has| |#2| (-160)))
+(((|#2|) -3279 (|has| |#2| (-160)) (|has| |#2| (-341))))
+((((-525) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -3279 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($) |has| |#2| (-160)))
((((-713)) . T))
((((-525)) . T))
(|has| |#1| (-517))
-((((-797)) . T))
-(((|#1| (-385 (-525)) (-1004)) . T))
+((((-798)) . T))
+(((|#1| (-385 (-525)) (-1005)) . T))
(|has| |#1| (-136))
(((|#1|) . T))
(|has| |#1| (-517))
@@ -953,146 +953,146 @@
((((-112 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-138))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-517)))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-517)))
-((((-826 (-525))) . T) (((-826 (-357))) . T) (((-501)) . T) (((-1090)) . T))
-((((-797)) . T))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
-((($) . T))
-((((-797)) . T))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-517)))
+((((-827 (-525))) . T) (((-827 (-357))) . T) (((-501)) . T) (((-1091)) . T))
+((((-798)) . T))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+((($) . T))
+((((-798)) . T))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
(((|#2|) |has| |#2| (-160)))
-((($) -3309 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))) ((|#2|) |has| |#2| (-160)) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))))
-((((-804 |#1|)) . T))
-(-3309 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019)))
-(-12 (|has| |#3| (-213)) (|has| |#3| (-976)))
-(|has| |#2| (-1066))
-(((#0=(-51)) . T) (((-2 (|:| -3946 (-1090)) (|:| -2511 #0#))) . T))
+((($) -3279 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))) ((|#2|) |has| |#2| (-160)) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))))
+((((-805 |#1|)) . T))
+(-3279 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
+(-12 (|has| |#3| (-213)) (|has| |#3| (-977)))
+(|has| |#2| (-1067))
+(((#0=(-51)) . T) (((-2 (|:| -3423 (-1091)) (|:| -2544 #0#))) . T))
(((|#1| |#2|) . T))
-(-3309 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976)))
-(((|#1| (-525) (-1004)) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#1| (-385 (-525)) (-1004)) . T))
-((($) -3309 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517))) (((-385 (-525))) -3309 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
+(-3279 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+(((|#1| (-525) (-1005)) . T))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#1| (-385 (-525)) (-1005)) . T))
+((($) -3279 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517))) (((-385 (-525))) -3279 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
((((-525) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#2| (-346))
(-12 (|has| |#1| (-346)) (|has| |#2| (-346)))
-((((-797)) . T))
-((((-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|)))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))
+((((-798)) . T))
+((((-1091) |#1|) |has| |#1| (-486 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|)))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))
(((|#1|) . T))
((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517)))
-((((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3309 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
-(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3309 (|has| |#1| (-341)) (|has| |#1| (-517))))
+((((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3279 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
+(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3279 (|has| |#1| (-341)) (|has| |#1| (-517))))
((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((((-797)) . T))
+((((-798)) . T))
(|has| |#1| (-327))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((#0=(-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) #0#) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) #0#) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))))
(|has| |#1| (-517))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-((((-797)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+((((-798)) . T))
(((|#1| |#2|) . T))
-(-3309 (|has| |#2| (-429)) (|has| |#2| (-843)))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-843)))
+(-3279 (|has| |#2| (-429)) (|has| |#2| (-844)))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-844)))
((((-385 (-525))) . T) (((-525)) . T))
((((-525)) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3309 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3279 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
((($) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#1|) . T))
-((((-804 |#1|)) . T) (($) . T) (((-385 (-525))) . T))
-((((-797)) . T))
-(((|#3| |#3|) -3309 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-976))) (($ $) |has| |#3| (-160)))
-(|has| |#1| (-952))
-((((-797)) . T))
-(((|#3|) -3309 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-976))) (($) |has| |#3| (-160)))
+((((-805 |#1|)) . T) (($) . T) (((-385 (-525))) . T))
+((((-798)) . T))
+(((|#3| |#3|) -3279 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))) (($ $) |has| |#3| (-160)))
+(|has| |#1| (-953))
+((((-798)) . T))
+(((|#3|) -3279 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))) (($) |has| |#3| (-160)))
((((-525) (-108)) . T))
(((|#1|) |has| |#1| (-288 |#1|)))
(|has| |#1| (-346))
(|has| |#1| (-346))
(|has| |#1| (-346))
-((((-1090) $) |has| |#1| (-486 (-1090) $)) (($ $) |has| |#1| (-288 $)) ((|#1| |#1|) |has| |#1| (-288 |#1|)) (((-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)))
-((((-1090)) |has| |#1| (-834 (-1090))))
-(-3309 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))
-((((-366) (-1037)) . T))
+((((-1091) $) |has| |#1| (-486 (-1091) $)) (($ $) |has| |#1| (-288 $)) ((|#1| |#1|) |has| |#1| (-288 |#1|)) (((-1091) |#1|) |has| |#1| (-486 (-1091) |#1|)))
+((((-1091)) |has| |#1| (-835 (-1091))))
+(-3279 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))
+((((-366) (-1038)) . T))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
((((-366) |#1|) . T))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-327)))
-(|has| |#1| (-1019))
-((((-797)) . T))
-((((-797)) . T))
-((((-844 |#1|)) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3309 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-327)))
+(|has| |#1| (-1020))
+((((-798)) . T))
+((((-798)) . T))
+((((-845 |#1|)) . T))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3279 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
(((|#1| |#2|) . T))
((($) . T))
(((|#1| |#1|) . T))
-(((#0=(-804 |#1|)) |has| #0# (-288 #0#)))
+(((#0=(-805 |#1|)) |has| #0# (-288 #0#)))
(((|#1| |#2|) . T))
-(-3309 (|has| |#2| (-735)) (|has| |#2| (-787)))
-(-3309 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-3279 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-3279 (|has| |#2| (-735)) (|has| |#2| (-787)))
(-12 (|has| |#1| (-735)) (|has| |#2| (-735)))
(((|#1|) . T))
(-12 (|has| |#1| (-735)) (|has| |#2| (-735)))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976)))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-(|has| |#1| (-1112))
+(((|#2|) . T) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+(|has| |#1| (-1113))
(((#0=(-525) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T))
((((-385 (-525))) . T) (($) . T))
-(((|#4|) |has| |#4| (-976)))
-(((|#3|) |has| |#3| (-976)))
+(((|#4|) |has| |#4| (-977)))
+(((|#3|) |has| |#3| (-977)))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-385 (-525)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-385 (-525)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-385 (-525)) #0#) . T))
(|has| |#1| (-341))
((((-525)) . T) (((-385 (-525))) . T) (($) . T))
-((($ $) . T) ((#0=(-385 (-525)) #0#) -3309 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1| |#1|) . T))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
+((($ $) . T) ((#0=(-385 (-525)) #0#) -3279 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1| |#1|) . T))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(((|#1|) . T) (($) . T) (((-385 (-525))) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
(((|#1|) . T) (($) . T) (((-385 (-525))) . T))
(((|#1|) . T) (($) . T) (((-385 (-525))) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-525) |#3|) . T))
-((((-797)) . T))
+((((-798)) . T))
((((-501)) |has| |#3| (-567 (-501))))
-((((-632 |#3|)) . T) (((-797)) . T))
+((((-632 |#3|)) . T) (((-798)) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-787))
(|has| |#1| (-787))
-((($) . T) (((-385 (-525))) -3309 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-517)))
-(((#0=(-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) #0#) |has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))))
+((($) . T) (((-385 (-525))) -3279 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-517)))
+(((#0=(-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) #0#) |has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))))
((($) . T))
(|has| |#2| (-789))
((($) . T))
-(((|#2|) |has| |#2| (-1019)))
-((((-797)) -3309 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-566 (-797))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019))) (((-1172 |#2|)) . T))
+(((|#2|) |has| |#2| (-1020)))
+((((-798)) -3279 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-566 (-798))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020))) (((-1173 |#2|)) . T))
(|has| |#1| (-789))
(|has| |#1| (-789))
-((((-1073) (-51)) . T))
+((((-1074) (-51)) . T))
(|has| |#1| (-789))
-((((-797)) . T))
+((((-798)) . T))
((((-525)) |has| #0=(-385 |#2|) (-588 (-525))) ((#0#) . T))
((((-525) (-135)) . T))
-((((-525) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T) ((|#1| |#2|) . T))
+((((-525) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T) ((|#1| |#2|) . T))
((((-385 (-525))) . T) (($) . T))
(((|#1|) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-((((-797)) . T))
-((((-844 |#1|)) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+((((-798)) . T))
+((((-845 |#1|)) . T))
(|has| |#1| (-341))
(|has| |#1| (-341))
(|has| |#1| (-341))
@@ -1102,106 +1102,106 @@
(|has| |#1| (-787))
(((|#1|) . T) (($) . T))
(|has| |#1| (-787))
-((((-1090)) |has| |#1| (-834 (-1090))))
-(((|#1| (-1090)) . T))
-(((|#1| (-1172 |#1|) (-1172 |#1|)) . T))
+((((-1091)) |has| |#1| (-835 (-1091))))
+(((|#1| (-1091)) . T))
+(((|#1| (-1173 |#1|) (-1173 |#1|)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-(|has| |#1| (-1019))
-(((|#1| (-1090) (-760 (-1090)) (-497 (-760 (-1090)))) . T))
-((((-385 (-886 |#1|))) . T))
+(|has| |#1| (-1020))
+(((|#1| (-1091) (-760 (-1091)) (-497 (-760 (-1091)))) . T))
+((((-385 (-887 |#1|))) . T))
((((-501)) . T))
-((((-797)) . T))
+((((-798)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
(((|#1|) |has| |#1| (-160)))
-((((-525) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T) ((|#1| |#2|) . T))
+((((-525) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-160)))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))))
-((($) -3309 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) -3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))))
+((($) -3279 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#1|) . T))
(((|#1|) . T))
-((((-501)) |has| |#1| (-567 (-501))) (((-826 (-357))) |has| |#1| (-567 (-826 (-357)))) (((-826 (-525))) |has| |#1| (-567 (-826 (-525)))))
-((((-797)) . T))
-(((|#2|) . T) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+((((-501)) |has| |#1| (-567 (-501))) (((-827 (-357))) |has| |#1| (-567 (-827 (-357)))) (((-827 (-525))) |has| |#1| (-567 (-827 (-525)))))
+((((-798)) . T))
+(((|#2|) . T) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
(|has| |#2| (-787))
-(-12 (|has| |#2| (-213)) (|has| |#2| (-976)))
+(-12 (|has| |#2| (-213)) (|has| |#2| (-977)))
(|has| |#1| (-517))
-(|has| |#1| (-1066))
-((((-1073) |#1|) . T))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976)))
-(((#0=(-385 (-525)) #0#) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1| |#1|) . T))
-((((-385 (-525))) |has| |#1| (-967 (-525))) (((-525)) |has| |#1| (-967 (-525))) (((-1090)) |has| |#1| (-967 (-1090))) ((|#1|) . T))
+(|has| |#1| (-1067))
+((((-1074) |#1|) . T))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(((#0=(-385 (-525)) #0#) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1| |#1|) . T))
+((((-385 (-525))) |has| |#1| (-968 (-525))) (((-525)) |has| |#1| (-968 (-525))) (((-1091)) |has| |#1| (-968 (-1091))) ((|#1|) . T))
((((-525) |#2|) . T))
-((((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T))
-((((-525)) |has| |#1| (-820 (-525))) (((-357)) |has| |#1| (-820 (-357))))
-((((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1|) . T))
+((((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) (((-525)) |has| |#1| (-968 (-525))) ((|#1|) . T))
+((((-525)) |has| |#1| (-821 (-525))) (((-357)) |has| |#1| (-821 (-357))))
+((((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1|) . T))
(((|#1|) . T))
-((((-592 |#4|)) . T) (((-797)) . T))
+((((-592 |#4|)) . T) (((-798)) . T))
((((-501)) |has| |#4| (-567 (-501))))
((((-501)) |has| |#4| (-567 (-501))))
-((((-797)) . T) (((-592 |#4|)) . T))
+((((-798)) . T) (((-592 |#4|)) . T))
((($) |has| |#1| (-787)))
(((|#1|) . T))
-((((-592 |#4|)) . T) (((-797)) . T))
+((((-592 |#4|)) . T) (((-798)) . T))
((((-501)) |has| |#4| (-567 (-501))))
(((|#1|) . T))
(((|#2|) . T))
-((((-1090)) |has| (-385 |#2|) (-834 (-1090))))
-(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((#0=(-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) #0#) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))))
+((((-1091)) |has| (-385 |#2|) (-835 (-1091))))
+(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) #0#) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))))
((($) . T))
((($) . T))
(((|#2|) . T))
-((((-797)) -3309 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-566 (-797))) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-976)) (|has| |#3| (-1019))) (((-1172 |#3|)) . T))
+((((-798)) -3279 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-566 (-798))) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-669)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)) (|has| |#3| (-1020))) (((-1173 |#3|)) . T))
((((-525) |#2|) . T))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
-(((|#2| |#2|) -3309 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976))) (($ $) |has| |#2| (-160)))
-((((-797)) . T))
-((((-797)) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T) ((|#2|) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-1073) (-1090) (-525) (-205) (-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-(|has| |#1| (-37 (-385 (-525))))
-(|has| |#1| (-37 (-385 (-525))))
-((((-797)) . T))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(((|#2| |#2|) -3279 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($ $) |has| |#2| (-160)))
+((((-798)) . T))
+((((-798)) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T) ((|#2|) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-1074) (-1091) (-525) (-205) (-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+(|has| |#1| (-37 (-385 (-525))))
+(|has| |#1| (-37 (-385 (-525))))
+((((-798)) . T))
((((-525) (-108)) . T))
(((|#1|) . T))
-((((-797)) . T))
+((((-798)) . T))
((((-108)) . T))
((((-108)) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
((((-108)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
-((((-797)) . T))
+((((-798)) . T))
((((-501)) |has| |#1| (-567 (-501))))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
-(((|#2|) -3309 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-976))) (($) |has| |#2| (-160)))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+(((|#2|) -3279 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-977))) (($) |has| |#2| (-160)))
(|has| $ (-138))
((((-385 |#2|)) . T))
-((((-385 (-525))) |has| #0=(-385 |#2|) (-967 (-385 (-525)))) (((-525)) |has| #0# (-967 (-525))) ((#0#) . T))
+((((-385 (-525))) |has| #0=(-385 |#2|) (-968 (-385 (-525)))) (((-525)) |has| #0# (-968 (-525))) ((#0#) . T))
(((|#2| |#2|) . T))
(((|#4|) |has| |#4| (-160)))
(|has| |#2| (-136))
@@ -1209,19 +1209,19 @@
(((|#3|) |has| |#3| (-160)))
(|has| |#1| (-138))
(|has| |#1| (-136))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))
(|has| |#1| (-138))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))
(|has| |#1| (-138))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))
(|has| |#1| (-138))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-213))
-((((-1090) (-51)) . T))
-((((-797)) . T))
+((((-1091) (-51)) . T))
+((((-798)) . T))
(((|#1| |#1|) . T))
-((((-1090)) |has| |#2| (-834 (-1090))))
+((((-1091)) |has| |#2| (-835 (-1091))))
((((-525) (-108)) . T))
(|has| |#1| (-517))
(((|#2|) . T))
@@ -1236,144 +1236,144 @@
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
(((|#1|) . T))
-((((-797)) . T))
-((((-501)) . T) (((-826 (-525))) . T) (((-357)) . T) (((-205)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-930 |#1|)) . T) ((|#1|) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+((((-798)) . T))
+((((-501)) . T) (((-827 (-525))) . T) (((-357)) . T) (((-205)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-931 |#1|)) . T) ((|#1|) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
((((-385 (-525))) . T) (((-385 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1086 |#1|)) . T))
+(((|#1| (-1087 |#1|)) . T))
((((-525)) . T) (($) . T) (((-385 (-525))) . T))
(((|#3|) . T) (($) . T))
(|has| |#1| (-789))
(((|#2|) . T))
((((-525)) . T) (($) . T) (((-385 (-525))) . T))
-((((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) . T))
+((((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) . T))
((((-525) |#2|) . T))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(((|#2|) . T))
((((-525) |#3|) . T))
(((|#2|) . T))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
-((((-1164 |#1| |#2| |#3|)) |has| |#1| (-341)))
+((((-1165 |#1| |#2| |#3|)) |has| |#1| (-341)))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
-((((-797)) . T))
-(|has| |#1| (-1019))
-(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))
-(((|#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))))
+((((-798)) . T))
+(|has| |#1| (-1020))
+(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
+(((|#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))
(((|#2|) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((#0=(-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) #0#) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) #0#) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))))
(((|#2| |#2|) . T))
(|has| |#2| (-341))
-(((|#2|) . T) (((-525)) |has| |#2| (-967 (-525))) (((-385 (-525))) |has| |#2| (-967 (-385 (-525)))))
+(((|#2|) . T) (((-525)) |has| |#2| (-968 (-525))) (((-385 (-525))) |has| |#2| (-968 (-385 (-525)))))
(((|#2|) . T))
-((((-1073) (-51)) . T))
+((((-1074) (-51)) . T))
(((|#2|) |has| |#2| (-160)))
((((-525) |#3|) . T))
((((-525) (-135)) . T))
((((-135)) . T))
-((((-797)) . T))
+((((-798)) . T))
((((-108)) . T))
(|has| |#1| (-138))
(((|#1|) . T))
(|has| |#1| (-136))
((($) . T))
(|has| |#1| (-517))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
((($) . T))
(((|#1|) . T))
(((|#2|) . T) (((-525)) |has| |#2| (-588 (-525))))
-((((-797)) . T))
+((((-798)) . T))
((((-525)) |has| |#1| (-588 (-525))) ((|#1|) . T))
((((-525)) |has| |#1| (-588 (-525))) ((|#1|) . T))
((((-525)) |has| |#1| (-588 (-525))) ((|#1|) . T))
-((((-1073) (-51)) . T))
+((((-1074) (-51)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1| |#2|) . T))
((((-525) (-135)) . T))
-(((#0=(-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) #0#) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))
-((($) -3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+(((#0=(-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) #0#) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
+((($) -3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(|has| |#1| (-789))
-(((|#2| (-713) (-1004)) . T))
+(((|#2| (-713) (-1005)) . T))
(((|#1| |#2|) . T))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-517)))
(|has| |#1| (-733))
(((|#1|) |has| |#1| (-160)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-3309 (|has| |#1| (-138)) (-12 (|has| |#1| (-341)) (|has| |#2| (-138))))
-(-3309 (|has| |#1| (-136)) (-12 (|has| |#1| (-341)) (|has| |#2| (-136))))
+(-3279 (|has| |#1| (-138)) (-12 (|has| |#1| (-341)) (|has| |#2| (-138))))
+(-3279 (|has| |#1| (-136)) (-12 (|has| |#1| (-341)) (|has| |#2| (-136))))
(((|#4|) . T))
(|has| |#1| (-136))
-((((-1073) |#1|) . T))
+((((-1074) |#1|) . T))
(|has| |#1| (-138))
(((|#1|) . T))
((((-525)) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#1| |#2|) . T))
-((((-797)) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+((((-798)) . T))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#3|) . T))
-((((-1164 |#1| |#2| |#3|)) |has| |#1| (-341)))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
+((((-1165 |#1| |#2| |#3|)) |has| |#1| (-341)))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(((|#1|) . T))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))) (((-891 |#1|)) . T))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))) (((-892 |#1|)) . T))
(|has| |#1| (-787))
(|has| |#1| (-787))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(|has| |#2| (-341))
(((|#1|) |has| |#1| (-160)))
-(((|#2|) |has| |#2| (-976)))
-((((-1073) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))))
-(((|#2| (-827 |#1|)) . T))
+(((|#2|) |has| |#2| (-977)))
+((((-1074) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))
+(((|#2| (-828 |#1|)) . T))
((($) . T))
-((((-366) (-1073)) . T))
+((((-366) (-1074)) . T))
((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((((-797)) -3309 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-566 (-797))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019))) (((-1172 |#2|)) . T))
-(((#0=(-51)) . T) (((-2 (|:| -3946 (-1073)) (|:| -2511 #0#))) . T))
+((((-798)) -3279 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-566 (-798))) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020))) (((-1173 |#2|)) . T))
+(((#0=(-51)) . T) (((-2 (|:| -3423 (-1074)) (|:| -2544 #0#))) . T))
(((|#1|) . T))
-((((-797)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))
+((((-798)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
((((-135)) . T))
(|has| |#2| (-136))
(|has| |#2| (-138))
(|has| |#1| (-450))
-(-3309 (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976)))
+(-3279 (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-835 (-1091))) (|has| |#1| (-977)))
(|has| |#1| (-341))
-((((-797)) . T))
+((((-798)) . T))
(|has| |#1| (-37 (-385 (-525))))
((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517)))
((($) |has| |#1| (-517)))
(|has| |#1| (-787))
(|has| |#1| (-787))
-((((-797)) . T))
-((((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3309 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1164 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
-(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3309 (|has| |#1| (-341)) (|has| |#1| (-517))))
+((((-798)) . T))
+((((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3279 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1165 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
+(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3279 (|has| |#1| (-341)) (|has| |#1| (-517))))
((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#1| |#2|) . T))
-((((-1090)) |has| |#1| (-834 (-1090))))
-((((-844 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
-((((-797)) . T))
-((((-797)) . T))
-(|has| |#1| (-1019))
-(((|#2| (-458 (-4140 |#1|) (-713)) (-799 |#1|)) . T))
+((((-1091)) |has| |#1| (-835 (-1091))))
+((((-845 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
+((((-798)) . T))
+((((-798)) . T))
+(|has| |#1| (-1020))
+(((|#2| (-458 (-3596 |#1|) (-713)) (-800 |#1|)) . T))
((((-385 (-525))) . #0=(|has| |#2| (-341))) (($) . #0#))
-(((|#1| (-497 (-1090)) (-1090)) . T))
+(((|#1| (-497 (-1091)) (-1091)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#1|) . T))
@@ -1387,45 +1387,45 @@
(|has| |#1| (-138))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-((((-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) . T))
-((((-1088 |#1| |#2| |#3|)) |has| |#1| (-341)))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-((((-1090) (-51)) . T))
+(((|#1|) . T) (((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+((((-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) . T))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-341)))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+((((-1091) (-51)) . T))
((($ $) . T))
(((|#1| (-525)) . T))
-((((-844 |#1|)) . T))
-(((|#1|) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-976))) (($) -3309 (|has| |#1| (-834 (-1090))) (|has| |#1| (-976))))
-(((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))))
+((((-845 |#1|)) . T))
+(((|#1|) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-977))) (($) -3279 (|has| |#1| (-835 (-1091))) (|has| |#1| (-977))))
+(((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))))
(|has| |#1| (-789))
(|has| |#1| (-789))
((((-525) |#2|) . T))
((((-525)) . T))
-((((-1164 |#1| |#2| |#3|)) -12 (|has| (-1164 |#1| |#2| |#3|) (-288 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341))))
+((((-1165 |#1| |#2| |#3|)) -12 (|has| (-1165 |#1| |#2| |#3|) (-288 (-1165 |#1| |#2| |#3|))) (|has| |#1| (-341))))
(|has| |#1| (-789))
-((((-632 |#2|)) . T) (((-797)) . T))
+((((-632 |#2|)) . T) (((-798)) . T))
(((|#1| |#2|) . T))
-((((-385 (-886 |#1|))) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))
-(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))
+((((-385 (-887 |#1|))) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
+(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
(((|#1|) |has| |#1| (-160)))
-(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))
-(((|#3|) -3309 (|has| |#3| (-160)) (|has| |#3| (-341))))
+(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
+(((|#3|) -3279 (|has| |#3| (-160)) (|has| |#3| (-341))))
(|has| |#2| (-789))
(|has| |#1| (-789))
-(-3309 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-843)))
+(-3279 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-844)))
((($ $) . T) ((#0=(-385 (-525)) #0#) . T))
((((-525) |#2|) . T))
-(((|#2|) -3309 (|has| |#2| (-160)) (|has| |#2| (-341))))
+(((|#2|) -3279 (|has| |#2| (-160)) (|has| |#2| (-341))))
(|has| |#1| (-327))
-(((|#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))))
+(((|#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))
((($) . T) (((-385 (-525))) . T))
((((-525) (-108)) . T))
(|has| |#1| (-762))
(|has| |#1| (-762))
(((|#1|) . T))
-(-3309 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-3279 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)))
(|has| |#1| (-787))
(|has| |#1| (-787))
(|has| |#1| (-787))
@@ -1434,15 +1434,15 @@
((((-525)) . T) (($) . T) (((-385 (-525))) . T))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-327)))
(|has| |#1| (-37 (-385 (-525))))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-((((-1090)) |has| |#1| (-834 (-1090))) (((-1004)) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+((((-1091)) |has| |#1| (-835 (-1091))) (((-1005)) . T))
(((|#1|) . T))
(|has| |#1| (-787))
-(((#0=(-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) #0#) |has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))))))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(|has| |#1| (-1019))
+(((#0=(-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) #0#) |has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(|has| |#1| (-1020))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
@@ -1452,14 +1452,14 @@
(((|#2|) . T))
(((|#1|) . T))
(((|#1| (-497 |#2|) |#2|) . T))
-((((-797)) . T))
-((((-713)) . T) (((-797)) . T))
-(((|#1| (-713) (-1004)) . T))
+((((-798)) . T))
+((((-713)) . T) (((-798)) . T))
+(((|#1| (-713) (-1005)) . T))
(((|#3|) . T))
(((|#1|) . T))
((((-135)) . T))
(((|#2|) |has| |#2| (-160)))
-(-3309 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019)))
+(-3279 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
(((|#1|) . T))
(|has| |#1| (-136))
(|has| |#1| (-138))
@@ -1468,65 +1468,65 @@
(((|#3|) |has| |#3| (-341)))
(((|#1|) . T))
(((|#2|) |has| |#1| (-341)))
-((((-797)) . T))
+((((-798)) . T))
(((|#2|) . T))
-(((|#1| (-1086 |#1|)) . T))
-((((-1004)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))))
+(((|#1| (-1087 |#1|)) . T))
+((((-1005)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))))
((($) . T) ((|#1|) . T) (((-385 (-525))) . T))
(((|#2|) . T))
-((((-1088 |#1| |#2| |#3|)) |has| |#1| (-341)))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-341)))
((($) |has| |#1| (-787)))
-(|has| |#1| (-843))
-((((-797)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+(|has| |#1| (-844))
+((((-798)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((#0=(-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) #0#) |has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))))
-(-3309 (|has| |#2| (-429)) (|has| |#2| (-843)))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-843)))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((#0=(-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) #0#) |has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))))
+(-3279 (|has| |#2| (-429)) (|has| |#2| (-844)))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-844)))
(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))
+(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -3309 (|has| |#3| (-160)) (|has| |#3| (-341))))
+(((|#3|) -3279 (|has| |#3| (-160)) (|has| |#3| (-341))))
(|has| |#1| (-789))
(|has| |#1| (-517))
((((-538 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-3309 (-12 (|has| |#1| (-341)) (|has| |#2| (-762))) (-12 (|has| |#1| (-341)) (|has| |#2| (-789))))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-517)))
-((((-844 |#1|)) . T))
+(-3279 (-12 (|has| |#1| (-341)) (|has| |#2| (-762))) (-12 (|has| |#1| (-341)) (|has| |#2| (-789))))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-517)))
+((((-845 |#1|)) . T))
(((|#1| (-469 |#1| |#3|) (-469 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
(((|#1| (-713)) . T))
((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517)))
-((((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3309 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1088 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
-(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3309 (|has| |#1| (-341)) (|has| |#1| (-517))))
+((((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3279 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-1089 |#1| |#2| |#3|)) |has| |#1| (-341)) ((|#1|) |has| |#1| (-160)))
+(((|#1|) |has| |#1| (-160)) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3279 (|has| |#1| (-341)) (|has| |#1| (-517))))
((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((((-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) . T))
+((((-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) . T))
((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T))
((((-617 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
((((-501)) . T))
-((((-797)) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-((((-797)) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3309 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-(((|#2|) . T))
-(-3309 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-976)) (|has| |#3| (-1019)))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976)))
-((((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T))
-(|has| |#1| (-1112))
-(|has| |#1| (-1112))
-(-3309 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019)))
-(|has| |#1| (-1112))
-(|has| |#1| (-1112))
+((((-798)) . T))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+((((-798)) . T))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3279 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+(((|#2|) . T))
+(-3279 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-669)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)) (|has| |#3| (-1020)))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+((((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) (((-525)) |has| |#1| (-968 (-525))) ((|#1|) . T))
+(|has| |#1| (-1113))
+(|has| |#1| (-1113))
+(-3279 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
+(|has| |#1| (-1113))
+(|has| |#1| (-1113))
(((|#3| |#3|) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
((($ $) . T) ((#0=(-385 (-525)) #0#) . T) ((#1=(-385 |#1|) #1#) . T) ((|#1| |#1|) . T))
@@ -1535,45 +1535,45 @@
((($) . T) (((-385 (-525))) . T) (((-385 |#1|)) . T) ((|#1|) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
-((((-1073) (-51)) . T))
-(|has| |#1| (-1019))
-(-3309 (|has| |#2| (-762)) (|has| |#2| (-789)))
+((((-1074) (-51)) . T))
+(|has| |#1| (-1020))
+(-3279 (|has| |#2| (-762)) (|has| |#2| (-789)))
(((|#1|) . T))
-((($) -3309 (|has| |#1| (-341)) (|has| |#1| (-327))) (((-385 (-525))) -3309 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
+((($) -3279 (|has| |#1| (-341)) (|has| |#1| (-327))) (((-385 (-525))) -3279 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
(((|#1|) |has| |#1| (-160)) (($) . T))
((($) . T))
-((((-1088 |#1| |#2| |#3|)) -12 (|has| (-1088 |#1| |#2| |#3|) (-288 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341))))
-((((-797)) . T))
-(-3309 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))
+((((-1089 |#1| |#2| |#3|)) -12 (|has| (-1089 |#1| |#2| |#3|) (-288 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-341))))
+((((-798)) . T))
+(-3279 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
((($) . T))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-((((-797)) . T))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-843)))
-(|has| |#2| (-843))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+((((-798)) . T))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-844)))
+(|has| |#2| (-844))
(|has| |#1| (-341))
-(((|#2|) |has| |#2| (-1019)))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
+(((|#2|) |has| |#2| (-1020)))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
((($) . T) ((|#2|) . T))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-843)))
-(|has| |#1| (-843))
-(|has| |#1| (-843))
-((((-501)) . T) (((-385 (-1086 (-525)))) . T) (((-205)) . T) (((-357)) . T))
-((((-357)) . T) (((-205)) . T) (((-797)) . T))
-(|has| |#1| (-843))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-844)))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+((((-501)) . T) (((-385 (-1087 (-525)))) . T) (((-205)) . T) (((-357)) . T))
+((((-357)) . T) (((-205)) . T) (((-798)) . T))
+(|has| |#1| (-844))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+(((|#1|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
((($ $) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
((($ $) . T))
((((-525) (-108)) . T))
((($) . T))
(((|#1|) . T))
((((-525)) . T))
((((-108)) . T))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517)))
(|has| |#1| (-37 (-385 (-525))))
(((|#1| (-525)) . T))
((($) . T))
@@ -1582,119 +1582,119 @@
(((|#1|) . T))
((((-525)) . T))
(((|#1| |#2|) . T))
-((((-1090)) |has| |#1| (-976)))
+((((-1091)) |has| |#1| (-977)))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
(((|#1|) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#1| (-525)) . T))
-(((|#1| (-1164 |#1| |#2| |#3|)) . T))
+(((|#1| (-1165 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
(((|#1| (-385 (-525))) . T))
-(((|#1| (-1136 |#1| |#2| |#3|)) . T))
+(((|#1| (-1137 |#1| |#2| |#3|)) . T))
(((|#1| (-713)) . T))
(((|#1|) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-((((-797)) . T))
-(|has| |#1| (-1019))
-((((-1073) |#1|) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+((((-798)) . T))
+(|has| |#1| (-1020))
+((((-1074) |#1|) . T))
((($) . T))
(|has| |#2| (-138))
(|has| |#2| (-136))
-(((|#1| (-497 (-760 (-1090))) (-760 (-1090))) . T))
-((((-797)) . T))
-((((-1158 |#1| |#2| |#3| |#4|)) . T))
-((((-1158 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-976)))
+(((|#1| (-497 (-760 (-1091))) (-760 (-1091))) . T))
+((((-798)) . T))
+((((-1159 |#1| |#2| |#3| |#4|)) . T))
+((((-1159 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-977)))
((((-525) (-108)) . T))
-((((-797)) |has| |#1| (-1019)))
+((((-798)) |has| |#1| (-1020)))
(|has| |#2| (-160))
((((-525)) . T))
(|has| |#2| (-787))
(((|#1|) . T))
((((-525)) . T))
-((((-797)) . T))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-327)))
+((((-798)) . T))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-327)))
(|has| |#1| (-138))
-((((-797)) . T))
+((((-798)) . T))
(((|#3|) . T))
-(-3309 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976)))
-((((-797)) . T))
-((((-1157 |#2| |#3| |#4|)) . T) (((-1158 |#1| |#2| |#3| |#4|)) . T))
-((((-797)) . T))
-((((-47)) -12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525)))) (((-565 $)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) -3309 (-12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525)))) (|has| |#1| (-967 (-385 (-525))))) (((-385 (-886 |#1|))) |has| |#1| (-517)) (((-886 |#1|)) |has| |#1| (-976)) (((-1090)) . T))
+(-3279 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+((((-798)) . T))
+((((-1158 |#2| |#3| |#4|)) . T) (((-1159 |#1| |#2| |#3| |#4|)) . T))
+((((-798)) . T))
+((((-47)) -12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525)))) (((-565 $)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) -3279 (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525)))) (|has| |#1| (-968 (-385 (-525))))) (((-385 (-887 |#1|))) |has| |#1| (-517)) (((-887 |#1|)) |has| |#1| (-977)) (((-1091)) . T))
(((|#1|) . T) (($) . T))
(((|#1| (-713)) . T))
-((($) -3309 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160)))
+((($) -3279 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160)))
(((|#1|) |has| |#1| (-288 |#1|)))
-((((-1158 |#1| |#2| |#3| |#4|)) . T))
-((((-525)) |has| |#1| (-820 (-525))) (((-357)) |has| |#1| (-820 (-357))))
+((((-1159 |#1| |#2| |#3| |#4|)) . T))
+((((-525)) |has| |#1| (-821 (-525))) (((-357)) |has| |#1| (-821 (-357))))
(((|#1|) . T))
(|has| |#1| (-517))
(((|#1|) . T))
-((((-797)) . T))
-(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))))
+((((-798)) . T))
+(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))))
(((|#1|) |has| |#1| (-160)))
((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
(((|#1|) . T))
-(((|#3|) |has| |#3| (-1019)))
-(((|#2|) -3309 (|has| |#2| (-160)) (|has| |#2| (-341))))
-((((-1157 |#2| |#3| |#4|)) . T))
+(((|#3|) |has| |#3| (-1020)))
+(((|#2|) -3279 (|has| |#2| (-160)) (|has| |#2| (-341))))
+((((-1158 |#2| |#3| |#4|)) . T))
((((-108)) . T))
(|has| |#1| (-762))
(|has| |#1| (-762))
-(((|#1| (-525) (-1004)) . T))
+(((|#1| (-525) (-1005)) . T))
((($) |has| |#1| (-288 $)) ((|#1|) |has| |#1| (-288 |#1|)))
(|has| |#1| (-787))
(|has| |#1| (-787))
-(((|#1| (-525) (-1004)) . T))
-(-3309 (|has| |#1| (-834 (-1090))) (|has| |#1| (-976)))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-(((|#1| (-385 (-525)) (-1004)) . T))
-(((|#1| (-713) (-1004)) . T))
+(((|#1| (-525) (-1005)) . T))
+(-3279 (|has| |#1| (-835 (-1091))) (|has| |#1| (-977)))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+(((|#1| (-385 (-525)) (-1005)) . T))
+(((|#1| (-713) (-1005)) . T))
(|has| |#1| (-789))
-(((#0=(-844 |#1|) #0#) . T) (($ $) . T) ((#1=(-385 (-525)) #1#) . T))
+(((#0=(-845 |#1|) #0#) . T) (($ $) . T) ((#1=(-385 (-525)) #1#) . T))
(|has| |#2| (-136))
(|has| |#2| (-138))
(((|#2|) . T))
(|has| |#1| (-136))
(|has| |#1| (-138))
-(|has| |#1| (-1019))
-((((-844 |#1|)) . T) (($) . T) (((-385 (-525))) . T))
-(|has| |#1| (-1019))
+(|has| |#1| (-1020))
+((((-845 |#1|)) . T) (($) . T) (((-385 (-525))) . T))
+(|has| |#1| (-1020))
(((|#1|) . T))
-(|has| |#1| (-1019))
+(|has| |#1| (-1020))
((((-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-588 (-525)))) ((|#2|) |has| |#1| (-341)))
-(-3309 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019)))
+(-3279 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
(((|#2|) |has| |#2| (-160)))
(((|#1|) |has| |#1| (-160)))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-((((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) . T))
-((((-797)) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+((((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) . T))
+((((-798)) . T))
(|has| |#3| (-787))
-((((-797)) . T))
-((((-1157 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) . T))
-((((-797)) . T))
-(((|#1| |#1|) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-976))))
+((((-798)) . T))
+((((-1158 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) . T))
+((((-798)) . T))
+(((|#1| |#1|) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-977))))
(((|#1|) . T))
((((-525)) . T))
((((-525)) . T))
-(((|#1|) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-976))))
+(((|#1|) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-977))))
(((|#2|) |has| |#2| (-341)))
((($) . T) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-341)))
(|has| |#1| (-789))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
(((|#2|) . T))
-((((-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) |has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-843)))
+((((-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) |has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-844)))
(((|#2|) . T) (((-525)) |has| |#2| (-588 (-525))))
-((((-797)) . T))
-((((-797)) . T))
-((((-501)) . T) (((-525)) . T) (((-826 (-525))) . T) (((-357)) . T) (((-205)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-501)) . T) (((-525)) . T) (((-827 (-525))) . T) (((-357)) . T) (((-205)) . T))
+((((-798)) . T))
(|has| |#1| (-37 (-385 (-525))))
((((-525)) . T) (($) . T) (((-385 (-525))) . T))
((((-525)) . T) (($) . T) (((-385 (-525))) . T))
@@ -1702,13 +1702,13 @@
(((|#1|) . T))
(((|#1| (-525)) . T))
(|has| |#1| (-787))
-(((|#1| (-1088 |#1| |#2| |#3|)) . T))
+(((|#1| (-1089 |#1| |#2| |#3|)) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| (-385 (-525))) . T))
-(((|#1| (-1081 |#1| |#2| |#3|)) . T))
+(((|#1| (-1082 |#1| |#2| |#3|)) . T))
(((|#1| (-713)) . T))
(((|#1|) . T))
(((|#1| |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) . T))
@@ -1724,43 +1724,43 @@
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
(((|#1|) . T))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976)))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) . T) (($ $) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
((($) . T) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(|has| |#1| (-341))
(|has| |#1| (-341))
(|has| (-385 |#2|) (-213))
-(|has| |#1| (-843))
-(((|#2|) |has| |#2| (-976)))
-(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))))
+(|has| |#1| (-844))
+(((|#2|) |has| |#2| (-977)))
+(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))))
(|has| |#1| (-341))
(((|#1|) |has| |#1| (-160)))
(((|#1| |#1|) . T))
-((((-804 |#1|)) . T))
-((((-797)) . T))
+((((-805 |#1|)) . T))
+((((-798)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1019)))
+(((|#2|) |has| |#2| (-1020)))
(|has| |#2| (-789))
(((|#1|) . T))
((((-385 (-525))) . T) (((-525)) . T) (((-565 $)) . T))
(((|#1|) . T))
-((((-797)) . T))
+((((-798)) . T))
((($) . T))
(|has| |#1| (-789))
-((((-797)) . T))
+((((-798)) . T))
(((|#1| (-497 |#2|) |#2|) . T))
-(((|#1| (-525) (-1004)) . T))
-((((-844 |#1|)) . T))
-((((-797)) . T))
+(((|#1| (-525) (-1005)) . T))
+((((-845 |#1|)) . T))
+((((-798)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-385 (-525)) (-1004)) . T))
-(((|#1| (-713) (-1004)) . T))
+(((|#1| (-385 (-525)) (-1005)) . T))
+(((|#1| (-713) (-1005)) . T))
(((#0=(-385 |#2|) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-525)) -3309 (|has| (-385 (-525)) (-967 (-525))) (|has| |#1| (-967 (-525)))) (((-385 (-525))) . T))
+(((|#1|) . T) (((-525)) -3279 (|has| (-385 (-525)) (-968 (-525))) (|has| |#1| (-968 (-525)))) (((-385 (-525))) . T))
(((|#1| (-556 |#1| |#3|) (-556 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-160)))
(((|#1|) . T))
@@ -1768,52 +1768,52 @@
(((|#1|) . T))
((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T))
(|has| |#2| (-213))
-(((|#2| (-497 (-799 |#1|)) (-799 |#1|)) . T))
-((((-797)) . T))
+(((|#2| (-497 (-800 |#1|)) (-800 |#1|)) . T))
+((((-798)) . T))
((($) |has| |#1| (-517)) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((((-797)) . T))
+((((-798)) . T))
(((|#1| |#3|) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#1|) |has| |#1| (-160)))
((((-641)) . T))
((((-641)) . T))
(((|#2|) |has| |#2| (-160)))
(|has| |#2| (-787))
-((((-108)) |has| |#1| (-1019)) (((-797)) -3309 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976)) (|has| |#1| (-1031)) (|has| |#1| (-1019))))
+((((-108)) |has| |#1| (-1020)) (((-798)) -3279 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-835 (-1091))) (|has| |#1| (-977)) (|has| |#1| (-1032)) (|has| |#1| (-1020))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) . T))
-((((-797)) . T))
+((((-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) . T))
+((((-798)) . T))
((((-525) |#1|) . T))
((((-641)) . T) (((-385 (-525))) . T) (((-525)) . T))
(((|#1| |#1|) |has| |#1| (-160)))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))))
((((-357)) . T))
((((-641)) . T))
((((-385 (-525))) . #0=(|has| |#2| (-341))) (($) . #0#))
(((|#1|) |has| |#1| (-160)))
-((((-385 (-886 |#1|))) . T))
+((((-385 (-887 |#1|))) . T))
(((|#2| |#2|) . T))
-(-3309 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
+(-3279 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(((|#2|) . T))
(|has| |#2| (-789))
-(((|#3|) |has| |#3| (-976)))
-(|has| |#2| (-843))
-(|has| |#1| (-843))
+(((|#3|) |has| |#3| (-977)))
+(|has| |#2| (-844))
+(|has| |#1| (-844))
(|has| |#1| (-341))
(|has| |#1| (-789))
-((((-1090)) |has| |#2| (-834 (-1090))))
-((((-797)) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+((((-1091)) |has| |#2| (-835 (-1091))))
+((((-798)) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
((((-385 (-525))) . T) (($) . T))
(|has| |#1| (-450))
(|has| |#1| (-346))
(|has| |#1| (-346))
(|has| |#1| (-346))
(|has| |#1| (-341))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-450)) (|has| |#1| (-517)) (|has| |#1| (-976)) (|has| |#1| (-1031)))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-450)) (|has| |#1| (-517)) (|has| |#1| (-977)) (|has| |#1| (-1032)))
(|has| |#1| (-37 (-385 (-525))))
((((-112 |#1|)) . T))
((((-112 |#1|)) . T))
@@ -1823,8 +1823,8 @@
((($) . T))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
-(((|#2|) . T) (((-797)) . T))
-(((|#2|) . T) (((-797)) . T))
+(((|#2|) . T) (((-798)) . T))
+(((|#2|) . T) (((-798)) . T))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
@@ -1834,63 +1834,63 @@
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-789))
-((((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) . T))
+((((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-138))
(|has| |#1| (-136))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) ((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) ((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
(((|#2|) . T))
(((|#3|) . T))
((((-112 |#1|)) . T))
(|has| |#1| (-346))
(|has| |#1| (-789))
-(((|#2|) . T) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T))
+(((|#2|) . T) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) (((-525)) |has| |#1| (-968 (-525))) ((|#1|) . T))
((((-112 |#1|)) . T))
(((|#2|) |has| |#2| (-160)))
(((|#1|) . T))
((((-525)) . T))
(|has| |#1| (-341))
(|has| |#1| (-341))
-((((-797)) . T))
-((((-797)) . T))
-((((-501)) |has| |#1| (-567 (-501))) (((-826 (-525))) |has| |#1| (-567 (-826 (-525)))) (((-826 (-357))) |has| |#1| (-567 (-826 (-357)))) (((-357)) . #0=(|has| |#1| (-952))) (((-205)) . #0#))
+((((-798)) . T))
+((((-798)) . T))
+((((-501)) |has| |#1| (-567 (-501))) (((-827 (-525))) |has| |#1| (-567 (-827 (-525)))) (((-827 (-357))) |has| |#1| (-567 (-827 (-357)))) (((-357)) . #0=(|has| |#1| (-953))) (((-205)) . #0#))
(((|#1|) |has| |#1| (-341)))
-((((-797)) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+((((-798)) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
((($ $) . T) (((-565 $) $) . T))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-517)))
-((($) . T) (((-1158 |#1| |#2| |#3| |#4|)) . T) (((-385 (-525))) . T))
-((($) -3309 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-976))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-517)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-517)))
+((($) . T) (((-1159 |#1| |#2| |#3| |#4|)) . T) (((-385 (-525))) . T))
+((($) -3279 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-517)))
(|has| |#1| (-341))
(|has| |#1| (-341))
(|has| |#1| (-341))
((((-357)) . T) (((-525)) . T) (((-385 (-525))) . T))
-((((-592 (-722 |#1| (-799 |#2|)))) . T) (((-797)) . T))
-((((-501)) |has| (-722 |#1| (-799 |#2|)) (-567 (-501))))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+((((-592 (-722 |#1| (-800 |#2|)))) . T) (((-798)) . T))
+((((-501)) |has| (-722 |#1| (-800 |#2|)) (-567 (-501))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
((((-357)) . T))
-(((|#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))))
-((((-797)) . T))
-(-3309 (|has| |#2| (-429)) (|has| |#2| (-843)))
+(((|#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))
+((((-798)) . T))
+(-3279 (|has| |#2| (-429)) (|has| |#2| (-844)))
(((|#1|) . T))
(|has| |#1| (-789))
(|has| |#1| (-789))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
-(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))
-(|has| |#1| (-1019))
-((((-797)) . T))
+(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
+(|has| |#1| (-1020))
+((((-798)) . T))
((((-385 (-525))) . T) (((-525)) . T) (((-565 $)) . T))
(|has| |#1| (-136))
(|has| |#1| (-138))
((((-525)) . T))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-517)))
-(((#0=(-1157 |#2| |#3| |#4|)) . T) (((-385 (-525))) |has| #0# (-37 (-385 (-525)))) (($) . T))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(((#0=(-1158 |#2| |#3| |#4|)) . T) (((-385 (-525))) |has| #0# (-37 (-385 (-525)))) (($) . T))
((((-525)) . T))
(|has| |#1| (-341))
-(-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-138)) (|has| |#1| (-341))) (|has| |#1| (-138)))
-(-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136)))
+(-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-138)) (|has| |#1| (-341))) (|has| |#1| (-138)))
+(-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136)))
(|has| |#1| (-341))
(|has| |#1| (-136))
(|has| |#1| (-138))
@@ -1899,43 +1899,43 @@
(|has| |#1| (-213))
(|has| |#1| (-341))
(((|#3|) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
((((-525)) |has| |#2| (-588 (-525))) ((|#2|) . T))
(((|#2|) . T))
-(|has| |#1| (-1019))
+(|has| |#1| (-1020))
(((|#1| |#2|) . T))
(((|#1|) . T) (((-525)) |has| |#1| (-588 (-525))))
(((|#3|) |has| |#3| (-160)))
-(-3309 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019)))
+(-3279 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
((((-525)) . T))
(((|#1| $) |has| |#1| (-265 |#1| |#1|)))
((((-385 (-525))) . T) (($) . T) (((-385 |#1|)) . T) ((|#1|) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -3309 (|has| |#1| (-269)) (|has| |#1| (-341))) ((#0=(-385 (-525)) #0#) |has| |#1| (-341)))
-((((-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) . T))
+(((|#1| |#1|) . T) (($ $) -3279 (|has| |#1| (-269)) (|has| |#1| (-341))) ((#0=(-385 (-525)) #0#) |has| |#1| (-341)))
+((((-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) . T))
((($) . T))
((((-525) |#1|) . T))
-((((-1090)) |has| (-385 |#2|) (-834 (-1090))))
-(((|#1|) . T) (($) -3309 (|has| |#1| (-269)) (|has| |#1| (-341))) (((-385 (-525))) |has| |#1| (-341)))
+((((-1091)) |has| (-385 |#2|) (-835 (-1091))))
+(((|#1|) . T) (($) -3279 (|has| |#1| (-269)) (|has| |#1| (-341))) (((-385 (-525))) |has| |#1| (-341)))
((((-501)) |has| |#2| (-567 (-501))))
-((((-632 |#2|)) . T) (((-797)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))
-(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))
-((((-804 |#1|)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(-3309 (|has| |#4| (-735)) (|has| |#4| (-787)))
-(-3309 (|has| |#3| (-735)) (|has| |#3| (-787)))
-((((-797)) . T))
-((((-797)) . T))
-(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))
-(((|#2|) |has| |#2| (-976)))
+((((-632 |#2|)) . T) (((-798)) . T))
+(((|#1|) . T))
+(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
+(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
+((((-805 |#1|)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(-3279 (|has| |#4| (-735)) (|has| |#4| (-787)))
+(-3279 (|has| |#3| (-735)) (|has| |#3| (-787)))
+((((-798)) . T))
+((((-798)) . T))
+(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
+(((|#2|) |has| |#2| (-977)))
(((|#1|) . T))
((((-385 |#2|)) . T))
(((|#1|) . T))
-(((|#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))))
+(((|#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))
((((-525) |#1|) . T))
(((|#1|) . T))
((($) . T))
@@ -1943,18 +1943,18 @@
((((-385 (-525))) . T) (($) . T))
((((-385 (-525))) . T) (($) . T))
((((-385 (-525))) . T) (($) . T))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-1130)))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-1131)))
((($) . T))
-((((-385 (-525))) |has| #0=(-385 |#2|) (-967 (-385 (-525)))) (((-525)) |has| #0# (-967 (-525))) ((#0#) . T))
+((((-385 (-525))) |has| #0=(-385 |#2|) (-968 (-385 (-525)))) (((-525)) |has| #0# (-968 (-525))) ((#0#) . T))
(((|#2|) . T) (((-525)) |has| |#2| (-588 (-525))))
(((|#1| (-713)) . T))
(|has| |#1| (-789))
(((|#1|) . T) (((-525)) |has| |#1| (-588 (-525))))
-((($) -3309 (|has| |#1| (-341)) (|has| |#1| (-327))) (((-385 (-525))) -3309 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
+((($) -3279 (|has| |#1| (-341)) (|has| |#1| (-327))) (((-385 (-525))) -3279 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
((((-525)) . T))
(|has| |#1| (-37 (-385 (-525))))
-((((-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) |has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))))))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+((((-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) |has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(|has| |#1| (-787))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
@@ -1977,130 +1977,130 @@
(|has| |#1| (-37 (-385 (-525))))
(((|#1| |#2|) . T))
((((-135)) . T))
-((((-722 |#1| (-799 |#2|))) . T))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
-(|has| |#1| (-1112))
+((((-722 |#1| (-800 |#2|))) . T))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+(|has| |#1| (-1113))
(((|#1|) . T))
-(-3309 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-976)) (|has| |#3| (-1019)))
-((((-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)))
+(-3279 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-346)) (|has| |#3| (-669)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)) (|has| |#3| (-1020)))
+((((-1091) |#1|) |has| |#1| (-486 (-1091) |#1|)))
(((|#2|) . T))
-((($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
-((($) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((((-844 |#1|)) . T))
+((($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+((($) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((((-845 |#1|)) . T))
((($) . T))
-((((-385 (-886 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+((((-385 (-887 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
((((-501)) |has| |#4| (-567 (-501))))
-((((-797)) . T) (((-592 |#4|)) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+((((-798)) . T) (((-592 |#4|)) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
(((|#1|) . T))
(|has| |#1| (-787))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) (((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) |has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))))
-(|has| |#1| (-1019))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) (((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) |has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))))
+(|has| |#1| (-1020))
(|has| |#1| (-341))
(|has| |#1| (-789))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T) (((-385 (-525))) . T))
-((($) -3309 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160)))
+((($) -3279 (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) |has| |#1| (-160)))
(|has| |#1| (-136))
(|has| |#1| (-138))
-(-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-138)) (|has| |#1| (-341))) (|has| |#1| (-138)))
-(-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136)))
+(-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-138)) (|has| |#1| (-341))) (|has| |#1| (-138)))
+(-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136)))
(|has| |#1| (-136))
(|has| |#1| (-138))
(|has| |#1| (-138))
(|has| |#1| (-136))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
-((((-1164 |#1| |#2| |#3|)) |has| |#1| (-341)))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-1165 |#1| |#2| |#3|)) |has| |#1| (-341)))
(|has| |#1| (-787))
(((|#1| |#2|) . T))
(((|#1|) . T) (((-525)) |has| |#1| (-588 (-525))))
((((-525)) |has| |#1| (-588 (-525))) ((|#1|) . T))
-((((-844 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
-(|has| |#1| (-1019))
+((((-845 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
+(|has| |#1| (-1020))
(((|#1|) . T) (($) . T) (((-385 (-525))) . T) (((-525)) . T))
(|has| |#2| (-136))
(|has| |#2| (-138))
-((((-844 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
-(|has| |#1| (-1019))
+((((-845 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
+(|has| |#1| (-1020))
(((|#2|) |has| |#2| (-160)))
(((|#2|) . T))
(((|#1| |#1|) . T))
(((|#3|) |has| |#3| (-341)))
((((-385 |#2|)) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#1|) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
((((-501)) |has| |#1| (-567 (-501))))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-((((-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|)))
-(((|#1|) -3309 (|has| |#1| (-160)) (|has| |#1| (-341))))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+((((-1091) |#1|) |has| |#1| (-486 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|)))
+(((|#1|) -3279 (|has| |#1| (-160)) (|has| |#1| (-341))))
((((-294 |#1|)) . T))
(((|#2|) |has| |#2| (-341)))
(((|#2|) . T))
((((-385 (-525))) . T) (((-641)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((#0=(-722 |#1| (-799 |#2|)) #0#) |has| (-722 |#1| (-799 |#2|)) (-288 (-722 |#1| (-799 |#2|)))))
-((((-799 |#1|)) . T))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((#0=(-722 |#1| (-800 |#2|)) #0#) |has| (-722 |#1| (-800 |#2|)) (-288 (-722 |#1| (-800 |#2|)))))
+((((-800 |#1|)) . T))
(((|#2|) |has| |#2| (-160)))
(((|#1|) |has| |#1| (-160)))
(((|#2|) . T))
-((((-1090)) |has| |#1| (-834 (-1090))) (((-1004)) . T))
-((((-1090)) |has| |#1| (-834 (-1090))) (((-1009 (-1090))) . T))
-(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+((((-1091)) |has| |#1| (-835 (-1091))) (((-1005)) . T))
+((((-1091)) |has| |#1| (-835 (-1091))) (((-1010 (-1091))) . T))
+(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(|has| |#1| (-37 (-385 (-525))))
-(((|#3|) |has| |#3| (-976)) (((-525)) -12 (|has| |#3| (-588 (-525))) (|has| |#3| (-976))))
-(((|#4|) |has| |#4| (-976)) (((-525)) -12 (|has| |#4| (-588 (-525))) (|has| |#4| (-976))))
+(((|#3|) |has| |#3| (-977)) (((-525)) -12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))))
+(((|#4|) |has| |#4| (-977)) (((-525)) -12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))))
(|has| |#1| (-136))
(|has| |#1| (-138))
((($ $) . T))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976)) (|has| |#1| (-1031)) (|has| |#1| (-1019)))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-835 (-1091))) (|has| |#1| (-977)) (|has| |#1| (-1032)) (|has| |#1| (-1020)))
(|has| |#1| (-517))
(((|#2|) . T))
((((-525)) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-976)))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
((((-538 |#1|)) . T))
((($) . T))
(((|#1| (-57 |#1|) (-57 |#1|)) . T))
(((|#1|) . T))
((($) . T))
(((|#1|) . T))
-((((-797)) . T))
-(((|#2|) |has| |#2| (-6 (-4256 "*"))))
+((((-798)) . T))
+(((|#2|) |has| |#2| (-6 (-4257 "*"))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-385 (-525))) |has| |#2| (-967 (-385 (-525)))) (((-525)) |has| |#2| (-967 (-525))) ((|#2|) . T) (((-799 |#1|)) . T))
+((((-385 (-525))) |has| |#2| (-968 (-385 (-525)))) (((-525)) |has| |#2| (-968 (-525))) ((|#2|) . T) (((-800 |#1|)) . T))
((($) . T) (((-112 |#1|)) . T) (((-385 (-525))) . T))
-((((-1042 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))))
-((((-1086 |#1|)) . T) (((-1004)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))))
-((((-1042 |#1| (-1090))) . T) (((-1009 (-1090))) . T) ((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-1090)) . T))
-(|has| |#1| (-1019))
+((((-1043 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))))
+((((-1087 |#1|)) . T) (((-1005)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))))
+((((-1043 |#1| (-1091))) . T) (((-1010 (-1091))) . T) ((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) (((-1091)) . T))
+(|has| |#1| (-1020))
((($) . T))
-(|has| |#1| (-1019))
-((((-525)) -12 (|has| |#1| (-820 (-525))) (|has| |#2| (-820 (-525)))) (((-357)) -12 (|has| |#1| (-820 (-357))) (|has| |#2| (-820 (-357)))))
+(|has| |#1| (-1020))
+((((-525)) -12 (|has| |#1| (-821 (-525))) (|has| |#2| (-821 (-525)))) (((-357)) -12 (|has| |#1| (-821 (-357))) (|has| |#2| (-821 (-357)))))
(((|#1| |#2|) . T))
-((((-1090) |#1|) . T))
+((((-1091) |#1|) . T))
(((|#4|) . T))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-327)))
-((((-1090) (-51)) . T))
-((((-1157 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) . T))
-((((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T))
-((((-797)) . T))
-(-3309 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)) (|has| |#2| (-1019)))
-(((#0=(-1158 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-327)))
+((((-1091) (-51)) . T))
+((((-1158 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) . T))
+((((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) (((-525)) |has| |#1| (-968 (-525))) ((|#1|) . T))
+((((-798)) . T))
+(-3279 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-346)) (|has| |#2| (-669)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)) (|has| |#2| (-1020)))
+(((#0=(-1159 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T))
(((|#1| |#1|) |has| |#1| (-160)) ((#0=(-385 (-525)) #0#) |has| |#1| (-517)) (($ $) |has| |#1| (-517)))
(((|#1|) . T) (($) . T) (((-385 (-525))) . T))
(((|#1| $) |has| |#1| (-265 |#1| |#1|)))
-((((-1158 |#1| |#2| |#3| |#4|)) . T) (((-385 (-525))) . T) (($) . T))
+((((-1159 |#1| |#2| |#3| |#4|)) . T) (((-385 (-525))) . T) (($) . T))
(((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-517)) (($) |has| |#1| (-517)))
(|has| |#1| (-341))
(|has| |#1| (-136))
@@ -2109,200 +2109,200 @@
(|has| |#1| (-136))
((((-385 (-525))) . T) (($) . T))
(((|#3|) |has| |#3| (-341)))
-(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))
-((((-1090)) . T))
+(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
+((((-1091)) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))
+(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
(((|#2| |#3|) . T))
-(-3309 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))
+(-3279 (|has| |#2| (-341)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
(((|#1| (-497 |#2|)) . T))
(((|#1| (-713)) . T))
-(((|#1| (-497 (-1009 (-1090)))) . T))
+(((|#1| (-497 (-1010 (-1091)))) . T))
(((|#1|) |has| |#1| (-160)))
(((|#1|) . T))
-(|has| |#2| (-843))
-(-3309 (|has| |#2| (-735)) (|has| |#2| (-787)))
-((((-797)) . T))
-((($ $) . T) ((#0=(-1157 |#2| |#3| |#4|) #0#) . T) ((#1=(-385 (-525)) #1#) |has| #0# (-37 (-385 (-525)))))
-((((-844 |#1|)) . T))
+(|has| |#2| (-844))
+(-3279 (|has| |#2| (-735)) (|has| |#2| (-787)))
+((((-798)) . T))
+((($ $) . T) ((#0=(-1158 |#2| |#3| |#4|) #0#) . T) ((#1=(-385 (-525)) #1#) |has| #0# (-37 (-385 (-525)))))
+((((-845 |#1|)) . T))
(-12 (|has| |#1| (-341)) (|has| |#2| (-762)))
((($) . T) (((-385 (-525))) . T))
((($) . T))
((($) . T))
(|has| |#1| (-341))
-(-3309 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)) (|has| |#1| (-517)))
(|has| |#1| (-341))
-((($) . T) ((#0=(-1157 |#2| |#3| |#4|)) . T) (((-385 (-525))) |has| #0# (-37 (-385 (-525)))))
+((($) . T) ((#0=(-1158 |#2| |#3| |#4|)) . T) (((-385 (-525))) |has| #0# (-37 (-385 (-525)))))
(((|#1| |#2|) . T))
-((((-1088 |#1| |#2| |#3|)) |has| |#1| (-341)))
-(-3309 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341)) (|has| |#1| (-327)))
-(-3309 (|has| |#1| (-834 (-1090))) (|has| |#1| (-976)))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-341)))
+(-3279 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-3279 (|has| |#1| (-835 (-1091))) (|has| |#1| (-977)))
((((-525)) |has| |#1| (-588 (-525))) ((|#1|) . T))
(((|#1| |#2|) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
((((-108)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|))) . T))
+(((|#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|))) . T))
(|has| |#2| (-341))
(|has| |#1| (-789))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-797)) . T))
-(|has| |#1| (-1019))
+((((-798)) . T))
+(|has| |#1| (-1020))
(((|#4|) . T))
(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
((((-385 $) (-385 $)) |has| |#1| (-517)) (($ $) . T) ((|#1| |#1|) . T))
(|has| |#2| (-762))
(((|#4|) . T))
((($) . T))
((($ $) . T))
((($) . T))
-((((-797)) . T))
-(((|#1| (-497 (-1090))) . T))
+((((-798)) . T))
+(((|#1| (-497 (-1091))) . T))
(((|#1|) |has| |#1| (-160)))
-((((-797)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))
-(((|#2|) -3309 (|has| |#2| (-6 (-4256 "*"))) (|has| |#2| (-160))))
-(-3309 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
+((((-798)) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
+(((|#2|) -3279 (|has| |#2| (-6 (-4257 "*"))) (|has| |#2| (-160))))
+(-3279 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(|has| |#2| (-789))
-(|has| |#2| (-843))
-(|has| |#1| (-843))
+(|has| |#2| (-844))
+(|has| |#1| (-844))
(((|#2|) |has| |#2| (-160)))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-((((-1164 |#1| |#2| |#3|)) |has| |#1| (-341)))
-((((-797)) . T))
-((((-797)) . T))
-((((-501)) . T) (((-525)) . T) (((-826 (-525))) . T) (((-357)) . T) (((-205)) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+((((-1165 |#1| |#2| |#3|)) |has| |#1| (-341)))
+((((-798)) . T))
+((((-798)) . T))
+((((-501)) . T) (((-525)) . T) (((-827 (-525))) . T) (((-357)) . T) (((-205)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-((((-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+((((-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) . T))
(((|#1|) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#1| |#2|) . T))
(((|#1| (-385 (-525))) . T))
(((|#1|) . T))
-(-3309 (|has| |#1| (-269)) (|has| |#1| (-341)))
+(-3279 (|has| |#1| (-269)) (|has| |#1| (-341)))
((((-135)) . T))
((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T))
(|has| |#1| (-787))
-((((-797)) . T))
-((((-797)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+((((-798)) . T))
+((((-798)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1| |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
((((-385 (-525))) . T) (($) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-501)) |has| |#1| (-567 (-501))) (((-826 (-525))) |has| |#1| (-567 (-826 (-525)))) (((-826 (-357))) |has| |#1| (-567 (-826 (-357)))))
-((((-1090) (-51)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-501)) |has| |#1| (-567 (-501))) (((-827 (-525))) |has| |#1| (-567 (-827 (-525)))) (((-827 (-357))) |has| |#1| (-567 (-827 (-357)))))
+((((-1091) (-51)) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-592 (-135))) . T) (((-1073)) . T))
-((((-797)) . T))
-((((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) . T))
-((((-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|)))
+((((-592 (-135))) . T) (((-1074)) . T))
+((((-798)) . T))
+((((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) . T))
+((((-1091) |#1|) |has| |#1| (-486 (-1091) |#1|)) ((|#1| |#1|) |has| |#1| (-288 |#1|)))
(|has| |#1| (-789))
-((((-797)) . T))
+((((-798)) . T))
((((-501)) |has| |#1| (-567 (-501))))
-((((-797)) . T))
+((((-798)) . T))
(((|#2|) |has| |#2| (-341)))
-((((-797)) . T))
+((((-798)) . T))
((((-501)) |has| |#4| (-567 (-501))))
-((((-797)) . T) (((-592 |#4|)) . T))
+((((-798)) . T) (((-592 |#4|)) . T))
(((|#2|) . T))
-((((-844 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
-(-3309 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-976)))
-(-3309 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976)))
-((((-1090) (-51)) . T))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
+((((-845 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
+(-3279 (|has| |#4| (-160)) (|has| |#4| (-669)) (|has| |#4| (-787)) (|has| |#4| (-977)))
+(-3279 (|has| |#3| (-160)) (|has| |#3| (-669)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+((((-1091) (-51)) . T))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-3309 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-787)) (|has| |#2| (-976)))
-(|has| |#1| (-843))
-(|has| |#1| (-843))
+(-3279 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
(((|#2|) . T))
(((|#1|) . T))
-((((-797)) . T))
+((((-798)) . T))
((((-525)) . T))
(((#0=(-385 (-525)) #0#) . T) (($ $) . T))
((((-385 (-525))) . T) (($) . T))
-(((|#1| (-385 (-525)) (-1004)) . T))
-(|has| |#1| (-1019))
+(((|#1| (-385 (-525)) (-1005)) . T))
+(|has| |#1| (-1020))
(|has| |#1| (-517))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(|has| |#1| (-762))
-(((#0=(-844 |#1|) #0#) . T) (($ $) . T) ((#1=(-385 (-525)) #1#) . T))
+(((#0=(-845 |#1|) #0#) . T) (($ $) . T) ((#1=(-385 (-525)) #1#) . T))
((((-385 |#2|)) . T))
(|has| |#1| (-787))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) . T) ((#1=(-525) #1#) . T) (($ $) . T))
-((((-844 |#1|)) . T) (($) . T) (((-385 (-525))) . T))
-(((|#2|) |has| |#2| (-976)) (((-525)) -12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976))))
+((((-845 |#1|)) . T) (($) . T) (((-385 (-525))) . T))
+(((|#2|) |has| |#2| (-977)) (((-525)) -12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977))))
(((|#1|) . T) (((-385 (-525))) . T) (((-525)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-138))
(|has| |#1| (-136))
(((|#2|) . T))
-((((-797)) . T))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))
-((((-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) . T))
-(((#0=(-51)) . T) (((-2 (|:| -3946 (-1090)) (|:| -2511 #0#))) . T))
+((((-798)) . T))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))
+((((-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) . T))
+(((#0=(-51)) . T) (((-2 (|:| -3423 (-1091)) (|:| -2544 #0#))) . T))
(|has| |#1| (-327))
((((-525)) . T))
-((((-797)) . T))
-(((#0=(-1158 |#1| |#2| |#3| |#4|) $) |has| #0# (-265 #0# #0#)))
+((((-798)) . T))
+(((#0=(-1159 |#1| |#2| |#3| |#4|) $) |has| #0# (-265 #0# #0#)))
(|has| |#1| (-341))
-(((#0=(-1004) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-327)))
+(((#0=(-1005) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-327)))
(((#0=(-385 (-525)) #0#) . T) ((#1=(-641) #1#) . T) (($ $) . T))
((((-294 |#1|)) . T) (($) . T))
(((|#1|) . T) (((-385 (-525))) |has| |#1| (-341)))
-(|has| |#1| (-1019))
+(|has| |#1| (-1020))
(((|#1|) . T))
-(((|#1|) -3309 (|has| |#2| (-345 |#1|)) (|has| |#2| (-395 |#1|))))
-(((|#1|) -3309 (|has| |#2| (-345 |#1|)) (|has| |#2| (-395 |#1|))))
+(((|#1|) -3279 (|has| |#2| (-345 |#1|)) (|has| |#2| (-395 |#1|))))
+(((|#1|) -3279 (|has| |#2| (-345 |#1|)) (|has| |#2| (-395 |#1|))))
(((|#2|) . T))
((((-385 (-525))) . T) (((-641)) . T) (($) . T))
(((|#3| |#3|) . T))
(|has| |#2| (-213))
-((((-799 |#1|)) . T))
-((((-1090)) |has| |#1| (-834 (-1090))) ((|#3|) . T))
-(-12 (|has| |#1| (-341)) (|has| |#2| (-952)))
-((((-1088 |#1| |#2| |#3|)) |has| |#1| (-341)))
-((((-797)) . T))
+((((-800 |#1|)) . T))
+((((-1091)) |has| |#1| (-835 (-1091))) ((|#3|) . T))
+(-12 (|has| |#1| (-341)) (|has| |#2| (-953)))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-341)))
+((((-798)) . T))
(|has| |#1| (-341))
(|has| |#1| (-341))
((((-385 (-525))) . T) (($) . T) (((-385 |#1|)) . T) ((|#1|) . T))
((((-525)) . T))
-(|has| |#1| (-1019))
+(|has| |#1| (-1020))
(((|#3|) . T))
(((|#2|) . T))
(((|#1|) . T))
((((-525)) . T))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(((|#2|) . T) (((-525)) |has| |#2| (-588 (-525))))
(((|#1| |#2|) . T))
((($) . T))
@@ -2310,13 +2310,13 @@
((($) . T) (((-385 (-525))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-1172 |#1|) (-1172 |#1|)) . T))
+(((|#1| (-1173 |#1|) (-1173 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
(((#0=(-112 |#1|) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T))
-((((-385 (-525))) |has| |#2| (-967 (-385 (-525)))) (((-525)) |has| |#2| (-967 (-525))) ((|#2|) . T) (((-799 |#1|)) . T))
-((((-1042 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((|#2|) . T))
+((((-385 (-525))) |has| |#2| (-968 (-385 (-525)))) (((-525)) |has| |#2| (-968 (-525))) ((|#2|) . T) (((-800 |#1|)) . T))
+((((-1043 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -2324,7 +2324,7 @@
((((-617 |#1|)) . T))
((($) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T))
((((-112 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
-((((-525)) -12 (|has| |#1| (-820 (-525))) (|has| |#3| (-820 (-525)))) (((-357)) -12 (|has| |#1| (-820 (-357))) (|has| |#3| (-820 (-357)))))
+((((-525)) -12 (|has| |#1| (-821 (-525))) (|has| |#3| (-821 (-525)))) (((-357)) -12 (|has| |#1| (-821 (-357))) (|has| |#3| (-821 (-357)))))
(((|#2|) . T) ((|#6|) . T))
(((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) (($) . T))
((((-135)) . T))
@@ -2332,48 +2332,48 @@
((($) . T) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
((($) . T) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#1|) . T))
-(|has| |#2| (-843))
-(|has| |#1| (-843))
-(|has| |#1| (-843))
+(|has| |#2| (-844))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
(((|#4|) . T))
-(|has| |#2| (-952))
+(|has| |#2| (-953))
((($) . T))
-(|has| |#1| (-843))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+(|has| |#1| (-844))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
((($) . T))
(|has| |#1| (-341))
-((((-844 |#1|)) . T))
-((($) -3309 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((((-845 |#1|)) . T))
+((($) -3279 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
((($ $) . T) ((#0=(-385 (-525)) #0#) . T))
-(-3309 (|has| |#1| (-346)) (|has| |#1| (-789)))
+(-3279 (|has| |#1| (-346)) (|has| |#1| (-789)))
(((|#1|) . T))
-((((-797)) . T))
-((((-1090)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090)))))
+((((-798)) . T))
+((((-1091)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091)))))
((((-385 |#2|) |#3|) . T))
((($) . T) (((-385 (-525))) . T))
((((-713) |#1|) . T))
-(((|#2| (-220 (-4140 |#1|) (-713))) . T))
+(((|#2| (-220 (-3596 |#1|) (-713))) . T))
(((|#1| (-497 |#3|)) . T))
((((-385 (-525))) . T))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
-((((-797)) . T))
-(((#0=(-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) #0#) |has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))))
-(|has| |#1| (-843))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+((((-798)) . T))
+(((#0=(-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) #0#) |has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))))
+(|has| |#1| (-844))
(|has| |#2| (-341))
-(-3309 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)))
+(-3279 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
((((-157 (-357))) . T) (((-205)) . T) (((-357)) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#1|) . T))
((((-357)) . T) (((-525)) . T))
(((#0=(-385 (-525)) #0#) . T) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1| |#1|) . T))
-((((-797)) . T))
+((((-798)) . T))
(|has| |#1| (-517))
((((-385 (-525))) . T) (($) . T))
((($) . T))
@@ -2381,13 +2381,13 @@
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
-(-3309 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-3279 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)))
(|has| |#1| (-37 (-385 (-525))))
(-12 (|has| |#1| (-510)) (|has| |#1| (-770)))
-((((-797)) . T))
-((((-1090)) -3309 (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))) (-12 (|has| |#1| (-341)) (|has| |#2| (-834 (-1090))))))
+((((-798)) . T))
+((((-1091)) -3279 (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))) (-12 (|has| |#1| (-341)) (|has| |#2| (-835 (-1091))))))
(|has| |#1| (-341))
-((((-1090)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090)))))
+((((-1091)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091)))))
(|has| |#1| (-341))
((((-385 (-525))) . T) (($) . T))
((($) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T))
@@ -2395,54 +2395,54 @@
(((|#1|) . T))
(((|#2|) |has| |#1| (-341)))
(((|#2|) |has| |#1| (-341)))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-160)))
(((|#1|) . T))
-(((|#2|) . T) (((-1090)) -12 (|has| |#1| (-341)) (|has| |#2| (-967 (-1090)))) (((-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-967 (-525)))) (((-385 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-967 (-525)))))
+(((|#2|) . T) (((-1091)) -12 (|has| |#1| (-341)) (|has| |#2| (-968 (-1091)))) (((-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-968 (-525)))) (((-385 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-968 (-525)))))
(((|#2|) . T))
-((((-1090) #0=(-1158 |#1| |#2| |#3| |#4|)) |has| #0# (-486 (-1090) #0#)) ((#0# #0#) |has| #0# (-288 #0#)))
+((((-1091) #0=(-1159 |#1| |#2| |#3| |#4|)) |has| #0# (-486 (-1091) #0#)) ((#0# #0#) |has| #0# (-288 #0#)))
((((-565 $) $) . T) (($ $) . T))
-((((-157 (-205))) . T) (((-157 (-357))) . T) (((-1086 (-641))) . T) (((-826 (-357))) . T))
-((((-797)) . T))
+((((-157 (-205))) . T) (((-157 (-357))) . T) (((-1087 (-641))) . T) (((-827 (-357))) . T))
+((((-798)) . T))
(|has| |#1| (-517))
(|has| |#1| (-517))
(|has| (-385 |#2|) (-213))
(((|#1| (-385 (-525))) . T))
((($ $) . T))
-((((-1090)) |has| |#2| (-834 (-1090))))
+((((-1091)) |has| |#2| (-835 (-1091))))
((($) . T))
-((((-797)) . T))
+((((-798)) . T))
((((-385 (-525))) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#2|) |has| |#1| (-341)))
-((((-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-820 (-357)))) (((-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-820 (-525)))))
+((((-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-821 (-357)))) (((-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-821 (-525)))))
(|has| |#1| (-341))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-517)))
(|has| |#1| (-341))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-517)))
(|has| |#1| (-341))
(|has| |#1| (-517))
-(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))
+(((|#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
(((|#3|) . T))
(((|#1|) . T))
-(-3309 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)))
+(-3279 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(((|#2|) . T))
(((|#2|) . T))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976)))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-((((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+((((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
(|has| |#1| (-37 (-385 (-525))))
(((|#1| |#2|) . T))
(|has| |#1| (-37 (-385 (-525))))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))
(|has| |#1| (-138))
-((((-1073) |#1|) . T))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))
+((((-1074) |#1|) . T))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))
(|has| |#1| (-138))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))
(|has| |#1| (-138))
((((-538 |#1|)) . T))
((($) . T))
@@ -2450,77 +2450,77 @@
(|has| |#1| (-517))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-327)))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-327)))
(|has| |#1| (-138))
-((((-797)) . T))
+((((-798)) . T))
((($) . T))
-((((-385 (-525))) |has| |#2| (-967 (-525))) (((-525)) |has| |#2| (-967 (-525))) (((-1090)) |has| |#2| (-967 (-1090))) ((|#2|) . T))
+((((-385 (-525))) |has| |#2| (-968 (-525))) (((-525)) |has| |#2| (-968 (-525))) (((-1091)) |has| |#2| (-968 (-1091))) ((|#2|) . T))
(((#0=(-385 |#2|) #0#) . T) ((#1=(-385 (-525)) #1#) . T) (($ $) . T))
-((((-1055 |#1| |#2|)) . T))
+((((-1056 |#1| |#2|)) . T))
(((|#1| (-525)) . T))
(((|#1| (-385 (-525))) . T))
-((((-525)) |has| |#2| (-820 (-525))) (((-357)) |has| |#2| (-820 (-357))))
+((((-525)) |has| |#2| (-821 (-525))) (((-357)) |has| |#2| (-821 (-357))))
(((|#2|) . T))
((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T))
((((-108)) . T))
(((|#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) . T))
(((|#2|) . T))
-((((-797)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-((((-1090) (-51)) . T))
+((((-798)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+((((-1091) (-51)) . T))
((((-385 |#2|)) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#1|) . T))
-(|has| |#1| (-1019))
+(|has| |#1| (-1020))
(|has| |#1| (-733))
(|has| |#1| (-733))
((((-501)) |has| |#1| (-567 (-501))))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-110)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-205)) . T) (((-357)) . T) (((-826 (-357))) . T))
-((((-797)) . T))
-((((-1158 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-385 (-525))) . T))
+((((-205)) . T) (((-357)) . T) (((-827 (-357))) . T))
+((((-798)) . T))
+((((-1159 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-385 (-525))) . T))
(((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517)) (((-385 (-525))) |has| |#1| (-517)))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
(((|#2|) . T))
-((((-797)) . T))
-(((#0=(-844 |#1|) #0#) . T) (($ $) . T) ((#1=(-385 (-525)) #1#) . T))
+((((-798)) . T))
+(((#0=(-845 |#1|) #0#) . T) (($ $) . T) ((#1=(-385 (-525)) #1#) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-844 |#1|)) . T) (($) . T) (((-385 (-525))) . T))
+((((-845 |#1|)) . T) (($) . T) (((-385 (-525))) . T))
(|has| |#1| (-341))
(((|#2|) . T))
((((-525)) . T))
-((((-797)) . T))
+((((-798)) . T))
((((-525)) . T))
-(-3309 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-3279 (|has| |#2| (-735)) (|has| |#2| (-787)))
((((-157 (-357))) . T) (((-205)) . T) (((-357)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-1073)) . T) (((-501)) . T) (((-525)) . T) (((-826 (-525))) . T) (((-357)) . T) (((-205)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-1074)) . T) (((-501)) . T) (((-525)) . T) (((-827 (-525))) . T) (((-357)) . T) (((-205)) . T))
+((((-798)) . T))
(|has| |#1| (-138))
(|has| |#1| (-136))
-((($) . T) ((#0=(-1157 |#2| |#3| |#4|)) |has| #0# (-160)) (((-385 (-525))) |has| #0# (-37 (-385 (-525)))))
+((($) . T) ((#0=(-1158 |#2| |#3| |#4|)) |has| #0# (-160)) (((-385 (-525))) |has| #0# (-37 (-385 (-525)))))
(((|#1|) . T) (($) . T) (((-385 (-525))) . T))
(|has| |#1| (-341))
(|has| |#1| (-341))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-834 (-1090))) (|has| |#1| (-976)) (|has| |#1| (-1031)) (|has| |#1| (-1019)))
-(|has| |#1| (-1066))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-450)) (|has| |#1| (-669)) (|has| |#1| (-835 (-1091))) (|has| |#1| (-977)) (|has| |#1| (-1032)) (|has| |#1| (-1020)))
+(|has| |#1| (-1067))
((((-525) |#1|) . T))
(((|#1|) . T))
(((#0=(-112 |#1|) $) |has| #0# (-265 #0# #0#)))
(((|#1|) |has| |#1| (-160)))
(((|#1|) . T))
((((-110)) . T) ((|#1|) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#1| |#2|) . T))
-((((-1090) |#1|) . T))
+((((-1091) |#1|) . T))
(((|#1|) |has| |#1| (-288 |#1|)))
((((-525) |#1|) . T))
(((|#1|) . T))
@@ -2528,55 +2528,55 @@
(((|#1|) . T))
(|has| |#1| (-517))
((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-517)))
((((-357)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-341))
(|has| |#1| (-341))
(|has| |#1| (-517))
-(|has| |#1| (-1019))
-((((-722 |#1| (-799 |#2|))) |has| (-722 |#1| (-799 |#2|)) (-288 (-722 |#1| (-799 |#2|)))))
-(-3309 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))
+(|has| |#1| (-1020))
+((((-722 |#1| (-800 |#2|))) |has| (-722 |#1| (-800 |#2|)) (-288 (-722 |#1| (-800 |#2|)))))
+(-3279 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
(((|#1|) . T))
(((|#2| |#3|) . T))
-(|has| |#2| (-843))
+(|has| |#2| (-844))
(((|#1|) . T))
(((|#1| (-497 |#2|)) . T))
(((|#1| (-713)) . T))
(|has| |#1| (-213))
-(((|#1| (-497 (-1009 (-1090)))) . T))
+(((|#1| (-497 (-1010 (-1091)))) . T))
(|has| |#2| (-341))
-((((-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) . T))
+((((-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-((((-797)) . T))
-((((-797)) . T))
-(-3309 (|has| |#3| (-735)) (|has| |#3| (-787)))
-((((-797)) . T))
-((((-797)) . T))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+((((-798)) . T))
+((((-798)) . T))
+(-3279 (|has| |#3| (-735)) (|has| |#3| (-787)))
+((((-798)) . T))
+((((-798)) . T))
(((|#1|) . T))
((($ $) . T) (((-565 $) $) . T))
(((|#1|) . T))
((((-525)) . T))
(((|#3|) . T))
-((((-797)) . T))
-(-3309 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)))
-(-3309 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-976)))
+((((-798)) . T))
+(-3279 (|has| |#1| (-286)) (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-3279 (|has| |#1| (-136)) (|has| |#1| (-138)) (|has| |#1| (-160)) (|has| |#1| (-517)) (|has| |#1| (-977)))
(((#0=(-538 |#1|) #0#) . T) (($ $) . T) ((#1=(-385 (-525)) #1#) . T))
((($ $) . T) ((#0=(-385 (-525)) #0#) . T))
(((|#1|) |has| |#1| (-160)))
-(((|#1| (-1172 |#1|) (-1172 |#1|)) . T))
+(((|#1| (-1173 |#1|) (-1173 |#1|)) . T))
((((-538 |#1|)) . T) (($) . T) (((-385 (-525))) . T))
((($) . T) (((-385 (-525))) . T))
((($) . T) (((-385 (-525))) . T))
-(((|#2|) |has| |#2| (-6 (-4256 "*"))))
+(((|#2|) |has| |#2| (-6 (-4257 "*"))))
(((|#1|) . T))
(((|#1|) . T))
-((((-797)) |has| |#1| (-566 (-797))))
+((((-798)) |has| |#1| (-566 (-798))))
((((-273 |#3|)) . T))
-(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3309 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))))
+(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3279 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
((($) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T))
@@ -2584,269 +2584,269 @@
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
(((|#1|) . T) (((-385 (-525))) . T) (($) . T))
-((($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
-((($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+((($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+((($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
(((|#2|) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3309 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3279 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
-((((-797)) . T))
-((($) -3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((($) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-(|has| |#2| (-843))
-(|has| |#1| (-843))
-((($) -3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+((((-798)) . T))
+((($) -3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+(|has| |#2| (-844))
+(|has| |#1| (-844))
+((($) -3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#1|) . T))
-((((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) . T))
+((((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1019))
+(|has| |#1| (-1020))
(((|#1|) . T))
-((((-1090)) . T) ((|#1|) . T))
-((((-797)) . T))
-((((-797)) . T))
-(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))
+((((-1091)) . T) ((|#1|) . T))
+((((-798)) . T))
+((((-798)) . T))
+(((|#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))
(((#0=(-385 (-525)) #0#) . T))
((((-385 (-525))) . T))
-(-3309 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)))
+(-3279 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(((|#1|) . T))
(((|#1|) . T))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-787)) (|has| |#2| (-976)))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-787)) (|has| |#2| (-977)))
((((-501)) . T))
-((((-797)) . T))
-((((-1090)) |has| |#2| (-834 (-1090))) (((-1004)) . T))
-((((-1157 |#2| |#3| |#4|)) . T))
-((((-844 |#1|)) . T))
+((((-798)) . T))
+((((-1091)) |has| |#2| (-835 (-1091))) (((-1005)) . T))
+((((-1158 |#2| |#3| |#4|)) . T))
+((((-845 |#1|)) . T))
((($) . T) (((-385 (-525))) . T))
(-12 (|has| |#1| (-341)) (|has| |#2| (-762)))
(-12 (|has| |#1| (-341)) (|has| |#2| (-762)))
-(|has| |#1| (-1130))
+(|has| |#1| (-1131))
(((|#2|) . T))
((($ $) . T) ((#0=(-385 (-525)) #0#) . T))
-((((-1090)) |has| |#1| (-834 (-1090))))
-((((-844 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
-((($) . T) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) . T))
-(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-517))))
+((((-1091)) |has| |#1| (-835 (-1091))))
+((((-845 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
+((($) . T) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#1|) . T))
+(((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))) ((|#1| |#1|) . T) (($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-517))))
((($) . T) (((-385 (-525))) . T))
(((|#1|) . T) (((-385 (-525))) . T) (((-525)) . T) (($) . T))
-(((|#2|) |has| |#2| (-976)) (((-525)) -12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976))))
-((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3309 (|has| |#1| (-160)) (|has| |#1| (-517))))
+(((|#2|) |has| |#2| (-977)) (((-525)) -12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977))))
+((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T) (($) -3279 (|has| |#1| (-160)) (|has| |#1| (-517))))
(|has| |#1| (-517))
(((|#1|) |has| |#1| (-341)))
((((-525)) . T))
(|has| |#1| (-733))
(|has| |#1| (-733))
-((((-1090) #0=(-112 |#1|)) |has| #0# (-486 (-1090) #0#)) ((#0# #0#) |has| #0# (-288 #0#)))
-(((|#2|) . T) (((-525)) |has| |#2| (-967 (-525))) (((-385 (-525))) |has| |#2| (-967 (-385 (-525)))))
-((((-1004)) . T) ((|#2|) . T) (((-525)) |has| |#2| (-967 (-525))) (((-385 (-525))) |has| |#2| (-967 (-385 (-525)))))
+((((-1091) #0=(-112 |#1|)) |has| #0# (-486 (-1091) #0#)) ((#0# #0#) |has| #0# (-288 #0#)))
+(((|#2|) . T) (((-525)) |has| |#2| (-968 (-525))) (((-385 (-525))) |has| |#2| (-968 (-385 (-525)))))
+((((-1005)) . T) ((|#2|) . T) (((-525)) |has| |#2| (-968 (-525))) (((-385 (-525))) |has| |#2| (-968 (-385 (-525)))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-525) (-713)) . T) ((|#3| (-713)) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-((((-797)) . T))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+((((-798)) . T))
(|has| |#2| (-762))
(|has| |#2| (-762))
-((((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2|) |has| |#1| (-341)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))))
-((((-525)) |has| |#1| (-820 (-525))) (((-357)) |has| |#1| (-820 (-357))))
-(((|#1|) . T))
-((((-804 |#1|)) . T))
-((((-804 |#1|)) . T))
-(-12 (|has| |#1| (-341)) (|has| |#2| (-843)))
+((((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2|) |has| |#1| (-341)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))))
+((((-525)) |has| |#1| (-821 (-525))) (((-357)) |has| |#1| (-821 (-357))))
+(((|#1|) . T))
+((((-805 |#1|)) . T))
+((((-805 |#1|)) . T))
+(-12 (|has| |#1| (-341)) (|has| |#2| (-844)))
((((-385 (-525))) . T) (((-641)) . T) (($) . T))
(|has| |#1| (-341))
(|has| |#1| (-341))
(((|#1|) . T))
(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))
+(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
(|has| |#1| (-341))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-799 |#1|)) . T))
+((((-800 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#2| (-713)) . T))
-((((-1090)) . T))
-((((-804 |#1|)) . T))
-(-3309 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-976)))
-(-3309 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-787)) (|has| |#3| (-976)))
-((((-797)) . T))
+((((-1091)) . T))
+((((-805 |#1|)) . T))
+(-3279 (|has| |#3| (-25)) (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+(-3279 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+((((-798)) . T))
(((|#1|) . T))
-(-3309 (|has| |#2| (-735)) (|has| |#2| (-787)))
-(-3309 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))
-((((-804 |#1|)) . T))
+(-3279 (|has| |#2| (-735)) (|has| |#2| (-787)))
+(-3279 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))
+((((-805 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-346))
(|has| |#1| (-346))
(|has| |#1| (-346))
((($ $) . T) (((-565 $) $) . T))
((($) . T))
-((((-797)) . T))
+((((-798)) . T))
((((-525)) . T))
(((|#2|) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#1|) . T) (((-385 (-525))) |has| |#1| (-341)))
-((((-797)) . T))
+((((-798)) . T))
(((|#1|) . T))
-((((-797)) . T))
+((((-798)) . T))
((($) . T) ((|#2|) . T) (((-385 (-525))) . T))
-(|has| |#1| (-1019))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-797)) . T))
-(|has| |#2| (-843))
-((((-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) . T))
-((((-501)) |has| |#2| (-567 (-501))) (((-826 (-357))) |has| |#2| (-567 (-826 (-357)))) (((-826 (-525))) |has| |#2| (-567 (-826 (-525)))))
-((((-797)) . T))
-((((-797)) . T))
-(((|#3|) |has| |#3| (-976)) (((-525)) -12 (|has| |#3| (-588 (-525))) (|has| |#3| (-976))))
-((((-1042 |#1| |#2|)) . T) (((-886 |#1|)) |has| |#2| (-567 (-1090))) (((-797)) . T))
-((((-886 |#1|)) |has| |#2| (-567 (-1090))) (((-1073)) -12 (|has| |#1| (-967 (-525))) (|has| |#2| (-567 (-1090)))) (((-826 (-525))) -12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525))))) (((-826 (-357))) -12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357))))) (((-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#2| (-567 (-501)))))
-((((-1086 |#1|)) . T) (((-797)) . T))
-((((-797)) . T))
-((((-385 (-525))) |has| |#2| (-967 (-385 (-525)))) (((-525)) |has| |#2| (-967 (-525))) ((|#2|) . T) (((-799 |#1|)) . T))
+(|has| |#1| (-1020))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-798)) . T))
+(|has| |#2| (-844))
+((((-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) . T))
+((((-501)) |has| |#2| (-567 (-501))) (((-827 (-357))) |has| |#2| (-567 (-827 (-357)))) (((-827 (-525))) |has| |#2| (-567 (-827 (-525)))))
+((((-798)) . T))
+((((-798)) . T))
+(((|#3|) |has| |#3| (-977)) (((-525)) -12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))))
+((((-1043 |#1| |#2|)) . T) (((-887 |#1|)) |has| |#2| (-567 (-1091))) (((-798)) . T))
+((((-887 |#1|)) |has| |#2| (-567 (-1091))) (((-1074)) -12 (|has| |#1| (-968 (-525))) (|has| |#2| (-567 (-1091)))) (((-827 (-525))) -12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525))))) (((-827 (-357))) -12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357))))) (((-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#2| (-567 (-501)))))
+((((-1087 |#1|)) . T) (((-798)) . T))
+((((-798)) . T))
+((((-385 (-525))) |has| |#2| (-968 (-385 (-525)))) (((-525)) |has| |#2| (-968 (-525))) ((|#2|) . T) (((-800 |#1|)) . T))
((((-112 |#1|)) . T) (($) . T) (((-385 (-525))) . T))
-((((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T) (((-1090)) . T))
-((((-797)) . T))
+((((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) (((-525)) |has| |#1| (-968 (-525))) ((|#1|) . T) (((-1091)) . T))
+((((-798)) . T))
((((-525)) . T))
((($) . T))
-((((-357)) |has| |#1| (-820 (-357))) (((-525)) |has| |#1| (-820 (-525))))
+((((-357)) |has| |#1| (-821 (-357))) (((-525)) |has| |#1| (-821 (-525))))
((((-525)) . T))
(((|#1|) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#1|) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#1|) |has| |#1| (-160)) (($) . T))
((((-525)) . T) (((-385 (-525))) . T))
(((|#1|) |has| |#1| (-288 |#1|)))
-((((-797)) . T))
+((((-798)) . T))
((((-357)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-797)) . T))
+((((-798)) . T))
((((-385 (-525))) . T) (($) . T))
((((-385 |#2|) |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-1019))
-(((|#2| (-458 (-4140 |#1|) (-713))) . T))
+(|has| |#1| (-1020))
+(((|#2| (-458 (-3596 |#1|) (-713))) . T))
((((-525) |#1|) . T))
(((|#2| |#2|) . T))
-(((|#1| (-497 (-1090))) . T))
-(-3309 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)))
+(((|#1| (-497 (-1091))) . T))
+(-3279 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
((((-525)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1090)) |has| |#1| (-834 (-1090))) (((-1004)) . T))
+((((-1091)) |has| |#1| (-835 (-1091))) (((-1005)) . T))
(((|#1|) . T) (((-525)) |has| |#1| (-588 (-525))))
(|has| |#1| (-517))
((($) . T) (((-385 (-525))) . T))
((($) . T))
((($) . T))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
(((|#1|) . T))
-((($) -3309 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((((-797)) . T))
+((($) -3279 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((((-798)) . T))
((((-135)) . T))
(((|#1|) . T) (((-385 (-525))) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#1|) . T))
-(|has| |#1| (-1066))
-(((|#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|))) . T))
+(|has| |#1| (-1067))
+(((|#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|))) . T))
(((|#1|) . T))
((((-385 $) (-385 $)) |has| |#1| (-517)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))))
-((((-797)) . T))
-((((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-525)) |has| |#1| (-967 (-525))) ((|#1|) . T) ((|#2|) . T))
-((((-1004)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))))
-((((-357)) -12 (|has| |#1| (-820 (-357))) (|has| |#2| (-820 (-357)))) (((-525)) -12 (|has| |#1| (-820 (-525))) (|has| |#2| (-820 (-525)))))
-((((-1158 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))))
+((((-798)) . T))
+((((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) (((-525)) |has| |#1| (-968 (-525))) ((|#1|) . T) ((|#2|) . T))
+((((-1005)) . T) ((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))))
+((((-357)) -12 (|has| |#1| (-821 (-357))) (|has| |#2| (-821 (-357)))) (((-525)) -12 (|has| |#1| (-821 (-525))) (|has| |#2| (-821 (-525)))))
+((((-1159 |#1| |#2| |#3| |#4|)) . T))
((((-525) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
(((|#1|) |has| |#1| (-160)) (($) . T))
((($) . T))
((((-641)) . T))
-((((-722 |#1| (-799 |#2|))) . T))
+((((-722 |#1| (-800 |#2|))) . T))
((($) . T))
((((-385 (-525))) . T) (($) . T))
-(|has| |#1| (-1019))
-(|has| |#1| (-1019))
+(|has| |#1| (-1020))
+(|has| |#1| (-1020))
(|has| |#2| (-341))
(|has| |#1| (-341))
(|has| |#1| (-341))
(|has| |#1| (-37 (-385 (-525))))
((((-525)) . T))
-((((-1090)) -12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976))))
-((((-1090)) -12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976))))
+((((-1091)) -12 (|has| |#4| (-835 (-1091))) (|has| |#4| (-977))))
+((((-1091)) -12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977))))
(((|#1|) . T))
(|has| |#1| (-213))
(((|#1| (-497 |#3|)) . T))
(|has| |#1| (-346))
-(((|#2| (-220 (-4140 |#1|) (-713))) . T))
+(((|#2| (-220 (-3596 |#1|) (-713))) . T))
(|has| |#1| (-346))
(|has| |#1| (-346))
(((|#1|) . T) (($) . T))
(((|#1| (-497 |#2|)) . T))
-(-3309 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)))
+(-3279 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(((|#1| (-713)) . T))
(|has| |#1| (-517))
-(-3309 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-787)) (|has| |#2| (-976)))
+(-3279 (|has| |#2| (-25)) (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-797)) . T))
-(-3309 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))
-(-3309 (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-976)))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976)))
+((((-798)) . T))
+(-3279 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))
+(-3279 (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
(((|#1|) |has| |#1| (-160)))
-(((|#4|) |has| |#4| (-976)))
-(((|#3|) |has| |#3| (-976)))
+(((|#4|) |has| |#4| (-977)))
+(((|#3|) |has| |#3| (-977)))
(-12 (|has| |#1| (-341)) (|has| |#2| (-762)))
(-12 (|has| |#1| (-341)) (|has| |#2| (-762)))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
((((-385 |#2|)) . T) (((-385 (-525))) . T) (($) . T))
((($ $) . T) ((#0=(-385 (-525)) #0#) . T))
-((((-797)) . T))
+((((-798)) . T))
((($) . T) (((-385 (-525))) . T))
(((|#1|) . T))
-(((|#4|) |has| |#4| (-1019)) (((-525)) -12 (|has| |#4| (-967 (-525))) (|has| |#4| (-1019))) (((-385 (-525))) -12 (|has| |#4| (-967 (-385 (-525)))) (|has| |#4| (-1019))))
-(((|#3|) |has| |#3| (-1019)) (((-525)) -12 (|has| |#3| (-967 (-525))) (|has| |#3| (-1019))) (((-385 (-525))) -12 (|has| |#3| (-967 (-385 (-525)))) (|has| |#3| (-1019))))
+(((|#4|) |has| |#4| (-1020)) (((-525)) -12 (|has| |#4| (-968 (-525))) (|has| |#4| (-1020))) (((-385 (-525))) -12 (|has| |#4| (-968 (-385 (-525)))) (|has| |#4| (-1020))))
+(((|#3|) |has| |#3| (-1020)) (((-525)) -12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020))) (((-385 (-525))) -12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020))))
(|has| |#2| (-341))
-(((|#2|) |has| |#2| (-976)) (((-525)) -12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976))))
+(((|#2|) |has| |#2| (-977)) (((-525)) -12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977))))
(((|#1|) . T))
(|has| |#2| (-341))
-(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3309 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))))
-((($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
+(((#0=(-385 (-525)) #0#) |has| |#2| (-37 (-385 (-525)))) ((|#2| |#2|) . T) (($ $) -3279 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1| |#1|) . T) ((#0=(-385 (-525)) #0#) |has| |#1| (-37 (-385 (-525)))))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-385 (-525)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-385 (-525)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-385 (-525)) #0#) . T))
(((|#2| |#2|) . T))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3309 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))))
-((($) -3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T) (($) -3279 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
+((($) -3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
(((|#1|) . T) (($) . T) (((-385 (-525))) . T))
(((|#1|) . T) (($) . T) (((-385 (-525))) . T))
(((|#1|) . T) (($) . T) (((-385 (-525))) . T))
(((|#2|) . T))
((($) . T))
-((((-797)) |has| |#1| (-1019)))
-((((-1158 |#1| |#2| |#3| |#4|)) . T))
+((((-798)) |has| |#1| (-1020)))
+((((-1159 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#2| (-762))
@@ -2857,163 +2857,163 @@
(|has| |#1| (-341))
(((|#1|) |has| |#2| (-395 |#1|)))
(((|#1|) |has| |#2| (-395 |#1|)))
-((((-844 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019))))
+((((-845 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
-((((-797)) . T))
-((((-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) |has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))))
-(-3309 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))
+((((-798)) . T))
+((((-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) |has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))))
+(-3279 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
((((-525) |#1|) . T))
((((-525) |#1|) . T))
((((-525) |#1|) . T))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
((((-525) |#1|) . T))
(((|#1|) . T))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
-((((-1090)) |has| |#1| (-834 (-1090))) (((-760 (-1090))) . T))
-(-3309 (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-976)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+((((-1091)) |has| |#1| (-835 (-1091))) (((-760 (-1091))) . T))
+(-3279 (|has| |#3| (-126)) (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-735)) (|has| |#3| (-787)) (|has| |#3| (-977)))
((((-761 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-797)) . T))
-(-3309 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976)))
+((((-798)) . T))
+(-3279 (|has| |#3| (-160)) (|has| |#3| (-669)) (|has| |#3| (-787)) (|has| |#3| (-977)))
(((|#1| |#2|) . T))
(|has| |#1| (-37 (-385 (-525))))
-((((-797)) . T))
-((((-1158 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-385 (-525))) . T))
+((((-798)) . T))
+((((-1159 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-385 (-525))) . T))
(((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517)) (((-385 (-525))) |has| |#1| (-517)))
(((|#2|) . T) (((-525)) |has| |#2| (-588 (-525))))
(|has| |#1| (-341))
-(-3309 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (-12 (|has| |#1| (-341)) (|has| |#2| (-213))))
+(-3279 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (-12 (|has| |#1| (-341)) (|has| |#2| (-213))))
(|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))
(|has| |#1| (-341))
(((|#1|) . T))
-(((#0=(-385 (-525)) #0#) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1| |#1|) . T))
+(((#0=(-385 (-525)) #0#) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1| |#1|) . T))
((((-525) |#1|) . T))
((((-294 |#1|)) . T))
-(((#0=(-641) (-1086 #0#)) . T))
-((((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1|) . T))
+(((#0=(-641) (-1087 #0#)) . T))
+((((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) (($) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-787))
-((($ $) . T) ((#0=(-799 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1042 |#1| (-1090))) . T) (((-760 (-1090))) . T) ((|#1|) . T) (((-525)) |has| |#1| (-967 (-525))) (((-385 (-525))) |has| |#1| (-967 (-385 (-525)))) (((-1090)) . T))
+((($ $) . T) ((#0=(-800 |#1|) $) . T) ((#0# |#2|) . T))
+((((-1043 |#1| (-1091))) . T) (((-760 (-1091))) . T) ((|#1|) . T) (((-525)) |has| |#1| (-968 (-525))) (((-385 (-525))) |has| |#1| (-968 (-385 (-525)))) (((-1091)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-1004) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1090) $) |has| |#1| (-213)) ((#0# |#1|) |has| |#1| (-213)) ((#1=(-1009 (-1090)) |#1|) . T) ((#1# $) . T))
+(((#0=(-1005) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1091) $) |has| |#1| (-213)) ((#0# |#1|) |has| |#1| (-213)) ((#1=(-1010 (-1091)) |#1|) . T) ((#1# $) . T))
((($) . T) ((|#2|) . T))
((($) . T) ((|#2|) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))))
-(|has| |#2| (-843))
-((($) . T) ((#0=(-1157 |#2| |#3| |#4|)) |has| #0# (-160)) (((-385 (-525))) |has| #0# (-37 (-385 (-525)))))
+(|has| |#2| (-844))
+((($) . T) ((#0=(-1158 |#2| |#3| |#4|)) |has| #0# (-160)) (((-385 (-525))) |has| #0# (-37 (-385 (-525)))))
((((-525) |#1|) . T))
-(((#0=(-1158 |#1| |#2| |#3| |#4|)) |has| #0# (-288 #0#)))
+(((#0=(-1159 |#1| |#2| |#3| |#4|)) |has| #0# (-288 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2| |#2|) |has| |#1| (-341)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
+((($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2| |#2|) |has| |#1| (-341)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) ((#0=(-385 (-525)) #0#) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
(|has| |#2| (-213))
(|has| $ (-138))
-((((-797)) . T))
-((($) . T) (((-385 (-525))) -3309 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
-((((-797)) . T))
+((((-798)) . T))
+((($) . T) (((-385 (-525))) -3279 (|has| |#1| (-341)) (|has| |#1| (-327))) ((|#1|) . T))
+((((-798)) . T))
(|has| |#1| (-787))
-((((-1090)) -12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))
+((((-1091)) -12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))
((((-385 |#2|) |#3|) . T))
(((|#1|) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#2| (-617 |#1|)) . T))
-(-12 (|has| |#1| (-286)) (|has| |#1| (-843)))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+(-12 (|has| |#1| (-286)) (|has| |#1| (-844)))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#4|) . T))
(|has| |#1| (-517))
-((($) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2|) |has| |#1| (-341)) ((|#1|) . T))
-((((-1090)) -3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))))
-(((|#1|) . T) (($) -3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
-((((-1090)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090)))))
-((((-1090)) -12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090)))))
-(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))
+((($) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))) ((|#2|) |has| |#1| (-341)) ((|#1|) . T))
+((((-1091)) -3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091))))))
+(((|#1|) . T) (($) -3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-517))) (((-385 (-525))) -3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-341))))
+((((-1091)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091)))))
+((((-1091)) -12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091)))))
+(((|#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))
((((-525) |#1|) . T))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
(((|#1|) . T))
-(((|#1| (-497 (-760 (-1090)))) . T))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
+(((|#1| (-497 (-760 (-1091)))) . T))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(((|#1|) . T))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
(((|#1|) . T))
-(-3309 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)))
-(-3309 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))
-((((-1164 |#1| |#2| |#3|)) |has| |#1| (-341)))
-((($) . T) (((-804 |#1|)) . T) (((-385 (-525))) . T))
-((((-1164 |#1| |#2| |#3|)) |has| |#1| (-341)))
+(-3279 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-3279 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))
+((((-1165 |#1| |#2| |#3|)) |has| |#1| (-341)))
+((($) . T) (((-805 |#1|)) . T) (((-385 (-525))) . T))
+((((-1165 |#1| |#2| |#3|)) |has| |#1| (-341)))
(|has| |#1| (-517))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-385 |#2|)) . T))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-327)))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019))))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-327)))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(((|#1|) . T))
(((|#2| |#2|) . T) ((#0=(-385 (-525)) #0#) . T) (($ $) . T))
((((-525)) . T))
-((((-797)) . T))
+((((-798)) . T))
(((|#2|) . T) (((-385 (-525))) . T) (($) . T))
((((-538 |#1|)) . T) (((-385 (-525))) . T) (($) . T))
-((((-797)) . T))
+((((-798)) . T))
((((-385 (-525))) . T) (($) . T))
((((-525) |#1|) . T))
-((((-797)) . T))
-((($ $) . T) (((-1090) $) . T))
-((((-1164 |#1| |#2| |#3|)) . T))
-((((-1164 |#1| |#2| |#3|)) . T) (((-1136 |#1| |#2| |#3|)) . T))
-(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|))) . T))
-((((-501)) |has| |#2| (-567 (-501))) (((-826 (-357))) |has| |#2| (-567 (-826 (-357)))) (((-826 (-525))) |has| |#2| (-567 (-826 (-525)))))
-((((-797)) . T))
-((((-797)) . T))
-((((-826 (-525))) -12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#3| (-567 (-826 (-525))))) (((-826 (-357))) -12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#3| (-567 (-826 (-357))))) (((-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-798)) . T))
+((($ $) . T) (((-1091) $) . T))
+((((-1165 |#1| |#2| |#3|)) . T))
+((((-1165 |#1| |#2| |#3|)) . T) (((-1137 |#1| |#2| |#3|)) . T))
+(((|#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|))) . T))
+((((-501)) |has| |#2| (-567 (-501))) (((-827 (-357))) |has| |#2| (-567 (-827 (-357)))) (((-827 (-525))) |has| |#2| (-567 (-827 (-525)))))
+((((-798)) . T))
+((((-798)) . T))
+((((-827 (-525))) -12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#3| (-567 (-827 (-525))))) (((-827 (-357))) -12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#3| (-567 (-827 (-357))))) (((-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
(((|#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) . T))
-((((-797)) . T))
-((((-1164 |#1| |#2| |#3|)) |has| |#1| (-341)))
-((((-1090)) . T) (((-797)) . T))
+((((-798)) . T))
+((((-1165 |#1| |#2| |#3|)) |has| |#1| (-341)))
+((((-1091)) . T) (((-798)) . T))
(|has| |#1| (-341))
-((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3309 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843))))
+((((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) |has| |#2| (-160)) (($) -3279 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844))))
(((|#2|) . T) ((|#6|) . T))
((($) . T) (((-385 (-525))) |has| |#2| (-37 (-385 (-525)))) ((|#2|) . T))
-((($) -3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-((((-1023)) . T))
-((((-797)) . T))
-((($) -3309 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((($) -3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+((((-1024)) . T))
+((((-798)) . T))
+((($) -3279 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
((($) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T))
((($) . T))
-((($) -3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-(|has| |#2| (-843))
-(|has| |#1| (-843))
+((($) -3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844))) ((|#1|) |has| |#1| (-160)) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
+(|has| |#2| (-844))
+(|has| |#1| (-844))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-160)))
((((-641)) . T))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(((|#1|) |has| |#1| (-160)))
(((|#1|) |has| |#1| (-160)))
((((-385 (-525))) . T) (($) . T))
(((|#1| (-525)) . T))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-327)))
(|has| |#1| (-341))
(|has| |#1| (-341))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-327)))
-(-3309 (|has| |#1| (-160)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-327)))
+(-3279 (|has| |#1| (-160)) (|has| |#1| (-517)))
(((|#1| (-525)) . T))
(((|#1| (-385 (-525))) . T))
(((|#1| (-713)) . T))
@@ -3021,71 +3021,71 @@
(((|#1| (-497 |#2|) |#2|) . T))
((((-525) |#1|) . T))
((((-525) |#1|) . T))
-(|has| |#1| (-1019))
+(|has| |#1| (-1020))
((((-525) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-826 (-357))) . T) (((-826 (-525))) . T) (((-1090)) . T) (((-501)) . T))
+((((-827 (-357))) . T) (((-827 (-525))) . T) (((-1091)) . T) (((-501)) . T))
(((|#1|) . T))
-((((-797)) . T))
-(-3309 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-976)))
-(-3309 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))
+((((-798)) . T))
+(-3279 (|has| |#2| (-126)) (|has| |#2| (-160)) (|has| |#2| (-341)) (|has| |#2| (-735)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+(-3279 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))
((((-525)) . T))
((((-525)) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-3309 (|has| |#2| (-160)) (|has| |#2| (-787)) (|has| |#2| (-976)))
-((((-1090)) -12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976))))
-(-3309 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))
+(-3279 (|has| |#2| (-160)) (|has| |#2| (-669)) (|has| |#2| (-787)) (|has| |#2| (-977)))
+((((-1091)) -12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977))))
+(-3279 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))
(|has| |#1| (-136))
(|has| |#1| (-138))
(|has| |#1| (-341))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-213))
-((((-797)) . T))
-(((|#1| (-713) (-1004)) . T))
+((((-798)) . T))
+(((|#1| (-713) (-1005)) . T))
((((-525) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
((((-525) |#1|) . T))
((((-525) |#1|) . T))
((((-112 |#1|)) . T))
((((-385 (-525))) . T) (((-525)) . T))
-(((|#2|) |has| |#2| (-976)))
+(((|#2|) |has| |#2| (-977)))
((((-385 (-525))) . T) (($) . T))
(((|#2|) . T))
((((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) |has| |#1| (-160)) (($) |has| |#1| (-517)))
((((-525)) . T))
((((-525)) . T))
-((((-1073) (-1090) (-525) (-205) (-797)) . T))
+((((-1074) (-1091) (-525) (-205) (-798)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-(-3309 (|has| |#1| (-327)) (|has| |#1| (-346)))
+(-3279 (|has| |#1| (-327)) (|has| |#1| (-346)))
(((|#1| |#2|) . T))
((($) . T) ((|#1|) . T))
-((((-797)) . T))
+((((-798)) . T))
((($) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((|#1|) . T))
((($) . T) ((|#1|) . T) (((-385 (-525))) |has| |#1| (-37 (-385 (-525)))))
-(((|#2|) |has| |#2| (-1019)) (((-525)) -12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019))) (((-385 (-525))) -12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019))))
+(((|#2|) |has| |#2| (-1020)) (((-525)) -12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) (((-385 (-525))) -12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020))))
((((-501)) |has| |#1| (-567 (-501))))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-789)) (|has| |#1| (-1019))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-789)) (|has| |#1| (-1020))))
((($) . T) (((-385 (-525))) . T))
-(|has| |#1| (-843))
-(|has| |#1| (-843))
-((((-205)) -12 (|has| |#1| (-341)) (|has| |#2| (-952))) (((-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-952))) (((-826 (-357))) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-826 (-357))))) (((-826 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-826 (-525))))) (((-501)) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-501)))))
-((((-797)) . T))
-((((-797)) . T))
+(|has| |#1| (-844))
+(|has| |#1| (-844))
+((((-205)) -12 (|has| |#1| (-341)) (|has| |#2| (-953))) (((-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-953))) (((-827 (-357))) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-827 (-357))))) (((-827 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-827 (-525))))) (((-501)) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-501)))))
+((((-798)) . T))
+((((-798)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-160)))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-517)))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-787)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-517)))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-787)))
(((|#2|) . T))
-(-3309 (|has| |#1| (-21)) (|has| |#1| (-787)))
+(-3279 (|has| |#1| (-21)) (|has| |#1| (-787)))
(((|#1|) |has| |#1| (-160)))
(((|#1|) . T))
(((|#1|) . T))
-((((-797)) -3309 (-12 (|has| |#1| (-566 (-797))) (|has| |#2| (-566 (-797)))) (-12 (|has| |#1| (-1019)) (|has| |#2| (-1019)))))
+((((-798)) -3279 (-12 (|has| |#1| (-566 (-798))) (|has| |#2| (-566 (-798)))) (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020)))))
((((-385 |#2|) |#3|) . T))
((((-385 (-525))) . T) (($) . T))
(|has| |#1| (-37 (-385 (-525))))
@@ -3097,99 +3097,99 @@
(((|#1|) . T) (((-385 (-525))) . T) (((-525)) . T) (($) . T))
(((#0=(-525) #0#) . T))
((($) . T) (((-385 (-525))) . T))
-(-3309 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-976)))
-(-3309 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976)))
+(-3279 (|has| |#4| (-160)) (|has| |#4| (-669)) (|has| |#4| (-787)) (|has| |#4| (-977)))
+(-3279 (|has| |#3| (-160)) (|has| |#3| (-669)) (|has| |#3| (-787)) (|has| |#3| (-977)))
(|has| |#4| (-735))
-(-3309 (|has| |#4| (-735)) (|has| |#4| (-787)))
+(-3279 (|has| |#4| (-735)) (|has| |#4| (-787)))
(|has| |#4| (-787))
(|has| |#3| (-735))
-(-3309 (|has| |#3| (-735)) (|has| |#3| (-787)))
+(-3279 (|has| |#3| (-735)) (|has| |#3| (-787)))
(|has| |#3| (-787))
((((-525)) . T))
(((|#2|) . T))
-((((-1090)) -3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))))
-((((-1090)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090)))))
-((((-1090)) -12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090)))))
+((((-1091)) -3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091))))))
+((((-1091)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091)))))
+((((-1091)) -12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091)))))
(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-((((-799 |#1|)) . T))
-((((-1088 |#1| |#2| |#3|)) |has| |#1| (-341)))
-((((-1088 |#1| |#2| |#3|)) |has| |#1| (-341)))
-((((-1055 |#1| |#2|)) . T))
-(((|#2|) . T) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-((((-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) . T))
+((((-800 |#1|)) . T))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-341)))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-341)))
+((((-1056 |#1| |#2|)) . T))
+(((|#2|) . T) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+((((-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) . T))
((($) . T))
-(|has| |#1| (-952))
-(((|#2|) . T) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
-((((-797)) . T))
-((((-501)) |has| |#2| (-567 (-501))) (((-826 (-525))) |has| |#2| (-567 (-826 (-525)))) (((-826 (-357))) |has| |#2| (-567 (-826 (-357)))) (((-357)) . #0=(|has| |#2| (-952))) (((-205)) . #0#))
-((((-1090) (-51)) . T))
+(|has| |#1| (-953))
+(((|#2|) . T) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
+((((-798)) . T))
+((((-501)) |has| |#2| (-567 (-501))) (((-827 (-525))) |has| |#2| (-567 (-827 (-525)))) (((-827 (-357))) |has| |#2| (-567 (-827 (-357)))) (((-357)) . #0=(|has| |#2| (-953))) (((-205)) . #0#))
+((((-1091) (-51)) . T))
(|has| |#1| (-37 (-385 (-525))))
(|has| |#1| (-37 (-385 (-525))))
(((|#2|) . T))
((($ $) . T))
((((-385 (-525))) . T) (((-641)) . T) (($) . T))
-((((-1088 |#1| |#2| |#3|)) . T))
-((((-1088 |#1| |#2| |#3|)) . T) (((-1081 |#1| |#2| |#3|)) . T))
-((((-797)) . T))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
+((((-1089 |#1| |#2| |#3|)) . T))
+((((-1089 |#1| |#2| |#3|)) . T) (((-1082 |#1| |#2| |#3|)) . T))
+((((-798)) . T))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
((((-525) |#1|) . T))
-((((-1088 |#1| |#2| |#3|)) |has| |#1| (-341)))
+((((-1089 |#1| |#2| |#3|)) |has| |#1| (-341)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-341))
-(((|#3|) . T) ((|#2|) . T) (($) -3309 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-976))) ((|#4|) -3309 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-976))))
-(((|#2|) . T) (($) -3309 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-976))) ((|#3|) -3309 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-976))))
+(((|#3|) . T) ((|#2|) . T) (($) -3279 (|has| |#4| (-160)) (|has| |#4| (-787)) (|has| |#4| (-977))) ((|#4|) -3279 (|has| |#4| (-160)) (|has| |#4| (-341)) (|has| |#4| (-977))))
+(((|#2|) . T) (($) -3279 (|has| |#3| (-160)) (|has| |#3| (-787)) (|has| |#3| (-977))) ((|#3|) -3279 (|has| |#3| (-160)) (|has| |#3| (-341)) (|has| |#3| (-977))))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-341))
((((-112 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-385 (-525))) |has| |#2| (-967 (-385 (-525)))) (((-525)) |has| |#2| (-967 (-525))) ((|#2|) . T) (((-799 |#1|)) . T))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
+((((-385 (-525))) |has| |#2| (-968 (-385 (-525)))) (((-525)) |has| |#2| (-968 (-525))) ((|#2|) . T) (((-800 |#1|)) . T))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
(((|#1|) . T))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
-((((-125)) . T) (((-797)) . T))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
+((((-125)) . T) (((-798)) . T))
((((-525) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#2| $) -12 (|has| |#1| (-341)) (|has| |#2| (-265 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-843)))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
-((((-797)) . T))
-((((-797)) . T))
-((((-797)) . T))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-429)) (|has| |#1| (-844)))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
+((((-798)) . T))
+((((-798)) . T))
+((((-798)) . T))
(((|#1| (-497 |#2|)) . T))
-((((-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) . T))
+((((-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) . T))
(((|#1| (-525)) . T))
(((|#1| (-385 (-525))) . T))
(((|#1| (-713)) . T))
((((-112 |#1|)) . T) (($) . T) (((-385 (-525))) . T))
-(-3309 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-843)))
-(-3309 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-843)))
+(-3279 (|has| |#2| (-429)) (|has| |#2| (-517)) (|has| |#2| (-844)))
+(-3279 (|has| |#1| (-429)) (|has| |#1| (-517)) (|has| |#1| (-844)))
((($) . T))
-(((|#2| (-497 (-799 |#1|))) . T))
+(((|#2| (-497 (-800 |#1|))) . T))
((((-525) |#1|) . T))
(((|#2|) . T))
(((|#2| (-713)) . T))
-((((-797)) -3309 (|has| |#1| (-566 (-797))) (|has| |#1| (-1019))))
+((((-798)) -3279 (|has| |#1| (-566 (-798))) (|has| |#1| (-1020))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-1073) |#1|) . T))
+((((-1074) |#1|) . T))
((((-385 |#2|)) . T))
-((((-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T))
+((((-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T))
(|has| |#1| (-517))
(|has| |#1| (-517))
((($) . T) ((|#2|) . T))
@@ -3197,26 +3197,26 @@
(((|#1| |#2|) . T))
(((|#2| $) |has| |#2| (-265 |#2| |#2|)))
(((|#1| (-592 |#1|)) |has| |#1| (-787)))
-(-3309 (|has| |#1| (-213)) (|has| |#1| (-327)))
-(-3309 (|has| |#1| (-341)) (|has| |#1| (-327)))
-(|has| |#1| (-1019))
+(-3279 (|has| |#1| (-213)) (|has| |#1| (-327)))
+(-3279 (|has| |#1| (-341)) (|has| |#1| (-327)))
+(|has| |#1| (-1020))
(((|#1|) . T))
((((-385 (-525))) . T) (($) . T))
-((((-930 |#1|)) . T) ((|#1|) . T) (((-525)) -3309 (|has| (-930 |#1|) (-967 (-525))) (|has| |#1| (-967 (-525)))) (((-385 (-525))) -3309 (|has| (-930 |#1|) (-967 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525))))))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-((((-1090)) |has| |#1| (-834 (-1090))))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
-(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))
+((((-931 |#1|)) . T) ((|#1|) . T) (((-525)) -3279 (|has| (-931 |#1|) (-968 (-525))) (|has| |#1| (-968 (-525)))) (((-385 (-525))) -3279 (|has| (-931 |#1|) (-968 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+((((-1091)) |has| |#1| (-835 (-1091))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
+(((|#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))
(((|#1| (-556 |#1| |#3|) (-556 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1055 |#1| |#2|) #0#) |has| (-1055 |#1| |#2|) (-288 (-1055 |#1| |#2|))))
-(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((#0=(-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) #0#) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))))
+(((#0=(-1056 |#1| |#2|) #0#) |has| (-1056 |#1| |#2|) (-288 (-1056 |#1| |#2|))))
+(((|#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((#0=(-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) #0#) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))))
(((#0=(-112 |#1|)) |has| #0# (-288 #0#)))
-(-3309 (|has| |#1| (-789)) (|has| |#1| (-1019)))
+(-3279 (|has| |#1| (-789)) (|has| |#1| (-1020)))
((($ $) . T))
-((($ $) . T) ((#0=(-799 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((#0=(-800 |#1|) $) . T) ((#0# |#2|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-213)) ((|#2| |#1|) |has| |#1| (-213)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-608 . -1019) T) ((-243 . -486) 142688) ((-227 . -486) 142631) ((-532 . -107) 142616) ((-497 . -23) T) ((-225 . -1019) 142566) ((-113 . -288) 142523) ((-455 . -486) 142315) ((-636 . -97) T) ((-1056 . -486) 142234) ((-368 . -126) T) ((-1183 . -908) 142203) ((-556 . -464) 142187) ((-571 . -126) T) ((-761 . -785) T) ((-494 . -55) 142137) ((-57 . -486) 142070) ((-490 . -486) 142003) ((-396 . -834) 141962) ((-157 . -976) T) ((-488 . -486) 141895) ((-470 . -486) 141828) ((-469 . -486) 141761) ((-741 . -967) 141548) ((-641 . -37) 141513) ((-321 . -327) T) ((-1014 . -1013) 141497) ((-1014 . -1019) 141475) ((-157 . -223) 141426) ((-157 . -213) 141377) ((-1014 . -1015) 141335) ((-806 . -265) 141293) ((-205 . -737) T) ((-205 . -734) T) ((-636 . -263) NIL) ((-1065 . -1103) 141272) ((-385 . -924) 141256) ((-643 . -21) T) ((-643 . -25) T) ((-1185 . -594) 141230) ((-294 . -149) 141209) ((-294 . -134) 141188) ((-1065 . -102) 141138) ((-128 . -25) T) ((-39 . -211) 141115) ((-112 . -21) T) ((-112 . -25) T) ((-561 . -267) 141091) ((-452 . -267) 141070) ((-1145 . -976) T) ((-794 . -976) T) ((-741 . -316) 141054) ((-113 . -1066) NIL) ((-89 . -566) 140986) ((-454 . -126) T) ((-548 . -1126) T) ((-1145 . -304) 140963) ((-532 . -976) T) ((-1145 . -213) T) ((-608 . -660) 140947) ((-891 . -267) 140924) ((-58 . -33) T) ((-987 . -737) T) ((-987 . -734) T) ((-758 . -669) T) ((-674 . -46) 140889) ((-573 . -37) 140876) ((-333 . -269) T) ((-330 . -269) T) ((-322 . -269) T) ((-243 . -269) 140807) ((-227 . -269) 140738) ((-954 . -97) T) ((-391 . -669) T) ((-113 . -37) 140683) ((-391 . -450) T) ((-332 . -97) T) ((-1121 . -983) T) ((-654 . -983) T) ((-1088 . -46) 140660) ((-1087 . -46) 140630) ((-1081 . -46) 140607) ((-965 . -142) 140553) ((-844 . -269) T) ((-1043 . -46) 140525) ((-636 . -288) NIL) ((-487 . -566) 140507) ((-482 . -566) 140489) ((-480 . -566) 140471) ((-305 . -1019) 140421) ((-655 . -429) 140352) ((-47 . -97) T) ((-1156 . -265) 140337) ((-1135 . -265) 140257) ((-592 . -612) 140241) ((-592 . -597) 140225) ((-317 . -21) T) ((-317 . -25) T) ((-39 . -327) NIL) ((-161 . -21) T) ((-161 . -25) T) ((-592 . -351) 140209) ((-556 . -265) 140186) ((-559 . -566) 140153) ((-366 . -97) T) ((-1037 . -134) T) ((-122 . -566) 140085) ((-808 . -1019) T) ((-604 . -389) 140069) ((-657 . -566) 140051) ((-150 . -566) 140033) ((-146 . -566) 140015) ((-1185 . -669) T) ((-1021 . -33) T) ((-805 . -737) NIL) ((-805 . -734) NIL) ((-796 . -789) T) ((-674 . -820) NIL) ((-1194 . -126) T) ((-359 . -126) T) ((-838 . -97) T) ((-674 . -967) 139893) ((-497 . -126) T) ((-1008 . -389) 139877) ((-931 . -464) 139861) ((-113 . -378) 139838) ((-1081 . -1126) 139817) ((-724 . -389) 139801) ((-722 . -389) 139785) ((-877 . -33) T) ((-636 . -1066) NIL) ((-230 . -594) 139622) ((-229 . -594) 139446) ((-759 . -854) 139425) ((-431 . -389) 139409) ((-556 . -19) 139393) ((-1061 . -1120) 139362) ((-1081 . -820) NIL) ((-1081 . -818) 139314) ((-556 . -558) 139291) ((-1113 . -566) 139223) ((-1089 . -566) 139205) ((-60 . -373) T) ((-1087 . -967) 139140) ((-1081 . -967) 139106) ((-636 . -37) 139056) ((-451 . -265) 139041) ((-674 . -355) 139025) ((-604 . -983) T) ((-1156 . -933) 138991) ((-1135 . -933) 138957) ((-988 . -1103) 138932) ((-806 . -567) 138740) ((-806 . -566) 138722) ((-1100 . -464) 138659) ((-396 . -952) 138638) ((-47 . -288) 138625) ((-988 . -102) 138571) ((-455 . -464) 138508) ((-491 . -1126) T) ((-1056 . -464) 138479) ((-1081 . -316) 138431) ((-1081 . -355) 138383) ((-415 . -97) T) ((-1008 . -983) T) ((-230 . -33) T) ((-229 . -33) T) ((-724 . -983) T) ((-722 . -983) T) ((-674 . -834) 138360) ((-431 . -983) T) ((-57 . -464) 138344) ((-964 . -982) 138318) ((-490 . -464) 138302) ((-488 . -464) 138286) ((-470 . -464) 138270) ((-469 . -464) 138254) ((-225 . -486) 138187) ((-964 . -107) 138154) ((-1088 . -834) 138067) ((-616 . -1031) T) ((-1087 . -834) 137973) ((-1081 . -834) 137806) ((-1043 . -834) 137790) ((-332 . -1066) T) ((-300 . -982) 137772) ((-230 . -733) 137751) ((-230 . -736) 137702) ((-230 . -735) 137681) ((-229 . -733) 137660) ((-229 . -736) 137611) ((-229 . -735) 137590) ((-49 . -983) T) ((-230 . -669) 137521) ((-229 . -669) 137452) ((-1121 . -1019) T) ((-616 . -23) T) ((-538 . -983) T) ((-489 . -983) T) ((-357 . -982) 137417) ((-300 . -107) 137392) ((-71 . -361) T) ((-71 . -373) T) ((-954 . -37) 137329) ((-636 . -378) 137311) ((-94 . -97) T) ((-654 . -1019) T) ((-934 . -136) 137283) ((-934 . -138) 137255) ((-357 . -107) 137211) ((-297 . -1130) 137190) ((-451 . -933) 137156) ((-332 . -37) 137121) ((-39 . -348) 137093) ((-807 . -566) 136965) ((-123 . -121) 136949) ((-117 . -121) 136933) ((-776 . -982) 136903) ((-775 . -21) 136855) ((-769 . -982) 136839) ((-775 . -25) 136791) ((-297 . -517) 136742) ((-525 . -770) T) ((-220 . -1126) T) ((-776 . -107) 136707) ((-769 . -107) 136686) ((-1156 . -566) 136668) ((-1135 . -566) 136650) ((-1135 . -567) 136323) ((-1086 . -843) 136302) ((-1042 . -843) 136281) ((-47 . -37) 136246) ((-1192 . -1031) T) ((-556 . -566) 136158) ((-556 . -567) 136119) ((-1190 . -1031) T) ((-220 . -967) 135948) ((-1086 . -594) 135873) ((-1042 . -594) 135798) ((-661 . -566) 135780) ((-793 . -594) 135754) ((-1192 . -23) T) ((-1190 . -23) T) ((-964 . -976) T) ((-1100 . -265) 135733) ((-157 . -346) 135684) ((-935 . -1126) T) ((-43 . -23) T) ((-455 . -265) 135663) ((-542 . -1019) T) ((-1061 . -1028) 135632) ((-1023 . -1022) 135584) ((-124 . -1126) T) ((-368 . -21) T) ((-368 . -25) T) ((-143 . -1031) T) ((-1198 . -97) T) ((-935 . -818) 135566) ((-935 . -820) 135548) ((-1121 . -660) 135445) ((-573 . -211) 135429) ((-571 . -21) T) ((-268 . -517) T) ((-571 . -25) T) ((-1107 . -1019) T) ((-654 . -660) 135394) ((-220 . -355) 135364) ((-935 . -967) 135324) ((-357 . -976) T) ((-203 . -983) T) ((-113 . -211) 135301) ((-57 . -265) 135278) ((-143 . -23) T) ((-488 . -265) 135255) ((-305 . -486) 135188) ((-469 . -265) 135165) ((-357 . -223) T) ((-357 . -213) T) ((-776 . -976) T) ((-769 . -976) T) ((-655 . -883) 135134) ((-643 . -789) T) ((-451 . -566) 135116) ((-769 . -213) 135095) ((-128 . -789) T) ((-604 . -1019) T) ((-1100 . -558) 135074) ((-511 . -1103) 135053) ((-314 . -1019) T) ((-297 . -341) 135032) ((-385 . -138) 135011) ((-385 . -136) 134990) ((-897 . -1031) 134889) ((-220 . -834) 134822) ((-757 . -1031) 134753) ((-600 . -791) 134737) ((-455 . -558) 134716) ((-511 . -102) 134666) ((-935 . -355) 134648) ((-935 . -316) 134630) ((-92 . -1019) T) ((-897 . -23) 134441) ((-454 . -21) T) ((-454 . -25) T) ((-757 . -23) 134312) ((-1090 . -566) 134294) ((-57 . -19) 134278) ((-1090 . -567) 134200) ((-1086 . -669) T) ((-1042 . -669) T) ((-488 . -19) 134184) ((-469 . -19) 134168) ((-57 . -558) 134145) ((-1008 . -1019) T) ((-835 . -97) 134123) ((-793 . -669) T) ((-724 . -1019) T) ((-488 . -558) 134100) ((-469 . -558) 134077) ((-722 . -1019) T) ((-722 . -990) 134044) ((-438 . -1019) T) ((-431 . -1019) T) ((-542 . -660) 134019) ((-595 . -1019) T) ((-935 . -834) NIL) ((-1164 . -46) 133996) ((-576 . -1031) T) ((-616 . -126) T) ((-1158 . -97) T) ((-1157 . -46) 133966) ((-1136 . -46) 133943) ((-1121 . -160) 133894) ((-1002 . -1130) 133845) ((-254 . -1019) T) ((-83 . -418) T) ((-83 . -373) T) ((-1087 . -286) 133824) ((-1081 . -286) 133803) ((-49 . -1019) T) ((-1002 . -517) 133754) ((-654 . -160) T) ((-550 . -46) 133731) ((-205 . -594) 133696) ((-538 . -1019) T) ((-489 . -1019) T) ((-337 . -1130) T) ((-331 . -1130) T) ((-323 . -1130) T) ((-462 . -762) T) ((-462 . -854) T) ((-297 . -1031) T) ((-103 . -1130) T) ((-317 . -789) T) ((-198 . -854) T) ((-198 . -762) T) ((-657 . -982) 133666) ((-337 . -517) T) ((-331 . -517) T) ((-323 . -517) T) ((-103 . -517) T) ((-604 . -660) 133636) ((-1081 . -952) NIL) ((-297 . -23) T) ((-65 . -1126) T) ((-931 . -566) 133568) ((-636 . -211) 133550) ((-657 . -107) 133515) ((-592 . -33) T) ((-225 . -464) 133499) ((-1021 . -1017) 133483) ((-159 . -1019) T) ((-886 . -843) 133462) ((-457 . -843) 133441) ((-1194 . -21) T) ((-1194 . -25) T) ((-1192 . -126) T) ((-1190 . -126) T) ((-1008 . -660) 133290) ((-987 . -594) 133277) ((-886 . -594) 133202) ((-724 . -660) 133031) ((-501 . -566) 133013) ((-501 . -567) 132994) ((-722 . -660) 132843) ((-1183 . -97) T) ((-999 . -97) T) ((-359 . -25) T) ((-359 . -21) T) ((-457 . -594) 132768) ((-438 . -660) 132739) ((-431 . -660) 132588) ((-919 . -97) T) ((-680 . -97) T) ((-497 . -25) T) ((-1136 . -1126) 132567) ((-1168 . -566) 132533) ((-1136 . -820) NIL) ((-1136 . -818) 132485) ((-132 . -97) T) ((-43 . -126) T) ((-1100 . -567) NIL) ((-1100 . -566) 132467) ((-1057 . -1040) 132412) ((-321 . -983) T) ((-610 . -566) 132394) ((-268 . -1031) T) ((-333 . -566) 132376) ((-330 . -566) 132358) ((-322 . -566) 132340) ((-243 . -567) 132088) ((-243 . -566) 132070) ((-227 . -566) 132052) ((-227 . -567) 131913) ((-973 . -1120) 131842) ((-835 . -288) 131780) ((-1198 . -1066) T) ((-1157 . -967) 131715) ((-1136 . -967) 131681) ((-1121 . -486) 131648) ((-1056 . -566) 131630) ((-761 . -669) T) ((-556 . -267) 131607) ((-538 . -660) 131572) ((-455 . -567) NIL) ((-455 . -566) 131554) ((-489 . -660) 131499) ((-294 . -97) T) ((-291 . -97) T) ((-268 . -23) T) ((-143 . -126) T) ((-364 . -669) T) ((-806 . -982) 131451) ((-844 . -566) 131433) ((-844 . -567) 131415) ((-806 . -107) 131353) ((-130 . -97) T) ((-110 . -97) T) ((-655 . -1148) 131337) ((-657 . -976) T) ((-636 . -327) NIL) ((-490 . -566) 131269) ((-357 . -737) T) ((-203 . -1019) T) ((-357 . -734) T) ((-205 . -736) T) ((-205 . -733) T) ((-57 . -567) 131230) ((-57 . -566) 131142) ((-205 . -669) T) ((-488 . -567) 131103) ((-488 . -566) 131015) ((-470 . -566) 130947) ((-469 . -567) 130908) ((-469 . -566) 130820) ((-1002 . -341) 130771) ((-39 . -389) 130748) ((-75 . -1126) T) ((-805 . -843) NIL) ((-337 . -307) 130732) ((-337 . -341) T) ((-331 . -307) 130716) ((-331 . -341) T) ((-323 . -307) 130700) ((-323 . -341) T) ((-294 . -263) 130679) ((-103 . -341) T) ((-68 . -1126) T) ((-1136 . -316) 130631) ((-805 . -594) 130576) ((-1136 . -355) 130528) ((-897 . -126) 130383) ((-757 . -126) 130254) ((-891 . -597) 130238) ((-1008 . -160) 130149) ((-891 . -351) 130133) ((-987 . -736) T) ((-987 . -733) T) ((-724 . -160) 130024) ((-722 . -160) 129935) ((-758 . -46) 129897) ((-987 . -669) T) ((-305 . -464) 129881) ((-886 . -669) T) ((-431 . -160) 129792) ((-225 . -265) 129769) ((-457 . -669) T) ((-1183 . -288) 129707) ((-1164 . -834) 129620) ((-1157 . -834) 129526) ((-1156 . -982) 129361) ((-1136 . -834) 129194) ((-1135 . -982) 129002) ((-1121 . -269) 128981) ((-1061 . -142) 128965) ((-997 . -97) T) ((-861 . -888) T) ((-73 . -1126) T) ((-680 . -288) 128903) ((-157 . -843) 128856) ((-610 . -360) 128828) ((-30 . -888) T) ((-1 . -566) 128810) ((-1037 . -97) T) ((-1002 . -23) T) ((-49 . -570) 128794) ((-1002 . -1031) T) ((-934 . -387) 128766) ((-550 . -834) 128679) ((-416 . -97) T) ((-132 . -288) NIL) ((-806 . -976) T) ((-775 . -789) 128658) ((-79 . -1126) T) ((-654 . -269) T) ((-39 . -983) T) ((-538 . -160) T) ((-489 . -160) T) ((-483 . -566) 128640) ((-157 . -594) 128550) ((-479 . -566) 128532) ((-329 . -138) 128514) ((-329 . -136) T) ((-337 . -1031) T) ((-331 . -1031) T) ((-323 . -1031) T) ((-935 . -286) T) ((-848 . -286) T) ((-806 . -223) T) ((-103 . -1031) T) ((-806 . -213) 128493) ((-1156 . -107) 128314) ((-1135 . -107) 128103) ((-225 . -1160) 128087) ((-525 . -787) T) ((-337 . -23) T) ((-332 . -327) T) ((-294 . -288) 128074) ((-291 . -288) 128015) ((-331 . -23) T) ((-297 . -126) T) ((-323 . -23) T) ((-935 . -952) T) ((-103 . -23) T) ((-225 . -558) 127992) ((-1158 . -37) 127884) ((-1145 . -843) 127863) ((-108 . -1019) T) ((-965 . -97) T) ((-1145 . -594) 127788) ((-805 . -736) NIL) ((-794 . -594) 127762) ((-805 . -733) NIL) ((-758 . -820) NIL) ((-805 . -669) T) ((-1008 . -486) 127635) ((-724 . -486) 127582) ((-722 . -486) 127534) ((-532 . -594) 127521) ((-758 . -967) 127351) ((-431 . -486) 127294) ((-366 . -367) T) ((-58 . -1126) T) ((-571 . -789) 127273) ((-473 . -607) T) ((-1061 . -908) 127242) ((-934 . -429) T) ((-641 . -787) T) ((-482 . -734) T) ((-451 . -982) 127077) ((-321 . -1019) T) ((-291 . -1066) NIL) ((-268 . -126) T) ((-372 . -1019) T) ((-636 . -348) 127044) ((-804 . -983) T) ((-203 . -570) 127021) ((-305 . -265) 126998) ((-451 . -107) 126819) ((-1156 . -976) T) ((-1135 . -976) T) ((-758 . -355) 126803) ((-157 . -669) T) ((-600 . -97) T) ((-1156 . -223) 126782) ((-1156 . -213) 126734) ((-1135 . -213) 126639) ((-1135 . -223) 126618) ((-934 . -380) NIL) ((-616 . -588) 126566) ((-294 . -37) 126476) ((-291 . -37) 126405) ((-67 . -566) 126387) ((-297 . -466) 126353) ((-1100 . -267) 126332) ((-1032 . -1031) 126263) ((-81 . -1126) T) ((-59 . -566) 126245) ((-455 . -267) 126224) ((-1185 . -967) 126201) ((-1079 . -1019) T) ((-1032 . -23) 126072) ((-758 . -834) 126008) ((-1145 . -669) T) ((-1021 . -1126) T) ((-1008 . -269) 125939) ((-827 . -97) T) ((-724 . -269) 125850) ((-305 . -19) 125834) ((-57 . -267) 125811) ((-722 . -269) 125742) ((-794 . -669) T) ((-113 . -787) NIL) ((-488 . -267) 125719) ((-305 . -558) 125696) ((-469 . -267) 125673) ((-431 . -269) 125604) ((-965 . -288) 125455) ((-532 . -669) T) ((-608 . -566) 125437) ((-225 . -567) 125398) ((-225 . -566) 125310) ((-1062 . -33) T) ((-877 . -1126) T) ((-321 . -660) 125255) ((-616 . -25) T) ((-616 . -21) T) ((-451 . -976) T) ((-584 . -395) 125220) ((-560 . -395) 125185) ((-1037 . -1066) T) ((-538 . -269) T) ((-489 . -269) T) ((-1157 . -286) 125164) ((-451 . -213) 125116) ((-451 . -223) 125095) ((-1136 . -286) 125074) ((-1002 . -126) T) ((-806 . -737) 125053) ((-135 . -97) T) ((-39 . -1019) T) ((-806 . -734) 125032) ((-592 . -941) 125016) ((-537 . -983) T) ((-525 . -983) T) ((-468 . -983) T) ((-385 . -429) T) ((-337 . -126) T) ((-294 . -378) 125000) ((-291 . -378) 124961) ((-331 . -126) T) ((-323 . -126) T) ((-1136 . -952) NIL) ((-1095 . -1019) T) ((-1014 . -566) 124928) ((-103 . -126) T) ((-1037 . -37) 124915) ((-855 . -1019) T) ((-713 . -1019) T) ((-617 . -1019) T) ((-643 . -138) T) ((-112 . -138) T) ((-1192 . -21) T) ((-1192 . -25) T) ((-1190 . -21) T) ((-1190 . -25) T) ((-610 . -982) 124899) ((-497 . -789) T) ((-473 . -789) T) ((-333 . -982) 124851) ((-330 . -982) 124803) ((-322 . -982) 124755) ((-230 . -1126) T) ((-229 . -1126) T) ((-243 . -982) 124598) ((-227 . -982) 124441) ((-610 . -107) 124420) ((-333 . -107) 124358) ((-330 . -107) 124296) ((-322 . -107) 124234) ((-243 . -107) 124063) ((-227 . -107) 123892) ((-759 . -1130) 123871) ((-573 . -389) 123855) ((-43 . -21) T) ((-43 . -25) T) ((-757 . -588) 123763) ((-759 . -517) 123742) ((-230 . -967) 123571) ((-229 . -967) 123400) ((-122 . -115) 123384) ((-844 . -982) 123349) ((-641 . -983) T) ((-655 . -97) T) ((-321 . -160) T) ((-143 . -21) T) ((-143 . -25) T) ((-86 . -566) 123331) ((-844 . -107) 123287) ((-39 . -660) 123232) ((-804 . -1019) T) ((-305 . -567) 123193) ((-305 . -566) 123105) ((-1135 . -734) 123058) ((-1135 . -737) 123011) ((-230 . -355) 122981) ((-229 . -355) 122951) ((-600 . -37) 122921) ((-561 . -33) T) ((-458 . -1031) 122852) ((-452 . -33) T) ((-1032 . -126) 122723) ((-897 . -25) 122534) ((-808 . -566) 122516) ((-897 . -21) 122471) ((-757 . -21) 122382) ((-757 . -25) 122234) ((-573 . -983) T) ((-1092 . -517) 122213) ((-1086 . -46) 122190) ((-333 . -976) T) ((-330 . -976) T) ((-458 . -23) 122061) ((-322 . -976) T) ((-227 . -976) T) ((-243 . -976) T) ((-1042 . -46) 122033) ((-113 . -983) T) ((-964 . -594) 122007) ((-891 . -33) T) ((-333 . -213) 121986) ((-333 . -223) T) ((-330 . -213) 121965) ((-330 . -223) T) ((-227 . -304) 121922) ((-322 . -213) 121901) ((-322 . -223) T) ((-243 . -304) 121873) ((-243 . -213) 121852) ((-1071 . -142) 121836) ((-230 . -834) 121769) ((-229 . -834) 121702) ((-1004 . -789) T) ((-1139 . -1126) T) ((-392 . -1031) T) ((-980 . -23) T) ((-844 . -976) T) ((-300 . -594) 121684) ((-954 . -787) T) ((-1121 . -933) 121650) ((-1087 . -854) 121629) ((-1081 . -854) 121608) ((-844 . -223) T) ((-759 . -341) 121587) ((-363 . -23) T) ((-123 . -1019) 121565) ((-117 . -1019) 121543) ((-844 . -213) T) ((-1081 . -762) NIL) ((-357 . -594) 121508) ((-804 . -660) 121495) ((-973 . -142) 121460) ((-39 . -160) T) ((-636 . -389) 121442) ((-655 . -288) 121429) ((-776 . -594) 121389) ((-769 . -594) 121363) ((-297 . -25) T) ((-297 . -21) T) ((-604 . -265) 121342) ((-537 . -1019) T) ((-525 . -1019) T) ((-468 . -1019) T) ((-225 . -267) 121319) ((-291 . -211) 121280) ((-1086 . -820) NIL) ((-1042 . -820) 121139) ((-125 . -789) T) ((-1086 . -967) 121021) ((-1042 . -967) 120906) ((-169 . -566) 120888) ((-793 . -967) 120786) ((-724 . -265) 120713) ((-759 . -1031) T) ((-964 . -669) T) ((-556 . -597) 120697) ((-973 . -908) 120626) ((-930 . -97) T) ((-759 . -23) T) ((-655 . -1066) 120604) ((-636 . -983) T) ((-556 . -351) 120588) ((-329 . -429) T) ((-321 . -269) T) ((-1173 . -1019) T) ((-377 . -97) T) ((-268 . -21) T) ((-268 . -25) T) ((-339 . -669) T) ((-653 . -1019) T) ((-641 . -1019) T) ((-339 . -450) T) ((-1121 . -566) 120570) ((-1086 . -355) 120554) ((-1042 . -355) 120538) ((-954 . -389) 120500) ((-132 . -209) 120482) ((-357 . -736) T) ((-357 . -733) T) ((-804 . -160) T) ((-357 . -669) T) ((-654 . -566) 120464) ((-655 . -37) 120293) ((-1172 . -1170) 120277) ((-329 . -380) T) ((-1172 . -1019) 120227) ((-537 . -660) 120214) ((-525 . -660) 120201) ((-468 . -660) 120166) ((-294 . -578) 120145) ((-776 . -669) T) ((-769 . -669) T) ((-592 . -1126) T) ((-1002 . -588) 120093) ((-1086 . -834) 120036) ((-1042 . -834) 120020) ((-608 . -982) 120004) ((-103 . -588) 119986) ((-458 . -126) 119857) ((-1092 . -1031) T) ((-886 . -46) 119826) ((-573 . -1019) T) ((-608 . -107) 119805) ((-305 . -267) 119782) ((-457 . -46) 119739) ((-1092 . -23) T) ((-113 . -1019) T) ((-98 . -97) 119717) ((-1182 . -1031) T) ((-980 . -126) T) ((-954 . -983) T) ((-761 . -967) 119701) ((-934 . -667) 119673) ((-1182 . -23) T) ((-641 . -660) 119638) ((-542 . -566) 119620) ((-364 . -967) 119604) ((-332 . -983) T) ((-363 . -126) T) ((-302 . -967) 119588) ((-205 . -820) 119570) ((-935 . -854) T) ((-89 . -33) T) ((-935 . -762) T) ((-848 . -854) T) ((-462 . -1130) T) ((-1107 . -566) 119552) ((-1024 . -1019) T) ((-198 . -1130) T) ((-930 . -288) 119517) ((-205 . -967) 119477) ((-39 . -269) T) ((-1002 . -21) T) ((-1002 . -25) T) ((-1037 . -770) T) ((-462 . -517) T) ((-337 . -25) T) ((-198 . -517) T) ((-337 . -21) T) ((-331 . -25) T) ((-331 . -21) T) ((-657 . -594) 119437) ((-323 . -25) T) ((-323 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -983) T) ((-537 . -160) T) ((-525 . -160) T) ((-468 . -160) T) ((-604 . -566) 119419) ((-680 . -679) 119403) ((-314 . -566) 119385) ((-66 . -361) T) ((-66 . -373) T) ((-1021 . -102) 119369) ((-987 . -820) 119351) ((-886 . -820) 119276) ((-599 . -1031) T) ((-573 . -660) 119263) ((-457 . -820) NIL) ((-1061 . -97) T) ((-987 . -967) 119245) ((-92 . -566) 119227) ((-454 . -138) T) ((-886 . -967) 119109) ((-113 . -660) 119054) ((-599 . -23) T) ((-457 . -967) 118932) ((-1008 . -567) NIL) ((-1008 . -566) 118914) ((-724 . -567) NIL) ((-724 . -566) 118875) ((-722 . -567) 118510) ((-722 . -566) 118424) ((-1032 . -588) 118332) ((-438 . -566) 118314) ((-431 . -566) 118296) ((-431 . -567) 118157) ((-965 . -209) 118103) ((-122 . -33) T) ((-759 . -126) T) ((-806 . -843) 118082) ((-595 . -566) 118064) ((-333 . -1189) 118048) ((-330 . -1189) 118032) ((-322 . -1189) 118016) ((-123 . -486) 117949) ((-117 . -486) 117882) ((-483 . -734) T) ((-483 . -737) T) ((-482 . -736) T) ((-98 . -288) 117820) ((-202 . -97) 117798) ((-636 . -1019) T) ((-641 . -160) T) ((-806 . -594) 117750) ((-63 . -362) T) ((-254 . -566) 117732) ((-63 . -373) T) ((-886 . -355) 117716) ((-804 . -269) T) ((-49 . -566) 117698) ((-930 . -37) 117646) ((-538 . -566) 117628) ((-457 . -355) 117612) ((-538 . -567) 117594) ((-489 . -566) 117576) ((-844 . -1189) 117563) ((-805 . -1126) T) ((-643 . -429) T) ((-468 . -486) 117529) ((-462 . -341) T) ((-333 . -346) 117508) ((-330 . -346) 117487) ((-322 . -346) 117466) ((-198 . -341) T) ((-657 . -669) T) ((-112 . -429) T) ((-1193 . -1184) 117450) ((-805 . -818) 117427) ((-805 . -820) NIL) ((-897 . -789) 117326) ((-757 . -789) 117277) ((-600 . -602) 117261) ((-1113 . -33) T) ((-159 . -566) 117243) ((-1032 . -21) 117154) ((-1032 . -25) 117006) ((-805 . -967) 116983) ((-886 . -834) 116964) ((-1145 . -46) 116941) ((-844 . -346) T) ((-57 . -597) 116925) ((-488 . -597) 116909) ((-457 . -834) 116886) ((-69 . -418) T) ((-69 . -373) T) ((-469 . -597) 116870) ((-57 . -351) 116854) ((-573 . -160) T) ((-488 . -351) 116838) ((-469 . -351) 116822) ((-769 . -651) 116806) ((-1086 . -286) 116785) ((-1092 . -126) T) ((-113 . -160) T) ((-1061 . -288) 116723) ((-157 . -1126) T) ((-584 . -687) 116707) ((-560 . -687) 116691) ((-1182 . -126) T) ((-1157 . -854) 116670) ((-1136 . -854) 116649) ((-1136 . -762) NIL) ((-636 . -660) 116599) ((-1135 . -843) 116552) ((-954 . -1019) T) ((-805 . -355) 116529) ((-805 . -316) 116506) ((-839 . -1031) T) ((-157 . -818) 116490) ((-157 . -820) 116415) ((-462 . -1031) T) ((-332 . -1019) T) ((-198 . -1031) T) ((-74 . -418) T) ((-74 . -373) T) ((-157 . -967) 116313) ((-297 . -789) T) ((-1172 . -486) 116246) ((-1156 . -594) 116143) ((-1135 . -594) 116013) ((-806 . -736) 115992) ((-806 . -733) 115971) ((-806 . -669) T) ((-462 . -23) T) ((-203 . -566) 115953) ((-161 . -429) T) ((-202 . -288) 115891) ((-84 . -418) T) ((-84 . -373) T) ((-198 . -23) T) ((-1194 . -1187) 115870) ((-537 . -269) T) ((-525 . -269) T) ((-621 . -967) 115854) ((-468 . -269) T) ((-130 . -447) 115809) ((-47 . -1019) T) ((-655 . -211) 115793) ((-805 . -834) NIL) ((-1145 . -820) NIL) ((-823 . -97) T) ((-819 . -97) T) ((-366 . -1019) T) ((-157 . -355) 115777) ((-157 . -316) 115761) ((-1145 . -967) 115643) ((-794 . -967) 115541) ((-1057 . -97) T) ((-599 . -126) T) ((-113 . -486) 115449) ((-608 . -734) 115428) ((-608 . -737) 115407) ((-532 . -967) 115389) ((-273 . -1179) 115359) ((-800 . -97) T) ((-896 . -517) 115338) ((-1121 . -982) 115221) ((-458 . -588) 115129) ((-838 . -1019) T) ((-954 . -660) 115066) ((-654 . -982) 115031) ((-556 . -33) T) ((-1062 . -1126) T) ((-1121 . -107) 114900) ((-451 . -594) 114797) ((-332 . -660) 114742) ((-157 . -834) 114701) ((-641 . -269) T) ((-636 . -160) T) ((-654 . -107) 114657) ((-1198 . -983) T) ((-1145 . -355) 114641) ((-396 . -1130) 114619) ((-291 . -787) NIL) ((-396 . -517) T) ((-205 . -286) T) ((-1135 . -733) 114572) ((-1135 . -736) 114525) ((-1156 . -669) T) ((-1135 . -669) T) ((-47 . -660) 114490) ((-205 . -952) T) ((-329 . -1179) 114467) ((-1158 . -389) 114433) ((-661 . -669) T) ((-1145 . -834) 114376) ((-108 . -566) 114358) ((-108 . -567) 114340) ((-661 . -450) T) ((-458 . -21) 114251) ((-123 . -464) 114235) ((-117 . -464) 114219) ((-458 . -25) 114071) ((-573 . -269) T) ((-542 . -982) 114046) ((-415 . -1019) T) ((-987 . -286) T) ((-113 . -269) T) ((-1023 . -97) T) ((-934 . -97) T) ((-542 . -107) 114014) ((-1057 . -288) 113952) ((-1121 . -976) T) ((-987 . -952) T) ((-64 . -1126) T) ((-980 . -25) T) ((-980 . -21) T) ((-654 . -976) T) ((-363 . -21) T) ((-363 . -25) T) ((-636 . -486) NIL) ((-954 . -160) T) ((-654 . -223) T) ((-987 . -510) T) ((-475 . -97) T) ((-332 . -160) T) ((-321 . -566) 113934) ((-372 . -566) 113916) ((-451 . -669) T) ((-1037 . -787) T) ((-826 . -967) 113884) ((-103 . -789) T) ((-604 . -982) 113868) ((-462 . -126) T) ((-1158 . -983) T) ((-198 . -126) T) ((-1071 . -97) 113846) ((-94 . -1019) T) ((-225 . -612) 113830) ((-225 . -597) 113814) ((-604 . -107) 113793) ((-294 . -389) 113777) ((-225 . -351) 113761) ((-1074 . -215) 113708) ((-930 . -211) 113692) ((-72 . -1126) T) ((-47 . -160) T) ((-643 . -365) T) ((-643 . -134) T) ((-1193 . -97) T) ((-1008 . -982) 113535) ((-243 . -843) 113514) ((-227 . -843) 113493) ((-724 . -982) 113316) ((-722 . -982) 113159) ((-561 . -1126) T) ((-1079 . -566) 113141) ((-1008 . -107) 112970) ((-973 . -97) T) ((-452 . -1126) T) ((-438 . -982) 112941) ((-431 . -982) 112784) ((-610 . -594) 112768) ((-805 . -286) T) ((-724 . -107) 112577) ((-722 . -107) 112406) ((-333 . -594) 112358) ((-330 . -594) 112310) ((-322 . -594) 112262) ((-243 . -594) 112187) ((-227 . -594) 112112) ((-1073 . -789) T) ((-1009 . -967) 112096) ((-438 . -107) 112057) ((-431 . -107) 111886) ((-998 . -967) 111863) ((-931 . -33) T) ((-899 . -566) 111824) ((-891 . -1126) T) ((-122 . -941) 111808) ((-896 . -1031) T) ((-805 . -952) NIL) ((-678 . -1031) T) ((-658 . -1031) T) ((-1172 . -464) 111792) ((-1057 . -37) 111752) ((-896 . -23) T) ((-782 . -97) T) ((-759 . -21) T) ((-759 . -25) T) ((-678 . -23) T) ((-658 . -23) T) ((-106 . -607) T) ((-844 . -594) 111717) ((-538 . -982) 111682) ((-489 . -982) 111627) ((-207 . -55) 111585) ((-430 . -23) T) ((-385 . -97) T) ((-242 . -97) T) ((-636 . -269) T) ((-800 . -37) 111555) ((-538 . -107) 111511) ((-489 . -107) 111440) ((-396 . -1031) T) ((-294 . -983) 111331) ((-291 . -983) T) ((-604 . -976) T) ((-1198 . -1019) T) ((-157 . -286) 111262) ((-396 . -23) T) ((-39 . -566) 111244) ((-39 . -567) 111228) ((-103 . -924) 111210) ((-112 . -803) 111194) ((-47 . -486) 111160) ((-1113 . -941) 111144) ((-1095 . -566) 111126) ((-1100 . -33) T) ((-855 . -566) 111108) ((-1032 . -789) 111059) ((-713 . -566) 111041) ((-617 . -566) 111023) ((-1071 . -288) 110961) ((-455 . -33) T) ((-1012 . -1126) T) ((-454 . -429) T) ((-1008 . -976) T) ((-1056 . -33) T) ((-724 . -976) T) ((-722 . -976) T) ((-593 . -215) 110945) ((-581 . -215) 110891) ((-1145 . -286) 110870) ((-1008 . -304) 110831) ((-431 . -976) T) ((-1092 . -21) T) ((-1008 . -213) 110810) ((-724 . -304) 110787) ((-724 . -213) T) ((-722 . -304) 110759) ((-305 . -597) 110743) ((-674 . -1130) 110722) ((-1092 . -25) T) ((-57 . -33) T) ((-490 . -33) T) ((-488 . -33) T) ((-431 . -304) 110701) ((-305 . -351) 110685) ((-470 . -33) T) ((-469 . -33) T) ((-934 . -1066) NIL) ((-584 . -97) T) ((-560 . -97) T) ((-674 . -517) 110616) ((-333 . -669) T) ((-330 . -669) T) ((-322 . -669) T) ((-243 . -669) T) ((-227 . -669) T) ((-973 . -288) 110524) ((-835 . -1019) 110502) ((-49 . -976) T) ((-1182 . -21) T) ((-1182 . -25) T) ((-1088 . -517) 110481) ((-1087 . -1130) 110460) ((-538 . -976) T) ((-489 . -976) T) ((-1081 . -1130) 110439) ((-339 . -967) 110423) ((-300 . -967) 110407) ((-954 . -269) T) ((-357 . -820) 110389) ((-1087 . -517) 110340) ((-1081 . -517) 110291) ((-934 . -37) 110236) ((-741 . -1031) T) ((-844 . -669) T) ((-538 . -223) T) ((-538 . -213) T) ((-489 . -213) T) ((-489 . -223) T) ((-1043 . -517) 110215) ((-332 . -269) T) ((-593 . -637) 110199) ((-357 . -967) 110159) ((-1037 . -983) T) ((-98 . -121) 110143) ((-741 . -23) T) ((-1172 . -265) 110120) ((-385 . -288) 110085) ((-1192 . -1187) 110061) ((-1190 . -1187) 110040) ((-1158 . -1019) T) ((-804 . -566) 110022) ((-776 . -967) 109991) ((-185 . -729) T) ((-184 . -729) T) ((-183 . -729) T) ((-182 . -729) T) ((-181 . -729) T) ((-180 . -729) T) ((-179 . -729) T) ((-178 . -729) T) ((-177 . -729) T) ((-176 . -729) T) ((-468 . -933) T) ((-253 . -778) T) ((-252 . -778) T) ((-251 . -778) T) ((-250 . -778) T) ((-47 . -269) T) ((-249 . -778) T) ((-248 . -778) T) ((-247 . -778) T) ((-175 . -729) T) ((-565 . -789) T) ((-600 . -389) 109975) ((-106 . -789) T) ((-599 . -21) T) ((-599 . -25) T) ((-1193 . -37) 109945) ((-113 . -265) 109896) ((-1172 . -19) 109880) ((-1172 . -558) 109857) ((-1183 . -1019) T) ((-999 . -1019) T) ((-919 . -1019) T) ((-896 . -126) T) ((-680 . -1019) T) ((-678 . -126) T) ((-658 . -126) T) ((-483 . -735) T) ((-385 . -1066) 109835) ((-430 . -126) T) ((-483 . -736) T) ((-203 . -976) T) ((-273 . -97) 109618) ((-132 . -1019) T) ((-641 . -933) T) ((-89 . -1126) T) ((-123 . -566) 109550) ((-117 . -566) 109482) ((-1198 . -160) T) ((-1087 . -341) 109461) ((-1081 . -341) 109440) ((-294 . -1019) T) ((-396 . -126) T) ((-291 . -1019) T) ((-385 . -37) 109392) ((-1050 . -97) T) ((-1158 . -660) 109284) ((-600 . -983) T) ((-297 . -136) 109263) ((-297 . -138) 109242) ((-130 . -1019) T) ((-110 . -1019) T) ((-796 . -97) T) ((-537 . -566) 109224) ((-525 . -567) 109123) ((-525 . -566) 109105) ((-468 . -566) 109087) ((-468 . -567) 109032) ((-460 . -23) T) ((-458 . -789) 108983) ((-462 . -588) 108965) ((-898 . -566) 108947) ((-198 . -588) 108929) ((-205 . -382) T) ((-608 . -594) 108913) ((-1086 . -854) 108892) ((-674 . -1031) T) ((-329 . -97) T) ((-760 . -789) T) ((-674 . -23) T) ((-321 . -982) 108837) ((-1073 . -1072) T) ((-1062 . -102) 108821) ((-1088 . -1031) T) ((-1087 . -1031) T) ((-487 . -967) 108805) ((-1081 . -1031) T) ((-1043 . -1031) T) ((-321 . -107) 108734) ((-935 . -1130) T) ((-122 . -1126) T) ((-848 . -1130) T) ((-636 . -265) NIL) ((-1173 . -566) 108716) ((-1088 . -23) T) ((-1087 . -23) T) ((-1081 . -23) T) ((-935 . -517) T) ((-1057 . -211) 108700) ((-848 . -517) T) ((-1043 . -23) T) ((-228 . -566) 108682) ((-997 . -1019) T) ((-741 . -126) T) ((-653 . -566) 108664) ((-294 . -660) 108574) ((-291 . -660) 108503) ((-641 . -566) 108485) ((-641 . -567) 108430) ((-385 . -378) 108414) ((-416 . -1019) T) ((-462 . -25) T) ((-462 . -21) T) ((-1037 . -1019) T) ((-198 . -25) T) ((-198 . -21) T) ((-655 . -389) 108398) ((-657 . -967) 108367) ((-1172 . -566) 108279) ((-1172 . -567) 108240) ((-1158 . -160) T) ((-225 . -33) T) ((-860 . -906) T) ((-1113 . -1126) T) ((-608 . -733) 108219) ((-608 . -736) 108198) ((-376 . -373) T) ((-494 . -97) 108176) ((-965 . -1019) T) ((-202 . -926) 108160) ((-477 . -97) T) ((-573 . -566) 108142) ((-44 . -789) NIL) ((-573 . -567) 108119) ((-965 . -563) 108094) ((-835 . -486) 108027) ((-321 . -976) T) ((-113 . -567) NIL) ((-113 . -566) 108009) ((-806 . -1126) T) ((-616 . -395) 107993) ((-616 . -1040) 107938) ((-473 . -142) 107920) ((-321 . -213) T) ((-321 . -223) T) ((-39 . -982) 107865) ((-806 . -818) 107849) ((-806 . -820) 107774) ((-655 . -983) T) ((-636 . -933) NIL) ((-3 . |UnionCategory|) T) ((-1156 . -46) 107744) ((-1135 . -46) 107721) ((-1056 . -941) 107692) ((-205 . -854) T) ((-39 . -107) 107621) ((-806 . -967) 107488) ((-1037 . -660) 107475) ((-1024 . -566) 107457) ((-1002 . -138) 107436) ((-1002 . -136) 107387) ((-935 . -341) T) ((-297 . -1115) 107353) ((-357 . -286) T) ((-297 . -1112) 107319) ((-294 . -160) 107298) ((-291 . -160) T) ((-934 . -211) 107275) ((-848 . -341) T) ((-538 . -1189) 107262) ((-489 . -1189) 107239) ((-337 . -138) 107218) ((-337 . -136) 107169) ((-331 . -138) 107148) ((-331 . -136) 107099) ((-561 . -1103) 107075) ((-323 . -138) 107054) ((-323 . -136) 107005) ((-297 . -34) 106971) ((-452 . -1103) 106950) ((0 . |EnumerationCategory|) T) ((-297 . -91) 106916) ((-357 . -952) T) ((-103 . -138) T) ((-103 . -136) NIL) ((-44 . -215) 106866) ((-600 . -1019) T) ((-561 . -102) 106813) ((-460 . -126) T) ((-452 . -102) 106763) ((-220 . -1031) 106694) ((-806 . -355) 106678) ((-806 . -316) 106662) ((-220 . -23) 106533) ((-987 . -854) T) ((-987 . -762) T) ((-538 . -346) T) ((-489 . -346) T) ((-329 . -1066) T) ((-305 . -33) T) ((-43 . -395) 106517) ((-807 . -1126) T) ((-368 . -687) 106501) ((-1183 . -486) 106434) ((-674 . -126) T) ((-1164 . -517) 106413) ((-1157 . -1130) 106392) ((-1157 . -517) 106343) ((-680 . -486) 106276) ((-1136 . -1130) 106255) ((-1136 . -517) 106206) ((-827 . -1019) T) ((-135 . -783) T) ((-1135 . -1126) 106185) ((-1135 . -820) 106058) ((-1135 . -818) 106028) ((-494 . -288) 105966) ((-1088 . -126) T) ((-132 . -486) NIL) ((-1087 . -126) T) ((-1081 . -126) T) ((-1043 . -126) T) ((-954 . -933) T) ((-329 . -37) 105931) ((-935 . -1031) T) ((-848 . -1031) T) ((-80 . -566) 105913) ((-39 . -976) T) ((-804 . -982) 105900) ((-935 . -23) T) ((-806 . -834) 105859) ((-643 . -97) T) ((-934 . -327) NIL) ((-556 . -1126) T) ((-903 . -23) T) ((-848 . -23) T) ((-804 . -107) 105844) ((-405 . -1031) T) ((-451 . -46) 105814) ((-128 . -97) T) ((-39 . -213) 105786) ((-39 . -223) T) ((-112 . -97) T) ((-551 . -517) 105765) ((-550 . -517) 105744) ((-636 . -566) 105726) ((-636 . -567) 105634) ((-294 . -486) 105600) ((-291 . -486) 105492) ((-1156 . -967) 105476) ((-1135 . -967) 105265) ((-930 . -389) 105249) ((-405 . -23) T) ((-1037 . -160) T) ((-1158 . -269) T) ((-600 . -660) 105219) ((-135 . -1019) T) ((-47 . -933) T) ((-385 . -211) 105203) ((-274 . -215) 105153) ((-805 . -854) T) ((-805 . -762) NIL) ((-799 . -789) T) ((-1135 . -316) 105123) ((-1135 . -355) 105093) ((-202 . -1038) 105077) ((-1172 . -267) 105054) ((-1121 . -594) 104979) ((-896 . -21) T) ((-896 . -25) T) ((-678 . -21) T) ((-678 . -25) T) ((-658 . -21) T) ((-658 . -25) T) ((-654 . -594) 104944) ((-430 . -21) T) ((-430 . -25) T) ((-317 . -97) T) ((-161 . -97) T) ((-930 . -983) T) ((-804 . -976) T) ((-716 . -97) T) ((-1157 . -341) 104923) ((-1156 . -834) 104829) ((-1136 . -341) 104808) ((-1135 . -834) 104659) ((-954 . -566) 104641) ((-385 . -770) 104594) ((-1088 . -466) 104560) ((-157 . -854) 104491) ((-1087 . -466) 104457) ((-1081 . -466) 104423) ((-655 . -1019) T) ((-1043 . -466) 104389) ((-537 . -982) 104376) ((-525 . -982) 104363) ((-468 . -982) 104328) ((-294 . -269) 104307) ((-291 . -269) T) ((-332 . -566) 104289) ((-396 . -25) T) ((-396 . -21) T) ((-94 . -265) 104268) ((-537 . -107) 104253) ((-525 . -107) 104238) ((-468 . -107) 104194) ((-1090 . -820) 104161) ((-835 . -464) 104145) ((-47 . -566) 104127) ((-47 . -567) 104072) ((-220 . -126) 103943) ((-1145 . -854) 103922) ((-758 . -1130) 103901) ((-965 . -486) 103745) ((-366 . -566) 103727) ((-758 . -517) 103658) ((-542 . -594) 103633) ((-243 . -46) 103605) ((-227 . -46) 103562) ((-497 . -481) 103539) ((-931 . -1126) T) ((-641 . -982) 103504) ((-1164 . -1031) T) ((-1157 . -1031) T) ((-1136 . -1031) T) ((-934 . -348) 103476) ((-108 . -346) T) ((-451 . -834) 103382) ((-1164 . -23) T) ((-1157 . -23) T) ((-838 . -566) 103364) ((-89 . -102) 103348) ((-1121 . -669) T) ((-839 . -789) 103299) ((-643 . -1066) T) ((-641 . -107) 103255) ((-1136 . -23) T) ((-551 . -1031) T) ((-550 . -1031) T) ((-655 . -660) 103084) ((-654 . -669) T) ((-1037 . -269) T) ((-935 . -126) T) ((-462 . -789) T) ((-903 . -126) T) ((-848 . -126) T) ((-741 . -25) T) ((-198 . -789) T) ((-741 . -21) T) ((-537 . -976) T) ((-525 . -976) T) ((-468 . -976) T) ((-551 . -23) T) ((-321 . -1189) 103061) ((-297 . -429) 103040) ((-317 . -288) 103027) ((-550 . -23) T) ((-405 . -126) T) ((-604 . -594) 103001) ((-225 . -941) 102985) ((-806 . -286) T) ((-1194 . -1184) 102969) ((-643 . -37) 102956) ((-525 . -213) T) ((-468 . -223) T) ((-468 . -213) T) ((-713 . -734) T) ((-713 . -737) T) ((-1065 . -215) 102906) ((-1008 . -843) 102885) ((-112 . -37) 102872) ((-191 . -742) T) ((-190 . -742) T) ((-189 . -742) T) ((-188 . -742) T) ((-806 . -952) 102851) ((-1183 . -464) 102835) ((-724 . -843) 102814) ((-722 . -843) 102793) ((-1100 . -1126) T) ((-431 . -843) 102772) ((-680 . -464) 102756) ((-1008 . -594) 102681) ((-724 . -594) 102606) ((-573 . -982) 102593) ((-455 . -1126) T) ((-321 . -346) T) ((-132 . -464) 102575) ((-722 . -594) 102500) ((-1056 . -1126) T) ((-438 . -594) 102471) ((-243 . -820) 102330) ((-227 . -820) NIL) ((-113 . -982) 102275) ((-431 . -594) 102200) ((-610 . -967) 102177) ((-573 . -107) 102162) ((-333 . -967) 102146) ((-330 . -967) 102130) ((-322 . -967) 102114) ((-243 . -967) 101960) ((-227 . -967) 101838) ((-113 . -107) 101767) ((-57 . -1126) T) ((-490 . -1126) T) ((-488 . -1126) T) ((-470 . -1126) T) ((-469 . -1126) T) ((-415 . -566) 101749) ((-412 . -566) 101731) ((-3 . -97) T) ((-957 . -1120) 101700) ((-775 . -97) T) ((-632 . -55) 101658) ((-641 . -976) T) ((-49 . -594) 101632) ((-268 . -429) T) ((-453 . -1120) 101601) ((0 . -97) T) ((-538 . -594) 101566) ((-489 . -594) 101511) ((-48 . -97) T) ((-844 . -967) 101498) ((-641 . -223) T) ((-1002 . -387) 101477) ((-674 . -588) 101425) ((-930 . -1019) T) ((-655 . -160) 101316) ((-462 . -924) 101298) ((-243 . -355) 101282) ((-227 . -355) 101266) ((-377 . -1019) T) ((-317 . -37) 101250) ((-956 . -97) 101228) ((-198 . -924) 101210) ((-161 . -37) 101142) ((-1156 . -286) 101121) ((-1135 . -286) 101100) ((-604 . -669) T) ((-94 . -566) 101082) ((-1081 . -588) 101034) ((-460 . -25) T) ((-460 . -21) T) ((-1135 . -952) 100987) ((-573 . -976) T) ((-357 . -382) T) ((-368 . -97) T) ((-243 . -834) 100933) ((-227 . -834) 100910) ((-113 . -976) T) ((-758 . -1031) T) ((-1008 . -669) T) ((-573 . -213) 100889) ((-571 . -97) T) ((-724 . -669) T) ((-722 . -669) T) ((-391 . -1031) T) ((-113 . -223) T) ((-39 . -346) NIL) ((-113 . -213) NIL) ((-431 . -669) T) ((-758 . -23) T) ((-674 . -25) T) ((-674 . -21) T) ((-645 . -789) T) ((-999 . -265) 100868) ((-76 . -374) T) ((-76 . -373) T) ((-636 . -982) 100818) ((-1164 . -126) T) ((-1157 . -126) T) ((-1136 . -126) T) ((-1057 . -389) 100802) ((-584 . -345) 100734) ((-560 . -345) 100666) ((-1071 . -1064) 100650) ((-98 . -1019) 100628) ((-1088 . -25) T) ((-1088 . -21) T) ((-1087 . -21) T) ((-930 . -660) 100576) ((-203 . -594) 100543) ((-636 . -107) 100477) ((-49 . -669) T) ((-1087 . -25) T) ((-329 . -327) T) ((-1081 . -21) T) ((-1002 . -429) 100428) ((-1081 . -25) T) ((-655 . -486) 100375) ((-538 . -669) T) ((-489 . -669) T) ((-1043 . -21) T) ((-1043 . -25) T) ((-551 . -126) T) ((-550 . -126) T) ((-337 . -429) T) ((-331 . -429) T) ((-323 . -429) T) ((-451 . -286) 100354) ((-291 . -265) 100289) ((-103 . -429) T) ((-77 . -418) T) ((-77 . -373) T) ((-454 . -97) T) ((-1198 . -566) 100271) ((-1198 . -567) 100253) ((-1002 . -380) 100232) ((-965 . -464) 100163) ((-525 . -737) T) ((-525 . -734) T) ((-988 . -215) 100109) ((-337 . -380) 100060) ((-331 . -380) 100011) ((-323 . -380) 99962) ((-1185 . -1031) T) ((-1185 . -23) T) ((-1174 . -97) T) ((-162 . -566) 99944) ((-1057 . -983) T) ((-616 . -687) 99928) ((-1092 . -136) 99907) ((-1092 . -138) 99886) ((-1061 . -1019) T) ((-1061 . -995) 99855) ((-67 . -1126) T) ((-954 . -982) 99792) ((-800 . -983) T) ((-220 . -588) 99700) ((-636 . -976) T) ((-332 . -982) 99645) ((-59 . -1126) T) ((-954 . -107) 99561) ((-835 . -566) 99493) ((-636 . -223) T) ((-636 . -213) NIL) ((-782 . -787) 99472) ((-641 . -737) T) ((-641 . -734) T) ((-934 . -389) 99449) ((-332 . -107) 99378) ((-357 . -854) T) ((-385 . -787) 99357) ((-655 . -269) 99268) ((-203 . -669) T) ((-1164 . -466) 99234) ((-1157 . -466) 99200) ((-1136 . -466) 99166) ((-294 . -933) 99145) ((-202 . -1019) 99123) ((-297 . -905) 99085) ((-100 . -97) T) ((-47 . -982) 99050) ((-1194 . -97) T) ((-359 . -97) T) ((-47 . -107) 99006) ((-935 . -588) 98988) ((-1158 . -566) 98970) ((-497 . -97) T) ((-473 . -97) T) ((-1050 . -1051) 98954) ((-143 . -1179) 98938) ((-225 . -1126) T) ((-1086 . -1130) 98917) ((-1042 . -1130) 98896) ((-220 . -21) 98807) ((-220 . -25) 98659) ((-123 . -115) 98643) ((-117 . -115) 98627) ((-43 . -687) 98611) ((-1086 . -517) 98522) ((-1042 . -517) 98453) ((-965 . -265) 98428) ((-758 . -126) T) ((-113 . -737) NIL) ((-113 . -734) NIL) ((-333 . -286) T) ((-330 . -286) T) ((-322 . -286) T) ((-1014 . -1126) T) ((-230 . -1031) 98359) ((-229 . -1031) 98290) ((-954 . -976) T) ((-934 . -983) T) ((-321 . -594) 98235) ((-571 . -37) 98219) ((-1183 . -566) 98181) ((-1183 . -567) 98142) ((-999 . -566) 98124) ((-954 . -223) T) ((-332 . -976) T) ((-757 . -1179) 98094) ((-230 . -23) T) ((-229 . -23) T) ((-919 . -566) 98076) ((-680 . -567) 98037) ((-680 . -566) 98019) ((-741 . -789) 97998) ((-930 . -486) 97910) ((-332 . -213) T) ((-332 . -223) T) ((-1074 . -142) 97857) ((-935 . -25) T) ((-132 . -566) 97839) ((-132 . -567) 97798) ((-844 . -286) T) ((-935 . -21) T) ((-903 . -25) T) ((-848 . -21) T) ((-848 . -25) T) ((-405 . -21) T) ((-405 . -25) T) ((-782 . -389) 97782) ((-47 . -976) T) ((-1192 . -1184) 97766) ((-1190 . -1184) 97750) ((-965 . -558) 97725) ((-294 . -567) 97586) ((-294 . -566) 97568) ((-291 . -567) NIL) ((-291 . -566) 97550) ((-47 . -223) T) ((-47 . -213) T) ((-600 . -265) 97511) ((-511 . -215) 97461) ((-130 . -566) 97443) ((-110 . -566) 97425) ((-454 . -37) 97390) ((-1194 . -1191) 97369) ((-1185 . -126) T) ((-1193 . -983) T) ((-1004 . -97) T) ((-86 . -1126) T) ((-473 . -288) NIL) ((-931 . -102) 97353) ((-823 . -1019) T) ((-819 . -1019) T) ((-1172 . -597) 97337) ((-1172 . -351) 97321) ((-305 . -1126) T) ((-548 . -789) T) ((-1057 . -1019) T) ((-1057 . -979) 97261) ((-98 . -486) 97194) ((-861 . -566) 97176) ((-321 . -669) T) ((-30 . -566) 97158) ((-800 . -1019) T) ((-782 . -983) 97137) ((-39 . -594) 97082) ((-205 . -1130) T) ((-385 . -983) T) ((-1073 . -142) 97064) ((-930 . -269) 97015) ((-205 . -517) T) ((-297 . -1153) 96999) ((-297 . -1150) 96969) ((-1100 . -1103) 96948) ((-997 . -566) 96930) ((-593 . -142) 96914) ((-581 . -142) 96860) ((-1100 . -102) 96810) ((-455 . -1103) 96789) ((-462 . -138) T) ((-462 . -136) NIL) ((-1037 . -567) 96704) ((-416 . -566) 96686) ((-198 . -138) T) ((-198 . -136) NIL) ((-1037 . -566) 96668) ((-125 . -97) T) ((-51 . -97) T) ((-1136 . -588) 96620) ((-455 . -102) 96570) ((-925 . -23) T) ((-1194 . -37) 96540) ((-1086 . -1031) T) ((-1042 . -1031) T) ((-987 . -1130) T) ((-793 . -1031) T) ((-886 . -1130) 96519) ((-457 . -1130) 96498) ((-674 . -789) 96477) ((-987 . -517) T) ((-886 . -517) 96408) ((-1086 . -23) T) ((-1042 . -23) T) ((-793 . -23) T) ((-457 . -517) 96339) ((-1057 . -660) 96271) ((-1061 . -486) 96204) ((-965 . -567) NIL) ((-965 . -566) 96186) ((-800 . -660) 96156) ((-1121 . -46) 96125) ((-229 . -126) T) ((-230 . -126) T) ((-1023 . -1019) T) ((-934 . -1019) T) ((-60 . -566) 96107) ((-1081 . -789) NIL) ((-954 . -734) T) ((-954 . -737) T) ((-1198 . -982) 96094) ((-1198 . -107) 96079) ((-804 . -594) 96066) ((-1164 . -25) T) ((-1164 . -21) T) ((-1157 . -21) T) ((-1157 . -25) T) ((-1136 . -21) T) ((-1136 . -25) T) ((-957 . -142) 96050) ((-806 . -762) 96029) ((-806 . -854) T) ((-655 . -265) 95956) ((-551 . -21) T) ((-551 . -25) T) ((-550 . -21) T) ((-39 . -669) T) ((-202 . -486) 95889) ((-550 . -25) T) ((-453 . -142) 95873) ((-440 . -142) 95857) ((-855 . -736) T) ((-855 . -669) T) ((-713 . -735) T) ((-713 . -736) T) ((-475 . -1019) T) ((-713 . -669) T) ((-205 . -341) T) ((-1071 . -1019) 95835) ((-805 . -1130) T) ((-600 . -566) 95817) ((-805 . -517) T) ((-636 . -346) NIL) ((-337 . -1179) 95801) ((-616 . -97) T) ((-331 . -1179) 95785) ((-323 . -1179) 95769) ((-1193 . -1019) T) ((-491 . -789) 95748) ((-759 . -429) 95727) ((-973 . -1019) T) ((-973 . -995) 95656) ((-957 . -908) 95625) ((-761 . -1031) T) ((-934 . -660) 95570) ((-364 . -1031) T) ((-453 . -908) 95539) ((-440 . -908) 95508) ((-106 . -142) 95490) ((-71 . -566) 95472) ((-827 . -566) 95454) ((-1002 . -667) 95433) ((-1198 . -976) T) ((-758 . -588) 95381) ((-273 . -983) 95324) ((-157 . -1130) 95229) ((-205 . -1031) T) ((-302 . -23) T) ((-1081 . -924) 95181) ((-782 . -1019) T) ((-1043 . -683) 95160) ((-1158 . -982) 95065) ((-1156 . -854) 95044) ((-804 . -669) T) ((-157 . -517) 94955) ((-1135 . -854) 94934) ((-537 . -594) 94921) ((-385 . -1019) T) ((-525 . -594) 94908) ((-242 . -1019) T) ((-468 . -594) 94873) ((-205 . -23) T) ((-1135 . -762) 94826) ((-1192 . -97) T) ((-332 . -1189) 94803) ((-1190 . -97) T) ((-1158 . -107) 94695) ((-135 . -566) 94677) ((-925 . -126) T) ((-43 . -97) T) ((-220 . -789) 94628) ((-1145 . -1130) 94607) ((-98 . -464) 94591) ((-1193 . -660) 94561) ((-1008 . -46) 94522) ((-987 . -1031) T) ((-886 . -1031) T) ((-123 . -33) T) ((-117 . -33) T) ((-724 . -46) 94499) ((-722 . -46) 94471) ((-1145 . -517) 94382) ((-332 . -346) T) ((-457 . -1031) T) ((-1086 . -126) T) ((-1042 . -126) T) ((-431 . -46) 94361) ((-805 . -341) T) ((-793 . -126) T) ((-143 . -97) T) ((-987 . -23) T) ((-886 . -23) T) ((-532 . -517) T) ((-758 . -25) T) ((-758 . -21) T) ((-1057 . -486) 94294) ((-542 . -967) 94278) ((-457 . -23) T) ((-329 . -983) T) ((-1121 . -834) 94259) ((-616 . -288) 94197) ((-1032 . -1179) 94167) ((-641 . -594) 94132) ((-934 . -160) T) ((-896 . -136) 94111) ((-584 . -1019) T) ((-560 . -1019) T) ((-896 . -138) 94090) ((-935 . -789) T) ((-678 . -138) 94069) ((-678 . -136) 94048) ((-903 . -789) T) ((-451 . -854) 94027) ((-294 . -982) 93937) ((-291 . -982) 93866) ((-930 . -265) 93824) ((-385 . -660) 93776) ((-124 . -789) T) ((-643 . -787) T) ((-1158 . -976) T) ((-294 . -107) 93672) ((-291 . -107) 93585) ((-897 . -97) T) ((-757 . -97) 93396) ((-655 . -567) NIL) ((-655 . -566) 93378) ((-604 . -967) 93276) ((-1158 . -304) 93220) ((-965 . -267) 93195) ((-537 . -669) T) ((-525 . -736) T) ((-157 . -341) 93146) ((-525 . -733) T) ((-525 . -669) T) ((-468 . -669) T) ((-1061 . -464) 93130) ((-1008 . -820) NIL) ((-805 . -1031) T) ((-113 . -843) NIL) ((-1192 . -1191) 93106) ((-1190 . -1191) 93085) ((-724 . -820) NIL) ((-722 . -820) 92944) ((-1185 . -25) T) ((-1185 . -21) T) ((-1124 . -97) 92922) ((-1025 . -373) T) ((-573 . -594) 92909) ((-431 . -820) NIL) ((-620 . -97) 92887) ((-1008 . -967) 92716) ((-805 . -23) T) ((-724 . -967) 92577) ((-722 . -967) 92436) ((-113 . -594) 92381) ((-431 . -967) 92259) ((-595 . -967) 92243) ((-576 . -97) T) ((-202 . -464) 92227) ((-1172 . -33) T) ((-584 . -660) 92211) ((-560 . -660) 92195) ((-616 . -37) 92155) ((-297 . -97) T) ((-83 . -566) 92137) ((-49 . -967) 92121) ((-1037 . -982) 92108) ((-1008 . -355) 92092) ((-58 . -55) 92054) ((-641 . -736) T) ((-641 . -733) T) ((-538 . -967) 92041) ((-489 . -967) 92018) ((-641 . -669) T) ((-294 . -976) 91909) ((-302 . -126) T) ((-291 . -976) T) ((-157 . -1031) T) ((-724 . -355) 91893) ((-722 . -355) 91877) ((-44 . -142) 91827) ((-935 . -924) 91809) ((-431 . -355) 91793) ((-385 . -160) T) ((-294 . -223) 91772) ((-291 . -223) T) ((-291 . -213) NIL) ((-273 . -1019) 91555) ((-205 . -126) T) ((-1037 . -107) 91540) ((-157 . -23) T) ((-741 . -138) 91519) ((-741 . -136) 91498) ((-229 . -588) 91406) ((-230 . -588) 91314) ((-297 . -263) 91280) ((-1071 . -486) 91213) ((-1050 . -1019) T) ((-205 . -985) T) ((-757 . -288) 91151) ((-1008 . -834) 91086) ((-724 . -834) 91029) ((-722 . -834) 91013) ((-1192 . -37) 90983) ((-1190 . -37) 90953) ((-1145 . -1031) T) ((-794 . -1031) T) ((-431 . -834) 90930) ((-796 . -1019) T) ((-1145 . -23) T) ((-532 . -1031) T) ((-794 . -23) T) ((-573 . -669) T) ((-333 . -854) T) ((-330 . -854) T) ((-268 . -97) T) ((-322 . -854) T) ((-987 . -126) T) ((-886 . -126) T) ((-113 . -736) NIL) ((-113 . -733) NIL) ((-113 . -669) T) ((-636 . -843) NIL) ((-973 . -486) 90831) ((-457 . -126) T) ((-532 . -23) T) ((-620 . -288) 90769) ((-584 . -704) T) ((-560 . -704) T) ((-1136 . -789) NIL) ((-934 . -269) T) ((-230 . -21) T) ((-636 . -594) 90719) ((-329 . -1019) T) ((-230 . -25) T) ((-229 . -21) T) ((-229 . -25) T) ((-143 . -37) 90703) ((-2 . -97) T) ((-844 . -854) T) ((-458 . -1179) 90673) ((-203 . -967) 90650) ((-1037 . -976) T) ((-654 . -286) T) ((-273 . -660) 90592) ((-643 . -983) T) ((-462 . -429) T) ((-385 . -486) 90504) ((-198 . -429) T) ((-1037 . -213) T) ((-274 . -142) 90454) ((-930 . -567) 90415) ((-930 . -566) 90397) ((-921 . -566) 90379) ((-112 . -983) T) ((-600 . -982) 90363) ((-205 . -466) T) ((-377 . -566) 90345) ((-377 . -567) 90322) ((-980 . -1179) 90292) ((-600 . -107) 90271) ((-1057 . -464) 90255) ((-757 . -37) 90225) ((-61 . -418) T) ((-61 . -373) T) ((-1074 . -97) T) ((-805 . -126) T) ((-459 . -97) 90203) ((-1198 . -346) T) ((-1002 . -97) T) ((-986 . -97) T) ((-329 . -660) 90148) ((-674 . -138) 90127) ((-674 . -136) 90106) ((-954 . -594) 90043) ((-494 . -1019) 90021) ((-337 . -97) T) ((-331 . -97) T) ((-323 . -97) T) ((-103 . -97) T) ((-477 . -1019) T) ((-332 . -594) 89966) ((-1086 . -588) 89914) ((-1042 . -588) 89862) ((-363 . -481) 89841) ((-775 . -787) 89820) ((-357 . -1130) T) ((-636 . -669) T) ((-317 . -983) T) ((-1136 . -924) 89772) ((-161 . -983) T) ((-98 . -566) 89704) ((-1088 . -136) 89683) ((-1088 . -138) 89662) ((-357 . -517) T) ((-1087 . -138) 89641) ((-1087 . -136) 89620) ((-1081 . -136) 89527) ((-385 . -269) T) ((-1081 . -138) 89434) ((-1043 . -138) 89413) ((-1043 . -136) 89392) ((-297 . -37) 89233) ((-157 . -126) T) ((-291 . -737) NIL) ((-291 . -734) NIL) ((-600 . -976) T) ((-47 . -594) 89198) ((-925 . -21) T) ((-123 . -941) 89182) ((-117 . -941) 89166) ((-925 . -25) T) ((-835 . -115) 89150) ((-1073 . -97) T) ((-758 . -789) 89129) ((-1145 . -126) T) ((-1086 . -25) T) ((-1086 . -21) T) ((-794 . -126) T) ((-1042 . -25) T) ((-1042 . -21) T) ((-793 . -25) T) ((-793 . -21) T) ((-724 . -286) 89108) ((-593 . -97) 89086) ((-581 . -97) T) ((-1074 . -288) 88881) ((-532 . -126) T) ((-571 . -787) 88860) ((-1071 . -464) 88844) ((-1065 . -142) 88794) ((-1061 . -566) 88756) ((-1061 . -567) 88717) ((-954 . -733) T) ((-954 . -736) T) ((-954 . -669) T) ((-459 . -288) 88655) ((-430 . -395) 88625) ((-329 . -160) T) ((-268 . -37) 88612) ((-253 . -97) T) ((-252 . -97) T) ((-251 . -97) T) ((-250 . -97) T) ((-249 . -97) T) ((-248 . -97) T) ((-247 . -97) T) ((-321 . -967) 88589) ((-194 . -97) T) ((-193 . -97) T) ((-191 . -97) T) ((-190 . -97) T) ((-189 . -97) T) ((-188 . -97) T) ((-185 . -97) T) ((-184 . -97) T) ((-655 . -982) 88412) ((-183 . -97) T) ((-182 . -97) T) ((-181 . -97) T) ((-180 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-332 . -669) T) ((-655 . -107) 88221) ((-616 . -211) 88205) ((-538 . -286) T) ((-489 . -286) T) ((-273 . -486) 88154) ((-103 . -288) NIL) ((-70 . -373) T) ((-1032 . -97) 87965) ((-775 . -389) 87949) ((-1037 . -737) T) ((-1037 . -734) T) ((-643 . -1019) T) ((-357 . -341) T) ((-157 . -466) 87927) ((-202 . -566) 87859) ((-128 . -1019) T) ((-112 . -1019) T) ((-47 . -669) T) ((-973 . -464) 87824) ((-132 . -403) 87806) ((-132 . -346) T) ((-957 . -97) T) ((-484 . -481) 87785) ((-453 . -97) T) ((-440 . -97) T) ((-964 . -1031) T) ((-1088 . -34) 87751) ((-1088 . -91) 87717) ((-1088 . -1115) 87683) ((-1088 . -1112) 87649) ((-1073 . -288) NIL) ((-87 . -374) T) ((-87 . -373) T) ((-1002 . -1066) 87628) ((-1087 . -1112) 87594) ((-1087 . -1115) 87560) ((-964 . -23) T) ((-1087 . -91) 87526) ((-532 . -466) T) ((-1087 . -34) 87492) ((-1081 . -1112) 87458) ((-1081 . -1115) 87424) ((-1081 . -91) 87390) ((-339 . -1031) T) ((-337 . -1066) 87369) ((-331 . -1066) 87348) ((-323 . -1066) 87327) ((-1081 . -34) 87293) ((-1043 . -34) 87259) ((-1043 . -91) 87225) ((-103 . -1066) T) ((-1043 . -1115) 87191) ((-775 . -983) 87170) ((-593 . -288) 87108) ((-581 . -288) 86959) ((-1043 . -1112) 86925) ((-655 . -976) T) ((-987 . -588) 86907) ((-1002 . -37) 86775) ((-886 . -588) 86723) ((-935 . -138) T) ((-935 . -136) NIL) ((-357 . -1031) T) ((-302 . -25) T) ((-300 . -23) T) ((-877 . -789) 86702) ((-655 . -304) 86679) ((-457 . -588) 86627) ((-39 . -967) 86517) ((-643 . -660) 86504) ((-655 . -213) T) ((-317 . -1019) T) ((-161 . -1019) T) ((-309 . -789) T) ((-396 . -429) 86454) ((-357 . -23) T) ((-337 . -37) 86419) ((-331 . -37) 86384) ((-323 . -37) 86349) ((-78 . -418) T) ((-78 . -373) T) ((-205 . -25) T) ((-205 . -21) T) ((-776 . -1031) T) ((-103 . -37) 86299) ((-769 . -1031) T) ((-716 . -1019) T) ((-112 . -660) 86286) ((-617 . -967) 86270) ((-565 . -97) T) ((-776 . -23) T) ((-769 . -23) T) ((-1071 . -265) 86247) ((-1032 . -288) 86185) ((-1021 . -215) 86169) ((-62 . -374) T) ((-62 . -373) T) ((-106 . -97) T) ((-39 . -355) 86146) ((-599 . -791) 86130) ((-987 . -21) T) ((-987 . -25) T) ((-757 . -211) 86100) ((-886 . -25) T) ((-886 . -21) T) ((-571 . -983) T) ((-457 . -25) T) ((-457 . -21) T) ((-957 . -288) 86038) ((-823 . -566) 86020) ((-819 . -566) 86002) ((-230 . -789) 85953) ((-229 . -789) 85904) ((-494 . -486) 85837) ((-805 . -588) 85814) ((-453 . -288) 85752) ((-440 . -288) 85690) ((-329 . -269) T) ((-1071 . -1160) 85674) ((-1057 . -566) 85636) ((-1057 . -567) 85597) ((-1055 . -97) T) ((-930 . -982) 85493) ((-39 . -834) 85445) ((-1071 . -558) 85422) ((-1198 . -594) 85409) ((-988 . -142) 85355) ((-806 . -1130) T) ((-930 . -107) 85237) ((-317 . -660) 85221) ((-800 . -566) 85203) ((-161 . -660) 85135) ((-385 . -265) 85093) ((-806 . -517) T) ((-103 . -378) 85075) ((-82 . -362) T) ((-82 . -373) T) ((-643 . -160) T) ((-94 . -669) T) ((-458 . -97) 84886) ((-94 . -450) T) ((-112 . -160) T) ((-1032 . -37) 84856) ((-157 . -588) 84804) ((-980 . -97) T) ((-805 . -25) T) ((-757 . -218) 84783) ((-805 . -21) T) ((-760 . -97) T) ((-392 . -97) T) ((-363 . -97) T) ((-106 . -288) NIL) ((-207 . -97) 84761) ((-123 . -1126) T) ((-117 . -1126) T) ((-964 . -126) T) ((-616 . -345) 84745) ((-930 . -976) T) ((-1145 . -588) 84693) ((-1023 . -566) 84675) ((-934 . -566) 84657) ((-487 . -23) T) ((-482 . -23) T) ((-321 . -286) T) ((-480 . -23) T) ((-300 . -126) T) ((-3 . -1019) T) ((-934 . -567) 84641) ((-930 . -223) 84620) ((-930 . -213) 84599) ((-1198 . -669) T) ((-1164 . -136) 84578) ((-775 . -1019) T) ((-1164 . -138) 84557) ((-1157 . -138) 84536) ((-1157 . -136) 84515) ((-1156 . -1130) 84494) ((-1136 . -136) 84401) ((-1136 . -138) 84308) ((-1135 . -1130) 84287) ((-357 . -126) T) ((-525 . -820) 84269) ((0 . -1019) T) ((-161 . -160) T) ((-157 . -21) T) ((-157 . -25) T) ((-48 . -1019) T) ((-1158 . -594) 84174) ((-1156 . -517) 84125) ((-657 . -1031) T) ((-1135 . -517) 84076) ((-525 . -967) 84058) ((-550 . -138) 84037) ((-550 . -136) 84016) ((-468 . -967) 83959) ((-85 . -362) T) ((-85 . -373) T) ((-806 . -341) T) ((-776 . -126) T) ((-769 . -126) T) ((-657 . -23) T) ((-475 . -566) 83941) ((-1194 . -983) T) ((-357 . -985) T) ((-956 . -1019) 83919) ((-835 . -33) T) ((-458 . -288) 83857) ((-1071 . -567) 83818) ((-1071 . -566) 83750) ((-1086 . -789) 83729) ((-44 . -97) T) ((-1042 . -789) 83708) ((-759 . -97) T) ((-1145 . -25) T) ((-1145 . -21) T) ((-794 . -25) T) ((-43 . -345) 83692) ((-794 . -21) T) ((-674 . -429) 83643) ((-1193 . -566) 83625) ((-532 . -25) T) ((-532 . -21) T) ((-368 . -1019) T) ((-980 . -288) 83563) ((-571 . -1019) T) ((-641 . -820) 83545) ((-1172 . -1126) T) ((-207 . -288) 83483) ((-135 . -346) T) ((-973 . -567) 83425) ((-973 . -566) 83368) ((-291 . -843) NIL) ((-641 . -967) 83313) ((-654 . -854) T) ((-451 . -1130) 83292) ((-1087 . -429) 83271) ((-1081 . -429) 83250) ((-308 . -97) T) ((-806 . -1031) T) ((-294 . -594) 83072) ((-291 . -594) 83001) ((-451 . -517) 82952) ((-317 . -486) 82918) ((-511 . -142) 82868) ((-39 . -286) T) ((-782 . -566) 82850) ((-643 . -269) T) ((-806 . -23) T) ((-357 . -466) T) ((-1002 . -211) 82820) ((-484 . -97) T) ((-385 . -567) 82628) ((-385 . -566) 82610) ((-242 . -566) 82592) ((-112 . -269) T) ((-1158 . -669) T) ((-1156 . -341) 82571) ((-1135 . -341) 82550) ((-1183 . -33) T) ((-113 . -1126) T) ((-103 . -211) 82532) ((-1092 . -97) T) ((-454 . -1019) T) ((-494 . -464) 82516) ((-680 . -33) T) ((-458 . -37) 82486) ((-132 . -33) T) ((-113 . -818) 82463) ((-113 . -820) NIL) ((-573 . -967) 82348) ((-592 . -789) 82327) ((-1182 . -97) T) ((-274 . -97) T) ((-655 . -346) 82306) ((-113 . -967) 82283) ((-368 . -660) 82267) ((-571 . -660) 82251) ((-44 . -288) 82055) ((-758 . -136) 82034) ((-758 . -138) 82013) ((-1193 . -360) 81992) ((-761 . -789) T) ((-1174 . -1019) T) ((-1074 . -209) 81939) ((-364 . -789) 81918) ((-1164 . -1115) 81884) ((-1164 . -1112) 81850) ((-1157 . -1112) 81816) ((-487 . -126) T) ((-1157 . -1115) 81782) ((-1136 . -1112) 81748) ((-1136 . -1115) 81714) ((-1164 . -34) 81680) ((-1164 . -91) 81646) ((-584 . -566) 81615) ((-560 . -566) 81584) ((-205 . -789) T) ((-1157 . -91) 81550) ((-1157 . -34) 81516) ((-1156 . -1031) T) ((-1037 . -594) 81503) ((-1136 . -91) 81469) ((-1135 . -1031) T) ((-548 . -142) 81451) ((-1002 . -327) 81430) ((-113 . -355) 81407) ((-113 . -316) 81384) ((-161 . -269) T) ((-1136 . -34) 81350) ((-804 . -286) T) ((-291 . -736) NIL) ((-291 . -733) NIL) ((-294 . -669) 81200) ((-291 . -669) T) ((-451 . -341) 81179) ((-337 . -327) 81158) ((-331 . -327) 81137) ((-323 . -327) 81116) ((-294 . -450) 81095) ((-1156 . -23) T) ((-1135 . -23) T) ((-661 . -1031) T) ((-657 . -126) T) ((-599 . -97) T) ((-454 . -660) 81060) ((-44 . -261) 81010) ((-100 . -1019) T) ((-66 . -566) 80992) ((-799 . -97) T) ((-573 . -834) 80951) ((-1194 . -1019) T) ((-359 . -1019) T) ((-80 . -1126) T) ((-987 . -789) T) ((-886 . -789) 80930) ((-113 . -834) NIL) ((-724 . -854) 80909) ((-656 . -789) T) ((-497 . -1019) T) ((-473 . -1019) T) ((-333 . -1130) T) ((-330 . -1130) T) ((-322 . -1130) T) ((-243 . -1130) 80888) ((-227 . -1130) 80867) ((-1032 . -211) 80837) ((-457 . -789) 80816) ((-1057 . -982) 80800) ((-368 . -704) T) ((-1073 . -770) T) ((-636 . -1126) T) ((-333 . -517) T) ((-330 . -517) T) ((-322 . -517) T) ((-243 . -517) 80731) ((-227 . -517) 80662) ((-1057 . -107) 80641) ((-430 . -687) 80611) ((-800 . -982) 80581) ((-759 . -37) 80523) ((-636 . -818) 80505) ((-636 . -820) 80487) ((-274 . -288) 80291) ((-844 . -1130) T) ((-616 . -389) 80275) ((-800 . -107) 80240) ((-636 . -967) 80185) ((-935 . -429) T) ((-844 . -517) T) ((-538 . -854) T) ((-451 . -1031) T) ((-489 . -854) T) ((-1071 . -267) 80162) ((-848 . -429) T) ((-63 . -566) 80144) ((-581 . -209) 80090) ((-451 . -23) T) ((-1037 . -736) T) ((-806 . -126) T) ((-1037 . -733) T) ((-1185 . -1187) 80069) ((-1037 . -669) T) ((-600 . -594) 80043) ((-273 . -566) 79785) ((-965 . -33) T) ((-757 . -787) 79764) ((-537 . -286) T) ((-525 . -286) T) ((-468 . -286) T) ((-1194 . -660) 79734) ((-636 . -355) 79716) ((-636 . -316) 79698) ((-454 . -160) T) ((-359 . -660) 79668) ((-805 . -789) NIL) ((-525 . -952) T) ((-468 . -952) T) ((-1050 . -566) 79650) ((-1032 . -218) 79629) ((-195 . -97) T) ((-1065 . -97) T) ((-69 . -566) 79611) ((-1057 . -976) T) ((-1092 . -37) 79508) ((-796 . -566) 79490) ((-525 . -510) T) ((-616 . -983) T) ((-674 . -883) 79443) ((-1057 . -213) 79422) ((-1004 . -1019) T) ((-964 . -25) T) ((-964 . -21) T) ((-934 . -982) 79367) ((-839 . -97) T) ((-800 . -976) T) ((-636 . -834) NIL) ((-333 . -307) 79351) ((-333 . -341) T) ((-330 . -307) 79335) ((-330 . -341) T) ((-322 . -307) 79319) ((-322 . -341) T) ((-462 . -97) T) ((-1182 . -37) 79289) ((-494 . -630) 79239) ((-198 . -97) T) ((-954 . -967) 79121) ((-934 . -107) 79050) ((-1088 . -905) 79019) ((-1087 . -905) 78981) ((-491 . -142) 78965) ((-1002 . -348) 78944) ((-329 . -566) 78926) ((-300 . -21) T) ((-332 . -967) 78903) ((-300 . -25) T) ((-1081 . -905) 78872) ((-1043 . -905) 78839) ((-74 . -566) 78821) ((-641 . -286) T) ((-157 . -789) 78800) ((-844 . -341) T) ((-357 . -25) T) ((-357 . -21) T) ((-844 . -307) 78787) ((-84 . -566) 78769) ((-641 . -952) T) ((-621 . -789) T) ((-1156 . -126) T) ((-1135 . -126) T) ((-835 . -941) 78753) ((-776 . -21) T) ((-47 . -967) 78696) ((-776 . -25) T) ((-769 . -25) T) ((-769 . -21) T) ((-1192 . -983) T) ((-1190 . -983) T) ((-600 . -669) T) ((-1193 . -982) 78680) ((-1145 . -789) 78659) ((-757 . -389) 78628) ((-98 . -115) 78612) ((-125 . -1019) T) ((-51 . -1019) T) ((-860 . -566) 78594) ((-805 . -924) 78571) ((-765 . -97) T) ((-1193 . -107) 78550) ((-599 . -37) 78520) ((-532 . -789) T) ((-333 . -1031) T) ((-330 . -1031) T) ((-322 . -1031) T) ((-243 . -1031) T) ((-227 . -1031) T) ((-573 . -286) 78499) ((-1065 . -288) 78303) ((-610 . -23) T) ((-458 . -211) 78273) ((-143 . -983) T) ((-333 . -23) T) ((-330 . -23) T) ((-322 . -23) T) ((-113 . -286) T) ((-243 . -23) T) ((-227 . -23) T) ((-934 . -976) T) ((-655 . -843) 78252) ((-934 . -213) 78224) ((-934 . -223) T) ((-113 . -952) NIL) ((-844 . -1031) T) ((-1157 . -429) 78203) ((-1136 . -429) 78182) ((-494 . -566) 78114) ((-655 . -594) 78039) ((-385 . -982) 77991) ((-477 . -566) 77973) ((-844 . -23) T) ((-462 . -288) NIL) ((-451 . -126) T) ((-198 . -288) NIL) ((-385 . -107) 77911) ((-757 . -983) 77842) ((-680 . -1017) 77826) ((-1156 . -466) 77792) ((-1135 . -466) 77758) ((-454 . -269) T) ((-132 . -1017) 77740) ((-124 . -142) 77722) ((-1193 . -976) T) ((-988 . -97) T) ((-473 . -486) NIL) ((-645 . -97) T) ((-458 . -218) 77701) ((-1086 . -136) 77680) ((-1086 . -138) 77659) ((-1042 . -138) 77638) ((-1042 . -136) 77617) ((-584 . -982) 77601) ((-560 . -982) 77585) ((-616 . -1019) T) ((-616 . -979) 77525) ((-1088 . -1163) 77509) ((-1088 . -1150) 77486) ((-462 . -1066) T) ((-1087 . -1155) 77447) ((-1087 . -1150) 77417) ((-1087 . -1153) 77401) ((-198 . -1066) T) ((-321 . -854) T) ((-760 . -245) 77385) ((-584 . -107) 77364) ((-560 . -107) 77343) ((-1081 . -1134) 77304) ((-782 . -976) 77283) ((-1081 . -1150) 77260) ((-487 . -25) T) ((-468 . -281) T) ((-483 . -23) T) ((-482 . -25) T) ((-480 . -25) T) ((-479 . -23) T) ((-1081 . -1132) 77244) ((-385 . -976) T) ((-297 . -983) T) ((-636 . -286) T) ((-103 . -787) T) ((-385 . -223) T) ((-385 . -213) 77223) ((-655 . -669) T) ((-462 . -37) 77173) ((-198 . -37) 77123) ((-451 . -466) 77089) ((-1073 . -1059) T) ((-1020 . -97) T) ((-643 . -566) 77071) ((-643 . -567) 76986) ((-657 . -21) T) ((-657 . -25) T) ((-128 . -566) 76968) ((-112 . -566) 76950) ((-146 . -25) T) ((-1192 . -1019) T) ((-806 . -588) 76898) ((-1190 . -1019) T) ((-896 . -97) T) ((-678 . -97) T) ((-658 . -97) T) ((-430 . -97) T) ((-758 . -429) 76849) ((-43 . -1019) T) ((-1009 . -789) T) ((-610 . -126) T) ((-988 . -288) 76700) ((-616 . -660) 76684) ((-268 . -983) T) ((-333 . -126) T) ((-330 . -126) T) ((-322 . -126) T) ((-243 . -126) T) ((-227 . -126) T) ((-396 . -97) T) ((-143 . -1019) T) ((-44 . -209) 76634) ((-891 . -789) 76613) ((-930 . -594) 76551) ((-220 . -1179) 76521) ((-954 . -286) T) ((-273 . -982) 76443) ((-844 . -126) T) ((-39 . -854) T) ((-462 . -378) 76425) ((-332 . -286) T) ((-198 . -378) 76407) ((-1002 . -389) 76391) ((-273 . -107) 76308) ((-806 . -25) T) ((-806 . -21) T) ((-317 . -566) 76290) ((-1158 . -46) 76234) ((-205 . -138) T) ((-161 . -566) 76216) ((-1032 . -787) 76195) ((-716 . -566) 76177) ((-561 . -215) 76124) ((-452 . -215) 76074) ((-1192 . -660) 76044) ((-47 . -286) T) ((-1190 . -660) 76014) ((-897 . -1019) T) ((-757 . -1019) 75825) ((-290 . -97) T) ((-835 . -1126) T) ((-47 . -952) T) ((-1135 . -588) 75733) ((-632 . -97) 75711) ((-43 . -660) 75695) ((-511 . -97) T) ((-65 . -361) T) ((-65 . -373) T) ((-608 . -23) T) ((-616 . -704) T) ((-1124 . -1019) 75673) ((-329 . -982) 75618) ((-620 . -1019) 75596) ((-987 . -138) T) ((-886 . -138) 75575) ((-886 . -136) 75554) ((-741 . -97) T) ((-143 . -660) 75538) ((-457 . -138) 75517) ((-457 . -136) 75496) ((-329 . -107) 75425) ((-1002 . -983) T) ((-300 . -789) 75404) ((-1164 . -905) 75373) ((-576 . -1019) T) ((-1157 . -905) 75335) ((-483 . -126) T) ((-479 . -126) T) ((-274 . -209) 75285) ((-337 . -983) T) ((-331 . -983) T) ((-323 . -983) T) ((-273 . -976) 75228) ((-1136 . -905) 75197) ((-357 . -789) T) ((-103 . -983) T) ((-930 . -669) T) ((-804 . -854) T) ((-782 . -737) 75176) ((-782 . -734) 75155) ((-396 . -288) 75094) ((-445 . -97) T) ((-550 . -905) 75063) ((-297 . -1019) T) ((-385 . -737) 75042) ((-385 . -734) 75021) ((-473 . -464) 75003) ((-1158 . -967) 74969) ((-1156 . -21) T) ((-1156 . -25) T) ((-1135 . -21) T) ((-1135 . -25) T) ((-757 . -660) 74911) ((-641 . -382) T) ((-1183 . -1126) T) ((-1032 . -389) 74880) ((-934 . -346) NIL) ((-98 . -33) T) ((-680 . -1126) T) ((-43 . -704) T) ((-548 . -97) T) ((-75 . -374) T) ((-75 . -373) T) ((-599 . -602) 74864) ((-132 . -1126) T) ((-805 . -138) T) ((-805 . -136) NIL) ((-329 . -976) T) ((-68 . -361) T) ((-68 . -373) T) ((-1080 . -97) T) ((-616 . -486) 74797) ((-632 . -288) 74735) ((-896 . -37) 74632) ((-678 . -37) 74602) ((-511 . -288) 74406) ((-294 . -1126) T) ((-329 . -213) T) ((-329 . -223) T) ((-291 . -1126) T) ((-268 . -1019) T) ((-1094 . -566) 74388) ((-654 . -1130) T) ((-1071 . -597) 74372) ((-1121 . -517) 74351) ((-654 . -517) T) ((-294 . -818) 74335) ((-294 . -820) 74260) ((-291 . -818) 74221) ((-291 . -820) NIL) ((-741 . -288) 74186) ((-297 . -660) 74027) ((-302 . -301) 74004) ((-460 . -97) T) ((-451 . -25) T) ((-451 . -21) T) ((-396 . -37) 73978) ((-294 . -967) 73646) ((-205 . -1112) T) ((-205 . -1115) T) ((-3 . -566) 73628) ((-291 . -967) 73558) ((-2 . -1019) T) ((-2 . |RecordCategory|) T) ((-775 . -566) 73540) ((-1032 . -983) 73471) ((-537 . -854) T) ((-525 . -762) T) ((-525 . -854) T) ((-468 . -854) T) ((-130 . -967) 73455) ((-205 . -91) T) ((-73 . -418) T) ((-73 . -373) T) ((0 . -566) 73437) ((-157 . -138) 73416) ((-157 . -136) 73367) ((-205 . -34) T) ((-48 . -566) 73349) ((-454 . -983) T) ((-462 . -211) 73331) ((-459 . -901) 73315) ((-458 . -787) 73294) ((-198 . -211) 73276) ((-79 . -418) T) ((-79 . -373) T) ((-1061 . -33) T) ((-757 . -160) 73255) ((-674 . -97) T) ((-956 . -566) 73222) ((-473 . -265) 73197) ((-294 . -355) 73167) ((-291 . -355) 73128) ((-291 . -316) 73089) ((-1006 . -566) 73071) ((-758 . -883) 73018) ((-608 . -126) T) ((-1145 . -136) 72997) ((-1145 . -138) 72976) ((-1088 . -97) T) ((-1087 . -97) T) ((-1081 . -97) T) ((-1074 . -1019) T) ((-1043 . -97) T) ((-202 . -33) T) ((-268 . -660) 72963) ((-1074 . -563) 72939) ((-548 . -288) NIL) ((-459 . -1019) 72917) ((-368 . -566) 72899) ((-482 . -789) T) ((-1065 . -209) 72849) ((-1164 . -1163) 72833) ((-1164 . -1150) 72810) ((-1157 . -1155) 72771) ((-1157 . -1150) 72741) ((-1157 . -1153) 72725) ((-1136 . -1134) 72686) ((-1136 . -1150) 72663) ((-571 . -566) 72645) ((-1136 . -1132) 72629) ((-641 . -854) T) ((-1088 . -263) 72595) ((-1087 . -263) 72561) ((-1081 . -263) 72527) ((-1002 . -1019) T) ((-986 . -1019) T) ((-47 . -281) T) ((-294 . -834) 72494) ((-291 . -834) NIL) ((-986 . -992) 72473) ((-1037 . -820) 72455) ((-741 . -37) 72439) ((-243 . -588) 72387) ((-227 . -588) 72335) ((-643 . -982) 72322) ((-550 . -1150) 72299) ((-1043 . -263) 72265) ((-297 . -160) 72196) ((-337 . -1019) T) ((-331 . -1019) T) ((-323 . -1019) T) ((-473 . -19) 72178) ((-1037 . -967) 72160) ((-1021 . -142) 72144) ((-103 . -1019) T) ((-112 . -982) 72131) ((-654 . -341) T) ((-473 . -558) 72106) ((-643 . -107) 72091) ((-414 . -97) T) ((-44 . -1064) 72041) ((-112 . -107) 72026) ((-584 . -663) T) ((-560 . -663) T) ((-757 . -486) 71959) ((-965 . -1126) T) ((-877 . -142) 71943) ((-491 . -97) 71893) ((-1008 . -1130) 71872) ((-454 . -566) 71824) ((-454 . -567) 71746) ((-60 . -1126) T) ((-724 . -1130) 71725) ((-722 . -1130) 71704) ((-1086 . -429) 71635) ((-1073 . -1019) T) ((-1057 . -594) 71609) ((-1008 . -517) 71540) ((-458 . -389) 71509) ((-573 . -854) 71488) ((-431 . -1130) 71467) ((-1042 . -429) 71418) ((-376 . -566) 71400) ((-620 . -486) 71333) ((-724 . -517) 71244) ((-722 . -517) 71175) ((-674 . -288) 71162) ((-610 . -25) T) ((-610 . -21) T) ((-431 . -517) 71093) ((-113 . -854) T) ((-113 . -762) NIL) ((-333 . -25) T) ((-333 . -21) T) ((-330 . -25) T) ((-330 . -21) T) ((-322 . -25) T) ((-322 . -21) T) ((-243 . -25) T) ((-243 . -21) T) ((-81 . -362) T) ((-81 . -373) T) ((-227 . -25) T) ((-227 . -21) T) ((-1174 . -566) 71075) ((-1121 . -1031) T) ((-1121 . -23) T) ((-1081 . -288) 70960) ((-1043 . -288) 70947) ((-800 . -594) 70907) ((-1002 . -660) 70775) ((-877 . -912) 70759) ((-268 . -160) T) ((-844 . -21) T) ((-844 . -25) T) ((-806 . -789) 70710) ((-654 . -1031) T) ((-654 . -23) T) ((-593 . -1019) 70688) ((-581 . -563) 70663) ((-581 . -1019) T) ((-538 . -1130) T) ((-489 . -1130) T) ((-538 . -517) T) ((-489 . -517) T) ((-337 . -660) 70615) ((-331 . -660) 70567) ((-161 . -982) 70499) ((-317 . -982) 70483) ((-103 . -660) 70433) ((-161 . -107) 70344) ((-323 . -660) 70296) ((-317 . -107) 70275) ((-253 . -1019) T) ((-252 . -1019) T) ((-251 . -1019) T) ((-250 . -1019) T) ((-643 . -976) T) ((-249 . -1019) T) ((-248 . -1019) T) ((-247 . -1019) T) ((-194 . -1019) T) ((-193 . -1019) T) ((-191 . -1019) T) ((-157 . -1115) 70253) ((-157 . -1112) 70231) ((-190 . -1019) T) ((-189 . -1019) T) ((-112 . -976) T) ((-188 . -1019) T) ((-185 . -1019) T) ((-643 . -213) T) ((-184 . -1019) T) ((-183 . -1019) T) ((-182 . -1019) T) ((-181 . -1019) T) ((-180 . -1019) T) ((-179 . -1019) T) ((-178 . -1019) T) ((-177 . -1019) T) ((-176 . -1019) T) ((-175 . -1019) T) ((-220 . -97) 70042) ((-157 . -34) 70020) ((-157 . -91) 69998) ((-600 . -967) 69896) ((-458 . -983) 69827) ((-1032 . -1019) 69638) ((-1057 . -33) T) ((-616 . -464) 69622) ((-71 . -1126) T) ((-100 . -566) 69604) ((-1194 . -566) 69586) ((-359 . -566) 69568) ((-532 . -1115) T) ((-532 . -1112) T) ((-674 . -37) 69417) ((-497 . -566) 69399) ((-491 . -288) 69337) ((-473 . -566) 69319) ((-473 . -567) 69301) ((-1081 . -1066) NIL) ((-957 . -995) 69270) ((-957 . -1019) T) ((-935 . -97) T) ((-903 . -97) T) ((-848 . -97) T) ((-827 . -967) 69247) ((-1057 . -669) T) ((-934 . -594) 69192) ((-453 . -1019) T) ((-440 . -1019) T) ((-542 . -23) T) ((-532 . -34) T) ((-532 . -91) T) ((-405 . -97) T) ((-988 . -209) 69138) ((-124 . -97) T) ((-1088 . -37) 69035) ((-800 . -669) T) ((-636 . -854) T) ((-483 . -25) T) ((-479 . -21) T) ((-479 . -25) T) ((-1087 . -37) 68876) ((-317 . -976) T) ((-1081 . -37) 68672) ((-1002 . -160) T) ((-161 . -976) T) ((-1043 . -37) 68569) ((-655 . -46) 68546) ((-337 . -160) T) ((-331 . -160) T) ((-490 . -55) 68520) ((-470 . -55) 68470) ((-329 . -1189) 68447) ((-205 . -429) T) ((-297 . -269) 68398) ((-323 . -160) T) ((-161 . -223) T) ((-1135 . -789) 68297) ((-103 . -160) T) ((-806 . -924) 68281) ((-604 . -1031) T) ((-538 . -341) T) ((-538 . -307) 68268) ((-489 . -307) 68245) ((-489 . -341) T) ((-294 . -286) 68224) ((-291 . -286) T) ((-556 . -789) 68203) ((-1032 . -660) 68145) ((-491 . -261) 68129) ((-604 . -23) T) ((-396 . -211) 68113) ((-291 . -952) NIL) ((-314 . -23) T) ((-98 . -941) 68097) ((-44 . -35) 68076) ((-565 . -1019) T) ((-329 . -346) T) ((-468 . -27) T) ((-220 . -288) 68014) ((-1008 . -1031) T) ((-1193 . -594) 67988) ((-724 . -1031) T) ((-722 . -1031) T) ((-431 . -1031) T) ((-987 . -429) T) ((-886 . -429) 67939) ((-106 . -1019) T) ((-1008 . -23) T) ((-759 . -983) T) ((-724 . -23) T) ((-722 . -23) T) ((-457 . -429) 67890) ((-1074 . -486) 67673) ((-359 . -360) 67652) ((-1092 . -389) 67636) ((-438 . -23) T) ((-431 . -23) T) ((-459 . -486) 67569) ((-268 . -269) T) ((-1004 . -566) 67551) ((-385 . -843) 67530) ((-49 . -1031) T) ((-954 . -854) T) ((-934 . -669) T) ((-655 . -820) NIL) ((-538 . -1031) T) ((-489 . -1031) T) ((-782 . -594) 67503) ((-1121 . -126) T) ((-1081 . -378) 67455) ((-935 . -288) NIL) ((-757 . -464) 67439) ((-332 . -854) T) ((-1071 . -33) T) ((-385 . -594) 67391) ((-49 . -23) T) ((-654 . -126) T) ((-655 . -967) 67273) ((-538 . -23) T) ((-103 . -486) NIL) ((-489 . -23) T) ((-157 . -387) 67244) ((-124 . -288) NIL) ((-1055 . -1019) T) ((-1185 . -1184) 67228) ((-643 . -737) T) ((-643 . -734) T) ((-1037 . -286) T) ((-357 . -138) T) ((-259 . -566) 67210) ((-1135 . -924) 67180) ((-47 . -854) T) ((-620 . -464) 67164) ((-230 . -1179) 67134) ((-229 . -1179) 67104) ((-1090 . -789) T) ((-1032 . -160) 67083) ((-1037 . -952) T) ((-973 . -33) T) ((-776 . -138) 67062) ((-776 . -136) 67041) ((-680 . -102) 67025) ((-565 . -127) T) ((-458 . -1019) 66836) ((-1092 . -983) T) ((-805 . -429) T) ((-83 . -1126) T) ((-220 . -37) 66806) ((-132 . -102) 66788) ((-655 . -355) 66772) ((-1037 . -510) T) ((-368 . -982) 66756) ((-1193 . -669) T) ((-1086 . -883) 66725) ((-125 . -566) 66692) ((-51 . -566) 66674) ((-1042 . -883) 66641) ((-599 . -389) 66625) ((-1182 . -983) T) ((-571 . -982) 66609) ((-608 . -25) T) ((-608 . -21) T) ((-1073 . -486) NIL) ((-1164 . -97) T) ((-1157 . -97) T) ((-368 . -107) 66588) ((-202 . -233) 66572) ((-1136 . -97) T) ((-980 . -1019) T) ((-935 . -1066) T) ((-980 . -979) 66512) ((-760 . -1019) T) ((-321 . -1130) T) ((-584 . -594) 66496) ((-571 . -107) 66475) ((-560 . -594) 66459) ((-551 . -97) T) ((-542 . -126) T) ((-550 . -97) T) ((-392 . -1019) T) ((-363 . -1019) T) ((-207 . -1019) 66437) ((-593 . -486) 66370) ((-581 . -486) 66214) ((-775 . -976) 66193) ((-592 . -142) 66177) ((-321 . -517) T) ((-655 . -834) 66120) ((-511 . -209) 66070) ((-1164 . -263) 66036) ((-1002 . -269) 65987) ((-462 . -787) T) ((-203 . -1031) T) ((-1157 . -263) 65953) ((-1136 . -263) 65919) ((-935 . -37) 65869) ((-198 . -787) T) ((-1121 . -466) 65835) ((-848 . -37) 65787) ((-782 . -736) 65766) ((-782 . -733) 65745) ((-782 . -669) 65724) ((-337 . -269) T) ((-331 . -269) T) ((-323 . -269) T) ((-157 . -429) 65655) ((-405 . -37) 65639) ((-103 . -269) T) ((-203 . -23) T) ((-385 . -736) 65618) ((-385 . -733) 65597) ((-385 . -669) T) ((-473 . -267) 65572) ((-454 . -982) 65537) ((-604 . -126) T) ((-1032 . -486) 65470) ((-314 . -126) T) ((-157 . -380) 65449) ((-458 . -660) 65391) ((-757 . -265) 65368) ((-454 . -107) 65324) ((-599 . -983) T) ((-1145 . -429) 65255) ((-1008 . -126) T) ((-243 . -789) 65234) ((-227 . -789) 65213) ((-724 . -126) T) ((-722 . -126) T) ((-532 . -429) T) ((-980 . -660) 65155) ((-571 . -976) T) ((-957 . -486) 65088) ((-438 . -126) T) ((-431 . -126) T) ((-44 . -1019) T) ((-363 . -660) 65058) ((-759 . -1019) T) ((-453 . -486) 64991) ((-440 . -486) 64924) ((-430 . -345) 64894) ((-44 . -563) 64873) ((-294 . -281) T) ((-616 . -566) 64835) ((-57 . -789) 64814) ((-1136 . -288) 64699) ((-935 . -378) 64681) ((-757 . -558) 64658) ((-488 . -789) 64637) ((-469 . -789) 64616) ((-39 . -1130) T) ((-930 . -967) 64514) ((-49 . -126) T) ((-538 . -126) T) ((-489 . -126) T) ((-273 . -594) 64376) ((-321 . -307) 64353) ((-321 . -341) T) ((-300 . -301) 64330) ((-297 . -265) 64315) ((-39 . -517) T) ((-357 . -1112) T) ((-357 . -1115) T) ((-965 . -1103) 64290) ((-1100 . -215) 64240) ((-1081 . -211) 64192) ((-308 . -1019) T) ((-357 . -91) T) ((-357 . -34) T) ((-965 . -102) 64138) ((-454 . -976) T) ((-455 . -215) 64088) ((-1074 . -464) 64022) ((-1194 . -982) 64006) ((-359 . -982) 63990) ((-454 . -223) T) ((-758 . -97) T) ((-657 . -138) 63969) ((-657 . -136) 63948) ((-459 . -464) 63932) ((-460 . -313) 63901) ((-1194 . -107) 63880) ((-484 . -1019) T) ((-458 . -160) 63859) ((-930 . -355) 63843) ((-391 . -97) T) ((-359 . -107) 63822) ((-930 . -316) 63806) ((-258 . -915) 63790) ((-257 . -915) 63774) ((-1192 . -566) 63756) ((-1190 . -566) 63738) ((-106 . -486) NIL) ((-1086 . -1148) 63722) ((-793 . -791) 63706) ((-1092 . -1019) T) ((-98 . -1126) T) ((-886 . -883) 63667) ((-759 . -660) 63609) ((-1136 . -1066) NIL) ((-457 . -883) 63554) ((-987 . -134) T) ((-58 . -97) 63532) ((-43 . -566) 63514) ((-76 . -566) 63496) ((-329 . -594) 63441) ((-1182 . -1019) T) ((-483 . -789) T) ((-321 . -1031) T) ((-274 . -1019) T) ((-930 . -834) 63400) ((-274 . -563) 63379) ((-1164 . -37) 63276) ((-1157 . -37) 63117) ((-462 . -983) T) ((-1136 . -37) 62913) ((-198 . -983) T) ((-321 . -23) T) ((-143 . -566) 62895) ((-775 . -737) 62874) ((-775 . -734) 62853) ((-551 . -37) 62826) ((-550 . -37) 62723) ((-804 . -517) T) ((-203 . -126) T) ((-297 . -933) 62689) ((-77 . -566) 62671) ((-655 . -286) 62650) ((-273 . -669) 62553) ((-766 . -97) T) ((-799 . -783) T) ((-273 . -450) 62532) ((-1185 . -97) T) ((-39 . -341) T) ((-806 . -138) 62511) ((-806 . -136) 62490) ((-1073 . -464) 62472) ((-1194 . -976) T) ((-458 . -486) 62405) ((-1061 . -1126) T) ((-897 . -566) 62387) ((-593 . -464) 62371) ((-581 . -464) 62302) ((-757 . -566) 62054) ((-47 . -27) T) ((-1092 . -660) 61951) ((-599 . -1019) T) ((-414 . -342) 61925) ((-1021 . -97) T) ((-758 . -288) 61912) ((-799 . -1019) T) ((-1190 . -360) 61884) ((-980 . -486) 61817) ((-1074 . -265) 61793) ((-220 . -211) 61763) ((-1182 . -660) 61733) ((-759 . -160) 61712) ((-207 . -486) 61645) ((-571 . -737) 61624) ((-571 . -734) 61603) ((-1124 . -566) 61515) ((-202 . -1126) T) ((-620 . -566) 61447) ((-1071 . -941) 61431) ((-329 . -669) T) ((-877 . -97) 61381) ((-1136 . -378) 61333) ((-1032 . -464) 61317) ((-58 . -288) 61255) ((-309 . -97) T) ((-1121 . -21) T) ((-1121 . -25) T) ((-39 . -1031) T) ((-654 . -21) T) ((-576 . -566) 61237) ((-487 . -301) 61216) ((-654 . -25) T) ((-103 . -265) NIL) ((-855 . -1031) T) ((-39 . -23) T) ((-713 . -1031) T) ((-525 . -1130) T) ((-468 . -1130) T) ((-297 . -566) 61198) ((-935 . -211) 61180) ((-157 . -154) 61164) ((-537 . -517) T) ((-525 . -517) T) ((-468 . -517) T) ((-713 . -23) T) ((-1156 . -138) 61143) ((-1074 . -558) 61119) ((-1156 . -136) 61098) ((-957 . -464) 61082) ((-1135 . -136) 61007) ((-1135 . -138) 60932) ((-1185 . -1191) 60911) ((-453 . -464) 60895) ((-440 . -464) 60879) ((-494 . -33) T) ((-599 . -660) 60849) ((-108 . -900) T) ((-608 . -789) 60828) ((-1092 . -160) 60779) ((-343 . -97) T) ((-220 . -218) 60758) ((-230 . -97) T) ((-229 . -97) T) ((-1145 . -883) 60727) ((-105 . -97) T) ((-225 . -789) 60706) ((-758 . -37) 60555) ((-44 . -486) 60347) ((-1073 . -265) 60322) ((-195 . -1019) T) ((-1065 . -1019) T) ((-1065 . -563) 60301) ((-542 . -25) T) ((-542 . -21) T) ((-1021 . -288) 60239) ((-896 . -389) 60223) ((-641 . -1130) T) ((-581 . -265) 60198) ((-1008 . -588) 60146) ((-724 . -588) 60094) ((-722 . -588) 60042) ((-321 . -126) T) ((-268 . -566) 60024) ((-641 . -517) T) ((-839 . -1019) T) ((-804 . -1031) T) ((-431 . -588) 59972) ((-839 . -837) 59956) ((-357 . -429) T) ((-462 . -1019) T) ((-643 . -594) 59943) ((-877 . -288) 59881) ((-198 . -1019) T) ((-294 . -854) 59860) ((-291 . -854) T) ((-291 . -762) NIL) ((-368 . -663) T) ((-804 . -23) T) ((-112 . -594) 59847) ((-451 . -136) 59826) ((-396 . -389) 59810) ((-451 . -138) 59789) ((-106 . -464) 59771) ((-2 . -566) 59753) ((-1073 . -19) 59735) ((-1073 . -558) 59710) ((-604 . -21) T) ((-604 . -25) T) ((-548 . -1059) T) ((-1032 . -265) 59687) ((-314 . -25) T) ((-314 . -21) T) ((-468 . -341) T) ((-1185 . -37) 59657) ((-1057 . -1126) T) ((-581 . -558) 59632) ((-1008 . -25) T) ((-1008 . -21) T) ((-497 . -734) T) ((-497 . -737) T) ((-113 . -1130) T) ((-896 . -983) T) ((-573 . -517) T) ((-678 . -983) T) ((-658 . -983) T) ((-724 . -25) T) ((-724 . -21) T) ((-722 . -21) T) ((-722 . -25) T) ((-616 . -982) 59616) ((-438 . -25) T) ((-113 . -517) T) ((-438 . -21) T) ((-431 . -25) T) ((-431 . -21) T) ((-1057 . -967) 59514) ((-759 . -269) 59493) ((-765 . -1019) T) ((-899 . -900) T) ((-616 . -107) 59472) ((-274 . -486) 59264) ((-1192 . -982) 59248) ((-1190 . -982) 59232) ((-230 . -288) 59170) ((-229 . -288) 59108) ((-1139 . -97) 59086) ((-1074 . -567) NIL) ((-1074 . -566) 59068) ((-1156 . -1112) 59034) ((-1156 . -1115) 59000) ((-1136 . -211) 58952) ((-1135 . -1112) 58918) ((-1135 . -1115) 58884) ((-1057 . -355) 58868) ((-1037 . -762) T) ((-1037 . -854) T) ((-1032 . -558) 58845) ((-1002 . -567) 58829) ((-459 . -566) 58761) ((-757 . -267) 58738) ((-561 . -142) 58685) ((-396 . -983) T) ((-462 . -660) 58635) ((-458 . -464) 58619) ((-305 . -789) 58598) ((-317 . -594) 58572) ((-49 . -21) T) ((-49 . -25) T) ((-198 . -660) 58522) ((-157 . -667) 58493) ((-161 . -594) 58425) ((-538 . -21) T) ((-538 . -25) T) ((-489 . -25) T) ((-489 . -21) T) ((-452 . -142) 58375) ((-1002 . -566) 58357) ((-986 . -566) 58339) ((-925 . -97) T) ((-797 . -97) T) ((-741 . -389) 58303) ((-39 . -126) T) ((-641 . -341) T) ((-194 . -829) T) ((-643 . -736) T) ((-643 . -733) T) ((-537 . -1031) T) ((-525 . -1031) T) ((-468 . -1031) T) ((-643 . -669) T) ((-337 . -566) 58285) ((-331 . -566) 58267) ((-323 . -566) 58249) ((-64 . -374) T) ((-64 . -373) T) ((-103 . -567) 58179) ((-103 . -566) 58161) ((-193 . -829) T) ((-891 . -142) 58145) ((-1156 . -91) 58111) ((-713 . -126) T) ((-128 . -669) T) ((-112 . -669) T) ((-1156 . -34) 58077) ((-980 . -464) 58061) ((-537 . -23) T) ((-525 . -23) T) ((-468 . -23) T) ((-1135 . -91) 58027) ((-1135 . -34) 57993) ((-1086 . -97) T) ((-1042 . -97) T) ((-793 . -97) T) ((-207 . -464) 57977) ((-1192 . -107) 57956) ((-1190 . -107) 57935) ((-43 . -982) 57919) ((-1145 . -1148) 57903) ((-794 . -791) 57887) ((-1092 . -269) 57866) ((-106 . -265) 57841) ((-1057 . -834) 57800) ((-43 . -107) 57779) ((-616 . -976) T) ((-1095 . -1167) T) ((-1073 . -567) NIL) ((-1073 . -566) 57761) ((-988 . -563) 57736) ((-988 . -1019) T) ((-72 . -418) T) ((-72 . -373) T) ((-616 . -213) 57715) ((-143 . -982) 57699) ((-532 . -515) 57683) ((-333 . -138) 57662) ((-333 . -136) 57613) ((-330 . -138) 57592) ((-645 . -1019) T) ((-330 . -136) 57543) ((-322 . -138) 57522) ((-322 . -136) 57473) ((-243 . -136) 57452) ((-243 . -138) 57431) ((-230 . -37) 57401) ((-227 . -138) 57380) ((-113 . -341) T) ((-227 . -136) 57359) ((-229 . -37) 57329) ((-143 . -107) 57308) ((-934 . -967) 57198) ((-1081 . -787) NIL) ((-636 . -1130) T) ((-741 . -983) T) ((-641 . -1031) T) ((-1192 . -976) T) ((-1190 . -976) T) ((-1071 . -1126) T) ((-934 . -355) 57175) ((-844 . -136) T) ((-844 . -138) 57157) ((-804 . -126) T) ((-757 . -982) 57055) ((-636 . -517) T) ((-641 . -23) T) ((-593 . -566) 56987) ((-593 . -567) 56948) ((-581 . -567) NIL) ((-581 . -566) 56930) ((-462 . -160) T) ((-203 . -21) T) ((-198 . -160) T) ((-203 . -25) T) ((-451 . -1115) 56896) ((-451 . -1112) 56862) ((-253 . -566) 56844) ((-252 . -566) 56826) ((-251 . -566) 56808) ((-250 . -566) 56790) ((-249 . -566) 56772) ((-473 . -597) 56754) ((-248 . -566) 56736) ((-317 . -669) T) ((-247 . -566) 56718) ((-106 . -19) 56700) ((-161 . -669) T) ((-473 . -351) 56682) ((-194 . -566) 56664) ((-491 . -1064) 56648) ((-473 . -119) T) ((-106 . -558) 56623) ((-193 . -566) 56605) ((-451 . -34) 56571) ((-451 . -91) 56537) ((-191 . -566) 56519) ((-190 . -566) 56501) ((-189 . -566) 56483) ((-188 . -566) 56465) ((-185 . -566) 56447) ((-184 . -566) 56429) ((-183 . -566) 56411) ((-182 . -566) 56393) ((-181 . -566) 56375) ((-180 . -566) 56357) ((-179 . -566) 56339) ((-501 . -1022) 56291) ((-178 . -566) 56273) ((-177 . -566) 56255) ((-44 . -464) 56192) ((-176 . -566) 56174) ((-175 . -566) 56156) ((-757 . -107) 56047) ((-592 . -97) 55997) ((-458 . -265) 55974) ((-1032 . -566) 55726) ((-1020 . -1019) T) ((-973 . -1126) T) ((-573 . -1031) T) ((-1193 . -967) 55710) ((-1086 . -288) 55697) ((-1042 . -288) 55684) ((-113 . -1031) T) ((-761 . -97) T) ((-573 . -23) T) ((-1065 . -486) 55476) ((-364 . -97) T) ((-302 . -97) T) ((-934 . -834) 55428) ((-896 . -1019) T) ((-143 . -976) T) ((-113 . -23) T) ((-674 . -389) 55412) ((-678 . -1019) T) ((-658 . -1019) T) ((-645 . -127) T) ((-430 . -1019) T) ((-294 . -408) 55396) ((-385 . -1126) T) ((-957 . -567) 55357) ((-954 . -1130) T) ((-205 . -97) T) ((-957 . -566) 55319) ((-758 . -211) 55303) ((-954 . -517) T) ((-775 . -594) 55276) ((-332 . -1130) T) ((-453 . -566) 55238) ((-453 . -567) 55199) ((-440 . -567) 55160) ((-440 . -566) 55122) ((-385 . -818) 55106) ((-297 . -982) 54941) ((-385 . -820) 54866) ((-782 . -967) 54764) ((-462 . -486) NIL) ((-458 . -558) 54741) ((-332 . -517) T) ((-198 . -486) NIL) ((-806 . -429) T) ((-396 . -1019) T) ((-385 . -967) 54608) ((-297 . -107) 54429) ((-636 . -341) T) ((-205 . -263) T) ((-47 . -1130) T) ((-757 . -976) 54360) ((-537 . -126) T) ((-525 . -126) T) ((-468 . -126) T) ((-47 . -517) T) ((-1074 . -267) 54336) ((-1086 . -1066) 54314) ((-294 . -27) 54293) ((-987 . -97) T) ((-757 . -213) 54246) ((-220 . -787) 54225) ((-886 . -97) T) ((-656 . -97) T) ((-274 . -464) 54162) ((-457 . -97) T) ((-674 . -983) T) ((-565 . -566) 54144) ((-565 . -567) 54005) ((-385 . -355) 53989) ((-385 . -316) 53973) ((-1086 . -37) 53802) ((-1042 . -37) 53651) ((-793 . -37) 53621) ((-368 . -594) 53605) ((-592 . -288) 53543) ((-896 . -660) 53440) ((-202 . -102) 53424) ((-44 . -265) 53349) ((-678 . -660) 53319) ((-571 . -594) 53293) ((-290 . -1019) T) ((-268 . -982) 53280) ((-106 . -566) 53262) ((-106 . -567) 53244) ((-430 . -660) 53214) ((-758 . -232) 53153) ((-632 . -1019) 53131) ((-511 . -1019) T) ((-1088 . -983) T) ((-1087 . -983) T) ((-268 . -107) 53116) ((-1081 . -983) T) ((-1043 . -983) T) ((-511 . -563) 53095) ((-935 . -787) T) ((-207 . -630) 53053) ((-636 . -1031) T) ((-1121 . -683) 53029) ((-297 . -976) T) ((-321 . -25) T) ((-321 . -21) T) ((-385 . -834) 52988) ((-66 . -1126) T) ((-775 . -736) 52967) ((-396 . -660) 52941) ((-741 . -1019) T) ((-775 . -733) 52920) ((-641 . -126) T) ((-655 . -854) 52899) ((-636 . -23) T) ((-462 . -269) T) ((-775 . -669) 52878) ((-297 . -213) 52830) ((-297 . -223) 52809) ((-198 . -269) T) ((-954 . -341) T) ((-1156 . -429) 52788) ((-1135 . -429) 52767) ((-332 . -307) 52744) ((-332 . -341) T) ((-1055 . -566) 52726) ((-44 . -1160) 52676) ((-805 . -97) T) ((-592 . -261) 52660) ((-641 . -985) T) ((-454 . -594) 52625) ((-445 . -1019) T) ((-44 . -558) 52550) ((-1073 . -267) 52525) ((-39 . -588) 52464) ((-47 . -341) T) ((-1025 . -566) 52446) ((-1008 . -789) 52425) ((-581 . -267) 52400) ((-724 . -789) 52379) ((-722 . -789) 52358) ((-458 . -566) 52110) ((-220 . -389) 52079) ((-886 . -288) 52066) ((-431 . -789) 52045) ((-63 . -1126) T) ((-573 . -126) T) ((-457 . -288) 52032) ((-988 . -486) 51876) ((-268 . -976) T) ((-113 . -126) T) ((-430 . -704) T) ((-896 . -160) 51827) ((-1002 . -982) 51737) ((-571 . -736) 51716) ((-548 . -1019) T) ((-571 . -733) 51695) ((-571 . -669) T) ((-274 . -265) 51674) ((-273 . -1126) T) ((-980 . -566) 51636) ((-980 . -567) 51597) ((-954 . -1031) T) ((-157 . -97) T) ((-254 . -789) T) ((-1080 . -1019) T) ((-760 . -566) 51579) ((-1032 . -267) 51556) ((-1021 . -209) 51540) ((-934 . -286) T) ((-741 . -660) 51524) ((-337 . -982) 51476) ((-332 . -1031) T) ((-331 . -982) 51428) ((-392 . -566) 51410) ((-363 . -566) 51392) ((-323 . -982) 51344) ((-207 . -566) 51276) ((-1002 . -107) 51172) ((-954 . -23) T) ((-103 . -982) 51122) ((-832 . -97) T) ((-780 . -97) T) ((-750 . -97) T) ((-711 . -97) T) ((-621 . -97) T) ((-451 . -429) 51101) ((-396 . -160) T) ((-337 . -107) 51039) ((-331 . -107) 50977) ((-323 . -107) 50915) ((-230 . -211) 50885) ((-229 . -211) 50855) ((-332 . -23) T) ((-69 . -1126) T) ((-205 . -37) 50820) ((-103 . -107) 50754) ((-39 . -25) T) ((-39 . -21) T) ((-616 . -663) T) ((-157 . -263) 50732) ((-47 . -1031) T) ((-855 . -25) T) ((-713 . -25) T) ((-1065 . -464) 50669) ((-460 . -1019) T) ((-1194 . -594) 50643) ((-1145 . -97) T) ((-794 . -97) T) ((-220 . -983) 50574) ((-987 . -1066) T) ((-897 . -734) 50527) ((-359 . -594) 50511) ((-47 . -23) T) ((-897 . -737) 50464) ((-757 . -737) 50415) ((-757 . -734) 50366) ((-274 . -558) 50345) ((-454 . -669) T) ((-532 . -97) T) ((-805 . -288) 50302) ((-599 . -265) 50281) ((-108 . -607) T) ((-74 . -1126) T) ((-987 . -37) 50268) ((-610 . -352) 50247) ((-886 . -37) 50096) ((-674 . -1019) T) ((-457 . -37) 49945) ((-84 . -1126) T) ((-532 . -263) T) ((-1136 . -787) NIL) ((-1088 . -1019) T) ((-1087 . -1019) T) ((-1081 . -1019) T) ((-329 . -967) 49922) ((-1002 . -976) T) ((-935 . -983) T) ((-44 . -566) 49904) ((-44 . -567) NIL) ((-848 . -983) T) ((-759 . -566) 49886) ((-1062 . -97) 49864) ((-1002 . -223) 49815) ((-405 . -983) T) ((-337 . -976) T) ((-331 . -976) T) ((-343 . -342) 49792) ((-323 . -976) T) ((-230 . -218) 49771) ((-229 . -218) 49750) ((-105 . -342) 49724) ((-1002 . -213) 49649) ((-1043 . -1019) T) ((-273 . -834) 49608) ((-103 . -976) T) ((-636 . -126) T) ((-396 . -486) 49450) ((-337 . -213) 49429) ((-337 . -223) T) ((-43 . -663) T) ((-331 . -213) 49408) ((-331 . -223) T) ((-323 . -213) 49387) ((-323 . -223) T) ((-157 . -288) 49352) ((-103 . -223) T) ((-103 . -213) T) ((-297 . -734) T) ((-804 . -21) T) ((-804 . -25) T) ((-385 . -286) T) ((-473 . -33) T) ((-106 . -267) 49327) ((-1032 . -982) 49225) ((-805 . -1066) NIL) ((-308 . -566) 49207) ((-385 . -952) 49186) ((-1032 . -107) 49077) ((-414 . -1019) T) ((-1194 . -669) T) ((-61 . -566) 49059) ((-805 . -37) 49004) ((-494 . -1126) T) ((-556 . -142) 48988) ((-484 . -566) 48970) ((-1145 . -288) 48957) ((-674 . -660) 48806) ((-497 . -735) T) ((-497 . -736) T) ((-525 . -588) 48788) ((-468 . -588) 48748) ((-333 . -429) T) ((-330 . -429) T) ((-322 . -429) T) ((-243 . -429) 48699) ((-491 . -1019) 48649) ((-227 . -429) 48600) ((-1065 . -265) 48579) ((-1092 . -566) 48561) ((-632 . -486) 48494) ((-896 . -269) 48473) ((-511 . -486) 48265) ((-1086 . -211) 48249) ((-157 . -1066) 48228) ((-1182 . -566) 48210) ((-1088 . -660) 48107) ((-1087 . -660) 47948) ((-826 . -97) T) ((-1081 . -660) 47744) ((-1043 . -660) 47641) ((-1071 . -619) 47625) ((-333 . -380) 47576) ((-330 . -380) 47527) ((-322 . -380) 47478) ((-954 . -126) T) ((-741 . -486) 47390) ((-274 . -567) NIL) ((-274 . -566) 47372) ((-844 . -429) T) ((-897 . -346) 47325) ((-757 . -346) 47304) ((-482 . -481) 47283) ((-480 . -481) 47262) ((-462 . -265) NIL) ((-458 . -267) 47239) ((-396 . -269) T) ((-332 . -126) T) ((-198 . -265) NIL) ((-636 . -466) NIL) ((-94 . -1031) T) ((-157 . -37) 47067) ((-1156 . -905) 47029) ((-1062 . -288) 46967) ((-1135 . -905) 46936) ((-844 . -380) T) ((-1032 . -976) 46867) ((-1158 . -517) T) ((-1065 . -558) 46846) ((-108 . -789) T) ((-988 . -464) 46777) ((-537 . -21) T) ((-537 . -25) T) ((-525 . -21) T) ((-525 . -25) T) ((-468 . -25) T) ((-468 . -21) T) ((-1145 . -1066) 46755) ((-1032 . -213) 46708) ((-47 . -126) T) ((-1108 . -97) T) ((-220 . -1019) 46519) ((-805 . -378) 46496) ((-1009 . -97) T) ((-998 . -97) T) ((-561 . -97) T) ((-452 . -97) T) ((-1145 . -37) 46325) ((-794 . -37) 46295) ((-674 . -160) 46206) ((-599 . -566) 46188) ((-532 . -37) 46175) ((-891 . -97) 46125) ((-799 . -566) 46107) ((-799 . -567) 46029) ((-548 . -486) NIL) ((-1164 . -983) T) ((-1157 . -983) T) ((-1136 . -983) T) ((-551 . -983) T) ((-550 . -983) T) ((-1198 . -1031) T) ((-1088 . -160) 45980) ((-1087 . -160) 45911) ((-1081 . -160) 45842) ((-1043 . -160) 45793) ((-935 . -1019) T) ((-903 . -1019) T) ((-848 . -1019) T) ((-1121 . -138) 45772) ((-741 . -739) 45756) ((-641 . -25) T) ((-641 . -21) T) ((-113 . -588) 45733) ((-643 . -820) 45715) ((-405 . -1019) T) ((-294 . -1130) 45694) ((-291 . -1130) T) ((-157 . -378) 45678) ((-1121 . -136) 45657) ((-451 . -905) 45619) ((-124 . -1019) T) ((-70 . -566) 45601) ((-103 . -737) T) ((-103 . -734) T) ((-294 . -517) 45580) ((-643 . -967) 45562) ((-291 . -517) T) ((-1198 . -23) T) ((-128 . -967) 45544) ((-458 . -982) 45442) ((-44 . -267) 45367) ((-220 . -660) 45309) ((-458 . -107) 45200) ((-1012 . -97) 45178) ((-964 . -97) T) ((-592 . -770) 45157) ((-674 . -486) 45100) ((-980 . -982) 45084) ((-573 . -21) T) ((-573 . -25) T) ((-988 . -265) 45059) ((-339 . -97) T) ((-300 . -97) T) ((-616 . -594) 45033) ((-363 . -982) 45017) ((-980 . -107) 44996) ((-758 . -389) 44980) ((-113 . -25) T) ((-87 . -566) 44962) ((-113 . -21) T) ((-561 . -288) 44757) ((-452 . -288) 44561) ((-1065 . -567) NIL) ((-363 . -107) 44540) ((-357 . -97) T) ((-195 . -566) 44522) ((-1065 . -566) 44504) ((-935 . -660) 44454) ((-1081 . -486) 44223) ((-848 . -660) 44175) ((-1043 . -486) 44145) ((-329 . -286) T) ((-1100 . -142) 44095) ((-891 . -288) 44033) ((-776 . -97) T) ((-405 . -660) 44017) ((-205 . -770) T) ((-769 . -97) T) ((-767 . -97) T) ((-455 . -142) 43967) ((-1156 . -1155) 43946) ((-1037 . -1130) T) ((-317 . -967) 43913) ((-1156 . -1150) 43883) ((-1156 . -1153) 43867) ((-1135 . -1134) 43846) ((-78 . -566) 43828) ((-839 . -566) 43810) ((-1135 . -1150) 43787) ((-1037 . -517) T) ((-855 . -789) T) ((-462 . -567) 43717) ((-462 . -566) 43699) ((-713 . -789) T) ((-357 . -263) T) ((-617 . -789) T) ((-1135 . -1132) 43683) ((-1158 . -1031) T) ((-198 . -567) 43613) ((-198 . -566) 43595) ((-988 . -558) 43570) ((-57 . -142) 43554) ((-488 . -142) 43538) ((-469 . -142) 43522) ((-337 . -1189) 43506) ((-331 . -1189) 43490) ((-323 . -1189) 43474) ((-294 . -341) 43453) ((-291 . -341) T) ((-458 . -976) 43384) ((-636 . -588) 43366) ((-1192 . -594) 43340) ((-1190 . -594) 43314) ((-1158 . -23) T) ((-632 . -464) 43298) ((-62 . -566) 43280) ((-1032 . -737) 43231) ((-1032 . -734) 43182) ((-511 . -464) 43119) ((-616 . -33) T) ((-458 . -213) 43072) ((-274 . -267) 43051) ((-220 . -160) 43030) ((-758 . -983) T) ((-43 . -594) 42988) ((-1002 . -346) 42939) ((-674 . -269) 42870) ((-491 . -486) 42803) ((-759 . -982) 42754) ((-1008 . -136) 42733) ((-337 . -346) 42712) ((-331 . -346) 42691) ((-323 . -346) 42670) ((-1008 . -138) 42649) ((-805 . -211) 42626) ((-759 . -107) 42568) ((-724 . -136) 42547) ((-724 . -138) 42526) ((-243 . -883) 42493) ((-230 . -787) 42472) ((-227 . -883) 42417) ((-229 . -787) 42396) ((-722 . -136) 42375) ((-722 . -138) 42354) ((-143 . -594) 42328) ((-431 . -138) 42307) ((-431 . -136) 42286) ((-616 . -669) T) ((-765 . -566) 42268) ((-1164 . -1019) T) ((-1157 . -1019) T) ((-1136 . -1019) T) ((-1121 . -1115) 42234) ((-1121 . -1112) 42200) ((-1088 . -269) 42179) ((-1087 . -269) 42130) ((-1081 . -269) 42081) ((-1043 . -269) 42060) ((-317 . -834) 42041) ((-935 . -160) T) ((-848 . -160) T) ((-551 . -1019) T) ((-550 . -1019) T) ((-636 . -21) T) ((-636 . -25) T) ((-451 . -1153) 42025) ((-451 . -1150) 41995) ((-396 . -265) 41923) ((-294 . -1031) 41773) ((-291 . -1031) T) ((-1121 . -34) 41739) ((-1121 . -91) 41705) ((-82 . -566) 41687) ((-89 . -97) 41665) ((-1198 . -126) T) ((-538 . -136) T) ((-538 . -138) 41647) ((-489 . -138) 41629) ((-489 . -136) T) ((-294 . -23) 41482) ((-39 . -320) 41456) ((-291 . -23) T) ((-1073 . -597) 41438) ((-757 . -594) 41288) ((-1185 . -983) T) ((-1073 . -351) 41270) ((-157 . -211) 41254) ((-548 . -464) 41236) ((-220 . -486) 41169) ((-1192 . -669) T) ((-1190 . -669) T) ((-1092 . -982) 41052) ((-1092 . -107) 40921) ((-759 . -976) T) ((-487 . -97) T) ((-47 . -588) 40881) ((-482 . -97) T) ((-480 . -97) T) ((-1182 . -982) 40851) ((-964 . -37) 40835) ((-759 . -213) T) ((-759 . -223) 40814) ((-511 . -265) 40793) ((-1182 . -107) 40758) ((-1145 . -211) 40742) ((-1164 . -660) 40639) ((-988 . -567) NIL) ((-988 . -566) 40621) ((-1157 . -660) 40462) ((-1136 . -660) 40258) ((-934 . -854) T) ((-645 . -566) 40227) ((-143 . -669) T) ((-1032 . -346) 40206) ((-935 . -486) NIL) ((-230 . -389) 40175) ((-229 . -389) 40144) ((-954 . -25) T) ((-954 . -21) T) ((-551 . -660) 40117) ((-550 . -660) 40014) ((-741 . -265) 39972) ((-122 . -97) 39950) ((-775 . -967) 39848) ((-157 . -770) 39827) ((-297 . -594) 39724) ((-757 . -33) T) ((-657 . -97) T) ((-1037 . -1031) T) ((-124 . -486) NIL) ((-956 . -1126) T) ((-357 . -37) 39689) ((-332 . -25) T) ((-332 . -21) T) ((-150 . -97) T) ((-146 . -97) T) ((-333 . -1179) 39673) ((-330 . -1179) 39657) ((-322 . -1179) 39641) ((-157 . -327) 39620) ((-525 . -789) T) ((-468 . -789) T) ((-1037 . -23) T) ((-85 . -566) 39602) ((-643 . -286) T) ((-776 . -37) 39572) ((-769 . -37) 39542) ((-1158 . -126) T) ((-1065 . -267) 39521) ((-897 . -735) 39474) ((-897 . -736) 39427) ((-757 . -733) 39406) ((-112 . -286) T) ((-89 . -288) 39344) ((-620 . -33) T) ((-511 . -558) 39323) ((-47 . -25) T) ((-47 . -21) T) ((-757 . -736) 39274) ((-757 . -735) 39253) ((-643 . -952) T) ((-599 . -982) 39237) ((-897 . -669) 39136) ((-757 . -669) 39067) ((-897 . -450) 39020) ((-458 . -737) 38971) ((-458 . -734) 38922) ((-844 . -1179) 38909) ((-1092 . -976) T) ((-599 . -107) 38888) ((-1092 . -304) 38865) ((-1113 . -97) 38843) ((-1020 . -566) 38825) ((-643 . -510) T) ((-758 . -1019) T) ((-1182 . -976) T) ((-391 . -1019) T) ((-230 . -983) 38756) ((-229 . -983) 38687) ((-268 . -594) 38674) ((-548 . -265) 38649) ((-632 . -630) 38607) ((-896 . -566) 38589) ((-806 . -97) T) ((-678 . -566) 38571) ((-658 . -566) 38553) ((-1164 . -160) 38504) ((-1157 . -160) 38435) ((-1136 . -160) 38366) ((-641 . -789) T) ((-935 . -269) T) ((-430 . -566) 38348) ((-576 . -669) T) ((-58 . -1019) 38326) ((-225 . -142) 38310) ((-848 . -269) T) ((-954 . -943) T) ((-576 . -450) T) ((-655 . -1130) 38289) ((-551 . -160) 38268) ((-550 . -160) 38219) ((-1172 . -789) 38198) ((-655 . -517) 38109) ((-385 . -854) T) ((-385 . -762) 38088) ((-297 . -736) T) ((-297 . -669) T) ((-396 . -566) 38070) ((-396 . -567) 37978) ((-592 . -1064) 37962) ((-106 . -597) 37944) ((-122 . -288) 37882) ((-106 . -351) 37864) ((-161 . -286) T) ((-376 . -1126) T) ((-294 . -126) 37736) ((-291 . -126) T) ((-67 . -373) T) ((-106 . -119) T) ((-491 . -464) 37720) ((-600 . -1031) T) ((-548 . -19) 37702) ((-59 . -418) T) ((-59 . -373) T) ((-766 . -1019) T) ((-548 . -558) 37677) ((-454 . -967) 37637) ((-599 . -976) T) ((-600 . -23) T) ((-1185 . -1019) T) ((-758 . -660) 37486) ((-113 . -789) NIL) ((-1086 . -389) 37470) ((-1042 . -389) 37454) ((-793 . -389) 37438) ((-807 . -97) 37389) ((-1156 . -97) T) ((-1136 . -486) 37158) ((-1113 . -288) 37096) ((-290 . -566) 37078) ((-1135 . -97) T) ((-1021 . -1019) T) ((-1088 . -265) 37063) ((-1087 . -265) 37048) ((-268 . -669) T) ((-103 . -843) NIL) ((-632 . -566) 36980) ((-632 . -567) 36941) ((-1002 . -594) 36851) ((-555 . -566) 36833) ((-511 . -567) NIL) ((-511 . -566) 36815) ((-1081 . -265) 36663) ((-462 . -982) 36613) ((-654 . -429) T) ((-483 . -481) 36592) ((-479 . -481) 36571) ((-198 . -982) 36521) ((-337 . -594) 36473) ((-331 . -594) 36425) ((-205 . -787) T) ((-323 . -594) 36377) ((-556 . -97) 36327) ((-458 . -346) 36306) ((-103 . -594) 36256) ((-462 . -107) 36190) ((-220 . -464) 36174) ((-321 . -138) 36156) ((-321 . -136) T) ((-157 . -348) 36127) ((-877 . -1170) 36111) ((-198 . -107) 36045) ((-806 . -288) 36010) ((-877 . -1019) 35960) ((-741 . -567) 35921) ((-741 . -566) 35903) ((-661 . -97) T) ((-309 . -1019) T) ((-1037 . -126) T) ((-657 . -37) 35873) ((-294 . -466) 35852) ((-473 . -1126) T) ((-1156 . -263) 35818) ((-1135 . -263) 35784) ((-305 . -142) 35768) ((-988 . -267) 35743) ((-1185 . -660) 35713) ((-1074 . -33) T) ((-1194 . -967) 35690) ((-445 . -566) 35672) ((-459 . -33) T) ((-359 . -967) 35656) ((-1086 . -983) T) ((-1042 . -983) T) ((-793 . -983) T) ((-987 . -787) T) ((-758 . -160) 35567) ((-491 . -265) 35544) ((-124 . -464) 35526) ((-113 . -924) 35503) ((-1164 . -269) 35482) ((-1108 . -342) 35456) ((-1009 . -245) 35440) ((-451 . -97) T) ((-343 . -1019) T) ((-230 . -1019) T) ((-229 . -1019) T) ((-1157 . -269) 35391) ((-105 . -1019) T) ((-1136 . -269) 35342) ((-806 . -1066) 35320) ((-1088 . -933) 35286) ((-561 . -342) 35226) ((-1087 . -933) 35192) ((-561 . -209) 35139) ((-548 . -566) 35121) ((-548 . -567) NIL) ((-636 . -789) T) ((-452 . -209) 35071) ((-462 . -976) T) ((-1081 . -933) 35037) ((-86 . -417) T) ((-86 . -373) T) ((-198 . -976) T) ((-1043 . -933) 35003) ((-1002 . -669) T) ((-655 . -1031) T) ((-551 . -269) 34982) ((-550 . -269) 34961) ((-462 . -223) T) ((-462 . -213) T) ((-198 . -223) T) ((-198 . -213) T) ((-1080 . -566) 34943) ((-806 . -37) 34895) ((-337 . -669) T) ((-331 . -669) T) ((-323 . -669) T) ((-103 . -736) T) ((-103 . -733) T) ((-491 . -1160) 34879) ((-103 . -669) T) ((-655 . -23) T) ((-1198 . -25) T) ((-451 . -263) 34845) ((-1198 . -21) T) ((-1135 . -288) 34784) ((-1090 . -97) T) ((-39 . -136) 34756) ((-39 . -138) 34728) ((-491 . -558) 34705) ((-1032 . -594) 34555) ((-556 . -288) 34493) ((-44 . -597) 34443) ((-44 . -612) 34393) ((-44 . -351) 34343) ((-1073 . -33) T) ((-805 . -787) NIL) ((-600 . -126) T) ((-460 . -566) 34325) ((-220 . -265) 34302) ((-593 . -33) T) ((-581 . -33) T) ((-1008 . -429) 34253) ((-758 . -486) 34127) ((-724 . -429) 34058) ((-722 . -429) 34009) ((-431 . -429) 33960) ((-886 . -389) 33944) ((-674 . -566) 33926) ((-230 . -660) 33868) ((-229 . -660) 33810) ((-674 . -567) 33671) ((-457 . -389) 33655) ((-317 . -281) T) ((-329 . -854) T) ((-931 . -97) 33633) ((-954 . -789) T) ((-58 . -486) 33566) ((-1135 . -1066) 33518) ((-935 . -265) NIL) ((-205 . -983) T) ((-357 . -770) T) ((-1032 . -33) T) ((-1139 . -1013) 33502) ((-538 . -429) T) ((-489 . -429) T) ((-1139 . -1019) 33480) ((-1139 . -1015) 33437) ((-220 . -558) 33414) ((-1088 . -566) 33396) ((-1087 . -566) 33378) ((-1081 . -566) 33360) ((-1081 . -567) NIL) ((-1043 . -566) 33342) ((-124 . -265) 33317) ((-806 . -378) 33301) ((-501 . -97) T) ((-1156 . -37) 33142) ((-1135 . -37) 32956) ((-804 . -138) T) ((-538 . -380) T) ((-47 . -789) T) ((-489 . -380) T) ((-1158 . -21) T) ((-1158 . -25) T) ((-1032 . -733) 32935) ((-1032 . -736) 32886) ((-1032 . -735) 32865) ((-925 . -1019) T) ((-957 . -33) T) ((-797 . -1019) T) ((-1168 . -97) T) ((-1032 . -669) 32796) ((-610 . -97) T) ((-511 . -267) 32775) ((-1100 . -97) T) ((-453 . -33) T) ((-440 . -33) T) ((-333 . -97) T) ((-330 . -97) T) ((-322 . -97) T) ((-243 . -97) T) ((-227 . -97) T) ((-454 . -286) T) ((-987 . -983) T) ((-886 . -983) T) ((-294 . -588) 32683) ((-291 . -588) 32644) ((-457 . -983) T) ((-455 . -97) T) ((-414 . -566) 32626) ((-1086 . -1019) T) ((-1042 . -1019) T) ((-793 . -1019) T) ((-1056 . -97) T) ((-758 . -269) 32557) ((-896 . -982) 32440) ((-454 . -952) T) ((-124 . -19) 32422) ((-678 . -982) 32392) ((-124 . -558) 32367) ((-430 . -982) 32337) ((-1062 . -1038) 32321) ((-1021 . -486) 32254) ((-896 . -107) 32123) ((-844 . -97) T) ((-678 . -107) 32088) ((-57 . -97) 32038) ((-491 . -567) 31999) ((-491 . -566) 31911) ((-490 . -97) 31889) ((-488 . -97) 31839) ((-470 . -97) 31817) ((-469 . -97) 31767) ((-430 . -107) 31730) ((-230 . -160) 31709) ((-229 . -160) 31688) ((-396 . -982) 31662) ((-1121 . -905) 31624) ((-930 . -1031) T) ((-877 . -486) 31557) ((-462 . -737) T) ((-451 . -37) 31398) ((-396 . -107) 31365) ((-462 . -734) T) ((-931 . -288) 31303) ((-198 . -737) T) ((-198 . -734) T) ((-930 . -23) T) ((-655 . -126) T) ((-1135 . -378) 31273) ((-294 . -25) 31126) ((-157 . -389) 31110) ((-294 . -21) 30982) ((-291 . -25) T) ((-291 . -21) T) ((-799 . -346) T) ((-106 . -33) T) ((-458 . -594) 30832) ((-805 . -983) T) ((-548 . -267) 30807) ((-537 . -138) T) ((-525 . -138) T) ((-468 . -138) T) ((-1086 . -660) 30636) ((-1042 . -660) 30485) ((-1037 . -588) 30467) ((-793 . -660) 30437) ((-616 . -1126) T) ((-1 . -97) T) ((-220 . -566) 30189) ((-1145 . -389) 30173) ((-1100 . -288) 29977) ((-896 . -976) T) ((-678 . -976) T) ((-658 . -976) T) ((-592 . -1019) 29927) ((-980 . -594) 29911) ((-794 . -389) 29895) ((-483 . -97) T) ((-479 . -97) T) ((-227 . -288) 29882) ((-243 . -288) 29869) ((-896 . -304) 29848) ((-363 . -594) 29832) ((-455 . -288) 29636) ((-230 . -486) 29569) ((-616 . -967) 29467) ((-229 . -486) 29400) ((-1056 . -288) 29326) ((-761 . -1019) T) ((-741 . -982) 29310) ((-1164 . -265) 29295) ((-1157 . -265) 29280) ((-1136 . -265) 29128) ((-364 . -1019) T) ((-302 . -1019) T) ((-396 . -976) T) ((-157 . -983) T) ((-57 . -288) 29066) ((-741 . -107) 29045) ((-550 . -265) 29030) ((-490 . -288) 28968) ((-488 . -288) 28906) ((-470 . -288) 28844) ((-469 . -288) 28782) ((-396 . -213) 28761) ((-458 . -33) T) ((-935 . -567) 28691) ((-205 . -1019) T) ((-935 . -566) 28673) ((-903 . -566) 28655) ((-903 . -567) 28630) ((-848 . -566) 28612) ((-641 . -138) T) ((-643 . -854) T) ((-643 . -762) T) ((-405 . -566) 28594) ((-1037 . -21) T) ((-124 . -567) NIL) ((-124 . -566) 28576) ((-1037 . -25) T) ((-616 . -355) 28560) ((-112 . -854) T) ((-806 . -211) 28544) ((-76 . -1126) T) ((-122 . -121) 28528) ((-980 . -33) T) ((-1192 . -967) 28502) ((-1190 . -967) 28459) ((-1145 . -983) T) ((-794 . -983) T) ((-458 . -733) 28438) ((-333 . -1066) 28417) ((-330 . -1066) 28396) ((-322 . -1066) 28375) ((-458 . -736) 28326) ((-458 . -735) 28305) ((-207 . -33) T) ((-458 . -669) 28236) ((-58 . -464) 28220) ((-532 . -983) T) ((-1086 . -160) 28111) ((-1042 . -160) 28022) ((-987 . -1019) T) ((-1008 . -883) 27967) ((-886 . -1019) T) ((-759 . -594) 27918) ((-724 . -883) 27887) ((-656 . -1019) T) ((-722 . -883) 27854) ((-488 . -261) 27838) ((-616 . -834) 27797) ((-457 . -1019) T) ((-431 . -883) 27764) ((-77 . -1126) T) ((-333 . -37) 27729) ((-330 . -37) 27694) ((-322 . -37) 27659) ((-243 . -37) 27508) ((-227 . -37) 27357) ((-844 . -1066) T) ((-573 . -138) 27336) ((-573 . -136) 27315) ((-113 . -138) T) ((-113 . -136) NIL) ((-392 . -669) T) ((-741 . -976) T) ((-321 . -429) T) ((-1164 . -933) 27281) ((-1157 . -933) 27247) ((-1136 . -933) 27213) ((-844 . -37) 27178) ((-205 . -660) 27143) ((-297 . -46) 27113) ((-39 . -387) 27085) ((-131 . -566) 27067) ((-930 . -126) T) ((-757 . -1126) T) ((-161 . -854) T) ((-321 . -380) T) ((-491 . -267) 27044) ((-44 . -33) T) ((-757 . -967) 26873) ((-608 . -97) T) ((-600 . -21) T) ((-600 . -25) T) ((-1021 . -464) 26857) ((-1135 . -211) 26827) ((-620 . -1126) T) ((-225 . -97) 26777) ((-805 . -1019) T) ((-1092 . -594) 26702) ((-987 . -660) 26689) ((-674 . -982) 26532) ((-1086 . -486) 26479) ((-886 . -660) 26328) ((-1042 . -486) 26280) ((-457 . -660) 26129) ((-65 . -566) 26111) ((-674 . -107) 25940) ((-877 . -464) 25924) ((-1182 . -594) 25884) ((-759 . -669) T) ((-1088 . -982) 25767) ((-1087 . -982) 25602) ((-1081 . -982) 25392) ((-1043 . -982) 25275) ((-934 . -1130) T) ((-1014 . -97) 25253) ((-757 . -355) 25223) ((-934 . -517) T) ((-1088 . -107) 25092) ((-1087 . -107) 24913) ((-1081 . -107) 24682) ((-1043 . -107) 24551) ((-1024 . -1022) 24515) ((-357 . -787) T) ((-1164 . -566) 24497) ((-1157 . -566) 24479) ((-1136 . -566) 24461) ((-1136 . -567) NIL) ((-220 . -267) 24438) ((-39 . -429) T) ((-205 . -160) T) ((-157 . -1019) T) ((-636 . -138) T) ((-636 . -136) NIL) ((-551 . -566) 24420) ((-550 . -566) 24402) ((-832 . -1019) T) ((-780 . -1019) T) ((-750 . -1019) T) ((-711 . -1019) T) ((-604 . -791) 24386) ((-621 . -1019) T) ((-757 . -834) 24319) ((-39 . -380) NIL) ((-1037 . -607) T) ((-805 . -660) 24264) ((-230 . -464) 24248) ((-229 . -464) 24232) ((-655 . -588) 24180) ((-599 . -594) 24154) ((-274 . -33) T) ((-674 . -976) T) ((-538 . -1179) 24141) ((-489 . -1179) 24118) ((-1145 . -1019) T) ((-1086 . -269) 24029) ((-1042 . -269) 23960) ((-987 . -160) T) ((-794 . -1019) T) ((-886 . -160) 23871) ((-724 . -1148) 23855) ((-592 . -486) 23788) ((-75 . -566) 23770) ((-674 . -304) 23735) ((-1092 . -669) T) ((-532 . -1019) T) ((-457 . -160) 23646) ((-225 . -288) 23584) ((-124 . -267) 23559) ((-1057 . -1031) T) ((-68 . -566) 23541) ((-1182 . -669) T) ((-1088 . -976) T) ((-1087 . -976) T) ((-305 . -97) 23491) ((-1081 . -976) T) ((-1057 . -23) T) ((-1043 . -976) T) ((-89 . -1038) 23475) ((-800 . -1031) T) ((-1088 . -213) 23434) ((-1087 . -223) 23413) ((-1087 . -213) 23365) ((-1081 . -213) 23252) ((-1081 . -223) 23231) ((-297 . -834) 23137) ((-800 . -23) T) ((-157 . -660) 22965) ((-385 . -1130) T) ((-1020 . -346) T) ((-954 . -138) T) ((-934 . -341) T) ((-804 . -429) T) ((-877 . -265) 22942) ((-294 . -789) T) ((-291 . -789) NIL) ((-808 . -97) T) ((-655 . -25) T) ((-385 . -517) T) ((-655 . -21) T) ((-332 . -138) 22924) ((-332 . -136) T) ((-1062 . -1019) 22902) ((-430 . -663) T) ((-73 . -566) 22884) ((-110 . -789) T) ((-225 . -261) 22868) ((-220 . -982) 22766) ((-79 . -566) 22748) ((-678 . -346) 22701) ((-1090 . -770) T) ((-680 . -215) 22685) ((-1074 . -1126) T) ((-132 . -215) 22667) ((-220 . -107) 22558) ((-1145 . -660) 22387) ((-47 . -138) T) ((-805 . -160) T) ((-794 . -660) 22357) ((-459 . -1126) T) ((-886 . -486) 22304) ((-599 . -669) T) ((-532 . -660) 22291) ((-964 . -983) T) ((-457 . -486) 22234) ((-877 . -19) 22218) ((-877 . -558) 22195) ((-758 . -567) NIL) ((-758 . -566) 22177) ((-935 . -982) 22127) ((-391 . -566) 22109) ((-230 . -265) 22086) ((-229 . -265) 22063) ((-462 . -843) NIL) ((-294 . -29) 22033) ((-103 . -1126) T) ((-934 . -1031) T) ((-198 . -843) NIL) ((-848 . -982) 21985) ((-1002 . -967) 21883) ((-935 . -107) 21817) ((-243 . -211) 21801) ((-680 . -637) 21785) ((-405 . -982) 21769) ((-357 . -983) T) ((-934 . -23) T) ((-848 . -107) 21707) ((-636 . -1115) NIL) ((-462 . -594) 21657) ((-103 . -818) 21639) ((-103 . -820) 21621) ((-636 . -1112) NIL) ((-198 . -594) 21571) ((-337 . -967) 21555) ((-331 . -967) 21539) ((-305 . -288) 21477) ((-323 . -967) 21461) ((-205 . -269) T) ((-405 . -107) 21440) ((-58 . -566) 21372) ((-157 . -160) T) ((-1037 . -789) T) ((-103 . -967) 21332) ((-826 . -1019) T) ((-776 . -983) T) ((-769 . -983) T) ((-636 . -34) NIL) ((-636 . -91) NIL) ((-291 . -924) 21293) ((-537 . -429) T) ((-525 . -429) T) ((-468 . -429) T) ((-385 . -341) T) ((-220 . -976) 21224) ((-1065 . -33) T) ((-454 . -854) T) ((-930 . -588) 21172) ((-230 . -558) 21149) ((-229 . -558) 21126) ((-1002 . -355) 21110) ((-805 . -486) 21018) ((-220 . -213) 20971) ((-1073 . -1126) T) ((-766 . -566) 20953) ((-1193 . -1031) T) ((-1185 . -566) 20935) ((-1145 . -160) 20826) ((-103 . -355) 20808) ((-103 . -316) 20790) ((-987 . -269) T) ((-886 . -269) 20721) ((-741 . -346) 20700) ((-593 . -1126) T) ((-581 . -1126) T) ((-457 . -269) 20631) ((-532 . -160) T) ((-305 . -261) 20615) ((-1193 . -23) T) ((-1121 . -97) T) ((-1108 . -1019) T) ((-1009 . -1019) T) ((-998 . -1019) T) ((-81 . -566) 20597) ((-654 . -97) T) ((-333 . -327) 20576) ((-561 . -1019) T) ((-330 . -327) 20555) ((-322 . -327) 20534) ((-452 . -1019) T) ((-1100 . -209) 20484) ((-243 . -232) 20446) ((-1057 . -126) T) ((-561 . -563) 20422) ((-1002 . -834) 20355) ((-935 . -976) T) ((-848 . -976) T) ((-452 . -563) 20334) ((-1081 . -734) NIL) ((-1081 . -737) NIL) ((-1021 . -567) 20295) ((-455 . -209) 20245) ((-1021 . -566) 20227) ((-935 . -223) T) ((-935 . -213) T) ((-405 . -976) T) ((-891 . -1019) 20177) ((-848 . -223) T) ((-800 . -126) T) ((-641 . -429) T) ((-782 . -1031) 20156) ((-103 . -834) NIL) ((-1121 . -263) 20122) ((-806 . -787) 20101) ((-1032 . -1126) T) ((-839 . -669) T) ((-157 . -486) 20013) ((-930 . -25) T) ((-839 . -450) T) ((-385 . -1031) T) ((-462 . -736) T) ((-462 . -733) T) ((-844 . -327) T) ((-462 . -669) T) ((-198 . -736) T) ((-198 . -733) T) ((-930 . -21) T) ((-198 . -669) T) ((-782 . -23) 19965) ((-297 . -286) 19944) ((-965 . -215) 19890) ((-385 . -23) T) ((-877 . -567) 19851) ((-877 . -566) 19763) ((-592 . -464) 19747) ((-44 . -941) 19697) ((-309 . -566) 19679) ((-1032 . -967) 19508) ((-548 . -597) 19490) ((-548 . -351) 19472) ((-321 . -1179) 19449) ((-957 . -1126) T) ((-805 . -269) T) ((-1145 . -486) 19396) ((-453 . -1126) T) ((-440 . -1126) T) ((-542 . -97) T) ((-1086 . -265) 19323) ((-573 . -429) 19302) ((-931 . -926) 19286) ((-1185 . -360) 19258) ((-113 . -429) T) ((-1107 . -97) T) ((-1012 . -1019) 19236) ((-964 . -1019) T) ((-827 . -789) T) ((-329 . -1130) T) ((-1164 . -982) 19119) ((-1032 . -355) 19089) ((-1157 . -982) 18924) ((-1136 . -982) 18714) ((-1164 . -107) 18583) ((-1157 . -107) 18404) ((-1136 . -107) 18173) ((-1121 . -288) 18160) ((-329 . -517) T) ((-343 . -566) 18142) ((-268 . -286) T) ((-551 . -982) 18115) ((-550 . -982) 17998) ((-339 . -1019) T) ((-300 . -1019) T) ((-230 . -566) 17959) ((-229 . -566) 17920) ((-934 . -126) T) ((-105 . -566) 17902) ((-584 . -23) T) ((-636 . -387) 17869) ((-560 . -23) T) ((-604 . -97) T) ((-551 . -107) 17840) ((-550 . -107) 17709) ((-357 . -1019) T) ((-314 . -97) T) ((-157 . -269) 17620) ((-1135 . -787) 17573) ((-657 . -983) T) ((-1062 . -486) 17506) ((-1032 . -834) 17439) ((-776 . -1019) T) ((-769 . -1019) T) ((-767 . -1019) T) ((-92 . -97) T) ((-135 . -789) T) ((-565 . -818) 17423) ((-106 . -1126) T) ((-1008 . -97) T) ((-988 . -33) T) ((-724 . -97) T) ((-722 . -97) T) ((-438 . -97) T) ((-431 . -97) T) ((-220 . -737) 17374) ((-220 . -734) 17325) ((-595 . -97) T) ((-1145 . -269) 17236) ((-610 . -583) 17220) ((-592 . -265) 17197) ((-964 . -660) 17181) ((-532 . -269) T) ((-896 . -594) 17106) ((-1193 . -126) T) ((-678 . -594) 17066) ((-658 . -594) 17053) ((-254 . -97) T) ((-430 . -594) 16983) ((-49 . -97) T) ((-538 . -97) T) ((-489 . -97) T) ((-1164 . -976) T) ((-1157 . -976) T) ((-1136 . -976) T) ((-1164 . -213) 16942) ((-300 . -660) 16924) ((-1157 . -223) 16903) ((-1157 . -213) 16855) ((-1136 . -213) 16742) ((-1136 . -223) 16721) ((-1121 . -37) 16618) ((-935 . -737) T) ((-551 . -976) T) ((-550 . -976) T) ((-935 . -734) T) ((-903 . -737) T) ((-903 . -734) T) ((-806 . -983) T) ((-804 . -803) 16602) ((-104 . -566) 16584) ((-636 . -429) T) ((-357 . -660) 16549) ((-396 . -594) 16523) ((-655 . -789) 16502) ((-654 . -37) 16467) ((-550 . -213) 16426) ((-39 . -667) 16398) ((-329 . -307) 16375) ((-329 . -341) T) ((-1002 . -286) 16326) ((-273 . -1031) 16208) ((-1025 . -1126) T) ((-159 . -97) T) ((-1139 . -566) 16175) ((-782 . -126) 16127) ((-592 . -1160) 16111) ((-776 . -660) 16081) ((-769 . -660) 16051) ((-458 . -1126) T) ((-337 . -286) T) ((-331 . -286) T) ((-323 . -286) T) ((-592 . -558) 16028) ((-385 . -126) T) ((-491 . -612) 16012) ((-103 . -286) T) ((-273 . -23) 15896) ((-491 . -597) 15880) ((-636 . -380) NIL) ((-491 . -351) 15864) ((-270 . -566) 15846) ((-89 . -1019) 15824) ((-103 . -952) T) ((-525 . -134) T) ((-1172 . -142) 15808) ((-458 . -967) 15637) ((-1158 . -136) 15598) ((-1158 . -138) 15559) ((-980 . -1126) T) ((-925 . -566) 15541) ((-797 . -566) 15523) ((-758 . -982) 15366) ((-1008 . -288) 15353) ((-207 . -1126) T) ((-724 . -288) 15340) ((-722 . -288) 15327) ((-758 . -107) 15156) ((-431 . -288) 15143) ((-1086 . -567) NIL) ((-1086 . -566) 15125) ((-1042 . -566) 15107) ((-1042 . -567) 14855) ((-964 . -160) T) ((-793 . -566) 14837) ((-877 . -267) 14814) ((-561 . -486) 14597) ((-760 . -967) 14581) ((-452 . -486) 14373) ((-896 . -669) T) ((-678 . -669) T) ((-658 . -669) T) ((-329 . -1031) T) ((-1093 . -566) 14355) ((-203 . -97) T) ((-458 . -355) 14325) ((-487 . -1019) T) ((-482 . -1019) T) ((-480 . -1019) T) ((-741 . -594) 14299) ((-954 . -429) T) ((-891 . -486) 14232) ((-329 . -23) T) ((-584 . -126) T) ((-560 . -126) T) ((-332 . -429) T) ((-220 . -346) 14211) ((-357 . -160) T) ((-1156 . -983) T) ((-1135 . -983) T) ((-205 . -933) T) ((-641 . -365) T) ((-396 . -669) T) ((-643 . -1130) T) ((-1057 . -588) 14159) ((-537 . -803) 14143) ((-1074 . -1103) 14119) ((-643 . -517) T) ((-122 . -1019) 14097) ((-1185 . -982) 14081) ((-657 . -1019) T) ((-458 . -834) 14014) ((-604 . -37) 13984) ((-332 . -380) T) ((-294 . -138) 13963) ((-294 . -136) 13942) ((-112 . -517) T) ((-291 . -138) 13898) ((-291 . -136) 13854) ((-47 . -429) T) ((-150 . -1019) T) ((-146 . -1019) T) ((-1074 . -102) 13801) ((-724 . -1066) 13779) ((-632 . -33) T) ((-1185 . -107) 13758) ((-511 . -33) T) ((-459 . -102) 13742) ((-230 . -267) 13719) ((-229 . -267) 13696) ((-805 . -265) 13647) ((-44 . -1126) T) ((-758 . -976) T) ((-1092 . -46) 13624) ((-758 . -304) 13586) ((-1008 . -37) 13435) ((-758 . -213) 13414) ((-724 . -37) 13243) ((-722 . -37) 13092) ((-124 . -597) 13074) ((-431 . -37) 12923) ((-124 . -351) 12905) ((-592 . -567) 12866) ((-592 . -566) 12778) ((-538 . -1066) T) ((-489 . -1066) T) ((-1062 . -464) 12762) ((-1113 . -1019) 12740) ((-1057 . -25) T) ((-1057 . -21) T) ((-451 . -983) T) ((-1136 . -734) NIL) ((-1136 . -737) NIL) ((-930 . -789) 12719) ((-761 . -566) 12701) ((-800 . -21) T) ((-800 . -25) T) ((-741 . -669) T) ((-161 . -1130) T) ((-538 . -37) 12666) ((-489 . -37) 12631) ((-364 . -566) 12613) ((-302 . -566) 12595) ((-157 . -265) 12553) ((-61 . -1126) T) ((-108 . -97) T) ((-806 . -1019) T) ((-161 . -517) T) ((-657 . -660) 12523) ((-273 . -126) 12407) ((-205 . -566) 12389) ((-205 . -567) 12319) ((-934 . -588) 12258) ((-1185 . -976) T) ((-1037 . -138) T) ((-581 . -1103) 12233) ((-674 . -843) 12212) ((-548 . -33) T) ((-593 . -102) 12196) ((-581 . -102) 12142) ((-1145 . -265) 12069) ((-674 . -594) 11994) ((-274 . -1126) T) ((-1092 . -967) 11892) ((-1081 . -843) NIL) ((-987 . -567) 11807) ((-987 . -566) 11789) ((-321 . -97) T) ((-229 . -982) 11687) ((-230 . -982) 11585) ((-372 . -97) T) ((-886 . -566) 11567) ((-886 . -567) 11428) ((-656 . -566) 11410) ((-1183 . -1120) 11379) ((-457 . -566) 11361) ((-457 . -567) 11222) ((-227 . -389) 11206) ((-243 . -389) 11190) ((-229 . -107) 11081) ((-230 . -107) 10972) ((-1088 . -594) 10897) ((-1087 . -594) 10794) ((-1081 . -594) 10646) ((-1043 . -594) 10571) ((-329 . -126) T) ((-80 . -418) T) ((-80 . -373) T) ((-934 . -25) T) ((-934 . -21) T) ((-807 . -1019) 10522) ((-806 . -660) 10474) ((-357 . -269) T) ((-157 . -933) 10426) ((-636 . -365) T) ((-930 . -928) 10410) ((-643 . -1031) T) ((-636 . -154) 10392) ((-1156 . -1019) T) ((-1135 . -1019) T) ((-294 . -1112) 10371) ((-294 . -1115) 10350) ((-1079 . -97) T) ((-294 . -892) 10329) ((-128 . -1031) T) ((-112 . -1031) T) ((-556 . -1170) 10313) ((-643 . -23) T) ((-556 . -1019) 10263) ((-89 . -486) 10196) ((-161 . -341) T) ((-294 . -91) 10175) ((-294 . -34) 10154) ((-561 . -464) 10088) ((-128 . -23) T) ((-112 . -23) T) ((-661 . -1019) T) ((-452 . -464) 10025) ((-385 . -588) 9973) ((-599 . -967) 9871) ((-891 . -464) 9855) ((-333 . -983) T) ((-330 . -983) T) ((-322 . -983) T) ((-243 . -983) T) ((-227 . -983) T) ((-805 . -567) NIL) ((-805 . -566) 9837) ((-1193 . -21) T) ((-532 . -933) T) ((-674 . -669) T) ((-1193 . -25) T) ((-230 . -976) 9768) ((-229 . -976) 9699) ((-70 . -1126) T) ((-230 . -213) 9652) ((-229 . -213) 9605) ((-39 . -97) T) ((-844 . -983) T) ((-1095 . -97) T) ((-1088 . -669) T) ((-1087 . -669) T) ((-1081 . -669) T) ((-1081 . -733) NIL) ((-1081 . -736) NIL) ((-855 . -97) T) ((-1043 . -669) T) ((-713 . -97) T) ((-617 . -97) T) ((-451 . -1019) T) ((-317 . -1031) T) ((-161 . -1031) T) ((-297 . -854) 9584) ((-1156 . -660) 9425) ((-806 . -160) T) ((-1135 . -660) 9239) ((-782 . -21) 9191) ((-782 . -25) 9143) ((-225 . -1064) 9127) ((-122 . -486) 9060) ((-385 . -25) T) ((-385 . -21) T) ((-317 . -23) T) ((-157 . -566) 9042) ((-157 . -567) 8810) ((-161 . -23) T) ((-592 . -267) 8787) ((-491 . -33) T) ((-832 . -566) 8769) ((-87 . -1126) T) ((-780 . -566) 8751) ((-750 . -566) 8733) ((-711 . -566) 8715) ((-621 . -566) 8697) ((-220 . -594) 8547) ((-1090 . -1019) T) ((-1086 . -982) 8370) ((-1065 . -1126) T) ((-1042 . -982) 8213) ((-793 . -982) 8197) ((-1086 . -107) 8006) ((-1042 . -107) 7835) ((-793 . -107) 7814) ((-1145 . -567) NIL) ((-1145 . -566) 7796) ((-321 . -1066) T) ((-794 . -566) 7778) ((-998 . -265) 7757) ((-78 . -1126) T) ((-935 . -843) NIL) ((-561 . -265) 7733) ((-1113 . -486) 7666) ((-462 . -1126) T) ((-532 . -566) 7648) ((-452 . -265) 7627) ((-198 . -1126) T) ((-1008 . -211) 7611) ((-268 . -854) T) ((-759 . -286) 7590) ((-804 . -97) T) ((-724 . -211) 7574) ((-935 . -594) 7524) ((-891 . -265) 7501) ((-848 . -594) 7453) ((-584 . -21) T) ((-584 . -25) T) ((-560 . -21) T) ((-321 . -37) 7418) ((-636 . -667) 7385) ((-462 . -818) 7367) ((-462 . -820) 7349) ((-451 . -660) 7190) ((-198 . -818) 7172) ((-62 . -1126) T) ((-198 . -820) 7154) ((-560 . -25) T) ((-405 . -594) 7128) ((-462 . -967) 7088) ((-806 . -486) 7000) ((-198 . -967) 6960) ((-220 . -33) T) ((-931 . -1019) 6938) ((-1156 . -160) 6869) ((-1135 . -160) 6800) ((-655 . -136) 6779) ((-655 . -138) 6758) ((-643 . -126) T) ((-130 . -442) 6735) ((-604 . -602) 6719) ((-1062 . -566) 6651) ((-112 . -126) T) ((-454 . -1130) T) ((-561 . -558) 6627) ((-452 . -558) 6606) ((-314 . -313) 6575) ((-501 . -1019) T) ((-454 . -517) T) ((-1086 . -976) T) ((-1042 . -976) T) ((-793 . -976) T) ((-220 . -733) 6554) ((-220 . -736) 6505) ((-220 . -735) 6484) ((-1086 . -304) 6461) ((-220 . -669) 6392) ((-891 . -19) 6376) ((-462 . -355) 6358) ((-462 . -316) 6340) ((-1042 . -304) 6312) ((-332 . -1179) 6289) ((-198 . -355) 6271) ((-198 . -316) 6253) ((-891 . -558) 6230) ((-1086 . -213) T) ((-610 . -1019) T) ((-1168 . -1019) T) ((-1100 . -1019) T) ((-1008 . -232) 6167) ((-333 . -1019) T) ((-330 . -1019) T) ((-322 . -1019) T) ((-243 . -1019) T) ((-227 . -1019) T) ((-82 . -1126) T) ((-123 . -97) 6145) ((-117 . -97) 6123) ((-124 . -33) T) ((-1100 . -563) 6102) ((-455 . -1019) T) ((-1056 . -1019) T) ((-455 . -563) 6081) ((-230 . -737) 6032) ((-230 . -734) 5983) ((-229 . -737) 5934) ((-39 . -1066) NIL) ((-229 . -734) 5885) ((-1002 . -854) 5836) ((-935 . -736) T) ((-935 . -733) T) ((-935 . -669) T) ((-903 . -736) T) ((-848 . -669) T) ((-89 . -464) 5820) ((-462 . -834) NIL) ((-844 . -1019) T) ((-205 . -982) 5785) ((-806 . -269) T) ((-198 . -834) NIL) ((-775 . -1031) 5764) ((-57 . -1019) 5714) ((-490 . -1019) 5692) ((-488 . -1019) 5642) ((-470 . -1019) 5620) ((-469 . -1019) 5570) ((-537 . -97) T) ((-525 . -97) T) ((-468 . -97) T) ((-451 . -160) 5501) ((-337 . -854) T) ((-331 . -854) T) ((-323 . -854) T) ((-205 . -107) 5457) ((-775 . -23) 5409) ((-405 . -669) T) ((-103 . -854) T) ((-39 . -37) 5354) ((-103 . -762) T) ((-538 . -327) T) ((-489 . -327) T) ((-1135 . -486) 5214) ((-294 . -429) 5193) ((-291 . -429) T) ((-776 . -265) 5172) ((-317 . -126) T) ((-161 . -126) T) ((-273 . -25) 5037) ((-273 . -21) 4921) ((-44 . -1103) 4900) ((-64 . -566) 4882) ((-826 . -566) 4864) ((-556 . -486) 4797) ((-44 . -102) 4747) ((-1021 . -403) 4731) ((-1021 . -346) 4710) ((-988 . -1126) T) ((-987 . -982) 4697) ((-886 . -982) 4540) ((-457 . -982) 4383) ((-610 . -660) 4367) ((-987 . -107) 4352) ((-886 . -107) 4181) ((-454 . -341) T) ((-333 . -660) 4133) ((-330 . -660) 4085) ((-322 . -660) 4037) ((-243 . -660) 3886) ((-227 . -660) 3735) ((-877 . -597) 3719) ((-457 . -107) 3548) ((-1173 . -97) T) ((-877 . -351) 3532) ((-1136 . -843) NIL) ((-72 . -566) 3514) ((-896 . -46) 3493) ((-571 . -1031) T) ((-1 . -1019) T) ((-653 . -97) T) ((-641 . -97) T) ((-1172 . -97) 3443) ((-1164 . -594) 3368) ((-1157 . -594) 3265) ((-122 . -464) 3249) ((-1108 . -566) 3231) ((-1009 . -566) 3213) ((-368 . -23) T) ((-998 . -566) 3195) ((-85 . -1126) T) ((-1136 . -594) 3047) ((-844 . -660) 3012) ((-571 . -23) T) ((-561 . -566) 2994) ((-561 . -567) NIL) ((-452 . -567) NIL) ((-452 . -566) 2976) ((-483 . -1019) T) ((-479 . -1019) T) ((-329 . -25) T) ((-329 . -21) T) ((-123 . -288) 2914) ((-117 . -288) 2852) ((-551 . -594) 2839) ((-205 . -976) T) ((-550 . -594) 2764) ((-357 . -933) T) ((-205 . -223) T) ((-205 . -213) T) ((-891 . -567) 2725) ((-891 . -566) 2637) ((-804 . -37) 2624) ((-1156 . -269) 2575) ((-1135 . -269) 2526) ((-1037 . -429) T) ((-475 . -789) T) ((-294 . -1054) 2505) ((-930 . -138) 2484) ((-930 . -136) 2463) ((-468 . -288) 2450) ((-274 . -1103) 2429) ((-454 . -1031) T) ((-805 . -982) 2374) ((-573 . -97) T) ((-1113 . -464) 2358) ((-230 . -346) 2337) ((-229 . -346) 2316) ((-274 . -102) 2266) ((-987 . -976) T) ((-113 . -97) T) ((-886 . -976) T) ((-805 . -107) 2195) ((-454 . -23) T) ((-457 . -976) T) ((-987 . -213) T) ((-886 . -304) 2164) ((-457 . -304) 2121) ((-333 . -160) T) ((-330 . -160) T) ((-322 . -160) T) ((-243 . -160) 2032) ((-227 . -160) 1943) ((-896 . -967) 1841) ((-678 . -967) 1812) ((-1024 . -97) T) ((-1012 . -566) 1779) ((-964 . -566) 1761) ((-1164 . -669) T) ((-1157 . -669) T) ((-1136 . -733) NIL) ((-157 . -982) 1671) ((-1136 . -736) NIL) ((-844 . -160) T) ((-1136 . -669) T) ((-1183 . -142) 1655) ((-934 . -320) 1629) ((-931 . -486) 1562) ((-782 . -789) 1541) ((-525 . -1066) T) ((-451 . -269) 1492) ((-551 . -669) T) ((-339 . -566) 1474) ((-300 . -566) 1456) ((-396 . -967) 1354) ((-550 . -669) T) ((-385 . -789) 1305) ((-157 . -107) 1201) ((-775 . -126) 1153) ((-680 . -142) 1137) ((-1172 . -288) 1075) ((-462 . -286) T) ((-357 . -566) 1042) ((-491 . -941) 1026) ((-357 . -567) 940) ((-198 . -286) T) ((-132 . -142) 922) ((-657 . -265) 901) ((-462 . -952) T) ((-537 . -37) 888) ((-525 . -37) 875) ((-468 . -37) 840) ((-198 . -952) T) ((-805 . -976) T) ((-776 . -566) 822) ((-769 . -566) 804) ((-767 . -566) 786) ((-758 . -843) 765) ((-1194 . -1031) T) ((-1145 . -982) 588) ((-794 . -982) 572) ((-805 . -223) T) ((-805 . -213) NIL) ((-632 . -1126) T) ((-1194 . -23) T) ((-758 . -594) 497) ((-511 . -1126) T) ((-396 . -316) 481) ((-532 . -982) 468) ((-1145 . -107) 277) ((-643 . -588) 259) ((-794 . -107) 238) ((-359 . -23) T) ((-1100 . -486) 30)) \ No newline at end of file
+(((-608 . -1020) T) ((-243 . -486) 143168) ((-227 . -486) 143111) ((-532 . -107) 143096) ((-497 . -23) T) ((-225 . -1020) 143046) ((-113 . -288) 143003) ((-455 . -486) 142795) ((-636 . -97) T) ((-1057 . -486) 142714) ((-368 . -126) T) ((-1184 . -909) 142683) ((-556 . -464) 142667) ((-571 . -126) T) ((-761 . -785) T) ((-494 . -55) 142617) ((-57 . -486) 142550) ((-490 . -486) 142483) ((-396 . -835) 142442) ((-157 . -977) T) ((-488 . -486) 142375) ((-470 . -486) 142308) ((-469 . -486) 142241) ((-741 . -968) 142028) ((-641 . -37) 141993) ((-321 . -327) T) ((-1015 . -1014) 141977) ((-1015 . -1020) 141955) ((-157 . -223) 141906) ((-157 . -213) 141857) ((-1015 . -1016) 141815) ((-807 . -265) 141773) ((-205 . -737) T) ((-205 . -734) T) ((-636 . -263) NIL) ((-1066 . -1104) 141752) ((-385 . -925) 141736) ((-643 . -21) T) ((-643 . -25) T) ((-1186 . -594) 141710) ((-294 . -149) 141689) ((-294 . -134) 141668) ((-1066 . -102) 141618) ((-128 . -25) T) ((-39 . -211) 141595) ((-112 . -21) T) ((-112 . -25) T) ((-561 . -267) 141571) ((-452 . -267) 141550) ((-1146 . -977) T) ((-794 . -977) T) ((-741 . -316) 141534) ((-113 . -1067) NIL) ((-89 . -566) 141466) ((-454 . -126) T) ((-548 . -1127) T) ((-1146 . -304) 141443) ((-532 . -977) T) ((-1146 . -213) T) ((-608 . -660) 141427) ((-892 . -267) 141404) ((-58 . -33) T) ((-988 . -737) T) ((-988 . -734) T) ((-758 . -669) T) ((-674 . -46) 141369) ((-573 . -37) 141356) ((-333 . -269) T) ((-330 . -269) T) ((-322 . -269) T) ((-243 . -269) 141287) ((-227 . -269) 141218) ((-955 . -97) T) ((-391 . -669) T) ((-113 . -37) 141163) ((-391 . -450) T) ((-332 . -97) T) ((-1122 . -984) T) ((-654 . -984) T) ((-1089 . -46) 141140) ((-1088 . -46) 141110) ((-1082 . -46) 141087) ((-966 . -142) 141033) ((-845 . -269) T) ((-1044 . -46) 141005) ((-636 . -288) NIL) ((-487 . -566) 140987) ((-482 . -566) 140969) ((-480 . -566) 140951) ((-305 . -1020) 140901) ((-655 . -429) 140832) ((-47 . -97) T) ((-1157 . -265) 140817) ((-1136 . -265) 140737) ((-592 . -612) 140721) ((-592 . -597) 140705) ((-317 . -21) T) ((-317 . -25) T) ((-39 . -327) NIL) ((-161 . -21) T) ((-161 . -25) T) ((-592 . -351) 140689) ((-556 . -265) 140666) ((-559 . -566) 140633) ((-366 . -97) T) ((-1038 . -134) T) ((-122 . -566) 140565) ((-809 . -1020) T) ((-604 . -389) 140549) ((-657 . -566) 140531) ((-150 . -566) 140513) ((-146 . -566) 140495) ((-1186 . -669) T) ((-1022 . -33) T) ((-806 . -737) NIL) ((-806 . -734) NIL) ((-797 . -789) T) ((-674 . -821) NIL) ((-1195 . -126) T) ((-359 . -126) T) ((-839 . -97) T) ((-674 . -968) 140373) ((-497 . -126) T) ((-1009 . -389) 140357) ((-932 . -464) 140341) ((-113 . -378) 140318) ((-1082 . -1127) 140297) ((-724 . -389) 140281) ((-722 . -389) 140265) ((-878 . -33) T) ((-636 . -1067) NIL) ((-230 . -594) 140102) ((-229 . -594) 139926) ((-759 . -855) 139905) ((-431 . -389) 139889) ((-556 . -19) 139873) ((-1062 . -1121) 139842) ((-1082 . -821) NIL) ((-1082 . -819) 139794) ((-556 . -558) 139771) ((-1114 . -566) 139703) ((-1090 . -566) 139685) ((-60 . -373) T) ((-1088 . -968) 139620) ((-1082 . -968) 139586) ((-636 . -37) 139536) ((-451 . -265) 139521) ((-674 . -355) 139505) ((-604 . -984) T) ((-1157 . -934) 139471) ((-1136 . -934) 139437) ((-989 . -1104) 139412) ((-807 . -567) 139220) ((-807 . -566) 139202) ((-1101 . -464) 139139) ((-396 . -953) 139118) ((-47 . -288) 139105) ((-989 . -102) 139051) ((-455 . -464) 138988) ((-491 . -1127) T) ((-1057 . -464) 138959) ((-1082 . -316) 138911) ((-1082 . -355) 138863) ((-415 . -97) T) ((-1009 . -984) T) ((-230 . -33) T) ((-229 . -33) T) ((-724 . -984) T) ((-722 . -984) T) ((-674 . -835) 138840) ((-431 . -984) T) ((-57 . -464) 138824) ((-965 . -983) 138798) ((-490 . -464) 138782) ((-488 . -464) 138766) ((-470 . -464) 138750) ((-469 . -464) 138734) ((-225 . -486) 138667) ((-965 . -107) 138634) ((-1089 . -835) 138547) ((-616 . -1032) T) ((-1088 . -835) 138453) ((-1082 . -835) 138286) ((-1044 . -835) 138270) ((-332 . -1067) T) ((-300 . -983) 138252) ((-230 . -733) 138231) ((-230 . -736) 138182) ((-230 . -735) 138161) ((-229 . -733) 138140) ((-229 . -736) 138091) ((-229 . -735) 138070) ((-49 . -984) T) ((-230 . -669) 137981) ((-229 . -669) 137892) ((-1122 . -1020) T) ((-616 . -23) T) ((-538 . -984) T) ((-489 . -984) T) ((-357 . -983) 137857) ((-300 . -107) 137832) ((-71 . -361) T) ((-71 . -373) T) ((-955 . -37) 137769) ((-636 . -378) 137751) ((-94 . -97) T) ((-654 . -1020) T) ((-935 . -136) 137723) ((-935 . -138) 137695) ((-357 . -107) 137651) ((-297 . -1131) 137630) ((-451 . -934) 137596) ((-332 . -37) 137561) ((-39 . -348) 137533) ((-808 . -566) 137405) ((-123 . -121) 137389) ((-117 . -121) 137373) ((-776 . -983) 137343) ((-775 . -21) 137295) ((-769 . -983) 137279) ((-775 . -25) 137231) ((-297 . -517) 137182) ((-525 . -770) T) ((-220 . -1127) T) ((-776 . -107) 137147) ((-769 . -107) 137126) ((-1157 . -566) 137108) ((-1136 . -566) 137090) ((-1136 . -567) 136763) ((-1087 . -844) 136742) ((-1043 . -844) 136721) ((-47 . -37) 136686) ((-1193 . -1032) T) ((-556 . -566) 136598) ((-556 . -567) 136559) ((-1191 . -1032) T) ((-220 . -968) 136388) ((-1087 . -594) 136313) ((-1043 . -594) 136238) ((-661 . -566) 136220) ((-793 . -594) 136194) ((-1193 . -23) T) ((-1191 . -23) T) ((-965 . -977) T) ((-1101 . -265) 136173) ((-157 . -346) 136124) ((-936 . -1127) T) ((-43 . -23) T) ((-455 . -265) 136103) ((-542 . -1020) T) ((-1062 . -1029) 136072) ((-1024 . -1023) 136024) ((-124 . -1127) T) ((-368 . -21) T) ((-368 . -25) T) ((-143 . -1032) T) ((-1199 . -97) T) ((-936 . -819) 136006) ((-936 . -821) 135988) ((-1122 . -660) 135885) ((-573 . -211) 135869) ((-571 . -21) T) ((-268 . -517) T) ((-571 . -25) T) ((-1108 . -1020) T) ((-654 . -660) 135834) ((-220 . -355) 135804) ((-936 . -968) 135764) ((-357 . -977) T) ((-203 . -984) T) ((-113 . -211) 135741) ((-57 . -265) 135718) ((-143 . -23) T) ((-488 . -265) 135695) ((-305 . -486) 135628) ((-469 . -265) 135605) ((-357 . -223) T) ((-357 . -213) T) ((-776 . -977) T) ((-769 . -977) T) ((-655 . -884) 135574) ((-643 . -789) T) ((-451 . -566) 135556) ((-769 . -213) 135535) ((-128 . -789) T) ((-604 . -1020) T) ((-1101 . -558) 135514) ((-511 . -1104) 135493) ((-314 . -1020) T) ((-297 . -341) 135472) ((-385 . -138) 135451) ((-385 . -136) 135430) ((-898 . -1032) 135329) ((-220 . -835) 135262) ((-757 . -1032) 135173) ((-600 . -791) 135157) ((-455 . -558) 135136) ((-511 . -102) 135086) ((-936 . -355) 135068) ((-936 . -316) 135050) ((-92 . -1020) T) ((-898 . -23) 134861) ((-454 . -21) T) ((-454 . -25) T) ((-757 . -23) 134732) ((-1091 . -566) 134714) ((-57 . -19) 134698) ((-1091 . -567) 134620) ((-1087 . -669) T) ((-1043 . -669) T) ((-488 . -19) 134604) ((-469 . -19) 134588) ((-57 . -558) 134565) ((-1009 . -1020) T) ((-836 . -97) 134543) ((-793 . -669) T) ((-724 . -1020) T) ((-488 . -558) 134520) ((-469 . -558) 134497) ((-722 . -1020) T) ((-722 . -991) 134464) ((-438 . -1020) T) ((-431 . -1020) T) ((-542 . -660) 134439) ((-595 . -1020) T) ((-936 . -835) NIL) ((-1165 . -46) 134416) ((-576 . -1032) T) ((-616 . -126) T) ((-1159 . -97) T) ((-1158 . -46) 134386) ((-1137 . -46) 134363) ((-1122 . -160) 134314) ((-1003 . -1131) 134265) ((-254 . -1020) T) ((-83 . -418) T) ((-83 . -373) T) ((-1088 . -286) 134244) ((-1082 . -286) 134223) ((-49 . -1020) T) ((-1003 . -517) 134174) ((-654 . -160) T) ((-550 . -46) 134151) ((-205 . -594) 134116) ((-538 . -1020) T) ((-489 . -1020) T) ((-337 . -1131) T) ((-331 . -1131) T) ((-323 . -1131) T) ((-462 . -762) T) ((-462 . -855) T) ((-297 . -1032) T) ((-103 . -1131) T) ((-317 . -789) T) ((-198 . -855) T) ((-198 . -762) T) ((-657 . -983) 134086) ((-337 . -517) T) ((-331 . -517) T) ((-323 . -517) T) ((-103 . -517) T) ((-604 . -660) 134056) ((-1082 . -953) NIL) ((-297 . -23) T) ((-65 . -1127) T) ((-932 . -566) 133988) ((-636 . -211) 133970) ((-657 . -107) 133935) ((-592 . -33) T) ((-225 . -464) 133919) ((-1022 . -1018) 133903) ((-159 . -1020) T) ((-887 . -844) 133882) ((-457 . -844) 133861) ((-1195 . -21) T) ((-1195 . -25) T) ((-1193 . -126) T) ((-1191 . -126) T) ((-1009 . -660) 133710) ((-988 . -594) 133697) ((-887 . -594) 133622) ((-724 . -660) 133451) ((-501 . -566) 133433) ((-501 . -567) 133414) ((-722 . -660) 133263) ((-1184 . -97) T) ((-1000 . -97) T) ((-359 . -25) T) ((-359 . -21) T) ((-457 . -594) 133188) ((-438 . -660) 133159) ((-431 . -660) 133008) ((-920 . -97) T) ((-680 . -97) T) ((-497 . -25) T) ((-1137 . -1127) 132987) ((-1169 . -566) 132953) ((-1137 . -821) NIL) ((-1137 . -819) 132905) ((-132 . -97) T) ((-43 . -126) T) ((-1101 . -567) NIL) ((-1101 . -566) 132887) ((-1058 . -1041) 132832) ((-321 . -984) T) ((-610 . -566) 132814) ((-268 . -1032) T) ((-333 . -566) 132796) ((-330 . -566) 132778) ((-322 . -566) 132760) ((-243 . -567) 132508) ((-243 . -566) 132490) ((-227 . -566) 132472) ((-227 . -567) 132333) ((-974 . -1121) 132262) ((-836 . -288) 132200) ((-1199 . -1067) T) ((-1158 . -968) 132135) ((-1137 . -968) 132101) ((-1122 . -486) 132068) ((-1057 . -566) 132050) ((-761 . -669) T) ((-556 . -267) 132027) ((-538 . -660) 131992) ((-455 . -567) NIL) ((-455 . -566) 131974) ((-489 . -660) 131919) ((-294 . -97) T) ((-291 . -97) T) ((-268 . -23) T) ((-143 . -126) T) ((-364 . -669) T) ((-807 . -983) 131871) ((-845 . -566) 131853) ((-845 . -567) 131835) ((-807 . -107) 131773) ((-130 . -97) T) ((-110 . -97) T) ((-655 . -1149) 131757) ((-657 . -977) T) ((-636 . -327) NIL) ((-490 . -566) 131689) ((-357 . -737) T) ((-203 . -1020) T) ((-357 . -734) T) ((-205 . -736) T) ((-205 . -733) T) ((-57 . -567) 131650) ((-57 . -566) 131562) ((-205 . -669) T) ((-488 . -567) 131523) ((-488 . -566) 131435) ((-470 . -566) 131367) ((-469 . -567) 131328) ((-469 . -566) 131240) ((-1003 . -341) 131191) ((-39 . -389) 131168) ((-75 . -1127) T) ((-806 . -844) NIL) ((-337 . -307) 131152) ((-337 . -341) T) ((-331 . -307) 131136) ((-331 . -341) T) ((-323 . -307) 131120) ((-323 . -341) T) ((-294 . -263) 131099) ((-103 . -341) T) ((-68 . -1127) T) ((-1137 . -316) 131051) ((-806 . -594) 130996) ((-1137 . -355) 130948) ((-898 . -126) 130803) ((-757 . -126) 130674) ((-892 . -597) 130658) ((-1009 . -160) 130569) ((-892 . -351) 130553) ((-988 . -736) T) ((-988 . -733) T) ((-724 . -160) 130444) ((-722 . -160) 130355) ((-758 . -46) 130317) ((-988 . -669) T) ((-305 . -464) 130301) ((-887 . -669) T) ((-431 . -160) 130212) ((-225 . -265) 130189) ((-457 . -669) T) ((-1184 . -288) 130127) ((-1165 . -835) 130040) ((-1158 . -835) 129946) ((-1157 . -983) 129781) ((-1137 . -835) 129614) ((-1136 . -983) 129422) ((-1122 . -269) 129401) ((-1062 . -142) 129385) ((-998 . -97) T) ((-862 . -889) T) ((-73 . -1127) T) ((-680 . -288) 129323) ((-157 . -844) 129276) ((-610 . -360) 129248) ((-30 . -889) T) ((-1 . -566) 129230) ((-1038 . -97) T) ((-1003 . -23) T) ((-49 . -570) 129214) ((-1003 . -1032) T) ((-935 . -387) 129186) ((-550 . -835) 129099) ((-416 . -97) T) ((-132 . -288) NIL) ((-807 . -977) T) ((-775 . -789) 129078) ((-79 . -1127) T) ((-654 . -269) T) ((-39 . -984) T) ((-538 . -160) T) ((-489 . -160) T) ((-483 . -566) 129060) ((-157 . -594) 128970) ((-479 . -566) 128952) ((-329 . -138) 128934) ((-329 . -136) T) ((-337 . -1032) T) ((-331 . -1032) T) ((-323 . -1032) T) ((-936 . -286) T) ((-849 . -286) T) ((-807 . -223) T) ((-103 . -1032) T) ((-807 . -213) 128913) ((-1157 . -107) 128734) ((-1136 . -107) 128523) ((-225 . -1161) 128507) ((-525 . -787) T) ((-337 . -23) T) ((-332 . -327) T) ((-294 . -288) 128494) ((-291 . -288) 128435) ((-331 . -23) T) ((-297 . -126) T) ((-323 . -23) T) ((-936 . -953) T) ((-103 . -23) T) ((-225 . -558) 128412) ((-1159 . -37) 128304) ((-1146 . -844) 128283) ((-108 . -1020) T) ((-966 . -97) T) ((-1146 . -594) 128208) ((-806 . -736) NIL) ((-794 . -594) 128182) ((-806 . -733) NIL) ((-758 . -821) NIL) ((-806 . -669) T) ((-1009 . -486) 128055) ((-724 . -486) 128002) ((-722 . -486) 127954) ((-532 . -594) 127941) ((-758 . -968) 127771) ((-431 . -486) 127714) ((-366 . -367) T) ((-58 . -1127) T) ((-571 . -789) 127693) ((-473 . -607) T) ((-1062 . -909) 127662) ((-935 . -429) T) ((-641 . -787) T) ((-482 . -734) T) ((-451 . -983) 127497) ((-321 . -1020) T) ((-291 . -1067) NIL) ((-268 . -126) T) ((-372 . -1020) T) ((-636 . -348) 127464) ((-805 . -984) T) ((-203 . -570) 127441) ((-305 . -265) 127418) ((-451 . -107) 127239) ((-1157 . -977) T) ((-1136 . -977) T) ((-758 . -355) 127223) ((-157 . -669) T) ((-600 . -97) T) ((-1157 . -223) 127202) ((-1157 . -213) 127154) ((-1136 . -213) 127059) ((-1136 . -223) 127038) ((-935 . -380) NIL) ((-616 . -588) 126986) ((-294 . -37) 126896) ((-291 . -37) 126825) ((-67 . -566) 126807) ((-297 . -466) 126773) ((-1101 . -267) 126752) ((-1033 . -1032) 126663) ((-81 . -1127) T) ((-59 . -566) 126645) ((-455 . -267) 126624) ((-1186 . -968) 126601) ((-1080 . -1020) T) ((-1033 . -23) 126472) ((-758 . -835) 126408) ((-1146 . -669) T) ((-1022 . -1127) T) ((-1009 . -269) 126339) ((-828 . -97) T) ((-724 . -269) 126250) ((-305 . -19) 126234) ((-57 . -267) 126211) ((-722 . -269) 126142) ((-794 . -669) T) ((-113 . -787) NIL) ((-488 . -267) 126119) ((-305 . -558) 126096) ((-469 . -267) 126073) ((-431 . -269) 126004) ((-966 . -288) 125855) ((-532 . -669) T) ((-608 . -566) 125837) ((-225 . -567) 125798) ((-225 . -566) 125710) ((-1063 . -33) T) ((-878 . -1127) T) ((-321 . -660) 125655) ((-616 . -25) T) ((-616 . -21) T) ((-451 . -977) T) ((-584 . -395) 125620) ((-560 . -395) 125585) ((-1038 . -1067) T) ((-538 . -269) T) ((-489 . -269) T) ((-1158 . -286) 125564) ((-451 . -213) 125516) ((-451 . -223) 125495) ((-1137 . -286) 125474) ((-1003 . -126) T) ((-807 . -737) 125453) ((-135 . -97) T) ((-39 . -1020) T) ((-807 . -734) 125432) ((-592 . -942) 125416) ((-537 . -984) T) ((-525 . -984) T) ((-468 . -984) T) ((-385 . -429) T) ((-337 . -126) T) ((-294 . -378) 125400) ((-291 . -378) 125361) ((-331 . -126) T) ((-323 . -126) T) ((-1137 . -953) NIL) ((-1096 . -1020) T) ((-1015 . -566) 125328) ((-103 . -126) T) ((-1038 . -37) 125315) ((-856 . -1020) T) ((-713 . -1020) T) ((-617 . -1020) T) ((-643 . -138) T) ((-112 . -138) T) ((-1193 . -21) T) ((-1193 . -25) T) ((-1191 . -21) T) ((-1191 . -25) T) ((-610 . -983) 125299) ((-497 . -789) T) ((-473 . -789) T) ((-333 . -983) 125251) ((-330 . -983) 125203) ((-322 . -983) 125155) ((-230 . -1127) T) ((-229 . -1127) T) ((-243 . -983) 124998) ((-227 . -983) 124841) ((-610 . -107) 124820) ((-333 . -107) 124758) ((-330 . -107) 124696) ((-322 . -107) 124634) ((-243 . -107) 124463) ((-227 . -107) 124292) ((-759 . -1131) 124271) ((-573 . -389) 124255) ((-43 . -21) T) ((-43 . -25) T) ((-757 . -588) 124163) ((-759 . -517) 124142) ((-230 . -968) 123971) ((-229 . -968) 123800) ((-122 . -115) 123784) ((-845 . -983) 123749) ((-641 . -984) T) ((-655 . -97) T) ((-321 . -160) T) ((-143 . -21) T) ((-143 . -25) T) ((-86 . -566) 123731) ((-845 . -107) 123687) ((-39 . -660) 123632) ((-805 . -1020) T) ((-305 . -567) 123593) ((-305 . -566) 123505) ((-1136 . -734) 123458) ((-1136 . -737) 123411) ((-230 . -355) 123381) ((-229 . -355) 123351) ((-600 . -37) 123321) ((-561 . -33) T) ((-458 . -1032) 123232) ((-452 . -33) T) ((-1033 . -126) 123103) ((-898 . -25) 122914) ((-809 . -566) 122896) ((-898 . -21) 122851) ((-757 . -21) 122762) ((-757 . -25) 122614) ((-573 . -984) T) ((-1093 . -517) 122593) ((-1087 . -46) 122570) ((-333 . -977) T) ((-330 . -977) T) ((-458 . -23) 122441) ((-322 . -977) T) ((-227 . -977) T) ((-243 . -977) T) ((-1043 . -46) 122413) ((-113 . -984) T) ((-965 . -594) 122387) ((-892 . -33) T) ((-333 . -213) 122366) ((-333 . -223) T) ((-330 . -213) 122345) ((-330 . -223) T) ((-227 . -304) 122302) ((-322 . -213) 122281) ((-322 . -223) T) ((-243 . -304) 122253) ((-243 . -213) 122232) ((-1072 . -142) 122216) ((-230 . -835) 122149) ((-229 . -835) 122082) ((-1005 . -789) T) ((-1140 . -1127) T) ((-392 . -1032) T) ((-981 . -23) T) ((-845 . -977) T) ((-300 . -594) 122064) ((-955 . -787) T) ((-1122 . -934) 122030) ((-1088 . -855) 122009) ((-1082 . -855) 121988) ((-845 . -223) T) ((-759 . -341) 121967) ((-363 . -23) T) ((-123 . -1020) 121945) ((-117 . -1020) 121923) ((-845 . -213) T) ((-1082 . -762) NIL) ((-357 . -594) 121888) ((-805 . -660) 121875) ((-974 . -142) 121840) ((-39 . -160) T) ((-636 . -389) 121822) ((-655 . -288) 121809) ((-776 . -594) 121769) ((-769 . -594) 121743) ((-297 . -25) T) ((-297 . -21) T) ((-604 . -265) 121722) ((-537 . -1020) T) ((-525 . -1020) T) ((-468 . -1020) T) ((-225 . -267) 121699) ((-291 . -211) 121660) ((-1087 . -821) NIL) ((-1043 . -821) 121519) ((-125 . -789) T) ((-1087 . -968) 121401) ((-1043 . -968) 121286) ((-169 . -566) 121268) ((-793 . -968) 121166) ((-724 . -265) 121093) ((-759 . -1032) T) ((-965 . -669) T) ((-556 . -597) 121077) ((-974 . -909) 121006) ((-931 . -97) T) ((-759 . -23) T) ((-655 . -1067) 120984) ((-636 . -984) T) ((-556 . -351) 120968) ((-329 . -429) T) ((-321 . -269) T) ((-1174 . -1020) T) ((-377 . -97) T) ((-268 . -21) T) ((-268 . -25) T) ((-339 . -669) T) ((-653 . -1020) T) ((-641 . -1020) T) ((-339 . -450) T) ((-1122 . -566) 120950) ((-1087 . -355) 120934) ((-1043 . -355) 120918) ((-955 . -389) 120880) ((-132 . -209) 120862) ((-357 . -736) T) ((-357 . -733) T) ((-805 . -160) T) ((-357 . -669) T) ((-654 . -566) 120844) ((-655 . -37) 120673) ((-1173 . -1171) 120657) ((-329 . -380) T) ((-1173 . -1020) 120607) ((-537 . -660) 120594) ((-525 . -660) 120581) ((-468 . -660) 120546) ((-294 . -578) 120525) ((-776 . -669) T) ((-769 . -669) T) ((-592 . -1127) T) ((-1003 . -588) 120473) ((-1087 . -835) 120416) ((-1043 . -835) 120400) ((-608 . -983) 120384) ((-103 . -588) 120366) ((-458 . -126) 120237) ((-1093 . -1032) T) ((-887 . -46) 120206) ((-573 . -1020) T) ((-608 . -107) 120185) ((-305 . -267) 120162) ((-457 . -46) 120119) ((-1093 . -23) T) ((-113 . -1020) T) ((-98 . -97) 120097) ((-1183 . -1032) T) ((-981 . -126) T) ((-955 . -984) T) ((-761 . -968) 120081) ((-935 . -667) 120053) ((-1183 . -23) T) ((-641 . -660) 120018) ((-542 . -566) 120000) ((-364 . -968) 119984) ((-332 . -984) T) ((-363 . -126) T) ((-302 . -968) 119968) ((-205 . -821) 119950) ((-936 . -855) T) ((-89 . -33) T) ((-936 . -762) T) ((-849 . -855) T) ((-462 . -1131) T) ((-1108 . -566) 119932) ((-1025 . -1020) T) ((-198 . -1131) T) ((-931 . -288) 119897) ((-205 . -968) 119857) ((-39 . -269) T) ((-1003 . -21) T) ((-1003 . -25) T) ((-1038 . -770) T) ((-462 . -517) T) ((-337 . -25) T) ((-198 . -517) T) ((-337 . -21) T) ((-331 . -25) T) ((-331 . -21) T) ((-657 . -594) 119817) ((-323 . -25) T) ((-323 . -21) T) ((-103 . -25) T) ((-103 . -21) T) ((-47 . -984) T) ((-537 . -160) T) ((-525 . -160) T) ((-468 . -160) T) ((-604 . -566) 119799) ((-680 . -679) 119783) ((-314 . -566) 119765) ((-66 . -361) T) ((-66 . -373) T) ((-1022 . -102) 119749) ((-988 . -821) 119731) ((-887 . -821) 119656) ((-599 . -1032) T) ((-573 . -660) 119643) ((-457 . -821) NIL) ((-1062 . -97) T) ((-988 . -968) 119625) ((-92 . -566) 119607) ((-454 . -138) T) ((-887 . -968) 119489) ((-113 . -660) 119434) ((-599 . -23) T) ((-457 . -968) 119312) ((-1009 . -567) NIL) ((-1009 . -566) 119294) ((-724 . -567) NIL) ((-724 . -566) 119255) ((-722 . -567) 118890) ((-722 . -566) 118804) ((-1033 . -588) 118712) ((-438 . -566) 118694) ((-431 . -566) 118676) ((-431 . -567) 118537) ((-966 . -209) 118483) ((-122 . -33) T) ((-759 . -126) T) ((-807 . -844) 118462) ((-595 . -566) 118444) ((-333 . -1190) 118428) ((-330 . -1190) 118412) ((-322 . -1190) 118396) ((-123 . -486) 118329) ((-117 . -486) 118262) ((-483 . -734) T) ((-483 . -737) T) ((-482 . -736) T) ((-98 . -288) 118200) ((-202 . -97) 118178) ((-636 . -1020) T) ((-641 . -160) T) ((-807 . -594) 118130) ((-63 . -362) T) ((-254 . -566) 118112) ((-63 . -373) T) ((-887 . -355) 118096) ((-805 . -269) T) ((-49 . -566) 118078) ((-931 . -37) 118026) ((-538 . -566) 118008) ((-457 . -355) 117992) ((-538 . -567) 117974) ((-489 . -566) 117956) ((-845 . -1190) 117943) ((-806 . -1127) T) ((-643 . -429) T) ((-468 . -486) 117909) ((-462 . -341) T) ((-333 . -346) 117888) ((-330 . -346) 117867) ((-322 . -346) 117846) ((-198 . -341) T) ((-657 . -669) T) ((-112 . -429) T) ((-1194 . -1185) 117830) ((-806 . -819) 117807) ((-806 . -821) NIL) ((-898 . -789) 117706) ((-757 . -789) 117657) ((-600 . -602) 117641) ((-1114 . -33) T) ((-159 . -566) 117623) ((-1033 . -21) 117534) ((-1033 . -25) 117386) ((-806 . -968) 117363) ((-887 . -835) 117344) ((-1146 . -46) 117321) ((-845 . -346) T) ((-57 . -597) 117305) ((-488 . -597) 117289) ((-457 . -835) 117266) ((-69 . -418) T) ((-69 . -373) T) ((-469 . -597) 117250) ((-57 . -351) 117234) ((-573 . -160) T) ((-488 . -351) 117218) ((-469 . -351) 117202) ((-769 . -651) 117186) ((-1087 . -286) 117165) ((-1093 . -126) T) ((-113 . -160) T) ((-1062 . -288) 117103) ((-157 . -1127) T) ((-584 . -687) 117087) ((-560 . -687) 117071) ((-1183 . -126) T) ((-1158 . -855) 117050) ((-1137 . -855) 117029) ((-1137 . -762) NIL) ((-636 . -660) 116979) ((-1136 . -844) 116932) ((-955 . -1020) T) ((-806 . -355) 116909) ((-806 . -316) 116886) ((-840 . -1032) T) ((-157 . -819) 116870) ((-157 . -821) 116795) ((-462 . -1032) T) ((-332 . -1020) T) ((-198 . -1032) T) ((-74 . -418) T) ((-74 . -373) T) ((-157 . -968) 116693) ((-297 . -789) T) ((-1173 . -486) 116626) ((-1157 . -594) 116523) ((-1136 . -594) 116393) ((-807 . -736) 116372) ((-807 . -733) 116351) ((-807 . -669) T) ((-462 . -23) T) ((-203 . -566) 116333) ((-161 . -429) T) ((-202 . -288) 116271) ((-84 . -418) T) ((-84 . -373) T) ((-198 . -23) T) ((-1195 . -1188) 116250) ((-537 . -269) T) ((-525 . -269) T) ((-621 . -968) 116234) ((-468 . -269) T) ((-130 . -447) 116189) ((-47 . -1020) T) ((-655 . -211) 116173) ((-806 . -835) NIL) ((-1146 . -821) NIL) ((-824 . -97) T) ((-820 . -97) T) ((-366 . -1020) T) ((-157 . -355) 116157) ((-157 . -316) 116141) ((-1146 . -968) 116023) ((-794 . -968) 115921) ((-1058 . -97) T) ((-599 . -126) T) ((-113 . -486) 115829) ((-608 . -734) 115808) ((-608 . -737) 115787) ((-532 . -968) 115769) ((-273 . -1180) 115739) ((-801 . -97) T) ((-897 . -517) 115718) ((-1122 . -983) 115601) ((-458 . -588) 115509) ((-839 . -1020) T) ((-955 . -660) 115446) ((-654 . -983) 115411) ((-556 . -33) T) ((-1063 . -1127) T) ((-1122 . -107) 115280) ((-451 . -594) 115177) ((-332 . -660) 115122) ((-157 . -835) 115081) ((-641 . -269) T) ((-636 . -160) T) ((-654 . -107) 115037) ((-1199 . -984) T) ((-1146 . -355) 115021) ((-396 . -1131) 114999) ((-291 . -787) NIL) ((-396 . -517) T) ((-205 . -286) T) ((-1136 . -733) 114952) ((-1136 . -736) 114905) ((-1157 . -669) T) ((-1136 . -669) T) ((-47 . -660) 114870) ((-205 . -953) T) ((-329 . -1180) 114847) ((-1159 . -389) 114813) ((-661 . -669) T) ((-1146 . -835) 114756) ((-108 . -566) 114738) ((-108 . -567) 114720) ((-661 . -450) T) ((-458 . -21) 114631) ((-123 . -464) 114615) ((-117 . -464) 114599) ((-458 . -25) 114451) ((-573 . -269) T) ((-542 . -983) 114426) ((-415 . -1020) T) ((-988 . -286) T) ((-113 . -269) T) ((-1024 . -97) T) ((-935 . -97) T) ((-542 . -107) 114394) ((-1058 . -288) 114332) ((-1122 . -977) T) ((-988 . -953) T) ((-64 . -1127) T) ((-981 . -25) T) ((-981 . -21) T) ((-654 . -977) T) ((-363 . -21) T) ((-363 . -25) T) ((-636 . -486) NIL) ((-955 . -160) T) ((-654 . -223) T) ((-988 . -510) T) ((-475 . -97) T) ((-332 . -160) T) ((-321 . -566) 114314) ((-372 . -566) 114296) ((-451 . -669) T) ((-1038 . -787) T) ((-827 . -968) 114264) ((-103 . -789) T) ((-604 . -983) 114248) ((-462 . -126) T) ((-1159 . -984) T) ((-198 . -126) T) ((-1072 . -97) 114226) ((-94 . -1020) T) ((-225 . -612) 114210) ((-225 . -597) 114194) ((-604 . -107) 114173) ((-294 . -389) 114157) ((-225 . -351) 114141) ((-1075 . -215) 114088) ((-931 . -211) 114072) ((-72 . -1127) T) ((-47 . -160) T) ((-643 . -365) T) ((-643 . -134) T) ((-1194 . -97) T) ((-1009 . -983) 113915) ((-243 . -844) 113894) ((-227 . -844) 113873) ((-724 . -983) 113696) ((-722 . -983) 113539) ((-561 . -1127) T) ((-1080 . -566) 113521) ((-1009 . -107) 113350) ((-974 . -97) T) ((-452 . -1127) T) ((-438 . -983) 113321) ((-431 . -983) 113164) ((-610 . -594) 113148) ((-806 . -286) T) ((-724 . -107) 112957) ((-722 . -107) 112786) ((-333 . -594) 112738) ((-330 . -594) 112690) ((-322 . -594) 112642) ((-243 . -594) 112567) ((-227 . -594) 112492) ((-1074 . -789) T) ((-1010 . -968) 112476) ((-438 . -107) 112437) ((-431 . -107) 112266) ((-999 . -968) 112243) ((-932 . -33) T) ((-900 . -566) 112204) ((-892 . -1127) T) ((-122 . -942) 112188) ((-897 . -1032) T) ((-806 . -953) NIL) ((-678 . -1032) T) ((-658 . -1032) T) ((-1173 . -464) 112172) ((-1058 . -37) 112132) ((-897 . -23) T) ((-782 . -97) T) ((-759 . -21) T) ((-759 . -25) T) ((-678 . -23) T) ((-658 . -23) T) ((-106 . -607) T) ((-845 . -594) 112097) ((-538 . -983) 112062) ((-489 . -983) 112007) ((-207 . -55) 111965) ((-430 . -23) T) ((-385 . -97) T) ((-242 . -97) T) ((-636 . -269) T) ((-801 . -37) 111935) ((-538 . -107) 111891) ((-489 . -107) 111820) ((-396 . -1032) T) ((-294 . -984) 111711) ((-291 . -984) T) ((-604 . -977) T) ((-1199 . -1020) T) ((-157 . -286) 111642) ((-396 . -23) T) ((-39 . -566) 111624) ((-39 . -567) 111608) ((-103 . -925) 111590) ((-112 . -804) 111574) ((-47 . -486) 111540) ((-1114 . -942) 111524) ((-1096 . -566) 111506) ((-1101 . -33) T) ((-856 . -566) 111488) ((-1033 . -789) 111439) ((-713 . -566) 111421) ((-617 . -566) 111403) ((-1072 . -288) 111341) ((-455 . -33) T) ((-1013 . -1127) T) ((-454 . -429) T) ((-1009 . -977) T) ((-1057 . -33) T) ((-724 . -977) T) ((-722 . -977) T) ((-593 . -215) 111325) ((-581 . -215) 111271) ((-1146 . -286) 111250) ((-1009 . -304) 111211) ((-431 . -977) T) ((-1093 . -21) T) ((-1009 . -213) 111190) ((-724 . -304) 111167) ((-724 . -213) T) ((-722 . -304) 111139) ((-305 . -597) 111123) ((-674 . -1131) 111102) ((-1093 . -25) T) ((-57 . -33) T) ((-490 . -33) T) ((-488 . -33) T) ((-431 . -304) 111081) ((-305 . -351) 111065) ((-470 . -33) T) ((-469 . -33) T) ((-935 . -1067) NIL) ((-584 . -97) T) ((-560 . -97) T) ((-674 . -517) 110996) ((-333 . -669) T) ((-330 . -669) T) ((-322 . -669) T) ((-243 . -669) T) ((-227 . -669) T) ((-974 . -288) 110904) ((-836 . -1020) 110882) ((-49 . -977) T) ((-1183 . -21) T) ((-1183 . -25) T) ((-1089 . -517) 110861) ((-1088 . -1131) 110840) ((-538 . -977) T) ((-489 . -977) T) ((-1082 . -1131) 110819) ((-339 . -968) 110803) ((-300 . -968) 110787) ((-955 . -269) T) ((-357 . -821) 110769) ((-1088 . -517) 110720) ((-1082 . -517) 110671) ((-935 . -37) 110616) ((-741 . -1032) T) ((-845 . -669) T) ((-538 . -223) T) ((-538 . -213) T) ((-489 . -213) T) ((-489 . -223) T) ((-1044 . -517) 110595) ((-332 . -269) T) ((-593 . -637) 110579) ((-357 . -968) 110539) ((-1038 . -984) T) ((-98 . -121) 110523) ((-741 . -23) T) ((-1173 . -265) 110500) ((-385 . -288) 110465) ((-1193 . -1188) 110441) ((-1191 . -1188) 110420) ((-1159 . -1020) T) ((-805 . -566) 110402) ((-776 . -968) 110371) ((-185 . -729) T) ((-184 . -729) T) ((-183 . -729) T) ((-182 . -729) T) ((-181 . -729) T) ((-180 . -729) T) ((-179 . -729) T) ((-178 . -729) T) ((-177 . -729) T) ((-176 . -729) T) ((-468 . -934) T) ((-253 . -778) T) ((-252 . -778) T) ((-251 . -778) T) ((-250 . -778) T) ((-47 . -269) T) ((-249 . -778) T) ((-248 . -778) T) ((-247 . -778) T) ((-175 . -729) T) ((-565 . -789) T) ((-600 . -389) 110355) ((-106 . -789) T) ((-599 . -21) T) ((-599 . -25) T) ((-1194 . -37) 110325) ((-113 . -265) 110276) ((-1173 . -19) 110260) ((-1173 . -558) 110237) ((-1184 . -1020) T) ((-1000 . -1020) T) ((-920 . -1020) T) ((-897 . -126) T) ((-680 . -1020) T) ((-678 . -126) T) ((-658 . -126) T) ((-483 . -735) T) ((-385 . -1067) 110215) ((-430 . -126) T) ((-483 . -736) T) ((-203 . -977) T) ((-273 . -97) 109998) ((-132 . -1020) T) ((-641 . -934) T) ((-89 . -1127) T) ((-123 . -566) 109930) ((-117 . -566) 109862) ((-1199 . -160) T) ((-1088 . -341) 109841) ((-1082 . -341) 109820) ((-294 . -1020) T) ((-396 . -126) T) ((-291 . -1020) T) ((-385 . -37) 109772) ((-1051 . -97) T) ((-1159 . -660) 109664) ((-600 . -984) T) ((-297 . -136) 109643) ((-297 . -138) 109622) ((-130 . -1020) T) ((-110 . -1020) T) ((-797 . -97) T) ((-537 . -566) 109604) ((-525 . -567) 109503) ((-525 . -566) 109485) ((-468 . -566) 109467) ((-468 . -567) 109412) ((-460 . -23) T) ((-458 . -789) 109363) ((-462 . -588) 109345) ((-899 . -566) 109327) ((-198 . -588) 109309) ((-205 . -382) T) ((-608 . -594) 109293) ((-1087 . -855) 109272) ((-674 . -1032) T) ((-329 . -97) T) ((-760 . -789) T) ((-674 . -23) T) ((-321 . -983) 109217) ((-1074 . -1073) T) ((-1063 . -102) 109201) ((-1089 . -1032) T) ((-1088 . -1032) T) ((-487 . -968) 109185) ((-1082 . -1032) T) ((-1044 . -1032) T) ((-321 . -107) 109114) ((-936 . -1131) T) ((-122 . -1127) T) ((-849 . -1131) T) ((-636 . -265) NIL) ((-1174 . -566) 109096) ((-1089 . -23) T) ((-1088 . -23) T) ((-1082 . -23) T) ((-936 . -517) T) ((-1058 . -211) 109080) ((-849 . -517) T) ((-1044 . -23) T) ((-228 . -566) 109062) ((-998 . -1020) T) ((-741 . -126) T) ((-653 . -566) 109044) ((-294 . -660) 108954) ((-291 . -660) 108883) ((-641 . -566) 108865) ((-641 . -567) 108810) ((-385 . -378) 108794) ((-416 . -1020) T) ((-462 . -25) T) ((-462 . -21) T) ((-1038 . -1020) T) ((-198 . -25) T) ((-198 . -21) T) ((-655 . -389) 108778) ((-657 . -968) 108747) ((-1173 . -566) 108659) ((-1173 . -567) 108620) ((-1159 . -160) T) ((-225 . -33) T) ((-861 . -907) T) ((-1114 . -1127) T) ((-608 . -733) 108599) ((-608 . -736) 108578) ((-376 . -373) T) ((-494 . -97) 108556) ((-966 . -1020) T) ((-202 . -927) 108540) ((-477 . -97) T) ((-573 . -566) 108522) ((-44 . -789) NIL) ((-573 . -567) 108499) ((-966 . -563) 108474) ((-836 . -486) 108407) ((-321 . -977) T) ((-113 . -567) NIL) ((-113 . -566) 108389) ((-807 . -1127) T) ((-616 . -395) 108373) ((-616 . -1041) 108318) ((-473 . -142) 108300) ((-321 . -213) T) ((-321 . -223) T) ((-39 . -983) 108245) ((-807 . -819) 108229) ((-807 . -821) 108154) ((-655 . -984) T) ((-636 . -934) NIL) ((-3 . |UnionCategory|) T) ((-1157 . -46) 108124) ((-1136 . -46) 108101) ((-1057 . -942) 108072) ((-205 . -855) T) ((-39 . -107) 108001) ((-807 . -968) 107868) ((-1038 . -660) 107855) ((-1025 . -566) 107837) ((-1003 . -138) 107816) ((-1003 . -136) 107767) ((-936 . -341) T) ((-297 . -1116) 107733) ((-357 . -286) T) ((-297 . -1113) 107699) ((-294 . -160) 107678) ((-291 . -160) T) ((-935 . -211) 107655) ((-849 . -341) T) ((-538 . -1190) 107642) ((-489 . -1190) 107619) ((-337 . -138) 107598) ((-337 . -136) 107549) ((-331 . -138) 107528) ((-331 . -136) 107479) ((-561 . -1104) 107455) ((-323 . -138) 107434) ((-323 . -136) 107385) ((-297 . -34) 107351) ((-452 . -1104) 107330) ((0 . |EnumerationCategory|) T) ((-297 . -91) 107296) ((-357 . -953) T) ((-103 . -138) T) ((-103 . -136) NIL) ((-44 . -215) 107246) ((-600 . -1020) T) ((-561 . -102) 107193) ((-460 . -126) T) ((-452 . -102) 107143) ((-220 . -1032) 107054) ((-807 . -355) 107038) ((-807 . -316) 107022) ((-220 . -23) 106893) ((-988 . -855) T) ((-988 . -762) T) ((-538 . -346) T) ((-489 . -346) T) ((-329 . -1067) T) ((-305 . -33) T) ((-43 . -395) 106877) ((-808 . -1127) T) ((-368 . -687) 106861) ((-1184 . -486) 106794) ((-674 . -126) T) ((-1165 . -517) 106773) ((-1158 . -1131) 106752) ((-1158 . -517) 106703) ((-680 . -486) 106636) ((-1137 . -1131) 106615) ((-1137 . -517) 106566) ((-828 . -1020) T) ((-135 . -783) T) ((-1136 . -1127) 106545) ((-1136 . -821) 106418) ((-1136 . -819) 106388) ((-494 . -288) 106326) ((-1089 . -126) T) ((-132 . -486) NIL) ((-1088 . -126) T) ((-1082 . -126) T) ((-1044 . -126) T) ((-955 . -934) T) ((-329 . -37) 106291) ((-936 . -1032) T) ((-849 . -1032) T) ((-80 . -566) 106273) ((-39 . -977) T) ((-805 . -983) 106260) ((-936 . -23) T) ((-807 . -835) 106219) ((-643 . -97) T) ((-935 . -327) NIL) ((-556 . -1127) T) ((-904 . -23) T) ((-849 . -23) T) ((-805 . -107) 106204) ((-405 . -1032) T) ((-451 . -46) 106174) ((-128 . -97) T) ((-39 . -213) 106146) ((-39 . -223) T) ((-112 . -97) T) ((-551 . -517) 106125) ((-550 . -517) 106104) ((-636 . -566) 106086) ((-636 . -567) 105994) ((-294 . -486) 105960) ((-291 . -486) 105852) ((-1157 . -968) 105836) ((-1136 . -968) 105625) ((-931 . -389) 105609) ((-405 . -23) T) ((-1038 . -160) T) ((-1159 . -269) T) ((-600 . -660) 105579) ((-135 . -1020) T) ((-47 . -934) T) ((-385 . -211) 105563) ((-274 . -215) 105513) ((-806 . -855) T) ((-806 . -762) NIL) ((-800 . -789) T) ((-1136 . -316) 105483) ((-1136 . -355) 105453) ((-202 . -1039) 105437) ((-1173 . -267) 105414) ((-1122 . -594) 105339) ((-897 . -21) T) ((-897 . -25) T) ((-678 . -21) T) ((-678 . -25) T) ((-658 . -21) T) ((-658 . -25) T) ((-654 . -594) 105304) ((-430 . -21) T) ((-430 . -25) T) ((-317 . -97) T) ((-161 . -97) T) ((-931 . -984) T) ((-805 . -977) T) ((-716 . -97) T) ((-1158 . -341) 105283) ((-1157 . -835) 105189) ((-1137 . -341) 105168) ((-1136 . -835) 105019) ((-955 . -566) 105001) ((-385 . -770) 104954) ((-1089 . -466) 104920) ((-157 . -855) 104851) ((-1088 . -466) 104817) ((-1082 . -466) 104783) ((-655 . -1020) T) ((-1044 . -466) 104749) ((-537 . -983) 104736) ((-525 . -983) 104723) ((-468 . -983) 104688) ((-294 . -269) 104667) ((-291 . -269) T) ((-332 . -566) 104649) ((-396 . -25) T) ((-396 . -21) T) ((-94 . -265) 104628) ((-537 . -107) 104613) ((-525 . -107) 104598) ((-468 . -107) 104554) ((-1091 . -821) 104521) ((-836 . -464) 104505) ((-47 . -566) 104487) ((-47 . -567) 104432) ((-220 . -126) 104303) ((-1146 . -855) 104282) ((-758 . -1131) 104261) ((-966 . -486) 104105) ((-366 . -566) 104087) ((-758 . -517) 104018) ((-542 . -594) 103993) ((-243 . -46) 103965) ((-227 . -46) 103922) ((-497 . -481) 103899) ((-932 . -1127) T) ((-641 . -983) 103864) ((-1165 . -1032) T) ((-1158 . -1032) T) ((-1137 . -1032) T) ((-935 . -348) 103836) ((-108 . -346) T) ((-451 . -835) 103742) ((-1165 . -23) T) ((-1158 . -23) T) ((-839 . -566) 103724) ((-89 . -102) 103708) ((-1122 . -669) T) ((-840 . -789) 103659) ((-643 . -1067) T) ((-641 . -107) 103615) ((-1137 . -23) T) ((-551 . -1032) T) ((-550 . -1032) T) ((-655 . -660) 103444) ((-654 . -669) T) ((-1038 . -269) T) ((-936 . -126) T) ((-462 . -789) T) ((-904 . -126) T) ((-849 . -126) T) ((-741 . -25) T) ((-198 . -789) T) ((-741 . -21) T) ((-537 . -977) T) ((-525 . -977) T) ((-468 . -977) T) ((-551 . -23) T) ((-321 . -1190) 103421) ((-297 . -429) 103400) ((-317 . -288) 103387) ((-550 . -23) T) ((-405 . -126) T) ((-604 . -594) 103361) ((-225 . -942) 103345) ((-807 . -286) T) ((-1195 . -1185) 103329) ((-643 . -37) 103316) ((-525 . -213) T) ((-468 . -223) T) ((-468 . -213) T) ((-713 . -734) T) ((-713 . -737) T) ((-1066 . -215) 103266) ((-1009 . -844) 103245) ((-112 . -37) 103232) ((-191 . -742) T) ((-190 . -742) T) ((-189 . -742) T) ((-188 . -742) T) ((-807 . -953) 103211) ((-1184 . -464) 103195) ((-724 . -844) 103174) ((-722 . -844) 103153) ((-1101 . -1127) T) ((-431 . -844) 103132) ((-680 . -464) 103116) ((-1009 . -594) 103041) ((-724 . -594) 102966) ((-573 . -983) 102953) ((-455 . -1127) T) ((-321 . -346) T) ((-132 . -464) 102935) ((-722 . -594) 102860) ((-1057 . -1127) T) ((-438 . -594) 102831) ((-243 . -821) 102690) ((-227 . -821) NIL) ((-113 . -983) 102635) ((-431 . -594) 102560) ((-610 . -968) 102537) ((-573 . -107) 102522) ((-333 . -968) 102506) ((-330 . -968) 102490) ((-322 . -968) 102474) ((-243 . -968) 102320) ((-227 . -968) 102198) ((-113 . -107) 102127) ((-57 . -1127) T) ((-490 . -1127) T) ((-488 . -1127) T) ((-470 . -1127) T) ((-469 . -1127) T) ((-415 . -566) 102109) ((-412 . -566) 102091) ((-3 . -97) T) ((-958 . -1121) 102060) ((-775 . -97) T) ((-632 . -55) 102018) ((-641 . -977) T) ((-49 . -594) 101992) ((-268 . -429) T) ((-453 . -1121) 101961) ((0 . -97) T) ((-538 . -594) 101926) ((-489 . -594) 101871) ((-48 . -97) T) ((-845 . -968) 101858) ((-641 . -223) T) ((-1003 . -387) 101837) ((-674 . -588) 101785) ((-931 . -1020) T) ((-655 . -160) 101676) ((-462 . -925) 101658) ((-243 . -355) 101642) ((-227 . -355) 101626) ((-377 . -1020) T) ((-317 . -37) 101610) ((-957 . -97) 101588) ((-198 . -925) 101570) ((-161 . -37) 101502) ((-1157 . -286) 101481) ((-1136 . -286) 101460) ((-604 . -669) T) ((-94 . -566) 101442) ((-1082 . -588) 101394) ((-460 . -25) T) ((-460 . -21) T) ((-1136 . -953) 101347) ((-573 . -977) T) ((-357 . -382) T) ((-368 . -97) T) ((-243 . -835) 101293) ((-227 . -835) 101270) ((-113 . -977) T) ((-758 . -1032) T) ((-1009 . -669) T) ((-573 . -213) 101249) ((-571 . -97) T) ((-724 . -669) T) ((-722 . -669) T) ((-391 . -1032) T) ((-113 . -223) T) ((-39 . -346) NIL) ((-113 . -213) NIL) ((-431 . -669) T) ((-758 . -23) T) ((-674 . -25) T) ((-674 . -21) T) ((-645 . -789) T) ((-1000 . -265) 101228) ((-76 . -374) T) ((-76 . -373) T) ((-636 . -983) 101178) ((-1165 . -126) T) ((-1158 . -126) T) ((-1137 . -126) T) ((-1058 . -389) 101162) ((-584 . -345) 101094) ((-560 . -345) 101026) ((-1072 . -1065) 101010) ((-98 . -1020) 100988) ((-1089 . -25) T) ((-1089 . -21) T) ((-1088 . -21) T) ((-931 . -660) 100936) ((-203 . -594) 100903) ((-636 . -107) 100837) ((-49 . -669) T) ((-1088 . -25) T) ((-329 . -327) T) ((-1082 . -21) T) ((-1003 . -429) 100788) ((-1082 . -25) T) ((-655 . -486) 100735) ((-538 . -669) T) ((-489 . -669) T) ((-1044 . -21) T) ((-1044 . -25) T) ((-551 . -126) T) ((-550 . -126) T) ((-337 . -429) T) ((-331 . -429) T) ((-323 . -429) T) ((-451 . -286) 100714) ((-291 . -265) 100649) ((-103 . -429) T) ((-77 . -418) T) ((-77 . -373) T) ((-454 . -97) T) ((-1199 . -566) 100631) ((-1199 . -567) 100613) ((-1003 . -380) 100592) ((-966 . -464) 100523) ((-525 . -737) T) ((-525 . -734) T) ((-989 . -215) 100469) ((-337 . -380) 100420) ((-331 . -380) 100371) ((-323 . -380) 100322) ((-1186 . -1032) T) ((-1186 . -23) T) ((-1175 . -97) T) ((-162 . -566) 100304) ((-1058 . -984) T) ((-616 . -687) 100288) ((-1093 . -136) 100267) ((-1093 . -138) 100246) ((-1062 . -1020) T) ((-1062 . -996) 100215) ((-67 . -1127) T) ((-955 . -983) 100152) ((-801 . -984) T) ((-220 . -588) 100060) ((-636 . -977) T) ((-332 . -983) 100005) ((-59 . -1127) T) ((-955 . -107) 99921) ((-836 . -566) 99853) ((-636 . -223) T) ((-636 . -213) NIL) ((-782 . -787) 99832) ((-641 . -737) T) ((-641 . -734) T) ((-935 . -389) 99809) ((-332 . -107) 99738) ((-357 . -855) T) ((-385 . -787) 99717) ((-655 . -269) 99628) ((-203 . -669) T) ((-1165 . -466) 99594) ((-1158 . -466) 99560) ((-1137 . -466) 99526) ((-294 . -934) 99505) ((-202 . -1020) 99483) ((-297 . -906) 99445) ((-100 . -97) T) ((-47 . -983) 99410) ((-1195 . -97) T) ((-359 . -97) T) ((-47 . -107) 99366) ((-936 . -588) 99348) ((-1159 . -566) 99330) ((-497 . -97) T) ((-473 . -97) T) ((-1051 . -1052) 99314) ((-143 . -1180) 99298) ((-225 . -1127) T) ((-1087 . -1131) 99277) ((-1043 . -1131) 99256) ((-220 . -21) 99167) ((-220 . -25) 99019) ((-123 . -115) 99003) ((-117 . -115) 98987) ((-43 . -687) 98971) ((-1087 . -517) 98882) ((-1043 . -517) 98813) ((-966 . -265) 98788) ((-758 . -126) T) ((-113 . -737) NIL) ((-113 . -734) NIL) ((-333 . -286) T) ((-330 . -286) T) ((-322 . -286) T) ((-1015 . -1127) T) ((-230 . -1032) 98699) ((-229 . -1032) 98610) ((-955 . -977) T) ((-935 . -984) T) ((-321 . -594) 98555) ((-571 . -37) 98539) ((-1184 . -566) 98501) ((-1184 . -567) 98462) ((-1000 . -566) 98444) ((-955 . -223) T) ((-332 . -977) T) ((-757 . -1180) 98414) ((-230 . -23) T) ((-229 . -23) T) ((-920 . -566) 98396) ((-680 . -567) 98357) ((-680 . -566) 98339) ((-741 . -789) 98318) ((-931 . -486) 98230) ((-332 . -213) T) ((-332 . -223) T) ((-1075 . -142) 98177) ((-936 . -25) T) ((-132 . -566) 98159) ((-132 . -567) 98118) ((-845 . -286) T) ((-936 . -21) T) ((-904 . -25) T) ((-849 . -21) T) ((-849 . -25) T) ((-405 . -21) T) ((-405 . -25) T) ((-782 . -389) 98102) ((-47 . -977) T) ((-1193 . -1185) 98086) ((-1191 . -1185) 98070) ((-966 . -558) 98045) ((-294 . -567) 97906) ((-294 . -566) 97888) ((-291 . -567) NIL) ((-291 . -566) 97870) ((-47 . -223) T) ((-47 . -213) T) ((-600 . -265) 97831) ((-511 . -215) 97781) ((-130 . -566) 97763) ((-110 . -566) 97745) ((-454 . -37) 97710) ((-1195 . -1192) 97689) ((-1186 . -126) T) ((-1194 . -984) T) ((-1005 . -97) T) ((-86 . -1127) T) ((-473 . -288) NIL) ((-932 . -102) 97673) ((-824 . -1020) T) ((-820 . -1020) T) ((-1173 . -597) 97657) ((-1173 . -351) 97641) ((-305 . -1127) T) ((-548 . -789) T) ((-1058 . -1020) T) ((-1058 . -980) 97581) ((-98 . -486) 97514) ((-862 . -566) 97496) ((-321 . -669) T) ((-30 . -566) 97478) ((-801 . -1020) T) ((-782 . -984) 97457) ((-39 . -594) 97402) ((-205 . -1131) T) ((-385 . -984) T) ((-1074 . -142) 97384) ((-931 . -269) 97335) ((-205 . -517) T) ((-297 . -1154) 97319) ((-297 . -1151) 97289) ((-1101 . -1104) 97268) ((-998 . -566) 97250) ((-593 . -142) 97234) ((-581 . -142) 97180) ((-1101 . -102) 97130) ((-455 . -1104) 97109) ((-462 . -138) T) ((-462 . -136) NIL) ((-1038 . -567) 97024) ((-416 . -566) 97006) ((-198 . -138) T) ((-198 . -136) NIL) ((-1038 . -566) 96988) ((-125 . -97) T) ((-51 . -97) T) ((-1137 . -588) 96940) ((-455 . -102) 96890) ((-926 . -23) T) ((-1195 . -37) 96860) ((-1087 . -1032) T) ((-1043 . -1032) T) ((-988 . -1131) T) ((-793 . -1032) T) ((-887 . -1131) 96839) ((-457 . -1131) 96818) ((-674 . -789) 96797) ((-988 . -517) T) ((-887 . -517) 96728) ((-1087 . -23) T) ((-1043 . -23) T) ((-793 . -23) T) ((-457 . -517) 96659) ((-1058 . -660) 96591) ((-1062 . -486) 96524) ((-966 . -567) NIL) ((-966 . -566) 96506) ((-801 . -660) 96476) ((-1122 . -46) 96445) ((-229 . -126) T) ((-230 . -126) T) ((-1024 . -1020) T) ((-935 . -1020) T) ((-60 . -566) 96427) ((-1082 . -789) NIL) ((-955 . -734) T) ((-955 . -737) T) ((-1199 . -983) 96414) ((-1199 . -107) 96399) ((-805 . -594) 96386) ((-1165 . -25) T) ((-1165 . -21) T) ((-1158 . -21) T) ((-1158 . -25) T) ((-1137 . -21) T) ((-1137 . -25) T) ((-958 . -142) 96370) ((-807 . -762) 96349) ((-807 . -855) T) ((-655 . -265) 96276) ((-551 . -21) T) ((-551 . -25) T) ((-550 . -21) T) ((-39 . -669) T) ((-202 . -486) 96209) ((-550 . -25) T) ((-453 . -142) 96193) ((-440 . -142) 96177) ((-856 . -736) T) ((-856 . -669) T) ((-713 . -735) T) ((-713 . -736) T) ((-475 . -1020) T) ((-713 . -669) T) ((-205 . -341) T) ((-1072 . -1020) 96155) ((-806 . -1131) T) ((-600 . -566) 96137) ((-806 . -517) T) ((-636 . -346) NIL) ((-337 . -1180) 96121) ((-616 . -97) T) ((-331 . -1180) 96105) ((-323 . -1180) 96089) ((-1194 . -1020) T) ((-491 . -789) 96068) ((-759 . -429) 96047) ((-974 . -1020) T) ((-974 . -996) 95976) ((-958 . -909) 95945) ((-761 . -1032) T) ((-935 . -660) 95890) ((-364 . -1032) T) ((-453 . -909) 95859) ((-440 . -909) 95828) ((-106 . -142) 95810) ((-71 . -566) 95792) ((-828 . -566) 95774) ((-1003 . -667) 95753) ((-1199 . -977) T) ((-758 . -588) 95701) ((-273 . -984) 95644) ((-157 . -1131) 95549) ((-205 . -1032) T) ((-302 . -23) T) ((-1082 . -925) 95501) ((-782 . -1020) T) ((-1044 . -683) 95480) ((-1159 . -983) 95385) ((-1157 . -855) 95364) ((-805 . -669) T) ((-157 . -517) 95275) ((-1136 . -855) 95254) ((-537 . -594) 95241) ((-385 . -1020) T) ((-525 . -594) 95228) ((-242 . -1020) T) ((-468 . -594) 95193) ((-205 . -23) T) ((-1136 . -762) 95146) ((-1193 . -97) T) ((-332 . -1190) 95123) ((-1191 . -97) T) ((-1159 . -107) 95015) ((-135 . -566) 94997) ((-926 . -126) T) ((-43 . -97) T) ((-220 . -789) 94948) ((-1146 . -1131) 94927) ((-98 . -464) 94911) ((-1194 . -660) 94881) ((-1009 . -46) 94842) ((-988 . -1032) T) ((-887 . -1032) T) ((-123 . -33) T) ((-117 . -33) T) ((-724 . -46) 94819) ((-722 . -46) 94791) ((-1146 . -517) 94702) ((-332 . -346) T) ((-457 . -1032) T) ((-1087 . -126) T) ((-1043 . -126) T) ((-431 . -46) 94681) ((-806 . -341) T) ((-793 . -126) T) ((-143 . -97) T) ((-988 . -23) T) ((-887 . -23) T) ((-532 . -517) T) ((-758 . -25) T) ((-758 . -21) T) ((-1058 . -486) 94614) ((-542 . -968) 94598) ((-457 . -23) T) ((-329 . -984) T) ((-1122 . -835) 94579) ((-616 . -288) 94517) ((-1033 . -1180) 94487) ((-641 . -594) 94452) ((-935 . -160) T) ((-897 . -136) 94431) ((-584 . -1020) T) ((-560 . -1020) T) ((-897 . -138) 94410) ((-936 . -789) T) ((-678 . -138) 94389) ((-678 . -136) 94368) ((-904 . -789) T) ((-451 . -855) 94347) ((-294 . -983) 94257) ((-291 . -983) 94186) ((-931 . -265) 94144) ((-385 . -660) 94096) ((-124 . -789) T) ((-643 . -787) T) ((-1159 . -977) T) ((-294 . -107) 93992) ((-291 . -107) 93905) ((-898 . -97) T) ((-757 . -97) 93696) ((-655 . -567) NIL) ((-655 . -566) 93678) ((-604 . -968) 93576) ((-1159 . -304) 93520) ((-966 . -267) 93495) ((-537 . -669) T) ((-525 . -736) T) ((-157 . -341) 93446) ((-525 . -733) T) ((-525 . -669) T) ((-468 . -669) T) ((-1062 . -464) 93430) ((-1009 . -821) NIL) ((-806 . -1032) T) ((-113 . -844) NIL) ((-1193 . -1192) 93406) ((-1191 . -1192) 93385) ((-724 . -821) NIL) ((-722 . -821) 93244) ((-1186 . -25) T) ((-1186 . -21) T) ((-1125 . -97) 93222) ((-1026 . -373) T) ((-573 . -594) 93209) ((-431 . -821) NIL) ((-620 . -97) 93187) ((-1009 . -968) 93016) ((-806 . -23) T) ((-724 . -968) 92877) ((-722 . -968) 92736) ((-113 . -594) 92681) ((-431 . -968) 92559) ((-595 . -968) 92543) ((-576 . -97) T) ((-202 . -464) 92527) ((-1173 . -33) T) ((-584 . -660) 92511) ((-560 . -660) 92495) ((-616 . -37) 92455) ((-297 . -97) T) ((-83 . -566) 92437) ((-49 . -968) 92421) ((-1038 . -983) 92408) ((-1009 . -355) 92392) ((-58 . -55) 92354) ((-641 . -736) T) ((-641 . -733) T) ((-538 . -968) 92341) ((-489 . -968) 92318) ((-641 . -669) T) ((-294 . -977) 92209) ((-302 . -126) T) ((-291 . -977) T) ((-157 . -1032) T) ((-724 . -355) 92193) ((-722 . -355) 92177) ((-44 . -142) 92127) ((-936 . -925) 92109) ((-431 . -355) 92093) ((-385 . -160) T) ((-294 . -223) 92072) ((-291 . -223) T) ((-291 . -213) NIL) ((-273 . -1020) 91855) ((-205 . -126) T) ((-1038 . -107) 91840) ((-157 . -23) T) ((-741 . -138) 91819) ((-741 . -136) 91798) ((-229 . -588) 91706) ((-230 . -588) 91614) ((-297 . -263) 91580) ((-1072 . -486) 91513) ((-1051 . -1020) T) ((-205 . -986) T) ((-757 . -288) 91451) ((-1009 . -835) 91386) ((-724 . -835) 91329) ((-722 . -835) 91313) ((-1193 . -37) 91283) ((-1191 . -37) 91253) ((-1146 . -1032) T) ((-794 . -1032) T) ((-431 . -835) 91230) ((-797 . -1020) T) ((-1146 . -23) T) ((-532 . -1032) T) ((-794 . -23) T) ((-573 . -669) T) ((-333 . -855) T) ((-330 . -855) T) ((-268 . -97) T) ((-322 . -855) T) ((-988 . -126) T) ((-887 . -126) T) ((-113 . -736) NIL) ((-113 . -733) NIL) ((-113 . -669) T) ((-636 . -844) NIL) ((-974 . -486) 91131) ((-457 . -126) T) ((-532 . -23) T) ((-620 . -288) 91069) ((-584 . -704) T) ((-560 . -704) T) ((-1137 . -789) NIL) ((-935 . -269) T) ((-230 . -21) T) ((-636 . -594) 91019) ((-329 . -1020) T) ((-230 . -25) T) ((-229 . -21) T) ((-229 . -25) T) ((-143 . -37) 91003) ((-2 . -97) T) ((-845 . -855) T) ((-458 . -1180) 90973) ((-203 . -968) 90950) ((-1038 . -977) T) ((-654 . -286) T) ((-273 . -660) 90892) ((-643 . -984) T) ((-462 . -429) T) ((-385 . -486) 90804) ((-198 . -429) T) ((-1038 . -213) T) ((-274 . -142) 90754) ((-931 . -567) 90715) ((-931 . -566) 90697) ((-922 . -566) 90679) ((-112 . -984) T) ((-600 . -983) 90663) ((-205 . -466) T) ((-377 . -566) 90645) ((-377 . -567) 90622) ((-981 . -1180) 90592) ((-600 . -107) 90571) ((-1058 . -464) 90555) ((-757 . -37) 90525) ((-61 . -418) T) ((-61 . -373) T) ((-1075 . -97) T) ((-806 . -126) T) ((-459 . -97) 90503) ((-1199 . -346) T) ((-1003 . -97) T) ((-987 . -97) T) ((-329 . -660) 90448) ((-674 . -138) 90427) ((-674 . -136) 90406) ((-955 . -594) 90343) ((-494 . -1020) 90321) ((-337 . -97) T) ((-331 . -97) T) ((-323 . -97) T) ((-103 . -97) T) ((-477 . -1020) T) ((-332 . -594) 90266) ((-1087 . -588) 90214) ((-1043 . -588) 90162) ((-363 . -481) 90141) ((-775 . -787) 90120) ((-357 . -1131) T) ((-636 . -669) T) ((-317 . -984) T) ((-1137 . -925) 90072) ((-161 . -984) T) ((-98 . -566) 90004) ((-1089 . -136) 89983) ((-1089 . -138) 89962) ((-357 . -517) T) ((-1088 . -138) 89941) ((-1088 . -136) 89920) ((-1082 . -136) 89827) ((-385 . -269) T) ((-1082 . -138) 89734) ((-1044 . -138) 89713) ((-1044 . -136) 89692) ((-297 . -37) 89533) ((-157 . -126) T) ((-291 . -737) NIL) ((-291 . -734) NIL) ((-600 . -977) T) ((-47 . -594) 89498) ((-926 . -21) T) ((-123 . -942) 89482) ((-117 . -942) 89466) ((-926 . -25) T) ((-836 . -115) 89450) ((-1074 . -97) T) ((-758 . -789) 89429) ((-1146 . -126) T) ((-1087 . -25) T) ((-1087 . -21) T) ((-794 . -126) T) ((-1043 . -25) T) ((-1043 . -21) T) ((-793 . -25) T) ((-793 . -21) T) ((-724 . -286) 89408) ((-593 . -97) 89386) ((-581 . -97) T) ((-1075 . -288) 89181) ((-532 . -126) T) ((-571 . -787) 89160) ((-1072 . -464) 89144) ((-1066 . -142) 89094) ((-1062 . -566) 89056) ((-1062 . -567) 89017) ((-955 . -733) T) ((-955 . -736) T) ((-955 . -669) T) ((-459 . -288) 88955) ((-430 . -395) 88925) ((-329 . -160) T) ((-268 . -37) 88912) ((-253 . -97) T) ((-252 . -97) T) ((-251 . -97) T) ((-250 . -97) T) ((-249 . -97) T) ((-248 . -97) T) ((-247 . -97) T) ((-321 . -968) 88889) ((-194 . -97) T) ((-193 . -97) T) ((-191 . -97) T) ((-190 . -97) T) ((-189 . -97) T) ((-188 . -97) T) ((-185 . -97) T) ((-184 . -97) T) ((-655 . -983) 88712) ((-183 . -97) T) ((-182 . -97) T) ((-181 . -97) T) ((-180 . -97) T) ((-179 . -97) T) ((-178 . -97) T) ((-177 . -97) T) ((-176 . -97) T) ((-175 . -97) T) ((-332 . -669) T) ((-655 . -107) 88521) ((-616 . -211) 88505) ((-538 . -286) T) ((-489 . -286) T) ((-273 . -486) 88454) ((-103 . -288) NIL) ((-70 . -373) T) ((-1033 . -97) 88245) ((-775 . -389) 88229) ((-1038 . -737) T) ((-1038 . -734) T) ((-643 . -1020) T) ((-357 . -341) T) ((-157 . -466) 88207) ((-202 . -566) 88139) ((-128 . -1020) T) ((-112 . -1020) T) ((-47 . -669) T) ((-974 . -464) 88104) ((-132 . -403) 88086) ((-132 . -346) T) ((-958 . -97) T) ((-484 . -481) 88065) ((-453 . -97) T) ((-440 . -97) T) ((-965 . -1032) T) ((-1089 . -34) 88031) ((-1089 . -91) 87997) ((-1089 . -1116) 87963) ((-1089 . -1113) 87929) ((-1074 . -288) NIL) ((-87 . -374) T) ((-87 . -373) T) ((-1003 . -1067) 87908) ((-1088 . -1113) 87874) ((-1088 . -1116) 87840) ((-965 . -23) T) ((-1088 . -91) 87806) ((-532 . -466) T) ((-1088 . -34) 87772) ((-1082 . -1113) 87738) ((-1082 . -1116) 87704) ((-1082 . -91) 87670) ((-339 . -1032) T) ((-337 . -1067) 87649) ((-331 . -1067) 87628) ((-323 . -1067) 87607) ((-1082 . -34) 87573) ((-1044 . -34) 87539) ((-1044 . -91) 87505) ((-103 . -1067) T) ((-1044 . -1116) 87471) ((-775 . -984) 87450) ((-593 . -288) 87388) ((-581 . -288) 87239) ((-1044 . -1113) 87205) ((-655 . -977) T) ((-988 . -588) 87187) ((-1003 . -37) 87055) ((-887 . -588) 87003) ((-936 . -138) T) ((-936 . -136) NIL) ((-357 . -1032) T) ((-302 . -25) T) ((-300 . -23) T) ((-878 . -789) 86982) ((-655 . -304) 86959) ((-457 . -588) 86907) ((-39 . -968) 86797) ((-643 . -660) 86784) ((-655 . -213) T) ((-317 . -1020) T) ((-161 . -1020) T) ((-309 . -789) T) ((-396 . -429) 86734) ((-357 . -23) T) ((-337 . -37) 86699) ((-331 . -37) 86664) ((-323 . -37) 86629) ((-78 . -418) T) ((-78 . -373) T) ((-205 . -25) T) ((-205 . -21) T) ((-776 . -1032) T) ((-103 . -37) 86579) ((-769 . -1032) T) ((-716 . -1020) T) ((-112 . -660) 86566) ((-617 . -968) 86550) ((-565 . -97) T) ((-776 . -23) T) ((-769 . -23) T) ((-1072 . -265) 86527) ((-1033 . -288) 86465) ((-1022 . -215) 86449) ((-62 . -374) T) ((-62 . -373) T) ((-106 . -97) T) ((-39 . -355) 86426) ((-599 . -791) 86410) ((-988 . -21) T) ((-988 . -25) T) ((-757 . -211) 86380) ((-887 . -25) T) ((-887 . -21) T) ((-571 . -984) T) ((-457 . -25) T) ((-457 . -21) T) ((-958 . -288) 86318) ((-824 . -566) 86300) ((-820 . -566) 86282) ((-230 . -789) 86233) ((-229 . -789) 86184) ((-494 . -486) 86117) ((-806 . -588) 86094) ((-453 . -288) 86032) ((-440 . -288) 85970) ((-329 . -269) T) ((-1072 . -1161) 85954) ((-1058 . -566) 85916) ((-1058 . -567) 85877) ((-1056 . -97) T) ((-931 . -983) 85773) ((-39 . -835) 85725) ((-1072 . -558) 85702) ((-1199 . -594) 85689) ((-989 . -142) 85635) ((-807 . -1131) T) ((-931 . -107) 85517) ((-317 . -660) 85501) ((-801 . -566) 85483) ((-161 . -660) 85415) ((-385 . -265) 85373) ((-807 . -517) T) ((-103 . -378) 85355) ((-82 . -362) T) ((-82 . -373) T) ((-643 . -160) T) ((-94 . -669) T) ((-458 . -97) 85146) ((-94 . -450) T) ((-112 . -160) T) ((-1033 . -37) 85116) ((-157 . -588) 85064) ((-981 . -97) T) ((-806 . -25) T) ((-757 . -218) 85043) ((-806 . -21) T) ((-760 . -97) T) ((-392 . -97) T) ((-363 . -97) T) ((-106 . -288) NIL) ((-207 . -97) 85021) ((-123 . -1127) T) ((-117 . -1127) T) ((-965 . -126) T) ((-616 . -345) 85005) ((-931 . -977) T) ((-1146 . -588) 84953) ((-1024 . -566) 84935) ((-935 . -566) 84917) ((-487 . -23) T) ((-482 . -23) T) ((-321 . -286) T) ((-480 . -23) T) ((-300 . -126) T) ((-3 . -1020) T) ((-935 . -567) 84901) ((-931 . -223) 84880) ((-931 . -213) 84859) ((-1199 . -669) T) ((-1165 . -136) 84838) ((-775 . -1020) T) ((-1165 . -138) 84817) ((-1158 . -138) 84796) ((-1158 . -136) 84775) ((-1157 . -1131) 84754) ((-1137 . -136) 84661) ((-1137 . -138) 84568) ((-1136 . -1131) 84547) ((-357 . -126) T) ((-525 . -821) 84529) ((0 . -1020) T) ((-161 . -160) T) ((-157 . -21) T) ((-157 . -25) T) ((-48 . -1020) T) ((-1159 . -594) 84434) ((-1157 . -517) 84385) ((-657 . -1032) T) ((-1136 . -517) 84336) ((-525 . -968) 84318) ((-550 . -138) 84297) ((-550 . -136) 84276) ((-468 . -968) 84219) ((-85 . -362) T) ((-85 . -373) T) ((-807 . -341) T) ((-776 . -126) T) ((-769 . -126) T) ((-657 . -23) T) ((-475 . -566) 84201) ((-1195 . -984) T) ((-357 . -986) T) ((-957 . -1020) 84179) ((-836 . -33) T) ((-458 . -288) 84117) ((-1072 . -567) 84078) ((-1072 . -566) 84010) ((-1087 . -789) 83989) ((-44 . -97) T) ((-1043 . -789) 83968) ((-759 . -97) T) ((-1146 . -25) T) ((-1146 . -21) T) ((-794 . -25) T) ((-43 . -345) 83952) ((-794 . -21) T) ((-674 . -429) 83903) ((-1194 . -566) 83885) ((-532 . -25) T) ((-532 . -21) T) ((-368 . -1020) T) ((-981 . -288) 83823) ((-571 . -1020) T) ((-641 . -821) 83805) ((-1173 . -1127) T) ((-207 . -288) 83743) ((-135 . -346) T) ((-974 . -567) 83685) ((-974 . -566) 83628) ((-291 . -844) NIL) ((-641 . -968) 83573) ((-654 . -855) T) ((-451 . -1131) 83552) ((-1088 . -429) 83531) ((-1082 . -429) 83510) ((-308 . -97) T) ((-807 . -1032) T) ((-294 . -594) 83332) ((-291 . -594) 83261) ((-451 . -517) 83212) ((-317 . -486) 83178) ((-511 . -142) 83128) ((-39 . -286) T) ((-782 . -566) 83110) ((-643 . -269) T) ((-807 . -23) T) ((-357 . -466) T) ((-1003 . -211) 83080) ((-484 . -97) T) ((-385 . -567) 82888) ((-385 . -566) 82870) ((-242 . -566) 82852) ((-112 . -269) T) ((-1159 . -669) T) ((-1157 . -341) 82831) ((-1136 . -341) 82810) ((-1184 . -33) T) ((-113 . -1127) T) ((-103 . -211) 82792) ((-1093 . -97) T) ((-454 . -1020) T) ((-494 . -464) 82776) ((-680 . -33) T) ((-458 . -37) 82746) ((-132 . -33) T) ((-113 . -819) 82723) ((-113 . -821) NIL) ((-573 . -968) 82608) ((-592 . -789) 82587) ((-1183 . -97) T) ((-274 . -97) T) ((-655 . -346) 82566) ((-113 . -968) 82543) ((-368 . -660) 82527) ((-571 . -660) 82511) ((-44 . -288) 82315) ((-758 . -136) 82294) ((-758 . -138) 82273) ((-1194 . -360) 82252) ((-761 . -789) T) ((-1175 . -1020) T) ((-1075 . -209) 82199) ((-364 . -789) 82178) ((-1165 . -1116) 82144) ((-1165 . -1113) 82110) ((-1158 . -1113) 82076) ((-487 . -126) T) ((-1158 . -1116) 82042) ((-1137 . -1113) 82008) ((-1137 . -1116) 81974) ((-1165 . -34) 81940) ((-1165 . -91) 81906) ((-584 . -566) 81875) ((-560 . -566) 81844) ((-205 . -789) T) ((-1158 . -91) 81810) ((-1158 . -34) 81776) ((-1157 . -1032) T) ((-1038 . -594) 81763) ((-1137 . -91) 81729) ((-1136 . -1032) T) ((-548 . -142) 81711) ((-1003 . -327) 81690) ((-113 . -355) 81667) ((-113 . -316) 81644) ((-161 . -269) T) ((-1137 . -34) 81610) ((-805 . -286) T) ((-291 . -736) NIL) ((-291 . -733) NIL) ((-294 . -669) 81460) ((-291 . -669) T) ((-451 . -341) 81439) ((-337 . -327) 81418) ((-331 . -327) 81397) ((-323 . -327) 81376) ((-294 . -450) 81355) ((-1157 . -23) T) ((-1136 . -23) T) ((-661 . -1032) T) ((-657 . -126) T) ((-599 . -97) T) ((-454 . -660) 81320) ((-44 . -261) 81270) ((-100 . -1020) T) ((-66 . -566) 81252) ((-800 . -97) T) ((-573 . -835) 81211) ((-1195 . -1020) T) ((-359 . -1020) T) ((-80 . -1127) T) ((-988 . -789) T) ((-887 . -789) 81190) ((-113 . -835) NIL) ((-724 . -855) 81169) ((-656 . -789) T) ((-497 . -1020) T) ((-473 . -1020) T) ((-333 . -1131) T) ((-330 . -1131) T) ((-322 . -1131) T) ((-243 . -1131) 81148) ((-227 . -1131) 81127) ((-1033 . -211) 81097) ((-457 . -789) 81076) ((-1058 . -983) 81060) ((-368 . -704) T) ((-1074 . -770) T) ((-636 . -1127) T) ((-333 . -517) T) ((-330 . -517) T) ((-322 . -517) T) ((-243 . -517) 80991) ((-227 . -517) 80922) ((-1058 . -107) 80901) ((-430 . -687) 80871) ((-801 . -983) 80841) ((-759 . -37) 80783) ((-636 . -819) 80765) ((-636 . -821) 80747) ((-274 . -288) 80551) ((-845 . -1131) T) ((-616 . -389) 80535) ((-801 . -107) 80500) ((-636 . -968) 80445) ((-936 . -429) T) ((-845 . -517) T) ((-538 . -855) T) ((-451 . -1032) T) ((-489 . -855) T) ((-1072 . -267) 80422) ((-849 . -429) T) ((-63 . -566) 80404) ((-581 . -209) 80350) ((-451 . -23) T) ((-1038 . -736) T) ((-807 . -126) T) ((-1038 . -733) T) ((-1186 . -1188) 80329) ((-1038 . -669) T) ((-600 . -594) 80303) ((-273 . -566) 80045) ((-966 . -33) T) ((-757 . -787) 80024) ((-537 . -286) T) ((-525 . -286) T) ((-468 . -286) T) ((-1195 . -660) 79994) ((-636 . -355) 79976) ((-636 . -316) 79958) ((-454 . -160) T) ((-359 . -660) 79928) ((-806 . -789) NIL) ((-525 . -953) T) ((-468 . -953) T) ((-1051 . -566) 79910) ((-1033 . -218) 79889) ((-195 . -97) T) ((-1066 . -97) T) ((-69 . -566) 79871) ((-1058 . -977) T) ((-1093 . -37) 79768) ((-797 . -566) 79750) ((-525 . -510) T) ((-616 . -984) T) ((-674 . -884) 79703) ((-1058 . -213) 79682) ((-1005 . -1020) T) ((-965 . -25) T) ((-965 . -21) T) ((-935 . -983) 79627) ((-840 . -97) T) ((-801 . -977) T) ((-636 . -835) NIL) ((-333 . -307) 79611) ((-333 . -341) T) ((-330 . -307) 79595) ((-330 . -341) T) ((-322 . -307) 79579) ((-322 . -341) T) ((-462 . -97) T) ((-1183 . -37) 79549) ((-494 . -630) 79499) ((-198 . -97) T) ((-955 . -968) 79381) ((-935 . -107) 79310) ((-1089 . -906) 79279) ((-1088 . -906) 79241) ((-491 . -142) 79225) ((-1003 . -348) 79204) ((-329 . -566) 79186) ((-300 . -21) T) ((-332 . -968) 79163) ((-300 . -25) T) ((-1082 . -906) 79132) ((-1044 . -906) 79099) ((-74 . -566) 79081) ((-641 . -286) T) ((-157 . -789) 79060) ((-845 . -341) T) ((-357 . -25) T) ((-357 . -21) T) ((-845 . -307) 79047) ((-84 . -566) 79029) ((-641 . -953) T) ((-621 . -789) T) ((-1157 . -126) T) ((-1136 . -126) T) ((-836 . -942) 79013) ((-776 . -21) T) ((-47 . -968) 78956) ((-776 . -25) T) ((-769 . -25) T) ((-769 . -21) T) ((-1193 . -984) T) ((-1191 . -984) T) ((-600 . -669) T) ((-1194 . -983) 78940) ((-1146 . -789) 78919) ((-757 . -389) 78888) ((-98 . -115) 78872) ((-125 . -1020) T) ((-51 . -1020) T) ((-861 . -566) 78854) ((-806 . -925) 78831) ((-765 . -97) T) ((-1194 . -107) 78810) ((-599 . -37) 78780) ((-532 . -789) T) ((-333 . -1032) T) ((-330 . -1032) T) ((-322 . -1032) T) ((-243 . -1032) T) ((-227 . -1032) T) ((-573 . -286) 78759) ((-1066 . -288) 78563) ((-610 . -23) T) ((-458 . -211) 78533) ((-143 . -984) T) ((-333 . -23) T) ((-330 . -23) T) ((-322 . -23) T) ((-113 . -286) T) ((-243 . -23) T) ((-227 . -23) T) ((-935 . -977) T) ((-655 . -844) 78512) ((-935 . -213) 78484) ((-935 . -223) T) ((-113 . -953) NIL) ((-845 . -1032) T) ((-1158 . -429) 78463) ((-1137 . -429) 78442) ((-494 . -566) 78374) ((-655 . -594) 78299) ((-385 . -983) 78251) ((-477 . -566) 78233) ((-845 . -23) T) ((-462 . -288) NIL) ((-451 . -126) T) ((-198 . -288) NIL) ((-385 . -107) 78171) ((-757 . -984) 78102) ((-680 . -1018) 78086) ((-1157 . -466) 78052) ((-1136 . -466) 78018) ((-454 . -269) T) ((-132 . -1018) 78000) ((-124 . -142) 77982) ((-1194 . -977) T) ((-989 . -97) T) ((-473 . -486) NIL) ((-645 . -97) T) ((-458 . -218) 77961) ((-1087 . -136) 77940) ((-1087 . -138) 77919) ((-1043 . -138) 77898) ((-1043 . -136) 77877) ((-584 . -983) 77861) ((-560 . -983) 77845) ((-616 . -1020) T) ((-616 . -980) 77785) ((-1089 . -1164) 77769) ((-1089 . -1151) 77746) ((-462 . -1067) T) ((-1088 . -1156) 77707) ((-1088 . -1151) 77677) ((-1088 . -1154) 77661) ((-198 . -1067) T) ((-321 . -855) T) ((-760 . -245) 77645) ((-584 . -107) 77624) ((-560 . -107) 77603) ((-1082 . -1135) 77564) ((-782 . -977) 77543) ((-1082 . -1151) 77520) ((-487 . -25) T) ((-468 . -281) T) ((-483 . -23) T) ((-482 . -25) T) ((-480 . -25) T) ((-479 . -23) T) ((-1082 . -1133) 77504) ((-385 . -977) T) ((-297 . -984) T) ((-636 . -286) T) ((-103 . -787) T) ((-385 . -223) T) ((-385 . -213) 77483) ((-655 . -669) T) ((-462 . -37) 77433) ((-198 . -37) 77383) ((-451 . -466) 77349) ((-1074 . -1060) T) ((-1021 . -97) T) ((-643 . -566) 77331) ((-643 . -567) 77246) ((-657 . -21) T) ((-657 . -25) T) ((-128 . -566) 77228) ((-112 . -566) 77210) ((-146 . -25) T) ((-1193 . -1020) T) ((-807 . -588) 77158) ((-1191 . -1020) T) ((-897 . -97) T) ((-678 . -97) T) ((-658 . -97) T) ((-430 . -97) T) ((-758 . -429) 77109) ((-43 . -1020) T) ((-1010 . -789) T) ((-610 . -126) T) ((-989 . -288) 76960) ((-616 . -660) 76944) ((-268 . -984) T) ((-333 . -126) T) ((-330 . -126) T) ((-322 . -126) T) ((-243 . -126) T) ((-227 . -126) T) ((-396 . -97) T) ((-143 . -1020) T) ((-44 . -209) 76894) ((-892 . -789) 76873) ((-931 . -594) 76811) ((-220 . -1180) 76781) ((-955 . -286) T) ((-273 . -983) 76703) ((-845 . -126) T) ((-39 . -855) T) ((-462 . -378) 76685) ((-332 . -286) T) ((-198 . -378) 76667) ((-1003 . -389) 76651) ((-273 . -107) 76568) ((-807 . -25) T) ((-807 . -21) T) ((-317 . -566) 76550) ((-1159 . -46) 76494) ((-205 . -138) T) ((-161 . -566) 76476) ((-1033 . -787) 76455) ((-716 . -566) 76437) ((-561 . -215) 76384) ((-452 . -215) 76334) ((-1193 . -660) 76304) ((-47 . -286) T) ((-1191 . -660) 76274) ((-898 . -1020) T) ((-757 . -1020) 76065) ((-290 . -97) T) ((-836 . -1127) T) ((-47 . -953) T) ((-1136 . -588) 75973) ((-632 . -97) 75951) ((-43 . -660) 75935) ((-511 . -97) T) ((-65 . -361) T) ((-65 . -373) T) ((-608 . -23) T) ((-616 . -704) T) ((-1125 . -1020) 75913) ((-329 . -983) 75858) ((-620 . -1020) 75836) ((-988 . -138) T) ((-887 . -138) 75815) ((-887 . -136) 75794) ((-741 . -97) T) ((-143 . -660) 75778) ((-457 . -138) 75757) ((-457 . -136) 75736) ((-329 . -107) 75665) ((-1003 . -984) T) ((-300 . -789) 75644) ((-1165 . -906) 75613) ((-576 . -1020) T) ((-1158 . -906) 75575) ((-483 . -126) T) ((-479 . -126) T) ((-274 . -209) 75525) ((-337 . -984) T) ((-331 . -984) T) ((-323 . -984) T) ((-273 . -977) 75468) ((-1137 . -906) 75437) ((-357 . -789) T) ((-103 . -984) T) ((-931 . -669) T) ((-805 . -855) T) ((-782 . -737) 75416) ((-782 . -734) 75395) ((-396 . -288) 75334) ((-445 . -97) T) ((-550 . -906) 75303) ((-297 . -1020) T) ((-385 . -737) 75282) ((-385 . -734) 75261) ((-473 . -464) 75243) ((-1159 . -968) 75209) ((-1157 . -21) T) ((-1157 . -25) T) ((-1136 . -21) T) ((-1136 . -25) T) ((-757 . -660) 75151) ((-641 . -382) T) ((-1184 . -1127) T) ((-1033 . -389) 75120) ((-935 . -346) NIL) ((-98 . -33) T) ((-680 . -1127) T) ((-43 . -704) T) ((-548 . -97) T) ((-75 . -374) T) ((-75 . -373) T) ((-599 . -602) 75104) ((-132 . -1127) T) ((-806 . -138) T) ((-806 . -136) NIL) ((-329 . -977) T) ((-68 . -361) T) ((-68 . -373) T) ((-1081 . -97) T) ((-616 . -486) 75037) ((-632 . -288) 74975) ((-897 . -37) 74872) ((-678 . -37) 74842) ((-511 . -288) 74646) ((-294 . -1127) T) ((-329 . -213) T) ((-329 . -223) T) ((-291 . -1127) T) ((-268 . -1020) T) ((-1095 . -566) 74628) ((-654 . -1131) T) ((-1072 . -597) 74612) ((-1122 . -517) 74591) ((-654 . -517) T) ((-294 . -819) 74575) ((-294 . -821) 74500) ((-291 . -819) 74461) ((-291 . -821) NIL) ((-741 . -288) 74426) ((-297 . -660) 74267) ((-302 . -301) 74244) ((-460 . -97) T) ((-451 . -25) T) ((-451 . -21) T) ((-396 . -37) 74218) ((-294 . -968) 73886) ((-205 . -1113) T) ((-205 . -1116) T) ((-3 . -566) 73868) ((-291 . -968) 73798) ((-2 . -1020) T) ((-2 . |RecordCategory|) T) ((-775 . -566) 73780) ((-1033 . -984) 73711) ((-537 . -855) T) ((-525 . -762) T) ((-525 . -855) T) ((-468 . -855) T) ((-130 . -968) 73695) ((-205 . -91) T) ((-73 . -418) T) ((-73 . -373) T) ((0 . -566) 73677) ((-157 . -138) 73656) ((-157 . -136) 73607) ((-205 . -34) T) ((-48 . -566) 73589) ((-454 . -984) T) ((-462 . -211) 73571) ((-459 . -902) 73555) ((-458 . -787) 73534) ((-198 . -211) 73516) ((-79 . -418) T) ((-79 . -373) T) ((-1062 . -33) T) ((-757 . -160) 73495) ((-674 . -97) T) ((-957 . -566) 73462) ((-473 . -265) 73437) ((-294 . -355) 73407) ((-291 . -355) 73368) ((-291 . -316) 73329) ((-1007 . -566) 73311) ((-758 . -884) 73258) ((-608 . -126) T) ((-1146 . -136) 73237) ((-1146 . -138) 73216) ((-1089 . -97) T) ((-1088 . -97) T) ((-1082 . -97) T) ((-1075 . -1020) T) ((-1044 . -97) T) ((-202 . -33) T) ((-268 . -660) 73203) ((-1075 . -563) 73179) ((-548 . -288) NIL) ((-459 . -1020) 73157) ((-368 . -566) 73139) ((-482 . -789) T) ((-1066 . -209) 73089) ((-1165 . -1164) 73073) ((-1165 . -1151) 73050) ((-1158 . -1156) 73011) ((-1158 . -1151) 72981) ((-1158 . -1154) 72965) ((-1137 . -1135) 72926) ((-1137 . -1151) 72903) ((-571 . -566) 72885) ((-1137 . -1133) 72869) ((-641 . -855) T) ((-1089 . -263) 72835) ((-1088 . -263) 72801) ((-1082 . -263) 72767) ((-1003 . -1020) T) ((-987 . -1020) T) ((-47 . -281) T) ((-294 . -835) 72734) ((-291 . -835) NIL) ((-987 . -993) 72713) ((-1038 . -821) 72695) ((-741 . -37) 72679) ((-243 . -588) 72627) ((-227 . -588) 72575) ((-643 . -983) 72562) ((-550 . -1151) 72539) ((-1044 . -263) 72505) ((-297 . -160) 72436) ((-337 . -1020) T) ((-331 . -1020) T) ((-323 . -1020) T) ((-473 . -19) 72418) ((-1038 . -968) 72400) ((-1022 . -142) 72384) ((-103 . -1020) T) ((-112 . -983) 72371) ((-654 . -341) T) ((-473 . -558) 72346) ((-643 . -107) 72331) ((-414 . -97) T) ((-44 . -1065) 72281) ((-112 . -107) 72266) ((-584 . -663) T) ((-560 . -663) T) ((-757 . -486) 72199) ((-966 . -1127) T) ((-878 . -142) 72183) ((-491 . -97) 72133) ((-1009 . -1131) 72112) ((-454 . -566) 72064) ((-454 . -567) 71986) ((-60 . -1127) T) ((-724 . -1131) 71965) ((-722 . -1131) 71944) ((-1087 . -429) 71875) ((-1074 . -1020) T) ((-1058 . -594) 71849) ((-1009 . -517) 71780) ((-458 . -389) 71749) ((-573 . -855) 71728) ((-431 . -1131) 71707) ((-1043 . -429) 71658) ((-376 . -566) 71640) ((-620 . -486) 71573) ((-724 . -517) 71484) ((-722 . -517) 71415) ((-674 . -288) 71402) ((-610 . -25) T) ((-610 . -21) T) ((-431 . -517) 71333) ((-113 . -855) T) ((-113 . -762) NIL) ((-333 . -25) T) ((-333 . -21) T) ((-330 . -25) T) ((-330 . -21) T) ((-322 . -25) T) ((-322 . -21) T) ((-243 . -25) T) ((-243 . -21) T) ((-81 . -362) T) ((-81 . -373) T) ((-227 . -25) T) ((-227 . -21) T) ((-1175 . -566) 71315) ((-1122 . -1032) T) ((-1122 . -23) T) ((-1082 . -288) 71200) ((-1044 . -288) 71187) ((-801 . -594) 71147) ((-1003 . -660) 71015) ((-878 . -913) 70999) ((-268 . -160) T) ((-845 . -21) T) ((-845 . -25) T) ((-807 . -789) 70950) ((-654 . -1032) T) ((-654 . -23) T) ((-593 . -1020) 70928) ((-581 . -563) 70903) ((-581 . -1020) T) ((-538 . -1131) T) ((-489 . -1131) T) ((-538 . -517) T) ((-489 . -517) T) ((-337 . -660) 70855) ((-331 . -660) 70807) ((-161 . -983) 70739) ((-317 . -983) 70723) ((-103 . -660) 70673) ((-161 . -107) 70584) ((-323 . -660) 70536) ((-317 . -107) 70515) ((-253 . -1020) T) ((-252 . -1020) T) ((-251 . -1020) T) ((-250 . -1020) T) ((-643 . -977) T) ((-249 . -1020) T) ((-248 . -1020) T) ((-247 . -1020) T) ((-194 . -1020) T) ((-193 . -1020) T) ((-191 . -1020) T) ((-157 . -1116) 70493) ((-157 . -1113) 70471) ((-190 . -1020) T) ((-189 . -1020) T) ((-112 . -977) T) ((-188 . -1020) T) ((-185 . -1020) T) ((-643 . -213) T) ((-184 . -1020) T) ((-183 . -1020) T) ((-182 . -1020) T) ((-181 . -1020) T) ((-180 . -1020) T) ((-179 . -1020) T) ((-178 . -1020) T) ((-177 . -1020) T) ((-176 . -1020) T) ((-175 . -1020) T) ((-220 . -97) 70262) ((-157 . -34) 70240) ((-157 . -91) 70218) ((-600 . -968) 70116) ((-458 . -984) 70047) ((-1033 . -1020) 69838) ((-1058 . -33) T) ((-616 . -464) 69822) ((-71 . -1127) T) ((-100 . -566) 69804) ((-1195 . -566) 69786) ((-359 . -566) 69768) ((-532 . -1116) T) ((-532 . -1113) T) ((-674 . -37) 69617) ((-497 . -566) 69599) ((-491 . -288) 69537) ((-473 . -566) 69519) ((-473 . -567) 69501) ((-1082 . -1067) NIL) ((-958 . -996) 69470) ((-958 . -1020) T) ((-936 . -97) T) ((-904 . -97) T) ((-849 . -97) T) ((-828 . -968) 69447) ((-1058 . -669) T) ((-935 . -594) 69392) ((-453 . -1020) T) ((-440 . -1020) T) ((-542 . -23) T) ((-532 . -34) T) ((-532 . -91) T) ((-405 . -97) T) ((-989 . -209) 69338) ((-124 . -97) T) ((-1089 . -37) 69235) ((-801 . -669) T) ((-636 . -855) T) ((-483 . -25) T) ((-479 . -21) T) ((-479 . -25) T) ((-1088 . -37) 69076) ((-317 . -977) T) ((-1082 . -37) 68872) ((-1003 . -160) T) ((-161 . -977) T) ((-1044 . -37) 68769) ((-655 . -46) 68746) ((-337 . -160) T) ((-331 . -160) T) ((-490 . -55) 68720) ((-470 . -55) 68670) ((-329 . -1190) 68647) ((-205 . -429) T) ((-297 . -269) 68598) ((-323 . -160) T) ((-161 . -223) T) ((-1136 . -789) 68497) ((-103 . -160) T) ((-807 . -925) 68481) ((-604 . -1032) T) ((-538 . -341) T) ((-538 . -307) 68468) ((-489 . -307) 68445) ((-489 . -341) T) ((-294 . -286) 68424) ((-291 . -286) T) ((-556 . -789) 68403) ((-1033 . -660) 68345) ((-491 . -261) 68329) ((-604 . -23) T) ((-396 . -211) 68313) ((-291 . -953) NIL) ((-314 . -23) T) ((-98 . -942) 68297) ((-44 . -35) 68276) ((-565 . -1020) T) ((-329 . -346) T) ((-468 . -27) T) ((-220 . -288) 68214) ((-1009 . -1032) T) ((-1194 . -594) 68188) ((-724 . -1032) T) ((-722 . -1032) T) ((-431 . -1032) T) ((-988 . -429) T) ((-887 . -429) 68139) ((-106 . -1020) T) ((-1009 . -23) T) ((-759 . -984) T) ((-724 . -23) T) ((-722 . -23) T) ((-457 . -429) 68090) ((-1075 . -486) 67873) ((-359 . -360) 67852) ((-1093 . -389) 67836) ((-438 . -23) T) ((-431 . -23) T) ((-459 . -486) 67769) ((-268 . -269) T) ((-1005 . -566) 67751) ((-385 . -844) 67730) ((-49 . -1032) T) ((-955 . -855) T) ((-935 . -669) T) ((-655 . -821) NIL) ((-538 . -1032) T) ((-489 . -1032) T) ((-782 . -594) 67703) ((-1122 . -126) T) ((-1082 . -378) 67655) ((-936 . -288) NIL) ((-757 . -464) 67639) ((-332 . -855) T) ((-1072 . -33) T) ((-385 . -594) 67591) ((-49 . -23) T) ((-654 . -126) T) ((-655 . -968) 67473) ((-538 . -23) T) ((-103 . -486) NIL) ((-489 . -23) T) ((-157 . -387) 67444) ((-124 . -288) NIL) ((-1056 . -1020) T) ((-1186 . -1185) 67428) ((-643 . -737) T) ((-643 . -734) T) ((-1038 . -286) T) ((-357 . -138) T) ((-259 . -566) 67410) ((-1136 . -925) 67380) ((-47 . -855) T) ((-620 . -464) 67364) ((-230 . -1180) 67334) ((-229 . -1180) 67304) ((-1091 . -789) T) ((-1033 . -160) 67283) ((-1038 . -953) T) ((-974 . -33) T) ((-776 . -138) 67262) ((-776 . -136) 67241) ((-680 . -102) 67225) ((-565 . -127) T) ((-458 . -1020) 67016) ((-1093 . -984) T) ((-806 . -429) T) ((-83 . -1127) T) ((-220 . -37) 66986) ((-132 . -102) 66968) ((-655 . -355) 66952) ((-1038 . -510) T) ((-368 . -983) 66936) ((-1194 . -669) T) ((-1087 . -884) 66905) ((-125 . -566) 66872) ((-51 . -566) 66854) ((-1043 . -884) 66821) ((-599 . -389) 66805) ((-1183 . -984) T) ((-571 . -983) 66789) ((-608 . -25) T) ((-608 . -21) T) ((-1074 . -486) NIL) ((-1165 . -97) T) ((-1158 . -97) T) ((-368 . -107) 66768) ((-202 . -233) 66752) ((-1137 . -97) T) ((-981 . -1020) T) ((-936 . -1067) T) ((-981 . -980) 66692) ((-760 . -1020) T) ((-321 . -1131) T) ((-584 . -594) 66676) ((-571 . -107) 66655) ((-560 . -594) 66639) ((-551 . -97) T) ((-542 . -126) T) ((-550 . -97) T) ((-392 . -1020) T) ((-363 . -1020) T) ((-207 . -1020) 66617) ((-593 . -486) 66550) ((-581 . -486) 66394) ((-775 . -977) 66373) ((-592 . -142) 66357) ((-321 . -517) T) ((-655 . -835) 66300) ((-511 . -209) 66250) ((-1165 . -263) 66216) ((-1003 . -269) 66167) ((-462 . -787) T) ((-203 . -1032) T) ((-1158 . -263) 66133) ((-1137 . -263) 66099) ((-936 . -37) 66049) ((-198 . -787) T) ((-1122 . -466) 66015) ((-849 . -37) 65967) ((-782 . -736) 65946) ((-782 . -733) 65925) ((-782 . -669) 65904) ((-337 . -269) T) ((-331 . -269) T) ((-323 . -269) T) ((-157 . -429) 65835) ((-405 . -37) 65819) ((-103 . -269) T) ((-203 . -23) T) ((-385 . -736) 65798) ((-385 . -733) 65777) ((-385 . -669) T) ((-473 . -267) 65752) ((-454 . -983) 65717) ((-604 . -126) T) ((-1033 . -486) 65650) ((-314 . -126) T) ((-157 . -380) 65629) ((-458 . -660) 65571) ((-757 . -265) 65548) ((-454 . -107) 65504) ((-599 . -984) T) ((-1146 . -429) 65435) ((-1009 . -126) T) ((-243 . -789) 65414) ((-227 . -789) 65393) ((-724 . -126) T) ((-722 . -126) T) ((-532 . -429) T) ((-981 . -660) 65335) ((-571 . -977) T) ((-958 . -486) 65268) ((-438 . -126) T) ((-431 . -126) T) ((-44 . -1020) T) ((-363 . -660) 65238) ((-759 . -1020) T) ((-453 . -486) 65171) ((-440 . -486) 65104) ((-430 . -345) 65074) ((-44 . -563) 65053) ((-294 . -281) T) ((-616 . -566) 65015) ((-57 . -789) 64994) ((-1137 . -288) 64879) ((-936 . -378) 64861) ((-757 . -558) 64838) ((-488 . -789) 64817) ((-469 . -789) 64796) ((-39 . -1131) T) ((-931 . -968) 64694) ((-49 . -126) T) ((-538 . -126) T) ((-489 . -126) T) ((-273 . -594) 64556) ((-321 . -307) 64533) ((-321 . -341) T) ((-300 . -301) 64510) ((-297 . -265) 64495) ((-39 . -517) T) ((-357 . -1113) T) ((-357 . -1116) T) ((-966 . -1104) 64470) ((-1101 . -215) 64420) ((-1082 . -211) 64372) ((-308 . -1020) T) ((-357 . -91) T) ((-357 . -34) T) ((-966 . -102) 64318) ((-454 . -977) T) ((-455 . -215) 64268) ((-1075 . -464) 64202) ((-1195 . -983) 64186) ((-359 . -983) 64170) ((-454 . -223) T) ((-758 . -97) T) ((-657 . -138) 64149) ((-657 . -136) 64128) ((-459 . -464) 64112) ((-460 . -313) 64081) ((-1195 . -107) 64060) ((-484 . -1020) T) ((-458 . -160) 64039) ((-931 . -355) 64023) ((-391 . -97) T) ((-359 . -107) 64002) ((-931 . -316) 63986) ((-258 . -916) 63970) ((-257 . -916) 63954) ((-1193 . -566) 63936) ((-1191 . -566) 63918) ((-106 . -486) NIL) ((-1087 . -1149) 63902) ((-793 . -791) 63886) ((-1093 . -1020) T) ((-98 . -1127) T) ((-887 . -884) 63847) ((-759 . -660) 63789) ((-1137 . -1067) NIL) ((-457 . -884) 63734) ((-988 . -134) T) ((-58 . -97) 63712) ((-43 . -566) 63694) ((-76 . -566) 63676) ((-329 . -594) 63621) ((-1183 . -1020) T) ((-483 . -789) T) ((-321 . -1032) T) ((-274 . -1020) T) ((-931 . -835) 63580) ((-274 . -563) 63559) ((-1165 . -37) 63456) ((-1158 . -37) 63297) ((-462 . -984) T) ((-1137 . -37) 63093) ((-198 . -984) T) ((-321 . -23) T) ((-143 . -566) 63075) ((-775 . -737) 63054) ((-775 . -734) 63033) ((-551 . -37) 63006) ((-550 . -37) 62903) ((-805 . -517) T) ((-203 . -126) T) ((-297 . -934) 62869) ((-77 . -566) 62851) ((-655 . -286) 62830) ((-273 . -669) 62733) ((-766 . -97) T) ((-800 . -783) T) ((-273 . -450) 62712) ((-1186 . -97) T) ((-39 . -341) T) ((-807 . -138) 62691) ((-807 . -136) 62670) ((-1074 . -464) 62652) ((-1195 . -977) T) ((-458 . -486) 62585) ((-1062 . -1127) T) ((-898 . -566) 62567) ((-593 . -464) 62551) ((-581 . -464) 62482) ((-757 . -566) 62214) ((-47 . -27) T) ((-1093 . -660) 62111) ((-599 . -1020) T) ((-414 . -342) 62085) ((-1022 . -97) T) ((-758 . -288) 62072) ((-800 . -1020) T) ((-1191 . -360) 62044) ((-981 . -486) 61977) ((-1075 . -265) 61953) ((-220 . -211) 61923) ((-1183 . -660) 61893) ((-759 . -160) 61872) ((-207 . -486) 61805) ((-571 . -737) 61784) ((-571 . -734) 61763) ((-1125 . -566) 61675) ((-202 . -1127) T) ((-620 . -566) 61607) ((-1072 . -942) 61591) ((-329 . -669) T) ((-878 . -97) 61541) ((-1137 . -378) 61493) ((-1033 . -464) 61477) ((-58 . -288) 61415) ((-309 . -97) T) ((-1122 . -21) T) ((-1122 . -25) T) ((-39 . -1032) T) ((-654 . -21) T) ((-576 . -566) 61397) ((-487 . -301) 61376) ((-654 . -25) T) ((-103 . -265) NIL) ((-856 . -1032) T) ((-39 . -23) T) ((-713 . -1032) T) ((-525 . -1131) T) ((-468 . -1131) T) ((-297 . -566) 61358) ((-936 . -211) 61340) ((-157 . -154) 61324) ((-537 . -517) T) ((-525 . -517) T) ((-468 . -517) T) ((-713 . -23) T) ((-1157 . -138) 61303) ((-1075 . -558) 61279) ((-1157 . -136) 61258) ((-958 . -464) 61242) ((-1136 . -136) 61167) ((-1136 . -138) 61092) ((-1186 . -1192) 61071) ((-453 . -464) 61055) ((-440 . -464) 61039) ((-494 . -33) T) ((-599 . -660) 61009) ((-108 . -901) T) ((-608 . -789) 60988) ((-1093 . -160) 60939) ((-343 . -97) T) ((-220 . -218) 60918) ((-230 . -97) T) ((-229 . -97) T) ((-1146 . -884) 60887) ((-105 . -97) T) ((-225 . -789) 60866) ((-758 . -37) 60715) ((-44 . -486) 60507) ((-1074 . -265) 60482) ((-195 . -1020) T) ((-1066 . -1020) T) ((-1066 . -563) 60461) ((-542 . -25) T) ((-542 . -21) T) ((-1022 . -288) 60399) ((-897 . -389) 60383) ((-641 . -1131) T) ((-581 . -265) 60358) ((-1009 . -588) 60306) ((-724 . -588) 60254) ((-722 . -588) 60202) ((-321 . -126) T) ((-268 . -566) 60184) ((-641 . -517) T) ((-840 . -1020) T) ((-805 . -1032) T) ((-431 . -588) 60132) ((-840 . -838) 60116) ((-357 . -429) T) ((-462 . -1020) T) ((-643 . -594) 60103) ((-878 . -288) 60041) ((-198 . -1020) T) ((-294 . -855) 60020) ((-291 . -855) T) ((-291 . -762) NIL) ((-368 . -663) T) ((-805 . -23) T) ((-112 . -594) 60007) ((-451 . -136) 59986) ((-396 . -389) 59970) ((-451 . -138) 59949) ((-106 . -464) 59931) ((-2 . -566) 59913) ((-1074 . -19) 59895) ((-1074 . -558) 59870) ((-604 . -21) T) ((-604 . -25) T) ((-548 . -1060) T) ((-1033 . -265) 59847) ((-314 . -25) T) ((-314 . -21) T) ((-468 . -341) T) ((-1186 . -37) 59817) ((-1058 . -1127) T) ((-581 . -558) 59792) ((-1009 . -25) T) ((-1009 . -21) T) ((-497 . -734) T) ((-497 . -737) T) ((-113 . -1131) T) ((-897 . -984) T) ((-573 . -517) T) ((-678 . -984) T) ((-658 . -984) T) ((-724 . -25) T) ((-724 . -21) T) ((-722 . -21) T) ((-722 . -25) T) ((-616 . -983) 59776) ((-438 . -25) T) ((-113 . -517) T) ((-438 . -21) T) ((-431 . -25) T) ((-431 . -21) T) ((-1058 . -968) 59674) ((-759 . -269) 59653) ((-765 . -1020) T) ((-900 . -901) T) ((-616 . -107) 59632) ((-274 . -486) 59424) ((-1193 . -983) 59408) ((-1191 . -983) 59392) ((-230 . -288) 59330) ((-229 . -288) 59268) ((-1140 . -97) 59246) ((-1075 . -567) NIL) ((-1075 . -566) 59228) ((-1157 . -1113) 59194) ((-1157 . -1116) 59160) ((-1137 . -211) 59112) ((-1136 . -1113) 59078) ((-1136 . -1116) 59044) ((-1058 . -355) 59028) ((-1038 . -762) T) ((-1038 . -855) T) ((-1033 . -558) 59005) ((-1003 . -567) 58989) ((-459 . -566) 58921) ((-757 . -267) 58898) ((-561 . -142) 58845) ((-396 . -984) T) ((-462 . -660) 58795) ((-458 . -464) 58779) ((-305 . -789) 58758) ((-317 . -594) 58732) ((-49 . -21) T) ((-49 . -25) T) ((-198 . -660) 58682) ((-157 . -667) 58653) ((-161 . -594) 58585) ((-538 . -21) T) ((-538 . -25) T) ((-489 . -25) T) ((-489 . -21) T) ((-452 . -142) 58535) ((-1003 . -566) 58517) ((-987 . -566) 58499) ((-926 . -97) T) ((-798 . -97) T) ((-741 . -389) 58463) ((-39 . -126) T) ((-641 . -341) T) ((-194 . -830) T) ((-643 . -736) T) ((-643 . -733) T) ((-537 . -1032) T) ((-525 . -1032) T) ((-468 . -1032) T) ((-643 . -669) T) ((-337 . -566) 58445) ((-331 . -566) 58427) ((-323 . -566) 58409) ((-64 . -374) T) ((-64 . -373) T) ((-103 . -567) 58339) ((-103 . -566) 58321) ((-193 . -830) T) ((-892 . -142) 58305) ((-1157 . -91) 58271) ((-713 . -126) T) ((-128 . -669) T) ((-112 . -669) T) ((-1157 . -34) 58237) ((-981 . -464) 58221) ((-537 . -23) T) ((-525 . -23) T) ((-468 . -23) T) ((-1136 . -91) 58187) ((-1136 . -34) 58153) ((-1087 . -97) T) ((-1043 . -97) T) ((-793 . -97) T) ((-207 . -464) 58137) ((-1193 . -107) 58116) ((-1191 . -107) 58095) ((-43 . -983) 58079) ((-1146 . -1149) 58063) ((-794 . -791) 58047) ((-1093 . -269) 58026) ((-106 . -265) 58001) ((-1058 . -835) 57960) ((-43 . -107) 57939) ((-616 . -977) T) ((-1096 . -1168) T) ((-1074 . -567) NIL) ((-1074 . -566) 57921) ((-989 . -563) 57896) ((-989 . -1020) T) ((-72 . -418) T) ((-72 . -373) T) ((-616 . -213) 57875) ((-143 . -983) 57859) ((-532 . -515) 57843) ((-333 . -138) 57822) ((-333 . -136) 57773) ((-330 . -138) 57752) ((-645 . -1020) T) ((-330 . -136) 57703) ((-322 . -138) 57682) ((-322 . -136) 57633) ((-243 . -136) 57612) ((-243 . -138) 57591) ((-230 . -37) 57561) ((-227 . -138) 57540) ((-113 . -341) T) ((-227 . -136) 57519) ((-229 . -37) 57489) ((-143 . -107) 57468) ((-935 . -968) 57358) ((-1082 . -787) NIL) ((-636 . -1131) T) ((-741 . -984) T) ((-641 . -1032) T) ((-1193 . -977) T) ((-1191 . -977) T) ((-1072 . -1127) T) ((-935 . -355) 57335) ((-845 . -136) T) ((-845 . -138) 57317) ((-805 . -126) T) ((-757 . -983) 57215) ((-636 . -517) T) ((-641 . -23) T) ((-593 . -566) 57147) ((-593 . -567) 57108) ((-581 . -567) NIL) ((-581 . -566) 57090) ((-462 . -160) T) ((-203 . -21) T) ((-198 . -160) T) ((-203 . -25) T) ((-451 . -1116) 57056) ((-451 . -1113) 57022) ((-253 . -566) 57004) ((-252 . -566) 56986) ((-251 . -566) 56968) ((-250 . -566) 56950) ((-249 . -566) 56932) ((-473 . -597) 56914) ((-248 . -566) 56896) ((-317 . -669) T) ((-247 . -566) 56878) ((-106 . -19) 56860) ((-161 . -669) T) ((-473 . -351) 56842) ((-194 . -566) 56824) ((-491 . -1065) 56808) ((-473 . -119) T) ((-106 . -558) 56783) ((-193 . -566) 56765) ((-451 . -34) 56731) ((-451 . -91) 56697) ((-191 . -566) 56679) ((-190 . -566) 56661) ((-189 . -566) 56643) ((-188 . -566) 56625) ((-185 . -566) 56607) ((-184 . -566) 56589) ((-183 . -566) 56571) ((-182 . -566) 56553) ((-181 . -566) 56535) ((-180 . -566) 56517) ((-179 . -566) 56499) ((-501 . -1023) 56451) ((-178 . -566) 56433) ((-177 . -566) 56415) ((-44 . -464) 56352) ((-176 . -566) 56334) ((-175 . -566) 56316) ((-757 . -107) 56207) ((-592 . -97) 56157) ((-458 . -265) 56134) ((-1033 . -566) 55866) ((-1021 . -1020) T) ((-974 . -1127) T) ((-573 . -1032) T) ((-1194 . -968) 55850) ((-1087 . -288) 55837) ((-1043 . -288) 55824) ((-113 . -1032) T) ((-761 . -97) T) ((-573 . -23) T) ((-1066 . -486) 55616) ((-364 . -97) T) ((-302 . -97) T) ((-935 . -835) 55568) ((-897 . -1020) T) ((-143 . -977) T) ((-113 . -23) T) ((-674 . -389) 55552) ((-678 . -1020) T) ((-658 . -1020) T) ((-645 . -127) T) ((-430 . -1020) T) ((-294 . -408) 55536) ((-385 . -1127) T) ((-958 . -567) 55497) ((-955 . -1131) T) ((-205 . -97) T) ((-958 . -566) 55459) ((-758 . -211) 55443) ((-955 . -517) T) ((-775 . -594) 55416) ((-332 . -1131) T) ((-453 . -566) 55378) ((-453 . -567) 55339) ((-440 . -567) 55300) ((-440 . -566) 55262) ((-385 . -819) 55246) ((-297 . -983) 55081) ((-385 . -821) 55006) ((-782 . -968) 54904) ((-462 . -486) NIL) ((-458 . -558) 54881) ((-332 . -517) T) ((-198 . -486) NIL) ((-807 . -429) T) ((-396 . -1020) T) ((-385 . -968) 54748) ((-297 . -107) 54569) ((-636 . -341) T) ((-205 . -263) T) ((-47 . -1131) T) ((-757 . -977) 54500) ((-537 . -126) T) ((-525 . -126) T) ((-468 . -126) T) ((-47 . -517) T) ((-1075 . -267) 54476) ((-1087 . -1067) 54454) ((-294 . -27) 54433) ((-988 . -97) T) ((-757 . -213) 54386) ((-220 . -787) 54365) ((-887 . -97) T) ((-656 . -97) T) ((-274 . -464) 54302) ((-457 . -97) T) ((-674 . -984) T) ((-565 . -566) 54284) ((-565 . -567) 54145) ((-385 . -355) 54129) ((-385 . -316) 54113) ((-1087 . -37) 53942) ((-1043 . -37) 53791) ((-793 . -37) 53761) ((-368 . -594) 53745) ((-592 . -288) 53683) ((-897 . -660) 53580) ((-202 . -102) 53564) ((-44 . -265) 53489) ((-678 . -660) 53459) ((-571 . -594) 53433) ((-290 . -1020) T) ((-268 . -983) 53420) ((-106 . -566) 53402) ((-106 . -567) 53384) ((-430 . -660) 53354) ((-758 . -232) 53293) ((-632 . -1020) 53271) ((-511 . -1020) T) ((-1089 . -984) T) ((-1088 . -984) T) ((-268 . -107) 53256) ((-1082 . -984) T) ((-1044 . -984) T) ((-511 . -563) 53235) ((-936 . -787) T) ((-207 . -630) 53193) ((-636 . -1032) T) ((-1122 . -683) 53169) ((-297 . -977) T) ((-321 . -25) T) ((-321 . -21) T) ((-385 . -835) 53128) ((-66 . -1127) T) ((-775 . -736) 53107) ((-396 . -660) 53081) ((-741 . -1020) T) ((-775 . -733) 53060) ((-641 . -126) T) ((-655 . -855) 53039) ((-636 . -23) T) ((-462 . -269) T) ((-775 . -669) 53018) ((-297 . -213) 52970) ((-297 . -223) 52949) ((-198 . -269) T) ((-955 . -341) T) ((-1157 . -429) 52928) ((-1136 . -429) 52907) ((-332 . -307) 52884) ((-332 . -341) T) ((-1056 . -566) 52866) ((-44 . -1161) 52816) ((-806 . -97) T) ((-592 . -261) 52800) ((-641 . -986) T) ((-454 . -594) 52765) ((-445 . -1020) T) ((-44 . -558) 52690) ((-1074 . -267) 52665) ((-39 . -588) 52604) ((-47 . -341) T) ((-1026 . -566) 52586) ((-1009 . -789) 52565) ((-581 . -267) 52540) ((-724 . -789) 52519) ((-722 . -789) 52498) ((-458 . -566) 52230) ((-220 . -389) 52199) ((-887 . -288) 52186) ((-431 . -789) 52165) ((-63 . -1127) T) ((-573 . -126) T) ((-457 . -288) 52152) ((-989 . -486) 51996) ((-268 . -977) T) ((-113 . -126) T) ((-430 . -704) T) ((-897 . -160) 51947) ((-1003 . -983) 51857) ((-571 . -736) 51836) ((-548 . -1020) T) ((-571 . -733) 51815) ((-571 . -669) T) ((-274 . -265) 51794) ((-273 . -1127) T) ((-981 . -566) 51756) ((-981 . -567) 51717) ((-955 . -1032) T) ((-157 . -97) T) ((-254 . -789) T) ((-1081 . -1020) T) ((-760 . -566) 51699) ((-1033 . -267) 51676) ((-1022 . -209) 51660) ((-935 . -286) T) ((-741 . -660) 51644) ((-337 . -983) 51596) ((-332 . -1032) T) ((-331 . -983) 51548) ((-392 . -566) 51530) ((-363 . -566) 51512) ((-323 . -983) 51464) ((-207 . -566) 51396) ((-1003 . -107) 51292) ((-955 . -23) T) ((-103 . -983) 51242) ((-833 . -97) T) ((-780 . -97) T) ((-750 . -97) T) ((-711 . -97) T) ((-621 . -97) T) ((-451 . -429) 51221) ((-396 . -160) T) ((-337 . -107) 51159) ((-331 . -107) 51097) ((-323 . -107) 51035) ((-230 . -211) 51005) ((-229 . -211) 50975) ((-332 . -23) T) ((-69 . -1127) T) ((-205 . -37) 50940) ((-103 . -107) 50874) ((-39 . -25) T) ((-39 . -21) T) ((-616 . -663) T) ((-157 . -263) 50852) ((-47 . -1032) T) ((-856 . -25) T) ((-713 . -25) T) ((-1066 . -464) 50789) ((-460 . -1020) T) ((-1195 . -594) 50763) ((-1146 . -97) T) ((-794 . -97) T) ((-220 . -984) 50694) ((-988 . -1067) T) ((-898 . -734) 50647) ((-359 . -594) 50631) ((-47 . -23) T) ((-898 . -737) 50584) ((-757 . -737) 50535) ((-757 . -734) 50486) ((-274 . -558) 50465) ((-454 . -669) T) ((-532 . -97) T) ((-806 . -288) 50422) ((-599 . -265) 50401) ((-108 . -607) T) ((-74 . -1127) T) ((-988 . -37) 50388) ((-610 . -352) 50367) ((-887 . -37) 50216) ((-674 . -1020) T) ((-457 . -37) 50065) ((-84 . -1127) T) ((-532 . -263) T) ((-1137 . -787) NIL) ((-1089 . -1020) T) ((-1088 . -1020) T) ((-1082 . -1020) T) ((-329 . -968) 50042) ((-1003 . -977) T) ((-936 . -984) T) ((-44 . -566) 50024) ((-44 . -567) NIL) ((-849 . -984) T) ((-759 . -566) 50006) ((-1063 . -97) 49984) ((-1003 . -223) 49935) ((-405 . -984) T) ((-337 . -977) T) ((-331 . -977) T) ((-343 . -342) 49912) ((-323 . -977) T) ((-230 . -218) 49891) ((-229 . -218) 49870) ((-105 . -342) 49844) ((-1003 . -213) 49769) ((-1044 . -1020) T) ((-273 . -835) 49728) ((-103 . -977) T) ((-636 . -126) T) ((-396 . -486) 49570) ((-337 . -213) 49549) ((-337 . -223) T) ((-43 . -663) T) ((-331 . -213) 49528) ((-331 . -223) T) ((-323 . -213) 49507) ((-323 . -223) T) ((-157 . -288) 49472) ((-103 . -223) T) ((-103 . -213) T) ((-297 . -734) T) ((-805 . -21) T) ((-805 . -25) T) ((-385 . -286) T) ((-473 . -33) T) ((-106 . -267) 49447) ((-1033 . -983) 49345) ((-806 . -1067) NIL) ((-308 . -566) 49327) ((-385 . -953) 49306) ((-1033 . -107) 49197) ((-414 . -1020) T) ((-1195 . -669) T) ((-61 . -566) 49179) ((-806 . -37) 49124) ((-494 . -1127) T) ((-556 . -142) 49108) ((-484 . -566) 49090) ((-1146 . -288) 49077) ((-674 . -660) 48926) ((-497 . -735) T) ((-497 . -736) T) ((-525 . -588) 48908) ((-468 . -588) 48868) ((-333 . -429) T) ((-330 . -429) T) ((-322 . -429) T) ((-243 . -429) 48819) ((-491 . -1020) 48769) ((-227 . -429) 48720) ((-1066 . -265) 48699) ((-1093 . -566) 48681) ((-632 . -486) 48614) ((-897 . -269) 48593) ((-511 . -486) 48385) ((-1087 . -211) 48369) ((-157 . -1067) 48348) ((-1183 . -566) 48330) ((-1089 . -660) 48227) ((-1088 . -660) 48068) ((-827 . -97) T) ((-1082 . -660) 47864) ((-1044 . -660) 47761) ((-1072 . -619) 47745) ((-333 . -380) 47696) ((-330 . -380) 47647) ((-322 . -380) 47598) ((-955 . -126) T) ((-741 . -486) 47510) ((-274 . -567) NIL) ((-274 . -566) 47492) ((-845 . -429) T) ((-898 . -346) 47445) ((-757 . -346) 47424) ((-482 . -481) 47403) ((-480 . -481) 47382) ((-462 . -265) NIL) ((-458 . -267) 47359) ((-396 . -269) T) ((-332 . -126) T) ((-198 . -265) NIL) ((-636 . -466) NIL) ((-94 . -1032) T) ((-157 . -37) 47187) ((-1157 . -906) 47149) ((-1063 . -288) 47087) ((-1136 . -906) 47056) ((-845 . -380) T) ((-1033 . -977) 46987) ((-1159 . -517) T) ((-1066 . -558) 46966) ((-108 . -789) T) ((-989 . -464) 46897) ((-537 . -21) T) ((-537 . -25) T) ((-525 . -21) T) ((-525 . -25) T) ((-468 . -25) T) ((-468 . -21) T) ((-1146 . -1067) 46875) ((-1033 . -213) 46828) ((-47 . -126) T) ((-1109 . -97) T) ((-220 . -1020) 46619) ((-806 . -378) 46596) ((-1010 . -97) T) ((-999 . -97) T) ((-561 . -97) T) ((-452 . -97) T) ((-1146 . -37) 46425) ((-794 . -37) 46395) ((-674 . -160) 46306) ((-599 . -566) 46288) ((-532 . -37) 46275) ((-892 . -97) 46225) ((-800 . -566) 46207) ((-800 . -567) 46129) ((-548 . -486) NIL) ((-1165 . -984) T) ((-1158 . -984) T) ((-1137 . -984) T) ((-551 . -984) T) ((-550 . -984) T) ((-1199 . -1032) T) ((-1089 . -160) 46080) ((-1088 . -160) 46011) ((-1082 . -160) 45942) ((-1044 . -160) 45893) ((-936 . -1020) T) ((-904 . -1020) T) ((-849 . -1020) T) ((-1122 . -138) 45872) ((-741 . -739) 45856) ((-641 . -25) T) ((-641 . -21) T) ((-113 . -588) 45833) ((-643 . -821) 45815) ((-405 . -1020) T) ((-294 . -1131) 45794) ((-291 . -1131) T) ((-157 . -378) 45778) ((-1122 . -136) 45757) ((-451 . -906) 45719) ((-124 . -1020) T) ((-70 . -566) 45701) ((-103 . -737) T) ((-103 . -734) T) ((-294 . -517) 45680) ((-643 . -968) 45662) ((-291 . -517) T) ((-1199 . -23) T) ((-128 . -968) 45644) ((-458 . -983) 45542) ((-44 . -267) 45467) ((-220 . -660) 45409) ((-458 . -107) 45300) ((-1013 . -97) 45278) ((-965 . -97) T) ((-592 . -770) 45257) ((-674 . -486) 45200) ((-981 . -983) 45184) ((-573 . -21) T) ((-573 . -25) T) ((-989 . -265) 45159) ((-339 . -97) T) ((-300 . -97) T) ((-616 . -594) 45133) ((-363 . -983) 45117) ((-981 . -107) 45096) ((-758 . -389) 45080) ((-113 . -25) T) ((-87 . -566) 45062) ((-113 . -21) T) ((-561 . -288) 44857) ((-452 . -288) 44661) ((-1066 . -567) NIL) ((-363 . -107) 44640) ((-357 . -97) T) ((-195 . -566) 44622) ((-1066 . -566) 44604) ((-936 . -660) 44554) ((-1082 . -486) 44323) ((-849 . -660) 44275) ((-1044 . -486) 44245) ((-329 . -286) T) ((-1101 . -142) 44195) ((-892 . -288) 44133) ((-776 . -97) T) ((-405 . -660) 44117) ((-205 . -770) T) ((-769 . -97) T) ((-767 . -97) T) ((-455 . -142) 44067) ((-1157 . -1156) 44046) ((-1038 . -1131) T) ((-317 . -968) 44013) ((-1157 . -1151) 43983) ((-1157 . -1154) 43967) ((-1136 . -1135) 43946) ((-78 . -566) 43928) ((-840 . -566) 43910) ((-1136 . -1151) 43887) ((-1038 . -517) T) ((-856 . -789) T) ((-462 . -567) 43817) ((-462 . -566) 43799) ((-713 . -789) T) ((-357 . -263) T) ((-617 . -789) T) ((-1136 . -1133) 43783) ((-1159 . -1032) T) ((-198 . -567) 43713) ((-198 . -566) 43695) ((-989 . -558) 43670) ((-57 . -142) 43654) ((-488 . -142) 43638) ((-469 . -142) 43622) ((-337 . -1190) 43606) ((-331 . -1190) 43590) ((-323 . -1190) 43574) ((-294 . -341) 43553) ((-291 . -341) T) ((-458 . -977) 43484) ((-636 . -588) 43466) ((-1193 . -594) 43440) ((-1191 . -594) 43414) ((-1159 . -23) T) ((-632 . -464) 43398) ((-62 . -566) 43380) ((-1033 . -737) 43331) ((-1033 . -734) 43282) ((-511 . -464) 43219) ((-616 . -33) T) ((-458 . -213) 43172) ((-274 . -267) 43151) ((-220 . -160) 43130) ((-758 . -984) T) ((-43 . -594) 43088) ((-1003 . -346) 43039) ((-674 . -269) 42970) ((-491 . -486) 42903) ((-759 . -983) 42854) ((-1009 . -136) 42833) ((-337 . -346) 42812) ((-331 . -346) 42791) ((-323 . -346) 42770) ((-1009 . -138) 42749) ((-806 . -211) 42726) ((-759 . -107) 42668) ((-724 . -136) 42647) ((-724 . -138) 42626) ((-243 . -884) 42593) ((-230 . -787) 42572) ((-227 . -884) 42517) ((-229 . -787) 42496) ((-722 . -136) 42475) ((-722 . -138) 42454) ((-143 . -594) 42428) ((-431 . -138) 42407) ((-431 . -136) 42386) ((-616 . -669) T) ((-765 . -566) 42368) ((-1165 . -1020) T) ((-1158 . -1020) T) ((-1137 . -1020) T) ((-1122 . -1116) 42334) ((-1122 . -1113) 42300) ((-1089 . -269) 42279) ((-1088 . -269) 42230) ((-1082 . -269) 42181) ((-1044 . -269) 42160) ((-317 . -835) 42141) ((-936 . -160) T) ((-849 . -160) T) ((-551 . -1020) T) ((-550 . -1020) T) ((-636 . -21) T) ((-636 . -25) T) ((-451 . -1154) 42125) ((-451 . -1151) 42095) ((-396 . -265) 42023) ((-294 . -1032) 41873) ((-291 . -1032) T) ((-1122 . -34) 41839) ((-1122 . -91) 41805) ((-82 . -566) 41787) ((-89 . -97) 41765) ((-1199 . -126) T) ((-538 . -136) T) ((-538 . -138) 41747) ((-489 . -138) 41729) ((-489 . -136) T) ((-294 . -23) 41582) ((-39 . -320) 41556) ((-291 . -23) T) ((-1074 . -597) 41538) ((-757 . -594) 41388) ((-1186 . -984) T) ((-1074 . -351) 41370) ((-157 . -211) 41354) ((-548 . -464) 41336) ((-220 . -486) 41269) ((-1193 . -669) T) ((-1191 . -669) T) ((-1093 . -983) 41152) ((-1093 . -107) 41021) ((-759 . -977) T) ((-487 . -97) T) ((-47 . -588) 40981) ((-482 . -97) T) ((-480 . -97) T) ((-1183 . -983) 40951) ((-965 . -37) 40935) ((-759 . -213) T) ((-759 . -223) 40914) ((-511 . -265) 40893) ((-1183 . -107) 40858) ((-1146 . -211) 40842) ((-1165 . -660) 40739) ((-989 . -567) NIL) ((-989 . -566) 40721) ((-1158 . -660) 40562) ((-1137 . -660) 40358) ((-935 . -855) T) ((-645 . -566) 40327) ((-143 . -669) T) ((-1033 . -346) 40306) ((-936 . -486) NIL) ((-230 . -389) 40275) ((-229 . -389) 40244) ((-955 . -25) T) ((-955 . -21) T) ((-551 . -660) 40217) ((-550 . -660) 40114) ((-741 . -265) 40072) ((-122 . -97) 40050) ((-775 . -968) 39948) ((-157 . -770) 39927) ((-297 . -594) 39824) ((-757 . -33) T) ((-657 . -97) T) ((-1038 . -1032) T) ((-124 . -486) NIL) ((-957 . -1127) T) ((-357 . -37) 39789) ((-332 . -25) T) ((-332 . -21) T) ((-150 . -97) T) ((-146 . -97) T) ((-333 . -1180) 39773) ((-330 . -1180) 39757) ((-322 . -1180) 39741) ((-157 . -327) 39720) ((-525 . -789) T) ((-468 . -789) T) ((-1038 . -23) T) ((-85 . -566) 39702) ((-643 . -286) T) ((-776 . -37) 39672) ((-769 . -37) 39642) ((-1159 . -126) T) ((-1066 . -267) 39621) ((-898 . -735) 39574) ((-898 . -736) 39527) ((-757 . -733) 39506) ((-112 . -286) T) ((-89 . -288) 39444) ((-620 . -33) T) ((-511 . -558) 39423) ((-47 . -25) T) ((-47 . -21) T) ((-757 . -736) 39374) ((-757 . -735) 39353) ((-643 . -953) T) ((-599 . -983) 39337) ((-898 . -669) 39236) ((-757 . -669) 39147) ((-898 . -450) 39100) ((-458 . -737) 39051) ((-458 . -734) 39002) ((-845 . -1180) 38989) ((-1093 . -977) T) ((-599 . -107) 38968) ((-1093 . -304) 38945) ((-1114 . -97) 38923) ((-1021 . -566) 38905) ((-643 . -510) T) ((-758 . -1020) T) ((-1183 . -977) T) ((-391 . -1020) T) ((-230 . -984) 38836) ((-229 . -984) 38767) ((-268 . -594) 38754) ((-548 . -265) 38729) ((-632 . -630) 38687) ((-897 . -566) 38669) ((-807 . -97) T) ((-678 . -566) 38651) ((-658 . -566) 38633) ((-1165 . -160) 38584) ((-1158 . -160) 38515) ((-1137 . -160) 38446) ((-641 . -789) T) ((-936 . -269) T) ((-430 . -566) 38428) ((-576 . -669) T) ((-58 . -1020) 38406) ((-225 . -142) 38390) ((-849 . -269) T) ((-955 . -944) T) ((-576 . -450) T) ((-655 . -1131) 38369) ((-551 . -160) 38348) ((-550 . -160) 38299) ((-1173 . -789) 38278) ((-655 . -517) 38189) ((-385 . -855) T) ((-385 . -762) 38168) ((-297 . -736) T) ((-297 . -669) T) ((-396 . -566) 38150) ((-396 . -567) 38058) ((-592 . -1065) 38042) ((-106 . -597) 38024) ((-122 . -288) 37962) ((-106 . -351) 37944) ((-161 . -286) T) ((-376 . -1127) T) ((-294 . -126) 37816) ((-291 . -126) T) ((-67 . -373) T) ((-106 . -119) T) ((-491 . -464) 37800) ((-600 . -1032) T) ((-548 . -19) 37782) ((-59 . -418) T) ((-59 . -373) T) ((-766 . -1020) T) ((-548 . -558) 37757) ((-454 . -968) 37717) ((-599 . -977) T) ((-600 . -23) T) ((-1186 . -1020) T) ((-758 . -660) 37566) ((-113 . -789) NIL) ((-1087 . -389) 37550) ((-1043 . -389) 37534) ((-793 . -389) 37518) ((-808 . -97) 37469) ((-1157 . -97) T) ((-1137 . -486) 37238) ((-1114 . -288) 37176) ((-290 . -566) 37158) ((-1136 . -97) T) ((-1022 . -1020) T) ((-1089 . -265) 37143) ((-1088 . -265) 37128) ((-268 . -669) T) ((-103 . -844) NIL) ((-632 . -566) 37060) ((-632 . -567) 37021) ((-1003 . -594) 36931) ((-555 . -566) 36913) ((-511 . -567) NIL) ((-511 . -566) 36895) ((-1082 . -265) 36743) ((-462 . -983) 36693) ((-654 . -429) T) ((-483 . -481) 36672) ((-479 . -481) 36651) ((-198 . -983) 36601) ((-337 . -594) 36553) ((-331 . -594) 36505) ((-205 . -787) T) ((-323 . -594) 36457) ((-556 . -97) 36407) ((-458 . -346) 36386) ((-103 . -594) 36336) ((-462 . -107) 36270) ((-220 . -464) 36254) ((-321 . -138) 36236) ((-321 . -136) T) ((-157 . -348) 36207) ((-878 . -1171) 36191) ((-198 . -107) 36125) ((-807 . -288) 36090) ((-878 . -1020) 36040) ((-741 . -567) 36001) ((-741 . -566) 35983) ((-661 . -97) T) ((-309 . -1020) T) ((-1038 . -126) T) ((-657 . -37) 35953) ((-294 . -466) 35932) ((-473 . -1127) T) ((-1157 . -263) 35898) ((-1136 . -263) 35864) ((-305 . -142) 35848) ((-989 . -267) 35823) ((-1186 . -660) 35793) ((-1075 . -33) T) ((-1195 . -968) 35770) ((-445 . -566) 35752) ((-459 . -33) T) ((-359 . -968) 35736) ((-1087 . -984) T) ((-1043 . -984) T) ((-793 . -984) T) ((-988 . -787) T) ((-758 . -160) 35647) ((-491 . -265) 35624) ((-124 . -464) 35606) ((-113 . -925) 35583) ((-1165 . -269) 35562) ((-1109 . -342) 35536) ((-1010 . -245) 35520) ((-451 . -97) T) ((-343 . -1020) T) ((-230 . -1020) T) ((-229 . -1020) T) ((-1158 . -269) 35471) ((-105 . -1020) T) ((-1137 . -269) 35422) ((-807 . -1067) 35400) ((-1089 . -934) 35366) ((-561 . -342) 35306) ((-1088 . -934) 35272) ((-561 . -209) 35219) ((-548 . -566) 35201) ((-548 . -567) NIL) ((-636 . -789) T) ((-452 . -209) 35151) ((-462 . -977) T) ((-1082 . -934) 35117) ((-86 . -417) T) ((-86 . -373) T) ((-198 . -977) T) ((-1044 . -934) 35083) ((-1003 . -669) T) ((-655 . -1032) T) ((-551 . -269) 35062) ((-550 . -269) 35041) ((-462 . -223) T) ((-462 . -213) T) ((-198 . -223) T) ((-198 . -213) T) ((-1081 . -566) 35023) ((-807 . -37) 34975) ((-337 . -669) T) ((-331 . -669) T) ((-323 . -669) T) ((-103 . -736) T) ((-103 . -733) T) ((-491 . -1161) 34959) ((-103 . -669) T) ((-655 . -23) T) ((-1199 . -25) T) ((-451 . -263) 34925) ((-1199 . -21) T) ((-1136 . -288) 34864) ((-1091 . -97) T) ((-39 . -136) 34836) ((-39 . -138) 34808) ((-491 . -558) 34785) ((-1033 . -594) 34635) ((-556 . -288) 34573) ((-44 . -597) 34523) ((-44 . -612) 34473) ((-44 . -351) 34423) ((-1074 . -33) T) ((-806 . -787) NIL) ((-600 . -126) T) ((-460 . -566) 34405) ((-220 . -265) 34382) ((-593 . -33) T) ((-581 . -33) T) ((-1009 . -429) 34333) ((-758 . -486) 34207) ((-724 . -429) 34138) ((-722 . -429) 34089) ((-431 . -429) 34040) ((-887 . -389) 34024) ((-674 . -566) 34006) ((-230 . -660) 33948) ((-229 . -660) 33890) ((-674 . -567) 33751) ((-457 . -389) 33735) ((-317 . -281) T) ((-329 . -855) T) ((-932 . -97) 33713) ((-955 . -789) T) ((-58 . -486) 33646) ((-1136 . -1067) 33598) ((-936 . -265) NIL) ((-205 . -984) T) ((-357 . -770) T) ((-1033 . -33) T) ((-1140 . -1014) 33582) ((-538 . -429) T) ((-489 . -429) T) ((-1140 . -1020) 33560) ((-1140 . -1016) 33517) ((-220 . -558) 33494) ((-1089 . -566) 33476) ((-1088 . -566) 33458) ((-1082 . -566) 33440) ((-1082 . -567) NIL) ((-1044 . -566) 33422) ((-124 . -265) 33397) ((-807 . -378) 33381) ((-501 . -97) T) ((-1157 . -37) 33222) ((-1136 . -37) 33036) ((-805 . -138) T) ((-538 . -380) T) ((-47 . -789) T) ((-489 . -380) T) ((-1159 . -21) T) ((-1159 . -25) T) ((-1033 . -733) 33015) ((-1033 . -736) 32966) ((-1033 . -735) 32945) ((-926 . -1020) T) ((-958 . -33) T) ((-798 . -1020) T) ((-1169 . -97) T) ((-1033 . -669) 32856) ((-610 . -97) T) ((-511 . -267) 32835) ((-1101 . -97) T) ((-453 . -33) T) ((-440 . -33) T) ((-333 . -97) T) ((-330 . -97) T) ((-322 . -97) T) ((-243 . -97) T) ((-227 . -97) T) ((-454 . -286) T) ((-988 . -984) T) ((-887 . -984) T) ((-294 . -588) 32743) ((-291 . -588) 32704) ((-457 . -984) T) ((-455 . -97) T) ((-414 . -566) 32686) ((-1087 . -1020) T) ((-1043 . -1020) T) ((-793 . -1020) T) ((-1057 . -97) T) ((-758 . -269) 32617) ((-897 . -983) 32500) ((-454 . -953) T) ((-124 . -19) 32482) ((-678 . -983) 32452) ((-124 . -558) 32427) ((-430 . -983) 32397) ((-1063 . -1039) 32381) ((-1022 . -486) 32314) ((-897 . -107) 32183) ((-845 . -97) T) ((-678 . -107) 32148) ((-57 . -97) 32098) ((-491 . -567) 32059) ((-491 . -566) 31971) ((-490 . -97) 31949) ((-488 . -97) 31899) ((-470 . -97) 31877) ((-469 . -97) 31827) ((-430 . -107) 31790) ((-230 . -160) 31769) ((-229 . -160) 31748) ((-396 . -983) 31722) ((-1122 . -906) 31684) ((-931 . -1032) T) ((-878 . -486) 31617) ((-462 . -737) T) ((-451 . -37) 31458) ((-396 . -107) 31425) ((-462 . -734) T) ((-932 . -288) 31363) ((-198 . -737) T) ((-198 . -734) T) ((-931 . -23) T) ((-655 . -126) T) ((-1136 . -378) 31333) ((-294 . -25) 31186) ((-157 . -389) 31170) ((-294 . -21) 31042) ((-291 . -25) T) ((-291 . -21) T) ((-800 . -346) T) ((-106 . -33) T) ((-458 . -594) 30892) ((-806 . -984) T) ((-548 . -267) 30867) ((-537 . -138) T) ((-525 . -138) T) ((-468 . -138) T) ((-1087 . -660) 30696) ((-1043 . -660) 30545) ((-1038 . -588) 30527) ((-793 . -660) 30497) ((-616 . -1127) T) ((-1 . -97) T) ((-220 . -566) 30229) ((-1146 . -389) 30213) ((-1101 . -288) 30017) ((-897 . -977) T) ((-678 . -977) T) ((-658 . -977) T) ((-592 . -1020) 29967) ((-981 . -594) 29951) ((-794 . -389) 29935) ((-483 . -97) T) ((-479 . -97) T) ((-227 . -288) 29922) ((-243 . -288) 29909) ((-897 . -304) 29888) ((-363 . -594) 29872) ((-455 . -288) 29676) ((-230 . -486) 29609) ((-616 . -968) 29507) ((-229 . -486) 29440) ((-1057 . -288) 29366) ((-761 . -1020) T) ((-741 . -983) 29350) ((-1165 . -265) 29335) ((-1158 . -265) 29320) ((-1137 . -265) 29168) ((-364 . -1020) T) ((-302 . -1020) T) ((-396 . -977) T) ((-157 . -984) T) ((-57 . -288) 29106) ((-741 . -107) 29085) ((-550 . -265) 29070) ((-490 . -288) 29008) ((-488 . -288) 28946) ((-470 . -288) 28884) ((-469 . -288) 28822) ((-396 . -213) 28801) ((-458 . -33) T) ((-936 . -567) 28731) ((-205 . -1020) T) ((-936 . -566) 28713) ((-904 . -566) 28695) ((-904 . -567) 28670) ((-849 . -566) 28652) ((-641 . -138) T) ((-643 . -855) T) ((-643 . -762) T) ((-405 . -566) 28634) ((-1038 . -21) T) ((-124 . -567) NIL) ((-124 . -566) 28616) ((-1038 . -25) T) ((-616 . -355) 28600) ((-112 . -855) T) ((-807 . -211) 28584) ((-76 . -1127) T) ((-122 . -121) 28568) ((-981 . -33) T) ((-1193 . -968) 28542) ((-1191 . -968) 28499) ((-1146 . -984) T) ((-794 . -984) T) ((-458 . -733) 28478) ((-333 . -1067) 28457) ((-330 . -1067) 28436) ((-322 . -1067) 28415) ((-458 . -736) 28366) ((-458 . -735) 28345) ((-207 . -33) T) ((-458 . -669) 28256) ((-58 . -464) 28240) ((-532 . -984) T) ((-1087 . -160) 28131) ((-1043 . -160) 28042) ((-988 . -1020) T) ((-1009 . -884) 27987) ((-887 . -1020) T) ((-759 . -594) 27938) ((-724 . -884) 27907) ((-656 . -1020) T) ((-722 . -884) 27874) ((-488 . -261) 27858) ((-616 . -835) 27817) ((-457 . -1020) T) ((-431 . -884) 27784) ((-77 . -1127) T) ((-333 . -37) 27749) ((-330 . -37) 27714) ((-322 . -37) 27679) ((-243 . -37) 27528) ((-227 . -37) 27377) ((-845 . -1067) T) ((-573 . -138) 27356) ((-573 . -136) 27335) ((-113 . -138) T) ((-113 . -136) NIL) ((-392 . -669) T) ((-741 . -977) T) ((-321 . -429) T) ((-1165 . -934) 27301) ((-1158 . -934) 27267) ((-1137 . -934) 27233) ((-845 . -37) 27198) ((-205 . -660) 27163) ((-297 . -46) 27133) ((-39 . -387) 27105) ((-131 . -566) 27087) ((-931 . -126) T) ((-757 . -1127) T) ((-161 . -855) T) ((-321 . -380) T) ((-491 . -267) 27064) ((-44 . -33) T) ((-757 . -968) 26893) ((-608 . -97) T) ((-600 . -21) T) ((-600 . -25) T) ((-1022 . -464) 26877) ((-1136 . -211) 26847) ((-620 . -1127) T) ((-225 . -97) 26797) ((-806 . -1020) T) ((-1093 . -594) 26722) ((-988 . -660) 26709) ((-674 . -983) 26552) ((-1087 . -486) 26499) ((-887 . -660) 26348) ((-1043 . -486) 26300) ((-457 . -660) 26149) ((-65 . -566) 26131) ((-674 . -107) 25960) ((-878 . -464) 25944) ((-1183 . -594) 25904) ((-759 . -669) T) ((-1089 . -983) 25787) ((-1088 . -983) 25622) ((-1082 . -983) 25412) ((-1044 . -983) 25295) ((-935 . -1131) T) ((-1015 . -97) 25273) ((-757 . -355) 25243) ((-935 . -517) T) ((-1089 . -107) 25112) ((-1088 . -107) 24933) ((-1082 . -107) 24702) ((-1044 . -107) 24571) ((-1025 . -1023) 24535) ((-357 . -787) T) ((-1165 . -566) 24517) ((-1158 . -566) 24499) ((-1137 . -566) 24481) ((-1137 . -567) NIL) ((-220 . -267) 24458) ((-39 . -429) T) ((-205 . -160) T) ((-157 . -1020) T) ((-636 . -138) T) ((-636 . -136) NIL) ((-551 . -566) 24440) ((-550 . -566) 24422) ((-833 . -1020) T) ((-780 . -1020) T) ((-750 . -1020) T) ((-711 . -1020) T) ((-604 . -791) 24406) ((-621 . -1020) T) ((-757 . -835) 24339) ((-39 . -380) NIL) ((-1038 . -607) T) ((-806 . -660) 24284) ((-230 . -464) 24268) ((-229 . -464) 24252) ((-655 . -588) 24200) ((-599 . -594) 24174) ((-274 . -33) T) ((-674 . -977) T) ((-538 . -1180) 24161) ((-489 . -1180) 24138) ((-1146 . -1020) T) ((-1087 . -269) 24049) ((-1043 . -269) 23980) ((-988 . -160) T) ((-794 . -1020) T) ((-887 . -160) 23891) ((-724 . -1149) 23875) ((-592 . -486) 23808) ((-75 . -566) 23790) ((-674 . -304) 23755) ((-1093 . -669) T) ((-532 . -1020) T) ((-457 . -160) 23666) ((-225 . -288) 23604) ((-124 . -267) 23579) ((-1058 . -1032) T) ((-68 . -566) 23561) ((-1183 . -669) T) ((-1089 . -977) T) ((-1088 . -977) T) ((-305 . -97) 23511) ((-1082 . -977) T) ((-1058 . -23) T) ((-1044 . -977) T) ((-89 . -1039) 23495) ((-801 . -1032) T) ((-1089 . -213) 23454) ((-1088 . -223) 23433) ((-1088 . -213) 23385) ((-1082 . -213) 23272) ((-1082 . -223) 23251) ((-297 . -835) 23157) ((-801 . -23) T) ((-157 . -660) 22985) ((-385 . -1131) T) ((-1021 . -346) T) ((-955 . -138) T) ((-935 . -341) T) ((-805 . -429) T) ((-878 . -265) 22962) ((-294 . -789) T) ((-291 . -789) NIL) ((-809 . -97) T) ((-655 . -25) T) ((-385 . -517) T) ((-655 . -21) T) ((-332 . -138) 22944) ((-332 . -136) T) ((-1063 . -1020) 22922) ((-430 . -663) T) ((-73 . -566) 22904) ((-110 . -789) T) ((-225 . -261) 22888) ((-220 . -983) 22786) ((-79 . -566) 22768) ((-678 . -346) 22721) ((-1091 . -770) T) ((-680 . -215) 22705) ((-1075 . -1127) T) ((-132 . -215) 22687) ((-220 . -107) 22578) ((-1146 . -660) 22407) ((-47 . -138) T) ((-806 . -160) T) ((-794 . -660) 22377) ((-459 . -1127) T) ((-887 . -486) 22324) ((-599 . -669) T) ((-532 . -660) 22311) ((-965 . -984) T) ((-457 . -486) 22254) ((-878 . -19) 22238) ((-878 . -558) 22215) ((-758 . -567) NIL) ((-758 . -566) 22197) ((-936 . -983) 22147) ((-391 . -566) 22129) ((-230 . -265) 22106) ((-229 . -265) 22083) ((-462 . -844) NIL) ((-294 . -29) 22053) ((-103 . -1127) T) ((-935 . -1032) T) ((-198 . -844) NIL) ((-849 . -983) 22005) ((-1003 . -968) 21903) ((-936 . -107) 21837) ((-243 . -211) 21821) ((-680 . -637) 21805) ((-405 . -983) 21789) ((-357 . -984) T) ((-935 . -23) T) ((-849 . -107) 21727) ((-636 . -1116) NIL) ((-462 . -594) 21677) ((-103 . -819) 21659) ((-103 . -821) 21641) ((-636 . -1113) NIL) ((-198 . -594) 21591) ((-337 . -968) 21575) ((-331 . -968) 21559) ((-305 . -288) 21497) ((-323 . -968) 21481) ((-205 . -269) T) ((-405 . -107) 21460) ((-58 . -566) 21392) ((-157 . -160) T) ((-1038 . -789) T) ((-103 . -968) 21352) ((-827 . -1020) T) ((-776 . -984) T) ((-769 . -984) T) ((-636 . -34) NIL) ((-636 . -91) NIL) ((-291 . -925) 21313) ((-537 . -429) T) ((-525 . -429) T) ((-468 . -429) T) ((-385 . -341) T) ((-220 . -977) 21244) ((-1066 . -33) T) ((-454 . -855) T) ((-931 . -588) 21192) ((-230 . -558) 21169) ((-229 . -558) 21146) ((-1003 . -355) 21130) ((-806 . -486) 21038) ((-220 . -213) 20991) ((-1074 . -1127) T) ((-766 . -566) 20973) ((-1194 . -1032) T) ((-1186 . -566) 20955) ((-1146 . -160) 20846) ((-103 . -355) 20828) ((-103 . -316) 20810) ((-988 . -269) T) ((-887 . -269) 20741) ((-741 . -346) 20720) ((-593 . -1127) T) ((-581 . -1127) T) ((-457 . -269) 20651) ((-532 . -160) T) ((-305 . -261) 20635) ((-1194 . -23) T) ((-1122 . -97) T) ((-1109 . -1020) T) ((-1010 . -1020) T) ((-999 . -1020) T) ((-81 . -566) 20617) ((-654 . -97) T) ((-333 . -327) 20596) ((-561 . -1020) T) ((-330 . -327) 20575) ((-322 . -327) 20554) ((-452 . -1020) T) ((-1101 . -209) 20504) ((-243 . -232) 20466) ((-1058 . -126) T) ((-561 . -563) 20442) ((-1003 . -835) 20375) ((-936 . -977) T) ((-849 . -977) T) ((-452 . -563) 20354) ((-1082 . -734) NIL) ((-1082 . -737) NIL) ((-1022 . -567) 20315) ((-455 . -209) 20265) ((-1022 . -566) 20247) ((-936 . -223) T) ((-936 . -213) T) ((-405 . -977) T) ((-892 . -1020) 20197) ((-849 . -223) T) ((-801 . -126) T) ((-641 . -429) T) ((-782 . -1032) 20176) ((-103 . -835) NIL) ((-1122 . -263) 20142) ((-807 . -787) 20121) ((-1033 . -1127) T) ((-840 . -669) T) ((-157 . -486) 20033) ((-931 . -25) T) ((-840 . -450) T) ((-385 . -1032) T) ((-462 . -736) T) ((-462 . -733) T) ((-845 . -327) T) ((-462 . -669) T) ((-198 . -736) T) ((-198 . -733) T) ((-931 . -21) T) ((-198 . -669) T) ((-782 . -23) 19985) ((-297 . -286) 19964) ((-966 . -215) 19910) ((-385 . -23) T) ((-878 . -567) 19871) ((-878 . -566) 19783) ((-592 . -464) 19767) ((-44 . -942) 19717) ((-309 . -566) 19699) ((-1033 . -968) 19528) ((-548 . -597) 19510) ((-548 . -351) 19492) ((-321 . -1180) 19469) ((-958 . -1127) T) ((-806 . -269) T) ((-1146 . -486) 19416) ((-453 . -1127) T) ((-440 . -1127) T) ((-542 . -97) T) ((-1087 . -265) 19343) ((-573 . -429) 19322) ((-932 . -927) 19306) ((-1186 . -360) 19278) ((-113 . -429) T) ((-1108 . -97) T) ((-1013 . -1020) 19256) ((-965 . -1020) T) ((-828 . -789) T) ((-329 . -1131) T) ((-1165 . -983) 19139) ((-1033 . -355) 19109) ((-1158 . -983) 18944) ((-1137 . -983) 18734) ((-1165 . -107) 18603) ((-1158 . -107) 18424) ((-1137 . -107) 18193) ((-1122 . -288) 18180) ((-329 . -517) T) ((-343 . -566) 18162) ((-268 . -286) T) ((-551 . -983) 18135) ((-550 . -983) 18018) ((-339 . -1020) T) ((-300 . -1020) T) ((-230 . -566) 17979) ((-229 . -566) 17940) ((-935 . -126) T) ((-105 . -566) 17922) ((-584 . -23) T) ((-636 . -387) 17889) ((-560 . -23) T) ((-604 . -97) T) ((-551 . -107) 17860) ((-550 . -107) 17729) ((-357 . -1020) T) ((-314 . -97) T) ((-157 . -269) 17640) ((-1136 . -787) 17593) ((-657 . -984) T) ((-1063 . -486) 17526) ((-1033 . -835) 17459) ((-776 . -1020) T) ((-769 . -1020) T) ((-767 . -1020) T) ((-92 . -97) T) ((-135 . -789) T) ((-565 . -819) 17443) ((-106 . -1127) T) ((-1009 . -97) T) ((-989 . -33) T) ((-724 . -97) T) ((-722 . -97) T) ((-438 . -97) T) ((-431 . -97) T) ((-220 . -737) 17394) ((-220 . -734) 17345) ((-595 . -97) T) ((-1146 . -269) 17256) ((-610 . -583) 17240) ((-592 . -265) 17217) ((-965 . -660) 17201) ((-532 . -269) T) ((-897 . -594) 17126) ((-1194 . -126) T) ((-678 . -594) 17086) ((-658 . -594) 17073) ((-254 . -97) T) ((-430 . -594) 17003) ((-49 . -97) T) ((-538 . -97) T) ((-489 . -97) T) ((-1165 . -977) T) ((-1158 . -977) T) ((-1137 . -977) T) ((-1165 . -213) 16962) ((-300 . -660) 16944) ((-1158 . -223) 16923) ((-1158 . -213) 16875) ((-1137 . -213) 16762) ((-1137 . -223) 16741) ((-1122 . -37) 16638) ((-936 . -737) T) ((-551 . -977) T) ((-550 . -977) T) ((-936 . -734) T) ((-904 . -737) T) ((-904 . -734) T) ((-807 . -984) T) ((-805 . -804) 16622) ((-104 . -566) 16604) ((-636 . -429) T) ((-357 . -660) 16569) ((-396 . -594) 16543) ((-655 . -789) 16522) ((-654 . -37) 16487) ((-550 . -213) 16446) ((-39 . -667) 16418) ((-329 . -307) 16395) ((-329 . -341) T) ((-1003 . -286) 16346) ((-273 . -1032) 16228) ((-1026 . -1127) T) ((-159 . -97) T) ((-1140 . -566) 16195) ((-782 . -126) 16147) ((-592 . -1161) 16131) ((-776 . -660) 16101) ((-769 . -660) 16071) ((-458 . -1127) T) ((-337 . -286) T) ((-331 . -286) T) ((-323 . -286) T) ((-592 . -558) 16048) ((-385 . -126) T) ((-491 . -612) 16032) ((-103 . -286) T) ((-273 . -23) 15916) ((-491 . -597) 15900) ((-636 . -380) NIL) ((-491 . -351) 15884) ((-270 . -566) 15866) ((-89 . -1020) 15844) ((-103 . -953) T) ((-525 . -134) T) ((-1173 . -142) 15828) ((-458 . -968) 15657) ((-1159 . -136) 15618) ((-1159 . -138) 15579) ((-981 . -1127) T) ((-926 . -566) 15561) ((-798 . -566) 15543) ((-758 . -983) 15386) ((-1009 . -288) 15373) ((-207 . -1127) T) ((-724 . -288) 15360) ((-722 . -288) 15347) ((-758 . -107) 15176) ((-431 . -288) 15163) ((-1087 . -567) NIL) ((-1087 . -566) 15145) ((-1043 . -566) 15127) ((-1043 . -567) 14875) ((-965 . -160) T) ((-793 . -566) 14857) ((-878 . -267) 14834) ((-561 . -486) 14617) ((-760 . -968) 14601) ((-452 . -486) 14393) ((-897 . -669) T) ((-678 . -669) T) ((-658 . -669) T) ((-329 . -1032) T) ((-1094 . -566) 14375) ((-203 . -97) T) ((-458 . -355) 14345) ((-487 . -1020) T) ((-482 . -1020) T) ((-480 . -1020) T) ((-741 . -594) 14319) ((-955 . -429) T) ((-892 . -486) 14252) ((-329 . -23) T) ((-584 . -126) T) ((-560 . -126) T) ((-332 . -429) T) ((-220 . -346) 14231) ((-357 . -160) T) ((-1157 . -984) T) ((-1136 . -984) T) ((-205 . -934) T) ((-641 . -365) T) ((-396 . -669) T) ((-643 . -1131) T) ((-1058 . -588) 14179) ((-537 . -804) 14163) ((-1075 . -1104) 14139) ((-643 . -517) T) ((-122 . -1020) 14117) ((-1186 . -983) 14101) ((-657 . -1020) T) ((-458 . -835) 14034) ((-604 . -37) 14004) ((-332 . -380) T) ((-294 . -138) 13983) ((-294 . -136) 13962) ((-112 . -517) T) ((-291 . -138) 13918) ((-291 . -136) 13874) ((-47 . -429) T) ((-150 . -1020) T) ((-146 . -1020) T) ((-1075 . -102) 13821) ((-724 . -1067) 13799) ((-632 . -33) T) ((-1186 . -107) 13778) ((-511 . -33) T) ((-459 . -102) 13762) ((-230 . -267) 13739) ((-229 . -267) 13716) ((-806 . -265) 13667) ((-44 . -1127) T) ((-758 . -977) T) ((-1093 . -46) 13644) ((-758 . -304) 13606) ((-1009 . -37) 13455) ((-758 . -213) 13434) ((-724 . -37) 13263) ((-722 . -37) 13112) ((-124 . -597) 13094) ((-431 . -37) 12943) ((-124 . -351) 12925) ((-592 . -567) 12886) ((-592 . -566) 12798) ((-538 . -1067) T) ((-489 . -1067) T) ((-1063 . -464) 12782) ((-1114 . -1020) 12760) ((-1058 . -25) T) ((-1058 . -21) T) ((-451 . -984) T) ((-1137 . -734) NIL) ((-1137 . -737) NIL) ((-931 . -789) 12739) ((-761 . -566) 12721) ((-801 . -21) T) ((-801 . -25) T) ((-741 . -669) T) ((-161 . -1131) T) ((-538 . -37) 12686) ((-489 . -37) 12651) ((-364 . -566) 12633) ((-302 . -566) 12615) ((-157 . -265) 12573) ((-61 . -1127) T) ((-108 . -97) T) ((-807 . -1020) T) ((-161 . -517) T) ((-657 . -660) 12543) ((-273 . -126) 12427) ((-205 . -566) 12409) ((-205 . -567) 12339) ((-935 . -588) 12278) ((-1186 . -977) T) ((-1038 . -138) T) ((-581 . -1104) 12253) ((-674 . -844) 12232) ((-548 . -33) T) ((-593 . -102) 12216) ((-581 . -102) 12162) ((-1146 . -265) 12089) ((-674 . -594) 12014) ((-274 . -1127) T) ((-1093 . -968) 11912) ((-1082 . -844) NIL) ((-988 . -567) 11827) ((-988 . -566) 11809) ((-321 . -97) T) ((-229 . -983) 11707) ((-230 . -983) 11605) ((-372 . -97) T) ((-887 . -566) 11587) ((-887 . -567) 11448) ((-656 . -566) 11430) ((-1184 . -1121) 11399) ((-457 . -566) 11381) ((-457 . -567) 11242) ((-227 . -389) 11226) ((-243 . -389) 11210) ((-229 . -107) 11101) ((-230 . -107) 10992) ((-1089 . -594) 10917) ((-1088 . -594) 10814) ((-1082 . -594) 10666) ((-1044 . -594) 10591) ((-329 . -126) T) ((-80 . -418) T) ((-80 . -373) T) ((-935 . -25) T) ((-935 . -21) T) ((-808 . -1020) 10542) ((-807 . -660) 10494) ((-357 . -269) T) ((-157 . -934) 10446) ((-636 . -365) T) ((-931 . -929) 10430) ((-643 . -1032) T) ((-636 . -154) 10412) ((-1157 . -1020) T) ((-1136 . -1020) T) ((-294 . -1113) 10391) ((-294 . -1116) 10370) ((-1080 . -97) T) ((-294 . -893) 10349) ((-128 . -1032) T) ((-112 . -1032) T) ((-556 . -1171) 10333) ((-643 . -23) T) ((-556 . -1020) 10283) ((-89 . -486) 10216) ((-161 . -341) T) ((-294 . -91) 10195) ((-294 . -34) 10174) ((-561 . -464) 10108) ((-128 . -23) T) ((-112 . -23) T) ((-661 . -1020) T) ((-452 . -464) 10045) ((-385 . -588) 9993) ((-599 . -968) 9891) ((-892 . -464) 9875) ((-333 . -984) T) ((-330 . -984) T) ((-322 . -984) T) ((-243 . -984) T) ((-227 . -984) T) ((-806 . -567) NIL) ((-806 . -566) 9857) ((-1194 . -21) T) ((-532 . -934) T) ((-674 . -669) T) ((-1194 . -25) T) ((-230 . -977) 9788) ((-229 . -977) 9719) ((-70 . -1127) T) ((-230 . -213) 9672) ((-229 . -213) 9625) ((-39 . -97) T) ((-845 . -984) T) ((-1096 . -97) T) ((-1089 . -669) T) ((-1088 . -669) T) ((-1082 . -669) T) ((-1082 . -733) NIL) ((-1082 . -736) NIL) ((-856 . -97) T) ((-1044 . -669) T) ((-713 . -97) T) ((-617 . -97) T) ((-451 . -1020) T) ((-317 . -1032) T) ((-161 . -1032) T) ((-297 . -855) 9604) ((-1157 . -660) 9445) ((-807 . -160) T) ((-1136 . -660) 9259) ((-782 . -21) 9211) ((-782 . -25) 9163) ((-225 . -1065) 9147) ((-122 . -486) 9080) ((-385 . -25) T) ((-385 . -21) T) ((-317 . -23) T) ((-157 . -566) 9062) ((-157 . -567) 8830) ((-161 . -23) T) ((-592 . -267) 8807) ((-491 . -33) T) ((-833 . -566) 8789) ((-87 . -1127) T) ((-780 . -566) 8771) ((-750 . -566) 8753) ((-711 . -566) 8735) ((-621 . -566) 8717) ((-220 . -594) 8567) ((-1091 . -1020) T) ((-1087 . -983) 8390) ((-1066 . -1127) T) ((-1043 . -983) 8233) ((-793 . -983) 8217) ((-1087 . -107) 8026) ((-1043 . -107) 7855) ((-793 . -107) 7834) ((-1146 . -567) NIL) ((-1146 . -566) 7816) ((-321 . -1067) T) ((-794 . -566) 7798) ((-999 . -265) 7777) ((-78 . -1127) T) ((-936 . -844) NIL) ((-561 . -265) 7753) ((-1114 . -486) 7686) ((-462 . -1127) T) ((-532 . -566) 7668) ((-452 . -265) 7647) ((-198 . -1127) T) ((-1009 . -211) 7631) ((-268 . -855) T) ((-759 . -286) 7610) ((-805 . -97) T) ((-724 . -211) 7594) ((-936 . -594) 7544) ((-892 . -265) 7521) ((-849 . -594) 7473) ((-584 . -21) T) ((-584 . -25) T) ((-560 . -21) T) ((-321 . -37) 7438) ((-636 . -667) 7405) ((-462 . -819) 7387) ((-462 . -821) 7369) ((-451 . -660) 7210) ((-198 . -819) 7192) ((-62 . -1127) T) ((-198 . -821) 7174) ((-560 . -25) T) ((-405 . -594) 7148) ((-462 . -968) 7108) ((-807 . -486) 7020) ((-198 . -968) 6980) ((-220 . -33) T) ((-932 . -1020) 6958) ((-1157 . -160) 6889) ((-1136 . -160) 6820) ((-655 . -136) 6799) ((-655 . -138) 6778) ((-643 . -126) T) ((-130 . -442) 6755) ((-604 . -602) 6739) ((-1063 . -566) 6671) ((-112 . -126) T) ((-454 . -1131) T) ((-561 . -558) 6647) ((-452 . -558) 6626) ((-314 . -313) 6595) ((-501 . -1020) T) ((-454 . -517) T) ((-1087 . -977) T) ((-1043 . -977) T) ((-793 . -977) T) ((-220 . -733) 6574) ((-220 . -736) 6525) ((-220 . -735) 6504) ((-1087 . -304) 6481) ((-220 . -669) 6392) ((-892 . -19) 6376) ((-462 . -355) 6358) ((-462 . -316) 6340) ((-1043 . -304) 6312) ((-332 . -1180) 6289) ((-198 . -355) 6271) ((-198 . -316) 6253) ((-892 . -558) 6230) ((-1087 . -213) T) ((-610 . -1020) T) ((-1169 . -1020) T) ((-1101 . -1020) T) ((-1009 . -232) 6167) ((-333 . -1020) T) ((-330 . -1020) T) ((-322 . -1020) T) ((-243 . -1020) T) ((-227 . -1020) T) ((-82 . -1127) T) ((-123 . -97) 6145) ((-117 . -97) 6123) ((-124 . -33) T) ((-1101 . -563) 6102) ((-455 . -1020) T) ((-1057 . -1020) T) ((-455 . -563) 6081) ((-230 . -737) 6032) ((-230 . -734) 5983) ((-229 . -737) 5934) ((-39 . -1067) NIL) ((-229 . -734) 5885) ((-1003 . -855) 5836) ((-936 . -736) T) ((-936 . -733) T) ((-936 . -669) T) ((-904 . -736) T) ((-849 . -669) T) ((-89 . -464) 5820) ((-462 . -835) NIL) ((-845 . -1020) T) ((-205 . -983) 5785) ((-807 . -269) T) ((-198 . -835) NIL) ((-775 . -1032) 5764) ((-57 . -1020) 5714) ((-490 . -1020) 5692) ((-488 . -1020) 5642) ((-470 . -1020) 5620) ((-469 . -1020) 5570) ((-537 . -97) T) ((-525 . -97) T) ((-468 . -97) T) ((-451 . -160) 5501) ((-337 . -855) T) ((-331 . -855) T) ((-323 . -855) T) ((-205 . -107) 5457) ((-775 . -23) 5409) ((-405 . -669) T) ((-103 . -855) T) ((-39 . -37) 5354) ((-103 . -762) T) ((-538 . -327) T) ((-489 . -327) T) ((-1136 . -486) 5214) ((-294 . -429) 5193) ((-291 . -429) T) ((-776 . -265) 5172) ((-317 . -126) T) ((-161 . -126) T) ((-273 . -25) 5037) ((-273 . -21) 4921) ((-44 . -1104) 4900) ((-64 . -566) 4882) ((-827 . -566) 4864) ((-556 . -486) 4797) ((-44 . -102) 4747) ((-1022 . -403) 4731) ((-1022 . -346) 4710) ((-989 . -1127) T) ((-988 . -983) 4697) ((-887 . -983) 4540) ((-457 . -983) 4383) ((-610 . -660) 4367) ((-988 . -107) 4352) ((-887 . -107) 4181) ((-454 . -341) T) ((-333 . -660) 4133) ((-330 . -660) 4085) ((-322 . -660) 4037) ((-243 . -660) 3886) ((-227 . -660) 3735) ((-878 . -597) 3719) ((-457 . -107) 3548) ((-1174 . -97) T) ((-878 . -351) 3532) ((-1137 . -844) NIL) ((-72 . -566) 3514) ((-897 . -46) 3493) ((-571 . -1032) T) ((-1 . -1020) T) ((-653 . -97) T) ((-641 . -97) T) ((-1173 . -97) 3443) ((-1165 . -594) 3368) ((-1158 . -594) 3265) ((-122 . -464) 3249) ((-1109 . -566) 3231) ((-1010 . -566) 3213) ((-368 . -23) T) ((-999 . -566) 3195) ((-85 . -1127) T) ((-1137 . -594) 3047) ((-845 . -660) 3012) ((-571 . -23) T) ((-561 . -566) 2994) ((-561 . -567) NIL) ((-452 . -567) NIL) ((-452 . -566) 2976) ((-483 . -1020) T) ((-479 . -1020) T) ((-329 . -25) T) ((-329 . -21) T) ((-123 . -288) 2914) ((-117 . -288) 2852) ((-551 . -594) 2839) ((-205 . -977) T) ((-550 . -594) 2764) ((-357 . -934) T) ((-205 . -223) T) ((-205 . -213) T) ((-892 . -567) 2725) ((-892 . -566) 2637) ((-805 . -37) 2624) ((-1157 . -269) 2575) ((-1136 . -269) 2526) ((-1038 . -429) T) ((-475 . -789) T) ((-294 . -1055) 2505) ((-931 . -138) 2484) ((-931 . -136) 2463) ((-468 . -288) 2450) ((-274 . -1104) 2429) ((-454 . -1032) T) ((-806 . -983) 2374) ((-573 . -97) T) ((-1114 . -464) 2358) ((-230 . -346) 2337) ((-229 . -346) 2316) ((-274 . -102) 2266) ((-988 . -977) T) ((-113 . -97) T) ((-887 . -977) T) ((-806 . -107) 2195) ((-454 . -23) T) ((-457 . -977) T) ((-988 . -213) T) ((-887 . -304) 2164) ((-457 . -304) 2121) ((-333 . -160) T) ((-330 . -160) T) ((-322 . -160) T) ((-243 . -160) 2032) ((-227 . -160) 1943) ((-897 . -968) 1841) ((-678 . -968) 1812) ((-1025 . -97) T) ((-1013 . -566) 1779) ((-965 . -566) 1761) ((-1165 . -669) T) ((-1158 . -669) T) ((-1137 . -733) NIL) ((-157 . -983) 1671) ((-1137 . -736) NIL) ((-845 . -160) T) ((-1137 . -669) T) ((-1184 . -142) 1655) ((-935 . -320) 1629) ((-932 . -486) 1562) ((-782 . -789) 1541) ((-525 . -1067) T) ((-451 . -269) 1492) ((-551 . -669) T) ((-339 . -566) 1474) ((-300 . -566) 1456) ((-396 . -968) 1354) ((-550 . -669) T) ((-385 . -789) 1305) ((-157 . -107) 1201) ((-775 . -126) 1153) ((-680 . -142) 1137) ((-1173 . -288) 1075) ((-462 . -286) T) ((-357 . -566) 1042) ((-491 . -942) 1026) ((-357 . -567) 940) ((-198 . -286) T) ((-132 . -142) 922) ((-657 . -265) 901) ((-462 . -953) T) ((-537 . -37) 888) ((-525 . -37) 875) ((-468 . -37) 840) ((-198 . -953) T) ((-806 . -977) T) ((-776 . -566) 822) ((-769 . -566) 804) ((-767 . -566) 786) ((-758 . -844) 765) ((-1195 . -1032) T) ((-1146 . -983) 588) ((-794 . -983) 572) ((-806 . -223) T) ((-806 . -213) NIL) ((-632 . -1127) T) ((-1195 . -23) T) ((-758 . -594) 497) ((-511 . -1127) T) ((-396 . -316) 481) ((-532 . -983) 468) ((-1146 . -107) 277) ((-643 . -588) 259) ((-794 . -107) 238) ((-359 . -23) T) ((-1101 . -486) 30)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 99fae7ea..5936b395 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3420122810)
-(4257 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3420735369)
+(4258 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -299,8 +299,8 @@
|UnivariateSkewPolynomialCategory|
|UnivariateSkewPolynomialCategoryOps| |SparseUnivariateSkewPolynomial|
|UnivariateSkewPolynomial| |OrthogonalPolynomialFunctions|
- |OrdSetInts| |OutputForm| |OutputPackage| |OrderedVariableList|
- |OrdinaryWeightedPolynomials| |PadeApproximants|
+ |OrderedSemiGroup| |OrdSetInts| |OutputForm| |OutputPackage|
+ |OrderedVariableList| |OrdinaryWeightedPolynomials| |PadeApproximants|
|PadeApproximantPackage| |PAdicIntegerCategory| |PAdicInteger|
|PAdicRational| |PAdicRationalConstructor| |Pair| |Palette|
|PolynomialAN2Expression| |ParametricPlaneCurveFunctions2|
@@ -460,653 +460,649 @@
|XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |makeFR| |byte| |clipParametric| |expr| |condition|
- |gramschmidt| |ScanFloatIgnoreSpacesIfCan| F2FG |compactFraction|
- |leadingMonomial| |extractIndex| |unitNormal| |suchThat|
- |indiceSubResultantEuclidean| |quasiMonicPolynomials| |prod|
- |setCondition!| |linearPolynomials| |lp| |deepExpand| |factorList|
- |leadingCoefficient| |rquo| |processTemplate| |e02akf| |c06frf|
- |getMatch| |repSq| |rubiksGroup| |mr| |rootOfIrreduciblePoly|
- |primitiveMonomials| |powers| |mainMonomial| |partitions|
- |bandedJacobian| |initializeGroupForWordProblem|
- |semiResultantEuclidean1| |applyRules| |homogeneous?| |relationsIdeal|
- |df2fi| |LyndonWordsList| |pointData| |reductum| |explogs2trigs|
- |solveRetract| |f01mcf| |variable| |algebraic?|
- |createMultiplicationMatrix| |diff| |explicitlyEmpty?| |iExquo| |mvar|
- |lazyPremWithDefault| |list?| |characteristicPolynomial| |prevPrime|
- |asinIfCan| |collect| |retractIfCan| |graphCurves| |s13adf| |s17dcf|
- |box| |child| |normalise| |option?| |directSum| |addiag| |noKaratsuba|
- |message| |moduloP| |basisOfRightNucleus| |computeCycleLength|
- |extendedSubResultantGcd| |printInfo| |trapezoidal|
- |uncouplingMatrices| |solid| |splitDenominator| |groebnerIdeal|
- |rCoord| |write!| |laplacian| |upperCase| |cycleLength| |multinomial|
- |OMgetApp| |asecIfCan| |power!| |linear?| |append|
- |combineFeatureCompatibility| |rotate!| |genericLeftTraceForm| |read!|
- |safetyMargin| |symbolIfCan| |numer| |saturate| |exactQuotient!|
- |leftRegularRepresentation| |decomposeFunc| |top!| |sqfrFactor| |name|
- |laurentIfCan| |denom| |permutationGroup| |putGraph| |and?| |reseed|
- |flatten| |arrayStack| |copy!| |build| |iiacot| |validExponential|
- |integralCoordinates| |totalDegree| |getSyntaxFormsFromFile|
- |currentScope| |lfinfieldint| |lazyIntegrate| |limit| |or|
- |mapExponents| |reopen!| |critpOrder| |tablePow| |pi| |e02agf|
- |s01eaf| |quotient| |f02bbf| |radix| |and| |OMgetObject| |fibonacci|
- |Si| |OMencodingBinary| F |infinity| |Lazard2| |real?| |cycleTail|
- |ramified?| |precision| |e02bef| |maxPoints| |symmetricSquare| |sort!|
- |viewWriteDefault| |singRicDE| |tube| |acschIfCan| |unmakeSUP| |has?|
- |showTheFTable| |bat1| |evaluateInverse| |finiteBound| |iiacoth|
- |makeSin| |generalSqFr| |map| |factorPolynomial| |cSech|
- |trigs2explogs| |triangSolve| |subHeight| |binding| |kernel|
- |elColumn2!| |removeRoughlyRedundantFactorsInPol| |commutative?|
- |overlap| |increase| |zero| |divisorCascade| |contains?| |inverse|
- |parameters| |ptree| |draw| |mergeFactors| |rightRecip|
- |coercePreimagesImages| |prefixRagits| |dimensions| |exponentialOrder|
- |squareFreeLexTriangular| |iFTable| |increasePrecision| |square?|
- |discriminant| |vectorise| |monicRightFactorIfCan| |factorSFBRlcUnit|
- SEGMENT |iipow| |And| |fracPart| |OMsetEncoding|
- |regularRepresentation| |primeFrobenius| |monomialIntPoly|
- |splitNodeOf!| |linearDependenceOverZ| |besselJ| |rdregime|
- |paraboloidal| |Or| |computeInt| |extendedResultant| |sqfree|
- |bringDown| |lfextendedint| |makeMulti| D |prologue| |quasiComponent|
- |convert| |complexForm| |outputMeasure| |Not| |rk4| |qqq|
- |stosePrepareSubResAlgo| |depth| |hexDigit?| |denominators|
- |makeObject| |s17ahf| |standardBasisOfCyclicSubmodule| |prime|
- |leastAffineMultiple| |f02abf| |ParCondList| |expIfCan|
- |exactQuotient| |search| |antiCommutative?| |multMonom|
- |constantKernel| |definingInequation| |rootRadius| |boundOfCauchy|
- |outputGeneral| |diagonalProduct| |OMgetEndBind| |cCos| |palgRDE0|
- |zeroVector| |coef| |rightTraceMatrix| |putColorInfo| |dihedral|
- |prinshINFO| |expandPower| |fixPredicate| |stronglyReduced?|
- |selectfirst| |rationalIfCan| |getPickedPoints| |leadingSupport|
- |setEpilogue!| |middle| |palglimint| |equivOperands| |lquo| |airyBi|
- |deepCopy| |subresultantSequence| |iibinom| |smith| |numberOfFactors|
- |rename!| |generalTwoFactor| |restorePrecision| |deleteRoutine!|
- |extractPoint| |sup| |pleskenSplit| |ScanFloatIgnoreSpaces|
- |sparsityIF| |xn| |getRef| |nullary| |getConstant|
- |univariatePolynomial| |rightUnit| |concat!| |any| |matrixConcat3D|
- |numberOfPrimitivePoly| |compiledFunction| |setFieldInfo|
- |purelyAlgebraic?| |numericalIntegration| |sample| |leftAlternative?|
- |explimitedint| |OMputEndAtp| |toseInvertibleSet| |squareFree|
- |maximumExponent| |dimensionOfIrreducibleRepresentation| |bracket|
- |addBadValue| |unparse| |c06gsf| |setfirst!| |commutator| |child?|
- |genericPosition| |rightRemainder| |SFunction| |bubbleSort!|
- |patternMatch| |invertIfCan| |hasoln| |setStatus| |laplace|
- |stiffnessAndStabilityOfODEIF| |quadraticNorm| |f02akf|
- |primitivePart!| |intermediateResultsIF|
- |halfExtendedSubResultantGcd1| |figureUnits| |overset?|
- |showTheSymbolTable| |froot| |curve| |rst| |localAbs|
- |wordInGenerators| |rightRank| |denomLODE| |nextIrreduciblePoly|
- |subscriptedVariables| |selectOrPolynomials| |index?| |s21baf|
- |printingInfo?| |rightTrim| |doubleFloatFormat| |asimpson| |element?|
- |firstNumer| |qPot| |Lazard| |fullDisplay| |pquo| |complexExpand|
- |setleaves!| |secIfCan| |copies| |leaves| |leftTrim|
- |leftExactQuotient| |problemPoints| |constantCoefficientRicDE|
- |d01alf| |push!| |primlimitedint| |irreducibleFactor| |sumOfDivisors|
- |rightExactQuotient| |OMputInteger| |var2StepsDefault| UP2UTS |hcrf|
- |OMgetEndAtp| |acothIfCan| |nextsubResultant2| |symmetricPower|
- |s18aef| |cyclePartition| |ptFunc| |createThreeSpace| |radPoly|
- |rotate| |setsubMatrix!| |f04atf| |pow| |subPolSet?|
- |tryFunctionalDecomposition?| |setProperty| |dot|
- |complexNumericIfCan| |maxrank| GF2FG |clipSurface| |exponent|
- |FormatRoman| |mightHaveRoots| |scanOneDimSubspaces|
- |mainSquareFreePart| |leftFactor| |f02wef| |digit| |acosIfCan|
- |atanhIfCan| |output| |zero?| |sec2cos| |empty?| |tail| |trueEqual|
- |tan2cot| |f04asf| |laguerreL| |approxSqrt|
- |removeRoughlyRedundantFactorsInContents| |infieldint|
- |halfExtendedSubResultantGcd2| |stopTable!| |rightFactorIfCan|
- |setprevious!| |ODESolve| |univariate?| |weight|
- |showFortranOutputStack| |cosIfCan| |fmecg| |remainder|
- |permutationRepresentation| |reflect| |cyclicEntries| |rarrow|
- |integralLastSubResultant| |inverseLaplace| |d03eef| |leftPower|
- |semiDegreeSubResultantEuclidean| |euler| |contours| |writeLine!|
- |callForm?| |outputFixed| |iiasinh| |associatorDependence| |top|
- |halfExtendedResultant2| |abelianGroup| |clearTheSymbolTable| |s17dgf|
- |definingPolynomial| |comment| |e02ddf| |coefficient| |f01bsf|
- |findCycle| |limitedint| |radicalSimplify| |continue| |f2st|
- |integralDerivationMatrix| |mesh| |mainVariable|
- |semiResultantEuclideannaif| |viewpoint| |generator|
- |exteriorDifferential| |factorGroebnerBasis| |adjoint| |deref|
- |coth2tanh| |s14aaf| |inR?| |crushedSet| |zCoord| |typeLists|
- |elRow2!| |primintegrate| |pair?| |unitNormalize| |e02ajf| |whileLoop|
- |beauzamyBound| |outputArgs| |cyclicSubmodule| |OMlistCDs| |sign|
- |outlineRender| |mapmult| |reverse| |zeroOf| |bandedHessian|
- |clipPointsDefault| |OMputBVar| |cAsech| |key?| |computePowers|
- |s18dcf| |leftExtendedGcd| |localReal?| |changeNameToObjf|
- |expressIdealMember| |difference| |OMopenString| |var1StepsDefault|
- |minPol| |newLine| |f01brf| |setStatus!| |gbasis| |se2rfi|
- |selectsecond| |rightMult| |randnum| |makeSketch| |decimal| |floor|
- |constantLeft| |length| |fortranDouble| |vark| |purelyTranscendental?|
- |csubst| |equality| |create| |rightZero| |identityMatrix| |twist|
- |exQuo| |rightScalarTimes!| |scripts| |rightQuotient| |sn| |order|
- |integralAtInfinity?| |clearFortranOutputStack| |OMgetInteger|
- |countable?| |factor1| |rightRankPolynomial| |OMgetError|
- |stoseInvertible?| |e02gaf| |completeHermite| |setPrologue!| |edf2df|
- |ricDsolve| |indicialEquation| |firstDenom| |repeating?| |distFact|
- |bumptab1| |ffactor| |equiv?| |shade| |prolateSpheroidal| |divide|
- |cyclic| |e02dff| |gcdPolynomial| |OMputEndApp| |radicalEigenvectors|
- |pseudoRemainder| |Ei| |denomRicDE| |printCode| |cCsc| |s15adf|
- |iisec| |s20acf| |edf2efi| |e01sef| |localIntegralBasis| |subTriSet?|
- |diagonals| |graphs| |lookup| |ord| |internalSubQuasiComponent?|
- |setVariableOrder| |specialTrigs| |assign| |plus!| |linears| |badNum|
- |mapSolve| |fortranTypeOf| |pascalTriangle| |maxIndex| |numFunEvals3D|
- |oblateSpheroidal| |primaryDecomp| |domainOf| |argument|
- |symmetricProduct| |inconsistent?| |andOperands| |complete| |palgRDE|
- |realElementary| |orbit| |infinityNorm| |resetNew| |OMgetEndBVar|
- |refine| |pToHdmp| |cyclic?| |cCot| |polar| |leastPower|
- |rightAlternative?| |interReduce| |nextItem| |meshPar1Var| |addPoint|
- |monomial?| |subResultantGcd| |shiftLeft| |btwFact| |twoFactor|
- |firstSubsetGray| |rischDEsys| |diag| |s19adf| |palgextint| |c06ekf|
- |changeThreshhold| |transcendent?| |eulerE| |janko2| |groebner?|
- |mainVariables| |li| |doublyTransitive?| |constantOpIfCan|
- |computeCycleEntry| |swap!| |OMcloseConn| |symbol|
- |removeRedundantFactorsInPols| |pointColorDefault| |nthCoef|
- |OMputString| |completeSmith| |tensorProduct| |simplifyExp| |leftUnit|
- |primeFactor| |zeroDimensional?| |nextPrime| |stopTableInvSet!|
- |lowerCase?| |partialQuotients| |nextSubsetGray|
- |createIrreduciblePoly| |viewWriteAvailable| |reducedSystem|
- |collectUpper| |op| |iteratedInitials| |doubleResultant| |tubeRadius|
- |invmod| |explicitEntries?| |lastSubResultant| |error| |integer|
- |e04gcf| |setValue!| |divergence| |tanh2trigh| |OMputError| |integers|
- |back| |tValues| |tubePoints| |sdf2lst| |eq| |second|
- |lineColorDefault| |forLoop| |pade| |jordanAdmissible?| |mapDown!|
- |assert| |polyPart| |curve?| |OMgetSymbol| |poisson| ~=
- |startTableInvSet!| |block| |lazyEvaluate| |iter| |expandTrigProducts|
- |third| |c06gbf| |s15aef| |fractionFreeGauss!| |root?|
- |basisOfLeftNucleus| |redPol| |maxRowIndex| |morphism| |coerce|
- |OMunhandledSymbol| |spherical| |fill!| |e02dcf| |mainVariable?|
- |symmetricDifference| |denominator| |socf2socdf| |someBasis| |s17aff|
- |separateFactors| |readLineIfCan!| |split| |construct| |legendreP|
- |compBound| |composite| |showTheIFTable| |gcdcofact| |bat| |e02baf|
- |say| |imagE| |merge| |makeCrit| |resultantEuclideannaif| |rspace|
- |drawStyle| |eigenvector| |body| |multiEuclideanTree| |setProperties!|
- |subscript| |polynomialZeros| |nextNormalPrimitivePoly| |dAndcExp|
- |resetAttributeButtons| |isobaric?| |nilFactor| |powmod|
- |degreeSubResultantEuclidean| |maxColIndex| |f02aef| |clearCache|
- |permutations| |reduced?| |minPoints| |makeYoungTableau|
- |expintegrate| |extractTop!| |iisqrt2| |evaluate|
- |primPartElseUnitCanonical| |subst| |cAcosh| |romberg| |measure|
- |palgintegrate| |moebius| |point?| |OMserve| |stFuncN| |autoReduced?|
- |currentEnv| |hyperelliptic| |semiSubResultantGcdEuclidean1|
- |monomRDE| |primextendedint| |e01bef| |appendPoint| |s17acf|
- |reciprocalPolynomial| |iflist2Result| |exp| |hdmpToDmp|
- |removeIrreducibleRedundantFactors| |zeroDim?| |monomials| |notelem|
- |bivariatePolynomials| |nthExponent| |palgLODE0| |s17dhf|
- |viewSizeDefault| |ramifiedAtInfinity?| |stopMusserTrials|
- |subResultantsChain| |nil| |diagonal?| |bernoulli| |userOrdered?|
- |nonLinearPart| |eigenvalues| |cAtanh| |hasPredicate?| |cPower|
- |trunc| |dflist| |getMeasure| |iisin| |minIndex| |positiveRemainder|
- |term?| |OMencodingXML| |unrankImproperPartitions0| |rischNormalize|
- |s17aef| |besselK| |lyndon?| |wholeRagits| |biRank| |e02bbf|
- |children| |simpsono| |removeRedundantFactors| |viewZoomDefault|
- |bezoutDiscriminant| |parts| |cycleSplit!| |outputFloating| |credPol|
- |maxdeg| |collectQuasiMonic| |SturmHabichtMultiple| |s18def|
- |supersub| |exprToUPS| |critMonD1| |mergeDifference| |approximate|
- |badValues| |setColumn!| |fortranLiteralLine| |completeHensel|
- |pointColorPalette| |readLine!| |logGamma| |setScreenResolution3D|
- |complex| |over| |s13acf| |coshIfCan| |alphanumeric| |hexDigit|
- |mkAnswer| |s14baf| |exponents| |extractIfCan| |partialDenominators|
- |super| |obj| |genericRightMinimalPolynomial| |palgextint0|
- |varselect| |divideExponents| |critB| |cAsin| |d02gaf| |crest|
- |mpsode| |parametersOf| |tubePlot| |cyclotomic| |charpol| |chebyshevU|
- |cache| |d03edf| |s17adf| |dfRange| |level| |OMReadError?| |psolve|
- |largest| |complement| |c05adf| |factorAndSplit| |universe|
- |tryFunctionalDecomposition| |geometric| |c06eaf| |quoted?| |makeCos|
- |log| |abs| |characteristic| |eyeDistance| |stripCommentsAndBlanks|
- |bumptab| |plenaryPower| |rational| |pomopo!| |normDeriv2|
- |deepestTail| |internalInfRittWu?| |insertBottom!| |isMult|
- |meshPar2Var| |exprex| |c06fuf| |hdmpToP| |setelt| |redpps|
- |plotPolar| |buildSyntax| |colorFunction| |tanh2coth| |result|
- |sizeMultiplication| |oddInfiniteProduct| |complexZeros|
- |createMultiplicationTable| |flexible?| |e01sbf| |double| |implies?|
- |OMgetString| |monic?| |Gamma| |tanintegrate| |setPosition|
- |lyndonIfCan| |rootPower| |binarySearchTree| |writable?| |one?|
- |d01anf| |copy| |rangeIsFinite| |karatsuba| |euclideanNormalForm|
- |alternatingGroup| |primextintfrac| |OMreadStr| |clipWithRanges|
- |drawComplexVectorField| |odd?| |variationOfParameters| |exp1|
- |satisfy?| |freeOf?| |PollardSmallFactor| |arity| |e01bff| |simpson|
- |solveid| |f02axf| |inverseColeman| |removeSinSq| |aCubic| |rk4a|
- |autoCoerce| |derivationCoordinates| |constDsolve| |setref| |hspace|
- |characteristicSerie| |graeffe| |space| |critT| |movedPoints|
- |getCode| |reverseLex| |divisors| |algebraicDecompose| |monicModulo|
- |mainCoefficients| |zeroDimPrimary?| |BasicMethod| |defineProperty|
- |OMputAtp| |pushucoef| |makeSUP| |d01gbf| |wordsForStrongGenerators|
- |euclideanSize| |stopTableGcd!| |leftZero| |generators|
- |cyclicParents| |chvar| |rewriteSetByReducingWithParticularGenerators|
- LODO2FUN |quatern| |returnTypeOf| |viewPosDefault| |iiatan| |qfactor|
- |sumOfKthPowerDivisors| |declare!| |tan2trig| |backOldPos|
- |setMaxPoints| |totalfract| |delay| |factors| |region|
- |leftTraceMatrix| |f02aaf| |indicialEquations|
- |stoseIntegralLastSubResultant| |move| |escape| |f01qcf| |charClass|
- |f02ajf| |oneDimensionalArray| |exprHasWeightCosWXorSinWX| |minordet|
- |leftFactorIfCan| |mainKernel| |tab| |meshFun2Var| |dihedralGroup|
- |exponential| |open?| |iifact| |checkForZero| |extractBottom!|
- |perfectNthRoot| |reify| |represents| |balancedBinaryTree| |imagJ|
- |double?| |idealiser| |rewriteIdealWithQuasiMonicGenerators| |sPol|
- |opeval| |paren| |modulus| |rank| |high| |algebraicVariables|
- |changeMeasure| |pmintegrate| |setRow!| |chebyshevT| |push|
- |quotientByP| |lflimitedint| |supDimElseRittWu?| |prime?| |exprToXXP|
- |trailingCoefficient| |palgint0| |totalGroebner| |predicates|
- |aQuadratic| |nextSublist| |subset?| |schema| |associator|
- |OMputEndBVar| |associates?| |perspective| |normalizeIfCan|
- |nextColeman| |Is| |normalized?| |e02bdf| |invertibleElseSplit?|
- |goodPoint| |declare| |d02raf| |remove| |conditionsForIdempotents|
- |d02bbf| |rootPoly| |cylindrical| |elements| |init| |cosh2sech| |id|
- |makeVariable| |anfactor| |pushNewContour| |particularSolution|
- |gethi| |cCsch| |kroneckerDelta| |listexp| |lists| |shellSort| |last|
- |prepareDecompose| |normalForm| |reduceByQuasiMonic| |lazy?|
- |messagePrint| |plot| |linearlyDependentOverZ?| |assoc|
- |powerAssociative?| |contract| |alternative?| |csc2sin| |sizeLess?|
- |conjugates| |mapUp!| |zeroSetSplit| |stoseInvertible?sqfreg|
- |imaginary| |harmonic| |sinhIfCan| |baseRDE| |segment| |iicsc|
- |lyndon| |node| |integer?| |initTable!| |sts2stst| |curveColor|
- |mapMatrixIfCan| |operators| |numberOfComponents| |inGroundField?|
- |commaSeparate| |numericalOptimization| |viewport2D| |iicsch|
- |separateDegrees| |antiCommutator| |goto| |isAbsolutelyIrreducible?|
- |rk4f| |createLowComplexityTable| |showScalarValues| |latex| |exquo|
- |LazardQuotient| |internalDecompose| |createPrimitiveNormalPoly|
- |RemainderList| |nextPartition| |green| |e04ucf| |zerosOf| |div|
- |augment| |scale| ~ |inf| |quote| |nand| |useNagFunctions|
- |getMultiplicationMatrix| |quo|
- |generalizedContinuumHypothesisAssumed| |setClipValue|
- |symmetricGroup| |discriminantEuclidean| |scaleRoots|
- |minimalPolynomial| |evenlambert| |leftRecip| |blue| |padicFraction|
- |integralRepresents| |quasiMonic?| |sturmVariationsOf| |iilog|
- |cAsinh| |c06gqf| |rem| |leadingCoefficientRicDE| |OMgetEndError|
- |nor| |matrixDimensions| |d02bhf| |lllip| |topPredicate| |B1solve|
- |removeSquaresIfCan| |reorder| |presuper| |reducedDiscriminant|
- |rightTrace| |mirror| |iomode| |leftTrace| |patternMatchTimes|
- |mapBivariate| |factorByRecursion| |OMputFloat| |internalAugment|
- |connect| |open| |maxPoints3D| |sinh2csch| |pdf2df| |linearDependence|
- |raisePolynomial| |rowEchLocal| |rootDirectory| |setLabelValue|
- |bsolve| |createNormalPrimitivePoly| |shrinkable|
- |numberOfComputedEntries| |int| |deepestInitial|
- |topFortranOutputStack| |e02zaf| |superHeight| |makeResult| |coerceP|
- |cAsec| |comparison| |cycles| |rotatez| |cAcot| |printTypes| |bfEntry|
- |quadraticForm| |groebner| |e01bgf| |approximants| |external?|
- |linkToFortran| |RittWuCompare| |complexNormalize|
- |basisOfMiddleNucleus| |tableau| |algintegrate|
- |nextLatticePermutation| |adaptive?| |critBonD| |arg1| |conditionP|
- |integerBound| |ReduceOrder| |cRationalPower| |bezoutResultant|
- |discreteLog| |compile| |c02aff| |linear| |f04jgf|
- |evenInfiniteProduct| |arg2| |queue| |float?| |insertTop!| |getStream|
- |partialFraction| |univcase| |rationalFunction| |fortranLogical|
- |OMreceive| |subResultantChain| |numerators|
- |irreducibleRepresentation| |decreasePrecision| |mapGen|
- |identitySquareMatrix| |expextendedint| |intcompBasis| |polynomial|
- |rowEch| |headReduced?| |leftQuotient| |univariatePolynomialsGcds|
- |conditions| |rightDivide| |findBinding| |balancedFactorisation|
- |branchPointAtInfinity?| |kovacic| |addMatchRestricted| |dmpToHdmp|
- |not| |coerceListOfPairs| |extractClosed| |OMencodingSGML|
- |SturmHabichtSequence| |match| |lazyPseudoQuotient| |slex|
- |complexIntegrate| |lepol| |prinpolINFO| |infRittWu?|
- |clearTheIFTable| |sturmSequence| |roughEqualIdeals?|
- |possiblyInfinite?| |bivariate?| |factorFraction| |ceiling| |basis|
- |nativeModuleExtension| |iroot| |ratDsolve| |lo| |pr2dmp|
- |invertibleSet| |resultant| |realSolve| |gderiv| |linearAssociatedLog|
- |perfectSquare?| |entry| |reducedContinuedFraction| |degree| |incr|
- |normalizedAssociate| |unitVector| |nullSpace| |explicitlyFinite?|
- |rightDiscriminant| |f01rdf| |bumprow| |swap| |unaryFunction|
- |resetBadValues| |hi| |wreath| |overlabel| |moduleSum| |frobenius|
- |countRealRootsMultiple| |test| |c06ebf| |mainPrimitivePart|
- |att2Result| |leftCharacteristicPolynomial| |removeZeroes|
- |normalElement| |horizConcat| |nthFlag| |diagonalMatrix| |style|
- |sncndn| |column| |polarCoordinates| |matrixGcd| |c05pbf| |d03faf|
- |interpretString| |solveLinearlyOverQ| |label| |minColIndex|
- |fortranCarriageReturn| |debug| |kmax| |leftRemainder| |binaryTree|
- |fortranComplex| |OMputVariable| |basisOfNucleus| |preprocess|
- |conjug| |quasiAlgebraicSet| |center| |formula| |sech2cosh|
- |totalDifferential| |selectNonFiniteRoutines| |leftRankPolynomial|
- |cTanh| |inspect| |startPolynomial| |decrease| |insert!| |trigs|
- |leftRank| |leader| |divisor| |sumOfSquares| |physicalLength!| |cn|
- |nullary?| |d01gaf| |interval| |supRittWu?| |components| |prindINFO|
- |minus!| |localUnquote| |symbol?| |constantOperator| |setOfMinN|
- |nil?| |leviCivitaSymbol| |schwerpunkt| |splitLinear| |f2df|
- |jacobiIdentity?| |trace2PowMod| |functionIsOscillatory|
- |moreAlgebraic?| |bottom!| |orthonormalBasis| |setClosed| |atanIfCan|
- |LiePolyIfCan| |nrows| |in?| |d02gbf| |showSummary| |option|
- |limitedIntegrate| |iisqrt3| |iiabs| |leadingTerm| |mulmod| |UP2ifCan|
- |lifting1| |ncols| |s17agf| |solveLinearPolynomialEquation|
- |diophantineSystem| |binaryFunction| |OMmakeConn| |rur|
- |endSubProgram| |f04faf| |doubleDisc| |deriv| |weakBiRank|
- |deleteProperty!| |cyclotomicDecomposition| |generalizedEigenvector|
- |splitConstant| |showAttributes| |moebiusMu| |clearDenominator|
- |roughUnitIdeal?| |typeList| |pastel| |xCoord| |numeric| |eq?|
- |roughSubIdeal?| ** |trim| |LowTriBddDenomInv| |lfextlimint|
- |getExplanations| |generalizedEigenvectors| |e04dgf| |f04mcf|
- |radical| |derivative| |rationalPoints| |generate| |even?| |pToDmp|
- |cot2trig| |makeViewport3D| |dec| |overbar| |extendIfCan| |hash|
- |concat| |radicalSolve| |toScale| |any?| |reset| |birth| |print|
- |untab| |trapezoidalo| |primPartElseUnitCanonical!| |phiCoord| EQ
- |fortran| |createZechTable| |purelyAlgebraicLeadingMonomial?|
- |stiffnessAndStabilityFactor| |incrementBy| |modularGcdPrimitive|
- |prinb| |numberOfDivisors| |anticoord| |rightFactorCandidate| |count|
- |rationalApproximation| |insertionSort!| |ellipticCylindrical|
- |qinterval| |FormatArabic| |expand| |setPoly| |write| |d01aqf|
- |startStats!| |fintegrate| |exprHasAlgebraicWeight| |minimize|
- |iiasin| |save| |close!| |filterWhile| |approxNthRoot| |pack!|
- |rightMinimalPolynomial| |low| |htrigs|
- |semiLastSubResultantEuclidean| |squareMatrix| |ef2edf| |dequeue!|
- |filterUntil| |sub| |scalarMatrix| |nthr| |commonDenominator|
- |interpolate| |squareTop| |fixedPoints| |dn| |structuralConstants|
- |fractionPart| |select| |nextNormalPoly| |internalIntegrate|
- |weighted| |routines| |create3Space| |certainlySubVariety?| |pushdown|
- |simpleBounds?| |createLowComplexityNormalBasis| |transpose|
- |makeGraphImage| |removeConstantTerm| |f02xef| |updateStatus!|
- |elementary| |modularFactor| |generalLambert| |complexSolve|
- |basisOfLeftAnnihilator| |integralMatrixAtInfinity| |logpart|
- |minRowIndex| |lSpaceBasis| |c06fqf| |merge!| |generalizedInverse|
- |content| |iisinh| |leadingIdeal| |hasTopPredicate?|
- |removeRoughlyRedundantFactorsInPols| |loopPoints| |OMclose| |uniform|
- |quartic| |getVariableOrder| |imagi| |acscIfCan| |optpair| |sin?|
- |cSin| |OMwrite| |randomR| |musserTrials| |ParCond|
- |tubePointsDefault| |stoseLastSubResultant| |integerIfCan|
- |lowerCase!| |hMonic| |lieAdmissible?| |coleman| |monomRDEsys|
- |radicalEigenvector| |selectMultiDimensionalRoutines| |integralBasis|
- |s18acf| |endOfFile?| |linearAssociatedExp| |mainValue| |rk4qc|
- |makeRecord| |shuffle| |clipBoolean| |OMgetEndAttr| |cot2tan|
- |pushuconst| |remove!| |iiasec| |traceMatrix|
- |noncommutativeJordanAlgebra?| |qelt| |getDatabase| |isList|
- |OMconnectTCP| |rightUnits| |rightGcd| |constant?| |fractRagits|
- |realRoots| |viewPhiDefault| |useEisensteinCriterion?| |presub|
- |physicalLength| |headRemainder| |quasiRegular?| |simplify| |diagonal|
- |setlast!| |OMsupportsCD?| |isOp| |lowerPolynomial| |lifting|
- |transform| |invertible?| |algSplitSimple| |xRange| |setvalue!|
- |stack| |setEmpty!| |distribute| |lintgcd| |viewDeltaYDefault| |lex|
- |octon| |replaceKthElement| |retract| |f02aff| |yRange| |ldf2vmf|
- |semicolonSeparate| |systemSizeIF| |tableForDiscreteLogarithm|
- |ratpart| |symbolTable| |minset| |f01qef| |outputAsTex| |zRange|
- |degreeSubResultant| |companionBlocks| |ode2| |addPointLast| |bits|
- |c06ecf| |pureLex| |Beta| |tanIfCan| |f02bjf| |stoseInvertibleSet|
- |iiperm| |useSingleFactorBound?| |map!| |makeEq| |OMgetType| |script|
- |infieldIntegrate| |recur| |goodnessOfFit| |extensionDegree|
- |pushFortranOutputStack| |recip| |rename| |e04mbf| |OMconnOutDevice|
- |qsetelt!| |consnewpol| |nthFractionalTerm| |cross| |factorset|
- |safeCeiling| |numberOfFractionalTerms| |property|
- |popFortranOutputStack| |scalarTypeOf| |leftMult| |f04arf| |negative?|
- |red| |changeName| |fixedPoint| |internalLastSubResultant|
- |leftScalarTimes!| |c02agf| |npcoef| |currentSubProgram|
- |outputAsFortran| |constantRight| |nsqfree|
- |zeroSetSplitIntoTriangularSystems| |rewriteSetWithReduction| |tex|
- |removeSinhSq| |axesColorDefault| |OMconnInDevice|
- |leftMinimalPolynomial| |myDegree| |sumSquares| |updatF|
- |countRealRoots| |term| |getGraph| |viewport3D|
- |rightCharacteristicPolynomial| |lazyIrreducibleFactors| |summation|
- |terms| |s14abf| |allRootsOf| |jacobi| |units| |cartesian|
- |setAttributeButtonStep| |factorSquareFreePolynomial| |rootProduct|
- |numFunEvals| |getCurve| |wronskianMatrix| |determinant|
- |highCommonTerms| |solve| |generalPosition| |clip|
- |subResultantGcdEuclidean| |acsch| |exptMod| |initials| |infLex?|
- |fixedPointExquo| |OMread| |normalDenom| |degreePartition|
- |packageCall| |nthFactor| |resultantReduitEuclidean| |e02aef|
- |numberOfChildren| |PDESolve| |cTan| |multiset| |match?|
- |principalIdeal| |showAllElements| |OMbindTCP| |printStats!| |unit?|
- |binaryTournament| |ddFact| |iiatanh| |headReduce| |quasiRegular|
- |showTheRoutinesTable| GE |code| |infix| |getOrder| |aspFilename|
- |weierstrass| |inRadical?| |indicialEquationAtInfinity| |OMsend|
- |stoseInvertibleSetsqfreg| GT |lazyPquo| |inc| |null?| |shufflein|
- |lazyPseudoDivide| |cyclotomicFactorization| |leftOne|
- |bivariateSLPEBR| |generalInfiniteProduct| LE |cExp| |rightPower|
- |ratPoly| |genericLeftNorm| |extendedEuclidean| |rowEchelonLocal|
- |e04fdf| |d01akf| LT |setMinPoints3D| |padicallyExpand| |expPot|
- |realEigenvalues| |bipolar| |elliptic?| |iiacos| |s19acf| |choosemon|
- |tab1| |mkIntegral| |eigenMatrix| |cschIfCan| |cycleRagits|
- |errorKind| |enumerate| |internal?| |vector|
- |factorsOfCyclicGroupSize| |divideIfCan!| |irreducibleFactors|
- |recoverAfterFail| |sin2csc| |lexTriangular| |hermiteH|
- |listRepresentation| |differentiate| |HenselLift| |binomial|
- |getProperties| |less?| |resultantReduit| |listOfLists| |airyAi|
- |minPoints3D| |stoseSquareFreePart| |logIfCan|
- |removeSuperfluousCases| |meatAxe| |positive?| |quickSort| |implies|
- |basisOfCentroid| |imagk| |solveLinearPolynomialEquationByFractions|
- |maxint| |totalLex| |is?| |split!| |comp| |list| |xor| |addMatch|
- |ode1| |setFormula!| |innerSolve| |mathieu11| |viewThetaDefault|
- |torsionIfCan| |car| |monicLeftDivide| |taylorRep| |e02daf| |ode|
- |reindex| |symmetricTensors| |lexGroebner| |cdr| |cCoth| |coHeight|
- |fprindINFO| |finite?| |rootNormalize| |leftDiscriminant|
- |setDifference| |subNodeOf?| |resultantEuclidean|
- |semiResultantReduitEuclidean| |plusInfinity| |factorial| |f04qaf|
- |f02fjf| |leftGcd| |setIntersection| |fixedDivisor| |sorted?|
- |addPoint2| |minusInfinity| |brillhartIrreducible?| |curryRight|
- |continuedFraction| |stoseInvertibleSetreg| |setUnion| |cycleEntry|
- |rational?| |rationalPower| |pdf2ef| |nthExpon| |mkcomm|
- |complexEigenvalues| |c05nbf| |apply| |addmod| |critMTonD1|
- |mathieu22| |eval| |createGenericMatrix| |stFunc2|
- |seriesToOutputForm| |removeZero| |shift| |viewDeltaXDefault| |common|
- |more?| |alphanumeric?| |d01apf| |thetaCoord| |polygon|
- |useSingleFactorBound| |node?| |size| |firstUncouplingMatrix|
- |powerSum| |cSec| |function| |realEigenvectors| |integral| |midpoint|
- |wholePart| |redPo| |lprop| |bezoutMatrix| |ldf2lst| |asinhIfCan|
- |colorDef| |getZechTable| |imagK| |expandLog| |doubleComplex?|
- |innerSolve1| |orOperands| |constructorName| |type| |makeSeries|
- |OMputEndError| |associative?| |leastMonomial| |cAcos| |first|
- |univariateSolve| |primlimintfrac| |outputAsScript| |tree| |weights|
- |symFunc| |genericLeftDiscriminant| |removeDuplicates!|
- |rewriteIdealWithHeadRemainder| |rest| |true| |bernoulliB| |minrank|
- |decompose| |logical?| |makeTerm| |isPower| |idealSimplify|
- |substitute| |const| |points| |noLinearFactor?| |subNode?|
- |eigenvectors| |startTableGcd!| |objectOf| |SturmHabicht|
- |removeDuplicates| |qroot| |accuracyIF| |newSubProgram| |insert|
- |members| |monicRightDivide| |getOperands| |entries|
- |LyndonCoordinates| |setright!| |iitanh| |f02adf| |bfKeys| |nullity|
- |acoshIfCan| |KrullNumber| |chineseRemainder| |minimumDegree| |axes|
- |currentCategoryFrame| |transcendentalDecompose| |clearTable!|
- |graphStates| |intersect| |s17def| |pointPlot| |void| |dimension|
- |Frobenius| |isPlus| |monicDivide| |Aleph| |pseudoDivide|
- |irreducible?| |expint| |s17akf| |OMputSymbol| |safeFloor| |LiePoly|
- |perfectSqrt| |rotatey| |primitiveElement| |incrementKthElement|
- |nary?| |optional?| |generateIrredPoly| |univariatePolynomials|
- |lastSubResultantElseSplit| |rightOne| |setleft!|
- |inverseIntegralMatrixAtInfinity| |pop!| |lcm| |makeUnit| |entry?|
- |elRow1!| |tRange| |subspace| |indices| |OMsupportsSymbol?|
- |reducedForm| |An| |asechIfCan| |selectAndPolynomials| |tanSum|
- |rootKerSimp| |optimize| |sylvesterMatrix| |screenResolution|
- |factorSquareFreeByRecursion| |getOperator| |lhs|
- |semiIndiceSubResultantEuclidean| |insertRoot!|
- |functionIsFracPolynomial?| |dom| |unitsColorDefault| |pushdterm|
- |f01rcf| |width| |gcd| |isTimes| |intensity| |rhs|
- |normalizeAtInfinity| |OMUnknownSymbol?| |iiacosh| |lieAlgebra?|
- |setLegalFortranSourceExtensions| |OMputEndObject| |union|
- |printHeader| |nonSingularModel| |e01saf| |string?|
- |genericRightDiscriminant| |false| |triangulate| |rowEchelon|
- |subtractIfCan| |expt| |antisymmetric?| UTS2UP |lagrange|
- |extendedIntegrate| |fortranCompilerName| |convergents| |distdfact|
- |cSinh| |leftDivide| |e04naf| |llprop| |mat| |coth2trigh|
- |tracePowMod| |showArrayValues| |symmetricRemainder| |c06gcf| |title|
- |isExpt| |factorsOfDegree| |optional| |close| |patternVariable|
- |dequeue| |neglist| |select!| |palginfieldint| |optAttributes|
- |inrootof| FG2F |OMencodingUnknown| |legendre| |withPredicates| NOT
- |normalizedDivide| |listLoops| |shanksDiscLogAlgorithm| |cAtan|
- |display| |mathieu23| |HermiteIntegrate| |f04mbf| |outerProduct|
- |roman| OR |nlde| |shiftRight| |e| |expenseOfEvaluation|
- |createNormalPoly| |permanent| |unprotectedRemoveRedundantFactors|
- |OMgetEndApp| |usingTable?| |pointColor| AND |squareFreePart|
- |viewDefaults| |graphState| |antisymmetricTensors| |mesh?|
- |showRegion| |sort| |primintfldpoly| |leadingExponent| |s21bcf| |cup|
- |datalist| |OMputEndBind| |upDateBranches| |ignore?|
- |fortranLinkerArgs| |OMgetAtp| |position!| |dim| |Nul| |polyRicDE|
- |leftNorm| |d01amf| |leftLcm| |OMputAttr| |sylvesterSequence|
- |positiveSolve| |parent| |OMgetBVar| |mainForm| |polygamma| |e02bcf|
- |stFunc1| |input| |fortranDoubleComplex| |root| |squareFreePolynomial|
- |mapExpon| |constant| |graphImage| |OMParseError?| |curveColorPalette|
- |library| |strongGenerators| |mathieu24| |droot| |toseSquareFreePart|
- |sequences| |closedCurve| |coefChoose| |parametric?| |measure2Result|
- |component| |commutativeEquality| |random| |rightNorm|
- |normInvertible?| |removeSuperfluousQuasiComponents|
- |radicalOfLeftTraceForm| |e01baf| |substring?|
- |integralBasisAtInfinity| |readable?| |toseLastSubResultant|
- |fglmIfCan| |s18adf| |mindeg| |f07adf| |normal01| |e01daf| |nthRoot|
- |basisOfCommutingElements| |erf| |s13aaf| |aromberg| |resultantnaif|
- |suffix?| |hitherPlane| |set| |setProperty!| |mainMonomials| |cubic| *
- |interpret| |roughBase?| |uniform01| |UpTriBddDenomInv| |sayLength|
- |screenResolution3D| |size?| |curry| |closedCurve?| |d01asf| |light|
- |ListOfTerms| |prefix?| |virtualDegree| |sincos| |leadingBasisTerm|
- |useEisensteinCriterion| |charthRoot| |dilog| |coerceS|
- |selectFiniteRoutines| |transcendenceDegree| |cap|
- |eisensteinIrreducible?| |iidsum| |iicot| |po| |simplifyLog|
- |antiAssociative?| |status| |sin| |flexibleArray| |f04adf| |coerceL|
- |argumentList!| |iicosh| |rightRegularRepresentation| |zag| |besselY|
- |setPredicates| |generic?| |multiplyCoefficients| |adaptive3D?|
- |removeRedundantFactorsInContents| |initial| |c06fpf|
- |LagrangeInterpolation| |point| |rootSimp| |iicoth|
- |groebnerFactorize| |cos| |semiResultantEuclidean2| |rightExtendedGcd|
- |createRandomElement| |calcRanges| |conical| |printStatement|
- |OMgetBind| |bitTruth| |completeEval| ^ |changeBase|
- |listYoungTableaus| |sinhcosh| |totolex| |check| |character?|
- |exponential1| |pushup| |linearAssociatedOrder| |genericLeftTrace|
- |infix?| |norm| |aLinear| |algebraicSort| |basicSet| |impliesOperands|
- |composites| |series| |bitLength| |iidprod| |mask| |fTable| |s20adf|
- |prepareSubResAlgo| |polygon?| |extendedint| |show| |recolor| |every?|
- |areEquivalent?| |generalizedContinuumHypothesisAssumed?| |flagFactor|
- |s21bbf| |rectangularMatrix| |normFactors| |chiSquare| |pattern|
- |setImagSteps| |failed?| |ratDenom| |alphabetic|
- |reduceBasisAtInfinity| |fortranInteger| |selectIntegrationRoutines|
- |rightLcm| |insertMatch| |trace| |extract!| |omError| |matrix|
- |subresultantVector| |associatedEquations| |factorials| |rombergo|
- |atoms| |solve1| |e02def| |functionIsContinuousAtEndPoints| |relerror|
- |min| |factorOfDegree| |parabolicCylindrical|
- |exprHasLogarithmicWeights| |blankSeparate| |selectPolynomials|
- |radicalRoots| |normalDeriv| |wholeRadix| |cAcsc| |alternating|
- |wordInStrongGenerators| |cosSinInfo| |extend| |hermite| |algDsolve|
- |sum| |scripted?| |laurentRep| |setMinPoints| |hypergeometric0F1|
- |shiftRoots| |frst| |halfExtendedResultant1| |binary| |iCompose|
- |isQuotient| |absolutelyIrreducible?| |duplicates|
- |lastSubResultantEuclidean| |createNormalElement| |e01sff| |tanhIfCan|
- |mainDefiningPolynomial| |extractSplittingLeaf| |limitPlus| |dmp2rfi|
- |computeBasis| |newTypeLists| |getIdentifier| |yellow| |setelt!|
- |compdegd| |d01ajf| |nonQsign| |collectUnder| |selectPDERoutines|
- |stirling2| |f01ref| |traverse| |GospersMethod| |OMputEndAttr|
- |mainCharacterization| |upperCase!| |epilogue| |atrapezoidal|
- |palgLODE| |direction| |SturmHabichtCoefficients| |e01bhf|
- |fullPartialFraction| |intChoose| |ScanRoman| |resetVariableOrder|
- |drawToScale| |jacobian| |symbolTableOf| |stirling1| |lfunc|
- |increment| |pdct| |inverseIntegralMatrix| |f04axf| |height| |surface|
- |coefficients| |singularitiesOf| |cond| |idealiserMatrix|
- |quotedOperators| |makingStats?| |row| |string| |round| |minPoly|
- |numberOfMonomials| |s18aff| |bag| |unary?| |mapUnivariateIfCan|
- |fractRadix| |selectOptimizationRoutines| |cyclicGroup| |cyclicEqual?|
- |rationalPoint?| |bright| |fortranLiteral| |heap| |lfintegrate|
- |swapColumns!| |hconcat| |delta| |pmComplexintegrate| |closed?|
- |color| |max| |gcdcofactprim| |returnType!| |vspace| |conjugate|
- |unitCanonical| |subSet| |internalSubPolSet?| |redmat| |cyclicCopy|
- |tanQ| |complementaryBasis| |basisOfRightAnnihilator|
- |selectSumOfSquaresRoutines| |getGoodPrime| |alphabetic?| |wrregime|
- |outputList| |unrankImproperPartitions1| |clikeUniv| |groebgen|
- |squareFreePrim| |showTypeInOutput| |delete| |principal?| |Ci| |df2ef|
- |rischDE| |multiEuclidean| |d01bbf| |quadratic?| |ravel| |bit?|
- |numericIfCan| |simplifyPower| |setOrder| |ideal| |cothIfCan| |edf2ef|
- |reshape| |dmpToP| |lighting| |unravel| |algebraicCoefficients?|
- |curryLeft| |setchildren!| |OMUnknownCD?| |expintfldpoly|
- |squareFreeFactors| |nextPrimitivePoly| |midpoints| |lambda| |ref|
- |closeComponent| |s19aaf| |hex| |characteristicSet| |s19abf|
- |cscIfCan| |mantissa| |bindings| |initiallyReduced?| |startTable!|
- |systemCommand| |returns| |OMputBind| |trivialIdeal?| |outputForm|
- |mapCoef| |identification| |brillhartTrials| |shallowCopy|
- |complexElementary| |copyInto!| |printInfo!| |solid?| |exists?| |cons|
- |subMatrix| |update| |var2Steps| |iiacsc| |clearTheFTable| |f07aef|
- |imagI| |divideIfCan| |makeop| |genus| |rroot| |polyred| |readIfCan!|
- |basisOfCenter| |linearMatrix| |leaf?| |ipow| |OMgetVariable| |e02ahf|
- |chiSquare1| |nextPrimitiveNormalPoly| |radicalEigenvalues|
- |setProperties| |log10| |mathieu12| |variable?| |setnext!|
- |rangePascalTriangle| |var1Steps| |linearlyDependent?| |bitand|
- |modularGcd| |tower| |singularAtInfinity?| |zoom| |polCase|
- |pseudoQuotient| |repeatUntilLoop| |primitive?| |bitior| |debug3D|
- |representationType| |directory| |testModulus| |ksec|
- |loadNativeModule| |vertConcat| |equation| |LazardQuotient2|
- |operation| |critM| |prefix| |powern| |objects| |lowerCase| |position|
- BY |lazyVariations| |integrate| |zeroMatrix| |roughBasicSet|
- |superscript| |hclf| |youngGroup| |base| |empty| |lift|
- |createPrimitiveElement| |genericRightTrace| |drawComplex| |testDim|
- |numberOfNormalPoly| |differentialVariables| |karatsubaDivide| |slash|
- |bitCoef| |argscript| |semiDiscriminantEuclidean| |unexpand| |t|
- |updatD| |f04maf| |probablyZeroDim?| |/\\| |df2st| |OMgetAttr|
- |realZeros| |setrest!| |makeFloatFunction| |prem| |extractProperty|
- |makeViewport2D| |\\/| |integral?| |s21bdf| |gcdprim| |ridHack1|
- |iisech| |e04ycf| |nextsousResultant2| |nthRootIfCan| |iiacsch|
- |triangular?| |primitivePart| |cAcsch| |or?| |d02cjf| |fi2df|
- |showAll?| |multiplyExponents| |iiexp| |Vectorise| |rdHack1|
- |LyndonWordsList1| |atom?| |controlPanel| |belong?| |retractable?|
- |unvectorise| |sizePascalTriangle| |numberOfIrreduciblePoly|
- |triangularSystems| |numerator| |setTex!| |brace| |stronglyReduce|
- |permutation| |cardinality| |tanNa| |normal| |setScreenResolution|
- |heapSort| |monicDecomposeIfCan| |showClipRegion| |tubeRadiusDefault|
- |innerint| |symmetric?| |subCase?| |monicCompleteDecompose| |separant|
- |orbits| |getBadValues| |LyndonBasis| |null| |gradient| |vconcat|
- |mindegTerm| |setRealSteps| |minimumExponent| |ocf2ocdf|
- |pointSizeDefault| |digit?| |genericRightNorm| |splitSquarefree|
- |checkPrecision| |sinIfCan| |case| |getButtonValue|
- |semiSubResultantGcdEuclidean2| |argumentListOf| |char| |padecf|
- |cotIfCan| |value| |pointLists| |ScanArabic| |polyRDE| |Zero|
- |previous| |palglimint0| |central?| |externalList|
- |basisOfLeftNucloid| |hue| |One| |enqueue!| |rootsOf| |linGenPos|
- |jordanAlgebra?| |front| |head| |modifyPointData| |invmultisect|
- |relativeApprox| |iiasech| |product| |complexLimit| |f07fef|
- |complex?| |complexNumeric| |magnitude| |swapRows!| |baseRDEsys|
- |outputSpacing| |besselI| |submod| |lazyPseudoRemainder| |float|
- |selectODEIVPRoutines| |removeCosSq| |varList| |completeEchelonBasis|
- |compound?| |tan| |leadingIndex| |regime| |kernels| |adaptive|
- |branchIfCan| |knownInfBasis| |contractSolve| |cot|
- |getMultiplicationTable| |solveInField| |toroidal| |randomLC|
- |replace| |zeroSquareMatrix| |f01qdf| |univariate| |elt|
- |partialNumerators| |genericLeftMinimalPolynomial| |sec|
- |intPatternMatch| |f07fdf| |f02agf| |modifyPoint| |coord|
- |rewriteIdealWithRemainder| Y |numberOfHues| |OMputApp| |getProperty|
- |csc| |e02adf| |listBranches| |OMreadFile| |key| |removeCoshSq|
- |oddlambert| |maxrow| |finiteBasis| |asin| |log2| |shallowExpand|
- |setAdaptive| |options| |stop| |unit| |toseInvertible?| |factor|
- |s17ajf| = |UnVectorise| |acos| |fillPascalTriangle|
- |changeWeightLevel| |pol| |OMgetEndObject| |checkRur| |sqrt|
- |dominantTerm| |numberOfOperations| |lazyGintegrate|
- |expenseOfEvaluationIF| |atan| |categoryFrame| |separate| |delete!|
- |filename| |gcdPrimitive| |partition| |real| |iiGamma| < |lazyPrem|
- |acot| |setErrorBound| |whatInfinity| |reduction| |mainContent|
- |properties| |eulerPhi| |internalZeroSetSplit| |imag| |lllp| >
- |sortConstraints| |e04jaf| |integralMatrix| |asec| |constantIfCan|
- |table| |coerceImages| |not?| |reduce| |keys| |dictionary|
- |directProduct| |stoseInternalLastSubResultant| |palgint| <= |power|
- |associatedSystem| |acsc| |OMopenFile| |enterInCache| |parse|
- |Hausdorff| |new| |singleFactorBound| |monomialIntegrate|
- |oddintegers| |translate| |hasSolution?| >= |elem?| |sinh| |s17dlf|
- |repeating| |cCosh| |f02awf| |arguments| |createPrimitivePoly|
- |leftUnits| |destruct| |BumInSepFFE| |hasHi| |normal?| |cosh|
- |showIntensityFunctions| |karatsubaOnce| |errorInfo| |mapdiv|
- |perfectNthPower?| |lambert| |drawCurves| |digamma| |d01fcf|
- |predicate| |tanh| |dioSolve| |primes| |vedf2vef| |cfirst| |find|
- |plus| |hostPlatform| |chainSubResultants| |bombieriNorm| + |nodeOf?|
- |coth| |genericRightTraceForm| |numberOfVariables| |duplicates?|
- |makeprod| |euclideanGroebner| |OMgetFloat| |distance| |aQuartic| -
- |infiniteProduct| |sech| |mapUnivariate| |cos2sec| |edf2fi| |digits|
- |fortranReal| |complexEigenvectors| |monomial| |enterPointData|
- |numberOfComposites| / |sh| |csch| |postfix| |setMaxPoints3D| |df2mf|
- |quadratic| |notOperand| |linearPart| |changeVar| |multivariate|
- |coordinates| |scopes| |iitan| |asinh| |doubleRank| |mix|
- |fortranCharacter| |compose| |module| |OMputObject| |reverse!|
- |variables| |rootOf| |times| |complexRoots| |generic| |cycleElt|
- |acosh| |subQuasiComponent?| |rule| |sechIfCan| |truncate| |multisect|
- |binomThmExpt| |cLog| |possiblyNewVariety?| |listOfMonoms| RF2UTS
- |atanh| |definingEquations| |csch2sinh| |yCoordinates| |nodes|
- |failed| |getlo| |extension| |ranges| |cAcoth| |iprint| |member?|
- |acoth| |rotatex| |infinite?|
- |solveLinearPolynomialEquationByRecursion| |setAdaptive3D| |left|
- |mkPrim| |#| |inHallBasis?| |innerEigenvectors| |multiple?| |pile|
- |parabolic| |next| |asech| |newReduc| |algint| |pole?|
- |numberOfImproperPartitions| |right| |iicos| |zeroDimPrime?|
- |reduceLODE| |lazyResidueClass| |monom| |algebraicOf| |operator|
- |equiv| |stoseInvertible?reg| |range| |henselFact| |taylorIfCan|
- |taylorQuoByVar| |acotIfCan| |rules| |taylor| |factorSquareFree|
- |imagj| |multiple| |bipolarCylindrical| |revert| |groebSolve|
- |torsion?| |d02ejf| |setButtonValue| |coordinate| |laurent| |modTree|
- |call| |elliptic| |reducedQPowers| |applyQuote| |index| |scan| |cycle|
- |quoByVar| |initiallyReduce| |rootBound| |OMlistSymbols| |puiseux|
- |singular?| |listConjugateBases| |signAround| |times!| |upperCase?|
- |yCoord| |number?| |dark| |indiceSubResultant| |linSolve| |minGbasis|
- |d02kef| |numberOfCycles| |ran| |hessian| |seriesSolve|
- |internalIntegrate0| |corrPoly| |inv| |laguerre| |lexico|
- |branchPoint?| |ruleset| |normalize| |resize| |pair| |mdeg|
- |constantToUnaryFunction| |ground?| |dimensionsOf| |medialSet|
- |skewSFunction| |identity| |rootSplit| |setTopPredicate| |solveLinear|
- |tanAn| |f01maf| |basisOfRightNucloid| |ground| |seed| |exprToGenUPS|
- |nil| |infinite| |arbitraryExponent| |approximate| |complex|
- |shallowMutable| |canonical| |noetherian| |central|
- |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed|
- |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation|
- |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation|
- |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
+ |Record| |Union| |screenResolution| |mainCoefficients| |intensity|
+ |setAttributeButtonStep| |mapdiv| |hcrf| |factorSquareFreeByRecursion|
+ |normalizeAtInfinity| |zeroDimPrimary?| |perfectNthPower?| |viewpoint|
+ |factorSquareFreePolynomial| |OMgetEndAtp| |balancedFactorisation|
+ |compdegd| |getOperator| |BasicMethod| |OMUnknownSymbol?|
+ |rootProduct| |exteriorDifferential| |subst| |lambert| |acothIfCan|
+ |branchPointAtInfinity?| |d01ajf| |semiIndiceSubResultantEuclidean|
+ |iiacosh| |defineProperty| |factorGroebnerBasis| |numFunEvals|
+ |drawCurves| |nextsubResultant2| |kovacic| |nonQsign| |op|
+ |insertRoot!| |plus| |leader| |lieAlgebra?| |OMputAtp| |adjoint|
+ |error| |symmetricPower| |addMatchRestricted| |collectUnder|
+ |functionIsFracPolynomial?| |exp| |setLegalFortranSourceExtensions|
+ |pushucoef| |iiasec| |invmultisect| |deref| |s18aef| |assert|
+ |dmpToHdmp| |selectPDERoutines| ~= |unitsColorDefault|
+ |OMputEndObject| |makeSUP| |traceMatrix| |relativeApprox| |coth2tanh|
+ |cyclePartition| |stirling2| |coerceListOfPairs| |coerce| |pushdterm|
+ |d01gbf| |printHeader| |iiasech| |noncommutativeJordanAlgebra?|
+ |s14aaf| |f01ref| |extractClosed| |construct| |nonSingularModel|
+ |wordsForStrongGenerators| |getDatabase| |product| |inR?| |ptFunc|
+ |OMencodingSGML| |traverse| |redPo| |numeric| |euclideanSize| |e01saf|
+ |complexLimit| |isList| |crushedSet| |createThreeSpace|
+ |GospersMethod| |optimize| |SturmHabichtSequence| |radical| |lprop|
+ |string?| |stopTableGcd!| |lhs| |f07fef| |OMconnectTCP| |zCoord|
+ |radPoly| |lazyPseudoQuotient| |OMputEndAttr| |bezoutMatrix| |width|
+ |leftZero| |genericRightDiscriminant| |rhs| |complex?| |rightUnits|
+ |typeLists| |rotate| |mainCharacterization| |slex| |ldf2lst|
+ |triangulate| |generators| |rightGcd| |magnitude| |elRow2!|
+ |setsubMatrix!| |complexIntegrate| |upperCase!| |asinhIfCan| |rules|
+ |nil| |rowEchelon| |cyclicParents| |swapRows!| |constant?|
+ |primintegrate| |stoseInvertible?| |lepol| |epilogue| |colorDef|
+ |subtractIfCan| |chvar| |e02gaf| |fractRagits| |baseRDEsys|
+ |condition| |pair?| |f04atf| |cyclicEntries| |prinpolINFO|
+ |atrapezoidal| |getZechTable| |result|
+ |rewriteSetByReducingWithParticularGenerators| |expt| |outputSpacing|
+ |realRoots| |unitNormalize| |completeHermite| |rarrow| |palgLODE|
+ |infRittWu?| |imagK| |optional| |antisymmetric?| LODO2FUN |besselI|
+ |approximate| |viewPhiDefault| |e02ajf| |setPrologue!|
+ |integralLastSubResultant| |clearTheIFTable| |direction| |expandLog|
+ |complex| |quatern| UTS2UP |useEisensteinCriterion?| |submod| |edf2df|
+ |whileLoop| |inverseLaplace| |sturmSequence|
+ |SturmHabichtCoefficients| |doubleComplex?| |returnTypeOf| |lagrange|
+ |lazyPseudoRemainder| |presub| |beauzamyBound| |ricDsolve| |d03eef|
+ |e01bhf| |roughEqualIdeals?| |innerSolve1| |extendedIntegrate|
+ |viewPosDefault| |physicalLength| |selectODEIVPRoutines| |outputArgs|
+ |indicialEquation| |leftPower| |fullPartialFraction|
+ |possiblyInfinite?| |orOperands| |iiatan| |fortranCompilerName|
+ |headRemainder| |removeCosSq| |firstDenom| |cyclicSubmodule|
+ |semiDegreeSubResultantEuclidean| |log| |intChoose| |bivariate?|
+ |makeSeries| |convergents| |qfactor| |completeEchelonBasis|
+ |quasiRegular?| |repeating?| |OMlistCDs| |euler| |ScanRoman|
+ |factorFraction| |OMputEndError| |setelt| |outerProduct| |distdfact|
+ |sumOfKthPowerDivisors| |compound?| |simplify| |distFact| |sign|
+ |contours| |ceiling| |resetVariableOrder| |associative?| |cSinh|
+ |tan2trig| |leadingIndex| |diagonal| |bumptab1| |outlineRender|
+ |writeLine!| |drawToScale| |basis| |leastMonomial| |copy| |backOldPos|
+ |leftDivide| |regime| |setlast!| |ffactor| |mapmult| |callForm?|
+ |jacobian| |nativeModuleExtension| |cAcos| |e04naf| |setMaxPoints|
+ |adaptive| |OMsupportsCD?| |zeroOf| |equiv?| |outputFixed| |iroot|
+ |symbolTableOf| |univariateSolve| |autoCoerce| |bandedHessian|
+ |totalfract| |llprop| |isOp| |branchIfCan| |shade| |constant|
+ |iiasinh| |stirling1| |ratDsolve| |primlimintfrac| |mat| |delay|
+ |knownInfBasis| |lowerPolynomial| |prolateSpheroidal|
+ |clipPointsDefault| |lfunc| |pr2dmp| |outputAsScript| |lifting|
+ |factors| |coth2trigh| |divide| |contractSolve| |numer| |OMputBVar|
+ |associatorDependence| |increment| |invertibleSet| |weights|
+ |interpret| |cyclic| |tracePowMod| |getMultiplicationTable| |region|
+ |cAsech| |transform| |erf| |denom| |halfExtendedResultant2|
+ |substring?| |pdct| |resultant| |symFunc| |leftTraceMatrix|
+ |showArrayValues| |solveInField| |invertible?| |key?| |e02dff|
+ |abelianGroup| |inverseIntegralMatrix| |realSolve|
+ |genericLeftDiscriminant| |fortran| |toroidal| |symmetricRemainder|
+ |f02aaf| |algSplitSimple| |computePowers| |gcdPolynomial| |pi|
+ |clearTheSymbolTable| |suffix?| |f04axf| |gderiv| |removeDuplicates!|
+ |randomLC| |c06gcf| |indicialEquations| |s18dcf| |setvalue!|
+ |OMputEndApp| |infinity| |s17dgf| |linearAssociatedLog| |surface|
+ |rewriteIdealWithHeadRemainder| |zeroSquareMatrix| |isExpt|
+ |stoseIntegralLastSubResultant| |dilog| |setEmpty!| |leftExtendedGcd|
+ |radicalEigenvectors| |prefix?| |sqfrFactor| |perfectSquare?|
+ |coefficients| |bernoulliB| |localReal?| |factorsOfDegree| |move|
+ |distribute| |f01qdf| |sin| |pseudoRemainder| |definingPolynomial|
+ |reducedContinuedFraction| |singularitiesOf| |minrank| |escape| ^
+ |partialNumerators| |changeNameToObjf| |lintgcd| |patternVariable|
+ |kernel| |Ei| |status| |cos| |idealiserMatrix| |laurentIfCan| |degree|
+ |decompose| |dequeue| |f01qcf| |genericLeftMinimalPolynomial|
+ |viewDeltaYDefault| |draw| |denomRicDE| |normalizedAssociate|
+ |quotedOperators| |logical?| |charClass| |neglist| |intPatternMatch|
+ |lex| |printCode| |tan| |box| |makingStats?| |unitVector| |makeTerm|
+ |select!| |f02ajf| |f07fdf| |octon| |mr| |cCsc| |remove| |nullSpace|
+ |row| |isPower| |oneDimensionalArray| |palginfieldint| |f02agf|
+ |replaceKthElement| |s15adf| |pow| |infix?| |round|
+ |explicitlyFinite?| |idealSimplify| |exprHasWeightCosWXorSinWX|
+ |optAttributes| |f02aff| |modifyPoint| |makeObject| |iisec| |mask|
+ |subPolSet?| |last| |minPoly| |rightDiscriminant| |const| |inrootof|
+ |minordet| |ldf2vmf| |coord| |s20acf| |tryFunctionalDecomposition?|
+ |assoc| |numberOfMonomials| |f01rdf| |points| FG2F |leftFactorIfCan|
+ |semicolonSeparate| |rewriteIdealWithRemainder| |edf2efi| |coef|
+ |setProperty| |s18aff| |bumprow| |noLinearFactor?| |matrix|
+ |mainKernel| |OMencodingUnknown| |numberOfHues| |systemSizeIF| |bag|
+ |swap| |subNode?| |legendre| |tab| |tableForDiscreteLogarithm|
+ |OMputApp| |e01sef| |unary?| |unaryFunction| |eigenvectors|
+ |meshFun2Var| |withPredicates| |getProperty| |ratpart| |exquo|
+ |localIntegralBasis| |mapUnivariateIfCan| |precision| |pointData|
+ |resetBadValues| |pToHdmp| |startTableGcd!| |normalizedDivide|
+ |dihedralGroup| |e02adf| |minset| |div| |subTriSet?| |wreath|
+ |explogs2trigs| |fractRadix| |objectOf| |cyclic?| |isQuotient|
+ |exponential| |listLoops| |f01qef| |listBranches| |quo| |diagonals|
+ |solveRetract| |overlabel| |selectOptimizationRoutines| |cCot|
+ |SturmHabicht| |shanksDiscLogAlgorithm| |open?| |OMreadFile|
+ |outputAsTex| |graphs| |cond| |moduleSum| |f01mcf| |cyclicGroup|
+ |polar| |qroot| |iifact| |cAtan| |degreeSubResultant| |removeCoshSq|
+ |rem| |frobenius| |algebraic?| |cyclicEqual?| |accuracyIF|
+ |leastPower| |checkForZero| |mathieu23| |companionBlocks| |oddlambert|
+ |lookup| |rationalPoint?| |createMultiplicationMatrix|
+ |countRealRootsMultiple| |rightAlternative?| |newSubProgram|
+ |extractBottom!| |HermiteIntegrate| |maxrow| |ode2| |fortranLiteral|
+ |c06ebf| |diff| |members| |interReduce| |height| |perfectNthRoot|
+ |f04mbf| |finiteBasis| |addPointLast| |heap| |explicitlyEmpty?|
+ |mainPrimitivePart| |monicRightDivide| |nextItem| |reify| |roman|
+ |log2| |bits| |palgextint0| |att2Result| |lfintegrate| |iExquo|
+ |meshPar1Var| |getOperands| |shallowExpand| |c06ecf| |varselect|
+ |leftCharacteristicPolynomial| |swapColumns!| |mvar| |entries|
+ |addPoint| |buildSyntax| |pureLex| |setAdaptive| |divideExponents|
+ |ravel| |lazyPremWithDefault| |hconcat| |removeZeroes|
+ |LyndonCoordinates| |monomial?| |colorFunction| |unit| |Beta| |critB|
+ |setright!| |normalElement| |pmComplexintegrate| |list?| |reshape|
+ |subResultantGcd| |equation| |tanh2coth| |tanIfCan| |toseInvertible?|
+ |cAsin| |outputList| |characteristicPolynomial| |iitanh| |shiftLeft|
+ |sizeMultiplication| |dot| |f02bjf| |s17ajf| |formula| |d02gaf|
+ |alphabetic| |superHeight| |any| |btwFact| |f02adf|
+ |oddInfiniteProduct| |mantissa| |complexNumericIfCan| |UnVectorise|
+ |stoseInvertibleSet| |crest| |not| |reduceBasisAtInfinity|
+ |makeResult| |prevPrime| |bfKeys| |twoFactor| |complexZeros| |maxrank|
+ |iiperm| |fillPascalTriangle| |mpsode| |coerceP| |fortranInteger|
+ |clearCache| |asinIfCan| |firstSubsetGray| |nullity|
+ |createMultiplicationTable| GF2FG |parametersOf| |cAsec|
+ |selectIntegrationRoutines| |collect| |acoshIfCan| |rischDEsys|
+ |update| |flexible?| |removeConstantTerm| |OMgetSymbol| |controlPanel|
+ |clipSurface| |tubePlot| |nrows| |comparison| |rightLcm| |graphCurves|
+ |diag| |KrullNumber| |belong?| |exponent| |e01sbf| |f02xef| |poisson|
+ |cyclotomic| |ncols| |insertMatch| |cycles| |s13adf|
+ |chineseRemainder| |s19adf| |retractable?| |startTableInvSet!|
+ |implies?| |updateStatus!| |FormatRoman| |charpol| |extract!|
+ |rotatez| |elementary| |block| |OMgetString| |unvectorise|
+ |mightHaveRoots| |chebyshevU| |rootBound| |cAcot| |s17dcf| |omError|
+ |taylorRep| |label| |tower| |modularFactor| |sizePascalTriangle|
+ |monic?| |lazyEvaluate| |scanOneDimSubspaces| |d03edf|
+ |subresultantVector| |printTypes| |e02daf| |OMlistSymbols|
+ |numberOfIrreduciblePoly| |expandTrigProducts| |Gamma|
+ |generalLambert| |mainSquareFreePart| |s17adf| |associatedEquations|
+ |bfEntry| |singular?| |ode| |position| |complexSolve| |tanintegrate|
+ |c06gbf| |triangularSystems| |leftFactor| |dfRange| |factorials|
+ |quadraticForm| |reindex| |listConjugateBases|
+ |basisOfLeftAnnihilator| |setPosition| |f02wef| |s15aef| |numerator|
+ |OMReadError?| |groebner| |rombergo| |signAround| |symmetricTensors|
+ |digit| |integralMatrixAtInfinity| |lyndonIfCan| |maxdeg|
+ |fractionFreeGauss!| |setTex!| |psolve| |e01bgf| |atoms| |times!|
+ |lexGroebner| |rootPower| |logpart| |prefix| |root?| |stronglyReduce|
+ |largest| |upperCase?| |approximants| |showSummary| |solve1| |option|
+ |cCoth| |basisOfLeftNucleus| |binarySearchTree| |permutation|
+ |collectQuasiMonic| |minRowIndex| |acosIfCan| |complement| |external?|
+ |e02def| |yCoord| |coHeight| |coercePreimagesImages| |lSpaceBasis|
+ |writable?| |cardinality| |redPol| |atanhIfCan| |c05adf|
+ |functionIsContinuousAtEndPoints| |number?| |linkToFortran|
+ |fprindINFO| |showAttributes| |prefixRagits| |level| |one?| |c06fqf|
+ |maxRowIndex| |tanNa| |zero?| |factorAndSplit| |relerror|
+ |RittWuCompare| |finite?| |dark| |dimensions| |morphism| |d01anf|
+ |setScreenResolution| |merge!| |sec2cos| |universe| |factorOfDegree|
+ |normal| |complexNormalize| |rootNormalize| |indiceSubResultant|
+ |rangeIsFinite| |exponentialOrder| |heapSort| |generalizedInverse|
+ |OMunhandledSymbol| |hash| |empty?| |concat|
+ |tryFunctionalDecomposition| |second| |sup| |monomRDE|
+ |basisOfMiddleNucleus| |parabolicCylindrical| |leftDiscriminant|
+ |linSolve| |length| |spherical| |karatsuba| |content|
+ |monicDecomposeIfCan| |pleskenSplit| |third| |primextendedint|
+ |geometric| |exprHasLogarithmicWeights| |minGbasis| |tableau|
+ |subNodeOf?| |scripts| |squareFreeLexTriangular| |iisinh|
+ |euclideanNormalForm| |count| |trueEqual| |fill!| |showClipRegion|
+ |c06eaf| |e01bef| |ScanFloatIgnoreSpaces| |algintegrate|
+ |blankSeparate| |d02kef| |resultantEuclidean| |iFTable| |leadingIdeal|
+ |explimitedint| |alternatingGroup| |e02dcf| |tubeRadiusDefault|
+ |sparsityIF| |appendPoint| |quoted?| |selectPolynomials|
+ |nextLatticePermutation| |numberOfCycles|
+ |semiResultantReduitEuclidean| |increasePrecision| |innerint|
+ |primextintfrac| |OMputEndAtp| |hasTopPredicate?| |mainVariable?|
+ |makeCos| |xn| |s17acf| |adaptive?| |radicalRoots| |factorial| |ran|
+ |square?| |removeRoughlyRedundantFactorsInPols| |symmetric?|
+ |OMreadStr| |SturmHabichtMultiple| |toseInvertibleSet|
+ |symmetricDifference| |reciprocalPolynomial| |getRef| |abs| |digit?|
+ |clipWithRanges| |normalDeriv| |critBonD| |hessian| |f04qaf| D
+ |discriminant| |s18def| |checkPrecision| |denominator| |subCase?|
+ |loopPoints| |squareFree| |iflist2Result| |nullary| |complexNumeric|
+ |characteristic| |conditionP| |wholeRadix| |seriesSolve| |f02fjf|
+ |currentEnv| |drawComplexVectorField| |maximumExponent| |supersub|
+ |OMclose| |monicCompleteDecompose| |getConstant| |eyeDistance|
+ |multMonom| |integerBound| |cAcsc| |internalIntegrate0| |leftGcd|
+ |vectorise| |separant| |socf2socdf| |exprToUPS| |odd?|
+ |dimensionOfIrreducibleRepresentation| |uniform| |kernels| |hdmpToDmp|
+ |univariatePolynomial| |stripCommentsAndBlanks| |constantKernel|
+ |alternating| |ReduceOrder| |corrPoly| |fixedDivisor| |someBasis|
+ |critMonD1| |bracket| |variationOfParameters| |orbits| |quartic|
+ |rightUnit| |removeIrreducibleRedundantFactors| |univariate| |bumptab|
+ |definingInequation| |cRationalPower| |wordInStrongGenerators|
+ |sorted?| |laguerre| |dihedral| |exp1| |mergeDifference| |s17aff|
+ |getBadValues| |addBadValue| |getVariableOrder| |zeroDim?|
+ |plenaryPower| |concat!| |rootRadius| |bezoutResultant| |cosSinInfo|
+ |lexico| |addPoint2| |prinshINFO| |unparse| |LyndonBasis| |satisfy?|
+ |badValues| |separateFactors| |imagi| |matrixConcat3D| |cot|
+ |monomials| |rational| |brillhartIrreducible?| |boundOfCauchy|
+ |discreteLog| |extend| |branchPoint?| |permutationGroup| |setColumn!|
+ |freeOf?| |expandPower| |gradient| |c06gsf| |acscIfCan|
+ |readLineIfCan!| |pomopo!| |sec| |notelem| |factor| |outputGeneral|
+ |curryRight| |c02aff| |hermite| |normalize| |putGraph|
+ |fortranLiteralLine| |fixPredicate| |PollardSmallFactor| |vconcat|
+ |optpair| |setfirst!| |numberOfPrimitivePoly| |csc| |normDeriv2|
+ |sqrt| |diagonalProduct| |f04jgf| |algDsolve| |continuedFraction|
+ |resize| |arity| |sin?| |completeHensel| |stronglyReduced?|
+ |compiledFunction| |commutator| |split| |mindegTerm|
+ |bivariatePolynomials| |asin| |real| |deepestTail| |char|
+ |evenInfiniteProduct| |scripted?| |mdeg| |stoseInvertibleSetreg|
+ |monicRightFactorIfCan| |setRealSteps| |selectfirst|
+ |pointColorPalette| |e01bff| |cSin| |child?| |setFieldInfo| |acos|
+ |imag| |internalInfRittWu?| |OMgetEndBind| |queue| |laurentRep|
+ |constantToUnaryFunction| |cycleEntry| |factorSFBRlcUnit|
+ |rationalIfCan| |genericPosition| |simpson| |minimumExponent|
+ |OMwrite| |directProduct| |atan| |insertBottom!| |purelyAlgebraic?|
+ |cCos| |point| |setMinPoints| |float?| |dimensionsOf| |rational?|
+ |iipow| |ocf2ocdf| |getPickedPoints| |solveid| |readLine!|
+ |rightRemainder| |randomR| |acot| |isMult| |numericalIntegration|
+ |palgRDE0| |hypergeometric0F1| |insertTop!| |rationalPower|
+ |medialSet| |fracPart| |leadingSupport| |SFunction| |f02axf|
+ |musserTrials| |pointSizeDefault| |asec| |symbolTable| |meshPar2Var|
+ |destruct| |zeroVector| |shiftRoots| |getStream| |float|
+ |skewSFunction| |pdf2ef| |OMsetEncoding| |setEpilogue!|
+ |genericRightNorm| |inverseColeman| |ParCond| |bubbleSort!| |acsc|
+ |exprex| |sample| |rightTraceMatrix| |series| |frst| |partialFraction|
+ |identity| |nthExpon| |regularRepresentation| |logGamma| |middle|
+ |splitSquarefree| |removeSinSq| |patternMatch| |tubePointsDefault|
+ |pushFortranOutputStack| |sinh| |c06fuf| |tablePow| |univcase|
+ |halfExtendedResultant1| |rootSplit| |mkcomm| |primeFrobenius|
+ |palglimint| |invertIfCan| |setScreenResolution3D| |aCubic| |sinIfCan|
+ |stoseLastSubResultant| |popFortranOutputStack| |cosh| |write!|
+ |hdmpToP| |putColorInfo| |e02agf| |binary| |rationalFunction|
+ |complexEigenvalues| |setTopPredicate| |monomialIntPoly|
+ |equivOperands| |getButtonValue| |rk4a| |integerIfCan| |hasoln|
+ |outputAsFortran| |tanh| |monomial| |redpps| |fortranLogical| |s01eaf|
+ |iCompose| |solveLinear| |laplacian| |c05nbf| |splitNodeOf!|
+ |derivationCoordinates| |over| |semiSubResultantGcdEuclidean2|
+ |setStatus| |lowerCase!| |absolutelyIrreducible?| |coth|
+ |multivariate| |plotPolar| |quotient| |min| |addmod| |OMreceive|
+ |upperCase| |tanAn| |linearDependenceOverZ| |lquo| |hMonic|
+ |constDsolve| |laplace| |argumentListOf| |sech| |variables|
+ |critMTonD1| |f02bbf| |duplicates| |subResultantChain| |f01maf|
+ |cycleLength| |besselJ| |airyBi| |setref| |match?| |lieAdmissible?|
+ |padecf| |csch| |basisOfRightNucloid| |radix| |numerators|
+ |lastSubResultantEuclidean| |multinomial| |mathieu22| |rdregime|
+ |deepCopy| |stiffnessAndStabilityOfODEIF| |hspace| |cotIfCan|
+ |coleman| |open| |asinh| |createNormalElement|
+ |irreducibleRepresentation| |OMgetObject| |OMgetApp| GE |seed|
+ |createGenericMatrix| |paraboloidal| |subresultantSequence|
+ |quadraticNorm| |characteristicSerie| |pointLists| |monomRDEsys|
+ |acosh| |decreasePrecision| |exprToGenUPS| |fibonacci| |e01sff| GT
+ |asecIfCan| |stFunc2| |computeInt| |iibinom| |graeffe| |f02akf|
+ |ScanArabic| |radicalEigenvector| |atanh| |Si| |mapGen| LE |tanhIfCan|
+ |seriesToOutputForm| |power!| |extendedResultant| |space| |polyRDE|
+ |selectMultiDimensionalRoutines| |primitivePart!| |acoth| |taylor|
+ |identitySquareMatrix| |OMencodingBinary| LT |mainDefiningPolynomial|
+ |linear?| |removeZero| |sqfree| |smith| |intermediateResultsIF|
+ |critT| |palglimint0| |integralBasis| |asech| |laurent| |call|
+ |Lazard2| |expextendedint| |extractSplittingLeaf|
+ |combineFeatureCompatibility| |viewDeltaXDefault| |bringDown|
+ |movedPoints| |central?| |s18acf| |nthExponent| |puiseux| |real?|
+ |intcompBasis| |limitPlus| |rotate!| |more?| |lfextendedint| |getCode|
+ |halfExtendedSubResultantGcd1| |externalList| |endOfFile?| |multiple|
+ |next| |palgLODE0| |cycleTail| |rowEch| |dmp2rfi| |alphanumeric?|
+ |genericLeftTraceForm| |makeMulti| |reverseLex| |basisOfLeftNucloid|
+ |linearAssociatedExp| |applyQuote| |s17dhf| |inv| |ramified?|
+ |computeBasis| |headReduced?| |read!| |d01apf| |prologue| |divisors|
+ |hue| |mainValue| |vector| |ground?| |viewSizeDefault| |e02bef|
+ |leftQuotient| |newTypeLists| |safetyMargin| |thetaCoord|
+ |quasiComponent| |rk4qc| |enqueue!| |differentiate|
+ |ramifiedAtInfinity?| |ground| |maxPoints| |getIdentifier|
+ |univariatePolynomialsGcds| |symbolIfCan| |polygon| |expr|
+ |complexForm| |rootsOf| |shuffle| |max| |ruleset| |stopMusserTrials|
+ |leadingMonomial| |symmetricSquare| |yellow| |rightDivide|
+ |useSingleFactorBound| |saturate| |entry| |clipBoolean| |linGenPos|
+ |subResultantsChain| |leadingCoefficient| |sort!| |setelt!|
+ |findBinding| |exactQuotient!| |node?| |outputMeasure| |comp|
+ |jordanAlgebra?| |OMgetEndAttr| |primitiveMonomials| |diagonal?|
+ |viewWriteDefault| |leftRegularRepresentation| |firstUncouplingMatrix|
+ |rk4| |useNagFunctions| |plusInfinity| |front| |cot2tan| |suchThat|
+ |bernoulli| |qelt| |reductum| |singRicDE| |zag| |powerSum| |makeFR|
+ |decomposeFunc| |variable| |qqq| |pushuconst| |minusInfinity| |head|
+ |getMultiplicationMatrix| |userOrdered?| |tube| |besselY| |byte|
+ |top!| |cSec| |lp| |stosePrepareSubResAlgo| |retractIfCan| |remove!|
+ |modifyPointData| |generalizedContinuumHypothesisAssumed|
+ |nonLinearPart| |xRange| |acschIfCan| |setPredicates| |clipParametric|
+ |realEigenvectors| |hexDigit?| |eval| |eigenvalues| |yRange|
+ |setClipValue| |generic?| |gramschmidt| |integral| |critM| |birth|
+ |cAtanh| |unmakeSUP| |zRange| |symmetricGroup| |multiplyCoefficients|
+ |ScanFloatIgnoreSpacesIfCan| |midpoint| |denominators| |powern|
+ |untab| |has?| |map!| |hasPredicate?| |adaptive3D?|
+ |discriminantEuclidean| |function| F2FG |wholePart| |trapezoidalo|
+ |lowerCase| |compile| |qsetelt!| |scaleRoots| |showTheFTable|
+ |removeRedundantFactorsInContents| |compactFraction| |lazyVariations|
+ |primPartElseUnitCanonical!| |type| |minimalPolynomial| |palgextint|
+ |cPower| |c06fpf| |e04fdf| |bat1| |possiblyNewVariety?| |leaves|
+ |extractIndex| |phiCoord| |integrate| |listOfMonoms| |evaluateInverse|
+ |trunc| |LagrangeInterpolation| |evenlambert| |c06ekf| |d01akf|
+ |unitNormal| |true| |createZechTable| |zeroMatrix| |rootSimp|
+ |hexDigit| |dflist| |leftRecip| |setMinPoints3D| |changeThreshhold|
+ RF2UTS |indiceSubResultantEuclidean| |roughBasicSet|
+ |purelyAlgebraicLeadingMonomial?| |blue| |finiteBound| |iicoth|
+ |getMeasure| |mkAnswer| |padicallyExpand| |definingEquations|
+ |transcendent?| |quasiMonicPolynomials| |flatten|
+ |stiffnessAndStabilityFactor| |insert| |superscript| |iisin|
+ |groebnerFactorize| |acsch| ** |expPot| |padicFraction| |eulerE|
+ |csch2sinh| |prod| |map| |modularGcdPrimitive| |hclf|
+ |integralRepresents| |yCoordinates| |directory| |s14baf|
+ |semiResultantEuclidean2| |realEigenvalues| |janko2| |setCondition!|
+ |prinb| |youngGroup| |bipolar| |zero| |exponents| |minIndex|
+ |rightExtendedGcd| |quasiMonic?| |groebner?| |nodes|
+ |linearPolynomials| EQ |numberOfDivisors| |empty| |elliptic?|
+ |sturmVariationsOf| |createRandomElement| |getlo| |mainVariables|
+ |deepExpand| |numberOfFactors| |createPrimitiveElement| |anticoord|
+ SEGMENT |And| |doublyTransitive?| |iilog| |calcRanges| |iiacos|
+ |extension| |factorList| |rename!| |genericRightTrace|
+ |rightFactorCandidate| |Or| |constantOpIfCan| |conical| |cAsinh|
+ |rightMult| |ranges| |s19acf| |append| |rquo| |generalTwoFactor|
+ |convert| |drawComplex| |rationalApproximation| |ptree|
+ |computeCycleEntry| |Not| |printStatement| |lcm| |c06gqf| |randnum|
+ |cAcoth| |choosemon| |processTemplate| |restorePrecision| |double|
+ |testDim| |insertionSort!| |iiacoth| |makeSketch|
+ |leadingCoefficientRicDE| |OMgetBind| |iprint| |tab1| |search|
+ |e02akf| |deleteRoutine!| |ellipticCylindrical| |numberOfNormalPoly|
+ |makeSin| |mkIntegral| |decimal| |bitTruth| |OMgetEndError| |swap!|
+ |member?| |c06frf| |extractPoint| |differentialVariables| |qinterval|
+ |dom| |nor| |generalSqFr| |rotatex| |completeEval| |floor| |gcd|
+ |OMcloseConn| |eigenMatrix| |getMatch| |FormatArabic|
+ |karatsubaDivide| |comment| |matrixDimensions| |factorPolynomial|
+ |constantLeft| |changeBase| |union| |infinite?|
+ |removeRedundantFactorsInPols| |cschIfCan| |repSq| |setPoly| |slash|
+ |false| |cSech| |fortranDouble| |d02bhf| |listYoungTableaus|
+ |solveLinearPolynomialEquationByRecursion| |cycleRagits|
+ |pointColorDefault| |rubiksGroup| |bitCoef| |d01aqf| |trigs2explogs|
+ |nthCoef| |vark| |lllip| |sinhcosh| |errorKind| |setAdaptive3D|
+ |rootOfIrreduciblePoly| |s17aef| |argscript| |startStats!|
+ |triangSolve| |totolex| |topPredicate| |mkPrim| |enumerate| |besselK|
+ |powers| |declare!| |semiDiscriminantEuclidean| |fintegrate| |title|
+ |subHeight| |inHallBasis?| |B1solve| |check| |close| |OMputString|
+ |internal?| |mainMonomial| |exprHasAlgebraicWeight| |unexpand| |sort|
+ |binding| |character?| |removeSquaresIfCan| |factorsOfCyclicGroupSize|
+ |innerEigenvectors| |lyndon?| |partitions| |minimize| |updatD|
+ |elColumn2!| |reorder| |exponential1| |display| |divideIfCan!|
+ |multiple?| |rightTrim| |iiasin| |f04maf| |e|
+ |removeRoughlyRedundantFactorsInPol| |presuper| |pushup| |pile|
+ |irreducibleFactors| |leftTrim| |close!| |probablyZeroDim?|
+ |commutative?| |linearAssociatedOrder| |reducedDiscriminant|
+ |parabolic| |recoverAfterFail| |bandedJacobian| |df2st|
+ |approxNthRoot| |overlap| |rightTrace| |genericLeftTrace| |newReduc|
+ |sin2csc| |initializeGroupForWordProblem| |pack!| |OMgetAttr| |random|
+ |norm| |mirror| |algint| |lexTriangular| |rightMinimalPolynomial|
+ |realZeros| |increase| |input| |iomode| |aLinear| |hermiteH| |pole?|
+ |semiResultantEuclidean1| |low| |setrest!| |divisorCascade| |stop|
+ |leftTrace| |library| |algebraicSort| |listRepresentation|
+ |numberOfImproperPartitions| |applyRules| |makeFloatFunction| |htrigs|
+ |contains?| |patternMatchTimes| |basicSet| |iicos| |HenselLift|
+ |homogeneous?| |semiLastSubResultantEuclidean| |prem| |inverse|
+ |mapBivariate| |impliesOperands| |top| |zeroDimPrime?| |binomial|
+ |relationsIdeal| |output| |tail| |squareMatrix| |extractProperty|
+ |mergeFactors| |continue| |factorByRecursion| |composites|
+ |getProperties| |reduceLODE| |df2fi| |ef2edf| |makeViewport2D|
+ |bitLength| |OMputFloat| |set| |lazyResidueClass| |less?|
+ |LyndonWordsList| |segment| |integral?| |dequeue!| |rightRecip|
+ |iidprod| |internalAugment| |resultantReduit| |algebraicOf| |s21bdf|
+ |sub| |fTable| |connect| |sum| |operator| |listOfLists| |gcdprim|
+ |scalarMatrix| |s20adf| |maxPoints3D| |equiv| |airyAi| |nthr|
+ |ridHack1| |prepareSubResAlgo| |sinh2csch| |minPoints3D|
+ |stoseInvertible?reg| |iisech| |commonDenominator| |pdf2df| |polygon?|
+ |range| |stoseSquareFreePart| |e04ycf| |interpolate| |extendedint|
+ |linearDependence| |logIfCan| |henselFact| |squareTop|
+ |nextsousResultant2| |recolor| |raisePolynomial|
+ |removeSuperfluousCases| |taylorIfCan| |fixedPoints| |nthRootIfCan|
+ |every?| |rowEchLocal| |taylorQuoByVar| |meatAxe| |iiacsch| |dn|
+ |areEquivalent?| |rootDirectory| |show| |stack| |acotIfCan|
+ |positive?| |triangular?| |structuralConstants|
+ |generalizedContinuumHypothesisAssumed?| |setLabelValue| |quickSort|
+ |pattern| |factorSquareFree| |fractionPart| |primitivePart|
+ |flagFactor| |bsolve| |trace| |basisOfCentroid| |imagj|
+ |nextNormalPoly| |cAcsch| |createNormalPrimitivePoly| |s21bbf|
+ |bipolarCylindrical| |imagk| |internalIntegrate| |or?| |s13acf|
+ |firstNumer| |shrinkable| |rectangularMatrix|
+ |solveLinearPolynomialEquationByFractions| |revert| |symbol| |d02cjf|
+ |weighted| |qPot| |numberOfComputedEntries| |normFactors| |groebSolve|
+ |maxint| |fi2df| |routines| |Lazard| |coshIfCan| |delta| |chiSquare|
+ |int| |totalLex| |torsion?| |create3Space| |showAll?| |fullDisplay|
+ |setImagSteps| |deepestInitial| |d02ejf| |is?| |tan2cot| |li|
+ |certainlySubVariety?| |multiplyExponents| |pquo|
+ |topFortranOutputStack| |failed?| |setButtonValue| |split!| |iiexp|
+ |pushdown| |complexExpand| |ratDenom| |e02zaf| |coordinate| |addMatch|
+ |wholeRagits| |f04asf| |simpleBounds?| |Vectorise| |setleaves!|
+ |modTree| |ode1| |biRank| |laguerreL| |createLowComplexityNormalBasis|
+ |rdHack1| |secIfCan| |shellSort| |commutativeEquality| |elliptic|
+ |setFormula!| |body| |constructorName| |approxSqrt| |LyndonWordsList1|
+ |transpose| |copies| |rightNorm| |prepareDecompose| |first| |string|
+ |reducedQPowers| |innerSolve| |e02bbf|
+ |removeRoughlyRedundantFactorsInContents| |makeGraphImage| |atom?|
+ |lambda| |normInvertible?| |normalForm| |rest| |mathieu11| |scan|
+ |infieldint| |bright| |substitute| |leftExactQuotient|
+ |removeSuperfluousQuasiComponents| |reduceByQuasiMonic| |say| |cycle|
+ |viewThetaDefault| |moreAlgebraic?| |initiallyReduced?|
+ |radicalOfLeftTraceForm| |problemPoints| |removeDuplicates| |lazy?|
+ |torsionIfCan| |quoByVar| |halfExtendedSubResultantGcd2| |bottom!|
+ |startTable!| |center| |constantCoefficientRicDE| |e01baf|
+ |messagePrint| |monicLeftDivide| |initiallyReduce| |returns|
+ |orthonormalBasis| |d01alf| |integralBasisAtInfinity| |plot|
+ |OMputBind| |setClosed| |delete| |push!| |readable?|
+ |linearlyDependentOverZ?| |digamma| |getCurve| |trivialIdeal?|
+ |atanIfCan| |powerAssociative?| |toseLastSubResultant| |d01fcf|
+ |wronskianMatrix| |outputForm| |LiePolyIfCan| |leftAlternative?|
+ |primlimitedint| |contract| |fglmIfCan| |dioSolve| |determinant| |obj|
+ |mapCoef| |in?| |alternative?| |s18adf| |highCommonTerms| |primes|
+ |cache| |identification| |d02gbf| |ord| |times| |vedf2vef| |csc2sin|
+ |mindeg| |objects| |solve| |brillhartTrials| |limitedIntegrate|
+ |internalSubQuasiComponent?| |sizeLess?| |generalPosition| |f07adf|
+ |base| |cfirst| |iisqrt3| |shallowCopy| |setVariableOrder|
+ |conjugates| |normal01| |find| |clip| |iiabs| |complexElementary|
+ |cons| |mapUp!| |e01daf| |subResultantGcdEuclidean| |hostPlatform|
+ |copyInto!| |leadingTerm| |specialTrigs| |monom| |nthRoot|
+ |zeroSetSplit| |exptMod| |chainSubResultants| |mulmod| |printInfo!|
+ |assign| |/\\| |basisOfCommutingElements| |stoseInvertible?sqfreg|
+ |bombieriNorm| |initials| |solid?| |UP2ifCan| |log10| |plus!| |\\/|
+ |imaginary| |s13aaf| |infLex?| |nodeOf?| |bitand| |exists?| |lifting1|
+ |common| |linears| |harmonic| |aromberg| |genericRightTraceForm|
+ |fixedPointExquo| |subMatrix| |s17agf| |bitior| |badNum|
+ |resultantnaif| |sinhIfCan| |OMread| |numberOfVariables| |var2Steps|
+ |solveLinearPolynomialEquation| |baseRDE| |hitherPlane| |duplicates?|
+ |normalDenom| |iiacsc| |diophantineSystem| |mapSolve| |iicsc|
+ |setProperty!| |degreePartition| |makeprod| NOT |clearTheFTable|
+ |binaryFunction| |lyndon| |mainMonomials| |euclideanGroebner|
+ |packageCall| |t| OR |f07aef| |OMmakeConn| |previous| |integer?|
+ |cubic| |nthFactor| |OMgetFloat| |parameters| AND |imagI| |rur|
+ |roughBase?| |initTable!| |resultantReduitEuclidean| |distance|
+ |endSubProgram| |divideIfCan| |e02aef| |uniform01| |sts2stst|
+ |completeSmith| |aQuartic| |f04faf| |makeop| |curveColor|
+ |tensorProduct| |UpTriBddDenomInv| |infiniteProduct|
+ |numberOfChildren| |genus| |doubleDisc| |sayLength| |mapUnivariate|
+ |mapMatrixIfCan| |PDESolve| |simplifyExp| |brace| |rroot| |rank|
+ |deriv| |children| |operators| |leftUnit| |screenResolution3D| |cTan|
+ |cos2sec| |void| |weakBiRank| |polyred| |replace| |size?| |edf2fi|
+ |numberOfComponents| |primeFactor| |multiset| |deleteProperty!| |null|
+ |simpsono| |readIfCan!| |zeroDimensional?| |curry| |inGroundField?|
+ |digits| |principalIdeal| |basisOfCenter| |cyclotomicDecomposition|
+ |case| |fortranReal| |commaSeparate| |closedCurve?| |nextPrime|
+ |showAllElements| |value| |linearMatrix| |generalizedEigenvector|
+ |Zero| |removeRedundantFactors| |d01asf| |complexEigenvectors|
+ |numericalOptimization| |OMbindTCP| |stopTableInvSet!| |splitConstant|
+ |One| * |leaf?| |viewZoomDefault| |lowerCase?| |light| |viewport2D|
+ |enterPointData| |printStats!| |declare| |bezoutDiscriminant| |lists|
+ |ipow| |moebiusMu| |partialQuotients| |iicsch| |ListOfTerms| |unit?|
+ |numberOfComposites| |node| |OMgetVariable| |clearDenominator|
+ |cycleSplit!| |binaryTournament| |separateDegrees| |virtualDegree|
+ |nextSubsetGray| |sh| |outputFloating| |e02ahf| |roughUnitIdeal?|
+ |createIrreduciblePoly| |antiCommutator| |sincos| |ddFact| |postfix|
+ |chiSquare1| |typeList| |leadingBasisTerm| |stopTable!| |iiatanh|
+ |goto| |setMaxPoints3D| |viewWriteAvailable| |nextPrimitiveNormalPoly|
+ |credPol| |pastel| |elt| ~ |df2mf| |rightFactorIfCan|
+ |useEisensteinCriterion| |isAbsolutelyIrreducible?| |reducedSystem|
+ |headReduce| Y |xCoord| |radicalEigenvalues| |setprevious!|
+ |collectUpper| |key| |rk4f| |charthRoot| |quadratic| |quasiRegular|
+ |eq?| |setProperties| |createLowComplexityTable| |coerceS| |ODESolve|
+ |notOperand| |options| |showTheRoutinesTable| |iteratedInitials|
+ |mathieu12| |roughSubIdeal?| |doubleResultant| |univariate?|
+ |showScalarValues| |selectFiniteRoutines| |linearPart| |infix|
+ |variable?| |trim| |tubeRadius| |weight| |filename| |id| |latex|
+ |transcendenceDegree| |changeVar| |getOrder| |setnext!|
+ |LowTriBddDenomInv| |e02ddf| |fortranTypeOf| |cap|
+ |showFortranOutputStack| |invmod| |LazardQuotient| |aspFilename|
+ |coordinates| |rangePascalTriangle| |lfextlimint| |pascalTriangle|
+ |coefficient| |scopes| |eisensteinIrreducible?| |explicitEntries?|
+ |cosIfCan| |not?| |internalDecompose| |weierstrass| |table|
+ |var1Steps| |maxIndex| |getExplanations| |f01bsf| |dim| |iidsum|
+ |iitan| |createPrimitiveNormalPoly| |fmecg| |inRadical?| |parse|
+ |lastSubResultant| |new| |generalizedEigenvectors|
+ |linearlyDependent?| |lift| |findCycle| |numFunEvals3D| |doubleRank|
+ |remainder| |iicot| |RemainderList| |e04gcf|
+ |indicialEquationAtInfinity| |modularGcd| |e04dgf| |reduce|
+ |oblateSpheroidal| |limitedint| |arg1| |OMsend|
+ |permutationRepresentation| |po| |nextPartition| |mix| |setValue!|
+ |singularAtInfinity?| |f04mcf| |primaryDecomp| |arg2| |green|
+ |reflect| |fortranCharacter| |simplifyLog| |divergence|
+ |stoseInvertibleSetsqfreg| |generator| |derivative| |arguments| |zoom|
+ |domainOf| |radicalSimplify| |antiAssociative?| |e04ucf| |lazyPquo|
+ |compose| |tanh2trigh| |predicate| |rationalPoints| |polCase| |f2st|
+ |argument| |conditions| |zerosOf| |module| |flexibleArray|
+ |OMputError| |null?| |even?| |pseudoQuotient|
+ |integralDerivationMatrix| |symmetricProduct| |match| |f04adf|
+ |OMputObject| |augment| |shufflein| |integers| |repeatUntilLoop|
+ |pToDmp| |inconsistent?| |mesh| |reverse!| |coerceL| |scale| |back|
+ |lazyPseudoDivide| |primitive?| |cot2trig| |andOperands|
+ |mainVariable| |cyclotomicFactorization| |inf| |argumentList!|
+ |tValues| |rootOf| |test| |child| |debug3D| |makeViewport3D|
+ |complete| |tubePoints| |iicosh| |leftOne| |quote| |complexRoots|
+ |s17ahf| |normalise| |representationType| |overbar| |palgRDE|
+ |semiResultantEuclideannaif| |nand| |sdf2lst|
+ |rightRegularRepresentation| |generic| |left| |bivariateSLPEBR|
+ |standardBasisOfCyclicSubmodule| |#| |option?| |testModulus|
+ |extendIfCan| |initial| |cycleElt| |right| |prime|
+ |generalInfiniteProduct| |lineColorDefault| |lo| |directSum| |ksec|
+ |radicalSolve| |realElementary| |datalist| |represents| |nlde|
+ |forLoop| |leastAffineMultiple| |cExp| |subQuasiComponent?| |debug|
+ |incr| |reverse| |addiag| |toScale| |vertConcat| |orbit|
+ |balancedBinaryTree| |shiftRight| |rightPower| |f02abf| |pade|
+ |sechIfCan| |hi| |noKaratsuba| |any?| |LazardQuotient2| |infinityNorm|
+ |ratPoly| |expenseOfEvaluation| |imagJ| |jordanAdmissible?| |index|
+ |ParCondList| |truncate| |moduloP| |resetNew| |createNormalPoly|
+ |double?| |mapDown!| |genericLeftNorm| |expIfCan| |multisect|
+ |basisOfRightNucleus| |horizConcat| |closed?| |OMgetEndBVar|
+ |idealiser| |permanent| |extendedEuclidean| |binomThmExpt| |polyPart|
+ |exactQuotient| |computeCycleLength| |nthFlag| |legendreP| |color|
+ |antiCommutative?| |unprotectedRemoveRedundantFactors|
+ |rewriteIdealWithQuasiMonicGenerators| |cLog| |pair| |rowEchelonLocal|
+ |curve?| |compBound| |gcdcofactprim| |extendedSubResultantGcd|
+ |diagonalMatrix| |refine| |sPol| |OMgetEndApp| |cn| |style|
+ |returnType!| |composite| |figureUnits| |reset| |opeval| |usingTable?|
+ |useSingleFactorBound?| |changeWeightLevel| |sncndn| |trapezoidal|
+ |showTheIFTable| |vspace| |pointColor| |paren| |overset?| |pol|
+ |makeEq| |uncouplingMatrices| |gcdcofact| |conjugate| |column| |parts|
+ |modulus| |write| |showTheSymbolTable| |squareFreePart|
+ |OMgetEndObject| |OMgetType| |polarCoordinates| |solid|
+ |unitCanonical| |systemCommand| |bat| |save| |froot| |high|
+ |viewDefaults| |infieldIntegrate| |checkRur| |matrixGcd| |e02baf|
+ |splitDenominator| |subSet| |minimumDegree| |curve|
+ |algebraicVariables| |graphState| |recur| |dominantTerm| |printInfo|
+ |groebnerIdeal| |c05pbf| |imagE| |internalSubPolSet?| |axes| |rst|
+ |antisymmetricTensors| |changeMeasure| |numberOfOperations|
+ |goodnessOfFit| |d03faf| |redmat| |merge| |currentCategoryFrame|
+ |localAbs| |pmintegrate| |lazyGintegrate| |extensionDegree| |mesh?|
+ |message| |and?| |generate| |makeCrit| |rCoord| |interpretString|
+ |cyclicCopy| |transcendentalDecompose| |setRow!|
+ |expenseOfEvaluationIF| |wordInGenerators| |showRegion| |recip|
+ |reseed| |tanQ| |resultantEuclideannaif| |solveLinearlyOverQ|
+ |clearTable!| |rightRank| |arrayStack| |primintfldpoly| BY
+ |loadNativeModule| |chebyshevT| |categoryFrame| |rename| |incrementBy|
+ |complementaryBasis| |rspace| |minColIndex| |graphStates| |push|
+ |leadingExponent| |copy!| |denomLODE| |print| |e04mbf| |separate|
+ |expand| |basisOfRightAnnihilator| |fortranCarriageReturn| |drawStyle|
+ |intersect| |delete!| |nextIrreduciblePoly| |build| |s21bcf|
+ |OMconnOutDevice| |quotientByP| |extractIfCan| |name| |filterWhile|
+ |eigenvector| |kmax| |selectSumOfSquaresRoutines| |s17def|
+ |partialDenominators| |cup| |subscriptedVariables| |iiacot|
+ |lflimitedint| |consnewpol| |gcdPrimitive| |filterUntil|
+ |multiEuclideanTree| |leftRemainder| |getGoodPrime| |pointPlot| |or|
+ |validExponential| |super| |OMputEndBind| |selectOrPolynomials|
+ |supDimElseRittWu?| |nthFractionalTerm| |partition| |select|
+ |binaryTree| |alphabetic?| |setProperties!| |and| |dimension|
+ |integralCoordinates| |iiGamma| F |upDateBranches| |prime?|
+ |genericRightMinimalPolynomial| |cross| |fortranComplex| |wrregime|
+ |subscript| |Frobenius| |ignore?| |exprToXXP| |index?| |factorset|
+ |lazyPrem| |totalDegree| |polynomialZeros| |OMputVariable|
+ |unrankImproperPartitions1| |isPlus| |setErrorBound|
+ |trailingCoefficient| |s21baf| |fortranLinkerArgs| |safeCeiling|
+ |getSyntaxFormsFromFile| |purelyTranscendental?| |basisOfNucleus|
+ |nextNormalPrimitivePoly| |clikeUniv| |monicDivide| |palgint0|
+ |whatInfinity| |OMgetAtp| |printingInfo?| |numberOfFractionalTerms|
+ |currentScope| |csubst| |dAndcExp| |groebgen| |preprocess| |Aleph|
+ |position!| |doubleFloatFormat| |scalarTypeOf| |totalGroebner|
+ |reduction| |lfinfieldint| |dec| |equality| |resetAttributeButtons|
+ |squareFreePrim| |conjug| |pseudoDivide| |Nul| |leftMult| |asimpson|
+ |predicates| |mainContent| |lazyIntegrate| |makeRecord| |create|
+ |showTypeInOutput| |isobaric?| |quasiAlgebraicSet| |retract|
+ |irreducible?| |polyRicDE| |aQuadratic| |eulerPhi| |f04arf|
+ |rightZero| |principal?| |sech2cosh| |expint| |leftNorm| |element?|
+ |limit| |nextSublist| |negative?| |internalZeroSetSplit|
+ |identityMatrix| |totalDifferential| |nilFactor| |Ci| |s17akf| |red|
+ |d01amf| |subset?| |mapExponents| |lllp| |twist| |df2ef| |powmod|
+ |selectNonFiniteRoutines| |OMputSymbol| |changeName| |leftLcm|
+ |schema| |sortConstraints| |reopen!| |exQuo| |leftRankPolynomial|
+ |degreeSubResultantEuclidean| |rischDE| |safeFloor| |critpOrder|
+ |init| |associator| |OMputAttr| |fixedPoint| |e04jaf|
+ |rightScalarTimes!| |multiEuclidean| |cTanh| |maxColIndex| |LiePoly|
+ |OMputEndBVar| |sylvesterSequence| |integralMatrix|
+ |internalLastSubResultant| |rightQuotient| |inspect| |d01bbf| |f02aef|
+ |perfectSqrt| |associates?| |positiveSolve| |constantIfCan|
+ |leftScalarTimes!| |positiveRemainder| |sn| |startPolynomial|
+ |quadratic?| |rotatey| |parent| |perspective| |c02agf| |coerceImages|
+ |term?| |order| |decrease| |bit?| |permutations| |primitiveElement|
+ |normalizeIfCan| |OMgetBVar| |property| |dictionary| |npcoef|
+ |integralAtInfinity?| |numericIfCan| |insert!| |incrementKthElement|
+ |mainForm| |nextColeman| |stoseInternalLastSubResultant|
+ |currentSubProgram| |OMencodingXML| |simplifyPower|
+ |expressIdealMember| = |trigs| |nary?| |Is| |polygamma| |palgint|
+ |constantRight| |unrankImproperPartitions0| |clearFortranOutputStack|
+ |leftRank| |difference| |setOrder| |optional?| |e02bcf| |normalized?|
+ |units| |nsqfree| |power| |rischNormalize| |OMgetInteger| |divisor|
+ |ideal| |OMopenString| < |generateIrredPoly| |e02bdf| |stFunc1|
+ |associatedSystem| |zeroSetSplitIntoTriangularSystems| |countable?|
+ |sumOfSquares| |var1StepsDefault| > |cothIfCan|
+ |univariatePolynomials| |fortranDoubleComplex| |invertibleElseSplit?|
+ |OMopenFile| |rewriteSetWithReduction| |factor1| |edf2ef|
+ |physicalLength!| |minPol| <= |lastSubResultantElseSplit| |goodPoint|
+ |root| |enterInCache| |removeSinhSq| |rightRankPolynomial| |nullary?|
+ >= |dmpToP| |reduced?| |rightOne| |d02raf| |squareFreePolynomial|
+ |axesColorDefault| |Hausdorff| |newLine| |d01gaf| |minPoints|
+ |lighting| |setleft!| |inc| |conditionsForIdempotents| |mapExpon|
+ |singleFactorBound| |OMconnInDevice| |OMgetError| |depth| |unravel|
+ |interval| |f01brf| |makeYoungTableau|
+ |inverseIntegralMatrixAtInfinity| |code| |graphImage| |d02bbf|
+ |leftMinimalPolynomial| |monomialIntegrate| |expintegrate| |keys|
+ |setStatus!| |supRittWu?| |algebraicCoefficients?| + |pop!| |rootPoly|
+ |OMParseError?| |myDegree| |oddintegers| |extractTop!| |gbasis|
+ |curryLeft| |components| - |makeUnit| |cylindrical|
+ |curveColorPalette| |sumSquares| |hasSolution?| |iisqrt2| |prindINFO|
+ |se2rfi| |setchildren!| / |entry?| |strongGenerators| |elements|
+ |list| |updatF| |elem?| |minus!| |OMUnknownCD?| |evaluate| |operation|
+ |elRow1!| |mathieu24| |car| |cosh2sech| |s17dlf| |countRealRoots|
+ |localUnquote| |expintfldpoly| |selectsecond|
+ |primPartElseUnitCanonical| |tRange| |droot| |makeVariable| |cdr|
+ |term| |repeating| |cAcosh| |squareFreeFactors| |symbol?| |subspace|
+ |implies| |anfactor| |cCosh| |setDifference| |toseSquareFreePart|
+ |script| |getGraph| |constantOperator| |nextPrimitivePoly| |linear|
+ |romberg| |indices| |varList| |xor| |setIntersection| |f02awf|
+ |sequences| |pushNewContour| |failed| |viewport3D| |measure|
+ |midpoints| |setOfMinN| |OMsupportsSymbol?| |setUnion|
+ |particularSolution| |closedCurve| |createPrimitivePoly|
+ |rightCharacteristicPolynomial| |palgintegrate| |polynomial| |ref|
+ |nil?| |properties| |reducedForm| |gethi| |leftUnits| |coefChoose|
+ |apply| |tex| |lazyIrreducibleFactors| |leviCivitaSymbol| |moebius|
+ |closeComponent| |An| |cCsch| |shift| |parametric?| |summation|
+ |BumInSepFFE| |irreducibleFactor| |schwerpunkt| |s19aaf| |point?|
+ |translate| |asechIfCan| |rule| |kroneckerDelta| |measure2Result|
+ |size| |hasHi| |terms| |sumOfDivisors| |splitLinear| |hex| |OMserve|
+ |selectAndPolynomials| |component| |listexp| |normal?| |s14abf|
+ |rightExactQuotient| |f2df| |stFuncN| |characteristicSet| |tanSum|
+ |showIntensityFunctions| |allRootsOf| |OMputInteger| |alphanumeric|
+ |jacobiIdentity?| |s19abf| |autoReduced?| |rootKerSimp| |f01rcf| |eq|
+ |integer| |algebraicDecompose| |jacobi| |karatsubaOnce|
+ |var2StepsDefault| |trace2PowMod| |hyperelliptic| |cscIfCan| |tree|
+ |sylvesterMatrix| |iter| |isTimes| |monicModulo| |cartesian|
+ |errorInfo| UP2UTS |bindings| |functionIsOscillatory|
+ |semiSubResultantGcdEuclidean1| |nil| |infinite| |arbitraryExponent|
+ |approximate| |complex| |shallowMutable| |canonical| |noetherian|
+ |central| |partiallyOrderedSet| |arbitraryPrecision|
+ |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary|
+ |additiveValuation| |unitsKnown| |canonicalUnitNormal|
+ |multiplicativeValuation| |finiteAggregate| |shallowlyMutable|
+ |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 26bd0179..7fbf087f 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,4924 +1,4929 @@
-(3146391 . 3420122832)
-((-3072 (((-108) (-1 (-108) |#2| |#2|) $) 63) (((-108) $) NIL)) (-1356 (($ (-1 (-108) |#2| |#2|) $) 18) (($ $) NIL)) (-2109 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-1139 (-525)) |#2|) 34)) (-4103 (($ $) 59)) (-4004 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-3763 (((-525) (-1 (-108) |#2|) $) 22) (((-525) |#2| $) NIL) (((-525) |#2| $ (-525)) 73)) (-2026 (((-592 |#2|) $) 13)) (-1932 (($ (-1 (-108) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2857 (($ (-1 |#2| |#2|) $) 29)) (-1370 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-3167 (($ |#2| $ (-525)) NIL) (($ $ $ (-525)) 50)) (-4054 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 24)) (-3494 (((-108) (-1 (-108) |#2|) $) 21)) (-3928 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL) (($ $ (-1139 (-525))) 49)) (-3653 (($ $ (-525)) 56) (($ $ (-1139 (-525))) 55)) (-2686 (((-713) (-1 (-108) |#2|) $) 26) (((-713) |#2| $) NIL)) (-3703 (($ $ $ (-525)) 52)) (-2135 (($ $) 51)) (-1922 (($ (-592 |#2|)) 53)) (-2664 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-592 $)) 62)) (-1908 (((-797) $) 69)) (-2667 (((-108) (-1 (-108) |#2|) $) 20)) (-3961 (((-108) $ $) 72)) (-3983 (((-108) $ $) 75)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -3961 ((-108) |#1| |#1|)) (-15 -1908 ((-797) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1356 (|#1| |#1|)) (-15 -1356 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -4103 (|#1| |#1|)) (-15 -3703 (|#1| |#1| |#1| (-525))) (-15 -3072 ((-108) |#1|)) (-15 -1932 (|#1| |#1| |#1|)) (-15 -3763 ((-525) |#2| |#1| (-525))) (-15 -3763 ((-525) |#2| |#1|)) (-15 -3763 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -3072 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1932 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2109 (|#2| |#1| (-1139 (-525)) |#2|)) (-15 -3167 (|#1| |#1| |#1| (-525))) (-15 -3167 (|#1| |#2| |#1| (-525))) (-15 -3653 (|#1| |#1| (-1139 (-525)))) (-15 -3653 (|#1| |#1| (-525))) (-15 -3928 (|#1| |#1| (-1139 (-525)))) (-15 -1370 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2664 (|#1| (-592 |#1|))) (-15 -2664 (|#1| |#1| |#1|)) (-15 -2664 (|#1| |#2| |#1|)) (-15 -2664 (|#1| |#1| |#2|)) (-15 -1922 (|#1| (-592 |#2|))) (-15 -4054 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3928 (|#2| |#1| (-525))) (-15 -3928 (|#2| |#1| (-525) |#2|)) (-15 -2109 (|#2| |#1| (-525) |#2|)) (-15 -2686 ((-713) |#2| |#1|)) (-15 -2026 ((-592 |#2|) |#1|)) (-15 -2686 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3494 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2667 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1370 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2135 (|#1| |#1|))) (-19 |#2|) (-1126)) (T -18))
+(3149553 . 3420735390)
+((-2151 (((-108) (-1 (-108) |#2| |#2|) $) 63) (((-108) $) NIL)) (-2549 (($ (-1 (-108) |#2| |#2|) $) 18) (($ $) NIL)) (-1429 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-1140 (-525)) |#2|) 34)) (-3559 (($ $) 59)) (-3503 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1916 (((-525) (-1 (-108) |#2|) $) 22) (((-525) |#2| $) NIL) (((-525) |#2| $ (-525)) 73)) (-3702 (((-592 |#2|) $) 13)) (-3743 (($ (-1 (-108) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2622 (($ (-1 |#2| |#2|) $) 29)) (-2694 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-2683 (($ |#2| $ (-525)) NIL) (($ $ $ (-525)) 50)) (-3207 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 24)) (-3006 (((-108) (-1 (-108) |#2|) $) 21)) (-3410 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL) (($ $ (-1140 (-525))) 49)) (-3157 (($ $ (-525)) 56) (($ $ (-1140 (-525))) 55)) (-2040 (((-713) (-1 (-108) |#2|) $) 26) (((-713) |#2| $) NIL)) (-3216 (($ $ $ (-525)) 52)) (-1451 (($ $) 51)) (-1279 (($ (-592 |#2|)) 53)) (-2014 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-592 $)) 62)) (-1270 (((-798) $) 69)) (-3633 (((-108) (-1 (-108) |#2|) $) 20)) (-3994 (((-108) $ $) 72)) (-4017 (((-108) $ $) 75)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -3994 ((-108) |#1| |#1|)) (-15 -1270 ((-798) |#1|)) (-15 -4017 ((-108) |#1| |#1|)) (-15 -2549 (|#1| |#1|)) (-15 -2549 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3559 (|#1| |#1|)) (-15 -3216 (|#1| |#1| |#1| (-525))) (-15 -2151 ((-108) |#1|)) (-15 -3743 (|#1| |#1| |#1|)) (-15 -1916 ((-525) |#2| |#1| (-525))) (-15 -1916 ((-525) |#2| |#1|)) (-15 -1916 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -2151 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3743 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1429 (|#2| |#1| (-1140 (-525)) |#2|)) (-15 -2683 (|#1| |#1| |#1| (-525))) (-15 -2683 (|#1| |#2| |#1| (-525))) (-15 -3157 (|#1| |#1| (-1140 (-525)))) (-15 -3157 (|#1| |#1| (-525))) (-15 -3410 (|#1| |#1| (-1140 (-525)))) (-15 -2694 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2014 (|#1| (-592 |#1|))) (-15 -2014 (|#1| |#1| |#1|)) (-15 -2014 (|#1| |#2| |#1|)) (-15 -2014 (|#1| |#1| |#2|)) (-15 -1279 (|#1| (-592 |#2|))) (-15 -3207 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3410 (|#2| |#1| (-525))) (-15 -3410 (|#2| |#1| (-525) |#2|)) (-15 -1429 (|#2| |#1| (-525) |#2|)) (-15 -2040 ((-713) |#2| |#1|)) (-15 -3702 ((-592 |#2|) |#1|)) (-15 -2040 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3633 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2622 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2694 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1451 (|#1| |#1|))) (-19 |#2|) (-1127)) (T -18))
NIL
-(-10 -8 (-15 -3961 ((-108) |#1| |#1|)) (-15 -1908 ((-797) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1356 (|#1| |#1|)) (-15 -1356 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -4103 (|#1| |#1|)) (-15 -3703 (|#1| |#1| |#1| (-525))) (-15 -3072 ((-108) |#1|)) (-15 -1932 (|#1| |#1| |#1|)) (-15 -3763 ((-525) |#2| |#1| (-525))) (-15 -3763 ((-525) |#2| |#1|)) (-15 -3763 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -3072 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1932 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2109 (|#2| |#1| (-1139 (-525)) |#2|)) (-15 -3167 (|#1| |#1| |#1| (-525))) (-15 -3167 (|#1| |#2| |#1| (-525))) (-15 -3653 (|#1| |#1| (-1139 (-525)))) (-15 -3653 (|#1| |#1| (-525))) (-15 -3928 (|#1| |#1| (-1139 (-525)))) (-15 -1370 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2664 (|#1| (-592 |#1|))) (-15 -2664 (|#1| |#1| |#1|)) (-15 -2664 (|#1| |#2| |#1|)) (-15 -2664 (|#1| |#1| |#2|)) (-15 -1922 (|#1| (-592 |#2|))) (-15 -4054 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3928 (|#2| |#1| (-525))) (-15 -3928 (|#2| |#1| (-525) |#2|)) (-15 -2109 (|#2| |#1| (-525) |#2|)) (-15 -2686 ((-713) |#2| |#1|)) (-15 -2026 ((-592 |#2|) |#1|)) (-15 -2686 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3494 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2667 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1370 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2135 (|#1| |#1|)))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-1840 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-3072 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-1356 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4255))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4255))))) (-3327 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-3410 (((-108) $ (-713)) 8)) (-2109 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 58 (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4254)))) (-1505 (($) 7 T CONST)) (-4103 (($ $) 90 (|has| $ (-6 -4255)))) (-1693 (($ $) 100)) (-3163 (($ $) 78 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ |#1| $) 77 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4254)))) (-2870 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) 51)) (-3763 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1019)))) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-4018 (($ (-713) |#1|) 69)) (-3100 (((-108) $ (-713)) 9)) (-2009 (((-525) $) 43 (|has| (-525) (-789)))) (-3525 (($ $ $) 87 (|has| |#1| (-789)))) (-1932 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1792 (((-525) $) 44 (|has| (-525) (-789)))) (-3630 (($ $ $) 86 (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-3167 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3222 (((-592 (-525)) $) 46)) (-1548 (((-108) (-525) $) 47)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3135 ((|#1| $) 42 (|has| (-525) (-789)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1911 (($ $ |#1|) 41 (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-3218 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) 48)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1139 (-525))) 63)) (-3653 (($ $ (-525)) 62) (($ $ (-1139 (-525))) 61)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-3703 (($ $ $ (-525)) 91 (|has| $ (-6 -4255)))) (-2135 (($ $) 13)) (-1427 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 70)) (-2664 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) 84 (|has| |#1| (-789)))) (-3995 (((-108) $ $) 83 (|has| |#1| (-789)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4010 (((-108) $ $) 85 (|has| |#1| (-789)))) (-3983 (((-108) $ $) 82 (|has| |#1| (-789)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-19 |#1|) (-131) (-1126)) (T -19))
+(-10 -8 (-15 -3994 ((-108) |#1| |#1|)) (-15 -1270 ((-798) |#1|)) (-15 -4017 ((-108) |#1| |#1|)) (-15 -2549 (|#1| |#1|)) (-15 -2549 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3559 (|#1| |#1|)) (-15 -3216 (|#1| |#1| |#1| (-525))) (-15 -2151 ((-108) |#1|)) (-15 -3743 (|#1| |#1| |#1|)) (-15 -1916 ((-525) |#2| |#1| (-525))) (-15 -1916 ((-525) |#2| |#1|)) (-15 -1916 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -2151 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3743 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1429 (|#2| |#1| (-1140 (-525)) |#2|)) (-15 -2683 (|#1| |#1| |#1| (-525))) (-15 -2683 (|#1| |#2| |#1| (-525))) (-15 -3157 (|#1| |#1| (-1140 (-525)))) (-15 -3157 (|#1| |#1| (-525))) (-15 -3410 (|#1| |#1| (-1140 (-525)))) (-15 -2694 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2014 (|#1| (-592 |#1|))) (-15 -2014 (|#1| |#1| |#1|)) (-15 -2014 (|#1| |#2| |#1|)) (-15 -2014 (|#1| |#1| |#2|)) (-15 -1279 (|#1| (-592 |#2|))) (-15 -3207 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3410 (|#2| |#1| (-525))) (-15 -3410 (|#2| |#1| (-525) |#2|)) (-15 -1429 (|#2| |#1| (-525) |#2|)) (-15 -2040 ((-713) |#2| |#1|)) (-15 -3702 ((-592 |#2|) |#1|)) (-15 -2040 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3633 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2622 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2694 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1451 (|#1| |#1|)))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2782 (((-1178) $ (-525) (-525)) 40 (|has| $ (-6 -4256)))) (-2151 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-2549 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4256))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4256))))) (-2855 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-3330 (((-108) $ (-713)) 8)) (-1429 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) 58 (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4255)))) (-2305 (($) 7 T CONST)) (-3559 (($ $) 90 (|has| $ (-6 -4256)))) (-3620 (($ $) 100)) (-3137 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4255)))) (-2632 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) 51)) (-1916 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1020)))) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-3489 (($ (-713) |#1|) 69)) (-2482 (((-108) $ (-713)) 9)) (-2710 (((-525) $) 43 (|has| (-525) (-789)))) (-2371 (($ $ $) 87 (|has| |#1| (-789)))) (-3743 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3478 (((-525) $) 44 (|has| (-525) (-789)))) (-2535 (($ $ $) 86 (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-2683 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-4142 (((-592 (-525)) $) 46)) (-3845 (((-108) (-525) $) 47)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3110 ((|#1| $) 42 (|has| (-525) (-789)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2042 (($ $ |#1|) 41 (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-4101 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) 48)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1140 (-525))) 63)) (-3157 (($ $ (-525)) 62) (($ $ (-1140 (-525))) 61)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3216 (($ $ $ (-525)) 91 (|has| $ (-6 -4256)))) (-1451 (($ $) 13)) (-2749 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 70)) (-2014 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) 84 (|has| |#1| (-789)))) (-4026 (((-108) $ $) 83 (|has| |#1| (-789)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-4037 (((-108) $ $) 85 (|has| |#1| (-789)))) (-4017 (((-108) $ $) 82 (|has| |#1| (-789)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-19 |#1|) (-131) (-1127)) (T -19))
NIL
-(-13 (-351 |t#1|) (-10 -7 (-6 -4255)))
-(((-33) . T) ((-97) -3309 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-789)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-597 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1019) -3309 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-1126) . T))
-((-3263 (((-3 $ "failed") $ $) 12)) (-4070 (($ $) NIL) (($ $ $) 9)) (* (($ (-855) $) NIL) (($ (-713) $) 16) (($ (-525) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-525) |#1|)) (-15 -4070 (|#1| |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -3263 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|))) (-21)) (T -20))
+(-13 (-351 |t#1|) (-10 -7 (-6 -4256)))
+(((-33) . T) ((-97) -3279 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-789)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1020) -3279 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-1127) . T))
+((-1342 (((-3 $ "failed") $ $) 12)) (-4090 (($ $) NIL) (($ $ $) 9)) (* (($ (-856) $) NIL) (($ (-713) $) 16) (($ (-525) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-525) |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 -1342 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 * (|#1| (-525) |#1|)) (-15 -4070 (|#1| |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -3263 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20)))
+(-10 -8 (-15 * (|#1| (-525) |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 -1342 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20)))
(((-21) (-131)) (T -21))
-((-4070 (*1 *1 *1) (-4 *1 (-21))) (-4070 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-525)))))
-(-13 (-126) (-10 -8 (-15 -4070 ($ $)) (-15 -4070 ($ $ $)) (-15 * ($ (-525) $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-1611 (((-108) $) 10)) (-1505 (($) 15)) (* (($ (-855) $) 14) (($ (-713) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-713) |#1|)) (-15 -1611 ((-108) |#1|)) (-15 -1505 (|#1|)) (-15 * (|#1| (-855) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-713) |#1|)) (-15 -1611 ((-108) |#1|)) (-15 -1505 (|#1|)) (-15 * (|#1| (-855) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1505 (($) 17 T CONST)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4059 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15)))
+((-4090 (*1 *1 *1) (-4 *1 (-21))) (-4090 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-525)))))
+(-13 (-126) (-10 -8 (-15 -4090 ($ $)) (-15 -4090 ($ $ $)) (-15 * ($ (-525) $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-1989 (((-108) $) 10)) (-2305 (($) 15)) (* (($ (-856) $) 14) (($ (-713) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-713) |#1|)) (-15 -1989 ((-108) |#1|)) (-15 -2305 (|#1|)) (-15 * (|#1| (-856) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-713) |#1|)) (-15 -1989 ((-108) |#1|)) (-15 -2305 (|#1|)) (-15 * (|#1| (-856) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2305 (($) 17 T CONST)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4080 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15)))
(((-23) (-131)) (T -23))
-((-3875 (*1 *1) (-4 *1 (-23))) (-1505 (*1 *1) (-4 *1 (-23))) (-1611 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-713)))))
-(-13 (-25) (-10 -8 (-15 (-3875) ($) -3359) (-15 -1505 ($) -3359) (-15 -1611 ((-108) $)) (-15 * ($ (-713) $))))
-(((-25) . T) ((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((* (($ (-855) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-855) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-855) |#1|)))
-((-1893 (((-108) $ $) 7)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3961 (((-108) $ $) 6)) (-4059 (($ $ $) 14)) (* (($ (-855) $) 13)))
+((-3355 (*1 *1) (-4 *1 (-23))) (-2305 (*1 *1) (-4 *1 (-23))) (-1989 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-713)))))
+(-13 (-25) (-10 -8 (-15 (-3355) ($) -1479) (-15 -2305 ($) -1479) (-15 -1989 ((-108) $)) (-15 * ($ (-713) $))))
+(((-25) . T) ((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((* (($ (-856) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-856) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-856) |#1|)))
+((-1260 (((-108) $ $) 7)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3994 (((-108) $ $) 6)) (-4080 (($ $ $) 14)) (* (($ (-856) $) 13)))
(((-25) (-131)) (T -25))
-((-4059 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-855)))))
-(-13 (-1019) (-10 -8 (-15 -4059 ($ $ $)) (-15 * ($ (-855) $))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-2346 (((-592 $) (-886 $)) 29) (((-592 $) (-1086 $)) 16) (((-592 $) (-1086 $) (-1090)) 20)) (-1694 (($ (-886 $)) 27) (($ (-1086 $)) 11) (($ (-1086 $) (-1090)) 54)) (-3884 (((-592 $) (-886 $)) 30) (((-592 $) (-1086 $)) 18) (((-592 $) (-1086 $) (-1090)) 19)) (-4105 (($ (-886 $)) 28) (($ (-1086 $)) 13) (($ (-1086 $) (-1090)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -2346 ((-592 |#1|) (-1086 |#1|) (-1090))) (-15 -2346 ((-592 |#1|) (-1086 |#1|))) (-15 -2346 ((-592 |#1|) (-886 |#1|))) (-15 -1694 (|#1| (-1086 |#1|) (-1090))) (-15 -1694 (|#1| (-1086 |#1|))) (-15 -1694 (|#1| (-886 |#1|))) (-15 -3884 ((-592 |#1|) (-1086 |#1|) (-1090))) (-15 -3884 ((-592 |#1|) (-1086 |#1|))) (-15 -3884 ((-592 |#1|) (-886 |#1|))) (-15 -4105 (|#1| (-1086 |#1|) (-1090))) (-15 -4105 (|#1| (-1086 |#1|))) (-15 -4105 (|#1| (-886 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -2346 ((-592 |#1|) (-1086 |#1|) (-1090))) (-15 -2346 ((-592 |#1|) (-1086 |#1|))) (-15 -2346 ((-592 |#1|) (-886 |#1|))) (-15 -1694 (|#1| (-1086 |#1|) (-1090))) (-15 -1694 (|#1| (-1086 |#1|))) (-15 -1694 (|#1| (-886 |#1|))) (-15 -3884 ((-592 |#1|) (-1086 |#1|) (-1090))) (-15 -3884 ((-592 |#1|) (-1086 |#1|))) (-15 -3884 ((-592 |#1|) (-886 |#1|))) (-15 -4105 (|#1| (-1086 |#1|) (-1090))) (-15 -4105 (|#1| (-1086 |#1|))) (-15 -4105 (|#1| (-886 |#1|))))
-((-1893 (((-108) $ $) 7)) (-2346 (((-592 $) (-886 $)) 80) (((-592 $) (-1086 $)) 79) (((-592 $) (-1086 $) (-1090)) 78)) (-1694 (($ (-886 $)) 83) (($ (-1086 $)) 82) (($ (-1086 $) (-1090)) 81)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-3263 (((-3 $ "failed") $ $) 19)) (-3321 (($ $) 73)) (-1510 (((-396 $) $) 72)) (-3969 (($ $) 92)) (-2305 (((-108) $ $) 59)) (-1505 (($) 17 T CONST)) (-3884 (((-592 $) (-886 $)) 86) (((-592 $) (-1086 $)) 85) (((-592 $) (-1086 $) (-1090)) 84)) (-4105 (($ (-886 $)) 89) (($ (-1086 $)) 88) (($ (-1086 $) (-1090)) 87)) (-2373 (($ $ $) 55)) (-2866 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 51)) (-2250 (((-108) $) 71)) (-2133 (((-108) $) 31)) (-3391 (($ $ (-525)) 91)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-4211 (($ $) 70)) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-3959 (((-396 $) $) 74)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2338 (((-3 $ "failed") $ $) 42)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2183 (((-713) $) 58)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 57)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) 39)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4082 (($ $ $) 64)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 90)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
+((-4080 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-856)))))
+(-13 (-1020) (-10 -8 (-15 -4080 ($ $ $)) (-15 * ($ (-856) $))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-3540 (((-592 $) (-887 $)) 29) (((-592 $) (-1087 $)) 16) (((-592 $) (-1087 $) (-1091)) 20)) (-1466 (($ (-887 $)) 27) (($ (-1087 $)) 11) (($ (-1087 $) (-1091)) 54)) (-2533 (((-592 $) (-887 $)) 30) (((-592 $) (-1087 $)) 18) (((-592 $) (-1087 $) (-1091)) 19)) (-3572 (($ (-887 $)) 28) (($ (-1087 $)) 13) (($ (-1087 $) (-1091)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -3540 ((-592 |#1|) (-1087 |#1|) (-1091))) (-15 -3540 ((-592 |#1|) (-1087 |#1|))) (-15 -3540 ((-592 |#1|) (-887 |#1|))) (-15 -1466 (|#1| (-1087 |#1|) (-1091))) (-15 -1466 (|#1| (-1087 |#1|))) (-15 -1466 (|#1| (-887 |#1|))) (-15 -2533 ((-592 |#1|) (-1087 |#1|) (-1091))) (-15 -2533 ((-592 |#1|) (-1087 |#1|))) (-15 -2533 ((-592 |#1|) (-887 |#1|))) (-15 -3572 (|#1| (-1087 |#1|) (-1091))) (-15 -3572 (|#1| (-1087 |#1|))) (-15 -3572 (|#1| (-887 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -3540 ((-592 |#1|) (-1087 |#1|) (-1091))) (-15 -3540 ((-592 |#1|) (-1087 |#1|))) (-15 -3540 ((-592 |#1|) (-887 |#1|))) (-15 -1466 (|#1| (-1087 |#1|) (-1091))) (-15 -1466 (|#1| (-1087 |#1|))) (-15 -1466 (|#1| (-887 |#1|))) (-15 -2533 ((-592 |#1|) (-1087 |#1|) (-1091))) (-15 -2533 ((-592 |#1|) (-1087 |#1|))) (-15 -2533 ((-592 |#1|) (-887 |#1|))) (-15 -3572 (|#1| (-1087 |#1|) (-1091))) (-15 -3572 (|#1| (-1087 |#1|))) (-15 -3572 (|#1| (-887 |#1|))))
+((-1260 (((-108) $ $) 7)) (-3540 (((-592 $) (-887 $)) 80) (((-592 $) (-1087 $)) 79) (((-592 $) (-1087 $) (-1091)) 78)) (-1466 (($ (-887 $)) 83) (($ (-1087 $)) 82) (($ (-1087 $) (-1091)) 81)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-1342 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 73)) (-2100 (((-396 $) $) 72)) (-2211 (($ $) 92)) (-3197 (((-108) $ $) 59)) (-2305 (($) 17 T CONST)) (-2533 (((-592 $) (-887 $)) 86) (((-592 $) (-1087 $)) 85) (((-592 $) (-1087 $) (-1091)) 84)) (-3572 (($ (-887 $)) 89) (($ (-1087 $)) 88) (($ (-1087 $) (-1091)) 87)) (-1726 (($ $ $) 55)) (-3762 (((-3 $ "failed") $) 34)) (-1704 (($ $ $) 56)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 51)) (-3836 (((-108) $) 71)) (-1985 (((-108) $) 31)) (-3220 (($ $ (-525)) 91)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-2502 (($ $) 70)) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-2195 (((-396 $) $) 74)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1680 (((-3 $ "failed") $ $) 42)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1290 (((-713) $) 58)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 57)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) 39)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4100 (($ $ $) 64)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 90)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
(((-27) (-131)) (T -27))
-((-4105 (*1 *1 *2) (-12 (-5 *2 (-886 *1)) (-4 *1 (-27)))) (-4105 (*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) (-4105 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1090)) (-4 *1 (-27)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-886 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-1694 (*1 *1 *2) (-12 (-5 *2 (-886 *1)) (-4 *1 (-27)))) (-1694 (*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27)))) (-1694 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1090)) (-4 *1 (-27)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-886 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-2346 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-2346 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1090)) (-4 *1 (-27)) (-5 *2 (-592 *1)))))
-(-13 (-341) (-933) (-10 -8 (-15 -4105 ($ (-886 $))) (-15 -4105 ($ (-1086 $))) (-15 -4105 ($ (-1086 $) (-1090))) (-15 -3884 ((-592 $) (-886 $))) (-15 -3884 ((-592 $) (-1086 $))) (-15 -3884 ((-592 $) (-1086 $) (-1090))) (-15 -1694 ($ (-886 $))) (-15 -1694 ($ (-1086 $))) (-15 -1694 ($ (-1086 $) (-1090))) (-15 -2346 ((-592 $) (-886 $))) (-15 -2346 ((-592 $) (-1086 $))) (-15 -2346 ((-592 $) (-1086 $) (-1090)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-854) . T) ((-933) . T) ((-982 #0#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) . T))
-((-2346 (((-592 $) (-886 $)) NIL) (((-592 $) (-1086 $)) NIL) (((-592 $) (-1086 $) (-1090)) 50) (((-592 $) $) 19) (((-592 $) $ (-1090)) 41)) (-1694 (($ (-886 $)) NIL) (($ (-1086 $)) NIL) (($ (-1086 $) (-1090)) 52) (($ $) 17) (($ $ (-1090)) 37)) (-3884 (((-592 $) (-886 $)) NIL) (((-592 $) (-1086 $)) NIL) (((-592 $) (-1086 $) (-1090)) 48) (((-592 $) $) 15) (((-592 $) $ (-1090)) 43)) (-4105 (($ (-886 $)) NIL) (($ (-1086 $)) NIL) (($ (-1086 $) (-1090)) NIL) (($ $) 12) (($ $ (-1090)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -2346 ((-592 |#1|) |#1| (-1090))) (-15 -1694 (|#1| |#1| (-1090))) (-15 -2346 ((-592 |#1|) |#1|)) (-15 -1694 (|#1| |#1|)) (-15 -3884 ((-592 |#1|) |#1| (-1090))) (-15 -4105 (|#1| |#1| (-1090))) (-15 -3884 ((-592 |#1|) |#1|)) (-15 -4105 (|#1| |#1|)) (-15 -2346 ((-592 |#1|) (-1086 |#1|) (-1090))) (-15 -2346 ((-592 |#1|) (-1086 |#1|))) (-15 -2346 ((-592 |#1|) (-886 |#1|))) (-15 -1694 (|#1| (-1086 |#1|) (-1090))) (-15 -1694 (|#1| (-1086 |#1|))) (-15 -1694 (|#1| (-886 |#1|))) (-15 -3884 ((-592 |#1|) (-1086 |#1|) (-1090))) (-15 -3884 ((-592 |#1|) (-1086 |#1|))) (-15 -3884 ((-592 |#1|) (-886 |#1|))) (-15 -4105 (|#1| (-1086 |#1|) (-1090))) (-15 -4105 (|#1| (-1086 |#1|))) (-15 -4105 (|#1| (-886 |#1|)))) (-29 |#2|) (-13 (-789) (-517))) (T -28))
-NIL
-(-10 -8 (-15 -2346 ((-592 |#1|) |#1| (-1090))) (-15 -1694 (|#1| |#1| (-1090))) (-15 -2346 ((-592 |#1|) |#1|)) (-15 -1694 (|#1| |#1|)) (-15 -3884 ((-592 |#1|) |#1| (-1090))) (-15 -4105 (|#1| |#1| (-1090))) (-15 -3884 ((-592 |#1|) |#1|)) (-15 -4105 (|#1| |#1|)) (-15 -2346 ((-592 |#1|) (-1086 |#1|) (-1090))) (-15 -2346 ((-592 |#1|) (-1086 |#1|))) (-15 -2346 ((-592 |#1|) (-886 |#1|))) (-15 -1694 (|#1| (-1086 |#1|) (-1090))) (-15 -1694 (|#1| (-1086 |#1|))) (-15 -1694 (|#1| (-886 |#1|))) (-15 -3884 ((-592 |#1|) (-1086 |#1|) (-1090))) (-15 -3884 ((-592 |#1|) (-1086 |#1|))) (-15 -3884 ((-592 |#1|) (-886 |#1|))) (-15 -4105 (|#1| (-1086 |#1|) (-1090))) (-15 -4105 (|#1| (-1086 |#1|))) (-15 -4105 (|#1| (-886 |#1|))))
-((-1893 (((-108) $ $) 7)) (-2346 (((-592 $) (-886 $)) 80) (((-592 $) (-1086 $)) 79) (((-592 $) (-1086 $) (-1090)) 78) (((-592 $) $) 126) (((-592 $) $ (-1090)) 124)) (-1694 (($ (-886 $)) 83) (($ (-1086 $)) 82) (($ (-1086 $) (-1090)) 81) (($ $) 127) (($ $ (-1090)) 125)) (-1611 (((-108) $) 16)) (-4104 (((-592 (-1090)) $) 201)) (-3927 (((-385 (-1086 $)) $ (-565 $)) 233 (|has| |#1| (-517)))) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-3740 (((-592 (-565 $)) $) 164)) (-3263 (((-3 $ "failed") $ $) 19)) (-1962 (($ $ (-592 (-565 $)) (-592 $)) 154) (($ $ (-592 (-273 $))) 153) (($ $ (-273 $)) 152)) (-3321 (($ $) 73)) (-1510 (((-396 $) $) 72)) (-3969 (($ $) 92)) (-2305 (((-108) $ $) 59)) (-1505 (($) 17 T CONST)) (-3884 (((-592 $) (-886 $)) 86) (((-592 $) (-1086 $)) 85) (((-592 $) (-1086 $) (-1090)) 84) (((-592 $) $) 130) (((-592 $) $ (-1090)) 128)) (-4105 (($ (-886 $)) 89) (($ (-1086 $)) 88) (($ (-1086 $) (-1090)) 87) (($ $) 131) (($ $ (-1090)) 129)) (-1264 (((-3 (-886 |#1|) "failed") $) 251 (|has| |#1| (-976))) (((-3 (-385 (-886 |#1|)) "failed") $) 235 (|has| |#1| (-517))) (((-3 |#1| "failed") $) 197) (((-3 (-525) "failed") $) 195 (|has| |#1| (-967 (-525)))) (((-3 (-1090) "failed") $) 188) (((-3 (-565 $) "failed") $) 139) (((-3 (-385 (-525)) "failed") $) 123 (-3309 (-12 (|has| |#1| (-967 (-525))) (|has| |#1| (-517))) (|has| |#1| (-967 (-385 (-525))))))) (-2831 (((-886 |#1|) $) 252 (|has| |#1| (-976))) (((-385 (-886 |#1|)) $) 236 (|has| |#1| (-517))) ((|#1| $) 198) (((-525) $) 194 (|has| |#1| (-967 (-525)))) (((-1090) $) 189) (((-565 $) $) 140) (((-385 (-525)) $) 122 (-3309 (-12 (|has| |#1| (-967 (-525))) (|has| |#1| (-517))) (|has| |#1| (-967 (-385 (-525))))))) (-2373 (($ $ $) 55)) (-1860 (((-632 |#1|) (-632 $)) 241 (|has| |#1| (-976))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 240 (|has| |#1| (-976))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 121 (-3309 (-1341 (|has| |#1| (-976)) (|has| |#1| (-588 (-525)))) (-1341 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))))) (((-632 (-525)) (-632 $)) 120 (-3309 (-1341 (|has| |#1| (-976)) (|has| |#1| (-588 (-525)))) (-1341 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))))) (-2866 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 51)) (-2250 (((-108) $) 71)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 193 (|has| |#1| (-820 (-357)))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 192 (|has| |#1| (-820 (-525))))) (-2237 (($ (-592 $)) 158) (($ $) 157)) (-2323 (((-592 (-110)) $) 165)) (-4159 (((-110) (-110)) 166)) (-2133 (((-108) $) 31)) (-2144 (((-108) $) 186 (|has| $ (-967 (-525))))) (-3830 (($ $) 218 (|has| |#1| (-976)))) (-1303 (((-1042 |#1| (-565 $)) $) 217 (|has| |#1| (-976)))) (-3391 (($ $ (-525)) 91)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-3609 (((-1086 $) (-565 $)) 183 (|has| $ (-976)))) (-3525 (($ $ $) 137)) (-3630 (($ $ $) 136)) (-1370 (($ (-1 $ $) (-565 $)) 172)) (-2218 (((-3 (-565 $) "failed") $) 162)) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-3914 (((-592 (-565 $)) $) 163)) (-1377 (($ (-110) (-592 $)) 171) (($ (-110) $) 170)) (-3245 (((-3 (-592 $) "failed") $) 212 (|has| |#1| (-1031)))) (-3152 (((-3 (-2 (|:| |val| $) (|:| -1600 (-525))) "failed") $) 221 (|has| |#1| (-976)))) (-3193 (((-3 (-592 $) "failed") $) 214 (|has| |#1| (-25)))) (-2104 (((-3 (-2 (|:| -1459 (-525)) (|:| |var| (-565 $))) "failed") $) 215 (|has| |#1| (-25)))) (-3283 (((-3 (-2 (|:| |var| (-565 $)) (|:| -1600 (-525))) "failed") $ (-1090)) 220 (|has| |#1| (-976))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1600 (-525))) "failed") $ (-110)) 219 (|has| |#1| (-976))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1600 (-525))) "failed") $) 213 (|has| |#1| (-1031)))) (-3034 (((-108) $ (-1090)) 169) (((-108) $ (-110)) 168)) (-4211 (($ $) 70)) (-3598 (((-713) $) 161)) (-2663 (((-1037) $) 10)) (-4221 (((-108) $) 199)) (-4232 ((|#1| $) 200)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-2148 (((-108) $ (-1090)) 174) (((-108) $ $) 173)) (-3959 (((-396 $) $) 74)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2338 (((-3 $ "failed") $ $) 42)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2656 (((-108) $) 185 (|has| $ (-967 (-525))))) (-3092 (($ $ (-1090) (-713) (-1 $ $)) 225 (|has| |#1| (-976))) (($ $ (-1090) (-713) (-1 $ (-592 $))) 224 (|has| |#1| (-976))) (($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ (-592 $)))) 223 (|has| |#1| (-976))) (($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ $))) 222 (|has| |#1| (-976))) (($ $ (-592 (-110)) (-592 $) (-1090)) 211 (|has| |#1| (-567 (-501)))) (($ $ (-110) $ (-1090)) 210 (|has| |#1| (-567 (-501)))) (($ $) 209 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1090))) 208 (|has| |#1| (-567 (-501)))) (($ $ (-1090)) 207 (|has| |#1| (-567 (-501)))) (($ $ (-110) (-1 $ $)) 182) (($ $ (-110) (-1 $ (-592 $))) 181) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 180) (($ $ (-592 (-110)) (-592 (-1 $ $))) 179) (($ $ (-1090) (-1 $ $)) 178) (($ $ (-1090) (-1 $ (-592 $))) 177) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) 176) (($ $ (-592 (-1090)) (-592 (-1 $ $))) 175) (($ $ (-592 $) (-592 $)) 146) (($ $ $ $) 145) (($ $ (-273 $)) 144) (($ $ (-592 (-273 $))) 143) (($ $ (-592 (-565 $)) (-592 $)) 142) (($ $ (-565 $) $) 141)) (-2183 (((-713) $) 58)) (-3928 (($ (-110) (-592 $)) 151) (($ (-110) $ $ $ $) 150) (($ (-110) $ $ $) 149) (($ (-110) $ $) 148) (($ (-110) $) 147)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 57)) (-2825 (($ $ $) 160) (($ $) 159)) (-3013 (($ $ (-1090)) 249 (|has| |#1| (-976))) (($ $ (-592 (-1090))) 248 (|has| |#1| (-976))) (($ $ (-1090) (-713)) 247 (|has| |#1| (-976))) (($ $ (-592 (-1090)) (-592 (-713))) 246 (|has| |#1| (-976)))) (-1915 (($ $) 228 (|has| |#1| (-517)))) (-1312 (((-1042 |#1| (-565 $)) $) 227 (|has| |#1| (-517)))) (-1654 (($ $) 184 (|has| $ (-976)))) (-1427 (((-501) $) 255 (|has| |#1| (-567 (-501)))) (($ (-396 $)) 226 (|has| |#1| (-517))) (((-826 (-357)) $) 191 (|has| |#1| (-567 (-826 (-357))))) (((-826 (-525)) $) 190 (|has| |#1| (-567 (-826 (-525)))))) (-3634 (($ $ $) 254 (|has| |#1| (-450)))) (-1518 (($ $ $) 253 (|has| |#1| (-450)))) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-886 |#1|)) 250 (|has| |#1| (-976))) (($ (-385 (-886 |#1|))) 234 (|has| |#1| (-517))) (($ (-385 (-886 (-385 |#1|)))) 232 (|has| |#1| (-517))) (($ (-886 (-385 |#1|))) 231 (|has| |#1| (-517))) (($ (-385 |#1|)) 230 (|has| |#1| (-517))) (($ (-1042 |#1| (-565 $))) 216 (|has| |#1| (-976))) (($ |#1|) 196) (($ (-1090)) 187) (($ (-565 $)) 138)) (-3421 (((-3 $ "failed") $) 239 (|has| |#1| (-136)))) (-2093 (((-713)) 29)) (-1268 (($ (-592 $)) 156) (($ $) 155)) (-3824 (((-108) (-110)) 167)) (-2262 (((-108) $ $) 39)) (-4184 (($ (-1090) (-592 $)) 206) (($ (-1090) $ $ $ $) 205) (($ (-1090) $ $ $) 204) (($ (-1090) $ $) 203) (($ (-1090) $) 202)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ (-1090)) 245 (|has| |#1| (-976))) (($ $ (-592 (-1090))) 244 (|has| |#1| (-976))) (($ $ (-1090) (-713)) 243 (|has| |#1| (-976))) (($ $ (-592 (-1090)) (-592 (-713))) 242 (|has| |#1| (-976)))) (-4024 (((-108) $ $) 134)) (-3995 (((-108) $ $) 133)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 135)) (-3983 (((-108) $ $) 132)) (-4082 (($ $ $) 64) (($ (-1042 |#1| (-565 $)) (-1042 |#1| (-565 $))) 229 (|has| |#1| (-517)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 90)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-160))) (($ |#1| $) 237 (|has| |#1| (-160)))))
+((-3572 (*1 *1 *2) (-12 (-5 *2 (-887 *1)) (-4 *1 (-27)))) (-3572 (*1 *1 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-27)))) (-3572 (*1 *1 *2 *3) (-12 (-5 *2 (-1087 *1)) (-5 *3 (-1091)) (-4 *1 (-27)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-2533 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-1466 (*1 *1 *2) (-12 (-5 *2 (-887 *1)) (-4 *1 (-27)))) (-1466 (*1 *1 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-27)))) (-1466 (*1 *1 *2 *3) (-12 (-5 *2 (-1087 *1)) (-5 *3 (-1091)) (-4 *1 (-27)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-3540 (*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1)))) (-3540 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *1)) (-5 *4 (-1091)) (-4 *1 (-27)) (-5 *2 (-592 *1)))))
+(-13 (-341) (-934) (-10 -8 (-15 -3572 ($ (-887 $))) (-15 -3572 ($ (-1087 $))) (-15 -3572 ($ (-1087 $) (-1091))) (-15 -2533 ((-592 $) (-887 $))) (-15 -2533 ((-592 $) (-1087 $))) (-15 -2533 ((-592 $) (-1087 $) (-1091))) (-15 -1466 ($ (-887 $))) (-15 -1466 ($ (-1087 $))) (-15 -1466 ($ (-1087 $) (-1091))) (-15 -3540 ((-592 $) (-887 $))) (-15 -3540 ((-592 $) (-1087 $))) (-15 -3540 ((-592 $) (-1087 $) (-1091)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-934) . T) ((-983 #0#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1131) . T))
+((-3540 (((-592 $) (-887 $)) NIL) (((-592 $) (-1087 $)) NIL) (((-592 $) (-1087 $) (-1091)) 50) (((-592 $) $) 19) (((-592 $) $ (-1091)) 41)) (-1466 (($ (-887 $)) NIL) (($ (-1087 $)) NIL) (($ (-1087 $) (-1091)) 52) (($ $) 17) (($ $ (-1091)) 37)) (-2533 (((-592 $) (-887 $)) NIL) (((-592 $) (-1087 $)) NIL) (((-592 $) (-1087 $) (-1091)) 48) (((-592 $) $) 15) (((-592 $) $ (-1091)) 43)) (-3572 (($ (-887 $)) NIL) (($ (-1087 $)) NIL) (($ (-1087 $) (-1091)) NIL) (($ $) 12) (($ $ (-1091)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -3540 ((-592 |#1|) |#1| (-1091))) (-15 -1466 (|#1| |#1| (-1091))) (-15 -3540 ((-592 |#1|) |#1|)) (-15 -1466 (|#1| |#1|)) (-15 -2533 ((-592 |#1|) |#1| (-1091))) (-15 -3572 (|#1| |#1| (-1091))) (-15 -2533 ((-592 |#1|) |#1|)) (-15 -3572 (|#1| |#1|)) (-15 -3540 ((-592 |#1|) (-1087 |#1|) (-1091))) (-15 -3540 ((-592 |#1|) (-1087 |#1|))) (-15 -3540 ((-592 |#1|) (-887 |#1|))) (-15 -1466 (|#1| (-1087 |#1|) (-1091))) (-15 -1466 (|#1| (-1087 |#1|))) (-15 -1466 (|#1| (-887 |#1|))) (-15 -2533 ((-592 |#1|) (-1087 |#1|) (-1091))) (-15 -2533 ((-592 |#1|) (-1087 |#1|))) (-15 -2533 ((-592 |#1|) (-887 |#1|))) (-15 -3572 (|#1| (-1087 |#1|) (-1091))) (-15 -3572 (|#1| (-1087 |#1|))) (-15 -3572 (|#1| (-887 |#1|)))) (-29 |#2|) (-13 (-789) (-517))) (T -28))
+NIL
+(-10 -8 (-15 -3540 ((-592 |#1|) |#1| (-1091))) (-15 -1466 (|#1| |#1| (-1091))) (-15 -3540 ((-592 |#1|) |#1|)) (-15 -1466 (|#1| |#1|)) (-15 -2533 ((-592 |#1|) |#1| (-1091))) (-15 -3572 (|#1| |#1| (-1091))) (-15 -2533 ((-592 |#1|) |#1|)) (-15 -3572 (|#1| |#1|)) (-15 -3540 ((-592 |#1|) (-1087 |#1|) (-1091))) (-15 -3540 ((-592 |#1|) (-1087 |#1|))) (-15 -3540 ((-592 |#1|) (-887 |#1|))) (-15 -1466 (|#1| (-1087 |#1|) (-1091))) (-15 -1466 (|#1| (-1087 |#1|))) (-15 -1466 (|#1| (-887 |#1|))) (-15 -2533 ((-592 |#1|) (-1087 |#1|) (-1091))) (-15 -2533 ((-592 |#1|) (-1087 |#1|))) (-15 -2533 ((-592 |#1|) (-887 |#1|))) (-15 -3572 (|#1| (-1087 |#1|) (-1091))) (-15 -3572 (|#1| (-1087 |#1|))) (-15 -3572 (|#1| (-887 |#1|))))
+((-1260 (((-108) $ $) 7)) (-3540 (((-592 $) (-887 $)) 80) (((-592 $) (-1087 $)) 79) (((-592 $) (-1087 $) (-1091)) 78) (((-592 $) $) 126) (((-592 $) $ (-1091)) 124)) (-1466 (($ (-887 $)) 83) (($ (-1087 $)) 82) (($ (-1087 $) (-1091)) 81) (($ $) 127) (($ $ (-1091)) 125)) (-1989 (((-108) $) 16)) (-2383 (((-592 (-1091)) $) 201)) (-2146 (((-385 (-1087 $)) $ (-565 $)) 233 (|has| |#1| (-517)))) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-1895 (((-592 (-565 $)) $) 164)) (-1342 (((-3 $ "failed") $ $) 19)) (-1224 (($ $ (-592 (-565 $)) (-592 $)) 154) (($ $ (-592 (-273 $))) 153) (($ $ (-273 $)) 152)) (-3706 (($ $) 73)) (-2100 (((-396 $) $) 72)) (-2211 (($ $) 92)) (-3197 (((-108) $ $) 59)) (-2305 (($) 17 T CONST)) (-2533 (((-592 $) (-887 $)) 86) (((-592 $) (-1087 $)) 85) (((-592 $) (-1087 $) (-1091)) 84) (((-592 $) $) 130) (((-592 $) $ (-1091)) 128)) (-3572 (($ (-887 $)) 89) (($ (-1087 $)) 88) (($ (-1087 $) (-1091)) 87) (($ $) 131) (($ $ (-1091)) 129)) (-2591 (((-3 (-887 |#1|) "failed") $) 251 (|has| |#1| (-977))) (((-3 (-385 (-887 |#1|)) "failed") $) 235 (|has| |#1| (-517))) (((-3 |#1| "failed") $) 197) (((-3 (-525) "failed") $) 195 (|has| |#1| (-968 (-525)))) (((-3 (-1091) "failed") $) 188) (((-3 (-565 $) "failed") $) 139) (((-3 (-385 (-525)) "failed") $) 123 (-3279 (-12 (|has| |#1| (-968 (-525))) (|has| |#1| (-517))) (|has| |#1| (-968 (-385 (-525))))))) (-3898 (((-887 |#1|) $) 252 (|has| |#1| (-977))) (((-385 (-887 |#1|)) $) 236 (|has| |#1| (-517))) ((|#1| $) 198) (((-525) $) 194 (|has| |#1| (-968 (-525)))) (((-1091) $) 189) (((-565 $) $) 140) (((-385 (-525)) $) 122 (-3279 (-12 (|has| |#1| (-968 (-525))) (|has| |#1| (-517))) (|has| |#1| (-968 (-385 (-525))))))) (-1726 (($ $ $) 55)) (-3416 (((-632 |#1|) (-632 $)) 241 (|has| |#1| (-977))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) 240 (|has| |#1| (-977))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 121 (-3279 (-3830 (|has| |#1| (-977)) (|has| |#1| (-588 (-525)))) (-3830 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))))) (((-632 (-525)) (-632 $)) 120 (-3279 (-3830 (|has| |#1| (-977)) (|has| |#1| (-588 (-525)))) (-3830 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))) (-3762 (((-3 $ "failed") $) 34)) (-1704 (($ $ $) 56)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 51)) (-3836 (((-108) $) 71)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 193 (|has| |#1| (-821 (-357)))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 192 (|has| |#1| (-821 (-525))))) (-3694 (($ (-592 $)) 158) (($ $) 157)) (-3321 (((-592 (-110)) $) 165)) (-2972 (((-110) (-110)) 166)) (-1985 (((-108) $) 31)) (-2126 (((-108) $) 186 (|has| $ (-968 (-525))))) (-1931 (($ $) 218 (|has| |#1| (-977)))) (-1498 (((-1043 |#1| (-565 $)) $) 217 (|has| |#1| (-977)))) (-3220 (($ $ (-525)) 91)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-1637 (((-1087 $) (-565 $)) 183 (|has| $ (-977)))) (-2371 (($ $ $) 137)) (-2535 (($ $ $) 136)) (-2694 (($ (-1 $ $) (-565 $)) 172)) (-1661 (((-3 (-565 $) "failed") $) 162)) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-2129 (((-592 (-565 $)) $) 163)) (-1581 (($ (-110) (-592 $)) 171) (($ (-110) $) 170)) (-4228 (((-3 (-592 $) "failed") $) 212 (|has| |#1| (-1032)))) (-1617 (((-3 (-2 (|:| |val| $) (|:| -1864 (-525))) "failed") $) 221 (|has| |#1| (-977)))) (-3852 (((-3 (-592 $) "failed") $) 214 (|has| |#1| (-25)))) (-2274 (((-3 (-2 (|:| -1655 (-525)) (|:| |var| (-565 $))) "failed") $) 215 (|has| |#1| (-25)))) (-1553 (((-3 (-2 (|:| |var| (-565 $)) (|:| -1864 (-525))) "failed") $ (-1091)) 220 (|has| |#1| (-977))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1864 (-525))) "failed") $ (-110)) 219 (|has| |#1| (-977))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1864 (-525))) "failed") $) 213 (|has| |#1| (-1032)))) (-3069 (((-108) $ (-1091)) 169) (((-108) $ (-110)) 168)) (-2502 (($ $) 70)) (-1751 (((-713) $) 161)) (-2012 (((-1038) $) 10)) (-2513 (((-108) $) 199)) (-2525 ((|#1| $) 200)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-2186 (((-108) $ (-1091)) 174) (((-108) $ $) 173)) (-2195 (((-396 $) $) 74)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1680 (((-3 $ "failed") $ $) 42)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-3545 (((-108) $) 185 (|has| $ (-968 (-525))))) (-2602 (($ $ (-1091) (-713) (-1 $ $)) 225 (|has| |#1| (-977))) (($ $ (-1091) (-713) (-1 $ (-592 $))) 224 (|has| |#1| (-977))) (($ $ (-592 (-1091)) (-592 (-713)) (-592 (-1 $ (-592 $)))) 223 (|has| |#1| (-977))) (($ $ (-592 (-1091)) (-592 (-713)) (-592 (-1 $ $))) 222 (|has| |#1| (-977))) (($ $ (-592 (-110)) (-592 $) (-1091)) 211 (|has| |#1| (-567 (-501)))) (($ $ (-110) $ (-1091)) 210 (|has| |#1| (-567 (-501)))) (($ $) 209 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1091))) 208 (|has| |#1| (-567 (-501)))) (($ $ (-1091)) 207 (|has| |#1| (-567 (-501)))) (($ $ (-110) (-1 $ $)) 182) (($ $ (-110) (-1 $ (-592 $))) 181) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 180) (($ $ (-592 (-110)) (-592 (-1 $ $))) 179) (($ $ (-1091) (-1 $ $)) 178) (($ $ (-1091) (-1 $ (-592 $))) 177) (($ $ (-592 (-1091)) (-592 (-1 $ (-592 $)))) 176) (($ $ (-592 (-1091)) (-592 (-1 $ $))) 175) (($ $ (-592 $) (-592 $)) 146) (($ $ $ $) 145) (($ $ (-273 $)) 144) (($ $ (-592 (-273 $))) 143) (($ $ (-592 (-565 $)) (-592 $)) 142) (($ $ (-565 $) $) 141)) (-1290 (((-713) $) 58)) (-3410 (($ (-110) (-592 $)) 151) (($ (-110) $ $ $ $) 150) (($ (-110) $ $ $) 149) (($ (-110) $ $) 148) (($ (-110) $) 147)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 57)) (-1567 (($ $ $) 160) (($ $) 159)) (-2523 (($ $ (-1091)) 249 (|has| |#1| (-977))) (($ $ (-592 (-1091))) 248 (|has| |#1| (-977))) (($ $ (-1091) (-713)) 247 (|has| |#1| (-977))) (($ $ (-592 (-1091)) (-592 (-713))) 246 (|has| |#1| (-977)))) (-2097 (($ $) 228 (|has| |#1| (-517)))) (-1512 (((-1043 |#1| (-565 $)) $) 227 (|has| |#1| (-517)))) (-1571 (($ $) 184 (|has| $ (-977)))) (-2749 (((-501) $) 255 (|has| |#1| (-567 (-501)))) (($ (-396 $)) 226 (|has| |#1| (-517))) (((-827 (-357)) $) 191 (|has| |#1| (-567 (-827 (-357))))) (((-827 (-525)) $) 190 (|has| |#1| (-567 (-827 (-525)))))) (-3700 (($ $ $) 254 (|has| |#1| (-450)))) (-2222 (($ $ $) 253 (|has| |#1| (-450)))) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-887 |#1|)) 250 (|has| |#1| (-977))) (($ (-385 (-887 |#1|))) 234 (|has| |#1| (-517))) (($ (-385 (-887 (-385 |#1|)))) 232 (|has| |#1| (-517))) (($ (-887 (-385 |#1|))) 231 (|has| |#1| (-517))) (($ (-385 |#1|)) 230 (|has| |#1| (-517))) (($ (-1043 |#1| (-565 $))) 216 (|has| |#1| (-977))) (($ |#1|) 196) (($ (-1091)) 187) (($ (-565 $)) 138)) (-3425 (((-3 $ "failed") $) 239 (|has| |#1| (-136)))) (-2104 (((-713)) 29)) (-1604 (($ (-592 $)) 156) (($ $) 155)) (-1863 (((-108) (-110)) 167)) (-3959 (((-108) $ $) 39)) (-2500 (($ (-1091) (-592 $)) 206) (($ (-1091) $ $ $ $) 205) (($ (-1091) $ $ $) 204) (($ (-1091) $ $) 203) (($ (-1091) $) 202)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ (-1091)) 245 (|has| |#1| (-977))) (($ $ (-592 (-1091))) 244 (|has| |#1| (-977))) (($ $ (-1091) (-713)) 243 (|has| |#1| (-977))) (($ $ (-592 (-1091)) (-592 (-713))) 242 (|has| |#1| (-977)))) (-4045 (((-108) $ $) 134)) (-4026 (((-108) $ $) 133)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 135)) (-4017 (((-108) $ $) 132)) (-4100 (($ $ $) 64) (($ (-1043 |#1| (-565 $)) (-1043 |#1| (-565 $))) 229 (|has| |#1| (-517)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 90)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 238 (|has| |#1| (-160))) (($ |#1| $) 237 (|has| |#1| (-160)))))
(((-29 |#1|) (-131) (-13 (-789) (-517))) (T -29))
-((-4105 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517))))) (-3884 (*1 *2 *1) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3)))) (-4105 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517))))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *4)))) (-1694 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517))))) (-2346 (*1 *2 *1) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3)))) (-1694 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517))))) (-2346 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-408 |t#1|) (-10 -8 (-15 -4105 ($ $)) (-15 -3884 ((-592 $) $)) (-15 -4105 ($ $ (-1090))) (-15 -3884 ((-592 $) $ (-1090))) (-15 -1694 ($ $)) (-15 -2346 ((-592 $) $)) (-15 -1694 ($ $ (-1090))) (-15 -2346 ((-592 $) $ (-1090)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) |has| |#1| (-160)) ((-107 $ $) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-826 (-357))) |has| |#1| (-567 (-826 (-357)))) ((-567 (-826 (-525))) |has| |#1| (-567 (-826 (-525)))) ((-223) . T) ((-269) . T) ((-286) . T) ((-288 $) . T) ((-281) . T) ((-341) . T) ((-355 |#1|) |has| |#1| (-976)) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-408 |#1|) . T) ((-429) . T) ((-450) |has| |#1| (-450)) ((-486 (-565 $) $) . T) ((-486 $ $) . T) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) |has| |#1| (-160)) ((-594 $) . T) ((-588 (-525)) -12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) ((-588 |#1|) |has| |#1| (-976)) ((-660 #0#) . T) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) . T) ((-669) . T) ((-789) . T) ((-834 (-1090)) |has| |#1| (-976)) ((-820 (-357)) |has| |#1| (-820 (-357))) ((-820 (-525)) |has| |#1| (-820 (-525))) ((-818 |#1|) . T) ((-854) . T) ((-933) . T) ((-967 (-385 (-525))) -3309 (|has| |#1| (-967 (-385 (-525)))) (-12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525))))) ((-967 (-385 (-886 |#1|))) |has| |#1| (-517)) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 (-565 $)) . T) ((-967 (-886 |#1|)) |has| |#1| (-976)) ((-967 (-1090)) . T) ((-967 |#1|) . T) ((-982 #0#) . T) ((-982 |#1|) |has| |#1| (-160)) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1126) . T) ((-1130) . T))
-((-2833 (((-1014 (-205)) $) NIL)) (-2821 (((-1014 (-205)) $) NIL)) (-1808 (($ $ (-205)) 123)) (-1718 (($ (-886 (-525)) (-1090) (-1090) (-1014 (-385 (-525))) (-1014 (-385 (-525)))) 85)) (-3944 (((-592 (-592 (-877 (-205)))) $) 135)) (-1908 (((-797) $) 147)))
-(((-30) (-13 (-888) (-10 -8 (-15 -1718 ($ (-886 (-525)) (-1090) (-1090) (-1014 (-385 (-525))) (-1014 (-385 (-525))))) (-15 -1808 ($ $ (-205)))))) (T -30))
-((-1718 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-886 (-525))) (-5 *3 (-1090)) (-5 *4 (-1014 (-385 (-525)))) (-5 *1 (-30)))) (-1808 (*1 *1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-30)))))
-(-13 (-888) (-10 -8 (-15 -1718 ($ (-886 (-525)) (-1090) (-1090) (-1014 (-385 (-525))) (-1014 (-385 (-525))))) (-15 -1808 ($ $ (-205)))))
-((-4105 ((|#2| (-1086 |#2|) (-1090)) 43)) (-4159 (((-110) (-110)) 56)) (-3609 (((-1086 |#2|) (-565 |#2|)) 133 (|has| |#1| (-967 (-525))))) (-2501 ((|#2| |#1| (-525)) 122 (|has| |#1| (-967 (-525))))) (-3293 ((|#2| (-1086 |#2|) |#2|) 30)) (-3366 (((-797) (-592 |#2|)) 85)) (-1654 ((|#2| |#2|) 129 (|has| |#1| (-967 (-525))))) (-3824 (((-108) (-110)) 18)) (** ((|#2| |#2| (-385 (-525))) 96 (|has| |#1| (-967 (-525))))))
-(((-31 |#1| |#2|) (-10 -7 (-15 -4105 (|#2| (-1086 |#2|) (-1090))) (-15 -4159 ((-110) (-110))) (-15 -3824 ((-108) (-110))) (-15 -3293 (|#2| (-1086 |#2|) |#2|)) (-15 -3366 ((-797) (-592 |#2|))) (IF (|has| |#1| (-967 (-525))) (PROGN (-15 ** (|#2| |#2| (-385 (-525)))) (-15 -3609 ((-1086 |#2|) (-565 |#2|))) (-15 -1654 (|#2| |#2|)) (-15 -2501 (|#2| |#1| (-525)))) |%noBranch|)) (-13 (-789) (-517)) (-408 |#1|)) (T -31))
-((-2501 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *2 (-408 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-967 (-525))) (-4 *3 (-13 (-789) (-517))))) (-1654 (*1 *2 *2) (-12 (-4 *3 (-967 (-525))) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-31 *3 *2)) (-4 *2 (-408 *3)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-565 *5)) (-4 *5 (-408 *4)) (-4 *4 (-967 (-525))) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-1086 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-967 (-525))) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-31 *4 *2)) (-4 *2 (-408 *4)))) (-3366 (*1 *2 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-797)) (-5 *1 (-31 *4 *5)))) (-3293 (*1 *2 *3 *2) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-31 *4 *2)))) (-3824 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-31 *4 *5)) (-4 *5 (-408 *4)))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-31 *3 *4)) (-4 *4 (-408 *3)))) (-4105 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *2)) (-5 *4 (-1090)) (-4 *2 (-408 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-789) (-517))))))
-(-10 -7 (-15 -4105 (|#2| (-1086 |#2|) (-1090))) (-15 -4159 ((-110) (-110))) (-15 -3824 ((-108) (-110))) (-15 -3293 (|#2| (-1086 |#2|) |#2|)) (-15 -3366 ((-797) (-592 |#2|))) (IF (|has| |#1| (-967 (-525))) (PROGN (-15 ** (|#2| |#2| (-385 (-525)))) (-15 -3609 ((-1086 |#2|) (-565 |#2|))) (-15 -1654 (|#2| |#2|)) (-15 -2501 (|#2| |#1| (-525)))) |%noBranch|))
-((-3410 (((-108) $ (-713)) 16)) (-1505 (($) 10)) (-3100 (((-108) $ (-713)) 15)) (-3017 (((-108) $ (-713)) 14)) (-2642 (((-108) $ $) 8)) (-1613 (((-108) $) 13)))
-(((-32 |#1|) (-10 -8 (-15 -1505 (|#1|)) (-15 -3410 ((-108) |#1| (-713))) (-15 -3100 ((-108) |#1| (-713))) (-15 -3017 ((-108) |#1| (-713))) (-15 -1613 ((-108) |#1|)) (-15 -2642 ((-108) |#1| |#1|))) (-33)) (T -32))
-NIL
-(-10 -8 (-15 -1505 (|#1|)) (-15 -3410 ((-108) |#1| (-713))) (-15 -3100 ((-108) |#1| (-713))) (-15 -3017 ((-108) |#1| (-713))) (-15 -1613 ((-108) |#1|)) (-15 -2642 ((-108) |#1| |#1|)))
-((-3410 (((-108) $ (-713)) 8)) (-1505 (($) 7 T CONST)) (-3100 (((-108) $ (-713)) 9)) (-3017 (((-108) $ (-713)) 10)) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-2135 (($ $) 13)) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
+((-3572 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517))))) (-2533 (*1 *2 *1) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3)))) (-3572 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517))))) (-2533 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *4)))) (-1466 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517))))) (-3540 (*1 *2 *1) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3)))) (-1466 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517))))) (-3540 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-408 |t#1|) (-10 -8 (-15 -3572 ($ $)) (-15 -2533 ((-592 $) $)) (-15 -3572 ($ $ (-1091))) (-15 -2533 ((-592 $) $ (-1091))) (-15 -1466 ($ $)) (-15 -3540 ((-592 $) $)) (-15 -1466 ($ $ (-1091))) (-15 -3540 ((-592 $) $ (-1091)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) . T) ((-27) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) |has| |#1| (-160)) ((-107 $ $) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-827 (-357))) |has| |#1| (-567 (-827 (-357)))) ((-567 (-827 (-525))) |has| |#1| (-567 (-827 (-525)))) ((-223) . T) ((-269) . T) ((-286) . T) ((-288 $) . T) ((-281) . T) ((-341) . T) ((-355 |#1|) |has| |#1| (-977)) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-408 |#1|) . T) ((-429) . T) ((-450) |has| |#1| (-450)) ((-486 (-565 $) $) . T) ((-486 $ $) . T) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) |has| |#1| (-160)) ((-594 $) . T) ((-588 (-525)) -12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) ((-588 |#1|) |has| |#1| (-977)) ((-660 #0#) . T) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) . T) ((-669) . T) ((-789) . T) ((-835 (-1091)) |has| |#1| (-977)) ((-821 (-357)) |has| |#1| (-821 (-357))) ((-821 (-525)) |has| |#1| (-821 (-525))) ((-819 |#1|) . T) ((-855) . T) ((-934) . T) ((-968 (-385 (-525))) -3279 (|has| |#1| (-968 (-385 (-525)))) (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525))))) ((-968 (-385 (-887 |#1|))) |has| |#1| (-517)) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 (-565 $)) . T) ((-968 (-887 |#1|)) |has| |#1| (-977)) ((-968 (-1091)) . T) ((-968 |#1|) . T) ((-983 #0#) . T) ((-983 |#1|) |has| |#1| (-160)) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1127) . T) ((-1131) . T))
+((-2604 (((-1015 (-205)) $) NIL)) (-2596 (((-1015 (-205)) $) NIL)) (-3676 (($ $ (-205)) 123)) (-2767 (($ (-887 (-525)) (-1091) (-1091) (-1015 (-385 (-525))) (-1015 (-385 (-525)))) 85)) (-1703 (((-592 (-592 (-878 (-205)))) $) 135)) (-1270 (((-798) $) 147)))
+(((-30) (-13 (-889) (-10 -8 (-15 -2767 ($ (-887 (-525)) (-1091) (-1091) (-1015 (-385 (-525))) (-1015 (-385 (-525))))) (-15 -3676 ($ $ (-205)))))) (T -30))
+((-2767 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-887 (-525))) (-5 *3 (-1091)) (-5 *4 (-1015 (-385 (-525)))) (-5 *1 (-30)))) (-3676 (*1 *1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-30)))))
+(-13 (-889) (-10 -8 (-15 -2767 ($ (-887 (-525)) (-1091) (-1091) (-1015 (-385 (-525))) (-1015 (-385 (-525))))) (-15 -3676 ($ $ (-205)))))
+((-3572 ((|#2| (-1087 |#2|) (-1091)) 43)) (-2972 (((-110) (-110)) 56)) (-1637 (((-1087 |#2|) (-565 |#2|)) 133 (|has| |#1| (-968 (-525))))) (-1469 ((|#2| |#1| (-525)) 122 (|has| |#1| (-968 (-525))))) (-1640 ((|#2| (-1087 |#2|) |#2|) 30)) (-4122 (((-798) (-592 |#2|)) 85)) (-1571 ((|#2| |#2|) 129 (|has| |#1| (-968 (-525))))) (-1863 (((-108) (-110)) 18)) (** ((|#2| |#2| (-385 (-525))) 96 (|has| |#1| (-968 (-525))))))
+(((-31 |#1| |#2|) (-10 -7 (-15 -3572 (|#2| (-1087 |#2|) (-1091))) (-15 -2972 ((-110) (-110))) (-15 -1863 ((-108) (-110))) (-15 -1640 (|#2| (-1087 |#2|) |#2|)) (-15 -4122 ((-798) (-592 |#2|))) (IF (|has| |#1| (-968 (-525))) (PROGN (-15 ** (|#2| |#2| (-385 (-525)))) (-15 -1637 ((-1087 |#2|) (-565 |#2|))) (-15 -1571 (|#2| |#2|)) (-15 -1469 (|#2| |#1| (-525)))) |%noBranch|)) (-13 (-789) (-517)) (-408 |#1|)) (T -31))
+((-1469 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *2 (-408 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-968 (-525))) (-4 *3 (-13 (-789) (-517))))) (-1571 (*1 *2 *2) (-12 (-4 *3 (-968 (-525))) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-31 *3 *2)) (-4 *2 (-408 *3)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-565 *5)) (-4 *5 (-408 *4)) (-4 *4 (-968 (-525))) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-1087 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-968 (-525))) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-31 *4 *2)) (-4 *2 (-408 *4)))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-798)) (-5 *1 (-31 *4 *5)))) (-1640 (*1 *2 *3 *2) (-12 (-5 *3 (-1087 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-31 *4 *2)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-31 *4 *5)) (-4 *5 (-408 *4)))) (-2972 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-31 *3 *4)) (-4 *4 (-408 *3)))) (-3572 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *2)) (-5 *4 (-1091)) (-4 *2 (-408 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-789) (-517))))))
+(-10 -7 (-15 -3572 (|#2| (-1087 |#2|) (-1091))) (-15 -2972 ((-110) (-110))) (-15 -1863 ((-108) (-110))) (-15 -1640 (|#2| (-1087 |#2|) |#2|)) (-15 -4122 ((-798) (-592 |#2|))) (IF (|has| |#1| (-968 (-525))) (PROGN (-15 ** (|#2| |#2| (-385 (-525)))) (-15 -1637 ((-1087 |#2|) (-565 |#2|))) (-15 -1571 (|#2| |#2|)) (-15 -1469 (|#2| |#1| (-525)))) |%noBranch|))
+((-3330 (((-108) $ (-713)) 16)) (-2305 (($) 10)) (-2482 (((-108) $ (-713)) 15)) (-2957 (((-108) $ (-713)) 14)) (-3428 (((-108) $ $) 8)) (-2013 (((-108) $) 13)))
+(((-32 |#1|) (-10 -8 (-15 -2305 (|#1|)) (-15 -3330 ((-108) |#1| (-713))) (-15 -2482 ((-108) |#1| (-713))) (-15 -2957 ((-108) |#1| (-713))) (-15 -2013 ((-108) |#1|)) (-15 -3428 ((-108) |#1| |#1|))) (-33)) (T -32))
+NIL
+(-10 -8 (-15 -2305 (|#1|)) (-15 -3330 ((-108) |#1| (-713))) (-15 -2482 ((-108) |#1| (-713))) (-15 -2957 ((-108) |#1| (-713))) (-15 -2013 ((-108) |#1|)) (-15 -3428 ((-108) |#1| |#1|)))
+((-3330 (((-108) $ (-713)) 8)) (-2305 (($) 7 T CONST)) (-2482 (((-108) $ (-713)) 9)) (-2957 (((-108) $ (-713)) 10)) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-1451 (($ $) 13)) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
(((-33) (-131)) (T -33))
-((-2642 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-2135 (*1 *1 *1) (-4 *1 (-33))) (-3773 (*1 *1) (-4 *1 (-33))) (-1613 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-3017 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))) (-3100 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))) (-3410 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))) (-1505 (*1 *1) (-4 *1 (-33))) (-4140 (*1 *2 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-33)) (-5 *2 (-713)))))
-(-13 (-1126) (-10 -8 (-15 -2642 ((-108) $ $)) (-15 -2135 ($ $)) (-15 -3773 ($)) (-15 -1613 ((-108) $)) (-15 -3017 ((-108) $ (-713))) (-15 -3100 ((-108) $ (-713))) (-15 -3410 ((-108) $ (-713))) (-15 -1505 ($) -3359) (IF (|has| $ (-6 -4254)) (-15 -4140 ((-713) $)) |%noBranch|)))
-(((-1126) . T))
-((-4121 (($ $) 11)) (-4096 (($ $) 10)) (-4147 (($ $) 9)) (-2929 (($ $) 8)) (-4133 (($ $) 7)) (-4110 (($ $) 6)))
+((-3428 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-1451 (*1 *1 *1) (-4 *1 (-33))) (-2718 (*1 *1) (-4 *1 (-33))) (-2013 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))) (-2957 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))) (-2482 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))) (-3330 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))) (-2305 (*1 *1) (-4 *1 (-33))) (-3596 (*1 *2 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-33)) (-5 *2 (-713)))))
+(-13 (-1127) (-10 -8 (-15 -3428 ((-108) $ $)) (-15 -1451 ($ $)) (-15 -2718 ($)) (-15 -2013 ((-108) $)) (-15 -2957 ((-108) $ (-713))) (-15 -2482 ((-108) $ (-713))) (-15 -3330 ((-108) $ (-713))) (-15 -2305 ($) -1479) (IF (|has| $ (-6 -4255)) (-15 -3596 ((-713) $)) |%noBranch|)))
+(((-1127) . T))
+((-2438 (($ $) 11)) (-2410 (($ $) 10)) (-2464 (($ $) 9)) (-2687 (($ $) 8)) (-2450 (($ $) 7)) (-2424 (($ $) 6)))
(((-34) (-131)) (T -34))
-((-4121 (*1 *1 *1) (-4 *1 (-34))) (-4096 (*1 *1 *1) (-4 *1 (-34))) (-4147 (*1 *1 *1) (-4 *1 (-34))) (-2929 (*1 *1 *1) (-4 *1 (-34))) (-4133 (*1 *1 *1) (-4 *1 (-34))) (-4110 (*1 *1 *1) (-4 *1 (-34))))
-(-13 (-10 -8 (-15 -4110 ($ $)) (-15 -4133 ($ $)) (-15 -2929 ($ $)) (-15 -4147 ($ $)) (-15 -4096 ($ $)) (-15 -4121 ($ $))))
-((-1893 (((-108) $ $) 19 (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-3871 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 125)) (-1899 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 148)) (-1614 (($ $) 146)) (-4001 (($) 72) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 71)) (-1840 (((-1177) $ |#1| |#1|) 99 (|has| $ (-6 -4255))) (((-1177) $ (-525) (-525)) 178 (|has| $ (-6 -4255)))) (-3035 (($ $ (-525)) 159 (|has| $ (-6 -4255)))) (-3072 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 209) (((-108) $) 203 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-1356 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 200 (|has| $ (-6 -4255))) (($ $) 199 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)) (|has| $ (-6 -4255))))) (-3327 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-3410 (((-108) $ (-713)) 8)) (-2822 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 134 (|has| $ (-6 -4255)))) (-3795 (($ $ $) 155 (|has| $ (-6 -4255)))) (-2813 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 157 (|has| $ (-6 -4255)))) (-1517 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 153 (|has| $ (-6 -4255)))) (-2109 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-525) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 189 (|has| $ (-6 -4255))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-1139 (-525)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 160 (|has| $ (-6 -4255))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ "last" (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 158 (|has| $ (-6 -4255))) (($ $ "rest" $) 156 (|has| $ (-6 -4255))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ "first" (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 154 (|has| $ (-6 -4255))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ "value" (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 133 (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) 132 (|has| $ (-6 -4255)))) (-3290 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 45 (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 216)) (-2724 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 55 (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 175 (|has| $ (-6 -4254)))) (-1882 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 147)) (-1446 (((-3 |#2| "failed") |#1| $) 61)) (-1505 (($) 7 T CONST)) (-4103 (($ $) 201 (|has| $ (-6 -4255)))) (-1693 (($ $) 211)) (-3145 (($ $ (-713)) 142) (($ $) 140)) (-3143 (($ $) 214 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (-3163 (($ $) 58 (-3309 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254))) (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254)))))) (-2792 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 46 (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 220) (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 215 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (-2273 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 54 (|has| $ (-6 -4254))) (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 174 (|has| $ (-6 -4254)))) (-4004 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 56 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 53 (|has| $ (-6 -4254))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 52 (|has| $ (-6 -4254))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 176 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 173 (|has| $ (-6 -4254))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 172 (|has| $ (-6 -4254)))) (-2870 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4255))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-525) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 190 (|has| $ (-6 -4255)))) (-2796 ((|#2| $ |#1|) 88) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-525)) 188)) (-2495 (((-108) $) 192)) (-3763 (((-525) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 208) (((-525) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 207 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))) (((-525) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-525)) 206 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (-2026 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 30 (|has| $ (-6 -4254))) (((-592 |#2|) $) 79 (|has| $ (-6 -4254))) (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 114 (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) 123)) (-3106 (((-108) $ $) 131 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (-4018 (($ (-713) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 169)) (-3100 (((-108) $ (-713)) 9)) (-2009 ((|#1| $) 96 (|has| |#1| (-789))) (((-525) $) 180 (|has| (-525) (-789)))) (-3525 (($ $ $) 198 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-2749 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-1932 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-3168 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 29 (|has| $ (-6 -4254))) (((-592 |#2|) $) 80 (|has| $ (-6 -4254))) (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 115 (|has| $ (-6 -4254)))) (-4132 (((-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254)))) (((-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254))))) (-1792 ((|#1| $) 95 (|has| |#1| (-789))) (((-525) $) 181 (|has| (-525) (-789)))) (-3630 (($ $ $) 197 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-2857 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 34 (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4255))) (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 110 (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 109)) (-3037 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 225)) (-3017 (((-108) $ (-713)) 10)) (-1564 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 128)) (-3723 (((-108) $) 124)) (-2337 (((-1073) $) 22 (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-2292 (($ $ (-713)) 145) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 143)) (-4005 (((-592 |#1|) $) 63)) (-1699 (((-108) |#1| $) 64)) (-2570 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 39)) (-2573 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 40) (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-525)) 219) (($ $ $ (-525)) 218)) (-3167 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-525)) 162) (($ $ $ (-525)) 161)) (-3222 (((-592 |#1|) $) 93) (((-592 (-525)) $) 183)) (-1548 (((-108) |#1| $) 92) (((-108) (-525) $) 184)) (-2663 (((-1037) $) 21 (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-3135 ((|#2| $) 97 (|has| |#1| (-789))) (($ $ (-713)) 139) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 137)) (-4054 (((-3 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 51) (((-3 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 171)) (-1911 (($ $ |#2|) 98 (|has| $ (-6 -4255))) (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 179 (|has| $ (-6 -4255)))) (-3513 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 41)) (-2518 (((-108) $) 191)) (-3494 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 32 (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 112 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))))) 26 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 25 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 24 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 23 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) 86 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) 84 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) 83 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 121 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 120 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 119 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))))) 118 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-2642 (((-108) $ $) 14)) (-3218 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 182 (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-3171 (((-592 |#2|) $) 91) (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 185)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-525) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 187) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-525)) 186) (($ $ (-1139 (-525))) 165) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ "first") 138) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ "value") 126)) (-4068 (((-525) $ $) 129)) (-4006 (($) 49) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 48)) (-3977 (($ $ (-525)) 222) (($ $ (-1139 (-525))) 221)) (-3653 (($ $ (-525)) 164) (($ $ (-1139 (-525))) 163)) (-1810 (((-108) $) 127)) (-1350 (($ $) 151)) (-2027 (($ $) 152 (|has| $ (-6 -4255)))) (-1290 (((-713) $) 150)) (-3080 (($ $) 149)) (-2686 (((-713) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 31 (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-713) |#2| $) 81 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 113 (|has| $ (-6 -4254)))) (-3703 (($ $ $ (-525)) 202 (|has| $ (-6 -4255)))) (-2135 (($ $) 13)) (-1427 (((-501) $) 59 (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-567 (-501))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-567 (-501)))))) (-1922 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 50) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 170)) (-1497 (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 224) (($ $ $) 223)) (-2664 (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 168) (($ (-592 $)) 167) (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 136) (($ $ $) 135)) (-1908 (((-797) $) 18 (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-566 (-797))) (|has| |#2| (-566 (-797))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-566 (-797)))))) (-2021 (((-592 $) $) 122)) (-1519 (((-108) $ $) 130 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (-3612 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 42)) (-2300 (((-3 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) "failed") |#1| $) 108)) (-2667 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 33 (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 111 (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) 195 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-3995 (((-108) $ $) 194 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-3961 (((-108) $ $) 20 (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-4010 (((-108) $ $) 196 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-3983 (((-108) $ $) 193 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-35 |#1| |#2|) (-131) (-1019) (-1019)) (T -35))
-((-2300 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-5 *2 (-2 (|:| -3946 *3) (|:| -2511 *4))))))
-(-13 (-1103 |t#1| |t#2|) (-612 (-2 (|:| -3946 |t#1|) (|:| -2511 |t#2|))) (-10 -8 (-15 -2300 ((-3 (-2 (|:| -3946 |t#1|) (|:| -2511 |t#2|)) "failed") |t#1| $))))
-(((-33) . T) ((-102 #0=(-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T) ((-97) -3309 (|has| |#2| (-1019)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789))) ((-566 (-797)) -3309 (|has| |#2| (-1019)) (|has| |#2| (-566 (-797))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-566 (-797)))) ((-142 #1=(-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T) ((-567 (-501)) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-567 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-265 #2=(-525) #1#) . T) ((-265 |#1| |#2|) . T) ((-267 #2# #1#) . T) ((-267 |#1| |#2|) . T) ((-288 #1#) -12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-261 #1#) . T) ((-351 #1#) . T) ((-464 #1#) . T) ((-464 |#2|) . T) ((-558 #2# #1#) . T) ((-558 |#1| |#2|) . T) ((-486 #1# #1#) -12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-563 |#1| |#2|) . T) ((-597 #1#) . T) ((-612 #1#) . T) ((-789) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)) ((-941 #1#) . T) ((-1019) -3309 (|has| |#2| (-1019)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789))) ((-1064 #1#) . T) ((-1103 |#1| |#2|) . T) ((-1126) . T) ((-1160 #1#) . T))
-((-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) 10)))
-(((-36 |#1| |#2|) (-10 -8 (-15 -1908 (|#1| |#2|)) (-15 -1908 (|#1| (-525))) (-15 -1908 ((-797) |#1|))) (-37 |#2|) (-160)) (T -36))
-NIL
-(-10 -8 (-15 -1908 (|#1| |#2|)) (-15 -1908 (|#1| (-525))) (-15 -1908 ((-797) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+((-2438 (*1 *1 *1) (-4 *1 (-34))) (-2410 (*1 *1 *1) (-4 *1 (-34))) (-2464 (*1 *1 *1) (-4 *1 (-34))) (-2687 (*1 *1 *1) (-4 *1 (-34))) (-2450 (*1 *1 *1) (-4 *1 (-34))) (-2424 (*1 *1 *1) (-4 *1 (-34))))
+(-13 (-10 -8 (-15 -2424 ($ $)) (-15 -2450 ($ $)) (-15 -2687 ($ $)) (-15 -2464 ($ $)) (-15 -2410 ($ $)) (-15 -2438 ($ $))))
+((-1260 (((-108) $ $) 19 (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-3352 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 125)) (-2029 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 148)) (-2941 (($ $) 146)) (-3476 (($) 72) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 71)) (-2782 (((-1178) $ |#1| |#1|) 99 (|has| $ (-6 -4256))) (((-1178) $ (-525) (-525)) 178 (|has| $ (-6 -4256)))) (-3078 (($ $ (-525)) 159 (|has| $ (-6 -4256)))) (-2151 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 209) (((-108) $) 203 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-2549 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 200 (|has| $ (-6 -4256))) (($ $) 199 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)) (|has| $ (-6 -4256))))) (-2855 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-3330 (((-108) $ (-713)) 8)) (-1545 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 134 (|has| $ (-6 -4256)))) (-2914 (($ $ $) 155 (|has| $ (-6 -4256)))) (-1455 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 157 (|has| $ (-6 -4256)))) (-2207 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 153 (|has| $ (-6 -4256)))) (-1429 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-525) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 189 (|has| $ (-6 -4256))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-1140 (-525)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 160 (|has| $ (-6 -4256))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ "last" (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 158 (|has| $ (-6 -4256))) (($ $ "rest" $) 156 (|has| $ (-6 -4256))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ "first" (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 154 (|has| $ (-6 -4256))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ "value" (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 133 (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) 132 (|has| $ (-6 -4256)))) (-1608 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 45 (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 216)) (-3826 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 55 (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 175 (|has| $ (-6 -4255)))) (-2016 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 147)) (-2772 (((-3 |#2| "failed") |#1| $) 61)) (-2305 (($) 7 T CONST)) (-3559 (($ $) 201 (|has| $ (-6 -4256)))) (-3620 (($ $) 211)) (-3121 (($ $ (-713)) 142) (($ $) 140)) (-1540 (($ $) 214 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (-3137 (($ $) 58 (-3279 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255))) (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255)))))) (-2592 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 47 (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 46 (|has| $ (-6 -4255))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 220) (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 215 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (-1614 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 54 (|has| $ (-6 -4255))) (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 174 (|has| $ (-6 -4255)))) (-3503 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 56 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255)))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 53 (|has| $ (-6 -4255))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 52 (|has| $ (-6 -4255))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 176 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255)))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 173 (|has| $ (-6 -4255))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 172 (|has| $ (-6 -4255)))) (-2632 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4256))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-525) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 190 (|has| $ (-6 -4256)))) (-2570 ((|#2| $ |#1|) 88) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-525)) 188)) (-1406 (((-108) $) 192)) (-1916 (((-525) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 208) (((-525) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 207 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))) (((-525) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-525)) 206 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (-3702 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 30 (|has| $ (-6 -4255))) (((-592 |#2|) $) 79 (|has| $ (-6 -4255))) (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 114 (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) 123)) (-2553 (((-108) $ $) 131 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (-3489 (($ (-713) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 169)) (-2482 (((-108) $ (-713)) 9)) (-2710 ((|#1| $) 96 (|has| |#1| (-789))) (((-525) $) 180 (|has| (-525) (-789)))) (-2371 (($ $ $) 198 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-1999 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-3743 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-1749 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 29 (|has| $ (-6 -4255))) (((-592 |#2|) $) 80 (|has| $ (-6 -4255))) (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 115 (|has| $ (-6 -4255)))) (-2783 (((-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4255)))) (((-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255))))) (-3478 ((|#1| $) 95 (|has| |#1| (-789))) (((-525) $) 181 (|has| (-525) (-789)))) (-2535 (($ $ $) 197 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-2622 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 34 (|has| $ (-6 -4256))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4256))) (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 110 (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 109)) (-4104 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 225)) (-2957 (((-108) $ (-713)) 10)) (-2647 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 128)) (-3365 (((-108) $) 124)) (-3451 (((-1074) $) 22 (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-1636 (($ $ (-713)) 145) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 143)) (-4076 (((-592 |#1|) $) 63)) (-1522 (((-108) |#1| $) 64)) (-3955 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 39)) (-3985 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 40) (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-525)) 219) (($ $ $ (-525)) 218)) (-2683 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-525)) 162) (($ $ $ (-525)) 161)) (-4142 (((-592 |#1|) $) 93) (((-592 (-525)) $) 183)) (-3845 (((-108) |#1| $) 92) (((-108) (-525) $) 184)) (-2012 (((-1038) $) 21 (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-3110 ((|#2| $) 97 (|has| |#1| (-789))) (($ $ (-713)) 139) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 137)) (-3207 (((-3 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) "failed") (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 51) (((-3 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) "failed") (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 171)) (-2042 (($ $ |#2|) 98 (|has| $ (-6 -4256))) (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 179 (|has| $ (-6 -4256)))) (-1881 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 41)) (-1626 (((-108) $) 191)) (-3006 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 32 (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 112 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))))) 26 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 25 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 24 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 23 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) 86 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) 84 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) 83 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 121 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 120 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 119 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))))) 118 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-3428 (((-108) $ $) 14)) (-4101 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020)))) (((-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 182 (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-1777 (((-592 |#2|) $) 91) (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 185)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-525) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 187) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-525)) 186) (($ $ (-1140 (-525))) 165) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ "first") 138) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ "value") 126)) (-3294 (((-525) $ $) 129)) (-3981 (($) 49) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 48)) (-3793 (($ $ (-525)) 222) (($ $ (-1140 (-525))) 221)) (-3157 (($ $ (-525)) 164) (($ $ (-1140 (-525))) 163)) (-1698 (((-108) $) 127)) (-2491 (($ $) 151)) (-3385 (($ $) 152 (|has| $ (-6 -4256)))) (-2389 (((-713) $) 150)) (-2249 (($ $) 149)) (-2040 (((-713) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 31 (|has| $ (-6 -4255))) (((-713) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255)))) (((-713) |#2| $) 81 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4255)))) (((-713) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4255))) (((-713) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255)))) (((-713) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 113 (|has| $ (-6 -4255)))) (-3216 (($ $ $ (-525)) 202 (|has| $ (-6 -4256)))) (-1451 (($ $) 13)) (-2749 (((-501) $) 59 (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-567 (-501))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-567 (-501)))))) (-1279 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 50) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 170)) (-2162 (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 224) (($ $ $) 223)) (-2014 (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 168) (($ (-592 $)) 167) (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 136) (($ $ $) 135)) (-1270 (((-798) $) 18 (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-566 (-798)))))) (-3320 (((-592 $) $) 122)) (-2240 (((-108) $ $) 130 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (-1665 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 42)) (-1646 (((-3 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) "failed") |#1| $) 108)) (-3633 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 33 (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 111 (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) 195 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-4026 (((-108) $ $) 194 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-3994 (((-108) $ $) 20 (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-4037 (((-108) $ $) 196 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-4017 (((-108) $ $) 193 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-35 |#1| |#2|) (-131) (-1020) (-1020)) (T -35))
+((-1646 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-5 *2 (-2 (|:| -3423 *3) (|:| -2544 *4))))))
+(-13 (-1104 |t#1| |t#2|) (-612 (-2 (|:| -3423 |t#1|) (|:| -2544 |t#2|))) (-10 -8 (-15 -1646 ((-3 (-2 (|:| -3423 |t#1|) (|:| -2544 |t#2|)) "failed") |t#1| $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T) ((-97) -3279 (|has| |#2| (-1020)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789))) ((-566 (-798)) -3279 (|has| |#2| (-1020)) (|has| |#2| (-566 (-798))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-566 (-798)))) ((-142 #1=(-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T) ((-567 (-501)) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-567 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-265 #2=(-525) #1#) . T) ((-265 |#1| |#2|) . T) ((-267 #2# #1#) . T) ((-267 |#1| |#2|) . T) ((-288 #1#) -12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-261 #1#) . T) ((-351 #1#) . T) ((-464 #1#) . T) ((-464 |#2|) . T) ((-558 #2# #1#) . T) ((-558 |#1| |#2|) . T) ((-486 #1# #1#) -12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-563 |#1| |#2|) . T) ((-597 #1#) . T) ((-612 #1#) . T) ((-789) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)) ((-942 #1#) . T) ((-1020) -3279 (|has| |#2| (-1020)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789))) ((-1065 #1#) . T) ((-1104 |#1| |#2|) . T) ((-1127) . T) ((-1161 #1#) . T))
+((-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) 10)))
+(((-36 |#1| |#2|) (-10 -8 (-15 -1270 (|#1| |#2|)) (-15 -1270 (|#1| (-525))) (-15 -1270 ((-798) |#1|))) (-37 |#2|) (-160)) (T -36))
+NIL
+(-10 -8 (-15 -1270 (|#1| |#2|)) (-15 -1270 (|#1| (-525))) (-15 -1270 ((-798) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
(((-37 |#1|) (-131) (-160)) (T -37))
-((-1908 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-160)))))
-(-13 (-976) (-660 |t#1|) (-10 -8 (-15 -1908 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) . T) ((-669) . T) ((-982 |#1|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1921 (((-396 |#1|) |#1|) 41)) (-3959 (((-396 |#1|) |#1|) 30) (((-396 |#1|) |#1| (-592 (-47))) 33)) (-1837 (((-108) |#1|) 56)))
-(((-38 |#1|) (-10 -7 (-15 -3959 ((-396 |#1|) |#1| (-592 (-47)))) (-15 -3959 ((-396 |#1|) |#1|)) (-15 -1921 ((-396 |#1|) |#1|)) (-15 -1837 ((-108) |#1|))) (-1148 (-47))) (T -38))
-((-1837 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1148 (-47))))) (-1921 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1148 (-47))))) (-3959 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1148 (-47))))) (-3959 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-47))) (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1148 (-47))))))
-(-10 -7 (-15 -3959 ((-396 |#1|) |#1| (-592 (-47)))) (-15 -3959 ((-396 |#1|) |#1|)) (-15 -1921 ((-396 |#1|) |#1|)) (-15 -1837 ((-108) |#1|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-4124 (((-2 (|:| |num| (-1172 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| (-385 |#2|) (-341)))) (-3635 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-2950 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-2794 (((-632 (-385 |#2|)) (-1172 $)) NIL) (((-632 (-385 |#2|))) NIL)) (-3512 (((-385 |#2|) $) NIL)) (-2837 (((-1100 (-855) (-713)) (-525)) NIL (|has| (-385 |#2|) (-327)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-1510 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2305 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-3107 (((-713)) NIL (|has| (-385 |#2|) (-346)))) (-3741 (((-108)) NIL)) (-4193 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL (|has| (-385 |#2|) (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 |#2|) (-967 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) NIL)) (-2831 (((-525) $) NIL (|has| (-385 |#2|) (-967 (-525)))) (((-385 (-525)) $) NIL (|has| (-385 |#2|) (-967 (-385 (-525))))) (((-385 |#2|) $) NIL)) (-2229 (($ (-1172 (-385 |#2|)) (-1172 $)) NIL) (($ (-1172 (-385 |#2|))) 57) (($ (-1172 |#2|) |#2|) 125)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-385 |#2|) (-327)))) (-2373 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-1409 (((-632 (-385 |#2|)) $ (-1172 $)) NIL) (((-632 (-385 |#2|)) $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-385 |#2|))) (|:| |vec| (-1172 (-385 |#2|)))) (-632 $) (-1172 $)) NIL) (((-632 (-385 |#2|)) (-632 $)) NIL)) (-3507 (((-1172 $) (-1172 $)) NIL)) (-4004 (($ |#3|) NIL) (((-3 $ "failed") (-385 |#3|)) NIL (|has| (-385 |#2|) (-341)))) (-2866 (((-3 $ "failed") $) NIL)) (-2654 (((-592 (-592 |#1|))) NIL (|has| |#1| (-346)))) (-3619 (((-108) |#1| |#1|) NIL)) (-2239 (((-855)) NIL)) (-3375 (($) NIL (|has| (-385 |#2|) (-346)))) (-1993 (((-108)) NIL)) (-1351 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-2356 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| (-385 |#2|) (-341)))) (-3811 (($ $) NIL)) (-3205 (($) NIL (|has| (-385 |#2|) (-327)))) (-3746 (((-108) $) NIL (|has| (-385 |#2|) (-327)))) (-1410 (($ $ (-713)) NIL (|has| (-385 |#2|) (-327))) (($ $) NIL (|has| (-385 |#2|) (-327)))) (-2250 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-1737 (((-855) $) NIL (|has| (-385 |#2|) (-327))) (((-775 (-855)) $) NIL (|has| (-385 |#2|) (-327)))) (-2133 (((-108) $) NIL)) (-2324 (((-713)) NIL)) (-3248 (((-1172 $) (-1172 $)) 102)) (-3477 (((-385 |#2|) $) NIL)) (-3256 (((-592 (-886 |#1|)) (-1090)) NIL (|has| |#1| (-341)))) (-1816 (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-327)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2362 ((|#3| $) NIL (|has| (-385 |#2|) (-341)))) (-1780 (((-855) $) NIL (|has| (-385 |#2|) (-346)))) (-3774 ((|#3| $) NIL)) (-3216 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2337 (((-1073) $) NIL)) (-3917 (((-1177) (-713)) 79)) (-3214 (((-632 (-385 |#2|))) 51)) (-3596 (((-632 (-385 |#2|))) 44)) (-4211 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-2367 (($ (-1172 |#2|) |#2|) 126)) (-2744 (((-632 (-385 |#2|))) 45)) (-3998 (((-632 (-385 |#2|))) 43)) (-1664 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-1323 (((-2 (|:| |num| (-1172 |#2|)) (|:| |den| |#2|)) $) 64)) (-3382 (((-1172 $)) 42)) (-2780 (((-1172 $)) 41)) (-1738 (((-108) $) NIL)) (-3801 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-2279 (($) NIL (|has| (-385 |#2|) (-327)) CONST)) (-4185 (($ (-855)) NIL (|has| (-385 |#2|) (-346)))) (-1973 (((-3 |#2| "failed")) NIL)) (-2663 (((-1037) $) NIL)) (-3717 (((-713)) NIL)) (-1669 (($) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| (-385 |#2|) (-341)))) (-3244 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) NIL (|has| (-385 |#2|) (-327)))) (-3959 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2338 (((-3 $ "failed") $ $) NIL (|has| (-385 |#2|) (-341)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2183 (((-713) $) NIL (|has| (-385 |#2|) (-341)))) (-3928 ((|#1| $ |#1| |#1|) NIL)) (-4182 (((-3 |#2| "failed")) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1400 (((-385 |#2|) (-1172 $)) NIL) (((-385 |#2|)) 39)) (-2443 (((-713) $) NIL (|has| (-385 |#2|) (-327))) (((-3 (-713) "failed") $ $) NIL (|has| (-385 |#2|) (-327)))) (-3013 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-713)) NIL (-3309 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3309 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-2160 (((-632 (-385 |#2|)) (-1172 $) (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341)))) (-1654 ((|#3|) 50)) (-3775 (($) NIL (|has| (-385 |#2|) (-327)))) (-4093 (((-1172 (-385 |#2|)) $ (-1172 $)) NIL) (((-632 (-385 |#2|)) (-1172 $) (-1172 $)) NIL) (((-1172 (-385 |#2|)) $) 58) (((-632 (-385 |#2|)) (-1172 $)) 103)) (-1427 (((-1172 (-385 |#2|)) $) NIL) (($ (-1172 (-385 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| (-385 |#2|) (-327)))) (-3641 (((-1172 $) (-1172 $)) NIL)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ (-385 |#2|)) NIL) (($ (-385 (-525))) NIL (-3309 (|has| (-385 |#2|) (-967 (-385 (-525)))) (|has| (-385 |#2|) (-341)))) (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3421 (($ $) NIL (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-136)))) (-1260 ((|#3| $) NIL)) (-2093 (((-713)) NIL)) (-2476 (((-108)) 37)) (-4214 (((-108) |#1|) 49) (((-108) |#2|) 132)) (-2499 (((-1172 $)) 93)) (-2262 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2820 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3552 (((-108)) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (-3875 (($) 16 T CONST)) (-3882 (($) 26 T CONST)) (-1424 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-713)) NIL (-3309 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3309 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 |#2|)) NIL) (($ (-385 |#2|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) NIL (|has| (-385 |#2|) (-341)))))
-(((-39 |#1| |#2| |#3| |#4|) (-13 (-320 |#1| |#2| |#3|) (-10 -7 (-15 -3917 ((-1177) (-713))))) (-341) (-1148 |#1|) (-1148 (-385 |#2|)) |#3|) (T -39))
-((-3917 (*1 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-4 *5 (-1148 *4)) (-5 *2 (-1177)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1148 (-385 *5))) (-14 *7 *6))))
-(-13 (-320 |#1| |#2| |#3|) (-10 -7 (-15 -3917 ((-1177) (-713)))))
-((-4226 ((|#2| |#2|) 48)) (-3452 ((|#2| |#2|) 120 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-967 (-525)))))) (-2919 ((|#2| |#2|) 87 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-967 (-525)))))) (-2130 ((|#2| |#2|) 88 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-967 (-525)))))) (-3229 ((|#2| (-110) |#2| (-713)) 116 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-967 (-525)))))) (-2980 (((-1086 |#2|) |#2|) 45)) (-3505 ((|#2| |#2| (-592 (-565 |#2|))) 18) ((|#2| |#2| (-592 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-40 |#1| |#2|) (-10 -7 (-15 -4226 (|#2| |#2|)) (-15 -3505 (|#2| |#2|)) (-15 -3505 (|#2| |#2| |#2|)) (-15 -3505 (|#2| |#2| (-592 |#2|))) (-15 -3505 (|#2| |#2| (-592 (-565 |#2|)))) (-15 -2980 ((-1086 |#2|) |#2|)) (IF (|has| |#1| (-789)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-967 (-525))) (IF (|has| |#2| (-408 |#1|)) (PROGN (-15 -2130 (|#2| |#2|)) (-15 -2919 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -3229 (|#2| (-110) |#2| (-713)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-517) (-13 (-341) (-281) (-10 -8 (-15 -1303 ((-1042 |#1| (-565 $)) $)) (-15 -1312 ((-1042 |#1| (-565 $)) $)) (-15 -1908 ($ (-1042 |#1| (-565 $))))))) (T -40))
-((-3229 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-110)) (-5 *4 (-713)) (-4 *5 (-429)) (-4 *5 (-789)) (-4 *5 (-967 (-525))) (-4 *5 (-517)) (-5 *1 (-40 *5 *2)) (-4 *2 (-408 *5)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1303 ((-1042 *5 (-565 $)) $)) (-15 -1312 ((-1042 *5 (-565 $)) $)) (-15 -1908 ($ (-1042 *5 (-565 $))))))))) (-3452 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-967 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1303 ((-1042 *3 (-565 $)) $)) (-15 -1312 ((-1042 *3 (-565 $)) $)) (-15 -1908 ($ (-1042 *3 (-565 $))))))))) (-2919 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-967 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1303 ((-1042 *3 (-565 $)) $)) (-15 -1312 ((-1042 *3 (-565 $)) $)) (-15 -1908 ($ (-1042 *3 (-565 $))))))))) (-2130 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-967 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1303 ((-1042 *3 (-565 $)) $)) (-15 -1312 ((-1042 *3 (-565 $)) $)) (-15 -1908 ($ (-1042 *3 (-565 $))))))))) (-2980 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-1086 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-341) (-281) (-10 -8 (-15 -1303 ((-1042 *4 (-565 $)) $)) (-15 -1312 ((-1042 *4 (-565 $)) $)) (-15 -1908 ($ (-1042 *4 (-565 $))))))))) (-3505 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-565 *2))) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1303 ((-1042 *4 (-565 $)) $)) (-15 -1312 ((-1042 *4 (-565 $)) $)) (-15 -1908 ($ (-1042 *4 (-565 $))))))) (-4 *4 (-517)) (-5 *1 (-40 *4 *2)))) (-3505 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1303 ((-1042 *4 (-565 $)) $)) (-15 -1312 ((-1042 *4 (-565 $)) $)) (-15 -1908 ($ (-1042 *4 (-565 $))))))) (-4 *4 (-517)) (-5 *1 (-40 *4 *2)))) (-3505 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1303 ((-1042 *3 (-565 $)) $)) (-15 -1312 ((-1042 *3 (-565 $)) $)) (-15 -1908 ($ (-1042 *3 (-565 $))))))))) (-3505 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1303 ((-1042 *3 (-565 $)) $)) (-15 -1312 ((-1042 *3 (-565 $)) $)) (-15 -1908 ($ (-1042 *3 (-565 $))))))))) (-4226 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1303 ((-1042 *3 (-565 $)) $)) (-15 -1312 ((-1042 *3 (-565 $)) $)) (-15 -1908 ($ (-1042 *3 (-565 $))))))))))
-(-10 -7 (-15 -4226 (|#2| |#2|)) (-15 -3505 (|#2| |#2|)) (-15 -3505 (|#2| |#2| |#2|)) (-15 -3505 (|#2| |#2| (-592 |#2|))) (-15 -3505 (|#2| |#2| (-592 (-565 |#2|)))) (-15 -2980 ((-1086 |#2|) |#2|)) (IF (|has| |#1| (-789)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-967 (-525))) (IF (|has| |#2| (-408 |#1|)) (PROGN (-15 -2130 (|#2| |#2|)) (-15 -2919 (|#2| |#2|)) (-15 -3452 (|#2| |#2|)) (-15 -3229 (|#2| (-110) |#2| (-713)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-3959 (((-396 (-1086 |#3|)) (-1086 |#3|) (-592 (-47))) 23) (((-396 |#3|) |#3| (-592 (-47))) 19)))
-(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-396 |#3|) |#3| (-592 (-47)))) (-15 -3959 ((-396 (-1086 |#3|)) (-1086 |#3|) (-592 (-47))))) (-789) (-735) (-883 (-47) |#2| |#1|)) (T -41))
-((-3959 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *7 (-883 (-47) *6 *5)) (-5 *2 (-396 (-1086 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735)) (-5 *2 (-396 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-883 (-47) *6 *5)))))
-(-10 -7 (-15 -3959 ((-396 |#3|) |#3| (-592 (-47)))) (-15 -3959 ((-396 (-1086 |#3|)) (-1086 |#3|) (-592 (-47)))))
-((-2629 (((-713) |#2|) 65)) (-1543 (((-713) |#2|) 68)) (-3379 (((-592 |#2|)) 33)) (-2575 (((-713) |#2|) 67)) (-4097 (((-713) |#2|) 64)) (-2019 (((-713) |#2|) 66)) (-4231 (((-592 (-632 |#1|))) 60)) (-1277 (((-592 |#2|)) 55)) (-3642 (((-592 |#2|) |#2|) 43)) (-2559 (((-592 |#2|)) 57)) (-2431 (((-592 |#2|)) 56)) (-3880 (((-592 (-632 |#1|))) 48)) (-1904 (((-592 |#2|)) 54)) (-2743 (((-592 |#2|) |#2|) 42)) (-3392 (((-592 |#2|)) 50)) (-3029 (((-592 (-632 |#1|))) 61)) (-3721 (((-592 |#2|)) 59)) (-2499 (((-1172 |#2|) (-1172 |#2|)) 84 (|has| |#1| (-286)))))
-(((-42 |#1| |#2|) (-10 -7 (-15 -2575 ((-713) |#2|)) (-15 -1543 ((-713) |#2|)) (-15 -4097 ((-713) |#2|)) (-15 -2629 ((-713) |#2|)) (-15 -2019 ((-713) |#2|)) (-15 -3392 ((-592 |#2|))) (-15 -2743 ((-592 |#2|) |#2|)) (-15 -3642 ((-592 |#2|) |#2|)) (-15 -1904 ((-592 |#2|))) (-15 -1277 ((-592 |#2|))) (-15 -2431 ((-592 |#2|))) (-15 -2559 ((-592 |#2|))) (-15 -3721 ((-592 |#2|))) (-15 -3880 ((-592 (-632 |#1|)))) (-15 -4231 ((-592 (-632 |#1|)))) (-15 -3029 ((-592 (-632 |#1|)))) (-15 -3379 ((-592 |#2|))) (IF (|has| |#1| (-286)) (-15 -2499 ((-1172 |#2|) (-1172 |#2|))) |%noBranch|)) (-517) (-395 |#1|)) (T -42))
-((-2499 (*1 *2 *2) (-12 (-5 *2 (-1172 *4)) (-4 *4 (-395 *3)) (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-42 *3 *4)))) (-3379 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3029 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-4231 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3880 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3721 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2559 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2431 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-1277 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-1904 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3642 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-2743 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-3392 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2019 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-2629 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-4097 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-1543 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-2575 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))))
-(-10 -7 (-15 -2575 ((-713) |#2|)) (-15 -1543 ((-713) |#2|)) (-15 -4097 ((-713) |#2|)) (-15 -2629 ((-713) |#2|)) (-15 -2019 ((-713) |#2|)) (-15 -3392 ((-592 |#2|))) (-15 -2743 ((-592 |#2|) |#2|)) (-15 -3642 ((-592 |#2|) |#2|)) (-15 -1904 ((-592 |#2|))) (-15 -1277 ((-592 |#2|))) (-15 -2431 ((-592 |#2|))) (-15 -2559 ((-592 |#2|))) (-15 -3721 ((-592 |#2|))) (-15 -3880 ((-592 (-632 |#1|)))) (-15 -4231 ((-592 (-632 |#1|)))) (-15 -3029 ((-592 (-632 |#1|)))) (-15 -3379 ((-592 |#2|))) (IF (|has| |#1| (-286)) (-15 -2499 ((-1172 |#2|) (-1172 |#2|))) |%noBranch|))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3957 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-2722 (((-1172 (-632 |#1|)) (-1172 $)) NIL) (((-1172 (-632 |#1|))) 24)) (-1917 (((-1172 $)) 51)) (-1505 (($) NIL T CONST)) (-2800 (((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed")) NIL (|has| |#1| (-517)))) (-1496 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-1460 (((-632 |#1|) (-1172 $)) NIL) (((-632 |#1|)) NIL)) (-2386 ((|#1| $) NIL)) (-3440 (((-632 |#1|) $ (-1172 $)) NIL) (((-632 |#1|) $) NIL)) (-1391 (((-3 $ "failed") $) NIL (|has| |#1| (-517)))) (-1743 (((-1086 (-886 |#1|))) NIL (|has| |#1| (-341)))) (-2979 (($ $ (-855)) NIL)) (-3376 ((|#1| $) NIL)) (-2706 (((-1086 |#1|) $) NIL (|has| |#1| (-517)))) (-2519 ((|#1| (-1172 $)) NIL) ((|#1|) NIL)) (-2908 (((-1086 |#1|) $) NIL)) (-1814 (((-108)) 87)) (-2229 (($ (-1172 |#1|) (-1172 $)) NIL) (($ (-1172 |#1|)) NIL)) (-2866 (((-3 $ "failed") $) 14 (|has| |#1| (-517)))) (-2239 (((-855)) 52)) (-2301 (((-108)) NIL)) (-2097 (($ $ (-855)) NIL)) (-2795 (((-108)) NIL)) (-3251 (((-108)) NIL)) (-2775 (((-108)) 89)) (-4033 (((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed")) NIL (|has| |#1| (-517)))) (-1850 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-2205 (((-632 |#1|) (-1172 $)) NIL) (((-632 |#1|)) NIL)) (-2389 ((|#1| $) NIL)) (-1306 (((-632 |#1|) $ (-1172 $)) NIL) (((-632 |#1|) $) NIL)) (-2364 (((-3 $ "failed") $) NIL (|has| |#1| (-517)))) (-2568 (((-1086 (-886 |#1|))) NIL (|has| |#1| (-341)))) (-1640 (($ $ (-855)) NIL)) (-3342 ((|#1| $) NIL)) (-2900 (((-1086 |#1|) $) NIL (|has| |#1| (-517)))) (-3060 ((|#1| (-1172 $)) NIL) ((|#1|) NIL)) (-2535 (((-1086 |#1|) $) NIL)) (-1506 (((-108)) 86)) (-2337 (((-1073) $) NIL)) (-3886 (((-108)) 93)) (-1886 (((-108)) 92)) (-2597 (((-108)) 94)) (-2663 (((-1037) $) NIL)) (-2120 (((-108)) 88)) (-3928 ((|#1| $ (-525)) 54)) (-4093 (((-1172 |#1|) $ (-1172 $)) 48) (((-632 |#1|) (-1172 $) (-1172 $)) NIL) (((-1172 |#1|) $) 28) (((-632 |#1|) (-1172 $)) NIL)) (-1427 (((-1172 |#1|) $) NIL) (($ (-1172 |#1|)) NIL)) (-2274 (((-592 (-886 |#1|)) (-1172 $)) NIL) (((-592 (-886 |#1|))) NIL)) (-1518 (($ $ $) NIL)) (-1380 (((-108)) 84)) (-1908 (((-797) $) 69) (($ (-1172 |#1|)) 22)) (-2499 (((-1172 $)) 45)) (-1648 (((-592 (-1172 |#1|))) NIL (|has| |#1| (-517)))) (-2260 (($ $ $ $) NIL)) (-3132 (((-108)) 82)) (-3088 (($ (-632 |#1|) $) 18)) (-2331 (($ $ $) NIL)) (-1447 (((-108)) 85)) (-3432 (((-108)) 83)) (-2303 (((-108)) 81)) (-3875 (($) NIL T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1057 |#2| |#1|) $) 19)))
-(((-43 |#1| |#2| |#3| |#4|) (-13 (-395 |#1|) (-594 (-1057 |#2| |#1|)) (-10 -8 (-15 -1908 ($ (-1172 |#1|))))) (-341) (-855) (-592 (-1090)) (-1172 (-632 |#1|))) (T -43))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-341)) (-14 *6 (-1172 (-632 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))))))
-(-13 (-395 |#1|) (-594 (-1057 |#2| |#1|)) (-10 -8 (-15 -1908 ($ (-1172 |#1|)))))
-((-1893 (((-108) $ $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-3871 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-1899 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-1614 (($ $) NIL)) (-4001 (($) NIL) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-1840 (((-1177) $ |#1| |#1|) NIL (|has| $ (-6 -4255))) (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3035 (($ $ (-525)) NIL (|has| $ (-6 -4255)))) (-3072 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL) (((-108) $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-1356 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789))))) (-3327 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-3410 (((-108) $ (-713)) NIL)) (-2822 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4255)))) (-3795 (($ $ $) 27 (|has| $ (-6 -4255)))) (-2813 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4255)))) (-1517 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 29 (|has| $ (-6 -4255)))) (-2109 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-525) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-1139 (-525)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ "last" (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4255))) (($ $ "rest" $) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ "first" (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ "value" (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-3290 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL)) (-2724 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1882 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-1446 (((-3 |#2| "failed") |#1| $) 37)) (-1505 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| $ (-6 -4255)))) (-1693 (($ $) NIL)) (-3145 (($ $ (-713)) NIL) (($ $) 24)) (-3143 (($ $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-2792 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL) (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (-2273 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-4004 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2870 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-525) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4255)))) (-2796 ((|#2| $ |#1|) NIL) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-525)) NIL)) (-2495 (((-108) $) NIL)) (-3763 (((-525) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL) (((-525) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))) (((-525) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-525)) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (-2026 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 18 (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254))) (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 18 (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) NIL)) (-3106 (((-108) $ $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (-4018 (($ (-713) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2009 ((|#1| $) NIL (|has| |#1| (-789))) (((-525) $) 32 (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-2749 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-1932 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-3168 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254))) (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-1792 ((|#1| $) NIL (|has| |#1| (-789))) (((-525) $) 34 (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-2857 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL)) (-3037 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-1564 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL)) (-3723 (((-108) $) NIL)) (-2337 (((-1073) $) 42 (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-2292 (($ $ (-713)) NIL) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-4005 (((-592 |#1|) $) 20)) (-1699 (((-108) |#1| $) NIL)) (-2570 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-2573 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL) (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3167 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3222 (((-592 |#1|) $) NIL) (((-592 (-525)) $) NIL)) (-1548 (((-108) |#1| $) NIL) (((-108) (-525) $) NIL)) (-2663 (((-1037) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-3135 ((|#2| $) NIL (|has| |#1| (-789))) (($ $ (-713)) NIL) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 23)) (-4054 (((-3 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL) (((-3 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL)) (-1911 (($ $ |#2|) NIL (|has| $ (-6 -4255))) (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4255)))) (-3513 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-2518 (((-108) $) NIL)) (-3494 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-3171 (((-592 |#2|) $) NIL) (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 17)) (-1613 (((-108) $) 16)) (-3773 (($) 13)) (-3928 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-525) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ (-525)) NIL) (($ $ (-1139 (-525))) NIL) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ "first") NIL) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $ "value") NIL)) (-4068 (((-525) $ $) NIL)) (-4006 (($) 12) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-3977 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-3653 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-1810 (((-108) $) NIL)) (-1350 (($ $) NIL)) (-2027 (($ $) NIL (|has| $ (-6 -4255)))) (-1290 (((-713) $) NIL)) (-3080 (($ $) NIL)) (-2686 (((-713) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-713) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-3703 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-567 (-501))))) (-1922 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-1497 (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL) (($ $ $) NIL)) (-2664 (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL) (($ (-592 $)) NIL) (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 25) (($ $ $) NIL)) (-1908 (((-797) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-566 (-797))) (|has| |#2| (-566 (-797)))))) (-2021 (((-592 $) $) NIL)) (-1519 (((-108) $ $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (-3612 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-2300 (((-3 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) "failed") |#1| $) 44)) (-2667 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-3995 (((-108) $ $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-3961 (((-108) $ $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4010 (((-108) $ $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-3983 (((-108) $ $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-789)))) (-4140 (((-713) $) 22 (|has| $ (-6 -4254)))))
-(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1019) (-1019)) (T -44))
+((-1270 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-160)))))
+(-13 (-977) (-660 |t#1|) (-10 -8 (-15 -1270 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) . T) ((-669) . T) ((-983 |#1|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-2223 (((-396 |#1|) |#1|) 41)) (-2195 (((-396 |#1|) |#1|) 30) (((-396 |#1|) |#1| (-592 (-47))) 33)) (-2730 (((-108) |#1|) 56)))
+(((-38 |#1|) (-10 -7 (-15 -2195 ((-396 |#1|) |#1| (-592 (-47)))) (-15 -2195 ((-396 |#1|) |#1|)) (-15 -2223 ((-396 |#1|) |#1|)) (-15 -2730 ((-108) |#1|))) (-1149 (-47))) (T -38))
+((-2730 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1149 (-47))))) (-2223 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1149 (-47))))) (-2195 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1149 (-47))))) (-2195 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-47))) (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1149 (-47))))))
+(-10 -7 (-15 -2195 ((-396 |#1|) |#1| (-592 (-47)))) (-15 -2195 ((-396 |#1|) |#1|)) (-15 -2223 ((-396 |#1|) |#1|)) (-15 -2730 ((-108) |#1|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2698 (((-2 (|:| |num| (-1173 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| (-385 |#2|) (-341)))) (-3711 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3380 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-1264 (((-632 (-385 |#2|)) (-1173 $)) NIL) (((-632 (-385 |#2|))) NIL)) (-3029 (((-385 |#2|) $) NIL)) (-1670 (((-1101 (-856) (-713)) (-525)) NIL (|has| (-385 |#2|) (-327)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-2100 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-3197 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-4190 (((-713)) NIL (|has| (-385 |#2|) (-346)))) (-3513 (((-108)) NIL)) (-1914 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL (|has| (-385 |#2|) (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) NIL)) (-3898 (((-525) $) NIL (|has| (-385 |#2|) (-968 (-525)))) (((-385 (-525)) $) NIL (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-385 |#2|) $) NIL)) (-3612 (($ (-1173 (-385 |#2|)) (-1173 $)) NIL) (($ (-1173 (-385 |#2|))) 57) (($ (-1173 |#2|) |#2|) 125)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-385 |#2|) (-327)))) (-1726 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2312 (((-632 (-385 |#2|)) $ (-1173 $)) NIL) (((-632 (-385 |#2|)) $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-385 |#2|))) (|:| |vec| (-1173 (-385 |#2|)))) (-632 $) (-1173 $)) NIL) (((-632 (-385 |#2|)) (-632 $)) NIL)) (-1826 (((-1173 $) (-1173 $)) NIL)) (-3503 (($ |#3|) NIL) (((-3 $ "failed") (-385 |#3|)) NIL (|has| (-385 |#2|) (-341)))) (-3762 (((-3 $ "failed") $) NIL)) (-3535 (((-592 (-592 |#1|))) NIL (|has| |#1| (-346)))) (-1737 (((-108) |#1| |#1|) NIL)) (-3318 (((-856)) NIL)) (-2899 (($) NIL (|has| (-385 |#2|) (-346)))) (-2524 (((-108)) NIL)) (-2503 (((-108) |#1|) NIL) (((-108) |#2|) NIL)) (-1704 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| (-385 |#2|) (-341)))) (-3026 (($ $) NIL)) (-3977 (($) NIL (|has| (-385 |#2|) (-327)))) (-3564 (((-108) $) NIL (|has| (-385 |#2|) (-327)))) (-2327 (($ $ (-713)) NIL (|has| (-385 |#2|) (-327))) (($ $) NIL (|has| (-385 |#2|) (-327)))) (-3836 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-3973 (((-856) $) NIL (|has| (-385 |#2|) (-327))) (((-775 (-856)) $) NIL (|has| (-385 |#2|) (-327)))) (-1985 (((-108) $) NIL)) (-3332 (((-713)) NIL)) (-1211 (((-1173 $) (-1173 $)) 102)) (-2900 (((-385 |#2|) $) NIL)) (-1280 (((-592 (-887 |#1|)) (-1091)) NIL (|has| |#1| (-341)))) (-1760 (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-327)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2640 ((|#3| $) NIL (|has| (-385 |#2|) (-341)))) (-1736 (((-856) $) NIL (|has| (-385 |#2|) (-346)))) (-3492 ((|#3| $) NIL)) (-2756 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-3451 (((-1074) $) NIL)) (-1486 (((-1178) (-713)) 79)) (-4069 (((-632 (-385 |#2|))) 51)) (-1525 (((-632 (-385 |#2|))) 44)) (-2502 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-2697 (($ (-1173 |#2|) |#2|) 126)) (-1938 (((-632 (-385 |#2|))) 45)) (-3952 (((-632 (-385 |#2|))) 43)) (-3547 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-3832 (((-2 (|:| |num| (-1173 |#2|)) (|:| |den| |#2|)) $) 64)) (-3153 (((-1173 $)) 42)) (-2463 (((-1173 $)) 41)) (-3983 (((-108) $) NIL)) (-2960 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-3940 (($) NIL (|has| (-385 |#2|) (-327)) CONST)) (-3640 (($ (-856)) NIL (|has| (-385 |#2|) (-346)))) (-4223 (((-3 |#2| "failed")) NIL)) (-2012 (((-1038) $) NIL)) (-3309 (((-713)) NIL)) (-3523 (($) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| (-385 |#2|) (-341)))) (-2794 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) NIL (|has| (-385 |#2|) (-327)))) (-2195 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1680 (((-3 $ "failed") $ $) NIL (|has| (-385 |#2|) (-341)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-1290 (((-713) $) NIL (|has| (-385 |#2|) (-341)))) (-3410 ((|#1| $ |#1| |#1|) NIL)) (-3100 (((-3 |#2| "failed")) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2094 (((-385 |#2|) (-1173 $)) NIL) (((-385 |#2|)) 39)) (-2181 (((-713) $) NIL (|has| (-385 |#2|) (-327))) (((-3 (-713) "failed") $ $) NIL (|has| (-385 |#2|) (-327)))) (-2523 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091))))) (($ $ (-1091)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091))))) (($ $ (-713)) NIL (-3279 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3279 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-2361 (((-632 (-385 |#2|)) (-1173 $) (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341)))) (-1571 ((|#3|) 50)) (-2726 (($) NIL (|has| (-385 |#2|) (-327)))) (-3464 (((-1173 (-385 |#2|)) $ (-1173 $)) NIL) (((-632 (-385 |#2|)) (-1173 $) (-1173 $)) NIL) (((-1173 (-385 |#2|)) $) 58) (((-632 (-385 |#2|)) (-1173 $)) 103)) (-2749 (((-1173 (-385 |#2|)) $) NIL) (($ (-1173 (-385 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (|has| (-385 |#2|) (-327)))) (-3777 (((-1173 $) (-1173 $)) NIL)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 |#2|)) NIL) (($ (-385 (-525))) NIL (-3279 (|has| (-385 |#2|) (-968 (-385 (-525)))) (|has| (-385 |#2|) (-341)))) (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3425 (($ $) NIL (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-136)))) (-1805 ((|#3| $) NIL)) (-2104 (((-713)) NIL)) (-1227 (((-108)) 37)) (-2183 (((-108) |#1|) 49) (((-108) |#2|) 132)) (-1449 (((-1173 $)) 93)) (-3959 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1532 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2366 (((-108)) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (-3355 (($) 16 T CONST)) (-3363 (($) 26 T CONST)) (-2093 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091))))) (($ $ (-1091)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091))))) (($ $ (-713)) NIL (-3279 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3279 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 |#2|)) NIL) (($ (-385 |#2|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) NIL (|has| (-385 |#2|) (-341)))))
+(((-39 |#1| |#2| |#3| |#4|) (-13 (-320 |#1| |#2| |#3|) (-10 -7 (-15 -1486 ((-1178) (-713))))) (-341) (-1149 |#1|) (-1149 (-385 |#2|)) |#3|) (T -39))
+((-1486 (*1 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-4 *5 (-1149 *4)) (-5 *2 (-1178)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1149 (-385 *5))) (-14 *7 *6))))
+(-13 (-320 |#1| |#2| |#3|) (-10 -7 (-15 -1486 ((-1178) (-713)))))
+((-2325 ((|#2| |#2|) 48)) (-2662 ((|#2| |#2|) 120 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-968 (-525)))))) (-1222 ((|#2| |#2|) 87 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-968 (-525)))))) (-1948 ((|#2| |#2|) 88 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-968 (-525)))))) (-4214 ((|#2| (-110) |#2| (-713)) 116 (-12 (|has| |#2| (-408 |#1|)) (|has| |#1| (-429)) (|has| |#1| (-789)) (|has| |#1| (-968 (-525)))))) (-3636 (((-1087 |#2|) |#2|) 45)) (-3082 ((|#2| |#2| (-592 (-565 |#2|))) 18) ((|#2| |#2| (-592 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-40 |#1| |#2|) (-10 -7 (-15 -2325 (|#2| |#2|)) (-15 -3082 (|#2| |#2|)) (-15 -3082 (|#2| |#2| |#2|)) (-15 -3082 (|#2| |#2| (-592 |#2|))) (-15 -3082 (|#2| |#2| (-592 (-565 |#2|)))) (-15 -3636 ((-1087 |#2|) |#2|)) (IF (|has| |#1| (-789)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-968 (-525))) (IF (|has| |#2| (-408 |#1|)) (PROGN (-15 -1948 (|#2| |#2|)) (-15 -1222 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -4214 (|#2| (-110) |#2| (-713)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-517) (-13 (-341) (-281) (-10 -8 (-15 -1498 ((-1043 |#1| (-565 $)) $)) (-15 -1512 ((-1043 |#1| (-565 $)) $)) (-15 -1270 ($ (-1043 |#1| (-565 $))))))) (T -40))
+((-4214 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-110)) (-5 *4 (-713)) (-4 *5 (-429)) (-4 *5 (-789)) (-4 *5 (-968 (-525))) (-4 *5 (-517)) (-5 *1 (-40 *5 *2)) (-4 *2 (-408 *5)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1498 ((-1043 *5 (-565 $)) $)) (-15 -1512 ((-1043 *5 (-565 $)) $)) (-15 -1270 ($ (-1043 *5 (-565 $))))))))) (-2662 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-968 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1498 ((-1043 *3 (-565 $)) $)) (-15 -1512 ((-1043 *3 (-565 $)) $)) (-15 -1270 ($ (-1043 *3 (-565 $))))))))) (-1222 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-968 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1498 ((-1043 *3 (-565 $)) $)) (-15 -1512 ((-1043 *3 (-565 $)) $)) (-15 -1270 ($ (-1043 *3 (-565 $))))))))) (-1948 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-968 (-525))) (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1498 ((-1043 *3 (-565 $)) $)) (-15 -1512 ((-1043 *3 (-565 $)) $)) (-15 -1270 ($ (-1043 *3 (-565 $))))))))) (-3636 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-1087 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-341) (-281) (-10 -8 (-15 -1498 ((-1043 *4 (-565 $)) $)) (-15 -1512 ((-1043 *4 (-565 $)) $)) (-15 -1270 ($ (-1043 *4 (-565 $))))))))) (-3082 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-565 *2))) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1498 ((-1043 *4 (-565 $)) $)) (-15 -1512 ((-1043 *4 (-565 $)) $)) (-15 -1270 ($ (-1043 *4 (-565 $))))))) (-4 *4 (-517)) (-5 *1 (-40 *4 *2)))) (-3082 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1498 ((-1043 *4 (-565 $)) $)) (-15 -1512 ((-1043 *4 (-565 $)) $)) (-15 -1270 ($ (-1043 *4 (-565 $))))))) (-4 *4 (-517)) (-5 *1 (-40 *4 *2)))) (-3082 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1498 ((-1043 *3 (-565 $)) $)) (-15 -1512 ((-1043 *3 (-565 $)) $)) (-15 -1270 ($ (-1043 *3 (-565 $))))))))) (-3082 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1498 ((-1043 *3 (-565 $)) $)) (-15 -1512 ((-1043 *3 (-565 $)) $)) (-15 -1270 ($ (-1043 *3 (-565 $))))))))) (-2325 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-341) (-281) (-10 -8 (-15 -1498 ((-1043 *3 (-565 $)) $)) (-15 -1512 ((-1043 *3 (-565 $)) $)) (-15 -1270 ($ (-1043 *3 (-565 $))))))))))
+(-10 -7 (-15 -2325 (|#2| |#2|)) (-15 -3082 (|#2| |#2|)) (-15 -3082 (|#2| |#2| |#2|)) (-15 -3082 (|#2| |#2| (-592 |#2|))) (-15 -3082 (|#2| |#2| (-592 (-565 |#2|)))) (-15 -3636 ((-1087 |#2|) |#2|)) (IF (|has| |#1| (-789)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-968 (-525))) (IF (|has| |#2| (-408 |#1|)) (PROGN (-15 -1948 (|#2| |#2|)) (-15 -1222 (|#2| |#2|)) (-15 -2662 (|#2| |#2|)) (-15 -4214 (|#2| (-110) |#2| (-713)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-2195 (((-396 (-1087 |#3|)) (-1087 |#3|) (-592 (-47))) 23) (((-396 |#3|) |#3| (-592 (-47))) 19)))
+(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -2195 ((-396 |#3|) |#3| (-592 (-47)))) (-15 -2195 ((-396 (-1087 |#3|)) (-1087 |#3|) (-592 (-47))))) (-789) (-735) (-884 (-47) |#2| |#1|)) (T -41))
+((-2195 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *7 (-884 (-47) *6 *5)) (-5 *2 (-396 (-1087 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735)) (-5 *2 (-396 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-884 (-47) *6 *5)))))
+(-10 -7 (-15 -2195 ((-396 |#3|) |#3| (-592 (-47)))) (-15 -2195 ((-396 (-1087 |#3|)) (-1087 |#3|) (-592 (-47)))))
+((-3327 (((-713) |#2|) 65)) (-3768 (((-713) |#2|) 68)) (-3135 (((-592 |#2|)) 33)) (-4003 (((-713) |#2|) 67)) (-3495 (((-713) |#2|) 64)) (-3093 (((-713) |#2|) 66)) (-2397 (((-592 (-632 |#1|))) 60)) (-3651 (((-592 |#2|)) 55)) (-3789 (((-592 |#2|) |#2|) 43)) (-3860 (((-592 |#2|)) 57)) (-2019 (((-592 |#2|)) 56)) (-2498 (((-592 (-632 |#1|))) 48)) (-1960 (((-592 |#2|)) 54)) (-1927 (((-592 |#2|) |#2|) 42)) (-3228 (((-592 |#2|)) 50)) (-3030 (((-592 (-632 |#1|))) 61)) (-3344 (((-592 |#2|)) 59)) (-1449 (((-1173 |#2|) (-1173 |#2|)) 84 (|has| |#1| (-286)))))
+(((-42 |#1| |#2|) (-10 -7 (-15 -4003 ((-713) |#2|)) (-15 -3768 ((-713) |#2|)) (-15 -3495 ((-713) |#2|)) (-15 -3327 ((-713) |#2|)) (-15 -3093 ((-713) |#2|)) (-15 -3228 ((-592 |#2|))) (-15 -1927 ((-592 |#2|) |#2|)) (-15 -3789 ((-592 |#2|) |#2|)) (-15 -1960 ((-592 |#2|))) (-15 -3651 ((-592 |#2|))) (-15 -2019 ((-592 |#2|))) (-15 -3860 ((-592 |#2|))) (-15 -3344 ((-592 |#2|))) (-15 -2498 ((-592 (-632 |#1|)))) (-15 -2397 ((-592 (-632 |#1|)))) (-15 -3030 ((-592 (-632 |#1|)))) (-15 -3135 ((-592 |#2|))) (IF (|has| |#1| (-286)) (-15 -1449 ((-1173 |#2|) (-1173 |#2|))) |%noBranch|)) (-517) (-395 |#1|)) (T -42))
+((-1449 (*1 *2 *2) (-12 (-5 *2 (-1173 *4)) (-4 *4 (-395 *3)) (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-42 *3 *4)))) (-3135 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3030 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2397 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2498 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3344 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3860 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-2019 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3651 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-1960 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3789 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-1927 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-3228 (*1 *2) (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-395 *3)))) (-3093 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-3495 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-3768 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))) (-4003 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3)) (-4 *3 (-395 *4)))))
+(-10 -7 (-15 -4003 ((-713) |#2|)) (-15 -3768 ((-713) |#2|)) (-15 -3495 ((-713) |#2|)) (-15 -3327 ((-713) |#2|)) (-15 -3093 ((-713) |#2|)) (-15 -3228 ((-592 |#2|))) (-15 -1927 ((-592 |#2|) |#2|)) (-15 -3789 ((-592 |#2|) |#2|)) (-15 -1960 ((-592 |#2|))) (-15 -3651 ((-592 |#2|))) (-15 -2019 ((-592 |#2|))) (-15 -3860 ((-592 |#2|))) (-15 -3344 ((-592 |#2|))) (-15 -2498 ((-592 (-632 |#1|)))) (-15 -2397 ((-592 (-632 |#1|)))) (-15 -3030 ((-592 (-632 |#1|)))) (-15 -3135 ((-592 |#2|))) (IF (|has| |#1| (-286)) (-15 -1449 ((-1173 |#2|) (-1173 |#2|))) |%noBranch|))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1790 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3019 (((-1173 (-632 |#1|)) (-1173 $)) NIL) (((-1173 (-632 |#1|))) 24)) (-2138 (((-1173 $)) 51)) (-2305 (($) NIL T CONST)) (-1316 (((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed")) NIL (|has| |#1| (-517)))) (-2144 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-2306 (((-632 |#1|) (-1173 $)) NIL) (((-632 |#1|)) NIL)) (-2892 ((|#1| $) NIL)) (-3591 (((-632 |#1|) $ (-1173 $)) NIL) (((-632 |#1|) $) NIL)) (-2962 (((-3 $ "failed") $) NIL (|has| |#1| (-517)))) (-4043 (((-1087 (-887 |#1|))) NIL (|has| |#1| (-341)))) (-3627 (($ $ (-856)) NIL)) (-3108 ((|#1| $) NIL)) (-2904 (((-1087 |#1|) $) NIL (|has| |#1| (-517)))) (-1638 ((|#1| (-1173 $)) NIL) ((|#1|) NIL)) (-4159 (((-1087 |#1|) $) NIL)) (-1740 (((-108)) 87)) (-3612 (($ (-1173 |#1|) (-1173 $)) NIL) (($ (-1173 |#1|)) NIL)) (-3762 (((-3 $ "failed") $) 14 (|has| |#1| (-517)))) (-3318 (((-856)) 52)) (-3165 (((-108)) NIL)) (-2161 (($ $ (-856)) NIL)) (-1275 (((-108)) NIL)) (-1242 (((-108)) NIL)) (-2394 (((-108)) 89)) (-4167 (((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed")) NIL (|has| |#1| (-517)))) (-3322 (((-3 $ "failed")) NIL (|has| |#1| (-517)))) (-1518 (((-632 |#1|) (-1173 $)) NIL) (((-632 |#1|)) NIL)) (-2917 ((|#1| $) NIL)) (-2561 (((-632 |#1|) $ (-1173 $)) NIL) (((-632 |#1|) $) NIL)) (-2665 (((-3 $ "failed") $) NIL (|has| |#1| (-517)))) (-3935 (((-1087 (-887 |#1|))) NIL (|has| |#1| (-341)))) (-1404 (($ $ (-856)) NIL)) (-3908 ((|#1| $) NIL)) (-4073 (((-1087 |#1|) $) NIL (|has| |#1| (-517)))) (-2021 ((|#1| (-1173 $)) NIL) ((|#1|) NIL)) (-1774 (((-1087 |#1|) $) NIL)) (-3171 (((-108)) 86)) (-3451 (((-1074) $) NIL)) (-2556 (((-108)) 93)) (-3639 (((-108)) 92)) (-4211 (((-108)) 94)) (-2012 (((-1038) $) NIL)) (-1851 (((-108)) 88)) (-3410 ((|#1| $ (-525)) 54)) (-3464 (((-1173 |#1|) $ (-1173 $)) 48) (((-632 |#1|) (-1173 $) (-1173 $)) NIL) (((-1173 |#1|) $) 28) (((-632 |#1|) (-1173 $)) NIL)) (-2749 (((-1173 |#1|) $) NIL) (($ (-1173 |#1|)) NIL)) (-4059 (((-592 (-887 |#1|)) (-1173 $)) NIL) (((-592 (-887 |#1|))) NIL)) (-2222 (($ $ $) NIL)) (-2883 (((-108)) 84)) (-1270 (((-798) $) 69) (($ (-1173 |#1|)) 22)) (-1449 (((-1173 $)) 45)) (-1500 (((-592 (-1173 |#1|))) NIL (|has| |#1| (-517)))) (-3941 (($ $ $ $) NIL)) (-1440 (((-108)) 82)) (-4169 (($ (-632 |#1|) $) 18)) (-3395 (($ $ $) NIL)) (-3665 (((-108)) 85)) (-3529 (((-108)) 83)) (-3180 (((-108)) 81)) (-3355 (($) NIL T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1058 |#2| |#1|) $) 19)))
+(((-43 |#1| |#2| |#3| |#4|) (-13 (-395 |#1|) (-594 (-1058 |#2| |#1|)) (-10 -8 (-15 -1270 ($ (-1173 |#1|))))) (-341) (-856) (-592 (-1091)) (-1173 (-632 |#1|))) (T -43))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-341)) (-14 *6 (-1173 (-632 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))))))
+(-13 (-395 |#1|) (-594 (-1058 |#2| |#1|)) (-10 -8 (-15 -1270 ($ (-1173 |#1|)))))
+((-1260 (((-108) $ $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3352 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-2029 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-2941 (($ $) NIL)) (-3476 (($) NIL) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-2782 (((-1178) $ |#1| |#1|) NIL (|has| $ (-6 -4256))) (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-3078 (($ $ (-525)) NIL (|has| $ (-6 -4256)))) (-2151 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL) (((-108) $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-2549 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4256))) (($ $) NIL (-12 (|has| $ (-6 -4256)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789))))) (-2855 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-3330 (((-108) $ (-713)) NIL)) (-1545 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (|has| $ (-6 -4256)))) (-2914 (($ $ $) 27 (|has| $ (-6 -4256)))) (-1455 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (|has| $ (-6 -4256)))) (-2207 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 29 (|has| $ (-6 -4256)))) (-1429 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-525) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (|has| $ (-6 -4256))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-1140 (-525)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (|has| $ (-6 -4256))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ "last" (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (|has| $ (-6 -4256))) (($ $ "rest" $) NIL (|has| $ (-6 -4256))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ "first" (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (|has| $ (-6 -4256))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ "value" (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) NIL (|has| $ (-6 -4256)))) (-1608 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL)) (-3826 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2016 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-2772 (((-3 |#2| "failed") |#1| $) 37)) (-2305 (($) NIL T CONST)) (-3559 (($ $) NIL (|has| $ (-6 -4256)))) (-3620 (($ $) NIL)) (-3121 (($ $ (-713)) NIL) (($ $) 24)) (-1540 (($ $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-2592 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL) (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (-1614 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-3503 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4256))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-525) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (|has| $ (-6 -4256)))) (-2570 ((|#2| $ |#1|) NIL) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-525)) NIL)) (-1406 (((-108) $) NIL)) (-1916 (((-525) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL) (((-525) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))) (((-525) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-525)) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (-3702 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 18 (|has| $ (-6 -4255))) (((-592 |#2|) $) NIL (|has| $ (-6 -4255))) (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 18 (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) NIL)) (-2553 (((-108) $ $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (-3489 (($ (-713) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-2710 ((|#1| $) NIL (|has| |#1| (-789))) (((-525) $) 32 (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-1999 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-3743 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-1749 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-592 |#2|) $) NIL (|has| $ (-6 -4255))) (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020)))) (((-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-3478 ((|#1| $) NIL (|has| |#1| (-789))) (((-525) $) 34 (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-2622 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4256))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4256))) (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL)) (-4104 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-2647 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL)) (-3365 (((-108) $) NIL)) (-3451 (((-1074) $) 42 (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-1636 (($ $ (-713)) NIL) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-4076 (((-592 |#1|) $) 20)) (-1522 (((-108) |#1| $) NIL)) (-3955 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-3985 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL) (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-2683 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-4142 (((-592 |#1|) $) NIL) (((-592 (-525)) $) NIL)) (-3845 (((-108) |#1| $) NIL) (((-108) (-525) $) NIL)) (-2012 (((-1038) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3110 ((|#2| $) NIL (|has| |#1| (-789))) (($ $ (-713)) NIL) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 23)) (-3207 (((-3 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) "failed") (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL) (((-3 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) "failed") (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL)) (-2042 (($ $ |#2|) NIL (|has| $ (-6 -4256))) (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (|has| $ (-6 -4256)))) (-1881 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-1626 (((-108) $) NIL)) (-3006 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020)))) (((-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-1777 (((-592 |#2|) $) NIL) (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 17)) (-2013 (((-108) $) 16)) (-2718 (($) 13)) (-3410 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-525) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ (-525)) NIL) (($ $ (-1140 (-525))) NIL) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ "first") NIL) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $ "value") NIL)) (-3294 (((-525) $ $) NIL)) (-3981 (($) 12) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-3793 (($ $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-3157 (($ $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-1698 (((-108) $) NIL)) (-2491 (($ $) NIL)) (-3385 (($ $) NIL (|has| $ (-6 -4256)))) (-2389 (((-713) $) NIL)) (-2249 (($ $) NIL)) (-2040 (((-713) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-713) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255))) (((-713) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-713) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-3216 (($ $ $ (-525)) NIL (|has| $ (-6 -4256)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-567 (-501))))) (-1279 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-2162 (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL) (($ $ $) NIL)) (-2014 (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL) (($ (-592 $)) NIL) (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 25) (($ $ $) NIL)) (-1270 (((-798) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-3320 (((-592 $) $) NIL)) (-2240 (((-108) $ $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (-1665 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-1646 (((-3 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) "failed") |#1| $) 44)) (-3633 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-4026 (((-108) $ $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-3994 (((-108) $ $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-4037 (((-108) $ $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-4017 (((-108) $ $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-789)))) (-3596 (((-713) $) 22 (|has| $ (-6 -4255)))))
+(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1020) (-1020)) (T -44))
NIL
(-35 |#1| |#2|)
-((-1819 (((-108) $) 12)) (-1370 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-385 (-525)) $) 25) (($ $ (-385 (-525))) NIL)))
-(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -1819 ((-108) |#1|)) (-15 -1370 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|))) (-46 |#2| |#3|) (-976) (-734)) (T -45))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -1819 ((-108) |#1|)) (-15 -1370 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3635 (($ $) 52 (|has| |#1| (-517)))) (-2950 (((-108) $) 54 (|has| |#1| (-517)))) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-1247 (($ $) 60)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-1819 (((-108) $) 62)) (-4079 (($ |#1| |#2|) 61)) (-1370 (($ (-1 |#1| |#1|) $) 63)) (-1212 (($ $) 65)) (-1224 ((|#1| $) 66)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-2338 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2513 ((|#2| $) 64)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-1657 ((|#1| $ |#2|) 59)) (-3421 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) 53 (|has| |#1| (-517)))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4082 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
-(((-46 |#1| |#2|) (-131) (-976) (-734)) (T -46))
-((-1224 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)))) (-1212 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) (-1370 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) (-5 *2 (-108)))) (-4079 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)))) (-1247 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)))) (-1657 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)))) (-4082 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)) (-4 *2 (-341)))))
-(-13 (-976) (-107 |t#1| |t#1|) (-10 -8 (-15 -1224 (|t#1| $)) (-15 -1212 ($ $)) (-15 -2513 (|t#2| $)) (-15 -1370 ($ (-1 |t#1| |t#1|) $)) (-15 -1819 ((-108) $)) (-15 -4079 ($ |t#1| |t#2|)) (-15 -1247 ($ $)) (-15 -1657 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-341)) (-15 -4082 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-6 (-160)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-517)) (-6 (-517)) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (-6 (-37 (-385 (-525)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-982 #0#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-2346 (((-592 $) (-1086 $) (-1090)) NIL) (((-592 $) (-1086 $)) NIL) (((-592 $) (-886 $)) NIL)) (-1694 (($ (-1086 $) (-1090)) NIL) (($ (-1086 $)) NIL) (($ (-886 $)) NIL)) (-1611 (((-108) $) 11)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3740 (((-592 (-565 $)) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1962 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-3969 (($ $) NIL)) (-2305 (((-108) $ $) NIL)) (-1505 (($) NIL T CONST)) (-3884 (((-592 $) (-1086 $) (-1090)) NIL) (((-592 $) (-1086 $)) NIL) (((-592 $) (-886 $)) NIL)) (-4105 (($ (-1086 $) (-1090)) NIL) (($ (-1086 $)) NIL) (($ (-886 $)) NIL)) (-1264 (((-3 (-565 $) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-2831 (((-565 $) $) NIL) (((-525) $) NIL) (((-385 (-525)) $) NIL)) (-2373 (($ $ $) NIL)) (-1860 (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3276 (-632 (-385 (-525)))) (|:| |vec| (-1172 (-385 (-525))))) (-632 $) (-1172 $)) NIL) (((-632 (-385 (-525))) (-632 $)) NIL)) (-4004 (($ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-2237 (($ $) NIL) (($ (-592 $)) NIL)) (-2323 (((-592 (-110)) $) NIL)) (-4159 (((-110) (-110)) NIL)) (-2133 (((-108) $) 14)) (-2144 (((-108) $) NIL (|has| $ (-967 (-525))))) (-1303 (((-1042 (-525) (-565 $)) $) NIL)) (-3391 (($ $ (-525)) NIL)) (-3477 (((-1086 $) (-1086 $) (-565 $)) NIL) (((-1086 $) (-1086 $) (-592 (-565 $))) NIL) (($ $ (-565 $)) NIL) (($ $ (-592 (-565 $))) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3609 (((-1086 $) (-565 $)) NIL (|has| $ (-976)))) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-1370 (($ (-1 $ $) (-565 $)) NIL)) (-2218 (((-3 (-565 $) "failed") $) NIL)) (-3216 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-3914 (((-592 (-565 $)) $) NIL)) (-1377 (($ (-110) $) NIL) (($ (-110) (-592 $)) NIL)) (-3034 (((-108) $ (-110)) NIL) (((-108) $ (-1090)) NIL)) (-4211 (($ $) NIL)) (-3598 (((-713) $) NIL)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2148 (((-108) $ $) NIL) (((-108) $ (-1090)) NIL)) (-3959 (((-396 $) $) NIL)) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2656 (((-108) $) NIL (|has| $ (-967 (-525))))) (-3092 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1090) (-1 $ (-592 $))) NIL) (($ $ (-1090) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-2183 (((-713) $) NIL)) (-3928 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-2825 (($ $) NIL) (($ $ $) NIL)) (-3013 (($ $ (-713)) NIL) (($ $) NIL)) (-1312 (((-1042 (-525) (-565 $)) $) NIL)) (-1654 (($ $) NIL (|has| $ (-976)))) (-1427 (((-357) $) NIL) (((-205) $) NIL) (((-157 (-357)) $) NIL)) (-1908 (((-797) $) NIL) (($ (-565 $)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-1042 (-525) (-565 $))) NIL)) (-2093 (((-713)) NIL)) (-1268 (($ $) NIL) (($ (-592 $)) NIL)) (-3824 (((-108) (-110)) NIL)) (-2262 (((-108) $ $) NIL)) (-3465 (($ $ (-525)) NIL) (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (-3875 (($) 7 T CONST)) (-3882 (($) 12 T CONST)) (-1424 (($ $ (-713)) NIL) (($ $) NIL)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 16)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4082 (($ $ $) NIL)) (-4070 (($ $ $) 15) (($ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-385 (-525))) NIL) (($ $ (-525)) NIL) (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-855) $) NIL)))
-(((-47) (-13 (-281) (-27) (-967 (-525)) (-967 (-385 (-525))) (-588 (-525)) (-952) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -1908 ($ (-1042 (-525) (-565 $)))) (-15 -1303 ((-1042 (-525) (-565 $)) $)) (-15 -1312 ((-1042 (-525) (-565 $)) $)) (-15 -4004 ($ $)) (-15 -3477 ((-1086 $) (-1086 $) (-565 $))) (-15 -3477 ((-1086 $) (-1086 $) (-592 (-565 $)))) (-15 -3477 ($ $ (-565 $))) (-15 -3477 ($ $ (-592 (-565 $))))))) (T -47))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1042 (-525) (-565 (-47)))) (-5 *1 (-47)))) (-1303 (*1 *2 *1) (-12 (-5 *2 (-1042 (-525) (-565 (-47)))) (-5 *1 (-47)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-1042 (-525) (-565 (-47)))) (-5 *1 (-47)))) (-4004 (*1 *1 *1) (-5 *1 (-47))) (-3477 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-47))) (-5 *3 (-565 (-47))) (-5 *1 (-47)))) (-3477 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-47))) (-5 *3 (-592 (-565 (-47)))) (-5 *1 (-47)))) (-3477 (*1 *1 *1 *2) (-12 (-5 *2 (-565 (-47))) (-5 *1 (-47)))) (-3477 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-47)))) (-5 *1 (-47)))))
-(-13 (-281) (-27) (-967 (-525)) (-967 (-385 (-525))) (-588 (-525)) (-952) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -1908 ($ (-1042 (-525) (-565 $)))) (-15 -1303 ((-1042 (-525) (-565 $)) $)) (-15 -1312 ((-1042 (-525) (-565 $)) $)) (-15 -4004 ($ $)) (-15 -3477 ((-1086 $) (-1086 $) (-565 $))) (-15 -3477 ((-1086 $) (-1086 $) (-592 (-565 $)))) (-15 -3477 ($ $ (-565 $))) (-15 -3477 ($ $ (-592 (-565 $))))))
-((-1893 (((-108) $ $) NIL)) (-1387 (((-592 (-1090)) $) 17)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 7)) (-1938 (((-1095) $) 18)) (-3961 (((-108) $ $) NIL)))
-(((-48) (-13 (-1019) (-10 -8 (-15 -1387 ((-592 (-1090)) $)) (-15 -1938 ((-1095) $))))) (T -48))
-((-1387 (*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-48)))) (-1938 (*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-48)))))
-(-13 (-1019) (-10 -8 (-15 -1387 ((-592 (-1090)) $)) (-15 -1938 ((-1095) $))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 61)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-3825 (((-108) $) 20)) (-1264 (((-3 |#1| "failed") $) 23)) (-2831 ((|#1| $) 24)) (-1247 (($ $) 28)) (-2866 (((-3 $ "failed") $) NIL)) (-2133 (((-108) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-1224 ((|#1| $) 21)) (-3419 (($ $) 50)) (-2337 (((-1073) $) NIL)) (-1242 (((-108) $) 30)) (-2663 (((-1037) $) NIL)) (-1669 (($ (-713)) 48)) (-1982 (($ (-592 (-525))) 49)) (-2513 (((-713) $) 31)) (-1908 (((-797) $) 64) (($ (-525)) 45) (($ |#1|) 43)) (-1657 ((|#1| $ $) 19)) (-2093 (((-713)) 47)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 32 T CONST)) (-3882 (($) 14 T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) 40)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-49 |#1| |#2|) (-13 (-570 |#1|) (-967 |#1|) (-10 -8 (-15 -1224 (|#1| $)) (-15 -3419 ($ $)) (-15 -1247 ($ $)) (-15 -1657 (|#1| $ $)) (-15 -1669 ($ (-713))) (-15 -1982 ($ (-592 (-525)))) (-15 -1242 ((-108) $)) (-15 -3825 ((-108) $)) (-15 -2513 ((-713) $)) (-15 -1370 ($ (-1 |#1| |#1|) $)))) (-976) (-592 (-1090))) (T -49))
-((-1224 (*1 *2 *1) (-12 (-4 *2 (-976)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1090))))) (-3419 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-976)) (-14 *3 (-592 (-1090))))) (-1247 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-976)) (-14 *3 (-592 (-1090))))) (-1657 (*1 *2 *1 *1) (-12 (-4 *2 (-976)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1090))))) (-1669 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-976)) (-14 *4 (-592 (-1090))))) (-1982 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-49 *3 *4)) (-4 *3 (-976)) (-14 *4 (-592 (-1090))))) (-1242 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-976)) (-14 *4 (-592 (-1090))))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-976)) (-14 *4 (-592 (-1090))))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-976)) (-14 *4 (-592 (-1090))))) (-1370 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-49 *3 *4)) (-14 *4 (-592 (-1090))))))
-(-13 (-570 |#1|) (-967 |#1|) (-10 -8 (-15 -1224 (|#1| $)) (-15 -3419 ($ $)) (-15 -1247 ($ $)) (-15 -1657 (|#1| $ $)) (-15 -1669 ($ (-713))) (-15 -1982 ($ (-592 (-525)))) (-15 -1242 ((-108) $)) (-15 -3825 ((-108) $)) (-15 -2513 ((-713) $)) (-15 -1370 ($ (-1 |#1| |#1|) $))))
-((-3825 (((-108) (-51)) 13)) (-1264 (((-3 |#1| "failed") (-51)) 21)) (-2831 ((|#1| (-51)) 22)) (-1908 (((-51) |#1|) 18)))
-(((-50 |#1|) (-10 -7 (-15 -1908 ((-51) |#1|)) (-15 -1264 ((-3 |#1| "failed") (-51))) (-15 -3825 ((-108) (-51))) (-15 -2831 (|#1| (-51)))) (-1126)) (T -50))
-((-2831 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1126)))) (-3825 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1126)))) (-1264 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1126)))) (-1908 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1126)))))
-(-10 -7 (-15 -1908 ((-51) |#1|)) (-15 -1264 ((-3 |#1| "failed") (-51))) (-15 -3825 ((-108) (-51))) (-15 -2831 (|#1| (-51))))
-((-1893 (((-108) $ $) NIL)) (-3652 (((-1073) (-108)) 25)) (-3161 (((-797) $) 24)) (-2059 (((-716) $) 12)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1796 (((-797) $) 16)) (-3239 (((-1023) $) 14)) (-1908 (((-797) $) 32)) (-1498 (($ (-1023) (-716)) 33)) (-3961 (((-108) $ $) 18)))
-(((-51) (-13 (-1019) (-10 -8 (-15 -1498 ($ (-1023) (-716))) (-15 -1796 ((-797) $)) (-15 -3161 ((-797) $)) (-15 -3239 ((-1023) $)) (-15 -2059 ((-716) $)) (-15 -3652 ((-1073) (-108)))))) (T -51))
-((-1498 (*1 *1 *2 *3) (-12 (-5 *2 (-1023)) (-5 *3 (-716)) (-5 *1 (-51)))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-51)))) (-3161 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-51)))) (-3239 (*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-51)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-716)) (-5 *1 (-51)))) (-3652 (*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1073)) (-5 *1 (-51)))))
-(-13 (-1019) (-10 -8 (-15 -1498 ($ (-1023) (-716))) (-15 -1796 ((-797) $)) (-15 -3161 ((-797) $)) (-15 -3239 ((-1023) $)) (-15 -2059 ((-716) $)) (-15 -3652 ((-1073) (-108)))))
-((-3088 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -3088 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-976) (-594 |#1|) (-791 |#1|)) (T -52))
-((-3088 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-594 *5)) (-4 *5 (-976)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-791 *5)))))
-(-10 -7 (-15 -3088 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-2588 ((|#3| |#3| (-592 (-1090))) 35)) (-1241 ((|#3| (-592 (-998 |#1| |#2| |#3|)) |#3| (-855)) 22) ((|#3| (-592 (-998 |#1| |#2| |#3|)) |#3|) 20)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1241 (|#3| (-592 (-998 |#1| |#2| |#3|)) |#3|)) (-15 -1241 (|#3| (-592 (-998 |#1| |#2| |#3|)) |#3| (-855))) (-15 -2588 (|#3| |#3| (-592 (-1090))))) (-1019) (-13 (-976) (-820 |#1|) (-789) (-567 (-826 |#1|))) (-13 (-408 |#2|) (-820 |#1|) (-567 (-826 |#1|)))) (T -53))
-((-2588 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-1090))) (-4 *4 (-1019)) (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))))) (-1241 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-592 (-998 *5 *6 *2))) (-5 *4 (-855)) (-4 *5 (-1019)) (-4 *6 (-13 (-976) (-820 *5) (-789) (-567 (-826 *5)))) (-4 *2 (-13 (-408 *6) (-820 *5) (-567 (-826 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-1241 (*1 *2 *3 *2) (-12 (-5 *3 (-592 (-998 *4 *5 *2))) (-4 *4 (-1019)) (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))) (-5 *1 (-53 *4 *5 *2)))))
-(-10 -7 (-15 -1241 (|#3| (-592 (-998 |#1| |#2| |#3|)) |#3|)) (-15 -1241 (|#3| (-592 (-998 |#1| |#2| |#3|)) |#3| (-855))) (-15 -2588 (|#3| |#3| (-592 (-1090)))))
-((-3410 (((-108) $ (-713)) 23)) (-2244 (($ $ (-525) |#3|) 46)) (-2040 (($ $ (-525) |#4|) 50)) (-3606 ((|#3| $ (-525)) 59)) (-2026 (((-592 |#2|) $) 30)) (-3100 (((-108) $ (-713)) 25)) (-4132 (((-108) |#2| $) 54)) (-2857 (($ (-1 |#2| |#2|) $) 37)) (-1370 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-3017 (((-108) $ (-713)) 24)) (-1911 (($ $ |#2|) 34)) (-3494 (((-108) (-1 (-108) |#2|) $) 19)) (-3928 ((|#2| $ (-525) (-525)) NIL) ((|#2| $ (-525) (-525) |#2|) 27)) (-2686 (((-713) (-1 (-108) |#2|) $) 28) (((-713) |#2| $) 56)) (-2135 (($ $) 33)) (-2543 ((|#4| $ (-525)) 62)) (-1908 (((-797) $) 68)) (-2667 (((-108) (-1 (-108) |#2|) $) 18)) (-3961 (((-108) $ $) 53)) (-4140 (((-713) $) 26)))
-(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1908 ((-797) |#1|)) (-15 -1370 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1370 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2040 (|#1| |#1| (-525) |#4|)) (-15 -2244 (|#1| |#1| (-525) |#3|)) (-15 -2026 ((-592 |#2|) |#1|)) (-15 -2543 (|#4| |#1| (-525))) (-15 -3606 (|#3| |#1| (-525))) (-15 -3928 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3928 (|#2| |#1| (-525) (-525))) (-15 -1911 (|#1| |#1| |#2|)) (-15 -3961 ((-108) |#1| |#1|)) (-15 -4132 ((-108) |#2| |#1|)) (-15 -2686 ((-713) |#2| |#1|)) (-15 -2686 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3494 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2667 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1370 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4140 ((-713) |#1|)) (-15 -3410 ((-108) |#1| (-713))) (-15 -3100 ((-108) |#1| (-713))) (-15 -3017 ((-108) |#1| (-713))) (-15 -2135 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1126) (-351 |#2|) (-351 |#2|)) (T -54))
-NIL
-(-10 -8 (-15 -1908 ((-797) |#1|)) (-15 -1370 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -1370 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2040 (|#1| |#1| (-525) |#4|)) (-15 -2244 (|#1| |#1| (-525) |#3|)) (-15 -2026 ((-592 |#2|) |#1|)) (-15 -2543 (|#4| |#1| (-525))) (-15 -3606 (|#3| |#1| (-525))) (-15 -3928 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3928 (|#2| |#1| (-525) (-525))) (-15 -1911 (|#1| |#1| |#2|)) (-15 -3961 ((-108) |#1| |#1|)) (-15 -4132 ((-108) |#2| |#1|)) (-15 -2686 ((-713) |#2| |#1|)) (-15 -2686 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3494 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2667 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -1370 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4140 ((-713) |#1|)) (-15 -3410 ((-108) |#1| (-713))) (-15 -3100 ((-108) |#1| (-713))) (-15 -3017 ((-108) |#1| (-713))) (-15 -2135 (|#1| |#1|)))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3410 (((-108) $ (-713)) 8)) (-2109 ((|#1| $ (-525) (-525) |#1|) 44)) (-2244 (($ $ (-525) |#2|) 42)) (-2040 (($ $ (-525) |#3|) 41)) (-1505 (($) 7 T CONST)) (-3606 ((|#2| $ (-525)) 46)) (-2870 ((|#1| $ (-525) (-525) |#1|) 43)) (-2796 ((|#1| $ (-525) (-525)) 48)) (-2026 (((-592 |#1|) $) 30)) (-2606 (((-713) $) 51)) (-4018 (($ (-713) (-713) |#1|) 57)) (-2618 (((-713) $) 50)) (-3100 (((-108) $ (-713)) 9)) (-2746 (((-525) $) 55)) (-2551 (((-525) $) 53)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1906 (((-525) $) 54)) (-1950 (((-525) $) 52)) (-2857 (($ (-1 |#1| |#1|) $) 34)) (-1370 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-1911 (($ $ |#1|) 56)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#1| $ (-525) (-525)) 49) ((|#1| $ (-525) (-525) |#1|) 47)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-2543 ((|#3| $ (-525)) 45)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-55 |#1| |#2| |#3|) (-131) (-1126) (-351 |t#1|) (-351 |t#1|)) (T -55))
-((-1370 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-4018 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-713)) (-4 *3 (-1126)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1911 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1126)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-1906 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-713)))) (-2618 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-713)))) (-3928 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-1126)))) (-2796 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-1126)))) (-3928 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1126)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-3606 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1126)) (-4 *5 (-351 *4)) (-4 *2 (-351 *4)))) (-2543 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1126)) (-4 *5 (-351 *4)) (-4 *2 (-351 *4)))) (-2026 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-592 *3)))) (-2109 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1126)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-2870 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1126)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-2244 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1126)) (-4 *3 (-351 *4)) (-4 *5 (-351 *4)))) (-2040 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1126)) (-4 *5 (-351 *4)) (-4 *3 (-351 *4)))) (-2857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1370 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1370 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
-(-13 (-464 |t#1|) (-10 -8 (-6 -4255) (-6 -4254) (-15 -4018 ($ (-713) (-713) |t#1|)) (-15 -1911 ($ $ |t#1|)) (-15 -2746 ((-525) $)) (-15 -1906 ((-525) $)) (-15 -2551 ((-525) $)) (-15 -1950 ((-525) $)) (-15 -2606 ((-713) $)) (-15 -2618 ((-713) $)) (-15 -3928 (|t#1| $ (-525) (-525))) (-15 -2796 (|t#1| $ (-525) (-525))) (-15 -3928 (|t#1| $ (-525) (-525) |t#1|)) (-15 -3606 (|t#2| $ (-525))) (-15 -2543 (|t#3| $ (-525))) (-15 -2026 ((-592 |t#1|) $)) (-15 -2109 (|t#1| $ (-525) (-525) |t#1|)) (-15 -2870 (|t#1| $ (-525) (-525) |t#1|)) (-15 -2244 ($ $ (-525) |t#2|)) (-15 -2040 ($ $ (-525) |t#3|)) (-15 -1370 ($ (-1 |t#1| |t#1|) $)) (-15 -2857 ($ (-1 |t#1| |t#1|) $)) (-15 -1370 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1370 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T))
-((-4186 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-4004 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-1370 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
-(((-56 |#1| |#2|) (-10 -7 (-15 -4186 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4004 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1370 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1126) (-1126)) (T -56))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-4004 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1126)) (-4 *2 (-1126)) (-5 *1 (-56 *5 *2)))) (-4186 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1126)) (-4 *5 (-1126)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
-(-10 -7 (-15 -4186 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -4004 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1370 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3072 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-1356 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789))))) (-3327 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 ((|#1| $ (-525) |#1|) 11 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| $ (-6 -4255)))) (-1693 (($ $) NIL)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2273 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2870 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) NIL)) (-3763 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019)))) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-2214 (($ (-592 |#1|)) 13) (($ (-713) |#1|) 14)) (-4018 (($ (-713) |#1|) 9)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) NIL (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-1932 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3167 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3135 ((|#1| $) NIL (|has| (-525) (-789)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1911 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) 7)) (-3928 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-3653 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3703 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) NIL)) (-2664 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2214 ($ (-592 |#1|))) (-15 -2214 ($ (-713) |#1|)))) (-1126)) (T -57))
-((-2214 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-57 *3)))) (-2214 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-57 *3)) (-4 *3 (-1126)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -2214 ($ (-592 |#1|))) (-15 -2214 ($ (-713) |#1|))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2244 (($ $ (-525) (-57 |#1|)) NIL)) (-2040 (($ $ (-525) (-57 |#1|)) NIL)) (-1505 (($) NIL T CONST)) (-3606 (((-57 |#1|) $ (-525)) NIL)) (-2870 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2796 ((|#1| $ (-525) (-525)) NIL)) (-2026 (((-592 |#1|) $) NIL)) (-2606 (((-713) $) NIL)) (-4018 (($ (-713) (-713) |#1|) NIL)) (-2618 (((-713) $) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2746 (((-525) $) NIL)) (-2551 (((-525) $) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1906 (((-525) $) NIL)) (-1950 (((-525) $) NIL)) (-2857 (($ (-1 |#1| |#1|) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1911 (($ $ |#1|) NIL)) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) NIL)) (-2543 (((-57 |#1|) $ (-525)) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4255))) (-1126)) (T -58))
-NIL
-(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4255)))
-((-1264 (((-3 $ "failed") (-1172 (-294 (-357)))) 74) (((-3 $ "failed") (-1172 (-294 (-525)))) 63) (((-3 $ "failed") (-1172 (-886 (-357)))) 94) (((-3 $ "failed") (-1172 (-886 (-525)))) 84) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 52) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 39)) (-2831 (($ (-1172 (-294 (-357)))) 70) (($ (-1172 (-294 (-525)))) 59) (($ (-1172 (-886 (-357)))) 90) (($ (-1172 (-886 (-525)))) 80) (($ (-1172 (-385 (-886 (-357))))) 48) (($ (-1172 (-385 (-886 (-525))))) 32)) (-2891 (((-1177) $) 120)) (-1908 (((-797) $) 113) (($ (-592 (-308))) 103) (($ (-308)) 97) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 101) (($ (-1172 (-317 (-1922 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1922) (-641)))) 31)))
-(((-59 |#1|) (-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1922) (-641))))))) (-1090)) (T -59))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-1922 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1922) (-641)))) (-5 *1 (-59 *3)) (-14 *3 (-1090)))))
-(-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1922) (-641)))))))
-((-2891 (((-1177) $) 53) (((-1177)) 54)) (-1908 (((-797) $) 50)))
-(((-60 |#1|) (-13 (-373) (-10 -7 (-15 -2891 ((-1177))))) (-1090)) (T -60))
-((-2891 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-60 *3)) (-14 *3 (-1090)))))
-(-13 (-373) (-10 -7 (-15 -2891 ((-1177)))))
-((-1264 (((-3 $ "failed") (-1172 (-294 (-357)))) 144) (((-3 $ "failed") (-1172 (-294 (-525)))) 134) (((-3 $ "failed") (-1172 (-886 (-357)))) 164) (((-3 $ "failed") (-1172 (-886 (-525)))) 154) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 123) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 111)) (-2831 (($ (-1172 (-294 (-357)))) 140) (($ (-1172 (-294 (-525)))) 130) (($ (-1172 (-886 (-357)))) 160) (($ (-1172 (-886 (-525)))) 150) (($ (-1172 (-385 (-886 (-357))))) 119) (($ (-1172 (-385 (-886 (-525))))) 104)) (-2891 (((-1177) $) 97)) (-1908 (((-797) $) 91) (($ (-592 (-308))) 29) (($ (-308)) 34) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 32) (($ (-1172 (-317 (-1922) (-1922 (QUOTE XC)) (-641)))) 89)))
-(((-61 |#1|) (-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922) (-1922 (QUOTE XC)) (-641))))))) (-1090)) (T -61))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-1922) (-1922 (QUOTE XC)) (-641)))) (-5 *1 (-61 *3)) (-14 *3 (-1090)))))
-(-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922) (-1922 (QUOTE XC)) (-641)))))))
-((-1264 (((-3 $ "failed") (-294 (-357))) 41) (((-3 $ "failed") (-294 (-525))) 46) (((-3 $ "failed") (-886 (-357))) 50) (((-3 $ "failed") (-886 (-525))) 54) (((-3 $ "failed") (-385 (-886 (-357)))) 36) (((-3 $ "failed") (-385 (-886 (-525)))) 29)) (-2831 (($ (-294 (-357))) 39) (($ (-294 (-525))) 44) (($ (-886 (-357))) 48) (($ (-886 (-525))) 52) (($ (-385 (-886 (-357)))) 34) (($ (-385 (-886 (-525)))) 26)) (-2891 (((-1177) $) 76)) (-1908 (((-797) $) 69) (($ (-592 (-308))) 61) (($ (-308)) 66) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 64) (($ (-317 (-1922 (QUOTE X)) (-1922) (-641))) 25)))
-(((-62 |#1|) (-13 (-374) (-10 -8 (-15 -1908 ($ (-317 (-1922 (QUOTE X)) (-1922) (-641)))))) (-1090)) (T -62))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-317 (-1922 (QUOTE X)) (-1922) (-641))) (-5 *1 (-62 *3)) (-14 *3 (-1090)))))
-(-13 (-374) (-10 -8 (-15 -1908 ($ (-317 (-1922 (QUOTE X)) (-1922) (-641))))))
-((-1264 (((-3 $ "failed") (-632 (-294 (-357)))) 109) (((-3 $ "failed") (-632 (-294 (-525)))) 97) (((-3 $ "failed") (-632 (-886 (-357)))) 131) (((-3 $ "failed") (-632 (-886 (-525)))) 120) (((-3 $ "failed") (-632 (-385 (-886 (-357))))) 85) (((-3 $ "failed") (-632 (-385 (-886 (-525))))) 71)) (-2831 (($ (-632 (-294 (-357)))) 105) (($ (-632 (-294 (-525)))) 93) (($ (-632 (-886 (-357)))) 127) (($ (-632 (-886 (-525)))) 116) (($ (-632 (-385 (-886 (-357))))) 81) (($ (-632 (-385 (-886 (-525))))) 64)) (-2891 (((-1177) $) 139)) (-1908 (((-797) $) 133) (($ (-592 (-308))) 28) (($ (-308)) 33) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 31) (($ (-632 (-317 (-1922) (-1922 (QUOTE X) (QUOTE HESS)) (-641)))) 54)))
-(((-63 |#1|) (-13 (-362) (-10 -8 (-15 -1908 ($ (-632 (-317 (-1922) (-1922 (QUOTE X) (QUOTE HESS)) (-641))))))) (-1090)) (T -63))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-1922) (-1922 (QUOTE X) (QUOTE HESS)) (-641)))) (-5 *1 (-63 *3)) (-14 *3 (-1090)))))
-(-13 (-362) (-10 -8 (-15 -1908 ($ (-632 (-317 (-1922) (-1922 (QUOTE X) (QUOTE HESS)) (-641)))))))
-((-1264 (((-3 $ "failed") (-294 (-357))) 59) (((-3 $ "failed") (-294 (-525))) 64) (((-3 $ "failed") (-886 (-357))) 68) (((-3 $ "failed") (-886 (-525))) 72) (((-3 $ "failed") (-385 (-886 (-357)))) 54) (((-3 $ "failed") (-385 (-886 (-525)))) 47)) (-2831 (($ (-294 (-357))) 57) (($ (-294 (-525))) 62) (($ (-886 (-357))) 66) (($ (-886 (-525))) 70) (($ (-385 (-886 (-357)))) 52) (($ (-385 (-886 (-525)))) 44)) (-2891 (((-1177) $) 81)) (-1908 (((-797) $) 75) (($ (-592 (-308))) 28) (($ (-308)) 33) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 31) (($ (-317 (-1922) (-1922 (QUOTE XC)) (-641))) 39)))
-(((-64 |#1|) (-13 (-374) (-10 -8 (-15 -1908 ($ (-317 (-1922) (-1922 (QUOTE XC)) (-641)))))) (-1090)) (T -64))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-317 (-1922) (-1922 (QUOTE XC)) (-641))) (-5 *1 (-64 *3)) (-14 *3 (-1090)))))
-(-13 (-374) (-10 -8 (-15 -1908 ($ (-317 (-1922) (-1922 (QUOTE XC)) (-641))))))
-((-2891 (((-1177) $) 63)) (-1908 (((-797) $) 57) (($ (-632 (-641))) 49) (($ (-592 (-308))) 48) (($ (-308)) 55) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 53)))
-(((-65 |#1|) (-361) (-1090)) (T -65))
+((-1788 (((-108) $) 12)) (-2694 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-385 (-525)) $) 25) (($ $ (-385 (-525))) NIL)))
+(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -1788 ((-108) |#1|)) (-15 -2694 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|))) (-46 |#2| |#3|) (-977) (-734)) (T -45))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -1788 ((-108) |#1|)) (-15 -2694 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3711 (($ $) 52 (|has| |#1| (-517)))) (-3380 (((-108) $) 54 (|has| |#1| (-517)))) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-2571 (($ $) 60)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-1788 (((-108) $) 62)) (-2352 (($ |#1| |#2|) 61)) (-2694 (($ (-1 |#1| |#1|) $) 63)) (-2538 (($ $) 65)) (-2548 ((|#1| $) 66)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1680 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-1587 ((|#2| $) 64)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-3468 ((|#1| $ |#2|) 59)) (-3425 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4100 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+(((-46 |#1| |#2|) (-131) (-977) (-734)) (T -46))
+((-2548 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))) (-2538 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-2694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)))) (-1788 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-108)))) (-2352 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)))) (-2571 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)))) (-3468 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))) (-4100 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)) (-4 *2 (-341)))))
+(-13 (-977) (-107 |t#1| |t#1|) (-10 -8 (-15 -2548 (|t#1| $)) (-15 -2538 ($ $)) (-15 -1587 (|t#2| $)) (-15 -2694 ($ (-1 |t#1| |t#1|) $)) (-15 -1788 ((-108) $)) (-15 -2352 ($ |t#1| |t#2|)) (-15 -2571 ($ $)) (-15 -3468 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-341)) (-15 -4100 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-6 (-160)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-517)) (-6 (-517)) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (-6 (-37 (-385 (-525)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-3540 (((-592 $) (-1087 $) (-1091)) NIL) (((-592 $) (-1087 $)) NIL) (((-592 $) (-887 $)) NIL)) (-1466 (($ (-1087 $) (-1091)) NIL) (($ (-1087 $)) NIL) (($ (-887 $)) NIL)) (-1989 (((-108) $) 11)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1895 (((-592 (-565 $)) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-2211 (($ $) NIL)) (-3197 (((-108) $ $) NIL)) (-2305 (($) NIL T CONST)) (-2533 (((-592 $) (-1087 $) (-1091)) NIL) (((-592 $) (-1087 $)) NIL) (((-592 $) (-887 $)) NIL)) (-3572 (($ (-1087 $) (-1091)) NIL) (($ (-1087 $)) NIL) (($ (-887 $)) NIL)) (-2591 (((-3 (-565 $) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-3898 (((-565 $) $) NIL) (((-525) $) NIL) (((-385 (-525)) $) NIL)) (-1726 (($ $ $) NIL)) (-3416 (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL) (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -1484 (-632 (-385 (-525)))) (|:| |vec| (-1173 (-385 (-525))))) (-632 $) (-1173 $)) NIL) (((-632 (-385 (-525))) (-632 $)) NIL)) (-3503 (($ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-3694 (($ $) NIL) (($ (-592 $)) NIL)) (-3321 (((-592 (-110)) $) NIL)) (-2972 (((-110) (-110)) NIL)) (-1985 (((-108) $) 14)) (-2126 (((-108) $) NIL (|has| $ (-968 (-525))))) (-1498 (((-1043 (-525) (-565 $)) $) NIL)) (-3220 (($ $ (-525)) NIL)) (-2900 (((-1087 $) (-1087 $) (-565 $)) NIL) (((-1087 $) (-1087 $) (-592 (-565 $))) NIL) (($ $ (-565 $)) NIL) (($ $ (-592 (-565 $))) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1637 (((-1087 $) (-565 $)) NIL (|has| $ (-977)))) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-2694 (($ (-1 $ $) (-565 $)) NIL)) (-1661 (((-3 (-565 $) "failed") $) NIL)) (-2756 (($ (-592 $)) NIL) (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2129 (((-592 (-565 $)) $) NIL)) (-1581 (($ (-110) $) NIL) (($ (-110) (-592 $)) NIL)) (-3069 (((-108) $ (-110)) NIL) (((-108) $ (-1091)) NIL)) (-2502 (($ $) NIL)) (-1751 (((-713) $) NIL)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2186 (((-108) $ $) NIL) (((-108) $ (-1091)) NIL)) (-2195 (((-396 $) $) NIL)) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3545 (((-108) $) NIL (|has| $ (-968 (-525))))) (-2602 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1091)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1091)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1091) (-1 $ (-592 $))) NIL) (($ $ (-1091) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-1290 (((-713) $) NIL)) (-3410 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-1567 (($ $) NIL) (($ $ $) NIL)) (-2523 (($ $ (-713)) NIL) (($ $) NIL)) (-1512 (((-1043 (-525) (-565 $)) $) NIL)) (-1571 (($ $) NIL (|has| $ (-977)))) (-2749 (((-357) $) NIL) (((-205) $) NIL) (((-157 (-357)) $) NIL)) (-1270 (((-798) $) NIL) (($ (-565 $)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-1043 (-525) (-565 $))) NIL)) (-2104 (((-713)) NIL)) (-1604 (($ $) NIL) (($ (-592 $)) NIL)) (-1863 (((-108) (-110)) NIL)) (-3959 (((-108) $ $) NIL)) (-1576 (($ $ (-525)) NIL) (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3355 (($) 7 T CONST)) (-3363 (($) 12 T CONST)) (-2093 (($ $ (-713)) NIL) (($ $) NIL)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 16)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) NIL)) (-4100 (($ $ $) NIL)) (-4090 (($ $ $) 15) (($ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-385 (-525))) NIL) (($ $ (-525)) NIL) (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL)))
+(((-47) (-13 (-281) (-27) (-968 (-525)) (-968 (-385 (-525))) (-588 (-525)) (-953) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -1270 ($ (-1043 (-525) (-565 $)))) (-15 -1498 ((-1043 (-525) (-565 $)) $)) (-15 -1512 ((-1043 (-525) (-565 $)) $)) (-15 -3503 ($ $)) (-15 -2900 ((-1087 $) (-1087 $) (-565 $))) (-15 -2900 ((-1087 $) (-1087 $) (-592 (-565 $)))) (-15 -2900 ($ $ (-565 $))) (-15 -2900 ($ $ (-592 (-565 $))))))) (T -47))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1043 (-525) (-565 (-47)))) (-5 *1 (-47)))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-1043 (-525) (-565 (-47)))) (-5 *1 (-47)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-1043 (-525) (-565 (-47)))) (-5 *1 (-47)))) (-3503 (*1 *1 *1) (-5 *1 (-47))) (-2900 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 (-47))) (-5 *3 (-565 (-47))) (-5 *1 (-47)))) (-2900 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 (-47))) (-5 *3 (-592 (-565 (-47)))) (-5 *1 (-47)))) (-2900 (*1 *1 *1 *2) (-12 (-5 *2 (-565 (-47))) (-5 *1 (-47)))) (-2900 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-47)))) (-5 *1 (-47)))))
+(-13 (-281) (-27) (-968 (-525)) (-968 (-385 (-525))) (-588 (-525)) (-953) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -1270 ($ (-1043 (-525) (-565 $)))) (-15 -1498 ((-1043 (-525) (-565 $)) $)) (-15 -1512 ((-1043 (-525) (-565 $)) $)) (-15 -3503 ($ $)) (-15 -2900 ((-1087 $) (-1087 $) (-565 $))) (-15 -2900 ((-1087 $) (-1087 $) (-592 (-565 $)))) (-15 -2900 ($ $ (-565 $))) (-15 -2900 ($ $ (-592 (-565 $))))))
+((-1260 (((-108) $ $) NIL)) (-3287 (((-592 (-1091)) $) 17)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 7)) (-3102 (((-1096) $) 18)) (-3994 (((-108) $ $) NIL)))
+(((-48) (-13 (-1020) (-10 -8 (-15 -3287 ((-592 (-1091)) $)) (-15 -3102 ((-1096) $))))) (T -48))
+((-3287 (*1 *2 *1) (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-48)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-48)))))
+(-13 (-1020) (-10 -8 (-15 -3287 ((-592 (-1091)) $)) (-15 -3102 ((-1096) $))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 61)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-1875 (((-108) $) 20)) (-2591 (((-3 |#1| "failed") $) 23)) (-3898 ((|#1| $) 24)) (-2571 (($ $) 28)) (-3762 (((-3 $ "failed") $) NIL)) (-1985 (((-108) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2548 ((|#1| $) 21)) (-3401 (($ $) 50)) (-3451 (((-1074) $) NIL)) (-2930 (((-108) $) 30)) (-2012 (((-1038) $) NIL)) (-3523 (($ (-713)) 48)) (-1250 (($ (-592 (-525))) 49)) (-1587 (((-713) $) 31)) (-1270 (((-798) $) 64) (($ (-525)) 45) (($ |#1|) 43)) (-3468 ((|#1| $ $) 19)) (-2104 (((-713)) 47)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 32 T CONST)) (-3363 (($) 14 T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) 40)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-49 |#1| |#2|) (-13 (-570 |#1|) (-968 |#1|) (-10 -8 (-15 -2548 (|#1| $)) (-15 -3401 ($ $)) (-15 -2571 ($ $)) (-15 -3468 (|#1| $ $)) (-15 -3523 ($ (-713))) (-15 -1250 ($ (-592 (-525)))) (-15 -2930 ((-108) $)) (-15 -1875 ((-108) $)) (-15 -1587 ((-713) $)) (-15 -2694 ($ (-1 |#1| |#1|) $)))) (-977) (-592 (-1091))) (T -49))
+((-2548 (*1 *2 *1) (-12 (-4 *2 (-977)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1091))))) (-3401 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-977)) (-14 *3 (-592 (-1091))))) (-2571 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-977)) (-14 *3 (-592 (-1091))))) (-3468 (*1 *2 *1 *1) (-12 (-4 *2 (-977)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1091))))) (-3523 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977)) (-14 *4 (-592 (-1091))))) (-1250 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-49 *3 *4)) (-4 *3 (-977)) (-14 *4 (-592 (-1091))))) (-2930 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977)) (-14 *4 (-592 (-1091))))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977)) (-14 *4 (-592 (-1091))))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977)) (-14 *4 (-592 (-1091))))) (-2694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-49 *3 *4)) (-14 *4 (-592 (-1091))))))
+(-13 (-570 |#1|) (-968 |#1|) (-10 -8 (-15 -2548 (|#1| $)) (-15 -3401 ($ $)) (-15 -2571 ($ $)) (-15 -3468 (|#1| $ $)) (-15 -3523 ($ (-713))) (-15 -1250 ($ (-592 (-525)))) (-15 -2930 ((-108) $)) (-15 -1875 ((-108) $)) (-15 -1587 ((-713) $)) (-15 -2694 ($ (-1 |#1| |#1|) $))))
+((-1875 (((-108) (-51)) 13)) (-2591 (((-3 |#1| "failed") (-51)) 21)) (-3898 ((|#1| (-51)) 22)) (-1270 (((-51) |#1|) 18)))
+(((-50 |#1|) (-10 -7 (-15 -1270 ((-51) |#1|)) (-15 -2591 ((-3 |#1| "failed") (-51))) (-15 -1875 ((-108) (-51))) (-15 -3898 (|#1| (-51)))) (-1127)) (T -50))
+((-3898 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1127)))) (-1875 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1127)))) (-2591 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1127)))) (-1270 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1127)))))
+(-10 -7 (-15 -1270 ((-51) |#1|)) (-15 -2591 ((-3 |#1| "failed") (-51))) (-15 -1875 ((-108) (-51))) (-15 -3898 (|#1| (-51))))
+((-1260 (((-108) $ $) NIL)) (-3895 (((-1074) (-108)) 25)) (-1697 (((-798) $) 24)) (-3177 (((-716) $) 12)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3527 (((-798) $) 16)) (-2788 (((-1024) $) 14)) (-1270 (((-798) $) 32)) (-1816 (($ (-1024) (-716)) 33)) (-3994 (((-108) $ $) 18)))
+(((-51) (-13 (-1020) (-10 -8 (-15 -1816 ($ (-1024) (-716))) (-15 -3527 ((-798) $)) (-15 -1697 ((-798) $)) (-15 -2788 ((-1024) $)) (-15 -3177 ((-716) $)) (-15 -3895 ((-1074) (-108)))))) (T -51))
+((-1816 (*1 *1 *2 *3) (-12 (-5 *2 (-1024)) (-5 *3 (-716)) (-5 *1 (-51)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-51)))) (-1697 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-51)))) (-2788 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-51)))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-716)) (-5 *1 (-51)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1074)) (-5 *1 (-51)))))
+(-13 (-1020) (-10 -8 (-15 -1816 ($ (-1024) (-716))) (-15 -3527 ((-798) $)) (-15 -1697 ((-798) $)) (-15 -2788 ((-1024) $)) (-15 -3177 ((-716) $)) (-15 -3895 ((-1074) (-108)))))
+((-4169 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -4169 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-977) (-594 |#1|) (-791 |#1|)) (T -52))
+((-4169 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-594 *5)) (-4 *5 (-977)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-791 *5)))))
+(-10 -7 (-15 -4169 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-4117 ((|#3| |#3| (-592 (-1091))) 35)) (-2922 ((|#3| (-592 (-999 |#1| |#2| |#3|)) |#3| (-856)) 22) ((|#3| (-592 (-999 |#1| |#2| |#3|)) |#3|) 20)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2922 (|#3| (-592 (-999 |#1| |#2| |#3|)) |#3|)) (-15 -2922 (|#3| (-592 (-999 |#1| |#2| |#3|)) |#3| (-856))) (-15 -4117 (|#3| |#3| (-592 (-1091))))) (-1020) (-13 (-977) (-821 |#1|) (-789) (-567 (-827 |#1|))) (-13 (-408 |#2|) (-821 |#1|) (-567 (-827 |#1|)))) (T -53))
+((-4117 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-1091))) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))))) (-2922 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-592 (-999 *5 *6 *2))) (-5 *4 (-856)) (-4 *5 (-1020)) (-4 *6 (-13 (-977) (-821 *5) (-789) (-567 (-827 *5)))) (-4 *2 (-13 (-408 *6) (-821 *5) (-567 (-827 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-2922 (*1 *2 *3 *2) (-12 (-5 *3 (-592 (-999 *4 *5 *2))) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))) (-5 *1 (-53 *4 *5 *2)))))
+(-10 -7 (-15 -2922 (|#3| (-592 (-999 |#1| |#2| |#3|)) |#3|)) (-15 -2922 (|#3| (-592 (-999 |#1| |#2| |#3|)) |#3| (-856))) (-15 -4117 (|#3| |#3| (-592 (-1091)))))
+((-3330 (((-108) $ (-713)) 23)) (-3758 (($ $ (-525) |#3|) 46)) (-2185 (($ $ (-525) |#4|) 50)) (-1616 ((|#3| $ (-525)) 59)) (-3702 (((-592 |#2|) $) 30)) (-2482 (((-108) $ (-713)) 25)) (-2783 (((-108) |#2| $) 54)) (-2622 (($ (-1 |#2| |#2|) $) 37)) (-2694 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-2957 (((-108) $ (-713)) 24)) (-2042 (($ $ |#2|) 34)) (-3006 (((-108) (-1 (-108) |#2|) $) 19)) (-3410 ((|#2| $ (-525) (-525)) NIL) ((|#2| $ (-525) (-525) |#2|) 27)) (-2040 (((-713) (-1 (-108) |#2|) $) 28) (((-713) |#2| $) 56)) (-1451 (($ $) 33)) (-3701 ((|#4| $ (-525)) 62)) (-1270 (((-798) $) 68)) (-3633 (((-108) (-1 (-108) |#2|) $) 18)) (-3994 (((-108) $ $) 53)) (-3596 (((-713) $) 26)))
+(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1270 ((-798) |#1|)) (-15 -2694 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2694 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2622 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2185 (|#1| |#1| (-525) |#4|)) (-15 -3758 (|#1| |#1| (-525) |#3|)) (-15 -3702 ((-592 |#2|) |#1|)) (-15 -3701 (|#4| |#1| (-525))) (-15 -1616 (|#3| |#1| (-525))) (-15 -3410 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3410 (|#2| |#1| (-525) (-525))) (-15 -2042 (|#1| |#1| |#2|)) (-15 -3994 ((-108) |#1| |#1|)) (-15 -2783 ((-108) |#2| |#1|)) (-15 -2040 ((-713) |#2| |#1|)) (-15 -2040 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3633 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2694 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3596 ((-713) |#1|)) (-15 -3330 ((-108) |#1| (-713))) (-15 -2482 ((-108) |#1| (-713))) (-15 -2957 ((-108) |#1| (-713))) (-15 -1451 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1127) (-351 |#2|) (-351 |#2|)) (T -54))
+NIL
+(-10 -8 (-15 -1270 ((-798) |#1|)) (-15 -2694 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2694 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2622 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2185 (|#1| |#1| (-525) |#4|)) (-15 -3758 (|#1| |#1| (-525) |#3|)) (-15 -3702 ((-592 |#2|) |#1|)) (-15 -3701 (|#4| |#1| (-525))) (-15 -1616 (|#3| |#1| (-525))) (-15 -3410 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3410 (|#2| |#1| (-525) (-525))) (-15 -2042 (|#1| |#1| |#2|)) (-15 -3994 ((-108) |#1| |#1|)) (-15 -2783 ((-108) |#2| |#1|)) (-15 -2040 ((-713) |#2| |#1|)) (-15 -2040 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3633 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2694 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3596 ((-713) |#1|)) (-15 -3330 ((-108) |#1| (-713))) (-15 -2482 ((-108) |#1| (-713))) (-15 -2957 ((-108) |#1| (-713))) (-15 -1451 (|#1| |#1|)))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3330 (((-108) $ (-713)) 8)) (-1429 ((|#1| $ (-525) (-525) |#1|) 44)) (-3758 (($ $ (-525) |#2|) 42)) (-2185 (($ $ (-525) |#3|) 41)) (-2305 (($) 7 T CONST)) (-1616 ((|#2| $ (-525)) 46)) (-2632 ((|#1| $ (-525) (-525) |#1|) 43)) (-2570 ((|#1| $ (-525) (-525)) 48)) (-3702 (((-592 |#1|) $) 30)) (-1857 (((-713) $) 51)) (-3489 (($ (-713) (-713) |#1|) 57)) (-1869 (((-713) $) 50)) (-2482 (((-108) $ (-713)) 9)) (-1964 (((-525) $) 55)) (-3779 (((-525) $) 53)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1987 (((-525) $) 54)) (-3948 (((-525) $) 52)) (-2622 (($ (-1 |#1| |#1|) $) 34)) (-2694 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-2042 (($ $ |#1|) 56)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#1| $ (-525) (-525)) 49) ((|#1| $ (-525) (-525) |#1|) 47)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-3701 ((|#3| $ (-525)) 45)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-55 |#1| |#2| |#3|) (-131) (-1127) (-351 |t#1|) (-351 |t#1|)) (T -55))
+((-2694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3489 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-713)) (-4 *3 (-1127)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2042 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1127)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-1987 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-525)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-713)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-713)))) (-3410 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-1127)))) (-2570 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-1127)))) (-3410 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-1616 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1127)) (-4 *5 (-351 *4)) (-4 *2 (-351 *4)))) (-3701 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1127)) (-4 *5 (-351 *4)) (-4 *2 (-351 *4)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-592 *3)))) (-1429 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-2632 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1127)) (-4 *4 (-351 *2)) (-4 *5 (-351 *2)))) (-3758 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1127)) (-4 *3 (-351 *4)) (-4 *5 (-351 *4)))) (-2185 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1127)) (-4 *5 (-351 *4)) (-4 *3 (-351 *4)))) (-2622 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2694 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2694 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
+(-13 (-464 |t#1|) (-10 -8 (-6 -4256) (-6 -4255) (-15 -3489 ($ (-713) (-713) |t#1|)) (-15 -2042 ($ $ |t#1|)) (-15 -1964 ((-525) $)) (-15 -1987 ((-525) $)) (-15 -3779 ((-525) $)) (-15 -3948 ((-525) $)) (-15 -1857 ((-713) $)) (-15 -1869 ((-713) $)) (-15 -3410 (|t#1| $ (-525) (-525))) (-15 -2570 (|t#1| $ (-525) (-525))) (-15 -3410 (|t#1| $ (-525) (-525) |t#1|)) (-15 -1616 (|t#2| $ (-525))) (-15 -3701 (|t#3| $ (-525))) (-15 -3702 ((-592 |t#1|) $)) (-15 -1429 (|t#1| $ (-525) (-525) |t#1|)) (-15 -2632 (|t#1| $ (-525) (-525) |t#1|)) (-15 -3758 ($ $ (-525) |t#2|)) (-15 -2185 ($ $ (-525) |t#3|)) (-15 -2694 ($ (-1 |t#1| |t#1|) $)) (-15 -2622 ($ (-1 |t#1| |t#1|) $)) (-15 -2694 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2694 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1127) . T))
+((-3123 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-3503 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-2694 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
+(((-56 |#1| |#2|) (-10 -7 (-15 -3123 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3503 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2694 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1127) (-1127)) (T -56))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-3503 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-56 *5 *2)))) (-3123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
+(-10 -7 (-15 -3123 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3503 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2694 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-2151 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2549 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4256))) (($ $) NIL (-12 (|has| $ (-6 -4256)) (|has| |#1| (-789))))) (-2855 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 ((|#1| $ (-525) |#1|) 11 (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) NIL (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-3559 (($ $) NIL (|has| $ (-6 -4256)))) (-3620 (($ $) NIL)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1614 (($ |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2632 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) NIL)) (-1916 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-1618 (($ (-592 |#1|)) 13) (($ (-713) |#1|) 14)) (-3489 (($ (-713) |#1|) 9)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) NIL (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-3743 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2683 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3110 ((|#1| $) NIL (|has| (-525) (-789)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2042 (($ $ |#1|) NIL (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) 7)) (-3410 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-3157 (($ $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3216 (($ $ $ (-525)) NIL (|has| $ (-6 -4256)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) NIL)) (-2014 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1618 ($ (-592 |#1|))) (-15 -1618 ($ (-713) |#1|)))) (-1127)) (T -57))
+((-1618 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-5 *1 (-57 *3)))) (-1618 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-57 *3)) (-4 *3 (-1127)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -1618 ($ (-592 |#1|))) (-15 -1618 ($ (-713) |#1|))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 ((|#1| $ (-525) (-525) |#1|) NIL)) (-3758 (($ $ (-525) (-57 |#1|)) NIL)) (-2185 (($ $ (-525) (-57 |#1|)) NIL)) (-2305 (($) NIL T CONST)) (-1616 (((-57 |#1|) $ (-525)) NIL)) (-2632 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2570 ((|#1| $ (-525) (-525)) NIL)) (-3702 (((-592 |#1|) $) NIL)) (-1857 (((-713) $) NIL)) (-3489 (($ (-713) (-713) |#1|) NIL)) (-1869 (((-713) $) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-1964 (((-525) $) NIL)) (-3779 (((-525) $) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1987 (((-525) $) NIL)) (-3948 (((-525) $) NIL)) (-2622 (($ (-1 |#1| |#1|) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-2042 (($ $ |#1|) NIL)) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) NIL)) (-3701 (((-57 |#1|) $ (-525)) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4256))) (-1127)) (T -58))
+NIL
+(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4256)))
+((-2591 (((-3 $ "failed") (-1173 (-294 (-357)))) 74) (((-3 $ "failed") (-1173 (-294 (-525)))) 63) (((-3 $ "failed") (-1173 (-887 (-357)))) 94) (((-3 $ "failed") (-1173 (-887 (-525)))) 84) (((-3 $ "failed") (-1173 (-385 (-887 (-357))))) 52) (((-3 $ "failed") (-1173 (-385 (-887 (-525))))) 39)) (-3898 (($ (-1173 (-294 (-357)))) 70) (($ (-1173 (-294 (-525)))) 59) (($ (-1173 (-887 (-357)))) 90) (($ (-1173 (-887 (-525)))) 80) (($ (-1173 (-385 (-887 (-357))))) 48) (($ (-1173 (-385 (-887 (-525))))) 32)) (-2350 (((-1178) $) 120)) (-1270 (((-798) $) 113) (($ (-592 (-308))) 103) (($ (-308)) 97) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 101) (($ (-1173 (-317 (-1279 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1279) (-641)))) 31)))
+(((-59 |#1|) (-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1279) (-641))))))) (-1091)) (T -59))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1173 (-317 (-1279 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1279) (-641)))) (-5 *1 (-59 *3)) (-14 *3 (-1091)))))
+(-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1279) (-641)))))))
+((-2350 (((-1178) $) 53) (((-1178)) 54)) (-1270 (((-798) $) 50)))
+(((-60 |#1|) (-13 (-373) (-10 -7 (-15 -2350 ((-1178))))) (-1091)) (T -60))
+((-2350 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-60 *3)) (-14 *3 (-1091)))))
+(-13 (-373) (-10 -7 (-15 -2350 ((-1178)))))
+((-2591 (((-3 $ "failed") (-1173 (-294 (-357)))) 144) (((-3 $ "failed") (-1173 (-294 (-525)))) 134) (((-3 $ "failed") (-1173 (-887 (-357)))) 164) (((-3 $ "failed") (-1173 (-887 (-525)))) 154) (((-3 $ "failed") (-1173 (-385 (-887 (-357))))) 123) (((-3 $ "failed") (-1173 (-385 (-887 (-525))))) 111)) (-3898 (($ (-1173 (-294 (-357)))) 140) (($ (-1173 (-294 (-525)))) 130) (($ (-1173 (-887 (-357)))) 160) (($ (-1173 (-887 (-525)))) 150) (($ (-1173 (-385 (-887 (-357))))) 119) (($ (-1173 (-385 (-887 (-525))))) 104)) (-2350 (((-1178) $) 97)) (-1270 (((-798) $) 91) (($ (-592 (-308))) 29) (($ (-308)) 34) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 32) (($ (-1173 (-317 (-1279) (-1279 (QUOTE XC)) (-641)))) 89)))
+(((-61 |#1|) (-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279) (-1279 (QUOTE XC)) (-641))))))) (-1091)) (T -61))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1173 (-317 (-1279) (-1279 (QUOTE XC)) (-641)))) (-5 *1 (-61 *3)) (-14 *3 (-1091)))))
+(-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279) (-1279 (QUOTE XC)) (-641)))))))
+((-2591 (((-3 $ "failed") (-294 (-357))) 41) (((-3 $ "failed") (-294 (-525))) 46) (((-3 $ "failed") (-887 (-357))) 50) (((-3 $ "failed") (-887 (-525))) 54) (((-3 $ "failed") (-385 (-887 (-357)))) 36) (((-3 $ "failed") (-385 (-887 (-525)))) 29)) (-3898 (($ (-294 (-357))) 39) (($ (-294 (-525))) 44) (($ (-887 (-357))) 48) (($ (-887 (-525))) 52) (($ (-385 (-887 (-357)))) 34) (($ (-385 (-887 (-525)))) 26)) (-2350 (((-1178) $) 76)) (-1270 (((-798) $) 69) (($ (-592 (-308))) 61) (($ (-308)) 66) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 64) (($ (-317 (-1279 (QUOTE X)) (-1279) (-641))) 25)))
+(((-62 |#1|) (-13 (-374) (-10 -8 (-15 -1270 ($ (-317 (-1279 (QUOTE X)) (-1279) (-641)))))) (-1091)) (T -62))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-317 (-1279 (QUOTE X)) (-1279) (-641))) (-5 *1 (-62 *3)) (-14 *3 (-1091)))))
+(-13 (-374) (-10 -8 (-15 -1270 ($ (-317 (-1279 (QUOTE X)) (-1279) (-641))))))
+((-2591 (((-3 $ "failed") (-632 (-294 (-357)))) 109) (((-3 $ "failed") (-632 (-294 (-525)))) 97) (((-3 $ "failed") (-632 (-887 (-357)))) 131) (((-3 $ "failed") (-632 (-887 (-525)))) 120) (((-3 $ "failed") (-632 (-385 (-887 (-357))))) 85) (((-3 $ "failed") (-632 (-385 (-887 (-525))))) 71)) (-3898 (($ (-632 (-294 (-357)))) 105) (($ (-632 (-294 (-525)))) 93) (($ (-632 (-887 (-357)))) 127) (($ (-632 (-887 (-525)))) 116) (($ (-632 (-385 (-887 (-357))))) 81) (($ (-632 (-385 (-887 (-525))))) 64)) (-2350 (((-1178) $) 139)) (-1270 (((-798) $) 133) (($ (-592 (-308))) 28) (($ (-308)) 33) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 31) (($ (-632 (-317 (-1279) (-1279 (QUOTE X) (QUOTE HESS)) (-641)))) 54)))
+(((-63 |#1|) (-13 (-362) (-10 -8 (-15 -1270 ($ (-632 (-317 (-1279) (-1279 (QUOTE X) (QUOTE HESS)) (-641))))))) (-1091)) (T -63))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-1279) (-1279 (QUOTE X) (QUOTE HESS)) (-641)))) (-5 *1 (-63 *3)) (-14 *3 (-1091)))))
+(-13 (-362) (-10 -8 (-15 -1270 ($ (-632 (-317 (-1279) (-1279 (QUOTE X) (QUOTE HESS)) (-641)))))))
+((-2591 (((-3 $ "failed") (-294 (-357))) 59) (((-3 $ "failed") (-294 (-525))) 64) (((-3 $ "failed") (-887 (-357))) 68) (((-3 $ "failed") (-887 (-525))) 72) (((-3 $ "failed") (-385 (-887 (-357)))) 54) (((-3 $ "failed") (-385 (-887 (-525)))) 47)) (-3898 (($ (-294 (-357))) 57) (($ (-294 (-525))) 62) (($ (-887 (-357))) 66) (($ (-887 (-525))) 70) (($ (-385 (-887 (-357)))) 52) (($ (-385 (-887 (-525)))) 44)) (-2350 (((-1178) $) 81)) (-1270 (((-798) $) 75) (($ (-592 (-308))) 28) (($ (-308)) 33) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 31) (($ (-317 (-1279) (-1279 (QUOTE XC)) (-641))) 39)))
+(((-64 |#1|) (-13 (-374) (-10 -8 (-15 -1270 ($ (-317 (-1279) (-1279 (QUOTE XC)) (-641)))))) (-1091)) (T -64))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-317 (-1279) (-1279 (QUOTE XC)) (-641))) (-5 *1 (-64 *3)) (-14 *3 (-1091)))))
+(-13 (-374) (-10 -8 (-15 -1270 ($ (-317 (-1279) (-1279 (QUOTE XC)) (-641))))))
+((-2350 (((-1178) $) 63)) (-1270 (((-798) $) 57) (($ (-632 (-641))) 49) (($ (-592 (-308))) 48) (($ (-308)) 55) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 53)))
+(((-65 |#1|) (-361) (-1091)) (T -65))
NIL
(-361)
-((-2891 (((-1177) $) 64)) (-1908 (((-797) $) 58) (($ (-632 (-641))) 50) (($ (-592 (-308))) 49) (($ (-308)) 52) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 55)))
-(((-66 |#1|) (-361) (-1090)) (T -66))
+((-2350 (((-1178) $) 64)) (-1270 (((-798) $) 58) (($ (-632 (-641))) 50) (($ (-592 (-308))) 49) (($ (-308)) 52) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 55)))
+(((-66 |#1|) (-361) (-1091)) (T -66))
NIL
(-361)
-((-2891 (((-1177) $) NIL) (((-1177)) 32)) (-1908 (((-797) $) NIL)))
-(((-67 |#1|) (-13 (-373) (-10 -7 (-15 -2891 ((-1177))))) (-1090)) (T -67))
-((-2891 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-67 *3)) (-14 *3 (-1090)))))
-(-13 (-373) (-10 -7 (-15 -2891 ((-1177)))))
-((-2891 (((-1177) $) 73)) (-1908 (((-797) $) 67) (($ (-632 (-641))) 59) (($ (-592 (-308))) 61) (($ (-308)) 64) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 58)))
-(((-68 |#1|) (-361) (-1090)) (T -68))
+((-2350 (((-1178) $) NIL) (((-1178)) 32)) (-1270 (((-798) $) NIL)))
+(((-67 |#1|) (-13 (-373) (-10 -7 (-15 -2350 ((-1178))))) (-1091)) (T -67))
+((-2350 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-67 *3)) (-14 *3 (-1091)))))
+(-13 (-373) (-10 -7 (-15 -2350 ((-1178)))))
+((-2350 (((-1178) $) 73)) (-1270 (((-798) $) 67) (($ (-632 (-641))) 59) (($ (-592 (-308))) 61) (($ (-308)) 64) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 58)))
+(((-68 |#1|) (-361) (-1091)) (T -68))
NIL
(-361)
-((-1264 (((-3 $ "failed") (-1172 (-294 (-357)))) 103) (((-3 $ "failed") (-1172 (-294 (-525)))) 92) (((-3 $ "failed") (-1172 (-886 (-357)))) 123) (((-3 $ "failed") (-1172 (-886 (-525)))) 113) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 81) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 68)) (-2831 (($ (-1172 (-294 (-357)))) 99) (($ (-1172 (-294 (-525)))) 88) (($ (-1172 (-886 (-357)))) 119) (($ (-1172 (-886 (-525)))) 109) (($ (-1172 (-385 (-886 (-357))))) 77) (($ (-1172 (-385 (-886 (-525))))) 61)) (-2891 (((-1177) $) 136)) (-1908 (((-797) $) 130) (($ (-592 (-308))) 125) (($ (-308)) 128) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 53) (($ (-1172 (-317 (-1922 (QUOTE X)) (-1922 (QUOTE -3938)) (-641)))) 54)))
-(((-69 |#1|) (-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922 (QUOTE X)) (-1922 (QUOTE -3938)) (-641))))))) (-1090)) (T -69))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-1922 (QUOTE X)) (-1922 (QUOTE -3938)) (-641)))) (-5 *1 (-69 *3)) (-14 *3 (-1090)))))
-(-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922 (QUOTE X)) (-1922 (QUOTE -3938)) (-641)))))))
-((-2891 (((-1177) $) 32) (((-1177)) 31)) (-1908 (((-797) $) 35)))
-(((-70 |#1|) (-13 (-373) (-10 -7 (-15 -2891 ((-1177))))) (-1090)) (T -70))
-((-2891 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-70 *3)) (-14 *3 (-1090)))))
-(-13 (-373) (-10 -7 (-15 -2891 ((-1177)))))
-((-2891 (((-1177) $) 63)) (-1908 (((-797) $) 57) (($ (-632 (-641))) 49) (($ (-592 (-308))) 51) (($ (-308)) 54) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 48)))
-(((-71 |#1|) (-361) (-1090)) (T -71))
+((-2591 (((-3 $ "failed") (-1173 (-294 (-357)))) 103) (((-3 $ "failed") (-1173 (-294 (-525)))) 92) (((-3 $ "failed") (-1173 (-887 (-357)))) 123) (((-3 $ "failed") (-1173 (-887 (-525)))) 113) (((-3 $ "failed") (-1173 (-385 (-887 (-357))))) 81) (((-3 $ "failed") (-1173 (-385 (-887 (-525))))) 68)) (-3898 (($ (-1173 (-294 (-357)))) 99) (($ (-1173 (-294 (-525)))) 88) (($ (-1173 (-887 (-357)))) 119) (($ (-1173 (-887 (-525)))) 109) (($ (-1173 (-385 (-887 (-357))))) 77) (($ (-1173 (-385 (-887 (-525))))) 61)) (-2350 (((-1178) $) 136)) (-1270 (((-798) $) 130) (($ (-592 (-308))) 125) (($ (-308)) 128) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 53) (($ (-1173 (-317 (-1279 (QUOTE X)) (-1279 (QUOTE -3418)) (-641)))) 54)))
+(((-69 |#1|) (-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279 (QUOTE X)) (-1279 (QUOTE -3418)) (-641))))))) (-1091)) (T -69))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1173 (-317 (-1279 (QUOTE X)) (-1279 (QUOTE -3418)) (-641)))) (-5 *1 (-69 *3)) (-14 *3 (-1091)))))
+(-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279 (QUOTE X)) (-1279 (QUOTE -3418)) (-641)))))))
+((-2350 (((-1178) $) 32) (((-1178)) 31)) (-1270 (((-798) $) 35)))
+(((-70 |#1|) (-13 (-373) (-10 -7 (-15 -2350 ((-1178))))) (-1091)) (T -70))
+((-2350 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-70 *3)) (-14 *3 (-1091)))))
+(-13 (-373) (-10 -7 (-15 -2350 ((-1178)))))
+((-2350 (((-1178) $) 63)) (-1270 (((-798) $) 57) (($ (-632 (-641))) 49) (($ (-592 (-308))) 51) (($ (-308)) 54) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 48)))
+(((-71 |#1|) (-361) (-1091)) (T -71))
NIL
(-361)
-((-1264 (((-3 $ "failed") (-1172 (-294 (-357)))) 125) (((-3 $ "failed") (-1172 (-294 (-525)))) 115) (((-3 $ "failed") (-1172 (-886 (-357)))) 145) (((-3 $ "failed") (-1172 (-886 (-525)))) 135) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 105) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 93)) (-2831 (($ (-1172 (-294 (-357)))) 121) (($ (-1172 (-294 (-525)))) 111) (($ (-1172 (-886 (-357)))) 141) (($ (-1172 (-886 (-525)))) 131) (($ (-1172 (-385 (-886 (-357))))) 101) (($ (-1172 (-385 (-886 (-525))))) 86)) (-2891 (((-1177) $) 78)) (-1908 (((-797) $) 27) (($ (-592 (-308))) 68) (($ (-308)) 64) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 71) (($ (-1172 (-317 (-1922) (-1922 (QUOTE X)) (-641)))) 65)))
-(((-72 |#1|) (-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922) (-1922 (QUOTE X)) (-641))))))) (-1090)) (T -72))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-1922) (-1922 (QUOTE X)) (-641)))) (-5 *1 (-72 *3)) (-14 *3 (-1090)))))
-(-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922) (-1922 (QUOTE X)) (-641)))))))
-((-1264 (((-3 $ "failed") (-1172 (-294 (-357)))) 130) (((-3 $ "failed") (-1172 (-294 (-525)))) 119) (((-3 $ "failed") (-1172 (-886 (-357)))) 150) (((-3 $ "failed") (-1172 (-886 (-525)))) 140) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 108) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 95)) (-2831 (($ (-1172 (-294 (-357)))) 126) (($ (-1172 (-294 (-525)))) 115) (($ (-1172 (-886 (-357)))) 146) (($ (-1172 (-886 (-525)))) 136) (($ (-1172 (-385 (-886 (-357))))) 104) (($ (-1172 (-385 (-886 (-525))))) 88)) (-2891 (((-1177) $) 79)) (-1908 (((-797) $) 71) (($ (-592 (-308))) NIL) (($ (-308)) NIL) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) NIL) (($ (-1172 (-317 (-1922 (QUOTE X) (QUOTE EPS)) (-1922 (QUOTE -3938)) (-641)))) 66)))
-(((-73 |#1| |#2| |#3|) (-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922 (QUOTE X) (QUOTE EPS)) (-1922 (QUOTE -3938)) (-641))))))) (-1090) (-1090) (-1090)) (T -73))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-1922 (QUOTE X) (QUOTE EPS)) (-1922 (QUOTE -3938)) (-641)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1090)) (-14 *4 (-1090)) (-14 *5 (-1090)))))
-(-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922 (QUOTE X) (QUOTE EPS)) (-1922 (QUOTE -3938)) (-641)))))))
-((-1264 (((-3 $ "failed") (-1172 (-294 (-357)))) 134) (((-3 $ "failed") (-1172 (-294 (-525)))) 123) (((-3 $ "failed") (-1172 (-886 (-357)))) 154) (((-3 $ "failed") (-1172 (-886 (-525)))) 144) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 112) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 99)) (-2831 (($ (-1172 (-294 (-357)))) 130) (($ (-1172 (-294 (-525)))) 119) (($ (-1172 (-886 (-357)))) 150) (($ (-1172 (-886 (-525)))) 140) (($ (-1172 (-385 (-886 (-357))))) 108) (($ (-1172 (-385 (-886 (-525))))) 92)) (-2891 (((-1177) $) 83)) (-1908 (((-797) $) 75) (($ (-592 (-308))) NIL) (($ (-308)) NIL) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) NIL) (($ (-1172 (-317 (-1922 (QUOTE EPS)) (-1922 (QUOTE YA) (QUOTE YB)) (-641)))) 70)))
-(((-74 |#1| |#2| |#3|) (-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922 (QUOTE EPS)) (-1922 (QUOTE YA) (QUOTE YB)) (-641))))))) (-1090) (-1090) (-1090)) (T -74))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-1922 (QUOTE EPS)) (-1922 (QUOTE YA) (QUOTE YB)) (-641)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1090)) (-14 *4 (-1090)) (-14 *5 (-1090)))))
-(-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922 (QUOTE EPS)) (-1922 (QUOTE YA) (QUOTE YB)) (-641)))))))
-((-1264 (((-3 $ "failed") (-294 (-357))) 82) (((-3 $ "failed") (-294 (-525))) 87) (((-3 $ "failed") (-886 (-357))) 91) (((-3 $ "failed") (-886 (-525))) 95) (((-3 $ "failed") (-385 (-886 (-357)))) 77) (((-3 $ "failed") (-385 (-886 (-525)))) 70)) (-2831 (($ (-294 (-357))) 80) (($ (-294 (-525))) 85) (($ (-886 (-357))) 89) (($ (-886 (-525))) 93) (($ (-385 (-886 (-357)))) 75) (($ (-385 (-886 (-525)))) 67)) (-2891 (((-1177) $) 62)) (-1908 (((-797) $) 50) (($ (-592 (-308))) 46) (($ (-308)) 56) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 54) (($ (-317 (-1922) (-1922 (QUOTE X)) (-641))) 47)))
-(((-75 |#1|) (-13 (-374) (-10 -8 (-15 -1908 ($ (-317 (-1922) (-1922 (QUOTE X)) (-641)))))) (-1090)) (T -75))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-317 (-1922) (-1922 (QUOTE X)) (-641))) (-5 *1 (-75 *3)) (-14 *3 (-1090)))))
-(-13 (-374) (-10 -8 (-15 -1908 ($ (-317 (-1922) (-1922 (QUOTE X)) (-641))))))
-((-1264 (((-3 $ "failed") (-294 (-357))) 46) (((-3 $ "failed") (-294 (-525))) 51) (((-3 $ "failed") (-886 (-357))) 55) (((-3 $ "failed") (-886 (-525))) 59) (((-3 $ "failed") (-385 (-886 (-357)))) 41) (((-3 $ "failed") (-385 (-886 (-525)))) 34)) (-2831 (($ (-294 (-357))) 44) (($ (-294 (-525))) 49) (($ (-886 (-357))) 53) (($ (-886 (-525))) 57) (($ (-385 (-886 (-357)))) 39) (($ (-385 (-886 (-525)))) 31)) (-2891 (((-1177) $) 80)) (-1908 (((-797) $) 74) (($ (-592 (-308))) 66) (($ (-308)) 71) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 69) (($ (-317 (-1922) (-1922 (QUOTE X)) (-641))) 30)))
-(((-76 |#1|) (-13 (-374) (-10 -8 (-15 -1908 ($ (-317 (-1922) (-1922 (QUOTE X)) (-641)))))) (-1090)) (T -76))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-317 (-1922) (-1922 (QUOTE X)) (-641))) (-5 *1 (-76 *3)) (-14 *3 (-1090)))))
-(-13 (-374) (-10 -8 (-15 -1908 ($ (-317 (-1922) (-1922 (QUOTE X)) (-641))))))
-((-1264 (((-3 $ "failed") (-1172 (-294 (-357)))) 89) (((-3 $ "failed") (-1172 (-294 (-525)))) 78) (((-3 $ "failed") (-1172 (-886 (-357)))) 109) (((-3 $ "failed") (-1172 (-886 (-525)))) 99) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 67) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 54)) (-2831 (($ (-1172 (-294 (-357)))) 85) (($ (-1172 (-294 (-525)))) 74) (($ (-1172 (-886 (-357)))) 105) (($ (-1172 (-886 (-525)))) 95) (($ (-1172 (-385 (-886 (-357))))) 63) (($ (-1172 (-385 (-886 (-525))))) 47)) (-2891 (((-1177) $) 125)) (-1908 (((-797) $) 119) (($ (-592 (-308))) 112) (($ (-308)) 37) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 115) (($ (-1172 (-317 (-1922) (-1922 (QUOTE XC)) (-641)))) 38)))
-(((-77 |#1|) (-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922) (-1922 (QUOTE XC)) (-641))))))) (-1090)) (T -77))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-1922) (-1922 (QUOTE XC)) (-641)))) (-5 *1 (-77 *3)) (-14 *3 (-1090)))))
-(-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922) (-1922 (QUOTE XC)) (-641)))))))
-((-1264 (((-3 $ "failed") (-1172 (-294 (-357)))) 142) (((-3 $ "failed") (-1172 (-294 (-525)))) 132) (((-3 $ "failed") (-1172 (-886 (-357)))) 162) (((-3 $ "failed") (-1172 (-886 (-525)))) 152) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 122) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 110)) (-2831 (($ (-1172 (-294 (-357)))) 138) (($ (-1172 (-294 (-525)))) 128) (($ (-1172 (-886 (-357)))) 158) (($ (-1172 (-886 (-525)))) 148) (($ (-1172 (-385 (-886 (-357))))) 118) (($ (-1172 (-385 (-886 (-525))))) 103)) (-2891 (((-1177) $) 96)) (-1908 (((-797) $) 90) (($ (-592 (-308))) 81) (($ (-308)) 88) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 86) (($ (-1172 (-317 (-1922) (-1922 (QUOTE X)) (-641)))) 82)))
-(((-78 |#1|) (-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922) (-1922 (QUOTE X)) (-641))))))) (-1090)) (T -78))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-1922) (-1922 (QUOTE X)) (-641)))) (-5 *1 (-78 *3)) (-14 *3 (-1090)))))
-(-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922) (-1922 (QUOTE X)) (-641)))))))
-((-1264 (((-3 $ "failed") (-1172 (-294 (-357)))) 78) (((-3 $ "failed") (-1172 (-294 (-525)))) 67) (((-3 $ "failed") (-1172 (-886 (-357)))) 98) (((-3 $ "failed") (-1172 (-886 (-525)))) 88) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 56) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 43)) (-2831 (($ (-1172 (-294 (-357)))) 74) (($ (-1172 (-294 (-525)))) 63) (($ (-1172 (-886 (-357)))) 94) (($ (-1172 (-886 (-525)))) 84) (($ (-1172 (-385 (-886 (-357))))) 52) (($ (-1172 (-385 (-886 (-525))))) 36)) (-2891 (((-1177) $) 124)) (-1908 (((-797) $) 118) (($ (-592 (-308))) 109) (($ (-308)) 115) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 113) (($ (-1172 (-317 (-1922) (-1922 (QUOTE X)) (-641)))) 35)))
-(((-79 |#1|) (-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922) (-1922 (QUOTE X)) (-641))))))) (-1090)) (T -79))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-1922) (-1922 (QUOTE X)) (-641)))) (-5 *1 (-79 *3)) (-14 *3 (-1090)))))
-(-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922) (-1922 (QUOTE X)) (-641)))))))
-((-1264 (((-3 $ "failed") (-1172 (-294 (-357)))) 95) (((-3 $ "failed") (-1172 (-294 (-525)))) 84) (((-3 $ "failed") (-1172 (-886 (-357)))) 115) (((-3 $ "failed") (-1172 (-886 (-525)))) 105) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 73) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 60)) (-2831 (($ (-1172 (-294 (-357)))) 91) (($ (-1172 (-294 (-525)))) 80) (($ (-1172 (-886 (-357)))) 111) (($ (-1172 (-886 (-525)))) 101) (($ (-1172 (-385 (-886 (-357))))) 69) (($ (-1172 (-385 (-886 (-525))))) 53)) (-2891 (((-1177) $) 45)) (-1908 (((-797) $) 39) (($ (-592 (-308))) 29) (($ (-308)) 32) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 35) (($ (-1172 (-317 (-1922 (QUOTE X) (QUOTE -3938)) (-1922) (-641)))) 30)))
-(((-80 |#1|) (-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922 (QUOTE X) (QUOTE -3938)) (-1922) (-641))))))) (-1090)) (T -80))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-1922 (QUOTE X) (QUOTE -3938)) (-1922) (-641)))) (-5 *1 (-80 *3)) (-14 *3 (-1090)))))
-(-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922 (QUOTE X) (QUOTE -3938)) (-1922) (-641)))))))
-((-1264 (((-3 $ "failed") (-632 (-294 (-357)))) 115) (((-3 $ "failed") (-632 (-294 (-525)))) 104) (((-3 $ "failed") (-632 (-886 (-357)))) 137) (((-3 $ "failed") (-632 (-886 (-525)))) 126) (((-3 $ "failed") (-632 (-385 (-886 (-357))))) 93) (((-3 $ "failed") (-632 (-385 (-886 (-525))))) 80)) (-2831 (($ (-632 (-294 (-357)))) 111) (($ (-632 (-294 (-525)))) 100) (($ (-632 (-886 (-357)))) 133) (($ (-632 (-886 (-525)))) 122) (($ (-632 (-385 (-886 (-357))))) 89) (($ (-632 (-385 (-886 (-525))))) 73)) (-2891 (((-1177) $) 63)) (-1908 (((-797) $) 50) (($ (-592 (-308))) 57) (($ (-308)) 46) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 55) (($ (-632 (-317 (-1922 (QUOTE X) (QUOTE -3938)) (-1922) (-641)))) 47)))
-(((-81 |#1|) (-13 (-362) (-10 -8 (-15 -1908 ($ (-632 (-317 (-1922 (QUOTE X) (QUOTE -3938)) (-1922) (-641))))))) (-1090)) (T -81))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-1922 (QUOTE X) (QUOTE -3938)) (-1922) (-641)))) (-5 *1 (-81 *3)) (-14 *3 (-1090)))))
-(-13 (-362) (-10 -8 (-15 -1908 ($ (-632 (-317 (-1922 (QUOTE X) (QUOTE -3938)) (-1922) (-641)))))))
-((-1264 (((-3 $ "failed") (-632 (-294 (-357)))) 112) (((-3 $ "failed") (-632 (-294 (-525)))) 100) (((-3 $ "failed") (-632 (-886 (-357)))) 134) (((-3 $ "failed") (-632 (-886 (-525)))) 123) (((-3 $ "failed") (-632 (-385 (-886 (-357))))) 88) (((-3 $ "failed") (-632 (-385 (-886 (-525))))) 74)) (-2831 (($ (-632 (-294 (-357)))) 108) (($ (-632 (-294 (-525)))) 96) (($ (-632 (-886 (-357)))) 130) (($ (-632 (-886 (-525)))) 119) (($ (-632 (-385 (-886 (-357))))) 84) (($ (-632 (-385 (-886 (-525))))) 67)) (-2891 (((-1177) $) 59)) (-1908 (((-797) $) 53) (($ (-592 (-308))) 47) (($ (-308)) 50) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 44) (($ (-632 (-317 (-1922 (QUOTE X)) (-1922) (-641)))) 45)))
-(((-82 |#1|) (-13 (-362) (-10 -8 (-15 -1908 ($ (-632 (-317 (-1922 (QUOTE X)) (-1922) (-641))))))) (-1090)) (T -82))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-1922 (QUOTE X)) (-1922) (-641)))) (-5 *1 (-82 *3)) (-14 *3 (-1090)))))
-(-13 (-362) (-10 -8 (-15 -1908 ($ (-632 (-317 (-1922 (QUOTE X)) (-1922) (-641)))))))
-((-1264 (((-3 $ "failed") (-1172 (-294 (-357)))) 104) (((-3 $ "failed") (-1172 (-294 (-525)))) 93) (((-3 $ "failed") (-1172 (-886 (-357)))) 124) (((-3 $ "failed") (-1172 (-886 (-525)))) 114) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 82) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 69)) (-2831 (($ (-1172 (-294 (-357)))) 100) (($ (-1172 (-294 (-525)))) 89) (($ (-1172 (-886 (-357)))) 120) (($ (-1172 (-886 (-525)))) 110) (($ (-1172 (-385 (-886 (-357))))) 78) (($ (-1172 (-385 (-886 (-525))))) 62)) (-2891 (((-1177) $) 46)) (-1908 (((-797) $) 40) (($ (-592 (-308))) 49) (($ (-308)) 36) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 52) (($ (-1172 (-317 (-1922 (QUOTE X)) (-1922) (-641)))) 37)))
-(((-83 |#1|) (-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922 (QUOTE X)) (-1922) (-641))))))) (-1090)) (T -83))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-1922 (QUOTE X)) (-1922) (-641)))) (-5 *1 (-83 *3)) (-14 *3 (-1090)))))
-(-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922 (QUOTE X)) (-1922) (-641)))))))
-((-1264 (((-3 $ "failed") (-1172 (-294 (-357)))) 79) (((-3 $ "failed") (-1172 (-294 (-525)))) 68) (((-3 $ "failed") (-1172 (-886 (-357)))) 99) (((-3 $ "failed") (-1172 (-886 (-525)))) 89) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 57) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 44)) (-2831 (($ (-1172 (-294 (-357)))) 75) (($ (-1172 (-294 (-525)))) 64) (($ (-1172 (-886 (-357)))) 95) (($ (-1172 (-886 (-525)))) 85) (($ (-1172 (-385 (-886 (-357))))) 53) (($ (-1172 (-385 (-886 (-525))))) 37)) (-2891 (((-1177) $) 125)) (-1908 (((-797) $) 119) (($ (-592 (-308))) 110) (($ (-308)) 116) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 114) (($ (-1172 (-317 (-1922 (QUOTE X)) (-1922 (QUOTE -3938)) (-641)))) 36)))
-(((-84 |#1|) (-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922 (QUOTE X)) (-1922 (QUOTE -3938)) (-641))))))) (-1090)) (T -84))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1172 (-317 (-1922 (QUOTE X)) (-1922 (QUOTE -3938)) (-641)))) (-5 *1 (-84 *3)) (-14 *3 (-1090)))))
-(-13 (-418) (-10 -8 (-15 -1908 ($ (-1172 (-317 (-1922 (QUOTE X)) (-1922 (QUOTE -3938)) (-641)))))))
-((-1264 (((-3 $ "failed") (-632 (-294 (-357)))) 113) (((-3 $ "failed") (-632 (-294 (-525)))) 101) (((-3 $ "failed") (-632 (-886 (-357)))) 135) (((-3 $ "failed") (-632 (-886 (-525)))) 124) (((-3 $ "failed") (-632 (-385 (-886 (-357))))) 89) (((-3 $ "failed") (-632 (-385 (-886 (-525))))) 75)) (-2831 (($ (-632 (-294 (-357)))) 109) (($ (-632 (-294 (-525)))) 97) (($ (-632 (-886 (-357)))) 131) (($ (-632 (-886 (-525)))) 120) (($ (-632 (-385 (-886 (-357))))) 85) (($ (-632 (-385 (-886 (-525))))) 68)) (-2891 (((-1177) $) 59)) (-1908 (((-797) $) 53) (($ (-592 (-308))) 43) (($ (-308)) 50) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 48) (($ (-632 (-317 (-1922 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1922) (-641)))) 44)))
-(((-85 |#1|) (-13 (-362) (-10 -8 (-15 -1908 ($ (-632 (-317 (-1922 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1922) (-641))))))) (-1090)) (T -85))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-1922 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1922) (-641)))) (-5 *1 (-85 *3)) (-14 *3 (-1090)))))
-(-13 (-362) (-10 -8 (-15 -1908 ($ (-632 (-317 (-1922 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1922) (-641)))))))
-((-2891 (((-1177) $) 44)) (-1908 (((-797) $) 38) (($ (-1172 (-641))) 92) (($ (-592 (-308))) 30) (($ (-308)) 35) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 33)))
-(((-86 |#1|) (-417) (-1090)) (T -86))
+((-2591 (((-3 $ "failed") (-1173 (-294 (-357)))) 125) (((-3 $ "failed") (-1173 (-294 (-525)))) 115) (((-3 $ "failed") (-1173 (-887 (-357)))) 145) (((-3 $ "failed") (-1173 (-887 (-525)))) 135) (((-3 $ "failed") (-1173 (-385 (-887 (-357))))) 105) (((-3 $ "failed") (-1173 (-385 (-887 (-525))))) 93)) (-3898 (($ (-1173 (-294 (-357)))) 121) (($ (-1173 (-294 (-525)))) 111) (($ (-1173 (-887 (-357)))) 141) (($ (-1173 (-887 (-525)))) 131) (($ (-1173 (-385 (-887 (-357))))) 101) (($ (-1173 (-385 (-887 (-525))))) 86)) (-2350 (((-1178) $) 78)) (-1270 (((-798) $) 27) (($ (-592 (-308))) 68) (($ (-308)) 64) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 71) (($ (-1173 (-317 (-1279) (-1279 (QUOTE X)) (-641)))) 65)))
+(((-72 |#1|) (-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279) (-1279 (QUOTE X)) (-641))))))) (-1091)) (T -72))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1173 (-317 (-1279) (-1279 (QUOTE X)) (-641)))) (-5 *1 (-72 *3)) (-14 *3 (-1091)))))
+(-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279) (-1279 (QUOTE X)) (-641)))))))
+((-2591 (((-3 $ "failed") (-1173 (-294 (-357)))) 130) (((-3 $ "failed") (-1173 (-294 (-525)))) 119) (((-3 $ "failed") (-1173 (-887 (-357)))) 150) (((-3 $ "failed") (-1173 (-887 (-525)))) 140) (((-3 $ "failed") (-1173 (-385 (-887 (-357))))) 108) (((-3 $ "failed") (-1173 (-385 (-887 (-525))))) 95)) (-3898 (($ (-1173 (-294 (-357)))) 126) (($ (-1173 (-294 (-525)))) 115) (($ (-1173 (-887 (-357)))) 146) (($ (-1173 (-887 (-525)))) 136) (($ (-1173 (-385 (-887 (-357))))) 104) (($ (-1173 (-385 (-887 (-525))))) 88)) (-2350 (((-1178) $) 79)) (-1270 (((-798) $) 71) (($ (-592 (-308))) NIL) (($ (-308)) NIL) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) NIL) (($ (-1173 (-317 (-1279 (QUOTE X) (QUOTE EPS)) (-1279 (QUOTE -3418)) (-641)))) 66)))
+(((-73 |#1| |#2| |#3|) (-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279 (QUOTE X) (QUOTE EPS)) (-1279 (QUOTE -3418)) (-641))))))) (-1091) (-1091) (-1091)) (T -73))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1173 (-317 (-1279 (QUOTE X) (QUOTE EPS)) (-1279 (QUOTE -3418)) (-641)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1091)) (-14 *4 (-1091)) (-14 *5 (-1091)))))
+(-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279 (QUOTE X) (QUOTE EPS)) (-1279 (QUOTE -3418)) (-641)))))))
+((-2591 (((-3 $ "failed") (-1173 (-294 (-357)))) 134) (((-3 $ "failed") (-1173 (-294 (-525)))) 123) (((-3 $ "failed") (-1173 (-887 (-357)))) 154) (((-3 $ "failed") (-1173 (-887 (-525)))) 144) (((-3 $ "failed") (-1173 (-385 (-887 (-357))))) 112) (((-3 $ "failed") (-1173 (-385 (-887 (-525))))) 99)) (-3898 (($ (-1173 (-294 (-357)))) 130) (($ (-1173 (-294 (-525)))) 119) (($ (-1173 (-887 (-357)))) 150) (($ (-1173 (-887 (-525)))) 140) (($ (-1173 (-385 (-887 (-357))))) 108) (($ (-1173 (-385 (-887 (-525))))) 92)) (-2350 (((-1178) $) 83)) (-1270 (((-798) $) 75) (($ (-592 (-308))) NIL) (($ (-308)) NIL) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) NIL) (($ (-1173 (-317 (-1279 (QUOTE EPS)) (-1279 (QUOTE YA) (QUOTE YB)) (-641)))) 70)))
+(((-74 |#1| |#2| |#3|) (-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279 (QUOTE EPS)) (-1279 (QUOTE YA) (QUOTE YB)) (-641))))))) (-1091) (-1091) (-1091)) (T -74))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1173 (-317 (-1279 (QUOTE EPS)) (-1279 (QUOTE YA) (QUOTE YB)) (-641)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1091)) (-14 *4 (-1091)) (-14 *5 (-1091)))))
+(-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279 (QUOTE EPS)) (-1279 (QUOTE YA) (QUOTE YB)) (-641)))))))
+((-2591 (((-3 $ "failed") (-294 (-357))) 82) (((-3 $ "failed") (-294 (-525))) 87) (((-3 $ "failed") (-887 (-357))) 91) (((-3 $ "failed") (-887 (-525))) 95) (((-3 $ "failed") (-385 (-887 (-357)))) 77) (((-3 $ "failed") (-385 (-887 (-525)))) 70)) (-3898 (($ (-294 (-357))) 80) (($ (-294 (-525))) 85) (($ (-887 (-357))) 89) (($ (-887 (-525))) 93) (($ (-385 (-887 (-357)))) 75) (($ (-385 (-887 (-525)))) 67)) (-2350 (((-1178) $) 62)) (-1270 (((-798) $) 50) (($ (-592 (-308))) 46) (($ (-308)) 56) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 54) (($ (-317 (-1279) (-1279 (QUOTE X)) (-641))) 47)))
+(((-75 |#1|) (-13 (-374) (-10 -8 (-15 -1270 ($ (-317 (-1279) (-1279 (QUOTE X)) (-641)))))) (-1091)) (T -75))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-317 (-1279) (-1279 (QUOTE X)) (-641))) (-5 *1 (-75 *3)) (-14 *3 (-1091)))))
+(-13 (-374) (-10 -8 (-15 -1270 ($ (-317 (-1279) (-1279 (QUOTE X)) (-641))))))
+((-2591 (((-3 $ "failed") (-294 (-357))) 46) (((-3 $ "failed") (-294 (-525))) 51) (((-3 $ "failed") (-887 (-357))) 55) (((-3 $ "failed") (-887 (-525))) 59) (((-3 $ "failed") (-385 (-887 (-357)))) 41) (((-3 $ "failed") (-385 (-887 (-525)))) 34)) (-3898 (($ (-294 (-357))) 44) (($ (-294 (-525))) 49) (($ (-887 (-357))) 53) (($ (-887 (-525))) 57) (($ (-385 (-887 (-357)))) 39) (($ (-385 (-887 (-525)))) 31)) (-2350 (((-1178) $) 80)) (-1270 (((-798) $) 74) (($ (-592 (-308))) 66) (($ (-308)) 71) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 69) (($ (-317 (-1279) (-1279 (QUOTE X)) (-641))) 30)))
+(((-76 |#1|) (-13 (-374) (-10 -8 (-15 -1270 ($ (-317 (-1279) (-1279 (QUOTE X)) (-641)))))) (-1091)) (T -76))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-317 (-1279) (-1279 (QUOTE X)) (-641))) (-5 *1 (-76 *3)) (-14 *3 (-1091)))))
+(-13 (-374) (-10 -8 (-15 -1270 ($ (-317 (-1279) (-1279 (QUOTE X)) (-641))))))
+((-2591 (((-3 $ "failed") (-1173 (-294 (-357)))) 89) (((-3 $ "failed") (-1173 (-294 (-525)))) 78) (((-3 $ "failed") (-1173 (-887 (-357)))) 109) (((-3 $ "failed") (-1173 (-887 (-525)))) 99) (((-3 $ "failed") (-1173 (-385 (-887 (-357))))) 67) (((-3 $ "failed") (-1173 (-385 (-887 (-525))))) 54)) (-3898 (($ (-1173 (-294 (-357)))) 85) (($ (-1173 (-294 (-525)))) 74) (($ (-1173 (-887 (-357)))) 105) (($ (-1173 (-887 (-525)))) 95) (($ (-1173 (-385 (-887 (-357))))) 63) (($ (-1173 (-385 (-887 (-525))))) 47)) (-2350 (((-1178) $) 125)) (-1270 (((-798) $) 119) (($ (-592 (-308))) 112) (($ (-308)) 37) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 115) (($ (-1173 (-317 (-1279) (-1279 (QUOTE XC)) (-641)))) 38)))
+(((-77 |#1|) (-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279) (-1279 (QUOTE XC)) (-641))))))) (-1091)) (T -77))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1173 (-317 (-1279) (-1279 (QUOTE XC)) (-641)))) (-5 *1 (-77 *3)) (-14 *3 (-1091)))))
+(-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279) (-1279 (QUOTE XC)) (-641)))))))
+((-2591 (((-3 $ "failed") (-1173 (-294 (-357)))) 142) (((-3 $ "failed") (-1173 (-294 (-525)))) 132) (((-3 $ "failed") (-1173 (-887 (-357)))) 162) (((-3 $ "failed") (-1173 (-887 (-525)))) 152) (((-3 $ "failed") (-1173 (-385 (-887 (-357))))) 122) (((-3 $ "failed") (-1173 (-385 (-887 (-525))))) 110)) (-3898 (($ (-1173 (-294 (-357)))) 138) (($ (-1173 (-294 (-525)))) 128) (($ (-1173 (-887 (-357)))) 158) (($ (-1173 (-887 (-525)))) 148) (($ (-1173 (-385 (-887 (-357))))) 118) (($ (-1173 (-385 (-887 (-525))))) 103)) (-2350 (((-1178) $) 96)) (-1270 (((-798) $) 90) (($ (-592 (-308))) 81) (($ (-308)) 88) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 86) (($ (-1173 (-317 (-1279) (-1279 (QUOTE X)) (-641)))) 82)))
+(((-78 |#1|) (-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279) (-1279 (QUOTE X)) (-641))))))) (-1091)) (T -78))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1173 (-317 (-1279) (-1279 (QUOTE X)) (-641)))) (-5 *1 (-78 *3)) (-14 *3 (-1091)))))
+(-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279) (-1279 (QUOTE X)) (-641)))))))
+((-2591 (((-3 $ "failed") (-1173 (-294 (-357)))) 78) (((-3 $ "failed") (-1173 (-294 (-525)))) 67) (((-3 $ "failed") (-1173 (-887 (-357)))) 98) (((-3 $ "failed") (-1173 (-887 (-525)))) 88) (((-3 $ "failed") (-1173 (-385 (-887 (-357))))) 56) (((-3 $ "failed") (-1173 (-385 (-887 (-525))))) 43)) (-3898 (($ (-1173 (-294 (-357)))) 74) (($ (-1173 (-294 (-525)))) 63) (($ (-1173 (-887 (-357)))) 94) (($ (-1173 (-887 (-525)))) 84) (($ (-1173 (-385 (-887 (-357))))) 52) (($ (-1173 (-385 (-887 (-525))))) 36)) (-2350 (((-1178) $) 124)) (-1270 (((-798) $) 118) (($ (-592 (-308))) 109) (($ (-308)) 115) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 113) (($ (-1173 (-317 (-1279) (-1279 (QUOTE X)) (-641)))) 35)))
+(((-79 |#1|) (-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279) (-1279 (QUOTE X)) (-641))))))) (-1091)) (T -79))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1173 (-317 (-1279) (-1279 (QUOTE X)) (-641)))) (-5 *1 (-79 *3)) (-14 *3 (-1091)))))
+(-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279) (-1279 (QUOTE X)) (-641)))))))
+((-2591 (((-3 $ "failed") (-1173 (-294 (-357)))) 95) (((-3 $ "failed") (-1173 (-294 (-525)))) 84) (((-3 $ "failed") (-1173 (-887 (-357)))) 115) (((-3 $ "failed") (-1173 (-887 (-525)))) 105) (((-3 $ "failed") (-1173 (-385 (-887 (-357))))) 73) (((-3 $ "failed") (-1173 (-385 (-887 (-525))))) 60)) (-3898 (($ (-1173 (-294 (-357)))) 91) (($ (-1173 (-294 (-525)))) 80) (($ (-1173 (-887 (-357)))) 111) (($ (-1173 (-887 (-525)))) 101) (($ (-1173 (-385 (-887 (-357))))) 69) (($ (-1173 (-385 (-887 (-525))))) 53)) (-2350 (((-1178) $) 45)) (-1270 (((-798) $) 39) (($ (-592 (-308))) 29) (($ (-308)) 32) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 35) (($ (-1173 (-317 (-1279 (QUOTE X) (QUOTE -3418)) (-1279) (-641)))) 30)))
+(((-80 |#1|) (-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279 (QUOTE X) (QUOTE -3418)) (-1279) (-641))))))) (-1091)) (T -80))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1173 (-317 (-1279 (QUOTE X) (QUOTE -3418)) (-1279) (-641)))) (-5 *1 (-80 *3)) (-14 *3 (-1091)))))
+(-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279 (QUOTE X) (QUOTE -3418)) (-1279) (-641)))))))
+((-2591 (((-3 $ "failed") (-632 (-294 (-357)))) 115) (((-3 $ "failed") (-632 (-294 (-525)))) 104) (((-3 $ "failed") (-632 (-887 (-357)))) 137) (((-3 $ "failed") (-632 (-887 (-525)))) 126) (((-3 $ "failed") (-632 (-385 (-887 (-357))))) 93) (((-3 $ "failed") (-632 (-385 (-887 (-525))))) 80)) (-3898 (($ (-632 (-294 (-357)))) 111) (($ (-632 (-294 (-525)))) 100) (($ (-632 (-887 (-357)))) 133) (($ (-632 (-887 (-525)))) 122) (($ (-632 (-385 (-887 (-357))))) 89) (($ (-632 (-385 (-887 (-525))))) 73)) (-2350 (((-1178) $) 63)) (-1270 (((-798) $) 50) (($ (-592 (-308))) 57) (($ (-308)) 46) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 55) (($ (-632 (-317 (-1279 (QUOTE X) (QUOTE -3418)) (-1279) (-641)))) 47)))
+(((-81 |#1|) (-13 (-362) (-10 -8 (-15 -1270 ($ (-632 (-317 (-1279 (QUOTE X) (QUOTE -3418)) (-1279) (-641))))))) (-1091)) (T -81))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-1279 (QUOTE X) (QUOTE -3418)) (-1279) (-641)))) (-5 *1 (-81 *3)) (-14 *3 (-1091)))))
+(-13 (-362) (-10 -8 (-15 -1270 ($ (-632 (-317 (-1279 (QUOTE X) (QUOTE -3418)) (-1279) (-641)))))))
+((-2591 (((-3 $ "failed") (-632 (-294 (-357)))) 112) (((-3 $ "failed") (-632 (-294 (-525)))) 100) (((-3 $ "failed") (-632 (-887 (-357)))) 134) (((-3 $ "failed") (-632 (-887 (-525)))) 123) (((-3 $ "failed") (-632 (-385 (-887 (-357))))) 88) (((-3 $ "failed") (-632 (-385 (-887 (-525))))) 74)) (-3898 (($ (-632 (-294 (-357)))) 108) (($ (-632 (-294 (-525)))) 96) (($ (-632 (-887 (-357)))) 130) (($ (-632 (-887 (-525)))) 119) (($ (-632 (-385 (-887 (-357))))) 84) (($ (-632 (-385 (-887 (-525))))) 67)) (-2350 (((-1178) $) 59)) (-1270 (((-798) $) 53) (($ (-592 (-308))) 47) (($ (-308)) 50) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 44) (($ (-632 (-317 (-1279 (QUOTE X)) (-1279) (-641)))) 45)))
+(((-82 |#1|) (-13 (-362) (-10 -8 (-15 -1270 ($ (-632 (-317 (-1279 (QUOTE X)) (-1279) (-641))))))) (-1091)) (T -82))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-1279 (QUOTE X)) (-1279) (-641)))) (-5 *1 (-82 *3)) (-14 *3 (-1091)))))
+(-13 (-362) (-10 -8 (-15 -1270 ($ (-632 (-317 (-1279 (QUOTE X)) (-1279) (-641)))))))
+((-2591 (((-3 $ "failed") (-1173 (-294 (-357)))) 104) (((-3 $ "failed") (-1173 (-294 (-525)))) 93) (((-3 $ "failed") (-1173 (-887 (-357)))) 124) (((-3 $ "failed") (-1173 (-887 (-525)))) 114) (((-3 $ "failed") (-1173 (-385 (-887 (-357))))) 82) (((-3 $ "failed") (-1173 (-385 (-887 (-525))))) 69)) (-3898 (($ (-1173 (-294 (-357)))) 100) (($ (-1173 (-294 (-525)))) 89) (($ (-1173 (-887 (-357)))) 120) (($ (-1173 (-887 (-525)))) 110) (($ (-1173 (-385 (-887 (-357))))) 78) (($ (-1173 (-385 (-887 (-525))))) 62)) (-2350 (((-1178) $) 46)) (-1270 (((-798) $) 40) (($ (-592 (-308))) 49) (($ (-308)) 36) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 52) (($ (-1173 (-317 (-1279 (QUOTE X)) (-1279) (-641)))) 37)))
+(((-83 |#1|) (-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279 (QUOTE X)) (-1279) (-641))))))) (-1091)) (T -83))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1173 (-317 (-1279 (QUOTE X)) (-1279) (-641)))) (-5 *1 (-83 *3)) (-14 *3 (-1091)))))
+(-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279 (QUOTE X)) (-1279) (-641)))))))
+((-2591 (((-3 $ "failed") (-1173 (-294 (-357)))) 79) (((-3 $ "failed") (-1173 (-294 (-525)))) 68) (((-3 $ "failed") (-1173 (-887 (-357)))) 99) (((-3 $ "failed") (-1173 (-887 (-525)))) 89) (((-3 $ "failed") (-1173 (-385 (-887 (-357))))) 57) (((-3 $ "failed") (-1173 (-385 (-887 (-525))))) 44)) (-3898 (($ (-1173 (-294 (-357)))) 75) (($ (-1173 (-294 (-525)))) 64) (($ (-1173 (-887 (-357)))) 95) (($ (-1173 (-887 (-525)))) 85) (($ (-1173 (-385 (-887 (-357))))) 53) (($ (-1173 (-385 (-887 (-525))))) 37)) (-2350 (((-1178) $) 125)) (-1270 (((-798) $) 119) (($ (-592 (-308))) 110) (($ (-308)) 116) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 114) (($ (-1173 (-317 (-1279 (QUOTE X)) (-1279 (QUOTE -3418)) (-641)))) 36)))
+(((-84 |#1|) (-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279 (QUOTE X)) (-1279 (QUOTE -3418)) (-641))))))) (-1091)) (T -84))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1173 (-317 (-1279 (QUOTE X)) (-1279 (QUOTE -3418)) (-641)))) (-5 *1 (-84 *3)) (-14 *3 (-1091)))))
+(-13 (-418) (-10 -8 (-15 -1270 ($ (-1173 (-317 (-1279 (QUOTE X)) (-1279 (QUOTE -3418)) (-641)))))))
+((-2591 (((-3 $ "failed") (-632 (-294 (-357)))) 113) (((-3 $ "failed") (-632 (-294 (-525)))) 101) (((-3 $ "failed") (-632 (-887 (-357)))) 135) (((-3 $ "failed") (-632 (-887 (-525)))) 124) (((-3 $ "failed") (-632 (-385 (-887 (-357))))) 89) (((-3 $ "failed") (-632 (-385 (-887 (-525))))) 75)) (-3898 (($ (-632 (-294 (-357)))) 109) (($ (-632 (-294 (-525)))) 97) (($ (-632 (-887 (-357)))) 131) (($ (-632 (-887 (-525)))) 120) (($ (-632 (-385 (-887 (-357))))) 85) (($ (-632 (-385 (-887 (-525))))) 68)) (-2350 (((-1178) $) 59)) (-1270 (((-798) $) 53) (($ (-592 (-308))) 43) (($ (-308)) 50) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 48) (($ (-632 (-317 (-1279 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1279) (-641)))) 44)))
+(((-85 |#1|) (-13 (-362) (-10 -8 (-15 -1270 ($ (-632 (-317 (-1279 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1279) (-641))))))) (-1091)) (T -85))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-632 (-317 (-1279 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1279) (-641)))) (-5 *1 (-85 *3)) (-14 *3 (-1091)))))
+(-13 (-362) (-10 -8 (-15 -1270 ($ (-632 (-317 (-1279 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1279) (-641)))))))
+((-2350 (((-1178) $) 44)) (-1270 (((-798) $) 38) (($ (-1173 (-641))) 92) (($ (-592 (-308))) 30) (($ (-308)) 35) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 33)))
+(((-86 |#1|) (-417) (-1091)) (T -86))
NIL
(-417)
-((-1264 (((-3 $ "failed") (-294 (-357))) 47) (((-3 $ "failed") (-294 (-525))) 52) (((-3 $ "failed") (-886 (-357))) 56) (((-3 $ "failed") (-886 (-525))) 60) (((-3 $ "failed") (-385 (-886 (-357)))) 42) (((-3 $ "failed") (-385 (-886 (-525)))) 35)) (-2831 (($ (-294 (-357))) 45) (($ (-294 (-525))) 50) (($ (-886 (-357))) 54) (($ (-886 (-525))) 58) (($ (-385 (-886 (-357)))) 40) (($ (-385 (-886 (-525)))) 32)) (-2891 (((-1177) $) 90)) (-1908 (((-797) $) 84) (($ (-592 (-308))) 78) (($ (-308)) 81) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 76) (($ (-317 (-1922 (QUOTE X)) (-1922 (QUOTE -3938)) (-641))) 31)))
-(((-87 |#1|) (-13 (-374) (-10 -8 (-15 -1908 ($ (-317 (-1922 (QUOTE X)) (-1922 (QUOTE -3938)) (-641)))))) (-1090)) (T -87))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-317 (-1922 (QUOTE X)) (-1922 (QUOTE -3938)) (-641))) (-5 *1 (-87 *3)) (-14 *3 (-1090)))))
-(-13 (-374) (-10 -8 (-15 -1908 ($ (-317 (-1922 (QUOTE X)) (-1922 (QUOTE -3938)) (-641))))))
-((-1282 (((-1172 (-632 |#1|)) (-632 |#1|)) 54)) (-4012 (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 (-592 (-855))))) |#2| (-855)) 44)) (-3517 (((-2 (|:| |minor| (-592 (-855))) (|:| -1881 |#2|) (|:| |minors| (-592 (-592 (-855)))) (|:| |ops| (-592 |#2|))) |#2| (-855)) 65 (|has| |#1| (-341)))))
-(((-88 |#1| |#2|) (-10 -7 (-15 -4012 ((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 (-592 (-855))))) |#2| (-855))) (-15 -1282 ((-1172 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-341)) (-15 -3517 ((-2 (|:| |minor| (-592 (-855))) (|:| -1881 |#2|) (|:| |minors| (-592 (-592 (-855)))) (|:| |ops| (-592 |#2|))) |#2| (-855))) |%noBranch|)) (-517) (-602 |#1|)) (T -88))
-((-3517 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |minor| (-592 (-855))) (|:| -1881 *3) (|:| |minors| (-592 (-592 (-855)))) (|:| |ops| (-592 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-855)) (-4 *3 (-602 *5)))) (-1282 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-1172 (-632 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-632 *4)) (-4 *5 (-602 *4)))) (-4012 (*1 *2 *3 *4) (-12 (-4 *5 (-517)) (-5 *2 (-2 (|:| -3276 (-632 *5)) (|:| |vec| (-1172 (-592 (-855)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-855)) (-4 *3 (-602 *5)))))
-(-10 -7 (-15 -4012 ((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 (-592 (-855))))) |#2| (-855))) (-15 -1282 ((-1172 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-341)) (-15 -3517 ((-2 (|:| |minor| (-592 (-855))) (|:| -1881 |#2|) (|:| |minors| (-592 (-592 (-855)))) (|:| |ops| (-592 |#2|))) |#2| (-855))) |%noBranch|))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1649 ((|#1| $) 35)) (-3410 (((-108) $ (-713)) NIL)) (-1505 (($) NIL T CONST)) (-1570 ((|#1| |#1| $) 30)) (-3215 ((|#1| $) 28)) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2570 ((|#1| $) NIL)) (-2573 (($ |#1| $) 31)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3513 ((|#1| $) 29)) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) 16)) (-3773 (($) 39)) (-1434 (((-713) $) 26)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) 15)) (-1908 (((-797) $) 25 (|has| |#1| (-566 (-797))))) (-3612 (($ (-592 |#1|)) NIL)) (-1318 (($ (-592 |#1|)) 37)) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 13 (|has| |#1| (-1019)))) (-4140 (((-713) $) 10 (|has| $ (-6 -4254)))))
-(((-89 |#1|) (-13 (-1038 |#1|) (-10 -8 (-15 -1318 ($ (-592 |#1|))))) (-1019)) (T -89))
-((-1318 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-89 *3)))))
-(-13 (-1038 |#1|) (-10 -8 (-15 -1318 ($ (-592 |#1|)))))
-((-3999 (($ $) 10)) (-4013 (($ $) 12)))
-(((-90 |#1|) (-10 -8 (-15 -4013 (|#1| |#1|)) (-15 -3999 (|#1| |#1|))) (-91)) (T -90))
-NIL
-(-10 -8 (-15 -4013 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)))
-((-3974 (($ $) 11)) (-3951 (($ $) 10)) (-3999 (($ $) 9)) (-4013 (($ $) 8)) (-3985 (($ $) 7)) (-3963 (($ $) 6)))
+((-2591 (((-3 $ "failed") (-294 (-357))) 47) (((-3 $ "failed") (-294 (-525))) 52) (((-3 $ "failed") (-887 (-357))) 56) (((-3 $ "failed") (-887 (-525))) 60) (((-3 $ "failed") (-385 (-887 (-357)))) 42) (((-3 $ "failed") (-385 (-887 (-525)))) 35)) (-3898 (($ (-294 (-357))) 45) (($ (-294 (-525))) 50) (($ (-887 (-357))) 54) (($ (-887 (-525))) 58) (($ (-385 (-887 (-357)))) 40) (($ (-385 (-887 (-525)))) 32)) (-2350 (((-1178) $) 90)) (-1270 (((-798) $) 84) (($ (-592 (-308))) 78) (($ (-308)) 81) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 76) (($ (-317 (-1279 (QUOTE X)) (-1279 (QUOTE -3418)) (-641))) 31)))
+(((-87 |#1|) (-13 (-374) (-10 -8 (-15 -1270 ($ (-317 (-1279 (QUOTE X)) (-1279 (QUOTE -3418)) (-641)))))) (-1091)) (T -87))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-317 (-1279 (QUOTE X)) (-1279 (QUOTE -3418)) (-641))) (-5 *1 (-87 *3)) (-14 *3 (-1091)))))
+(-13 (-374) (-10 -8 (-15 -1270 ($ (-317 (-1279 (QUOTE X)) (-1279 (QUOTE -3418)) (-641))))))
+((-3698 (((-1173 (-632 |#1|)) (-632 |#1|)) 54)) (-4021 (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 (-592 (-856))))) |#2| (-856)) 44)) (-1912 (((-2 (|:| |minor| (-592 (-856))) (|:| -4216 |#2|) (|:| |minors| (-592 (-592 (-856)))) (|:| |ops| (-592 |#2|))) |#2| (-856)) 65 (|has| |#1| (-341)))))
+(((-88 |#1| |#2|) (-10 -7 (-15 -4021 ((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 (-592 (-856))))) |#2| (-856))) (-15 -3698 ((-1173 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-341)) (-15 -1912 ((-2 (|:| |minor| (-592 (-856))) (|:| -4216 |#2|) (|:| |minors| (-592 (-592 (-856)))) (|:| |ops| (-592 |#2|))) |#2| (-856))) |%noBranch|)) (-517) (-602 |#1|)) (T -88))
+((-1912 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |minor| (-592 (-856))) (|:| -4216 *3) (|:| |minors| (-592 (-592 (-856)))) (|:| |ops| (-592 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-856)) (-4 *3 (-602 *5)))) (-3698 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-1173 (-632 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-632 *4)) (-4 *5 (-602 *4)))) (-4021 (*1 *2 *3 *4) (-12 (-4 *5 (-517)) (-5 *2 (-2 (|:| -1484 (-632 *5)) (|:| |vec| (-1173 (-592 (-856)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-856)) (-4 *3 (-602 *5)))))
+(-10 -7 (-15 -4021 ((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 (-592 (-856))))) |#2| (-856))) (-15 -3698 ((-1173 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-341)) (-15 -1912 ((-2 (|:| |minor| (-592 (-856))) (|:| -4216 |#2|) (|:| |minors| (-592 (-592 (-856)))) (|:| |ops| (-592 |#2|))) |#2| (-856))) |%noBranch|))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2936 ((|#1| $) 35)) (-3330 (((-108) $ (-713)) NIL)) (-2305 (($) NIL T CONST)) (-3158 ((|#1| |#1| $) 30)) (-4081 ((|#1| $) 28)) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-3955 ((|#1| $) NIL)) (-3985 (($ |#1| $) 31)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-1881 ((|#1| $) 29)) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) 16)) (-2718 (($) 39)) (-4064 (((-713) $) 26)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) 15)) (-1270 (((-798) $) 25 (|has| |#1| (-566 (-798))))) (-1665 (($ (-592 |#1|)) NIL)) (-3769 (($ (-592 |#1|)) 37)) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 13 (|has| |#1| (-1020)))) (-3596 (((-713) $) 10 (|has| $ (-6 -4255)))))
+(((-89 |#1|) (-13 (-1039 |#1|) (-10 -8 (-15 -3769 ($ (-592 |#1|))))) (-1020)) (T -89))
+((-3769 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-89 *3)))))
+(-13 (-1039 |#1|) (-10 -8 (-15 -3769 ($ (-592 |#1|)))))
+((-2287 (($ $) 10)) (-2303 (($ $) 12)))
+(((-90 |#1|) (-10 -8 (-15 -2303 (|#1| |#1|)) (-15 -2287 (|#1| |#1|))) (-91)) (T -90))
+NIL
+(-10 -8 (-15 -2303 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)))
+((-2257 (($ $) 11)) (-2226 (($ $) 10)) (-2287 (($ $) 9)) (-2303 (($ $) 8)) (-2273 (($ $) 7)) (-2242 (($ $) 6)))
(((-91) (-131)) (T -91))
-((-3974 (*1 *1 *1) (-4 *1 (-91))) (-3951 (*1 *1 *1) (-4 *1 (-91))) (-3999 (*1 *1 *1) (-4 *1 (-91))) (-4013 (*1 *1 *1) (-4 *1 (-91))) (-3985 (*1 *1 *1) (-4 *1 (-91))) (-3963 (*1 *1 *1) (-4 *1 (-91))))
-(-13 (-10 -8 (-15 -3963 ($ $)) (-15 -3985 ($ $)) (-15 -4013 ($ $)) (-15 -3999 ($ $)) (-15 -3951 ($ $)) (-15 -3974 ($ $))))
-((-1893 (((-108) $ $) NIL)) (-4177 (((-357) (-1073) (-357)) 42) (((-357) (-1073) (-1073) (-357)) 41)) (-2917 (((-357) (-357)) 33)) (-1945 (((-1177)) 36)) (-2337 (((-1073) $) NIL)) (-1382 (((-357) (-1073) (-1073)) 46) (((-357) (-1073)) 48)) (-2663 (((-1037) $) NIL)) (-3865 (((-357) (-1073) (-1073)) 47)) (-2572 (((-357) (-1073) (-1073)) 49) (((-357) (-1073)) 50)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
-(((-92) (-13 (-1019) (-10 -7 (-15 -1382 ((-357) (-1073) (-1073))) (-15 -1382 ((-357) (-1073))) (-15 -2572 ((-357) (-1073) (-1073))) (-15 -2572 ((-357) (-1073))) (-15 -3865 ((-357) (-1073) (-1073))) (-15 -1945 ((-1177))) (-15 -2917 ((-357) (-357))) (-15 -4177 ((-357) (-1073) (-357))) (-15 -4177 ((-357) (-1073) (-1073) (-357))) (-6 -4254)))) (T -92))
-((-1382 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92)))) (-1382 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92)))) (-2572 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92)))) (-2572 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92)))) (-3865 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92)))) (-1945 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-92)))) (-2917 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-92)))) (-4177 (*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1073)) (-5 *1 (-92)))) (-4177 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1073)) (-5 *1 (-92)))))
-(-13 (-1019) (-10 -7 (-15 -1382 ((-357) (-1073) (-1073))) (-15 -1382 ((-357) (-1073))) (-15 -2572 ((-357) (-1073) (-1073))) (-15 -2572 ((-357) (-1073))) (-15 -3865 ((-357) (-1073) (-1073))) (-15 -1945 ((-1177))) (-15 -2917 ((-357) (-357))) (-15 -4177 ((-357) (-1073) (-357))) (-15 -4177 ((-357) (-1073) (-1073) (-357))) (-6 -4254)))
+((-2257 (*1 *1 *1) (-4 *1 (-91))) (-2226 (*1 *1 *1) (-4 *1 (-91))) (-2287 (*1 *1 *1) (-4 *1 (-91))) (-2303 (*1 *1 *1) (-4 *1 (-91))) (-2273 (*1 *1 *1) (-4 *1 (-91))) (-2242 (*1 *1 *1) (-4 *1 (-91))))
+(-13 (-10 -8 (-15 -2242 ($ $)) (-15 -2273 ($ $)) (-15 -2303 ($ $)) (-15 -2287 ($ $)) (-15 -2226 ($ $)) (-15 -2257 ($ $))))
+((-1260 (((-108) $ $) NIL)) (-3077 (((-357) (-1074) (-357)) 42) (((-357) (-1074) (-1074) (-357)) 41)) (-1207 (((-357) (-357)) 33)) (-3883 (((-1178)) 36)) (-3451 (((-1074) $) NIL)) (-2906 (((-357) (-1074) (-1074)) 46) (((-357) (-1074)) 48)) (-2012 (((-1038) $) NIL)) (-2346 (((-357) (-1074) (-1074)) 47)) (-3974 (((-357) (-1074) (-1074)) 49) (((-357) (-1074)) 50)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
+(((-92) (-13 (-1020) (-10 -7 (-15 -2906 ((-357) (-1074) (-1074))) (-15 -2906 ((-357) (-1074))) (-15 -3974 ((-357) (-1074) (-1074))) (-15 -3974 ((-357) (-1074))) (-15 -2346 ((-357) (-1074) (-1074))) (-15 -3883 ((-1178))) (-15 -1207 ((-357) (-357))) (-15 -3077 ((-357) (-1074) (-357))) (-15 -3077 ((-357) (-1074) (-1074) (-357))) (-6 -4255)))) (T -92))
+((-2906 (*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-357)) (-5 *1 (-92)))) (-2906 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-357)) (-5 *1 (-92)))) (-3974 (*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-357)) (-5 *1 (-92)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-357)) (-5 *1 (-92)))) (-2346 (*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-357)) (-5 *1 (-92)))) (-3883 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-92)))) (-1207 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-92)))) (-3077 (*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1074)) (-5 *1 (-92)))) (-3077 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1074)) (-5 *1 (-92)))))
+(-13 (-1020) (-10 -7 (-15 -2906 ((-357) (-1074) (-1074))) (-15 -2906 ((-357) (-1074))) (-15 -3974 ((-357) (-1074) (-1074))) (-15 -3974 ((-357) (-1074))) (-15 -2346 ((-357) (-1074) (-1074))) (-15 -3883 ((-1178))) (-15 -1207 ((-357) (-357))) (-15 -3077 ((-357) (-1074) (-357))) (-15 -3077 ((-357) (-1074) (-1074) (-357))) (-6 -4255)))
NIL
(((-93) (-131)) (T -93))
NIL
-(-13 (-10 -7 (-6 -4254) (-6 (-4256 "*")) (-6 -4255) (-6 -4251) (-6 -4249) (-6 -4248) (-6 -4247) (-6 -4252) (-6 -4246) (-6 -4245) (-6 -4244) (-6 -4243) (-6 -4242) (-6 -4250) (-6 -4253) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4241)))
-((-1893 (((-108) $ $) NIL)) (-1505 (($) NIL T CONST)) (-2866 (((-3 $ "failed") $) NIL)) (-2133 (((-108) $) NIL)) (-1907 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-525))) 22)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 14)) (-2663 (((-1037) $) NIL)) (-3928 ((|#1| $ |#1|) 11)) (-3634 (($ $ $) NIL)) (-1518 (($ $ $) NIL)) (-1908 (((-797) $) 20)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3882 (($) 8 T CONST)) (-3961 (((-108) $ $) 10)) (-4082 (($ $ $) NIL)) (** (($ $ (-855)) 28) (($ $ (-713)) NIL) (($ $ (-525)) 16)) (* (($ $ $) 29)))
-(((-94 |#1|) (-13 (-450) (-265 |#1| |#1|) (-10 -8 (-15 -1907 ($ (-1 |#1| |#1|))) (-15 -1907 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1907 ($ (-1 |#1| |#1| (-525)))))) (-976)) (T -94))
-((-1907 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-94 *3)))) (-1907 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-94 *3)))) (-1907 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-525))) (-4 *3 (-976)) (-5 *1 (-94 *3)))))
-(-13 (-450) (-265 |#1| |#1|) (-10 -8 (-15 -1907 ($ (-1 |#1| |#1|))) (-15 -1907 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1907 ($ (-1 |#1| |#1| (-525))))))
-((-2475 (((-396 |#2|) |#2| (-592 |#2|)) 10) (((-396 |#2|) |#2| |#2|) 11)))
-(((-95 |#1| |#2|) (-10 -7 (-15 -2475 ((-396 |#2|) |#2| |#2|)) (-15 -2475 ((-396 |#2|) |#2| (-592 |#2|)))) (-13 (-429) (-138)) (-1148 |#1|)) (T -95))
-((-2475 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-13 (-429) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-95 *5 *3)))) (-2475 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-429) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1148 *4)))))
-(-10 -7 (-15 -2475 ((-396 |#2|) |#2| |#2|)) (-15 -2475 ((-396 |#2|) |#2| (-592 |#2|))))
-((-1893 (((-108) $ $) 10)))
-(((-96 |#1|) (-10 -8 (-15 -1893 ((-108) |#1| |#1|))) (-97)) (T -96))
-NIL
-(-10 -8 (-15 -1893 ((-108) |#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-3961 (((-108) $ $) 6)))
+(-13 (-10 -7 (-6 -4255) (-6 (-4257 "*")) (-6 -4256) (-6 -4252) (-6 -4250) (-6 -4249) (-6 -4248) (-6 -4253) (-6 -4247) (-6 -4246) (-6 -4245) (-6 -4244) (-6 -4243) (-6 -4251) (-6 -4254) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4242)))
+((-1260 (((-108) $ $) NIL)) (-2305 (($) NIL T CONST)) (-3762 (((-3 $ "failed") $) NIL)) (-1985 (((-108) $) NIL)) (-1996 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-525))) 22)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 14)) (-2012 (((-1038) $) NIL)) (-3410 ((|#1| $ |#1|) 11)) (-3700 (($ $ $) NIL)) (-2222 (($ $ $) NIL)) (-1270 (((-798) $) 20)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3363 (($) 8 T CONST)) (-3994 (((-108) $ $) 10)) (-4100 (($ $ $) NIL)) (** (($ $ (-856)) 28) (($ $ (-713)) NIL) (($ $ (-525)) 16)) (* (($ $ $) 29)))
+(((-94 |#1|) (-13 (-450) (-265 |#1| |#1|) (-10 -8 (-15 -1996 ($ (-1 |#1| |#1|))) (-15 -1996 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1996 ($ (-1 |#1| |#1| (-525)))))) (-977)) (T -94))
+((-1996 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-94 *3)))) (-1996 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-94 *3)))) (-1996 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-525))) (-4 *3 (-977)) (-5 *1 (-94 *3)))))
+(-13 (-450) (-265 |#1| |#1|) (-10 -8 (-15 -1996 ($ (-1 |#1| |#1|))) (-15 -1996 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1996 ($ (-1 |#1| |#1| (-525))))))
+((-1217 (((-396 |#2|) |#2| (-592 |#2|)) 10) (((-396 |#2|) |#2| |#2|) 11)))
+(((-95 |#1| |#2|) (-10 -7 (-15 -1217 ((-396 |#2|) |#2| |#2|)) (-15 -1217 ((-396 |#2|) |#2| (-592 |#2|)))) (-13 (-429) (-138)) (-1149 |#1|)) (T -95))
+((-1217 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-1149 *5)) (-4 *5 (-13 (-429) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-95 *5 *3)))) (-1217 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-429) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-95 *4 *3)) (-4 *3 (-1149 *4)))))
+(-10 -7 (-15 -1217 ((-396 |#2|) |#2| |#2|)) (-15 -1217 ((-396 |#2|) |#2| (-592 |#2|))))
+((-1260 (((-108) $ $) 10)))
+(((-96 |#1|) (-10 -8 (-15 -1260 ((-108) |#1| |#1|))) (-97)) (T -96))
+NIL
+(-10 -8 (-15 -1260 ((-108) |#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-3994 (((-108) $ $) 6)))
(((-97) (-131)) (T -97))
-((-1893 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) (-3961 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))))
-(-13 (-10 -8 (-15 -3961 ((-108) $ $)) (-15 -1893 ((-108) $ $))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3871 ((|#1| $) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-2822 ((|#1| $ |#1|) 13 (|has| $ (-6 -4255)))) (-3173 (($ $ $) NIL (|has| $ (-6 -4255)))) (-3213 (($ $ $) NIL (|has| $ (-6 -4255)))) (-1561 (($ $ (-592 |#1|)) 15)) (-2109 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) (($ $ "left" $) NIL (|has| $ (-6 -4255))) (($ $ "right" $) NIL (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-1505 (($) NIL T CONST)) (-4152 (($ $) 11)) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) NIL)) (-3106 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2317 (($ $ |#1| $) 17)) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2307 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1887 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-592 |#1|) |#1| |#1| |#1|)) 35)) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-4138 (($ $) 10)) (-1564 (((-592 |#1|) $) NIL)) (-3723 (((-108) $) 12)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) 9)) (-3773 (($) 16)) (-3928 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4068 (((-525) $ $) NIL)) (-1810 (((-108) $) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) NIL)) (-1519 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2230 (($ (-713) |#1|) 19)) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-98 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4254) (-6 -4255) (-15 -2230 ($ (-713) |#1|)) (-15 -1561 ($ $ (-592 |#1|))) (-15 -2307 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2307 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1887 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1887 ($ $ |#1| (-1 (-592 |#1|) |#1| |#1| |#1|))))) (-1019)) (T -98))
-((-2230 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-98 *3)) (-4 *3 (-1019)))) (-1561 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-98 *3)))) (-2307 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1019)))) (-2307 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1019)) (-5 *1 (-98 *3)))) (-1887 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1019)) (-5 *1 (-98 *2)))) (-1887 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-592 *2) *2 *2 *2)) (-4 *2 (-1019)) (-5 *1 (-98 *2)))))
-(-13 (-121 |#1|) (-10 -8 (-6 -4254) (-6 -4255) (-15 -2230 ($ (-713) |#1|)) (-15 -1561 ($ $ (-592 |#1|))) (-15 -2307 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2307 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1887 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1887 ($ $ |#1| (-1 (-592 |#1|) |#1| |#1| |#1|)))))
-((-3231 ((|#3| |#2| |#2|) 29)) (-2442 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4256 "*"))))) (-3118 ((|#3| |#2| |#2|) 30)) (-2025 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4256 "*"))))))
-(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3231 (|#3| |#2| |#2|)) (-15 -3118 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4256 "*"))) (PROGN (-15 -2442 (|#1| |#2| |#2|)) (-15 -2025 (|#1| |#2|))) |%noBranch|)) (-976) (-1148 |#1|) (-630 |#1| |#4| |#5|) (-351 |#1|) (-351 |#1|)) (T -99))
-((-2025 (*1 *2 *3) (-12 (|has| *2 (-6 (-4256 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2)) (-4 *2 (-976)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1148 *2)) (-4 *4 (-630 *2 *5 *6)))) (-2442 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4256 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2)) (-4 *2 (-976)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1148 *2)) (-4 *4 (-630 *2 *5 *6)))) (-3118 (*1 *2 *3 *3) (-12 (-4 *4 (-976)) (-4 *2 (-630 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1148 *4)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)))) (-3231 (*1 *2 *3 *3) (-12 (-4 *4 (-976)) (-4 *2 (-630 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1148 *4)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)))))
-(-10 -7 (-15 -3231 (|#3| |#2| |#2|)) (-15 -3118 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4256 "*"))) (PROGN (-15 -2442 (|#1| |#2| |#2|)) (-15 -2025 (|#1| |#2|))) |%noBranch|))
-((-1893 (((-108) $ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3176 (((-592 (-1090))) 33)) (-2422 (((-2 (|:| |zeros| (-1071 (-205))) (|:| |ones| (-1071 (-205))) (|:| |singularities| (-1071 (-205)))) (-1090)) 35)) (-3961 (((-108) $ $) NIL)))
-(((-100) (-13 (-1019) (-10 -7 (-15 -3176 ((-592 (-1090)))) (-15 -2422 ((-2 (|:| |zeros| (-1071 (-205))) (|:| |ones| (-1071 (-205))) (|:| |singularities| (-1071 (-205)))) (-1090))) (-6 -4254)))) (T -100))
-((-3176 (*1 *2) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-100)))) (-2422 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-2 (|:| |zeros| (-1071 (-205))) (|:| |ones| (-1071 (-205))) (|:| |singularities| (-1071 (-205))))) (-5 *1 (-100)))))
-(-13 (-1019) (-10 -7 (-15 -3176 ((-592 (-1090)))) (-15 -2422 ((-2 (|:| |zeros| (-1071 (-205))) (|:| |ones| (-1071 (-205))) (|:| |singularities| (-1071 (-205)))) (-1090))) (-6 -4254)))
-((-3612 (($ (-592 |#2|)) 11)))
-(((-101 |#1| |#2|) (-10 -8 (-15 -3612 (|#1| (-592 |#2|)))) (-102 |#2|) (-1126)) (T -101))
-NIL
-(-10 -8 (-15 -3612 (|#1| (-592 |#2|))))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3410 (((-108) $ (-713)) 8)) (-1505 (($) 7 T CONST)) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) 9)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2570 ((|#1| $) 39)) (-2573 (($ |#1| $) 40)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3513 ((|#1| $) 41)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-3612 (($ (-592 |#1|)) 42)) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-102 |#1|) (-131) (-1126)) (T -102))
-((-3612 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-4 *1 (-102 *3)))) (-3513 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1126)))) (-2573 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1126)))) (-2570 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1126)))))
-(-13 (-464 |t#1|) (-10 -8 (-6 -4255) (-15 -3612 ($ (-592 |t#1|))) (-15 -3513 (|t#1| $)) (-15 -2573 ($ |t#1| $)) (-15 -2570 (|t#1| $))))
-(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3115 (((-525) $) NIL (|has| (-525) (-286)))) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-2305 (((-108) $ $) NIL)) (-1690 (((-525) $) NIL (|has| (-525) (-762)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL (|has| (-525) (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-967 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-967 (-525))))) (-2831 (((-525) $) NIL) (((-1090) $) NIL (|has| (-525) (-967 (-1090)))) (((-385 (-525)) $) NIL (|has| (-525) (-967 (-525)))) (((-525) $) NIL (|has| (-525) (-967 (-525))))) (-2373 (($ $ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) NIL (|has| (-525) (-510)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-3026 (((-108) $) NIL (|has| (-525) (-762)))) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| (-525) (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| (-525) (-820 (-357))))) (-2133 (((-108) $) NIL)) (-3830 (($ $) NIL)) (-1303 (((-525) $) NIL)) (-1816 (((-3 $ "failed") $) NIL (|has| (-525) (-1066)))) (-2882 (((-108) $) NIL (|has| (-525) (-762)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3525 (($ $ $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| (-525) (-789)))) (-1370 (($ (-1 (-525) (-525)) $) NIL)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL (|has| (-525) (-1066)) CONST)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2723 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-1720 (((-525) $) NIL (|has| (-525) (-510)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-3959 (((-396 $) $) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3092 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1090)) (-592 (-525))) NIL (|has| (-525) (-486 (-1090) (-525)))) (($ $ (-1090) (-525)) NIL (|has| (-525) (-486 (-1090) (-525))))) (-2183 (((-713) $) NIL)) (-3928 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-3013 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1090)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-1915 (($ $) NIL)) (-1312 (((-525) $) NIL)) (-1427 (((-826 (-525)) $) NIL (|has| (-525) (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| (-525) (-567 (-826 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-952))) (((-205) $) NIL (|has| (-525) (-952)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-843))))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1090)) NIL (|has| (-525) (-967 (-1090)))) (((-385 (-525)) $) NIL) (((-935 2) $) 10)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| (-525) (-843))) (|has| (-525) (-136))))) (-2093 (((-713)) NIL)) (-2498 (((-525) $) NIL (|has| (-525) (-510)))) (-3549 (($ (-385 (-525))) 9)) (-2262 (((-108) $ $) NIL)) (-2092 (($ $) NIL (|has| (-525) (-762)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1090)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4024 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3995 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3983 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4082 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL)))
-(((-103) (-13 (-924 (-525)) (-10 -8 (-15 -1908 ((-385 (-525)) $)) (-15 -1908 ((-935 2) $)) (-15 -2723 ((-385 (-525)) $)) (-15 -3549 ($ (-385 (-525))))))) (T -103))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-935 2)) (-5 *1 (-103)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) (-3549 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))))
-(-13 (-924 (-525)) (-10 -8 (-15 -1908 ((-385 (-525)) $)) (-15 -1908 ((-935 2) $)) (-15 -2723 ((-385 (-525)) $)) (-15 -3549 ($ (-385 (-525))))))
-((-3990 (((-592 (-898)) $) 14)) (-1310 (((-1090) $) 10)) (-1908 (((-797) $) 23)) (-1376 (($ (-1090) (-592 (-898))) 15)))
-(((-104) (-13 (-566 (-797)) (-10 -8 (-15 -1310 ((-1090) $)) (-15 -3990 ((-592 (-898)) $)) (-15 -1376 ($ (-1090) (-592 (-898))))))) (T -104))
-((-1310 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-104)))) (-3990 (*1 *2 *1) (-12 (-5 *2 (-592 (-898))) (-5 *1 (-104)))) (-1376 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-898))) (-5 *1 (-104)))))
-(-13 (-566 (-797)) (-10 -8 (-15 -1310 ((-1090) $)) (-15 -3990 ((-592 (-898)) $)) (-15 -1376 ($ (-1090) (-592 (-898))))))
-((-1893 (((-108) $ $) NIL)) (-1287 (((-1037) $ (-1037)) 24)) (-1332 (($ $ (-1073)) 17)) (-3720 (((-3 (-1037) "failed") $) 23)) (-1300 (((-1037) $) 21)) (-3338 (((-1037) $ (-1037)) 26)) (-3763 (((-1037) $) 25)) (-2396 (($ (-366)) NIL) (($ (-366) (-1073)) 16)) (-1310 (((-366) $) NIL)) (-2337 (((-1073) $) NIL)) (-2388 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-2702 (($ $) 18)) (-3961 (((-108) $ $) NIL)))
-(((-105) (-13 (-342 (-366) (-1037)) (-10 -8 (-15 -3720 ((-3 (-1037) "failed") $)) (-15 -3763 ((-1037) $)) (-15 -3338 ((-1037) $ (-1037)))))) (T -105))
-((-3720 (*1 *2 *1) (|partial| -12 (-5 *2 (-1037)) (-5 *1 (-105)))) (-3763 (*1 *2 *1) (-12 (-5 *2 (-1037)) (-5 *1 (-105)))) (-3338 (*1 *2 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-105)))))
-(-13 (-342 (-366) (-1037)) (-10 -8 (-15 -3720 ((-3 (-1037) "failed") $)) (-15 -3763 ((-1037) $)) (-15 -3338 ((-1037) $ (-1037)))))
-((-1893 (((-108) $ $) NIL)) (-2350 (($ $) NIL)) (-3038 (($ $ $) NIL)) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3072 (((-108) $) NIL (|has| (-108) (-789))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-1356 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-108) (-789)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4255)))) (-3327 (($ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-2109 (((-108) $ (-1139 (-525)) (-108)) NIL (|has| $ (-6 -4255))) (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| $ (-6 -4255)))) (-1693 (($ $) NIL)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-2273 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-4004 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-2870 (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4255)))) (-2796 (((-108) $ (-525)) NIL)) (-3763 (((-525) (-108) $ (-525)) NIL (|has| (-108) (-1019))) (((-525) (-108) $) NIL (|has| (-108) (-1019))) (((-525) (-1 (-108) (-108)) $) NIL)) (-2026 (((-592 (-108)) $) NIL (|has| $ (-6 -4254)))) (-1330 (($ $ $) NIL)) (-2480 (($ $) NIL)) (-2376 (($ $ $) NIL)) (-4018 (($ (-713) (-108)) 8)) (-2353 (($ $ $) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) NIL (|has| (-525) (-789)))) (-3525 (($ $ $) NIL)) (-1932 (($ $ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-3168 (((-592 (-108)) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL)) (-2857 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-108) (-108) (-108)) $ $) NIL) (($ (-1 (-108) (-108)) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL)) (-3167 (($ $ $ (-525)) NIL) (($ (-108) $ (-525)) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-2663 (((-1037) $) NIL)) (-3135 (((-108) $) NIL (|has| (-525) (-789)))) (-4054 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-1911 (($ $ (-108)) NIL (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-108)) (-592 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-273 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-592 (-273 (-108)))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-3171 (((-592 (-108)) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 (($ $ (-1139 (-525))) NIL) (((-108) $ (-525)) NIL) (((-108) $ (-525) (-108)) NIL)) (-3653 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-2686 (((-713) (-108) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019)))) (((-713) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254)))) (-3703 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| (-108) (-567 (-501))))) (-1922 (($ (-592 (-108))) NIL)) (-2664 (($ (-592 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-1908 (((-797) $) NIL)) (-2848 (($ (-713) (-108)) 9)) (-2667 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254)))) (-1341 (($ $ $) NIL)) (-3465 (($ $) NIL)) (-3800 (($ $ $) NIL)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-3791 (($ $ $) NIL)) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-106) (-13 (-119) (-10 -8 (-15 -2848 ($ (-713) (-108)))))) (T -106))
-((-2848 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-108)) (-5 *1 (-106)))))
-(-13 (-119) (-10 -8 (-15 -2848 ($ (-713) (-108)))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
-(((-107 |#1| |#2|) (-131) (-976) (-976)) (T -107))
-NIL
-(-13 (-594 |t#1|) (-982 |t#2|) (-10 -7 (-6 -4249) (-6 -4248)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-982 |#2|) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-2350 (($ $) 11)) (-3038 (($ $ $) 16)) (-3146 (($) 7 T CONST)) (-2531 (($ $) 6)) (-3107 (((-713)) 25)) (-3375 (($) 31)) (-1330 (($ $ $) 14)) (-2480 (($ $) 9)) (-2376 (($ $ $) 17)) (-2353 (($ $ $) 18)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-1780 (((-855) $) 30)) (-2337 (((-1073) $) NIL)) (-4185 (($ (-855)) 29)) (-3028 (($ $ $) 21)) (-2663 (((-1037) $) NIL)) (-3260 (($) 8 T CONST)) (-4160 (($ $ $) 22)) (-1427 (((-501) $) 37)) (-1908 (((-797) $) 40)) (-1341 (($ $ $) 12)) (-3465 (($ $) 10)) (-3800 (($ $ $) 15)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 20)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 23)) (-3791 (($ $ $) 13)))
-(((-108) (-13 (-789) (-346) (-607) (-900) (-567 (-501)) (-10 -8 (-15 -3146 ($) -3359) (-15 -3260 ($) -3359) (-15 -3465 ($ $)) (-15 -3038 ($ $ $)) (-15 -2353 ($ $ $)) (-15 -2376 ($ $ $)) (-15 -2531 ($ $))))) (T -108))
-((-3146 (*1 *1) (-5 *1 (-108))) (-3260 (*1 *1) (-5 *1 (-108))) (-3465 (*1 *1 *1) (-5 *1 (-108))) (-3038 (*1 *1 *1 *1) (-5 *1 (-108))) (-2353 (*1 *1 *1 *1) (-5 *1 (-108))) (-2376 (*1 *1 *1 *1) (-5 *1 (-108))) (-2531 (*1 *1 *1) (-5 *1 (-108))))
-(-13 (-789) (-346) (-607) (-900) (-567 (-501)) (-10 -8 (-15 -3146 ($) -3359) (-15 -3260 ($) -3359) (-15 -3465 ($ $)) (-15 -3038 ($ $ $)) (-15 -2353 ($ $ $)) (-15 -2376 ($ $ $)) (-15 -2531 ($ $))))
-((-1960 (((-3 (-1 |#1| (-592 |#1|)) "failed") (-110)) 19) (((-110) (-110) (-1 |#1| |#1|)) 13) (((-110) (-110) (-1 |#1| (-592 |#1|))) 11) (((-3 |#1| "failed") (-110) (-592 |#1|)) 21)) (-2653 (((-3 (-592 (-1 |#1| (-592 |#1|))) "failed") (-110)) 25) (((-110) (-110) (-1 |#1| |#1|)) 30) (((-110) (-110) (-592 (-1 |#1| (-592 |#1|)))) 26)) (-2590 (((-110) |#1|) 56 (|has| |#1| (-789)))) (-1838 (((-3 |#1| "failed") (-110)) 50 (|has| |#1| (-789)))))
-(((-109 |#1|) (-10 -7 (-15 -1960 ((-3 |#1| "failed") (-110) (-592 |#1|))) (-15 -1960 ((-110) (-110) (-1 |#1| (-592 |#1|)))) (-15 -1960 ((-110) (-110) (-1 |#1| |#1|))) (-15 -1960 ((-3 (-1 |#1| (-592 |#1|)) "failed") (-110))) (-15 -2653 ((-110) (-110) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2653 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2653 ((-3 (-592 (-1 |#1| (-592 |#1|))) "failed") (-110))) (IF (|has| |#1| (-789)) (PROGN (-15 -2590 ((-110) |#1|)) (-15 -1838 ((-3 |#1| "failed") (-110)))) |%noBranch|)) (-1019)) (T -109))
-((-1838 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1019)) (-4 *2 (-789)) (-5 *1 (-109 *2)))) (-2590 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-789)) (-4 *3 (-1019)))) (-2653 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-1 *4 (-592 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1019)))) (-2653 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1019)) (-5 *1 (-109 *4)))) (-2653 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 (-1 *4 (-592 *4)))) (-4 *4 (-1019)) (-5 *1 (-109 *4)))) (-1960 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-592 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1019)))) (-1960 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1019)) (-5 *1 (-109 *4)))) (-1960 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-592 *4))) (-4 *4 (-1019)) (-5 *1 (-109 *4)))) (-1960 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-592 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1019)))))
-(-10 -7 (-15 -1960 ((-3 |#1| "failed") (-110) (-592 |#1|))) (-15 -1960 ((-110) (-110) (-1 |#1| (-592 |#1|)))) (-15 -1960 ((-110) (-110) (-1 |#1| |#1|))) (-15 -1960 ((-3 (-1 |#1| (-592 |#1|)) "failed") (-110))) (-15 -2653 ((-110) (-110) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2653 ((-110) (-110) (-1 |#1| |#1|))) (-15 -2653 ((-3 (-592 (-1 |#1| (-592 |#1|))) "failed") (-110))) (IF (|has| |#1| (-789)) (PROGN (-15 -2590 ((-110) |#1|)) (-15 -1838 ((-3 |#1| "failed") (-110)))) |%noBranch|))
-((-1893 (((-108) $ $) NIL)) (-1628 (((-713) $) 72) (($ $ (-713)) 30)) (-3613 (((-108) $) 32)) (-1594 (($ $ (-1073) (-716)) 26)) (-3730 (($ $ (-44 (-1073) (-716))) 15)) (-2877 (((-3 (-716) "failed") $ (-1073)) 25)) (-3990 (((-44 (-1073) (-716)) $) 14)) (-4159 (($ (-1090)) 17) (($ (-1090) (-713)) 22)) (-2581 (((-108) $) 31)) (-3207 (((-108) $) 33)) (-1310 (((-1090) $) 8)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-3034 (((-108) $ (-1090)) 10)) (-3354 (($ $ (-1 (-501) (-592 (-501)))) 52) (((-3 (-1 (-501) (-592 (-501))) "failed") $) 56)) (-2663 (((-1037) $) NIL)) (-1362 (((-108) $ (-1073)) 29)) (-1727 (($ $ (-1 (-108) $ $)) 35)) (-3303 (((-3 (-1 (-797) (-592 (-797))) "failed") $) 54) (($ $ (-1 (-797) (-592 (-797)))) 41) (($ $ (-1 (-797) (-797))) 43)) (-2630 (($ $ (-1073)) 45)) (-2135 (($ $) 63)) (-2417 (($ $ (-1 (-108) $ $)) 36)) (-1908 (((-797) $) 48)) (-1888 (($ $ (-1073)) 27)) (-2150 (((-3 (-713) "failed") $) 58)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 71)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 79)))
-(((-110) (-13 (-789) (-10 -8 (-15 -1310 ((-1090) $)) (-15 -3990 ((-44 (-1073) (-716)) $)) (-15 -2135 ($ $)) (-15 -4159 ($ (-1090))) (-15 -4159 ($ (-1090) (-713))) (-15 -2150 ((-3 (-713) "failed") $)) (-15 -2581 ((-108) $)) (-15 -3613 ((-108) $)) (-15 -3207 ((-108) $)) (-15 -1628 ((-713) $)) (-15 -1628 ($ $ (-713))) (-15 -1727 ($ $ (-1 (-108) $ $))) (-15 -2417 ($ $ (-1 (-108) $ $))) (-15 -3303 ((-3 (-1 (-797) (-592 (-797))) "failed") $)) (-15 -3303 ($ $ (-1 (-797) (-592 (-797))))) (-15 -3303 ($ $ (-1 (-797) (-797)))) (-15 -3354 ($ $ (-1 (-501) (-592 (-501))))) (-15 -3354 ((-3 (-1 (-501) (-592 (-501))) "failed") $)) (-15 -3034 ((-108) $ (-1090))) (-15 -1362 ((-108) $ (-1073))) (-15 -1888 ($ $ (-1073))) (-15 -2630 ($ $ (-1073))) (-15 -2877 ((-3 (-716) "failed") $ (-1073))) (-15 -1594 ($ $ (-1073) (-716))) (-15 -3730 ($ $ (-44 (-1073) (-716))))))) (T -110))
-((-1310 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-110)))) (-3990 (*1 *2 *1) (-12 (-5 *2 (-44 (-1073) (-716))) (-5 *1 (-110)))) (-2135 (*1 *1 *1) (-5 *1 (-110))) (-4159 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-110)))) (-4159 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-713)) (-5 *1 (-110)))) (-2150 (*1 *2 *1) (|partial| -12 (-5 *2 (-713)) (-5 *1 (-110)))) (-2581 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-3613 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-3207 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-1628 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-110)))) (-1628 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-110)))) (-1727 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-2417 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-3303 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-797) (-592 (-797)))) (-5 *1 (-110)))) (-3303 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-797) (-592 (-797)))) (-5 *1 (-110)))) (-3303 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-797) (-797))) (-5 *1 (-110)))) (-3354 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110)))) (-3354 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110)))) (-3034 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-108)) (-5 *1 (-110)))) (-1362 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-108)) (-5 *1 (-110)))) (-1888 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-110)))) (-2630 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-110)))) (-2877 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-716)) (-5 *1 (-110)))) (-1594 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-716)) (-5 *1 (-110)))) (-3730 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1073) (-716))) (-5 *1 (-110)))))
-(-13 (-789) (-10 -8 (-15 -1310 ((-1090) $)) (-15 -3990 ((-44 (-1073) (-716)) $)) (-15 -2135 ($ $)) (-15 -4159 ($ (-1090))) (-15 -4159 ($ (-1090) (-713))) (-15 -2150 ((-3 (-713) "failed") $)) (-15 -2581 ((-108) $)) (-15 -3613 ((-108) $)) (-15 -3207 ((-108) $)) (-15 -1628 ((-713) $)) (-15 -1628 ($ $ (-713))) (-15 -1727 ($ $ (-1 (-108) $ $))) (-15 -2417 ($ $ (-1 (-108) $ $))) (-15 -3303 ((-3 (-1 (-797) (-592 (-797))) "failed") $)) (-15 -3303 ($ $ (-1 (-797) (-592 (-797))))) (-15 -3303 ($ $ (-1 (-797) (-797)))) (-15 -3354 ($ $ (-1 (-501) (-592 (-501))))) (-15 -3354 ((-3 (-1 (-501) (-592 (-501))) "failed") $)) (-15 -3034 ((-108) $ (-1090))) (-15 -1362 ((-108) $ (-1073))) (-15 -1888 ($ $ (-1073))) (-15 -2630 ($ $ (-1073))) (-15 -2877 ((-3 (-716) "failed") $ (-1073))) (-15 -1594 ($ $ (-1073) (-716))) (-15 -3730 ($ $ (-44 (-1073) (-716))))))
-((-2439 (((-525) |#2|) 37)))
-(((-111 |#1| |#2|) (-10 -7 (-15 -2439 ((-525) |#2|))) (-13 (-341) (-967 (-385 (-525)))) (-1148 |#1|)) (T -111))
-((-2439 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-967 (-385 (-525))))) (-5 *2 (-525)) (-5 *1 (-111 *4 *3)) (-4 *3 (-1148 *4)))))
-(-10 -7 (-15 -2439 ((-525) |#2|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3969 (($ $ (-525)) NIL)) (-2305 (((-108) $ $) NIL)) (-1505 (($) NIL T CONST)) (-3356 (($ (-1086 (-525)) (-525)) NIL)) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-2247 (($ $) NIL)) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-1737 (((-713) $) NIL)) (-2133 (((-108) $) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2238 (((-525)) NIL)) (-1276 (((-525) $) NIL)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3538 (($ $ (-525)) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-4076 (((-1071 (-525)) $) NIL)) (-1801 (($ $) NIL)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL)) (-2093 (((-713)) NIL)) (-2262 (((-108) $ $) NIL)) (-2038 (((-525) $ (-525)) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL)))
-(((-112 |#1|) (-803 |#1|) (-525)) (T -112))
-NIL
-(-803 |#1|)
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3115 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-286)))) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-112 |#1|) (-843)))) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| (-112 |#1|) (-843)))) (-2305 (((-108) $ $) NIL)) (-1690 (((-525) $) NIL (|has| (-112 |#1|) (-762)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-112 |#1|) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL (|has| (-112 |#1|) (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-112 |#1|) (-967 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-112 |#1|) (-967 (-525))))) (-2831 (((-112 |#1|) $) NIL) (((-1090) $) NIL (|has| (-112 |#1|) (-967 (-1090)))) (((-385 (-525)) $) NIL (|has| (-112 |#1|) (-967 (-525)))) (((-525) $) NIL (|has| (-112 |#1|) (-967 (-525))))) (-2536 (($ $) NIL) (($ (-525) $) NIL)) (-2373 (($ $ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| (-112 |#1|) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-112 |#1|) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-112 |#1|))) (|:| |vec| (-1172 (-112 |#1|)))) (-632 $) (-1172 $)) NIL) (((-632 (-112 |#1|)) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) NIL (|has| (-112 |#1|) (-510)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-3026 (((-108) $) NIL (|has| (-112 |#1|) (-762)))) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| (-112 |#1|) (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| (-112 |#1|) (-820 (-357))))) (-2133 (((-108) $) NIL)) (-3830 (($ $) NIL)) (-1303 (((-112 |#1|) $) NIL)) (-1816 (((-3 $ "failed") $) NIL (|has| (-112 |#1|) (-1066)))) (-2882 (((-108) $) NIL (|has| (-112 |#1|) (-762)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3525 (($ $ $) NIL (|has| (-112 |#1|) (-789)))) (-3630 (($ $ $) NIL (|has| (-112 |#1|) (-789)))) (-1370 (($ (-1 (-112 |#1|) (-112 |#1|)) $) NIL)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL (|has| (-112 |#1|) (-1066)) CONST)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2723 (($ $) NIL (|has| (-112 |#1|) (-286)))) (-1720 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-510)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-112 |#1|) (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-112 |#1|) (-843)))) (-3959 (((-396 $) $) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3092 (($ $ (-592 (-112 |#1|)) (-592 (-112 |#1|))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-112 |#1|) (-112 |#1|)) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-273 (-112 |#1|))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-592 (-273 (-112 |#1|)))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-592 (-1090)) (-592 (-112 |#1|))) NIL (|has| (-112 |#1|) (-486 (-1090) (-112 |#1|)))) (($ $ (-1090) (-112 |#1|)) NIL (|has| (-112 |#1|) (-486 (-1090) (-112 |#1|))))) (-2183 (((-713) $) NIL)) (-3928 (($ $ (-112 |#1|)) NIL (|has| (-112 |#1|) (-265 (-112 |#1|) (-112 |#1|))))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-3013 (($ $) NIL (|has| (-112 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-112 |#1|) (-213))) (($ $ (-1090)) NIL (|has| (-112 |#1|) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-112 |#1|) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-112 |#1|) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-112 |#1|) (-834 (-1090)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-713)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-1915 (($ $) NIL)) (-1312 (((-112 |#1|) $) NIL)) (-1427 (((-826 (-525)) $) NIL (|has| (-112 |#1|) (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| (-112 |#1|) (-567 (-826 (-357))))) (((-501) $) NIL (|has| (-112 |#1|) (-567 (-501)))) (((-357) $) NIL (|has| (-112 |#1|) (-952))) (((-205) $) NIL (|has| (-112 |#1|) (-952)))) (-3077 (((-161 (-385 (-525))) $) NIL)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-112 |#1|) (-843))))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-112 |#1|)) NIL) (($ (-1090)) NIL (|has| (-112 |#1|) (-967 (-1090))))) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| (-112 |#1|) (-843))) (|has| (-112 |#1|) (-136))))) (-2093 (((-713)) NIL)) (-2498 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-510)))) (-2262 (((-108) $ $) NIL)) (-2038 (((-385 (-525)) $ (-525)) NIL)) (-2092 (($ $) NIL (|has| (-112 |#1|) (-762)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $) NIL (|has| (-112 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-112 |#1|) (-213))) (($ $ (-1090)) NIL (|has| (-112 |#1|) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-112 |#1|) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-112 |#1|) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-112 |#1|) (-834 (-1090)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-713)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-4024 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-3995 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-3983 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-4082 (($ $ $) NIL) (($ (-112 |#1|) (-112 |#1|)) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-112 |#1|) $) NIL) (($ $ (-112 |#1|)) NIL)))
-(((-113 |#1|) (-13 (-924 (-112 |#1|)) (-10 -8 (-15 -2038 ((-385 (-525)) $ (-525))) (-15 -3077 ((-161 (-385 (-525))) $)) (-15 -2536 ($ $)) (-15 -2536 ($ (-525) $)))) (-525)) (T -113))
-((-2038 (*1 *2 *1 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-113 *4)) (-14 *4 (-525)) (-5 *3 (-525)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-113 *3)) (-14 *3 (-525)))) (-2536 (*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-525)))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-113 *3)) (-14 *3 (-525)))))
-(-13 (-924 (-112 |#1|)) (-10 -8 (-15 -2038 ((-385 (-525)) $ (-525))) (-15 -3077 ((-161 (-385 (-525))) $)) (-15 -2536 ($ $)) (-15 -2536 ($ (-525) $))))
-((-2109 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-4125 (((-592 $) $) 27)) (-3106 (((-108) $ $) 32)) (-4132 (((-108) |#2| $) 36)) (-1564 (((-592 |#2|) $) 22)) (-3723 (((-108) $) 16)) (-3928 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1810 (((-108) $) 45)) (-1908 (((-797) $) 41)) (-2021 (((-592 $) $) 28)) (-3961 (((-108) $ $) 34)) (-4140 (((-713) $) 43)))
-(((-114 |#1| |#2|) (-10 -8 (-15 -1908 ((-797) |#1|)) (-15 -2109 (|#1| |#1| "right" |#1|)) (-15 -2109 (|#1| |#1| "left" |#1|)) (-15 -3928 (|#1| |#1| "right")) (-15 -3928 (|#1| |#1| "left")) (-15 -2109 (|#2| |#1| "value" |#2|)) (-15 -3106 ((-108) |#1| |#1|)) (-15 -1564 ((-592 |#2|) |#1|)) (-15 -1810 ((-108) |#1|)) (-15 -3928 (|#2| |#1| "value")) (-15 -3723 ((-108) |#1|)) (-15 -4125 ((-592 |#1|) |#1|)) (-15 -2021 ((-592 |#1|) |#1|)) (-15 -3961 ((-108) |#1| |#1|)) (-15 -4132 ((-108) |#2| |#1|)) (-15 -4140 ((-713) |#1|))) (-115 |#2|) (-1126)) (T -114))
-NIL
-(-10 -8 (-15 -1908 ((-797) |#1|)) (-15 -2109 (|#1| |#1| "right" |#1|)) (-15 -2109 (|#1| |#1| "left" |#1|)) (-15 -3928 (|#1| |#1| "right")) (-15 -3928 (|#1| |#1| "left")) (-15 -2109 (|#2| |#1| "value" |#2|)) (-15 -3106 ((-108) |#1| |#1|)) (-15 -1564 ((-592 |#2|) |#1|)) (-15 -1810 ((-108) |#1|)) (-15 -3928 (|#2| |#1| "value")) (-15 -3723 ((-108) |#1|)) (-15 -4125 ((-592 |#1|) |#1|)) (-15 -2021 ((-592 |#1|) |#1|)) (-15 -3961 ((-108) |#1| |#1|)) (-15 -4132 ((-108) |#2| |#1|)) (-15 -4140 ((-713) |#1|)))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3871 ((|#1| $) 48)) (-3410 (((-108) $ (-713)) 8)) (-2822 ((|#1| $ |#1|) 39 (|has| $ (-6 -4255)))) (-3173 (($ $ $) 52 (|has| $ (-6 -4255)))) (-3213 (($ $ $) 54 (|has| $ (-6 -4255)))) (-2109 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4255))) (($ $ "left" $) 55 (|has| $ (-6 -4255))) (($ $ "right" $) 53 (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-1505 (($) 7 T CONST)) (-4152 (($ $) 57)) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) 50)) (-3106 (((-108) $ $) 42 (|has| |#1| (-1019)))) (-3100 (((-108) $ (-713)) 9)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-4138 (($ $) 59)) (-1564 (((-592 |#1|) $) 45)) (-3723 (((-108) $) 49)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-4068 (((-525) $ $) 44)) (-1810 (((-108) $) 46)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) 51)) (-1519 (((-108) $ $) 43 (|has| |#1| (-1019)))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-115 |#1|) (-131) (-1126)) (T -115))
-((-4138 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1126)))) (-3928 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1126)))) (-4152 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1126)))) (-3928 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1126)))) (-2109 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4255)) (-4 *1 (-115 *3)) (-4 *3 (-1126)))) (-3213 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-115 *2)) (-4 *2 (-1126)))) (-2109 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4255)) (-4 *1 (-115 *3)) (-4 *3 (-1126)))) (-3173 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-115 *2)) (-4 *2 (-1126)))))
-(-13 (-941 |t#1|) (-10 -8 (-15 -4138 ($ $)) (-15 -3928 ($ $ "left")) (-15 -4152 ($ $)) (-15 -3928 ($ $ "right")) (IF (|has| $ (-6 -4255)) (PROGN (-15 -2109 ($ $ "left" $)) (-15 -3213 ($ $ $)) (-15 -2109 ($ $ "right" $)) (-15 -3173 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-941 |#1|) . T) ((-1019) |has| |#1| (-1019)) ((-1126) . T))
-((-3157 (((-108) |#1|) 24)) (-3700 (((-713) (-713)) 23) (((-713)) 22)) (-3075 (((-108) |#1| (-108)) 25) (((-108) |#1|) 26)))
-(((-116 |#1|) (-10 -7 (-15 -3075 ((-108) |#1|)) (-15 -3075 ((-108) |#1| (-108))) (-15 -3700 ((-713))) (-15 -3700 ((-713) (-713))) (-15 -3157 ((-108) |#1|))) (-1148 (-525))) (T -116))
-((-3157 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525))))) (-3700 (*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525))))) (-3700 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525))))) (-3075 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525))))) (-3075 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525))))))
-(-10 -7 (-15 -3075 ((-108) |#1|)) (-15 -3075 ((-108) |#1| (-108))) (-15 -3700 ((-713))) (-15 -3700 ((-713) (-713))) (-15 -3157 ((-108) |#1|)))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3871 ((|#1| $) 15)) (-1921 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3410 (((-108) $ (-713)) NIL)) (-2822 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-3173 (($ $ $) 18 (|has| $ (-6 -4255)))) (-3213 (($ $ $) 20 (|has| $ (-6 -4255)))) (-2109 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) (($ $ "left" $) NIL (|has| $ (-6 -4255))) (($ $ "right" $) NIL (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-1505 (($) NIL T CONST)) (-4152 (($ $) 17)) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) NIL)) (-3106 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2317 (($ $ |#1| $) 23)) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-4138 (($ $) 19)) (-1564 (((-592 |#1|) $) NIL)) (-3723 (((-108) $) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3237 (($ |#1| $) 24)) (-2573 (($ |#1| $) 10)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) 14)) (-3773 (($) 8)) (-3928 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4068 (((-525) $ $) NIL)) (-1810 (((-108) $) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) NIL)) (-1519 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2131 (($ (-592 |#1|)) 12)) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-117 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4255) (-6 -4254) (-15 -2131 ($ (-592 |#1|))) (-15 -2573 ($ |#1| $)) (-15 -3237 ($ |#1| $)) (-15 -1921 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-789)) (T -117))
-((-2131 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-117 *3)))) (-2573 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789)))) (-3237 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789)))) (-1921 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) (-5 *1 (-117 *3)) (-4 *3 (-789)))))
-(-13 (-121 |#1|) (-10 -8 (-6 -4255) (-6 -4254) (-15 -2131 ($ (-592 |#1|))) (-15 -2573 ($ |#1| $)) (-15 -3237 ($ |#1| $)) (-15 -1921 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-2350 (($ $) 14)) (-2480 (($ $) 11)) (-2376 (($ $ $) 24)) (-2353 (($ $ $) 22)) (-3465 (($ $) 12)) (-3800 (($ $ $) 20)) (-3791 (($ $ $) 18)))
-(((-118 |#1|) (-10 -8 (-15 -2376 (|#1| |#1| |#1|)) (-15 -2353 (|#1| |#1| |#1|)) (-15 -3465 (|#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -2350 (|#1| |#1|)) (-15 -3791 (|#1| |#1| |#1|)) (-15 -3800 (|#1| |#1| |#1|))) (-119)) (T -118))
-NIL
-(-10 -8 (-15 -2376 (|#1| |#1| |#1|)) (-15 -2353 (|#1| |#1| |#1|)) (-15 -3465 (|#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -2350 (|#1| |#1|)) (-15 -3791 (|#1| |#1| |#1|)) (-15 -3800 (|#1| |#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-2350 (($ $) 104)) (-3038 (($ $ $) 25)) (-1840 (((-1177) $ (-525) (-525)) 67 (|has| $ (-6 -4255)))) (-3072 (((-108) $) 99 (|has| (-108) (-789))) (((-108) (-1 (-108) (-108) (-108)) $) 93)) (-1356 (($ $) 103 (-12 (|has| (-108) (-789)) (|has| $ (-6 -4255)))) (($ (-1 (-108) (-108) (-108)) $) 102 (|has| $ (-6 -4255)))) (-3327 (($ $) 98 (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $) 92)) (-3410 (((-108) $ (-713)) 38)) (-2109 (((-108) $ (-1139 (-525)) (-108)) 89 (|has| $ (-6 -4255))) (((-108) $ (-525) (-108)) 55 (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) (-108)) $) 72 (|has| $ (-6 -4254)))) (-1505 (($) 39 T CONST)) (-4103 (($ $) 101 (|has| $ (-6 -4255)))) (-1693 (($ $) 91)) (-3163 (($ $) 69 (-12 (|has| (-108) (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ (-1 (-108) (-108)) $) 73 (|has| $ (-6 -4254))) (($ (-108) $) 70 (-12 (|has| (-108) (-1019)) (|has| $ (-6 -4254))))) (-4004 (((-108) (-1 (-108) (-108) (-108)) $) 75 (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) 74 (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) 71 (-12 (|has| (-108) (-1019)) (|has| $ (-6 -4254))))) (-2870 (((-108) $ (-525) (-108)) 54 (|has| $ (-6 -4255)))) (-2796 (((-108) $ (-525)) 56)) (-3763 (((-525) (-108) $ (-525)) 96 (|has| (-108) (-1019))) (((-525) (-108) $) 95 (|has| (-108) (-1019))) (((-525) (-1 (-108) (-108)) $) 94)) (-2026 (((-592 (-108)) $) 46 (|has| $ (-6 -4254)))) (-1330 (($ $ $) 26)) (-2480 (($ $) 31)) (-2376 (($ $ $) 28)) (-4018 (($ (-713) (-108)) 78)) (-2353 (($ $ $) 29)) (-3100 (((-108) $ (-713)) 37)) (-2009 (((-525) $) 64 (|has| (-525) (-789)))) (-3525 (($ $ $) 13)) (-1932 (($ $ $) 97 (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $ $) 90)) (-3168 (((-592 (-108)) $) 47 (|has| $ (-6 -4254)))) (-4132 (((-108) (-108) $) 49 (-12 (|has| (-108) (-1019)) (|has| $ (-6 -4254))))) (-1792 (((-525) $) 63 (|has| (-525) (-789)))) (-3630 (($ $ $) 14)) (-2857 (($ (-1 (-108) (-108)) $) 42 (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-108) (-108) (-108)) $ $) 83) (($ (-1 (-108) (-108)) $) 41)) (-3017 (((-108) $ (-713)) 36)) (-2337 (((-1073) $) 9)) (-3167 (($ $ $ (-525)) 88) (($ (-108) $ (-525)) 87)) (-3222 (((-592 (-525)) $) 61)) (-1548 (((-108) (-525) $) 60)) (-2663 (((-1037) $) 10)) (-3135 (((-108) $) 65 (|has| (-525) (-789)))) (-4054 (((-3 (-108) "failed") (-1 (-108) (-108)) $) 76)) (-1911 (($ $ (-108)) 66 (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) (-108)) $) 44 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-108)) (-592 (-108))) 53 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-108) (-108)) 52 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-273 (-108))) 51 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-592 (-273 (-108)))) 50 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019))))) (-2642 (((-108) $ $) 32)) (-3218 (((-108) (-108) $) 62 (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-3171 (((-592 (-108)) $) 59)) (-1613 (((-108) $) 35)) (-3773 (($) 34)) (-3928 (($ $ (-1139 (-525))) 84) (((-108) $ (-525)) 58) (((-108) $ (-525) (-108)) 57)) (-3653 (($ $ (-1139 (-525))) 86) (($ $ (-525)) 85)) (-2686 (((-713) (-108) $) 48 (-12 (|has| (-108) (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) (-108)) $) 45 (|has| $ (-6 -4254)))) (-3703 (($ $ $ (-525)) 100 (|has| $ (-6 -4255)))) (-2135 (($ $) 33)) (-1427 (((-501) $) 68 (|has| (-108) (-567 (-501))))) (-1922 (($ (-592 (-108))) 77)) (-2664 (($ (-592 $)) 82) (($ $ $) 81) (($ (-108) $) 80) (($ $ (-108)) 79)) (-1908 (((-797) $) 11)) (-2667 (((-108) (-1 (-108) (-108)) $) 43 (|has| $ (-6 -4254)))) (-1341 (($ $ $) 27)) (-3465 (($ $) 30)) (-3800 (($ $ $) 106)) (-4024 (((-108) $ $) 16)) (-3995 (((-108) $ $) 17)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 15)) (-3983 (((-108) $ $) 18)) (-3791 (($ $ $) 105)) (-4140 (((-713) $) 40 (|has| $ (-6 -4254)))))
+((-1260 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))) (-3994 (*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108)))))
+(-13 (-10 -8 (-15 -3994 ((-108) $ $)) (-15 -1260 ((-108) $ $))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3352 ((|#1| $) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-1545 ((|#1| $ |#1|) 13 (|has| $ (-6 -4256)))) (-1793 (($ $ $) NIL (|has| $ (-6 -4256)))) (-4057 (($ $ $) NIL (|has| $ (-6 -4256)))) (-3090 (($ $ (-592 |#1|)) 15)) (-1429 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4256))) (($ $ "left" $) NIL (|has| $ (-6 -4256))) (($ $ "right" $) NIL (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) NIL (|has| $ (-6 -4256)))) (-2305 (($) NIL T CONST)) (-3602 (($ $) 11)) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) NIL)) (-2553 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3382 (($ $ |#1| $) 17)) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3212 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3647 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-592 |#1|) |#1| |#1| |#1|)) 35)) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3593 (($ $) 10)) (-2647 (((-592 |#1|) $) NIL)) (-3365 (((-108) $) 12)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) 9)) (-2718 (($) 16)) (-3410 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3294 (((-525) $ $) NIL)) (-1698 (((-108) $) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) NIL)) (-2240 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3625 (($ (-713) |#1|) 19)) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-98 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4255) (-6 -4256) (-15 -3625 ($ (-713) |#1|)) (-15 -3090 ($ $ (-592 |#1|))) (-15 -3212 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3212 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3647 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3647 ($ $ |#1| (-1 (-592 |#1|) |#1| |#1| |#1|))))) (-1020)) (T -98))
+((-3625 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-98 *3)) (-4 *3 (-1020)))) (-3090 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-98 *3)))) (-3212 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1020)))) (-3212 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-98 *3)))) (-3647 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1020)) (-5 *1 (-98 *2)))) (-3647 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-592 *2) *2 *2 *2)) (-4 *2 (-1020)) (-5 *1 (-98 *2)))))
+(-13 (-121 |#1|) (-10 -8 (-6 -4255) (-6 -4256) (-15 -3625 ($ (-713) |#1|)) (-15 -3090 ($ $ (-592 |#1|))) (-15 -3212 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3212 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3647 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3647 ($ $ |#1| (-1 (-592 |#1|) |#1| |#1| |#1|)))))
+((-4226 ((|#3| |#2| |#2|) 29)) (-2164 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4257 "*"))))) (-1310 ((|#3| |#2| |#2|) 30)) (-3373 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4257 "*"))))))
+(((-99 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4226 (|#3| |#2| |#2|)) (-15 -1310 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4257 "*"))) (PROGN (-15 -2164 (|#1| |#2| |#2|)) (-15 -3373 (|#1| |#2|))) |%noBranch|)) (-977) (-1149 |#1|) (-630 |#1| |#4| |#5|) (-351 |#1|) (-351 |#1|)) (T -99))
+((-3373 (*1 *2 *3) (-12 (|has| *2 (-6 (-4257 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2)) (-4 *2 (-977)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1149 *2)) (-4 *4 (-630 *2 *5 *6)))) (-2164 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4257 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2)) (-4 *2 (-977)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1149 *2)) (-4 *4 (-630 *2 *5 *6)))) (-1310 (*1 *2 *3 *3) (-12 (-4 *4 (-977)) (-4 *2 (-630 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1149 *4)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)))) (-4226 (*1 *2 *3 *3) (-12 (-4 *4 (-977)) (-4 *2 (-630 *4 *5 *6)) (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1149 *4)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)))))
+(-10 -7 (-15 -4226 (|#3| |#2| |#2|)) (-15 -1310 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4257 "*"))) (PROGN (-15 -2164 (|#1| |#2| |#2|)) (-15 -3373 (|#1| |#2|))) |%noBranch|))
+((-1260 (((-108) $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-1829 (((-592 (-1091))) 33)) (-1913 (((-2 (|:| |zeros| (-1072 (-205))) (|:| |ones| (-1072 (-205))) (|:| |singularities| (-1072 (-205)))) (-1091)) 35)) (-3994 (((-108) $ $) NIL)))
+(((-100) (-13 (-1020) (-10 -7 (-15 -1829 ((-592 (-1091)))) (-15 -1913 ((-2 (|:| |zeros| (-1072 (-205))) (|:| |ones| (-1072 (-205))) (|:| |singularities| (-1072 (-205)))) (-1091))) (-6 -4255)))) (T -100))
+((-1829 (*1 *2) (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-100)))) (-1913 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-2 (|:| |zeros| (-1072 (-205))) (|:| |ones| (-1072 (-205))) (|:| |singularities| (-1072 (-205))))) (-5 *1 (-100)))))
+(-13 (-1020) (-10 -7 (-15 -1829 ((-592 (-1091)))) (-15 -1913 ((-2 (|:| |zeros| (-1072 (-205))) (|:| |ones| (-1072 (-205))) (|:| |singularities| (-1072 (-205)))) (-1091))) (-6 -4255)))
+((-1665 (($ (-592 |#2|)) 11)))
+(((-101 |#1| |#2|) (-10 -8 (-15 -1665 (|#1| (-592 |#2|)))) (-102 |#2|) (-1127)) (T -101))
+NIL
+(-10 -8 (-15 -1665 (|#1| (-592 |#2|))))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3330 (((-108) $ (-713)) 8)) (-2305 (($) 7 T CONST)) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) 9)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-3955 ((|#1| $) 39)) (-3985 (($ |#1| $) 40)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-1881 ((|#1| $) 41)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-1665 (($ (-592 |#1|)) 42)) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-102 |#1|) (-131) (-1127)) (T -102))
+((-1665 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-4 *1 (-102 *3)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1127)))) (-3985 (*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1127)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1127)))))
+(-13 (-464 |t#1|) (-10 -8 (-6 -4256) (-15 -1665 ($ (-592 |t#1|))) (-15 -1881 (|t#1| $)) (-15 -3985 ($ |t#1| $)) (-15 -3955 (|t#1| $))))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1127) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2628 (((-525) $) NIL (|has| (-525) (-286)))) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-525) (-844)))) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| (-525) (-844)))) (-3197 (((-108) $ $) NIL)) (-1436 (((-525) $) NIL (|has| (-525) (-762)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL) (((-3 (-1091) "failed") $) NIL (|has| (-525) (-968 (-1091)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-968 (-525))))) (-3898 (((-525) $) NIL) (((-1091) $) NIL (|has| (-525) (-968 (-1091)))) (((-385 (-525)) $) NIL (|has| (-525) (-968 (-525)))) (((-525) $) NIL (|has| (-525) (-968 (-525))))) (-1726 (($ $ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) NIL (|has| (-525) (-510)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-3017 (((-108) $) NIL (|has| (-525) (-762)))) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-525) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-525) (-821 (-357))))) (-1985 (((-108) $) NIL)) (-1931 (($ $) NIL)) (-1498 (((-525) $) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| (-525) (-1067)))) (-3912 (((-108) $) NIL (|has| (-525) (-762)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2371 (($ $ $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| (-525) (-789)))) (-2694 (($ (-1 (-525) (-525)) $) NIL)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL (|has| (-525) (-1067)) CONST)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3025 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-2793 (((-525) $) NIL (|has| (-525) (-510)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-525) (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-525) (-844)))) (-2195 (((-396 $) $) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2602 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1091)) (-592 (-525))) NIL (|has| (-525) (-486 (-1091) (-525)))) (($ $ (-1091) (-525)) NIL (|has| (-525) (-486 (-1091) (-525))))) (-1290 (((-713) $) NIL)) (-3410 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2523 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1091)) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-2097 (($ $) NIL)) (-1512 (((-525) $) NIL)) (-2749 (((-827 (-525)) $) NIL (|has| (-525) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-525) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-953))) (((-205) $) NIL (|has| (-525) (-953)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-844))))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1091)) NIL (|has| (-525) (-968 (-1091)))) (((-385 (-525)) $) NIL) (((-936 2) $) 10)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| (-525) (-844))) (|has| (-525) (-136))))) (-2104 (((-713)) NIL)) (-1438 (((-525) $) NIL (|has| (-525) (-510)))) (-2340 (($ (-385 (-525))) 9)) (-3959 (((-108) $ $) NIL)) (-2086 (($ $) NIL (|has| (-525) (-762)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1091)) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4045 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4026 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4017 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4100 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL)))
+(((-103) (-13 (-925 (-525)) (-10 -8 (-15 -1270 ((-385 (-525)) $)) (-15 -1270 ((-936 2) $)) (-15 -3025 ((-385 (-525)) $)) (-15 -2340 ($ (-385 (-525))))))) (T -103))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-936 2)) (-5 *1 (-103)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))) (-2340 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103)))))
+(-13 (-925 (-525)) (-10 -8 (-15 -1270 ((-385 (-525)) $)) (-15 -1270 ((-936 2) $)) (-15 -3025 ((-385 (-525)) $)) (-15 -2340 ($ (-385 (-525))))))
+((-4164 (((-592 (-899)) $) 14)) (-3800 (((-1091) $) 10)) (-1270 (((-798) $) 23)) (-2856 (($ (-1091) (-592 (-899))) 15)))
+(((-104) (-13 (-566 (-798)) (-10 -8 (-15 -3800 ((-1091) $)) (-15 -4164 ((-592 (-899)) $)) (-15 -2856 ($ (-1091) (-592 (-899))))))) (T -104))
+((-3800 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-104)))) (-4164 (*1 *2 *1) (-12 (-5 *2 (-592 (-899))) (-5 *1 (-104)))) (-2856 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-899))) (-5 *1 (-104)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -3800 ((-1091) $)) (-15 -4164 ((-592 (-899)) $)) (-15 -2856 ($ (-1091) (-592 (-899))))))
+((-1260 (((-108) $ $) NIL)) (-2336 (((-1038) $ (-1038)) 24)) (-3933 (($ $ (-1074)) 17)) (-3338 (((-3 (-1038) "failed") $) 23)) (-2506 (((-1038) $) 21)) (-3875 (((-1038) $ (-1038)) 26)) (-1916 (((-1038) $) 25)) (-2409 (($ (-366)) NIL) (($ (-366) (-1074)) 16)) (-3800 (((-366) $) NIL)) (-3451 (((-1074) $) NIL)) (-2908 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-2881 (($ $) 18)) (-3994 (((-108) $ $) NIL)))
+(((-105) (-13 (-342 (-366) (-1038)) (-10 -8 (-15 -3338 ((-3 (-1038) "failed") $)) (-15 -1916 ((-1038) $)) (-15 -3875 ((-1038) $ (-1038)))))) (T -105))
+((-3338 (*1 *2 *1) (|partial| -12 (-5 *2 (-1038)) (-5 *1 (-105)))) (-1916 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-105)))) (-3875 (*1 *2 *1 *2) (-12 (-5 *2 (-1038)) (-5 *1 (-105)))))
+(-13 (-342 (-366) (-1038)) (-10 -8 (-15 -3338 ((-3 (-1038) "failed") $)) (-15 -1916 ((-1038) $)) (-15 -3875 ((-1038) $ (-1038)))))
+((-1260 (((-108) $ $) NIL)) (-3411 (($ $) NIL)) (-4144 (($ $ $) NIL)) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-2151 (((-108) $) NIL (|has| (-108) (-789))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-2549 (($ $) NIL (-12 (|has| $ (-6 -4256)) (|has| (-108) (-789)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4256)))) (-2855 (($ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-1429 (((-108) $ (-1140 (-525)) (-108)) NIL (|has| $ (-6 -4256))) (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-3559 (($ $) NIL (|has| $ (-6 -4256)))) (-3620 (($ $) NIL)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-108) (-1020))))) (-1614 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4255))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-108) (-1020))))) (-3503 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4255)) (|has| (-108) (-1020))))) (-2632 (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4256)))) (-2570 (((-108) $ (-525)) NIL)) (-1916 (((-525) (-108) $ (-525)) NIL (|has| (-108) (-1020))) (((-525) (-108) $) NIL (|has| (-108) (-1020))) (((-525) (-1 (-108) (-108)) $) NIL)) (-3702 (((-592 (-108)) $) NIL (|has| $ (-6 -4255)))) (-3818 (($ $ $) NIL)) (-1825 (($ $) NIL)) (-2789 (($ $ $) NIL)) (-3489 (($ (-713) (-108)) 8)) (-3589 (($ $ $) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) NIL (|has| (-525) (-789)))) (-2371 (($ $ $) NIL)) (-3743 (($ $ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-1749 (((-592 (-108)) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-108) (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL)) (-2622 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-108) (-108) (-108)) $ $) NIL) (($ (-1 (-108) (-108)) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL)) (-2683 (($ $ $ (-525)) NIL) (($ (-108) $ (-525)) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-2012 (((-1038) $) NIL)) (-3110 (((-108) $) NIL (|has| (-525) (-789)))) (-3207 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-2042 (($ $ (-108)) NIL (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-108)) (-592 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-273 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-592 (-273 (-108)))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-108) (-1020))))) (-1777 (((-592 (-108)) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 (($ $ (-1140 (-525))) NIL) (((-108) $ (-525)) NIL) (((-108) $ (-525) (-108)) NIL)) (-3157 (($ $ (-1140 (-525))) NIL) (($ $ (-525)) NIL)) (-2040 (((-713) (-108) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-108) (-1020)))) (((-713) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4255)))) (-3216 (($ $ $ (-525)) NIL (|has| $ (-6 -4256)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| (-108) (-567 (-501))))) (-1279 (($ (-592 (-108))) NIL)) (-2014 (($ (-592 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-1270 (((-798) $) NIL)) (-1764 (($ (-713) (-108)) 9)) (-3633 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4255)))) (-3830 (($ $ $) NIL)) (-1576 (($ $) NIL)) (-3236 (($ $ $) NIL)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) NIL)) (-3227 (($ $ $) NIL)) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-106) (-13 (-119) (-10 -8 (-15 -1764 ($ (-713) (-108)))))) (T -106))
+((-1764 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-108)) (-5 *1 (-106)))))
+(-13 (-119) (-10 -8 (-15 -1764 ($ (-713) (-108)))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+(((-107 |#1| |#2|) (-131) (-977) (-977)) (T -107))
+NIL
+(-13 (-594 |t#1|) (-983 |t#2|) (-10 -7 (-6 -4250) (-6 -4249)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-983 |#2|) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-3411 (($ $) 11)) (-4144 (($ $ $) 16)) (-2659 (($) 7 T CONST)) (-3573 (($ $) 6)) (-4190 (((-713)) 25)) (-2899 (($) 31)) (-3818 (($ $ $) 14)) (-1825 (($ $) 9)) (-2789 (($ $ $) 17)) (-3589 (($ $ $) 18)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-1736 (((-856) $) 30)) (-3451 (((-1074) $) NIL)) (-3640 (($ (-856)) 29)) (-4131 (($ $ $) 21)) (-2012 (((-1038) $) NIL)) (-2812 (($) 8 T CONST)) (-2978 (($ $ $) 22)) (-2749 (((-501) $) 37)) (-1270 (((-798) $) 40)) (-3830 (($ $ $) 12)) (-1576 (($ $) 10)) (-3236 (($ $ $) 15)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 20)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 23)) (-3227 (($ $ $) 13)))
+(((-108) (-13 (-789) (-346) (-607) (-901) (-567 (-501)) (-10 -8 (-15 -2659 ($) -1479) (-15 -2812 ($) -1479) (-15 -1576 ($ $)) (-15 -4144 ($ $ $)) (-15 -3589 ($ $ $)) (-15 -2789 ($ $ $)) (-15 -3573 ($ $))))) (T -108))
+((-2659 (*1 *1) (-5 *1 (-108))) (-2812 (*1 *1) (-5 *1 (-108))) (-1576 (*1 *1 *1) (-5 *1 (-108))) (-4144 (*1 *1 *1 *1) (-5 *1 (-108))) (-3589 (*1 *1 *1 *1) (-5 *1 (-108))) (-2789 (*1 *1 *1 *1) (-5 *1 (-108))) (-3573 (*1 *1 *1) (-5 *1 (-108))))
+(-13 (-789) (-346) (-607) (-901) (-567 (-501)) (-10 -8 (-15 -2659 ($) -1479) (-15 -2812 ($) -1479) (-15 -1576 ($ $)) (-15 -4144 ($ $ $)) (-15 -3589 ($ $ $)) (-15 -2789 ($ $ $)) (-15 -3573 ($ $))))
+((-4109 (((-3 (-1 |#1| (-592 |#1|)) "failed") (-110)) 19) (((-110) (-110) (-1 |#1| |#1|)) 13) (((-110) (-110) (-1 |#1| (-592 |#1|))) 11) (((-3 |#1| "failed") (-110) (-592 |#1|)) 21)) (-3524 (((-3 (-592 (-1 |#1| (-592 |#1|))) "failed") (-110)) 25) (((-110) (-110) (-1 |#1| |#1|)) 30) (((-110) (-110) (-592 (-1 |#1| (-592 |#1|)))) 26)) (-4138 (((-110) |#1|) 56 (|has| |#1| (-789)))) (-2740 (((-3 |#1| "failed") (-110)) 50 (|has| |#1| (-789)))))
+(((-109 |#1|) (-10 -7 (-15 -4109 ((-3 |#1| "failed") (-110) (-592 |#1|))) (-15 -4109 ((-110) (-110) (-1 |#1| (-592 |#1|)))) (-15 -4109 ((-110) (-110) (-1 |#1| |#1|))) (-15 -4109 ((-3 (-1 |#1| (-592 |#1|)) "failed") (-110))) (-15 -3524 ((-110) (-110) (-592 (-1 |#1| (-592 |#1|))))) (-15 -3524 ((-110) (-110) (-1 |#1| |#1|))) (-15 -3524 ((-3 (-592 (-1 |#1| (-592 |#1|))) "failed") (-110))) (IF (|has| |#1| (-789)) (PROGN (-15 -4138 ((-110) |#1|)) (-15 -2740 ((-3 |#1| "failed") (-110)))) |%noBranch|)) (-1020)) (T -109))
+((-2740 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1020)) (-4 *2 (-789)) (-5 *1 (-109 *2)))) (-4138 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-789)) (-4 *3 (-1020)))) (-3524 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-1 *4 (-592 *4)))) (-5 *1 (-109 *4)) (-4 *4 (-1020)))) (-3524 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1020)) (-5 *1 (-109 *4)))) (-3524 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 (-1 *4 (-592 *4)))) (-4 *4 (-1020)) (-5 *1 (-109 *4)))) (-4109 (*1 *2 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-592 *4))) (-5 *1 (-109 *4)) (-4 *4 (-1020)))) (-4109 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1020)) (-5 *1 (-109 *4)))) (-4109 (*1 *2 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-592 *4))) (-4 *4 (-1020)) (-5 *1 (-109 *4)))) (-4109 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-592 *2)) (-5 *1 (-109 *2)) (-4 *2 (-1020)))))
+(-10 -7 (-15 -4109 ((-3 |#1| "failed") (-110) (-592 |#1|))) (-15 -4109 ((-110) (-110) (-1 |#1| (-592 |#1|)))) (-15 -4109 ((-110) (-110) (-1 |#1| |#1|))) (-15 -4109 ((-3 (-1 |#1| (-592 |#1|)) "failed") (-110))) (-15 -3524 ((-110) (-110) (-592 (-1 |#1| (-592 |#1|))))) (-15 -3524 ((-110) (-110) (-1 |#1| |#1|))) (-15 -3524 ((-3 (-592 (-1 |#1| (-592 |#1|))) "failed") (-110))) (IF (|has| |#1| (-789)) (PROGN (-15 -4138 ((-110) |#1|)) (-15 -2740 ((-3 |#1| "failed") (-110)))) |%noBranch|))
+((-1260 (((-108) $ $) NIL)) (-3448 (((-713) $) 72) (($ $ (-713)) 30)) (-1673 (((-108) $) 32)) (-1656 (($ $ (-1074) (-716)) 26)) (-3429 (($ $ (-44 (-1074) (-716))) 15)) (-3980 (((-3 (-716) "failed") $ (-1074)) 25)) (-4164 (((-44 (-1074) (-716)) $) 14)) (-2972 (($ (-1091)) 17) (($ (-1091) (-713)) 22)) (-4044 (((-108) $) 31)) (-3996 (((-108) $) 33)) (-3800 (((-1091) $) 8)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-3069 (((-108) $ (-1091)) 10)) (-2907 (($ $ (-1 (-501) (-592 (-501)))) 52) (((-3 (-1 (-501) (-592 (-501))) "failed") $) 56)) (-2012 (((-1038) $) NIL)) (-2621 (((-108) $ (-1074)) 29)) (-3882 (($ $ (-1 (-108) $ $)) 35)) (-2868 (((-3 (-1 (-798) (-592 (-798))) "failed") $) 54) (($ $ (-1 (-798) (-592 (-798)))) 41) (($ $ (-1 (-798) (-798))) 43)) (-3335 (($ $ (-1074)) 45)) (-1451 (($ $) 63)) (-1858 (($ $ (-1 (-108) $ $)) 36)) (-1270 (((-798) $) 48)) (-1257 (($ $ (-1074)) 27)) (-2217 (((-3 (-713) "failed") $) 58)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 71)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 79)))
+(((-110) (-13 (-789) (-10 -8 (-15 -3800 ((-1091) $)) (-15 -4164 ((-44 (-1074) (-716)) $)) (-15 -1451 ($ $)) (-15 -2972 ($ (-1091))) (-15 -2972 ($ (-1091) (-713))) (-15 -2217 ((-3 (-713) "failed") $)) (-15 -4044 ((-108) $)) (-15 -1673 ((-108) $)) (-15 -3996 ((-108) $)) (-15 -3448 ((-713) $)) (-15 -3448 ($ $ (-713))) (-15 -3882 ($ $ (-1 (-108) $ $))) (-15 -1858 ($ $ (-1 (-108) $ $))) (-15 -2868 ((-3 (-1 (-798) (-592 (-798))) "failed") $)) (-15 -2868 ($ $ (-1 (-798) (-592 (-798))))) (-15 -2868 ($ $ (-1 (-798) (-798)))) (-15 -2907 ($ $ (-1 (-501) (-592 (-501))))) (-15 -2907 ((-3 (-1 (-501) (-592 (-501))) "failed") $)) (-15 -3069 ((-108) $ (-1091))) (-15 -2621 ((-108) $ (-1074))) (-15 -1257 ($ $ (-1074))) (-15 -3335 ($ $ (-1074))) (-15 -3980 ((-3 (-716) "failed") $ (-1074))) (-15 -1656 ($ $ (-1074) (-716))) (-15 -3429 ($ $ (-44 (-1074) (-716))))))) (T -110))
+((-3800 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-110)))) (-4164 (*1 *2 *1) (-12 (-5 *2 (-44 (-1074) (-716))) (-5 *1 (-110)))) (-1451 (*1 *1 *1) (-5 *1 (-110))) (-2972 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-110)))) (-2972 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-713)) (-5 *1 (-110)))) (-2217 (*1 *2 *1) (|partial| -12 (-5 *2 (-713)) (-5 *1 (-110)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-1673 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-3996 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))) (-3448 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-110)))) (-3448 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-110)))) (-3882 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-1858 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))) (-2868 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-798) (-592 (-798)))) (-5 *1 (-110)))) (-2868 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-798) (-592 (-798)))) (-5 *1 (-110)))) (-2868 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-798) (-798))) (-5 *1 (-110)))) (-2907 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110)))) (-2907 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110)))) (-3069 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-108)) (-5 *1 (-110)))) (-2621 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-108)) (-5 *1 (-110)))) (-1257 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-110)))) (-3335 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-110)))) (-3980 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-716)) (-5 *1 (-110)))) (-1656 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-716)) (-5 *1 (-110)))) (-3429 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1074) (-716))) (-5 *1 (-110)))))
+(-13 (-789) (-10 -8 (-15 -3800 ((-1091) $)) (-15 -4164 ((-44 (-1074) (-716)) $)) (-15 -1451 ($ $)) (-15 -2972 ($ (-1091))) (-15 -2972 ($ (-1091) (-713))) (-15 -2217 ((-3 (-713) "failed") $)) (-15 -4044 ((-108) $)) (-15 -1673 ((-108) $)) (-15 -3996 ((-108) $)) (-15 -3448 ((-713) $)) (-15 -3448 ($ $ (-713))) (-15 -3882 ($ $ (-1 (-108) $ $))) (-15 -1858 ($ $ (-1 (-108) $ $))) (-15 -2868 ((-3 (-1 (-798) (-592 (-798))) "failed") $)) (-15 -2868 ($ $ (-1 (-798) (-592 (-798))))) (-15 -2868 ($ $ (-1 (-798) (-798)))) (-15 -2907 ($ $ (-1 (-501) (-592 (-501))))) (-15 -2907 ((-3 (-1 (-501) (-592 (-501))) "failed") $)) (-15 -3069 ((-108) $ (-1091))) (-15 -2621 ((-108) $ (-1074))) (-15 -1257 ($ $ (-1074))) (-15 -3335 ($ $ (-1074))) (-15 -3980 ((-3 (-716) "failed") $ (-1074))) (-15 -1656 ($ $ (-1074) (-716))) (-15 -3429 ($ $ (-44 (-1074) (-716))))))
+((-2118 (((-525) |#2|) 37)))
+(((-111 |#1| |#2|) (-10 -7 (-15 -2118 ((-525) |#2|))) (-13 (-341) (-968 (-385 (-525)))) (-1149 |#1|)) (T -111))
+((-2118 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-968 (-385 (-525))))) (-5 *2 (-525)) (-5 *1 (-111 *4 *3)) (-4 *3 (-1149 *4)))))
+(-10 -7 (-15 -2118 ((-525) |#2|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2211 (($ $ (-525)) NIL)) (-3197 (((-108) $ $) NIL)) (-2305 (($) NIL T CONST)) (-4040 (($ (-1087 (-525)) (-525)) NIL)) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3798 (($ $) NIL)) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3973 (((-713) $) NIL)) (-1985 (((-108) $) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3703 (((-525)) NIL)) (-3643 (((-525) $) NIL)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2182 (($ $ (-525)) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-3342 (((-1072 (-525)) $) NIL)) (-3577 (($ $) NIL)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL)) (-2104 (((-713)) NIL)) (-3959 (((-108) $ $) NIL)) (-1369 (((-525) $ (-525)) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL)))
+(((-112 |#1|) (-804 |#1|) (-525)) (T -112))
+NIL
+(-804 |#1|)
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2628 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-286)))) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-112 |#1|) (-844)))) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| (-112 |#1|) (-844)))) (-3197 (((-108) $ $) NIL)) (-1436 (((-525) $) NIL (|has| (-112 |#1|) (-762)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-112 |#1|) "failed") $) NIL) (((-3 (-1091) "failed") $) NIL (|has| (-112 |#1|) (-968 (-1091)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-112 |#1|) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-112 |#1|) (-968 (-525))))) (-3898 (((-112 |#1|) $) NIL) (((-1091) $) NIL (|has| (-112 |#1|) (-968 (-1091)))) (((-385 (-525)) $) NIL (|has| (-112 |#1|) (-968 (-525)))) (((-525) $) NIL (|has| (-112 |#1|) (-968 (-525))))) (-1786 (($ $) NIL) (($ (-525) $) NIL)) (-1726 (($ $ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| (-112 |#1|) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| (-112 |#1|) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-112 |#1|))) (|:| |vec| (-1173 (-112 |#1|)))) (-632 $) (-1173 $)) NIL) (((-632 (-112 |#1|)) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) NIL (|has| (-112 |#1|) (-510)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-3017 (((-108) $) NIL (|has| (-112 |#1|) (-762)))) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-112 |#1|) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-112 |#1|) (-821 (-357))))) (-1985 (((-108) $) NIL)) (-1931 (($ $) NIL)) (-1498 (((-112 |#1|) $) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| (-112 |#1|) (-1067)))) (-3912 (((-108) $) NIL (|has| (-112 |#1|) (-762)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2371 (($ $ $) NIL (|has| (-112 |#1|) (-789)))) (-2535 (($ $ $) NIL (|has| (-112 |#1|) (-789)))) (-2694 (($ (-1 (-112 |#1|) (-112 |#1|)) $) NIL)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL (|has| (-112 |#1|) (-1067)) CONST)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3025 (($ $) NIL (|has| (-112 |#1|) (-286)))) (-2793 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-510)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-112 |#1|) (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-112 |#1|) (-844)))) (-2195 (((-396 $) $) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2602 (($ $ (-592 (-112 |#1|)) (-592 (-112 |#1|))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-112 |#1|) (-112 |#1|)) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-273 (-112 |#1|))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-592 (-273 (-112 |#1|)))) NIL (|has| (-112 |#1|) (-288 (-112 |#1|)))) (($ $ (-592 (-1091)) (-592 (-112 |#1|))) NIL (|has| (-112 |#1|) (-486 (-1091) (-112 |#1|)))) (($ $ (-1091) (-112 |#1|)) NIL (|has| (-112 |#1|) (-486 (-1091) (-112 |#1|))))) (-1290 (((-713) $) NIL)) (-3410 (($ $ (-112 |#1|)) NIL (|has| (-112 |#1|) (-265 (-112 |#1|) (-112 |#1|))))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2523 (($ $) NIL (|has| (-112 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-112 |#1|) (-213))) (($ $ (-1091)) NIL (|has| (-112 |#1|) (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| (-112 |#1|) (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| (-112 |#1|) (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| (-112 |#1|) (-835 (-1091)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-713)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-2097 (($ $) NIL)) (-1512 (((-112 |#1|) $) NIL)) (-2749 (((-827 (-525)) $) NIL (|has| (-112 |#1|) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-112 |#1|) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-112 |#1|) (-567 (-501)))) (((-357) $) NIL (|has| (-112 |#1|) (-953))) (((-205) $) NIL (|has| (-112 |#1|) (-953)))) (-2215 (((-161 (-385 (-525))) $) NIL)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-112 |#1|) (-844))))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-112 |#1|)) NIL) (($ (-1091)) NIL (|has| (-112 |#1|) (-968 (-1091))))) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| (-112 |#1|) (-844))) (|has| (-112 |#1|) (-136))))) (-2104 (((-713)) NIL)) (-1438 (((-112 |#1|) $) NIL (|has| (-112 |#1|) (-510)))) (-3959 (((-108) $ $) NIL)) (-1369 (((-385 (-525)) $ (-525)) NIL)) (-2086 (($ $) NIL (|has| (-112 |#1|) (-762)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $) NIL (|has| (-112 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-112 |#1|) (-213))) (($ $ (-1091)) NIL (|has| (-112 |#1|) (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| (-112 |#1|) (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| (-112 |#1|) (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| (-112 |#1|) (-835 (-1091)))) (($ $ (-1 (-112 |#1|) (-112 |#1|)) (-713)) NIL) (($ $ (-1 (-112 |#1|) (-112 |#1|))) NIL)) (-4045 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-4026 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-4017 (((-108) $ $) NIL (|has| (-112 |#1|) (-789)))) (-4100 (($ $ $) NIL) (($ (-112 |#1|) (-112 |#1|)) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-112 |#1|) $) NIL) (($ $ (-112 |#1|)) NIL)))
+(((-113 |#1|) (-13 (-925 (-112 |#1|)) (-10 -8 (-15 -1369 ((-385 (-525)) $ (-525))) (-15 -2215 ((-161 (-385 (-525))) $)) (-15 -1786 ($ $)) (-15 -1786 ($ (-525) $)))) (-525)) (T -113))
+((-1369 (*1 *2 *1 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-113 *4)) (-14 *4 (-525)) (-5 *3 (-525)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-113 *3)) (-14 *3 (-525)))) (-1786 (*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-525)))) (-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-113 *3)) (-14 *3 (-525)))))
+(-13 (-925 (-112 |#1|)) (-10 -8 (-15 -1369 ((-385 (-525)) $ (-525))) (-15 -2215 ((-161 (-385 (-525))) $)) (-15 -1786 ($ $)) (-15 -1786 ($ (-525) $))))
+((-1429 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-2714 (((-592 $) $) 27)) (-2553 (((-108) $ $) 32)) (-2783 (((-108) |#2| $) 36)) (-2647 (((-592 |#2|) $) 22)) (-3365 (((-108) $) 16)) (-3410 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-1698 (((-108) $) 45)) (-1270 (((-798) $) 41)) (-3320 (((-592 $) $) 28)) (-3994 (((-108) $ $) 34)) (-3596 (((-713) $) 43)))
+(((-114 |#1| |#2|) (-10 -8 (-15 -1270 ((-798) |#1|)) (-15 -1429 (|#1| |#1| "right" |#1|)) (-15 -1429 (|#1| |#1| "left" |#1|)) (-15 -3410 (|#1| |#1| "right")) (-15 -3410 (|#1| |#1| "left")) (-15 -1429 (|#2| |#1| "value" |#2|)) (-15 -2553 ((-108) |#1| |#1|)) (-15 -2647 ((-592 |#2|) |#1|)) (-15 -1698 ((-108) |#1|)) (-15 -3410 (|#2| |#1| "value")) (-15 -3365 ((-108) |#1|)) (-15 -2714 ((-592 |#1|) |#1|)) (-15 -3320 ((-592 |#1|) |#1|)) (-15 -3994 ((-108) |#1| |#1|)) (-15 -2783 ((-108) |#2| |#1|)) (-15 -3596 ((-713) |#1|))) (-115 |#2|) (-1127)) (T -114))
+NIL
+(-10 -8 (-15 -1270 ((-798) |#1|)) (-15 -1429 (|#1| |#1| "right" |#1|)) (-15 -1429 (|#1| |#1| "left" |#1|)) (-15 -3410 (|#1| |#1| "right")) (-15 -3410 (|#1| |#1| "left")) (-15 -1429 (|#2| |#1| "value" |#2|)) (-15 -2553 ((-108) |#1| |#1|)) (-15 -2647 ((-592 |#2|) |#1|)) (-15 -1698 ((-108) |#1|)) (-15 -3410 (|#2| |#1| "value")) (-15 -3365 ((-108) |#1|)) (-15 -2714 ((-592 |#1|) |#1|)) (-15 -3320 ((-592 |#1|) |#1|)) (-15 -3994 ((-108) |#1| |#1|)) (-15 -2783 ((-108) |#2| |#1|)) (-15 -3596 ((-713) |#1|)))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3352 ((|#1| $) 48)) (-3330 (((-108) $ (-713)) 8)) (-1545 ((|#1| $ |#1|) 39 (|has| $ (-6 -4256)))) (-1793 (($ $ $) 52 (|has| $ (-6 -4256)))) (-4057 (($ $ $) 54 (|has| $ (-6 -4256)))) (-1429 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4256))) (($ $ "left" $) 55 (|has| $ (-6 -4256))) (($ $ "right" $) 53 (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) 41 (|has| $ (-6 -4256)))) (-2305 (($) 7 T CONST)) (-3602 (($ $) 57)) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) 50)) (-2553 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-2482 (((-108) $ (-713)) 9)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-3593 (($ $) 59)) (-2647 (((-592 |#1|) $) 45)) (-3365 (((-108) $) 49)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3294 (((-525) $ $) 44)) (-1698 (((-108) $) 46)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) 51)) (-2240 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-115 |#1|) (-131) (-1127)) (T -115))
+((-3593 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1127)))) (-3410 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1127)))) (-3602 (*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1127)))) (-3410 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1127)))) (-1429 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4256)) (-4 *1 (-115 *3)) (-4 *3 (-1127)))) (-4057 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-115 *2)) (-4 *2 (-1127)))) (-1429 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4256)) (-4 *1 (-115 *3)) (-4 *3 (-1127)))) (-1793 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-115 *2)) (-4 *2 (-1127)))))
+(-13 (-942 |t#1|) (-10 -8 (-15 -3593 ($ $)) (-15 -3410 ($ $ "left")) (-15 -3602 ($ $)) (-15 -3410 ($ $ "right")) (IF (|has| $ (-6 -4256)) (PROGN (-15 -1429 ($ $ "left" $)) (-15 -4057 ($ $ $)) (-15 -1429 ($ $ "right" $)) (-15 -1793 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1127) . T))
+((-1659 (((-108) |#1|) 24)) (-3194 (((-713) (-713)) 23) (((-713)) 22)) (-2179 (((-108) |#1| (-108)) 25) (((-108) |#1|) 26)))
+(((-116 |#1|) (-10 -7 (-15 -2179 ((-108) |#1|)) (-15 -2179 ((-108) |#1| (-108))) (-15 -3194 ((-713))) (-15 -3194 ((-713) (-713))) (-15 -1659 ((-108) |#1|))) (-1149 (-525))) (T -116))
+((-1659 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1149 (-525))))) (-3194 (*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1149 (-525))))) (-3194 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1149 (-525))))) (-2179 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1149 (-525))))) (-2179 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1149 (-525))))))
+(-10 -7 (-15 -2179 ((-108) |#1|)) (-15 -2179 ((-108) |#1| (-108))) (-15 -3194 ((-713))) (-15 -3194 ((-713) (-713))) (-15 -1659 ((-108) |#1|)))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3352 ((|#1| $) 15)) (-2223 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3330 (((-108) $ (-713)) NIL)) (-1545 ((|#1| $ |#1|) NIL (|has| $ (-6 -4256)))) (-1793 (($ $ $) 18 (|has| $ (-6 -4256)))) (-4057 (($ $ $) 20 (|has| $ (-6 -4256)))) (-1429 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4256))) (($ $ "left" $) NIL (|has| $ (-6 -4256))) (($ $ "right" $) NIL (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) NIL (|has| $ (-6 -4256)))) (-2305 (($) NIL T CONST)) (-3602 (($ $) 17)) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) NIL)) (-2553 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3382 (($ $ |#1| $) 23)) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3593 (($ $) 19)) (-2647 (((-592 |#1|) $) NIL)) (-3365 (((-108) $) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-1239 (($ |#1| $) 24)) (-3985 (($ |#1| $) 10)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) 14)) (-2718 (($) 8)) (-3410 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3294 (((-525) $ $) NIL)) (-1698 (((-108) $) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) NIL)) (-2240 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1961 (($ (-592 |#1|)) 12)) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-117 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4256) (-6 -4255) (-15 -1961 ($ (-592 |#1|))) (-15 -3985 ($ |#1| $)) (-15 -1239 ($ |#1| $)) (-15 -2223 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-789)) (T -117))
+((-1961 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-117 *3)))) (-3985 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789)))) (-1239 (*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789)))) (-2223 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3)))) (-5 *1 (-117 *3)) (-4 *3 (-789)))))
+(-13 (-121 |#1|) (-10 -8 (-6 -4256) (-6 -4255) (-15 -1961 ($ (-592 |#1|))) (-15 -3985 ($ |#1| $)) (-15 -1239 ($ |#1| $)) (-15 -2223 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-3411 (($ $) 14)) (-1825 (($ $) 11)) (-2789 (($ $ $) 24)) (-3589 (($ $ $) 22)) (-1576 (($ $) 12)) (-3236 (($ $ $) 20)) (-3227 (($ $ $) 18)))
+(((-118 |#1|) (-10 -8 (-15 -2789 (|#1| |#1| |#1|)) (-15 -3589 (|#1| |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 -3411 (|#1| |#1|)) (-15 -3227 (|#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| |#1|))) (-119)) (T -118))
+NIL
+(-10 -8 (-15 -2789 (|#1| |#1| |#1|)) (-15 -3589 (|#1| |#1| |#1|)) (-15 -1576 (|#1| |#1|)) (-15 -1825 (|#1| |#1|)) (-15 -3411 (|#1| |#1|)) (-15 -3227 (|#1| |#1| |#1|)) (-15 -3236 (|#1| |#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-3411 (($ $) 104)) (-4144 (($ $ $) 25)) (-2782 (((-1178) $ (-525) (-525)) 67 (|has| $ (-6 -4256)))) (-2151 (((-108) $) 99 (|has| (-108) (-789))) (((-108) (-1 (-108) (-108) (-108)) $) 93)) (-2549 (($ $) 103 (-12 (|has| (-108) (-789)) (|has| $ (-6 -4256)))) (($ (-1 (-108) (-108) (-108)) $) 102 (|has| $ (-6 -4256)))) (-2855 (($ $) 98 (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $) 92)) (-3330 (((-108) $ (-713)) 38)) (-1429 (((-108) $ (-1140 (-525)) (-108)) 89 (|has| $ (-6 -4256))) (((-108) $ (-525) (-108)) 55 (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) (-108)) $) 72 (|has| $ (-6 -4255)))) (-2305 (($) 39 T CONST)) (-3559 (($ $) 101 (|has| $ (-6 -4256)))) (-3620 (($ $) 91)) (-3137 (($ $) 69 (-12 (|has| (-108) (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ (-1 (-108) (-108)) $) 73 (|has| $ (-6 -4255))) (($ (-108) $) 70 (-12 (|has| (-108) (-1020)) (|has| $ (-6 -4255))))) (-3503 (((-108) (-1 (-108) (-108) (-108)) $) 75 (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) 74 (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) 71 (-12 (|has| (-108) (-1020)) (|has| $ (-6 -4255))))) (-2632 (((-108) $ (-525) (-108)) 54 (|has| $ (-6 -4256)))) (-2570 (((-108) $ (-525)) 56)) (-1916 (((-525) (-108) $ (-525)) 96 (|has| (-108) (-1020))) (((-525) (-108) $) 95 (|has| (-108) (-1020))) (((-525) (-1 (-108) (-108)) $) 94)) (-3702 (((-592 (-108)) $) 46 (|has| $ (-6 -4255)))) (-3818 (($ $ $) 26)) (-1825 (($ $) 31)) (-2789 (($ $ $) 28)) (-3489 (($ (-713) (-108)) 78)) (-3589 (($ $ $) 29)) (-2482 (((-108) $ (-713)) 37)) (-2710 (((-525) $) 64 (|has| (-525) (-789)))) (-2371 (($ $ $) 13)) (-3743 (($ $ $) 97 (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $ $) 90)) (-1749 (((-592 (-108)) $) 47 (|has| $ (-6 -4255)))) (-2783 (((-108) (-108) $) 49 (-12 (|has| (-108) (-1020)) (|has| $ (-6 -4255))))) (-3478 (((-525) $) 63 (|has| (-525) (-789)))) (-2535 (($ $ $) 14)) (-2622 (($ (-1 (-108) (-108)) $) 42 (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-108) (-108) (-108)) $ $) 83) (($ (-1 (-108) (-108)) $) 41)) (-2957 (((-108) $ (-713)) 36)) (-3451 (((-1074) $) 9)) (-2683 (($ $ $ (-525)) 88) (($ (-108) $ (-525)) 87)) (-4142 (((-592 (-525)) $) 61)) (-3845 (((-108) (-525) $) 60)) (-2012 (((-1038) $) 10)) (-3110 (((-108) $) 65 (|has| (-525) (-789)))) (-3207 (((-3 (-108) "failed") (-1 (-108) (-108)) $) 76)) (-2042 (($ $ (-108)) 66 (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) (-108)) $) 44 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-108)) (-592 (-108))) 53 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-108) (-108)) 52 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-273 (-108))) 51 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-592 (-273 (-108)))) 50 (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020))))) (-3428 (((-108) $ $) 32)) (-4101 (((-108) (-108) $) 62 (-12 (|has| $ (-6 -4255)) (|has| (-108) (-1020))))) (-1777 (((-592 (-108)) $) 59)) (-2013 (((-108) $) 35)) (-2718 (($) 34)) (-3410 (($ $ (-1140 (-525))) 84) (((-108) $ (-525)) 58) (((-108) $ (-525) (-108)) 57)) (-3157 (($ $ (-1140 (-525))) 86) (($ $ (-525)) 85)) (-2040 (((-713) (-108) $) 48 (-12 (|has| (-108) (-1020)) (|has| $ (-6 -4255)))) (((-713) (-1 (-108) (-108)) $) 45 (|has| $ (-6 -4255)))) (-3216 (($ $ $ (-525)) 100 (|has| $ (-6 -4256)))) (-1451 (($ $) 33)) (-2749 (((-501) $) 68 (|has| (-108) (-567 (-501))))) (-1279 (($ (-592 (-108))) 77)) (-2014 (($ (-592 $)) 82) (($ $ $) 81) (($ (-108) $) 80) (($ $ (-108)) 79)) (-1270 (((-798) $) 11)) (-3633 (((-108) (-1 (-108) (-108)) $) 43 (|has| $ (-6 -4255)))) (-3830 (($ $ $) 27)) (-1576 (($ $) 30)) (-3236 (($ $ $) 106)) (-4045 (((-108) $ $) 16)) (-4026 (((-108) $ $) 17)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 15)) (-4017 (((-108) $ $) 18)) (-3227 (($ $ $) 105)) (-3596 (((-713) $) 40 (|has| $ (-6 -4255)))))
(((-119) (-131)) (T -119))
-((-2480 (*1 *1 *1) (-4 *1 (-119))) (-3465 (*1 *1 *1) (-4 *1 (-119))) (-2353 (*1 *1 *1 *1) (-4 *1 (-119))) (-2376 (*1 *1 *1 *1) (-4 *1 (-119))) (-1341 (*1 *1 *1 *1) (-4 *1 (-119))) (-1330 (*1 *1 *1 *1) (-4 *1 (-119))) (-3038 (*1 *1 *1 *1) (-4 *1 (-119))))
-(-13 (-789) (-607) (-19 (-108)) (-10 -8 (-15 -2480 ($ $)) (-15 -3465 ($ $)) (-15 -2353 ($ $ $)) (-15 -2376 ($ $ $)) (-15 -1341 ($ $ $)) (-15 -1330 ($ $ $)) (-15 -3038 ($ $ $))))
-(((-33) . T) ((-97) . T) ((-566 (-797)) . T) ((-142 #0=(-108)) . T) ((-567 (-501)) |has| (-108) (-567 (-501))) ((-265 #1=(-525) #0#) . T) ((-267 #1# #0#) . T) ((-288 #0#) -12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019))) ((-351 #0#) . T) ((-464 #0#) . T) ((-558 #1# #0#) . T) ((-486 #0# #0#) -12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019))) ((-597 #0#) . T) ((-607) . T) ((-19 #0#) . T) ((-789) . T) ((-1019) . T) ((-1126) . T))
-((-2857 (($ (-1 |#2| |#2|) $) 22)) (-2135 (($ $) 16)) (-4140 (((-713) $) 24)))
-(((-120 |#1| |#2|) (-10 -8 (-15 -2857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4140 ((-713) |#1|)) (-15 -2135 (|#1| |#1|))) (-121 |#2|) (-1019)) (T -120))
-NIL
-(-10 -8 (-15 -2857 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4140 ((-713) |#1|)) (-15 -2135 (|#1| |#1|)))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3871 ((|#1| $) 48)) (-3410 (((-108) $ (-713)) 8)) (-2822 ((|#1| $ |#1|) 39 (|has| $ (-6 -4255)))) (-3173 (($ $ $) 52 (|has| $ (-6 -4255)))) (-3213 (($ $ $) 54 (|has| $ (-6 -4255)))) (-2109 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4255))) (($ $ "left" $) 55 (|has| $ (-6 -4255))) (($ $ "right" $) 53 (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-1505 (($) 7 T CONST)) (-4152 (($ $) 57)) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) 50)) (-3106 (((-108) $ $) 42 (|has| |#1| (-1019)))) (-2317 (($ $ |#1| $) 60)) (-3100 (((-108) $ (-713)) 9)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-4138 (($ $) 59)) (-1564 (((-592 |#1|) $) 45)) (-3723 (((-108) $) 49)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-4068 (((-525) $ $) 44)) (-1810 (((-108) $) 46)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) 51)) (-1519 (((-108) $ $) 43 (|has| |#1| (-1019)))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-121 |#1|) (-131) (-1019)) (T -121))
-((-2317 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1019)))))
-(-13 (-115 |t#1|) (-10 -8 (-6 -4255) (-6 -4254) (-15 -2317 ($ $ |t#1| $))))
-(((-33) . T) ((-97) |has| |#1| (-1019)) ((-115 |#1|) . T) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-941 |#1|) . T) ((-1019) |has| |#1| (-1019)) ((-1126) . T))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3871 ((|#1| $) 15)) (-3410 (((-108) $ (-713)) NIL)) (-2822 ((|#1| $ |#1|) 19 (|has| $ (-6 -4255)))) (-3173 (($ $ $) 20 (|has| $ (-6 -4255)))) (-3213 (($ $ $) 18 (|has| $ (-6 -4255)))) (-2109 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) (($ $ "left" $) NIL (|has| $ (-6 -4255))) (($ $ "right" $) NIL (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-1505 (($) NIL T CONST)) (-4152 (($ $) 21)) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) NIL)) (-3106 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2317 (($ $ |#1| $) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-4138 (($ $) NIL)) (-1564 (((-592 |#1|) $) NIL)) (-3723 (((-108) $) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2573 (($ |#1| $) 10)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) 14)) (-3773 (($) 8)) (-3928 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4068 (((-525) $ $) NIL)) (-1810 (((-108) $) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) 17)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) NIL)) (-1519 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2951 (($ (-592 |#1|)) 12)) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-122 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4255) (-15 -2951 ($ (-592 |#1|))) (-15 -2573 ($ |#1| $)))) (-789)) (T -122))
-((-2951 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-122 *3)))) (-2573 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-789)))))
-(-13 (-121 |#1|) (-10 -8 (-6 -4255) (-15 -2951 ($ (-592 |#1|))) (-15 -2573 ($ |#1| $))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3871 ((|#1| $) 24)) (-3410 (((-108) $ (-713)) NIL)) (-2822 ((|#1| $ |#1|) 26 (|has| $ (-6 -4255)))) (-3173 (($ $ $) 30 (|has| $ (-6 -4255)))) (-3213 (($ $ $) 28 (|has| $ (-6 -4255)))) (-2109 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) (($ $ "left" $) NIL (|has| $ (-6 -4255))) (($ $ "right" $) NIL (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-1505 (($) NIL T CONST)) (-4152 (($ $) 20)) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) NIL)) (-3106 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2317 (($ $ |#1| $) 15)) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-4138 (($ $) 19)) (-1564 (((-592 |#1|) $) NIL)) (-3723 (((-108) $) 21)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) 18)) (-3773 (($) 11)) (-3928 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4068 (((-525) $ $) NIL)) (-1810 (((-108) $) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) NIL)) (-1519 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2556 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 10 (|has| |#1| (-1019)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-123 |#1|) (-13 (-121 |#1|) (-10 -8 (-15 -2556 ($ |#1|)) (-15 -2556 ($ $ |#1| $)))) (-1019)) (T -123))
-((-2556 (*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1019)))) (-2556 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1019)))))
-(-13 (-121 |#1|) (-10 -8 (-15 -2556 ($ |#1|)) (-15 -2556 ($ $ |#1| $))))
-((-1893 (((-108) $ $) NIL (|has| (-125) (-1019)))) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3072 (((-108) (-1 (-108) (-125) (-125)) $) NIL) (((-108) $) NIL (|has| (-125) (-789)))) (-1356 (($ (-1 (-108) (-125) (-125)) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-125) (-789))))) (-3327 (($ (-1 (-108) (-125) (-125)) $) NIL) (($ $) NIL (|has| (-125) (-789)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 (((-125) $ (-525) (-125)) NIL (|has| $ (-6 -4255))) (((-125) $ (-1139 (-525)) (-125)) NIL (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| $ (-6 -4255)))) (-1693 (($ $) NIL)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-125) (-1019))))) (-2273 (($ (-125) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-125) (-1019)))) (($ (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4254)))) (-4004 (((-125) (-1 (-125) (-125) (-125)) $ (-125) (-125)) NIL (-12 (|has| $ (-6 -4254)) (|has| (-125) (-1019)))) (((-125) (-1 (-125) (-125) (-125)) $ (-125)) NIL (|has| $ (-6 -4254))) (((-125) (-1 (-125) (-125) (-125)) $) NIL (|has| $ (-6 -4254)))) (-2870 (((-125) $ (-525) (-125)) NIL (|has| $ (-6 -4255)))) (-2796 (((-125) $ (-525)) NIL)) (-3763 (((-525) (-1 (-108) (-125)) $) NIL) (((-525) (-125) $) NIL (|has| (-125) (-1019))) (((-525) (-125) $ (-525)) NIL (|has| (-125) (-1019)))) (-2026 (((-592 (-125)) $) NIL (|has| $ (-6 -4254)))) (-4018 (($ (-713) (-125)) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) NIL (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (|has| (-125) (-789)))) (-1932 (($ (-1 (-108) (-125) (-125)) $ $) NIL) (($ $ $) NIL (|has| (-125) (-789)))) (-3168 (((-592 (-125)) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-125) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-125) (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| (-125) (-789)))) (-2857 (($ (-1 (-125) (-125)) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-125) (-125)) $) NIL) (($ (-1 (-125) (-125) (-125)) $ $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| (-125) (-1019)))) (-3167 (($ (-125) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-2663 (((-1037) $) NIL (|has| (-125) (-1019)))) (-3135 (((-125) $) NIL (|has| (-525) (-789)))) (-4054 (((-3 (-125) "failed") (-1 (-108) (-125)) $) NIL)) (-1911 (($ $ (-125)) NIL (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-125)))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1019)))) (($ $ (-273 (-125))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1019)))) (($ $ (-125) (-125)) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1019)))) (($ $ (-592 (-125)) (-592 (-125))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) (-125) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-125) (-1019))))) (-3171 (((-592 (-125)) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 (((-125) $ (-525) (-125)) NIL) (((-125) $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-3653 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2686 (((-713) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4254))) (((-713) (-125) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-125) (-1019))))) (-3703 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| (-125) (-567 (-501))))) (-1922 (($ (-592 (-125))) NIL)) (-2664 (($ $ (-125)) NIL) (($ (-125) $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1908 (((-797) $) NIL (|has| (-125) (-566 (-797))))) (-2667 (((-108) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) NIL (|has| (-125) (-789)))) (-3995 (((-108) $ $) NIL (|has| (-125) (-789)))) (-3961 (((-108) $ $) NIL (|has| (-125) (-1019)))) (-4010 (((-108) $ $) NIL (|has| (-125) (-789)))) (-3983 (((-108) $ $) NIL (|has| (-125) (-789)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
+((-1825 (*1 *1 *1) (-4 *1 (-119))) (-1576 (*1 *1 *1) (-4 *1 (-119))) (-3589 (*1 *1 *1 *1) (-4 *1 (-119))) (-2789 (*1 *1 *1 *1) (-4 *1 (-119))) (-3830 (*1 *1 *1 *1) (-4 *1 (-119))) (-3818 (*1 *1 *1 *1) (-4 *1 (-119))) (-4144 (*1 *1 *1 *1) (-4 *1 (-119))))
+(-13 (-789) (-607) (-19 (-108)) (-10 -8 (-15 -1825 ($ $)) (-15 -1576 ($ $)) (-15 -3589 ($ $ $)) (-15 -2789 ($ $ $)) (-15 -3830 ($ $ $)) (-15 -3818 ($ $ $)) (-15 -4144 ($ $ $))))
+(((-33) . T) ((-97) . T) ((-566 (-798)) . T) ((-142 #0=(-108)) . T) ((-567 (-501)) |has| (-108) (-567 (-501))) ((-265 #1=(-525) #0#) . T) ((-267 #1# #0#) . T) ((-288 #0#) -12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020))) ((-351 #0#) . T) ((-464 #0#) . T) ((-558 #1# #0#) . T) ((-486 #0# #0#) -12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020))) ((-597 #0#) . T) ((-607) . T) ((-19 #0#) . T) ((-789) . T) ((-1020) . T) ((-1127) . T))
+((-2622 (($ (-1 |#2| |#2|) $) 22)) (-1451 (($ $) 16)) (-3596 (((-713) $) 24)))
+(((-120 |#1| |#2|) (-10 -8 (-15 -2622 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3596 ((-713) |#1|)) (-15 -1451 (|#1| |#1|))) (-121 |#2|) (-1020)) (T -120))
+NIL
+(-10 -8 (-15 -2622 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3596 ((-713) |#1|)) (-15 -1451 (|#1| |#1|)))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3352 ((|#1| $) 48)) (-3330 (((-108) $ (-713)) 8)) (-1545 ((|#1| $ |#1|) 39 (|has| $ (-6 -4256)))) (-1793 (($ $ $) 52 (|has| $ (-6 -4256)))) (-4057 (($ $ $) 54 (|has| $ (-6 -4256)))) (-1429 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4256))) (($ $ "left" $) 55 (|has| $ (-6 -4256))) (($ $ "right" $) 53 (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) 41 (|has| $ (-6 -4256)))) (-2305 (($) 7 T CONST)) (-3602 (($ $) 57)) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) 50)) (-2553 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-3382 (($ $ |#1| $) 60)) (-2482 (((-108) $ (-713)) 9)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-3593 (($ $) 59)) (-2647 (((-592 |#1|) $) 45)) (-3365 (((-108) $) 49)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3294 (((-525) $ $) 44)) (-1698 (((-108) $) 46)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) 51)) (-2240 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-121 |#1|) (-131) (-1020)) (T -121))
+((-3382 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1020)))))
+(-13 (-115 |t#1|) (-10 -8 (-6 -4256) (-6 -4255) (-15 -3382 ($ $ |t#1| $))))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-115 |#1|) . T) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1127) . T))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3352 ((|#1| $) 15)) (-3330 (((-108) $ (-713)) NIL)) (-1545 ((|#1| $ |#1|) 19 (|has| $ (-6 -4256)))) (-1793 (($ $ $) 20 (|has| $ (-6 -4256)))) (-4057 (($ $ $) 18 (|has| $ (-6 -4256)))) (-1429 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4256))) (($ $ "left" $) NIL (|has| $ (-6 -4256))) (($ $ "right" $) NIL (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) NIL (|has| $ (-6 -4256)))) (-2305 (($) NIL T CONST)) (-3602 (($ $) 21)) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) NIL)) (-2553 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3382 (($ $ |#1| $) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3593 (($ $) NIL)) (-2647 (((-592 |#1|) $) NIL)) (-3365 (((-108) $) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-3985 (($ |#1| $) 10)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) 14)) (-2718 (($) 8)) (-3410 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3294 (((-525) $ $) NIL)) (-1698 (((-108) $) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) 17)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) NIL)) (-2240 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3386 (($ (-592 |#1|)) 12)) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-122 |#1|) (-13 (-121 |#1|) (-10 -8 (-6 -4256) (-15 -3386 ($ (-592 |#1|))) (-15 -3985 ($ |#1| $)))) (-789)) (T -122))
+((-3386 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-122 *3)))) (-3985 (*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-789)))))
+(-13 (-121 |#1|) (-10 -8 (-6 -4256) (-15 -3386 ($ (-592 |#1|))) (-15 -3985 ($ |#1| $))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3352 ((|#1| $) 24)) (-3330 (((-108) $ (-713)) NIL)) (-1545 ((|#1| $ |#1|) 26 (|has| $ (-6 -4256)))) (-1793 (($ $ $) 30 (|has| $ (-6 -4256)))) (-4057 (($ $ $) 28 (|has| $ (-6 -4256)))) (-1429 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4256))) (($ $ "left" $) NIL (|has| $ (-6 -4256))) (($ $ "right" $) NIL (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) NIL (|has| $ (-6 -4256)))) (-2305 (($) NIL T CONST)) (-3602 (($ $) 20)) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) NIL)) (-2553 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3382 (($ $ |#1| $) 15)) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3593 (($ $) 19)) (-2647 (((-592 |#1|) $) NIL)) (-3365 (((-108) $) 21)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) 18)) (-2718 (($) 11)) (-3410 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3294 (((-525) $ $) NIL)) (-1698 (((-108) $) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) NIL)) (-2240 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3827 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 10 (|has| |#1| (-1020)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-123 |#1|) (-13 (-121 |#1|) (-10 -8 (-15 -3827 ($ |#1|)) (-15 -3827 ($ $ |#1| $)))) (-1020)) (T -123))
+((-3827 (*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1020)))) (-3827 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1020)))))
+(-13 (-121 |#1|) (-10 -8 (-15 -3827 ($ |#1|)) (-15 -3827 ($ $ |#1| $))))
+((-1260 (((-108) $ $) NIL (|has| (-125) (-1020)))) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-2151 (((-108) (-1 (-108) (-125) (-125)) $) NIL) (((-108) $) NIL (|has| (-125) (-789)))) (-2549 (($ (-1 (-108) (-125) (-125)) $) NIL (|has| $ (-6 -4256))) (($ $) NIL (-12 (|has| $ (-6 -4256)) (|has| (-125) (-789))))) (-2855 (($ (-1 (-108) (-125) (-125)) $) NIL) (($ $) NIL (|has| (-125) (-789)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 (((-125) $ (-525) (-125)) NIL (|has| $ (-6 -4256))) (((-125) $ (-1140 (-525)) (-125)) NIL (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-3559 (($ $) NIL (|has| $ (-6 -4256)))) (-3620 (($ $) NIL)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-125) (-1020))))) (-1614 (($ (-125) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-125) (-1020)))) (($ (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4255)))) (-3503 (((-125) (-1 (-125) (-125) (-125)) $ (-125) (-125)) NIL (-12 (|has| $ (-6 -4255)) (|has| (-125) (-1020)))) (((-125) (-1 (-125) (-125) (-125)) $ (-125)) NIL (|has| $ (-6 -4255))) (((-125) (-1 (-125) (-125) (-125)) $) NIL (|has| $ (-6 -4255)))) (-2632 (((-125) $ (-525) (-125)) NIL (|has| $ (-6 -4256)))) (-2570 (((-125) $ (-525)) NIL)) (-1916 (((-525) (-1 (-108) (-125)) $) NIL) (((-525) (-125) $) NIL (|has| (-125) (-1020))) (((-525) (-125) $ (-525)) NIL (|has| (-125) (-1020)))) (-3702 (((-592 (-125)) $) NIL (|has| $ (-6 -4255)))) (-3489 (($ (-713) (-125)) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) NIL (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (|has| (-125) (-789)))) (-3743 (($ (-1 (-108) (-125) (-125)) $ $) NIL) (($ $ $) NIL (|has| (-125) (-789)))) (-1749 (((-592 (-125)) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-125) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-125) (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| (-125) (-789)))) (-2622 (($ (-1 (-125) (-125)) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-125) (-125)) $) NIL) (($ (-1 (-125) (-125) (-125)) $ $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| (-125) (-1020)))) (-2683 (($ (-125) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-2012 (((-1038) $) NIL (|has| (-125) (-1020)))) (-3110 (((-125) $) NIL (|has| (-525) (-789)))) (-3207 (((-3 (-125) "failed") (-1 (-108) (-125)) $) NIL)) (-2042 (($ $ (-125)) NIL (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-125)))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1020)))) (($ $ (-273 (-125))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1020)))) (($ $ (-125) (-125)) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1020)))) (($ $ (-592 (-125)) (-592 (-125))) NIL (-12 (|has| (-125) (-288 (-125))) (|has| (-125) (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) (-125) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-125) (-1020))))) (-1777 (((-592 (-125)) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 (((-125) $ (-525) (-125)) NIL) (((-125) $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-3157 (($ $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-2040 (((-713) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4255))) (((-713) (-125) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-125) (-1020))))) (-3216 (($ $ $ (-525)) NIL (|has| $ (-6 -4256)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| (-125) (-567 (-501))))) (-1279 (($ (-592 (-125))) NIL)) (-2014 (($ $ (-125)) NIL) (($ (-125) $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1270 (((-798) $) NIL (|has| (-125) (-566 (-798))))) (-3633 (((-108) (-1 (-108) (-125)) $) NIL (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) NIL (|has| (-125) (-789)))) (-4026 (((-108) $ $) NIL (|has| (-125) (-789)))) (-3994 (((-108) $ $) NIL (|has| (-125) (-1020)))) (-4037 (((-108) $ $) NIL (|has| (-125) (-789)))) (-4017 (((-108) $ $) NIL (|has| (-125) (-789)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
(((-124) (-19 (-125))) (T -124))
NIL
(-19 (-125))
-((-1893 (((-108) $ $) NIL)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 12) (((-713) $) 9) (($ (-713)) 8)) (-1204 (($ (-713)) 7)) (-3747 (($ $ $) 16)) (-3738 (($ $ $) 15)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 14)))
-(((-125) (-13 (-789) (-566 (-713)) (-10 -8 (-15 -1204 ($ (-713))) (-15 -1908 ($ (-713))) (-15 -3738 ($ $ $)) (-15 -3747 ($ $ $))))) (T -125))
-((-1204 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125)))) (-3738 (*1 *1 *1 *1) (-5 *1 (-125))) (-3747 (*1 *1 *1 *1) (-5 *1 (-125))))
-(-13 (-789) (-566 (-713)) (-10 -8 (-15 -1204 ($ (-713))) (-15 -1908 ($ (-713))) (-15 -3738 ($ $ $)) (-15 -3747 ($ $ $))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4059 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15)))
+((-1260 (((-108) $ $) NIL)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 12) (((-713) $) 9) (($ (-713)) 8)) (-2586 (($ (-713)) 7)) (-3252 (($ $ $) 16)) (-3241 (($ $ $) 15)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 14)))
+(((-125) (-13 (-789) (-566 (-713)) (-10 -8 (-15 -2586 ($ (-713))) (-15 -1270 ($ (-713))) (-15 -3241 ($ $ $)) (-15 -3252 ($ $ $))))) (T -125))
+((-2586 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125)))) (-3241 (*1 *1 *1 *1) (-5 *1 (-125))) (-3252 (*1 *1 *1 *1) (-5 *1 (-125))))
+(-13 (-789) (-566 (-713)) (-10 -8 (-15 -2586 ($ (-713))) (-15 -1270 ($ (-713))) (-15 -3241 ($ $ $)) (-15 -3252 ($ $ $))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4080 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15)))
(((-126) (-131)) (T -126))
-((-3263 (*1 *1 *1 *1) (|partial| -4 *1 (-126))))
-(-13 (-23) (-10 -8 (-15 -3263 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-1893 (((-108) $ $) 7)) (-2128 (((-1177) $ (-713)) 19)) (-3763 (((-713) $) 20)) (-3525 (($ $ $) 13)) (-3630 (($ $ $) 14)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-4024 (((-108) $ $) 16)) (-3995 (((-108) $ $) 17)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 15)) (-3983 (((-108) $ $) 18)))
+((-1342 (*1 *1 *1 *1) (|partial| -4 *1 (-126))))
+(-13 (-23) (-10 -8 (-15 -1342 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-1260 (((-108) $ $) 7)) (-1928 (((-1178) $ (-713)) 19)) (-1916 (((-713) $) 20)) (-2371 (($ $ $) 13)) (-2535 (($ $ $) 14)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-4045 (((-108) $ $) 16)) (-4026 (((-108) $ $) 17)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 15)) (-4017 (((-108) $ $) 18)))
(((-127) (-131)) (T -127))
-((-3763 (*1 *2 *1) (-12 (-4 *1 (-127)) (-5 *2 (-713)))) (-2128 (*1 *2 *1 *3) (-12 (-4 *1 (-127)) (-5 *3 (-713)) (-5 *2 (-1177)))))
-(-13 (-789) (-10 -8 (-15 -3763 ((-713) $)) (-15 -2128 ((-1177) $ (-713)))))
-(((-97) . T) ((-566 (-797)) . T) ((-789) . T) ((-1019) . T))
-((-1893 (((-108) $ $) 34)) (-1611 (((-108) $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-713) "failed") $) 40)) (-2831 (((-713) $) 38)) (-2866 (((-3 $ "failed") $) NIL)) (-2133 (((-108) $) NIL)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) 27)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3496 (((-108)) 41)) (-2357 (((-108) (-108)) 43)) (-3058 (((-108) $) 24)) (-1741 (((-108) $) 37)) (-1908 (((-797) $) 22) (($ (-713)) 14)) (-3465 (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (-3875 (($) 12 T CONST)) (-3882 (($) 11 T CONST)) (-3195 (($ (-713)) 15)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 25)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 26)) (-4070 (((-3 $ "failed") $ $) 30)) (-4059 (($ $ $) 28)) (** (($ $ (-713)) NIL) (($ $ (-855)) NIL) (($ $ $) 36)) (* (($ (-713) $) 33) (($ (-855) $) NIL) (($ $ $) 31)))
-(((-128) (-13 (-789) (-23) (-669) (-967 (-713)) (-10 -8 (-6 (-4256 "*")) (-15 -4070 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3195 ($ (-713))) (-15 -3058 ((-108) $)) (-15 -1741 ((-108) $)) (-15 -3496 ((-108))) (-15 -2357 ((-108) (-108)))))) (T -128))
-((-4070 (*1 *1 *1 *1) (|partial| -5 *1 (-128))) (** (*1 *1 *1 *1) (-5 *1 (-128))) (-3195 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-128)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-3496 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-2357 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128)))))
-(-13 (-789) (-23) (-669) (-967 (-713)) (-10 -8 (-6 (-4256 "*")) (-15 -4070 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3195 ($ (-713))) (-15 -3058 ((-108) $)) (-15 -1741 ((-108) $)) (-15 -3496 ((-108))) (-15 -2357 ((-108) (-108)))))
-((-3669 (((-130 |#1| |#2| |#4|) (-592 |#4|) (-130 |#1| |#2| |#3|)) 14)) (-1370 (((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|)) 18)))
-(((-129 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3669 ((-130 |#1| |#2| |#4|) (-592 |#4|) (-130 |#1| |#2| |#3|))) (-15 -1370 ((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|)))) (-525) (-713) (-160) (-160)) (T -129))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525)) (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160)) (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8)))) (-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525)) (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160)) (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3669 ((-130 |#1| |#2| |#4|) (-592 |#4|) (-130 |#1| |#2| |#3|))) (-15 -1370 ((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|))))
-((-1893 (((-108) $ $) NIL)) (-3672 (($ (-592 |#3|)) 40)) (-2734 (($ $) 99) (($ $ (-525) (-525)) 98)) (-1505 (($) 17)) (-1264 (((-3 |#3| "failed") $) 60)) (-2831 ((|#3| $) NIL)) (-3051 (($ $ (-592 (-525))) 100)) (-3661 (((-592 |#3|) $) 36)) (-2239 (((-713) $) 44)) (-3893 (($ $ $) 93)) (-2593 (($) 43)) (-2337 (((-1073) $) NIL)) (-2288 (($) 16)) (-2663 (((-1037) $) NIL)) (-3928 ((|#3| $) 46) ((|#3| $ (-525)) 47) ((|#3| $ (-525) (-525)) 48) ((|#3| $ (-525) (-525) (-525)) 49) ((|#3| $ (-525) (-525) (-525) (-525)) 50) ((|#3| $ (-592 (-525))) 52)) (-2513 (((-713) $) 45)) (-2302 (($ $ (-525) $ (-525)) 94) (($ $ (-525) (-525)) 96)) (-1908 (((-797) $) 67) (($ |#3|) 68) (($ (-220 |#2| |#3|)) 75) (($ (-1057 |#2| |#3|)) 78) (($ (-592 |#3|)) 53) (($ (-592 $)) 58)) (-3875 (($) 69 T CONST)) (-3882 (($) 70 T CONST)) (-3961 (((-108) $ $) 80)) (-4070 (($ $) 86) (($ $ $) 84)) (-4059 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-525)) 89) (($ (-525) $) 88) (($ $ $) 95)))
-(((-130 |#1| |#2| |#3|) (-13 (-442 |#3| (-713)) (-447 (-525) (-713)) (-10 -8 (-15 -1908 ($ (-220 |#2| |#3|))) (-15 -1908 ($ (-1057 |#2| |#3|))) (-15 -1908 ($ (-592 |#3|))) (-15 -1908 ($ (-592 $))) (-15 -2239 ((-713) $)) (-15 -3928 (|#3| $)) (-15 -3928 (|#3| $ (-525))) (-15 -3928 (|#3| $ (-525) (-525))) (-15 -3928 (|#3| $ (-525) (-525) (-525))) (-15 -3928 (|#3| $ (-525) (-525) (-525) (-525))) (-15 -3928 (|#3| $ (-592 (-525)))) (-15 -3893 ($ $ $)) (-15 * ($ $ $)) (-15 -2302 ($ $ (-525) $ (-525))) (-15 -2302 ($ $ (-525) (-525))) (-15 -2734 ($ $)) (-15 -2734 ($ $ (-525) (-525))) (-15 -3051 ($ $ (-592 (-525)))) (-15 -2288 ($)) (-15 -2593 ($)) (-15 -3661 ((-592 |#3|) $)) (-15 -3672 ($ (-592 |#3|))) (-15 -1505 ($)))) (-525) (-713) (-160)) (T -130))
-((-3893 (*1 *1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-220 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-1057 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-592 (-130 *3 *4 *5))) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3928 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-130 *3 *4 *2)) (-14 *3 (-525)) (-14 *4 (-713)))) (-3928 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 (-525)) (-14 *5 (-713)))) (-3928 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 (-525)) (-14 *5 (-713)))) (-3928 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 (-525)) (-14 *5 (-713)))) (-3928 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 (-525)) (-14 *5 (-713)))) (-3928 (*1 *2 *1 *3) (-12 (-5 *3 (-592 (-525))) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 (-525)) (-14 *5 (-713)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-2302 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-2302 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-2734 (*1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-2734 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3051 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-2288 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-2593 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-3661 (*1 *2 *1) (-12 (-5 *2 (-592 *5)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3672 (*1 *1 *2) (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)))) (-1505 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))))
-(-13 (-442 |#3| (-713)) (-447 (-525) (-713)) (-10 -8 (-15 -1908 ($ (-220 |#2| |#3|))) (-15 -1908 ($ (-1057 |#2| |#3|))) (-15 -1908 ($ (-592 |#3|))) (-15 -1908 ($ (-592 $))) (-15 -2239 ((-713) $)) (-15 -3928 (|#3| $)) (-15 -3928 (|#3| $ (-525))) (-15 -3928 (|#3| $ (-525) (-525))) (-15 -3928 (|#3| $ (-525) (-525) (-525))) (-15 -3928 (|#3| $ (-525) (-525) (-525) (-525))) (-15 -3928 (|#3| $ (-592 (-525)))) (-15 -3893 ($ $ $)) (-15 * ($ $ $)) (-15 -2302 ($ $ (-525) $ (-525))) (-15 -2302 ($ $ (-525) (-525))) (-15 -2734 ($ $)) (-15 -2734 ($ $ (-525) (-525))) (-15 -3051 ($ $ (-592 (-525)))) (-15 -2288 ($)) (-15 -2593 ($)) (-15 -3661 ((-592 |#3|) $)) (-15 -3672 ($ (-592 |#3|))) (-15 -1505 ($))))
-((-1908 (((-797) $) 7)))
-(((-131) (-566 (-797))) (T -131))
-NIL
-(-566 (-797))
-((-1893 (((-108) $ $) NIL)) (-1289 (($) 15 T CONST)) (-2085 (($) NIL (|has| (-135) (-346)))) (-3254 (($ $ $) 17) (($ $ (-135)) NIL) (($ (-135) $) NIL)) (-1914 (($ $ $) NIL)) (-2258 (((-108) $ $) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-3107 (((-713)) NIL (|has| (-135) (-346)))) (-3399 (($) NIL) (($ (-592 (-135))) NIL)) (-3290 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-2792 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254))) (($ (-135) $) 51 (|has| $ (-6 -4254)))) (-2273 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254))) (($ (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-4004 (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4254))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4254))) (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-3375 (($) NIL (|has| (-135) (-346)))) (-2026 (((-592 (-135)) $) 60 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-3525 (((-135) $) NIL (|has| (-135) (-789)))) (-3168 (((-592 (-135)) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-135) $) 26 (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-3630 (((-135) $) NIL (|has| (-135) (-789)))) (-2857 (($ (-1 (-135) (-135)) $) 59 (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-135) (-135)) $) 55)) (-3762 (($) 16 T CONST)) (-1780 (((-855) $) NIL (|has| (-135) (-346)))) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL)) (-3187 (($ $ $) 29)) (-2570 (((-135) $) 52)) (-2573 (($ (-135) $) 50)) (-4185 (($ (-855)) NIL (|has| (-135) (-346)))) (-2052 (($) 14 T CONST)) (-2663 (((-1037) $) NIL)) (-4054 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-3513 (((-135) $) 53)) (-3494 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-135)) (-592 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-592 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) 48)) (-1607 (($) 13 T CONST)) (-1706 (($ $ $) 31) (($ $ (-135)) NIL)) (-4006 (($ (-592 (-135))) NIL) (($) NIL)) (-2686 (((-713) (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019)))) (((-713) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) NIL)) (-1427 (((-1073) $) 36) (((-501) $) NIL (|has| (-135) (-567 (-501)))) (((-592 (-135)) $) 34)) (-1922 (($ (-592 (-135))) NIL)) (-2082 (($ $) 32 (|has| (-135) (-346)))) (-1908 (((-797) $) 46)) (-2212 (($ (-1073)) 12) (($ (-592 (-135))) 43)) (-3835 (((-713) $) NIL)) (-3832 (($) 49) (($ (-592 (-135))) NIL)) (-3612 (($ (-592 (-135))) NIL)) (-2667 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-2051 (($) 19 T CONST)) (-3506 (($) 18 T CONST)) (-3961 (((-108) $ $) 22)) (-3983 (((-108) $ $) NIL)) (-4140 (((-713) $) 47 (|has| $ (-6 -4254)))))
-(((-132) (-13 (-1019) (-567 (-1073)) (-403 (-135)) (-567 (-592 (-135))) (-10 -8 (-15 -2212 ($ (-1073))) (-15 -2212 ($ (-592 (-135)))) (-15 -1607 ($) -3359) (-15 -2052 ($) -3359) (-15 -1289 ($) -3359) (-15 -3762 ($) -3359) (-15 -3506 ($) -3359) (-15 -2051 ($) -3359)))) (T -132))
-((-2212 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-132)))) (-2212 (*1 *1 *2) (-12 (-5 *2 (-592 (-135))) (-5 *1 (-132)))) (-1607 (*1 *1) (-5 *1 (-132))) (-2052 (*1 *1) (-5 *1 (-132))) (-1289 (*1 *1) (-5 *1 (-132))) (-3762 (*1 *1) (-5 *1 (-132))) (-3506 (*1 *1) (-5 *1 (-132))) (-2051 (*1 *1) (-5 *1 (-132))))
-(-13 (-1019) (-567 (-1073)) (-403 (-135)) (-567 (-592 (-135))) (-10 -8 (-15 -2212 ($ (-1073))) (-15 -2212 ($ (-592 (-135)))) (-15 -1607 ($) -3359) (-15 -2052 ($) -3359) (-15 -1289 ($) -3359) (-15 -3762 ($) -3359) (-15 -3506 ($) -3359) (-15 -2051 ($) -3359)))
-((-1284 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2717 ((|#1| |#3|) 9)) (-2636 ((|#3| |#3|) 15)))
-(((-133 |#1| |#2| |#3|) (-10 -7 (-15 -2717 (|#1| |#3|)) (-15 -2636 (|#3| |#3|)) (-15 -1284 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-517) (-924 |#1|) (-351 |#2|)) (T -133))
-((-1284 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-924 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-133 *4 *5 *3)) (-4 *3 (-351 *5)))) (-2636 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *4 (-924 *3)) (-5 *1 (-133 *3 *4 *2)) (-4 *2 (-351 *4)))) (-2717 (*1 *2 *3) (-12 (-4 *4 (-924 *2)) (-4 *2 (-517)) (-5 *1 (-133 *2 *4 *3)) (-4 *3 (-351 *4)))))
-(-10 -7 (-15 -2717 (|#1| |#3|)) (-15 -2636 (|#3| |#3|)) (-15 -1284 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-3834 (($ $ $) 8)) (-3066 (($ $) 7)) (-3015 (($ $ $) 6)))
+((-1916 (*1 *2 *1) (-12 (-4 *1 (-127)) (-5 *2 (-713)))) (-1928 (*1 *2 *1 *3) (-12 (-4 *1 (-127)) (-5 *3 (-713)) (-5 *2 (-1178)))))
+(-13 (-789) (-10 -8 (-15 -1916 ((-713) $)) (-15 -1928 ((-1178) $ (-713)))))
+(((-97) . T) ((-566 (-798)) . T) ((-789) . T) ((-1020) . T))
+((-1260 (((-108) $ $) 34)) (-1989 (((-108) $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-713) "failed") $) 40)) (-3898 (((-713) $) 38)) (-3762 (((-3 $ "failed") $) NIL)) (-1985 (((-108) $) NIL)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) 27)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3020 (((-108)) 41)) (-2594 (((-108) (-108)) 43)) (-1993 (((-108) $) 24)) (-4023 (((-108) $) 37)) (-1270 (((-798) $) 22) (($ (-713)) 14)) (-1576 (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3355 (($) 12 T CONST)) (-3363 (($) 11 T CONST)) (-3874 (($ (-713)) 15)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 25)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 26)) (-4090 (((-3 $ "failed") $ $) 30)) (-4080 (($ $ $) 28)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL) (($ $ $) 36)) (* (($ (-713) $) 33) (($ (-856) $) NIL) (($ $ $) 31)))
+(((-128) (-13 (-789) (-23) (-669) (-968 (-713)) (-10 -8 (-6 (-4257 "*")) (-15 -4090 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3874 ($ (-713))) (-15 -1993 ((-108) $)) (-15 -4023 ((-108) $)) (-15 -3020 ((-108))) (-15 -2594 ((-108) (-108)))))) (T -128))
+((-4090 (*1 *1 *1 *1) (|partial| -5 *1 (-128))) (** (*1 *1 *1 *1) (-5 *1 (-128))) (-3874 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-128)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-4023 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-3020 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128)))) (-2594 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128)))))
+(-13 (-789) (-23) (-669) (-968 (-713)) (-10 -8 (-6 (-4257 "*")) (-15 -4090 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3874 ($ (-713))) (-15 -1993 ((-108) $)) (-15 -4023 ((-108) $)) (-15 -3020 ((-108))) (-15 -2594 ((-108) (-108)))))
+((-1797 (((-130 |#1| |#2| |#4|) (-592 |#4|) (-130 |#1| |#2| |#3|)) 14)) (-2694 (((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|)) 18)))
+(((-129 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1797 ((-130 |#1| |#2| |#4|) (-592 |#4|) (-130 |#1| |#2| |#3|))) (-15 -2694 ((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|)))) (-525) (-713) (-160) (-160)) (T -129))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525)) (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160)) (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8)))) (-1797 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525)) (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160)) (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1797 ((-130 |#1| |#2| |#4|) (-592 |#4|) (-130 |#1| |#2| |#3|))) (-15 -2694 ((-130 |#1| |#2| |#4|) (-1 |#4| |#3|) (-130 |#1| |#2| |#3|))))
+((-1260 (((-108) $ $) NIL)) (-4065 (($ (-592 |#3|)) 40)) (-3106 (($ $) 99) (($ $ (-525) (-525)) 98)) (-2305 (($) 17)) (-2591 (((-3 |#3| "failed") $) 60)) (-3898 ((|#3| $) NIL)) (-1925 (($ $ (-592 (-525))) 100)) (-1783 (((-592 |#3|) $) 36)) (-3318 (((-713) $) 44)) (-1283 (($ $ $) 93)) (-4172 (($) 43)) (-3451 (((-1074) $) NIL)) (-4188 (($) 16)) (-2012 (((-1038) $) NIL)) (-3410 ((|#3| $) 46) ((|#3| $ (-525)) 47) ((|#3| $ (-525) (-525)) 48) ((|#3| $ (-525) (-525) (-525)) 49) ((|#3| $ (-525) (-525) (-525) (-525)) 50) ((|#3| $ (-592 (-525))) 52)) (-1587 (((-713) $) 45)) (-3173 (($ $ (-525) $ (-525)) 94) (($ $ (-525) (-525)) 96)) (-1270 (((-798) $) 67) (($ |#3|) 68) (($ (-220 |#2| |#3|)) 75) (($ (-1058 |#2| |#3|)) 78) (($ (-592 |#3|)) 53) (($ (-592 $)) 58)) (-3355 (($) 69 T CONST)) (-3363 (($) 70 T CONST)) (-3994 (((-108) $ $) 80)) (-4090 (($ $) 86) (($ $ $) 84)) (-4080 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-525)) 89) (($ (-525) $) 88) (($ $ $) 95)))
+(((-130 |#1| |#2| |#3|) (-13 (-442 |#3| (-713)) (-447 (-525) (-713)) (-10 -8 (-15 -1270 ($ (-220 |#2| |#3|))) (-15 -1270 ($ (-1058 |#2| |#3|))) (-15 -1270 ($ (-592 |#3|))) (-15 -1270 ($ (-592 $))) (-15 -3318 ((-713) $)) (-15 -3410 (|#3| $)) (-15 -3410 (|#3| $ (-525))) (-15 -3410 (|#3| $ (-525) (-525))) (-15 -3410 (|#3| $ (-525) (-525) (-525))) (-15 -3410 (|#3| $ (-525) (-525) (-525) (-525))) (-15 -3410 (|#3| $ (-592 (-525)))) (-15 -1283 ($ $ $)) (-15 * ($ $ $)) (-15 -3173 ($ $ (-525) $ (-525))) (-15 -3173 ($ $ (-525) (-525))) (-15 -3106 ($ $)) (-15 -3106 ($ $ (-525) (-525))) (-15 -1925 ($ $ (-592 (-525)))) (-15 -4188 ($)) (-15 -4172 ($)) (-15 -1783 ((-592 |#3|) $)) (-15 -4065 ($ (-592 |#3|))) (-15 -2305 ($)))) (-525) (-713) (-160)) (T -130))
+((-1283 (*1 *1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-220 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1058 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-592 (-130 *3 *4 *5))) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3410 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-130 *3 *4 *2)) (-14 *3 (-525)) (-14 *4 (-713)))) (-3410 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 (-525)) (-14 *5 (-713)))) (-3410 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 (-525)) (-14 *5 (-713)))) (-3410 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 (-525)) (-14 *5 (-713)))) (-3410 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 (-525)) (-14 *5 (-713)))) (-3410 (*1 *2 *1 *3) (-12 (-5 *3 (-592 (-525))) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2)) (-14 *4 (-525)) (-14 *5 (-713)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-3173 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3173 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3106 (*1 *1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-3106 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-1925 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-4188 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-4172 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))) (-1783 (*1 *2 *1) (-12 (-5 *2 (-592 *5)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)) (-4 *5 (-160)))) (-4065 (*1 *1 *2) (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525)) (-14 *4 (-713)))) (-2305 (*1 *1) (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713)) (-4 *4 (-160)))))
+(-13 (-442 |#3| (-713)) (-447 (-525) (-713)) (-10 -8 (-15 -1270 ($ (-220 |#2| |#3|))) (-15 -1270 ($ (-1058 |#2| |#3|))) (-15 -1270 ($ (-592 |#3|))) (-15 -1270 ($ (-592 $))) (-15 -3318 ((-713) $)) (-15 -3410 (|#3| $)) (-15 -3410 (|#3| $ (-525))) (-15 -3410 (|#3| $ (-525) (-525))) (-15 -3410 (|#3| $ (-525) (-525) (-525))) (-15 -3410 (|#3| $ (-525) (-525) (-525) (-525))) (-15 -3410 (|#3| $ (-592 (-525)))) (-15 -1283 ($ $ $)) (-15 * ($ $ $)) (-15 -3173 ($ $ (-525) $ (-525))) (-15 -3173 ($ $ (-525) (-525))) (-15 -3106 ($ $)) (-15 -3106 ($ $ (-525) (-525))) (-15 -1925 ($ $ (-592 (-525)))) (-15 -4188 ($)) (-15 -4172 ($)) (-15 -1783 ((-592 |#3|) $)) (-15 -4065 ($ (-592 |#3|))) (-15 -2305 ($))))
+((-1270 (((-798) $) 7)))
+(((-131) (-566 (-798))) (T -131))
+NIL
+(-566 (-798))
+((-1260 (((-108) $ $) NIL)) (-2374 (($) 15 T CONST)) (-2001 (($) NIL (|has| (-135) (-346)))) (-2805 (($ $ $) 17) (($ $ (-135)) NIL) (($ (-135) $) NIL)) (-2083 (($ $ $) NIL)) (-3921 (((-108) $ $) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-4190 (((-713)) NIL (|has| (-135) (-346)))) (-2955 (($) NIL) (($ (-592 (-135))) NIL)) (-1608 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020))))) (-2592 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4255))) (($ (-135) $) 51 (|has| $ (-6 -4255)))) (-1614 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4255))) (($ (-135) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020))))) (-3503 (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4255))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4255))) (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020))))) (-2899 (($) NIL (|has| (-135) (-346)))) (-3702 (((-592 (-135)) $) 60 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-2371 (((-135) $) NIL (|has| (-135) (-789)))) (-1749 (((-592 (-135)) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-135) $) 26 (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020))))) (-2535 (((-135) $) NIL (|has| (-135) (-789)))) (-2622 (($ (-1 (-135) (-135)) $) 59 (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-135) (-135)) $) 55)) (-2630 (($) 16 T CONST)) (-1736 (((-856) $) NIL (|has| (-135) (-346)))) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL)) (-3792 (($ $ $) 29)) (-3955 (((-135) $) 52)) (-3985 (($ (-135) $) 50)) (-3640 (($ (-856)) NIL (|has| (-135) (-346)))) (-2663 (($) 14 T CONST)) (-2012 (((-1038) $) NIL)) (-3207 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-1881 (((-135) $) 53)) (-3006 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-135)) (-592 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-592 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) 48)) (-1937 (($) 13 T CONST)) (-4004 (($ $ $) 31) (($ $ (-135)) NIL)) (-3981 (($ (-592 (-135))) NIL) (($) NIL)) (-2040 (((-713) (-135) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020)))) (((-713) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) NIL)) (-2749 (((-1074) $) 36) (((-501) $) NIL (|has| (-135) (-567 (-501)))) (((-592 (-135)) $) 34)) (-1279 (($ (-592 (-135))) NIL)) (-1966 (($ $) 32 (|has| (-135) (-346)))) (-1270 (((-798) $) 46)) (-1598 (($ (-1074)) 12) (($ (-592 (-135))) 43)) (-1974 (((-713) $) NIL)) (-3316 (($) 49) (($ (-592 (-135))) NIL)) (-1665 (($ (-592 (-135))) NIL)) (-3633 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4255)))) (-4210 (($) 19 T CONST)) (-1814 (($) 18 T CONST)) (-3994 (((-108) $ $) 22)) (-4017 (((-108) $ $) NIL)) (-3596 (((-713) $) 47 (|has| $ (-6 -4255)))))
+(((-132) (-13 (-1020) (-567 (-1074)) (-403 (-135)) (-567 (-592 (-135))) (-10 -8 (-15 -1598 ($ (-1074))) (-15 -1598 ($ (-592 (-135)))) (-15 -1937 ($) -1479) (-15 -2663 ($) -1479) (-15 -2374 ($) -1479) (-15 -2630 ($) -1479) (-15 -1814 ($) -1479) (-15 -4210 ($) -1479)))) (T -132))
+((-1598 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-132)))) (-1598 (*1 *1 *2) (-12 (-5 *2 (-592 (-135))) (-5 *1 (-132)))) (-1937 (*1 *1) (-5 *1 (-132))) (-2663 (*1 *1) (-5 *1 (-132))) (-2374 (*1 *1) (-5 *1 (-132))) (-2630 (*1 *1) (-5 *1 (-132))) (-1814 (*1 *1) (-5 *1 (-132))) (-4210 (*1 *1) (-5 *1 (-132))))
+(-13 (-1020) (-567 (-1074)) (-403 (-135)) (-567 (-592 (-135))) (-10 -8 (-15 -1598 ($ (-1074))) (-15 -1598 ($ (-592 (-135)))) (-15 -1937 ($) -1479) (-15 -2663 ($) -1479) (-15 -2374 ($) -1479) (-15 -2630 ($) -1479) (-15 -1814 ($) -1479) (-15 -4210 ($) -1479)))
+((-3722 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2987 ((|#1| |#3|) 9)) (-3384 ((|#3| |#3|) 15)))
+(((-133 |#1| |#2| |#3|) (-10 -7 (-15 -2987 (|#1| |#3|)) (-15 -3384 (|#3| |#3|)) (-15 -3722 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-517) (-925 |#1|) (-351 |#2|)) (T -133))
+((-3722 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-925 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-133 *4 *5 *3)) (-4 *3 (-351 *5)))) (-3384 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *4 (-925 *3)) (-5 *1 (-133 *3 *4 *2)) (-4 *2 (-351 *4)))) (-2987 (*1 *2 *3) (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-133 *2 *4 *3)) (-4 *3 (-351 *4)))))
+(-10 -7 (-15 -2987 (|#1| |#3|)) (-15 -3384 (|#3| |#3|)) (-15 -3722 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-1962 (($ $ $) 8)) (-2075 (($ $) 7)) (-2938 (($ $ $) 6)))
(((-134) (-131)) (T -134))
-((-3834 (*1 *1 *1 *1) (-4 *1 (-134))) (-3066 (*1 *1 *1) (-4 *1 (-134))) (-3015 (*1 *1 *1 *1) (-4 *1 (-134))))
-(-13 (-10 -8 (-15 -3015 ($ $ $)) (-15 -3066 ($ $)) (-15 -3834 ($ $ $))))
-((-1893 (((-108) $ $) NIL)) (-4197 (((-108) $) 30)) (-1289 (($ $) 43)) (-2166 (($) 17)) (-3107 (((-713)) 10)) (-3375 (($) 16)) (-2352 (($) 18)) (-1781 (((-713) $) 14)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-1855 (((-108) $) 32)) (-3762 (($ $) 44)) (-1780 (((-855) $) 15)) (-2337 (((-1073) $) 38)) (-4185 (($ (-855)) 13)) (-1435 (((-108) $) 28)) (-2663 (((-1037) $) NIL)) (-2210 (($) 19)) (-3859 (((-108) $) 26)) (-1908 (((-797) $) 21)) (-3868 (($ (-713)) 11) (($ (-1073)) 42)) (-3101 (((-108) $) 36)) (-3645 (((-108) $) 34)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 7)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 8)))
-(((-135) (-13 (-783) (-10 -8 (-15 -1781 ((-713) $)) (-15 -3868 ($ (-713))) (-15 -3868 ($ (-1073))) (-15 -2166 ($)) (-15 -2352 ($)) (-15 -2210 ($)) (-15 -1289 ($ $)) (-15 -3762 ($ $)) (-15 -3859 ((-108) $)) (-15 -1435 ((-108) $)) (-15 -3645 ((-108) $)) (-15 -4197 ((-108) $)) (-15 -1855 ((-108) $)) (-15 -3101 ((-108) $))))) (T -135))
-((-1781 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-135)))) (-3868 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-135)))) (-3868 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-135)))) (-2166 (*1 *1) (-5 *1 (-135))) (-2352 (*1 *1) (-5 *1 (-135))) (-2210 (*1 *1) (-5 *1 (-135))) (-1289 (*1 *1 *1) (-5 *1 (-135))) (-3762 (*1 *1 *1) (-5 *1 (-135))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-1435 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-3645 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-4197 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-1855 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-3101 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
-(-13 (-783) (-10 -8 (-15 -1781 ((-713) $)) (-15 -3868 ($ (-713))) (-15 -3868 ($ (-1073))) (-15 -2166 ($)) (-15 -2352 ($)) (-15 -2210 ($)) (-15 -1289 ($ $)) (-15 -3762 ($ $)) (-15 -3859 ((-108) $)) (-15 -1435 ((-108) $)) (-15 -3645 ((-108) $)) (-15 -4197 ((-108) $)) (-15 -1855 ((-108) $)) (-15 -3101 ((-108) $))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11) (($ (-525)) 28)) (-3421 (((-3 $ "failed") $) 35)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-1962 (*1 *1 *1 *1) (-4 *1 (-134))) (-2075 (*1 *1 *1) (-4 *1 (-134))) (-2938 (*1 *1 *1 *1) (-4 *1 (-134))))
+(-13 (-10 -8 (-15 -2938 ($ $ $)) (-15 -2075 ($ $)) (-15 -1962 ($ $ $))))
+((-1260 (((-108) $ $) NIL)) (-1954 (((-108) $) 30)) (-2374 (($ $) 43)) (-2446 (($) 17)) (-4190 (((-713)) 10)) (-2899 (($) 16)) (-3581 (($) 18)) (-3187 (((-713) $) 14)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-3367 (((-108) $) 32)) (-2630 (($ $) 44)) (-1736 (((-856) $) 15)) (-3451 (((-1074) $) 38)) (-3640 (($ (-856)) 13)) (-2601 (((-108) $) 28)) (-2012 (((-1038) $) NIL)) (-1575 (($) 19)) (-2087 (((-108) $) 26)) (-1270 (((-798) $) 21)) (-2229 (($ (-713)) 11) (($ (-1074)) 42)) (-2494 (((-108) $) 36)) (-3828 (((-108) $) 34)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 7)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 8)))
+(((-135) (-13 (-783) (-10 -8 (-15 -3187 ((-713) $)) (-15 -2229 ($ (-713))) (-15 -2229 ($ (-1074))) (-15 -2446 ($)) (-15 -3581 ($)) (-15 -1575 ($)) (-15 -2374 ($ $)) (-15 -2630 ($ $)) (-15 -2087 ((-108) $)) (-15 -2601 ((-108) $)) (-15 -3828 ((-108) $)) (-15 -1954 ((-108) $)) (-15 -3367 ((-108) $)) (-15 -2494 ((-108) $))))) (T -135))
+((-3187 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-135)))) (-2229 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-135)))) (-2229 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-135)))) (-2446 (*1 *1) (-5 *1 (-135))) (-3581 (*1 *1) (-5 *1 (-135))) (-1575 (*1 *1) (-5 *1 (-135))) (-2374 (*1 *1 *1) (-5 *1 (-135))) (-2630 (*1 *1 *1) (-5 *1 (-135))) (-2087 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-2601 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-1954 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-3367 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))) (-2494 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
+(-13 (-783) (-10 -8 (-15 -3187 ((-713) $)) (-15 -2229 ($ (-713))) (-15 -2229 ($ (-1074))) (-15 -2446 ($)) (-15 -3581 ($)) (-15 -1575 ($)) (-15 -2374 ($ $)) (-15 -2630 ($ $)) (-15 -2087 ((-108) $)) (-15 -2601 ((-108) $)) (-15 -3828 ((-108) $)) (-15 -1954 ((-108) $)) (-15 -3367 ((-108) $)) (-15 -2494 ((-108) $))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11) (($ (-525)) 28)) (-3425 (((-3 $ "failed") $) 35)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-136) (-131)) (T -136))
-((-3421 (*1 *1 *1) (|partial| -4 *1 (-136))))
-(-13 (-976) (-10 -8 (-15 -3421 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1260 ((|#1| (-632 |#1|) |#1|) 19)))
-(((-137 |#1|) (-10 -7 (-15 -1260 (|#1| (-632 |#1|) |#1|))) (-160)) (T -137))
-((-1260 (*1 *2 *3 *2) (-12 (-5 *3 (-632 *2)) (-4 *2 (-160)) (-5 *1 (-137 *2)))))
-(-10 -7 (-15 -1260 (|#1| (-632 |#1|) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11) (($ (-525)) 28)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-3425 (*1 *1 *1) (|partial| -4 *1 (-136))))
+(-13 (-977) (-10 -8 (-15 -3425 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-1805 ((|#1| (-632 |#1|) |#1|) 19)))
+(((-137 |#1|) (-10 -7 (-15 -1805 (|#1| (-632 |#1|) |#1|))) (-160)) (T -137))
+((-1805 (*1 *2 *3 *2) (-12 (-5 *3 (-632 *2)) (-4 *2 (-160)) (-5 *1 (-137 *2)))))
+(-10 -7 (-15 -1805 (|#1| (-632 |#1|) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11) (($ (-525)) 28)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-138) (-131)) (T -138))
NIL
-(-13 (-976))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-2276 (((-2 (|:| -1600 (-713)) (|:| -1459 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-713)) 70)) (-1587 (((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-713))) "failed") |#3|) 52)) (-2997 (((-2 (|:| -1459 (-385 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-2270 ((|#1| |#3| |#3|) 40)) (-3092 ((|#3| |#3| (-385 |#2|) (-385 |#2|)) 19)) (-2188 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-713))) |#3| |#3|) 49)))
-(((-139 |#1| |#2| |#3|) (-10 -7 (-15 -2997 ((-2 (|:| -1459 (-385 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1587 ((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-713))) "failed") |#3|)) (-15 -2276 ((-2 (|:| -1600 (-713)) (|:| -1459 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-713))) (-15 -2270 (|#1| |#3| |#3|)) (-15 -3092 (|#3| |#3| (-385 |#2|) (-385 |#2|))) (-15 -2188 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-713))) |#3| |#3|))) (-1130) (-1148 |#1|) (-1148 (-385 |#2|))) (T -139))
-((-2188 (*1 *2 *3 *3) (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-385 *5)) (|:| |c2| (-385 *5)) (|:| |deg| (-713)))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1148 (-385 *5))))) (-3092 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-385 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-1130)) (-5 *1 (-139 *4 *5 *2)) (-4 *2 (-1148 (-385 *5))))) (-2270 (*1 *2 *3 *3) (-12 (-4 *4 (-1148 *2)) (-4 *2 (-1130)) (-5 *1 (-139 *2 *4 *3)) (-4 *3 (-1148 (-385 *4))))) (-2276 (*1 *2 *3 *4) (-12 (-4 *5 (-1130)) (-4 *6 (-1148 *5)) (-5 *2 (-2 (|:| -1600 (-713)) (|:| -1459 (-385 *6)) (|:| |radicand| *6))) (-5 *1 (-139 *5 *6 *7)) (-5 *3 (-385 *6)) (-5 *4 (-713)) (-4 *7 (-1148 (-385 *6))))) (-1587 (*1 *2 *3) (|partial| -12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-5 *2 (-2 (|:| |radicand| (-385 *5)) (|:| |deg| (-713)))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1148 (-385 *5))))) (-2997 (*1 *2 *3) (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-5 *2 (-2 (|:| -1459 (-385 *5)) (|:| |poly| *3))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1148 (-385 *5))))))
-(-10 -7 (-15 -2997 ((-2 (|:| -1459 (-385 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1587 ((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-713))) "failed") |#3|)) (-15 -2276 ((-2 (|:| -1600 (-713)) (|:| -1459 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-713))) (-15 -2270 (|#1| |#3| |#3|)) (-15 -3092 (|#3| |#3| (-385 |#2|) (-385 |#2|))) (-15 -2188 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-713))) |#3| |#3|)))
-((-2620 (((-3 (-592 (-1086 |#2|)) "failed") (-592 (-1086 |#2|)) (-1086 |#2|)) 32)))
-(((-140 |#1| |#2|) (-10 -7 (-15 -2620 ((-3 (-592 (-1086 |#2|)) "failed") (-592 (-1086 |#2|)) (-1086 |#2|)))) (-510) (-154 |#1|)) (T -140))
-((-2620 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-154 *4)) (-4 *4 (-510)) (-5 *1 (-140 *4 *5)))))
-(-10 -7 (-15 -2620 ((-3 (-592 (-1086 |#2|)) "failed") (-592 (-1086 |#2|)) (-1086 |#2|))))
-((-2724 (($ (-1 (-108) |#2|) $) 29)) (-3163 (($ $) 36)) (-2273 (($ (-1 (-108) |#2|) $) 27) (($ |#2| $) 32)) (-4004 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-4054 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 19)) (-3494 (((-108) (-1 (-108) |#2|) $) 16)) (-2686 (((-713) (-1 (-108) |#2|) $) 14) (((-713) |#2| $) NIL)) (-2667 (((-108) (-1 (-108) |#2|) $) 15)) (-4140 (((-713) $) 11)))
-(((-141 |#1| |#2|) (-10 -8 (-15 -3163 (|#1| |#1|)) (-15 -2273 (|#1| |#2| |#1|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2724 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2273 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4054 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2686 ((-713) |#2| |#1|)) (-15 -2686 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3494 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2667 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -4140 ((-713) |#1|))) (-142 |#2|) (-1126)) (T -141))
-NIL
-(-10 -8 (-15 -3163 (|#1| |#1|)) (-15 -2273 (|#1| |#2| |#1|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2724 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2273 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4054 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2686 ((-713) |#2| |#1|)) (-15 -2686 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3494 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2667 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -4140 ((-713) |#1|)))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3410 (((-108) $ (-713)) 8)) (-2724 (($ (-1 (-108) |#1|) $) 44 (|has| $ (-6 -4254)))) (-1505 (($) 7 T CONST)) (-3163 (($ $) 41 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4254))) (($ |#1| $) 42 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) 9)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 48)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1427 (((-501) $) 40 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 49)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-142 |#1|) (-131) (-1126)) (T -142))
-((-1922 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-4 *1 (-142 *3)))) (-4054 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-142 *2)) (-4 *2 (-1126)))) (-4004 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *2)) (-4 *2 (-1126)))) (-4004 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *2)) (-4 *2 (-1126)))) (-2273 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *3)) (-4 *3 (-1126)))) (-2724 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *3)) (-4 *3 (-1126)))) (-4004 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1019)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *2)) (-4 *2 (-1126)))) (-2273 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-142 *2)) (-4 *2 (-1126)) (-4 *2 (-1019)))) (-3163 (*1 *1 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-142 *2)) (-4 *2 (-1126)) (-4 *2 (-1019)))))
-(-13 (-464 |t#1|) (-10 -8 (-15 -1922 ($ (-592 |t#1|))) (-15 -4054 ((-3 |t#1| "failed") (-1 (-108) |t#1|) $)) (IF (|has| $ (-6 -4254)) (PROGN (-15 -4004 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4004 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2273 ($ (-1 (-108) |t#1|) $)) (-15 -2724 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1019)) (PROGN (-15 -4004 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2273 ($ |t#1| $)) (-15 -3163 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-2866 (((-3 $ "failed") $) 86)) (-2133 (((-108) $) NIL)) (-4079 (($ |#2| (-592 (-855))) 56)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3312 (($ (-855)) 47)) (-3191 (((-128)) 23)) (-1908 (((-797) $) 69) (($ (-525)) 45) (($ |#2|) 46)) (-1657 ((|#2| $ (-592 (-855))) 59)) (-2093 (((-713)) 20)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 40 T CONST)) (-3882 (($) 43 T CONST)) (-3961 (((-108) $ $) 26)) (-4082 (($ $ |#2|) NIL)) (-4070 (($ $) 34) (($ $ $) 32)) (-4059 (($ $ $) 30)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-143 |#1| |#2| |#3|) (-13 (-976) (-37 |#2|) (-1179 |#2|) (-10 -8 (-15 -3312 ($ (-855))) (-15 -4079 ($ |#2| (-592 (-855)))) (-15 -1657 (|#2| $ (-592 (-855)))) (-15 -2866 ((-3 $ "failed") $)))) (-855) (-341) (-925 |#1| |#2|)) (T -143))
-((-2866 (*1 *1 *1) (|partial| -12 (-5 *1 (-143 *2 *3 *4)) (-14 *2 (-855)) (-4 *3 (-341)) (-14 *4 (-925 *2 *3)))) (-3312 (*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-143 *3 *4 *5)) (-14 *3 (-855)) (-4 *4 (-341)) (-14 *5 (-925 *3 *4)))) (-4079 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-855))) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-855)) (-4 *2 (-341)) (-14 *5 (-925 *4 *2)))) (-1657 (*1 *2 *1 *3) (-12 (-5 *3 (-592 (-855))) (-4 *2 (-341)) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-855)) (-14 *5 (-925 *4 *2)))))
-(-13 (-976) (-37 |#2|) (-1179 |#2|) (-10 -8 (-15 -3312 ($ (-855))) (-15 -4079 ($ |#2| (-592 (-855)))) (-15 -1657 (|#2| $ (-592 (-855)))) (-15 -2866 ((-3 $ "failed") $))))
-((-2142 (((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-592 (-877 (-205)))) (-205) (-205) (-205) (-205)) 38)) (-1205 (((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861) (-385 (-525)) (-385 (-525))) 63) (((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861)) 64)) (-2927 (((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-592 (-877 (-205))))) 67) (((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-877 (-205)))) 66) (((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861) (-385 (-525)) (-385 (-525))) 58) (((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861)) 59)))
-(((-144) (-10 -7 (-15 -2927 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861))) (-15 -2927 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861) (-385 (-525)) (-385 (-525)))) (-15 -1205 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861))) (-15 -1205 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861) (-385 (-525)) (-385 (-525)))) (-15 -2142 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-592 (-877 (-205)))) (-205) (-205) (-205) (-205))) (-15 -2927 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-877 (-205))))) (-15 -2927 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-592 (-877 (-205)))))))) (T -144))
-((-2927 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) (-5 *1 (-144)) (-5 *3 (-592 (-592 (-877 (-205))))))) (-2927 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) (-5 *1 (-144)) (-5 *3 (-592 (-877 (-205)))))) (-2142 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-205)) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-877 *4)))) (|:| |xValues| (-1014 *4)) (|:| |yValues| (-1014 *4)))) (-5 *1 (-144)) (-5 *3 (-592 (-592 (-877 *4)))))) (-1205 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-861)) (-5 *4 (-385 (-525))) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) (-5 *1 (-144)))) (-1205 (*1 *2 *3) (-12 (-5 *3 (-861)) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) (-5 *1 (-144)))) (-2927 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-861)) (-5 *4 (-385 (-525))) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) (-5 *1 (-144)))) (-2927 (*1 *2 *3) (-12 (-5 *3 (-861)) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205))))) (-5 *1 (-144)))))
-(-10 -7 (-15 -2927 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861))) (-15 -2927 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861) (-385 (-525)) (-385 (-525)))) (-15 -1205 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861))) (-15 -1205 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-861) (-385 (-525)) (-385 (-525)))) (-15 -2142 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-592 (-877 (-205)))) (-205) (-205) (-205) (-205))) (-15 -2927 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-877 (-205))))) (-15 -2927 ((-2 (|:| |brans| (-592 (-592 (-877 (-205))))) (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))) (-592 (-592 (-877 (-205)))))))
-((-2118 (((-592 (-157 |#2|)) |#1| |#2|) 45)))
-(((-145 |#1| |#2|) (-10 -7 (-15 -2118 ((-592 (-157 |#2|)) |#1| |#2|))) (-1148 (-157 (-525))) (-13 (-341) (-787))) (T -145))
-((-2118 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-157 *4))) (-5 *1 (-145 *3 *4)) (-4 *3 (-1148 (-157 (-525)))) (-4 *4 (-13 (-341) (-787))))))
-(-10 -7 (-15 -2118 ((-592 (-157 |#2|)) |#1| |#2|)))
-((-1893 (((-108) $ $) NIL)) (-3565 (($) 16)) (-2883 (($) 15)) (-3939 (((-855)) 23)) (-2337 (((-1073) $) NIL)) (-3881 (((-525) $) 20)) (-2663 (((-1037) $) NIL)) (-2344 (($) 17)) (-3629 (($ (-525)) 24)) (-1908 (((-797) $) 30)) (-2365 (($) 18)) (-3961 (((-108) $ $) 14)) (-4059 (($ $ $) 13)) (* (($ (-855) $) 22) (($ (-205) $) 8)))
-(((-146) (-13 (-25) (-10 -8 (-15 * ($ (-855) $)) (-15 * ($ (-205) $)) (-15 -4059 ($ $ $)) (-15 -2883 ($)) (-15 -3565 ($)) (-15 -2344 ($)) (-15 -2365 ($)) (-15 -3881 ((-525) $)) (-15 -3939 ((-855))) (-15 -3629 ($ (-525)))))) (T -146))
-((-4059 (*1 *1 *1 *1) (-5 *1 (-146))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-855)) (-5 *1 (-146)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-146)))) (-2883 (*1 *1) (-5 *1 (-146))) (-3565 (*1 *1) (-5 *1 (-146))) (-2344 (*1 *1) (-5 *1 (-146))) (-2365 (*1 *1) (-5 *1 (-146))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-146)))) (-3939 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-146)))) (-3629 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-146)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-855) $)) (-15 * ($ (-205) $)) (-15 -4059 ($ $ $)) (-15 -2883 ($)) (-15 -3565 ($)) (-15 -2344 ($)) (-15 -2365 ($)) (-15 -3881 ((-525) $)) (-15 -3939 ((-855))) (-15 -3629 ($ (-525)))))
-((-2910 ((|#2| |#2| (-1012 |#2|)) 88) ((|#2| |#2| (-1090)) 68)) (-3893 ((|#2| |#2| (-1012 |#2|)) 87) ((|#2| |#2| (-1090)) 67)) (-3834 ((|#2| |#2| |#2|) 27)) (-4159 (((-110) (-110)) 99)) (-3724 ((|#2| (-592 |#2|)) 117)) (-1405 ((|#2| (-592 |#2|)) 135)) (-2855 ((|#2| (-592 |#2|)) 125)) (-2224 ((|#2| |#2|) 123)) (-3428 ((|#2| (-592 |#2|)) 111)) (-3485 ((|#2| (-592 |#2|)) 112)) (-1479 ((|#2| (-592 |#2|)) 133)) (-3518 ((|#2| |#2| (-1090)) 56) ((|#2| |#2|) 55)) (-3066 ((|#2| |#2|) 23)) (-3015 ((|#2| |#2| |#2|) 26)) (-3824 (((-108) (-110)) 49)) (** ((|#2| |#2| |#2|) 41)))
-(((-147 |#1| |#2|) (-10 -7 (-15 -3824 ((-108) (-110))) (-15 -4159 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -3015 (|#2| |#2| |#2|)) (-15 -3834 (|#2| |#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -3518 (|#2| |#2|)) (-15 -3518 (|#2| |#2| (-1090))) (-15 -2910 (|#2| |#2| (-1090))) (-15 -2910 (|#2| |#2| (-1012 |#2|))) (-15 -3893 (|#2| |#2| (-1090))) (-15 -3893 (|#2| |#2| (-1012 |#2|))) (-15 -2224 (|#2| |#2|)) (-15 -1479 (|#2| (-592 |#2|))) (-15 -2855 (|#2| (-592 |#2|))) (-15 -1405 (|#2| (-592 |#2|))) (-15 -3428 (|#2| (-592 |#2|))) (-15 -3485 (|#2| (-592 |#2|))) (-15 -3724 (|#2| (-592 |#2|)))) (-13 (-789) (-517)) (-408 |#1|)) (T -147))
-((-3724 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-3485 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-3428 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-1405 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-2224 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-3893 (*1 *2 *2 *3) (-12 (-5 *3 (-1012 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)))) (-3893 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-2910 (*1 *2 *2 *3) (-12 (-5 *3 (-1012 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)))) (-2910 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-3518 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-3518 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-3066 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-3834 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-3015 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *4)) (-4 *4 (-408 *3)))) (-3824 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-147 *4 *5)) (-4 *5 (-408 *4)))))
-(-10 -7 (-15 -3824 ((-108) (-110))) (-15 -4159 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -3015 (|#2| |#2| |#2|)) (-15 -3834 (|#2| |#2| |#2|)) (-15 -3066 (|#2| |#2|)) (-15 -3518 (|#2| |#2|)) (-15 -3518 (|#2| |#2| (-1090))) (-15 -2910 (|#2| |#2| (-1090))) (-15 -2910 (|#2| |#2| (-1012 |#2|))) (-15 -3893 (|#2| |#2| (-1090))) (-15 -3893 (|#2| |#2| (-1012 |#2|))) (-15 -2224 (|#2| |#2|)) (-15 -1479 (|#2| (-592 |#2|))) (-15 -2855 (|#2| (-592 |#2|))) (-15 -1405 (|#2| (-592 |#2|))) (-15 -3428 (|#2| (-592 |#2|))) (-15 -3485 (|#2| (-592 |#2|))) (-15 -3724 (|#2| (-592 |#2|))))
-((-3572 ((|#1| |#1| |#1|) 53)) (-3592 ((|#1| |#1| |#1|) 50)) (-3834 ((|#1| |#1| |#1|) 44)) (-3980 ((|#1| |#1|) 35)) (-1291 ((|#1| |#1| (-592 |#1|)) 43)) (-3066 ((|#1| |#1|) 37)) (-3015 ((|#1| |#1| |#1|) 40)))
-(((-148 |#1|) (-10 -7 (-15 -3015 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -1291 (|#1| |#1| (-592 |#1|))) (-15 -3980 (|#1| |#1|)) (-15 -3834 (|#1| |#1| |#1|)) (-15 -3592 (|#1| |#1| |#1|)) (-15 -3572 (|#1| |#1| |#1|))) (-510)) (T -148))
-((-3572 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-3592 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-3834 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-3980 (*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-1291 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-510)) (-5 *1 (-148 *2)))) (-3066 (*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-3015 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
-(-10 -7 (-15 -3015 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -1291 (|#1| |#1| (-592 |#1|))) (-15 -3980 (|#1| |#1|)) (-15 -3834 (|#1| |#1| |#1|)) (-15 -3592 (|#1| |#1| |#1|)) (-15 -3572 (|#1| |#1| |#1|)))
-((-2910 (($ $ (-1090)) 12) (($ $ (-1012 $)) 11)) (-3893 (($ $ (-1090)) 10) (($ $ (-1012 $)) 9)) (-3834 (($ $ $) 8)) (-3518 (($ $) 14) (($ $ (-1090)) 13)) (-3066 (($ $) 7)) (-3015 (($ $ $) 6)))
+(-13 (-977))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-4082 (((-2 (|:| -1864 (-713)) (|:| -1655 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-713)) 70)) (-1307 (((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-713))) "failed") |#3|) 52)) (-2778 (((-2 (|:| -1655 (-385 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-4039 ((|#1| |#3| |#3|) 40)) (-2602 ((|#3| |#3| (-385 |#2|) (-385 |#2|)) 19)) (-1343 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-713))) |#3| |#3|) 49)))
+(((-139 |#1| |#2| |#3|) (-10 -7 (-15 -2778 ((-2 (|:| -1655 (-385 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1307 ((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-713))) "failed") |#3|)) (-15 -4082 ((-2 (|:| -1864 (-713)) (|:| -1655 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-713))) (-15 -4039 (|#1| |#3| |#3|)) (-15 -2602 (|#3| |#3| (-385 |#2|) (-385 |#2|))) (-15 -1343 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-713))) |#3| |#3|))) (-1131) (-1149 |#1|) (-1149 (-385 |#2|))) (T -139))
+((-1343 (*1 *2 *3 *3) (-12 (-4 *4 (-1131)) (-4 *5 (-1149 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-385 *5)) (|:| |c2| (-385 *5)) (|:| |deg| (-713)))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1149 (-385 *5))))) (-2602 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-385 *5)) (-4 *5 (-1149 *4)) (-4 *4 (-1131)) (-5 *1 (-139 *4 *5 *2)) (-4 *2 (-1149 (-385 *5))))) (-4039 (*1 *2 *3 *3) (-12 (-4 *4 (-1149 *2)) (-4 *2 (-1131)) (-5 *1 (-139 *2 *4 *3)) (-4 *3 (-1149 (-385 *4))))) (-4082 (*1 *2 *3 *4) (-12 (-4 *5 (-1131)) (-4 *6 (-1149 *5)) (-5 *2 (-2 (|:| -1864 (-713)) (|:| -1655 (-385 *6)) (|:| |radicand| *6))) (-5 *1 (-139 *5 *6 *7)) (-5 *3 (-385 *6)) (-5 *4 (-713)) (-4 *7 (-1149 (-385 *6))))) (-1307 (*1 *2 *3) (|partial| -12 (-4 *4 (-1131)) (-4 *5 (-1149 *4)) (-5 *2 (-2 (|:| |radicand| (-385 *5)) (|:| |deg| (-713)))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1149 (-385 *5))))) (-2778 (*1 *2 *3) (-12 (-4 *4 (-1131)) (-4 *5 (-1149 *4)) (-5 *2 (-2 (|:| -1655 (-385 *5)) (|:| |poly| *3))) (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1149 (-385 *5))))))
+(-10 -7 (-15 -2778 ((-2 (|:| -1655 (-385 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1307 ((-3 (-2 (|:| |radicand| (-385 |#2|)) (|:| |deg| (-713))) "failed") |#3|)) (-15 -4082 ((-2 (|:| -1864 (-713)) (|:| -1655 (-385 |#2|)) (|:| |radicand| |#2|)) (-385 |#2|) (-713))) (-15 -4039 (|#1| |#3| |#3|)) (-15 -2602 (|#3| |#3| (-385 |#2|) (-385 |#2|))) (-15 -1343 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| |deg| (-713))) |#3| |#3|)))
+((-3259 (((-3 (-592 (-1087 |#2|)) "failed") (-592 (-1087 |#2|)) (-1087 |#2|)) 32)))
+(((-140 |#1| |#2|) (-10 -7 (-15 -3259 ((-3 (-592 (-1087 |#2|)) "failed") (-592 (-1087 |#2|)) (-1087 |#2|)))) (-510) (-154 |#1|)) (T -140))
+((-3259 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1087 *5))) (-5 *3 (-1087 *5)) (-4 *5 (-154 *4)) (-4 *4 (-510)) (-5 *1 (-140 *4 *5)))))
+(-10 -7 (-15 -3259 ((-3 (-592 (-1087 |#2|)) "failed") (-592 (-1087 |#2|)) (-1087 |#2|))))
+((-3826 (($ (-1 (-108) |#2|) $) 29)) (-3137 (($ $) 36)) (-1614 (($ (-1 (-108) |#2|) $) 27) (($ |#2| $) 32)) (-3503 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-3207 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 19)) (-3006 (((-108) (-1 (-108) |#2|) $) 16)) (-2040 (((-713) (-1 (-108) |#2|) $) 14) (((-713) |#2| $) NIL)) (-3633 (((-108) (-1 (-108) |#2|) $) 15)) (-3596 (((-713) $) 11)))
+(((-141 |#1| |#2|) (-10 -8 (-15 -3137 (|#1| |#1|)) (-15 -1614 (|#1| |#2| |#1|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3826 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1614 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3207 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2040 ((-713) |#2| |#1|)) (-15 -2040 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3633 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3596 ((-713) |#1|))) (-142 |#2|) (-1127)) (T -141))
+NIL
+(-10 -8 (-15 -3137 (|#1| |#1|)) (-15 -1614 (|#1| |#2| |#1|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3826 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1614 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3207 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -2040 ((-713) |#2| |#1|)) (-15 -2040 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3633 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3596 ((-713) |#1|)))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3330 (((-108) $ (-713)) 8)) (-3826 (($ (-1 (-108) |#1|) $) 44 (|has| $ (-6 -4255)))) (-2305 (($) 7 T CONST)) (-3137 (($ $) 41 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4255))) (($ |#1| $) 42 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) 9)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 48)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-2749 (((-501) $) 40 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 49)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-142 |#1|) (-131) (-1127)) (T -142))
+((-1279 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-4 *1 (-142 *3)))) (-3207 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-142 *2)) (-4 *2 (-1127)))) (-3503 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4255)) (-4 *1 (-142 *2)) (-4 *2 (-1127)))) (-3503 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4255)) (-4 *1 (-142 *2)) (-4 *2 (-1127)))) (-1614 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4255)) (-4 *1 (-142 *3)) (-4 *3 (-1127)))) (-3826 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4255)) (-4 *1 (-142 *3)) (-4 *3 (-1127)))) (-3503 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1020)) (|has| *1 (-6 -4255)) (-4 *1 (-142 *2)) (-4 *2 (-1127)))) (-1614 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-142 *2)) (-4 *2 (-1127)) (-4 *2 (-1020)))) (-3137 (*1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-142 *2)) (-4 *2 (-1127)) (-4 *2 (-1020)))))
+(-13 (-464 |t#1|) (-10 -8 (-15 -1279 ($ (-592 |t#1|))) (-15 -3207 ((-3 |t#1| "failed") (-1 (-108) |t#1|) $)) (IF (|has| $ (-6 -4255)) (PROGN (-15 -3503 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3503 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1614 ($ (-1 (-108) |t#1|) $)) (-15 -3826 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1020)) (PROGN (-15 -3503 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1614 ($ |t#1| $)) (-15 -3137 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1127) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-3762 (((-3 $ "failed") $) 86)) (-1985 (((-108) $) NIL)) (-2352 (($ |#2| (-592 (-856))) 56)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2874 (($ (-856)) 47)) (-3831 (((-128)) 23)) (-1270 (((-798) $) 69) (($ (-525)) 45) (($ |#2|) 46)) (-3468 ((|#2| $ (-592 (-856))) 59)) (-2104 (((-713)) 20)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 40 T CONST)) (-3363 (($) 43 T CONST)) (-3994 (((-108) $ $) 26)) (-4100 (($ $ |#2|) NIL)) (-4090 (($ $) 34) (($ $ $) 32)) (-4080 (($ $ $) 30)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-143 |#1| |#2| |#3|) (-13 (-977) (-37 |#2|) (-1180 |#2|) (-10 -8 (-15 -2874 ($ (-856))) (-15 -2352 ($ |#2| (-592 (-856)))) (-15 -3468 (|#2| $ (-592 (-856)))) (-15 -3762 ((-3 $ "failed") $)))) (-856) (-341) (-926 |#1| |#2|)) (T -143))
+((-3762 (*1 *1 *1) (|partial| -12 (-5 *1 (-143 *2 *3 *4)) (-14 *2 (-856)) (-4 *3 (-341)) (-14 *4 (-926 *2 *3)))) (-2874 (*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-143 *3 *4 *5)) (-14 *3 (-856)) (-4 *4 (-341)) (-14 *5 (-926 *3 *4)))) (-2352 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-856))) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-856)) (-4 *2 (-341)) (-14 *5 (-926 *4 *2)))) (-3468 (*1 *2 *1 *3) (-12 (-5 *3 (-592 (-856))) (-4 *2 (-341)) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-856)) (-14 *5 (-926 *4 *2)))))
+(-13 (-977) (-37 |#2|) (-1180 |#2|) (-10 -8 (-15 -2874 ($ (-856))) (-15 -2352 ($ |#2| (-592 (-856)))) (-15 -3468 (|#2| $ (-592 (-856)))) (-15 -3762 ((-3 $ "failed") $))))
+((-2088 (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205)))) (-205) (-205) (-205) (-205)) 38)) (-2599 (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525))) 63) (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862)) 64)) (-3208 (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205))))) 67) (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-878 (-205)))) 66) (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525))) 58) (((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862)) 59)))
+(((-144) (-10 -7 (-15 -3208 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862))) (-15 -3208 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525)))) (-15 -2599 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862))) (-15 -2599 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525)))) (-15 -2088 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205)))) (-205) (-205) (-205) (-205))) (-15 -3208 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-878 (-205))))) (-15 -3208 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205)))))))) (T -144))
+((-3208 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)) (-5 *3 (-592 (-592 (-878 (-205))))))) (-3208 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)) (-5 *3 (-592 (-878 (-205)))))) (-2088 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-205)) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 *4)))) (|:| |xValues| (-1015 *4)) (|:| |yValues| (-1015 *4)))) (-5 *1 (-144)) (-5 *3 (-592 (-592 (-878 *4)))))) (-2599 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-862)) (-5 *4 (-385 (-525))) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)))) (-2599 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)))) (-3208 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-862)) (-5 *4 (-385 (-525))) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205))))) (-5 *1 (-144)))))
+(-10 -7 (-15 -3208 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862))) (-15 -3208 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525)))) (-15 -2599 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862))) (-15 -2599 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-862) (-385 (-525)) (-385 (-525)))) (-15 -2088 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205)))) (-205) (-205) (-205) (-205))) (-15 -3208 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-878 (-205))))) (-15 -3208 ((-2 (|:| |brans| (-592 (-592 (-878 (-205))))) (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))) (-592 (-592 (-878 (-205)))))))
+((-1831 (((-592 (-157 |#2|)) |#1| |#2|) 45)))
+(((-145 |#1| |#2|) (-10 -7 (-15 -1831 ((-592 (-157 |#2|)) |#1| |#2|))) (-1149 (-157 (-525))) (-13 (-341) (-787))) (T -145))
+((-1831 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-157 *4))) (-5 *1 (-145 *3 *4)) (-4 *3 (-1149 (-157 (-525)))) (-4 *4 (-13 (-341) (-787))))))
+(-10 -7 (-15 -1831 ((-592 (-157 |#2|)) |#1| |#2|)))
+((-1260 (((-108) $ $) NIL)) (-2540 (($) 16)) (-3919 (($) 15)) (-1663 (((-856)) 23)) (-3451 (((-1074) $) NIL)) (-2510 (((-525) $) 20)) (-2012 (((-1038) $) NIL)) (-3517 (($) 17)) (-3664 (($ (-525)) 24)) (-1270 (((-798) $) 30)) (-2672 (($) 18)) (-3994 (((-108) $ $) 14)) (-4080 (($ $ $) 13)) (* (($ (-856) $) 22) (($ (-205) $) 8)))
+(((-146) (-13 (-25) (-10 -8 (-15 * ($ (-856) $)) (-15 * ($ (-205) $)) (-15 -4080 ($ $ $)) (-15 -3919 ($)) (-15 -2540 ($)) (-15 -3517 ($)) (-15 -2672 ($)) (-15 -2510 ((-525) $)) (-15 -1663 ((-856))) (-15 -3664 ($ (-525)))))) (T -146))
+((-4080 (*1 *1 *1 *1) (-5 *1 (-146))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-146)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-146)))) (-3919 (*1 *1) (-5 *1 (-146))) (-2540 (*1 *1) (-5 *1 (-146))) (-3517 (*1 *1) (-5 *1 (-146))) (-2672 (*1 *1) (-5 *1 (-146))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-146)))) (-1663 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-146)))) (-3664 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-146)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-856) $)) (-15 * ($ (-205) $)) (-15 -4080 ($ $ $)) (-15 -3919 ($)) (-15 -2540 ($)) (-15 -3517 ($)) (-15 -2672 ($)) (-15 -2510 ((-525) $)) (-15 -1663 ((-856))) (-15 -3664 ($ (-525)))))
+((-4179 ((|#2| |#2| (-1013 |#2|)) 88) ((|#2| |#2| (-1091)) 68)) (-1283 ((|#2| |#2| (-1013 |#2|)) 87) ((|#2| |#2| (-1091)) 67)) (-1962 ((|#2| |#2| |#2|) 27)) (-2972 (((-110) (-110)) 99)) (-3375 ((|#2| (-592 |#2|)) 117)) (-2266 ((|#2| (-592 |#2|)) 135)) (-1833 ((|#2| (-592 |#2|)) 125)) (-1722 ((|#2| |#2|) 123)) (-3482 ((|#2| (-592 |#2|)) 111)) (-2963 ((|#2| (-592 |#2|)) 112)) (-2433 ((|#2| (-592 |#2|)) 133)) (-1923 ((|#2| |#2| (-1091)) 56) ((|#2| |#2|) 55)) (-2075 ((|#2| |#2|) 23)) (-2938 ((|#2| |#2| |#2|) 26)) (-1863 (((-108) (-110)) 49)) (** ((|#2| |#2| |#2|) 41)))
+(((-147 |#1| |#2|) (-10 -7 (-15 -1863 ((-108) (-110))) (-15 -2972 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -2938 (|#2| |#2| |#2|)) (-15 -1962 (|#2| |#2| |#2|)) (-15 -2075 (|#2| |#2|)) (-15 -1923 (|#2| |#2|)) (-15 -1923 (|#2| |#2| (-1091))) (-15 -4179 (|#2| |#2| (-1091))) (-15 -4179 (|#2| |#2| (-1013 |#2|))) (-15 -1283 (|#2| |#2| (-1091))) (-15 -1283 (|#2| |#2| (-1013 |#2|))) (-15 -1722 (|#2| |#2|)) (-15 -2433 (|#2| (-592 |#2|))) (-15 -1833 (|#2| (-592 |#2|))) (-15 -2266 (|#2| (-592 |#2|))) (-15 -3482 (|#2| (-592 |#2|))) (-15 -2963 (|#2| (-592 |#2|))) (-15 -3375 (|#2| (-592 |#2|)))) (-13 (-789) (-517)) (-408 |#1|)) (T -147))
+((-3375 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-2963 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-3482 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-2266 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-2433 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2)) (-4 *4 (-13 (-789) (-517))))) (-1722 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-1283 (*1 *2 *2 *3) (-12 (-5 *3 (-1013 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)))) (-1283 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-4179 (*1 *2 *2 *3) (-12 (-5 *3 (-1013 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)))) (-4179 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-1923 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2)) (-4 *2 (-408 *4)))) (-1923 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-2075 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-1962 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-2938 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2)) (-4 *2 (-408 *3)))) (-2972 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *4)) (-4 *4 (-408 *3)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-147 *4 *5)) (-4 *5 (-408 *4)))))
+(-10 -7 (-15 -1863 ((-108) (-110))) (-15 -2972 ((-110) (-110))) (-15 ** (|#2| |#2| |#2|)) (-15 -2938 (|#2| |#2| |#2|)) (-15 -1962 (|#2| |#2| |#2|)) (-15 -2075 (|#2| |#2|)) (-15 -1923 (|#2| |#2|)) (-15 -1923 (|#2| |#2| (-1091))) (-15 -4179 (|#2| |#2| (-1091))) (-15 -4179 (|#2| |#2| (-1013 |#2|))) (-15 -1283 (|#2| |#2| (-1091))) (-15 -1283 (|#2| |#2| (-1013 |#2|))) (-15 -1722 (|#2| |#2|)) (-15 -2433 (|#2| (-592 |#2|))) (-15 -1833 (|#2| (-592 |#2|))) (-15 -2266 (|#2| (-592 |#2|))) (-15 -3482 (|#2| (-592 |#2|))) (-15 -2963 (|#2| (-592 |#2|))) (-15 -3375 (|#2| (-592 |#2|))))
+((-1268 ((|#1| |#1| |#1|) 53)) (-1481 ((|#1| |#1| |#1|) 50)) (-1962 ((|#1| |#1| |#1|) 44)) (-3825 ((|#1| |#1|) 35)) (-2401 ((|#1| |#1| (-592 |#1|)) 43)) (-2075 ((|#1| |#1|) 37)) (-2938 ((|#1| |#1| |#1|) 40)))
+(((-148 |#1|) (-10 -7 (-15 -2938 (|#1| |#1| |#1|)) (-15 -2075 (|#1| |#1|)) (-15 -2401 (|#1| |#1| (-592 |#1|))) (-15 -3825 (|#1| |#1|)) (-15 -1962 (|#1| |#1| |#1|)) (-15 -1481 (|#1| |#1| |#1|)) (-15 -1268 (|#1| |#1| |#1|))) (-510)) (T -148))
+((-1268 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-1481 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-1962 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-3825 (*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-2401 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-510)) (-5 *1 (-148 *2)))) (-2075 (*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))) (-2938 (*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
+(-10 -7 (-15 -2938 (|#1| |#1| |#1|)) (-15 -2075 (|#1| |#1|)) (-15 -2401 (|#1| |#1| (-592 |#1|))) (-15 -3825 (|#1| |#1|)) (-15 -1962 (|#1| |#1| |#1|)) (-15 -1481 (|#1| |#1| |#1|)) (-15 -1268 (|#1| |#1| |#1|)))
+((-4179 (($ $ (-1091)) 12) (($ $ (-1013 $)) 11)) (-1283 (($ $ (-1091)) 10) (($ $ (-1013 $)) 9)) (-1962 (($ $ $) 8)) (-1923 (($ $) 14) (($ $ (-1091)) 13)) (-2075 (($ $) 7)) (-2938 (($ $ $) 6)))
(((-149) (-131)) (T -149))
-((-3518 (*1 *1 *1) (-4 *1 (-149))) (-3518 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1090)))) (-2910 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1090)))) (-2910 (*1 *1 *1 *2) (-12 (-5 *2 (-1012 *1)) (-4 *1 (-149)))) (-3893 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1090)))) (-3893 (*1 *1 *1 *2) (-12 (-5 *2 (-1012 *1)) (-4 *1 (-149)))))
-(-13 (-134) (-10 -8 (-15 -3518 ($ $)) (-15 -3518 ($ $ (-1090))) (-15 -2910 ($ $ (-1090))) (-15 -2910 ($ $ (-1012 $))) (-15 -3893 ($ $ (-1090))) (-15 -3893 ($ $ (-1012 $)))))
+((-1923 (*1 *1 *1) (-4 *1 (-149))) (-1923 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1091)))) (-4179 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1091)))) (-4179 (*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-149)))) (-1283 (*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1091)))) (-1283 (*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-149)))))
+(-13 (-134) (-10 -8 (-15 -1923 ($ $)) (-15 -1923 ($ $ (-1091))) (-15 -4179 ($ $ (-1091))) (-15 -4179 ($ $ (-1013 $))) (-15 -1283 ($ $ (-1091))) (-15 -1283 ($ $ (-1013 $)))))
(((-134) . T))
-((-1893 (((-108) $ $) NIL)) (-3085 (($ (-525)) 13) (($ $ $) 14)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 17)) (-3961 (((-108) $ $) 9)))
-(((-150) (-13 (-1019) (-10 -8 (-15 -3085 ($ (-525))) (-15 -3085 ($ $ $))))) (T -150))
-((-3085 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-150)))) (-3085 (*1 *1 *1 *1) (-5 *1 (-150))))
-(-13 (-1019) (-10 -8 (-15 -3085 ($ (-525))) (-15 -3085 ($ $ $))))
-((-4159 (((-110) (-1090)) 97)))
-(((-151) (-10 -7 (-15 -4159 ((-110) (-1090))))) (T -151))
-((-4159 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-110)) (-5 *1 (-151)))))
-(-10 -7 (-15 -4159 ((-110) (-1090))))
-((-2522 ((|#3| |#3|) 19)))
-(((-152 |#1| |#2| |#3|) (-10 -7 (-15 -2522 (|#3| |#3|))) (-976) (-1148 |#1|) (-1148 |#2|)) (T -152))
-((-2522 (*1 *2 *2) (-12 (-4 *3 (-976)) (-4 *4 (-1148 *3)) (-5 *1 (-152 *3 *4 *2)) (-4 *2 (-1148 *4)))))
-(-10 -7 (-15 -2522 (|#3| |#3|)))
-((-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 217)) (-3512 ((|#2| $) 96)) (-4049 (($ $) 245)) (-3911 (($ $) 239)) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 40)) (-4026 (($ $) 243)) (-3434 (($ $) 237)) (-1264 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2831 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 139)) (-2373 (($ $ $) 222)) (-1860 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) 155) (((-632 |#2|) (-632 $)) 149)) (-4004 (($ (-1086 |#2|)) 119) (((-3 $ "failed") (-385 (-1086 |#2|))) NIL)) (-2866 (((-3 $ "failed") $) 209)) (-1468 (((-3 (-385 (-525)) "failed") $) 199)) (-3081 (((-108) $) 194)) (-2098 (((-385 (-525)) $) 197)) (-2239 (((-855)) 89)) (-2356 (($ $ $) 224)) (-2544 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1335 (($) 234)) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 186) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 191)) (-3477 ((|#2| $) 94)) (-2362 (((-1086 |#2|) $) 121)) (-1370 (($ (-1 |#2| |#2|) $) 102)) (-2091 (($ $) 236)) (-3774 (((-1086 |#2|) $) 120)) (-4211 (($ $) 202)) (-2310 (($) 97)) (-2918 (((-396 (-1086 $)) (-1086 $)) 88)) (-1371 (((-396 (-1086 $)) (-1086 $)) 57)) (-2338 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-1982 (($ $) 235)) (-2183 (((-713) $) 219)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 229)) (-1400 ((|#2| (-1172 $)) NIL) ((|#2|) 91)) (-3013 (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-1654 (((-1086 |#2|)) 114)) (-4038 (($ $) 244)) (-3455 (($ $) 238)) (-4093 (((-1172 |#2|) $ (-1172 $)) 128) (((-632 |#2|) (-1172 $) (-1172 $)) NIL) (((-1172 |#2|) $) 110) (((-632 |#2|) (-1172 $)) NIL)) (-1427 (((-1172 |#2|) $) NIL) (($ (-1172 |#2|)) NIL) (((-1086 |#2|) $) NIL) (($ (-1086 |#2|)) NIL) (((-826 (-525)) $) 177) (((-826 (-357)) $) 181) (((-157 (-357)) $) 167) (((-157 (-205)) $) 162) (((-501) $) 173)) (-3634 (($ $) 98)) (-1908 (((-797) $) 138) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-385 (-525))) NIL) (($ $) NIL)) (-1260 (((-1086 |#2|) $) 23)) (-2093 (((-713)) 100)) (-4121 (($ $) 248)) (-3974 (($ $) 242)) (-4096 (($ $) 246)) (-3951 (($ $) 240)) (-1797 ((|#2| $) 233)) (-4110 (($ $) 247)) (-3963 (($ $) 241)) (-2092 (($ $) 157)) (-3961 (((-108) $ $) 104)) (-3983 (((-108) $ $) 193)) (-4070 (($ $) 106) (($ $ $) NIL)) (-4059 (($ $ $) 105)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-385 (-525))) 267) (($ $ $) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL)))
-(((-153 |#1| |#2|) (-10 -8 (-15 -3013 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -1908 (|#1| |#1|)) (-15 -2338 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1214 ((-2 (|:| -3957 |#1|) (|:| -4241 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -2183 ((-713) |#1|)) (-15 -1760 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|)) (-15 -2356 (|#1| |#1| |#1|)) (-15 -2373 (|#1| |#1| |#1|)) (-15 -4211 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1427 ((-501) |#1|)) (-15 -1427 ((-157 (-205)) |#1|)) (-15 -1427 ((-157 (-357)) |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3434 (|#1| |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -3951 (|#1| |#1|)) (-15 -3974 (|#1| |#1|)) (-15 -4038 (|#1| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -4096 (|#1| |#1|)) (-15 -4121 (|#1| |#1|)) (-15 -2091 (|#1| |#1|)) (-15 -1982 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1335 (|#1|)) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -1371 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2918 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2620 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|))) (-15 -1468 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2098 ((-385 (-525)) |#1|)) (-15 -3081 ((-108) |#1|)) (-15 -2544 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1797 (|#2| |#1|)) (-15 -2092 (|#1| |#1|)) (-15 -2338 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3634 (|#1| |#1|)) (-15 -2310 (|#1|)) (-15 -1427 ((-826 (-357)) |#1|)) (-15 -1427 ((-826 (-525)) |#1|)) (-15 -1524 ((-823 (-357) |#1|) |#1| (-826 (-357)) (-823 (-357) |#1|))) (-15 -1524 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|))) (-15 -1370 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -4004 ((-3 |#1| "failed") (-385 (-1086 |#2|)))) (-15 -3774 ((-1086 |#2|) |#1|)) (-15 -1427 (|#1| (-1086 |#2|))) (-15 -4004 (|#1| (-1086 |#2|))) (-15 -1654 ((-1086 |#2|))) (-15 -1860 ((-632 |#2|) (-632 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-632 (-525)) (-632 |#1|))) (-15 -2831 (|#2| |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -1427 ((-1086 |#2|) |#1|)) (-15 -1400 (|#2|)) (-15 -1427 (|#1| (-1172 |#2|))) (-15 -1427 ((-1172 |#2|) |#1|)) (-15 -4093 ((-632 |#2|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1|)) (-15 -2362 ((-1086 |#2|) |#1|)) (-15 -1260 ((-1086 |#2|) |#1|)) (-15 -1400 (|#2| (-1172 |#1|))) (-15 -4093 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -3477 (|#2| |#1|)) (-15 -3512 (|#2| |#1|)) (-15 -2239 ((-855))) (-15 -1908 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1908 (|#1| (-525))) (-15 -2093 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 -2866 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-855))) (-15 * (|#1| (-525) |#1|)) (-15 -4070 (|#1| |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|)) (-15 -4059 (|#1| |#1| |#1|)) (-15 -1908 ((-797) |#1|)) (-15 -3961 ((-108) |#1| |#1|))) (-154 |#2|) (-160)) (T -153))
-((-2093 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4)))) (-2239 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-855)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4)))) (-1400 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-153 *3 *2)) (-4 *3 (-154 *2)))) (-1654 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1086 *4)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4)))))
-(-10 -8 (-15 -3013 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -1908 (|#1| |#1|)) (-15 -2338 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1214 ((-2 (|:| -3957 |#1|) (|:| -4241 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -2183 ((-713) |#1|)) (-15 -1760 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|)) (-15 -2356 (|#1| |#1| |#1|)) (-15 -2373 (|#1| |#1| |#1|)) (-15 -4211 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1427 ((-501) |#1|)) (-15 -1427 ((-157 (-205)) |#1|)) (-15 -1427 ((-157 (-357)) |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3434 (|#1| |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -3951 (|#1| |#1|)) (-15 -3974 (|#1| |#1|)) (-15 -4038 (|#1| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -4096 (|#1| |#1|)) (-15 -4121 (|#1| |#1|)) (-15 -2091 (|#1| |#1|)) (-15 -1982 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1335 (|#1|)) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -1371 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2918 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2620 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|))) (-15 -1468 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2098 ((-385 (-525)) |#1|)) (-15 -3081 ((-108) |#1|)) (-15 -2544 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -1797 (|#2| |#1|)) (-15 -2092 (|#1| |#1|)) (-15 -2338 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3634 (|#1| |#1|)) (-15 -2310 (|#1|)) (-15 -1427 ((-826 (-357)) |#1|)) (-15 -1427 ((-826 (-525)) |#1|)) (-15 -1524 ((-823 (-357) |#1|) |#1| (-826 (-357)) (-823 (-357) |#1|))) (-15 -1524 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|))) (-15 -1370 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -4004 ((-3 |#1| "failed") (-385 (-1086 |#2|)))) (-15 -3774 ((-1086 |#2|) |#1|)) (-15 -1427 (|#1| (-1086 |#2|))) (-15 -4004 (|#1| (-1086 |#2|))) (-15 -1654 ((-1086 |#2|))) (-15 -1860 ((-632 |#2|) (-632 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-632 (-525)) (-632 |#1|))) (-15 -2831 (|#2| |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -1427 ((-1086 |#2|) |#1|)) (-15 -1400 (|#2|)) (-15 -1427 (|#1| (-1172 |#2|))) (-15 -1427 ((-1172 |#2|) |#1|)) (-15 -4093 ((-632 |#2|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1|)) (-15 -2362 ((-1086 |#2|) |#1|)) (-15 -1260 ((-1086 |#2|) |#1|)) (-15 -1400 (|#2| (-1172 |#1|))) (-15 -4093 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -3477 (|#2| |#1|)) (-15 -3512 (|#2| |#1|)) (-15 -2239 ((-855))) (-15 -1908 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1908 (|#1| (-525))) (-15 -2093 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 -2866 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-855))) (-15 * (|#1| (-525) |#1|)) (-15 -4070 (|#1| |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|)) (-15 -4059 (|#1| |#1| |#1|)) (-15 -1908 ((-797) |#1|)) (-15 -3961 ((-108) |#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 93 (-3309 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-3635 (($ $) 94 (-3309 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-2950 (((-108) $) 96 (-3309 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-2794 (((-632 |#1|) (-1172 $)) 46) (((-632 |#1|)) 61)) (-3512 ((|#1| $) 52)) (-4049 (($ $) 228 (|has| |#1| (-1112)))) (-3911 (($ $) 211 (|has| |#1| (-1112)))) (-2837 (((-1100 (-855) (-713)) (-525)) 147 (|has| |#1| (-327)))) (-3263 (((-3 $ "failed") $ $) 19)) (-3357 (((-396 (-1086 $)) (-1086 $)) 242 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (-3321 (($ $) 113 (-3309 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341))))) (-1510 (((-396 $) $) 114 (-3309 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341))))) (-3969 (($ $) 241 (-12 (|has| |#1| (-933)) (|has| |#1| (-1112))))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 245 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (-2305 (((-108) $ $) 104 (|has| |#1| (-286)))) (-3107 (((-713)) 87 (|has| |#1| (-346)))) (-4026 (($ $) 227 (|has| |#1| (-1112)))) (-3434 (($ $) 212 (|has| |#1| (-1112)))) (-4072 (($ $) 226 (|has| |#1| (-1112)))) (-3931 (($ $) 213 (|has| |#1| (-1112)))) (-1505 (($) 17 T CONST)) (-1264 (((-3 (-525) "failed") $) 169 (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 166)) (-2831 (((-525) $) 170 (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) 168 (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 165)) (-2229 (($ (-1172 |#1|) (-1172 $)) 48) (($ (-1172 |#1|)) 64)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-327)))) (-2373 (($ $ $) 108 (|has| |#1| (-286)))) (-1409 (((-632 |#1|) $ (-1172 $)) 53) (((-632 |#1|) $) 59)) (-1860 (((-632 (-525)) (-632 $)) 164 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 163 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 162) (((-632 |#1|) (-632 $)) 161)) (-4004 (($ (-1086 |#1|)) 158) (((-3 $ "failed") (-385 (-1086 |#1|))) 155 (|has| |#1| (-341)))) (-2866 (((-3 $ "failed") $) 34)) (-3981 ((|#1| $) 253)) (-1468 (((-3 (-385 (-525)) "failed") $) 246 (|has| |#1| (-510)))) (-3081 (((-108) $) 248 (|has| |#1| (-510)))) (-2098 (((-385 (-525)) $) 247 (|has| |#1| (-510)))) (-2239 (((-855)) 54)) (-3375 (($) 90 (|has| |#1| (-346)))) (-2356 (($ $ $) 107 (|has| |#1| (-286)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 102 (|has| |#1| (-286)))) (-3205 (($) 149 (|has| |#1| (-327)))) (-3746 (((-108) $) 150 (|has| |#1| (-327)))) (-1410 (($ $ (-713)) 141 (|has| |#1| (-327))) (($ $) 140 (|has| |#1| (-327)))) (-2250 (((-108) $) 115 (-3309 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341))))) (-2544 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-985)) (|has| |#1| (-1112))))) (-1335 (($) 238 (|has| |#1| (-1112)))) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 261 (|has| |#1| (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 260 (|has| |#1| (-820 (-357))))) (-1737 (((-855) $) 152 (|has| |#1| (-327))) (((-775 (-855)) $) 138 (|has| |#1| (-327)))) (-2133 (((-108) $) 31)) (-3391 (($ $ (-525)) 240 (-12 (|has| |#1| (-933)) (|has| |#1| (-1112))))) (-3477 ((|#1| $) 51)) (-1816 (((-3 $ "failed") $) 142 (|has| |#1| (-327)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 111 (|has| |#1| (-286)))) (-2362 (((-1086 |#1|) $) 44 (|has| |#1| (-341)))) (-3525 (($ $ $) 207 (|has| |#1| (-789)))) (-3630 (($ $ $) 206 (|has| |#1| (-789)))) (-1370 (($ (-1 |#1| |#1|) $) 262)) (-1780 (((-855) $) 89 (|has| |#1| (-346)))) (-2091 (($ $) 235 (|has| |#1| (-1112)))) (-3774 (((-1086 |#1|) $) 156)) (-3216 (($ (-592 $)) 100 (-3309 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (($ $ $) 99 (-3309 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-2337 (((-1073) $) 9)) (-4211 (($ $) 116 (|has| |#1| (-341)))) (-2279 (($) 143 (|has| |#1| (-327)) CONST)) (-4185 (($ (-855)) 88 (|has| |#1| (-346)))) (-2310 (($) 257)) (-3993 ((|#1| $) 254)) (-2663 (((-1037) $) 10)) (-1669 (($) 160)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 101 (-3309 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-3244 (($ (-592 $)) 98 (-3309 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (($ $ $) 97 (-3309 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) 146 (|has| |#1| (-327)))) (-2918 (((-396 (-1086 $)) (-1086 $)) 244 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (-1371 (((-396 (-1086 $)) (-1086 $)) 243 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (-3959 (((-396 $) $) 112 (-3309 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341))))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 109 (|has| |#1| (-286)))) (-2338 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 92 (-3309 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 103 (|has| |#1| (-286)))) (-1982 (($ $) 236 (|has| |#1| (-1112)))) (-3092 (($ $ (-592 |#1|) (-592 |#1|)) 268 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 266 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 265 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) 264 (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) 263 (|has| |#1| (-486 (-1090) |#1|)))) (-2183 (((-713) $) 105 (|has| |#1| (-286)))) (-3928 (($ $ |#1|) 269 (|has| |#1| (-265 |#1| |#1|)))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 106 (|has| |#1| (-286)))) (-1400 ((|#1| (-1172 $)) 47) ((|#1|) 60)) (-2443 (((-713) $) 151 (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) 139 (|has| |#1| (-327)))) (-3013 (($ $ (-1 |#1| |#1|) (-713)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-592 (-1090)) (-592 (-713))) 130 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 131 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 132 (|has| |#1| (-834 (-1090)))) (($ $ (-1090)) 133 (|has| |#1| (-834 (-1090)))) (($ $ (-713)) 135 (-3309 (-1341 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-1341 (|has| |#1| (-213)) (|has| |#1| (-341))))) (($ $) 137 (-3309 (-1341 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-1341 (|has| |#1| (-213)) (|has| |#1| (-341)))))) (-2160 (((-632 |#1|) (-1172 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-341)))) (-1654 (((-1086 |#1|)) 159)) (-4084 (($ $) 225 (|has| |#1| (-1112)))) (-3942 (($ $) 214 (|has| |#1| (-1112)))) (-3775 (($) 148 (|has| |#1| (-327)))) (-4061 (($ $) 224 (|has| |#1| (-1112)))) (-3919 (($ $) 215 (|has| |#1| (-1112)))) (-4038 (($ $) 223 (|has| |#1| (-1112)))) (-3455 (($ $) 216 (|has| |#1| (-1112)))) (-4093 (((-1172 |#1|) $ (-1172 $)) 50) (((-632 |#1|) (-1172 $) (-1172 $)) 49) (((-1172 |#1|) $) 66) (((-632 |#1|) (-1172 $)) 65)) (-1427 (((-1172 |#1|) $) 63) (($ (-1172 |#1|)) 62) (((-1086 |#1|) $) 171) (($ (-1086 |#1|)) 157) (((-826 (-525)) $) 259 (|has| |#1| (-567 (-826 (-525))))) (((-826 (-357)) $) 258 (|has| |#1| (-567 (-826 (-357))))) (((-157 (-357)) $) 210 (|has| |#1| (-952))) (((-157 (-205)) $) 209 (|has| |#1| (-952))) (((-501) $) 208 (|has| |#1| (-567 (-501))))) (-3634 (($ $) 256)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) 145 (-3309 (-1341 (|has| $ (-136)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))) (|has| |#1| (-327))))) (-2047 (($ |#1| |#1|) 255)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 86 (-3309 (|has| |#1| (-341)) (|has| |#1| (-967 (-385 (-525)))))) (($ $) 91 (-3309 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-3421 (($ $) 144 (|has| |#1| (-327))) (((-3 $ "failed") $) 43 (-3309 (-1341 (|has| $ (-136)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))) (|has| |#1| (-136))))) (-1260 (((-1086 |#1|) $) 45)) (-2093 (((-713)) 29)) (-2499 (((-1172 $)) 67)) (-4121 (($ $) 234 (|has| |#1| (-1112)))) (-3974 (($ $) 222 (|has| |#1| (-1112)))) (-2262 (((-108) $ $) 95 (-3309 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))) (-4096 (($ $) 233 (|has| |#1| (-1112)))) (-3951 (($ $) 221 (|has| |#1| (-1112)))) (-4147 (($ $) 232 (|has| |#1| (-1112)))) (-3999 (($ $) 220 (|has| |#1| (-1112)))) (-1797 ((|#1| $) 250 (|has| |#1| (-1112)))) (-2929 (($ $) 231 (|has| |#1| (-1112)))) (-4013 (($ $) 219 (|has| |#1| (-1112)))) (-4133 (($ $) 230 (|has| |#1| (-1112)))) (-3985 (($ $) 218 (|has| |#1| (-1112)))) (-4110 (($ $) 229 (|has| |#1| (-1112)))) (-3963 (($ $) 217 (|has| |#1| (-1112)))) (-2092 (($ $) 251 (|has| |#1| (-985)))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 117 (|has| |#1| (-341)))) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ (-1 |#1| |#1|) (-713)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-592 (-1090)) (-592 (-713))) 126 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 127 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 128 (|has| |#1| (-834 (-1090)))) (($ $ (-1090)) 129 (|has| |#1| (-834 (-1090)))) (($ $ (-713)) 134 (-3309 (-1341 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-1341 (|has| |#1| (-213)) (|has| |#1| (-341))))) (($ $) 136 (-3309 (-1341 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-1341 (|has| |#1| (-213)) (|has| |#1| (-341)))))) (-4024 (((-108) $ $) 204 (|has| |#1| (-789)))) (-3995 (((-108) $ $) 203 (|has| |#1| (-789)))) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 205 (|has| |#1| (-789)))) (-3983 (((-108) $ $) 202 (|has| |#1| (-789)))) (-4082 (($ $ $) 121 (|has| |#1| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-385 (-525))) 239 (-12 (|has| |#1| (-933)) (|has| |#1| (-1112)))) (($ $ $) 237 (|has| |#1| (-1112))) (($ $ (-525)) 118 (|has| |#1| (-341)))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-385 (-525)) $) 120 (|has| |#1| (-341))) (($ $ (-385 (-525))) 119 (|has| |#1| (-341)))))
+((-1260 (((-108) $ $) NIL)) (-2326 (($ (-525)) 13) (($ $ $) 14)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 17)) (-3994 (((-108) $ $) 9)))
+(((-150) (-13 (-1020) (-10 -8 (-15 -2326 ($ (-525))) (-15 -2326 ($ $ $))))) (T -150))
+((-2326 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-150)))) (-2326 (*1 *1 *1 *1) (-5 *1 (-150))))
+(-13 (-1020) (-10 -8 (-15 -2326 ($ (-525))) (-15 -2326 ($ $ $))))
+((-2972 (((-110) (-1091)) 97)))
+(((-151) (-10 -7 (-15 -2972 ((-110) (-1091))))) (T -151))
+((-2972 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-110)) (-5 *1 (-151)))))
+(-10 -7 (-15 -2972 ((-110) (-1091))))
+((-1666 ((|#3| |#3|) 19)))
+(((-152 |#1| |#2| |#3|) (-10 -7 (-15 -1666 (|#3| |#3|))) (-977) (-1149 |#1|) (-1149 |#2|)) (T -152))
+((-1666 (*1 *2 *2) (-12 (-4 *3 (-977)) (-4 *4 (-1149 *3)) (-5 *1 (-152 *3 *4 *2)) (-4 *2 (-1149 *4)))))
+(-10 -7 (-15 -1666 (|#3| |#3|)))
+((-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 217)) (-3029 ((|#2| $) 96)) (-2351 (($ $) 245)) (-1603 (($ $) 239)) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) 40)) (-2320 (($ $) 243)) (-1569 (($ $) 237)) (-2591 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-3898 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 139)) (-1726 (($ $ $) 222)) (-3416 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) 155) (((-632 |#2|) (-632 $)) 149)) (-3503 (($ (-1087 |#2|)) 119) (((-3 $ "failed") (-385 (-1087 |#2|))) NIL)) (-3762 (((-3 $ "failed") $) 209)) (-2251 (((-3 (-385 (-525)) "failed") $) 199)) (-2265 (((-108) $) 194)) (-2178 (((-385 (-525)) $) 197)) (-3318 (((-856)) 89)) (-1704 (($ $ $) 224)) (-3709 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1535 (($) 234)) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 186) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 191)) (-2900 ((|#2| $) 94)) (-2640 (((-1087 |#2|) $) 121)) (-2694 (($ (-1 |#2| |#2|) $) 102)) (-1415 (($ $) 236)) (-3492 (((-1087 |#2|) $) 120)) (-2502 (($ $) 202)) (-3237 (($) 97)) (-1215 (((-396 (-1087 $)) (-1087 $)) 88)) (-2802 (((-396 (-1087 $)) (-1087 $)) 57)) (-1680 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-1250 (($ $) 235)) (-1290 (((-713) $) 219)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 229)) (-2094 ((|#2| (-1173 $)) NIL) ((|#2|) 91)) (-2523 (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-592 (-1091)) (-592 (-713))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-1571 (((-1087 |#2|)) 114)) (-2335 (($ $) 244)) (-1584 (($ $) 238)) (-3464 (((-1173 |#2|) $ (-1173 $)) 128) (((-632 |#2|) (-1173 $) (-1173 $)) NIL) (((-1173 |#2|) $) 110) (((-632 |#2|) (-1173 $)) NIL)) (-2749 (((-1173 |#2|) $) NIL) (($ (-1173 |#2|)) NIL) (((-1087 |#2|) $) NIL) (($ (-1087 |#2|)) NIL) (((-827 (-525)) $) 177) (((-827 (-357)) $) 181) (((-157 (-357)) $) 167) (((-157 (-205)) $) 162) (((-501) $) 173)) (-3700 (($ $) 98)) (-1270 (((-798) $) 138) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-385 (-525))) NIL) (($ $) NIL)) (-1805 (((-1087 |#2|) $) 23)) (-2104 (((-713)) 100)) (-2438 (($ $) 248)) (-2257 (($ $) 242)) (-2410 (($ $) 246)) (-2226 (($ $) 240)) (-3538 ((|#2| $) 233)) (-2424 (($ $) 247)) (-2242 (($ $) 241)) (-2086 (($ $) 157)) (-3994 (((-108) $ $) 104)) (-4017 (((-108) $ $) 193)) (-4090 (($ $) 106) (($ $ $) NIL)) (-4080 (($ $ $) 105)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-385 (-525))) 267) (($ $ $) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL)))
+(((-153 |#1| |#2|) (-10 -8 (-15 -2523 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -1270 (|#1| |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2658 ((-2 (|:| -1790 |#1|) (|:| -4242 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -1290 ((-713) |#1|)) (-15 -1496 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|)) (-15 -1704 (|#1| |#1| |#1|)) (-15 -1726 (|#1| |#1| |#1|)) (-15 -2502 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -4017 ((-108) |#1| |#1|)) (-15 -2749 ((-501) |#1|)) (-15 -2749 ((-157 (-205)) |#1|)) (-15 -2749 ((-157 (-357)) |#1|)) (-15 -1603 (|#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -2226 (|#1| |#1|)) (-15 -2257 (|#1| |#1|)) (-15 -2335 (|#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -2438 (|#1| |#1|)) (-15 -1415 (|#1| |#1|)) (-15 -1250 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1535 (|#1|)) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -2802 ((-396 (-1087 |#1|)) (-1087 |#1|))) (-15 -1215 ((-396 (-1087 |#1|)) (-1087 |#1|))) (-15 -3259 ((-3 (-592 (-1087 |#1|)) "failed") (-592 (-1087 |#1|)) (-1087 |#1|))) (-15 -2251 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2178 ((-385 (-525)) |#1|)) (-15 -2265 ((-108) |#1|)) (-15 -3709 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3538 (|#2| |#1|)) (-15 -2086 (|#1| |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3700 (|#1| |#1|)) (-15 -3237 (|#1|)) (-15 -2749 ((-827 (-357)) |#1|)) (-15 -2749 ((-827 (-525)) |#1|)) (-15 -2317 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -2317 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -2694 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3503 ((-3 |#1| "failed") (-385 (-1087 |#2|)))) (-15 -3492 ((-1087 |#2|) |#1|)) (-15 -2749 (|#1| (-1087 |#2|))) (-15 -3503 (|#1| (-1087 |#2|))) (-15 -1571 ((-1087 |#2|))) (-15 -3416 ((-632 |#2|) (-632 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-632 (-525)) (-632 |#1|))) (-15 -3898 (|#2| |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -2749 ((-1087 |#2|) |#1|)) (-15 -2094 (|#2|)) (-15 -2749 (|#1| (-1173 |#2|))) (-15 -2749 ((-1173 |#2|) |#1|)) (-15 -3464 ((-632 |#2|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1|)) (-15 -2640 ((-1087 |#2|) |#1|)) (-15 -1805 ((-1087 |#2|) |#1|)) (-15 -2094 (|#2| (-1173 |#1|))) (-15 -3464 ((-632 |#2|) (-1173 |#1|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1| (-1173 |#1|))) (-15 -2900 (|#2| |#1|)) (-15 -3029 (|#2| |#1|)) (-15 -3318 ((-856))) (-15 -1270 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1270 (|#1| (-525))) (-15 -2104 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 -3762 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 * (|#1| (-525) |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -1270 ((-798) |#1|)) (-15 -3994 ((-108) |#1| |#1|))) (-154 |#2|) (-160)) (T -153))
+((-2104 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4)))) (-3318 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-856)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4)))) (-2094 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-153 *3 *2)) (-4 *3 (-154 *2)))) (-1571 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1087 *4)) (-5 *1 (-153 *3 *4)) (-4 *3 (-154 *4)))))
+(-10 -8 (-15 -2523 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -1270 (|#1| |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2658 ((-2 (|:| -1790 |#1|) (|:| -4242 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -1290 ((-713) |#1|)) (-15 -1496 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|)) (-15 -1704 (|#1| |#1| |#1|)) (-15 -1726 (|#1| |#1| |#1|)) (-15 -2502 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -4017 ((-108) |#1| |#1|)) (-15 -2749 ((-501) |#1|)) (-15 -2749 ((-157 (-205)) |#1|)) (-15 -2749 ((-157 (-357)) |#1|)) (-15 -1603 (|#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -2226 (|#1| |#1|)) (-15 -2257 (|#1| |#1|)) (-15 -2335 (|#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -2438 (|#1| |#1|)) (-15 -1415 (|#1| |#1|)) (-15 -1250 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1535 (|#1|)) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -2802 ((-396 (-1087 |#1|)) (-1087 |#1|))) (-15 -1215 ((-396 (-1087 |#1|)) (-1087 |#1|))) (-15 -3259 ((-3 (-592 (-1087 |#1|)) "failed") (-592 (-1087 |#1|)) (-1087 |#1|))) (-15 -2251 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2178 ((-385 (-525)) |#1|)) (-15 -2265 ((-108) |#1|)) (-15 -3709 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3538 (|#2| |#1|)) (-15 -2086 (|#1| |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3700 (|#1| |#1|)) (-15 -3237 (|#1|)) (-15 -2749 ((-827 (-357)) |#1|)) (-15 -2749 ((-827 (-525)) |#1|)) (-15 -2317 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -2317 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -2694 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3503 ((-3 |#1| "failed") (-385 (-1087 |#2|)))) (-15 -3492 ((-1087 |#2|) |#1|)) (-15 -2749 (|#1| (-1087 |#2|))) (-15 -3503 (|#1| (-1087 |#2|))) (-15 -1571 ((-1087 |#2|))) (-15 -3416 ((-632 |#2|) (-632 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-632 (-525)) (-632 |#1|))) (-15 -3898 (|#2| |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -2749 ((-1087 |#2|) |#1|)) (-15 -2094 (|#2|)) (-15 -2749 (|#1| (-1173 |#2|))) (-15 -2749 ((-1173 |#2|) |#1|)) (-15 -3464 ((-632 |#2|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1|)) (-15 -2640 ((-1087 |#2|) |#1|)) (-15 -1805 ((-1087 |#2|) |#1|)) (-15 -2094 (|#2| (-1173 |#1|))) (-15 -3464 ((-632 |#2|) (-1173 |#1|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1| (-1173 |#1|))) (-15 -2900 (|#2| |#1|)) (-15 -3029 (|#2| |#1|)) (-15 -3318 ((-856))) (-15 -1270 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1270 (|#1| (-525))) (-15 -2104 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 -3762 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 * (|#1| (-525) |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -1270 ((-798) |#1|)) (-15 -3994 ((-108) |#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 93 (-3279 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-3711 (($ $) 94 (-3279 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-3380 (((-108) $) 96 (-3279 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-1264 (((-632 |#1|) (-1173 $)) 46) (((-632 |#1|)) 61)) (-3029 ((|#1| $) 52)) (-2351 (($ $) 228 (|has| |#1| (-1113)))) (-1603 (($ $) 211 (|has| |#1| (-1113)))) (-1670 (((-1101 (-856) (-713)) (-525)) 147 (|has| |#1| (-327)))) (-1342 (((-3 $ "failed") $ $) 19)) (-4050 (((-396 (-1087 $)) (-1087 $)) 242 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-3706 (($ $) 113 (-3279 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-2100 (((-396 $) $) 114 (-3279 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-2211 (($ $) 241 (-12 (|has| |#1| (-934)) (|has| |#1| (-1113))))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) 245 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-3197 (((-108) $ $) 104 (|has| |#1| (-286)))) (-4190 (((-713)) 87 (|has| |#1| (-346)))) (-2320 (($ $) 227 (|has| |#1| (-1113)))) (-1569 (($ $) 212 (|has| |#1| (-1113)))) (-2382 (($ $) 226 (|has| |#1| (-1113)))) (-2193 (($ $) 213 (|has| |#1| (-1113)))) (-2305 (($) 17 T CONST)) (-2591 (((-3 (-525) "failed") $) 169 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 166)) (-3898 (((-525) $) 170 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 168 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 165)) (-3612 (($ (-1173 |#1|) (-1173 $)) 48) (($ (-1173 |#1|)) 64)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-327)))) (-1726 (($ $ $) 108 (|has| |#1| (-286)))) (-2312 (((-632 |#1|) $ (-1173 $)) 53) (((-632 |#1|) $) 59)) (-3416 (((-632 (-525)) (-632 $)) 164 (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 163 (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) 162) (((-632 |#1|) (-632 $)) 161)) (-3503 (($ (-1087 |#1|)) 158) (((-3 $ "failed") (-385 (-1087 |#1|))) 155 (|has| |#1| (-341)))) (-3762 (((-3 $ "failed") $) 34)) (-2227 ((|#1| $) 253)) (-2251 (((-3 (-385 (-525)) "failed") $) 246 (|has| |#1| (-510)))) (-2265 (((-108) $) 248 (|has| |#1| (-510)))) (-2178 (((-385 (-525)) $) 247 (|has| |#1| (-510)))) (-3318 (((-856)) 54)) (-2899 (($) 90 (|has| |#1| (-346)))) (-1704 (($ $ $) 107 (|has| |#1| (-286)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 102 (|has| |#1| (-286)))) (-3977 (($) 149 (|has| |#1| (-327)))) (-3564 (((-108) $) 150 (|has| |#1| (-327)))) (-2327 (($ $ (-713)) 141 (|has| |#1| (-327))) (($ $) 140 (|has| |#1| (-327)))) (-3836 (((-108) $) 115 (-3279 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-3709 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 249 (-12 (|has| |#1| (-986)) (|has| |#1| (-1113))))) (-1535 (($) 238 (|has| |#1| (-1113)))) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 261 (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 260 (|has| |#1| (-821 (-357))))) (-3973 (((-856) $) 152 (|has| |#1| (-327))) (((-775 (-856)) $) 138 (|has| |#1| (-327)))) (-1985 (((-108) $) 31)) (-3220 (($ $ (-525)) 240 (-12 (|has| |#1| (-934)) (|has| |#1| (-1113))))) (-2900 ((|#1| $) 51)) (-1760 (((-3 $ "failed") $) 142 (|has| |#1| (-327)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 111 (|has| |#1| (-286)))) (-2640 (((-1087 |#1|) $) 44 (|has| |#1| (-341)))) (-2371 (($ $ $) 207 (|has| |#1| (-789)))) (-2535 (($ $ $) 206 (|has| |#1| (-789)))) (-2694 (($ (-1 |#1| |#1|) $) 262)) (-1736 (((-856) $) 89 (|has| |#1| (-346)))) (-1415 (($ $) 235 (|has| |#1| (-1113)))) (-3492 (((-1087 |#1|) $) 156)) (-2756 (($ (-592 $)) 100 (-3279 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (($ $ $) 99 (-3279 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-3451 (((-1074) $) 9)) (-2502 (($ $) 116 (|has| |#1| (-341)))) (-3940 (($) 143 (|has| |#1| (-327)) CONST)) (-3640 (($ (-856)) 88 (|has| |#1| (-346)))) (-3237 (($) 257)) (-2243 ((|#1| $) 254)) (-2012 (((-1038) $) 10)) (-3523 (($) 160)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 101 (-3279 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-2794 (($ (-592 $)) 98 (-3279 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (($ $ $) 97 (-3279 (|has| |#1| (-286)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) 146 (|has| |#1| (-327)))) (-1215 (((-396 (-1087 $)) (-1087 $)) 244 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-2802 (((-396 (-1087 $)) (-1087 $)) 243 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-2195 (((-396 $) $) 112 (-3279 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 109 (|has| |#1| (-286)))) (-1680 (((-3 $ "failed") $ |#1|) 252 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 92 (-3279 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 103 (|has| |#1| (-286)))) (-1250 (($ $) 236 (|has| |#1| (-1113)))) (-2602 (($ $ (-592 |#1|) (-592 |#1|)) 268 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 267 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 266 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 265 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1091)) (-592 |#1|)) 264 (|has| |#1| (-486 (-1091) |#1|))) (($ $ (-1091) |#1|) 263 (|has| |#1| (-486 (-1091) |#1|)))) (-1290 (((-713) $) 105 (|has| |#1| (-286)))) (-3410 (($ $ |#1|) 269 (|has| |#1| (-265 |#1| |#1|)))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 106 (|has| |#1| (-286)))) (-2094 ((|#1| (-1173 $)) 47) ((|#1|) 60)) (-2181 (((-713) $) 151 (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) 139 (|has| |#1| (-327)))) (-2523 (($ $ (-1 |#1| |#1|) (-713)) 123) (($ $ (-1 |#1| |#1|)) 122) (($ $ (-592 (-1091)) (-592 (-713))) 130 (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) 131 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) 132 (|has| |#1| (-835 (-1091)))) (($ $ (-1091)) 133 (|has| |#1| (-835 (-1091)))) (($ $ (-713)) 135 (-3279 (-3830 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-3830 (|has| |#1| (-213)) (|has| |#1| (-341))))) (($ $) 137 (-3279 (-3830 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-3830 (|has| |#1| (-213)) (|has| |#1| (-341)))))) (-2361 (((-632 |#1|) (-1173 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-341)))) (-1571 (((-1087 |#1|)) 159)) (-2396 (($ $) 225 (|has| |#1| (-1113)))) (-2209 (($ $) 214 (|has| |#1| (-1113)))) (-2726 (($) 148 (|has| |#1| (-327)))) (-2367 (($ $) 224 (|has| |#1| (-1113)))) (-2176 (($ $) 215 (|has| |#1| (-1113)))) (-2335 (($ $) 223 (|has| |#1| (-1113)))) (-1584 (($ $) 216 (|has| |#1| (-1113)))) (-3464 (((-1173 |#1|) $ (-1173 $)) 50) (((-632 |#1|) (-1173 $) (-1173 $)) 49) (((-1173 |#1|) $) 66) (((-632 |#1|) (-1173 $)) 65)) (-2749 (((-1173 |#1|) $) 63) (($ (-1173 |#1|)) 62) (((-1087 |#1|) $) 171) (($ (-1087 |#1|)) 157) (((-827 (-525)) $) 259 (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) 258 (|has| |#1| (-567 (-827 (-357))))) (((-157 (-357)) $) 210 (|has| |#1| (-953))) (((-157 (-205)) $) 209 (|has| |#1| (-953))) (((-501) $) 208 (|has| |#1| (-567 (-501))))) (-3700 (($ $) 256)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) 145 (-3279 (-3830 (|has| $ (-136)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))) (|has| |#1| (-327))))) (-1377 (($ |#1| |#1|) 255)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 86 (-3279 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525)))))) (($ $) 91 (-3279 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-3425 (($ $) 144 (|has| |#1| (-327))) (((-3 $ "failed") $) 43 (-3279 (-3830 (|has| $ (-136)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))) (|has| |#1| (-136))))) (-1805 (((-1087 |#1|) $) 45)) (-2104 (((-713)) 29)) (-1449 (((-1173 $)) 67)) (-2438 (($ $) 234 (|has| |#1| (-1113)))) (-2257 (($ $) 222 (|has| |#1| (-1113)))) (-3959 (((-108) $ $) 95 (-3279 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))) (-2410 (($ $) 233 (|has| |#1| (-1113)))) (-2226 (($ $) 221 (|has| |#1| (-1113)))) (-2464 (($ $) 232 (|has| |#1| (-1113)))) (-2287 (($ $) 220 (|has| |#1| (-1113)))) (-3538 ((|#1| $) 250 (|has| |#1| (-1113)))) (-2687 (($ $) 231 (|has| |#1| (-1113)))) (-2303 (($ $) 219 (|has| |#1| (-1113)))) (-2450 (($ $) 230 (|has| |#1| (-1113)))) (-2273 (($ $) 218 (|has| |#1| (-1113)))) (-2424 (($ $) 229 (|has| |#1| (-1113)))) (-2242 (($ $) 217 (|has| |#1| (-1113)))) (-2086 (($ $) 251 (|has| |#1| (-986)))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 117 (|has| |#1| (-341)))) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ (-1 |#1| |#1|) (-713)) 125) (($ $ (-1 |#1| |#1|)) 124) (($ $ (-592 (-1091)) (-592 (-713))) 126 (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) 127 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) 128 (|has| |#1| (-835 (-1091)))) (($ $ (-1091)) 129 (|has| |#1| (-835 (-1091)))) (($ $ (-713)) 134 (-3279 (-3830 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-3830 (|has| |#1| (-213)) (|has| |#1| (-341))))) (($ $) 136 (-3279 (-3830 (|has| |#1| (-341)) (|has| |#1| (-213))) (|has| |#1| (-213)) (-3830 (|has| |#1| (-213)) (|has| |#1| (-341)))))) (-4045 (((-108) $ $) 204 (|has| |#1| (-789)))) (-4026 (((-108) $ $) 203 (|has| |#1| (-789)))) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 205 (|has| |#1| (-789)))) (-4017 (((-108) $ $) 202 (|has| |#1| (-789)))) (-4100 (($ $ $) 121 (|has| |#1| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-385 (-525))) 239 (-12 (|has| |#1| (-934)) (|has| |#1| (-1113)))) (($ $ $) 237 (|has| |#1| (-1113))) (($ $ (-525)) 118 (|has| |#1| (-341)))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-385 (-525)) $) 120 (|has| |#1| (-341))) (($ $ (-385 (-525))) 119 (|has| |#1| (-341)))))
(((-154 |#1|) (-131) (-160)) (T -154))
-((-3477 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-2310 (*1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-3634 (*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-2047 (*1 *1 *2 *2) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-3993 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-3981 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-2338 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-2092 (*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-985)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-1112)))) (-2544 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-985)) (-4 *3 (-1112)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-1468 (*1 *2 *1) (|partial| -12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))))
-(-13 (-667 |t#1| (-1086 |t#1|)) (-389 |t#1|) (-211 |t#1|) (-316 |t#1|) (-378 |t#1|) (-818 |t#1|) (-355 |t#1|) (-160) (-10 -8 (-6 -2047) (-15 -2310 ($)) (-15 -3634 ($ $)) (-15 -2047 ($ |t#1| |t#1|)) (-15 -3993 (|t#1| $)) (-15 -3981 (|t#1| $)) (-15 -3477 (|t#1| $)) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-517)) (-15 -2338 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-286)) (-6 (-286)) |%noBranch|) (IF (|has| |t#1| (-6 -4253)) (-6 -4253) |%noBranch|) (IF (|has| |t#1| (-6 -4250)) (-6 -4250) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-952)) (PROGN (-6 (-567 (-157 (-205)))) (-6 (-567 (-157 (-357))))) |%noBranch|) (IF (|has| |t#1| (-985)) (-15 -2092 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1112)) (PROGN (-6 (-1112)) (-15 -1797 (|t#1| $)) (IF (|has| |t#1| (-933)) (-6 (-933)) |%noBranch|) (IF (|has| |t#1| (-985)) (-15 -2544 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -3081 ((-108) $)) (-15 -2098 ((-385 (-525)) $)) (-15 -1468 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-843)) (IF (|has| |t#1| (-286)) (-6 (-843)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-37 |#1|) . T) ((-37 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-34) |has| |#1| (-1112)) ((-91) |has| |#1| (-1112)) ((-97) . T) ((-107 #0# #0#) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3309 (|has| |#1| (-327)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) . T) ((-567 (-157 (-205))) |has| |#1| (-952)) ((-567 (-157 (-357))) |has| |#1| (-952)) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-826 (-357))) |has| |#1| (-567 (-826 (-357)))) ((-567 (-826 (-525))) |has| |#1| (-567 (-826 (-525)))) ((-567 #1=(-1086 |#1|)) . T) ((-211 |#1|) . T) ((-213) -3309 (|has| |#1| (-327)) (|has| |#1| (-213))) ((-223) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-263) |has| |#1| (-1112)) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) -3309 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-286) -3309 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-341) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-380) |has| |#1| (-327)) ((-346) -3309 (|has| |#1| (-346)) (|has| |#1| (-327))) ((-327) |has| |#1| (-327)) ((-348 |#1| #1#) . T) ((-387 |#1| #1#) . T) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-429) -3309 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-466) |has| |#1| (-1112)) ((-486 (-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-517) -3309 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-594 #0#) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-660 |#1|) . T) ((-660 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-667 |#1| #1#) . T) ((-669) . T) ((-789) |has| |#1| (-789)) ((-834 (-1090)) |has| |#1| (-834 (-1090))) ((-820 (-357)) |has| |#1| (-820 (-357))) ((-820 (-525)) |has| |#1| (-820 (-525))) ((-818 |#1|) . T) ((-843) -12 (|has| |#1| (-286)) (|has| |#1| (-843))) ((-854) -3309 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-933) -12 (|has| |#1| (-933)) (|has| |#1| (-1112))) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-982 #0#) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-982 |#1|) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) |has| |#1| (-327)) ((-1112) |has| |#1| (-1112)) ((-1115) |has| |#1| (-1112)) ((-1126) . T) ((-1130) -3309 (|has| |#1| (-327)) (|has| |#1| (-341)) (-12 (|has| |#1| (-286)) (|has| |#1| (-843)))))
-((-3959 (((-396 |#2|) |#2|) 63)))
-(((-155 |#1| |#2|) (-10 -7 (-15 -3959 ((-396 |#2|) |#2|))) (-286) (-1148 (-157 |#1|))) (T -155))
-((-3959 (*1 *2 *3) (-12 (-4 *4 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1148 (-157 *4))))))
-(-10 -7 (-15 -3959 ((-396 |#2|) |#2|)))
-((-1370 (((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|)) 14)))
-(((-156 |#1| |#2|) (-10 -7 (-15 -1370 ((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|)))) (-160) (-160)) (T -156))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-157 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-5 *2 (-157 *6)) (-5 *1 (-156 *5 *6)))))
-(-10 -7 (-15 -1370 ((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 33)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (-3309 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-517))))) (-3635 (($ $) NIL (-3309 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-517))))) (-2950 (((-108) $) NIL (-3309 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-517))))) (-2794 (((-632 |#1|) (-1172 $)) NIL) (((-632 |#1|)) NIL)) (-3512 ((|#1| $) NIL)) (-4049 (($ $) NIL (|has| |#1| (-1112)))) (-3911 (($ $) NIL (|has| |#1| (-1112)))) (-2837 (((-1100 (-855) (-713)) (-525)) NIL (|has| |#1| (-327)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (-3321 (($ $) NIL (-3309 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341))))) (-1510 (((-396 $) $) NIL (-3309 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341))))) (-3969 (($ $) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-1112))))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (-2305 (((-108) $ $) NIL (|has| |#1| (-286)))) (-3107 (((-713)) NIL (|has| |#1| (-346)))) (-4026 (($ $) NIL (|has| |#1| (-1112)))) (-3434 (($ $) NIL (|has| |#1| (-1112)))) (-4072 (($ $) NIL (|has| |#1| (-1112)))) (-3931 (($ $) NIL (|has| |#1| (-1112)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-2831 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-2229 (($ (-1172 |#1|) (-1172 $)) NIL) (($ (-1172 |#1|)) NIL)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-327)))) (-2373 (($ $ $) NIL (|has| |#1| (-286)))) (-1409 (((-632 |#1|) $ (-1172 $)) NIL) (((-632 |#1|) $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-4004 (($ (-1086 |#1|)) NIL) (((-3 $ "failed") (-385 (-1086 |#1|))) NIL (|has| |#1| (-341)))) (-2866 (((-3 $ "failed") $) NIL)) (-3981 ((|#1| $) 13)) (-1468 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-3081 (((-108) $) NIL (|has| |#1| (-510)))) (-2098 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-2239 (((-855)) NIL)) (-3375 (($) NIL (|has| |#1| (-346)))) (-2356 (($ $ $) NIL (|has| |#1| (-286)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| |#1| (-286)))) (-3205 (($) NIL (|has| |#1| (-327)))) (-3746 (((-108) $) NIL (|has| |#1| (-327)))) (-1410 (($ $ (-713)) NIL (|has| |#1| (-327))) (($ $) NIL (|has| |#1| (-327)))) (-2250 (((-108) $) NIL (-3309 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341))))) (-2544 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-985)) (|has| |#1| (-1112))))) (-1335 (($) NIL (|has| |#1| (-1112)))) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| |#1| (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| |#1| (-820 (-357))))) (-1737 (((-855) $) NIL (|has| |#1| (-327))) (((-775 (-855)) $) NIL (|has| |#1| (-327)))) (-2133 (((-108) $) 35)) (-3391 (($ $ (-525)) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-1112))))) (-3477 ((|#1| $) 46)) (-1816 (((-3 $ "failed") $) NIL (|has| |#1| (-327)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-286)))) (-2362 (((-1086 |#1|) $) NIL (|has| |#1| (-341)))) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-1780 (((-855) $) NIL (|has| |#1| (-346)))) (-2091 (($ $) NIL (|has| |#1| (-1112)))) (-3774 (((-1086 |#1|) $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-286))) (($ $ $) NIL (|has| |#1| (-286)))) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-341)))) (-2279 (($) NIL (|has| |#1| (-327)) CONST)) (-4185 (($ (-855)) NIL (|has| |#1| (-346)))) (-2310 (($) NIL)) (-3993 ((|#1| $) 15)) (-2663 (((-1037) $) NIL)) (-1669 (($) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-286)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-286))) (($ $ $) NIL (|has| |#1| (-286)))) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) NIL (|has| |#1| (-327)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-843))))) (-3959 (((-396 $) $) NIL (-3309 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-341))))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-286)))) (-2338 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 47 (-3309 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-517))))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-286)))) (-1982 (($ $) NIL (|has| |#1| (-1112)))) (-3092 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) NIL (|has| |#1| (-486 (-1090) |#1|)))) (-2183 (((-713) $) NIL (|has| |#1| (-286)))) (-3928 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-286)))) (-1400 ((|#1| (-1172 $)) NIL) ((|#1|) NIL)) (-2443 (((-713) $) NIL (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) NIL (|has| |#1| (-327)))) (-3013 (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-2160 (((-632 |#1|) (-1172 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-1654 (((-1086 |#1|)) NIL)) (-4084 (($ $) NIL (|has| |#1| (-1112)))) (-3942 (($ $) NIL (|has| |#1| (-1112)))) (-3775 (($) NIL (|has| |#1| (-327)))) (-4061 (($ $) NIL (|has| |#1| (-1112)))) (-3919 (($ $) NIL (|has| |#1| (-1112)))) (-4038 (($ $) NIL (|has| |#1| (-1112)))) (-3455 (($ $) NIL (|has| |#1| (-1112)))) (-4093 (((-1172 |#1|) $ (-1172 $)) NIL) (((-632 |#1|) (-1172 $) (-1172 $)) NIL) (((-1172 |#1|) $) NIL) (((-632 |#1|) (-1172 $)) NIL)) (-1427 (((-1172 |#1|) $) NIL) (($ (-1172 |#1|)) NIL) (((-1086 |#1|) $) NIL) (($ (-1086 |#1|)) NIL) (((-826 (-525)) $) NIL (|has| |#1| (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| |#1| (-567 (-826 (-357))))) (((-157 (-357)) $) NIL (|has| |#1| (-952))) (((-157 (-205)) $) NIL (|has| |#1| (-952))) (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-3634 (($ $) 45)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-327))))) (-2047 (($ |#1| |#1|) 37)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) 36) (($ (-385 (-525))) NIL (-3309 (|has| |#1| (-341)) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (-3309 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-517))))) (-3421 (($ $) NIL (|has| |#1| (-327))) (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-1260 (((-1086 |#1|) $) NIL)) (-2093 (((-713)) NIL)) (-2499 (((-1172 $)) NIL)) (-4121 (($ $) NIL (|has| |#1| (-1112)))) (-3974 (($ $) NIL (|has| |#1| (-1112)))) (-2262 (((-108) $ $) NIL (-3309 (-12 (|has| |#1| (-286)) (|has| |#1| (-843))) (|has| |#1| (-517))))) (-4096 (($ $) NIL (|has| |#1| (-1112)))) (-3951 (($ $) NIL (|has| |#1| (-1112)))) (-4147 (($ $) NIL (|has| |#1| (-1112)))) (-3999 (($ $) NIL (|has| |#1| (-1112)))) (-1797 ((|#1| $) NIL (|has| |#1| (-1112)))) (-2929 (($ $) NIL (|has| |#1| (-1112)))) (-4013 (($ $) NIL (|has| |#1| (-1112)))) (-4133 (($ $) NIL (|has| |#1| (-1112)))) (-3985 (($ $) NIL (|has| |#1| (-1112)))) (-4110 (($ $) NIL (|has| |#1| (-1112)))) (-3963 (($ $) NIL (|has| |#1| (-1112)))) (-2092 (($ $) NIL (|has| |#1| (-985)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3875 (($) 28 T CONST)) (-3882 (($) 30 T CONST)) (-2766 (((-1073) $) 23 (|has| |#1| (-770))) (((-1073) $ (-108)) 25 (|has| |#1| (-770))) (((-1177) (-764) $) 26 (|has| |#1| (-770))) (((-1177) (-764) $ (-108)) 27 (|has| |#1| (-770)))) (-1424 (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4082 (($ $ $) NIL (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) 39)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-385 (-525))) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-1112)))) (($ $ $) NIL (|has| |#1| (-1112))) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-341))) (($ $ (-385 (-525))) NIL (|has| |#1| (-341)))))
+((-2900 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-3237 (*1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-3700 (*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-1377 (*1 *1 *2 *2) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-2243 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-2227 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))) (-1680 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-2086 (*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-986)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-1113)))) (-3709 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-986)) (-4 *3 (-1113)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-2251 (*1 *2 *1) (|partial| -12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))))
+(-13 (-667 |t#1| (-1087 |t#1|)) (-389 |t#1|) (-211 |t#1|) (-316 |t#1|) (-378 |t#1|) (-819 |t#1|) (-355 |t#1|) (-160) (-10 -8 (-6 -1377) (-15 -3237 ($)) (-15 -3700 ($ $)) (-15 -1377 ($ |t#1| |t#1|)) (-15 -2243 (|t#1| $)) (-15 -2227 (|t#1| $)) (-15 -2900 (|t#1| $)) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-517)) (-15 -1680 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-286)) (-6 (-286)) |%noBranch|) (IF (|has| |t#1| (-6 -4254)) (-6 -4254) |%noBranch|) (IF (|has| |t#1| (-6 -4251)) (-6 -4251) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-953)) (PROGN (-6 (-567 (-157 (-205)))) (-6 (-567 (-157 (-357))))) |%noBranch|) (IF (|has| |t#1| (-986)) (-15 -2086 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1113)) (PROGN (-6 (-1113)) (-15 -3538 (|t#1| $)) (IF (|has| |t#1| (-934)) (-6 (-934)) |%noBranch|) (IF (|has| |t#1| (-986)) (-15 -3709 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -2265 ((-108) $)) (-15 -2178 ((-385 (-525)) $)) (-15 -2251 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-844)) (IF (|has| |t#1| (-286)) (-6 (-844)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-37 |#1|) . T) ((-37 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-34) |has| |#1| (-1113)) ((-91) |has| |#1| (-1113)) ((-97) . T) ((-107 #0# #0#) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3279 (|has| |#1| (-327)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-567 (-157 (-205))) |has| |#1| (-953)) ((-567 (-157 (-357))) |has| |#1| (-953)) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-827 (-357))) |has| |#1| (-567 (-827 (-357)))) ((-567 (-827 (-525))) |has| |#1| (-567 (-827 (-525)))) ((-567 #1=(-1087 |#1|)) . T) ((-211 |#1|) . T) ((-213) -3279 (|has| |#1| (-327)) (|has| |#1| (-213))) ((-223) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-263) |has| |#1| (-1113)) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) -3279 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-286) -3279 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-341) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-380) |has| |#1| (-327)) ((-346) -3279 (|has| |#1| (-346)) (|has| |#1| (-327))) ((-327) |has| |#1| (-327)) ((-348 |#1| #1#) . T) ((-387 |#1| #1#) . T) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-429) -3279 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-466) |has| |#1| (-1113)) ((-486 (-1091) |#1|) |has| |#1| (-486 (-1091) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-517) -3279 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-594 #0#) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-660 |#1|) . T) ((-660 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-667 |#1| #1#) . T) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 (-1091)) |has| |#1| (-835 (-1091))) ((-821 (-357)) |has| |#1| (-821 (-357))) ((-821 (-525)) |has| |#1| (-821 (-525))) ((-819 |#1|) . T) ((-844) -12 (|has| |#1| (-286)) (|has| |#1| (-844))) ((-855) -3279 (|has| |#1| (-327)) (|has| |#1| (-341)) (|has| |#1| (-286))) ((-934) -12 (|has| |#1| (-934)) (|has| |#1| (-1113))) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 #0#) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-983 |#1|) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1067) |has| |#1| (-327)) ((-1113) |has| |#1| (-1113)) ((-1116) |has| |#1| (-1113)) ((-1127) . T) ((-1131) -3279 (|has| |#1| (-327)) (|has| |#1| (-341)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))))
+((-2195 (((-396 |#2|) |#2|) 63)))
+(((-155 |#1| |#2|) (-10 -7 (-15 -2195 ((-396 |#2|) |#2|))) (-286) (-1149 (-157 |#1|))) (T -155))
+((-2195 (*1 *2 *3) (-12 (-4 *4 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-155 *4 *3)) (-4 *3 (-1149 (-157 *4))))))
+(-10 -7 (-15 -2195 ((-396 |#2|) |#2|)))
+((-2694 (((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|)) 14)))
+(((-156 |#1| |#2|) (-10 -7 (-15 -2694 ((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|)))) (-160) (-160)) (T -156))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-157 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-5 *2 (-157 *6)) (-5 *1 (-156 *5 *6)))))
+(-10 -7 (-15 -2694 ((-157 |#2|) (-1 |#2| |#1|) (-157 |#1|))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 33)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (-3279 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-3711 (($ $) NIL (-3279 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-3380 (((-108) $) NIL (-3279 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-1264 (((-632 |#1|) (-1173 $)) NIL) (((-632 |#1|)) NIL)) (-3029 ((|#1| $) NIL)) (-2351 (($ $) NIL (|has| |#1| (-1113)))) (-1603 (($ $) NIL (|has| |#1| (-1113)))) (-1670 (((-1101 (-856) (-713)) (-525)) NIL (|has| |#1| (-327)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-3706 (($ $) NIL (-3279 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-2100 (((-396 $) $) NIL (-3279 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-2211 (($ $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-1113))))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-3197 (((-108) $ $) NIL (|has| |#1| (-286)))) (-4190 (((-713)) NIL (|has| |#1| (-346)))) (-2320 (($ $) NIL (|has| |#1| (-1113)))) (-1569 (($ $) NIL (|has| |#1| (-1113)))) (-2382 (($ $) NIL (|has| |#1| (-1113)))) (-2193 (($ $) NIL (|has| |#1| (-1113)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-3898 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-3612 (($ (-1173 |#1|) (-1173 $)) NIL) (($ (-1173 |#1|)) NIL)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-327)))) (-1726 (($ $ $) NIL (|has| |#1| (-286)))) (-2312 (((-632 |#1|) $ (-1173 $)) NIL) (((-632 |#1|) $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3503 (($ (-1087 |#1|)) NIL) (((-3 $ "failed") (-385 (-1087 |#1|))) NIL (|has| |#1| (-341)))) (-3762 (((-3 $ "failed") $) NIL)) (-2227 ((|#1| $) 13)) (-2251 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-2265 (((-108) $) NIL (|has| |#1| (-510)))) (-2178 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-3318 (((-856)) NIL)) (-2899 (($) NIL (|has| |#1| (-346)))) (-1704 (($ $ $) NIL (|has| |#1| (-286)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| |#1| (-286)))) (-3977 (($) NIL (|has| |#1| (-327)))) (-3564 (((-108) $) NIL (|has| |#1| (-327)))) (-2327 (($ $ (-713)) NIL (|has| |#1| (-327))) (($ $) NIL (|has| |#1| (-327)))) (-3836 (((-108) $) NIL (-3279 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-3709 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-986)) (|has| |#1| (-1113))))) (-1535 (($) NIL (|has| |#1| (-1113)))) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| |#1| (-821 (-357))))) (-3973 (((-856) $) NIL (|has| |#1| (-327))) (((-775 (-856)) $) NIL (|has| |#1| (-327)))) (-1985 (((-108) $) 35)) (-3220 (($ $ (-525)) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-1113))))) (-2900 ((|#1| $) 46)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-327)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-286)))) (-2640 (((-1087 |#1|) $) NIL (|has| |#1| (-341)))) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-1736 (((-856) $) NIL (|has| |#1| (-346)))) (-1415 (($ $) NIL (|has| |#1| (-1113)))) (-3492 (((-1087 |#1|) $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-286))) (($ $ $) NIL (|has| |#1| (-286)))) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL (|has| |#1| (-341)))) (-3940 (($) NIL (|has| |#1| (-327)) CONST)) (-3640 (($ (-856)) NIL (|has| |#1| (-346)))) (-3237 (($) NIL)) (-2243 ((|#1| $) 15)) (-2012 (((-1038) $) NIL)) (-3523 (($) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-286)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-286))) (($ $ $) NIL (|has| |#1| (-286)))) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) NIL (|has| |#1| (-327)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#1| (-286)) (|has| |#1| (-844))))) (-2195 (((-396 $) $) NIL (-3279 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-341))))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-286)))) (-1680 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 47 (-3279 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-286)))) (-1250 (($ $) NIL (|has| |#1| (-1113)))) (-2602 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1091)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1091) |#1|))) (($ $ (-1091) |#1|) NIL (|has| |#1| (-486 (-1091) |#1|)))) (-1290 (((-713) $) NIL (|has| |#1| (-286)))) (-3410 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-286)))) (-2094 ((|#1| (-1173 $)) NIL) ((|#1|) NIL)) (-2181 (((-713) $) NIL (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) NIL (|has| |#1| (-327)))) (-2523 (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-2361 (((-632 |#1|) (-1173 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-1571 (((-1087 |#1|)) NIL)) (-2396 (($ $) NIL (|has| |#1| (-1113)))) (-2209 (($ $) NIL (|has| |#1| (-1113)))) (-2726 (($) NIL (|has| |#1| (-327)))) (-2367 (($ $) NIL (|has| |#1| (-1113)))) (-2176 (($ $) NIL (|has| |#1| (-1113)))) (-2335 (($ $) NIL (|has| |#1| (-1113)))) (-1584 (($ $) NIL (|has| |#1| (-1113)))) (-3464 (((-1173 |#1|) $ (-1173 $)) NIL) (((-632 |#1|) (-1173 $) (-1173 $)) NIL) (((-1173 |#1|) $) NIL) (((-632 |#1|) (-1173 $)) NIL)) (-2749 (((-1173 |#1|) $) NIL) (($ (-1173 |#1|)) NIL) (((-1087 |#1|) $) NIL) (($ (-1087 |#1|)) NIL) (((-827 (-525)) $) NIL (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| |#1| (-567 (-827 (-357))))) (((-157 (-357)) $) NIL (|has| |#1| (-953))) (((-157 (-205)) $) NIL (|has| |#1| (-953))) (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-3700 (($ $) 45)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-327))))) (-1377 (($ |#1| |#1|) 37)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) 36) (($ (-385 (-525))) NIL (-3279 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (-3279 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-3425 (($ $) NIL (|has| |#1| (-327))) (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-1805 (((-1087 |#1|) $) NIL)) (-2104 (((-713)) NIL)) (-1449 (((-1173 $)) NIL)) (-2438 (($ $) NIL (|has| |#1| (-1113)))) (-2257 (($ $) NIL (|has| |#1| (-1113)))) (-3959 (((-108) $ $) NIL (-3279 (-12 (|has| |#1| (-286)) (|has| |#1| (-844))) (|has| |#1| (-517))))) (-2410 (($ $) NIL (|has| |#1| (-1113)))) (-2226 (($ $) NIL (|has| |#1| (-1113)))) (-2464 (($ $) NIL (|has| |#1| (-1113)))) (-2287 (($ $) NIL (|has| |#1| (-1113)))) (-3538 ((|#1| $) NIL (|has| |#1| (-1113)))) (-2687 (($ $) NIL (|has| |#1| (-1113)))) (-2303 (($ $) NIL (|has| |#1| (-1113)))) (-2450 (($ $) NIL (|has| |#1| (-1113)))) (-2273 (($ $) NIL (|has| |#1| (-1113)))) (-2424 (($ $) NIL (|has| |#1| (-1113)))) (-2242 (($ $) NIL (|has| |#1| (-1113)))) (-2086 (($ $) NIL (|has| |#1| (-986)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3355 (($) 28 T CONST)) (-3363 (($) 30 T CONST)) (-2255 (((-1074) $) 23 (|has| |#1| (-770))) (((-1074) $ (-108)) 25 (|has| |#1| (-770))) (((-1178) (-764) $) 26 (|has| |#1| (-770))) (((-1178) (-764) $ (-108)) 27 (|has| |#1| (-770)))) (-2093 (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4100 (($ $ $) NIL (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) 39)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-385 (-525))) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-1113)))) (($ $ $) NIL (|has| |#1| (-1113))) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-341))) (($ $ (-385 (-525))) NIL (|has| |#1| (-341)))))
(((-157 |#1|) (-13 (-154 |#1|) (-10 -7 (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|))) (-160)) (T -157))
NIL
(-13 (-154 |#1|) (-10 -7 (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|)))
-((-1427 (((-826 |#1|) |#3|) 22)))
-(((-158 |#1| |#2| |#3|) (-10 -7 (-15 -1427 ((-826 |#1|) |#3|))) (-1019) (-13 (-567 (-826 |#1|)) (-160)) (-154 |#2|)) (T -158))
-((-1427 (*1 *2 *3) (-12 (-4 *4 (-1019)) (-4 *5 (-13 (-567 (-826 *4)) (-160))) (-5 *2 (-826 *4)) (-5 *1 (-158 *4 *5 *3)) (-4 *3 (-154 *5)))))
-(-10 -7 (-15 -1427 ((-826 |#1|) |#3|)))
-((-1893 (((-108) $ $) NIL)) (-3705 (((-108) $) 9)) (-1283 (((-108) $ (-108)) 11)) (-4018 (($) 12)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2135 (($ $) 13)) (-1908 (((-797) $) 17)) (-3628 (((-108) $) 8)) (-3286 (((-108) $ (-108)) 10)) (-3961 (((-108) $ $) NIL)))
-(((-159) (-13 (-1019) (-10 -8 (-15 -4018 ($)) (-15 -3628 ((-108) $)) (-15 -3705 ((-108) $)) (-15 -3286 ((-108) $ (-108))) (-15 -1283 ((-108) $ (-108))) (-15 -2135 ($ $))))) (T -159))
-((-4018 (*1 *1) (-5 *1 (-159))) (-3628 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-3705 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-3286 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-1283 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-2135 (*1 *1 *1) (-5 *1 (-159))))
-(-13 (-1019) (-10 -8 (-15 -4018 ($)) (-15 -3628 ((-108) $)) (-15 -3705 ((-108) $)) (-15 -3286 ((-108) $ (-108))) (-15 -1283 ((-108) $ (-108))) (-15 -2135 ($ $))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11) (($ (-525)) 28)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-2749 (((-827 |#1|) |#3|) 22)))
+(((-158 |#1| |#2| |#3|) (-10 -7 (-15 -2749 ((-827 |#1|) |#3|))) (-1020) (-13 (-567 (-827 |#1|)) (-160)) (-154 |#2|)) (T -158))
+((-2749 (*1 *2 *3) (-12 (-4 *4 (-1020)) (-4 *5 (-13 (-567 (-827 *4)) (-160))) (-5 *2 (-827 *4)) (-5 *1 (-158 *4 *5 *3)) (-4 *3 (-154 *5)))))
+(-10 -7 (-15 -2749 ((-827 |#1|) |#3|)))
+((-1260 (((-108) $ $) NIL)) (-3232 (((-108) $) 9)) (-3710 (((-108) $ (-108)) 11)) (-3489 (($) 12)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1451 (($ $) 13)) (-1270 (((-798) $) 17)) (-3653 (((-108) $) 8)) (-2849 (((-108) $ (-108)) 10)) (-3994 (((-108) $ $) NIL)))
+(((-159) (-13 (-1020) (-10 -8 (-15 -3489 ($)) (-15 -3653 ((-108) $)) (-15 -3232 ((-108) $)) (-15 -2849 ((-108) $ (-108))) (-15 -3710 ((-108) $ (-108))) (-15 -1451 ($ $))))) (T -159))
+((-3489 (*1 *1) (-5 *1 (-159))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-3232 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-2849 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-3710 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))) (-1451 (*1 *1 *1) (-5 *1 (-159))))
+(-13 (-1020) (-10 -8 (-15 -3489 ($)) (-15 -3653 ((-108) $)) (-15 -3232 ((-108) $)) (-15 -2849 ((-108) $ (-108))) (-15 -3710 ((-108) $ (-108))) (-15 -1451 ($ $))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11) (($ (-525)) 28)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-160) (-131)) (T -160))
NIL
-(-13 (-976) (-107 $ $) (-10 -7 (-6 (-4256 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3115 ((|#1| $) 75)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2305 (((-108) $ $) NIL)) (-1505 (($) NIL T CONST)) (-2373 (($ $ $) NIL)) (-3224 (($ $) 19)) (-2512 (($ |#1| (-1071 |#1|)) 48)) (-2866 (((-3 $ "failed") $) 117)) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-1856 (((-1071 |#1|) $) 82)) (-3929 (((-1071 |#1|) $) 79)) (-2057 (((-1071 |#1|) $) 80)) (-2133 (((-108) $) NIL)) (-2460 (((-1071 |#1|) $) 88)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3216 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ (-592 $)) NIL) (($ $ $) NIL)) (-3959 (((-396 $) $) NIL)) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL)) (-3538 (($ $ (-525)) 91)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-1436 (((-1071 |#1|) $) 89)) (-3270 (((-1071 (-385 |#1|)) $) 14)) (-3077 (($ (-385 |#1|)) 17) (($ |#1| (-1071 |#1|) (-1071 |#1|)) 38)) (-1801 (($ $) 93)) (-1908 (((-797) $) 127) (($ (-525)) 51) (($ |#1|) 52) (($ (-385 |#1|)) 36) (($ (-385 (-525))) NIL) (($ $) NIL)) (-2093 (((-713)) 64)) (-2262 (((-108) $ $) NIL)) (-2426 (((-1071 (-385 |#1|)) $) 18)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) 25 T CONST)) (-3882 (($) 28 T CONST)) (-3961 (((-108) $ $) 35)) (-4082 (($ $ $) 115)) (-4070 (($ $) 106) (($ $ $) 103)) (-4059 (($ $ $) 101)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-385 |#1|) $) 111) (($ $ (-385 |#1|)) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL)))
-(((-161 |#1|) (-13 (-37 |#1|) (-37 (-385 |#1|)) (-341) (-10 -8 (-15 -3077 ($ (-385 |#1|))) (-15 -3077 ($ |#1| (-1071 |#1|) (-1071 |#1|))) (-15 -2512 ($ |#1| (-1071 |#1|))) (-15 -3929 ((-1071 |#1|) $)) (-15 -2057 ((-1071 |#1|) $)) (-15 -1856 ((-1071 |#1|) $)) (-15 -3115 (|#1| $)) (-15 -3224 ($ $)) (-15 -2426 ((-1071 (-385 |#1|)) $)) (-15 -3270 ((-1071 (-385 |#1|)) $)) (-15 -2460 ((-1071 |#1|) $)) (-15 -1436 ((-1071 |#1|) $)) (-15 -3538 ($ $ (-525))) (-15 -1801 ($ $)))) (-286)) (T -161))
-((-3077 (*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-286)) (-5 *1 (-161 *3)))) (-3077 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))) (-2512 (*1 *1 *2 *3) (-12 (-5 *3 (-1071 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-2057 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-3115 (*1 *2 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))) (-3224 (*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))) (-2426 (*1 *2 *1) (-12 (-5 *2 (-1071 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-3270 (*1 *2 *1) (-12 (-5 *2 (-1071 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-2460 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-1801 (*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))))
-(-13 (-37 |#1|) (-37 (-385 |#1|)) (-341) (-10 -8 (-15 -3077 ($ (-385 |#1|))) (-15 -3077 ($ |#1| (-1071 |#1|) (-1071 |#1|))) (-15 -2512 ($ |#1| (-1071 |#1|))) (-15 -3929 ((-1071 |#1|) $)) (-15 -2057 ((-1071 |#1|) $)) (-15 -1856 ((-1071 |#1|) $)) (-15 -3115 (|#1| $)) (-15 -3224 ($ $)) (-15 -2426 ((-1071 (-385 |#1|)) $)) (-15 -3270 ((-1071 (-385 |#1|)) $)) (-15 -2460 ((-1071 |#1|) $)) (-15 -1436 ((-1071 |#1|) $)) (-15 -3538 ($ $ (-525))) (-15 -1801 ($ $))))
-((-2246 (($ (-104) $) 13)) (-2474 (((-3 (-104) "failed") (-1090) $) 12)) (-1908 (((-797) $) 16)) (-3690 (((-592 (-104)) $) 8)))
-(((-162) (-13 (-566 (-797)) (-10 -8 (-15 -3690 ((-592 (-104)) $)) (-15 -2246 ($ (-104) $)) (-15 -2474 ((-3 (-104) "failed") (-1090) $))))) (T -162))
-((-3690 (*1 *2 *1) (-12 (-5 *2 (-592 (-104))) (-5 *1 (-162)))) (-2246 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-162)))) (-2474 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1090)) (-5 *2 (-104)) (-5 *1 (-162)))))
-(-13 (-566 (-797)) (-10 -8 (-15 -3690 ((-592 (-104)) $)) (-15 -2246 ($ (-104) $)) (-15 -2474 ((-3 (-104) "failed") (-1090) $))))
-((-3922 (((-1 (-877 |#1|) (-877 |#1|)) |#1|) 40)) (-1910 (((-877 |#1|) (-877 |#1|)) 19)) (-1759 (((-1 (-877 |#1|) (-877 |#1|)) |#1|) 36)) (-1812 (((-877 |#1|) (-877 |#1|)) 17)) (-1416 (((-877 |#1|) (-877 |#1|)) 25)) (-3527 (((-877 |#1|) (-877 |#1|)) 24)) (-4145 (((-877 |#1|) (-877 |#1|)) 23)) (-1794 (((-1 (-877 |#1|) (-877 |#1|)) |#1|) 37)) (-2689 (((-1 (-877 |#1|) (-877 |#1|)) |#1|) 35)) (-4182 (((-1 (-877 |#1|) (-877 |#1|)) |#1|) 34)) (-2277 (((-877 |#1|) (-877 |#1|)) 18)) (-3460 (((-1 (-877 |#1|) (-877 |#1|)) |#1| |#1|) 43)) (-2916 (((-877 |#1|) (-877 |#1|)) 8)) (-4172 (((-1 (-877 |#1|) (-877 |#1|)) |#1|) 39)) (-2991 (((-1 (-877 |#1|) (-877 |#1|)) |#1|) 38)))
-(((-163 |#1|) (-10 -7 (-15 -2916 ((-877 |#1|) (-877 |#1|))) (-15 -1812 ((-877 |#1|) (-877 |#1|))) (-15 -2277 ((-877 |#1|) (-877 |#1|))) (-15 -1910 ((-877 |#1|) (-877 |#1|))) (-15 -4145 ((-877 |#1|) (-877 |#1|))) (-15 -3527 ((-877 |#1|) (-877 |#1|))) (-15 -1416 ((-877 |#1|) (-877 |#1|))) (-15 -4182 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -2689 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -1759 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -1794 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -2991 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -4172 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -3922 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -3460 ((-1 (-877 |#1|) (-877 |#1|)) |#1| |#1|))) (-13 (-341) (-1112) (-933))) (T -163))
-((-3460 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1112) (-933))))) (-3922 (*1 *2 *3) (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1112) (-933))))) (-4172 (*1 *2 *3) (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1112) (-933))))) (-2991 (*1 *2 *3) (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1112) (-933))))) (-1794 (*1 *2 *3) (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1112) (-933))))) (-1759 (*1 *2 *3) (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1112) (-933))))) (-2689 (*1 *2 *3) (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1112) (-933))))) (-4182 (*1 *2 *3) (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1112) (-933))))) (-1416 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) (-5 *1 (-163 *3)))) (-3527 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) (-5 *1 (-163 *3)))) (-4145 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) (-5 *1 (-163 *3)))) (-1910 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) (-5 *1 (-163 *3)))) (-2277 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) (-5 *1 (-163 *3)))) (-1812 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) (-5 *1 (-163 *3)))) (-2916 (*1 *2 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933))) (-5 *1 (-163 *3)))))
-(-10 -7 (-15 -2916 ((-877 |#1|) (-877 |#1|))) (-15 -1812 ((-877 |#1|) (-877 |#1|))) (-15 -2277 ((-877 |#1|) (-877 |#1|))) (-15 -1910 ((-877 |#1|) (-877 |#1|))) (-15 -4145 ((-877 |#1|) (-877 |#1|))) (-15 -3527 ((-877 |#1|) (-877 |#1|))) (-15 -1416 ((-877 |#1|) (-877 |#1|))) (-15 -4182 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -2689 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -1759 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -1794 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -2991 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -4172 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -3922 ((-1 (-877 |#1|) (-877 |#1|)) |#1|)) (-15 -3460 ((-1 (-877 |#1|) (-877 |#1|)) |#1| |#1|)))
-((-1260 ((|#2| |#3|) 27)))
-(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -1260 (|#2| |#3|))) (-160) (-1148 |#1|) (-667 |#1| |#2|)) (T -164))
-((-1260 (*1 *2 *3) (-12 (-4 *4 (-160)) (-4 *2 (-1148 *4)) (-5 *1 (-164 *4 *2 *3)) (-4 *3 (-667 *4 *2)))))
-(-10 -7 (-15 -1260 (|#2| |#3|)))
-((-1524 (((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|)) 47 (|has| (-886 |#2|) (-820 |#1|)))))
-(((-165 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-886 |#2|) (-820 |#1|)) (-15 -1524 ((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|))) |%noBranch|)) (-1019) (-13 (-820 |#1|) (-160)) (-154 |#2|)) (T -165))
-((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *3)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-4 *3 (-154 *6)) (-4 (-886 *6) (-820 *5)) (-4 *6 (-13 (-820 *5) (-160))) (-5 *1 (-165 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-886 |#2|) (-820 |#1|)) (-15 -1524 ((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|))) |%noBranch|))
-((-1939 (((-592 |#1|) (-592 |#1|) |#1|) 38)) (-4180 (((-592 |#1|) |#1| (-592 |#1|)) 19)) (-3180 (((-592 |#1|) (-592 (-592 |#1|)) (-592 |#1|)) 33) ((|#1| (-592 |#1|) (-592 |#1|)) 31)))
-(((-166 |#1|) (-10 -7 (-15 -4180 ((-592 |#1|) |#1| (-592 |#1|))) (-15 -3180 (|#1| (-592 |#1|) (-592 |#1|))) (-15 -3180 ((-592 |#1|) (-592 (-592 |#1|)) (-592 |#1|))) (-15 -1939 ((-592 |#1|) (-592 |#1|) |#1|))) (-286)) (T -166))
-((-1939 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))) (-3180 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-592 *4))) (-4 *4 (-286)) (-5 *1 (-166 *4)))) (-3180 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-166 *2)) (-4 *2 (-286)))) (-4180 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))))
-(-10 -7 (-15 -4180 ((-592 |#1|) |#1| (-592 |#1|))) (-15 -3180 (|#1| (-592 |#1|) (-592 |#1|))) (-15 -3180 ((-592 |#1|) (-592 (-592 |#1|)) (-592 |#1|))) (-15 -1939 ((-592 |#1|) (-592 |#1|) |#1|)))
-((-2571 (((-2 (|:| |start| |#2|) (|:| -2203 (-396 |#2|))) |#2|) 61)) (-3986 ((|#1| |#1|) 54)) (-2594 (((-157 |#1|) |#2|) 84)) (-1451 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-1980 ((|#2| |#2|) 83)) (-1488 (((-396 |#2|) |#2| |#1|) 113) (((-396 |#2|) |#2| |#1| (-108)) 81)) (-3477 ((|#1| |#2|) 112)) (-2165 ((|#2| |#2|) 119)) (-3959 (((-396 |#2|) |#2|) 134) (((-396 |#2|) |#2| |#1|) 32) (((-396 |#2|) |#2| |#1| (-108)) 133)) (-1384 (((-592 (-2 (|:| -2203 (-592 |#2|)) (|:| -1869 |#1|))) |#2| |#2|) 132) (((-592 (-2 (|:| -2203 (-592 |#2|)) (|:| -1869 |#1|))) |#2| |#2| (-108)) 76)) (-2118 (((-592 (-157 |#1|)) |#2| |#1|) 40) (((-592 (-157 |#1|)) |#2|) 41)))
-(((-167 |#1| |#2|) (-10 -7 (-15 -2118 ((-592 (-157 |#1|)) |#2|)) (-15 -2118 ((-592 (-157 |#1|)) |#2| |#1|)) (-15 -1384 ((-592 (-2 (|:| -2203 (-592 |#2|)) (|:| -1869 |#1|))) |#2| |#2| (-108))) (-15 -1384 ((-592 (-2 (|:| -2203 (-592 |#2|)) (|:| -1869 |#1|))) |#2| |#2|)) (-15 -3959 ((-396 |#2|) |#2| |#1| (-108))) (-15 -3959 ((-396 |#2|) |#2| |#1|)) (-15 -3959 ((-396 |#2|) |#2|)) (-15 -2165 (|#2| |#2|)) (-15 -3477 (|#1| |#2|)) (-15 -1488 ((-396 |#2|) |#2| |#1| (-108))) (-15 -1488 ((-396 |#2|) |#2| |#1|)) (-15 -1980 (|#2| |#2|)) (-15 -1451 (|#1| |#2| |#1|)) (-15 -1451 (|#1| |#2|)) (-15 -2594 ((-157 |#1|) |#2|)) (-15 -3986 (|#1| |#1|)) (-15 -2571 ((-2 (|:| |start| |#2|) (|:| -2203 (-396 |#2|))) |#2|))) (-13 (-341) (-787)) (-1148 (-157 |#1|))) (T -167))
-((-2571 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-2 (|:| |start| *3) (|:| -2203 (-396 *3)))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) (-3986 (*1 *2 *2) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1148 (-157 *2))))) (-2594 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-157 *4)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) (-1451 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1148 (-157 *2))))) (-1451 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1148 (-157 *2))))) (-1980 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2)) (-4 *2 (-1148 (-157 *3))))) (-1488 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) (-1488 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) (-3477 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1148 (-157 *2))))) (-2165 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2)) (-4 *2 (-1148 (-157 *3))))) (-3959 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) (-3959 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) (-3959 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) (-1384 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-2 (|:| -2203 (-592 *3)) (|:| -1869 *4)))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) (-1384 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-341) (-787))) (-5 *2 (-592 (-2 (|:| -2203 (-592 *3)) (|:| -1869 *5)))) (-5 *1 (-167 *5 *3)) (-4 *3 (-1148 (-157 *5))))) (-2118 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))) (-2118 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))))
-(-10 -7 (-15 -2118 ((-592 (-157 |#1|)) |#2|)) (-15 -2118 ((-592 (-157 |#1|)) |#2| |#1|)) (-15 -1384 ((-592 (-2 (|:| -2203 (-592 |#2|)) (|:| -1869 |#1|))) |#2| |#2| (-108))) (-15 -1384 ((-592 (-2 (|:| -2203 (-592 |#2|)) (|:| -1869 |#1|))) |#2| |#2|)) (-15 -3959 ((-396 |#2|) |#2| |#1| (-108))) (-15 -3959 ((-396 |#2|) |#2| |#1|)) (-15 -3959 ((-396 |#2|) |#2|)) (-15 -2165 (|#2| |#2|)) (-15 -3477 (|#1| |#2|)) (-15 -1488 ((-396 |#2|) |#2| |#1| (-108))) (-15 -1488 ((-396 |#2|) |#2| |#1|)) (-15 -1980 (|#2| |#2|)) (-15 -1451 (|#1| |#2| |#1|)) (-15 -1451 (|#1| |#2|)) (-15 -2594 ((-157 |#1|) |#2|)) (-15 -3986 (|#1| |#1|)) (-15 -2571 ((-2 (|:| |start| |#2|) (|:| -2203 (-396 |#2|))) |#2|)))
-((-4109 (((-3 |#2| "failed") |#2|) 14)) (-1278 (((-713) |#2|) 16)) (-1839 ((|#2| |#2| |#2|) 18)))
-(((-168 |#1| |#2|) (-10 -7 (-15 -4109 ((-3 |#2| "failed") |#2|)) (-15 -1278 ((-713) |#2|)) (-15 -1839 (|#2| |#2| |#2|))) (-1126) (-619 |#1|)) (T -168))
-((-1839 (*1 *2 *2 *2) (-12 (-4 *3 (-1126)) (-5 *1 (-168 *3 *2)) (-4 *2 (-619 *3)))) (-1278 (*1 *2 *3) (-12 (-4 *4 (-1126)) (-5 *2 (-713)) (-5 *1 (-168 *4 *3)) (-4 *3 (-619 *4)))) (-4109 (*1 *2 *2) (|partial| -12 (-4 *3 (-1126)) (-5 *1 (-168 *3 *2)) (-4 *2 (-619 *3)))))
-(-10 -7 (-15 -4109 ((-3 |#2| "failed") |#2|)) (-15 -1278 ((-713) |#2|)) (-15 -1839 (|#2| |#2| |#2|)))
-((-3128 (((-1090) $) 9)) (-1908 (((-797) $) 13)) (-4031 (((-592 (-1095)) $) 11)))
-(((-169) (-13 (-566 (-797)) (-10 -8 (-15 -3128 ((-1090) $)) (-15 -4031 ((-592 (-1095)) $))))) (T -169))
-((-3128 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-169)))) (-4031 (*1 *2 *1) (-12 (-5 *2 (-592 (-1095))) (-5 *1 (-169)))))
-(-13 (-566 (-797)) (-10 -8 (-15 -3128 ((-1090) $)) (-15 -4031 ((-592 (-1095)) $))))
-((-2574 ((|#2| |#2|) 28)) (-1349 (((-108) |#2|) 19)) (-3981 (((-294 |#1|) |#2|) 12)) (-3993 (((-294 |#1|) |#2|) 14)) (-2430 ((|#2| |#2| (-1090)) 68) ((|#2| |#2|) 69)) (-1428 (((-157 (-294 |#1|)) |#2|) 10)) (-3702 ((|#2| |#2| (-1090)) 65) ((|#2| |#2|) 59)))
-(((-170 |#1| |#2|) (-10 -7 (-15 -2430 (|#2| |#2|)) (-15 -2430 (|#2| |#2| (-1090))) (-15 -3702 (|#2| |#2|)) (-15 -3702 (|#2| |#2| (-1090))) (-15 -3981 ((-294 |#1|) |#2|)) (-15 -3993 ((-294 |#1|) |#2|)) (-15 -1349 ((-108) |#2|)) (-15 -2574 (|#2| |#2|)) (-15 -1428 ((-157 (-294 |#1|)) |#2|))) (-13 (-517) (-789) (-967 (-525))) (-13 (-27) (-1112) (-408 (-157 |#1|)))) (T -170))
-((-1428 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-157 (-294 *4))) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 (-157 *4)))))) (-2574 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 (-157 *3)))))) (-1349 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-108)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 (-157 *4)))))) (-3993 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 (-157 *4)))))) (-3981 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 (-157 *4)))))) (-3702 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 (-157 *4)))))) (-3702 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 (-157 *3)))))) (-2430 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 (-157 *4)))))) (-2430 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 (-157 *3)))))))
-(-10 -7 (-15 -2430 (|#2| |#2|)) (-15 -2430 (|#2| |#2| (-1090))) (-15 -3702 (|#2| |#2|)) (-15 -3702 (|#2| |#2| (-1090))) (-15 -3981 ((-294 |#1|) |#2|)) (-15 -3993 ((-294 |#1|) |#2|)) (-15 -1349 ((-108) |#2|)) (-15 -2574 (|#2| |#2|)) (-15 -1428 ((-157 (-294 |#1|)) |#2|)))
-((-2415 (((-1172 (-632 (-886 |#1|))) (-1172 (-632 |#1|))) 24)) (-1908 (((-1172 (-632 (-385 (-886 |#1|)))) (-1172 (-632 |#1|))) 33)))
-(((-171 |#1|) (-10 -7 (-15 -2415 ((-1172 (-632 (-886 |#1|))) (-1172 (-632 |#1|)))) (-15 -1908 ((-1172 (-632 (-385 (-886 |#1|)))) (-1172 (-632 |#1|))))) (-160)) (T -171))
-((-1908 (*1 *2 *3) (-12 (-5 *3 (-1172 (-632 *4))) (-4 *4 (-160)) (-5 *2 (-1172 (-632 (-385 (-886 *4))))) (-5 *1 (-171 *4)))) (-2415 (*1 *2 *3) (-12 (-5 *3 (-1172 (-632 *4))) (-4 *4 (-160)) (-5 *2 (-1172 (-632 (-886 *4)))) (-5 *1 (-171 *4)))))
-(-10 -7 (-15 -2415 ((-1172 (-632 (-886 |#1|))) (-1172 (-632 |#1|)))) (-15 -1908 ((-1172 (-632 (-385 (-886 |#1|)))) (-1172 (-632 |#1|)))))
-((-2526 (((-1092 (-385 (-525))) (-1092 (-385 (-525))) (-1092 (-385 (-525)))) 66)) (-4224 (((-1092 (-385 (-525))) (-592 (-525)) (-592 (-525))) 75)) (-3109 (((-1092 (-385 (-525))) (-525)) 40)) (-1779 (((-1092 (-385 (-525))) (-525)) 52)) (-3092 (((-385 (-525)) (-1092 (-385 (-525)))) 62)) (-2739 (((-1092 (-385 (-525))) (-525)) 32)) (-1462 (((-1092 (-385 (-525))) (-525)) 48)) (-1761 (((-1092 (-385 (-525))) (-525)) 46)) (-3331 (((-1092 (-385 (-525))) (-1092 (-385 (-525))) (-1092 (-385 (-525)))) 60)) (-1801 (((-1092 (-385 (-525))) (-525)) 25)) (-3426 (((-385 (-525)) (-1092 (-385 (-525))) (-1092 (-385 (-525)))) 64)) (-3535 (((-1092 (-385 (-525))) (-525)) 30)) (-1522 (((-1092 (-385 (-525))) (-592 (-525))) 72)))
-(((-172) (-10 -7 (-15 -1801 ((-1092 (-385 (-525))) (-525))) (-15 -3109 ((-1092 (-385 (-525))) (-525))) (-15 -2739 ((-1092 (-385 (-525))) (-525))) (-15 -3535 ((-1092 (-385 (-525))) (-525))) (-15 -1761 ((-1092 (-385 (-525))) (-525))) (-15 -1462 ((-1092 (-385 (-525))) (-525))) (-15 -1779 ((-1092 (-385 (-525))) (-525))) (-15 -3426 ((-385 (-525)) (-1092 (-385 (-525))) (-1092 (-385 (-525))))) (-15 -3331 ((-1092 (-385 (-525))) (-1092 (-385 (-525))) (-1092 (-385 (-525))))) (-15 -3092 ((-385 (-525)) (-1092 (-385 (-525))))) (-15 -2526 ((-1092 (-385 (-525))) (-1092 (-385 (-525))) (-1092 (-385 (-525))))) (-15 -1522 ((-1092 (-385 (-525))) (-592 (-525)))) (-15 -4224 ((-1092 (-385 (-525))) (-592 (-525)) (-592 (-525)))))) (T -172))
-((-4224 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)))) (-1522 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)))) (-2526 (*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)))) (-3092 (*1 *2 *3) (-12 (-5 *3 (-1092 (-385 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-172)))) (-3331 (*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)))) (-3426 (*1 *2 *3 *3) (-12 (-5 *3 (-1092 (-385 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-172)))) (-1779 (*1 *2 *3) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-1462 (*1 *2 *3) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-1761 (*1 *2 *3) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-3535 (*1 *2 *3) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-2739 (*1 *2 *3) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-3109 (*1 *2 *3) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-1801 (*1 *2 *3) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
-(-10 -7 (-15 -1801 ((-1092 (-385 (-525))) (-525))) (-15 -3109 ((-1092 (-385 (-525))) (-525))) (-15 -2739 ((-1092 (-385 (-525))) (-525))) (-15 -3535 ((-1092 (-385 (-525))) (-525))) (-15 -1761 ((-1092 (-385 (-525))) (-525))) (-15 -1462 ((-1092 (-385 (-525))) (-525))) (-15 -1779 ((-1092 (-385 (-525))) (-525))) (-15 -3426 ((-385 (-525)) (-1092 (-385 (-525))) (-1092 (-385 (-525))))) (-15 -3331 ((-1092 (-385 (-525))) (-1092 (-385 (-525))) (-1092 (-385 (-525))))) (-15 -3092 ((-385 (-525)) (-1092 (-385 (-525))))) (-15 -2526 ((-1092 (-385 (-525))) (-1092 (-385 (-525))) (-1092 (-385 (-525))))) (-15 -1522 ((-1092 (-385 (-525))) (-592 (-525)))) (-15 -4224 ((-1092 (-385 (-525))) (-592 (-525)) (-592 (-525)))))
-((-2973 (((-396 (-1086 (-525))) (-525)) 28)) (-2631 (((-592 (-1086 (-525))) (-525)) 23)) (-2071 (((-1086 (-525)) (-525)) 21)))
-(((-173) (-10 -7 (-15 -2631 ((-592 (-1086 (-525))) (-525))) (-15 -2071 ((-1086 (-525)) (-525))) (-15 -2973 ((-396 (-1086 (-525))) (-525))))) (T -173))
-((-2973 (*1 *2 *3) (-12 (-5 *2 (-396 (-1086 (-525)))) (-5 *1 (-173)) (-5 *3 (-525)))) (-2071 (*1 *2 *3) (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-173)) (-5 *3 (-525)))) (-2631 (*1 *2 *3) (-12 (-5 *2 (-592 (-1086 (-525)))) (-5 *1 (-173)) (-5 *3 (-525)))))
-(-10 -7 (-15 -2631 ((-592 (-1086 (-525))) (-525))) (-15 -2071 ((-1086 (-525)) (-525))) (-15 -2973 ((-396 (-1086 (-525))) (-525))))
-((-3601 (((-1071 (-205)) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 104)) (-1880 (((-592 (-1073)) (-1071 (-205))) NIL)) (-2136 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 80)) (-1567 (((-592 (-205)) (-294 (-205)) (-1090) (-1014 (-782 (-205)))) NIL)) (-3119 (((-592 (-1073)) (-592 (-205))) NIL)) (-4127 (((-205) (-1014 (-782 (-205)))) 24)) (-2286 (((-205) (-1014 (-782 (-205)))) 25)) (-2599 (((-357) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 97)) (-3523 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 42)) (-3792 (((-1073) (-205)) NIL)) (-2326 (((-1073) (-592 (-1073))) 20)) (-2884 (((-965) (-1090) (-1090) (-965)) 13)))
-(((-174) (-10 -7 (-15 -2136 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3523 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4127 ((-205) (-1014 (-782 (-205))))) (-15 -2286 ((-205) (-1014 (-782 (-205))))) (-15 -2599 ((-357) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1567 ((-592 (-205)) (-294 (-205)) (-1090) (-1014 (-782 (-205))))) (-15 -3601 ((-1071 (-205)) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3792 ((-1073) (-205))) (-15 -3119 ((-592 (-1073)) (-592 (-205)))) (-15 -1880 ((-592 (-1073)) (-1071 (-205)))) (-15 -2326 ((-1073) (-592 (-1073)))) (-15 -2884 ((-965) (-1090) (-1090) (-965))))) (T -174))
-((-2884 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-965)) (-5 *3 (-1090)) (-5 *1 (-174)))) (-2326 (*1 *2 *3) (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-1073)) (-5 *1 (-174)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-1071 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-174)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-174)))) (-3792 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1073)) (-5 *1 (-174)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-1071 (-205))) (-5 *1 (-174)))) (-1567 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1090)) (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-174)))) (-2599 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-174)))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174)))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-174)))) (-2136 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-174)))))
-(-10 -7 (-15 -2136 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3523 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -4127 ((-205) (-1014 (-782 (-205))))) (-15 -2286 ((-205) (-1014 (-782 (-205))))) (-15 -2599 ((-357) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1567 ((-592 (-205)) (-294 (-205)) (-1090) (-1014 (-782 (-205))))) (-15 -3601 ((-1071 (-205)) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3792 ((-1073) (-205))) (-15 -3119 ((-592 (-1073)) (-592 (-205)))) (-15 -1880 ((-592 (-1073)) (-1071 (-205)))) (-15 -2326 ((-1073) (-592 (-1073)))) (-15 -2884 ((-965) (-1090) (-1090) (-965))))
-((-1893 (((-108) $ $) NIL)) (-1504 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 55) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 32) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+(-13 (-977) (-107 $ $) (-10 -7 (-6 (-4257 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2628 ((|#1| $) 75)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3197 (((-108) $ $) NIL)) (-2305 (($) NIL T CONST)) (-1726 (($ $ $) NIL)) (-4165 (($ $) 19)) (-1572 (($ |#1| (-1072 |#1|)) 48)) (-3762 (((-3 $ "failed") $) 117)) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-3377 (((-1072 |#1|) $) 82)) (-1577 (((-1072 |#1|) $) 79)) (-3806 (((-1072 |#1|) $) 80)) (-1985 (((-108) $) NIL)) (-2399 (((-1072 |#1|) $) 88)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2756 (($ (-592 $)) NIL) (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2195 (((-396 $) $) NIL)) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL)) (-2182 (($ $ (-525)) 91)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2618 (((-1072 |#1|) $) 89)) (-1419 (((-1072 (-385 |#1|)) $) 14)) (-2215 (($ (-385 |#1|)) 17) (($ |#1| (-1072 |#1|) (-1072 |#1|)) 38)) (-3577 (($ $) 93)) (-1270 (((-798) $) 127) (($ (-525)) 51) (($ |#1|) 52) (($ (-385 |#1|)) 36) (($ (-385 (-525))) NIL) (($ $) NIL)) (-2104 (((-713)) 64)) (-3959 (((-108) $ $) NIL)) (-1955 (((-1072 (-385 |#1|)) $) 18)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) 25 T CONST)) (-3363 (($) 28 T CONST)) (-3994 (((-108) $ $) 35)) (-4100 (($ $ $) 115)) (-4090 (($ $) 106) (($ $ $) 103)) (-4080 (($ $ $) 101)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-385 |#1|) $) 111) (($ $ (-385 |#1|)) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL)))
+(((-161 |#1|) (-13 (-37 |#1|) (-37 (-385 |#1|)) (-341) (-10 -8 (-15 -2215 ($ (-385 |#1|))) (-15 -2215 ($ |#1| (-1072 |#1|) (-1072 |#1|))) (-15 -1572 ($ |#1| (-1072 |#1|))) (-15 -1577 ((-1072 |#1|) $)) (-15 -3806 ((-1072 |#1|) $)) (-15 -3377 ((-1072 |#1|) $)) (-15 -2628 (|#1| $)) (-15 -4165 ($ $)) (-15 -1955 ((-1072 (-385 |#1|)) $)) (-15 -1419 ((-1072 (-385 |#1|)) $)) (-15 -2399 ((-1072 |#1|) $)) (-15 -2618 ((-1072 |#1|) $)) (-15 -2182 ($ $ (-525))) (-15 -3577 ($ $)))) (-286)) (T -161))
+((-2215 (*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-286)) (-5 *1 (-161 *3)))) (-2215 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1072 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))) (-1572 (*1 *1 *2 *3) (-12 (-5 *3 (-1072 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))) (-1577 (*1 *2 *1) (-12 (-5 *2 (-1072 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-3806 (*1 *2 *1) (-12 (-5 *2 (-1072 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-3377 (*1 *2 *1) (-12 (-5 *2 (-1072 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-2628 (*1 *2 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))) (-4165 (*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))) (-1955 (*1 *2 *1) (-12 (-5 *2 (-1072 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-1419 (*1 *2 *1) (-12 (-5 *2 (-1072 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-1072 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-2618 (*1 *2 *1) (-12 (-5 *2 (-1072 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-2182 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-161 *3)) (-4 *3 (-286)))) (-3577 (*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))))
+(-13 (-37 |#1|) (-37 (-385 |#1|)) (-341) (-10 -8 (-15 -2215 ($ (-385 |#1|))) (-15 -2215 ($ |#1| (-1072 |#1|) (-1072 |#1|))) (-15 -1572 ($ |#1| (-1072 |#1|))) (-15 -1577 ((-1072 |#1|) $)) (-15 -3806 ((-1072 |#1|) $)) (-15 -3377 ((-1072 |#1|) $)) (-15 -2628 (|#1| $)) (-15 -4165 ($ $)) (-15 -1955 ((-1072 (-385 |#1|)) $)) (-15 -1419 ((-1072 (-385 |#1|)) $)) (-15 -2399 ((-1072 |#1|) $)) (-15 -2618 ((-1072 |#1|) $)) (-15 -2182 ($ $ (-525))) (-15 -3577 ($ $))))
+((-3781 (($ (-104) $) 13)) (-2551 (((-3 (-104) "failed") (-1091) $) 12)) (-1270 (((-798) $) 16)) (-4233 (((-592 (-104)) $) 8)))
+(((-162) (-13 (-566 (-798)) (-10 -8 (-15 -4233 ((-592 (-104)) $)) (-15 -3781 ($ (-104) $)) (-15 -2551 ((-3 (-104) "failed") (-1091) $))))) (T -162))
+((-4233 (*1 *2 *1) (-12 (-5 *2 (-592 (-104))) (-5 *1 (-162)))) (-3781 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-162)))) (-2551 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1091)) (-5 *2 (-104)) (-5 *1 (-162)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -4233 ((-592 (-104)) $)) (-15 -3781 ($ (-104) $)) (-15 -2551 ((-3 (-104) "failed") (-1091) $))))
+((-1529 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 40)) (-2024 (((-878 |#1|) (-878 |#1|)) 19)) (-1488 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 36)) (-1720 (((-878 |#1|) (-878 |#1|)) 17)) (-2418 (((-878 |#1|) (-878 |#1|)) 25)) (-2020 (((-878 |#1|) (-878 |#1|)) 24)) (-2886 (((-878 |#1|) (-878 |#1|)) 23)) (-3504 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 37)) (-2775 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 35)) (-3100 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 34)) (-4092 (((-878 |#1|) (-878 |#1|)) 18)) (-2741 (((-1 (-878 |#1|) (-878 |#1|)) |#1| |#1|) 43)) (-4230 (((-878 |#1|) (-878 |#1|)) 8)) (-3036 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 39)) (-2707 (((-1 (-878 |#1|) (-878 |#1|)) |#1|) 38)))
+(((-163 |#1|) (-10 -7 (-15 -4230 ((-878 |#1|) (-878 |#1|))) (-15 -1720 ((-878 |#1|) (-878 |#1|))) (-15 -4092 ((-878 |#1|) (-878 |#1|))) (-15 -2024 ((-878 |#1|) (-878 |#1|))) (-15 -2886 ((-878 |#1|) (-878 |#1|))) (-15 -2020 ((-878 |#1|) (-878 |#1|))) (-15 -2418 ((-878 |#1|) (-878 |#1|))) (-15 -3100 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -2775 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -1488 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -3504 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -2707 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -3036 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -1529 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -2741 ((-1 (-878 |#1|) (-878 |#1|)) |#1| |#1|))) (-13 (-341) (-1113) (-934))) (T -163))
+((-2741 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1113) (-934))))) (-1529 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1113) (-934))))) (-3036 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1113) (-934))))) (-2707 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1113) (-934))))) (-3504 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1113) (-934))))) (-1488 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1113) (-934))))) (-2775 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1113) (-934))))) (-3100 (*1 *2 *3) (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3)) (-4 *3 (-13 (-341) (-1113) (-934))))) (-2418 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1113) (-934))) (-5 *1 (-163 *3)))) (-2020 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1113) (-934))) (-5 *1 (-163 *3)))) (-2886 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1113) (-934))) (-5 *1 (-163 *3)))) (-2024 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1113) (-934))) (-5 *1 (-163 *3)))) (-4092 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1113) (-934))) (-5 *1 (-163 *3)))) (-1720 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1113) (-934))) (-5 *1 (-163 *3)))) (-4230 (*1 *2 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1113) (-934))) (-5 *1 (-163 *3)))))
+(-10 -7 (-15 -4230 ((-878 |#1|) (-878 |#1|))) (-15 -1720 ((-878 |#1|) (-878 |#1|))) (-15 -4092 ((-878 |#1|) (-878 |#1|))) (-15 -2024 ((-878 |#1|) (-878 |#1|))) (-15 -2886 ((-878 |#1|) (-878 |#1|))) (-15 -2020 ((-878 |#1|) (-878 |#1|))) (-15 -2418 ((-878 |#1|) (-878 |#1|))) (-15 -3100 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -2775 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -1488 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -3504 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -2707 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -3036 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -1529 ((-1 (-878 |#1|) (-878 |#1|)) |#1|)) (-15 -2741 ((-1 (-878 |#1|) (-878 |#1|)) |#1| |#1|)))
+((-1805 ((|#2| |#3|) 27)))
+(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -1805 (|#2| |#3|))) (-160) (-1149 |#1|) (-667 |#1| |#2|)) (T -164))
+((-1805 (*1 *2 *3) (-12 (-4 *4 (-160)) (-4 *2 (-1149 *4)) (-5 *1 (-164 *4 *2 *3)) (-4 *3 (-667 *4 *2)))))
+(-10 -7 (-15 -1805 (|#2| |#3|)))
+((-2317 (((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)) 47 (|has| (-887 |#2|) (-821 |#1|)))))
+(((-165 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-887 |#2|) (-821 |#1|)) (-15 -2317 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))) |%noBranch|)) (-1020) (-13 (-821 |#1|) (-160)) (-154 |#2|)) (T -165))
+((-2317 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *3 (-154 *6)) (-4 (-887 *6) (-821 *5)) (-4 *6 (-13 (-821 *5) (-160))) (-5 *1 (-165 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-887 |#2|) (-821 |#1|)) (-15 -2317 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))) |%noBranch|))
+((-3814 (((-592 |#1|) (-592 |#1|) |#1|) 38)) (-3091 (((-592 |#1|) |#1| (-592 |#1|)) 19)) (-1873 (((-592 |#1|) (-592 (-592 |#1|)) (-592 |#1|)) 33) ((|#1| (-592 |#1|) (-592 |#1|)) 31)))
+(((-166 |#1|) (-10 -7 (-15 -3091 ((-592 |#1|) |#1| (-592 |#1|))) (-15 -1873 (|#1| (-592 |#1|) (-592 |#1|))) (-15 -1873 ((-592 |#1|) (-592 (-592 |#1|)) (-592 |#1|))) (-15 -3814 ((-592 |#1|) (-592 |#1|) |#1|))) (-286)) (T -166))
+((-3814 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))) (-1873 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-592 *4))) (-4 *4 (-286)) (-5 *1 (-166 *4)))) (-1873 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-166 *2)) (-4 *2 (-286)))) (-3091 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))))
+(-10 -7 (-15 -3091 ((-592 |#1|) |#1| (-592 |#1|))) (-15 -1873 (|#1| (-592 |#1|) (-592 |#1|))) (-15 -1873 ((-592 |#1|) (-592 (-592 |#1|)) (-592 |#1|))) (-15 -3814 ((-592 |#1|) (-592 |#1|) |#1|)))
+((-3965 (((-2 (|:| |start| |#2|) (|:| -1494 (-396 |#2|))) |#2|) 61)) (-3853 ((|#1| |#1|) 54)) (-4182 (((-157 |#1|) |#2|) 84)) (-2163 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-2084 ((|#2| |#2|) 83)) (-2028 (((-396 |#2|) |#2| |#1|) 113) (((-396 |#2|) |#2| |#1| (-108)) 81)) (-2900 ((|#1| |#2|) 112)) (-2434 ((|#2| |#2|) 119)) (-2195 (((-396 |#2|) |#2|) 134) (((-396 |#2|) |#2| |#1|) 32) (((-396 |#2|) |#2| |#1| (-108)) 133)) (-2915 (((-592 (-2 (|:| -1494 (-592 |#2|)) (|:| -1245 |#1|))) |#2| |#2|) 132) (((-592 (-2 (|:| -1494 (-592 |#2|)) (|:| -1245 |#1|))) |#2| |#2| (-108)) 76)) (-1831 (((-592 (-157 |#1|)) |#2| |#1|) 40) (((-592 (-157 |#1|)) |#2|) 41)))
+(((-167 |#1| |#2|) (-10 -7 (-15 -1831 ((-592 (-157 |#1|)) |#2|)) (-15 -1831 ((-592 (-157 |#1|)) |#2| |#1|)) (-15 -2915 ((-592 (-2 (|:| -1494 (-592 |#2|)) (|:| -1245 |#1|))) |#2| |#2| (-108))) (-15 -2915 ((-592 (-2 (|:| -1494 (-592 |#2|)) (|:| -1245 |#1|))) |#2| |#2|)) (-15 -2195 ((-396 |#2|) |#2| |#1| (-108))) (-15 -2195 ((-396 |#2|) |#2| |#1|)) (-15 -2195 ((-396 |#2|) |#2|)) (-15 -2434 (|#2| |#2|)) (-15 -2900 (|#1| |#2|)) (-15 -2028 ((-396 |#2|) |#2| |#1| (-108))) (-15 -2028 ((-396 |#2|) |#2| |#1|)) (-15 -2084 (|#2| |#2|)) (-15 -2163 (|#1| |#2| |#1|)) (-15 -2163 (|#1| |#2|)) (-15 -4182 ((-157 |#1|) |#2|)) (-15 -3853 (|#1| |#1|)) (-15 -3965 ((-2 (|:| |start| |#2|) (|:| -1494 (-396 |#2|))) |#2|))) (-13 (-341) (-787)) (-1149 (-157 |#1|))) (T -167))
+((-3965 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-2 (|:| |start| *3) (|:| -1494 (-396 *3)))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4))))) (-3853 (*1 *2 *2) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1149 (-157 *2))))) (-4182 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-157 *4)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4))))) (-2163 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1149 (-157 *2))))) (-2163 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1149 (-157 *2))))) (-2084 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2)) (-4 *2 (-1149 (-157 *3))))) (-2028 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4))))) (-2028 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4))))) (-2900 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3)) (-4 *3 (-1149 (-157 *2))))) (-2434 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2)) (-4 *2 (-1149 (-157 *3))))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4))))) (-2195 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4))))) (-2195 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4))))) (-2915 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-2 (|:| -1494 (-592 *3)) (|:| -1245 *4)))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4))))) (-2915 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-341) (-787))) (-5 *2 (-592 (-2 (|:| -1494 (-592 *3)) (|:| -1245 *5)))) (-5 *1 (-167 *5 *3)) (-4 *3 (-1149 (-157 *5))))) (-1831 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4))))) (-1831 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4))))))
+(-10 -7 (-15 -1831 ((-592 (-157 |#1|)) |#2|)) (-15 -1831 ((-592 (-157 |#1|)) |#2| |#1|)) (-15 -2915 ((-592 (-2 (|:| -1494 (-592 |#2|)) (|:| -1245 |#1|))) |#2| |#2| (-108))) (-15 -2915 ((-592 (-2 (|:| -1494 (-592 |#2|)) (|:| -1245 |#1|))) |#2| |#2|)) (-15 -2195 ((-396 |#2|) |#2| |#1| (-108))) (-15 -2195 ((-396 |#2|) |#2| |#1|)) (-15 -2195 ((-396 |#2|) |#2|)) (-15 -2434 (|#2| |#2|)) (-15 -2900 (|#1| |#2|)) (-15 -2028 ((-396 |#2|) |#2| |#1| (-108))) (-15 -2028 ((-396 |#2|) |#2| |#1|)) (-15 -2084 (|#2| |#2|)) (-15 -2163 (|#1| |#2| |#1|)) (-15 -2163 (|#1| |#2|)) (-15 -4182 ((-157 |#1|) |#2|)) (-15 -3853 (|#1| |#1|)) (-15 -3965 ((-2 (|:| |start| |#2|) (|:| -1494 (-396 |#2|))) |#2|)))
+((-3601 (((-3 |#2| "failed") |#2|) 14)) (-3661 (((-713) |#2|) 16)) (-2753 ((|#2| |#2| |#2|) 18)))
+(((-168 |#1| |#2|) (-10 -7 (-15 -3601 ((-3 |#2| "failed") |#2|)) (-15 -3661 ((-713) |#2|)) (-15 -2753 (|#2| |#2| |#2|))) (-1127) (-619 |#1|)) (T -168))
+((-2753 (*1 *2 *2 *2) (-12 (-4 *3 (-1127)) (-5 *1 (-168 *3 *2)) (-4 *2 (-619 *3)))) (-3661 (*1 *2 *3) (-12 (-4 *4 (-1127)) (-5 *2 (-713)) (-5 *1 (-168 *4 *3)) (-4 *3 (-619 *4)))) (-3601 (*1 *2 *2) (|partial| -12 (-4 *3 (-1127)) (-5 *1 (-168 *3 *2)) (-4 *2 (-619 *3)))))
+(-10 -7 (-15 -3601 ((-3 |#2| "failed") |#2|)) (-15 -3661 ((-713) |#2|)) (-15 -2753 (|#2| |#2| |#2|)))
+((-3103 (((-1091) $) 9)) (-1270 (((-798) $) 13)) (-3525 (((-592 (-1096)) $) 11)))
+(((-169) (-13 (-566 (-798)) (-10 -8 (-15 -3103 ((-1091) $)) (-15 -3525 ((-592 (-1096)) $))))) (T -169))
+((-3103 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-169)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-592 (-1096))) (-5 *1 (-169)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -3103 ((-1091) $)) (-15 -3525 ((-592 (-1096)) $))))
+((-3995 ((|#2| |#2|) 28)) (-2478 (((-108) |#2|) 19)) (-2227 (((-294 |#1|) |#2|) 12)) (-2243 (((-294 |#1|) |#2|) 14)) (-2004 ((|#2| |#2| (-1091)) 68) ((|#2| |#2|) 69)) (-2532 (((-157 (-294 |#1|)) |#2|) 10)) (-3210 ((|#2| |#2| (-1091)) 65) ((|#2| |#2|) 59)))
+(((-170 |#1| |#2|) (-10 -7 (-15 -2004 (|#2| |#2|)) (-15 -2004 (|#2| |#2| (-1091))) (-15 -3210 (|#2| |#2|)) (-15 -3210 (|#2| |#2| (-1091))) (-15 -2227 ((-294 |#1|) |#2|)) (-15 -2243 ((-294 |#1|) |#2|)) (-15 -2478 ((-108) |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -2532 ((-157 (-294 |#1|)) |#2|))) (-13 (-517) (-789) (-968 (-525))) (-13 (-27) (-1113) (-408 (-157 |#1|)))) (T -170))
+((-2532 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-157 (-294 *4))) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-408 (-157 *4)))))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-408 (-157 *3)))))) (-2478 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-108)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-408 (-157 *4)))))) (-2243 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-408 (-157 *4)))))) (-2227 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-408 (-157 *4)))))) (-3210 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-408 (-157 *4)))))) (-3210 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-408 (-157 *3)))))) (-2004 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-408 (-157 *4)))))) (-2004 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-408 (-157 *3)))))))
+(-10 -7 (-15 -2004 (|#2| |#2|)) (-15 -2004 (|#2| |#2| (-1091))) (-15 -3210 (|#2| |#2|)) (-15 -3210 (|#2| |#2| (-1091))) (-15 -2227 ((-294 |#1|) |#2|)) (-15 -2243 ((-294 |#1|) |#2|)) (-15 -2478 ((-108) |#2|)) (-15 -3995 (|#2| |#2|)) (-15 -2532 ((-157 (-294 |#1|)) |#2|)))
+((-1836 (((-1173 (-632 (-887 |#1|))) (-1173 (-632 |#1|))) 24)) (-1270 (((-1173 (-632 (-385 (-887 |#1|)))) (-1173 (-632 |#1|))) 33)))
+(((-171 |#1|) (-10 -7 (-15 -1836 ((-1173 (-632 (-887 |#1|))) (-1173 (-632 |#1|)))) (-15 -1270 ((-1173 (-632 (-385 (-887 |#1|)))) (-1173 (-632 |#1|))))) (-160)) (T -171))
+((-1270 (*1 *2 *3) (-12 (-5 *3 (-1173 (-632 *4))) (-4 *4 (-160)) (-5 *2 (-1173 (-632 (-385 (-887 *4))))) (-5 *1 (-171 *4)))) (-1836 (*1 *2 *3) (-12 (-5 *3 (-1173 (-632 *4))) (-4 *4 (-160)) (-5 *2 (-1173 (-632 (-887 *4)))) (-5 *1 (-171 *4)))))
+(-10 -7 (-15 -1836 ((-1173 (-632 (-887 |#1|))) (-1173 (-632 |#1|)))) (-15 -1270 ((-1173 (-632 (-385 (-887 |#1|)))) (-1173 (-632 |#1|)))))
+((-1694 (((-1093 (-385 (-525))) (-1093 (-385 (-525))) (-1093 (-385 (-525)))) 66)) (-2295 (((-1093 (-385 (-525))) (-592 (-525)) (-592 (-525))) 75)) (-2574 (((-1093 (-385 (-525))) (-525)) 40)) (-1715 (((-1093 (-385 (-525))) (-525)) 52)) (-2602 (((-385 (-525)) (-1093 (-385 (-525)))) 62)) (-1883 (((-1093 (-385 (-525))) (-525)) 32)) (-2153 (((-1093 (-385 (-525))) (-525)) 48)) (-1505 (((-1093 (-385 (-525))) (-525)) 46)) (-3807 (((-1093 (-385 (-525))) (-1093 (-385 (-525))) (-1093 (-385 (-525)))) 60)) (-3577 (((-1093 (-385 (-525))) (-525)) 25)) (-3459 (((-385 (-525)) (-1093 (-385 (-525))) (-1093 (-385 (-525)))) 64)) (-2134 (((-1093 (-385 (-525))) (-525)) 30)) (-2283 (((-1093 (-385 (-525))) (-592 (-525))) 72)))
+(((-172) (-10 -7 (-15 -3577 ((-1093 (-385 (-525))) (-525))) (-15 -2574 ((-1093 (-385 (-525))) (-525))) (-15 -1883 ((-1093 (-385 (-525))) (-525))) (-15 -2134 ((-1093 (-385 (-525))) (-525))) (-15 -1505 ((-1093 (-385 (-525))) (-525))) (-15 -2153 ((-1093 (-385 (-525))) (-525))) (-15 -1715 ((-1093 (-385 (-525))) (-525))) (-15 -3459 ((-385 (-525)) (-1093 (-385 (-525))) (-1093 (-385 (-525))))) (-15 -3807 ((-1093 (-385 (-525))) (-1093 (-385 (-525))) (-1093 (-385 (-525))))) (-15 -2602 ((-385 (-525)) (-1093 (-385 (-525))))) (-15 -1694 ((-1093 (-385 (-525))) (-1093 (-385 (-525))) (-1093 (-385 (-525))))) (-15 -2283 ((-1093 (-385 (-525))) (-592 (-525)))) (-15 -2295 ((-1093 (-385 (-525))) (-592 (-525)) (-592 (-525)))))) (T -172))
+((-2295 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)))) (-2283 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)))) (-1694 (*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-1093 (-385 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-172)))) (-3807 (*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)))) (-3459 (*1 *2 *3 *3) (-12 (-5 *3 (-1093 (-385 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-172)))) (-1715 (*1 *2 *3) (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-2153 (*1 *2 *3) (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-1505 (*1 *2 *3) (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-2134 (*1 *2 *3) (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-1883 (*1 *2 *3) (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-2574 (*1 *2 *3) (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))) (-3577 (*1 *2 *3) (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
+(-10 -7 (-15 -3577 ((-1093 (-385 (-525))) (-525))) (-15 -2574 ((-1093 (-385 (-525))) (-525))) (-15 -1883 ((-1093 (-385 (-525))) (-525))) (-15 -2134 ((-1093 (-385 (-525))) (-525))) (-15 -1505 ((-1093 (-385 (-525))) (-525))) (-15 -2153 ((-1093 (-385 (-525))) (-525))) (-15 -1715 ((-1093 (-385 (-525))) (-525))) (-15 -3459 ((-385 (-525)) (-1093 (-385 (-525))) (-1093 (-385 (-525))))) (-15 -3807 ((-1093 (-385 (-525))) (-1093 (-385 (-525))) (-1093 (-385 (-525))))) (-15 -2602 ((-385 (-525)) (-1093 (-385 (-525))))) (-15 -1694 ((-1093 (-385 (-525))) (-1093 (-385 (-525))) (-1093 (-385 (-525))))) (-15 -2283 ((-1093 (-385 (-525))) (-592 (-525)))) (-15 -2295 ((-1093 (-385 (-525))) (-592 (-525)) (-592 (-525)))))
+((-3568 (((-396 (-1087 (-525))) (-525)) 28)) (-3345 (((-592 (-1087 (-525))) (-525)) 23)) (-1868 (((-1087 (-525)) (-525)) 21)))
+(((-173) (-10 -7 (-15 -3345 ((-592 (-1087 (-525))) (-525))) (-15 -1868 ((-1087 (-525)) (-525))) (-15 -3568 ((-396 (-1087 (-525))) (-525))))) (T -173))
+((-3568 (*1 *2 *3) (-12 (-5 *2 (-396 (-1087 (-525)))) (-5 *1 (-173)) (-5 *3 (-525)))) (-1868 (*1 *2 *3) (-12 (-5 *2 (-1087 (-525))) (-5 *1 (-173)) (-5 *3 (-525)))) (-3345 (*1 *2 *3) (-12 (-5 *2 (-592 (-1087 (-525)))) (-5 *1 (-173)) (-5 *3 (-525)))))
+(-10 -7 (-15 -3345 ((-592 (-1087 (-525))) (-525))) (-15 -1868 ((-1087 (-525)) (-525))) (-15 -3568 ((-396 (-1087 (-525))) (-525))))
+((-1573 (((-1072 (-205)) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 104)) (-3590 (((-592 (-1074)) (-1072 (-205))) NIL)) (-2007 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 80)) (-3136 (((-592 (-205)) (-294 (-205)) (-1091) (-1015 (-782 (-205)))) NIL)) (-1321 (((-592 (-1074)) (-592 (-205))) NIL)) (-2722 (((-205) (-1015 (-782 (-205)))) 24)) (-4166 (((-205) (-1015 (-782 (-205)))) 25)) (-4234 (((-357) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 97)) (-1978 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 42)) (-2889 (((-1074) (-205)) NIL)) (-3348 (((-1074) (-592 (-1074))) 20)) (-3929 (((-966) (-1091) (-1091) (-966)) 13)))
+(((-174) (-10 -7 (-15 -2007 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1978 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2722 ((-205) (-1015 (-782 (-205))))) (-15 -4166 ((-205) (-1015 (-782 (-205))))) (-15 -4234 ((-357) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3136 ((-592 (-205)) (-294 (-205)) (-1091) (-1015 (-782 (-205))))) (-15 -1573 ((-1072 (-205)) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2889 ((-1074) (-205))) (-15 -1321 ((-592 (-1074)) (-592 (-205)))) (-15 -3590 ((-592 (-1074)) (-1072 (-205)))) (-15 -3348 ((-1074) (-592 (-1074)))) (-15 -3929 ((-966) (-1091) (-1091) (-966))))) (T -174))
+((-3929 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-966)) (-5 *3 (-1091)) (-5 *1 (-174)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-592 (-1074))) (-5 *2 (-1074)) (-5 *1 (-174)))) (-3590 (*1 *2 *3) (-12 (-5 *3 (-1072 (-205))) (-5 *2 (-592 (-1074))) (-5 *1 (-174)))) (-1321 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1074))) (-5 *1 (-174)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1074)) (-5 *1 (-174)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-1072 (-205))) (-5 *1 (-174)))) (-3136 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1091)) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-174)))) (-4234 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-174)))) (-4166 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174)))) (-1978 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-174)))) (-2007 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-174)))))
+(-10 -7 (-15 -2007 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1978 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2722 ((-205) (-1015 (-782 (-205))))) (-15 -4166 ((-205) (-1015 (-782 (-205))))) (-15 -4234 ((-357) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3136 ((-592 (-205)) (-294 (-205)) (-1091) (-1015 (-782 (-205))))) (-15 -1573 ((-1072 (-205)) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2889 ((-1074) (-205))) (-15 -1321 ((-592 (-1074)) (-592 (-205)))) (-15 -3590 ((-592 (-1074)) (-1072 (-205)))) (-15 -3348 ((-1074) (-592 (-1074)))) (-15 -3929 ((-966) (-1091) (-1091) (-966))))
+((-1260 (((-108) $ $) NIL)) (-2275 (((-966) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 55) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 32) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-175) (-729)) (T -175))
NIL
(-729)
-((-1893 (((-108) $ $) NIL)) (-1504 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 60) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-2275 (((-966) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 60) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-176) (-729)) (T -176))
NIL
(-729)
-((-1893 (((-108) $ $) NIL)) (-1504 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 69) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-2275 (((-966) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 69) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-177) (-729)) (T -177))
NIL
(-729)
-((-1893 (((-108) $ $) NIL)) (-1504 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 56) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 34) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-2275 (((-966) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 56) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 34) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-178) (-729)) (T -178))
NIL
(-729)
-((-1893 (((-108) $ $) NIL)) (-1504 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 67) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 38) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-2275 (((-966) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 67) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 38) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-179) (-729)) (T -179))
NIL
(-729)
-((-1893 (((-108) $ $) NIL)) (-1504 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 73) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 36) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-2275 (((-966) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 73) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 36) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-180) (-729)) (T -180))
NIL
(-729)
-((-1893 (((-108) $ $) NIL)) (-1504 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 80) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 44) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-2275 (((-966) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 80) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 44) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-181) (-729)) (T -181))
NIL
(-729)
-((-1893 (((-108) $ $) NIL)) (-1504 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 70) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-2275 (((-966) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 70) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-182) (-729)) (T -182))
NIL
(-729)
-((-1893 (((-108) $ $) NIL)) (-1504 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 65)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 32)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-2275 (((-966) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 65)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 32)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-183) (-729)) (T -183))
NIL
(-729)
-((-1893 (((-108) $ $) NIL)) (-1504 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 63)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 34)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-2275 (((-966) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 63)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 34)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-184) (-729)) (T -184))
NIL
(-729)
-((-1893 (((-108) $ $) NIL)) (-1504 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 90) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) NIL)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 78) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-2275 (((-966) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 90) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) NIL)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 78) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-185) (-729)) (T -185))
NIL
(-729)
-((-2215 (((-3 (-2 (|:| -1862 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 85)) (-3528 (((-525) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 42)) (-2698 (((-3 (-592 (-205)) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 73)))
-(((-186) (-10 -7 (-15 -2215 ((-3 (-2 (|:| -1862 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2698 ((-3 (-592 (-205)) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3528 ((-525) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -186))
-((-3528 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-525)) (-5 *1 (-186)))) (-2698 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-186)))) (-2215 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -1862 (-110)) (|:| |w| (-205)))) (-5 *1 (-186)))))
-(-10 -7 (-15 -2215 ((-3 (-2 (|:| -1862 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2698 ((-3 (-592 (-205)) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3528 ((-525) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
-((-2836 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 39)) (-1529 (((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 129)) (-2679 (((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-632 (-294 (-205)))) 88)) (-1490 (((-357) (-632 (-294 (-205)))) 112)) (-3590 (((-632 (-294 (-205))) (-1172 (-294 (-205))) (-592 (-1090))) 109)) (-1533 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 30)) (-3973 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 43)) (-3092 (((-632 (-294 (-205))) (-632 (-294 (-205))) (-592 (-1090)) (-1172 (-294 (-205)))) 101)) (-1297 (((-357) (-357) (-592 (-357))) 106) (((-357) (-357) (-357)) 104)) (-3165 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 36)))
-(((-187) (-10 -7 (-15 -1297 ((-357) (-357) (-357))) (-15 -1297 ((-357) (-357) (-592 (-357)))) (-15 -1490 ((-357) (-632 (-294 (-205))))) (-15 -3590 ((-632 (-294 (-205))) (-1172 (-294 (-205))) (-592 (-1090)))) (-15 -3092 ((-632 (-294 (-205))) (-632 (-294 (-205))) (-592 (-1090)) (-1172 (-294 (-205))))) (-15 -2679 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-632 (-294 (-205))))) (-15 -1529 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2836 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3973 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3165 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1533 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -187))
-((-1533 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-3165 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-3973 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-1529 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357)))) (-5 *1 (-187)))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-632 (-294 (-205)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357)))) (-5 *1 (-187)))) (-3092 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-632 (-294 (-205)))) (-5 *3 (-592 (-1090))) (-5 *4 (-1172 (-294 (-205)))) (-5 *1 (-187)))) (-3590 (*1 *2 *3 *4) (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *4 (-592 (-1090))) (-5 *2 (-632 (-294 (-205)))) (-5 *1 (-187)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-632 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-1297 (*1 *2 *2 *3) (-12 (-5 *2 (-357)) (-5 *3 (-592 (-357))) (-5 *1 (-187)))) (-1297 (*1 *2 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-187)))))
-(-10 -7 (-15 -1297 ((-357) (-357) (-357))) (-15 -1297 ((-357) (-357) (-592 (-357)))) (-15 -1490 ((-357) (-632 (-294 (-205))))) (-15 -3590 ((-632 (-294 (-205))) (-1172 (-294 (-205))) (-592 (-1090)))) (-15 -3092 ((-632 (-294 (-205))) (-632 (-294 (-205))) (-592 (-1090)) (-1172 (-294 (-205))))) (-15 -2679 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-632 (-294 (-205))))) (-15 -1529 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2836 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3973 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3165 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1533 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
-((-1893 (((-108) $ $) NIL)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-1626 (((-965) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 64)) (-3961 (((-108) $ $) NIL)))
+((-1628 (((-3 (-2 (|:| -1238 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 85)) (-2032 (((-525) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 42)) (-2853 (((-3 (-592 (-205)) "failed") (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 73)))
+(((-186) (-10 -7 (-15 -1628 ((-3 (-2 (|:| -1238 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2853 ((-3 (-592 (-205)) "failed") (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2032 ((-525) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -186))
+((-2032 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-525)) (-5 *1 (-186)))) (-2853 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-186)))) (-1628 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -1238 (-110)) (|:| |w| (-205)))) (-5 *1 (-186)))))
+(-10 -7 (-15 -1628 ((-3 (-2 (|:| -1238 (-110)) (|:| |w| (-205))) "failed") (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2853 ((-3 (-592 (-205)) "failed") (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2032 ((-525) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
+((-1664 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 39)) (-2405 (((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 129)) (-2682 (((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-632 (-294 (-205)))) 88)) (-2057 (((-357) (-632 (-294 (-205)))) 112)) (-1459 (((-632 (-294 (-205))) (-1173 (-294 (-205))) (-592 (-1091))) 109)) (-2460 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 30)) (-3759 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 43)) (-2602 (((-632 (-294 (-205))) (-632 (-294 (-205))) (-592 (-1091)) (-1173 (-294 (-205)))) 101)) (-2470 (((-357) (-357) (-592 (-357))) 106) (((-357) (-357) (-357)) 104)) (-1730 (((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 36)))
+(((-187) (-10 -7 (-15 -2470 ((-357) (-357) (-357))) (-15 -2470 ((-357) (-357) (-592 (-357)))) (-15 -2057 ((-357) (-632 (-294 (-205))))) (-15 -1459 ((-632 (-294 (-205))) (-1173 (-294 (-205))) (-592 (-1091)))) (-15 -2602 ((-632 (-294 (-205))) (-632 (-294 (-205))) (-592 (-1091)) (-1173 (-294 (-205))))) (-15 -2682 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-632 (-294 (-205))))) (-15 -2405 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1664 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3759 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1730 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2460 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -187))
+((-2460 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-1730 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357)))) (-5 *1 (-187)))) (-2682 (*1 *2 *3) (-12 (-5 *3 (-632 (-294 (-205)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357)))) (-5 *1 (-187)))) (-2602 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-632 (-294 (-205)))) (-5 *3 (-592 (-1091))) (-5 *4 (-1173 (-294 (-205)))) (-5 *1 (-187)))) (-1459 (*1 *2 *3 *4) (-12 (-5 *3 (-1173 (-294 (-205)))) (-5 *4 (-592 (-1091))) (-5 *2 (-632 (-294 (-205)))) (-5 *1 (-187)))) (-2057 (*1 *2 *3) (-12 (-5 *3 (-632 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))) (-2470 (*1 *2 *2 *3) (-12 (-5 *2 (-357)) (-5 *3 (-592 (-357))) (-5 *1 (-187)))) (-2470 (*1 *2 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-187)))))
+(-10 -7 (-15 -2470 ((-357) (-357) (-357))) (-15 -2470 ((-357) (-357) (-592 (-357)))) (-15 -2057 ((-357) (-632 (-294 (-205))))) (-15 -1459 ((-632 (-294 (-205))) (-1173 (-294 (-205))) (-592 (-1091)))) (-15 -2602 ((-632 (-294 (-205))) (-632 (-294 (-205))) (-592 (-1091)) (-1173 (-294 (-205))))) (-15 -2682 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-632 (-294 (-205))))) (-15 -2405 ((-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1664 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3759 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1730 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2460 ((-357) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
+((-1260 (((-108) $ $) NIL)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3432 (((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 64)) (-3994 (((-108) $ $) NIL)))
(((-188) (-742)) (T -188))
NIL
(-742)
-((-1893 (((-108) $ $) NIL)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-1626 (((-965) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 62)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 41)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3432 (((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 62)) (-3994 (((-108) $ $) NIL)))
(((-189) (-742)) (T -189))
NIL
(-742)
-((-1893 (((-108) $ $) NIL)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-1626 (((-965) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 66)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 40)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3432 (((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 66)) (-3994 (((-108) $ $) NIL)))
(((-190) (-742)) (T -190))
NIL
(-742)
-((-1893 (((-108) $ $) NIL)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 46)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-1626 (((-965) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 75)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 46)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3432 (((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 75)) (-3994 (((-108) $ $) NIL)))
(((-191) (-742)) (T -191))
NIL
(-742)
-((-3908 (((-592 (-1090)) (-1090) (-713)) 23)) (-1546 (((-294 (-205)) (-294 (-205))) 31)) (-2992 (((-108) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) 73)) (-3878 (((-108) (-205) (-205) (-592 (-294 (-205)))) 44)))
-(((-192) (-10 -7 (-15 -3908 ((-592 (-1090)) (-1090) (-713))) (-15 -1546 ((-294 (-205)) (-294 (-205)))) (-15 -3878 ((-108) (-205) (-205) (-592 (-294 (-205))))) (-15 -2992 ((-108) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205))))))) (T -192))
-((-2992 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) (-5 *2 (-108)) (-5 *1 (-192)))) (-3878 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-192)))) (-1546 (*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-192)))) (-3908 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-592 (-1090))) (-5 *1 (-192)) (-5 *3 (-1090)))))
-(-10 -7 (-15 -3908 ((-592 (-1090)) (-1090) (-713))) (-15 -1546 ((-294 (-205)) (-294 (-205)))) (-15 -3878 ((-108) (-205) (-205) (-592 (-294 (-205))))) (-15 -2992 ((-108) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205))))))
-((-1893 (((-108) $ $) NIL)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) 26)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-2942 (((-965) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) 57)) (-3961 (((-108) $ $) NIL)))
-(((-193) (-829)) (T -193))
-NIL
-(-829)
-((-1893 (((-108) $ $) NIL)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) 21)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-2942 (((-965) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) NIL)) (-3961 (((-108) $ $) NIL)))
-(((-194) (-829)) (T -194))
-NIL
-(-829)
-((-1893 (((-108) $ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1558 (((-1177) $) 36) (((-1177) $ (-855) (-855)) 38)) (-3928 (($ $ (-921)) 19) (((-225 (-1073)) $ (-1090)) 15)) (-3303 (((-1177) $) 34)) (-1908 (((-797) $) 31) (($ (-592 |#1|)) 8)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $ $) 27)) (-4059 (($ $ $) 22)))
-(((-195 |#1|) (-13 (-1019) (-10 -8 (-15 -3928 ($ $ (-921))) (-15 -3928 ((-225 (-1073)) $ (-1090))) (-15 -4059 ($ $ $)) (-15 -4070 ($ $ $)) (-15 -1908 ($ (-592 |#1|))) (-15 -3303 ((-1177) $)) (-15 -1558 ((-1177) $)) (-15 -1558 ((-1177) $ (-855) (-855))))) (-13 (-789) (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $)) (-15 -1558 ((-1177) $))))) (T -195))
-((-3928 (*1 *1 *1 *2) (-12 (-5 *2 (-921)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $)) (-15 -1558 ((-1177) $))))))) (-3928 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-225 (-1073))) (-5 *1 (-195 *4)) (-4 *4 (-13 (-789) (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $)) (-15 -1558 ((-1177) $))))))) (-4059 (*1 *1 *1 *1) (-12 (-5 *1 (-195 *2)) (-4 *2 (-13 (-789) (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $)) (-15 -1558 ((-1177) $))))))) (-4070 (*1 *1 *1 *1) (-12 (-5 *1 (-195 *2)) (-4 *2 (-13 (-789) (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $)) (-15 -1558 ((-1177) $))))))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $)) (-15 -1558 ((-1177) $))))) (-5 *1 (-195 *3)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $)) (-15 -1558 ((-1177) $))))))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $)) (-15 -1558 ((-1177) $))))))) (-1558 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1177)) (-5 *1 (-195 *4)) (-4 *4 (-13 (-789) (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $)) (-15 -1558 ((-1177) $))))))))
-(-13 (-1019) (-10 -8 (-15 -3928 ($ $ (-921))) (-15 -3928 ((-225 (-1073)) $ (-1090))) (-15 -4059 ($ $ $)) (-15 -4070 ($ $ $)) (-15 -1908 ($ (-592 |#1|))) (-15 -3303 ((-1177) $)) (-15 -1558 ((-1177) $)) (-15 -1558 ((-1177) $ (-855) (-855)))))
-((-1864 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-196 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1864 (|#2| |#4| (-1 |#2| |#2|)))) (-341) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -196))
-((-1864 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-341)) (-4 *6 (-1148 (-385 *2))) (-4 *2 (-1148 *5)) (-5 *1 (-196 *5 *2 *6 *3)) (-4 *3 (-320 *5 *2 *6)))))
-(-10 -7 (-15 -1864 (|#2| |#4| (-1 |#2| |#2|))))
-((-3278 ((|#2| |#2| (-713) |#2|) 42)) (-2598 ((|#2| |#2| (-713) |#2|) 38)) (-1919 (((-592 |#2|) (-592 (-2 (|:| |deg| (-713)) (|:| -1218 |#2|)))) 58)) (-2330 (((-592 (-2 (|:| |deg| (-713)) (|:| -1218 |#2|))) |#2|) 53)) (-3197 (((-108) |#2|) 50)) (-4169 (((-396 |#2|) |#2|) 78)) (-3959 (((-396 |#2|) |#2|) 77)) (-2930 ((|#2| |#2| (-713) |#2|) 36)) (-3271 (((-2 (|:| |cont| |#1|) (|:| -2203 (-592 (-2 (|:| |irr| |#2|) (|:| -1591 (-525)))))) |#2| (-108)) 70)))
-(((-197 |#1| |#2|) (-10 -7 (-15 -3959 ((-396 |#2|) |#2|)) (-15 -4169 ((-396 |#2|) |#2|)) (-15 -3271 ((-2 (|:| |cont| |#1|) (|:| -2203 (-592 (-2 (|:| |irr| |#2|) (|:| -1591 (-525)))))) |#2| (-108))) (-15 -2330 ((-592 (-2 (|:| |deg| (-713)) (|:| -1218 |#2|))) |#2|)) (-15 -1919 ((-592 |#2|) (-592 (-2 (|:| |deg| (-713)) (|:| -1218 |#2|))))) (-15 -2930 (|#2| |#2| (-713) |#2|)) (-15 -2598 (|#2| |#2| (-713) |#2|)) (-15 -3278 (|#2| |#2| (-713) |#2|)) (-15 -3197 ((-108) |#2|))) (-327) (-1148 |#1|)) (T -197))
-((-3197 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1148 *4)))) (-3278 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1148 *4)))) (-2598 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1148 *4)))) (-2930 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1148 *4)))) (-1919 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |deg| (-713)) (|:| -1218 *5)))) (-4 *5 (-1148 *4)) (-4 *4 (-327)) (-5 *2 (-592 *5)) (-5 *1 (-197 *4 *5)))) (-2330 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -1218 *3)))) (-5 *1 (-197 *4 *3)) (-4 *3 (-1148 *4)))) (-3271 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-327)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2203 (-592 (-2 (|:| |irr| *3) (|:| -1591 (-525))))))) (-5 *1 (-197 *5 *3)) (-4 *3 (-1148 *5)))) (-4169 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1148 *4)))) (-3959 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1148 *4)))))
-(-10 -7 (-15 -3959 ((-396 |#2|) |#2|)) (-15 -4169 ((-396 |#2|) |#2|)) (-15 -3271 ((-2 (|:| |cont| |#1|) (|:| -2203 (-592 (-2 (|:| |irr| |#2|) (|:| -1591 (-525)))))) |#2| (-108))) (-15 -2330 ((-592 (-2 (|:| |deg| (-713)) (|:| -1218 |#2|))) |#2|)) (-15 -1919 ((-592 |#2|) (-592 (-2 (|:| |deg| (-713)) (|:| -1218 |#2|))))) (-15 -2930 (|#2| |#2| (-713) |#2|)) (-15 -2598 (|#2| |#2| (-713) |#2|)) (-15 -3278 (|#2| |#2| (-713) |#2|)) (-15 -3197 ((-108) |#2|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3115 (((-525) $) NIL (|has| (-525) (-286)))) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-2305 (((-108) $ $) NIL)) (-1690 (((-525) $) NIL (|has| (-525) (-762)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL (|has| (-525) (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-967 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-967 (-525))))) (-2831 (((-525) $) NIL) (((-1090) $) NIL (|has| (-525) (-967 (-1090)))) (((-385 (-525)) $) NIL (|has| (-525) (-967 (-525)))) (((-525) $) NIL (|has| (-525) (-967 (-525))))) (-2373 (($ $ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) NIL (|has| (-525) (-510)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-3026 (((-108) $) NIL (|has| (-525) (-762)))) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| (-525) (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| (-525) (-820 (-357))))) (-2133 (((-108) $) NIL)) (-3830 (($ $) NIL)) (-1303 (((-525) $) NIL)) (-1816 (((-3 $ "failed") $) NIL (|has| (-525) (-1066)))) (-2882 (((-108) $) NIL (|has| (-525) (-762)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3525 (($ $ $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| (-525) (-789)))) (-1370 (($ (-1 (-525) (-525)) $) NIL)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL (|has| (-525) (-1066)) CONST)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2723 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-1720 (((-525) $) NIL (|has| (-525) (-510)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-3959 (((-396 $) $) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3092 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1090)) (-592 (-525))) NIL (|has| (-525) (-486 (-1090) (-525)))) (($ $ (-1090) (-525)) NIL (|has| (-525) (-486 (-1090) (-525))))) (-2183 (((-713) $) NIL)) (-3928 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-3013 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1090)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-1915 (($ $) NIL)) (-1312 (((-525) $) NIL)) (-1719 (($ (-385 (-525))) 9)) (-1427 (((-826 (-525)) $) NIL (|has| (-525) (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| (-525) (-567 (-826 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-952))) (((-205) $) NIL (|has| (-525) (-952)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-843))))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1090)) NIL (|has| (-525) (-967 (-1090)))) (((-385 (-525)) $) NIL) (((-935 10) $) 10)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| (-525) (-843))) (|has| (-525) (-136))))) (-2093 (((-713)) NIL)) (-2498 (((-525) $) NIL (|has| (-525) (-510)))) (-2262 (((-108) $ $) NIL)) (-2092 (($ $) NIL (|has| (-525) (-762)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1090)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4024 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3995 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3983 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4082 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL)))
-(((-198) (-13 (-924 (-525)) (-10 -8 (-15 -1908 ((-385 (-525)) $)) (-15 -1908 ((-935 10) $)) (-15 -2723 ((-385 (-525)) $)) (-15 -1719 ($ (-385 (-525))))))) (T -198))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-935 10)) (-5 *1 (-198)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))) (-1719 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))))
-(-13 (-924 (-525)) (-10 -8 (-15 -1908 ((-385 (-525)) $)) (-15 -1908 ((-935 10) $)) (-15 -2723 ((-385 (-525)) $)) (-15 -1719 ($ (-385 (-525))))))
-((-3766 (((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1012 (-782 |#2|)) (-1073)) 28) (((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1012 (-782 |#2|))) 24)) (-3843 (((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1090) (-782 |#2|) (-782 |#2|) (-108)) 17)))
-(((-199 |#1| |#2|) (-10 -7 (-15 -3766 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1012 (-782 |#2|)))) (-15 -3766 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1012 (-782 |#2|)) (-1073))) (-15 -3843 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1090) (-782 |#2|) (-782 |#2|) (-108)))) (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))) (-13 (-1112) (-892) (-29 |#1|))) (T -199))
-((-3843 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1090)) (-5 *6 (-108)) (-4 *7 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-4 *3 (-13 (-1112) (-892) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *7 *3)) (-5 *5 (-782 *3)))) (-3766 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1012 (-782 *3))) (-5 *5 (-1073)) (-4 *3 (-13 (-1112) (-892) (-29 *6))) (-4 *6 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *6 *3)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *4 (-1012 (-782 *3))) (-4 *3 (-13 (-1112) (-892) (-29 *5))) (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *5 *3)))))
-(-10 -7 (-15 -3766 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1012 (-782 |#2|)))) (-15 -3766 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1012 (-782 |#2|)) (-1073))) (-15 -3843 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1090) (-782 |#2|) (-782 |#2|) (-108))))
-((-3766 (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-385 (-886 |#1|)))) (-1073)) 46) (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-385 (-886 |#1|))))) 43) (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-294 |#1|))) (-1073)) 47) (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-294 |#1|)))) 20)))
-(((-200 |#1|) (-10 -7 (-15 -3766 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-294 |#1|))))) (-15 -3766 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-294 |#1|))) (-1073))) (-15 -3766 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-385 (-886 |#1|)))))) (-15 -3766 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-385 (-886 |#1|)))) (-1073)))) (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (T -200))
-((-3766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-385 (-886 *6))) (-5 *4 (-1012 (-782 (-385 (-886 *6))))) (-5 *5 (-1073)) (-4 *6 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *6)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1012 (-782 (-385 (-886 *5))))) (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *5)))) (-3766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-385 (-886 *6))) (-5 *4 (-1012 (-782 (-294 *6)))) (-5 *5 (-1073)) (-4 *6 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *6)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1012 (-782 (-294 *5)))) (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *5)))))
-(-10 -7 (-15 -3766 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-294 |#1|))))) (-15 -3766 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-294 |#1|))) (-1073))) (-15 -3766 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-385 (-886 |#1|)))))) (-15 -3766 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-886 |#1|)) (-1012 (-782 (-385 (-886 |#1|)))) (-1073))))
-((-4004 (((-2 (|:| -3966 (-1086 |#1|)) (|:| |deg| (-855))) (-1086 |#1|)) 21)) (-2692 (((-592 (-294 |#2|)) (-294 |#2|) (-855)) 42)))
-(((-201 |#1| |#2|) (-10 -7 (-15 -4004 ((-2 (|:| -3966 (-1086 |#1|)) (|:| |deg| (-855))) (-1086 |#1|))) (-15 -2692 ((-592 (-294 |#2|)) (-294 |#2|) (-855)))) (-976) (-13 (-517) (-789))) (T -201))
-((-2692 (*1 *2 *3 *4) (-12 (-5 *4 (-855)) (-4 *6 (-13 (-517) (-789))) (-5 *2 (-592 (-294 *6))) (-5 *1 (-201 *5 *6)) (-5 *3 (-294 *6)) (-4 *5 (-976)))) (-4004 (*1 *2 *3) (-12 (-4 *4 (-976)) (-5 *2 (-2 (|:| -3966 (-1086 *4)) (|:| |deg| (-855)))) (-5 *1 (-201 *4 *5)) (-5 *3 (-1086 *4)) (-4 *5 (-13 (-517) (-789))))))
-(-10 -7 (-15 -4004 ((-2 (|:| -3966 (-1086 |#1|)) (|:| |deg| (-855))) (-1086 |#1|))) (-15 -2692 ((-592 (-294 |#2|)) (-294 |#2|) (-855))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1308 ((|#1| $) NIL)) (-1649 ((|#1| $) 25)) (-3410 (((-108) $ (-713)) NIL)) (-1505 (($) NIL T CONST)) (-1298 (($ $) NIL)) (-4103 (($ $) 31)) (-1570 ((|#1| |#1| $) NIL)) (-3215 ((|#1| $) NIL)) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-1722 (((-713) $) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2570 ((|#1| $) NIL)) (-2452 ((|#1| |#1| $) 28)) (-2103 ((|#1| |#1| $) 30)) (-2573 (($ |#1| $) NIL)) (-3598 (((-713) $) 27)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3887 ((|#1| $) NIL)) (-1958 ((|#1| $) 26)) (-2226 ((|#1| $) 24)) (-3513 ((|#1| $) NIL)) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3883 ((|#1| |#1| $) NIL)) (-1613 (((-108) $) 9)) (-3773 (($) NIL)) (-2712 ((|#1| $) NIL)) (-3288 (($) NIL) (($ (-592 |#1|)) 16)) (-1434 (((-713) $) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2601 ((|#1| $) 13)) (-3612 (($ (-592 |#1|)) NIL)) (-1877 ((|#1| $) NIL)) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-202 |#1|) (-13 (-233 |#1|) (-10 -8 (-15 -3288 ($ (-592 |#1|))))) (-1019)) (T -202))
-((-3288 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-202 *3)))))
-(-13 (-233 |#1|) (-10 -8 (-15 -3288 ($ (-592 |#1|)))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-2566 (($ (-294 |#1|)) 23)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-3825 (((-108) $) NIL)) (-1264 (((-3 (-294 |#1|) "failed") $) NIL)) (-2831 (((-294 |#1|) $) NIL)) (-1247 (($ $) 31)) (-2866 (((-3 $ "failed") $) NIL)) (-2133 (((-108) $) NIL)) (-1370 (($ (-1 (-294 |#1|) (-294 |#1|)) $) NIL)) (-1224 (((-294 |#1|) $) NIL)) (-3419 (($ $) 30)) (-2337 (((-1073) $) NIL)) (-1242 (((-108) $) NIL)) (-2663 (((-1037) $) NIL)) (-1669 (($ (-713)) NIL)) (-1670 (($ $) 32)) (-2513 (((-525) $) NIL)) (-1908 (((-797) $) 57) (($ (-525)) NIL) (($ (-294 |#1|)) NIL)) (-1657 (((-294 |#1|) $ $) NIL)) (-2093 (((-713)) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 25 T CONST)) (-3882 (($) 50 T CONST)) (-3961 (((-108) $ $) 28)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) 19)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 24) (($ (-294 |#1|) $) 18)))
-(((-203 |#1| |#2|) (-13 (-570 (-294 |#1|)) (-967 (-294 |#1|)) (-10 -8 (-15 -1224 ((-294 |#1|) $)) (-15 -3419 ($ $)) (-15 -1247 ($ $)) (-15 -1657 ((-294 |#1|) $ $)) (-15 -1669 ($ (-713))) (-15 -1242 ((-108) $)) (-15 -3825 ((-108) $)) (-15 -2513 ((-525) $)) (-15 -1370 ($ (-1 (-294 |#1|) (-294 |#1|)) $)) (-15 -2566 ($ (-294 |#1|))) (-15 -1670 ($ $)))) (-13 (-976) (-789)) (-592 (-1090))) (T -203))
-((-1224 (*1 *2 *1) (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789))) (-14 *4 (-592 (-1090))))) (-3419 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-976) (-789))) (-14 *3 (-592 (-1090))))) (-1247 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-976) (-789))) (-14 *3 (-592 (-1090))))) (-1657 (*1 *2 *1 *1) (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789))) (-14 *4 (-592 (-1090))))) (-1669 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789))) (-14 *4 (-592 (-1090))))) (-1242 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789))) (-14 *4 (-592 (-1090))))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789))) (-14 *4 (-592 (-1090))))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789))) (-14 *4 (-592 (-1090))))) (-1370 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-294 *3) (-294 *3))) (-4 *3 (-13 (-976) (-789))) (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1090))))) (-2566 (*1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *3 (-13 (-976) (-789))) (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1090))))) (-1670 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-976) (-789))) (-14 *3 (-592 (-1090))))))
-(-13 (-570 (-294 |#1|)) (-967 (-294 |#1|)) (-10 -8 (-15 -1224 ((-294 |#1|) $)) (-15 -3419 ($ $)) (-15 -1247 ($ $)) (-15 -1657 ((-294 |#1|) $ $)) (-15 -1669 ($ (-713))) (-15 -1242 ((-108) $)) (-15 -3825 ((-108) $)) (-15 -2513 ((-525) $)) (-15 -1370 ($ (-1 (-294 |#1|) (-294 |#1|)) $)) (-15 -2566 ($ (-294 |#1|))) (-15 -1670 ($ $))))
-((-3335 (((-108) (-1073)) 22)) (-1418 (((-3 (-782 |#2|) "failed") (-565 |#2|) |#2| (-782 |#2|) (-782 |#2|) (-108)) 32)) (-2225 (((-3 (-108) "failed") (-1086 |#2|) (-782 |#2|) (-782 |#2|) (-108)) 73) (((-3 (-108) "failed") (-886 |#1|) (-1090) (-782 |#2|) (-782 |#2|) (-108)) 74)))
-(((-204 |#1| |#2|) (-10 -7 (-15 -3335 ((-108) (-1073))) (-15 -1418 ((-3 (-782 |#2|) "failed") (-565 |#2|) |#2| (-782 |#2|) (-782 |#2|) (-108))) (-15 -2225 ((-3 (-108) "failed") (-886 |#1|) (-1090) (-782 |#2|) (-782 |#2|) (-108))) (-15 -2225 ((-3 (-108) "failed") (-1086 |#2|) (-782 |#2|) (-782 |#2|) (-108)))) (-13 (-429) (-789) (-967 (-525)) (-588 (-525))) (-13 (-1112) (-29 |#1|))) (T -204))
-((-2225 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1086 *6)) (-5 *4 (-782 *6)) (-4 *6 (-13 (-1112) (-29 *5))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-204 *5 *6)))) (-2225 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-886 *6)) (-5 *4 (-1090)) (-5 *5 (-782 *7)) (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-4 *7 (-13 (-1112) (-29 *6))) (-5 *1 (-204 *6 *7)))) (-1418 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-782 *4)) (-5 *3 (-565 *4)) (-5 *5 (-108)) (-4 *4 (-13 (-1112) (-29 *6))) (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-204 *6 *4)))) (-3335 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-108)) (-5 *1 (-204 *4 *5)) (-4 *5 (-13 (-1112) (-29 *4))))))
-(-10 -7 (-15 -3335 ((-108) (-1073))) (-15 -1418 ((-3 (-782 |#2|) "failed") (-565 |#2|) |#2| (-782 |#2|) (-782 |#2|) (-108))) (-15 -2225 ((-3 (-108) "failed") (-886 |#1|) (-1090) (-782 |#2|) (-782 |#2|) (-108))) (-15 -2225 ((-3 (-108) "failed") (-1086 |#2|) (-782 |#2|) (-782 |#2|) (-108))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 89)) (-3115 (((-525) $) 99)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-4114 (($ $) NIL)) (-4049 (($ $) 77)) (-3911 (($ $) 65)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-3969 (($ $) 56)) (-2305 (((-108) $ $) NIL)) (-4026 (($ $) 75)) (-3434 (($ $) 63)) (-1690 (((-525) $) 116)) (-4072 (($ $) 80)) (-3931 (($ $) 67)) (-1505 (($) NIL T CONST)) (-3608 (($ $) NIL)) (-1264 (((-3 (-525) "failed") $) 115) (((-3 (-385 (-525)) "failed") $) 112)) (-2831 (((-525) $) 113) (((-385 (-525)) $) 110)) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) 92)) (-2687 (((-385 (-525)) $ (-713)) 108) (((-385 (-525)) $ (-713) (-713)) 107)) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-1352 (((-855)) 29) (((-855) (-855)) NIL (|has| $ (-6 -4245)))) (-3026 (((-108) $) NIL)) (-1335 (($) 39)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL)) (-1737 (((-525) $) 35)) (-2133 (((-108) $) NIL)) (-3391 (($ $ (-525)) NIL)) (-3477 (($ $) NIL)) (-2882 (((-108) $) 88)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3525 (($ $ $) 53) (($) 34 (-12 (-2480 (|has| $ (-6 -4237))) (-2480 (|has| $ (-6 -4245)))))) (-3630 (($ $ $) 52) (($) 33 (-12 (-2480 (|has| $ (-6 -4237))) (-2480 (|has| $ (-6 -4245)))))) (-3689 (((-525) $) 27)) (-3952 (($ $) 30)) (-3731 (($ $) 57)) (-2091 (($ $) 62)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-1398 (((-855) (-525)) NIL (|has| $ (-6 -4245)))) (-2663 (((-1037) $) NIL) (((-525) $) 90)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2723 (($ $) NIL)) (-1720 (($ $) NIL)) (-3905 (($ (-525) (-525)) NIL) (($ (-525) (-525) (-855)) 100)) (-3959 (((-396 $) $) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1600 (((-525) $) 28)) (-2146 (($) 38)) (-1982 (($ $) 61)) (-2183 (((-713) $) NIL)) (-1552 (((-1073) (-1073)) 8)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-4076 (((-855)) NIL) (((-855) (-855)) NIL (|has| $ (-6 -4245)))) (-3013 (($ $ (-713)) NIL) (($ $) 93)) (-2462 (((-855) (-525)) NIL (|has| $ (-6 -4245)))) (-4084 (($ $) 78)) (-3942 (($ $) 68)) (-4061 (($ $) 79)) (-3919 (($ $) 66)) (-4038 (($ $) 76)) (-3455 (($ $) 64)) (-1427 (((-357) $) 104) (((-205) $) 101) (((-826 (-357)) $) NIL) (((-501) $) 45)) (-1908 (((-797) $) 42) (($ (-525)) 60) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-525)) 60) (($ (-385 (-525))) NIL)) (-2093 (((-713)) NIL)) (-2498 (($ $) NIL)) (-2848 (((-855)) 32) (((-855) (-855)) NIL (|has| $ (-6 -4245)))) (-3772 (((-855)) 25)) (-4121 (($ $) 83)) (-3974 (($ $) 71) (($ $ $) 109)) (-2262 (((-108) $ $) NIL)) (-4096 (($ $) 81)) (-3951 (($ $) 69)) (-4147 (($ $) 86)) (-3999 (($ $) 74)) (-2929 (($ $) 84)) (-4013 (($ $) 72)) (-4133 (($ $) 85)) (-3985 (($ $) 73)) (-4110 (($ $) 82)) (-3963 (($ $) 70)) (-2092 (($ $) 117)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) 36 T CONST)) (-3882 (($) 37 T CONST)) (-2766 (((-1073) $) 19) (((-1073) $ (-108)) 21) (((-1177) (-764) $) 22) (((-1177) (-764) $ (-108)) 23)) (-2126 (($ $) 96)) (-1424 (($ $ (-713)) NIL) (($ $) NIL)) (-2851 (($ $ $) 98)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 54)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 46)) (-4082 (($ $ $) 87) (($ $ (-525)) 55)) (-4070 (($ $) 47) (($ $ $) 49)) (-4059 (($ $ $) 48)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 58) (($ $ (-385 (-525))) 128) (($ $ $) 59)) (* (($ (-855) $) 31) (($ (-713) $) NIL) (($ (-525) $) 51) (($ $ $) 50) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
-(((-205) (-13 (-382) (-213) (-770) (-1112) (-567 (-501)) (-10 -8 (-15 -4082 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -2146 ($)) (-15 -2663 ((-525) $)) (-15 -3952 ($ $)) (-15 -3731 ($ $)) (-15 -3974 ($ $ $)) (-15 -2126 ($ $)) (-15 -2851 ($ $ $)) (-15 -1552 ((-1073) (-1073))) (-15 -2687 ((-385 (-525)) $ (-713))) (-15 -2687 ((-385 (-525)) $ (-713) (-713)))))) (T -205))
-((** (*1 *1 *1 *1) (-5 *1 (-205))) (-4082 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-205)))) (-2146 (*1 *1) (-5 *1 (-205))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-205)))) (-3952 (*1 *1 *1) (-5 *1 (-205))) (-3731 (*1 *1 *1) (-5 *1 (-205))) (-3974 (*1 *1 *1 *1) (-5 *1 (-205))) (-2126 (*1 *1 *1) (-5 *1 (-205))) (-2851 (*1 *1 *1 *1) (-5 *1 (-205))) (-1552 (*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-205)))) (-2687 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205)))) (-2687 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205)))))
-(-13 (-382) (-213) (-770) (-1112) (-567 (-501)) (-10 -8 (-15 -4082 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -2146 ($)) (-15 -2663 ((-525) $)) (-15 -3952 ($ $)) (-15 -3731 ($ $)) (-15 -3974 ($ $ $)) (-15 -2126 ($ $)) (-15 -2851 ($ $ $)) (-15 -1552 ((-1073) (-1073))) (-15 -2687 ((-385 (-525)) $ (-713))) (-15 -2687 ((-385 (-525)) $ (-713) (-713)))))
-((-3351 (((-157 (-205)) (-713) (-157 (-205))) 11) (((-205) (-713) (-205)) 12)) (-2045 (((-157 (-205)) (-157 (-205))) 13) (((-205) (-205)) 14)) (-3545 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 19) (((-205) (-205) (-205)) 22)) (-4046 (((-157 (-205)) (-157 (-205))) 25) (((-205) (-205)) 24)) (-3442 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 43) (((-205) (-205) (-205)) 35)) (-2016 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 48) (((-205) (-205) (-205)) 45)) (-1414 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 15) (((-205) (-205) (-205)) 16)) (-3902 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 17) (((-205) (-205) (-205)) 18)) (-1476 (((-157 (-205)) (-157 (-205))) 60) (((-205) (-205)) 59)) (-3020 (((-205) (-205)) 54) (((-157 (-205)) (-157 (-205))) 58)) (-2126 (((-157 (-205)) (-157 (-205))) 8) (((-205) (-205)) 9)) (-2851 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 30) (((-205) (-205) (-205)) 26)))
-(((-206) (-10 -7 (-15 -2126 ((-205) (-205))) (-15 -2126 ((-157 (-205)) (-157 (-205)))) (-15 -2851 ((-205) (-205) (-205))) (-15 -2851 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2045 ((-205) (-205))) (-15 -2045 ((-157 (-205)) (-157 (-205)))) (-15 -4046 ((-205) (-205))) (-15 -4046 ((-157 (-205)) (-157 (-205)))) (-15 -3351 ((-205) (-713) (-205))) (-15 -3351 ((-157 (-205)) (-713) (-157 (-205)))) (-15 -1414 ((-205) (-205) (-205))) (-15 -1414 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3442 ((-205) (-205) (-205))) (-15 -3442 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3902 ((-205) (-205) (-205))) (-15 -3902 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2016 ((-205) (-205) (-205))) (-15 -2016 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3020 ((-157 (-205)) (-157 (-205)))) (-15 -3020 ((-205) (-205))) (-15 -1476 ((-205) (-205))) (-15 -1476 ((-157 (-205)) (-157 (-205)))) (-15 -3545 ((-205) (-205) (-205))) (-15 -3545 ((-157 (-205)) (-157 (-205)) (-157 (-205)))))) (T -206))
-((-3545 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3545 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1476 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1476 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3020 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3020 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2016 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2016 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3902 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3902 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3442 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3442 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1414 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1414 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3351 (*1 *2 *3 *2) (-12 (-5 *2 (-157 (-205))) (-5 *3 (-713)) (-5 *1 (-206)))) (-3351 (*1 *2 *3 *2) (-12 (-5 *2 (-205)) (-5 *3 (-713)) (-5 *1 (-206)))) (-4046 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-4046 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2045 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2045 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2851 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2851 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2126 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2126 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))))
-(-10 -7 (-15 -2126 ((-205) (-205))) (-15 -2126 ((-157 (-205)) (-157 (-205)))) (-15 -2851 ((-205) (-205) (-205))) (-15 -2851 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2045 ((-205) (-205))) (-15 -2045 ((-157 (-205)) (-157 (-205)))) (-15 -4046 ((-205) (-205))) (-15 -4046 ((-157 (-205)) (-157 (-205)))) (-15 -3351 ((-205) (-713) (-205))) (-15 -3351 ((-157 (-205)) (-713) (-157 (-205)))) (-15 -1414 ((-205) (-205) (-205))) (-15 -1414 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3442 ((-205) (-205) (-205))) (-15 -3442 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3902 ((-205) (-205) (-205))) (-15 -3902 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2016 ((-205) (-205) (-205))) (-15 -2016 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -3020 ((-157 (-205)) (-157 (-205)))) (-15 -3020 ((-205) (-205))) (-15 -1476 ((-205) (-205))) (-15 -1476 ((-157 (-205)) (-157 (-205)))) (-15 -3545 ((-205) (-205) (-205))) (-15 -3545 ((-157 (-205)) (-157 (-205)) (-157 (-205)))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1383 (($ (-713) (-713)) NIL)) (-3754 (($ $ $) NIL)) (-2734 (($ (-1172 |#1|)) NIL) (($ $) NIL)) (-4022 (($ |#1| |#1| |#1|) 32)) (-3844 (((-108) $) NIL)) (-3899 (($ $ (-525) (-525)) NIL)) (-3624 (($ $ (-525) (-525)) NIL)) (-3708 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-2719 (($ $) NIL)) (-1399 (((-108) $) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-1589 (($ $ (-525) (-525) $) NIL)) (-2109 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) NIL)) (-2244 (($ $ (-525) (-1172 |#1|)) NIL)) (-2040 (($ $ (-525) (-1172 |#1|)) NIL)) (-2349 (($ |#1| |#1| |#1|) 31)) (-2715 (($ (-713) |#1|) NIL)) (-1505 (($) NIL T CONST)) (-3262 (($ $) NIL (|has| |#1| (-286)))) (-3606 (((-1172 |#1|) $ (-525)) NIL)) (-2419 (($ |#1|) 30)) (-3204 (($ |#1|) 29)) (-4134 (($ |#1|) 28)) (-2239 (((-713) $) NIL (|has| |#1| (-517)))) (-2870 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2796 ((|#1| $ (-525) (-525)) NIL)) (-2026 (((-592 |#1|) $) NIL)) (-3177 (((-713) $) NIL (|has| |#1| (-517)))) (-2517 (((-592 (-1172 |#1|)) $) NIL (|has| |#1| (-517)))) (-2606 (((-713) $) NIL)) (-4018 (($ (-713) (-713) |#1|) NIL)) (-2618 (((-713) $) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2216 ((|#1| $) NIL (|has| |#1| (-6 (-4256 "*"))))) (-2746 (((-525) $) NIL)) (-2551 (((-525) $) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1906 (((-525) $) NIL)) (-1950 (((-525) $) NIL)) (-3515 (($ (-592 (-592 |#1|))) 11)) (-2857 (($ (-1 |#1| |#1|) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3019 (((-592 (-592 |#1|)) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-1386 (((-3 $ "failed") $) NIL (|has| |#1| (-341)))) (-4225 (($) 12)) (-2538 (($ $ $) NIL)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1911 (($ $ |#1|) NIL)) (-2338 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525))) NIL)) (-2540 (($ (-592 |#1|)) NIL) (($ (-592 $)) NIL)) (-1997 (((-108) $) NIL)) (-2923 ((|#1| $) NIL (|has| |#1| (-6 (-4256 "*"))))) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) NIL)) (-2543 (((-1172 |#1|) $ (-525)) NIL)) (-1908 (($ (-1172 |#1|)) NIL) (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3265 (((-108) $) NIL)) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4070 (($ $ $) NIL) (($ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-1172 |#1|) $ (-1172 |#1|)) 15) (((-1172 |#1|) (-1172 |#1|) $) NIL) (((-877 |#1|) $ (-877 |#1|)) 20)) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-207 |#1|) (-13 (-630 |#1| (-1172 |#1|) (-1172 |#1|)) (-10 -8 (-15 * ((-877 |#1|) $ (-877 |#1|))) (-15 -4225 ($)) (-15 -4134 ($ |#1|)) (-15 -3204 ($ |#1|)) (-15 -2419 ($ |#1|)) (-15 -2349 ($ |#1| |#1| |#1|)) (-15 -4022 ($ |#1| |#1| |#1|)))) (-13 (-341) (-1112))) (T -207))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112))) (-5 *1 (-207 *3)))) (-4225 (*1 *1) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112))))) (-4134 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112))))) (-3204 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112))))) (-2419 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112))))) (-2349 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112))))) (-4022 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112))))))
-(-13 (-630 |#1| (-1172 |#1|) (-1172 |#1|)) (-10 -8 (-15 * ((-877 |#1|) $ (-877 |#1|))) (-15 -4225 ($)) (-15 -4134 ($ |#1|)) (-15 -3204 ($ |#1|)) (-15 -2419 ($ |#1|)) (-15 -2349 ($ |#1| |#1| |#1|)) (-15 -4022 ($ |#1| |#1| |#1|))))
-((-3290 (($ (-1 (-108) |#2|) $) 16)) (-2792 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 25)) (-4006 (($) NIL) (($ (-592 |#2|)) 11)) (-3961 (((-108) $ $) 23)))
-(((-208 |#1| |#2|) (-10 -8 (-15 -3290 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2792 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2792 (|#1| |#2| |#1|)) (-15 -4006 (|#1| (-592 |#2|))) (-15 -4006 (|#1|)) (-15 -3961 ((-108) |#1| |#1|))) (-209 |#2|) (-1019)) (T -208))
-NIL
-(-10 -8 (-15 -3290 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2792 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2792 (|#1| |#2| |#1|)) (-15 -4006 (|#1| (-592 |#2|))) (-15 -4006 (|#1|)) (-15 -3961 ((-108) |#1| |#1|)))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3410 (((-108) $ (-713)) 8)) (-3290 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4254)))) (-1505 (($) 7 T CONST)) (-3163 (($ $) 58 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2792 (($ |#1| $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4254)))) (-2273 (($ |#1| $) 57 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4254)))) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) 9)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2570 ((|#1| $) 39)) (-2573 (($ |#1| $) 40)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3513 ((|#1| $) 41)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-4006 (($) 49) (($ (-592 |#1|)) 48)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1427 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 50)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-3612 (($ (-592 |#1|)) 42)) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-209 |#1|) (-131) (-1019)) (T -209))
+((-4143 (((-592 (-1091)) (-1091) (-713)) 23)) (-3808 (((-294 (-205)) (-294 (-205))) 31)) (-2719 (((-108) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205)))) 73)) (-2474 (((-108) (-205) (-205) (-592 (-294 (-205)))) 44)))
+(((-192) (-10 -7 (-15 -4143 ((-592 (-1091)) (-1091) (-713))) (-15 -3808 ((-294 (-205)) (-294 (-205)))) (-15 -2474 ((-108) (-205) (-205) (-592 (-294 (-205))))) (-15 -2719 ((-108) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205))))))) (T -192))
+((-2719 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205)))) (-5 *2 (-108)) (-5 *1 (-192)))) (-2474 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-192)))) (-3808 (*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-192)))) (-4143 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-592 (-1091))) (-5 *1 (-192)) (-5 *3 (-1091)))))
+(-10 -7 (-15 -4143 ((-592 (-1091)) (-1091) (-713))) (-15 -3808 ((-294 (-205)) (-294 (-205)))) (-15 -2474 ((-108) (-205) (-205) (-592 (-294 (-205))))) (-15 -2719 ((-108) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205))))))
+((-1260 (((-108) $ $) NIL)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205)))) 26)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3314 (((-966) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205)))) 57)) (-3994 (((-108) $ $) NIL)))
+(((-193) (-830)) (T -193))
+NIL
+(-830)
+((-1260 (((-108) $ $) NIL)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205)))) 21)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3314 (((-966) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205)))) NIL)) (-3994 (((-108) $ $) NIL)))
+(((-194) (-830)) (T -194))
+NIL
+(-830)
+((-1260 (((-108) $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3065 (((-1178) $) 36) (((-1178) $ (-856) (-856)) 38)) (-3410 (($ $ (-922)) 19) (((-225 (-1074)) $ (-1091)) 15)) (-2868 (((-1178) $) 34)) (-1270 (((-798) $) 31) (($ (-592 |#1|)) 8)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $ $) 27)) (-4080 (($ $ $) 22)))
+(((-195 |#1|) (-13 (-1020) (-10 -8 (-15 -3410 ($ $ (-922))) (-15 -3410 ((-225 (-1074)) $ (-1091))) (-15 -4080 ($ $ $)) (-15 -4090 ($ $ $)) (-15 -1270 ($ (-592 |#1|))) (-15 -2868 ((-1178) $)) (-15 -3065 ((-1178) $)) (-15 -3065 ((-1178) $ (-856) (-856))))) (-13 (-789) (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $)) (-15 -3065 ((-1178) $))))) (T -195))
+((-3410 (*1 *1 *1 *2) (-12 (-5 *2 (-922)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $)) (-15 -3065 ((-1178) $))))))) (-3410 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-225 (-1074))) (-5 *1 (-195 *4)) (-4 *4 (-13 (-789) (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $)) (-15 -3065 ((-1178) $))))))) (-4080 (*1 *1 *1 *1) (-12 (-5 *1 (-195 *2)) (-4 *2 (-13 (-789) (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $)) (-15 -3065 ((-1178) $))))))) (-4090 (*1 *1 *1 *1) (-12 (-5 *1 (-195 *2)) (-4 *2 (-13 (-789) (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $)) (-15 -3065 ((-1178) $))))))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $)) (-15 -3065 ((-1178) $))))) (-5 *1 (-195 *3)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $)) (-15 -3065 ((-1178) $))))))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-195 *3)) (-4 *3 (-13 (-789) (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $)) (-15 -3065 ((-1178) $))))))) (-3065 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1178)) (-5 *1 (-195 *4)) (-4 *4 (-13 (-789) (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $)) (-15 -3065 ((-1178) $))))))))
+(-13 (-1020) (-10 -8 (-15 -3410 ($ $ (-922))) (-15 -3410 ((-225 (-1074)) $ (-1091))) (-15 -4080 ($ $ $)) (-15 -4090 ($ $ $)) (-15 -1270 ($ (-592 |#1|))) (-15 -2868 ((-1178) $)) (-15 -3065 ((-1178) $)) (-15 -3065 ((-1178) $ (-856) (-856)))))
+((-3439 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-196 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3439 (|#2| |#4| (-1 |#2| |#2|)))) (-341) (-1149 |#1|) (-1149 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -196))
+((-3439 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-341)) (-4 *6 (-1149 (-385 *2))) (-4 *2 (-1149 *5)) (-5 *1 (-196 *5 *2 *6 *3)) (-4 *3 (-320 *5 *2 *6)))))
+(-10 -7 (-15 -3439 (|#2| |#4| (-1 |#2| |#2|))))
+((-1506 ((|#2| |#2| (-713) |#2|) 42)) (-4222 ((|#2| |#2| (-713) |#2|) 38)) (-2173 (((-592 |#2|) (-592 (-2 (|:| |deg| (-713)) (|:| -2693 |#2|)))) 58)) (-3387 (((-592 (-2 (|:| |deg| (-713)) (|:| -2693 |#2|))) |#2|) 53)) (-3899 (((-108) |#2|) 50)) (-3024 (((-396 |#2|) |#2|) 78)) (-2195 (((-396 |#2|) |#2|) 77)) (-3222 ((|#2| |#2| (-713) |#2|) 36)) (-1431 (((-2 (|:| |cont| |#1|) (|:| -1494 (-592 (-2 (|:| |irr| |#2|) (|:| -1623 (-525)))))) |#2| (-108)) 70)))
+(((-197 |#1| |#2|) (-10 -7 (-15 -2195 ((-396 |#2|) |#2|)) (-15 -3024 ((-396 |#2|) |#2|)) (-15 -1431 ((-2 (|:| |cont| |#1|) (|:| -1494 (-592 (-2 (|:| |irr| |#2|) (|:| -1623 (-525)))))) |#2| (-108))) (-15 -3387 ((-592 (-2 (|:| |deg| (-713)) (|:| -2693 |#2|))) |#2|)) (-15 -2173 ((-592 |#2|) (-592 (-2 (|:| |deg| (-713)) (|:| -2693 |#2|))))) (-15 -3222 (|#2| |#2| (-713) |#2|)) (-15 -4222 (|#2| |#2| (-713) |#2|)) (-15 -1506 (|#2| |#2| (-713) |#2|)) (-15 -3899 ((-108) |#2|))) (-327) (-1149 |#1|)) (T -197))
+((-3899 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1149 *4)))) (-1506 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1149 *4)))) (-4222 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1149 *4)))) (-3222 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2)) (-4 *2 (-1149 *4)))) (-2173 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |deg| (-713)) (|:| -2693 *5)))) (-4 *5 (-1149 *4)) (-4 *4 (-327)) (-5 *2 (-592 *5)) (-5 *1 (-197 *4 *5)))) (-3387 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -2693 *3)))) (-5 *1 (-197 *4 *3)) (-4 *3 (-1149 *4)))) (-1431 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-327)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1494 (-592 (-2 (|:| |irr| *3) (|:| -1623 (-525))))))) (-5 *1 (-197 *5 *3)) (-4 *3 (-1149 *5)))) (-3024 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1149 *4)))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3)) (-4 *3 (-1149 *4)))))
+(-10 -7 (-15 -2195 ((-396 |#2|) |#2|)) (-15 -3024 ((-396 |#2|) |#2|)) (-15 -1431 ((-2 (|:| |cont| |#1|) (|:| -1494 (-592 (-2 (|:| |irr| |#2|) (|:| -1623 (-525)))))) |#2| (-108))) (-15 -3387 ((-592 (-2 (|:| |deg| (-713)) (|:| -2693 |#2|))) |#2|)) (-15 -2173 ((-592 |#2|) (-592 (-2 (|:| |deg| (-713)) (|:| -2693 |#2|))))) (-15 -3222 (|#2| |#2| (-713) |#2|)) (-15 -4222 (|#2| |#2| (-713) |#2|)) (-15 -1506 (|#2| |#2| (-713) |#2|)) (-15 -3899 ((-108) |#2|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2628 (((-525) $) NIL (|has| (-525) (-286)))) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-525) (-844)))) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| (-525) (-844)))) (-3197 (((-108) $ $) NIL)) (-1436 (((-525) $) NIL (|has| (-525) (-762)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL) (((-3 (-1091) "failed") $) NIL (|has| (-525) (-968 (-1091)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-968 (-525))))) (-3898 (((-525) $) NIL) (((-1091) $) NIL (|has| (-525) (-968 (-1091)))) (((-385 (-525)) $) NIL (|has| (-525) (-968 (-525)))) (((-525) $) NIL (|has| (-525) (-968 (-525))))) (-1726 (($ $ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) NIL (|has| (-525) (-510)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-3017 (((-108) $) NIL (|has| (-525) (-762)))) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-525) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-525) (-821 (-357))))) (-1985 (((-108) $) NIL)) (-1931 (($ $) NIL)) (-1498 (((-525) $) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| (-525) (-1067)))) (-3912 (((-108) $) NIL (|has| (-525) (-762)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2371 (($ $ $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| (-525) (-789)))) (-2694 (($ (-1 (-525) (-525)) $) NIL)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL (|has| (-525) (-1067)) CONST)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3025 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-2793 (((-525) $) NIL (|has| (-525) (-510)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-525) (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-525) (-844)))) (-2195 (((-396 $) $) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2602 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1091)) (-592 (-525))) NIL (|has| (-525) (-486 (-1091) (-525)))) (($ $ (-1091) (-525)) NIL (|has| (-525) (-486 (-1091) (-525))))) (-1290 (((-713) $) NIL)) (-3410 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2523 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1091)) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-2097 (($ $) NIL)) (-1512 (((-525) $) NIL)) (-2779 (($ (-385 (-525))) 9)) (-2749 (((-827 (-525)) $) NIL (|has| (-525) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-525) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-953))) (((-205) $) NIL (|has| (-525) (-953)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-844))))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1091)) NIL (|has| (-525) (-968 (-1091)))) (((-385 (-525)) $) NIL) (((-936 10) $) 10)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| (-525) (-844))) (|has| (-525) (-136))))) (-2104 (((-713)) NIL)) (-1438 (((-525) $) NIL (|has| (-525) (-510)))) (-3959 (((-108) $ $) NIL)) (-2086 (($ $) NIL (|has| (-525) (-762)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1091)) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4045 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4026 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4017 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4100 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL)))
+(((-198) (-13 (-925 (-525)) (-10 -8 (-15 -1270 ((-385 (-525)) $)) (-15 -1270 ((-936 10) $)) (-15 -3025 ((-385 (-525)) $)) (-15 -2779 ($ (-385 (-525))))))) (T -198))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-936 10)) (-5 *1 (-198)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))) (-2779 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))))
+(-13 (-925 (-525)) (-10 -8 (-15 -1270 ((-385 (-525)) $)) (-15 -1270 ((-936 10) $)) (-15 -3025 ((-385 (-525)) $)) (-15 -2779 ($ (-385 (-525))))))
+((-2650 (((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|)) (-1074)) 28) (((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|))) 24)) (-2065 (((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091) (-782 |#2|) (-782 |#2|) (-108)) 17)))
+(((-199 |#1| |#2|) (-10 -7 (-15 -2650 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|)))) (-15 -2650 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|)) (-1074))) (-15 -2065 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091) (-782 |#2|) (-782 |#2|) (-108)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1113) (-893) (-29 |#1|))) (T -199))
+((-2065 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1091)) (-5 *6 (-108)) (-4 *7 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-4 *3 (-13 (-1113) (-893) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *7 *3)) (-5 *5 (-782 *3)))) (-2650 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1013 (-782 *3))) (-5 *5 (-1074)) (-4 *3 (-13 (-1113) (-893) (-29 *6))) (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *6 *3)))) (-2650 (*1 *2 *3 *4) (-12 (-5 *4 (-1013 (-782 *3))) (-4 *3 (-13 (-1113) (-893) (-29 *5))) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-199 *5 *3)))))
+(-10 -7 (-15 -2650 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|)))) (-15 -2650 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1013 (-782 |#2|)) (-1074))) (-15 -2065 ((-3 (|:| |f1| (-782 |#2|)) (|:| |f2| (-592 (-782 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1091) (-782 |#2|) (-782 |#2|) (-108))))
+((-2650 (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|)))) (-1074)) 46) (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|))))) 43) (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|))) (-1074)) 47) (((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|)))) 20)))
+(((-200 |#1|) (-10 -7 (-15 -2650 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|))))) (-15 -2650 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|))) (-1074))) (-15 -2650 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|)))))) (-15 -2650 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|)))) (-1074)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (T -200))
+((-2650 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-385 (-887 *6))) (-5 *4 (-1013 (-782 (-385 (-887 *6))))) (-5 *5 (-1074)) (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *6)))) (-2650 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1013 (-782 (-385 (-887 *5))))) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *5)))) (-2650 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-385 (-887 *6))) (-5 *4 (-1013 (-782 (-294 *6)))) (-5 *5 (-1074)) (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *6)))) (-2650 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1013 (-782 (-294 *5)))) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-200 *5)))))
+(-10 -7 (-15 -2650 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|))))) (-15 -2650 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-294 |#1|))) (-1074))) (-15 -2650 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|)))))) (-15 -2650 ((-3 (|:| |f1| (-782 (-294 |#1|))) (|:| |f2| (-592 (-782 (-294 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-385 (-887 |#1|)) (-1013 (-782 (-385 (-887 |#1|)))) (-1074))))
+((-3503 (((-2 (|:| -3696 (-1087 |#1|)) (|:| |deg| (-856))) (-1087 |#1|)) 21)) (-3788 (((-592 (-294 |#2|)) (-294 |#2|) (-856)) 42)))
+(((-201 |#1| |#2|) (-10 -7 (-15 -3503 ((-2 (|:| -3696 (-1087 |#1|)) (|:| |deg| (-856))) (-1087 |#1|))) (-15 -3788 ((-592 (-294 |#2|)) (-294 |#2|) (-856)))) (-977) (-13 (-517) (-789))) (T -201))
+((-3788 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-4 *6 (-13 (-517) (-789))) (-5 *2 (-592 (-294 *6))) (-5 *1 (-201 *5 *6)) (-5 *3 (-294 *6)) (-4 *5 (-977)))) (-3503 (*1 *2 *3) (-12 (-4 *4 (-977)) (-5 *2 (-2 (|:| -3696 (-1087 *4)) (|:| |deg| (-856)))) (-5 *1 (-201 *4 *5)) (-5 *3 (-1087 *4)) (-4 *5 (-13 (-517) (-789))))))
+(-10 -7 (-15 -3503 ((-2 (|:| -3696 (-1087 |#1|)) (|:| |deg| (-856))) (-1087 |#1|))) (-15 -3788 ((-592 (-294 |#2|)) (-294 |#2|) (-856))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2587 ((|#1| $) NIL)) (-2936 ((|#1| $) 25)) (-3330 (((-108) $ (-713)) NIL)) (-2305 (($) NIL T CONST)) (-2481 (($ $) NIL)) (-3559 (($ $) 31)) (-3158 ((|#1| |#1| $) NIL)) (-4081 ((|#1| $) NIL)) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-2023 (((-713) $) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-3955 ((|#1| $) NIL)) (-2278 ((|#1| |#1| $) 28)) (-2258 ((|#1| |#1| $) 30)) (-3985 (($ |#1| $) NIL)) (-1751 (((-713) $) 27)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-2566 ((|#1| $) NIL)) (-4086 ((|#1| $) 26)) (-1742 ((|#1| $) 24)) (-1881 ((|#1| $) NIL)) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2522 ((|#1| |#1| $) NIL)) (-2013 (((-108) $) 9)) (-2718 (($) NIL)) (-2961 ((|#1| $) NIL)) (-1589 (($) NIL) (($ (-592 |#1|)) 16)) (-4064 (((-713) $) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3142 ((|#1| $) 13)) (-1665 (($ (-592 |#1|)) NIL)) (-3562 ((|#1| $) NIL)) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-202 |#1|) (-13 (-233 |#1|) (-10 -8 (-15 -1589 ($ (-592 |#1|))))) (-1020)) (T -202))
+((-1589 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-202 *3)))))
+(-13 (-233 |#1|) (-10 -8 (-15 -1589 ($ (-592 |#1|)))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-3915 (($ (-294 |#1|)) 23)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-1875 (((-108) $) NIL)) (-2591 (((-3 (-294 |#1|) "failed") $) NIL)) (-3898 (((-294 |#1|) $) NIL)) (-2571 (($ $) 31)) (-3762 (((-3 $ "failed") $) NIL)) (-1985 (((-108) $) NIL)) (-2694 (($ (-1 (-294 |#1|) (-294 |#1|)) $) NIL)) (-2548 (((-294 |#1|) $) NIL)) (-3401 (($ $) 30)) (-3451 (((-1074) $) NIL)) (-2930 (((-108) $) NIL)) (-2012 (((-1038) $) NIL)) (-3523 (($ (-713)) NIL)) (-1223 (($ $) 32)) (-1587 (((-525) $) NIL)) (-1270 (((-798) $) 57) (($ (-525)) NIL) (($ (-294 |#1|)) NIL)) (-3468 (((-294 |#1|) $ $) NIL)) (-2104 (((-713)) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 25 T CONST)) (-3363 (($) 50 T CONST)) (-3994 (((-108) $ $) 28)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) 19)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 24) (($ (-294 |#1|) $) 18)))
+(((-203 |#1| |#2|) (-13 (-570 (-294 |#1|)) (-968 (-294 |#1|)) (-10 -8 (-15 -2548 ((-294 |#1|) $)) (-15 -3401 ($ $)) (-15 -2571 ($ $)) (-15 -3468 ((-294 |#1|) $ $)) (-15 -3523 ($ (-713))) (-15 -2930 ((-108) $)) (-15 -1875 ((-108) $)) (-15 -1587 ((-525) $)) (-15 -2694 ($ (-1 (-294 |#1|) (-294 |#1|)) $)) (-15 -3915 ($ (-294 |#1|))) (-15 -1223 ($ $)))) (-13 (-977) (-789)) (-592 (-1091))) (T -203))
+((-2548 (*1 *2 *1) (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1091))))) (-3401 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789))) (-14 *3 (-592 (-1091))))) (-2571 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789))) (-14 *3 (-592 (-1091))))) (-3468 (*1 *2 *1 *1) (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1091))))) (-3523 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1091))))) (-2930 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1091))))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1091))))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1091))))) (-2694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-294 *3) (-294 *3))) (-4 *3 (-13 (-977) (-789))) (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1091))))) (-3915 (*1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *3 (-13 (-977) (-789))) (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1091))))) (-1223 (*1 *1 *1) (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789))) (-14 *3 (-592 (-1091))))))
+(-13 (-570 (-294 |#1|)) (-968 (-294 |#1|)) (-10 -8 (-15 -2548 ((-294 |#1|) $)) (-15 -3401 ($ $)) (-15 -2571 ($ $)) (-15 -3468 ((-294 |#1|) $ $)) (-15 -3523 ($ (-713))) (-15 -2930 ((-108) $)) (-15 -1875 ((-108) $)) (-15 -1587 ((-525) $)) (-15 -2694 ($ (-1 (-294 |#1|) (-294 |#1|)) $)) (-15 -3915 ($ (-294 |#1|))) (-15 -1223 ($ $))))
+((-3843 (((-108) (-1074)) 22)) (-2432 (((-3 (-782 |#2|) "failed") (-565 |#2|) |#2| (-782 |#2|) (-782 |#2|) (-108)) 32)) (-1732 (((-3 (-108) "failed") (-1087 |#2|) (-782 |#2|) (-782 |#2|) (-108)) 73) (((-3 (-108) "failed") (-887 |#1|) (-1091) (-782 |#2|) (-782 |#2|) (-108)) 74)))
+(((-204 |#1| |#2|) (-10 -7 (-15 -3843 ((-108) (-1074))) (-15 -2432 ((-3 (-782 |#2|) "failed") (-565 |#2|) |#2| (-782 |#2|) (-782 |#2|) (-108))) (-15 -1732 ((-3 (-108) "failed") (-887 |#1|) (-1091) (-782 |#2|) (-782 |#2|) (-108))) (-15 -1732 ((-3 (-108) "failed") (-1087 |#2|) (-782 |#2|) (-782 |#2|) (-108)))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-1113) (-29 |#1|))) (T -204))
+((-1732 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1087 *6)) (-5 *4 (-782 *6)) (-4 *6 (-13 (-1113) (-29 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-204 *5 *6)))) (-1732 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-108)) (-5 *3 (-887 *6)) (-5 *4 (-1091)) (-5 *5 (-782 *7)) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-4 *7 (-13 (-1113) (-29 *6))) (-5 *1 (-204 *6 *7)))) (-2432 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-782 *4)) (-5 *3 (-565 *4)) (-5 *5 (-108)) (-4 *4 (-13 (-1113) (-29 *6))) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-204 *6 *4)))) (-3843 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-108)) (-5 *1 (-204 *4 *5)) (-4 *5 (-13 (-1113) (-29 *4))))))
+(-10 -7 (-15 -3843 ((-108) (-1074))) (-15 -2432 ((-3 (-782 |#2|) "failed") (-565 |#2|) |#2| (-782 |#2|) (-782 |#2|) (-108))) (-15 -1732 ((-3 (-108) "failed") (-887 |#1|) (-1091) (-782 |#2|) (-782 |#2|) (-108))) (-15 -1732 ((-3 (-108) "failed") (-1087 |#2|) (-782 |#2|) (-782 |#2|) (-108))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 89)) (-2628 (((-525) $) 99)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-3642 (($ $) NIL)) (-2351 (($ $) 77)) (-1603 (($ $) 65)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-2211 (($ $) 56)) (-3197 (((-108) $ $) NIL)) (-2320 (($ $) 75)) (-1569 (($ $) 63)) (-1436 (((-525) $) 116)) (-2382 (($ $) 80)) (-2193 (($ $) 67)) (-2305 (($) NIL T CONST)) (-1625 (($ $) NIL)) (-2591 (((-3 (-525) "failed") $) 115) (((-3 (-385 (-525)) "failed") $) 112)) (-3898 (((-525) $) 113) (((-385 (-525)) $) 110)) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) 92)) (-2751 (((-385 (-525)) $ (-713)) 108) (((-385 (-525)) $ (-713) (-713)) 107)) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-1683 (((-856)) 29) (((-856) (-856)) NIL (|has| $ (-6 -4246)))) (-3017 (((-108) $) NIL)) (-1535 (($) 39)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL)) (-3973 (((-525) $) 35)) (-1985 (((-108) $) NIL)) (-3220 (($ $ (-525)) NIL)) (-2900 (($ $) NIL)) (-3912 (((-108) $) 88)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2371 (($ $ $) 53) (($) 34 (-12 (-1825 (|has| $ (-6 -4238))) (-1825 (|has| $ (-6 -4246)))))) (-2535 (($ $ $) 52) (($) 33 (-12 (-1825 (|has| $ (-6 -4238))) (-1825 (|has| $ (-6 -4246)))))) (-1820 (((-525) $) 27)) (-1763 (($ $) 30)) (-3234 (($ $) 57)) (-1415 (($ $) 62)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-2064 (((-856) (-525)) NIL (|has| $ (-6 -4246)))) (-2012 (((-1038) $) NIL) (((-525) $) 90)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3025 (($ $) NIL)) (-2793 (($ $) NIL)) (-2294 (($ (-525) (-525)) NIL) (($ (-525) (-525) (-856)) 100)) (-2195 (((-396 $) $) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1864 (((-525) $) 28)) (-2154 (($) 38)) (-1250 (($ $) 61)) (-1290 (((-713) $) NIL)) (-3876 (((-1074) (-1074)) 8)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-3342 (((-856)) NIL) (((-856) (-856)) NIL (|has| $ (-6 -4246)))) (-2523 (($ $ (-713)) NIL) (($ $) 93)) (-2425 (((-856) (-525)) NIL (|has| $ (-6 -4246)))) (-2396 (($ $) 78)) (-2209 (($ $) 68)) (-2367 (($ $) 79)) (-2176 (($ $) 66)) (-2335 (($ $) 76)) (-1584 (($ $) 64)) (-2749 (((-357) $) 104) (((-205) $) 101) (((-827 (-357)) $) NIL) (((-501) $) 45)) (-1270 (((-798) $) 42) (($ (-525)) 60) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-525)) 60) (($ (-385 (-525))) NIL)) (-2104 (((-713)) NIL)) (-1438 (($ $) NIL)) (-1764 (((-856)) 32) (((-856) (-856)) NIL (|has| $ (-6 -4246)))) (-3200 (((-856)) 25)) (-2438 (($ $) 83)) (-2257 (($ $) 71) (($ $ $) 109)) (-3959 (((-108) $ $) NIL)) (-2410 (($ $) 81)) (-2226 (($ $) 69)) (-2464 (($ $) 86)) (-2287 (($ $) 74)) (-2687 (($ $) 84)) (-2303 (($ $) 72)) (-2450 (($ $) 85)) (-2273 (($ $) 73)) (-2424 (($ $) 82)) (-2242 (($ $) 70)) (-2086 (($ $) 117)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) 36 T CONST)) (-3363 (($) 37 T CONST)) (-2255 (((-1074) $) 19) (((-1074) $ (-108)) 21) (((-1178) (-764) $) 22) (((-1178) (-764) $ (-108)) 23)) (-1908 (($ $) 96)) (-2093 (($ $ (-713)) NIL) (($ $) NIL)) (-1791 (($ $ $) 98)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 54)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 46)) (-4100 (($ $ $) 87) (($ $ (-525)) 55)) (-4090 (($ $) 47) (($ $ $) 49)) (-4080 (($ $ $) 48)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 58) (($ $ (-385 (-525))) 128) (($ $ $) 59)) (* (($ (-856) $) 31) (($ (-713) $) NIL) (($ (-525) $) 51) (($ $ $) 50) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
+(((-205) (-13 (-382) (-213) (-770) (-1113) (-567 (-501)) (-10 -8 (-15 -4100 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -2154 ($)) (-15 -2012 ((-525) $)) (-15 -1763 ($ $)) (-15 -3234 ($ $)) (-15 -2257 ($ $ $)) (-15 -1908 ($ $)) (-15 -1791 ($ $ $)) (-15 -3876 ((-1074) (-1074))) (-15 -2751 ((-385 (-525)) $ (-713))) (-15 -2751 ((-385 (-525)) $ (-713) (-713)))))) (T -205))
+((** (*1 *1 *1 *1) (-5 *1 (-205))) (-4100 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-205)))) (-2154 (*1 *1) (-5 *1 (-205))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-205)))) (-1763 (*1 *1 *1) (-5 *1 (-205))) (-3234 (*1 *1 *1) (-5 *1 (-205))) (-2257 (*1 *1 *1 *1) (-5 *1 (-205))) (-1908 (*1 *1 *1) (-5 *1 (-205))) (-1791 (*1 *1 *1 *1) (-5 *1 (-205))) (-3876 (*1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-205)))) (-2751 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205)))) (-2751 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205)))))
+(-13 (-382) (-213) (-770) (-1113) (-567 (-501)) (-10 -8 (-15 -4100 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -2154 ($)) (-15 -2012 ((-525) $)) (-15 -1763 ($ $)) (-15 -3234 ($ $)) (-15 -2257 ($ $ $)) (-15 -1908 ($ $)) (-15 -1791 ($ $ $)) (-15 -3876 ((-1074) (-1074))) (-15 -2751 ((-385 (-525)) $ (-713))) (-15 -2751 ((-385 (-525)) $ (-713) (-713)))))
+((-3998 (((-157 (-205)) (-713) (-157 (-205))) 11) (((-205) (-713) (-205)) 12)) (-2313 (((-157 (-205)) (-157 (-205))) 13) (((-205) (-205)) 14)) (-2277 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 19) (((-205) (-205) (-205)) 22)) (-3161 (((-157 (-205)) (-157 (-205))) 25) (((-205) (-205)) 24)) (-2585 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 43) (((-205) (-205) (-205)) 35)) (-2839 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 48) (((-205) (-205) (-205)) 45)) (-2390 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 15) (((-205) (-205) (-205)) 16)) (-1368 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 17) (((-205) (-205) (-205)) 18)) (-2391 (((-157 (-205)) (-157 (-205))) 60) (((-205) (-205)) 59)) (-2979 (((-205) (-205)) 54) (((-157 (-205)) (-157 (-205))) 58)) (-1908 (((-157 (-205)) (-157 (-205))) 8) (((-205) (-205)) 9)) (-1791 (((-157 (-205)) (-157 (-205)) (-157 (-205))) 30) (((-205) (-205) (-205)) 26)))
+(((-206) (-10 -7 (-15 -1908 ((-205) (-205))) (-15 -1908 ((-157 (-205)) (-157 (-205)))) (-15 -1791 ((-205) (-205) (-205))) (-15 -1791 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2313 ((-205) (-205))) (-15 -2313 ((-157 (-205)) (-157 (-205)))) (-15 -3161 ((-205) (-205))) (-15 -3161 ((-157 (-205)) (-157 (-205)))) (-15 -3998 ((-205) (-713) (-205))) (-15 -3998 ((-157 (-205)) (-713) (-157 (-205)))) (-15 -2390 ((-205) (-205) (-205))) (-15 -2390 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2585 ((-205) (-205) (-205))) (-15 -2585 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1368 ((-205) (-205) (-205))) (-15 -1368 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2839 ((-205) (-205) (-205))) (-15 -2839 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2979 ((-157 (-205)) (-157 (-205)))) (-15 -2979 ((-205) (-205))) (-15 -2391 ((-205) (-205))) (-15 -2391 ((-157 (-205)) (-157 (-205)))) (-15 -2277 ((-205) (-205) (-205))) (-15 -2277 ((-157 (-205)) (-157 (-205)) (-157 (-205)))))) (T -206))
+((-2277 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2277 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2391 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2391 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2979 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2979 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2839 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2839 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1368 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1368 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2585 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2585 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2390 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2390 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-3998 (*1 *2 *3 *2) (-12 (-5 *2 (-157 (-205))) (-5 *3 (-713)) (-5 *1 (-206)))) (-3998 (*1 *2 *3 *2) (-12 (-5 *2 (-205)) (-5 *3 (-713)) (-5 *1 (-206)))) (-3161 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-3161 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-2313 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-2313 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1791 (*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1791 (*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))) (-1908 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206)))))
+(-10 -7 (-15 -1908 ((-205) (-205))) (-15 -1908 ((-157 (-205)) (-157 (-205)))) (-15 -1791 ((-205) (-205) (-205))) (-15 -1791 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2313 ((-205) (-205))) (-15 -2313 ((-157 (-205)) (-157 (-205)))) (-15 -3161 ((-205) (-205))) (-15 -3161 ((-157 (-205)) (-157 (-205)))) (-15 -3998 ((-205) (-713) (-205))) (-15 -3998 ((-157 (-205)) (-713) (-157 (-205)))) (-15 -2390 ((-205) (-205) (-205))) (-15 -2390 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2585 ((-205) (-205) (-205))) (-15 -2585 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -1368 ((-205) (-205) (-205))) (-15 -1368 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2839 ((-205) (-205) (-205))) (-15 -2839 ((-157 (-205)) (-157 (-205)) (-157 (-205)))) (-15 -2979 ((-157 (-205)) (-157 (-205)))) (-15 -2979 ((-205) (-205))) (-15 -2391 ((-205) (-205))) (-15 -2391 ((-157 (-205)) (-157 (-205)))) (-15 -2277 ((-205) (-205) (-205))) (-15 -2277 ((-157 (-205)) (-157 (-205)) (-157 (-205)))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2708 (($ (-713) (-713)) NIL)) (-3623 (($ $ $) NIL)) (-3106 (($ (-1173 |#1|)) NIL) (($ $) NIL)) (-4185 (($ |#1| |#1| |#1|) 32)) (-2079 (((-108) $) NIL)) (-1335 (($ $ (-525) (-525)) NIL)) (-1775 (($ $ (-525) (-525)) NIL)) (-3250 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-2998 (($ $) NIL)) (-2077 (((-108) $) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-1327 (($ $ (-525) (-525) $) NIL)) (-1429 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) NIL)) (-3758 (($ $ (-525) (-1173 |#1|)) NIL)) (-2185 (($ $ (-525) (-1173 |#1|)) NIL)) (-3561 (($ |#1| |#1| |#1|) 31)) (-2975 (($ (-713) |#1|) NIL)) (-2305 (($) NIL T CONST)) (-1333 (($ $) NIL (|has| |#1| (-286)))) (-1616 (((-1173 |#1|) $ (-525)) NIL)) (-1882 (($ |#1|) 30)) (-3967 (($ |#1|) 29)) (-2791 (($ |#1|) 28)) (-3318 (((-713) $) NIL (|has| |#1| (-517)))) (-2632 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2570 ((|#1| $ (-525) (-525)) NIL)) (-3702 (((-592 |#1|) $) NIL)) (-1841 (((-713) $) NIL (|has| |#1| (-517)))) (-1615 (((-592 (-1173 |#1|)) $) NIL (|has| |#1| (-517)))) (-1857 (((-713) $) NIL)) (-3489 (($ (-713) (-713) |#1|) NIL)) (-1869 (((-713) $) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-1641 ((|#1| $) NIL (|has| |#1| (-6 (-4257 "*"))))) (-1964 (((-525) $) NIL)) (-3779 (((-525) $) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1987 (((-525) $) NIL)) (-3948 (((-525) $) NIL)) (-1660 (($ (-592 (-592 |#1|))) 11)) (-2622 (($ (-1 |#1| |#1|) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2973 (((-592 (-592 |#1|)) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2933 (((-3 $ "failed") $) NIL (|has| |#1| (-341)))) (-2310 (($) 12)) (-3652 (($ $ $) NIL)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-2042 (($ $ |#1|) NIL)) (-1680 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525))) NIL)) (-3675 (($ (-592 |#1|)) NIL) (($ (-592 $)) NIL)) (-2559 (((-108) $) NIL)) (-3176 ((|#1| $) NIL (|has| |#1| (-6 (-4257 "*"))))) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) NIL)) (-3701 (((-1173 |#1|) $ (-525)) NIL)) (-1270 (($ (-1173 |#1|)) NIL) (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-1366 (((-108) $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4090 (($ $ $) NIL) (($ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-1173 |#1|) $ (-1173 |#1|)) 15) (((-1173 |#1|) (-1173 |#1|) $) NIL) (((-878 |#1|) $ (-878 |#1|)) 20)) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-207 |#1|) (-13 (-630 |#1| (-1173 |#1|) (-1173 |#1|)) (-10 -8 (-15 * ((-878 |#1|) $ (-878 |#1|))) (-15 -2310 ($)) (-15 -2791 ($ |#1|)) (-15 -3967 ($ |#1|)) (-15 -1882 ($ |#1|)) (-15 -3561 ($ |#1| |#1| |#1|)) (-15 -4185 ($ |#1| |#1| |#1|)))) (-13 (-341) (-1113))) (T -207))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1113))) (-5 *1 (-207 *3)))) (-2310 (*1 *1) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1113))))) (-2791 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1113))))) (-3967 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1113))))) (-1882 (*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1113))))) (-3561 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1113))))) (-4185 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1113))))))
+(-13 (-630 |#1| (-1173 |#1|) (-1173 |#1|)) (-10 -8 (-15 * ((-878 |#1|) $ (-878 |#1|))) (-15 -2310 ($)) (-15 -2791 ($ |#1|)) (-15 -3967 ($ |#1|)) (-15 -1882 ($ |#1|)) (-15 -3561 ($ |#1| |#1| |#1|)) (-15 -4185 ($ |#1| |#1| |#1|))))
+((-1608 (($ (-1 (-108) |#2|) $) 16)) (-2592 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 25)) (-3981 (($) NIL) (($ (-592 |#2|)) 11)) (-3994 (((-108) $ $) 23)))
+(((-208 |#1| |#2|) (-10 -8 (-15 -1608 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2592 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2592 (|#1| |#2| |#1|)) (-15 -3981 (|#1| (-592 |#2|))) (-15 -3981 (|#1|)) (-15 -3994 ((-108) |#1| |#1|))) (-209 |#2|) (-1020)) (T -208))
+NIL
+(-10 -8 (-15 -1608 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2592 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2592 (|#1| |#2| |#1|)) (-15 -3981 (|#1| (-592 |#2|))) (-15 -3981 (|#1|)) (-15 -3994 ((-108) |#1| |#1|)))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3330 (((-108) $ (-713)) 8)) (-1608 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4255)))) (-2305 (($) 7 T CONST)) (-3137 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2592 (($ |#1| $) 47 (|has| $ (-6 -4255))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4255)))) (-1614 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4255)))) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) 9)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-3955 ((|#1| $) 39)) (-3985 (($ |#1| $) 40)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-1881 ((|#1| $) 41)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3981 (($) 49) (($ (-592 |#1|)) 48)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-2749 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 50)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-1665 (($ (-592 |#1|)) 42)) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-209 |#1|) (-131) (-1020)) (T -209))
NIL
(-13 (-215 |t#1|))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T))
-((-3013 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) 11) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) 19) (($ $ (-713)) NIL) (($ $) 16)) (-1424 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-713)) 14) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) NIL) (($ $ (-713)) NIL) (($ $) NIL)))
-(((-210 |#1| |#2|) (-10 -8 (-15 -3013 (|#1| |#1|)) (-15 -1424 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -1424 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1424 (|#1| |#1| (-1090))) (-15 -1424 (|#1| |#1| (-592 (-1090)))) (-15 -1424 (|#1| |#1| (-1090) (-713))) (-15 -1424 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1424 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1424 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|)))) (-211 |#2|) (-976)) (T -210))
-NIL
-(-10 -8 (-15 -3013 (|#1| |#1|)) (-15 -1424 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -1424 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1424 (|#1| |#1| (-1090))) (-15 -1424 (|#1| |#1| (-592 (-1090)))) (-15 -1424 (|#1| |#1| (-1090) (-713))) (-15 -1424 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1424 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -1424 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-3013 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-713)) 51) (($ $ (-592 (-1090)) (-592 (-713))) 44 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 43 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 42 (|has| |#1| (-834 (-1090)))) (($ $ (-1090)) 41 (|has| |#1| (-834 (-1090)))) (($ $ (-713)) 39 (|has| |#1| (-213))) (($ $) 37 (|has| |#1| (-213)))) (-1908 (((-797) $) 11) (($ (-525)) 28)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-713)) 49) (($ $ (-592 (-1090)) (-592 (-713))) 48 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 47 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 46 (|has| |#1| (-834 (-1090)))) (($ $ (-1090)) 45 (|has| |#1| (-834 (-1090)))) (($ $ (-713)) 40 (|has| |#1| (-213))) (($ $) 38 (|has| |#1| (-213)))) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
-(((-211 |#1|) (-131) (-976)) (T -211))
-((-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-976)))) (-3013 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4)) (-4 *4 (-976)))) (-1424 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-976)))) (-1424 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4)) (-4 *4 (-976)))))
-(-13 (-976) (-10 -8 (-15 -3013 ($ $ (-1 |t#1| |t#1|))) (-15 -3013 ($ $ (-1 |t#1| |t#1|) (-713))) (-15 -1424 ($ $ (-1 |t#1| |t#1|))) (-15 -1424 ($ $ (-1 |t#1| |t#1|) (-713))) (IF (|has| |t#1| (-213)) (-6 (-213)) |%noBranch|) (IF (|has| |t#1| (-834 (-1090))) (-6 (-834 (-1090))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-213) |has| |#1| (-213)) ((-594 $) . T) ((-669) . T) ((-834 (-1090)) |has| |#1| (-834 (-1090))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-3013 (($ $) NIL) (($ $ (-713)) 10)) (-1424 (($ $) 8) (($ $ (-713)) 12)))
-(((-212 |#1|) (-10 -8 (-15 -1424 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1| (-713))) (-15 -1424 (|#1| |#1|)) (-15 -3013 (|#1| |#1|))) (-213)) (T -212))
-NIL
-(-10 -8 (-15 -1424 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1| (-713))) (-15 -1424 (|#1| |#1|)) (-15 -3013 (|#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-3013 (($ $) 38) (($ $ (-713)) 36)) (-1908 (((-797) $) 11) (($ (-525)) 28)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $) 37) (($ $ (-713)) 35)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1127) . T))
+((-2523 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) 11) (($ $ (-592 (-1091)) (-592 (-713))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091)) 19) (($ $ (-713)) NIL) (($ $) 16)) (-2093 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-713)) 14) (($ $ (-592 (-1091)) (-592 (-713))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091)) NIL) (($ $ (-713)) NIL) (($ $) NIL)))
+(((-210 |#1| |#2|) (-10 -8 (-15 -2523 (|#1| |#1|)) (-15 -2093 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -2093 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -2093 (|#1| |#1| (-1091))) (-15 -2093 (|#1| |#1| (-592 (-1091)))) (-15 -2093 (|#1| |#1| (-1091) (-713))) (-15 -2093 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -2093 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2093 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|)))) (-211 |#2|) (-977)) (T -210))
+NIL
+(-10 -8 (-15 -2523 (|#1| |#1|)) (-15 -2093 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -2093 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -2093 (|#1| |#1| (-1091))) (-15 -2093 (|#1| |#1| (-592 (-1091)))) (-15 -2093 (|#1| |#1| (-1091) (-713))) (-15 -2093 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -2093 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2093 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-2523 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-713)) 51) (($ $ (-592 (-1091)) (-592 (-713))) 44 (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) 43 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) 42 (|has| |#1| (-835 (-1091)))) (($ $ (-1091)) 41 (|has| |#1| (-835 (-1091)))) (($ $ (-713)) 39 (|has| |#1| (-213))) (($ $) 37 (|has| |#1| (-213)))) (-1270 (((-798) $) 11) (($ (-525)) 28)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-713)) 49) (($ $ (-592 (-1091)) (-592 (-713))) 48 (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) 47 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) 46 (|has| |#1| (-835 (-1091)))) (($ $ (-1091)) 45 (|has| |#1| (-835 (-1091)))) (($ $ (-713)) 40 (|has| |#1| (-213))) (($ $) 38 (|has| |#1| (-213)))) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+(((-211 |#1|) (-131) (-977)) (T -211))
+((-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-977)))) (-2523 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4)) (-4 *4 (-977)))) (-2093 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-977)))) (-2093 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4)) (-4 *4 (-977)))))
+(-13 (-977) (-10 -8 (-15 -2523 ($ $ (-1 |t#1| |t#1|))) (-15 -2523 ($ $ (-1 |t#1| |t#1|) (-713))) (-15 -2093 ($ $ (-1 |t#1| |t#1|))) (-15 -2093 ($ $ (-1 |t#1| |t#1|) (-713))) (IF (|has| |t#1| (-213)) (-6 (-213)) |%noBranch|) (IF (|has| |t#1| (-835 (-1091))) (-6 (-835 (-1091))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-213) |has| |#1| (-213)) ((-594 $) . T) ((-669) . T) ((-835 (-1091)) |has| |#1| (-835 (-1091))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-2523 (($ $) NIL) (($ $ (-713)) 10)) (-2093 (($ $) 8) (($ $ (-713)) 12)))
+(((-212 |#1|) (-10 -8 (-15 -2093 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1| (-713))) (-15 -2093 (|#1| |#1|)) (-15 -2523 (|#1| |#1|))) (-213)) (T -212))
+NIL
+(-10 -8 (-15 -2093 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1| (-713))) (-15 -2093 (|#1| |#1|)) (-15 -2523 (|#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-2523 (($ $) 38) (($ $ (-713)) 36)) (-1270 (((-798) $) 11) (($ (-525)) 28)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $) 37) (($ $ (-713)) 35)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-213) (-131)) (T -213))
-((-3013 (*1 *1 *1) (-4 *1 (-213))) (-1424 (*1 *1 *1) (-4 *1 (-213))) (-3013 (*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713)))) (-1424 (*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713)))))
-(-13 (-976) (-10 -8 (-15 -3013 ($ $)) (-15 -1424 ($ $)) (-15 -3013 ($ $ (-713))) (-15 -1424 ($ $ (-713)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-4006 (($) 12) (($ (-592 |#2|)) NIL)) (-2135 (($ $) 14)) (-1922 (($ (-592 |#2|)) 10)) (-1908 (((-797) $) 21)))
-(((-214 |#1| |#2|) (-10 -8 (-15 -1908 ((-797) |#1|)) (-15 -4006 (|#1| (-592 |#2|))) (-15 -4006 (|#1|)) (-15 -1922 (|#1| (-592 |#2|))) (-15 -2135 (|#1| |#1|))) (-215 |#2|) (-1019)) (T -214))
-NIL
-(-10 -8 (-15 -1908 ((-797) |#1|)) (-15 -4006 (|#1| (-592 |#2|))) (-15 -4006 (|#1|)) (-15 -1922 (|#1| (-592 |#2|))) (-15 -2135 (|#1| |#1|)))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3410 (((-108) $ (-713)) 8)) (-3290 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4254)))) (-1505 (($) 7 T CONST)) (-3163 (($ $) 58 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2792 (($ |#1| $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4254)))) (-2273 (($ |#1| $) 57 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4254)))) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) 9)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2570 ((|#1| $) 39)) (-2573 (($ |#1| $) 40)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3513 ((|#1| $) 41)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-4006 (($) 49) (($ (-592 |#1|)) 48)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1427 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 50)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-3612 (($ (-592 |#1|)) 42)) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-215 |#1|) (-131) (-1019)) (T -215))
-((-4006 (*1 *1) (-12 (-4 *1 (-215 *2)) (-4 *2 (-1019)))) (-4006 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-4 *1 (-215 *3)))) (-2792 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-215 *2)) (-4 *2 (-1019)))) (-2792 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4254)) (-4 *1 (-215 *3)) (-4 *3 (-1019)))) (-3290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4254)) (-4 *1 (-215 *3)) (-4 *3 (-1019)))))
-(-13 (-102 |t#1|) (-142 |t#1|) (-10 -8 (-15 -4006 ($)) (-15 -4006 ($ (-592 |t#1|))) (IF (|has| $ (-6 -4254)) (PROGN (-15 -2792 ($ |t#1| $)) (-15 -2792 ($ (-1 (-108) |t#1|) $)) (-15 -3290 ($ (-1 (-108) |t#1|) $))) |%noBranch|)))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T))
-((-4050 (((-2 (|:| |varOrder| (-592 (-1090))) (|:| |inhom| (-3 (-592 (-1172 (-713))) "failed")) (|:| |hom| (-592 (-1172 (-713))))) (-273 (-886 (-525)))) 27)))
-(((-216) (-10 -7 (-15 -4050 ((-2 (|:| |varOrder| (-592 (-1090))) (|:| |inhom| (-3 (-592 (-1172 (-713))) "failed")) (|:| |hom| (-592 (-1172 (-713))))) (-273 (-886 (-525))))))) (T -216))
-((-4050 (*1 *2 *3) (-12 (-5 *3 (-273 (-886 (-525)))) (-5 *2 (-2 (|:| |varOrder| (-592 (-1090))) (|:| |inhom| (-3 (-592 (-1172 (-713))) "failed")) (|:| |hom| (-592 (-1172 (-713)))))) (-5 *1 (-216)))))
-(-10 -7 (-15 -4050 ((-2 (|:| |varOrder| (-592 (-1090))) (|:| |inhom| (-3 (-592 (-1172 (-713))) "failed")) (|:| |hom| (-592 (-1172 (-713))))) (-273 (-886 (-525))))))
-((-3107 (((-713)) 51)) (-1860 (((-2 (|:| -3276 (-632 |#3|)) (|:| |vec| (-1172 |#3|))) (-632 $) (-1172 $)) 49) (((-632 |#3|) (-632 $)) 41) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3191 (((-128)) 57)) (-3013 (($ $ (-1 |#3| |#3|) (-713)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-1908 (((-1172 |#3|) $) NIL) (($ |#3|) NIL) (((-797) $) NIL) (($ (-525)) 12) (($ (-385 (-525))) NIL)) (-2093 (((-713)) 15)) (-4082 (($ $ |#3|) 54)))
-(((-217 |#1| |#2| |#3|) (-10 -8 (-15 -1908 (|#1| (-385 (-525)))) (-15 -1908 (|#1| (-525))) (-15 -1908 ((-797) |#1|)) (-15 -2093 ((-713))) (-15 -3013 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1860 ((-632 (-525)) (-632 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1908 (|#1| |#3|)) (-15 -3013 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3013 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -1860 ((-632 |#3|) (-632 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 |#3|)) (|:| |vec| (-1172 |#3|))) (-632 |#1|) (-1172 |#1|))) (-15 -3107 ((-713))) (-15 -4082 (|#1| |#1| |#3|)) (-15 -3191 ((-128))) (-15 -1908 ((-1172 |#3|) |#1|))) (-218 |#2| |#3|) (-713) (-1126)) (T -217))
-((-3191 (*1 *2) (-12 (-14 *4 (-713)) (-4 *5 (-1126)) (-5 *2 (-128)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) (-3107 (*1 *2) (-12 (-14 *4 (-713)) (-4 *5 (-1126)) (-5 *2 (-713)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) (-2093 (*1 *2) (-12 (-14 *4 (-713)) (-4 *5 (-1126)) (-5 *2 (-713)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))))
-(-10 -8 (-15 -1908 (|#1| (-385 (-525)))) (-15 -1908 (|#1| (-525))) (-15 -1908 ((-797) |#1|)) (-15 -2093 ((-713))) (-15 -3013 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -1860 ((-632 (-525)) (-632 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1908 (|#1| |#3|)) (-15 -3013 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3013 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -1860 ((-632 |#3|) (-632 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 |#3|)) (|:| |vec| (-1172 |#3|))) (-632 |#1|) (-1172 |#1|))) (-15 -3107 ((-713))) (-15 -4082 (|#1| |#1| |#3|)) (-15 -3191 ((-128))) (-15 -1908 ((-1172 |#3|) |#1|)))
-((-1893 (((-108) $ $) 19 (|has| |#2| (-1019)))) (-1611 (((-108) $) 72 (|has| |#2| (-126)))) (-2516 (($ (-855)) 127 (|has| |#2| (-976)))) (-1840 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-1487 (($ $ $) 123 (|has| |#2| (-735)))) (-3263 (((-3 $ "failed") $ $) 74 (|has| |#2| (-126)))) (-3410 (((-108) $ (-713)) 8)) (-3107 (((-713)) 109 (|has| |#2| (-346)))) (-1690 (((-525) $) 121 (|has| |#2| (-787)))) (-2109 ((|#2| $ (-525) |#2|) 52 (|has| $ (-6 -4255)))) (-1505 (($) 7 T CONST)) (-1264 (((-3 (-525) "failed") $) 67 (-1341 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019)))) (((-3 (-385 (-525)) "failed") $) 64 (-1341 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1019)))) (-2831 (((-525) $) 68 (-1341 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019)))) (((-385 (-525)) $) 65 (-1341 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) ((|#2| $) 60 (|has| |#2| (-1019)))) (-1860 (((-632 (-525)) (-632 $)) 108 (-1341 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 107 (-1341 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) 106 (|has| |#2| (-976))) (((-632 |#2|) (-632 $)) 105 (|has| |#2| (-976)))) (-2866 (((-3 $ "failed") $) 99 (|has| |#2| (-976)))) (-3375 (($) 112 (|has| |#2| (-346)))) (-2870 ((|#2| $ (-525) |#2|) 53 (|has| $ (-6 -4255)))) (-2796 ((|#2| $ (-525)) 51)) (-3026 (((-108) $) 119 (|has| |#2| (-787)))) (-2026 (((-592 |#2|) $) 30 (|has| $ (-6 -4254)))) (-2133 (((-108) $) 102 (|has| |#2| (-976)))) (-2882 (((-108) $) 120 (|has| |#2| (-787)))) (-3100 (((-108) $ (-713)) 9)) (-2009 (((-525) $) 43 (|has| (-525) (-789)))) (-3525 (($ $ $) 118 (-3309 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-3168 (((-592 |#2|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254))))) (-1792 (((-525) $) 44 (|has| (-525) (-789)))) (-3630 (($ $ $) 117 (-3309 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-2857 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#2| |#2|) $) 35)) (-1780 (((-855) $) 111 (|has| |#2| (-346)))) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (|has| |#2| (-1019)))) (-3222 (((-592 (-525)) $) 46)) (-1548 (((-108) (-525) $) 47)) (-4185 (($ (-855)) 110 (|has| |#2| (-346)))) (-2663 (((-1037) $) 21 (|has| |#2| (-1019)))) (-3135 ((|#2| $) 42 (|has| (-525) (-789)))) (-1911 (($ $ |#2|) 41 (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#2|))) 26 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) 25 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) 23 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-2642 (((-108) $ $) 14)) (-3218 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-3171 (((-592 |#2|) $) 48)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#2| $ (-525) |#2|) 50) ((|#2| $ (-525)) 49)) (-1595 ((|#2| $ $) 126 (|has| |#2| (-976)))) (-4007 (($ (-1172 |#2|)) 128)) (-3191 (((-128)) 125 (|has| |#2| (-341)))) (-3013 (($ $) 92 (-1341 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-713)) 90 (-1341 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-1090)) 88 (-1341 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090))) 87 (-1341 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1090) (-713)) 86 (-1341 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) 85 (-1341 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1 |#2| |#2|) (-713)) 78 (|has| |#2| (-976))) (($ $ (-1 |#2| |#2|)) 77 (|has| |#2| (-976)))) (-2686 (((-713) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4254))) (((-713) |#2| $) 28 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1908 (((-1172 |#2|) $) 129) (($ (-525)) 66 (-3309 (-1341 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019))) (|has| |#2| (-976)))) (($ (-385 (-525))) 63 (-1341 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) (($ |#2|) 62 (|has| |#2| (-1019))) (((-797) $) 18 (|has| |#2| (-566 (-797))))) (-2093 (((-713)) 104 (|has| |#2| (-976)))) (-2667 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4254)))) (-2092 (($ $) 122 (|has| |#2| (-787)))) (-3465 (($ $ (-713)) 100 (|has| |#2| (-976))) (($ $ (-855)) 96 (|has| |#2| (-976)))) (-3875 (($) 71 (|has| |#2| (-126)) CONST)) (-3882 (($) 103 (|has| |#2| (-976)) CONST)) (-1424 (($ $) 91 (-1341 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-713)) 89 (-1341 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-1090)) 84 (-1341 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090))) 83 (-1341 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1090) (-713)) 82 (-1341 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) 81 (-1341 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1 |#2| |#2|) (-713)) 80 (|has| |#2| (-976))) (($ $ (-1 |#2| |#2|)) 79 (|has| |#2| (-976)))) (-4024 (((-108) $ $) 115 (-3309 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-3995 (((-108) $ $) 114 (-3309 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-3961 (((-108) $ $) 20 (|has| |#2| (-1019)))) (-4010 (((-108) $ $) 116 (-3309 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-3983 (((-108) $ $) 113 (-3309 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-4082 (($ $ |#2|) 124 (|has| |#2| (-341)))) (-4070 (($ $ $) 94 (|has| |#2| (-976))) (($ $) 93 (|has| |#2| (-976)))) (-4059 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-713)) 101 (|has| |#2| (-976))) (($ $ (-855)) 97 (|has| |#2| (-976)))) (* (($ $ $) 98 (|has| |#2| (-976))) (($ (-525) $) 95 (|has| |#2| (-976))) (($ $ |#2|) 76 (|has| |#2| (-669))) (($ |#2| $) 75 (|has| |#2| (-669))) (($ (-713) $) 73 (|has| |#2| (-126))) (($ (-855) $) 70 (|has| |#2| (-25)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-218 |#1| |#2|) (-131) (-713) (-1126)) (T -218))
-((-4007 (*1 *1 *2) (-12 (-5 *2 (-1172 *4)) (-4 *4 (-1126)) (-4 *1 (-218 *3 *4)))) (-2516 (*1 *1 *2) (-12 (-5 *2 (-855)) (-4 *1 (-218 *3 *4)) (-4 *4 (-976)) (-4 *4 (-1126)))) (-1595 (*1 *2 *1 *1) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1126)) (-4 *2 (-976)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1126)) (-4 *2 (-669)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1126)) (-4 *2 (-669)))))
-(-13 (-558 (-525) |t#2|) (-566 (-1172 |t#2|)) (-10 -8 (-6 -4254) (-15 -4007 ($ (-1172 |t#2|))) (IF (|has| |t#2| (-1019)) (-6 (-389 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-976)) (PROGN (-6 (-107 |t#2| |t#2|)) (-6 (-211 |t#2|)) (-6 (-355 |t#2|)) (-15 -2516 ($ (-855))) (-15 -1595 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-126)) (-6 (-126)) |%noBranch|) (IF (|has| |t#2| (-669)) (PROGN (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#2| (-160)) (PROGN (-6 (-37 |t#2|)) (-6 (-160))) |%noBranch|) (IF (|has| |t#2| (-6 -4251)) (-6 -4251) |%noBranch|) (IF (|has| |t#2| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |t#2| (-735)) (-6 (-735)) |%noBranch|) (IF (|has| |t#2| (-341)) (-6 (-1179 |t#2|)) |%noBranch|)))
-(((-21) -3309 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-23) -3309 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126))) ((-25) -3309 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-160)) ((-97) -3309 (|has| |#2| (-1019)) (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-107 |#2| |#2|) -3309 (|has| |#2| (-976)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-107 $ $) |has| |#2| (-160)) ((-126) -3309 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126))) ((-566 (-797)) -3309 (|has| |#2| (-1019)) (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-566 (-797))) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-566 (-1172 |#2|)) . T) ((-160) |has| |#2| (-160)) ((-211 |#2|) |has| |#2| (-976)) ((-213) -12 (|has| |#2| (-213)) (|has| |#2| (-976))) ((-265 #0=(-525) |#2|) . T) ((-267 #0# |#2|) . T) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-346) |has| |#2| (-346)) ((-355 |#2|) |has| |#2| (-976)) ((-389 |#2|) |has| |#2| (-1019)) ((-464 |#2|) . T) ((-558 #0# |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-594 |#2|) -3309 (|has| |#2| (-976)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-594 $) -3309 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-588 (-525)) -12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976))) ((-588 |#2|) |has| |#2| (-976)) ((-660 |#2|) -3309 (|has| |#2| (-341)) (|has| |#2| (-160))) ((-669) -3309 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-733) |has| |#2| (-787)) ((-734) -3309 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-735) |has| |#2| (-735)) ((-736) -3309 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-737) -3309 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-787) |has| |#2| (-787)) ((-789) -3309 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-834 (-1090)) -12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976))) ((-967 (-385 (-525))) -12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019))) ((-967 (-525)) -12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019))) ((-967 |#2|) |has| |#2| (-1019)) ((-982 |#2|) -3309 (|has| |#2| (-976)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-982 $) |has| |#2| (-160)) ((-976) -3309 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-983) -3309 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-1031) -3309 (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-1019) -3309 (|has| |#2| (-1019)) (|has| |#2| (-976)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-1126) . T) ((-1179 |#2|) |has| |#2| (-341)))
-((-4186 (((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|) 21)) (-4004 ((|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|) 23)) (-1370 (((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|)) 18)))
-(((-219 |#1| |#2| |#3|) (-10 -7 (-15 -4186 ((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -4004 (|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -1370 ((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|)))) (-713) (-1126) (-1126)) (T -219))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713)) (-4 *6 (-1126)) (-4 *7 (-1126)) (-5 *2 (-220 *5 *7)) (-5 *1 (-219 *5 *6 *7)))) (-4004 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713)) (-4 *6 (-1126)) (-4 *2 (-1126)) (-5 *1 (-219 *5 *6 *2)))) (-4186 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-220 *6 *7)) (-14 *6 (-713)) (-4 *7 (-1126)) (-4 *5 (-1126)) (-5 *2 (-220 *6 *5)) (-5 *1 (-219 *6 *7 *5)))))
-(-10 -7 (-15 -4186 ((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -4004 (|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -1370 ((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|))))
-((-1893 (((-108) $ $) NIL (|has| |#2| (-1019)))) (-1611 (((-108) $) NIL (|has| |#2| (-126)))) (-2516 (($ (-855)) 56 (|has| |#2| (-976)))) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-1487 (($ $ $) 60 (|has| |#2| (-735)))) (-3263 (((-3 $ "failed") $ $) 48 (|has| |#2| (-126)))) (-3410 (((-108) $ (-713)) 17)) (-3107 (((-713)) NIL (|has| |#2| (-346)))) (-1690 (((-525) $) NIL (|has| |#2| (-787)))) (-2109 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4255)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1019)))) (-2831 (((-525) $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) ((|#2| $) 27 (|has| |#2| (-1019)))) (-1860 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL (|has| |#2| (-976))) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-976)))) (-2866 (((-3 $ "failed") $) 53 (|has| |#2| (-976)))) (-3375 (($) NIL (|has| |#2| (-346)))) (-2870 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#2| $ (-525)) 51)) (-3026 (((-108) $) NIL (|has| |#2| (-787)))) (-2026 (((-592 |#2|) $) 15 (|has| $ (-6 -4254)))) (-2133 (((-108) $) NIL (|has| |#2| (-976)))) (-2882 (((-108) $) NIL (|has| |#2| (-787)))) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) 20 (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3168 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-1792 (((-525) $) 50 (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2857 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#2| |#2|) $) 41)) (-1780 (((-855) $) NIL (|has| |#2| (-346)))) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#2| (-1019)))) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-4185 (($ (-855)) NIL (|has| |#2| (-346)))) (-2663 (((-1037) $) NIL (|has| |#2| (-1019)))) (-3135 ((|#2| $) NIL (|has| (-525) (-789)))) (-1911 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#2|) $) 24 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-3171 (((-592 |#2|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) 21)) (-1595 ((|#2| $ $) NIL (|has| |#2| (-976)))) (-4007 (($ (-1172 |#2|)) 18)) (-3191 (((-128)) NIL (|has| |#2| (-341)))) (-3013 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-976))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-976)))) (-2686 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-2135 (($ $) NIL)) (-1908 (((-1172 |#2|) $) 10) (($ (-525)) NIL (-3309 (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019))) (|has| |#2| (-976)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) (($ |#2|) 13 (|has| |#2| (-1019))) (((-797) $) NIL (|has| |#2| (-566 (-797))))) (-2093 (((-713)) NIL (|has| |#2| (-976)))) (-2667 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2092 (($ $) NIL (|has| |#2| (-787)))) (-3465 (($ $ (-713)) NIL (|has| |#2| (-976))) (($ $ (-855)) NIL (|has| |#2| (-976)))) (-3875 (($) 35 (|has| |#2| (-126)) CONST)) (-3882 (($) 38 (|has| |#2| (-976)) CONST)) (-1424 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-976))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-976)))) (-4024 (((-108) $ $) NIL (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3995 (((-108) $ $) NIL (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3961 (((-108) $ $) 26 (|has| |#2| (-1019)))) (-4010 (((-108) $ $) NIL (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3983 (((-108) $ $) 58 (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4082 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4070 (($ $ $) NIL (|has| |#2| (-976))) (($ $) NIL (|has| |#2| (-976)))) (-4059 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-713)) NIL (|has| |#2| (-976))) (($ $ (-855)) NIL (|has| |#2| (-976)))) (* (($ $ $) 49 (|has| |#2| (-976))) (($ (-525) $) NIL (|has| |#2| (-976))) (($ $ |#2|) 42 (|has| |#2| (-669))) (($ |#2| $) 43 (|has| |#2| (-669))) (($ (-713) $) NIL (|has| |#2| (-126))) (($ (-855) $) NIL (|has| |#2| (-25)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-220 |#1| |#2|) (-218 |#1| |#2|) (-713) (-1126)) (T -220))
+((-2523 (*1 *1 *1) (-4 *1 (-213))) (-2093 (*1 *1 *1) (-4 *1 (-213))) (-2523 (*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713)))) (-2093 (*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713)))))
+(-13 (-977) (-10 -8 (-15 -2523 ($ $)) (-15 -2093 ($ $)) (-15 -2523 ($ $ (-713))) (-15 -2093 ($ $ (-713)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-3981 (($) 12) (($ (-592 |#2|)) NIL)) (-1451 (($ $) 14)) (-1279 (($ (-592 |#2|)) 10)) (-1270 (((-798) $) 21)))
+(((-214 |#1| |#2|) (-10 -8 (-15 -1270 ((-798) |#1|)) (-15 -3981 (|#1| (-592 |#2|))) (-15 -3981 (|#1|)) (-15 -1279 (|#1| (-592 |#2|))) (-15 -1451 (|#1| |#1|))) (-215 |#2|) (-1020)) (T -214))
+NIL
+(-10 -8 (-15 -1270 ((-798) |#1|)) (-15 -3981 (|#1| (-592 |#2|))) (-15 -3981 (|#1|)) (-15 -1279 (|#1| (-592 |#2|))) (-15 -1451 (|#1| |#1|)))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3330 (((-108) $ (-713)) 8)) (-1608 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4255)))) (-2305 (($) 7 T CONST)) (-3137 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2592 (($ |#1| $) 47 (|has| $ (-6 -4255))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4255)))) (-1614 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4255)))) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) 9)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-3955 ((|#1| $) 39)) (-3985 (($ |#1| $) 40)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-1881 ((|#1| $) 41)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3981 (($) 49) (($ (-592 |#1|)) 48)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-2749 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 50)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-1665 (($ (-592 |#1|)) 42)) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-215 |#1|) (-131) (-1020)) (T -215))
+((-3981 (*1 *1) (-12 (-4 *1 (-215 *2)) (-4 *2 (-1020)))) (-3981 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-215 *3)))) (-2592 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-215 *2)) (-4 *2 (-1020)))) (-2592 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4255)) (-4 *1 (-215 *3)) (-4 *3 (-1020)))) (-1608 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4255)) (-4 *1 (-215 *3)) (-4 *3 (-1020)))))
+(-13 (-102 |t#1|) (-142 |t#1|) (-10 -8 (-15 -3981 ($)) (-15 -3981 ($ (-592 |t#1|))) (IF (|has| $ (-6 -4255)) (PROGN (-15 -2592 ($ |t#1| $)) (-15 -2592 ($ (-1 (-108) |t#1|) $)) (-15 -1608 ($ (-1 (-108) |t#1|) $))) |%noBranch|)))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1127) . T))
+((-3175 (((-2 (|:| |varOrder| (-592 (-1091))) (|:| |inhom| (-3 (-592 (-1173 (-713))) "failed")) (|:| |hom| (-592 (-1173 (-713))))) (-273 (-887 (-525)))) 27)))
+(((-216) (-10 -7 (-15 -3175 ((-2 (|:| |varOrder| (-592 (-1091))) (|:| |inhom| (-3 (-592 (-1173 (-713))) "failed")) (|:| |hom| (-592 (-1173 (-713))))) (-273 (-887 (-525))))))) (T -216))
+((-3175 (*1 *2 *3) (-12 (-5 *3 (-273 (-887 (-525)))) (-5 *2 (-2 (|:| |varOrder| (-592 (-1091))) (|:| |inhom| (-3 (-592 (-1173 (-713))) "failed")) (|:| |hom| (-592 (-1173 (-713)))))) (-5 *1 (-216)))))
+(-10 -7 (-15 -3175 ((-2 (|:| |varOrder| (-592 (-1091))) (|:| |inhom| (-3 (-592 (-1173 (-713))) "failed")) (|:| |hom| (-592 (-1173 (-713))))) (-273 (-887 (-525))))))
+((-4190 (((-713)) 51)) (-3416 (((-2 (|:| -1484 (-632 |#3|)) (|:| |vec| (-1173 |#3|))) (-632 $) (-1173 $)) 49) (((-632 |#3|) (-632 $)) 41) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3831 (((-128)) 57)) (-2523 (($ $ (-1 |#3| |#3|) (-713)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-592 (-1091)) (-592 (-713))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-1270 (((-1173 |#3|) $) NIL) (($ |#3|) NIL) (((-798) $) NIL) (($ (-525)) 12) (($ (-385 (-525))) NIL)) (-2104 (((-713)) 15)) (-4100 (($ $ |#3|) 54)))
+(((-217 |#1| |#2| |#3|) (-10 -8 (-15 -1270 (|#1| (-385 (-525)))) (-15 -1270 (|#1| (-525))) (-15 -1270 ((-798) |#1|)) (-15 -2104 ((-713))) (-15 -2523 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -3416 ((-632 (-525)) (-632 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 |#1|) (-1173 |#1|))) (-15 -1270 (|#1| |#3|)) (-15 -2523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2523 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -3416 ((-632 |#3|) (-632 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 |#3|)) (|:| |vec| (-1173 |#3|))) (-632 |#1|) (-1173 |#1|))) (-15 -4190 ((-713))) (-15 -4100 (|#1| |#1| |#3|)) (-15 -3831 ((-128))) (-15 -1270 ((-1173 |#3|) |#1|))) (-218 |#2| |#3|) (-713) (-1127)) (T -217))
+((-3831 (*1 *2) (-12 (-14 *4 (-713)) (-4 *5 (-1127)) (-5 *2 (-128)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) (-4190 (*1 *2) (-12 (-14 *4 (-713)) (-4 *5 (-1127)) (-5 *2 (-713)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))) (-2104 (*1 *2) (-12 (-14 *4 (-713)) (-4 *5 (-1127)) (-5 *2 (-713)) (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5)))))
+(-10 -8 (-15 -1270 (|#1| (-385 (-525)))) (-15 -1270 (|#1| (-525))) (-15 -1270 ((-798) |#1|)) (-15 -2104 ((-713))) (-15 -2523 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -3416 ((-632 (-525)) (-632 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 |#1|) (-1173 |#1|))) (-15 -1270 (|#1| |#3|)) (-15 -2523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2523 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -3416 ((-632 |#3|) (-632 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 |#3|)) (|:| |vec| (-1173 |#3|))) (-632 |#1|) (-1173 |#1|))) (-15 -4190 ((-713))) (-15 -4100 (|#1| |#1| |#3|)) (-15 -3831 ((-128))) (-15 -1270 ((-1173 |#3|) |#1|)))
+((-1260 (((-108) $ $) 19 (|has| |#2| (-1020)))) (-1989 (((-108) $) 72 (|has| |#2| (-126)))) (-1606 (($ (-856)) 127 (|has| |#2| (-977)))) (-2782 (((-1178) $ (-525) (-525)) 40 (|has| $ (-6 -4256)))) (-2017 (($ $ $) 123 (|has| |#2| (-735)))) (-1342 (((-3 $ "failed") $ $) 74 (|has| |#2| (-126)))) (-3330 (((-108) $ (-713)) 8)) (-4190 (((-713)) 109 (|has| |#2| (-346)))) (-1436 (((-525) $) 121 (|has| |#2| (-787)))) (-1429 ((|#2| $ (-525) |#2|) 52 (|has| $ (-6 -4256)))) (-2305 (($) 7 T CONST)) (-2591 (((-3 (-525) "failed") $) 67 (-3830 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-3 (-385 (-525)) "failed") $) 64 (-3830 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1020)))) (-3898 (((-525) $) 68 (-3830 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-385 (-525)) $) 65 (-3830 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) ((|#2| $) 60 (|has| |#2| (-1020)))) (-3416 (((-632 (-525)) (-632 $)) 108 (-3830 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 107 (-3830 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) 106 (|has| |#2| (-977))) (((-632 |#2|) (-632 $)) 105 (|has| |#2| (-977)))) (-3762 (((-3 $ "failed") $) 80 (|has| |#2| (-669)))) (-2899 (($) 112 (|has| |#2| (-346)))) (-2632 ((|#2| $ (-525) |#2|) 53 (|has| $ (-6 -4256)))) (-2570 ((|#2| $ (-525)) 51)) (-3017 (((-108) $) 119 (|has| |#2| (-787)))) (-3702 (((-592 |#2|) $) 30 (|has| $ (-6 -4255)))) (-1985 (((-108) $) 83 (|has| |#2| (-669)))) (-3912 (((-108) $) 120 (|has| |#2| (-787)))) (-2482 (((-108) $ (-713)) 9)) (-2710 (((-525) $) 43 (|has| (-525) (-789)))) (-2371 (($ $ $) 118 (-3279 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-1749 (((-592 |#2|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4255))))) (-3478 (((-525) $) 44 (|has| (-525) (-789)))) (-2535 (($ $ $) 117 (-3279 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-2622 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#2| |#2|) $) 35)) (-1736 (((-856) $) 111 (|has| |#2| (-346)))) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (|has| |#2| (-1020)))) (-4142 (((-592 (-525)) $) 46)) (-3845 (((-108) (-525) $) 47)) (-3640 (($ (-856)) 110 (|has| |#2| (-346)))) (-2012 (((-1038) $) 21 (|has| |#2| (-1020)))) (-3110 ((|#2| $) 42 (|has| (-525) (-789)))) (-2042 (($ $ |#2|) 41 (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#2|))) 26 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) 25 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) 23 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-3428 (((-108) $ $) 14)) (-4101 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1777 (((-592 |#2|) $) 48)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#2| $ (-525) |#2|) 50) ((|#2| $ (-525)) 49)) (-1809 ((|#2| $ $) 126 (|has| |#2| (-977)))) (-2256 (($ (-1173 |#2|)) 128)) (-3831 (((-128)) 125 (|has| |#2| (-341)))) (-2523 (($ $) 100 (-3830 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) 98 (-3830 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1091)) 96 (-3830 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-592 (-1091))) 95 (-3830 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-1091) (-713)) 94 (-3830 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-592 (-1091)) (-592 (-713))) 93 (-3830 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) 86 (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-977)))) (-2040 (((-713) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4255))) (((-713) |#2| $) 28 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-1270 (((-1173 |#2|) $) 129) (($ (-525)) 66 (-3279 (-3830 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) (|has| |#2| (-977)))) (($ (-385 (-525))) 63 (-3830 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (($ |#2|) 62 (|has| |#2| (-1020))) (((-798) $) 18 (|has| |#2| (-566 (-798))))) (-2104 (((-713)) 104 (|has| |#2| (-977)))) (-3633 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4255)))) (-2086 (($ $) 122 (|has| |#2| (-787)))) (-1576 (($ $ (-713)) 81 (|has| |#2| (-669))) (($ $ (-856)) 77 (|has| |#2| (-669)))) (-3355 (($) 71 (|has| |#2| (-126)) CONST)) (-3363 (($) 84 (|has| |#2| (-669)) CONST)) (-2093 (($ $) 99 (-3830 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) 97 (-3830 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1091)) 92 (-3830 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-592 (-1091))) 91 (-3830 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-1091) (-713)) 90 (-3830 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-592 (-1091)) (-592 (-713))) 89 (-3830 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) 88 (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) 87 (|has| |#2| (-977)))) (-4045 (((-108) $ $) 115 (-3279 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-4026 (((-108) $ $) 114 (-3279 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-3994 (((-108) $ $) 20 (|has| |#2| (-1020)))) (-4037 (((-108) $ $) 116 (-3279 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-4017 (((-108) $ $) 113 (-3279 (|has| |#2| (-787)) (|has| |#2| (-735))))) (-4100 (($ $ |#2|) 124 (|has| |#2| (-341)))) (-4090 (($ $ $) 102 (|has| |#2| (-977))) (($ $) 101 (|has| |#2| (-977)))) (-4080 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-713)) 82 (|has| |#2| (-669))) (($ $ (-856)) 78 (|has| |#2| (-669)))) (* (($ (-525) $) 103 (|has| |#2| (-977))) (($ $ $) 79 (|has| |#2| (-669))) (($ $ |#2|) 76 (|has| |#2| (-669))) (($ |#2| $) 75 (|has| |#2| (-669))) (($ (-713) $) 73 (|has| |#2| (-126))) (($ (-856) $) 70 (|has| |#2| (-25)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-218 |#1| |#2|) (-131) (-713) (-1127)) (T -218))
+((-2256 (*1 *1 *2) (-12 (-5 *2 (-1173 *4)) (-4 *4 (-1127)) (-4 *1 (-218 *3 *4)))) (-1606 (*1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-218 *3 *4)) (-4 *4 (-977)) (-4 *4 (-1127)))) (-1809 (*1 *2 *1 *1) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1127)) (-4 *2 (-977)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1127)) (-4 *2 (-669)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1127)) (-4 *2 (-669)))))
+(-13 (-558 (-525) |t#2|) (-566 (-1173 |t#2|)) (-10 -8 (-6 -4255) (-15 -2256 ($ (-1173 |t#2|))) (IF (|has| |t#2| (-1020)) (-6 (-389 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-977)) (PROGN (-6 (-107 |t#2| |t#2|)) (-6 (-211 |t#2|)) (-6 (-355 |t#2|)) (-15 -1606 ($ (-856))) (-15 -1809 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-126)) (-6 (-126)) |%noBranch|) (IF (|has| |t#2| (-669)) (PROGN (-6 (-669)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#2| (-160)) (PROGN (-6 (-37 |t#2|)) (-6 (-160))) |%noBranch|) (IF (|has| |t#2| (-6 -4252)) (-6 -4252) |%noBranch|) (IF (|has| |t#2| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |t#2| (-735)) (-6 (-735)) |%noBranch|) (IF (|has| |t#2| (-341)) (-6 (-1180 |t#2|)) |%noBranch|)))
+(((-21) -3279 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-23) -3279 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126))) ((-25) -3279 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-160)) ((-97) -3279 (|has| |#2| (-1020)) (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-669)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-107 |#2| |#2|) -3279 (|has| |#2| (-977)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-107 $ $) |has| |#2| (-160)) ((-126) -3279 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126))) ((-566 (-798)) -3279 (|has| |#2| (-1020)) (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-669)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-566 (-798))) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-566 (-1173 |#2|)) . T) ((-160) |has| |#2| (-160)) ((-211 |#2|) |has| |#2| (-977)) ((-213) -12 (|has| |#2| (-213)) (|has| |#2| (-977))) ((-265 #0=(-525) |#2|) . T) ((-267 #0# |#2|) . T) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-346) |has| |#2| (-346)) ((-355 |#2|) |has| |#2| (-977)) ((-389 |#2|) |has| |#2| (-1020)) ((-464 |#2|) . T) ((-558 #0# |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-594 |#2|) -3279 (|has| |#2| (-977)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-594 $) -3279 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-588 (-525)) -12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977))) ((-588 |#2|) |has| |#2| (-977)) ((-660 |#2|) -3279 (|has| |#2| (-341)) (|has| |#2| (-160))) ((-669) -3279 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-669)) (|has| |#2| (-160))) ((-733) |has| |#2| (-787)) ((-734) -3279 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-735) |has| |#2| (-735)) ((-736) -3279 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-737) -3279 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-787) |has| |#2| (-787)) ((-789) -3279 (|has| |#2| (-787)) (|has| |#2| (-735))) ((-835 (-1091)) -12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977))) ((-968 (-385 (-525))) -12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020))) ((-968 (-525)) -12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) ((-968 |#2|) |has| |#2| (-1020)) ((-983 |#2|) -3279 (|has| |#2| (-977)) (|has| |#2| (-341)) (|has| |#2| (-160))) ((-983 $) |has| |#2| (-160)) ((-977) -3279 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-984) -3279 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-160))) ((-1032) -3279 (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-669)) (|has| |#2| (-160))) ((-1020) -3279 (|has| |#2| (-1020)) (|has| |#2| (-977)) (|has| |#2| (-787)) (|has| |#2| (-735)) (|has| |#2| (-669)) (|has| |#2| (-346)) (|has| |#2| (-341)) (|has| |#2| (-160)) (|has| |#2| (-126)) (|has| |#2| (-25))) ((-1127) . T) ((-1180 |#2|) |has| |#2| (-341)))
+((-3123 (((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|) 21)) (-3503 ((|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|) 23)) (-2694 (((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|)) 18)))
+(((-219 |#1| |#2| |#3|) (-10 -7 (-15 -3123 ((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -3503 (|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -2694 ((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|)))) (-713) (-1127) (-1127)) (T -219))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-5 *2 (-220 *5 *7)) (-5 *1 (-219 *5 *6 *7)))) (-3503 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713)) (-4 *6 (-1127)) (-4 *2 (-1127)) (-5 *1 (-219 *5 *6 *2)))) (-3123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-220 *6 *7)) (-14 *6 (-713)) (-4 *7 (-1127)) (-4 *5 (-1127)) (-5 *2 (-220 *6 *5)) (-5 *1 (-219 *6 *7 *5)))))
+(-10 -7 (-15 -3123 ((-220 |#1| |#3|) (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -3503 (|#3| (-1 |#3| |#2| |#3|) (-220 |#1| |#2|) |#3|)) (-15 -2694 ((-220 |#1| |#3|) (-1 |#3| |#2|) (-220 |#1| |#2|))))
+((-1260 (((-108) $ $) NIL (|has| |#2| (-1020)))) (-1989 (((-108) $) NIL (|has| |#2| (-126)))) (-1606 (($ (-856)) 56 (|has| |#2| (-977)))) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-2017 (($ $ $) 60 (|has| |#2| (-735)))) (-1342 (((-3 $ "failed") $ $) 49 (|has| |#2| (-126)))) (-3330 (((-108) $ (-713)) 17)) (-4190 (((-713)) NIL (|has| |#2| (-346)))) (-1436 (((-525) $) NIL (|has| |#2| (-787)))) (-1429 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4256)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1020)))) (-3898 (((-525) $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) ((|#2| $) 27 (|has| |#2| (-1020)))) (-3416 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) NIL (|has| |#2| (-977))) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-977)))) (-3762 (((-3 $ "failed") $) 53 (|has| |#2| (-669)))) (-2899 (($) NIL (|has| |#2| (-346)))) (-2632 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#2| $ (-525)) 51)) (-3017 (((-108) $) NIL (|has| |#2| (-787)))) (-3702 (((-592 |#2|) $) 15 (|has| $ (-6 -4255)))) (-1985 (((-108) $) NIL (|has| |#2| (-669)))) (-3912 (((-108) $) NIL (|has| |#2| (-787)))) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) 20 (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-1749 (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-3478 (((-525) $) 50 (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2622 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#2| |#2|) $) 41)) (-1736 (((-856) $) NIL (|has| |#2| (-346)))) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#2| (-1020)))) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-3640 (($ (-856)) NIL (|has| |#2| (-346)))) (-2012 (((-1038) $) NIL (|has| |#2| (-1020)))) (-3110 ((|#2| $) NIL (|has| (-525) (-789)))) (-2042 (($ $ |#2|) NIL (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#2|) $) 24 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1777 (((-592 |#2|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) 21)) (-1809 ((|#2| $ $) NIL (|has| |#2| (-977)))) (-2256 (($ (-1173 |#2|)) 18)) (-3831 (((-128)) NIL (|has| |#2| (-341)))) (-2523 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1091)) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-2040 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1451 (($ $) NIL)) (-1270 (((-1173 |#2|) $) 10) (($ (-525)) NIL (-3279 (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) (|has| |#2| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (($ |#2|) 13 (|has| |#2| (-1020))) (((-798) $) NIL (|has| |#2| (-566 (-798))))) (-2104 (((-713)) NIL (|has| |#2| (-977)))) (-3633 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-2086 (($ $) NIL (|has| |#2| (-787)))) (-1576 (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (-3355 (($) 35 (|has| |#2| (-126)) CONST)) (-3363 (($) 38 (|has| |#2| (-669)) CONST)) (-2093 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1091)) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-4045 (((-108) $ $) NIL (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4026 (((-108) $ $) NIL (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3994 (((-108) $ $) 26 (|has| |#2| (-1020)))) (-4037 (((-108) $ $) NIL (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4017 (((-108) $ $) 58 (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4100 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4090 (($ $ $) NIL (|has| |#2| (-977))) (($ $) NIL (|has| |#2| (-977)))) (-4080 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (* (($ (-525) $) NIL (|has| |#2| (-977))) (($ $ $) 44 (|has| |#2| (-669))) (($ $ |#2|) 42 (|has| |#2| (-669))) (($ |#2| $) 43 (|has| |#2| (-669))) (($ (-713) $) NIL (|has| |#2| (-126))) (($ (-856) $) NIL (|has| |#2| (-25)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-220 |#1| |#2|) (-218 |#1| |#2|) (-713) (-1127)) (T -220))
NIL
(-218 |#1| |#2|)
-((-3408 (((-525) (-592 (-1073))) 24) (((-525) (-1073)) 19)) (-1930 (((-1177) (-592 (-1073))) 29) (((-1177) (-1073)) 28)) (-1710 (((-1073)) 14)) (-1563 (((-1073) (-525) (-1073)) 16)) (-2563 (((-592 (-1073)) (-592 (-1073)) (-525) (-1073)) 25) (((-1073) (-1073) (-525) (-1073)) 23)) (-3620 (((-592 (-1073)) (-592 (-1073))) 13) (((-592 (-1073)) (-1073)) 11)))
-(((-221) (-10 -7 (-15 -3620 ((-592 (-1073)) (-1073))) (-15 -3620 ((-592 (-1073)) (-592 (-1073)))) (-15 -1710 ((-1073))) (-15 -1563 ((-1073) (-525) (-1073))) (-15 -2563 ((-1073) (-1073) (-525) (-1073))) (-15 -2563 ((-592 (-1073)) (-592 (-1073)) (-525) (-1073))) (-15 -1930 ((-1177) (-1073))) (-15 -1930 ((-1177) (-592 (-1073)))) (-15 -3408 ((-525) (-1073))) (-15 -3408 ((-525) (-592 (-1073)))))) (T -221))
-((-3408 (*1 *2 *3) (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-525)) (-5 *1 (-221)))) (-3408 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-525)) (-5 *1 (-221)))) (-1930 (*1 *2 *3) (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-1177)) (-5 *1 (-221)))) (-1930 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-221)))) (-2563 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-592 (-1073))) (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *1 (-221)))) (-2563 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-525)) (-5 *1 (-221)))) (-1563 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-525)) (-5 *1 (-221)))) (-1710 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-221)))) (-3620 (*1 *2 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-221)))) (-3620 (*1 *2 *3) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-221)) (-5 *3 (-1073)))))
-(-10 -7 (-15 -3620 ((-592 (-1073)) (-1073))) (-15 -3620 ((-592 (-1073)) (-592 (-1073)))) (-15 -1710 ((-1073))) (-15 -1563 ((-1073) (-525) (-1073))) (-15 -2563 ((-1073) (-1073) (-525) (-1073))) (-15 -2563 ((-592 (-1073)) (-592 (-1073)) (-525) (-1073))) (-15 -1930 ((-1177) (-1073))) (-15 -1930 ((-1177) (-592 (-1073)))) (-15 -3408 ((-525) (-1073))) (-15 -3408 ((-525) (-592 (-1073)))))
-((-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 9)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 18)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ (-385 (-525)) $) 25) (($ $ (-385 (-525))) NIL)))
-(((-222 |#1|) (-10 -8 (-15 -3465 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 ** (|#1| |#1| (-713))) (-15 -3465 (|#1| |#1| (-713))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-855))) (-15 -3465 (|#1| |#1| (-855))) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|))) (-223)) (T -222))
-NIL
-(-10 -8 (-15 -3465 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 ** (|#1| |#1| (-713))) (-15 -3465 (|#1| |#1| (-713))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-855))) (-15 -3465 (|#1| |#1| (-855))) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-2337 (((-1073) $) 9)) (-4211 (($ $) 39)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 44)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 40)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 41)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ (-385 (-525)) $) 43) (($ $ (-385 (-525))) 42)))
+((-3311 (((-525) (-592 (-1074))) 24) (((-525) (-1074)) 19)) (-3130 (((-1178) (-592 (-1074))) 29) (((-1178) (-1074)) 28)) (-4053 (((-1074)) 14)) (-3107 (((-1074) (-525) (-1074)) 16)) (-3144 (((-592 (-1074)) (-592 (-1074)) (-525) (-1074)) 25) (((-1074) (-1074) (-525) (-1074)) 23)) (-3125 (((-592 (-1074)) (-592 (-1074))) 13) (((-592 (-1074)) (-1074)) 11)))
+(((-221) (-10 -7 (-15 -3125 ((-592 (-1074)) (-1074))) (-15 -3125 ((-592 (-1074)) (-592 (-1074)))) (-15 -4053 ((-1074))) (-15 -3107 ((-1074) (-525) (-1074))) (-15 -3144 ((-1074) (-1074) (-525) (-1074))) (-15 -3144 ((-592 (-1074)) (-592 (-1074)) (-525) (-1074))) (-15 -3130 ((-1178) (-1074))) (-15 -3130 ((-1178) (-592 (-1074)))) (-15 -3311 ((-525) (-1074))) (-15 -3311 ((-525) (-592 (-1074)))))) (T -221))
+((-3311 (*1 *2 *3) (-12 (-5 *3 (-592 (-1074))) (-5 *2 (-525)) (-5 *1 (-221)))) (-3311 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-525)) (-5 *1 (-221)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-592 (-1074))) (-5 *2 (-1178)) (-5 *1 (-221)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-221)))) (-3144 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-592 (-1074))) (-5 *3 (-525)) (-5 *4 (-1074)) (-5 *1 (-221)))) (-3144 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-525)) (-5 *1 (-221)))) (-3107 (*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-525)) (-5 *1 (-221)))) (-4053 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221)))) (-3125 (*1 *2 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-221)))) (-3125 (*1 *2 *3) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-221)) (-5 *3 (-1074)))))
+(-10 -7 (-15 -3125 ((-592 (-1074)) (-1074))) (-15 -3125 ((-592 (-1074)) (-592 (-1074)))) (-15 -4053 ((-1074))) (-15 -3107 ((-1074) (-525) (-1074))) (-15 -3144 ((-1074) (-1074) (-525) (-1074))) (-15 -3144 ((-592 (-1074)) (-592 (-1074)) (-525) (-1074))) (-15 -3130 ((-1178) (-1074))) (-15 -3130 ((-1178) (-592 (-1074)))) (-15 -3311 ((-525) (-1074))) (-15 -3311 ((-525) (-592 (-1074)))))
+((-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 9)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 18)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ (-385 (-525)) $) 25) (($ $ (-385 (-525))) NIL)))
+(((-222 |#1|) (-10 -8 (-15 -1576 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 ** (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1| (-713))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 -1576 (|#1| |#1| (-856))) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|))) (-223)) (T -222))
+NIL
+(-10 -8 (-15 -1576 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 ** (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1| (-713))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 -1576 (|#1| |#1| (-856))) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-3451 (((-1074) $) 9)) (-2502 (($ $) 39)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 44)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 40)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 41)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ (-385 (-525)) $) 43) (($ $ (-385 (-525))) 42)))
(((-223) (-131)) (T -223))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525)))) (-3465 (*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525)))) (-4211 (*1 *1 *1) (-4 *1 (-223))))
-(-13 (-269) (-37 (-385 (-525))) (-10 -8 (-15 ** ($ $ (-525))) (-15 -3465 ($ $ (-525))) (-15 -4211 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-269) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-669) . T) ((-982 #0#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3871 ((|#1| $) 48)) (-1614 (($ $) 57)) (-3410 (((-108) $ (-713)) 8)) (-2822 ((|#1| $ |#1|) 39 (|has| $ (-6 -4255)))) (-1625 (($ $ $) 53 (|has| $ (-6 -4255)))) (-3734 (($ $ $) 52 (|has| $ (-6 -4255)))) (-2109 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-1505 (($) 7 T CONST)) (-3876 (($ $) 56)) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) 50)) (-3106 (((-108) $ $) 42 (|has| |#1| (-1019)))) (-4146 (($ $) 55)) (-3100 (((-108) $ (-713)) 9)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-1564 (((-592 |#1|) $) 45)) (-3723 (((-108) $) 49)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2292 ((|#1| $) 59)) (-3888 (($ $) 58)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#1| $ "value") 47)) (-4068 (((-525) $ $) 44)) (-1810 (((-108) $) 46)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1497 (($ $ $) 54 (|has| $ (-6 -4255)))) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) 51)) (-1519 (((-108) $ $) 43 (|has| |#1| (-1019)))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-224 |#1|) (-131) (-1126)) (T -224))
-((-2292 (*1 *2 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126)))) (-3888 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126)))) (-1614 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126)))) (-3876 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126)))) (-4146 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126)))) (-1497 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-224 *2)) (-4 *2 (-1126)))) (-1625 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-224 *2)) (-4 *2 (-1126)))) (-3734 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-224 *2)) (-4 *2 (-1126)))))
-(-13 (-941 |t#1|) (-10 -8 (-15 -2292 (|t#1| $)) (-15 -3888 ($ $)) (-15 -1614 ($ $)) (-15 -3876 ($ $)) (-15 -4146 ($ $)) (IF (|has| $ (-6 -4255)) (PROGN (-15 -1497 ($ $ $)) (-15 -1625 ($ $ $)) (-15 -3734 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-941 |#1|) . T) ((-1019) |has| |#1| (-1019)) ((-1126) . T))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3871 ((|#1| $) NIL)) (-1899 ((|#1| $) NIL)) (-1614 (($ $) NIL)) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3035 (($ $ (-525)) NIL (|has| $ (-6 -4255)))) (-3072 (((-108) $) NIL (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1356 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-3327 (($ $) 10 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-2822 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-3795 (($ $ $) NIL (|has| $ (-6 -4255)))) (-2813 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-1517 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-2109 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4255))) (($ $ "rest" $) NIL (|has| $ (-6 -4255))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-3290 (($ (-1 (-108) |#1|) $) NIL)) (-2724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1882 ((|#1| $) NIL)) (-1505 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| $ (-6 -4255)))) (-1693 (($ $) NIL)) (-3145 (($ $) NIL) (($ $ (-713)) NIL)) (-3143 (($ $) NIL (|has| |#1| (-1019)))) (-3163 (($ $) 7 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2792 (($ |#1| $) NIL (|has| |#1| (-1019))) (($ (-1 (-108) |#1|) $) NIL)) (-2273 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2870 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) NIL)) (-2495 (((-108) $) NIL)) (-3763 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019))) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) (-1 (-108) |#1|) $) NIL)) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) NIL)) (-3106 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4018 (($ (-713) |#1|) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) NIL (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-2749 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1932 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3037 (($ |#1|) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-1564 (((-592 |#1|) $) NIL)) (-3723 (((-108) $) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2292 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-2573 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-3167 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3135 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1911 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-2518 (((-108) $) NIL)) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1139 (-525))) NIL) ((|#1| $ (-525)) NIL) ((|#1| $ (-525) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-713) $ "count") 16)) (-4068 (((-525) $ $) NIL)) (-3977 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-3653 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-3332 (($ (-592 |#1|)) 22)) (-1810 (((-108) $) NIL)) (-1350 (($ $) NIL)) (-2027 (($ $) NIL (|has| $ (-6 -4255)))) (-1290 (((-713) $) NIL)) (-3080 (($ $) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3703 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) NIL)) (-1497 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2664 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-592 $)) NIL) (($ $ |#1|) NIL)) (-1908 (($ (-592 |#1|)) 17) (((-592 |#1|) $) 18) (((-797) $) 21 (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) NIL)) (-1519 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4140 (((-713) $) 14 (|has| $ (-6 -4254)))))
-(((-225 |#1|) (-13 (-612 |#1|) (-10 -8 (-15 -1908 ($ (-592 |#1|))) (-15 -1908 ((-592 |#1|) $)) (-15 -3332 ($ (-592 |#1|))) (-15 -3928 ($ $ "unique")) (-15 -3928 ($ $ "sort")) (-15 -3928 ((-713) $ "count")))) (-789)) (T -225))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-225 *3)) (-4 *3 (-789)))) (-3332 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3)))) (-3928 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-225 *3)) (-4 *3 (-789)))) (-3928 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-225 *3)) (-4 *3 (-789)))) (-3928 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-713)) (-5 *1 (-225 *4)) (-4 *4 (-789)))))
-(-13 (-612 |#1|) (-10 -8 (-15 -1908 ($ (-592 |#1|))) (-15 -1908 ((-592 |#1|) $)) (-15 -3332 ($ (-592 |#1|))) (-15 -3928 ($ $ "unique")) (-15 -3928 ($ $ "sort")) (-15 -3928 ((-713) $ "count"))))
-((-3301 (((-3 (-713) "failed") |#1| |#1| (-713)) 27)))
-(((-226 |#1|) (-10 -7 (-15 -3301 ((-3 (-713) "failed") |#1| |#1| (-713)))) (-13 (-669) (-346) (-10 -7 (-15 ** (|#1| |#1| (-525)))))) (T -226))
-((-3301 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-713)) (-4 *3 (-13 (-669) (-346) (-10 -7 (-15 ** (*3 *3 (-525)))))) (-5 *1 (-226 *3)))))
-(-10 -7 (-15 -3301 ((-3 (-713) "failed") |#1| |#1| (-713))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-4104 (((-592 (-799 |#1|)) $) NIL)) (-3927 (((-1086 $) $ (-799 |#1|)) NIL) (((-1086 |#2|) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-3635 (($ $) NIL (|has| |#2| (-517)))) (-2950 (((-108) $) NIL (|has| |#2| (-517)))) (-1324 (((-713) $) NIL) (((-713) $ (-592 (-799 |#1|))) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-3321 (($ $) NIL (|has| |#2| (-429)))) (-1510 (((-396 $) $) NIL (|has| |#2| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-799 |#1|) "failed") $) NIL)) (-2831 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-967 (-525)))) (((-799 |#1|) $) NIL)) (-2506 (($ $ $ (-799 |#1|)) NIL (|has| |#2| (-160)))) (-2383 (($ $ (-592 (-525))) NIL)) (-1247 (($ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3811 (($ $) NIL (|has| |#2| (-429))) (($ $ (-799 |#1|)) NIL (|has| |#2| (-429)))) (-1234 (((-592 $) $) NIL)) (-2250 (((-108) $) NIL (|has| |#2| (-843)))) (-2099 (($ $ |#2| (-220 (-4140 |#1|) (-713)) $) NIL)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-799 |#1|) (-820 (-357))) (|has| |#2| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-799 |#1|) (-820 (-525))) (|has| |#2| (-820 (-525)))))) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) NIL)) (-4092 (($ (-1086 |#2|) (-799 |#1|)) NIL) (($ (-1086 $) (-799 |#1|)) NIL)) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) NIL)) (-4079 (($ |#2| (-220 (-4140 |#1|) (-713))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ (-799 |#1|)) NIL)) (-3181 (((-220 (-4140 |#1|) (-713)) $) NIL) (((-713) $ (-799 |#1|)) NIL) (((-592 (-713)) $ (-592 (-799 |#1|))) NIL)) (-3525 (($ $ $) NIL (|has| |#2| (-789)))) (-3630 (($ $ $) NIL (|has| |#2| (-789)))) (-1331 (($ (-1 (-220 (-4140 |#1|) (-713)) (-220 (-4140 |#1|) (-713))) $) NIL)) (-1370 (($ (-1 |#2| |#2|) $) NIL)) (-1666 (((-3 (-799 |#1|) "failed") $) NIL)) (-1212 (($ $) NIL)) (-1224 ((|#2| $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2337 (((-1073) $) NIL)) (-3245 (((-3 (-592 $) "failed") $) NIL)) (-3193 (((-3 (-592 $) "failed") $) NIL)) (-3283 (((-3 (-2 (|:| |var| (-799 |#1|)) (|:| -1600 (-713))) "failed") $) NIL)) (-2663 (((-1037) $) NIL)) (-4221 (((-108) $) NIL)) (-4232 ((|#2| $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-429)))) (-3244 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-3959 (((-396 $) $) NIL (|has| |#2| (-843)))) (-2338 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-3092 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-799 |#1|) |#2|) NIL) (($ $ (-592 (-799 |#1|)) (-592 |#2|)) NIL) (($ $ (-799 |#1|) $) NIL) (($ $ (-592 (-799 |#1|)) (-592 $)) NIL)) (-1400 (($ $ (-799 |#1|)) NIL (|has| |#2| (-160)))) (-3013 (($ $ (-799 |#1|)) NIL) (($ $ (-592 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-2513 (((-220 (-4140 |#1|) (-713)) $) NIL) (((-713) $ (-799 |#1|)) NIL) (((-592 (-713)) $ (-592 (-799 |#1|))) NIL)) (-1427 (((-826 (-357)) $) NIL (-12 (|has| (-799 |#1|) (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-799 |#1|) (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-799 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2751 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-799 |#1|)) NIL (|has| |#2| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-843))))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-799 |#1|)) NIL) (($ (-385 (-525))) NIL (-3309 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-3600 (((-592 |#2|) $) NIL)) (-1657 ((|#2| $ (-220 (-4140 |#1|) (-713))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#2| (-843))) (|has| |#2| (-136))))) (-2093 (((-713)) NIL)) (-4116 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-2262 (((-108) $ $) NIL (|has| |#2| (-517)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $ (-799 |#1|)) NIL) (($ $ (-592 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-4024 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4082 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-227 |#1| |#2|) (-13 (-883 |#2| (-220 (-4140 |#1|) (-713)) (-799 |#1|)) (-10 -8 (-15 -2383 ($ $ (-592 (-525)))))) (-592 (-1090)) (-976)) (T -227))
-((-2383 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-227 *3 *4)) (-14 *3 (-592 (-1090))) (-4 *4 (-976)))))
-(-13 (-883 |#2| (-220 (-4140 |#1|) (-713)) (-799 |#1|)) (-10 -8 (-15 -2383 ($ $ (-592 (-525))))))
-((-2609 (((-1177) $) 12)) (-2228 (((-169) $) 9)) (-1634 (($ (-169)) 10)) (-1908 (((-797) $) 7)))
-(((-228) (-13 (-566 (-797)) (-10 -8 (-15 -2228 ((-169) $)) (-15 -1634 ($ (-169))) (-15 -2609 ((-1177) $))))) (T -228))
-((-2228 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-228)))) (-1634 (*1 *1 *2) (-12 (-5 *2 (-169)) (-5 *1 (-228)))) (-2609 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-228)))))
-(-13 (-566 (-797)) (-10 -8 (-15 -2228 ((-169) $)) (-15 -1634 ($ (-169))) (-15 -2609 ((-1177) $))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-2516 (($ (-855)) NIL (|has| |#4| (-976)))) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-1487 (($ $ $) NIL (|has| |#4| (-735)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-3107 (((-713)) NIL (|has| |#4| (-346)))) (-1690 (((-525) $) NIL (|has| |#4| (-787)))) (-2109 ((|#4| $ (-525) |#4|) NIL (|has| $ (-6 -4255)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1019))) (((-3 (-525) "failed") $) NIL (-12 (|has| |#4| (-967 (-525))) (|has| |#4| (-1019)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#4| (-967 (-385 (-525)))) (|has| |#4| (-1019))))) (-2831 ((|#4| $) NIL (|has| |#4| (-1019))) (((-525) $) NIL (-12 (|has| |#4| (-967 (-525))) (|has| |#4| (-1019)))) (((-385 (-525)) $) NIL (-12 (|has| |#4| (-967 (-385 (-525)))) (|has| |#4| (-1019))))) (-1860 (((-2 (|:| -3276 (-632 |#4|)) (|:| |vec| (-1172 |#4|))) (-632 $) (-1172 $)) NIL (|has| |#4| (-976))) (((-632 |#4|) (-632 $)) NIL (|has| |#4| (-976))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-976)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-976))))) (-2866 (((-3 $ "failed") $) NIL (|has| |#4| (-976)))) (-3375 (($) NIL (|has| |#4| (-346)))) (-2870 ((|#4| $ (-525) |#4|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#4| $ (-525)) NIL)) (-3026 (((-108) $) NIL (|has| |#4| (-787)))) (-2026 (((-592 |#4|) $) NIL (|has| $ (-6 -4254)))) (-2133 (((-108) $) NIL (|has| |#4| (-976)))) (-2882 (((-108) $) NIL (|has| |#4| (-787)))) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) NIL (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (-3309 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-3168 (((-592 |#4|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (-3309 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-2857 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#4| |#4|) $) NIL)) (-1780 (((-855) $) NIL (|has| |#4| (-346)))) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-4185 (($ (-855)) NIL (|has| |#4| (-346)))) (-2663 (((-1037) $) NIL)) (-3135 ((|#4| $) NIL (|has| (-525) (-789)))) (-1911 (($ $ |#4|) NIL (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-3171 (((-592 |#4|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#4| $ (-525) |#4|) NIL) ((|#4| $ (-525)) 12)) (-1595 ((|#4| $ $) NIL (|has| |#4| (-976)))) (-4007 (($ (-1172 |#4|)) NIL)) (-3191 (((-128)) NIL (|has| |#4| (-341)))) (-3013 (($ $ (-1 |#4| |#4|) (-713)) NIL (|has| |#4| (-976))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-976))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-976)))) (($ $) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-976))))) (-2686 (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254))) (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2135 (($ $) NIL)) (-1908 (((-1172 |#4|) $) NIL) (((-797) $) NIL) (($ |#4|) NIL (|has| |#4| (-1019))) (($ (-525)) NIL (-3309 (-12 (|has| |#4| (-967 (-525))) (|has| |#4| (-1019))) (|has| |#4| (-976)))) (($ (-385 (-525))) NIL (-12 (|has| |#4| (-967 (-385 (-525)))) (|has| |#4| (-1019))))) (-2093 (((-713)) NIL (|has| |#4| (-976)))) (-2667 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2092 (($ $) NIL (|has| |#4| (-787)))) (-3465 (($ $ (-713)) NIL (|has| |#4| (-976))) (($ $ (-855)) NIL (|has| |#4| (-976)))) (-3875 (($) NIL T CONST)) (-3882 (($) NIL (|has| |#4| (-976)) CONST)) (-1424 (($ $ (-1 |#4| |#4|) (-713)) NIL (|has| |#4| (-976))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-976))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#4| (-834 (-1090))) (|has| |#4| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-976)))) (($ $) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-976))))) (-4024 (((-108) $ $) NIL (-3309 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-3995 (((-108) $ $) NIL (-3309 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (-3309 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-3983 (((-108) $ $) NIL (-3309 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-4082 (($ $ |#4|) NIL (|has| |#4| (-341)))) (-4070 (($ $ $) NIL) (($ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-713)) NIL (|has| |#4| (-976))) (($ $ (-855)) NIL (|has| |#4| (-976)))) (* (($ |#2| $) 14) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-855) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-669))) (($ |#4| $) NIL (|has| |#4| (-669))) (($ $ $) NIL (|has| |#4| (-976)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-229 |#1| |#2| |#3| |#4|) (-13 (-218 |#1| |#4|) (-594 |#2|) (-594 |#3|)) (-855) (-976) (-1040 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-594 |#2|)) (T -229))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525)))) (-1576 (*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525)))) (-2502 (*1 *1 *1) (-4 *1 (-223))))
+(-13 (-269) (-37 (-385 (-525))) (-10 -8 (-15 ** ($ $ (-525))) (-15 -1576 ($ $ (-525))) (-15 -2502 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-269) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-669) . T) ((-983 #0#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3352 ((|#1| $) 48)) (-2941 (($ $) 57)) (-3330 (((-108) $ (-713)) 8)) (-1545 ((|#1| $ |#1|) 39 (|has| $ (-6 -4256)))) (-3421 (($ $ $) 53 (|has| $ (-6 -4256)))) (-3455 (($ $ $) 52 (|has| $ (-6 -4256)))) (-1429 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) 41 (|has| $ (-6 -4256)))) (-2305 (($) 7 T CONST)) (-3282 (($ $) 56)) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) 50)) (-2553 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-2489 (($ $) 55)) (-2482 (((-108) $ (-713)) 9)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-2647 (((-592 |#1|) $) 45)) (-3365 (((-108) $) 49)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-1636 ((|#1| $) 59)) (-2581 (($ $) 58)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#1| $ "value") 47)) (-3294 (((-525) $ $) 44)) (-1698 (((-108) $) 46)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-2162 (($ $ $) 54 (|has| $ (-6 -4256)))) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) 51)) (-2240 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-224 |#1|) (-131) (-1127)) (T -224))
+((-1636 (*1 *2 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1127)))) (-2581 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1127)))) (-2941 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1127)))) (-3282 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1127)))) (-2489 (*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1127)))) (-2162 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-224 *2)) (-4 *2 (-1127)))) (-3421 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-224 *2)) (-4 *2 (-1127)))) (-3455 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-224 *2)) (-4 *2 (-1127)))))
+(-13 (-942 |t#1|) (-10 -8 (-15 -1636 (|t#1| $)) (-15 -2581 ($ $)) (-15 -2941 ($ $)) (-15 -3282 ($ $)) (-15 -2489 ($ $)) (IF (|has| $ (-6 -4256)) (PROGN (-15 -2162 ($ $ $)) (-15 -3421 ($ $ $)) (-15 -3455 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1127) . T))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3352 ((|#1| $) NIL)) (-2029 ((|#1| $) NIL)) (-2941 (($ $) NIL)) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-3078 (($ $ (-525)) NIL (|has| $ (-6 -4256)))) (-2151 (((-108) $) NIL (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2549 (($ $) NIL (-12 (|has| $ (-6 -4256)) (|has| |#1| (-789)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2855 (($ $) 10 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-1545 ((|#1| $ |#1|) NIL (|has| $ (-6 -4256)))) (-2914 (($ $ $) NIL (|has| $ (-6 -4256)))) (-1455 ((|#1| $ |#1|) NIL (|has| $ (-6 -4256)))) (-2207 ((|#1| $ |#1|) NIL (|has| $ (-6 -4256)))) (-1429 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4256))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4256))) (($ $ "rest" $) NIL (|has| $ (-6 -4256))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) NIL (|has| $ (-6 -4256))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) NIL (|has| $ (-6 -4256)))) (-1608 (($ (-1 (-108) |#1|) $) NIL)) (-3826 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2016 ((|#1| $) NIL)) (-2305 (($) NIL T CONST)) (-3559 (($ $) NIL (|has| $ (-6 -4256)))) (-3620 (($ $) NIL)) (-3121 (($ $) NIL) (($ $ (-713)) NIL)) (-1540 (($ $) NIL (|has| |#1| (-1020)))) (-3137 (($ $) 7 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2592 (($ |#1| $) NIL (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) NIL)) (-1614 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2632 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) NIL)) (-1406 (((-108) $) NIL)) (-1916 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020))) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) (-1 (-108) |#1|) $) NIL)) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) NIL)) (-2553 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3489 (($ (-713) |#1|) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) NIL (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-1999 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3743 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4104 (($ |#1|) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-2647 (((-592 |#1|) $) NIL)) (-3365 (((-108) $) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-1636 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-3985 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2683 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3110 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2042 (($ $ |#1|) NIL (|has| $ (-6 -4256)))) (-1626 (((-108) $) NIL)) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1140 (-525))) NIL) ((|#1| $ (-525)) NIL) ((|#1| $ (-525) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-713) $ "count") 16)) (-3294 (((-525) $ $) NIL)) (-3793 (($ $ (-1140 (-525))) NIL) (($ $ (-525)) NIL)) (-3157 (($ $ (-1140 (-525))) NIL) (($ $ (-525)) NIL)) (-3611 (($ (-592 |#1|)) 22)) (-1698 (((-108) $) NIL)) (-2491 (($ $) NIL)) (-3385 (($ $) NIL (|has| $ (-6 -4256)))) (-2389 (((-713) $) NIL)) (-2249 (($ $) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3216 (($ $ $ (-525)) NIL (|has| $ (-6 -4256)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) NIL)) (-2162 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2014 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-592 $)) NIL) (($ $ |#1|) NIL)) (-1270 (($ (-592 |#1|)) 17) (((-592 |#1|) $) 18) (((-798) $) 21 (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) NIL)) (-2240 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3596 (((-713) $) 14 (|has| $ (-6 -4255)))))
+(((-225 |#1|) (-13 (-612 |#1|) (-10 -8 (-15 -1270 ($ (-592 |#1|))) (-15 -1270 ((-592 |#1|) $)) (-15 -3611 ($ (-592 |#1|))) (-15 -3410 ($ $ "unique")) (-15 -3410 ($ $ "sort")) (-15 -3410 ((-713) $ "count")))) (-789)) (T -225))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-225 *3)) (-4 *3 (-789)))) (-3611 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3)))) (-3410 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-225 *3)) (-4 *3 (-789)))) (-3410 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-225 *3)) (-4 *3 (-789)))) (-3410 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-713)) (-5 *1 (-225 *4)) (-4 *4 (-789)))))
+(-13 (-612 |#1|) (-10 -8 (-15 -1270 ($ (-592 |#1|))) (-15 -1270 ((-592 |#1|) $)) (-15 -3611 ($ (-592 |#1|))) (-15 -3410 ($ $ "unique")) (-15 -3410 ($ $ "sort")) (-15 -3410 ((-713) $ "count"))))
+((-1711 (((-3 (-713) "failed") |#1| |#1| (-713)) 27)))
+(((-226 |#1|) (-10 -7 (-15 -1711 ((-3 (-713) "failed") |#1| |#1| (-713)))) (-13 (-669) (-346) (-10 -7 (-15 ** (|#1| |#1| (-525)))))) (T -226))
+((-1711 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-713)) (-4 *3 (-13 (-669) (-346) (-10 -7 (-15 ** (*3 *3 (-525)))))) (-5 *1 (-226 *3)))))
+(-10 -7 (-15 -1711 ((-3 (-713) "failed") |#1| |#1| (-713))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2383 (((-592 (-800 |#1|)) $) NIL)) (-2146 (((-1087 $) $ (-800 |#1|)) NIL) (((-1087 |#2|) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-3711 (($ $) NIL (|has| |#2| (-517)))) (-3380 (((-108) $) NIL (|has| |#2| (-517)))) (-3848 (((-713) $) NIL) (((-713) $ (-592 (-800 |#1|))) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-3706 (($ $) NIL (|has| |#2| (-429)))) (-2100 (((-396 $) $) NIL (|has| |#2| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-800 |#1|) "failed") $) NIL)) (-3898 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-800 |#1|) $) NIL)) (-1516 (($ $ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-2866 (($ $ (-592 (-525))) NIL)) (-2571 (($ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3026 (($ $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-2558 (((-592 $) $) NIL)) (-3836 (((-108) $) NIL (|has| |#2| (-844)))) (-2192 (($ $ |#2| (-220 (-3596 |#1|) (-713)) $) NIL)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) NIL)) (-2368 (($ (-1087 |#2|) (-800 |#1|)) NIL) (($ (-1087 $) (-800 |#1|)) NIL)) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) NIL)) (-2352 (($ |#2| (-220 (-3596 |#1|) (-713))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ (-800 |#1|)) NIL)) (-3724 (((-220 (-3596 |#1|) (-713)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-2371 (($ $ $) NIL (|has| |#2| (-789)))) (-2535 (($ $ $) NIL (|has| |#2| (-789)))) (-3922 (($ (-1 (-220 (-3596 |#1|) (-713)) (-220 (-3596 |#1|) (-713))) $) NIL)) (-2694 (($ (-1 |#2| |#2|) $) NIL)) (-3567 (((-3 (-800 |#1|) "failed") $) NIL)) (-2538 (($ $) NIL)) (-2548 ((|#2| $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3451 (((-1074) $) NIL)) (-4228 (((-3 (-592 $) "failed") $) NIL)) (-3852 (((-3 (-592 $) "failed") $) NIL)) (-1553 (((-3 (-2 (|:| |var| (-800 |#1|)) (|:| -1864 (-713))) "failed") $) NIL)) (-2012 (((-1038) $) NIL)) (-2513 (((-108) $) NIL)) (-2525 ((|#2| $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-429)))) (-2794 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-2195 (((-396 $) $) NIL (|has| |#2| (-844)))) (-1680 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2602 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-800 |#1|) |#2|) NIL) (($ $ (-592 (-800 |#1|)) (-592 |#2|)) NIL) (($ $ (-800 |#1|) $) NIL) (($ $ (-592 (-800 |#1|)) (-592 $)) NIL)) (-2094 (($ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-2523 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-1587 (((-220 (-3596 |#1|) (-713)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-2749 (((-827 (-357)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-800 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2026 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-800 |#1|)) NIL) (($ (-385 (-525))) NIL (-3279 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-1562 (((-592 |#2|) $) NIL)) (-3468 ((|#2| $ (-220 (-3596 |#1|) (-713))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-2104 (((-713)) NIL)) (-3658 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-3959 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-4045 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4100 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-227 |#1| |#2|) (-13 (-884 |#2| (-220 (-3596 |#1|) (-713)) (-800 |#1|)) (-10 -8 (-15 -2866 ($ $ (-592 (-525)))))) (-592 (-1091)) (-977)) (T -227))
+((-2866 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-227 *3 *4)) (-14 *3 (-592 (-1091))) (-4 *4 (-977)))))
+(-13 (-884 |#2| (-220 (-3596 |#1|) (-713)) (-800 |#1|)) (-10 -8 (-15 -2866 ($ $ (-592 (-525))))))
+((-1956 (((-1178) $) 12)) (-1761 (((-169) $) 9)) (-3518 (($ (-169)) 10)) (-1270 (((-798) $) 7)))
+(((-228) (-13 (-566 (-798)) (-10 -8 (-15 -1761 ((-169) $)) (-15 -3518 ($ (-169))) (-15 -1956 ((-1178) $))))) (T -228))
+((-1761 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-228)))) (-3518 (*1 *1 *2) (-12 (-5 *2 (-169)) (-5 *1 (-228)))) (-1956 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-228)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -1761 ((-169) $)) (-15 -3518 ($ (-169))) (-15 -1956 ((-1178) $))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1606 (($ (-856)) NIL (|has| |#4| (-977)))) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-2017 (($ $ $) NIL (|has| |#4| (-735)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-4190 (((-713)) NIL (|has| |#4| (-346)))) (-1436 (((-525) $) NIL (|has| |#4| (-787)))) (-1429 ((|#4| $ (-525) |#4|) NIL (|has| $ (-6 -4256)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1020))) (((-3 (-525) "failed") $) NIL (-12 (|has| |#4| (-968 (-525))) (|has| |#4| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#4| (-968 (-385 (-525)))) (|has| |#4| (-1020))))) (-3898 ((|#4| $) NIL (|has| |#4| (-1020))) (((-525) $) NIL (-12 (|has| |#4| (-968 (-525))) (|has| |#4| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#4| (-968 (-385 (-525)))) (|has| |#4| (-1020))))) (-3416 (((-2 (|:| -1484 (-632 |#4|)) (|:| |vec| (-1173 |#4|))) (-632 $) (-1173 $)) NIL (|has| |#4| (-977))) (((-632 |#4|) (-632 $)) NIL (|has| |#4| (-977))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))))) (-3762 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1091))) (|has| |#4| (-977)))))) (-2899 (($) NIL (|has| |#4| (-346)))) (-2632 ((|#4| $ (-525) |#4|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#4| $ (-525)) NIL)) (-3017 (((-108) $) NIL (|has| |#4| (-787)))) (-3702 (((-592 |#4|) $) NIL (|has| $ (-6 -4255)))) (-1985 (((-108) $) NIL (-3279 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1091))) (|has| |#4| (-977)))))) (-3912 (((-108) $) NIL (|has| |#4| (-787)))) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) NIL (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (-3279 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-1749 (((-592 |#4|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (-3279 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-2622 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#4| |#4|) $) NIL)) (-1736 (((-856) $) NIL (|has| |#4| (-346)))) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-3640 (($ (-856)) NIL (|has| |#4| (-346)))) (-2012 (((-1038) $) NIL)) (-3110 ((|#4| $) NIL (|has| (-525) (-789)))) (-2042 (($ $ |#4|) NIL (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020))))) (-1777 (((-592 |#4|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#4| $ (-525) |#4|) NIL) ((|#4| $ (-525)) 12)) (-1809 ((|#4| $ $) NIL (|has| |#4| (-977)))) (-2256 (($ (-1173 |#4|)) NIL)) (-3831 (((-128)) NIL (|has| |#4| (-341)))) (-2523 (($ $ (-1 |#4| |#4|) (-713)) NIL (|has| |#4| (-977))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-977))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#4| (-835 (-1091))) (|has| |#4| (-977)))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#4| (-835 (-1091))) (|has| |#4| (-977)))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#4| (-835 (-1091))) (|has| |#4| (-977)))) (($ $ (-1091)) NIL (-12 (|has| |#4| (-835 (-1091))) (|has| |#4| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-977)))) (($ $) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-977))))) (-2040 (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255))) (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020))))) (-1451 (($ $) NIL)) (-1270 (((-1173 |#4|) $) NIL) (((-798) $) NIL) (($ |#4|) NIL (|has| |#4| (-1020))) (($ (-525)) NIL (-3279 (-12 (|has| |#4| (-968 (-525))) (|has| |#4| (-1020))) (|has| |#4| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#4| (-968 (-385 (-525)))) (|has| |#4| (-1020))))) (-2104 (((-713)) NIL (|has| |#4| (-977)))) (-3633 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-2086 (($ $) NIL (|has| |#4| (-787)))) (-1576 (($ $ (-713)) NIL (-3279 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1091))) (|has| |#4| (-977))))) (($ $ (-856)) NIL (-3279 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1091))) (|has| |#4| (-977)))))) (-3355 (($) NIL T CONST)) (-3363 (($) NIL (-3279 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1091))) (|has| |#4| (-977)))) CONST)) (-2093 (($ $ (-1 |#4| |#4|) (-713)) NIL (|has| |#4| (-977))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-977))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#4| (-835 (-1091))) (|has| |#4| (-977)))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#4| (-835 (-1091))) (|has| |#4| (-977)))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#4| (-835 (-1091))) (|has| |#4| (-977)))) (($ $ (-1091)) NIL (-12 (|has| |#4| (-835 (-1091))) (|has| |#4| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-977)))) (($ $) NIL (-12 (|has| |#4| (-213)) (|has| |#4| (-977))))) (-4045 (((-108) $ $) NIL (-3279 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-4026 (((-108) $ $) NIL (-3279 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (-3279 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-4017 (((-108) $ $) NIL (-3279 (|has| |#4| (-735)) (|has| |#4| (-787))))) (-4100 (($ $ |#4|) NIL (|has| |#4| (-341)))) (-4090 (($ $ $) NIL) (($ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-713)) NIL (-3279 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1091))) (|has| |#4| (-977))))) (($ $ (-856)) NIL (-3279 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1091))) (|has| |#4| (-977)))))) (* (($ |#2| $) 14) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-669))) (($ |#4| $) NIL (|has| |#4| (-669))) (($ $ $) NIL (-3279 (-12 (|has| |#4| (-213)) (|has| |#4| (-977))) (-12 (|has| |#4| (-588 (-525))) (|has| |#4| (-977))) (|has| |#4| (-669)) (-12 (|has| |#4| (-835 (-1091))) (|has| |#4| (-977)))))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-229 |#1| |#2| |#3| |#4|) (-13 (-218 |#1| |#4|) (-594 |#2|) (-594 |#3|)) (-856) (-977) (-1041 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-594 |#2|)) (T -229))
NIL
(-13 (-218 |#1| |#4|) (-594 |#2|) (-594 |#3|))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-2516 (($ (-855)) NIL (|has| |#3| (-976)))) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-1487 (($ $ $) NIL (|has| |#3| (-735)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-3107 (((-713)) NIL (|has| |#3| (-346)))) (-1690 (((-525) $) NIL (|has| |#3| (-787)))) (-2109 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4255)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1019))) (((-3 (-525) "failed") $) NIL (-12 (|has| |#3| (-967 (-525))) (|has| |#3| (-1019)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#3| (-967 (-385 (-525)))) (|has| |#3| (-1019))))) (-2831 ((|#3| $) NIL (|has| |#3| (-1019))) (((-525) $) NIL (-12 (|has| |#3| (-967 (-525))) (|has| |#3| (-1019)))) (((-385 (-525)) $) NIL (-12 (|has| |#3| (-967 (-385 (-525)))) (|has| |#3| (-1019))))) (-1860 (((-2 (|:| -3276 (-632 |#3|)) (|:| |vec| (-1172 |#3|))) (-632 $) (-1172 $)) NIL (|has| |#3| (-976))) (((-632 |#3|) (-632 $)) NIL (|has| |#3| (-976))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-976)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-976))))) (-2866 (((-3 $ "failed") $) NIL (|has| |#3| (-976)))) (-3375 (($) NIL (|has| |#3| (-346)))) (-2870 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#3| $ (-525)) NIL)) (-3026 (((-108) $) NIL (|has| |#3| (-787)))) (-2026 (((-592 |#3|) $) NIL (|has| $ (-6 -4254)))) (-2133 (((-108) $) NIL (|has| |#3| (-976)))) (-2882 (((-108) $) NIL (|has| |#3| (-787)))) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) NIL (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (-3309 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3168 (((-592 |#3|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#3| (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (-3309 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2857 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#3| |#3|) $) NIL)) (-1780 (((-855) $) NIL (|has| |#3| (-346)))) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-4185 (($ (-855)) NIL (|has| |#3| (-346)))) (-2663 (((-1037) $) NIL)) (-3135 ((|#3| $) NIL (|has| (-525) (-789)))) (-1911 (($ $ |#3|) NIL (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ (-592 |#3|) (-592 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#3| (-1019))))) (-3171 (((-592 |#3|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#3| $ (-525) |#3|) NIL) ((|#3| $ (-525)) 11)) (-1595 ((|#3| $ $) NIL (|has| |#3| (-976)))) (-4007 (($ (-1172 |#3|)) NIL)) (-3191 (((-128)) NIL (|has| |#3| (-341)))) (-3013 (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-976))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-976))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-976)))) (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-976))))) (-2686 (((-713) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254))) (((-713) |#3| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#3| (-1019))))) (-2135 (($ $) NIL)) (-1908 (((-1172 |#3|) $) NIL) (((-797) $) NIL) (($ |#3|) NIL (|has| |#3| (-1019))) (($ (-525)) NIL (-3309 (-12 (|has| |#3| (-967 (-525))) (|has| |#3| (-1019))) (|has| |#3| (-976)))) (($ (-385 (-525))) NIL (-12 (|has| |#3| (-967 (-385 (-525)))) (|has| |#3| (-1019))))) (-2093 (((-713)) NIL (|has| |#3| (-976)))) (-2667 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254)))) (-2092 (($ $) NIL (|has| |#3| (-787)))) (-3465 (($ $ (-713)) NIL (|has| |#3| (-976))) (($ $ (-855)) NIL (|has| |#3| (-976)))) (-3875 (($) NIL T CONST)) (-3882 (($) NIL (|has| |#3| (-976)) CONST)) (-1424 (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-976))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-976))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-976)))) (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-976))))) (-4024 (((-108) $ $) NIL (-3309 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3995 (((-108) $ $) NIL (-3309 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (-3309 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3983 (((-108) $ $) NIL (-3309 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-4082 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-4070 (($ $ $) NIL) (($ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-713)) NIL (|has| |#3| (-976))) (($ $ (-855)) NIL (|has| |#3| (-976)))) (* (($ |#2| $) 13) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-855) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-669))) (($ |#3| $) NIL (|has| |#3| (-669))) (($ $ $) NIL (|has| |#3| (-976)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-230 |#1| |#2| |#3|) (-13 (-218 |#1| |#3|) (-594 |#2|)) (-713) (-976) (-594 |#2|)) (T -230))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1606 (($ (-856)) NIL (|has| |#3| (-977)))) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-2017 (($ $ $) NIL (|has| |#3| (-735)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-4190 (((-713)) NIL (|has| |#3| (-346)))) (-1436 (((-525) $) NIL (|has| |#3| (-787)))) (-1429 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4256)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1020))) (((-3 (-525) "failed") $) NIL (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020))))) (-3898 ((|#3| $) NIL (|has| |#3| (-1020))) (((-525) $) NIL (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020))))) (-3416 (((-2 (|:| -1484 (-632 |#3|)) (|:| |vec| (-1173 |#3|))) (-632 $) (-1173 $)) NIL (|has| |#3| (-977))) (((-632 |#3|) (-632 $)) NIL (|has| |#3| (-977))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))))) (-3762 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))))) (-2899 (($) NIL (|has| |#3| (-346)))) (-2632 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#3| $ (-525)) NIL)) (-3017 (((-108) $) NIL (|has| |#3| (-787)))) (-3702 (((-592 |#3|) $) NIL (|has| $ (-6 -4255)))) (-1985 (((-108) $) NIL (-3279 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))))) (-3912 (((-108) $) NIL (|has| |#3| (-787)))) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) NIL (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (-3279 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-1749 (((-592 |#3|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#3| (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (-3279 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2622 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#3| |#3|) $) NIL)) (-1736 (((-856) $) NIL (|has| |#3| (-346)))) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-3640 (($ (-856)) NIL (|has| |#3| (-346)))) (-2012 (((-1038) $) NIL)) (-3110 ((|#3| $) NIL (|has| (-525) (-789)))) (-2042 (($ $ |#3|) NIL (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-592 |#3|) (-592 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#3| (-1020))))) (-1777 (((-592 |#3|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#3| $ (-525) |#3|) NIL) ((|#3| $ (-525)) 11)) (-1809 ((|#3| $ $) NIL (|has| |#3| (-977)))) (-2256 (($ (-1173 |#3|)) NIL)) (-3831 (((-128)) NIL (|has| |#3| (-341)))) (-2523 (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-977))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-977))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))) (($ $ (-1091)) NIL (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977))))) (-2040 (((-713) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4255))) (((-713) |#3| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#3| (-1020))))) (-1451 (($ $) NIL)) (-1270 (((-1173 |#3|) $) NIL) (((-798) $) NIL) (($ |#3|) NIL (|has| |#3| (-1020))) (($ (-525)) NIL (-3279 (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020))) (|has| |#3| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020))))) (-2104 (((-713)) NIL (|has| |#3| (-977)))) (-3633 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4255)))) (-2086 (($ $) NIL (|has| |#3| (-787)))) (-1576 (($ $ (-713)) NIL (-3279 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977))))) (($ $ (-856)) NIL (-3279 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))))) (-3355 (($) NIL T CONST)) (-3363 (($) NIL (-3279 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))) CONST)) (-2093 (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-977))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-977))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))) (($ $ (-1091)) NIL (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977))))) (-4045 (((-108) $ $) NIL (-3279 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-4026 (((-108) $ $) NIL (-3279 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (-3279 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-4017 (((-108) $ $) NIL (-3279 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-4100 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-4090 (($ $ $) NIL) (($ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-713)) NIL (-3279 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977))))) (($ $ (-856)) NIL (-3279 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))))) (* (($ |#2| $) 13) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-669))) (($ |#3| $) NIL (|has| |#3| (-669))) (($ $ $) NIL (-3279 (-12 (|has| |#3| (-213)) (|has| |#3| (-977))) (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977))) (|has| |#3| (-669)) (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-230 |#1| |#2| |#3|) (-13 (-218 |#1| |#3|) (-594 |#2|)) (-713) (-977) (-594 |#2|)) (T -230))
NIL
(-13 (-218 |#1| |#3|) (-594 |#2|))
-((-3140 (((-592 (-713)) $) 47) (((-592 (-713)) $ |#3|) 50)) (-1628 (((-713) $) 49) (((-713) $ |#3|) 52)) (-3847 (($ $) 65)) (-1264 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-1737 (((-713) $ |#3|) 39) (((-713) $) 36)) (-2282 (((-1 $ (-713)) |#3|) 15) (((-1 $ (-713)) $) 77)) (-2576 ((|#4| $) 58)) (-1946 (((-108) $) 56)) (-3448 (($ $) 64)) (-3092 (($ $ (-592 (-273 $))) 97) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-592 |#4|) (-592 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-592 |#4|) (-592 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-592 |#3|) (-592 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-592 |#3|) (-592 |#2|)) 84)) (-3013 (($ $ |#4|) NIL) (($ $ (-592 |#4|)) NIL) (($ $ |#4| (-713)) NIL) (($ $ (-592 |#4|) (-592 (-713))) NIL) (($ $) NIL) (($ $ (-713)) NIL) (($ $ (-1090)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3780 (((-592 |#3|) $) 75)) (-2513 ((|#5| $) NIL) (((-713) $ |#4|) NIL) (((-592 (-713)) $ (-592 |#4|)) NIL) (((-713) $ |#3|) 44)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-385 (-525))) NIL) (($ $) NIL)))
-(((-231 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1908 (|#1| |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -3092 (|#1| |#1| (-592 |#3|) (-592 |#2|))) (-15 -3092 (|#1| |#1| |#3| |#2|)) (-15 -3092 (|#1| |#1| (-592 |#3|) (-592 |#1|))) (-15 -3092 (|#1| |#1| |#3| |#1|)) (-15 -2282 ((-1 |#1| (-713)) |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -2576 (|#4| |#1|)) (-15 -1946 ((-108) |#1|)) (-15 -1628 ((-713) |#1| |#3|)) (-15 -3140 ((-592 (-713)) |#1| |#3|)) (-15 -1628 ((-713) |#1|)) (-15 -3140 ((-592 (-713)) |#1|)) (-15 -2513 ((-713) |#1| |#3|)) (-15 -1737 ((-713) |#1|)) (-15 -1737 ((-713) |#1| |#3|)) (-15 -3780 ((-592 |#3|) |#1|)) (-15 -2282 ((-1 |#1| (-713)) |#3|)) (-15 -1264 ((-3 |#3| "failed") |#1|)) (-15 -1908 (|#1| |#3|)) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1|)) (-15 -2513 ((-592 (-713)) |#1| (-592 |#4|))) (-15 -2513 ((-713) |#1| |#4|)) (-15 -1264 ((-3 |#4| "failed") |#1|)) (-15 -1908 (|#1| |#4|)) (-15 -3092 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -3092 (|#1| |#1| |#4| |#1|)) (-15 -3092 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -3092 (|#1| |#1| |#4| |#2|)) (-15 -3092 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -3092 (|#1| |#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| (-273 |#1|))) (-15 -3092 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2513 (|#5| |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1908 (|#1| |#2|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -3013 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -3013 (|#1| |#1| |#4| (-713))) (-15 -3013 (|#1| |#1| (-592 |#4|))) (-15 -3013 (|#1| |#1| |#4|)) (-15 -1908 (|#1| (-525))) (-15 -1908 ((-797) |#1|))) (-232 |#2| |#3| |#4| |#5|) (-976) (-789) (-245 |#3|) (-735)) (T -231))
-NIL
-(-10 -8 (-15 -1908 (|#1| |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -3092 (|#1| |#1| (-592 |#3|) (-592 |#2|))) (-15 -3092 (|#1| |#1| |#3| |#2|)) (-15 -3092 (|#1| |#1| (-592 |#3|) (-592 |#1|))) (-15 -3092 (|#1| |#1| |#3| |#1|)) (-15 -2282 ((-1 |#1| (-713)) |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3448 (|#1| |#1|)) (-15 -2576 (|#4| |#1|)) (-15 -1946 ((-108) |#1|)) (-15 -1628 ((-713) |#1| |#3|)) (-15 -3140 ((-592 (-713)) |#1| |#3|)) (-15 -1628 ((-713) |#1|)) (-15 -3140 ((-592 (-713)) |#1|)) (-15 -2513 ((-713) |#1| |#3|)) (-15 -1737 ((-713) |#1|)) (-15 -1737 ((-713) |#1| |#3|)) (-15 -3780 ((-592 |#3|) |#1|)) (-15 -2282 ((-1 |#1| (-713)) |#3|)) (-15 -1264 ((-3 |#3| "failed") |#1|)) (-15 -1908 (|#1| |#3|)) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1|)) (-15 -2513 ((-592 (-713)) |#1| (-592 |#4|))) (-15 -2513 ((-713) |#1| |#4|)) (-15 -1264 ((-3 |#4| "failed") |#1|)) (-15 -1908 (|#1| |#4|)) (-15 -3092 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -3092 (|#1| |#1| |#4| |#1|)) (-15 -3092 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -3092 (|#1| |#1| |#4| |#2|)) (-15 -3092 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -3092 (|#1| |#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| (-273 |#1|))) (-15 -3092 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2513 (|#5| |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1908 (|#1| |#2|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -3013 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -3013 (|#1| |#1| |#4| (-713))) (-15 -3013 (|#1| |#1| (-592 |#4|))) (-15 -3013 (|#1| |#1| |#4|)) (-15 -1908 (|#1| (-525))) (-15 -1908 ((-797) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3140 (((-592 (-713)) $) 214) (((-592 (-713)) $ |#2|) 212)) (-1628 (((-713) $) 213) (((-713) $ |#2|) 211)) (-4104 (((-592 |#3|) $) 110)) (-3927 (((-1086 $) $ |#3|) 125) (((-1086 |#1|) $) 124)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-3635 (($ $) 88 (|has| |#1| (-517)))) (-2950 (((-108) $) 90 (|has| |#1| (-517)))) (-1324 (((-713) $) 112) (((-713) $ (-592 |#3|)) 111)) (-3263 (((-3 $ "failed") $ $) 19)) (-3357 (((-396 (-1086 $)) (-1086 $)) 100 (|has| |#1| (-843)))) (-3321 (($ $) 98 (|has| |#1| (-429)))) (-1510 (((-396 $) $) 97 (|has| |#1| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 103 (|has| |#1| (-843)))) (-3847 (($ $) 207)) (-1505 (($) 17 T CONST)) (-1264 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-967 (-525)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-2831 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-967 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-967 (-525)))) ((|#3| $) 135) ((|#2| $) 220)) (-2506 (($ $ $ |#3|) 108 (|has| |#1| (-160)))) (-1247 (($ $) 154)) (-1860 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-2866 (((-3 $ "failed") $) 34)) (-3811 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-1234 (((-592 $) $) 109)) (-2250 (((-108) $) 96 (|has| |#1| (-843)))) (-2099 (($ $ |#1| |#4| $) 172)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 84 (-12 (|has| |#3| (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 83 (-12 (|has| |#3| (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-1737 (((-713) $ |#2|) 217) (((-713) $) 216)) (-2133 (((-108) $) 31)) (-3610 (((-713) $) 169)) (-4092 (($ (-1086 |#1|) |#3|) 117) (($ (-1086 $) |#3|) 116)) (-1986 (((-592 $) $) 126)) (-1819 (((-108) $) 152)) (-4079 (($ |#1| |#4|) 153) (($ $ |#3| (-713)) 119) (($ $ (-592 |#3|) (-592 (-713))) 118)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ |#3|) 120)) (-3181 ((|#4| $) 170) (((-713) $ |#3|) 122) (((-592 (-713)) $ (-592 |#3|)) 121)) (-3525 (($ $ $) 79 (|has| |#1| (-789)))) (-3630 (($ $ $) 78 (|has| |#1| (-789)))) (-1331 (($ (-1 |#4| |#4|) $) 171)) (-1370 (($ (-1 |#1| |#1|) $) 151)) (-2282 (((-1 $ (-713)) |#2|) 219) (((-1 $ (-713)) $) 206 (|has| |#1| (-213)))) (-1666 (((-3 |#3| "failed") $) 123)) (-1212 (($ $) 149)) (-1224 ((|#1| $) 148)) (-2576 ((|#3| $) 209)) (-3216 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-2337 (((-1073) $) 9)) (-1946 (((-108) $) 210)) (-3245 (((-3 (-592 $) "failed") $) 114)) (-3193 (((-3 (-592 $) "failed") $) 115)) (-3283 (((-3 (-2 (|:| |var| |#3|) (|:| -1600 (-713))) "failed") $) 113)) (-3448 (($ $) 208)) (-2663 (((-1037) $) 10)) (-4221 (((-108) $) 166)) (-4232 ((|#1| $) 167)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 95 (|has| |#1| (-429)))) (-3244 (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-2918 (((-396 (-1086 $)) (-1086 $)) 102 (|has| |#1| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) 101 (|has| |#1| (-843)))) (-3959 (((-396 $) $) 99 (|has| |#1| (-843)))) (-2338 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-3092 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-592 |#3|) (-592 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-592 |#3|) (-592 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 $)) 204 (|has| |#1| (-213))) (($ $ |#2| |#1|) 203 (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 |#1|)) 202 (|has| |#1| (-213)))) (-1400 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-3013 (($ $ |#3|) 42) (($ $ (-592 |#3|)) 41) (($ $ |#3| (-713)) 40) (($ $ (-592 |#3|) (-592 (-713))) 39) (($ $) 238 (|has| |#1| (-213))) (($ $ (-713)) 236 (|has| |#1| (-213))) (($ $ (-1090)) 234 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 233 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 232 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) 231 (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-3780 (((-592 |#2|) $) 218)) (-2513 ((|#4| $) 150) (((-713) $ |#3|) 130) (((-592 (-713)) $ (-592 |#3|)) 129) (((-713) $ |#2|) 215)) (-1427 (((-826 (-357)) $) 82 (-12 (|has| |#3| (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) 81 (-12 (|has| |#3| (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2751 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) 104 (-1341 (|has| $ (-136)) (|has| |#1| (-843))))) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-385 (-525))) 72 (-3309 (|has| |#1| (-967 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-3600 (((-592 |#1|) $) 168)) (-1657 ((|#1| $ |#4|) 155) (($ $ |#3| (-713)) 128) (($ $ (-592 |#3|) (-592 (-713))) 127)) (-3421 (((-3 $ "failed") $) 73 (-3309 (-1341 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2093 (((-713)) 29)) (-4116 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-2262 (((-108) $ $) 89 (|has| |#1| (-517)))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ |#3|) 38) (($ $ (-592 |#3|)) 37) (($ $ |#3| (-713)) 36) (($ $ (-592 |#3|) (-592 (-713))) 35) (($ $) 237 (|has| |#1| (-213))) (($ $ (-713)) 235 (|has| |#1| (-213))) (($ $ (-1090)) 230 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 229 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 228 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) 227 (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-4024 (((-108) $ $) 76 (|has| |#1| (-789)))) (-3995 (((-108) $ $) 75 (|has| |#1| (-789)))) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 77 (|has| |#1| (-789)))) (-3983 (((-108) $ $) 74 (|has| |#1| (-789)))) (-4082 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-232 |#1| |#2| |#3| |#4|) (-131) (-976) (-789) (-245 |t#2|) (-735)) (T -232))
-((-2282 (*1 *2 *3) (-12 (-4 *4 (-976)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *4 *3 *5 *6)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 *4)))) (-1737 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-976)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713)))) (-2513 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-976)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 (-713))))) (-1628 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713)))) (-3140 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-976)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-592 (-713))))) (-1628 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-976)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) (-1946 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-108)))) (-2576 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-735)) (-4 *2 (-245 *4)))) (-3448 (*1 *1 *1) (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-976)) (-4 *3 (-789)) (-4 *4 (-245 *3)) (-4 *5 (-735)))) (-3847 (*1 *1 *1) (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-976)) (-4 *3 (-789)) (-4 *4 (-245 *3)) (-4 *5 (-735)))) (-2282 (*1 *2 *1) (-12 (-4 *3 (-213)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *3 *4 *5 *6)))))
-(-13 (-883 |t#1| |t#4| |t#3|) (-211 |t#1|) (-967 |t#2|) (-10 -8 (-15 -2282 ((-1 $ (-713)) |t#2|)) (-15 -3780 ((-592 |t#2|) $)) (-15 -1737 ((-713) $ |t#2|)) (-15 -1737 ((-713) $)) (-15 -2513 ((-713) $ |t#2|)) (-15 -3140 ((-592 (-713)) $)) (-15 -1628 ((-713) $)) (-15 -3140 ((-592 (-713)) $ |t#2|)) (-15 -1628 ((-713) $ |t#2|)) (-15 -1946 ((-108) $)) (-15 -2576 (|t#3| $)) (-15 -3448 ($ $)) (-15 -3847 ($ $)) (IF (|has| |t#1| (-213)) (PROGN (-6 (-486 |t#2| |t#1|)) (-6 (-486 |t#2| $)) (-6 (-288 $)) (-15 -2282 ((-1 $ (-713)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))) ((-567 (-826 (-357))) -12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#3| (-567 (-826 (-357))))) ((-567 (-826 (-525))) -12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#3| (-567 (-826 (-525))))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-269) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#4|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3309 (|has| |#1| (-843)) (|has| |#1| (-429))) ((-486 |#2| |#1|) |has| |#1| (-213)) ((-486 |#2| $) |has| |#1| (-213)) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-834 (-1090)) |has| |#1| (-834 (-1090))) ((-834 |#3|) . T) ((-820 (-357)) -12 (|has| |#1| (-820 (-357))) (|has| |#3| (-820 (-357)))) ((-820 (-525)) -12 (|has| |#1| (-820 (-525))) (|has| |#3| (-820 (-525)))) ((-883 |#1| |#4| |#3|) . T) ((-843) |has| |#1| (-843)) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-967 |#2|) . T) ((-967 |#3|) . T) ((-982 #0#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) |has| |#1| (-843)))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-1308 ((|#1| $) 54)) (-1649 ((|#1| $) 44)) (-3410 (((-108) $ (-713)) 8)) (-1505 (($) 7 T CONST)) (-1298 (($ $) 60)) (-4103 (($ $) 48)) (-1570 ((|#1| |#1| $) 46)) (-3215 ((|#1| $) 45)) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) 9)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-1722 (((-713) $) 61)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2570 ((|#1| $) 39)) (-2452 ((|#1| |#1| $) 52)) (-2103 ((|#1| |#1| $) 51)) (-2573 (($ |#1| $) 40)) (-3598 (((-713) $) 55)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3887 ((|#1| $) 62)) (-1958 ((|#1| $) 50)) (-2226 ((|#1| $) 49)) (-3513 ((|#1| $) 41)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-3883 ((|#1| |#1| $) 58)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-2712 ((|#1| $) 59)) (-3288 (($) 57) (($ (-592 |#1|)) 56)) (-1434 (((-713) $) 43)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2601 ((|#1| $) 53)) (-3612 (($ (-592 |#1|)) 42)) (-1877 ((|#1| $) 63)) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-233 |#1|) (-131) (-1126)) (T -233))
-((-3288 (*1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))) (-3288 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-4 *1 (-233 *3)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-233 *3)) (-4 *3 (-1126)) (-5 *2 (-713)))) (-1308 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))) (-2601 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))) (-2452 (*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))) (-2103 (*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))) (-1958 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))) (-2226 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))) (-4103 (*1 *1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))))
-(-13 (-1038 |t#1|) (-926 |t#1|) (-10 -8 (-15 -3288 ($)) (-15 -3288 ($ (-592 |t#1|))) (-15 -3598 ((-713) $)) (-15 -1308 (|t#1| $)) (-15 -2601 (|t#1| $)) (-15 -2452 (|t#1| |t#1| $)) (-15 -2103 (|t#1| |t#1| $)) (-15 -1958 (|t#1| $)) (-15 -2226 (|t#1| $)) (-15 -4103 ($ $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-926 |#1|) . T) ((-1019) |has| |#1| (-1019)) ((-1038 |#1|) . T) ((-1126) . T))
-((-3493 (((-1 (-877 (-205)) (-205) (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205))) 139)) (-1437 (((-1050 (-205)) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357))) 160) (((-1050 (-205)) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)) (-592 (-242))) 158) (((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357))) 163) (((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242))) 159) (((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357))) 150) (((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242))) 149) (((-1050 (-205)) (-1 (-877 (-205)) (-205)) (-1014 (-357))) 129) (((-1050 (-205)) (-1 (-877 (-205)) (-205)) (-1014 (-357)) (-592 (-242))) 127) (((-1050 (-205)) (-813 (-1 (-205) (-205))) (-1014 (-357))) 128) (((-1050 (-205)) (-813 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242))) 125)) (-1389 (((-1174) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357))) 162) (((-1174) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)) (-592 (-242))) 161) (((-1174) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357))) 165) (((-1174) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242))) 164) (((-1174) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357))) 152) (((-1174) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242))) 151) (((-1174) (-1 (-877 (-205)) (-205)) (-1014 (-357))) 135) (((-1174) (-1 (-877 (-205)) (-205)) (-1014 (-357)) (-592 (-242))) 134) (((-1174) (-813 (-1 (-205) (-205))) (-1014 (-357))) 133) (((-1174) (-813 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242))) 132) (((-1173) (-811 (-1 (-205) (-205))) (-1014 (-357))) 100) (((-1173) (-811 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242))) 99) (((-1173) (-1 (-205) (-205)) (-1014 (-357))) 96) (((-1173) (-1 (-205) (-205)) (-1014 (-357)) (-592 (-242))) 95)))
-(((-234) (-10 -7 (-15 -1389 ((-1173) (-1 (-205) (-205)) (-1014 (-357)) (-592 (-242)))) (-15 -1389 ((-1173) (-1 (-205) (-205)) (-1014 (-357)))) (-15 -1389 ((-1173) (-811 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242)))) (-15 -1389 ((-1173) (-811 (-1 (-205) (-205))) (-1014 (-357)))) (-15 -1389 ((-1174) (-813 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242)))) (-15 -1389 ((-1174) (-813 (-1 (-205) (-205))) (-1014 (-357)))) (-15 -1389 ((-1174) (-1 (-877 (-205)) (-205)) (-1014 (-357)) (-592 (-242)))) (-15 -1389 ((-1174) (-1 (-877 (-205)) (-205)) (-1014 (-357)))) (-15 -1437 ((-1050 (-205)) (-813 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242)))) (-15 -1437 ((-1050 (-205)) (-813 (-1 (-205) (-205))) (-1014 (-357)))) (-15 -1437 ((-1050 (-205)) (-1 (-877 (-205)) (-205)) (-1014 (-357)) (-592 (-242)))) (-15 -1437 ((-1050 (-205)) (-1 (-877 (-205)) (-205)) (-1014 (-357)))) (-15 -1389 ((-1174) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -1389 ((-1174) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)))) (-15 -1437 ((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -1437 ((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)))) (-15 -1389 ((-1174) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -1389 ((-1174) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)))) (-15 -1437 ((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -1437 ((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)))) (-15 -1389 ((-1174) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -1389 ((-1174) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)))) (-15 -1437 ((-1050 (-205)) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -1437 ((-1050 (-205)) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)))) (-15 -3493 ((-1 (-877 (-205)) (-205) (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))) (T -234))
-((-3493 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-877 (-205)) (-205) (-205))) (-5 *3 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-234)))) (-1437 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-816 (-1 (-205) (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-1437 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-816 (-1 (-205) (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-1389 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-816 (-1 (-205) (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-1389 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-816 (-1 (-205) (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-1437 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-1437 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-1389 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-1389 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-1437 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-1437 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-1389 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-1389 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-1437 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-877 (-205)) (-205))) (-5 *4 (-1014 (-357))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-1437 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-877 (-205)) (-205))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-1437 (*1 *2 *3 *4) (-12 (-5 *3 (-813 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-1437 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-813 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-877 (-205)) (-205))) (-5 *4 (-1014 (-357))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-877 (-205)) (-205))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-813 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-813 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-811 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *2 (-1173)) (-5 *1 (-234)))) (-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-811 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-234)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *2 (-1173)) (-5 *1 (-234)))) (-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1014 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-234)))))
-(-10 -7 (-15 -1389 ((-1173) (-1 (-205) (-205)) (-1014 (-357)) (-592 (-242)))) (-15 -1389 ((-1173) (-1 (-205) (-205)) (-1014 (-357)))) (-15 -1389 ((-1173) (-811 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242)))) (-15 -1389 ((-1173) (-811 (-1 (-205) (-205))) (-1014 (-357)))) (-15 -1389 ((-1174) (-813 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242)))) (-15 -1389 ((-1174) (-813 (-1 (-205) (-205))) (-1014 (-357)))) (-15 -1389 ((-1174) (-1 (-877 (-205)) (-205)) (-1014 (-357)) (-592 (-242)))) (-15 -1389 ((-1174) (-1 (-877 (-205)) (-205)) (-1014 (-357)))) (-15 -1437 ((-1050 (-205)) (-813 (-1 (-205) (-205))) (-1014 (-357)) (-592 (-242)))) (-15 -1437 ((-1050 (-205)) (-813 (-1 (-205) (-205))) (-1014 (-357)))) (-15 -1437 ((-1050 (-205)) (-1 (-877 (-205)) (-205)) (-1014 (-357)) (-592 (-242)))) (-15 -1437 ((-1050 (-205)) (-1 (-877 (-205)) (-205)) (-1014 (-357)))) (-15 -1389 ((-1174) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -1389 ((-1174) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)))) (-15 -1437 ((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -1437 ((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1014 (-357)) (-1014 (-357)))) (-15 -1389 ((-1174) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -1389 ((-1174) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)))) (-15 -1437 ((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -1437 ((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-357)) (-1014 (-357)))) (-15 -1389 ((-1174) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -1389 ((-1174) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)))) (-15 -1437 ((-1050 (-205)) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)) (-592 (-242)))) (-15 -1437 ((-1050 (-205)) (-816 (-1 (-205) (-205) (-205))) (-1014 (-357)) (-1014 (-357)))) (-15 -3493 ((-1 (-877 (-205)) (-205) (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))
-((-1389 (((-1173) (-273 |#2|) (-1090) (-1090) (-592 (-242))) 96)))
-(((-235 |#1| |#2|) (-10 -7 (-15 -1389 ((-1173) (-273 |#2|) (-1090) (-1090) (-592 (-242))))) (-13 (-517) (-789) (-967 (-525))) (-408 |#1|)) (T -235))
-((-1389 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-1090)) (-5 *5 (-592 (-242))) (-4 *7 (-408 *6)) (-4 *6 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-1173)) (-5 *1 (-235 *6 *7)))))
-(-10 -7 (-15 -1389 ((-1173) (-273 |#2|) (-1090) (-1090) (-592 (-242)))))
-((-3855 (((-525) (-525)) 50)) (-3503 (((-525) (-525)) 51)) (-2358 (((-205) (-205)) 52)) (-2143 (((-1174) (-1 (-157 (-205)) (-157 (-205))) (-1014 (-205)) (-1014 (-205))) 49)) (-3777 (((-1174) (-1 (-157 (-205)) (-157 (-205))) (-1014 (-205)) (-1014 (-205)) (-108)) 47)))
-(((-236) (-10 -7 (-15 -3777 ((-1174) (-1 (-157 (-205)) (-157 (-205))) (-1014 (-205)) (-1014 (-205)) (-108))) (-15 -2143 ((-1174) (-1 (-157 (-205)) (-157 (-205))) (-1014 (-205)) (-1014 (-205)))) (-15 -3855 ((-525) (-525))) (-15 -3503 ((-525) (-525))) (-15 -2358 ((-205) (-205))))) (T -236))
-((-2358 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-236)))) (-3503 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))) (-3855 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))) (-2143 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1014 (-205))) (-5 *2 (-1174)) (-5 *1 (-236)))) (-3777 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1014 (-205))) (-5 *5 (-108)) (-5 *2 (-1174)) (-5 *1 (-236)))))
-(-10 -7 (-15 -3777 ((-1174) (-1 (-157 (-205)) (-157 (-205))) (-1014 (-205)) (-1014 (-205)) (-108))) (-15 -2143 ((-1174) (-1 (-157 (-205)) (-157 (-205))) (-1014 (-205)) (-1014 (-205)))) (-15 -3855 ((-525) (-525))) (-15 -3503 ((-525) (-525))) (-15 -2358 ((-205) (-205))))
-((-1908 (((-1012 (-357)) (-1012 (-294 |#1|))) 16)))
-(((-237 |#1|) (-10 -7 (-15 -1908 ((-1012 (-357)) (-1012 (-294 |#1|))))) (-13 (-789) (-517) (-567 (-357)))) (T -237))
-((-1908 (*1 *2 *3) (-12 (-5 *3 (-1012 (-294 *4))) (-4 *4 (-13 (-789) (-517) (-567 (-357)))) (-5 *2 (-1012 (-357))) (-5 *1 (-237 *4)))))
-(-10 -7 (-15 -1908 ((-1012 (-357)) (-1012 (-294 |#1|)))))
-((-1437 (((-1050 (-205)) (-816 |#1|) (-1012 (-357)) (-1012 (-357))) 71) (((-1050 (-205)) (-816 |#1|) (-1012 (-357)) (-1012 (-357)) (-592 (-242))) 70) (((-1050 (-205)) |#1| (-1012 (-357)) (-1012 (-357))) 61) (((-1050 (-205)) |#1| (-1012 (-357)) (-1012 (-357)) (-592 (-242))) 60) (((-1050 (-205)) (-813 |#1|) (-1012 (-357))) 52) (((-1050 (-205)) (-813 |#1|) (-1012 (-357)) (-592 (-242))) 51)) (-1389 (((-1174) (-816 |#1|) (-1012 (-357)) (-1012 (-357))) 74) (((-1174) (-816 |#1|) (-1012 (-357)) (-1012 (-357)) (-592 (-242))) 73) (((-1174) |#1| (-1012 (-357)) (-1012 (-357))) 64) (((-1174) |#1| (-1012 (-357)) (-1012 (-357)) (-592 (-242))) 63) (((-1174) (-813 |#1|) (-1012 (-357))) 56) (((-1174) (-813 |#1|) (-1012 (-357)) (-592 (-242))) 55) (((-1173) (-811 |#1|) (-1012 (-357))) 43) (((-1173) (-811 |#1|) (-1012 (-357)) (-592 (-242))) 42) (((-1173) |#1| (-1012 (-357))) 35) (((-1173) |#1| (-1012 (-357)) (-592 (-242))) 34)))
-(((-238 |#1|) (-10 -7 (-15 -1389 ((-1173) |#1| (-1012 (-357)) (-592 (-242)))) (-15 -1389 ((-1173) |#1| (-1012 (-357)))) (-15 -1389 ((-1173) (-811 |#1|) (-1012 (-357)) (-592 (-242)))) (-15 -1389 ((-1173) (-811 |#1|) (-1012 (-357)))) (-15 -1389 ((-1174) (-813 |#1|) (-1012 (-357)) (-592 (-242)))) (-15 -1389 ((-1174) (-813 |#1|) (-1012 (-357)))) (-15 -1437 ((-1050 (-205)) (-813 |#1|) (-1012 (-357)) (-592 (-242)))) (-15 -1437 ((-1050 (-205)) (-813 |#1|) (-1012 (-357)))) (-15 -1389 ((-1174) |#1| (-1012 (-357)) (-1012 (-357)) (-592 (-242)))) (-15 -1389 ((-1174) |#1| (-1012 (-357)) (-1012 (-357)))) (-15 -1437 ((-1050 (-205)) |#1| (-1012 (-357)) (-1012 (-357)) (-592 (-242)))) (-15 -1437 ((-1050 (-205)) |#1| (-1012 (-357)) (-1012 (-357)))) (-15 -1389 ((-1174) (-816 |#1|) (-1012 (-357)) (-1012 (-357)) (-592 (-242)))) (-15 -1389 ((-1174) (-816 |#1|) (-1012 (-357)) (-1012 (-357)))) (-15 -1437 ((-1050 (-205)) (-816 |#1|) (-1012 (-357)) (-1012 (-357)) (-592 (-242)))) (-15 -1437 ((-1050 (-205)) (-816 |#1|) (-1012 (-357)) (-1012 (-357))))) (-13 (-567 (-501)) (-1019))) (T -238))
-((-1437 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-816 *5)) (-5 *4 (-1012 (-357))) (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1050 (-205))) (-5 *1 (-238 *5)))) (-1437 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-816 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1050 (-205))) (-5 *1 (-238 *6)))) (-1389 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-816 *5)) (-5 *4 (-1012 (-357))) (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1174)) (-5 *1 (-238 *5)))) (-1389 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-816 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1174)) (-5 *1 (-238 *6)))) (-1437 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1012 (-357))) (-5 *2 (-1050 (-205))) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1019))))) (-1437 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1019))))) (-1389 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1012 (-357))) (-5 *2 (-1174)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1019))))) (-1389 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1019))))) (-1437 (*1 *2 *3 *4) (-12 (-5 *3 (-813 *5)) (-5 *4 (-1012 (-357))) (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1050 (-205))) (-5 *1 (-238 *5)))) (-1437 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-813 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1050 (-205))) (-5 *1 (-238 *6)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-813 *5)) (-5 *4 (-1012 (-357))) (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1174)) (-5 *1 (-238 *5)))) (-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-813 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1174)) (-5 *1 (-238 *6)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-811 *5)) (-5 *4 (-1012 (-357))) (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1173)) (-5 *1 (-238 *5)))) (-1389 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-811 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1173)) (-5 *1 (-238 *6)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *4 (-1012 (-357))) (-5 *2 (-1173)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1019))))) (-1389 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1019))))))
-(-10 -7 (-15 -1389 ((-1173) |#1| (-1012 (-357)) (-592 (-242)))) (-15 -1389 ((-1173) |#1| (-1012 (-357)))) (-15 -1389 ((-1173) (-811 |#1|) (-1012 (-357)) (-592 (-242)))) (-15 -1389 ((-1173) (-811 |#1|) (-1012 (-357)))) (-15 -1389 ((-1174) (-813 |#1|) (-1012 (-357)) (-592 (-242)))) (-15 -1389 ((-1174) (-813 |#1|) (-1012 (-357)))) (-15 -1437 ((-1050 (-205)) (-813 |#1|) (-1012 (-357)) (-592 (-242)))) (-15 -1437 ((-1050 (-205)) (-813 |#1|) (-1012 (-357)))) (-15 -1389 ((-1174) |#1| (-1012 (-357)) (-1012 (-357)) (-592 (-242)))) (-15 -1389 ((-1174) |#1| (-1012 (-357)) (-1012 (-357)))) (-15 -1437 ((-1050 (-205)) |#1| (-1012 (-357)) (-1012 (-357)) (-592 (-242)))) (-15 -1437 ((-1050 (-205)) |#1| (-1012 (-357)) (-1012 (-357)))) (-15 -1389 ((-1174) (-816 |#1|) (-1012 (-357)) (-1012 (-357)) (-592 (-242)))) (-15 -1389 ((-1174) (-816 |#1|) (-1012 (-357)) (-1012 (-357)))) (-15 -1437 ((-1050 (-205)) (-816 |#1|) (-1012 (-357)) (-1012 (-357)) (-592 (-242)))) (-15 -1437 ((-1050 (-205)) (-816 |#1|) (-1012 (-357)) (-1012 (-357)))))
-((-1389 (((-1174) (-592 (-205)) (-592 (-205)) (-592 (-205)) (-592 (-242))) 23) (((-1174) (-592 (-205)) (-592 (-205)) (-592 (-205))) 24) (((-1173) (-592 (-877 (-205))) (-592 (-242))) 16) (((-1173) (-592 (-877 (-205)))) 17) (((-1173) (-592 (-205)) (-592 (-205)) (-592 (-242))) 20) (((-1173) (-592 (-205)) (-592 (-205))) 21)))
-(((-239) (-10 -7 (-15 -1389 ((-1173) (-592 (-205)) (-592 (-205)))) (-15 -1389 ((-1173) (-592 (-205)) (-592 (-205)) (-592 (-242)))) (-15 -1389 ((-1173) (-592 (-877 (-205))))) (-15 -1389 ((-1173) (-592 (-877 (-205))) (-592 (-242)))) (-15 -1389 ((-1174) (-592 (-205)) (-592 (-205)) (-592 (-205)))) (-15 -1389 ((-1174) (-592 (-205)) (-592 (-205)) (-592 (-205)) (-592 (-242)))))) (T -239))
-((-1389 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-239)))) (-1389 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1174)) (-5 *1 (-239)))) (-1389 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-877 (-205)))) (-5 *4 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-239)))) (-1389 (*1 *2 *3) (-12 (-5 *3 (-592 (-877 (-205)))) (-5 *2 (-1173)) (-5 *1 (-239)))) (-1389 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-239)))) (-1389 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1173)) (-5 *1 (-239)))))
-(-10 -7 (-15 -1389 ((-1173) (-592 (-205)) (-592 (-205)))) (-15 -1389 ((-1173) (-592 (-205)) (-592 (-205)) (-592 (-242)))) (-15 -1389 ((-1173) (-592 (-877 (-205))))) (-15 -1389 ((-1173) (-592 (-877 (-205))) (-592 (-242)))) (-15 -1389 ((-1174) (-592 (-205)) (-592 (-205)) (-592 (-205)))) (-15 -1389 ((-1174) (-592 (-205)) (-592 (-205)) (-592 (-205)) (-592 (-242)))))
-((-1668 (((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-592 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 26)) (-3710 (((-855) (-592 (-242)) (-855)) 53)) (-3736 (((-855) (-592 (-242)) (-855)) 52)) (-2915 (((-592 (-357)) (-592 (-242)) (-592 (-357))) 69)) (-1865 (((-357) (-592 (-242)) (-357)) 58)) (-1879 (((-855) (-592 (-242)) (-855)) 54)) (-2666 (((-108) (-592 (-242)) (-108)) 28)) (-3282 (((-1073) (-592 (-242)) (-1073)) 20)) (-2541 (((-1073) (-592 (-242)) (-1073)) 27)) (-2166 (((-1050 (-205)) (-592 (-242))) 47)) (-4129 (((-592 (-1014 (-357))) (-592 (-242)) (-592 (-1014 (-357)))) 41)) (-2043 (((-808) (-592 (-242)) (-808)) 33)) (-3362 (((-808) (-592 (-242)) (-808)) 34)) (-3936 (((-1 (-877 (-205)) (-877 (-205))) (-592 (-242)) (-1 (-877 (-205)) (-877 (-205)))) 64)) (-2788 (((-108) (-592 (-242)) (-108)) 16)) (-3915 (((-108) (-592 (-242)) (-108)) 15)))
-(((-240) (-10 -7 (-15 -3915 ((-108) (-592 (-242)) (-108))) (-15 -2788 ((-108) (-592 (-242)) (-108))) (-15 -1668 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-592 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -3282 ((-1073) (-592 (-242)) (-1073))) (-15 -2541 ((-1073) (-592 (-242)) (-1073))) (-15 -2666 ((-108) (-592 (-242)) (-108))) (-15 -2043 ((-808) (-592 (-242)) (-808))) (-15 -3362 ((-808) (-592 (-242)) (-808))) (-15 -4129 ((-592 (-1014 (-357))) (-592 (-242)) (-592 (-1014 (-357))))) (-15 -3736 ((-855) (-592 (-242)) (-855))) (-15 -3710 ((-855) (-592 (-242)) (-855))) (-15 -2166 ((-1050 (-205)) (-592 (-242)))) (-15 -1879 ((-855) (-592 (-242)) (-855))) (-15 -1865 ((-357) (-592 (-242)) (-357))) (-15 -3936 ((-1 (-877 (-205)) (-877 (-205))) (-592 (-242)) (-1 (-877 (-205)) (-877 (-205))))) (-15 -2915 ((-592 (-357)) (-592 (-242)) (-592 (-357)))))) (T -240))
-((-2915 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-357))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3936 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-877 (-205)) (-877 (-205)))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-1865 (*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-1879 (*1 *2 *3 *2) (-12 (-5 *2 (-855)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2166 (*1 *2 *3) (-12 (-5 *3 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-240)))) (-3710 (*1 *2 *3 *2) (-12 (-5 *2 (-855)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3736 (*1 *2 *3 *2) (-12 (-5 *2 (-855)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-4129 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3362 (*1 *2 *3 *2) (-12 (-5 *2 (-808)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2043 (*1 *2 *3 *2) (-12 (-5 *2 (-808)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2666 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2541 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3282 (*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-1668 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2788 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3915 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))))
-(-10 -7 (-15 -3915 ((-108) (-592 (-242)) (-108))) (-15 -2788 ((-108) (-592 (-242)) (-108))) (-15 -1668 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-592 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -3282 ((-1073) (-592 (-242)) (-1073))) (-15 -2541 ((-1073) (-592 (-242)) (-1073))) (-15 -2666 ((-108) (-592 (-242)) (-108))) (-15 -2043 ((-808) (-592 (-242)) (-808))) (-15 -3362 ((-808) (-592 (-242)) (-808))) (-15 -4129 ((-592 (-1014 (-357))) (-592 (-242)) (-592 (-1014 (-357))))) (-15 -3736 ((-855) (-592 (-242)) (-855))) (-15 -3710 ((-855) (-592 (-242)) (-855))) (-15 -2166 ((-1050 (-205)) (-592 (-242)))) (-15 -1879 ((-855) (-592 (-242)) (-855))) (-15 -1865 ((-357) (-592 (-242)) (-357))) (-15 -3936 ((-1 (-877 (-205)) (-877 (-205))) (-592 (-242)) (-1 (-877 (-205)) (-877 (-205))))) (-15 -2915 ((-592 (-357)) (-592 (-242)) (-592 (-357)))))
-((-2610 (((-3 |#1| "failed") (-592 (-242)) (-1090)) 17)))
-(((-241 |#1|) (-10 -7 (-15 -2610 ((-3 |#1| "failed") (-592 (-242)) (-1090)))) (-1126)) (T -241))
-((-2610 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1090)) (-5 *1 (-241 *2)) (-4 *2 (-1126)))))
-(-10 -7 (-15 -2610 ((-3 |#1| "failed") (-592 (-242)) (-1090))))
-((-1893 (((-108) $ $) NIL)) (-1668 (($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 15)) (-3710 (($ (-855)) 76)) (-3736 (($ (-855)) 75)) (-3957 (($ (-592 (-357))) 82)) (-1865 (($ (-357)) 58)) (-1879 (($ (-855)) 77)) (-2666 (($ (-108)) 23)) (-3282 (($ (-1073)) 18)) (-2541 (($ (-1073)) 19)) (-2166 (($ (-1050 (-205))) 71)) (-4129 (($ (-592 (-1014 (-357)))) 67)) (-4162 (($ (-592 (-1014 (-357)))) 59) (($ (-592 (-1014 (-385 (-525))))) 66)) (-3319 (($ (-357)) 29) (($ (-808)) 33)) (-1271 (((-108) (-592 $) (-1090)) 91)) (-2610 (((-3 (-51) "failed") (-592 $) (-1090)) 93)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2321 (($ (-357)) 34) (($ (-808)) 35)) (-4093 (($ (-1 (-877 (-205)) (-877 (-205)))) 57)) (-3936 (($ (-1 (-877 (-205)) (-877 (-205)))) 78)) (-2113 (($ (-1 (-205) (-205))) 39) (($ (-1 (-205) (-205) (-205))) 43) (($ (-1 (-205) (-205) (-205) (-205))) 47)) (-1908 (((-797) $) 87)) (-2927 (($ (-108)) 24) (($ (-592 (-1014 (-357)))) 52)) (-3915 (($ (-108)) 25)) (-3961 (((-108) $ $) 89)))
-(((-242) (-13 (-1019) (-10 -8 (-15 -3915 ($ (-108))) (-15 -2927 ($ (-108))) (-15 -1668 ($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -3282 ($ (-1073))) (-15 -2541 ($ (-1073))) (-15 -2666 ($ (-108))) (-15 -2927 ($ (-592 (-1014 (-357))))) (-15 -4093 ($ (-1 (-877 (-205)) (-877 (-205))))) (-15 -3319 ($ (-357))) (-15 -3319 ($ (-808))) (-15 -2321 ($ (-357))) (-15 -2321 ($ (-808))) (-15 -2113 ($ (-1 (-205) (-205)))) (-15 -2113 ($ (-1 (-205) (-205) (-205)))) (-15 -2113 ($ (-1 (-205) (-205) (-205) (-205)))) (-15 -1865 ($ (-357))) (-15 -4162 ($ (-592 (-1014 (-357))))) (-15 -4162 ($ (-592 (-1014 (-385 (-525)))))) (-15 -4129 ($ (-592 (-1014 (-357))))) (-15 -2166 ($ (-1050 (-205)))) (-15 -3736 ($ (-855))) (-15 -3710 ($ (-855))) (-15 -1879 ($ (-855))) (-15 -3936 ($ (-1 (-877 (-205)) (-877 (-205))))) (-15 -3957 ($ (-592 (-357)))) (-15 -2610 ((-3 (-51) "failed") (-592 $) (-1090))) (-15 -1271 ((-108) (-592 $) (-1090)))))) (T -242))
-((-3915 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-1668 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *1 (-242)))) (-3282 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-242)))) (-2541 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-242)))) (-2666 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-2927 (*1 *1 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-242)))) (-4093 (*1 *1 *2) (-12 (-5 *2 (-1 (-877 (-205)) (-877 (-205)))) (-5 *1 (-242)))) (-3319 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-3319 (*1 *1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-242)))) (-2321 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-2321 (*1 *1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-242)))) (-2113 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-242)))) (-2113 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-242)))) (-2113 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-242)))) (-1865 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-4162 (*1 *1 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-242)))) (-4162 (*1 *1 *2) (-12 (-5 *2 (-592 (-1014 (-385 (-525))))) (-5 *1 (-242)))) (-4129 (*1 *1 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-242)))) (-2166 (*1 *1 *2) (-12 (-5 *2 (-1050 (-205))) (-5 *1 (-242)))) (-3736 (*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-242)))) (-3710 (*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-242)))) (-1879 (*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-242)))) (-3936 (*1 *1 *2) (-12 (-5 *2 (-1 (-877 (-205)) (-877 (-205)))) (-5 *1 (-242)))) (-3957 (*1 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-242)))) (-2610 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1090)) (-5 *2 (-51)) (-5 *1 (-242)))) (-1271 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-242))) (-5 *4 (-1090)) (-5 *2 (-108)) (-5 *1 (-242)))))
-(-13 (-1019) (-10 -8 (-15 -3915 ($ (-108))) (-15 -2927 ($ (-108))) (-15 -1668 ($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -3282 ($ (-1073))) (-15 -2541 ($ (-1073))) (-15 -2666 ($ (-108))) (-15 -2927 ($ (-592 (-1014 (-357))))) (-15 -4093 ($ (-1 (-877 (-205)) (-877 (-205))))) (-15 -3319 ($ (-357))) (-15 -3319 ($ (-808))) (-15 -2321 ($ (-357))) (-15 -2321 ($ (-808))) (-15 -2113 ($ (-1 (-205) (-205)))) (-15 -2113 ($ (-1 (-205) (-205) (-205)))) (-15 -2113 ($ (-1 (-205) (-205) (-205) (-205)))) (-15 -1865 ($ (-357))) (-15 -4162 ($ (-592 (-1014 (-357))))) (-15 -4162 ($ (-592 (-1014 (-385 (-525)))))) (-15 -4129 ($ (-592 (-1014 (-357))))) (-15 -2166 ($ (-1050 (-205)))) (-15 -3736 ($ (-855))) (-15 -3710 ($ (-855))) (-15 -1879 ($ (-855))) (-15 -3936 ($ (-1 (-877 (-205)) (-877 (-205))))) (-15 -3957 ($ (-592 (-357)))) (-15 -2610 ((-3 (-51) "failed") (-592 $) (-1090))) (-15 -1271 ((-108) (-592 $) (-1090)))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3140 (((-592 (-713)) $) NIL) (((-592 (-713)) $ |#2|) NIL)) (-1628 (((-713) $) NIL) (((-713) $ |#2|) NIL)) (-4104 (((-592 |#3|) $) NIL)) (-3927 (((-1086 $) $ |#3|) NIL) (((-1086 |#1|) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-1324 (((-713) $) NIL) (((-713) $ (-592 |#3|)) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3321 (($ $) NIL (|has| |#1| (-429)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3847 (($ $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1042 |#1| |#2|) "failed") $) 21)) (-2831 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1042 |#1| |#2|) $) NIL)) (-2506 (($ $ $ |#3|) NIL (|has| |#1| (-160)))) (-1247 (($ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3811 (($ $) NIL (|has| |#1| (-429))) (($ $ |#3|) NIL (|has| |#1| (-429)))) (-1234 (((-592 $) $) NIL)) (-2250 (((-108) $) NIL (|has| |#1| (-843)))) (-2099 (($ $ |#1| (-497 |#3|) $) NIL)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| |#1| (-820 (-357))) (|has| |#3| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| |#1| (-820 (-525))) (|has| |#3| (-820 (-525)))))) (-1737 (((-713) $ |#2|) NIL) (((-713) $) 10)) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) NIL)) (-4092 (($ (-1086 |#1|) |#3|) NIL) (($ (-1086 $) |#3|) NIL)) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-497 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ |#3|) NIL)) (-3181 (((-497 |#3|) $) NIL) (((-713) $ |#3|) NIL) (((-592 (-713)) $ (-592 |#3|)) NIL)) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-1331 (($ (-1 (-497 |#3|) (-497 |#3|)) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-2282 (((-1 $ (-713)) |#2|) NIL) (((-1 $ (-713)) $) NIL (|has| |#1| (-213)))) (-1666 (((-3 |#3| "failed") $) NIL)) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-2576 ((|#3| $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2337 (((-1073) $) NIL)) (-1946 (((-108) $) NIL)) (-3245 (((-3 (-592 $) "failed") $) NIL)) (-3193 (((-3 (-592 $) "failed") $) NIL)) (-3283 (((-3 (-2 (|:| |var| |#3|) (|:| -1600 (-713))) "failed") $) NIL)) (-3448 (($ $) NIL)) (-2663 (((-1037) $) NIL)) (-4221 (((-108) $) NIL)) (-4232 ((|#1| $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-429)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3959 (((-396 $) $) NIL (|has| |#1| (-843)))) (-2338 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3092 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-592 |#3|) (-592 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-592 |#3|) (-592 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 $)) NIL (|has| |#1| (-213))) (($ $ |#2| |#1|) NIL (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 |#1|)) NIL (|has| |#1| (-213)))) (-1400 (($ $ |#3|) NIL (|has| |#1| (-160)))) (-3013 (($ $ |#3|) NIL) (($ $ (-592 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3780 (((-592 |#2|) $) NIL)) (-2513 (((-497 |#3|) $) NIL) (((-713) $ |#3|) NIL) (((-592 (-713)) $ (-592 |#3|)) NIL) (((-713) $ |#2|) NIL)) (-1427 (((-826 (-357)) $) NIL (-12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#3| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#3| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))))) (-2751 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ |#3|) NIL (|has| |#1| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1042 |#1| |#2|)) 30) (($ (-385 (-525))) NIL (-3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3600 (((-592 |#1|) $) NIL)) (-1657 ((|#1| $ (-497 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2093 (((-713)) NIL)) (-4116 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $ |#3|) NIL) (($ $ (-592 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-243 |#1| |#2| |#3|) (-13 (-232 |#1| |#2| |#3| (-497 |#3|)) (-967 (-1042 |#1| |#2|))) (-976) (-789) (-245 |#2|)) (T -243))
-NIL
-(-13 (-232 |#1| |#2| |#3| (-497 |#3|)) (-967 (-1042 |#1| |#2|)))
-((-1628 (((-713) $) 30)) (-1264 (((-3 |#2| "failed") $) 17)) (-2831 ((|#2| $) 27)) (-3013 (($ $) 12) (($ $ (-713)) 15)) (-1908 (((-797) $) 26) (($ |#2|) 10)) (-3961 (((-108) $ $) 20)) (-3983 (((-108) $ $) 29)))
-(((-244 |#1| |#2|) (-10 -8 (-15 -3013 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1|)) (-15 -1628 ((-713) |#1|)) (-15 -2831 (|#2| |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -1908 (|#1| |#2|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1908 ((-797) |#1|)) (-15 -3961 ((-108) |#1| |#1|))) (-245 |#2|) (-789)) (T -244))
-NIL
-(-10 -8 (-15 -3013 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1|)) (-15 -1628 ((-713) |#1|)) (-15 -2831 (|#2| |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -1908 (|#1| |#2|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1908 ((-797) |#1|)) (-15 -3961 ((-108) |#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-1628 (((-713) $) 22)) (-1251 ((|#1| $) 23)) (-1264 (((-3 |#1| "failed") $) 27)) (-2831 ((|#1| $) 26)) (-1737 (((-713) $) 24)) (-3525 (($ $ $) 13)) (-3630 (($ $ $) 14)) (-2282 (($ |#1| (-713)) 25)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-3013 (($ $) 21) (($ $ (-713)) 20)) (-1908 (((-797) $) 11) (($ |#1|) 28)) (-4024 (((-108) $ $) 16)) (-3995 (((-108) $ $) 17)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 15)) (-3983 (((-108) $ $) 18)))
+((-1503 (((-592 (-713)) $) 47) (((-592 (-713)) $ |#3|) 50)) (-3448 (((-713) $) 49) (((-713) $ |#3|) 52)) (-2123 (($ $) 65)) (-2591 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3973 (((-713) $ |#3|) 39) (((-713) $) 36)) (-4123 (((-1 $ (-713)) |#3|) 15) (((-1 $ (-713)) $) 77)) (-1241 ((|#4| $) 58)) (-3896 (((-108) $) 56)) (-3600 (($ $) 64)) (-2602 (($ $ (-592 (-273 $))) 97) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-592 |#4|) (-592 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-592 |#4|) (-592 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-592 |#3|) (-592 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-592 |#3|) (-592 |#2|)) 84)) (-2523 (($ $ |#4|) NIL) (($ $ (-592 |#4|)) NIL) (($ $ |#4| (-713)) NIL) (($ $ (-592 |#4|) (-592 (-713))) NIL) (($ $) NIL) (($ $ (-713)) NIL) (($ $ (-1091)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2786 (((-592 |#3|) $) 75)) (-1587 ((|#5| $) NIL) (((-713) $ |#4|) NIL) (((-592 (-713)) $ (-592 |#4|)) NIL) (((-713) $ |#3|) 44)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-385 (-525))) NIL) (($ $) NIL)))
+(((-231 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1270 (|#1| |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -2602 (|#1| |#1| (-592 |#3|) (-592 |#2|))) (-15 -2602 (|#1| |#1| |#3| |#2|)) (-15 -2602 (|#1| |#1| (-592 |#3|) (-592 |#1|))) (-15 -2602 (|#1| |#1| |#3| |#1|)) (-15 -4123 ((-1 |#1| (-713)) |#1|)) (-15 -2123 (|#1| |#1|)) (-15 -3600 (|#1| |#1|)) (-15 -1241 (|#4| |#1|)) (-15 -3896 ((-108) |#1|)) (-15 -3448 ((-713) |#1| |#3|)) (-15 -1503 ((-592 (-713)) |#1| |#3|)) (-15 -3448 ((-713) |#1|)) (-15 -1503 ((-592 (-713)) |#1|)) (-15 -1587 ((-713) |#1| |#3|)) (-15 -3973 ((-713) |#1|)) (-15 -3973 ((-713) |#1| |#3|)) (-15 -2786 ((-592 |#3|) |#1|)) (-15 -4123 ((-1 |#1| (-713)) |#3|)) (-15 -2591 ((-3 |#3| "failed") |#1|)) (-15 -1270 (|#1| |#3|)) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1|)) (-15 -1587 ((-592 (-713)) |#1| (-592 |#4|))) (-15 -1587 ((-713) |#1| |#4|)) (-15 -2591 ((-3 |#4| "failed") |#1|)) (-15 -1270 (|#1| |#4|)) (-15 -2602 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -2602 (|#1| |#1| |#4| |#1|)) (-15 -2602 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -2602 (|#1| |#1| |#4| |#2|)) (-15 -2602 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2602 (|#1| |#1| |#1| |#1|)) (-15 -2602 (|#1| |#1| (-273 |#1|))) (-15 -2602 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1587 (|#5| |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1270 (|#1| |#2|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -2523 (|#1| |#1| |#4| (-713))) (-15 -2523 (|#1| |#1| (-592 |#4|))) (-15 -2523 (|#1| |#1| |#4|)) (-15 -1270 (|#1| (-525))) (-15 -1270 ((-798) |#1|))) (-232 |#2| |#3| |#4| |#5|) (-977) (-789) (-245 |#3|) (-735)) (T -231))
+NIL
+(-10 -8 (-15 -1270 (|#1| |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -2602 (|#1| |#1| (-592 |#3|) (-592 |#2|))) (-15 -2602 (|#1| |#1| |#3| |#2|)) (-15 -2602 (|#1| |#1| (-592 |#3|) (-592 |#1|))) (-15 -2602 (|#1| |#1| |#3| |#1|)) (-15 -4123 ((-1 |#1| (-713)) |#1|)) (-15 -2123 (|#1| |#1|)) (-15 -3600 (|#1| |#1|)) (-15 -1241 (|#4| |#1|)) (-15 -3896 ((-108) |#1|)) (-15 -3448 ((-713) |#1| |#3|)) (-15 -1503 ((-592 (-713)) |#1| |#3|)) (-15 -3448 ((-713) |#1|)) (-15 -1503 ((-592 (-713)) |#1|)) (-15 -1587 ((-713) |#1| |#3|)) (-15 -3973 ((-713) |#1|)) (-15 -3973 ((-713) |#1| |#3|)) (-15 -2786 ((-592 |#3|) |#1|)) (-15 -4123 ((-1 |#1| (-713)) |#3|)) (-15 -2591 ((-3 |#3| "failed") |#1|)) (-15 -1270 (|#1| |#3|)) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1|)) (-15 -1587 ((-592 (-713)) |#1| (-592 |#4|))) (-15 -1587 ((-713) |#1| |#4|)) (-15 -2591 ((-3 |#4| "failed") |#1|)) (-15 -1270 (|#1| |#4|)) (-15 -2602 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -2602 (|#1| |#1| |#4| |#1|)) (-15 -2602 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -2602 (|#1| |#1| |#4| |#2|)) (-15 -2602 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2602 (|#1| |#1| |#1| |#1|)) (-15 -2602 (|#1| |#1| (-273 |#1|))) (-15 -2602 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1587 (|#5| |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1270 (|#1| |#2|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -2523 (|#1| |#1| |#4| (-713))) (-15 -2523 (|#1| |#1| (-592 |#4|))) (-15 -2523 (|#1| |#1| |#4|)) (-15 -1270 (|#1| (-525))) (-15 -1270 ((-798) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1503 (((-592 (-713)) $) 214) (((-592 (-713)) $ |#2|) 212)) (-3448 (((-713) $) 213) (((-713) $ |#2|) 211)) (-2383 (((-592 |#3|) $) 110)) (-2146 (((-1087 $) $ |#3|) 125) (((-1087 |#1|) $) 124)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-3711 (($ $) 88 (|has| |#1| (-517)))) (-3380 (((-108) $) 90 (|has| |#1| (-517)))) (-3848 (((-713) $) 112) (((-713) $ (-592 |#3|)) 111)) (-1342 (((-3 $ "failed") $ $) 19)) (-4050 (((-396 (-1087 $)) (-1087 $)) 100 (|has| |#1| (-844)))) (-3706 (($ $) 98 (|has| |#1| (-429)))) (-2100 (((-396 $) $) 97 (|has| |#1| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) 103 (|has| |#1| (-844)))) (-2123 (($ $) 207)) (-2305 (($) 17 T CONST)) (-2591 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-968 (-525)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-3898 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-968 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-968 (-525)))) ((|#3| $) 135) ((|#2| $) 220)) (-1516 (($ $ $ |#3|) 108 (|has| |#1| (-160)))) (-2571 (($ $) 154)) (-3416 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-3762 (((-3 $ "failed") $) 34)) (-3026 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-2558 (((-592 $) $) 109)) (-3836 (((-108) $) 96 (|has| |#1| (-844)))) (-2192 (($ $ |#1| |#4| $) 172)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 84 (-12 (|has| |#3| (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 83 (-12 (|has| |#3| (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-3973 (((-713) $ |#2|) 217) (((-713) $) 216)) (-1985 (((-108) $) 31)) (-1647 (((-713) $) 169)) (-2368 (($ (-1087 |#1|) |#3|) 117) (($ (-1087 $) |#3|) 116)) (-2177 (((-592 $) $) 126)) (-1788 (((-108) $) 152)) (-2352 (($ |#1| |#4|) 153) (($ $ |#3| (-713)) 119) (($ $ (-592 |#3|) (-592 (-713))) 118)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ |#3|) 120)) (-3724 ((|#4| $) 170) (((-713) $ |#3|) 122) (((-592 (-713)) $ (-592 |#3|)) 121)) (-2371 (($ $ $) 79 (|has| |#1| (-789)))) (-2535 (($ $ $) 78 (|has| |#1| (-789)))) (-3922 (($ (-1 |#4| |#4|) $) 171)) (-2694 (($ (-1 |#1| |#1|) $) 151)) (-4123 (((-1 $ (-713)) |#2|) 219) (((-1 $ (-713)) $) 206 (|has| |#1| (-213)))) (-3567 (((-3 |#3| "failed") $) 123)) (-2538 (($ $) 149)) (-2548 ((|#1| $) 148)) (-1241 ((|#3| $) 209)) (-2756 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-3451 (((-1074) $) 9)) (-3896 (((-108) $) 210)) (-4228 (((-3 (-592 $) "failed") $) 114)) (-3852 (((-3 (-592 $) "failed") $) 115)) (-1553 (((-3 (-2 (|:| |var| |#3|) (|:| -1864 (-713))) "failed") $) 113)) (-3600 (($ $) 208)) (-2012 (((-1038) $) 10)) (-2513 (((-108) $) 166)) (-2525 ((|#1| $) 167)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 95 (|has| |#1| (-429)))) (-2794 (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-1215 (((-396 (-1087 $)) (-1087 $)) 102 (|has| |#1| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) 101 (|has| |#1| (-844)))) (-2195 (((-396 $) $) 99 (|has| |#1| (-844)))) (-1680 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-2602 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-592 |#3|) (-592 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-592 |#3|) (-592 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 $)) 204 (|has| |#1| (-213))) (($ $ |#2| |#1|) 203 (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 |#1|)) 202 (|has| |#1| (-213)))) (-2094 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-2523 (($ $ |#3|) 42) (($ $ (-592 |#3|)) 41) (($ $ |#3| (-713)) 40) (($ $ (-592 |#3|) (-592 (-713))) 39) (($ $) 238 (|has| |#1| (-213))) (($ $ (-713)) 236 (|has| |#1| (-213))) (($ $ (-1091)) 234 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) 233 (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) 232 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) 231 (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2786 (((-592 |#2|) $) 218)) (-1587 ((|#4| $) 150) (((-713) $ |#3|) 130) (((-592 (-713)) $ (-592 |#3|)) 129) (((-713) $ |#2|) 215)) (-2749 (((-827 (-357)) $) 82 (-12 (|has| |#3| (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) 81 (-12 (|has| |#3| (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2026 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) 104 (-3830 (|has| $ (-136)) (|has| |#1| (-844))))) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ |#2|) 222) (($ (-385 (-525))) 72 (-3279 (|has| |#1| (-968 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-1562 (((-592 |#1|) $) 168)) (-3468 ((|#1| $ |#4|) 155) (($ $ |#3| (-713)) 128) (($ $ (-592 |#3|) (-592 (-713))) 127)) (-3425 (((-3 $ "failed") $) 73 (-3279 (-3830 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2104 (((-713)) 29)) (-3658 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-3959 (((-108) $ $) 89 (|has| |#1| (-517)))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ |#3|) 38) (($ $ (-592 |#3|)) 37) (($ $ |#3| (-713)) 36) (($ $ (-592 |#3|) (-592 (-713))) 35) (($ $) 237 (|has| |#1| (-213))) (($ $ (-713)) 235 (|has| |#1| (-213))) (($ $ (-1091)) 230 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) 229 (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) 228 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) 227 (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-4045 (((-108) $ $) 76 (|has| |#1| (-789)))) (-4026 (((-108) $ $) 75 (|has| |#1| (-789)))) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 77 (|has| |#1| (-789)))) (-4017 (((-108) $ $) 74 (|has| |#1| (-789)))) (-4100 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-232 |#1| |#2| |#3| |#4|) (-131) (-977) (-789) (-245 |t#2|) (-735)) (T -232))
+((-4123 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *4 *3 *5 *6)))) (-2786 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 *4)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713)))) (-1587 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) (-1503 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 (-713))))) (-3448 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713)))) (-1503 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-592 (-713))))) (-3448 (*1 *2 *1 *3) (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713)))) (-3896 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-108)))) (-1241 (*1 *2 *1) (-12 (-4 *1 (-232 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-735)) (-4 *2 (-245 *4)))) (-3600 (*1 *1 *1) (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-977)) (-4 *3 (-789)) (-4 *4 (-245 *3)) (-4 *5 (-735)))) (-2123 (*1 *1 *1) (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-977)) (-4 *3 (-789)) (-4 *4 (-245 *3)) (-4 *5 (-735)))) (-4123 (*1 *2 *1) (-12 (-4 *3 (-213)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *3 *4 *5 *6)))))
+(-13 (-884 |t#1| |t#4| |t#3|) (-211 |t#1|) (-968 |t#2|) (-10 -8 (-15 -4123 ((-1 $ (-713)) |t#2|)) (-15 -2786 ((-592 |t#2|) $)) (-15 -3973 ((-713) $ |t#2|)) (-15 -3973 ((-713) $)) (-15 -1587 ((-713) $ |t#2|)) (-15 -1503 ((-592 (-713)) $)) (-15 -3448 ((-713) $)) (-15 -1503 ((-592 (-713)) $ |t#2|)) (-15 -3448 ((-713) $ |t#2|)) (-15 -3896 ((-108) $)) (-15 -1241 (|t#3| $)) (-15 -3600 ($ $)) (-15 -2123 ($ $)) (IF (|has| |t#1| (-213)) (PROGN (-6 (-486 |t#2| |t#1|)) (-6 (-486 |t#2| $)) (-6 (-288 $)) (-15 -4123 ((-1 $ (-713)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))) ((-567 (-827 (-357))) -12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#3| (-567 (-827 (-357))))) ((-567 (-827 (-525))) -12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#3| (-567 (-827 (-525))))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-269) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#4|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3279 (|has| |#1| (-844)) (|has| |#1| (-429))) ((-486 |#2| |#1|) |has| |#1| (-213)) ((-486 |#2| $) |has| |#1| (-213)) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 (-1091)) |has| |#1| (-835 (-1091))) ((-835 |#3|) . T) ((-821 (-357)) -12 (|has| |#1| (-821 (-357))) (|has| |#3| (-821 (-357)))) ((-821 (-525)) -12 (|has| |#1| (-821 (-525))) (|has| |#3| (-821 (-525)))) ((-884 |#1| |#4| |#3|) . T) ((-844) |has| |#1| (-844)) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-968 |#2|) . T) ((-968 |#3|) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1131) |has| |#1| (-844)))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2587 ((|#1| $) 54)) (-2936 ((|#1| $) 44)) (-3330 (((-108) $ (-713)) 8)) (-2305 (($) 7 T CONST)) (-2481 (($ $) 60)) (-3559 (($ $) 48)) (-3158 ((|#1| |#1| $) 46)) (-4081 ((|#1| $) 45)) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) 9)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-2023 (((-713) $) 61)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-3955 ((|#1| $) 39)) (-2278 ((|#1| |#1| $) 52)) (-2258 ((|#1| |#1| $) 51)) (-3985 (($ |#1| $) 40)) (-1751 (((-713) $) 55)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-2566 ((|#1| $) 62)) (-4086 ((|#1| $) 50)) (-1742 ((|#1| $) 49)) (-1881 ((|#1| $) 41)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2522 ((|#1| |#1| $) 58)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-2961 ((|#1| $) 59)) (-1589 (($) 57) (($ (-592 |#1|)) 56)) (-4064 (((-713) $) 43)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3142 ((|#1| $) 53)) (-1665 (($ (-592 |#1|)) 42)) (-3562 ((|#1| $) 63)) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-233 |#1|) (-131) (-1127)) (T -233))
+((-1589 (*1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1127)))) (-1589 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-4 *1 (-233 *3)))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-233 *3)) (-4 *3 (-1127)) (-5 *2 (-713)))) (-2587 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1127)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1127)))) (-2278 (*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1127)))) (-2258 (*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1127)))) (-4086 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1127)))) (-1742 (*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1127)))) (-3559 (*1 *1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1127)))))
+(-13 (-1039 |t#1|) (-927 |t#1|) (-10 -8 (-15 -1589 ($)) (-15 -1589 ($ (-592 |t#1|))) (-15 -1751 ((-713) $)) (-15 -2587 (|t#1| $)) (-15 -3142 (|t#1| $)) (-15 -2278 (|t#1| |t#1| $)) (-15 -2258 (|t#1| |t#1| $)) (-15 -4086 (|t#1| $)) (-15 -1742 (|t#1| $)) (-15 -3559 ($ $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-927 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1039 |#1|) . T) ((-1127) . T))
+((-3000 (((-1 (-878 (-205)) (-205) (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205))) 139)) (-1632 (((-1051 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357))) 160) (((-1051 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 158) (((-1051 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357))) 163) (((-1051 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 159) (((-1051 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357))) 150) (((-1051 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 149) (((-1051 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357))) 129) (((-1051 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242))) 127) (((-1051 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357))) 128) (((-1051 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242))) 125)) (-1593 (((-1175) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357))) 162) (((-1175) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 161) (((-1175) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357))) 165) (((-1175) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 164) (((-1175) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357))) 152) (((-1175) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242))) 151) (((-1175) (-1 (-878 (-205)) (-205)) (-1015 (-357))) 135) (((-1175) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242))) 134) (((-1175) (-814 (-1 (-205) (-205))) (-1015 (-357))) 133) (((-1175) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242))) 132) (((-1174) (-812 (-1 (-205) (-205))) (-1015 (-357))) 100) (((-1174) (-812 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242))) 99) (((-1174) (-1 (-205) (-205)) (-1015 (-357))) 96) (((-1174) (-1 (-205) (-205)) (-1015 (-357)) (-592 (-242))) 95)))
+(((-234) (-10 -7 (-15 -1593 ((-1174) (-1 (-205) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -1593 ((-1174) (-1 (-205) (-205)) (-1015 (-357)))) (-15 -1593 ((-1174) (-812 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -1593 ((-1174) (-812 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -1593 ((-1175) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -1593 ((-1175) (-814 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -1593 ((-1175) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -1593 ((-1175) (-1 (-878 (-205)) (-205)) (-1015 (-357)))) (-15 -1632 ((-1051 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -1632 ((-1051 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -1632 ((-1051 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -1632 ((-1051 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357)))) (-15 -1593 ((-1175) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -1593 ((-1175) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -1632 ((-1051 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -1632 ((-1051 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -1593 ((-1175) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -1593 ((-1175) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -1632 ((-1051 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -1632 ((-1051 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -1593 ((-1175) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -1593 ((-1175) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)))) (-15 -1632 ((-1051 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -1632 ((-1051 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)))) (-15 -3000 ((-1 (-878 (-205)) (-205) (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))) (T -234))
+((-3000 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-878 (-205)) (-205) (-205))) (-5 *3 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-234)))) (-1632 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *2 (-1051 (-205))) (-5 *1 (-234)))) (-1632 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-234)))) (-1593 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *2 (-1175)) (-5 *1 (-234)))) (-1593 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234)))) (-1632 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1051 (-205))) (-5 *1 (-234)))) (-1632 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-234)))) (-1593 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1175)) (-5 *1 (-234)))) (-1593 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234)))) (-1632 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1051 (-205))) (-5 *1 (-234)))) (-1632 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-234)))) (-1593 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1175)) (-5 *1 (-234)))) (-1593 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1051 (-205))) (-5 *1 (-234)))) (-1632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-234)))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *2 (-1051 (-205))) (-5 *1 (-234)))) (-1632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-234)))) (-1593 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1175)) (-5 *1 (-234)))) (-1593 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234)))) (-1593 (*1 *2 *3 *4) (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *2 (-1175)) (-5 *1 (-234)))) (-1593 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234)))) (-1593 (*1 *2 *3 *4) (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-1593 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-1593 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *2 (-1174)) (-5 *1 (-234)))) (-1593 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1015 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234)))))
+(-10 -7 (-15 -1593 ((-1174) (-1 (-205) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -1593 ((-1174) (-1 (-205) (-205)) (-1015 (-357)))) (-15 -1593 ((-1174) (-812 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -1593 ((-1174) (-812 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -1593 ((-1175) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -1593 ((-1175) (-814 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -1593 ((-1175) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -1593 ((-1175) (-1 (-878 (-205)) (-205)) (-1015 (-357)))) (-15 -1632 ((-1051 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357)) (-592 (-242)))) (-15 -1632 ((-1051 (-205)) (-814 (-1 (-205) (-205))) (-1015 (-357)))) (-15 -1632 ((-1051 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357)) (-592 (-242)))) (-15 -1632 ((-1051 (-205)) (-1 (-878 (-205)) (-205)) (-1015 (-357)))) (-15 -1593 ((-1175) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -1593 ((-1175) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -1632 ((-1051 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -1632 ((-1051 (-205)) (-1 (-205) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -1593 ((-1175) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -1593 ((-1175) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -1632 ((-1051 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -1632 ((-1051 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-357)) (-1015 (-357)))) (-15 -1593 ((-1175) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -1593 ((-1175) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)))) (-15 -1632 ((-1051 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)) (-592 (-242)))) (-15 -1632 ((-1051 (-205)) (-817 (-1 (-205) (-205) (-205))) (-1015 (-357)) (-1015 (-357)))) (-15 -3000 ((-1 (-878 (-205)) (-205) (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))
+((-1593 (((-1174) (-273 |#2|) (-1091) (-1091) (-592 (-242))) 96)))
+(((-235 |#1| |#2|) (-10 -7 (-15 -1593 ((-1174) (-273 |#2|) (-1091) (-1091) (-592 (-242))))) (-13 (-517) (-789) (-968 (-525))) (-408 |#1|)) (T -235))
+((-1593 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-1091)) (-5 *5 (-592 (-242))) (-4 *7 (-408 *6)) (-4 *6 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-1174)) (-5 *1 (-235 *6 *7)))))
+(-10 -7 (-15 -1593 ((-1174) (-273 |#2|) (-1091) (-1091) (-592 (-242)))))
+((-2235 (((-525) (-525)) 50)) (-3066 (((-525) (-525)) 51)) (-2605 (((-205) (-205)) 52)) (-2110 (((-1175) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205))) 49)) (-2750 (((-1175) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205)) (-108)) 47)))
+(((-236) (-10 -7 (-15 -2750 ((-1175) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205)) (-108))) (-15 -2110 ((-1175) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205)))) (-15 -2235 ((-525) (-525))) (-15 -3066 ((-525) (-525))) (-15 -2605 ((-205) (-205))))) (T -236))
+((-2605 (*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-236)))) (-3066 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))) (-2235 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))) (-2110 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1015 (-205))) (-5 *2 (-1175)) (-5 *1 (-236)))) (-2750 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1015 (-205))) (-5 *5 (-108)) (-5 *2 (-1175)) (-5 *1 (-236)))))
+(-10 -7 (-15 -2750 ((-1175) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205)) (-108))) (-15 -2110 ((-1175) (-1 (-157 (-205)) (-157 (-205))) (-1015 (-205)) (-1015 (-205)))) (-15 -2235 ((-525) (-525))) (-15 -3066 ((-525) (-525))) (-15 -2605 ((-205) (-205))))
+((-1270 (((-1013 (-357)) (-1013 (-294 |#1|))) 16)))
+(((-237 |#1|) (-10 -7 (-15 -1270 ((-1013 (-357)) (-1013 (-294 |#1|))))) (-13 (-789) (-517) (-567 (-357)))) (T -237))
+((-1270 (*1 *2 *3) (-12 (-5 *3 (-1013 (-294 *4))) (-4 *4 (-13 (-789) (-517) (-567 (-357)))) (-5 *2 (-1013 (-357))) (-5 *1 (-237 *4)))))
+(-10 -7 (-15 -1270 ((-1013 (-357)) (-1013 (-294 |#1|)))))
+((-1632 (((-1051 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357))) 71) (((-1051 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242))) 70) (((-1051 (-205)) |#1| (-1013 (-357)) (-1013 (-357))) 61) (((-1051 (-205)) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242))) 60) (((-1051 (-205)) (-814 |#1|) (-1013 (-357))) 52) (((-1051 (-205)) (-814 |#1|) (-1013 (-357)) (-592 (-242))) 51)) (-1593 (((-1175) (-817 |#1|) (-1013 (-357)) (-1013 (-357))) 74) (((-1175) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242))) 73) (((-1175) |#1| (-1013 (-357)) (-1013 (-357))) 64) (((-1175) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242))) 63) (((-1175) (-814 |#1|) (-1013 (-357))) 56) (((-1175) (-814 |#1|) (-1013 (-357)) (-592 (-242))) 55) (((-1174) (-812 |#1|) (-1013 (-357))) 43) (((-1174) (-812 |#1|) (-1013 (-357)) (-592 (-242))) 42) (((-1174) |#1| (-1013 (-357))) 35) (((-1174) |#1| (-1013 (-357)) (-592 (-242))) 34)))
+(((-238 |#1|) (-10 -7 (-15 -1593 ((-1174) |#1| (-1013 (-357)) (-592 (-242)))) (-15 -1593 ((-1174) |#1| (-1013 (-357)))) (-15 -1593 ((-1174) (-812 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -1593 ((-1174) (-812 |#1|) (-1013 (-357)))) (-15 -1593 ((-1175) (-814 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -1593 ((-1175) (-814 |#1|) (-1013 (-357)))) (-15 -1632 ((-1051 (-205)) (-814 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -1632 ((-1051 (-205)) (-814 |#1|) (-1013 (-357)))) (-15 -1593 ((-1175) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -1593 ((-1175) |#1| (-1013 (-357)) (-1013 (-357)))) (-15 -1632 ((-1051 (-205)) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -1632 ((-1051 (-205)) |#1| (-1013 (-357)) (-1013 (-357)))) (-15 -1593 ((-1175) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -1593 ((-1175) (-817 |#1|) (-1013 (-357)) (-1013 (-357)))) (-15 -1632 ((-1051 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -1632 ((-1051 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357))))) (-13 (-567 (-501)) (-1020))) (T -238))
+((-1632 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 *5)) (-5 *4 (-1013 (-357))) (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1051 (-205))) (-5 *1 (-238 *5)))) (-1632 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1051 (-205))) (-5 *1 (-238 *6)))) (-1593 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-817 *5)) (-5 *4 (-1013 (-357))) (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1175)) (-5 *1 (-238 *5)))) (-1593 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-817 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1175)) (-5 *1 (-238 *6)))) (-1632 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1051 (-205))) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))) (-1632 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))) (-1593 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1175)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))) (-1593 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))) (-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-814 *5)) (-5 *4 (-1013 (-357))) (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1051 (-205))) (-5 *1 (-238 *5)))) (-1632 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1051 (-205))) (-5 *1 (-238 *6)))) (-1593 (*1 *2 *3 *4) (-12 (-5 *3 (-814 *5)) (-5 *4 (-1013 (-357))) (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1175)) (-5 *1 (-238 *5)))) (-1593 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-814 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1175)) (-5 *1 (-238 *6)))) (-1593 (*1 *2 *3 *4) (-12 (-5 *3 (-812 *5)) (-5 *4 (-1013 (-357))) (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1174)) (-5 *1 (-238 *5)))) (-1593 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-812 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1174)) (-5 *1 (-238 *6)))) (-1593 (*1 *2 *3 *4) (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1174)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))) (-1593 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020))))))
+(-10 -7 (-15 -1593 ((-1174) |#1| (-1013 (-357)) (-592 (-242)))) (-15 -1593 ((-1174) |#1| (-1013 (-357)))) (-15 -1593 ((-1174) (-812 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -1593 ((-1174) (-812 |#1|) (-1013 (-357)))) (-15 -1593 ((-1175) (-814 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -1593 ((-1175) (-814 |#1|) (-1013 (-357)))) (-15 -1632 ((-1051 (-205)) (-814 |#1|) (-1013 (-357)) (-592 (-242)))) (-15 -1632 ((-1051 (-205)) (-814 |#1|) (-1013 (-357)))) (-15 -1593 ((-1175) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -1593 ((-1175) |#1| (-1013 (-357)) (-1013 (-357)))) (-15 -1632 ((-1051 (-205)) |#1| (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -1632 ((-1051 (-205)) |#1| (-1013 (-357)) (-1013 (-357)))) (-15 -1593 ((-1175) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -1593 ((-1175) (-817 |#1|) (-1013 (-357)) (-1013 (-357)))) (-15 -1632 ((-1051 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357)) (-592 (-242)))) (-15 -1632 ((-1051 (-205)) (-817 |#1|) (-1013 (-357)) (-1013 (-357)))))
+((-1593 (((-1175) (-592 (-205)) (-592 (-205)) (-592 (-205)) (-592 (-242))) 23) (((-1175) (-592 (-205)) (-592 (-205)) (-592 (-205))) 24) (((-1174) (-592 (-878 (-205))) (-592 (-242))) 16) (((-1174) (-592 (-878 (-205)))) 17) (((-1174) (-592 (-205)) (-592 (-205)) (-592 (-242))) 20) (((-1174) (-592 (-205)) (-592 (-205))) 21)))
+(((-239) (-10 -7 (-15 -1593 ((-1174) (-592 (-205)) (-592 (-205)))) (-15 -1593 ((-1174) (-592 (-205)) (-592 (-205)) (-592 (-242)))) (-15 -1593 ((-1174) (-592 (-878 (-205))))) (-15 -1593 ((-1174) (-592 (-878 (-205))) (-592 (-242)))) (-15 -1593 ((-1175) (-592 (-205)) (-592 (-205)) (-592 (-205)))) (-15 -1593 ((-1175) (-592 (-205)) (-592 (-205)) (-592 (-205)) (-592 (-242)))))) (T -239))
+((-1593 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-239)))) (-1593 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1175)) (-5 *1 (-239)))) (-1593 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *4 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-239)))) (-1593 (*1 *2 *3) (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *2 (-1174)) (-5 *1 (-239)))) (-1593 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-239)))) (-1593 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1174)) (-5 *1 (-239)))))
+(-10 -7 (-15 -1593 ((-1174) (-592 (-205)) (-592 (-205)))) (-15 -1593 ((-1174) (-592 (-205)) (-592 (-205)) (-592 (-242)))) (-15 -1593 ((-1174) (-592 (-878 (-205))))) (-15 -1593 ((-1174) (-592 (-878 (-205))) (-592 (-242)))) (-15 -1593 ((-1175) (-592 (-205)) (-592 (-205)) (-592 (-205)))) (-15 -1593 ((-1175) (-592 (-205)) (-592 (-205)) (-592 (-205)) (-592 (-242)))))
+((-1214 (((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-592 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 26)) (-3258 (((-856) (-592 (-242)) (-856)) 53)) (-3477 (((-856) (-592 (-242)) (-856)) 52)) (-4009 (((-592 (-357)) (-592 (-242)) (-592 (-357))) 69)) (-3447 (((-357) (-592 (-242)) (-357)) 58)) (-3578 (((-856) (-592 (-242)) (-856)) 54)) (-3622 (((-108) (-592 (-242)) (-108)) 28)) (-2844 (((-1074) (-592 (-242)) (-1074)) 20)) (-3680 (((-1074) (-592 (-242)) (-1074)) 27)) (-2446 (((-1051 (-205)) (-592 (-242))) 47)) (-2744 (((-592 (-1015 (-357))) (-592 (-242)) (-592 (-1015 (-357)))) 41)) (-2237 (((-809) (-592 (-242)) (-809)) 33)) (-4093 (((-809) (-592 (-242)) (-809)) 34)) (-1643 (((-1 (-878 (-205)) (-878 (-205))) (-592 (-242)) (-1 (-878 (-205)) (-878 (-205)))) 64)) (-2545 (((-108) (-592 (-242)) (-108)) 16)) (-1464 (((-108) (-592 (-242)) (-108)) 15)))
+(((-240) (-10 -7 (-15 -1464 ((-108) (-592 (-242)) (-108))) (-15 -2545 ((-108) (-592 (-242)) (-108))) (-15 -1214 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-592 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2844 ((-1074) (-592 (-242)) (-1074))) (-15 -3680 ((-1074) (-592 (-242)) (-1074))) (-15 -3622 ((-108) (-592 (-242)) (-108))) (-15 -2237 ((-809) (-592 (-242)) (-809))) (-15 -4093 ((-809) (-592 (-242)) (-809))) (-15 -2744 ((-592 (-1015 (-357))) (-592 (-242)) (-592 (-1015 (-357))))) (-15 -3477 ((-856) (-592 (-242)) (-856))) (-15 -3258 ((-856) (-592 (-242)) (-856))) (-15 -2446 ((-1051 (-205)) (-592 (-242)))) (-15 -3578 ((-856) (-592 (-242)) (-856))) (-15 -3447 ((-357) (-592 (-242)) (-357))) (-15 -1643 ((-1 (-878 (-205)) (-878 (-205))) (-592 (-242)) (-1 (-878 (-205)) (-878 (-205))))) (-15 -4009 ((-592 (-357)) (-592 (-242)) (-592 (-357)))))) (T -240))
+((-4009 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-357))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-1643 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3447 (*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3578 (*1 *2 *3 *2) (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-240)))) (-3258 (*1 *2 *3 *2) (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3477 (*1 *2 *3 *2) (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2744 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-4093 (*1 *2 *3 *2) (-12 (-5 *2 (-809)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2237 (*1 *2 *3 *2) (-12 (-5 *2 (-809)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3622 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-3680 (*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2844 (*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-1214 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-2545 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))) (-1464 (*1 *2 *3 *2) (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))))
+(-10 -7 (-15 -1464 ((-108) (-592 (-242)) (-108))) (-15 -2545 ((-108) (-592 (-242)) (-108))) (-15 -1214 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) (-592 (-242)) (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2844 ((-1074) (-592 (-242)) (-1074))) (-15 -3680 ((-1074) (-592 (-242)) (-1074))) (-15 -3622 ((-108) (-592 (-242)) (-108))) (-15 -2237 ((-809) (-592 (-242)) (-809))) (-15 -4093 ((-809) (-592 (-242)) (-809))) (-15 -2744 ((-592 (-1015 (-357))) (-592 (-242)) (-592 (-1015 (-357))))) (-15 -3477 ((-856) (-592 (-242)) (-856))) (-15 -3258 ((-856) (-592 (-242)) (-856))) (-15 -2446 ((-1051 (-205)) (-592 (-242)))) (-15 -3578 ((-856) (-592 (-242)) (-856))) (-15 -3447 ((-357) (-592 (-242)) (-357))) (-15 -1643 ((-1 (-878 (-205)) (-878 (-205))) (-592 (-242)) (-1 (-878 (-205)) (-878 (-205))))) (-15 -4009 ((-592 (-357)) (-592 (-242)) (-592 (-357)))))
+((-1958 (((-3 |#1| "failed") (-592 (-242)) (-1091)) 17)))
+(((-241 |#1|) (-10 -7 (-15 -1958 ((-3 |#1| "failed") (-592 (-242)) (-1091)))) (-1127)) (T -241))
+((-1958 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1091)) (-5 *1 (-241 *2)) (-4 *2 (-1127)))))
+(-10 -7 (-15 -1958 ((-3 |#1| "failed") (-592 (-242)) (-1091))))
+((-1260 (((-108) $ $) NIL)) (-1214 (($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 15)) (-3258 (($ (-856)) 76)) (-3477 (($ (-856)) 75)) (-1790 (($ (-592 (-357))) 82)) (-3447 (($ (-357)) 58)) (-3578 (($ (-856)) 77)) (-3622 (($ (-108)) 23)) (-2844 (($ (-1074)) 18)) (-3680 (($ (-1074)) 19)) (-2446 (($ (-1051 (-205))) 71)) (-2744 (($ (-592 (-1015 (-357)))) 67)) (-2990 (($ (-592 (-1015 (-357)))) 59) (($ (-592 (-1015 (-385 (-525))))) 66)) (-3693 (($ (-357)) 29) (($ (-809)) 33)) (-3597 (((-108) (-592 $) (-1091)) 91)) (-1958 (((-3 (-51) "failed") (-592 $) (-1091)) 93)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3304 (($ (-357)) 34) (($ (-809)) 35)) (-3464 (($ (-1 (-878 (-205)) (-878 (-205)))) 57)) (-1643 (($ (-1 (-878 (-205)) (-878 (-205)))) 78)) (-1789 (($ (-1 (-205) (-205))) 39) (($ (-1 (-205) (-205) (-205))) 43) (($ (-1 (-205) (-205) (-205) (-205))) 47)) (-1270 (((-798) $) 87)) (-3208 (($ (-108)) 24) (($ (-592 (-1015 (-357)))) 52)) (-1464 (($ (-108)) 25)) (-3994 (((-108) $ $) 89)))
+(((-242) (-13 (-1020) (-10 -8 (-15 -1464 ($ (-108))) (-15 -3208 ($ (-108))) (-15 -1214 ($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2844 ($ (-1074))) (-15 -3680 ($ (-1074))) (-15 -3622 ($ (-108))) (-15 -3208 ($ (-592 (-1015 (-357))))) (-15 -3464 ($ (-1 (-878 (-205)) (-878 (-205))))) (-15 -3693 ($ (-357))) (-15 -3693 ($ (-809))) (-15 -3304 ($ (-357))) (-15 -3304 ($ (-809))) (-15 -1789 ($ (-1 (-205) (-205)))) (-15 -1789 ($ (-1 (-205) (-205) (-205)))) (-15 -1789 ($ (-1 (-205) (-205) (-205) (-205)))) (-15 -3447 ($ (-357))) (-15 -2990 ($ (-592 (-1015 (-357))))) (-15 -2990 ($ (-592 (-1015 (-385 (-525)))))) (-15 -2744 ($ (-592 (-1015 (-357))))) (-15 -2446 ($ (-1051 (-205)))) (-15 -3477 ($ (-856))) (-15 -3258 ($ (-856))) (-15 -3578 ($ (-856))) (-15 -1643 ($ (-1 (-878 (-205)) (-878 (-205))))) (-15 -1790 ($ (-592 (-357)))) (-15 -1958 ((-3 (-51) "failed") (-592 $) (-1091))) (-15 -3597 ((-108) (-592 $) (-1091)))))) (T -242))
+((-1464 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-3208 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-1214 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *1 (-242)))) (-2844 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-242)))) (-3680 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-242)))) (-3622 (*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))) (-3208 (*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242)))) (-3464 (*1 *1 *2) (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *1 (-242)))) (-3693 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-3693 (*1 *1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-242)))) (-3304 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-3304 (*1 *1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-242)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-242)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-242)))) (-1789 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-242)))) (-3447 (*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))) (-2990 (*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242)))) (-2990 (*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-385 (-525))))) (-5 *1 (-242)))) (-2744 (*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242)))) (-2446 (*1 *1 *2) (-12 (-5 *2 (-1051 (-205))) (-5 *1 (-242)))) (-3477 (*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))) (-3258 (*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))) (-3578 (*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))) (-1643 (*1 *1 *2) (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *1 (-242)))) (-1790 (*1 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-242)))) (-1958 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1091)) (-5 *2 (-51)) (-5 *1 (-242)))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-242))) (-5 *4 (-1091)) (-5 *2 (-108)) (-5 *1 (-242)))))
+(-13 (-1020) (-10 -8 (-15 -1464 ($ (-108))) (-15 -3208 ($ (-108))) (-15 -1214 ($ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -2844 ($ (-1074))) (-15 -3680 ($ (-1074))) (-15 -3622 ($ (-108))) (-15 -3208 ($ (-592 (-1015 (-357))))) (-15 -3464 ($ (-1 (-878 (-205)) (-878 (-205))))) (-15 -3693 ($ (-357))) (-15 -3693 ($ (-809))) (-15 -3304 ($ (-357))) (-15 -3304 ($ (-809))) (-15 -1789 ($ (-1 (-205) (-205)))) (-15 -1789 ($ (-1 (-205) (-205) (-205)))) (-15 -1789 ($ (-1 (-205) (-205) (-205) (-205)))) (-15 -3447 ($ (-357))) (-15 -2990 ($ (-592 (-1015 (-357))))) (-15 -2990 ($ (-592 (-1015 (-385 (-525)))))) (-15 -2744 ($ (-592 (-1015 (-357))))) (-15 -2446 ($ (-1051 (-205)))) (-15 -3477 ($ (-856))) (-15 -3258 ($ (-856))) (-15 -3578 ($ (-856))) (-15 -1643 ($ (-1 (-878 (-205)) (-878 (-205))))) (-15 -1790 ($ (-592 (-357)))) (-15 -1958 ((-3 (-51) "failed") (-592 $) (-1091))) (-15 -3597 ((-108) (-592 $) (-1091)))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1503 (((-592 (-713)) $) NIL) (((-592 (-713)) $ |#2|) NIL)) (-3448 (((-713) $) NIL) (((-713) $ |#2|) NIL)) (-2383 (((-592 |#3|) $) NIL)) (-2146 (((-1087 $) $ |#3|) NIL) (((-1087 |#1|) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-3848 (((-713) $) NIL) (((-713) $ (-592 |#3|)) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-3706 (($ $) NIL (|has| |#1| (-429)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2123 (($ $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1043 |#1| |#2|) "failed") $) 21)) (-3898 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1043 |#1| |#2|) $) NIL)) (-1516 (($ $ $ |#3|) NIL (|has| |#1| (-160)))) (-2571 (($ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3026 (($ $) NIL (|has| |#1| (-429))) (($ $ |#3|) NIL (|has| |#1| (-429)))) (-2558 (((-592 $) $) NIL)) (-3836 (((-108) $) NIL (|has| |#1| (-844)))) (-2192 (($ $ |#1| (-497 |#3|) $) NIL)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| |#1| (-821 (-357))) (|has| |#3| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| |#1| (-821 (-525))) (|has| |#3| (-821 (-525)))))) (-3973 (((-713) $ |#2|) NIL) (((-713) $) 10)) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) NIL)) (-2368 (($ (-1087 |#1|) |#3|) NIL) (($ (-1087 $) |#3|) NIL)) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-497 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ |#3|) NIL)) (-3724 (((-497 |#3|) $) NIL) (((-713) $ |#3|) NIL) (((-592 (-713)) $ (-592 |#3|)) NIL)) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-3922 (($ (-1 (-497 |#3|) (-497 |#3|)) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-1 $ (-713)) |#2|) NIL) (((-1 $ (-713)) $) NIL (|has| |#1| (-213)))) (-3567 (((-3 |#3| "failed") $) NIL)) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-1241 ((|#3| $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3451 (((-1074) $) NIL)) (-3896 (((-108) $) NIL)) (-4228 (((-3 (-592 $) "failed") $) NIL)) (-3852 (((-3 (-592 $) "failed") $) NIL)) (-1553 (((-3 (-2 (|:| |var| |#3|) (|:| -1864 (-713))) "failed") $) NIL)) (-3600 (($ $) NIL)) (-2012 (((-1038) $) NIL)) (-2513 (((-108) $) NIL)) (-2525 ((|#1| $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-429)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2195 (((-396 $) $) NIL (|has| |#1| (-844)))) (-1680 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2602 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-592 |#3|) (-592 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-592 |#3|) (-592 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 $)) NIL (|has| |#1| (-213))) (($ $ |#2| |#1|) NIL (|has| |#1| (-213))) (($ $ (-592 |#2|) (-592 |#1|)) NIL (|has| |#1| (-213)))) (-2094 (($ $ |#3|) NIL (|has| |#1| (-160)))) (-2523 (($ $ |#3|) NIL) (($ $ (-592 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2786 (((-592 |#2|) $) NIL)) (-1587 (((-497 |#3|) $) NIL) (((-713) $ |#3|) NIL) (((-592 (-713)) $ (-592 |#3|)) NIL) (((-713) $ |#2|) NIL)) (-2749 (((-827 (-357)) $) NIL (-12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#3| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#3| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))))) (-2026 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ |#3|) NIL (|has| |#1| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1043 |#1| |#2|)) 30) (($ (-385 (-525))) NIL (-3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-1562 (((-592 |#1|) $) NIL)) (-3468 ((|#1| $ (-497 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2104 (((-713)) NIL)) (-3658 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $ |#3|) NIL) (($ $ (-592 |#3|)) NIL) (($ $ |#3| (-713)) NIL) (($ $ (-592 |#3|) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-243 |#1| |#2| |#3|) (-13 (-232 |#1| |#2| |#3| (-497 |#3|)) (-968 (-1043 |#1| |#2|))) (-977) (-789) (-245 |#2|)) (T -243))
+NIL
+(-13 (-232 |#1| |#2| |#3| (-497 |#3|)) (-968 (-1043 |#1| |#2|)))
+((-3448 (((-713) $) 30)) (-2591 (((-3 |#2| "failed") $) 17)) (-3898 ((|#2| $) 27)) (-2523 (($ $) 12) (($ $ (-713)) 15)) (-1270 (((-798) $) 26) (($ |#2|) 10)) (-3994 (((-108) $ $) 20)) (-4017 (((-108) $ $) 29)))
+(((-244 |#1| |#2|) (-10 -8 (-15 -2523 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1|)) (-15 -3448 ((-713) |#1|)) (-15 -3898 (|#2| |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -1270 (|#1| |#2|)) (-15 -4017 ((-108) |#1| |#1|)) (-15 -1270 ((-798) |#1|)) (-15 -3994 ((-108) |#1| |#1|))) (-245 |#2|) (-789)) (T -244))
+NIL
+(-10 -8 (-15 -2523 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1|)) (-15 -3448 ((-713) |#1|)) (-15 -3898 (|#2| |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -1270 (|#1| |#2|)) (-15 -4017 ((-108) |#1| |#1|)) (-15 -1270 ((-798) |#1|)) (-15 -3994 ((-108) |#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-3448 (((-713) $) 22)) (-2577 ((|#1| $) 23)) (-2591 (((-3 |#1| "failed") $) 27)) (-3898 ((|#1| $) 26)) (-3973 (((-713) $) 24)) (-2371 (($ $ $) 13)) (-2535 (($ $ $) 14)) (-4123 (($ |#1| (-713)) 25)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-2523 (($ $) 21) (($ $ (-713)) 20)) (-1270 (((-798) $) 11) (($ |#1|) 28)) (-4045 (((-108) $ $) 16)) (-4026 (((-108) $ $) 17)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 15)) (-4017 (((-108) $ $) 18)))
(((-245 |#1|) (-131) (-789)) (T -245))
-((-1908 (*1 *1 *2) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-2282 (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713)))) (-1251 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-1628 (*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713)))) (-3013 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-245 *3)) (-4 *3 (-789)))))
-(-13 (-789) (-967 |t#1|) (-10 -8 (-15 -2282 ($ |t#1| (-713))) (-15 -1737 ((-713) $)) (-15 -1251 (|t#1| $)) (-15 -1628 ((-713) $)) (-15 -3013 ($ $)) (-15 -3013 ($ $ (-713))) (-15 -1908 ($ |t#1|))))
-(((-97) . T) ((-566 (-797)) . T) ((-789) . T) ((-967 |#1|) . T) ((-1019) . T))
-((-4104 (((-592 (-1090)) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) 41)) (-3908 (((-592 (-1090)) (-294 (-205)) (-713)) 80)) (-2578 (((-3 (-294 (-205)) "failed") (-294 (-205))) 51)) (-2595 (((-294 (-205)) (-294 (-205))) 67)) (-3996 (((-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 26)) (-2732 (((-108) (-592 (-294 (-205)))) 84)) (-3660 (((-108) (-294 (-205))) 24)) (-3292 (((-592 (-1073)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))))) 106)) (-2000 (((-592 (-294 (-205))) (-592 (-294 (-205)))) 88)) (-4090 (((-592 (-294 (-205))) (-592 (-294 (-205)))) 86)) (-3722 (((-632 (-205)) (-592 (-294 (-205))) (-713)) 95)) (-1295 (((-108) (-294 (-205))) 20) (((-108) (-592 (-294 (-205)))) 85)) (-1366 (((-592 (-205)) (-592 (-782 (-205))) (-205)) 14)) (-3313 (((-357) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) 101)) (-1704 (((-965) (-1090) (-965)) 34)))
-(((-246) (-10 -7 (-15 -1366 ((-592 (-205)) (-592 (-782 (-205))) (-205))) (-15 -3996 ((-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -2578 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -2595 ((-294 (-205)) (-294 (-205)))) (-15 -2732 ((-108) (-592 (-294 (-205))))) (-15 -1295 ((-108) (-592 (-294 (-205))))) (-15 -1295 ((-108) (-294 (-205)))) (-15 -3722 ((-632 (-205)) (-592 (-294 (-205))) (-713))) (-15 -4090 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -2000 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -3660 ((-108) (-294 (-205)))) (-15 -4104 ((-592 (-1090)) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))) (-15 -3908 ((-592 (-1090)) (-294 (-205)) (-713))) (-15 -1704 ((-965) (-1090) (-965))) (-15 -3313 ((-357) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))) (-15 -3292 ((-592 (-1073)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))))))) (T -246))
-((-3292 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))))) (-5 *2 (-592 (-1073))) (-5 *1 (-246)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) (-5 *2 (-357)) (-5 *1 (-246)))) (-1704 (*1 *2 *3 *2) (-12 (-5 *2 (-965)) (-5 *3 (-1090)) (-5 *1 (-246)))) (-3908 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-713)) (-5 *2 (-592 (-1090))) (-5 *1 (-246)))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) (-5 *2 (-592 (-1090))) (-5 *1 (-246)))) (-3660 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))) (-2000 (*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))) (-4090 (*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))) (-3722 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *4 (-713)) (-5 *2 (-632 (-205))) (-5 *1 (-246)))) (-1295 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))) (-1295 (*1 *2 *3) (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))) (-2595 (*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))) (-2578 (*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *1 (-246)))) (-1366 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-782 (-205)))) (-5 *4 (-205)) (-5 *2 (-592 *4)) (-5 *1 (-246)))))
-(-10 -7 (-15 -1366 ((-592 (-205)) (-592 (-782 (-205))) (-205))) (-15 -3996 ((-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -2578 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -2595 ((-294 (-205)) (-294 (-205)))) (-15 -2732 ((-108) (-592 (-294 (-205))))) (-15 -1295 ((-108) (-592 (-294 (-205))))) (-15 -1295 ((-108) (-294 (-205)))) (-15 -3722 ((-632 (-205)) (-592 (-294 (-205))) (-713))) (-15 -4090 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -2000 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -3660 ((-108) (-294 (-205)))) (-15 -4104 ((-592 (-1090)) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))) (-15 -3908 ((-592 (-1090)) (-294 (-205)) (-713))) (-15 -1704 ((-965) (-1090) (-965))) (-15 -3313 ((-357) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))) (-15 -3292 ((-592 (-1073)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))))))
-((-1893 (((-108) $ $) NIL)) (-2327 (((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) NIL) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 44)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 26) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+((-1270 (*1 *1 *2) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-4123 (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-3448 (*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713)))) (-2523 (*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789)))) (-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-245 *3)) (-4 *3 (-789)))))
+(-13 (-789) (-968 |t#1|) (-10 -8 (-15 -4123 ($ |t#1| (-713))) (-15 -3973 ((-713) $)) (-15 -2577 (|t#1| $)) (-15 -3448 ((-713) $)) (-15 -2523 ($ $)) (-15 -2523 ($ $ (-713))) (-15 -1270 ($ |t#1|))))
+(((-97) . T) ((-566 (-798)) . T) ((-789) . T) ((-968 |#1|) . T) ((-1020) . T))
+((-2383 (((-592 (-1091)) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) 41)) (-4143 (((-592 (-1091)) (-294 (-205)) (-713)) 80)) (-4024 (((-3 (-294 (-205)) "failed") (-294 (-205))) 51)) (-4194 (((-294 (-205)) (-294 (-205))) 67)) (-3932 (((-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 26)) (-3088 (((-108) (-592 (-294 (-205)))) 84)) (-3966 (((-108) (-294 (-205))) 24)) (-1629 (((-592 (-1074)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))))) 106)) (-2595 (((-592 (-294 (-205))) (-592 (-294 (-205)))) 88)) (-3443 (((-592 (-294 (-205))) (-592 (-294 (-205)))) 86)) (-3353 (((-632 (-205)) (-592 (-294 (-205))) (-713)) 95)) (-2456 (((-108) (-294 (-205))) 20) (((-108) (-592 (-294 (-205)))) 85)) (-2673 (((-592 (-205)) (-592 (-782 (-205))) (-205)) 14)) (-3637 (((-357) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) 101)) (-1578 (((-966) (-1091) (-966)) 34)))
+(((-246) (-10 -7 (-15 -2673 ((-592 (-205)) (-592 (-782 (-205))) (-205))) (-15 -3932 ((-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -4024 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -4194 ((-294 (-205)) (-294 (-205)))) (-15 -3088 ((-108) (-592 (-294 (-205))))) (-15 -2456 ((-108) (-592 (-294 (-205))))) (-15 -2456 ((-108) (-294 (-205)))) (-15 -3353 ((-632 (-205)) (-592 (-294 (-205))) (-713))) (-15 -3443 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -2595 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -3966 ((-108) (-294 (-205)))) (-15 -2383 ((-592 (-1091)) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))) (-15 -4143 ((-592 (-1091)) (-294 (-205)) (-713))) (-15 -1578 ((-966) (-1091) (-966))) (-15 -3637 ((-357) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))) (-15 -1629 ((-592 (-1074)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))))))) (T -246))
+((-1629 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))))) (-5 *2 (-592 (-1074))) (-5 *1 (-246)))) (-3637 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) (-5 *2 (-357)) (-5 *1 (-246)))) (-1578 (*1 *2 *3 *2) (-12 (-5 *2 (-966)) (-5 *3 (-1091)) (-5 *1 (-246)))) (-4143 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-713)) (-5 *2 (-592 (-1091))) (-5 *1 (-246)))) (-2383 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) (-5 *2 (-592 (-1091))) (-5 *1 (-246)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))) (-2595 (*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))) (-3443 (*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))) (-3353 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *4 (-713)) (-5 *2 (-632 (-205))) (-5 *1 (-246)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))) (-3088 (*1 *2 *3) (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))) (-4194 (*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))) (-4024 (*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))) (-3932 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *1 (-246)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-782 (-205)))) (-5 *4 (-205)) (-5 *2 (-592 *4)) (-5 *1 (-246)))))
+(-10 -7 (-15 -2673 ((-592 (-205)) (-592 (-782 (-205))) (-205))) (-15 -3932 ((-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -4024 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -4194 ((-294 (-205)) (-294 (-205)))) (-15 -3088 ((-108) (-592 (-294 (-205))))) (-15 -2456 ((-108) (-592 (-294 (-205))))) (-15 -2456 ((-108) (-294 (-205)))) (-15 -3353 ((-632 (-205)) (-592 (-294 (-205))) (-713))) (-15 -3443 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -2595 ((-592 (-294 (-205))) (-592 (-294 (-205))))) (-15 -3966 ((-108) (-294 (-205)))) (-15 -2383 ((-592 (-1091)) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))) (-15 -4143 ((-592 (-1091)) (-294 (-205)) (-713))) (-15 -1578 ((-966) (-1091) (-966))) (-15 -3637 ((-357) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))) (-15 -1629 ((-592 (-1074)) (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))))))
+((-1260 (((-108) $ $) NIL)) (-3359 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 44)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 26) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-247) (-778)) (T -247))
NIL
(-778)
-((-1893 (((-108) $ $) NIL)) (-2327 (((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) 58) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 54)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 34) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) 36)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-3359 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) 58) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 54)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 34) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) 36)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-248) (-778)) (T -248))
NIL
(-778)
-((-1893 (((-108) $ $) NIL)) (-2327 (((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) 76) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 73)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 44) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) 55)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-3359 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) 76) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 73)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 44) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) 55)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-249) (-778)) (T -249))
NIL
(-778)
-((-1893 (((-108) $ $) NIL)) (-2327 (((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) NIL) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 50)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 31) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-3359 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 50)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 31) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-250) (-778)) (T -250))
NIL
(-778)
-((-1893 (((-108) $ $) NIL)) (-2327 (((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) NIL) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 50)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 28) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-3359 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 50)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 28) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-251) (-778)) (T -251))
NIL
(-778)
-((-1893 (((-108) $ $) NIL)) (-2327 (((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) NIL) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 73)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 28) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-3359 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 73)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 28) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-252) (-778)) (T -252))
NIL
(-778)
-((-1893 (((-108) $ $) NIL)) (-2327 (((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) NIL) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 77)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 25) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3961 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-3359 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) NIL) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 77)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 25) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3994 (((-108) $ $) NIL)))
(((-253) (-778)) (T -253))
NIL
(-778)
-((-1893 (((-108) $ $) NIL)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2055 (((-592 (-525)) $) 19)) (-2513 (((-713) $) 17)) (-1908 (((-797) $) 23) (($ (-592 (-525))) 15)) (-3340 (($ (-713)) 20)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 9)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 11)))
-(((-254) (-13 (-789) (-10 -8 (-15 -1908 ($ (-592 (-525)))) (-15 -2513 ((-713) $)) (-15 -2055 ((-592 (-525)) $)) (-15 -3340 ($ (-713)))))) (T -254))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-254)))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254)))) (-3340 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-254)))))
-(-13 (-789) (-10 -8 (-15 -1908 ($ (-592 (-525)))) (-15 -2513 ((-713) $)) (-15 -2055 ((-592 (-525)) $)) (-15 -3340 ($ (-713)))))
-((-4049 ((|#2| |#2|) 77)) (-3911 ((|#2| |#2|) 65)) (-1784 (((-3 |#2| "failed") |#2| (-592 (-2 (|:| |func| |#2|) (|:| |pole| (-108))))) 116)) (-4026 ((|#2| |#2|) 75)) (-3434 ((|#2| |#2|) 63)) (-4072 ((|#2| |#2|) 79)) (-3931 ((|#2| |#2|) 67)) (-1335 ((|#2|) 46)) (-4159 (((-110) (-110)) 95)) (-2091 ((|#2| |#2|) 61)) (-1703 (((-108) |#2|) 134)) (-3174 ((|#2| |#2|) 181)) (-4095 ((|#2| |#2|) 157)) (-2612 ((|#2|) 59)) (-1959 ((|#2|) 58)) (-2752 ((|#2| |#2|) 177)) (-2008 ((|#2| |#2|) 153)) (-3805 ((|#2| |#2|) 185)) (-1772 ((|#2| |#2|) 161)) (-2370 ((|#2| |#2|) 149)) (-3818 ((|#2| |#2|) 151)) (-2329 ((|#2| |#2|) 187)) (-2315 ((|#2| |#2|) 163)) (-3453 ((|#2| |#2|) 183)) (-3429 ((|#2| |#2|) 159)) (-3439 ((|#2| |#2|) 179)) (-4153 ((|#2| |#2|) 155)) (-2953 ((|#2| |#2|) 193)) (-2194 ((|#2| |#2|) 169)) (-1647 ((|#2| |#2|) 189)) (-2700 ((|#2| |#2|) 165)) (-3892 ((|#2| |#2|) 197)) (-2793 ((|#2| |#2|) 173)) (-3809 ((|#2| |#2|) 199)) (-3711 ((|#2| |#2|) 175)) (-1367 ((|#2| |#2|) 195)) (-1321 ((|#2| |#2|) 171)) (-3250 ((|#2| |#2|) 191)) (-2993 ((|#2| |#2|) 167)) (-1982 ((|#2| |#2|) 62)) (-4084 ((|#2| |#2|) 80)) (-3942 ((|#2| |#2|) 68)) (-4061 ((|#2| |#2|) 78)) (-3919 ((|#2| |#2|) 66)) (-4038 ((|#2| |#2|) 76)) (-3455 ((|#2| |#2|) 64)) (-3824 (((-108) (-110)) 93)) (-4121 ((|#2| |#2|) 83)) (-3974 ((|#2| |#2|) 71)) (-4096 ((|#2| |#2|) 81)) (-3951 ((|#2| |#2|) 69)) (-4147 ((|#2| |#2|) 85)) (-3999 ((|#2| |#2|) 73)) (-2929 ((|#2| |#2|) 86)) (-4013 ((|#2| |#2|) 74)) (-4133 ((|#2| |#2|) 84)) (-3985 ((|#2| |#2|) 72)) (-4110 ((|#2| |#2|) 82)) (-3963 ((|#2| |#2|) 70)))
-(((-255 |#1| |#2|) (-10 -7 (-15 -1982 (|#2| |#2|)) (-15 -2091 (|#2| |#2|)) (-15 -3434 (|#2| |#2|)) (-15 -3455 (|#2| |#2|)) (-15 -3911 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3931 (|#2| |#2|)) (-15 -3942 (|#2| |#2|)) (-15 -3951 (|#2| |#2|)) (-15 -3963 (|#2| |#2|)) (-15 -3974 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4026 (|#2| |#2|)) (-15 -4038 (|#2| |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -4072 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -4110 (|#2| |#2|)) (-15 -4121 (|#2| |#2|)) (-15 -4133 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -2929 (|#2| |#2|)) (-15 -1335 (|#2|)) (-15 -3824 ((-108) (-110))) (-15 -4159 ((-110) (-110))) (-15 -1959 (|#2|)) (-15 -2612 (|#2|)) (-15 -3818 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -2008 (|#2| |#2|)) (-15 -4153 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -3429 (|#2| |#2|)) (-15 -1772 (|#2| |#2|)) (-15 -2315 (|#2| |#2|)) (-15 -2700 (|#2| |#2|)) (-15 -2993 (|#2| |#2|)) (-15 -2194 (|#2| |#2|)) (-15 -1321 (|#2| |#2|)) (-15 -2793 (|#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -2752 (|#2| |#2|)) (-15 -3439 (|#2| |#2|)) (-15 -3174 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -2329 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -3250 (|#2| |#2|)) (-15 -2953 (|#2| |#2|)) (-15 -1367 (|#2| |#2|)) (-15 -3892 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -1784 ((-3 |#2| "failed") |#2| (-592 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -1703 ((-108) |#2|))) (-13 (-789) (-517)) (-13 (-408 |#1|) (-933))) (T -255))
-((-1703 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *3)) (-4 *3 (-13 (-408 *4) (-933))))) (-1784 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-592 (-2 (|:| |func| *2) (|:| |pole| (-108))))) (-4 *2 (-13 (-408 *4) (-933))) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-255 *4 *2)))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3892 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-1367 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2953 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3250 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-1647 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2329 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3453 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3174 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3439 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2752 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3711 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2793 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-1321 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2194 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2993 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2700 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2315 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-1772 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3429 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4153 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2008 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2370 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3818 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2612 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-933))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-789) (-517))))) (-1959 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-933))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-789) (-517))))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *4)) (-4 *4 (-13 (-408 *3) (-933))))) (-3824 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *5)) (-4 *5 (-13 (-408 *4) (-933))))) (-1335 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-933))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-789) (-517))))) (-2929 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4133 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4121 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4110 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4096 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4061 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4038 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4026 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3985 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3974 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3963 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3951 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3931 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-3434 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-2091 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))) (-1982 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-933))))))
-(-10 -7 (-15 -1982 (|#2| |#2|)) (-15 -2091 (|#2| |#2|)) (-15 -3434 (|#2| |#2|)) (-15 -3455 (|#2| |#2|)) (-15 -3911 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3931 (|#2| |#2|)) (-15 -3942 (|#2| |#2|)) (-15 -3951 (|#2| |#2|)) (-15 -3963 (|#2| |#2|)) (-15 -3974 (|#2| |#2|)) (-15 -3985 (|#2| |#2|)) (-15 -3999 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -4026 (|#2| |#2|)) (-15 -4038 (|#2| |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -4061 (|#2| |#2|)) (-15 -4072 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -4110 (|#2| |#2|)) (-15 -4121 (|#2| |#2|)) (-15 -4133 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -2929 (|#2| |#2|)) (-15 -1335 (|#2|)) (-15 -3824 ((-108) (-110))) (-15 -4159 ((-110) (-110))) (-15 -1959 (|#2|)) (-15 -2612 (|#2|)) (-15 -3818 (|#2| |#2|)) (-15 -2370 (|#2| |#2|)) (-15 -2008 (|#2| |#2|)) (-15 -4153 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -3429 (|#2| |#2|)) (-15 -1772 (|#2| |#2|)) (-15 -2315 (|#2| |#2|)) (-15 -2700 (|#2| |#2|)) (-15 -2993 (|#2| |#2|)) (-15 -2194 (|#2| |#2|)) (-15 -1321 (|#2| |#2|)) (-15 -2793 (|#2| |#2|)) (-15 -3711 (|#2| |#2|)) (-15 -2752 (|#2| |#2|)) (-15 -3439 (|#2| |#2|)) (-15 -3174 (|#2| |#2|)) (-15 -3453 (|#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -2329 (|#2| |#2|)) (-15 -1647 (|#2| |#2|)) (-15 -3250 (|#2| |#2|)) (-15 -2953 (|#2| |#2|)) (-15 -1367 (|#2| |#2|)) (-15 -3892 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -1784 ((-3 |#2| "failed") |#2| (-592 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -1703 ((-108) |#2|)))
-((-1322 (((-3 |#2| "failed") (-592 (-565 |#2|)) |#2| (-1090)) 135)) (-3640 ((|#2| (-385 (-525)) |#2|) 51)) (-3059 ((|#2| |#2| (-565 |#2|)) 128)) (-2014 (((-2 (|:| |func| |#2|) (|:| |kers| (-592 (-565 |#2|))) (|:| |vals| (-592 |#2|))) |#2| (-1090)) 127)) (-1803 ((|#2| |#2| (-1090)) 20) ((|#2| |#2|) 23)) (-4216 ((|#2| |#2| (-1090)) 141) ((|#2| |#2|) 139)))
-(((-256 |#1| |#2|) (-10 -7 (-15 -4216 (|#2| |#2|)) (-15 -4216 (|#2| |#2| (-1090))) (-15 -2014 ((-2 (|:| |func| |#2|) (|:| |kers| (-592 (-565 |#2|))) (|:| |vals| (-592 |#2|))) |#2| (-1090))) (-15 -1803 (|#2| |#2|)) (-15 -1803 (|#2| |#2| (-1090))) (-15 -1322 ((-3 |#2| "failed") (-592 (-565 |#2|)) |#2| (-1090))) (-15 -3059 (|#2| |#2| (-565 |#2|))) (-15 -3640 (|#2| (-385 (-525)) |#2|))) (-13 (-517) (-789) (-967 (-525)) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|))) (T -256))
-((-3640 (*1 *2 *3 *2) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))) (-3059 (*1 *2 *2 *3) (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))) (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)))) (-1322 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-1090)) (-4 *2 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-256 *5 *2)))) (-1803 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))) (-1803 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))) (-2014 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-592 (-565 *3))) (|:| |vals| (-592 *3)))) (-5 *1 (-256 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))) (-4216 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))) (-4216 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))))
-(-10 -7 (-15 -4216 (|#2| |#2|)) (-15 -4216 (|#2| |#2| (-1090))) (-15 -2014 ((-2 (|:| |func| |#2|) (|:| |kers| (-592 (-565 |#2|))) (|:| |vals| (-592 |#2|))) |#2| (-1090))) (-15 -1803 (|#2| |#2|)) (-15 -1803 (|#2| |#2| (-1090))) (-15 -1322 ((-3 |#2| "failed") (-592 (-565 |#2|)) |#2| (-1090))) (-15 -3059 (|#2| |#2| (-565 |#2|))) (-15 -3640 (|#2| (-385 (-525)) |#2|)))
-((-3557 (((-3 |#3| "failed") |#3|) 110)) (-4049 ((|#3| |#3|) 131)) (-2852 (((-3 |#3| "failed") |#3|) 82)) (-3911 ((|#3| |#3|) 121)) (-2312 (((-3 |#3| "failed") |#3|) 58)) (-4026 ((|#3| |#3|) 129)) (-3863 (((-3 |#3| "failed") |#3|) 46)) (-3434 ((|#3| |#3|) 119)) (-4113 (((-3 |#3| "failed") |#3|) 112)) (-4072 ((|#3| |#3|) 133)) (-1562 (((-3 |#3| "failed") |#3|) 84)) (-3931 ((|#3| |#3|) 123)) (-3808 (((-3 |#3| "failed") |#3| (-713)) 36)) (-3023 (((-3 |#3| "failed") |#3|) 74)) (-2091 ((|#3| |#3|) 118)) (-1444 (((-3 |#3| "failed") |#3|) 44)) (-1982 ((|#3| |#3|) 117)) (-2999 (((-3 |#3| "failed") |#3|) 113)) (-4084 ((|#3| |#3|) 134)) (-3688 (((-3 |#3| "failed") |#3|) 85)) (-3942 ((|#3| |#3|) 124)) (-3667 (((-3 |#3| "failed") |#3|) 111)) (-4061 ((|#3| |#3|) 132)) (-3870 (((-3 |#3| "failed") |#3|) 83)) (-3919 ((|#3| |#3|) 122)) (-2050 (((-3 |#3| "failed") |#3|) 60)) (-4038 ((|#3| |#3|) 130)) (-1630 (((-3 |#3| "failed") |#3|) 48)) (-3455 ((|#3| |#3|) 120)) (-1609 (((-3 |#3| "failed") |#3|) 66)) (-4121 ((|#3| |#3|) 137)) (-2604 (((-3 |#3| "failed") |#3|) 104)) (-3974 ((|#3| |#3|) 142)) (-3120 (((-3 |#3| "failed") |#3|) 62)) (-4096 ((|#3| |#3|) 135)) (-1262 (((-3 |#3| "failed") |#3|) 50)) (-3951 ((|#3| |#3|) 125)) (-3226 (((-3 |#3| "failed") |#3|) 70)) (-4147 ((|#3| |#3|) 139)) (-1293 (((-3 |#3| "failed") |#3|) 54)) (-3999 ((|#3| |#3|) 127)) (-1360 (((-3 |#3| "failed") |#3|) 72)) (-2929 ((|#3| |#3|) 140)) (-2762 (((-3 |#3| "failed") |#3|) 56)) (-4013 ((|#3| |#3|) 128)) (-1580 (((-3 |#3| "failed") |#3|) 68)) (-4133 ((|#3| |#3|) 138)) (-4166 (((-3 |#3| "failed") |#3|) 107)) (-3985 ((|#3| |#3|) 143)) (-3178 (((-3 |#3| "failed") |#3|) 64)) (-4110 ((|#3| |#3|) 136)) (-1608 (((-3 |#3| "failed") |#3|) 52)) (-3963 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-385 (-525))) 40 (|has| |#1| (-341)))))
-(((-257 |#1| |#2| |#3|) (-13 (-915 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -1982 (|#3| |#3|)) (-15 -2091 (|#3| |#3|)) (-15 -3434 (|#3| |#3|)) (-15 -3455 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3931 (|#3| |#3|)) (-15 -3942 (|#3| |#3|)) (-15 -3951 (|#3| |#3|)) (-15 -3963 (|#3| |#3|)) (-15 -3974 (|#3| |#3|)) (-15 -3985 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -4026 (|#3| |#3|)) (-15 -4038 (|#3| |#3|)) (-15 -4049 (|#3| |#3|)) (-15 -4061 (|#3| |#3|)) (-15 -4072 (|#3| |#3|)) (-15 -4084 (|#3| |#3|)) (-15 -4096 (|#3| |#3|)) (-15 -4110 (|#3| |#3|)) (-15 -4121 (|#3| |#3|)) (-15 -4133 (|#3| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -2929 (|#3| |#3|)))) (-37 (-385 (-525))) (-1163 |#1|) (-1134 |#1| |#2|)) (T -257))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 (-385 (-525)))) (-4 *5 (-1163 *4)) (-5 *1 (-257 *4 *5 *2)) (-4 *2 (-1134 *4 *5)))) (-1982 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-2091 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3434 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3931 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3951 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3963 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3974 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3985 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-4026 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-4038 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-4061 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-4096 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-4110 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-4121 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-4133 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))) (-2929 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4)))))
-(-13 (-915 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -1982 (|#3| |#3|)) (-15 -2091 (|#3| |#3|)) (-15 -3434 (|#3| |#3|)) (-15 -3455 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3931 (|#3| |#3|)) (-15 -3942 (|#3| |#3|)) (-15 -3951 (|#3| |#3|)) (-15 -3963 (|#3| |#3|)) (-15 -3974 (|#3| |#3|)) (-15 -3985 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -4026 (|#3| |#3|)) (-15 -4038 (|#3| |#3|)) (-15 -4049 (|#3| |#3|)) (-15 -4061 (|#3| |#3|)) (-15 -4072 (|#3| |#3|)) (-15 -4084 (|#3| |#3|)) (-15 -4096 (|#3| |#3|)) (-15 -4110 (|#3| |#3|)) (-15 -4121 (|#3| |#3|)) (-15 -4133 (|#3| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -2929 (|#3| |#3|))))
-((-3557 (((-3 |#3| "failed") |#3|) 66)) (-4049 ((|#3| |#3|) 133)) (-2852 (((-3 |#3| "failed") |#3|) 50)) (-3911 ((|#3| |#3|) 121)) (-2312 (((-3 |#3| "failed") |#3|) 62)) (-4026 ((|#3| |#3|) 131)) (-3863 (((-3 |#3| "failed") |#3|) 46)) (-3434 ((|#3| |#3|) 119)) (-4113 (((-3 |#3| "failed") |#3|) 70)) (-4072 ((|#3| |#3|) 135)) (-1562 (((-3 |#3| "failed") |#3|) 54)) (-3931 ((|#3| |#3|) 123)) (-3808 (((-3 |#3| "failed") |#3| (-713)) 35)) (-3023 (((-3 |#3| "failed") |#3|) 44)) (-2091 ((|#3| |#3|) 112)) (-1444 (((-3 |#3| "failed") |#3|) 42)) (-1982 ((|#3| |#3|) 118)) (-2999 (((-3 |#3| "failed") |#3|) 72)) (-4084 ((|#3| |#3|) 136)) (-3688 (((-3 |#3| "failed") |#3|) 56)) (-3942 ((|#3| |#3|) 124)) (-3667 (((-3 |#3| "failed") |#3|) 68)) (-4061 ((|#3| |#3|) 134)) (-3870 (((-3 |#3| "failed") |#3|) 52)) (-3919 ((|#3| |#3|) 122)) (-2050 (((-3 |#3| "failed") |#3|) 64)) (-4038 ((|#3| |#3|) 132)) (-1630 (((-3 |#3| "failed") |#3|) 48)) (-3455 ((|#3| |#3|) 120)) (-1609 (((-3 |#3| "failed") |#3|) 78)) (-4121 ((|#3| |#3|) 139)) (-2604 (((-3 |#3| "failed") |#3|) 58)) (-3974 ((|#3| |#3|) 127)) (-3120 (((-3 |#3| "failed") |#3|) 74)) (-4096 ((|#3| |#3|) 137)) (-1262 (((-3 |#3| "failed") |#3|) 102)) (-3951 ((|#3| |#3|) 125)) (-3226 (((-3 |#3| "failed") |#3|) 82)) (-4147 ((|#3| |#3|) 141)) (-1293 (((-3 |#3| "failed") |#3|) 109)) (-3999 ((|#3| |#3|) 129)) (-1360 (((-3 |#3| "failed") |#3|) 84)) (-2929 ((|#3| |#3|) 142)) (-2762 (((-3 |#3| "failed") |#3|) 111)) (-4013 ((|#3| |#3|) 130)) (-1580 (((-3 |#3| "failed") |#3|) 80)) (-4133 ((|#3| |#3|) 140)) (-4166 (((-3 |#3| "failed") |#3|) 60)) (-3985 ((|#3| |#3|) 128)) (-3178 (((-3 |#3| "failed") |#3|) 76)) (-4110 ((|#3| |#3|) 138)) (-1608 (((-3 |#3| "failed") |#3|) 105)) (-3963 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-385 (-525))) 40 (|has| |#1| (-341)))))
-(((-258 |#1| |#2| |#3| |#4|) (-13 (-915 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -1982 (|#3| |#3|)) (-15 -2091 (|#3| |#3|)) (-15 -3434 (|#3| |#3|)) (-15 -3455 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3931 (|#3| |#3|)) (-15 -3942 (|#3| |#3|)) (-15 -3951 (|#3| |#3|)) (-15 -3963 (|#3| |#3|)) (-15 -3974 (|#3| |#3|)) (-15 -3985 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -4026 (|#3| |#3|)) (-15 -4038 (|#3| |#3|)) (-15 -4049 (|#3| |#3|)) (-15 -4061 (|#3| |#3|)) (-15 -4072 (|#3| |#3|)) (-15 -4084 (|#3| |#3|)) (-15 -4096 (|#3| |#3|)) (-15 -4110 (|#3| |#3|)) (-15 -4121 (|#3| |#3|)) (-15 -4133 (|#3| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -2929 (|#3| |#3|)))) (-37 (-385 (-525))) (-1132 |#1|) (-1155 |#1| |#2|) (-915 |#2|)) (T -258))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 (-385 (-525)))) (-4 *5 (-1132 *4)) (-5 *1 (-258 *4 *5 *2 *6)) (-4 *2 (-1155 *4 *5)) (-4 *6 (-915 *5)))) (-1982 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-2091 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3434 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3931 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3942 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3951 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3963 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3974 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3985 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-4026 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-4038 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-4061 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-4096 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-4110 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-4121 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-4133 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))) (-2929 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4)))))
-(-13 (-915 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -1982 (|#3| |#3|)) (-15 -2091 (|#3| |#3|)) (-15 -3434 (|#3| |#3|)) (-15 -3455 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3931 (|#3| |#3|)) (-15 -3942 (|#3| |#3|)) (-15 -3951 (|#3| |#3|)) (-15 -3963 (|#3| |#3|)) (-15 -3974 (|#3| |#3|)) (-15 -3985 (|#3| |#3|)) (-15 -3999 (|#3| |#3|)) (-15 -4013 (|#3| |#3|)) (-15 -4026 (|#3| |#3|)) (-15 -4038 (|#3| |#3|)) (-15 -4049 (|#3| |#3|)) (-15 -4061 (|#3| |#3|)) (-15 -4072 (|#3| |#3|)) (-15 -4084 (|#3| |#3|)) (-15 -4096 (|#3| |#3|)) (-15 -4110 (|#3| |#3|)) (-15 -4121 (|#3| |#3|)) (-15 -4133 (|#3| |#3|)) (-15 -4147 (|#3| |#3|)) (-15 -2929 (|#3| |#3|))))
-((-3733 (((-108) $) 19)) (-3129 (((-169) $) 7)) (-3234 (((-3 (-1090) "failed") $) 14)) (-3170 (((-3 (-592 $) "failed") $) NIL)) (-3564 (((-3 (-1090) "failed") $) 21)) (-1494 (((-3 (-1023) "failed") $) 17)) (-2802 (((-108) $) 15)) (-1908 (((-797) $) NIL)) (-1645 (((-108) $) 9)))
-(((-259) (-13 (-566 (-797)) (-10 -8 (-15 -3129 ((-169) $)) (-15 -2802 ((-108) $)) (-15 -1494 ((-3 (-1023) "failed") $)) (-15 -3733 ((-108) $)) (-15 -3564 ((-3 (-1090) "failed") $)) (-15 -1645 ((-108) $)) (-15 -3234 ((-3 (-1090) "failed") $)) (-15 -3170 ((-3 (-592 $) "failed") $))))) (T -259))
-((-3129 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-259)))) (-2802 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-1494 (*1 *2 *1) (|partial| -12 (-5 *2 (-1023)) (-5 *1 (-259)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-3564 (*1 *2 *1) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-259)))) (-1645 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-3234 (*1 *2 *1) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-259)))) (-3170 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-259))) (-5 *1 (-259)))))
-(-13 (-566 (-797)) (-10 -8 (-15 -3129 ((-169) $)) (-15 -2802 ((-108) $)) (-15 -1494 ((-3 (-1023) "failed") $)) (-15 -3733 ((-108) $)) (-15 -3564 ((-3 (-1090) "failed") $)) (-15 -1645 ((-108) $)) (-15 -3234 ((-3 (-1090) "failed") $)) (-15 -3170 ((-3 (-592 $) "failed") $))))
-((-2724 (($ (-1 (-108) |#2|) $) 24)) (-3163 (($ $) 36)) (-2792 (($ (-1 (-108) |#2|) $) NIL) (($ |#2| $) 34)) (-2273 (($ |#2| $) 32) (($ (-1 (-108) |#2|) $) 18)) (-2749 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-3167 (($ |#2| $ (-525)) 20) (($ $ $ (-525)) 22)) (-3653 (($ $ (-525)) 11) (($ $ (-1139 (-525))) 14)) (-1497 (($ $ |#2|) 30) (($ $ $) NIL)) (-2664 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-592 $)) NIL)))
-(((-260 |#1| |#2|) (-10 -8 (-15 -2749 (|#1| |#1| |#1|)) (-15 -2792 (|#1| |#2| |#1|)) (-15 -2749 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2792 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1497 (|#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| |#2|)) (-15 -3167 (|#1| |#1| |#1| (-525))) (-15 -3167 (|#1| |#2| |#1| (-525))) (-15 -3653 (|#1| |#1| (-1139 (-525)))) (-15 -3653 (|#1| |#1| (-525))) (-15 -2664 (|#1| (-592 |#1|))) (-15 -2664 (|#1| |#1| |#1|)) (-15 -2664 (|#1| |#2| |#1|)) (-15 -2664 (|#1| |#1| |#2|)) (-15 -2273 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2724 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2273 (|#1| |#2| |#1|)) (-15 -3163 (|#1| |#1|))) (-261 |#2|) (-1126)) (T -260))
-NIL
-(-10 -8 (-15 -2749 (|#1| |#1| |#1|)) (-15 -2792 (|#1| |#2| |#1|)) (-15 -2749 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2792 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1497 (|#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| |#2|)) (-15 -3167 (|#1| |#1| |#1| (-525))) (-15 -3167 (|#1| |#2| |#1| (-525))) (-15 -3653 (|#1| |#1| (-1139 (-525)))) (-15 -3653 (|#1| |#1| (-525))) (-15 -2664 (|#1| (-592 |#1|))) (-15 -2664 (|#1| |#1| |#1|)) (-15 -2664 (|#1| |#2| |#1|)) (-15 -2664 (|#1| |#1| |#2|)) (-15 -2273 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2724 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2273 (|#1| |#2| |#1|)) (-15 -3163 (|#1| |#1|)))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-1840 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) 8)) (-2109 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 58 (|has| $ (-6 -4255)))) (-3290 (($ (-1 (-108) |#1|) $) 85)) (-2724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4254)))) (-1505 (($) 7 T CONST)) (-3143 (($ $) 83 (|has| |#1| (-1019)))) (-3163 (($ $) 78 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2792 (($ (-1 (-108) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1019)))) (-2273 (($ |#1| $) 77 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4254)))) (-2870 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) 51)) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-4018 (($ (-713) |#1|) 69)) (-3100 (((-108) $ (-713)) 9)) (-2009 (((-525) $) 43 (|has| (-525) (-789)))) (-2749 (($ (-1 (-108) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-789)))) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1792 (((-525) $) 44 (|has| (-525) (-789)))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2573 (($ |#1| $ (-525)) 88) (($ $ $ (-525)) 87)) (-3167 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3222 (((-592 (-525)) $) 46)) (-1548 (((-108) (-525) $) 47)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3135 ((|#1| $) 42 (|has| (-525) (-789)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1911 (($ $ |#1|) 41 (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-3218 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) 48)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1139 (-525))) 63)) (-3977 (($ $ (-525)) 91) (($ $ (-1139 (-525))) 90)) (-3653 (($ $ (-525)) 62) (($ $ (-1139 (-525))) 61)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1427 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 70)) (-1497 (($ $ |#1|) 93) (($ $ $) 92)) (-2664 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-261 |#1|) (-131) (-1126)) (T -261))
-((-1497 (*1 *1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)))) (-1497 (*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)))) (-3977 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1126)))) (-3977 (*1 *1 *1 *2) (-12 (-5 *2 (-1139 (-525))) (-4 *1 (-261 *3)) (-4 *3 (-1126)))) (-2792 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1126)))) (-2573 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-261 *2)) (-4 *2 (-1126)))) (-2573 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1126)))) (-2749 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-261 *3)) (-4 *3 (-1126)))) (-3290 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1126)))) (-2792 (*1 *1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)) (-4 *2 (-1019)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)) (-4 *2 (-1019)))) (-2749 (*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)) (-4 *2 (-789)))))
-(-13 (-597 |t#1|) (-10 -8 (-6 -4255) (-15 -1497 ($ $ |t#1|)) (-15 -1497 ($ $ $)) (-15 -3977 ($ $ (-525))) (-15 -3977 ($ $ (-1139 (-525)))) (-15 -2792 ($ (-1 (-108) |t#1|) $)) (-15 -2573 ($ |t#1| $ (-525))) (-15 -2573 ($ $ $ (-525))) (-15 -2749 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -3290 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1019)) (PROGN (-15 -2792 ($ |t#1| $)) (-15 -3143 ($ $))) |%noBranch|) (IF (|has| |t#1| (-789)) (-15 -2749 ($ $ $)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-597 |#1|) . T) ((-1019) |has| |#1| (-1019)) ((-1126) . T))
+((-1260 (((-108) $ $) NIL)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2709 (((-592 (-525)) $) 19)) (-1587 (((-713) $) 17)) (-1270 (((-798) $) 23) (($ (-592 (-525))) 15)) (-3887 (($ (-713)) 20)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 9)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 11)))
+(((-254) (-13 (-789) (-10 -8 (-15 -1270 ($ (-592 (-525)))) (-15 -1587 ((-713) $)) (-15 -2709 ((-592 (-525)) $)) (-15 -3887 ($ (-713)))))) (T -254))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-254)))) (-2709 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-254)))))
+(-13 (-789) (-10 -8 (-15 -1270 ($ (-592 (-525)))) (-15 -1587 ((-713) $)) (-15 -2709 ((-592 (-525)) $)) (-15 -3887 ($ (-713)))))
+((-2351 ((|#2| |#2|) 77)) (-1603 ((|#2| |#2|) 65)) (-3218 (((-3 |#2| "failed") |#2| (-592 (-2 (|:| |func| |#2|) (|:| |pole| (-108))))) 116)) (-2320 ((|#2| |#2|) 75)) (-1569 ((|#2| |#2|) 63)) (-2382 ((|#2| |#2|) 79)) (-2193 ((|#2| |#2|) 67)) (-1535 ((|#2|) 46)) (-2972 (((-110) (-110)) 95)) (-1415 ((|#2| |#2|) 61)) (-1564 (((-108) |#2|) 134)) (-1806 ((|#2| |#2|) 181)) (-3483 ((|#2| |#2|) 157)) (-3202 ((|#2|) 59)) (-4096 ((|#2|) 58)) (-2038 ((|#2| |#2|) 177)) (-2685 ((|#2| |#2|) 153)) (-2986 ((|#2| |#2|) 185)) (-1633 ((|#2| |#2|) 161)) (-2731 ((|#2| |#2|) 149)) (-3079 ((|#2| |#2|) 151)) (-3378 ((|#2| |#2|) 187)) (-3267 ((|#2| |#2|) 163)) (-2674 ((|#2| |#2|) 183)) (-3497 ((|#2| |#2|) 159)) (-3579 ((|#2| |#2|) 179)) (-2928 ((|#2| |#2|) 155)) (-3403 ((|#2| |#2|) 193)) (-1408 ((|#2| |#2|) 169)) (-1480 ((|#2| |#2|) 189)) (-2872 ((|#2| |#2|) 165)) (-1274 ((|#2| |#2|) 197)) (-1253 ((|#2| |#2|) 173)) (-3010 ((|#2| |#2|) 199)) (-3264 ((|#2| |#2|) 175)) (-2766 ((|#2| |#2|) 195)) (-3809 ((|#2| |#2|) 171)) (-1230 ((|#2| |#2|) 191)) (-2733 ((|#2| |#2|) 167)) (-1250 ((|#2| |#2|) 62)) (-2396 ((|#2| |#2|) 80)) (-2209 ((|#2| |#2|) 68)) (-2367 ((|#2| |#2|) 78)) (-2176 ((|#2| |#2|) 66)) (-2335 ((|#2| |#2|) 76)) (-1584 ((|#2| |#2|) 64)) (-1863 (((-108) (-110)) 93)) (-2438 ((|#2| |#2|) 83)) (-2257 ((|#2| |#2|) 71)) (-2410 ((|#2| |#2|) 81)) (-2226 ((|#2| |#2|) 69)) (-2464 ((|#2| |#2|) 85)) (-2287 ((|#2| |#2|) 73)) (-2687 ((|#2| |#2|) 86)) (-2303 ((|#2| |#2|) 74)) (-2450 ((|#2| |#2|) 84)) (-2273 ((|#2| |#2|) 72)) (-2424 ((|#2| |#2|) 82)) (-2242 ((|#2| |#2|) 70)))
+(((-255 |#1| |#2|) (-10 -7 (-15 -1250 (|#2| |#2|)) (-15 -1415 (|#2| |#2|)) (-15 -1569 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -2176 (|#2| |#2|)) (-15 -2193 (|#2| |#2|)) (-15 -2209 (|#2| |#2|)) (-15 -2226 (|#2| |#2|)) (-15 -2242 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2273 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2303 (|#2| |#2|)) (-15 -2320 (|#2| |#2|)) (-15 -2335 (|#2| |#2|)) (-15 -2351 (|#2| |#2|)) (-15 -2367 (|#2| |#2|)) (-15 -2382 (|#2| |#2|)) (-15 -2396 (|#2| |#2|)) (-15 -2410 (|#2| |#2|)) (-15 -2424 (|#2| |#2|)) (-15 -2438 (|#2| |#2|)) (-15 -2450 (|#2| |#2|)) (-15 -2464 (|#2| |#2|)) (-15 -2687 (|#2| |#2|)) (-15 -1535 (|#2|)) (-15 -1863 ((-108) (-110))) (-15 -2972 ((-110) (-110))) (-15 -4096 (|#2|)) (-15 -3202 (|#2|)) (-15 -3079 (|#2| |#2|)) (-15 -2731 (|#2| |#2|)) (-15 -2685 (|#2| |#2|)) (-15 -2928 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -1633 (|#2| |#2|)) (-15 -3267 (|#2| |#2|)) (-15 -2872 (|#2| |#2|)) (-15 -2733 (|#2| |#2|)) (-15 -1408 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -1253 (|#2| |#2|)) (-15 -3264 (|#2| |#2|)) (-15 -2038 (|#2| |#2|)) (-15 -3579 (|#2| |#2|)) (-15 -1806 (|#2| |#2|)) (-15 -2674 (|#2| |#2|)) (-15 -2986 (|#2| |#2|)) (-15 -3378 (|#2| |#2|)) (-15 -1480 (|#2| |#2|)) (-15 -1230 (|#2| |#2|)) (-15 -3403 (|#2| |#2|)) (-15 -2766 (|#2| |#2|)) (-15 -1274 (|#2| |#2|)) (-15 -3010 (|#2| |#2|)) (-15 -3218 ((-3 |#2| "failed") |#2| (-592 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -1564 ((-108) |#2|))) (-13 (-789) (-517)) (-13 (-408 |#1|) (-934))) (T -255))
+((-1564 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *3)) (-4 *3 (-13 (-408 *4) (-934))))) (-3218 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-592 (-2 (|:| |func| *2) (|:| |pole| (-108))))) (-4 *2 (-13 (-408 *4) (-934))) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-255 *4 *2)))) (-3010 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1274 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2766 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3403 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1230 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1480 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3378 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2986 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2674 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1806 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3579 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2038 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3264 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1253 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3809 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1408 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2733 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2872 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3267 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1633 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3497 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3483 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2928 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2685 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2731 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3079 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-3202 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-789) (-517))))) (-4096 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-789) (-517))))) (-2972 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *4)) (-4 *4 (-13 (-408 *3) (-934))))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *5)) (-4 *5 (-13 (-408 *4) (-934))))) (-1535 (*1 *2) (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2)) (-4 *3 (-13 (-789) (-517))))) (-2687 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2464 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2450 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2438 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2424 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2410 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2396 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2382 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2351 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2335 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2320 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2303 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2273 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2226 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2209 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2193 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-2176 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1603 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1569 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))) (-1250 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2)) (-4 *2 (-13 (-408 *3) (-934))))))
+(-10 -7 (-15 -1250 (|#2| |#2|)) (-15 -1415 (|#2| |#2|)) (-15 -1569 (|#2| |#2|)) (-15 -1584 (|#2| |#2|)) (-15 -1603 (|#2| |#2|)) (-15 -2176 (|#2| |#2|)) (-15 -2193 (|#2| |#2|)) (-15 -2209 (|#2| |#2|)) (-15 -2226 (|#2| |#2|)) (-15 -2242 (|#2| |#2|)) (-15 -2257 (|#2| |#2|)) (-15 -2273 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2303 (|#2| |#2|)) (-15 -2320 (|#2| |#2|)) (-15 -2335 (|#2| |#2|)) (-15 -2351 (|#2| |#2|)) (-15 -2367 (|#2| |#2|)) (-15 -2382 (|#2| |#2|)) (-15 -2396 (|#2| |#2|)) (-15 -2410 (|#2| |#2|)) (-15 -2424 (|#2| |#2|)) (-15 -2438 (|#2| |#2|)) (-15 -2450 (|#2| |#2|)) (-15 -2464 (|#2| |#2|)) (-15 -2687 (|#2| |#2|)) (-15 -1535 (|#2|)) (-15 -1863 ((-108) (-110))) (-15 -2972 ((-110) (-110))) (-15 -4096 (|#2|)) (-15 -3202 (|#2|)) (-15 -3079 (|#2| |#2|)) (-15 -2731 (|#2| |#2|)) (-15 -2685 (|#2| |#2|)) (-15 -2928 (|#2| |#2|)) (-15 -3483 (|#2| |#2|)) (-15 -3497 (|#2| |#2|)) (-15 -1633 (|#2| |#2|)) (-15 -3267 (|#2| |#2|)) (-15 -2872 (|#2| |#2|)) (-15 -2733 (|#2| |#2|)) (-15 -1408 (|#2| |#2|)) (-15 -3809 (|#2| |#2|)) (-15 -1253 (|#2| |#2|)) (-15 -3264 (|#2| |#2|)) (-15 -2038 (|#2| |#2|)) (-15 -3579 (|#2| |#2|)) (-15 -1806 (|#2| |#2|)) (-15 -2674 (|#2| |#2|)) (-15 -2986 (|#2| |#2|)) (-15 -3378 (|#2| |#2|)) (-15 -1480 (|#2| |#2|)) (-15 -1230 (|#2| |#2|)) (-15 -3403 (|#2| |#2|)) (-15 -2766 (|#2| |#2|)) (-15 -1274 (|#2| |#2|)) (-15 -3010 (|#2| |#2|)) (-15 -3218 ((-3 |#2| "failed") |#2| (-592 (-2 (|:| |func| |#2|) (|:| |pole| (-108)))))) (-15 -1564 ((-108) |#2|)))
+((-3819 (((-3 |#2| "failed") (-592 (-565 |#2|)) |#2| (-1091)) 135)) (-3764 ((|#2| (-385 (-525)) |#2|) 51)) (-2005 ((|#2| |#2| (-565 |#2|)) 128)) (-4012 (((-2 (|:| |func| |#2|) (|:| |kers| (-592 (-565 |#2|))) (|:| |vals| (-592 |#2|))) |#2| (-1091)) 127)) (-3610 ((|#2| |#2| (-1091)) 20) ((|#2| |#2|) 23)) (-2200 ((|#2| |#2| (-1091)) 141) ((|#2| |#2|) 139)))
+(((-256 |#1| |#2|) (-10 -7 (-15 -2200 (|#2| |#2|)) (-15 -2200 (|#2| |#2| (-1091))) (-15 -4012 ((-2 (|:| |func| |#2|) (|:| |kers| (-592 (-565 |#2|))) (|:| |vals| (-592 |#2|))) |#2| (-1091))) (-15 -3610 (|#2| |#2|)) (-15 -3610 (|#2| |#2| (-1091))) (-15 -3819 ((-3 |#2| "failed") (-592 (-565 |#2|)) |#2| (-1091))) (-15 -2005 (|#2| |#2| (-565 |#2|))) (-15 -3764 (|#2| (-385 (-525)) |#2|))) (-13 (-517) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1113) (-408 |#1|))) (T -256))
+((-3764 (*1 *2 *3 *2) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *4))))) (-2005 (*1 *2 *2 *3) (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *4))) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)))) (-3819 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-1091)) (-4 *2 (-13 (-27) (-1113) (-408 *5))) (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *5 *2)))) (-3610 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *4))))) (-3610 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *3))))) (-4012 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-592 (-565 *3))) (|:| |vals| (-592 *3)))) (-5 *1 (-256 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *5))))) (-2200 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *4))))) (-2200 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *3))))))
+(-10 -7 (-15 -2200 (|#2| |#2|)) (-15 -2200 (|#2| |#2| (-1091))) (-15 -4012 ((-2 (|:| |func| |#2|) (|:| |kers| (-592 (-565 |#2|))) (|:| |vals| (-592 |#2|))) |#2| (-1091))) (-15 -3610 (|#2| |#2|)) (-15 -3610 (|#2| |#2| (-1091))) (-15 -3819 ((-3 |#2| "failed") (-592 (-565 |#2|)) |#2| (-1091))) (-15 -2005 (|#2| |#2| (-565 |#2|))) (-15 -3764 (|#2| (-385 (-525)) |#2|)))
+((-2442 (((-3 |#3| "failed") |#3|) 110)) (-2351 ((|#3| |#3|) 131)) (-1801 (((-3 |#3| "failed") |#3|) 82)) (-1603 ((|#3| |#3|) 121)) (-3255 (((-3 |#3| "failed") |#3|) 58)) (-2320 ((|#3| |#3|) 129)) (-2332 (((-3 |#3| "failed") |#3|) 46)) (-1569 ((|#3| |#3|) 119)) (-3630 (((-3 |#3| "failed") |#3|) 112)) (-2382 ((|#3| |#3|) 133)) (-3097 (((-3 |#3| "failed") |#3|) 84)) (-2193 ((|#3| |#3|) 123)) (-3005 (((-3 |#3| "failed") |#3| (-713)) 36)) (-2996 (((-3 |#3| "failed") |#3|) 74)) (-1415 ((|#3| |#3|) 118)) (-3649 (((-3 |#3| "failed") |#3|) 44)) (-1250 ((|#3| |#3|) 117)) (-2808 (((-3 |#3| "failed") |#3|) 113)) (-2396 ((|#3| |#3|) 134)) (-4224 (((-3 |#3| "failed") |#3|) 85)) (-2209 ((|#3| |#3|) 124)) (-4027 (((-3 |#3| "failed") |#3|) 111)) (-2367 ((|#3| |#3|) 132)) (-2407 (((-3 |#3| "failed") |#3|) 83)) (-2176 ((|#3| |#3|) 122)) (-3057 (((-3 |#3| "failed") |#3|) 60)) (-2335 ((|#3| |#3|) 130)) (-3472 (((-3 |#3| "failed") |#3|) 48)) (-1584 ((|#3| |#3|) 120)) (-1976 (((-3 |#3| "failed") |#3|) 66)) (-2438 ((|#3| |#3|) 137)) (-3164 (((-3 |#3| "failed") |#3|) 104)) (-2257 ((|#3| |#3|) 142)) (-1330 (((-3 |#3| "failed") |#3|) 62)) (-2410 ((|#3| |#3|) 135)) (-1839 (((-3 |#3| "failed") |#3|) 50)) (-2226 ((|#3| |#3|) 125)) (-4186 (((-3 |#3| "failed") |#3|) 70)) (-2464 ((|#3| |#3|) 139)) (-2430 (((-3 |#3| "failed") |#3|) 54)) (-2287 ((|#3| |#3|) 127)) (-2597 (((-3 |#3| "failed") |#3|) 72)) (-2687 ((|#3| |#3|) 140)) (-2190 (((-3 |#3| "failed") |#3|) 56)) (-2303 ((|#3| |#3|) 128)) (-1226 (((-3 |#3| "failed") |#3|) 68)) (-2450 ((|#3| |#3|) 138)) (-3016 (((-3 |#3| "failed") |#3|) 107)) (-2273 ((|#3| |#3|) 143)) (-1848 (((-3 |#3| "failed") |#3|) 64)) (-2424 ((|#3| |#3|) 136)) (-1965 (((-3 |#3| "failed") |#3|) 52)) (-2242 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-385 (-525))) 40 (|has| |#1| (-341)))))
+(((-257 |#1| |#2| |#3|) (-13 (-916 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -1250 (|#3| |#3|)) (-15 -1415 (|#3| |#3|)) (-15 -1569 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1603 (|#3| |#3|)) (-15 -2176 (|#3| |#3|)) (-15 -2193 (|#3| |#3|)) (-15 -2209 (|#3| |#3|)) (-15 -2226 (|#3| |#3|)) (-15 -2242 (|#3| |#3|)) (-15 -2257 (|#3| |#3|)) (-15 -2273 (|#3| |#3|)) (-15 -2287 (|#3| |#3|)) (-15 -2303 (|#3| |#3|)) (-15 -2320 (|#3| |#3|)) (-15 -2335 (|#3| |#3|)) (-15 -2351 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2382 (|#3| |#3|)) (-15 -2396 (|#3| |#3|)) (-15 -2410 (|#3| |#3|)) (-15 -2424 (|#3| |#3|)) (-15 -2438 (|#3| |#3|)) (-15 -2450 (|#3| |#3|)) (-15 -2464 (|#3| |#3|)) (-15 -2687 (|#3| |#3|)))) (-37 (-385 (-525))) (-1164 |#1|) (-1135 |#1| |#2|)) (T -257))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 (-385 (-525)))) (-4 *5 (-1164 *4)) (-5 *1 (-257 *4 *5 *2)) (-4 *2 (-1135 *4 *5)))) (-1250 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-1569 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-1603 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2176 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2193 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2209 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2226 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2273 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2303 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2320 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2335 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2351 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2382 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2396 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2410 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2424 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2438 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2450 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2464 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))) (-2687 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3)) (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4)))))
+(-13 (-916 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -1250 (|#3| |#3|)) (-15 -1415 (|#3| |#3|)) (-15 -1569 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1603 (|#3| |#3|)) (-15 -2176 (|#3| |#3|)) (-15 -2193 (|#3| |#3|)) (-15 -2209 (|#3| |#3|)) (-15 -2226 (|#3| |#3|)) (-15 -2242 (|#3| |#3|)) (-15 -2257 (|#3| |#3|)) (-15 -2273 (|#3| |#3|)) (-15 -2287 (|#3| |#3|)) (-15 -2303 (|#3| |#3|)) (-15 -2320 (|#3| |#3|)) (-15 -2335 (|#3| |#3|)) (-15 -2351 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2382 (|#3| |#3|)) (-15 -2396 (|#3| |#3|)) (-15 -2410 (|#3| |#3|)) (-15 -2424 (|#3| |#3|)) (-15 -2438 (|#3| |#3|)) (-15 -2450 (|#3| |#3|)) (-15 -2464 (|#3| |#3|)) (-15 -2687 (|#3| |#3|))))
+((-2442 (((-3 |#3| "failed") |#3|) 66)) (-2351 ((|#3| |#3|) 133)) (-1801 (((-3 |#3| "failed") |#3|) 50)) (-1603 ((|#3| |#3|) 121)) (-3255 (((-3 |#3| "failed") |#3|) 62)) (-2320 ((|#3| |#3|) 131)) (-2332 (((-3 |#3| "failed") |#3|) 46)) (-1569 ((|#3| |#3|) 119)) (-3630 (((-3 |#3| "failed") |#3|) 70)) (-2382 ((|#3| |#3|) 135)) (-3097 (((-3 |#3| "failed") |#3|) 54)) (-2193 ((|#3| |#3|) 123)) (-3005 (((-3 |#3| "failed") |#3| (-713)) 35)) (-2996 (((-3 |#3| "failed") |#3|) 44)) (-1415 ((|#3| |#3|) 112)) (-3649 (((-3 |#3| "failed") |#3|) 42)) (-1250 ((|#3| |#3|) 118)) (-2808 (((-3 |#3| "failed") |#3|) 72)) (-2396 ((|#3| |#3|) 136)) (-4224 (((-3 |#3| "failed") |#3|) 56)) (-2209 ((|#3| |#3|) 124)) (-4027 (((-3 |#3| "failed") |#3|) 68)) (-2367 ((|#3| |#3|) 134)) (-2407 (((-3 |#3| "failed") |#3|) 52)) (-2176 ((|#3| |#3|) 122)) (-3057 (((-3 |#3| "failed") |#3|) 64)) (-2335 ((|#3| |#3|) 132)) (-3472 (((-3 |#3| "failed") |#3|) 48)) (-1584 ((|#3| |#3|) 120)) (-1976 (((-3 |#3| "failed") |#3|) 78)) (-2438 ((|#3| |#3|) 139)) (-3164 (((-3 |#3| "failed") |#3|) 58)) (-2257 ((|#3| |#3|) 127)) (-1330 (((-3 |#3| "failed") |#3|) 74)) (-2410 ((|#3| |#3|) 137)) (-1839 (((-3 |#3| "failed") |#3|) 102)) (-2226 ((|#3| |#3|) 125)) (-4186 (((-3 |#3| "failed") |#3|) 82)) (-2464 ((|#3| |#3|) 141)) (-2430 (((-3 |#3| "failed") |#3|) 109)) (-2287 ((|#3| |#3|) 129)) (-2597 (((-3 |#3| "failed") |#3|) 84)) (-2687 ((|#3| |#3|) 142)) (-2190 (((-3 |#3| "failed") |#3|) 111)) (-2303 ((|#3| |#3|) 130)) (-1226 (((-3 |#3| "failed") |#3|) 80)) (-2450 ((|#3| |#3|) 140)) (-3016 (((-3 |#3| "failed") |#3|) 60)) (-2273 ((|#3| |#3|) 128)) (-1848 (((-3 |#3| "failed") |#3|) 76)) (-2424 ((|#3| |#3|) 138)) (-1965 (((-3 |#3| "failed") |#3|) 105)) (-2242 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-385 (-525))) 40 (|has| |#1| (-341)))))
+(((-258 |#1| |#2| |#3| |#4|) (-13 (-916 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -1250 (|#3| |#3|)) (-15 -1415 (|#3| |#3|)) (-15 -1569 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1603 (|#3| |#3|)) (-15 -2176 (|#3| |#3|)) (-15 -2193 (|#3| |#3|)) (-15 -2209 (|#3| |#3|)) (-15 -2226 (|#3| |#3|)) (-15 -2242 (|#3| |#3|)) (-15 -2257 (|#3| |#3|)) (-15 -2273 (|#3| |#3|)) (-15 -2287 (|#3| |#3|)) (-15 -2303 (|#3| |#3|)) (-15 -2320 (|#3| |#3|)) (-15 -2335 (|#3| |#3|)) (-15 -2351 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2382 (|#3| |#3|)) (-15 -2396 (|#3| |#3|)) (-15 -2410 (|#3| |#3|)) (-15 -2424 (|#3| |#3|)) (-15 -2438 (|#3| |#3|)) (-15 -2450 (|#3| |#3|)) (-15 -2464 (|#3| |#3|)) (-15 -2687 (|#3| |#3|)))) (-37 (-385 (-525))) (-1133 |#1|) (-1156 |#1| |#2|) (-916 |#2|)) (T -258))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 (-385 (-525)))) (-4 *5 (-1133 *4)) (-5 *1 (-258 *4 *5 *2 *6)) (-4 *2 (-1156 *4 *5)) (-4 *6 (-916 *5)))) (-1250 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-1415 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-1569 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-1584 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-1603 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2176 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2193 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2209 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2226 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2257 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2273 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2303 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2320 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2335 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2351 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2382 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2396 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2410 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2424 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2438 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2450 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2464 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))) (-2687 (*1 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3)) (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4)))))
+(-13 (-916 |#3|) (-10 -7 (IF (|has| |#1| (-341)) (-15 ** (|#3| |#3| (-385 (-525)))) |%noBranch|) (-15 -1250 (|#3| |#3|)) (-15 -1415 (|#3| |#3|)) (-15 -1569 (|#3| |#3|)) (-15 -1584 (|#3| |#3|)) (-15 -1603 (|#3| |#3|)) (-15 -2176 (|#3| |#3|)) (-15 -2193 (|#3| |#3|)) (-15 -2209 (|#3| |#3|)) (-15 -2226 (|#3| |#3|)) (-15 -2242 (|#3| |#3|)) (-15 -2257 (|#3| |#3|)) (-15 -2273 (|#3| |#3|)) (-15 -2287 (|#3| |#3|)) (-15 -2303 (|#3| |#3|)) (-15 -2320 (|#3| |#3|)) (-15 -2335 (|#3| |#3|)) (-15 -2351 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2382 (|#3| |#3|)) (-15 -2396 (|#3| |#3|)) (-15 -2410 (|#3| |#3|)) (-15 -2424 (|#3| |#3|)) (-15 -2438 (|#3| |#3|)) (-15 -2450 (|#3| |#3|)) (-15 -2464 (|#3| |#3|)) (-15 -2687 (|#3| |#3|))))
+((-3445 (((-108) $) 19)) (-2639 (((-169) $) 7)) (-1219 (((-3 (-1091) "failed") $) 14)) (-1770 (((-3 (-592 $) "failed") $) NIL)) (-2527 (((-3 (-1091) "failed") $) 21)) (-2115 (((-3 (-1024) "failed") $) 17)) (-1336 (((-108) $) 15)) (-1270 (((-798) $) NIL)) (-1458 (((-108) $) 9)))
+(((-259) (-13 (-566 (-798)) (-10 -8 (-15 -2639 ((-169) $)) (-15 -1336 ((-108) $)) (-15 -2115 ((-3 (-1024) "failed") $)) (-15 -3445 ((-108) $)) (-15 -2527 ((-3 (-1091) "failed") $)) (-15 -1458 ((-108) $)) (-15 -1219 ((-3 (-1091) "failed") $)) (-15 -1770 ((-3 (-592 $) "failed") $))))) (T -259))
+((-2639 (*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-259)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-2115 (*1 *2 *1) (|partial| -12 (-5 *2 (-1024)) (-5 *1 (-259)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-2527 (*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-259)))) (-1458 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))) (-1219 (*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-259)))) (-1770 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-259))) (-5 *1 (-259)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -2639 ((-169) $)) (-15 -1336 ((-108) $)) (-15 -2115 ((-3 (-1024) "failed") $)) (-15 -3445 ((-108) $)) (-15 -2527 ((-3 (-1091) "failed") $)) (-15 -1458 ((-108) $)) (-15 -1219 ((-3 (-1091) "failed") $)) (-15 -1770 ((-3 (-592 $) "failed") $))))
+((-3826 (($ (-1 (-108) |#2|) $) 24)) (-3137 (($ $) 36)) (-2592 (($ (-1 (-108) |#2|) $) NIL) (($ |#2| $) 34)) (-1614 (($ |#2| $) 32) (($ (-1 (-108) |#2|) $) 18)) (-1999 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-2683 (($ |#2| $ (-525)) 20) (($ $ $ (-525)) 22)) (-3157 (($ $ (-525)) 11) (($ $ (-1140 (-525))) 14)) (-2162 (($ $ |#2|) 30) (($ $ $) NIL)) (-2014 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-592 $)) NIL)))
+(((-260 |#1| |#2|) (-10 -8 (-15 -1999 (|#1| |#1| |#1|)) (-15 -2592 (|#1| |#2| |#1|)) (-15 -1999 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2592 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2162 (|#1| |#1| |#1|)) (-15 -2162 (|#1| |#1| |#2|)) (-15 -2683 (|#1| |#1| |#1| (-525))) (-15 -2683 (|#1| |#2| |#1| (-525))) (-15 -3157 (|#1| |#1| (-1140 (-525)))) (-15 -3157 (|#1| |#1| (-525))) (-15 -2014 (|#1| (-592 |#1|))) (-15 -2014 (|#1| |#1| |#1|)) (-15 -2014 (|#1| |#2| |#1|)) (-15 -2014 (|#1| |#1| |#2|)) (-15 -1614 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3826 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1614 (|#1| |#2| |#1|)) (-15 -3137 (|#1| |#1|))) (-261 |#2|) (-1127)) (T -260))
+NIL
+(-10 -8 (-15 -1999 (|#1| |#1| |#1|)) (-15 -2592 (|#1| |#2| |#1|)) (-15 -1999 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2592 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2162 (|#1| |#1| |#1|)) (-15 -2162 (|#1| |#1| |#2|)) (-15 -2683 (|#1| |#1| |#1| (-525))) (-15 -2683 (|#1| |#2| |#1| (-525))) (-15 -3157 (|#1| |#1| (-1140 (-525)))) (-15 -3157 (|#1| |#1| (-525))) (-15 -2014 (|#1| (-592 |#1|))) (-15 -2014 (|#1| |#1| |#1|)) (-15 -2014 (|#1| |#2| |#1|)) (-15 -2014 (|#1| |#1| |#2|)) (-15 -1614 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3826 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -1614 (|#1| |#2| |#1|)) (-15 -3137 (|#1| |#1|)))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2782 (((-1178) $ (-525) (-525)) 40 (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) 8)) (-1429 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) 58 (|has| $ (-6 -4256)))) (-1608 (($ (-1 (-108) |#1|) $) 85)) (-3826 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4255)))) (-2305 (($) 7 T CONST)) (-1540 (($ $) 83 (|has| |#1| (-1020)))) (-3137 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2592 (($ (-1 (-108) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1020)))) (-1614 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4255)))) (-2632 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) 51)) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-3489 (($ (-713) |#1|) 69)) (-2482 (((-108) $ (-713)) 9)) (-2710 (((-525) $) 43 (|has| (-525) (-789)))) (-1999 (($ (-1 (-108) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-789)))) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3478 (((-525) $) 44 (|has| (-525) (-789)))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-3985 (($ |#1| $ (-525)) 88) (($ $ $ (-525)) 87)) (-2683 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-4142 (((-592 (-525)) $) 46)) (-3845 (((-108) (-525) $) 47)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3110 ((|#1| $) 42 (|has| (-525) (-789)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2042 (($ $ |#1|) 41 (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-4101 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) 48)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1140 (-525))) 63)) (-3793 (($ $ (-525)) 91) (($ $ (-1140 (-525))) 90)) (-3157 (($ $ (-525)) 62) (($ $ (-1140 (-525))) 61)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-2749 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 70)) (-2162 (($ $ |#1|) 93) (($ $ $) 92)) (-2014 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-261 |#1|) (-131) (-1127)) (T -261))
+((-2162 (*1 *1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1127)))) (-2162 (*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1127)))) (-3793 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1127)))) (-3793 (*1 *1 *1 *2) (-12 (-5 *2 (-1140 (-525))) (-4 *1 (-261 *3)) (-4 *3 (-1127)))) (-2592 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1127)))) (-3985 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-261 *2)) (-4 *2 (-1127)))) (-3985 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1127)))) (-1999 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-261 *3)) (-4 *3 (-1127)))) (-1608 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1127)))) (-2592 (*1 *1 *2 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1127)) (-4 *2 (-1020)))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1127)) (-4 *2 (-1020)))) (-1999 (*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1127)) (-4 *2 (-789)))))
+(-13 (-597 |t#1|) (-10 -8 (-6 -4256) (-15 -2162 ($ $ |t#1|)) (-15 -2162 ($ $ $)) (-15 -3793 ($ $ (-525))) (-15 -3793 ($ $ (-1140 (-525)))) (-15 -2592 ($ (-1 (-108) |t#1|) $)) (-15 -3985 ($ |t#1| $ (-525))) (-15 -3985 ($ $ $ (-525))) (-15 -1999 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -1608 ($ (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1020)) (PROGN (-15 -2592 ($ |t#1| $)) (-15 -1540 ($ $))) |%noBranch|) (IF (|has| |t#1| (-789)) (-15 -1999 ($ $ $)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1127) . T))
((** (($ $ $) 10)))
(((-262 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-263)) (T -262))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-2091 (($ $) 6)) (-1982 (($ $) 7)) (** (($ $ $) 8)))
+((-1415 (($ $) 6)) (-1250 (($ $) 7)) (** (($ $ $) 8)))
(((-263) (-131)) (T -263))
-((** (*1 *1 *1 *1) (-4 *1 (-263))) (-1982 (*1 *1 *1) (-4 *1 (-263))) (-2091 (*1 *1 *1) (-4 *1 (-263))))
-(-13 (-10 -8 (-15 -2091 ($ $)) (-15 -1982 ($ $)) (-15 ** ($ $ $))))
-((-2542 (((-592 (-1071 |#1|)) (-1071 |#1|) |#1|) 35)) (-1736 ((|#2| |#2| |#1|) 38)) (-2721 ((|#2| |#2| |#1|) 40)) (-2580 ((|#2| |#2| |#1|) 39)))
-(((-264 |#1| |#2|) (-10 -7 (-15 -1736 (|#2| |#2| |#1|)) (-15 -2580 (|#2| |#2| |#1|)) (-15 -2721 (|#2| |#2| |#1|)) (-15 -2542 ((-592 (-1071 |#1|)) (-1071 |#1|) |#1|))) (-341) (-1163 |#1|)) (T -264))
-((-2542 (*1 *2 *3 *4) (-12 (-4 *4 (-341)) (-5 *2 (-592 (-1071 *4))) (-5 *1 (-264 *4 *5)) (-5 *3 (-1071 *4)) (-4 *5 (-1163 *4)))) (-2721 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1163 *3)))) (-2580 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1163 *3)))) (-1736 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1163 *3)))))
-(-10 -7 (-15 -1736 (|#2| |#2| |#1|)) (-15 -2580 (|#2| |#2| |#1|)) (-15 -2721 (|#2| |#2| |#1|)) (-15 -2542 ((-592 (-1071 |#1|)) (-1071 |#1|) |#1|)))
-((-3928 ((|#2| $ |#1|) 6)))
-(((-265 |#1| |#2|) (-131) (-1019) (-1126)) (T -265))
-((-3928 (*1 *2 *1 *3) (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126)))))
-(-13 (-10 -8 (-15 -3928 (|t#2| $ |t#1|))))
-((-2870 ((|#3| $ |#2| |#3|) 12)) (-2796 ((|#3| $ |#2|) 10)))
-(((-266 |#1| |#2| |#3|) (-10 -8 (-15 -2870 (|#3| |#1| |#2| |#3|)) (-15 -2796 (|#3| |#1| |#2|))) (-267 |#2| |#3|) (-1019) (-1126)) (T -266))
-NIL
-(-10 -8 (-15 -2870 (|#3| |#1| |#2| |#3|)) (-15 -2796 (|#3| |#1| |#2|)))
-((-2109 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4255)))) (-2870 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4255)))) (-2796 ((|#2| $ |#1|) 11)) (-3928 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-267 |#1| |#2|) (-131) (-1019) (-1126)) (T -267))
-((-3928 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126)))) (-2796 (*1 *2 *1 *3) (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126)))) (-2109 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126)))) (-2870 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126)))))
-(-13 (-265 |t#1| |t#2|) (-10 -8 (-15 -3928 (|t#2| $ |t#1| |t#2|)) (-15 -2796 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4255)) (PROGN (-15 -2109 (|t#2| $ |t#1| |t#2|)) (-15 -2870 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((** (*1 *1 *1 *1) (-4 *1 (-263))) (-1250 (*1 *1 *1) (-4 *1 (-263))) (-1415 (*1 *1 *1) (-4 *1 (-263))))
+(-13 (-10 -8 (-15 -1415 ($ $)) (-15 -1250 ($ $)) (-15 ** ($ $ $))))
+((-3689 (((-592 (-1072 |#1|)) (-1072 |#1|) |#1|) 35)) (-3964 ((|#2| |#2| |#1|) 38)) (-3011 ((|#2| |#2| |#1|) 40)) (-3679 ((|#2| |#2| |#1|) 39)))
+(((-264 |#1| |#2|) (-10 -7 (-15 -3964 (|#2| |#2| |#1|)) (-15 -3679 (|#2| |#2| |#1|)) (-15 -3011 (|#2| |#2| |#1|)) (-15 -3689 ((-592 (-1072 |#1|)) (-1072 |#1|) |#1|))) (-341) (-1164 |#1|)) (T -264))
+((-3689 (*1 *2 *3 *4) (-12 (-4 *4 (-341)) (-5 *2 (-592 (-1072 *4))) (-5 *1 (-264 *4 *5)) (-5 *3 (-1072 *4)) (-4 *5 (-1164 *4)))) (-3011 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1164 *3)))) (-3679 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1164 *3)))) (-3964 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1164 *3)))))
+(-10 -7 (-15 -3964 (|#2| |#2| |#1|)) (-15 -3679 (|#2| |#2| |#1|)) (-15 -3011 (|#2| |#2| |#1|)) (-15 -3689 ((-592 (-1072 |#1|)) (-1072 |#1|) |#1|)))
+((-3410 ((|#2| $ |#1|) 6)))
+(((-265 |#1| |#2|) (-131) (-1020) (-1127)) (T -265))
+((-3410 (*1 *2 *1 *3) (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1127)))))
+(-13 (-10 -8 (-15 -3410 (|t#2| $ |t#1|))))
+((-2632 ((|#3| $ |#2| |#3|) 12)) (-2570 ((|#3| $ |#2|) 10)))
+(((-266 |#1| |#2| |#3|) (-10 -8 (-15 -2632 (|#3| |#1| |#2| |#3|)) (-15 -2570 (|#3| |#1| |#2|))) (-267 |#2| |#3|) (-1020) (-1127)) (T -266))
+NIL
+(-10 -8 (-15 -2632 (|#3| |#1| |#2| |#3|)) (-15 -2570 (|#3| |#1| |#2|)))
+((-1429 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4256)))) (-2632 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4256)))) (-2570 ((|#2| $ |#1|) 11)) (-3410 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-267 |#1| |#2|) (-131) (-1020) (-1127)) (T -267))
+((-3410 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1127)))) (-2570 (*1 *2 *1 *3) (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1127)))) (-1429 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1127)))) (-2632 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1127)))))
+(-13 (-265 |t#1| |t#2|) (-10 -8 (-15 -3410 (|t#2| $ |t#1| |t#2|)) (-15 -2570 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4256)) (PROGN (-15 -1429 (|t#2| $ |t#1| |t#2|)) (-15 -2632 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-265 |#1| |#2|) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 35)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 40)) (-3635 (($ $) 38)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-2305 (((-108) $ $) NIL)) (-1505 (($) NIL T CONST)) (-2373 (($ $ $) 33)) (-4004 (($ |#2| |#3|) 19)) (-2866 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2133 (((-108) $) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2238 ((|#3| $) NIL)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 20)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1732 (((-3 $ "failed") $ $) NIL)) (-2183 (((-713) $) 34)) (-3928 ((|#2| $ |#2|) 42)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 24)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2093 (((-713)) NIL)) (-2262 (((-108) $ $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 29 T CONST)) (-3882 (($) 36 T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 37)))
-(((-268 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-286) (-10 -8 (-15 -2238 (|#3| $)) (-15 -1908 (|#2| $)) (-15 -4004 ($ |#2| |#3|)) (-15 -1732 ((-3 $ "failed") $ $)) (-15 -2866 ((-3 $ "failed") $)) (-15 -4211 ($ $)) (-15 -3928 (|#2| $ |#2|)))) (-160) (-1148 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -268))
-((-2866 (*1 *1 *1) (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1148 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2238 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-23)) (-5 *1 (-268 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1148 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-1908 (*1 *2 *1) (-12 (-4 *2 (-1148 *3)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7)) (-4 *3 (-160)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-4004 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-268 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1148 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1732 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1148 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4211 (*1 *1 *1) (-12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1148 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3928 (*1 *2 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1148 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-286) (-10 -8 (-15 -2238 (|#3| $)) (-15 -1908 (|#2| $)) (-15 -4004 ($ |#2| |#3|)) (-15 -1732 ((-3 $ "failed") $ $)) (-15 -2866 ((-3 $ "failed") $)) (-15 -4211 ($ $)) (-15 -3928 (|#2| $ |#2|))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11) (($ (-525)) 28)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 35)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 40)) (-3711 (($ $) 38)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3197 (((-108) $ $) NIL)) (-2305 (($) NIL T CONST)) (-1726 (($ $ $) 33)) (-3503 (($ |#2| |#3|) 19)) (-3762 (((-3 $ "failed") $) NIL)) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-1985 (((-108) $) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3703 ((|#3| $) NIL)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 20)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3934 (((-3 $ "failed") $ $) NIL)) (-1290 (((-713) $) 34)) (-3410 ((|#2| $ |#2|) 42)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 24)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2104 (((-713)) NIL)) (-3959 (((-108) $ $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 29 T CONST)) (-3363 (($) 36 T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 37)))
+(((-268 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-286) (-10 -8 (-15 -3703 (|#3| $)) (-15 -1270 (|#2| $)) (-15 -3503 ($ |#2| |#3|)) (-15 -3934 ((-3 $ "failed") $ $)) (-15 -3762 ((-3 $ "failed") $)) (-15 -2502 ($ $)) (-15 -3410 (|#2| $ |#2|)))) (-160) (-1149 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -268))
+((-3762 (*1 *1 *1) (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1149 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3703 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-23)) (-5 *1 (-268 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1149 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-1270 (*1 *2 *1) (-12 (-4 *2 (-1149 *3)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7)) (-4 *3 (-160)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-3503 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-268 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1149 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3934 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1149 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2502 (*1 *1 *1) (-12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1149 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3410 (*1 *2 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1149 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-286) (-10 -8 (-15 -3703 (|#3| $)) (-15 -1270 (|#2| $)) (-15 -3503 ($ |#2| |#3|)) (-15 -3934 ((-3 $ "failed") $ $)) (-15 -3762 ((-3 $ "failed") $)) (-15 -2502 ($ $)) (-15 -3410 (|#2| $ |#2|))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11) (($ (-525)) 28)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-269) (-131)) (T -269))
NIL
-(-13 (-976) (-107 $ $) (-10 -7 (-6 -4247)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-3400 (($ (-1090) (-1090) (-1023) $) 16)) (-1940 (($ (-1090) (-592 (-898)) $) 21)) (-4094 (((-592 (-1006)) $) 9)) (-3941 (((-3 (-1023) "failed") (-1090) (-1090) $) 15)) (-3016 (((-3 (-592 (-898)) "failed") (-1090) $) 20)) (-3773 (($) 6)) (-1972 (($) 22)) (-1908 (((-797) $) 26)) (-3975 (($) 23)))
-(((-270) (-13 (-566 (-797)) (-10 -8 (-15 -3773 ($)) (-15 -4094 ((-592 (-1006)) $)) (-15 -3941 ((-3 (-1023) "failed") (-1090) (-1090) $)) (-15 -3400 ($ (-1090) (-1090) (-1023) $)) (-15 -3016 ((-3 (-592 (-898)) "failed") (-1090) $)) (-15 -1940 ($ (-1090) (-592 (-898)) $)) (-15 -1972 ($)) (-15 -3975 ($))))) (T -270))
-((-3773 (*1 *1) (-5 *1 (-270))) (-4094 (*1 *2 *1) (-12 (-5 *2 (-592 (-1006))) (-5 *1 (-270)))) (-3941 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1090)) (-5 *2 (-1023)) (-5 *1 (-270)))) (-3400 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1090)) (-5 *3 (-1023)) (-5 *1 (-270)))) (-3016 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1090)) (-5 *2 (-592 (-898))) (-5 *1 (-270)))) (-1940 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-898))) (-5 *1 (-270)))) (-1972 (*1 *1) (-5 *1 (-270))) (-3975 (*1 *1) (-5 *1 (-270))))
-(-13 (-566 (-797)) (-10 -8 (-15 -3773 ($)) (-15 -4094 ((-592 (-1006)) $)) (-15 -3941 ((-3 (-1023) "failed") (-1090) (-1090) $)) (-15 -3400 ($ (-1090) (-1090) (-1023) $)) (-15 -3016 ((-3 (-592 (-898)) "failed") (-1090) $)) (-15 -1940 ($ (-1090) (-592 (-898)) $)) (-15 -1972 ($)) (-15 -3975 ($))))
-((-2649 (((-592 (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |geneigvec| (-592 (-632 (-385 (-886 |#1|))))))) (-632 (-385 (-886 |#1|)))) 85)) (-2632 (((-592 (-632 (-385 (-886 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-886 |#1|)))))) (-632 (-385 (-886 |#1|)))) 80) (((-592 (-632 (-385 (-886 |#1|)))) (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|))) (-632 (-385 (-886 |#1|))) (-713) (-713)) 38)) (-3159 (((-592 (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-886 |#1|))))))) (-632 (-385 (-886 |#1|)))) 82)) (-1937 (((-592 (-632 (-385 (-886 |#1|)))) (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|))) (-632 (-385 (-886 |#1|)))) 62)) (-2001 (((-592 (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (-632 (-385 (-886 |#1|)))) 61)) (-1260 (((-886 |#1|) (-632 (-385 (-886 |#1|)))) 50) (((-886 |#1|) (-632 (-385 (-886 |#1|))) (-1090)) 51)))
-(((-271 |#1|) (-10 -7 (-15 -1260 ((-886 |#1|) (-632 (-385 (-886 |#1|))) (-1090))) (-15 -1260 ((-886 |#1|) (-632 (-385 (-886 |#1|))))) (-15 -2001 ((-592 (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (-632 (-385 (-886 |#1|))))) (-15 -1937 ((-592 (-632 (-385 (-886 |#1|)))) (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|))) (-632 (-385 (-886 |#1|))))) (-15 -2632 ((-592 (-632 (-385 (-886 |#1|)))) (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|))) (-632 (-385 (-886 |#1|))) (-713) (-713))) (-15 -2632 ((-592 (-632 (-385 (-886 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-886 |#1|)))))) (-632 (-385 (-886 |#1|))))) (-15 -2649 ((-592 (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |geneigvec| (-592 (-632 (-385 (-886 |#1|))))))) (-632 (-385 (-886 |#1|))))) (-15 -3159 ((-592 (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-886 |#1|))))))) (-632 (-385 (-886 |#1|)))))) (-429)) (T -271))
-((-3159 (*1 *2 *3) (-12 (-4 *4 (-429)) (-5 *2 (-592 (-2 (|:| |eigval| (-3 (-385 (-886 *4)) (-1080 (-1090) (-886 *4)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-886 *4)))))))) (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-886 *4)))))) (-2649 (*1 *2 *3) (-12 (-4 *4 (-429)) (-5 *2 (-592 (-2 (|:| |eigval| (-3 (-385 (-886 *4)) (-1080 (-1090) (-886 *4)))) (|:| |geneigvec| (-592 (-632 (-385 (-886 *4)))))))) (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-886 *4)))))) (-2632 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-385 (-886 *5)) (-1080 (-1090) (-886 *5)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-886 *5))))))) (-5 *4 (-632 (-385 (-886 *5)))) (-4 *5 (-429)) (-5 *2 (-592 *4)) (-5 *1 (-271 *5)))) (-2632 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-385 (-886 *6)) (-1080 (-1090) (-886 *6)))) (-5 *5 (-713)) (-4 *6 (-429)) (-5 *2 (-592 (-632 (-385 (-886 *6))))) (-5 *1 (-271 *6)) (-5 *4 (-632 (-385 (-886 *6)))))) (-1937 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-385 (-886 *5)) (-1080 (-1090) (-886 *5)))) (-4 *5 (-429)) (-5 *2 (-592 (-632 (-385 (-886 *5))))) (-5 *1 (-271 *5)) (-5 *4 (-632 (-385 (-886 *5)))))) (-2001 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-886 *4)))) (-4 *4 (-429)) (-5 *2 (-592 (-3 (-385 (-886 *4)) (-1080 (-1090) (-886 *4))))) (-5 *1 (-271 *4)))) (-1260 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-886 *4)))) (-4 *4 (-429)) (-5 *2 (-886 *4)) (-5 *1 (-271 *4)))) (-1260 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-886 *5)))) (-5 *4 (-1090)) (-4 *5 (-429)) (-5 *2 (-886 *5)) (-5 *1 (-271 *5)))))
-(-10 -7 (-15 -1260 ((-886 |#1|) (-632 (-385 (-886 |#1|))) (-1090))) (-15 -1260 ((-886 |#1|) (-632 (-385 (-886 |#1|))))) (-15 -2001 ((-592 (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (-632 (-385 (-886 |#1|))))) (-15 -1937 ((-592 (-632 (-385 (-886 |#1|)))) (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|))) (-632 (-385 (-886 |#1|))))) (-15 -2632 ((-592 (-632 (-385 (-886 |#1|)))) (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|))) (-632 (-385 (-886 |#1|))) (-713) (-713))) (-15 -2632 ((-592 (-632 (-385 (-886 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-886 |#1|)))))) (-632 (-385 (-886 |#1|))))) (-15 -2649 ((-592 (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |geneigvec| (-592 (-632 (-385 (-886 |#1|))))))) (-632 (-385 (-886 |#1|))))) (-15 -3159 ((-592 (-2 (|:| |eigval| (-3 (-385 (-886 |#1|)) (-1080 (-1090) (-886 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-886 |#1|))))))) (-632 (-385 (-886 |#1|))))))
-((-1370 (((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|)) 14)))
-(((-272 |#1| |#2|) (-10 -7 (-15 -1370 ((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|)))) (-1126) (-1126)) (T -272))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-273 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-273 *6)) (-5 *1 (-272 *5 *6)))))
-(-10 -7 (-15 -1370 ((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1611 (((-108) $) NIL (|has| |#1| (-21)))) (-2522 (($ $) 23)) (-3263 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1962 (($ $ $) 94 (|has| |#1| (-281)))) (-1505 (($) NIL (-3309 (|has| |#1| (-21)) (|has| |#1| (-669))) CONST)) (-1729 (($ $) 8 (|has| |#1| (-21)))) (-3212 (((-3 $ "failed") $) 69 (|has| |#1| (-669)))) (-3247 ((|#1| $) 22)) (-2866 (((-3 $ "failed") $) 67 (|has| |#1| (-669)))) (-2133 (((-108) $) NIL (|has| |#1| (-669)))) (-1370 (($ (-1 |#1| |#1|) $) 25)) (-3235 ((|#1| $) 9)) (-2185 (($ $) 58 (|has| |#1| (-21)))) (-2974 (((-3 $ "failed") $) 68 (|has| |#1| (-669)))) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-4211 (($ $) 71 (-3309 (|has| |#1| (-341)) (|has| |#1| (-450))))) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-2084 (((-592 $) $) 20 (|has| |#1| (-517)))) (-3092 (($ $ $) 35 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 $)) 38 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-1090) |#1|) 28 (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) 32 (|has| |#1| (-486 (-1090) |#1|)))) (-3755 (($ |#1| |#1|) 18)) (-3191 (((-128)) 89 (|has| |#1| (-341)))) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090)) 86 (|has| |#1| (-834 (-1090))))) (-3634 (($ $ $) NIL (|has| |#1| (-450)))) (-1518 (($ $ $) NIL (|has| |#1| (-450)))) (-1908 (($ (-525)) NIL (|has| |#1| (-976))) (((-108) $) 46 (|has| |#1| (-1019))) (((-797) $) 45 (|has| |#1| (-1019)))) (-2093 (((-713)) 74 (|has| |#1| (-976)))) (-3465 (($ $ (-525)) NIL (|has| |#1| (-450))) (($ $ (-713)) NIL (|has| |#1| (-669))) (($ $ (-855)) NIL (|has| |#1| (-1031)))) (-3875 (($) 56 (|has| |#1| (-21)) CONST)) (-3882 (($) 64 (|has| |#1| (-669)) CONST)) (-1424 (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090))))) (-3961 (($ |#1| |#1|) 21) (((-108) $ $) 41 (|has| |#1| (-1019)))) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 91 (-3309 (|has| |#1| (-341)) (|has| |#1| (-450))))) (-4070 (($ |#1| $) 54 (|has| |#1| (-21))) (($ $ |#1|) 55 (|has| |#1| (-21))) (($ $ $) 53 (|has| |#1| (-21))) (($ $) 52 (|has| |#1| (-21)))) (-4059 (($ |#1| $) 49 (|has| |#1| (-25))) (($ $ |#1|) 50 (|has| |#1| (-25))) (($ $ $) 48 (|has| |#1| (-25)))) (** (($ $ (-525)) NIL (|has| |#1| (-450))) (($ $ (-713)) NIL (|has| |#1| (-669))) (($ $ (-855)) NIL (|has| |#1| (-1031)))) (* (($ $ |#1|) 62 (|has| |#1| (-1031))) (($ |#1| $) 61 (|has| |#1| (-1031))) (($ $ $) 60 (|has| |#1| (-1031))) (($ (-525) $) 76 (|has| |#1| (-21))) (($ (-713) $) NIL (|has| |#1| (-21))) (($ (-855) $) NIL (|has| |#1| (-25)))))
-(((-273 |#1|) (-13 (-1126) (-10 -8 (-15 -3961 ($ |#1| |#1|)) (-15 -3755 ($ |#1| |#1|)) (-15 -2522 ($ $)) (-15 -3235 (|#1| $)) (-15 -3247 (|#1| $)) (-15 -1370 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-486 (-1090) |#1|)) (-6 (-486 (-1090) |#1|)) |%noBranch|) (IF (|has| |#1| (-1019)) (PROGN (-6 (-1019)) (-6 (-566 (-108))) (IF (|has| |#1| (-288 |#1|)) (PROGN (-15 -3092 ($ $ $)) (-15 -3092 ($ $ (-592 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4059 ($ |#1| $)) (-15 -4059 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2185 ($ $)) (-15 -1729 ($ $)) (-15 -4070 ($ |#1| $)) (-15 -4070 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1031)) (PROGN (-6 (-1031)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-669)) (PROGN (-6 (-669)) (-15 -2974 ((-3 $ "failed") $)) (-15 -3212 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-450)) (PROGN (-6 (-450)) (-15 -2974 ((-3 $ "failed") $)) (-15 -3212 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-976)) (PROGN (-6 (-976)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-660 |#1|)) |%noBranch|) (IF (|has| |#1| (-517)) (-15 -2084 ((-592 $) $)) |%noBranch|) (IF (|has| |#1| (-834 (-1090))) (-6 (-834 (-1090))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-1179 |#1|)) (-15 -4082 ($ $ $)) (-15 -4211 ($ $))) |%noBranch|) (IF (|has| |#1| (-281)) (-15 -1962 ($ $ $)) |%noBranch|))) (-1126)) (T -273))
-((-3961 (*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126)))) (-3755 (*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126)))) (-2522 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126)))) (-3235 (*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126)))) (-3247 (*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126)))) (-1370 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1126)) (-5 *1 (-273 *3)))) (-3092 (*1 *1 *1 *1) (-12 (-4 *2 (-288 *2)) (-4 *2 (-1019)) (-4 *2 (-1126)) (-5 *1 (-273 *2)))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *3))) (-4 *3 (-288 *3)) (-4 *3 (-1019)) (-4 *3 (-1126)) (-5 *1 (-273 *3)))) (-4059 (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1126)))) (-4059 (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1126)))) (-2185 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1126)))) (-1729 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1126)))) (-4070 (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1126)))) (-4070 (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1126)))) (-2974 (*1 *1 *1) (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1126)))) (-3212 (*1 *1 *1) (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1126)))) (-2084 (*1 *2 *1) (-12 (-5 *2 (-592 (-273 *3))) (-5 *1 (-273 *3)) (-4 *3 (-517)) (-4 *3 (-1126)))) (-1962 (*1 *1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-281)) (-4 *2 (-1126)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1031)) (-4 *2 (-1126)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1031)) (-4 *2 (-1126)))) (-4082 (*1 *1 *1 *1) (-3309 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1126))) (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1126))))) (-4211 (*1 *1 *1) (-3309 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1126))) (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1126))))))
-(-13 (-1126) (-10 -8 (-15 -3961 ($ |#1| |#1|)) (-15 -3755 ($ |#1| |#1|)) (-15 -2522 ($ $)) (-15 -3235 (|#1| $)) (-15 -3247 (|#1| $)) (-15 -1370 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-486 (-1090) |#1|)) (-6 (-486 (-1090) |#1|)) |%noBranch|) (IF (|has| |#1| (-1019)) (PROGN (-6 (-1019)) (-6 (-566 (-108))) (IF (|has| |#1| (-288 |#1|)) (PROGN (-15 -3092 ($ $ $)) (-15 -3092 ($ $ (-592 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4059 ($ |#1| $)) (-15 -4059 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -2185 ($ $)) (-15 -1729 ($ $)) (-15 -4070 ($ |#1| $)) (-15 -4070 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1031)) (PROGN (-6 (-1031)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-669)) (PROGN (-6 (-669)) (-15 -2974 ((-3 $ "failed") $)) (-15 -3212 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-450)) (PROGN (-6 (-450)) (-15 -2974 ((-3 $ "failed") $)) (-15 -3212 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-976)) (PROGN (-6 (-976)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-660 |#1|)) |%noBranch|) (IF (|has| |#1| (-517)) (-15 -2084 ((-592 $) $)) |%noBranch|) (IF (|has| |#1| (-834 (-1090))) (-6 (-834 (-1090))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-1179 |#1|)) (-15 -4082 ($ $ $)) (-15 -4211 ($ $))) |%noBranch|) (IF (|has| |#1| (-281)) (-15 -1962 ($ $ $)) |%noBranch|)))
-((-1893 (((-108) $ $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4001 (($) NIL) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-1840 (((-1177) $ |#1| |#1|) NIL (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 ((|#2| $ |#1| |#2|) NIL)) (-3290 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1446 (((-3 |#2| "failed") |#1| $) NIL)) (-1505 (($) NIL T CONST)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-2792 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) NIL)) (-2273 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-4004 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2870 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#2| $ |#1|) NIL)) (-2026 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-2009 ((|#1| $) NIL (|has| |#1| (-789)))) (-3168 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-1792 ((|#1| $) NIL (|has| |#1| (-789)))) (-2857 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4005 (((-592 |#1|) $) NIL)) (-1699 (((-108) |#1| $) NIL)) (-2570 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-2573 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3222 (((-592 |#1|) $) NIL)) (-1548 (((-108) |#1| $) NIL)) (-2663 (((-1037) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-3135 ((|#2| $) NIL (|has| |#1| (-789)))) (-4054 (((-3 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL)) (-1911 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3513 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3494 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-3171 (((-592 |#2|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4006 (($) NIL) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-2686 (((-713) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-567 (-501))))) (-1922 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-1908 (((-797) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-566 (-797))) (|has| |#2| (-566 (-797)))))) (-3612 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-2667 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-274 |#1| |#2|) (-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254))) (-1019) (-1019)) (T -274))
-NIL
-(-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254)))
-((-1869 (((-290) (-1073) (-592 (-1073))) 16) (((-290) (-1073) (-1073)) 15) (((-290) (-592 (-1073))) 14) (((-290) (-1073)) 12)))
-(((-275) (-10 -7 (-15 -1869 ((-290) (-1073))) (-15 -1869 ((-290) (-592 (-1073)))) (-15 -1869 ((-290) (-1073) (-1073))) (-15 -1869 ((-290) (-1073) (-592 (-1073)))))) (T -275))
-((-1869 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-592 (-1073))) (-5 *2 (-290)) (-5 *1 (-275)))) (-1869 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-290)) (-5 *1 (-275)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-290)) (-5 *1 (-275)))) (-1869 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-290)) (-5 *1 (-275)))))
-(-10 -7 (-15 -1869 ((-290) (-1073))) (-15 -1869 ((-290) (-592 (-1073)))) (-15 -1869 ((-290) (-1073) (-1073))) (-15 -1869 ((-290) (-1073) (-592 (-1073)))))
-((-1370 ((|#2| (-1 |#2| |#1|) (-1073) (-565 |#1|)) 18)))
-(((-276 |#1| |#2|) (-10 -7 (-15 -1370 (|#2| (-1 |#2| |#1|) (-1073) (-565 |#1|)))) (-281) (-1126)) (T -276))
-((-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1073)) (-5 *5 (-565 *6)) (-4 *6 (-281)) (-4 *2 (-1126)) (-5 *1 (-276 *6 *2)))))
-(-10 -7 (-15 -1370 (|#2| (-1 |#2| |#1|) (-1073) (-565 |#1|))))
-((-1370 ((|#2| (-1 |#2| |#1|) (-565 |#1|)) 17)))
-(((-277 |#1| |#2|) (-10 -7 (-15 -1370 (|#2| (-1 |#2| |#1|) (-565 |#1|)))) (-281) (-281)) (T -277))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-565 *5)) (-4 *5 (-281)) (-4 *2 (-281)) (-5 *1 (-277 *5 *2)))))
-(-10 -7 (-15 -1370 (|#2| (-1 |#2| |#1|) (-565 |#1|))))
-((-2607 (((-108) (-205)) 10)))
-(((-278 |#1| |#2|) (-10 -7 (-15 -2607 ((-108) (-205)))) (-205) (-205)) (T -278))
-((-2607 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-278 *4 *5)) (-14 *4 (-205)) (-14 *5 (-205)))))
-(-10 -7 (-15 -2607 ((-108) (-205))))
-((-2346 (((-1071 (-205)) (-294 (-205)) (-592 (-1090)) (-1014 (-782 (-205)))) 92)) (-3601 (((-1071 (-205)) (-1172 (-294 (-205))) (-592 (-1090)) (-1014 (-782 (-205)))) 106) (((-1071 (-205)) (-294 (-205)) (-592 (-1090)) (-1014 (-782 (-205)))) 61)) (-1880 (((-592 (-1073)) (-1071 (-205))) NIL)) (-1567 (((-592 (-205)) (-294 (-205)) (-1090) (-1014 (-782 (-205)))) 58)) (-1942 (((-592 (-205)) (-886 (-385 (-525))) (-1090) (-1014 (-782 (-205)))) 49)) (-3119 (((-592 (-1073)) (-592 (-205))) NIL)) (-4127 (((-205) (-1014 (-782 (-205)))) 25)) (-2286 (((-205) (-1014 (-782 (-205)))) 26)) (-3238 (((-108) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 54)) (-3792 (((-1073) (-205)) NIL)))
-(((-279) (-10 -7 (-15 -4127 ((-205) (-1014 (-782 (-205))))) (-15 -2286 ((-205) (-1014 (-782 (-205))))) (-15 -3238 ((-108) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1567 ((-592 (-205)) (-294 (-205)) (-1090) (-1014 (-782 (-205))))) (-15 -2346 ((-1071 (-205)) (-294 (-205)) (-592 (-1090)) (-1014 (-782 (-205))))) (-15 -3601 ((-1071 (-205)) (-294 (-205)) (-592 (-1090)) (-1014 (-782 (-205))))) (-15 -3601 ((-1071 (-205)) (-1172 (-294 (-205))) (-592 (-1090)) (-1014 (-782 (-205))))) (-15 -1942 ((-592 (-205)) (-886 (-385 (-525))) (-1090) (-1014 (-782 (-205))))) (-15 -3792 ((-1073) (-205))) (-15 -3119 ((-592 (-1073)) (-592 (-205)))) (-15 -1880 ((-592 (-1073)) (-1071 (-205)))))) (T -279))
-((-1880 (*1 *2 *3) (-12 (-5 *3 (-1071 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-279)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-279)))) (-3792 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1073)) (-5 *1 (-279)))) (-1942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-886 (-385 (-525)))) (-5 *4 (-1090)) (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))) (-3601 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *4 (-592 (-1090))) (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-1071 (-205))) (-5 *1 (-279)))) (-3601 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1090))) (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-1071 (-205))) (-5 *1 (-279)))) (-2346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1090))) (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-1071 (-205))) (-5 *1 (-279)))) (-1567 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1090)) (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))) (-3238 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-108)) (-5 *1 (-279)))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279)))))
-(-10 -7 (-15 -4127 ((-205) (-1014 (-782 (-205))))) (-15 -2286 ((-205) (-1014 (-782 (-205))))) (-15 -3238 ((-108) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1567 ((-592 (-205)) (-294 (-205)) (-1090) (-1014 (-782 (-205))))) (-15 -2346 ((-1071 (-205)) (-294 (-205)) (-592 (-1090)) (-1014 (-782 (-205))))) (-15 -3601 ((-1071 (-205)) (-294 (-205)) (-592 (-1090)) (-1014 (-782 (-205))))) (-15 -3601 ((-1071 (-205)) (-1172 (-294 (-205))) (-592 (-1090)) (-1014 (-782 (-205))))) (-15 -1942 ((-592 (-205)) (-886 (-385 (-525))) (-1090) (-1014 (-782 (-205))))) (-15 -3792 ((-1073) (-205))) (-15 -3119 ((-592 (-1073)) (-592 (-205)))) (-15 -1880 ((-592 (-1073)) (-1071 (-205)))))
-((-3740 (((-592 (-565 $)) $) 30)) (-1962 (($ $ (-273 $)) 81) (($ $ (-592 (-273 $))) 123) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-1264 (((-3 (-565 $) "failed") $) 113)) (-2831 (((-565 $) $) 112)) (-2237 (($ $) 19) (($ (-592 $)) 56)) (-2323 (((-592 (-110)) $) 38)) (-4159 (((-110) (-110)) 91)) (-2144 (((-108) $) 131)) (-1370 (($ (-1 $ $) (-565 $)) 89)) (-2218 (((-3 (-565 $) "failed") $) 93)) (-1377 (($ (-110) $) 61) (($ (-110) (-592 $)) 100)) (-3034 (((-108) $ (-110)) 117) (((-108) $ (-1090)) 116)) (-3598 (((-713) $) 46)) (-2148 (((-108) $ $) 59) (((-108) $ (-1090)) 51)) (-2656 (((-108) $) 129)) (-3092 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) 121) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ $))) 84) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1090) (-1 $ (-592 $))) 69) (($ $ (-1090) (-1 $ $)) 75) (($ $ (-592 (-110)) (-592 (-1 $ $))) 83) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 85) (($ $ (-110) (-1 $ (-592 $))) 71) (($ $ (-110) (-1 $ $)) 77)) (-3928 (($ (-110) $) 62) (($ (-110) $ $) 63) (($ (-110) $ $ $) 64) (($ (-110) $ $ $ $) 65) (($ (-110) (-592 $)) 109)) (-2825 (($ $) 53) (($ $ $) 119)) (-1268 (($ $) 17) (($ (-592 $)) 55)) (-3824 (((-108) (-110)) 22)))
-(((-280 |#1|) (-10 -8 (-15 -2144 ((-108) |#1|)) (-15 -2656 ((-108) |#1|)) (-15 -3092 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -3092 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -3092 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -3092 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -3092 (|#1| |#1| (-1090) (-1 |#1| |#1|))) (-15 -3092 (|#1| |#1| (-1090) (-1 |#1| (-592 |#1|)))) (-15 -3092 (|#1| |#1| (-592 (-1090)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -3092 (|#1| |#1| (-592 (-1090)) (-592 (-1 |#1| |#1|)))) (-15 -2148 ((-108) |#1| (-1090))) (-15 -2148 ((-108) |#1| |#1|)) (-15 -1370 (|#1| (-1 |#1| |#1|) (-565 |#1|))) (-15 -1377 (|#1| (-110) (-592 |#1|))) (-15 -1377 (|#1| (-110) |#1|)) (-15 -3034 ((-108) |#1| (-1090))) (-15 -3034 ((-108) |#1| (-110))) (-15 -3824 ((-108) (-110))) (-15 -4159 ((-110) (-110))) (-15 -2323 ((-592 (-110)) |#1|)) (-15 -3740 ((-592 (-565 |#1|)) |#1|)) (-15 -2218 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -3598 ((-713) |#1|)) (-15 -2825 (|#1| |#1| |#1|)) (-15 -2825 (|#1| |#1|)) (-15 -2237 (|#1| (-592 |#1|))) (-15 -2237 (|#1| |#1|)) (-15 -1268 (|#1| (-592 |#1|))) (-15 -1268 (|#1| |#1|)) (-15 -1962 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -1962 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1962 (|#1| |#1| (-273 |#1|))) (-15 -3928 (|#1| (-110) (-592 |#1|))) (-15 -3928 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3928 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3928 (|#1| (-110) |#1| |#1|)) (-15 -3928 (|#1| (-110) |#1|)) (-15 -3092 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -3092 (|#1| |#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| (-273 |#1|))) (-15 -3092 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3092 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -3092 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -2831 ((-565 |#1|) |#1|)) (-15 -1264 ((-3 (-565 |#1|) "failed") |#1|))) (-281)) (T -280))
-((-4159 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-280 *3)) (-4 *3 (-281)))) (-3824 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-280 *4)) (-4 *4 (-281)))))
-(-10 -8 (-15 -2144 ((-108) |#1|)) (-15 -2656 ((-108) |#1|)) (-15 -3092 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -3092 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -3092 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -3092 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -3092 (|#1| |#1| (-1090) (-1 |#1| |#1|))) (-15 -3092 (|#1| |#1| (-1090) (-1 |#1| (-592 |#1|)))) (-15 -3092 (|#1| |#1| (-592 (-1090)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -3092 (|#1| |#1| (-592 (-1090)) (-592 (-1 |#1| |#1|)))) (-15 -2148 ((-108) |#1| (-1090))) (-15 -2148 ((-108) |#1| |#1|)) (-15 -1370 (|#1| (-1 |#1| |#1|) (-565 |#1|))) (-15 -1377 (|#1| (-110) (-592 |#1|))) (-15 -1377 (|#1| (-110) |#1|)) (-15 -3034 ((-108) |#1| (-1090))) (-15 -3034 ((-108) |#1| (-110))) (-15 -3824 ((-108) (-110))) (-15 -4159 ((-110) (-110))) (-15 -2323 ((-592 (-110)) |#1|)) (-15 -3740 ((-592 (-565 |#1|)) |#1|)) (-15 -2218 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -3598 ((-713) |#1|)) (-15 -2825 (|#1| |#1| |#1|)) (-15 -2825 (|#1| |#1|)) (-15 -2237 (|#1| (-592 |#1|))) (-15 -2237 (|#1| |#1|)) (-15 -1268 (|#1| (-592 |#1|))) (-15 -1268 (|#1| |#1|)) (-15 -1962 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -1962 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1962 (|#1| |#1| (-273 |#1|))) (-15 -3928 (|#1| (-110) (-592 |#1|))) (-15 -3928 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3928 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3928 (|#1| (-110) |#1| |#1|)) (-15 -3928 (|#1| (-110) |#1|)) (-15 -3092 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -3092 (|#1| |#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| (-273 |#1|))) (-15 -3092 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3092 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -3092 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -2831 ((-565 |#1|) |#1|)) (-15 -1264 ((-3 (-565 |#1|) "failed") |#1|)))
-((-1893 (((-108) $ $) 7)) (-3740 (((-592 (-565 $)) $) 44)) (-1962 (($ $ (-273 $)) 56) (($ $ (-592 (-273 $))) 55) (($ $ (-592 (-565 $)) (-592 $)) 54)) (-1264 (((-3 (-565 $) "failed") $) 69)) (-2831 (((-565 $) $) 68)) (-2237 (($ $) 51) (($ (-592 $)) 50)) (-2323 (((-592 (-110)) $) 43)) (-4159 (((-110) (-110)) 42)) (-2144 (((-108) $) 22 (|has| $ (-967 (-525))))) (-3609 (((-1086 $) (-565 $)) 25 (|has| $ (-976)))) (-3525 (($ $ $) 13)) (-3630 (($ $ $) 14)) (-1370 (($ (-1 $ $) (-565 $)) 36)) (-2218 (((-3 (-565 $) "failed") $) 46)) (-2337 (((-1073) $) 9)) (-3914 (((-592 (-565 $)) $) 45)) (-1377 (($ (-110) $) 38) (($ (-110) (-592 $)) 37)) (-3034 (((-108) $ (-110)) 40) (((-108) $ (-1090)) 39)) (-3598 (((-713) $) 47)) (-2663 (((-1037) $) 10)) (-2148 (((-108) $ $) 35) (((-108) $ (-1090)) 34)) (-2656 (((-108) $) 23 (|has| $ (-967 (-525))))) (-3092 (($ $ (-565 $) $) 67) (($ $ (-592 (-565 $)) (-592 $)) 66) (($ $ (-592 (-273 $))) 65) (($ $ (-273 $)) 64) (($ $ $ $) 63) (($ $ (-592 $) (-592 $)) 62) (($ $ (-592 (-1090)) (-592 (-1 $ $))) 33) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) 32) (($ $ (-1090) (-1 $ (-592 $))) 31) (($ $ (-1090) (-1 $ $)) 30) (($ $ (-592 (-110)) (-592 (-1 $ $))) 29) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 28) (($ $ (-110) (-1 $ (-592 $))) 27) (($ $ (-110) (-1 $ $)) 26)) (-3928 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-592 $)) 57)) (-2825 (($ $) 49) (($ $ $) 48)) (-1654 (($ $) 24 (|has| $ (-976)))) (-1908 (((-797) $) 11) (($ (-565 $)) 70)) (-1268 (($ $) 53) (($ (-592 $)) 52)) (-3824 (((-108) (-110)) 41)) (-4024 (((-108) $ $) 16)) (-3995 (((-108) $ $) 17)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 15)) (-3983 (((-108) $ $) 18)))
+(-13 (-977) (-107 $ $) (-10 -7 (-6 -4248)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-3268 (($ (-1091) (-1091) (-1024) $) 16)) (-3829 (($ (-1091) (-592 (-899)) $) 21)) (-3469 (((-592 (-1007)) $) 9)) (-1678 (((-3 (-1024) "failed") (-1091) (-1091) $) 15)) (-2948 (((-3 (-592 (-899)) "failed") (-1091) $) 20)) (-2718 (($) 6)) (-2109 (($) 22)) (-1270 (((-798) $) 26)) (-3774 (($) 23)))
+(((-270) (-13 (-566 (-798)) (-10 -8 (-15 -2718 ($)) (-15 -3469 ((-592 (-1007)) $)) (-15 -1678 ((-3 (-1024) "failed") (-1091) (-1091) $)) (-15 -3268 ($ (-1091) (-1091) (-1024) $)) (-15 -2948 ((-3 (-592 (-899)) "failed") (-1091) $)) (-15 -3829 ($ (-1091) (-592 (-899)) $)) (-15 -2109 ($)) (-15 -3774 ($))))) (T -270))
+((-2718 (*1 *1) (-5 *1 (-270))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-592 (-1007))) (-5 *1 (-270)))) (-1678 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1091)) (-5 *2 (-1024)) (-5 *1 (-270)))) (-3268 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1091)) (-5 *3 (-1024)) (-5 *1 (-270)))) (-2948 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1091)) (-5 *2 (-592 (-899))) (-5 *1 (-270)))) (-3829 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-899))) (-5 *1 (-270)))) (-2109 (*1 *1) (-5 *1 (-270))) (-3774 (*1 *1) (-5 *1 (-270))))
+(-13 (-566 (-798)) (-10 -8 (-15 -2718 ($)) (-15 -3469 ((-592 (-1007)) $)) (-15 -1678 ((-3 (-1024) "failed") (-1091) (-1091) $)) (-15 -3268 ($ (-1091) (-1091) (-1024) $)) (-15 -2948 ((-3 (-592 (-899)) "failed") (-1091) $)) (-15 -3829 ($ (-1091) (-592 (-899)) $)) (-15 -2109 ($)) (-15 -3774 ($))))
+((-3490 (((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|)))) (|:| |geneigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|)))) 85)) (-3354 (((-592 (-632 (-385 (-887 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|)))))) (-632 (-385 (-887 |#1|)))) 80) (((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|))) (-632 (-385 (-887 |#1|))) (-713) (-713)) 38)) (-1675 (((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|)))) 82)) (-3802 (((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|))) (-632 (-385 (-887 |#1|)))) 62)) (-2603 (((-592 (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|)))) (-632 (-385 (-887 |#1|)))) 61)) (-1805 (((-887 |#1|) (-632 (-385 (-887 |#1|)))) 50) (((-887 |#1|) (-632 (-385 (-887 |#1|))) (-1091)) 51)))
+(((-271 |#1|) (-10 -7 (-15 -1805 ((-887 |#1|) (-632 (-385 (-887 |#1|))) (-1091))) (-15 -1805 ((-887 |#1|) (-632 (-385 (-887 |#1|))))) (-15 -2603 ((-592 (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|)))) (-632 (-385 (-887 |#1|))))) (-15 -3802 ((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|))) (-632 (-385 (-887 |#1|))))) (-15 -3354 ((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|))) (-632 (-385 (-887 |#1|))) (-713) (-713))) (-15 -3354 ((-592 (-632 (-385 (-887 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|)))))) (-632 (-385 (-887 |#1|))))) (-15 -3490 ((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|)))) (|:| |geneigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|))))) (-15 -1675 ((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|)))))) (-429)) (T -271))
+((-1675 (*1 *2 *3) (-12 (-4 *4 (-429)) (-5 *2 (-592 (-2 (|:| |eigval| (-3 (-385 (-887 *4)) (-1081 (-1091) (-887 *4)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 *4)))))))) (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-887 *4)))))) (-3490 (*1 *2 *3) (-12 (-4 *4 (-429)) (-5 *2 (-592 (-2 (|:| |eigval| (-3 (-385 (-887 *4)) (-1081 (-1091) (-887 *4)))) (|:| |geneigvec| (-592 (-632 (-385 (-887 *4)))))))) (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-887 *4)))))) (-3354 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-385 (-887 *5)) (-1081 (-1091) (-887 *5)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 *5))))))) (-5 *4 (-632 (-385 (-887 *5)))) (-4 *5 (-429)) (-5 *2 (-592 *4)) (-5 *1 (-271 *5)))) (-3354 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-385 (-887 *6)) (-1081 (-1091) (-887 *6)))) (-5 *5 (-713)) (-4 *6 (-429)) (-5 *2 (-592 (-632 (-385 (-887 *6))))) (-5 *1 (-271 *6)) (-5 *4 (-632 (-385 (-887 *6)))))) (-3802 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-385 (-887 *5)) (-1081 (-1091) (-887 *5)))) (-4 *5 (-429)) (-5 *2 (-592 (-632 (-385 (-887 *5))))) (-5 *1 (-271 *5)) (-5 *4 (-632 (-385 (-887 *5)))))) (-2603 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-887 *4)))) (-4 *4 (-429)) (-5 *2 (-592 (-3 (-385 (-887 *4)) (-1081 (-1091) (-887 *4))))) (-5 *1 (-271 *4)))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-887 *4)))) (-4 *4 (-429)) (-5 *2 (-887 *4)) (-5 *1 (-271 *4)))) (-1805 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-887 *5)))) (-5 *4 (-1091)) (-4 *5 (-429)) (-5 *2 (-887 *5)) (-5 *1 (-271 *5)))))
+(-10 -7 (-15 -1805 ((-887 |#1|) (-632 (-385 (-887 |#1|))) (-1091))) (-15 -1805 ((-887 |#1|) (-632 (-385 (-887 |#1|))))) (-15 -2603 ((-592 (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|)))) (-632 (-385 (-887 |#1|))))) (-15 -3802 ((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|))) (-632 (-385 (-887 |#1|))))) (-15 -3354 ((-592 (-632 (-385 (-887 |#1|)))) (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|))) (-632 (-385 (-887 |#1|))) (-713) (-713))) (-15 -3354 ((-592 (-632 (-385 (-887 |#1|)))) (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|)))))) (-632 (-385 (-887 |#1|))))) (-15 -3490 ((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|)))) (|:| |geneigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|))))) (-15 -1675 ((-592 (-2 (|:| |eigval| (-3 (-385 (-887 |#1|)) (-1081 (-1091) (-887 |#1|)))) (|:| |eigmult| (-713)) (|:| |eigvec| (-592 (-632 (-385 (-887 |#1|))))))) (-632 (-385 (-887 |#1|))))))
+((-2694 (((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|)) 14)))
+(((-272 |#1| |#2|) (-10 -7 (-15 -2694 ((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|)))) (-1127) (-1127)) (T -272))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-273 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-273 *6)) (-5 *1 (-272 *5 *6)))))
+(-10 -7 (-15 -2694 ((-273 |#2|) (-1 |#2| |#1|) (-273 |#1|))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1989 (((-108) $) NIL (|has| |#1| (-21)))) (-1666 (($ $) 23)) (-1342 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1224 (($ $ $) 94 (|has| |#1| (-281)))) (-2305 (($) NIL (-3279 (|has| |#1| (-21)) (|has| |#1| (-669))) CONST)) (-3904 (($ $) 8 (|has| |#1| (-21)))) (-4048 (((-3 $ "failed") $) 69 (|has| |#1| (-669)))) (-1314 ((|#1| $) 22)) (-3762 (((-3 $ "failed") $) 67 (|has| |#1| (-669)))) (-1985 (((-108) $) NIL (|has| |#1| (-669)))) (-2694 (($ (-1 |#1| |#1|) $) 25)) (-1303 ((|#1| $) 9)) (-1312 (($ $) 58 (|has| |#1| (-21)))) (-3580 (((-3 $ "failed") $) 68 (|has| |#1| (-669)))) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2502 (($ $) 71 (-3279 (|has| |#1| (-341)) (|has| |#1| (-450))))) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-1990 (((-592 $) $) 20 (|has| |#1| (-517)))) (-2602 (($ $ $) 35 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 $)) 38 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-1091) |#1|) 28 (|has| |#1| (-486 (-1091) |#1|))) (($ $ (-592 (-1091)) (-592 |#1|)) 32 (|has| |#1| (-486 (-1091) |#1|)))) (-1799 (($ |#1| |#1|) 18)) (-3831 (((-128)) 89 (|has| |#1| (-341)))) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091)) 86 (|has| |#1| (-835 (-1091))))) (-3700 (($ $ $) NIL (|has| |#1| (-450)))) (-2222 (($ $ $) NIL (|has| |#1| (-450)))) (-1270 (($ (-525)) NIL (|has| |#1| (-977))) (((-108) $) 46 (|has| |#1| (-1020))) (((-798) $) 45 (|has| |#1| (-1020)))) (-2104 (((-713)) 74 (|has| |#1| (-977)))) (-1576 (($ $ (-525)) NIL (|has| |#1| (-450))) (($ $ (-713)) NIL (|has| |#1| (-669))) (($ $ (-856)) NIL (|has| |#1| (-1032)))) (-3355 (($) 56 (|has| |#1| (-21)) CONST)) (-3363 (($) 64 (|has| |#1| (-669)) CONST)) (-2093 (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091))))) (-3994 (($ |#1| |#1|) 21) (((-108) $ $) 41 (|has| |#1| (-1020)))) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 91 (-3279 (|has| |#1| (-341)) (|has| |#1| (-450))))) (-4090 (($ |#1| $) 54 (|has| |#1| (-21))) (($ $ |#1|) 55 (|has| |#1| (-21))) (($ $ $) 53 (|has| |#1| (-21))) (($ $) 52 (|has| |#1| (-21)))) (-4080 (($ |#1| $) 49 (|has| |#1| (-25))) (($ $ |#1|) 50 (|has| |#1| (-25))) (($ $ $) 48 (|has| |#1| (-25)))) (** (($ $ (-525)) NIL (|has| |#1| (-450))) (($ $ (-713)) NIL (|has| |#1| (-669))) (($ $ (-856)) NIL (|has| |#1| (-1032)))) (* (($ $ |#1|) 62 (|has| |#1| (-1032))) (($ |#1| $) 61 (|has| |#1| (-1032))) (($ $ $) 60 (|has| |#1| (-1032))) (($ (-525) $) 76 (|has| |#1| (-21))) (($ (-713) $) NIL (|has| |#1| (-21))) (($ (-856) $) NIL (|has| |#1| (-25)))))
+(((-273 |#1|) (-13 (-1127) (-10 -8 (-15 -3994 ($ |#1| |#1|)) (-15 -1799 ($ |#1| |#1|)) (-15 -1666 ($ $)) (-15 -1303 (|#1| $)) (-15 -1314 (|#1| $)) (-15 -2694 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-486 (-1091) |#1|)) (-6 (-486 (-1091) |#1|)) |%noBranch|) (IF (|has| |#1| (-1020)) (PROGN (-6 (-1020)) (-6 (-566 (-108))) (IF (|has| |#1| (-288 |#1|)) (PROGN (-15 -2602 ($ $ $)) (-15 -2602 ($ $ (-592 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4080 ($ |#1| $)) (-15 -4080 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1312 ($ $)) (-15 -3904 ($ $)) (-15 -4090 ($ |#1| $)) (-15 -4090 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1032)) (PROGN (-6 (-1032)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-669)) (PROGN (-6 (-669)) (-15 -3580 ((-3 $ "failed") $)) (-15 -4048 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-450)) (PROGN (-6 (-450)) (-15 -3580 ((-3 $ "failed") $)) (-15 -4048 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-6 (-977)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-660 |#1|)) |%noBranch|) (IF (|has| |#1| (-517)) (-15 -1990 ((-592 $) $)) |%noBranch|) (IF (|has| |#1| (-835 (-1091))) (-6 (-835 (-1091))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-1180 |#1|)) (-15 -4100 ($ $ $)) (-15 -2502 ($ $))) |%noBranch|) (IF (|has| |#1| (-281)) (-15 -1224 ($ $ $)) |%noBranch|))) (-1127)) (T -273))
+((-3994 (*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1127)))) (-1799 (*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1127)))) (-1666 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1127)))) (-1303 (*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1127)))) (-1314 (*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1127)))) (-2694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-273 *3)))) (-2602 (*1 *1 *1 *1) (-12 (-4 *2 (-288 *2)) (-4 *2 (-1020)) (-4 *2 (-1127)) (-5 *1 (-273 *2)))) (-2602 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *3))) (-4 *3 (-288 *3)) (-4 *3 (-1020)) (-4 *3 (-1127)) (-5 *1 (-273 *3)))) (-4080 (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1127)))) (-4080 (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1127)))) (-1312 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) (-3904 (*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) (-4090 (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) (-4090 (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))) (-3580 (*1 *1 *1) (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1127)))) (-4048 (*1 *1 *1) (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1127)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-592 (-273 *3))) (-5 *1 (-273 *3)) (-4 *3 (-517)) (-4 *3 (-1127)))) (-1224 (*1 *1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-281)) (-4 *2 (-1127)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1032)) (-4 *2 (-1127)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1032)) (-4 *2 (-1127)))) (-4100 (*1 *1 *1 *1) (-3279 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1127))) (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1127))))) (-2502 (*1 *1 *1) (-3279 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1127))) (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1127))))))
+(-13 (-1127) (-10 -8 (-15 -3994 ($ |#1| |#1|)) (-15 -1799 ($ |#1| |#1|)) (-15 -1666 ($ $)) (-15 -1303 (|#1| $)) (-15 -1314 (|#1| $)) (-15 -2694 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-486 (-1091) |#1|)) (-6 (-486 (-1091) |#1|)) |%noBranch|) (IF (|has| |#1| (-1020)) (PROGN (-6 (-1020)) (-6 (-566 (-108))) (IF (|has| |#1| (-288 |#1|)) (PROGN (-15 -2602 ($ $ $)) (-15 -2602 ($ $ (-592 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4080 ($ |#1| $)) (-15 -4080 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1312 ($ $)) (-15 -3904 ($ $)) (-15 -4090 ($ |#1| $)) (-15 -4090 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1032)) (PROGN (-6 (-1032)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-669)) (PROGN (-6 (-669)) (-15 -3580 ((-3 $ "failed") $)) (-15 -4048 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-450)) (PROGN (-6 (-450)) (-15 -3580 ((-3 $ "failed") $)) (-15 -4048 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-6 (-977)) (-6 (-107 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-660 |#1|)) |%noBranch|) (IF (|has| |#1| (-517)) (-15 -1990 ((-592 $) $)) |%noBranch|) (IF (|has| |#1| (-835 (-1091))) (-6 (-835 (-1091))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-1180 |#1|)) (-15 -4100 ($ $ $)) (-15 -2502 ($ $))) |%noBranch|) (IF (|has| |#1| (-281)) (-15 -1224 ($ $ $)) |%noBranch|)))
+((-1260 (((-108) $ $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3476 (($) NIL) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-2782 (((-1178) $ |#1| |#1|) NIL (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 ((|#2| $ |#1| |#2|) NIL)) (-1608 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2772 (((-3 |#2| "failed") |#1| $) NIL)) (-2305 (($) NIL T CONST)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-2592 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-3 |#2| "failed") |#1| $) NIL)) (-1614 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-3503 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#2| $ |#1|) NIL)) (-3702 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-2710 ((|#1| $) NIL (|has| |#1| (-789)))) (-1749 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-3478 ((|#1| $) NIL (|has| |#1| (-789)))) (-2622 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4256))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-4076 (((-592 |#1|) $) NIL)) (-1522 (((-108) |#1| $) NIL)) (-3955 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-3985 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-4142 (((-592 |#1|) $) NIL)) (-3845 (((-108) |#1| $) NIL)) (-2012 (((-1038) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3110 ((|#2| $) NIL (|has| |#1| (-789)))) (-3207 (((-3 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) "failed") (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL)) (-2042 (($ $ |#2|) NIL (|has| $ (-6 -4256)))) (-1881 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-3006 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1777 (((-592 |#2|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3981 (($) NIL) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-2040 (((-713) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-713) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-567 (-501))))) (-1279 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-1270 (((-798) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-1665 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-3633 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-274 |#1| |#2|) (-13 (-1104 |#1| |#2|) (-10 -7 (-6 -4255))) (-1020) (-1020)) (T -274))
+NIL
+(-13 (-1104 |#1| |#2|) (-10 -7 (-6 -4255)))
+((-1245 (((-290) (-1074) (-592 (-1074))) 16) (((-290) (-1074) (-1074)) 15) (((-290) (-592 (-1074))) 14) (((-290) (-1074)) 12)))
+(((-275) (-10 -7 (-15 -1245 ((-290) (-1074))) (-15 -1245 ((-290) (-592 (-1074)))) (-15 -1245 ((-290) (-1074) (-1074))) (-15 -1245 ((-290) (-1074) (-592 (-1074)))))) (T -275))
+((-1245 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-592 (-1074))) (-5 *2 (-290)) (-5 *1 (-275)))) (-1245 (*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-290)) (-5 *1 (-275)))) (-1245 (*1 *2 *3) (-12 (-5 *3 (-592 (-1074))) (-5 *2 (-290)) (-5 *1 (-275)))) (-1245 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-290)) (-5 *1 (-275)))))
+(-10 -7 (-15 -1245 ((-290) (-1074))) (-15 -1245 ((-290) (-592 (-1074)))) (-15 -1245 ((-290) (-1074) (-1074))) (-15 -1245 ((-290) (-1074) (-592 (-1074)))))
+((-2694 ((|#2| (-1 |#2| |#1|) (-1074) (-565 |#1|)) 18)))
+(((-276 |#1| |#2|) (-10 -7 (-15 -2694 (|#2| (-1 |#2| |#1|) (-1074) (-565 |#1|)))) (-281) (-1127)) (T -276))
+((-2694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1074)) (-5 *5 (-565 *6)) (-4 *6 (-281)) (-4 *2 (-1127)) (-5 *1 (-276 *6 *2)))))
+(-10 -7 (-15 -2694 (|#2| (-1 |#2| |#1|) (-1074) (-565 |#1|))))
+((-2694 ((|#2| (-1 |#2| |#1|) (-565 |#1|)) 17)))
+(((-277 |#1| |#2|) (-10 -7 (-15 -2694 (|#2| (-1 |#2| |#1|) (-565 |#1|)))) (-281) (-281)) (T -277))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-565 *5)) (-4 *5 (-281)) (-4 *2 (-281)) (-5 *1 (-277 *5 *2)))))
+(-10 -7 (-15 -2694 (|#2| (-1 |#2| |#1|) (-565 |#1|))))
+((-3179 (((-108) (-205)) 10)))
+(((-278 |#1| |#2|) (-10 -7 (-15 -3179 ((-108) (-205)))) (-205) (-205)) (T -278))
+((-3179 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-278 *4 *5)) (-14 *4 (-205)) (-14 *5 (-205)))))
+(-10 -7 (-15 -3179 ((-108) (-205))))
+((-3540 (((-1072 (-205)) (-294 (-205)) (-592 (-1091)) (-1015 (-782 (-205)))) 92)) (-1573 (((-1072 (-205)) (-1173 (-294 (-205))) (-592 (-1091)) (-1015 (-782 (-205)))) 106) (((-1072 (-205)) (-294 (-205)) (-592 (-1091)) (-1015 (-782 (-205)))) 61)) (-3590 (((-592 (-1074)) (-1072 (-205))) NIL)) (-3136 (((-592 (-205)) (-294 (-205)) (-1091) (-1015 (-782 (-205)))) 58)) (-3849 (((-592 (-205)) (-887 (-385 (-525))) (-1091) (-1015 (-782 (-205)))) 49)) (-1321 (((-592 (-1074)) (-592 (-205))) NIL)) (-2722 (((-205) (-1015 (-782 (-205)))) 25)) (-4166 (((-205) (-1015 (-782 (-205)))) 26)) (-1249 (((-108) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 54)) (-2889 (((-1074) (-205)) NIL)))
+(((-279) (-10 -7 (-15 -2722 ((-205) (-1015 (-782 (-205))))) (-15 -4166 ((-205) (-1015 (-782 (-205))))) (-15 -1249 ((-108) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3136 ((-592 (-205)) (-294 (-205)) (-1091) (-1015 (-782 (-205))))) (-15 -3540 ((-1072 (-205)) (-294 (-205)) (-592 (-1091)) (-1015 (-782 (-205))))) (-15 -1573 ((-1072 (-205)) (-294 (-205)) (-592 (-1091)) (-1015 (-782 (-205))))) (-15 -1573 ((-1072 (-205)) (-1173 (-294 (-205))) (-592 (-1091)) (-1015 (-782 (-205))))) (-15 -3849 ((-592 (-205)) (-887 (-385 (-525))) (-1091) (-1015 (-782 (-205))))) (-15 -2889 ((-1074) (-205))) (-15 -1321 ((-592 (-1074)) (-592 (-205)))) (-15 -3590 ((-592 (-1074)) (-1072 (-205)))))) (T -279))
+((-3590 (*1 *2 *3) (-12 (-5 *3 (-1072 (-205))) (-5 *2 (-592 (-1074))) (-5 *1 (-279)))) (-1321 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1074))) (-5 *1 (-279)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1074)) (-5 *1 (-279)))) (-3849 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-887 (-385 (-525)))) (-5 *4 (-1091)) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))) (-1573 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1173 (-294 (-205)))) (-5 *4 (-592 (-1091))) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1072 (-205))) (-5 *1 (-279)))) (-1573 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1091))) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1072 (-205))) (-5 *1 (-279)))) (-3540 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1091))) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1072 (-205))) (-5 *1 (-279)))) (-3136 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1091)) (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))) (-1249 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-108)) (-5 *1 (-279)))) (-4166 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279)))))
+(-10 -7 (-15 -2722 ((-205) (-1015 (-782 (-205))))) (-15 -4166 ((-205) (-1015 (-782 (-205))))) (-15 -1249 ((-108) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3136 ((-592 (-205)) (-294 (-205)) (-1091) (-1015 (-782 (-205))))) (-15 -3540 ((-1072 (-205)) (-294 (-205)) (-592 (-1091)) (-1015 (-782 (-205))))) (-15 -1573 ((-1072 (-205)) (-294 (-205)) (-592 (-1091)) (-1015 (-782 (-205))))) (-15 -1573 ((-1072 (-205)) (-1173 (-294 (-205))) (-592 (-1091)) (-1015 (-782 (-205))))) (-15 -3849 ((-592 (-205)) (-887 (-385 (-525))) (-1091) (-1015 (-782 (-205))))) (-15 -2889 ((-1074) (-205))) (-15 -1321 ((-592 (-1074)) (-592 (-205)))) (-15 -3590 ((-592 (-1074)) (-1072 (-205)))))
+((-1895 (((-592 (-565 $)) $) 30)) (-1224 (($ $ (-273 $)) 81) (($ $ (-592 (-273 $))) 123) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-2591 (((-3 (-565 $) "failed") $) 113)) (-3898 (((-565 $) $) 112)) (-3694 (($ $) 19) (($ (-592 $)) 56)) (-3321 (((-592 (-110)) $) 38)) (-2972 (((-110) (-110)) 91)) (-2126 (((-108) $) 131)) (-2694 (($ (-1 $ $) (-565 $)) 89)) (-1661 (((-3 (-565 $) "failed") $) 93)) (-1581 (($ (-110) $) 61) (($ (-110) (-592 $)) 100)) (-3069 (((-108) $ (-110)) 117) (((-108) $ (-1091)) 116)) (-1751 (((-713) $) 46)) (-2186 (((-108) $ $) 59) (((-108) $ (-1091)) 51)) (-3545 (((-108) $) 129)) (-2602 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) 121) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1091)) (-592 (-1 $ $))) 84) (($ $ (-592 (-1091)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1091) (-1 $ (-592 $))) 69) (($ $ (-1091) (-1 $ $)) 75) (($ $ (-592 (-110)) (-592 (-1 $ $))) 83) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 85) (($ $ (-110) (-1 $ (-592 $))) 71) (($ $ (-110) (-1 $ $)) 77)) (-3410 (($ (-110) $) 62) (($ (-110) $ $) 63) (($ (-110) $ $ $) 64) (($ (-110) $ $ $ $) 65) (($ (-110) (-592 $)) 109)) (-1567 (($ $) 53) (($ $ $) 119)) (-1604 (($ $) 17) (($ (-592 $)) 55)) (-1863 (((-108) (-110)) 22)))
+(((-280 |#1|) (-10 -8 (-15 -2126 ((-108) |#1|)) (-15 -3545 ((-108) |#1|)) (-15 -2602 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2602 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -2602 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2602 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -2602 (|#1| |#1| (-1091) (-1 |#1| |#1|))) (-15 -2602 (|#1| |#1| (-1091) (-1 |#1| (-592 |#1|)))) (-15 -2602 (|#1| |#1| (-592 (-1091)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2602 (|#1| |#1| (-592 (-1091)) (-592 (-1 |#1| |#1|)))) (-15 -2186 ((-108) |#1| (-1091))) (-15 -2186 ((-108) |#1| |#1|)) (-15 -2694 (|#1| (-1 |#1| |#1|) (-565 |#1|))) (-15 -1581 (|#1| (-110) (-592 |#1|))) (-15 -1581 (|#1| (-110) |#1|)) (-15 -3069 ((-108) |#1| (-1091))) (-15 -3069 ((-108) |#1| (-110))) (-15 -1863 ((-108) (-110))) (-15 -2972 ((-110) (-110))) (-15 -3321 ((-592 (-110)) |#1|)) (-15 -1895 ((-592 (-565 |#1|)) |#1|)) (-15 -1661 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -1751 ((-713) |#1|)) (-15 -1567 (|#1| |#1| |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -3694 (|#1| (-592 |#1|))) (-15 -3694 (|#1| |#1|)) (-15 -1604 (|#1| (-592 |#1|))) (-15 -1604 (|#1| |#1|)) (-15 -1224 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -1224 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1224 (|#1| |#1| (-273 |#1|))) (-15 -3410 (|#1| (-110) (-592 |#1|))) (-15 -3410 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3410 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3410 (|#1| (-110) |#1| |#1|)) (-15 -3410 (|#1| (-110) |#1|)) (-15 -2602 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2602 (|#1| |#1| |#1| |#1|)) (-15 -2602 (|#1| |#1| (-273 |#1|))) (-15 -2602 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2602 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -2602 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -3898 ((-565 |#1|) |#1|)) (-15 -2591 ((-3 (-565 |#1|) "failed") |#1|))) (-281)) (T -280))
+((-2972 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-280 *3)) (-4 *3 (-281)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-280 *4)) (-4 *4 (-281)))))
+(-10 -8 (-15 -2126 ((-108) |#1|)) (-15 -3545 ((-108) |#1|)) (-15 -2602 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2602 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -2602 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2602 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -2602 (|#1| |#1| (-1091) (-1 |#1| |#1|))) (-15 -2602 (|#1| |#1| (-1091) (-1 |#1| (-592 |#1|)))) (-15 -2602 (|#1| |#1| (-592 (-1091)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2602 (|#1| |#1| (-592 (-1091)) (-592 (-1 |#1| |#1|)))) (-15 -2186 ((-108) |#1| (-1091))) (-15 -2186 ((-108) |#1| |#1|)) (-15 -2694 (|#1| (-1 |#1| |#1|) (-565 |#1|))) (-15 -1581 (|#1| (-110) (-592 |#1|))) (-15 -1581 (|#1| (-110) |#1|)) (-15 -3069 ((-108) |#1| (-1091))) (-15 -3069 ((-108) |#1| (-110))) (-15 -1863 ((-108) (-110))) (-15 -2972 ((-110) (-110))) (-15 -3321 ((-592 (-110)) |#1|)) (-15 -1895 ((-592 (-565 |#1|)) |#1|)) (-15 -1661 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -1751 ((-713) |#1|)) (-15 -1567 (|#1| |#1| |#1|)) (-15 -1567 (|#1| |#1|)) (-15 -3694 (|#1| (-592 |#1|))) (-15 -3694 (|#1| |#1|)) (-15 -1604 (|#1| (-592 |#1|))) (-15 -1604 (|#1| |#1|)) (-15 -1224 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -1224 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1224 (|#1| |#1| (-273 |#1|))) (-15 -3410 (|#1| (-110) (-592 |#1|))) (-15 -3410 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3410 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3410 (|#1| (-110) |#1| |#1|)) (-15 -3410 (|#1| (-110) |#1|)) (-15 -2602 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2602 (|#1| |#1| |#1| |#1|)) (-15 -2602 (|#1| |#1| (-273 |#1|))) (-15 -2602 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2602 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -2602 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -3898 ((-565 |#1|) |#1|)) (-15 -2591 ((-3 (-565 |#1|) "failed") |#1|)))
+((-1260 (((-108) $ $) 7)) (-1895 (((-592 (-565 $)) $) 44)) (-1224 (($ $ (-273 $)) 56) (($ $ (-592 (-273 $))) 55) (($ $ (-592 (-565 $)) (-592 $)) 54)) (-2591 (((-3 (-565 $) "failed") $) 69)) (-3898 (((-565 $) $) 68)) (-3694 (($ $) 51) (($ (-592 $)) 50)) (-3321 (((-592 (-110)) $) 43)) (-2972 (((-110) (-110)) 42)) (-2126 (((-108) $) 22 (|has| $ (-968 (-525))))) (-1637 (((-1087 $) (-565 $)) 25 (|has| $ (-977)))) (-2371 (($ $ $) 13)) (-2535 (($ $ $) 14)) (-2694 (($ (-1 $ $) (-565 $)) 36)) (-1661 (((-3 (-565 $) "failed") $) 46)) (-3451 (((-1074) $) 9)) (-2129 (((-592 (-565 $)) $) 45)) (-1581 (($ (-110) $) 38) (($ (-110) (-592 $)) 37)) (-3069 (((-108) $ (-110)) 40) (((-108) $ (-1091)) 39)) (-1751 (((-713) $) 47)) (-2012 (((-1038) $) 10)) (-2186 (((-108) $ $) 35) (((-108) $ (-1091)) 34)) (-3545 (((-108) $) 23 (|has| $ (-968 (-525))))) (-2602 (($ $ (-565 $) $) 67) (($ $ (-592 (-565 $)) (-592 $)) 66) (($ $ (-592 (-273 $))) 65) (($ $ (-273 $)) 64) (($ $ $ $) 63) (($ $ (-592 $) (-592 $)) 62) (($ $ (-592 (-1091)) (-592 (-1 $ $))) 33) (($ $ (-592 (-1091)) (-592 (-1 $ (-592 $)))) 32) (($ $ (-1091) (-1 $ (-592 $))) 31) (($ $ (-1091) (-1 $ $)) 30) (($ $ (-592 (-110)) (-592 (-1 $ $))) 29) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 28) (($ $ (-110) (-1 $ (-592 $))) 27) (($ $ (-110) (-1 $ $)) 26)) (-3410 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-592 $)) 57)) (-1567 (($ $) 49) (($ $ $) 48)) (-1571 (($ $) 24 (|has| $ (-977)))) (-1270 (((-798) $) 11) (($ (-565 $)) 70)) (-1604 (($ $) 53) (($ (-592 $)) 52)) (-1863 (((-108) (-110)) 41)) (-4045 (((-108) $ $) 16)) (-4026 (((-108) $ $) 17)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 15)) (-4017 (((-108) $ $) 18)))
(((-281) (-131)) (T -281))
-((-3928 (*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3928 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3928 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3928 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3928 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281)))) (-1962 (*1 *1 *1 *2) (-12 (-5 *2 (-273 *1)) (-4 *1 (-281)))) (-1962 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *1))) (-4 *1 (-281)))) (-1962 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-565 *1))) (-5 *3 (-592 *1)) (-4 *1 (-281)))) (-1268 (*1 *1 *1) (-4 *1 (-281))) (-1268 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281)))) (-2237 (*1 *1 *1) (-4 *1 (-281))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281)))) (-2825 (*1 *1 *1) (-4 *1 (-281))) (-2825 (*1 *1 *1 *1) (-4 *1 (-281))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-713)))) (-2218 (*1 *2 *1) (|partial| -12 (-5 *2 (-565 *1)) (-4 *1 (-281)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))) (-3740 (*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))) (-2323 (*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-592 (-110))))) (-4159 (*1 *2 *2) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3824 (*1 *2 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108)))) (-3034 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108)))) (-3034 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1090)) (-5 *2 (-108)))) (-1377 (*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-1377 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281)))) (-1370 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-565 *1)) (-4 *1 (-281)))) (-2148 (*1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-108)))) (-2148 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1090)) (-5 *2 (-108)))) (-3092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281)))) (-3092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-281)))) (-3092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281)))) (-3092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281)))) (-3092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281)))) (-3092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-281)))) (-3092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281)))) (-3092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-565 *1)) (-4 *1 (-976)) (-4 *1 (-281)) (-5 *2 (-1086 *1)))) (-1654 (*1 *1 *1) (-12 (-4 *1 (-976)) (-4 *1 (-281)))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-967 (-525))) (-4 *1 (-281)) (-5 *2 (-108)))) (-2144 (*1 *2 *1) (-12 (-4 *1 (-967 (-525))) (-4 *1 (-281)) (-5 *2 (-108)))))
-(-13 (-789) (-967 (-565 $)) (-486 (-565 $) $) (-288 $) (-10 -8 (-15 -3928 ($ (-110) $)) (-15 -3928 ($ (-110) $ $)) (-15 -3928 ($ (-110) $ $ $)) (-15 -3928 ($ (-110) $ $ $ $)) (-15 -3928 ($ (-110) (-592 $))) (-15 -1962 ($ $ (-273 $))) (-15 -1962 ($ $ (-592 (-273 $)))) (-15 -1962 ($ $ (-592 (-565 $)) (-592 $))) (-15 -1268 ($ $)) (-15 -1268 ($ (-592 $))) (-15 -2237 ($ $)) (-15 -2237 ($ (-592 $))) (-15 -2825 ($ $)) (-15 -2825 ($ $ $)) (-15 -3598 ((-713) $)) (-15 -2218 ((-3 (-565 $) "failed") $)) (-15 -3914 ((-592 (-565 $)) $)) (-15 -3740 ((-592 (-565 $)) $)) (-15 -2323 ((-592 (-110)) $)) (-15 -4159 ((-110) (-110))) (-15 -3824 ((-108) (-110))) (-15 -3034 ((-108) $ (-110))) (-15 -3034 ((-108) $ (-1090))) (-15 -1377 ($ (-110) $)) (-15 -1377 ($ (-110) (-592 $))) (-15 -1370 ($ (-1 $ $) (-565 $))) (-15 -2148 ((-108) $ $)) (-15 -2148 ((-108) $ (-1090))) (-15 -3092 ($ $ (-592 (-1090)) (-592 (-1 $ $)))) (-15 -3092 ($ $ (-592 (-1090)) (-592 (-1 $ (-592 $))))) (-15 -3092 ($ $ (-1090) (-1 $ (-592 $)))) (-15 -3092 ($ $ (-1090) (-1 $ $))) (-15 -3092 ($ $ (-592 (-110)) (-592 (-1 $ $)))) (-15 -3092 ($ $ (-592 (-110)) (-592 (-1 $ (-592 $))))) (-15 -3092 ($ $ (-110) (-1 $ (-592 $)))) (-15 -3092 ($ $ (-110) (-1 $ $))) (IF (|has| $ (-976)) (PROGN (-15 -3609 ((-1086 $) (-565 $))) (-15 -1654 ($ $))) |%noBranch|) (IF (|has| $ (-967 (-525))) (PROGN (-15 -2656 ((-108) $)) (-15 -2144 ((-108) $))) |%noBranch|)))
-(((-97) . T) ((-566 (-797)) . T) ((-288 $) . T) ((-486 (-565 $) $) . T) ((-486 $ $) . T) ((-789) . T) ((-967 (-565 $)) . T) ((-1019) . T))
-((-3289 (((-592 |#1|) (-592 |#1|)) 10)))
-(((-282 |#1|) (-10 -7 (-15 -3289 ((-592 |#1|) (-592 |#1|)))) (-787)) (T -282))
-((-3289 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-787)) (-5 *1 (-282 *3)))))
-(-10 -7 (-15 -3289 ((-592 |#1|) (-592 |#1|))))
-((-1370 (((-632 |#2|) (-1 |#2| |#1|) (-632 |#1|)) 17)))
-(((-283 |#1| |#2|) (-10 -7 (-15 -1370 ((-632 |#2|) (-1 |#2| |#1|) (-632 |#1|)))) (-976) (-976)) (T -283))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-632 *5)) (-4 *5 (-976)) (-4 *6 (-976)) (-5 *2 (-632 *6)) (-5 *1 (-283 *5 *6)))))
-(-10 -7 (-15 -1370 ((-632 |#2|) (-1 |#2| |#1|) (-632 |#1|))))
-((-4052 (((-1172 (-294 (-357))) (-1172 (-294 (-205)))) 105)) (-1916 (((-1014 (-782 (-205))) (-1014 (-782 (-357)))) 40)) (-1880 (((-592 (-1073)) (-1071 (-205))) 87)) (-3083 (((-294 (-357)) (-886 (-205))) 50)) (-2399 (((-205) (-886 (-205))) 46)) (-1429 (((-1073) (-357)) 169)) (-3857 (((-782 (-205)) (-782 (-357))) 34)) (-3971 (((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1172 (-294 (-205)))) 143)) (-3372 (((-965) (-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965)))) 181) (((-965) (-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))))) 179)) (-3276 (((-632 (-205)) (-592 (-205)) (-713)) 14)) (-2834 (((-1172 (-641)) (-592 (-205))) 94)) (-3119 (((-592 (-1073)) (-592 (-205))) 75)) (-3551 (((-3 (-294 (-205)) "failed") (-294 (-205))) 120)) (-2607 (((-108) (-205) (-1014 (-782 (-205)))) 109)) (-1981 (((-965) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) 198)) (-4127 (((-205) (-1014 (-782 (-205)))) 107)) (-2286 (((-205) (-1014 (-782 (-205)))) 108)) (-3815 (((-205) (-385 (-525))) 27)) (-1663 (((-1073) (-357)) 73)) (-2596 (((-205) (-357)) 17)) (-3313 (((-357) (-1172 (-294 (-205)))) 154)) (-2711 (((-294 (-205)) (-294 (-357))) 23)) (-4075 (((-385 (-525)) (-294 (-205))) 53)) (-1774 (((-294 (-385 (-525))) (-294 (-205))) 69)) (-3668 (((-294 (-357)) (-294 (-205))) 98)) (-1749 (((-205) (-294 (-205))) 54)) (-2006 (((-592 (-205)) (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) 64)) (-2077 (((-1014 (-782 (-205))) (-1014 (-782 (-205)))) 61)) (-3792 (((-1073) (-205)) 72)) (-4087 (((-641) (-205)) 90)) (-1244 (((-385 (-525)) (-205)) 55)) (-3656 (((-294 (-357)) (-205)) 49)) (-1427 (((-592 (-1014 (-782 (-205)))) (-592 (-1014 (-782 (-357))))) 43)) (-2664 (((-965) (-592 (-965))) 165) (((-965) (-965) (-965)) 162)) (-2534 (((-965) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
-(((-284) (-10 -7 (-15 -2596 ((-205) (-357))) (-15 -2711 ((-294 (-205)) (-294 (-357)))) (-15 -3857 ((-782 (-205)) (-782 (-357)))) (-15 -1916 ((-1014 (-782 (-205))) (-1014 (-782 (-357))))) (-15 -1427 ((-592 (-1014 (-782 (-205)))) (-592 (-1014 (-782 (-357)))))) (-15 -1244 ((-385 (-525)) (-205))) (-15 -4075 ((-385 (-525)) (-294 (-205)))) (-15 -1749 ((-205) (-294 (-205)))) (-15 -3551 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -3313 ((-357) (-1172 (-294 (-205))))) (-15 -3971 ((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1172 (-294 (-205))))) (-15 -1774 ((-294 (-385 (-525))) (-294 (-205)))) (-15 -2077 ((-1014 (-782 (-205))) (-1014 (-782 (-205))))) (-15 -2006 ((-592 (-205)) (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))))) (-15 -4087 ((-641) (-205))) (-15 -2834 ((-1172 (-641)) (-592 (-205)))) (-15 -3668 ((-294 (-357)) (-294 (-205)))) (-15 -4052 ((-1172 (-294 (-357))) (-1172 (-294 (-205))))) (-15 -2607 ((-108) (-205) (-1014 (-782 (-205))))) (-15 -3792 ((-1073) (-205))) (-15 -1663 ((-1073) (-357))) (-15 -3119 ((-592 (-1073)) (-592 (-205)))) (-15 -1880 ((-592 (-1073)) (-1071 (-205)))) (-15 -4127 ((-205) (-1014 (-782 (-205))))) (-15 -2286 ((-205) (-1014 (-782 (-205))))) (-15 -2664 ((-965) (-965) (-965))) (-15 -2664 ((-965) (-592 (-965)))) (-15 -1429 ((-1073) (-357))) (-15 -3372 ((-965) (-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))))) (-15 -3372 ((-965) (-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))))) (-15 -2534 ((-965) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1981 ((-965) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))) (-15 -3083 ((-294 (-357)) (-886 (-205)))) (-15 -2399 ((-205) (-886 (-205)))) (-15 -3656 ((-294 (-357)) (-205))) (-15 -3815 ((-205) (-385 (-525)))) (-15 -3276 ((-632 (-205)) (-592 (-205)) (-713))))) (T -284))
-((-3276 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-205))) (-5 *4 (-713)) (-5 *2 (-632 (-205))) (-5 *1 (-284)))) (-3815 (*1 *2 *3) (-12 (-5 *3 (-385 (-525))) (-5 *2 (-205)) (-5 *1 (-284)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-2399 (*1 *2 *3) (-12 (-5 *3 (-886 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-886 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-1981 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) (-5 *2 (-965)) (-5 *1 (-284)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-965)) (-5 *1 (-284)))) (-3372 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965)))) (-5 *2 (-965)) (-5 *1 (-284)))) (-3372 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))))) (-5 *2 (-965)) (-5 *1 (-284)))) (-1429 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1073)) (-5 *1 (-284)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-592 (-965))) (-5 *2 (-965)) (-5 *1 (-284)))) (-2664 (*1 *2 *2 *2) (-12 (-5 *2 (-965)) (-5 *1 (-284)))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-1071 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-284)))) (-3119 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-284)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1073)) (-5 *1 (-284)))) (-3792 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1073)) (-5 *1 (-284)))) (-2607 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-1014 (-782 (-205)))) (-5 *2 (-108)) (-5 *1 (-284)))) (-4052 (*1 *2 *3) (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *2 (-1172 (-294 (-357)))) (-5 *1 (-284)))) (-3668 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1172 (-641))) (-5 *1 (-284)))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-641)) (-5 *1 (-284)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) (-5 *2 (-592 (-205))) (-5 *1 (-284)))) (-2077 (*1 *2 *2) (-12 (-5 *2 (-1014 (-782 (-205)))) (-5 *1 (-284)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-385 (-525)))) (-5 *1 (-284)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *2 (-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525)))) (-5 *1 (-284)))) (-3313 (*1 *2 *3) (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-284)))) (-3551 (*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-284)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))) (-4075 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-385 (-525))) (-5 *1 (-284)))) (-1244 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-385 (-525))) (-5 *1 (-284)))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-592 (-1014 (-782 (-357))))) (-5 *2 (-592 (-1014 (-782 (-205))))) (-5 *1 (-284)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-1014 (-782 (-357)))) (-5 *2 (-1014 (-782 (-205)))) (-5 *1 (-284)))) (-3857 (*1 *2 *3) (-12 (-5 *3 (-782 (-357))) (-5 *2 (-782 (-205))) (-5 *1 (-284)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-294 (-357))) (-5 *2 (-294 (-205))) (-5 *1 (-284)))) (-2596 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-284)))))
-(-10 -7 (-15 -2596 ((-205) (-357))) (-15 -2711 ((-294 (-205)) (-294 (-357)))) (-15 -3857 ((-782 (-205)) (-782 (-357)))) (-15 -1916 ((-1014 (-782 (-205))) (-1014 (-782 (-357))))) (-15 -1427 ((-592 (-1014 (-782 (-205)))) (-592 (-1014 (-782 (-357)))))) (-15 -1244 ((-385 (-525)) (-205))) (-15 -4075 ((-385 (-525)) (-294 (-205)))) (-15 -1749 ((-205) (-294 (-205)))) (-15 -3551 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -3313 ((-357) (-1172 (-294 (-205))))) (-15 -3971 ((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1172 (-294 (-205))))) (-15 -1774 ((-294 (-385 (-525))) (-294 (-205)))) (-15 -2077 ((-1014 (-782 (-205))) (-1014 (-782 (-205))))) (-15 -2006 ((-592 (-205)) (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))))) (-15 -4087 ((-641) (-205))) (-15 -2834 ((-1172 (-641)) (-592 (-205)))) (-15 -3668 ((-294 (-357)) (-294 (-205)))) (-15 -4052 ((-1172 (-294 (-357))) (-1172 (-294 (-205))))) (-15 -2607 ((-108) (-205) (-1014 (-782 (-205))))) (-15 -3792 ((-1073) (-205))) (-15 -1663 ((-1073) (-357))) (-15 -3119 ((-592 (-1073)) (-592 (-205)))) (-15 -1880 ((-592 (-1073)) (-1071 (-205)))) (-15 -4127 ((-205) (-1014 (-782 (-205))))) (-15 -2286 ((-205) (-1014 (-782 (-205))))) (-15 -2664 ((-965) (-965) (-965))) (-15 -2664 ((-965) (-592 (-965)))) (-15 -1429 ((-1073) (-357))) (-15 -3372 ((-965) (-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))))) (-15 -3372 ((-965) (-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))))) (-15 -2534 ((-965) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1981 ((-965) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))) (-15 -3083 ((-294 (-357)) (-886 (-205)))) (-15 -2399 ((-205) (-886 (-205)))) (-15 -3656 ((-294 (-357)) (-205))) (-15 -3815 ((-205) (-385 (-525)))) (-15 -3276 ((-632 (-205)) (-592 (-205)) (-713))))
-((-2305 (((-108) $ $) 11)) (-2373 (($ $ $) 15)) (-2356 (($ $ $) 14)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 44)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 53)) (-3244 (($ $ $) 21) (($ (-592 $)) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-2338 (((-3 $ "failed") $ $) 17)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 46)))
-(((-285 |#1|) (-10 -8 (-15 -3658 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -2982 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2982 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1669 |#1|)) |#1| |#1|)) (-15 -2373 (|#1| |#1| |#1|)) (-15 -2356 (|#1| |#1| |#1|)) (-15 -2305 ((-108) |#1| |#1|)) (-15 -1705 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -2946 ((-2 (|:| -1459 (-592 |#1|)) (|:| -1669 |#1|)) (-592 |#1|))) (-15 -3244 (|#1| (-592 |#1|))) (-15 -3244 (|#1| |#1| |#1|)) (-15 -2338 ((-3 |#1| "failed") |#1| |#1|))) (-286)) (T -285))
-NIL
-(-10 -8 (-15 -3658 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -2982 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2982 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1669 |#1|)) |#1| |#1|)) (-15 -2373 (|#1| |#1| |#1|)) (-15 -2356 (|#1| |#1| |#1|)) (-15 -2305 ((-108) |#1| |#1|)) (-15 -1705 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -2946 ((-2 (|:| -1459 (-592 |#1|)) (|:| -1669 |#1|)) (-592 |#1|))) (-15 -3244 (|#1| (-592 |#1|))) (-15 -3244 (|#1| |#1| |#1|)) (-15 -2338 ((-3 |#1| "failed") |#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-3263 (((-3 $ "failed") $ $) 19)) (-2305 (((-108) $ $) 59)) (-1505 (($) 17 T CONST)) (-2373 (($ $ $) 55)) (-2866 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 51)) (-2133 (((-108) $) 31)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2338 (((-3 $ "failed") $ $) 42)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2183 (((-713) $) 58)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 57)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43)) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) 39)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-3410 (*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3410 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3410 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3410 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-3410 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281)))) (-1224 (*1 *1 *1 *2) (-12 (-5 *2 (-273 *1)) (-4 *1 (-281)))) (-1224 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *1))) (-4 *1 (-281)))) (-1224 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-565 *1))) (-5 *3 (-592 *1)) (-4 *1 (-281)))) (-1604 (*1 *1 *1) (-4 *1 (-281))) (-1604 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281)))) (-3694 (*1 *1 *1) (-4 *1 (-281))) (-3694 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281)))) (-1567 (*1 *1 *1) (-4 *1 (-281))) (-1567 (*1 *1 *1 *1) (-4 *1 (-281))) (-1751 (*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-713)))) (-1661 (*1 *2 *1) (|partial| -12 (-5 *2 (-565 *1)) (-4 *1 (-281)))) (-2129 (*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))) (-1895 (*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-592 (-110))))) (-2972 (*1 *2 *2) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-1863 (*1 *2 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108)))) (-3069 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108)))) (-3069 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1091)) (-5 *2 (-108)))) (-1581 (*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110)))) (-1581 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281)))) (-2694 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-565 *1)) (-4 *1 (-281)))) (-2186 (*1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-108)))) (-2186 (*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1091)) (-5 *2 (-108)))) (-2602 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1091))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281)))) (-2602 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1091))) (-5 *3 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-281)))) (-2602 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281)))) (-2602 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281)))) (-2602 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281)))) (-2602 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-281)))) (-2602 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281)))) (-2602 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281)))) (-1637 (*1 *2 *3) (-12 (-5 *3 (-565 *1)) (-4 *1 (-977)) (-4 *1 (-281)) (-5 *2 (-1087 *1)))) (-1571 (*1 *1 *1) (-12 (-4 *1 (-977)) (-4 *1 (-281)))) (-3545 (*1 *2 *1) (-12 (-4 *1 (-968 (-525))) (-4 *1 (-281)) (-5 *2 (-108)))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-968 (-525))) (-4 *1 (-281)) (-5 *2 (-108)))))
+(-13 (-789) (-968 (-565 $)) (-486 (-565 $) $) (-288 $) (-10 -8 (-15 -3410 ($ (-110) $)) (-15 -3410 ($ (-110) $ $)) (-15 -3410 ($ (-110) $ $ $)) (-15 -3410 ($ (-110) $ $ $ $)) (-15 -3410 ($ (-110) (-592 $))) (-15 -1224 ($ $ (-273 $))) (-15 -1224 ($ $ (-592 (-273 $)))) (-15 -1224 ($ $ (-592 (-565 $)) (-592 $))) (-15 -1604 ($ $)) (-15 -1604 ($ (-592 $))) (-15 -3694 ($ $)) (-15 -3694 ($ (-592 $))) (-15 -1567 ($ $)) (-15 -1567 ($ $ $)) (-15 -1751 ((-713) $)) (-15 -1661 ((-3 (-565 $) "failed") $)) (-15 -2129 ((-592 (-565 $)) $)) (-15 -1895 ((-592 (-565 $)) $)) (-15 -3321 ((-592 (-110)) $)) (-15 -2972 ((-110) (-110))) (-15 -1863 ((-108) (-110))) (-15 -3069 ((-108) $ (-110))) (-15 -3069 ((-108) $ (-1091))) (-15 -1581 ($ (-110) $)) (-15 -1581 ($ (-110) (-592 $))) (-15 -2694 ($ (-1 $ $) (-565 $))) (-15 -2186 ((-108) $ $)) (-15 -2186 ((-108) $ (-1091))) (-15 -2602 ($ $ (-592 (-1091)) (-592 (-1 $ $)))) (-15 -2602 ($ $ (-592 (-1091)) (-592 (-1 $ (-592 $))))) (-15 -2602 ($ $ (-1091) (-1 $ (-592 $)))) (-15 -2602 ($ $ (-1091) (-1 $ $))) (-15 -2602 ($ $ (-592 (-110)) (-592 (-1 $ $)))) (-15 -2602 ($ $ (-592 (-110)) (-592 (-1 $ (-592 $))))) (-15 -2602 ($ $ (-110) (-1 $ (-592 $)))) (-15 -2602 ($ $ (-110) (-1 $ $))) (IF (|has| $ (-977)) (PROGN (-15 -1637 ((-1087 $) (-565 $))) (-15 -1571 ($ $))) |%noBranch|) (IF (|has| $ (-968 (-525))) (PROGN (-15 -3545 ((-108) $)) (-15 -2126 ((-108) $))) |%noBranch|)))
+(((-97) . T) ((-566 (-798)) . T) ((-288 $) . T) ((-486 (-565 $) $) . T) ((-486 $ $) . T) ((-789) . T) ((-968 (-565 $)) . T) ((-1020) . T))
+((-1599 (((-592 |#1|) (-592 |#1|)) 10)))
+(((-282 |#1|) (-10 -7 (-15 -1599 ((-592 |#1|) (-592 |#1|)))) (-787)) (T -282))
+((-1599 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-787)) (-5 *1 (-282 *3)))))
+(-10 -7 (-15 -1599 ((-592 |#1|) (-592 |#1|))))
+((-2694 (((-632 |#2|) (-1 |#2| |#1|) (-632 |#1|)) 17)))
+(((-283 |#1| |#2|) (-10 -7 (-15 -2694 ((-632 |#2|) (-1 |#2| |#1|) (-632 |#1|)))) (-977) (-977)) (T -283))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-632 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-5 *2 (-632 *6)) (-5 *1 (-283 *5 *6)))))
+(-10 -7 (-15 -2694 ((-632 |#2|) (-1 |#2| |#1|) (-632 |#1|))))
+((-3189 (((-1173 (-294 (-357))) (-1173 (-294 (-205)))) 105)) (-2124 (((-1015 (-782 (-205))) (-1015 (-782 (-357)))) 40)) (-3590 (((-592 (-1074)) (-1072 (-205))) 87)) (-2296 (((-294 (-357)) (-887 (-205))) 50)) (-2988 (((-205) (-887 (-205))) 46)) (-2554 (((-1074) (-357)) 169)) (-2267 (((-782 (-205)) (-782 (-357))) 34)) (-3739 (((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1173 (-294 (-205)))) 143)) (-4189 (((-966) (-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))) (|:| |extra| (-966)))) 181) (((-966) (-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))))) 179)) (-1484 (((-632 (-205)) (-592 (-205)) (-713)) 14)) (-1642 (((-1173 (-641)) (-592 (-205))) 94)) (-1321 (((-592 (-1074)) (-592 (-205))) 75)) (-1699 (((-3 (-294 (-205)) "failed") (-294 (-205))) 120)) (-3179 (((-108) (-205) (-1015 (-782 (-205)))) 109)) (-2101 (((-966) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) 198)) (-2722 (((-205) (-1015 (-782 (-205)))) 107)) (-4166 (((-205) (-1015 (-782 (-205)))) 108)) (-3054 (((-205) (-385 (-525))) 27)) (-3537 (((-1074) (-357)) 73)) (-4203 (((-205) (-357)) 17)) (-3637 (((-357) (-1173 (-294 (-205)))) 154)) (-2951 (((-294 (-205)) (-294 (-357))) 23)) (-3331 (((-385 (-525)) (-294 (-205))) 53)) (-1654 (((-294 (-385 (-525))) (-294 (-205))) 69)) (-4034 (((-294 (-357)) (-294 (-205))) 98)) (-1382 (((-205) (-294 (-205))) 54)) (-2664 (((-592 (-205)) (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) 64)) (-1922 (((-1015 (-782 (-205))) (-1015 (-782 (-205)))) 61)) (-2889 (((-1074) (-205)) 72)) (-3412 (((-641) (-205)) 90)) (-2950 (((-385 (-525)) (-205)) 55)) (-3925 (((-294 (-357)) (-205)) 49)) (-2749 (((-592 (-1015 (-782 (-205)))) (-592 (-1015 (-782 (-357))))) 43)) (-2014 (((-966) (-592 (-966))) 165) (((-966) (-966) (-966)) 162)) (-1766 (((-966) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
+(((-284) (-10 -7 (-15 -4203 ((-205) (-357))) (-15 -2951 ((-294 (-205)) (-294 (-357)))) (-15 -2267 ((-782 (-205)) (-782 (-357)))) (-15 -2124 ((-1015 (-782 (-205))) (-1015 (-782 (-357))))) (-15 -2749 ((-592 (-1015 (-782 (-205)))) (-592 (-1015 (-782 (-357)))))) (-15 -2950 ((-385 (-525)) (-205))) (-15 -3331 ((-385 (-525)) (-294 (-205)))) (-15 -1382 ((-205) (-294 (-205)))) (-15 -1699 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -3637 ((-357) (-1173 (-294 (-205))))) (-15 -3739 ((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1173 (-294 (-205))))) (-15 -1654 ((-294 (-385 (-525))) (-294 (-205)))) (-15 -1922 ((-1015 (-782 (-205))) (-1015 (-782 (-205))))) (-15 -2664 ((-592 (-205)) (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))))) (-15 -3412 ((-641) (-205))) (-15 -1642 ((-1173 (-641)) (-592 (-205)))) (-15 -4034 ((-294 (-357)) (-294 (-205)))) (-15 -3189 ((-1173 (-294 (-357))) (-1173 (-294 (-205))))) (-15 -3179 ((-108) (-205) (-1015 (-782 (-205))))) (-15 -2889 ((-1074) (-205))) (-15 -3537 ((-1074) (-357))) (-15 -1321 ((-592 (-1074)) (-592 (-205)))) (-15 -3590 ((-592 (-1074)) (-1072 (-205)))) (-15 -2722 ((-205) (-1015 (-782 (-205))))) (-15 -4166 ((-205) (-1015 (-782 (-205))))) (-15 -2014 ((-966) (-966) (-966))) (-15 -2014 ((-966) (-592 (-966)))) (-15 -2554 ((-1074) (-357))) (-15 -4189 ((-966) (-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))))) (-15 -4189 ((-966) (-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))) (|:| |extra| (-966))))) (-15 -1766 ((-966) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2101 ((-966) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))) (-15 -2296 ((-294 (-357)) (-887 (-205)))) (-15 -2988 ((-205) (-887 (-205)))) (-15 -3925 ((-294 (-357)) (-205))) (-15 -3054 ((-205) (-385 (-525)))) (-15 -1484 ((-632 (-205)) (-592 (-205)) (-713))))) (T -284))
+((-1484 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-205))) (-5 *4 (-713)) (-5 *2 (-632 (-205))) (-5 *1 (-284)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-385 (-525))) (-5 *2 (-205)) (-5 *1 (-284)))) (-3925 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-2988 (*1 *2 *3) (-12 (-5 *3 (-887 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))) (-2296 (*1 *2 *3) (-12 (-5 *3 (-887 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-2101 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) (-5 *2 (-966)) (-5 *1 (-284)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-966)) (-5 *1 (-284)))) (-4189 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))) (|:| |extra| (-966)))) (-5 *2 (-966)) (-5 *1 (-284)))) (-4189 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))))) (-5 *2 (-966)) (-5 *1 (-284)))) (-2554 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1074)) (-5 *1 (-284)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-592 (-966))) (-5 *2 (-966)) (-5 *1 (-284)))) (-2014 (*1 *2 *2 *2) (-12 (-5 *2 (-966)) (-5 *1 (-284)))) (-4166 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))) (-3590 (*1 *2 *3) (-12 (-5 *3 (-1072 (-205))) (-5 *2 (-592 (-1074))) (-5 *1 (-284)))) (-1321 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1074))) (-5 *1 (-284)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1074)) (-5 *1 (-284)))) (-2889 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1074)) (-5 *1 (-284)))) (-3179 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-1015 (-782 (-205)))) (-5 *2 (-108)) (-5 *1 (-284)))) (-3189 (*1 *2 *3) (-12 (-5 *3 (-1173 (-294 (-205)))) (-5 *2 (-1173 (-294 (-357)))) (-5 *1 (-284)))) (-4034 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1173 (-641))) (-5 *1 (-284)))) (-3412 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-641)) (-5 *1 (-284)))) (-2664 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) (-5 *2 (-592 (-205))) (-5 *1 (-284)))) (-1922 (*1 *2 *2) (-12 (-5 *2 (-1015 (-782 (-205)))) (-5 *1 (-284)))) (-1654 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-385 (-525)))) (-5 *1 (-284)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-1173 (-294 (-205)))) (-5 *2 (-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525)))) (-5 *1 (-284)))) (-3637 (*1 *2 *3) (-12 (-5 *3 (-1173 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-284)))) (-1699 (*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-284)))) (-1382 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-385 (-525))) (-5 *1 (-284)))) (-2950 (*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-385 (-525))) (-5 *1 (-284)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-592 (-1015 (-782 (-357))))) (-5 *2 (-592 (-1015 (-782 (-205))))) (-5 *1 (-284)))) (-2124 (*1 *2 *3) (-12 (-5 *3 (-1015 (-782 (-357)))) (-5 *2 (-1015 (-782 (-205)))) (-5 *1 (-284)))) (-2267 (*1 *2 *3) (-12 (-5 *3 (-782 (-357))) (-5 *2 (-782 (-205))) (-5 *1 (-284)))) (-2951 (*1 *2 *3) (-12 (-5 *3 (-294 (-357))) (-5 *2 (-294 (-205))) (-5 *1 (-284)))) (-4203 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-284)))))
+(-10 -7 (-15 -4203 ((-205) (-357))) (-15 -2951 ((-294 (-205)) (-294 (-357)))) (-15 -2267 ((-782 (-205)) (-782 (-357)))) (-15 -2124 ((-1015 (-782 (-205))) (-1015 (-782 (-357))))) (-15 -2749 ((-592 (-1015 (-782 (-205)))) (-592 (-1015 (-782 (-357)))))) (-15 -2950 ((-385 (-525)) (-205))) (-15 -3331 ((-385 (-525)) (-294 (-205)))) (-15 -1382 ((-205) (-294 (-205)))) (-15 -1699 ((-3 (-294 (-205)) "failed") (-294 (-205)))) (-15 -3637 ((-357) (-1173 (-294 (-205))))) (-15 -3739 ((-2 (|:| |additions| (-525)) (|:| |multiplications| (-525)) (|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))) (-1173 (-294 (-205))))) (-15 -1654 ((-294 (-385 (-525))) (-294 (-205)))) (-15 -1922 ((-1015 (-782 (-205))) (-1015 (-782 (-205))))) (-15 -2664 ((-592 (-205)) (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))))) (-15 -3412 ((-641) (-205))) (-15 -1642 ((-1173 (-641)) (-592 (-205)))) (-15 -4034 ((-294 (-357)) (-294 (-205)))) (-15 -3189 ((-1173 (-294 (-357))) (-1173 (-294 (-205))))) (-15 -3179 ((-108) (-205) (-1015 (-782 (-205))))) (-15 -2889 ((-1074) (-205))) (-15 -3537 ((-1074) (-357))) (-15 -1321 ((-592 (-1074)) (-592 (-205)))) (-15 -3590 ((-592 (-1074)) (-1072 (-205)))) (-15 -2722 ((-205) (-1015 (-782 (-205))))) (-15 -4166 ((-205) (-1015 (-782 (-205))))) (-15 -2014 ((-966) (-966) (-966))) (-15 -2014 ((-966) (-592 (-966)))) (-15 -2554 ((-1074) (-357))) (-15 -4189 ((-966) (-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))))) (-15 -4189 ((-966) (-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))) (|:| |extra| (-966))))) (-15 -1766 ((-966) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2101 ((-966) (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))) (-15 -2296 ((-294 (-357)) (-887 (-205)))) (-15 -2988 ((-205) (-887 (-205)))) (-15 -3925 ((-294 (-357)) (-205))) (-15 -3054 ((-205) (-385 (-525)))) (-15 -1484 ((-632 (-205)) (-592 (-205)) (-713))))
+((-3197 (((-108) $ $) 11)) (-1726 (($ $ $) 15)) (-1704 (($ $ $) 14)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 44)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 53)) (-2794 (($ $ $) 21) (($ (-592 $)) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-1680 (((-3 $ "failed") $ $) 17)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 46)))
+(((-285 |#1|) (-10 -8 (-15 -3946 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -3657 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3657 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3523 |#1|)) |#1| |#1|)) (-15 -1726 (|#1| |#1| |#1|)) (-15 -1704 (|#1| |#1| |#1|)) (-15 -3197 ((-108) |#1| |#1|)) (-15 -3993 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -3343 ((-2 (|:| -1655 (-592 |#1|)) (|:| -3523 |#1|)) (-592 |#1|))) (-15 -2794 (|#1| (-592 |#1|))) (-15 -2794 (|#1| |#1| |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1| |#1|))) (-286)) (T -285))
+NIL
+(-10 -8 (-15 -3946 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -3657 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3657 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3523 |#1|)) |#1| |#1|)) (-15 -1726 (|#1| |#1| |#1|)) (-15 -1704 (|#1| |#1| |#1|)) (-15 -3197 ((-108) |#1| |#1|)) (-15 -3993 ((-3 (-592 |#1|) "failed") (-592 |#1|) |#1|)) (-15 -3343 ((-2 (|:| -1655 (-592 |#1|)) (|:| -3523 |#1|)) (-592 |#1|))) (-15 -2794 (|#1| (-592 |#1|))) (-15 -2794 (|#1| |#1| |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-1342 (((-3 $ "failed") $ $) 19)) (-3197 (((-108) $ $) 59)) (-2305 (($) 17 T CONST)) (-1726 (($ $ $) 55)) (-3762 (((-3 $ "failed") $) 34)) (-1704 (($ $ $) 56)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 51)) (-1985 (((-108) $) 31)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1680 (((-3 $ "failed") $ $) 42)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1290 (((-713) $) 58)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 57)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) 39)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-286) (-131)) (T -286))
-((-2305 (*1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-108)))) (-2183 (*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-713)))) (-1760 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-286)))) (-2356 (*1 *1 *1 *1) (-4 *1 (-286))) (-2373 (*1 *1 *1 *1) (-4 *1 (-286))) (-2982 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1669 *1))) (-4 *1 (-286)))) (-2982 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-286)))) (-3658 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-286)))))
-(-13 (-854) (-10 -8 (-15 -2305 ((-108) $ $)) (-15 -2183 ((-713) $)) (-15 -1760 ((-2 (|:| -1338 $) (|:| -1632 $)) $ $)) (-15 -2356 ($ $ $)) (-15 -2373 ($ $ $)) (-15 -2982 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $)) (-15 -2982 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3658 ((-3 (-592 $) "failed") (-592 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-854) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-3092 (($ $ (-592 |#2|) (-592 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-273 |#2|)) 11) (($ $ (-592 (-273 |#2|))) NIL)))
-(((-287 |#1| |#2|) (-10 -8 (-15 -3092 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -3092 (|#1| |#1| (-273 |#2|))) (-15 -3092 (|#1| |#1| |#2| |#2|)) (-15 -3092 (|#1| |#1| (-592 |#2|) (-592 |#2|)))) (-288 |#2|) (-1019)) (T -287))
-NIL
-(-10 -8 (-15 -3092 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -3092 (|#1| |#1| (-273 |#2|))) (-15 -3092 (|#1| |#1| |#2| |#2|)) (-15 -3092 (|#1| |#1| (-592 |#2|) (-592 |#2|))))
-((-3092 (($ $ (-592 |#1|) (-592 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-273 |#1|)) 11) (($ $ (-592 (-273 |#1|))) 10)))
-(((-288 |#1|) (-131) (-1019)) (T -288))
-((-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-273 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1019)))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *3))) (-4 *1 (-288 *3)) (-4 *3 (-1019)))))
-(-13 (-486 |t#1| |t#1|) (-10 -8 (-15 -3092 ($ $ (-273 |t#1|))) (-15 -3092 ($ $ (-592 (-273 |t#1|))))))
+((-3197 (*1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-108)))) (-1290 (*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-713)))) (-1496 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-286)))) (-1704 (*1 *1 *1 *1) (-4 *1 (-286))) (-1726 (*1 *1 *1 *1) (-4 *1 (-286))) (-3657 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3523 *1))) (-4 *1 (-286)))) (-3657 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-286)))) (-3946 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-286)))))
+(-13 (-855) (-10 -8 (-15 -3197 ((-108) $ $)) (-15 -1290 ((-713) $)) (-15 -1496 ((-2 (|:| -2370 $) (|:| -3496 $)) $ $)) (-15 -1704 ($ $ $)) (-15 -1726 ($ $ $)) (-15 -3657 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $)) (-15 -3657 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3946 ((-3 (-592 $) "failed") (-592 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-2602 (($ $ (-592 |#2|) (-592 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-273 |#2|)) 11) (($ $ (-592 (-273 |#2|))) NIL)))
+(((-287 |#1| |#2|) (-10 -8 (-15 -2602 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2602 (|#1| |#1| (-273 |#2|))) (-15 -2602 (|#1| |#1| |#2| |#2|)) (-15 -2602 (|#1| |#1| (-592 |#2|) (-592 |#2|)))) (-288 |#2|) (-1020)) (T -287))
+NIL
+(-10 -8 (-15 -2602 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2602 (|#1| |#1| (-273 |#2|))) (-15 -2602 (|#1| |#1| |#2| |#2|)) (-15 -2602 (|#1| |#1| (-592 |#2|) (-592 |#2|))))
+((-2602 (($ $ (-592 |#1|) (-592 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-273 |#1|)) 11) (($ $ (-592 (-273 |#1|))) 10)))
+(((-288 |#1|) (-131) (-1020)) (T -288))
+((-2602 (*1 *1 *1 *2) (-12 (-5 *2 (-273 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1020)))) (-2602 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *3))) (-4 *1 (-288 *3)) (-4 *3 (-1020)))))
+(-13 (-486 |t#1| |t#1|) (-10 -8 (-15 -2602 ($ $ (-273 |t#1|))) (-15 -2602 ($ $ (-592 (-273 |t#1|))))))
(((-486 |#1| |#1|) . T))
-((-3092 ((|#1| (-1 |#1| (-525)) (-1092 (-385 (-525)))) 25)))
-(((-289 |#1|) (-10 -7 (-15 -3092 (|#1| (-1 |#1| (-525)) (-1092 (-385 (-525)))))) (-37 (-385 (-525)))) (T -289))
-((-3092 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-525))) (-5 *4 (-1092 (-385 (-525)))) (-5 *1 (-289 *2)) (-4 *2 (-37 (-385 (-525)))))))
-(-10 -7 (-15 -3092 (|#1| (-1 |#1| (-525)) (-1092 (-385 (-525))))))
-((-1893 (((-108) $ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 7)) (-3961 (((-108) $ $) 9)))
-(((-290) (-1019)) (T -290))
-NIL
-(-1019)
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 62)) (-3115 (((-1158 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-286)))) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-843)))) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-843)))) (-2305 (((-108) $ $) NIL)) (-1690 (((-525) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-762)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-1158 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-967 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-967 (-525)))) (((-3 (-1157 |#2| |#3| |#4|) "failed") $) 25)) (-2831 (((-1158 |#1| |#2| |#3| |#4|) $) NIL) (((-1090) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-967 (-1090)))) (((-385 (-525)) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-967 (-525)))) (((-525) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-967 (-525)))) (((-1157 |#2| |#3| |#4|) $) NIL)) (-2373 (($ $ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-1158 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1172 (-1158 |#1| |#2| |#3| |#4|)))) (-632 $) (-1172 $)) NIL) (((-632 (-1158 |#1| |#2| |#3| |#4|)) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-510)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-3026 (((-108) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-762)))) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-820 (-357))))) (-2133 (((-108) $) NIL)) (-3830 (($ $) NIL)) (-1303 (((-1158 |#1| |#2| |#3| |#4|) $) 21)) (-1816 (((-3 $ "failed") $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-1066)))) (-2882 (((-108) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-762)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3525 (($ $ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-789)))) (-3630 (($ $ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-789)))) (-1370 (($ (-1 (-1158 |#1| |#2| |#3| |#4|) (-1158 |#1| |#2| |#3| |#4|)) $) NIL)) (-3560 (((-3 (-782 |#2|) "failed") $) 78)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-1066)) CONST)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2723 (($ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-286)))) (-1720 (((-1158 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-510)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-843)))) (-3959 (((-396 $) $) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3092 (($ $ (-592 (-1158 |#1| |#2| |#3| |#4|)) (-592 (-1158 |#1| |#2| |#3| |#4|))) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-288 (-1158 |#1| |#2| |#3| |#4|)))) (($ $ (-1158 |#1| |#2| |#3| |#4|) (-1158 |#1| |#2| |#3| |#4|)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-288 (-1158 |#1| |#2| |#3| |#4|)))) (($ $ (-273 (-1158 |#1| |#2| |#3| |#4|))) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-288 (-1158 |#1| |#2| |#3| |#4|)))) (($ $ (-592 (-273 (-1158 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-288 (-1158 |#1| |#2| |#3| |#4|)))) (($ $ (-592 (-1090)) (-592 (-1158 |#1| |#2| |#3| |#4|))) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-486 (-1090) (-1158 |#1| |#2| |#3| |#4|)))) (($ $ (-1090) (-1158 |#1| |#2| |#3| |#4|)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-486 (-1090) (-1158 |#1| |#2| |#3| |#4|))))) (-2183 (((-713) $) NIL)) (-3928 (($ $ (-1158 |#1| |#2| |#3| |#4|)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-265 (-1158 |#1| |#2| |#3| |#4|) (-1158 |#1| |#2| |#3| |#4|))))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-3013 (($ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-713)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-1090)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-834 (-1090)))) (($ $ (-1 (-1158 |#1| |#2| |#3| |#4|) (-1158 |#1| |#2| |#3| |#4|)) (-713)) NIL) (($ $ (-1 (-1158 |#1| |#2| |#3| |#4|) (-1158 |#1| |#2| |#3| |#4|))) NIL)) (-1915 (($ $) NIL)) (-1312 (((-1158 |#1| |#2| |#3| |#4|) $) 17)) (-1427 (((-826 (-525)) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-567 (-826 (-357))))) (((-501) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-567 (-501)))) (((-357) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-952))) (((-205) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-952)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-1158 |#1| |#2| |#3| |#4|) (-843))))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-1158 |#1| |#2| |#3| |#4|)) 29) (($ (-1090)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-967 (-1090)))) (($ (-1157 |#2| |#3| |#4|)) 36)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| (-1158 |#1| |#2| |#3| |#4|) (-843))) (|has| (-1158 |#1| |#2| |#3| |#4|) (-136))))) (-2093 (((-713)) NIL)) (-2498 (((-1158 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-510)))) (-2262 (((-108) $ $) NIL)) (-2092 (($ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-762)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) 41 T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-713)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-1090)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-834 (-1090)))) (($ $ (-1 (-1158 |#1| |#2| |#3| |#4|) (-1158 |#1| |#2| |#3| |#4|)) (-713)) NIL) (($ $ (-1 (-1158 |#1| |#2| |#3| |#4|) (-1158 |#1| |#2| |#3| |#4|))) NIL)) (-4024 (((-108) $ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-789)))) (-3995 (((-108) $ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-789)))) (-3983 (((-108) $ $) NIL (|has| (-1158 |#1| |#2| |#3| |#4|) (-789)))) (-4082 (($ $ $) 34) (($ (-1158 |#1| |#2| |#3| |#4|) (-1158 |#1| |#2| |#3| |#4|)) 31)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-1158 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1158 |#1| |#2| |#3| |#4|)) NIL)))
-(((-291 |#1| |#2| |#3| |#4|) (-13 (-924 (-1158 |#1| |#2| |#3| |#4|)) (-967 (-1157 |#2| |#3| |#4|)) (-10 -8 (-15 -3560 ((-3 (-782 |#2|) "failed") $)) (-15 -1908 ($ (-1157 |#2| |#3| |#4|))))) (-13 (-789) (-967 (-525)) (-588 (-525)) (-429)) (-13 (-27) (-1112) (-408 |#1|)) (-1090) |#2|) (T -291))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1157 *4 *5 *6)) (-4 *4 (-13 (-27) (-1112) (-408 *3))) (-14 *5 (-1090)) (-14 *6 *4) (-4 *3 (-13 (-789) (-967 (-525)) (-588 (-525)) (-429))) (-5 *1 (-291 *3 *4 *5 *6)))) (-3560 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-789) (-967 (-525)) (-588 (-525)) (-429))) (-5 *2 (-782 *4)) (-5 *1 (-291 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1112) (-408 *3))) (-14 *5 (-1090)) (-14 *6 *4))))
-(-13 (-924 (-1158 |#1| |#2| |#3| |#4|)) (-967 (-1157 |#2| |#3| |#4|)) (-10 -8 (-15 -3560 ((-3 (-782 |#2|) "failed") $)) (-15 -1908 ($ (-1157 |#2| |#3| |#4|)))))
-((-1370 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 13)))
-(((-292 |#1| |#2|) (-10 -7 (-15 -1370 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-789) (-789)) (T -292))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-789)) (-4 *6 (-789)) (-5 *2 (-294 *6)) (-5 *1 (-292 *5 *6)))))
-(-10 -7 (-15 -1370 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|))))
-((-4168 (((-51) |#2| (-273 |#2|) (-713)) 33) (((-51) |#2| (-273 |#2|)) 24) (((-51) |#2| (-713)) 28) (((-51) |#2|) 25) (((-51) (-1090)) 21)) (-3483 (((-51) |#2| (-273 |#2|) (-385 (-525))) 51) (((-51) |#2| (-273 |#2|)) 48) (((-51) |#2| (-385 (-525))) 50) (((-51) |#2|) 49) (((-51) (-1090)) 47)) (-4192 (((-51) |#2| (-273 |#2|) (-385 (-525))) 46) (((-51) |#2| (-273 |#2|)) 43) (((-51) |#2| (-385 (-525))) 45) (((-51) |#2|) 44) (((-51) (-1090)) 42)) (-4179 (((-51) |#2| (-273 |#2|) (-525)) 39) (((-51) |#2| (-273 |#2|)) 35) (((-51) |#2| (-525)) 38) (((-51) |#2|) 36) (((-51) (-1090)) 34)))
-(((-293 |#1| |#2|) (-10 -7 (-15 -4168 ((-51) (-1090))) (-15 -4168 ((-51) |#2|)) (-15 -4168 ((-51) |#2| (-713))) (-15 -4168 ((-51) |#2| (-273 |#2|))) (-15 -4168 ((-51) |#2| (-273 |#2|) (-713))) (-15 -4179 ((-51) (-1090))) (-15 -4179 ((-51) |#2|)) (-15 -4179 ((-51) |#2| (-525))) (-15 -4179 ((-51) |#2| (-273 |#2|))) (-15 -4179 ((-51) |#2| (-273 |#2|) (-525))) (-15 -4192 ((-51) (-1090))) (-15 -4192 ((-51) |#2|)) (-15 -4192 ((-51) |#2| (-385 (-525)))) (-15 -4192 ((-51) |#2| (-273 |#2|))) (-15 -4192 ((-51) |#2| (-273 |#2|) (-385 (-525)))) (-15 -3483 ((-51) (-1090))) (-15 -3483 ((-51) |#2|)) (-15 -3483 ((-51) |#2| (-385 (-525)))) (-15 -3483 ((-51) |#2| (-273 |#2|))) (-15 -3483 ((-51) |#2| (-273 |#2|) (-385 (-525))))) (-13 (-429) (-789) (-967 (-525)) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|))) (T -293))
-((-3483 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525))) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *4 (-385 (-525))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))) (-3483 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *4))))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1112) (-408 *4))))) (-4192 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525))) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-4192 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-4192 (*1 *2 *3 *4) (-12 (-5 *4 (-385 (-525))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))) (-4192 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *4))))) (-4192 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1112) (-408 *4))))) (-4179 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-525)) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-4179 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-4179 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))) (-4179 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *4))))) (-4179 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1112) (-408 *4))))) (-4168 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-713)) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-4168 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-4168 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))) (-4168 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *4))))) (-4168 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1112) (-408 *4))))))
-(-10 -7 (-15 -4168 ((-51) (-1090))) (-15 -4168 ((-51) |#2|)) (-15 -4168 ((-51) |#2| (-713))) (-15 -4168 ((-51) |#2| (-273 |#2|))) (-15 -4168 ((-51) |#2| (-273 |#2|) (-713))) (-15 -4179 ((-51) (-1090))) (-15 -4179 ((-51) |#2|)) (-15 -4179 ((-51) |#2| (-525))) (-15 -4179 ((-51) |#2| (-273 |#2|))) (-15 -4179 ((-51) |#2| (-273 |#2|) (-525))) (-15 -4192 ((-51) (-1090))) (-15 -4192 ((-51) |#2|)) (-15 -4192 ((-51) |#2| (-385 (-525)))) (-15 -4192 ((-51) |#2| (-273 |#2|))) (-15 -4192 ((-51) |#2| (-273 |#2|) (-385 (-525)))) (-15 -3483 ((-51) (-1090))) (-15 -3483 ((-51) |#2|)) (-15 -3483 ((-51) |#2| (-385 (-525)))) (-15 -3483 ((-51) |#2| (-273 |#2|))) (-15 -3483 ((-51) |#2| (-273 |#2|) (-385 (-525)))))
-((-1893 (((-108) $ $) NIL)) (-2346 (((-592 $) $ (-1090)) NIL (|has| |#1| (-517))) (((-592 $) $) NIL (|has| |#1| (-517))) (((-592 $) (-1086 $) (-1090)) NIL (|has| |#1| (-517))) (((-592 $) (-1086 $)) NIL (|has| |#1| (-517))) (((-592 $) (-886 $)) NIL (|has| |#1| (-517)))) (-1694 (($ $ (-1090)) NIL (|has| |#1| (-517))) (($ $) NIL (|has| |#1| (-517))) (($ (-1086 $) (-1090)) NIL (|has| |#1| (-517))) (($ (-1086 $)) NIL (|has| |#1| (-517))) (($ (-886 $)) NIL (|has| |#1| (-517)))) (-1611 (((-108) $) 27 (-3309 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))))) (-4104 (((-592 (-1090)) $) 350)) (-3927 (((-385 (-1086 $)) $ (-565 $)) NIL (|has| |#1| (-517)))) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-3740 (((-592 (-565 $)) $) NIL)) (-4049 (($ $) 159 (|has| |#1| (-517)))) (-3911 (($ $) 135 (|has| |#1| (-517)))) (-2910 (($ $ (-1012 $)) 220 (|has| |#1| (-517))) (($ $ (-1090)) 216 (|has| |#1| (-517)))) (-3263 (((-3 $ "failed") $ $) NIL (-3309 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))))) (-1962 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) 367) (($ $ (-592 (-565 $)) (-592 $)) 411)) (-3357 (((-396 (-1086 $)) (-1086 $)) 294 (-12 (|has| |#1| (-429)) (|has| |#1| (-517))))) (-3321 (($ $) NIL (|has| |#1| (-517)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-517)))) (-3969 (($ $) NIL (|has| |#1| (-517)))) (-2305 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4026 (($ $) 155 (|has| |#1| (-517)))) (-3434 (($ $) 131 (|has| |#1| (-517)))) (-3664 (($ $ (-525)) 69 (|has| |#1| (-517)))) (-4072 (($ $) 163 (|has| |#1| (-517)))) (-3931 (($ $) 139 (|has| |#1| (-517)))) (-1505 (($) NIL (-3309 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031))) CONST)) (-3884 (((-592 $) $ (-1090)) NIL (|has| |#1| (-517))) (((-592 $) $) NIL (|has| |#1| (-517))) (((-592 $) (-1086 $) (-1090)) NIL (|has| |#1| (-517))) (((-592 $) (-1086 $)) NIL (|has| |#1| (-517))) (((-592 $) (-886 $)) NIL (|has| |#1| (-517)))) (-4105 (($ $ (-1090)) NIL (|has| |#1| (-517))) (($ $) NIL (|has| |#1| (-517))) (($ (-1086 $) (-1090)) 122 (|has| |#1| (-517))) (($ (-1086 $)) NIL (|has| |#1| (-517))) (($ (-886 $)) NIL (|has| |#1| (-517)))) (-1264 (((-3 (-565 $) "failed") $) 17) (((-3 (-1090) "failed") $) NIL) (((-3 |#1| "failed") $) 420) (((-3 (-47) "failed") $) 322 (-12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-886 |#1|)) "failed") $) NIL (|has| |#1| (-517))) (((-3 (-886 |#1|) "failed") $) NIL (|has| |#1| (-976))) (((-3 (-385 (-525)) "failed") $) 46 (-3309 (-12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525)))) (|has| |#1| (-967 (-385 (-525))))))) (-2831 (((-565 $) $) 11) (((-1090) $) NIL) ((|#1| $) 402) (((-47) $) NIL (-12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-886 |#1|)) $) NIL (|has| |#1| (-517))) (((-886 |#1|) $) NIL (|has| |#1| (-976))) (((-385 (-525)) $) 305 (-3309 (-12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525)))) (|has| |#1| (-967 (-385 (-525))))))) (-2373 (($ $ $) NIL (|has| |#1| (-517)))) (-1860 (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 115 (|has| |#1| (-976))) (((-632 |#1|) (-632 $)) 105 (|has| |#1| (-976))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))))) (-4004 (($ $) 87 (|has| |#1| (-517)))) (-2866 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031))))) (-2356 (($ $ $) NIL (|has| |#1| (-517)))) (-3893 (($ $ (-1012 $)) 224 (|has| |#1| (-517))) (($ $ (-1090)) 222 (|has| |#1| (-517)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| |#1| (-517)))) (-2250 (((-108) $) NIL (|has| |#1| (-517)))) (-3351 (($ $ $) 190 (|has| |#1| (-517)))) (-1335 (($) 125 (|has| |#1| (-517)))) (-3834 (($ $ $) 210 (|has| |#1| (-517)))) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 373 (|has| |#1| (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 380 (|has| |#1| (-820 (-357))))) (-2237 (($ $) NIL) (($ (-592 $)) NIL)) (-2323 (((-592 (-110)) $) NIL)) (-4159 (((-110) (-110)) 265)) (-2133 (((-108) $) 25 (-3309 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031))))) (-2144 (((-108) $) NIL (|has| $ (-967 (-525))))) (-3830 (($ $) 68 (|has| |#1| (-976)))) (-1303 (((-1042 |#1| (-565 $)) $) 82 (|has| |#1| (-976)))) (-4199 (((-108) $) 61 (|has| |#1| (-517)))) (-3391 (($ $ (-525)) NIL (|has| |#1| (-517)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-517)))) (-3609 (((-1086 $) (-565 $)) 266 (|has| $ (-976)))) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-1370 (($ (-1 $ $) (-565 $)) 407)) (-2218 (((-3 (-565 $) "failed") $) NIL)) (-2091 (($ $) 129 (|has| |#1| (-517)))) (-1836 (($ $) 235 (|has| |#1| (-517)))) (-3216 (($ (-592 $)) NIL (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-2337 (((-1073) $) NIL)) (-3914 (((-592 (-565 $)) $) 49)) (-1377 (($ (-110) $) NIL) (($ (-110) (-592 $)) 412)) (-3245 (((-3 (-592 $) "failed") $) NIL (|has| |#1| (-1031)))) (-3152 (((-3 (-2 (|:| |val| $) (|:| -1600 (-525))) "failed") $) NIL (|has| |#1| (-976)))) (-3193 (((-3 (-592 $) "failed") $) 415 (|has| |#1| (-25)))) (-2104 (((-3 (-2 (|:| -1459 (-525)) (|:| |var| (-565 $))) "failed") $) 419 (|has| |#1| (-25)))) (-3283 (((-3 (-2 (|:| |var| (-565 $)) (|:| -1600 (-525))) "failed") $) NIL (|has| |#1| (-1031))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1600 (-525))) "failed") $ (-110)) NIL (|has| |#1| (-976))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1600 (-525))) "failed") $ (-1090)) NIL (|has| |#1| (-976)))) (-3034 (((-108) $ (-110)) NIL) (((-108) $ (-1090)) 53)) (-4211 (($ $) NIL (-3309 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-3113 (($ $ (-1090)) 239 (|has| |#1| (-517))) (($ $ (-1012 $)) 241 (|has| |#1| (-517)))) (-3598 (((-713) $) NIL)) (-2663 (((-1037) $) NIL)) (-4221 (((-108) $) 43)) (-4232 ((|#1| $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 287 (|has| |#1| (-517)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-2148 (((-108) $ $) NIL) (((-108) $ (-1090)) NIL)) (-3518 (($ $ (-1090)) 214 (|has| |#1| (-517))) (($ $) 212 (|has| |#1| (-517)))) (-3066 (($ $) 206 (|has| |#1| (-517)))) (-1371 (((-396 (-1086 $)) (-1086 $)) 292 (-12 (|has| |#1| (-429)) (|has| |#1| (-517))))) (-3959 (((-396 $) $) NIL (|has| |#1| (-517)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-517))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-517)))) (-2338 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-517)))) (-1982 (($ $) 127 (|has| |#1| (-517)))) (-2656 (((-108) $) NIL (|has| $ (-967 (-525))))) (-3092 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) 406) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1090) (-1 $ (-592 $))) NIL) (($ $ (-1090) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) 360) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1090)) NIL (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-567 (-501)))) (($ $) NIL (|has| |#1| (-567 (-501)))) (($ $ (-110) $ (-1090)) 348 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-110)) (-592 $) (-1090)) 347 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ $))) NIL (|has| |#1| (-976))) (($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ (-592 $)))) NIL (|has| |#1| (-976))) (($ $ (-1090) (-713) (-1 $ (-592 $))) NIL (|has| |#1| (-976))) (($ $ (-1090) (-713) (-1 $ $)) NIL (|has| |#1| (-976)))) (-2183 (((-713) $) NIL (|has| |#1| (-517)))) (-3393 (($ $) 227 (|has| |#1| (-517)))) (-3928 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-517)))) (-2825 (($ $) NIL) (($ $ $) NIL)) (-3422 (($ $) 237 (|has| |#1| (-517)))) (-4046 (($ $) 188 (|has| |#1| (-517)))) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-976))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-976))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-976))) (($ $ (-1090)) NIL (|has| |#1| (-976)))) (-1915 (($ $) 70 (|has| |#1| (-517)))) (-1312 (((-1042 |#1| (-565 $)) $) 84 (|has| |#1| (-517)))) (-1654 (($ $) 303 (|has| $ (-976)))) (-4084 (($ $) 165 (|has| |#1| (-517)))) (-3942 (($ $) 141 (|has| |#1| (-517)))) (-4061 (($ $) 161 (|has| |#1| (-517)))) (-3919 (($ $) 137 (|has| |#1| (-517)))) (-4038 (($ $) 157 (|has| |#1| (-517)))) (-3455 (($ $) 133 (|has| |#1| (-517)))) (-1427 (((-826 (-525)) $) NIL (|has| |#1| (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| |#1| (-567 (-826 (-357))))) (($ (-396 $)) NIL (|has| |#1| (-517))) (((-501) $) 345 (|has| |#1| (-567 (-501))))) (-3634 (($ $ $) NIL (|has| |#1| (-450)))) (-1518 (($ $ $) NIL (|has| |#1| (-450)))) (-1908 (((-797) $) 405) (($ (-565 $)) 396) (($ (-1090)) 362) (($ |#1|) 323) (($ $) NIL (|has| |#1| (-517))) (($ (-47)) 298 (-12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525))))) (($ (-1042 |#1| (-565 $))) 86 (|has| |#1| (-976))) (($ (-385 |#1|)) NIL (|has| |#1| (-517))) (($ (-886 (-385 |#1|))) NIL (|has| |#1| (-517))) (($ (-385 (-886 (-385 |#1|)))) NIL (|has| |#1| (-517))) (($ (-385 (-886 |#1|))) NIL (|has| |#1| (-517))) (($ (-886 |#1|)) NIL (|has| |#1| (-976))) (($ (-385 (-525))) NIL (-3309 (|has| |#1| (-517)) (|has| |#1| (-967 (-385 (-525)))))) (($ (-525)) 34 (-3309 (|has| |#1| (-967 (-525))) (|has| |#1| (-976))))) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) NIL (|has| |#1| (-976)))) (-1268 (($ $) NIL) (($ (-592 $)) NIL)) (-3015 (($ $ $) 208 (|has| |#1| (-517)))) (-3442 (($ $ $) 194 (|has| |#1| (-517)))) (-2016 (($ $ $) 198 (|has| |#1| (-517)))) (-1414 (($ $ $) 192 (|has| |#1| (-517)))) (-3902 (($ $ $) 196 (|has| |#1| (-517)))) (-3824 (((-108) (-110)) 9)) (-4121 (($ $) 171 (|has| |#1| (-517)))) (-3974 (($ $) 147 (|has| |#1| (-517)))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4096 (($ $) 167 (|has| |#1| (-517)))) (-3951 (($ $) 143 (|has| |#1| (-517)))) (-4147 (($ $) 175 (|has| |#1| (-517)))) (-3999 (($ $) 151 (|has| |#1| (-517)))) (-4184 (($ (-1090) $) NIL) (($ (-1090) $ $) NIL) (($ (-1090) $ $ $) NIL) (($ (-1090) $ $ $ $) NIL) (($ (-1090) (-592 $)) NIL)) (-1476 (($ $) 202 (|has| |#1| (-517)))) (-3020 (($ $) 200 (|has| |#1| (-517)))) (-2929 (($ $) 177 (|has| |#1| (-517)))) (-4013 (($ $) 153 (|has| |#1| (-517)))) (-4133 (($ $) 173 (|has| |#1| (-517)))) (-3985 (($ $) 149 (|has| |#1| (-517)))) (-4110 (($ $) 169 (|has| |#1| (-517)))) (-3963 (($ $) 145 (|has| |#1| (-517)))) (-2092 (($ $) 180 (|has| |#1| (-517)))) (-3465 (($ $ (-525)) NIL (-3309 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) NIL (-3309 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031)))) (($ $ (-855)) NIL (-3309 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031))))) (-3875 (($) 20 (-3309 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))) CONST)) (-1344 (($ $) 231 (|has| |#1| (-517)))) (-3882 (($) 22 (-3309 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031))) CONST)) (-2126 (($ $) 182 (|has| |#1| (-517))) (($ $ $) 184 (|has| |#1| (-517)))) (-1767 (($ $) 229 (|has| |#1| (-517)))) (-1424 (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-976))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-976))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-976))) (($ $ (-1090)) NIL (|has| |#1| (-976)))) (-3655 (($ $) 233 (|has| |#1| (-517)))) (-2851 (($ $ $) 186 (|has| |#1| (-517)))) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 79)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 78)) (-4082 (($ (-1042 |#1| (-565 $)) (-1042 |#1| (-565 $))) 96 (|has| |#1| (-517))) (($ $ $) 42 (-3309 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-4070 (($ $ $) 40 (-3309 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))))) (($ $) 29 (-3309 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))))) (-4059 (($ $ $) 38 (-3309 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))))) (** (($ $ $) 63 (|has| |#1| (-517))) (($ $ (-385 (-525))) 300 (|has| |#1| (-517))) (($ $ (-525)) 74 (-3309 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) 71 (-3309 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031)))) (($ $ (-855)) 76 (-3309 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031))))) (* (($ (-385 (-525)) $) NIL (|has| |#1| (-517))) (($ $ (-385 (-525))) NIL (|has| |#1| (-517))) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160))) (($ $ $) 36 (-3309 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) (|has| |#1| (-1031)))) (($ (-525) $) 32 (-3309 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))))) (($ (-713) $) NIL (-3309 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))))) (($ (-855) $) NIL (-3309 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))))))
-(((-294 |#1|) (-13 (-408 |#1|) (-10 -8 (IF (|has| |#1| (-517)) (PROGN (-6 (-29 |#1|)) (-6 (-1112)) (-6 (-149)) (-6 (-578)) (-6 (-1054)) (-15 -4004 ($ $)) (-15 -4199 ((-108) $)) (-15 -3664 ($ $ (-525))) (IF (|has| |#1| (-429)) (PROGN (-15 -1371 ((-396 (-1086 $)) (-1086 $))) (-15 -3357 ((-396 (-1086 $)) (-1086 $)))) |%noBranch|) (IF (|has| |#1| (-967 (-525))) (-6 (-967 (-47))) |%noBranch|)) |%noBranch|))) (-789)) (T -294))
-((-4004 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-517)) (-4 *2 (-789)))) (-4199 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))) (-3664 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))) (-1371 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789)) (-5 *2 (-396 (-1086 (-294 *4)))) (-5 *1 (-294 *4)) (-5 *3 (-1086 (-294 *4))))) (-3357 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789)) (-5 *2 (-396 (-1086 (-294 *4)))) (-5 *1 (-294 *4)) (-5 *3 (-1086 (-294 *4))))))
-(-13 (-408 |#1|) (-10 -8 (IF (|has| |#1| (-517)) (PROGN (-6 (-29 |#1|)) (-6 (-1112)) (-6 (-149)) (-6 (-578)) (-6 (-1054)) (-15 -4004 ($ $)) (-15 -4199 ((-108) $)) (-15 -3664 ($ $ (-525))) (IF (|has| |#1| (-429)) (PROGN (-15 -1371 ((-396 (-1086 $)) (-1086 $))) (-15 -3357 ((-396 (-1086 $)) (-1086 $)))) |%noBranch|) (IF (|has| |#1| (-967 (-525))) (-6 (-967 (-47))) |%noBranch|)) |%noBranch|)))
-((-4208 (((-51) |#2| (-110) (-273 |#2|) (-592 |#2|)) 88) (((-51) |#2| (-110) (-273 |#2|) (-273 |#2|)) 84) (((-51) |#2| (-110) (-273 |#2|) |#2|) 86) (((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|) 87) (((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|))) 80) (((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 |#2|)) 82) (((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 |#2|)) 83) (((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|))) 81) (((-51) (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|)) 89) (((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|)) 85)))
-(((-295 |#1| |#2|) (-10 -7 (-15 -4208 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|))) (-15 -4208 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -4208 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -4208 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -4208 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -4208 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -4208 ((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|)) (-15 -4208 ((-51) |#2| (-110) (-273 |#2|) |#2|)) (-15 -4208 ((-51) |#2| (-110) (-273 |#2|) (-273 |#2|))) (-15 -4208 ((-51) |#2| (-110) (-273 |#2|) (-592 |#2|)))) (-13 (-789) (-517) (-567 (-501))) (-408 |#1|)) (T -295))
-((-4208 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-5 *6 (-592 *3)) (-4 *3 (-408 *7)) (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *3)))) (-4208 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *3)))) (-4208 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *3)))) (-4208 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-273 *5)) (-5 *4 (-110)) (-4 *5 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *5)))) (-4208 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-110))) (-5 *5 (-273 *8)) (-5 *6 (-592 (-273 *8))) (-4 *8 (-408 *7)) (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *8)))) (-4208 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-4208 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-592 (-273 *8))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *8)) (-5 *6 (-592 *8)) (-4 *8 (-408 *7)) (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *8)))) (-4208 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-4208 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-592 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-4208 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-273 *6)) (-5 *4 (-110)) (-4 *6 (-408 *5)) (-4 *5 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *5 *6)))))
-(-10 -7 (-15 -4208 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|))) (-15 -4208 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -4208 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -4208 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -4208 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -4208 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -4208 ((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|)) (-15 -4208 ((-51) |#2| (-110) (-273 |#2|) |#2|)) (-15 -4208 ((-51) |#2| (-110) (-273 |#2|) (-273 |#2|))) (-15 -4208 ((-51) |#2| (-110) (-273 |#2|) (-592 |#2|))))
-((-2070 (((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-205) (-525) (-1073)) 46) (((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-205) (-525)) 47) (((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-1 (-205) (-205)) (-525) (-1073)) 43) (((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-1 (-205) (-205)) (-525)) 44)) (-4220 (((-1 (-205) (-205)) (-205)) 45)))
-(((-296) (-10 -7 (-15 -4220 ((-1 (-205) (-205)) (-205))) (-15 -2070 ((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-1 (-205) (-205)) (-525))) (-15 -2070 ((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-1 (-205) (-205)) (-525) (-1073))) (-15 -2070 ((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-205) (-525))) (-15 -2070 ((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-205) (-525) (-1073))))) (T -296))
-((-2070 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1014 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *8 (-1073)) (-5 *2 (-1122 (-860))) (-5 *1 (-296)))) (-2070 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1014 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *2 (-1122 (-860))) (-5 *1 (-296)))) (-2070 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1014 (-205))) (-5 *6 (-525)) (-5 *7 (-1073)) (-5 *2 (-1122 (-860))) (-5 *1 (-296)))) (-2070 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1014 (-205))) (-5 *6 (-525)) (-5 *2 (-1122 (-860))) (-5 *1 (-296)))) (-4220 (*1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-296)) (-5 *3 (-205)))))
-(-10 -7 (-15 -4220 ((-1 (-205) (-205)) (-205))) (-15 -2070 ((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-1 (-205) (-205)) (-525))) (-15 -2070 ((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-1 (-205) (-205)) (-525) (-1073))) (-15 -2070 ((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-205) (-525))) (-15 -2070 ((-1122 (-860)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-205) (-525) (-1073))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 25)) (-4104 (((-592 (-1004)) $) NIL)) (-1251 (((-1090) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-4114 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-2911 (((-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 20)) (-4049 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL (|has| |#1| (-341)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3969 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2305 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4026 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3483 (($ (-713) (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-4072 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) NIL T CONST)) (-2373 (($ $ $) NIL (|has| |#1| (-341)))) (-1247 (($ $) 32)) (-2866 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#1| (-341)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2250 (((-108) $) NIL (|has| |#1| (-341)))) (-4150 (((-108) $) NIL)) (-1335 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1737 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) 16)) (-2133 (((-108) $) NIL)) (-3391 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3817 (($ $ (-855)) NIL) (($ $ (-385 (-525))) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-385 (-525))) NIL) (($ $ (-1004) (-385 (-525))) NIL) (($ $ (-592 (-1004)) (-592 (-385 (-525)))) NIL)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-2091 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-341)))) (-3766 (($ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) NIL (-3309 (-12 (|has| |#1| (-15 -3766 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -4104 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112)))))) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3959 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-3538 (($ $ (-385 (-525))) NIL)) (-2338 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1395 (((-385 (-525)) $) 17)) (-2222 (($ (-1157 |#1| |#2| |#3|)) 11)) (-1600 (((-1157 |#1| |#2| |#3|) $) 12)) (-1982 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3092 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-2183 (((-713) $) NIL (|has| |#1| (-341)))) (-3928 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1031)))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-341)))) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2513 (((-385 (-525)) $) NIL)) (-4084 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1801 (($ $) 10)) (-1908 (((-797) $) 38) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1657 ((|#1| $ (-385 (-525))) 30)) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) NIL)) (-2563 ((|#1| $) NIL)) (-4121 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4096 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2038 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1908 (|#1| (-1090))))))) (-2929 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 27)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 33)) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-297 |#1| |#2| |#3|) (-13 (-1153 |#1|) (-734) (-10 -8 (-15 -2222 ($ (-1157 |#1| |#2| |#3|))) (-15 -1600 ((-1157 |#1| |#2| |#3|) $)) (-15 -1395 ((-385 (-525)) $)))) (-13 (-341) (-789)) (-1090) |#1|) (T -297))
-((-2222 (*1 *1 *2) (-12 (-5 *2 (-1157 *3 *4 *5)) (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-297 *3 *4 *5)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-1157 *3 *4 *5)) (-5 *1 (-297 *3 *4 *5)) (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1090)) (-14 *5 *3))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-297 *3 *4 *5)) (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1090)) (-14 *5 *3))))
-(-13 (-1153 |#1|) (-734) (-10 -8 (-15 -2222 ($ (-1157 |#1| |#2| |#3|))) (-15 -1600 ((-1157 |#1| |#2| |#3|) $)) (-15 -1395 ((-385 (-525)) $))))
-((-3391 (((-2 (|:| -1600 (-713)) (|:| -1459 |#1|) (|:| |radicand| (-592 |#1|))) (-396 |#1|) (-713)) 24)) (-2091 (((-592 (-2 (|:| -1459 (-713)) (|:| |logand| |#1|))) (-396 |#1|)) 28)))
-(((-298 |#1|) (-10 -7 (-15 -3391 ((-2 (|:| -1600 (-713)) (|:| -1459 |#1|) (|:| |radicand| (-592 |#1|))) (-396 |#1|) (-713))) (-15 -2091 ((-592 (-2 (|:| -1459 (-713)) (|:| |logand| |#1|))) (-396 |#1|)))) (-517)) (T -298))
-((-2091 (*1 *2 *3) (-12 (-5 *3 (-396 *4)) (-4 *4 (-517)) (-5 *2 (-592 (-2 (|:| -1459 (-713)) (|:| |logand| *4)))) (-5 *1 (-298 *4)))) (-3391 (*1 *2 *3 *4) (-12 (-5 *3 (-396 *5)) (-4 *5 (-517)) (-5 *2 (-2 (|:| -1600 (-713)) (|:| -1459 *5) (|:| |radicand| (-592 *5)))) (-5 *1 (-298 *5)) (-5 *4 (-713)))))
-(-10 -7 (-15 -3391 ((-2 (|:| -1600 (-713)) (|:| -1459 |#1|) (|:| |radicand| (-592 |#1|))) (-396 |#1|) (-713))) (-15 -2091 ((-592 (-2 (|:| -1459 (-713)) (|:| |logand| |#1|))) (-396 |#1|))))
-((-4104 (((-592 |#2|) (-1086 |#4|)) 43)) (-4206 ((|#3| (-525)) 46)) (-2401 (((-1086 |#4|) (-1086 |#3|)) 30)) (-3532 (((-1086 |#4|) (-1086 |#4|) (-525)) 56)) (-2816 (((-1086 |#3|) (-1086 |#4|)) 21)) (-2513 (((-592 (-713)) (-1086 |#4|) (-592 |#2|)) 40)) (-3464 (((-1086 |#3|) (-1086 |#4|) (-592 |#2|) (-592 |#3|)) 35)))
-(((-299 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3464 ((-1086 |#3|) (-1086 |#4|) (-592 |#2|) (-592 |#3|))) (-15 -2513 ((-592 (-713)) (-1086 |#4|) (-592 |#2|))) (-15 -4104 ((-592 |#2|) (-1086 |#4|))) (-15 -2816 ((-1086 |#3|) (-1086 |#4|))) (-15 -2401 ((-1086 |#4|) (-1086 |#3|))) (-15 -3532 ((-1086 |#4|) (-1086 |#4|) (-525))) (-15 -4206 (|#3| (-525)))) (-735) (-789) (-976) (-883 |#3| |#1| |#2|)) (T -299))
-((-4206 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-976)) (-5 *1 (-299 *4 *5 *2 *6)) (-4 *6 (-883 *2 *4 *5)))) (-3532 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 *7)) (-5 *3 (-525)) (-4 *7 (-883 *6 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) (-5 *1 (-299 *4 *5 *6 *7)))) (-2401 (*1 *2 *3) (-12 (-5 *3 (-1086 *6)) (-4 *6 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-1086 *7)) (-5 *1 (-299 *4 *5 *6 *7)) (-4 *7 (-883 *6 *4 *5)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-1086 *7)) (-4 *7 (-883 *6 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) (-5 *2 (-1086 *6)) (-5 *1 (-299 *4 *5 *6 *7)))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-1086 *7)) (-4 *7 (-883 *6 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) (-5 *2 (-592 *5)) (-5 *1 (-299 *4 *5 *6 *7)))) (-2513 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *8)) (-5 *4 (-592 *6)) (-4 *6 (-789)) (-4 *8 (-883 *7 *5 *6)) (-4 *5 (-735)) (-4 *7 (-976)) (-5 *2 (-592 (-713))) (-5 *1 (-299 *5 *6 *7 *8)))) (-3464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 *8)) (-4 *7 (-789)) (-4 *8 (-976)) (-4 *9 (-883 *8 *6 *7)) (-4 *6 (-735)) (-5 *2 (-1086 *8)) (-5 *1 (-299 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3464 ((-1086 |#3|) (-1086 |#4|) (-592 |#2|) (-592 |#3|))) (-15 -2513 ((-592 (-713)) (-1086 |#4|) (-592 |#2|))) (-15 -4104 ((-592 |#2|) (-1086 |#4|))) (-15 -2816 ((-1086 |#3|) (-1086 |#4|))) (-15 -2401 ((-1086 |#4|) (-1086 |#3|))) (-15 -3532 ((-1086 |#4|) (-1086 |#4|) (-525))) (-15 -4206 (|#3| (-525))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 14)) (-2911 (((-592 (-2 (|:| |gen| |#1|) (|:| -1982 (-525)))) $) 18)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3107 (((-713) $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) NIL)) (-2831 ((|#1| $) NIL)) (-2938 ((|#1| $ (-525)) NIL)) (-1845 (((-525) $ (-525)) NIL)) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-2463 (($ (-1 |#1| |#1|) $) NIL)) (-3698 (($ (-1 (-525) (-525)) $) 10)) (-2337 (((-1073) $) NIL)) (-2924 (($ $ $) NIL (|has| (-525) (-734)))) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL) (($ |#1|) NIL)) (-1657 (((-525) |#1| $) NIL)) (-3875 (($) 15 T CONST)) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) 21 (|has| |#1| (-789)))) (-4070 (($ $) 11) (($ $ $) 20)) (-4059 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL) (($ (-525) |#1|) 19)))
-(((-300 |#1|) (-13 (-21) (-660 (-525)) (-301 |#1| (-525)) (-10 -7 (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|))) (-1019)) (T -300))
+((-2602 ((|#1| (-1 |#1| (-525)) (-1093 (-385 (-525)))) 25)))
+(((-289 |#1|) (-10 -7 (-15 -2602 (|#1| (-1 |#1| (-525)) (-1093 (-385 (-525)))))) (-37 (-385 (-525)))) (T -289))
+((-2602 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-525))) (-5 *4 (-1093 (-385 (-525)))) (-5 *1 (-289 *2)) (-4 *2 (-37 (-385 (-525)))))))
+(-10 -7 (-15 -2602 (|#1| (-1 |#1| (-525)) (-1093 (-385 (-525))))))
+((-1260 (((-108) $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 7)) (-3994 (((-108) $ $) 9)))
+(((-290) (-1020)) (T -290))
+NIL
+(-1020)
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 62)) (-2628 (((-1159 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-286)))) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-844)))) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-844)))) (-3197 (((-108) $ $) NIL)) (-1436 (((-525) $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-762)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-1159 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1091) "failed") $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-968 (-1091)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-968 (-525)))) (((-3 (-1158 |#2| |#3| |#4|) "failed") $) 25)) (-3898 (((-1159 |#1| |#2| |#3| |#4|) $) NIL) (((-1091) $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-968 (-1091)))) (((-385 (-525)) $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-968 (-525)))) (((-525) $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-968 (-525)))) (((-1158 |#2| |#3| |#4|) $) NIL)) (-1726 (($ $ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-1159 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1173 (-1159 |#1| |#2| |#3| |#4|)))) (-632 $) (-1173 $)) NIL) (((-632 (-1159 |#1| |#2| |#3| |#4|)) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-510)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-3017 (((-108) $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-762)))) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-821 (-357))))) (-1985 (((-108) $) NIL)) (-1931 (($ $) NIL)) (-1498 (((-1159 |#1| |#2| |#3| |#4|) $) 21)) (-1760 (((-3 $ "failed") $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-1067)))) (-3912 (((-108) $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-762)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2371 (($ $ $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-789)))) (-2535 (($ $ $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-789)))) (-2694 (($ (-1 (-1159 |#1| |#2| |#3| |#4|) (-1159 |#1| |#2| |#3| |#4|)) $) NIL)) (-2480 (((-3 (-782 |#2|) "failed") $) 78)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-1067)) CONST)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3025 (($ $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-286)))) (-2793 (((-1159 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-510)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-844)))) (-2195 (((-396 $) $) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2602 (($ $ (-592 (-1159 |#1| |#2| |#3| |#4|)) (-592 (-1159 |#1| |#2| |#3| |#4|))) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-288 (-1159 |#1| |#2| |#3| |#4|)))) (($ $ (-1159 |#1| |#2| |#3| |#4|) (-1159 |#1| |#2| |#3| |#4|)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-288 (-1159 |#1| |#2| |#3| |#4|)))) (($ $ (-273 (-1159 |#1| |#2| |#3| |#4|))) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-288 (-1159 |#1| |#2| |#3| |#4|)))) (($ $ (-592 (-273 (-1159 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-288 (-1159 |#1| |#2| |#3| |#4|)))) (($ $ (-592 (-1091)) (-592 (-1159 |#1| |#2| |#3| |#4|))) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-486 (-1091) (-1159 |#1| |#2| |#3| |#4|)))) (($ $ (-1091) (-1159 |#1| |#2| |#3| |#4|)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-486 (-1091) (-1159 |#1| |#2| |#3| |#4|))))) (-1290 (((-713) $) NIL)) (-3410 (($ $ (-1159 |#1| |#2| |#3| |#4|)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-265 (-1159 |#1| |#2| |#3| |#4|) (-1159 |#1| |#2| |#3| |#4|))))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2523 (($ $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-713)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-1091)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-835 (-1091)))) (($ $ (-1 (-1159 |#1| |#2| |#3| |#4|) (-1159 |#1| |#2| |#3| |#4|)) (-713)) NIL) (($ $ (-1 (-1159 |#1| |#2| |#3| |#4|) (-1159 |#1| |#2| |#3| |#4|))) NIL)) (-2097 (($ $) NIL)) (-1512 (((-1159 |#1| |#2| |#3| |#4|) $) 17)) (-2749 (((-827 (-525)) $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-567 (-501)))) (((-357) $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-953))) (((-205) $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-953)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-1159 |#1| |#2| |#3| |#4|) (-844))))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-1159 |#1| |#2| |#3| |#4|)) 29) (($ (-1091)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-968 (-1091)))) (($ (-1158 |#2| |#3| |#4|)) 36)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| (-1159 |#1| |#2| |#3| |#4|) (-844))) (|has| (-1159 |#1| |#2| |#3| |#4|) (-136))))) (-2104 (((-713)) NIL)) (-1438 (((-1159 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-510)))) (-3959 (((-108) $ $) NIL)) (-2086 (($ $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-762)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) 41 T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-713)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-213))) (($ $ (-1091)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-835 (-1091)))) (($ $ (-1 (-1159 |#1| |#2| |#3| |#4|) (-1159 |#1| |#2| |#3| |#4|)) (-713)) NIL) (($ $ (-1 (-1159 |#1| |#2| |#3| |#4|) (-1159 |#1| |#2| |#3| |#4|))) NIL)) (-4045 (((-108) $ $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-789)))) (-4026 (((-108) $ $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-789)))) (-4017 (((-108) $ $) NIL (|has| (-1159 |#1| |#2| |#3| |#4|) (-789)))) (-4100 (($ $ $) 34) (($ (-1159 |#1| |#2| |#3| |#4|) (-1159 |#1| |#2| |#3| |#4|)) 31)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-1159 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1159 |#1| |#2| |#3| |#4|)) NIL)))
+(((-291 |#1| |#2| |#3| |#4|) (-13 (-925 (-1159 |#1| |#2| |#3| |#4|)) (-968 (-1158 |#2| |#3| |#4|)) (-10 -8 (-15 -2480 ((-3 (-782 |#2|) "failed") $)) (-15 -1270 ($ (-1158 |#2| |#3| |#4|))))) (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)) (-13 (-27) (-1113) (-408 |#1|)) (-1091) |#2|) (T -291))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1158 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-408 *3))) (-14 *5 (-1091)) (-14 *6 *4) (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429))) (-5 *1 (-291 *3 *4 *5 *6)))) (-2480 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429))) (-5 *2 (-782 *4)) (-5 *1 (-291 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-408 *3))) (-14 *5 (-1091)) (-14 *6 *4))))
+(-13 (-925 (-1159 |#1| |#2| |#3| |#4|)) (-968 (-1158 |#2| |#3| |#4|)) (-10 -8 (-15 -2480 ((-3 (-782 |#2|) "failed") $)) (-15 -1270 ($ (-1158 |#2| |#3| |#4|)))))
+((-2694 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 13)))
+(((-292 |#1| |#2|) (-10 -7 (-15 -2694 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-789) (-789)) (T -292))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-789)) (-4 *6 (-789)) (-5 *2 (-294 *6)) (-5 *1 (-292 *5 *6)))))
+(-10 -7 (-15 -2694 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|))))
+((-2451 (((-51) |#2| (-273 |#2|) (-713)) 33) (((-51) |#2| (-273 |#2|)) 24) (((-51) |#2| (-713)) 28) (((-51) |#2|) 25) (((-51) (-1091)) 21)) (-2307 (((-51) |#2| (-273 |#2|) (-385 (-525))) 51) (((-51) |#2| (-273 |#2|)) 48) (((-51) |#2| (-385 (-525))) 50) (((-51) |#2|) 49) (((-51) (-1091)) 47)) (-2477 (((-51) |#2| (-273 |#2|) (-385 (-525))) 46) (((-51) |#2| (-273 |#2|)) 43) (((-51) |#2| (-385 (-525))) 45) (((-51) |#2|) 44) (((-51) (-1091)) 42)) (-2465 (((-51) |#2| (-273 |#2|) (-525)) 39) (((-51) |#2| (-273 |#2|)) 35) (((-51) |#2| (-525)) 38) (((-51) |#2|) 36) (((-51) (-1091)) 34)))
+(((-293 |#1| |#2|) (-10 -7 (-15 -2451 ((-51) (-1091))) (-15 -2451 ((-51) |#2|)) (-15 -2451 ((-51) |#2| (-713))) (-15 -2451 ((-51) |#2| (-273 |#2|))) (-15 -2451 ((-51) |#2| (-273 |#2|) (-713))) (-15 -2465 ((-51) (-1091))) (-15 -2465 ((-51) |#2|)) (-15 -2465 ((-51) |#2| (-525))) (-15 -2465 ((-51) |#2| (-273 |#2|))) (-15 -2465 ((-51) |#2| (-273 |#2|) (-525))) (-15 -2477 ((-51) (-1091))) (-15 -2477 ((-51) |#2|)) (-15 -2477 ((-51) |#2| (-385 (-525)))) (-15 -2477 ((-51) |#2| (-273 |#2|))) (-15 -2477 ((-51) |#2| (-273 |#2|) (-385 (-525)))) (-15 -2307 ((-51) (-1091))) (-15 -2307 ((-51) |#2|)) (-15 -2307 ((-51) |#2| (-385 (-525)))) (-15 -2307 ((-51) |#2| (-273 |#2|))) (-15 -2307 ((-51) |#2| (-273 |#2|) (-385 (-525))))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1113) (-408 |#1|))) (T -293))
+((-2307 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525))) (-4 *3 (-13 (-27) (-1113) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-2307 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-2307 (*1 *2 *3 *4) (-12 (-5 *4 (-385 (-525))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *5))))) (-2307 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *4))))) (-2307 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-408 *4))))) (-2477 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525))) (-4 *3 (-13 (-27) (-1113) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-2477 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-2477 (*1 *2 *3 *4) (-12 (-5 *4 (-385 (-525))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *5))))) (-2477 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *4))))) (-2477 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-408 *4))))) (-2465 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-525)) (-4 *3 (-13 (-27) (-1113) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-2465 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-2465 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *5))))) (-2465 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *4))))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-408 *4))))) (-2451 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-273 *3)) (-5 *5 (-713)) (-4 *3 (-13 (-27) (-1113) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *6 *3)))) (-2451 (*1 *2 *3 *4) (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)))) (-2451 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *5))))) (-2451 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *4))))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-293 *4 *5)) (-4 *5 (-13 (-27) (-1113) (-408 *4))))))
+(-10 -7 (-15 -2451 ((-51) (-1091))) (-15 -2451 ((-51) |#2|)) (-15 -2451 ((-51) |#2| (-713))) (-15 -2451 ((-51) |#2| (-273 |#2|))) (-15 -2451 ((-51) |#2| (-273 |#2|) (-713))) (-15 -2465 ((-51) (-1091))) (-15 -2465 ((-51) |#2|)) (-15 -2465 ((-51) |#2| (-525))) (-15 -2465 ((-51) |#2| (-273 |#2|))) (-15 -2465 ((-51) |#2| (-273 |#2|) (-525))) (-15 -2477 ((-51) (-1091))) (-15 -2477 ((-51) |#2|)) (-15 -2477 ((-51) |#2| (-385 (-525)))) (-15 -2477 ((-51) |#2| (-273 |#2|))) (-15 -2477 ((-51) |#2| (-273 |#2|) (-385 (-525)))) (-15 -2307 ((-51) (-1091))) (-15 -2307 ((-51) |#2|)) (-15 -2307 ((-51) |#2| (-385 (-525)))) (-15 -2307 ((-51) |#2| (-273 |#2|))) (-15 -2307 ((-51) |#2| (-273 |#2|) (-385 (-525)))))
+((-1260 (((-108) $ $) NIL)) (-3540 (((-592 $) $ (-1091)) NIL (|has| |#1| (-517))) (((-592 $) $) NIL (|has| |#1| (-517))) (((-592 $) (-1087 $) (-1091)) NIL (|has| |#1| (-517))) (((-592 $) (-1087 $)) NIL (|has| |#1| (-517))) (((-592 $) (-887 $)) NIL (|has| |#1| (-517)))) (-1466 (($ $ (-1091)) NIL (|has| |#1| (-517))) (($ $) NIL (|has| |#1| (-517))) (($ (-1087 $) (-1091)) NIL (|has| |#1| (-517))) (($ (-1087 $)) NIL (|has| |#1| (-517))) (($ (-887 $)) NIL (|has| |#1| (-517)))) (-1989 (((-108) $) 27 (-3279 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))) (-2383 (((-592 (-1091)) $) 350)) (-2146 (((-385 (-1087 $)) $ (-565 $)) NIL (|has| |#1| (-517)))) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-1895 (((-592 (-565 $)) $) NIL)) (-2351 (($ $) 159 (|has| |#1| (-517)))) (-1603 (($ $) 135 (|has| |#1| (-517)))) (-4179 (($ $ (-1013 $)) 220 (|has| |#1| (-517))) (($ $ (-1091)) 216 (|has| |#1| (-517)))) (-1342 (((-3 $ "failed") $ $) NIL (-3279 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))) (-1224 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) 367) (($ $ (-592 (-565 $)) (-592 $)) 411)) (-4050 (((-396 (-1087 $)) (-1087 $)) 294 (-12 (|has| |#1| (-429)) (|has| |#1| (-517))))) (-3706 (($ $) NIL (|has| |#1| (-517)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-517)))) (-2211 (($ $) NIL (|has| |#1| (-517)))) (-3197 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2320 (($ $) 155 (|has| |#1| (-517)))) (-1569 (($ $) 131 (|has| |#1| (-517)))) (-3992 (($ $ (-525)) 69 (|has| |#1| (-517)))) (-2382 (($ $) 163 (|has| |#1| (-517)))) (-2193 (($ $) 139 (|has| |#1| (-517)))) (-2305 (($) NIL (-3279 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))) CONST)) (-2533 (((-592 $) $ (-1091)) NIL (|has| |#1| (-517))) (((-592 $) $) NIL (|has| |#1| (-517))) (((-592 $) (-1087 $) (-1091)) NIL (|has| |#1| (-517))) (((-592 $) (-1087 $)) NIL (|has| |#1| (-517))) (((-592 $) (-887 $)) NIL (|has| |#1| (-517)))) (-3572 (($ $ (-1091)) NIL (|has| |#1| (-517))) (($ $) NIL (|has| |#1| (-517))) (($ (-1087 $) (-1091)) 122 (|has| |#1| (-517))) (($ (-1087 $)) NIL (|has| |#1| (-517))) (($ (-887 $)) NIL (|has| |#1| (-517)))) (-2591 (((-3 (-565 $) "failed") $) 17) (((-3 (-1091) "failed") $) NIL) (((-3 |#1| "failed") $) 420) (((-3 (-47) "failed") $) 322 (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-887 |#1|)) "failed") $) NIL (|has| |#1| (-517))) (((-3 (-887 |#1|) "failed") $) NIL (|has| |#1| (-977))) (((-3 (-385 (-525)) "failed") $) 46 (-3279 (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-3898 (((-565 $) $) 11) (((-1091) $) NIL) ((|#1| $) 402) (((-47) $) NIL (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-887 |#1|)) $) NIL (|has| |#1| (-517))) (((-887 |#1|) $) NIL (|has| |#1| (-977))) (((-385 (-525)) $) 305 (-3279 (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-1726 (($ $ $) NIL (|has| |#1| (-517)))) (-3416 (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) 115 (|has| |#1| (-977))) (((-632 |#1|) (-632 $)) 105 (|has| |#1| (-977))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))))) (-3503 (($ $) 87 (|has| |#1| (-517)))) (-3762 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))))) (-1704 (($ $ $) NIL (|has| |#1| (-517)))) (-1283 (($ $ (-1013 $)) 224 (|has| |#1| (-517))) (($ $ (-1091)) 222 (|has| |#1| (-517)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| |#1| (-517)))) (-3836 (((-108) $) NIL (|has| |#1| (-517)))) (-3998 (($ $ $) 190 (|has| |#1| (-517)))) (-1535 (($) 125 (|has| |#1| (-517)))) (-1962 (($ $ $) 210 (|has| |#1| (-517)))) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 373 (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 380 (|has| |#1| (-821 (-357))))) (-3694 (($ $) NIL) (($ (-592 $)) NIL)) (-3321 (((-592 (-110)) $) NIL)) (-2972 (((-110) (-110)) 265)) (-1985 (((-108) $) 25 (-3279 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))))) (-2126 (((-108) $) NIL (|has| $ (-968 (-525))))) (-1931 (($ $) 68 (|has| |#1| (-977)))) (-1498 (((-1043 |#1| (-565 $)) $) 82 (|has| |#1| (-977)))) (-1979 (((-108) $) 61 (|has| |#1| (-517)))) (-3220 (($ $ (-525)) NIL (|has| |#1| (-517)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-517)))) (-1637 (((-1087 $) (-565 $)) 266 (|has| $ (-977)))) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-2694 (($ (-1 $ $) (-565 $)) 407)) (-1661 (((-3 (-565 $) "failed") $) NIL)) (-1415 (($ $) 129 (|has| |#1| (-517)))) (-3071 (($ $) 235 (|has| |#1| (-517)))) (-2756 (($ (-592 $)) NIL (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-3451 (((-1074) $) NIL)) (-2129 (((-592 (-565 $)) $) 49)) (-1581 (($ (-110) $) NIL) (($ (-110) (-592 $)) 412)) (-4228 (((-3 (-592 $) "failed") $) NIL (|has| |#1| (-1032)))) (-1617 (((-3 (-2 (|:| |val| $) (|:| -1864 (-525))) "failed") $) NIL (|has| |#1| (-977)))) (-3852 (((-3 (-592 $) "failed") $) 415 (|has| |#1| (-25)))) (-2274 (((-3 (-2 (|:| -1655 (-525)) (|:| |var| (-565 $))) "failed") $) 419 (|has| |#1| (-25)))) (-1553 (((-3 (-2 (|:| |var| (-565 $)) (|:| -1864 (-525))) "failed") $) NIL (|has| |#1| (-1032))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1864 (-525))) "failed") $ (-110)) NIL (|has| |#1| (-977))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1864 (-525))) "failed") $ (-1091)) NIL (|has| |#1| (-977)))) (-3069 (((-108) $ (-110)) NIL) (((-108) $ (-1091)) 53)) (-2502 (($ $) NIL (-3279 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-2608 (($ $ (-1091)) 239 (|has| |#1| (-517))) (($ $ (-1013 $)) 241 (|has| |#1| (-517)))) (-1751 (((-713) $) NIL)) (-2012 (((-1038) $) NIL)) (-2513 (((-108) $) 43)) (-2525 ((|#1| $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 287 (|has| |#1| (-517)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-2186 (((-108) $ $) NIL) (((-108) $ (-1091)) NIL)) (-1923 (($ $ (-1091)) 214 (|has| |#1| (-517))) (($ $) 212 (|has| |#1| (-517)))) (-2075 (($ $) 206 (|has| |#1| (-517)))) (-2802 (((-396 (-1087 $)) (-1087 $)) 292 (-12 (|has| |#1| (-429)) (|has| |#1| (-517))))) (-2195 (((-396 $) $) NIL (|has| |#1| (-517)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-517))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-517)))) (-1680 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-517)))) (-1250 (($ $) 127 (|has| |#1| (-517)))) (-3545 (((-108) $) NIL (|has| $ (-968 (-525))))) (-2602 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) 406) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1091)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1091)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1091) (-1 $ (-592 $))) NIL) (($ $ (-1091) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) 360) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1091)) NIL (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-567 (-501)))) (($ $) NIL (|has| |#1| (-567 (-501)))) (($ $ (-110) $ (-1091)) 348 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-110)) (-592 $) (-1091)) 347 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1091)) (-592 (-713)) (-592 (-1 $ $))) NIL (|has| |#1| (-977))) (($ $ (-592 (-1091)) (-592 (-713)) (-592 (-1 $ (-592 $)))) NIL (|has| |#1| (-977))) (($ $ (-1091) (-713) (-1 $ (-592 $))) NIL (|has| |#1| (-977))) (($ $ (-1091) (-713) (-1 $ $)) NIL (|has| |#1| (-977)))) (-1290 (((-713) $) NIL (|has| |#1| (-517)))) (-1511 (($ $) 227 (|has| |#1| (-517)))) (-3410 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-517)))) (-1567 (($ $) NIL) (($ $ $) NIL)) (-1555 (($ $) 237 (|has| |#1| (-517)))) (-3161 (($ $) 188 (|has| |#1| (-517)))) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-977))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-977))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-977))) (($ $ (-1091)) NIL (|has| |#1| (-977)))) (-2097 (($ $) 70 (|has| |#1| (-517)))) (-1512 (((-1043 |#1| (-565 $)) $) 84 (|has| |#1| (-517)))) (-1571 (($ $) 303 (|has| $ (-977)))) (-2396 (($ $) 165 (|has| |#1| (-517)))) (-2209 (($ $) 141 (|has| |#1| (-517)))) (-2367 (($ $) 161 (|has| |#1| (-517)))) (-2176 (($ $) 137 (|has| |#1| (-517)))) (-2335 (($ $) 157 (|has| |#1| (-517)))) (-1584 (($ $) 133 (|has| |#1| (-517)))) (-2749 (((-827 (-525)) $) NIL (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| |#1| (-567 (-827 (-357))))) (($ (-396 $)) NIL (|has| |#1| (-517))) (((-501) $) 345 (|has| |#1| (-567 (-501))))) (-3700 (($ $ $) NIL (|has| |#1| (-450)))) (-2222 (($ $ $) NIL (|has| |#1| (-450)))) (-1270 (((-798) $) 405) (($ (-565 $)) 396) (($ (-1091)) 362) (($ |#1|) 323) (($ $) NIL (|has| |#1| (-517))) (($ (-47)) 298 (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525))))) (($ (-1043 |#1| (-565 $))) 86 (|has| |#1| (-977))) (($ (-385 |#1|)) NIL (|has| |#1| (-517))) (($ (-887 (-385 |#1|))) NIL (|has| |#1| (-517))) (($ (-385 (-887 (-385 |#1|)))) NIL (|has| |#1| (-517))) (($ (-385 (-887 |#1|))) NIL (|has| |#1| (-517))) (($ (-887 |#1|)) NIL (|has| |#1| (-977))) (($ (-385 (-525))) NIL (-3279 (|has| |#1| (-517)) (|has| |#1| (-968 (-385 (-525)))))) (($ (-525)) 34 (-3279 (|has| |#1| (-968 (-525))) (|has| |#1| (-977))))) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) NIL (|has| |#1| (-977)))) (-1604 (($ $) NIL) (($ (-592 $)) NIL)) (-2938 (($ $ $) 208 (|has| |#1| (-517)))) (-2585 (($ $ $) 194 (|has| |#1| (-517)))) (-2839 (($ $ $) 198 (|has| |#1| (-517)))) (-2390 (($ $ $) 192 (|has| |#1| (-517)))) (-1368 (($ $ $) 196 (|has| |#1| (-517)))) (-1863 (((-108) (-110)) 9)) (-2438 (($ $) 171 (|has| |#1| (-517)))) (-2257 (($ $) 147 (|has| |#1| (-517)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2410 (($ $) 167 (|has| |#1| (-517)))) (-2226 (($ $) 143 (|has| |#1| (-517)))) (-2464 (($ $) 175 (|has| |#1| (-517)))) (-2287 (($ $) 151 (|has| |#1| (-517)))) (-2500 (($ (-1091) $) NIL) (($ (-1091) $ $) NIL) (($ (-1091) $ $ $) NIL) (($ (-1091) $ $ $ $) NIL) (($ (-1091) (-592 $)) NIL)) (-2391 (($ $) 202 (|has| |#1| (-517)))) (-2979 (($ $) 200 (|has| |#1| (-517)))) (-2687 (($ $) 177 (|has| |#1| (-517)))) (-2303 (($ $) 153 (|has| |#1| (-517)))) (-2450 (($ $) 173 (|has| |#1| (-517)))) (-2273 (($ $) 149 (|has| |#1| (-517)))) (-2424 (($ $) 169 (|has| |#1| (-517)))) (-2242 (($ $) 145 (|has| |#1| (-517)))) (-2086 (($ $) 180 (|has| |#1| (-517)))) (-1576 (($ $ (-525)) NIL (-3279 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) NIL (-3279 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032)))) (($ $ (-856)) NIL (-3279 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))))) (-3355 (($) 20 (-3279 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))) CONST)) (-2439 (($ $) 231 (|has| |#1| (-517)))) (-3363 (($) 22 (-3279 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))) CONST)) (-1908 (($ $) 182 (|has| |#1| (-517))) (($ $ $) 184 (|has| |#1| (-517)))) (-1582 (($ $) 229 (|has| |#1| (-517)))) (-2093 (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-977))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-977))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-977))) (($ $ (-1091)) NIL (|has| |#1| (-977)))) (-3917 (($ $) 233 (|has| |#1| (-517)))) (-1791 (($ $ $) 186 (|has| |#1| (-517)))) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 79)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 78)) (-4100 (($ (-1043 |#1| (-565 $)) (-1043 |#1| (-565 $))) 96 (|has| |#1| (-517))) (($ $ $) 42 (-3279 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-4090 (($ $ $) 40 (-3279 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))))) (($ $) 29 (-3279 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))) (-4080 (($ $ $) 38 (-3279 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))) (** (($ $ $) 63 (|has| |#1| (-517))) (($ $ (-385 (-525))) 300 (|has| |#1| (-517))) (($ $ (-525)) 74 (-3279 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) 71 (-3279 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032)))) (($ $ (-856)) 76 (-3279 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032))))) (* (($ (-385 (-525)) $) NIL (|has| |#1| (-517))) (($ $ (-385 (-525))) NIL (|has| |#1| (-517))) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160))) (($ $ $) 36 (-3279 (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) (|has| |#1| (-1032)))) (($ (-525) $) 32 (-3279 (|has| |#1| (-21)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))))) (($ (-713) $) NIL (-3279 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))))) (($ (-856) $) NIL (-3279 (|has| |#1| (-25)) (-12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))))))
+(((-294 |#1|) (-13 (-408 |#1|) (-10 -8 (IF (|has| |#1| (-517)) (PROGN (-6 (-29 |#1|)) (-6 (-1113)) (-6 (-149)) (-6 (-578)) (-6 (-1055)) (-15 -3503 ($ $)) (-15 -1979 ((-108) $)) (-15 -3992 ($ $ (-525))) (IF (|has| |#1| (-429)) (PROGN (-15 -2802 ((-396 (-1087 $)) (-1087 $))) (-15 -4050 ((-396 (-1087 $)) (-1087 $)))) |%noBranch|) (IF (|has| |#1| (-968 (-525))) (-6 (-968 (-47))) |%noBranch|)) |%noBranch|))) (-789)) (T -294))
+((-3503 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-517)) (-4 *2 (-789)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))) (-3992 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))) (-2802 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789)) (-5 *2 (-396 (-1087 (-294 *4)))) (-5 *1 (-294 *4)) (-5 *3 (-1087 (-294 *4))))) (-4050 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789)) (-5 *2 (-396 (-1087 (-294 *4)))) (-5 *1 (-294 *4)) (-5 *3 (-1087 (-294 *4))))))
+(-13 (-408 |#1|) (-10 -8 (IF (|has| |#1| (-517)) (PROGN (-6 (-29 |#1|)) (-6 (-1113)) (-6 (-149)) (-6 (-578)) (-6 (-1055)) (-15 -3503 ($ $)) (-15 -1979 ((-108) $)) (-15 -3992 ($ $ (-525))) (IF (|has| |#1| (-429)) (PROGN (-15 -2802 ((-396 (-1087 $)) (-1087 $))) (-15 -4050 ((-396 (-1087 $)) (-1087 $)))) |%noBranch|) (IF (|has| |#1| (-968 (-525))) (-6 (-968 (-47))) |%noBranch|)) |%noBranch|)))
+((-2107 (((-51) |#2| (-110) (-273 |#2|) (-592 |#2|)) 88) (((-51) |#2| (-110) (-273 |#2|) (-273 |#2|)) 84) (((-51) |#2| (-110) (-273 |#2|) |#2|) 86) (((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|) 87) (((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|))) 80) (((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 |#2|)) 82) (((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 |#2|)) 83) (((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|))) 81) (((-51) (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|)) 89) (((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|)) 85)))
+(((-295 |#1| |#2|) (-10 -7 (-15 -2107 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|))) (-15 -2107 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -2107 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -2107 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -2107 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -2107 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -2107 ((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|)) (-15 -2107 ((-51) |#2| (-110) (-273 |#2|) |#2|)) (-15 -2107 ((-51) |#2| (-110) (-273 |#2|) (-273 |#2|))) (-15 -2107 ((-51) |#2| (-110) (-273 |#2|) (-592 |#2|)))) (-13 (-789) (-517) (-567 (-501))) (-408 |#1|)) (T -295))
+((-2107 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-5 *6 (-592 *3)) (-4 *3 (-408 *7)) (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *3)))) (-2107 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *3)))) (-2107 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *3)))) (-2107 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-273 *5)) (-5 *4 (-110)) (-4 *5 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *5)))) (-2107 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-110))) (-5 *5 (-273 *8)) (-5 *6 (-592 (-273 *8))) (-4 *8 (-408 *7)) (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *8)))) (-2107 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-2107 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-592 (-273 *8))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *8)) (-5 *6 (-592 *8)) (-4 *8 (-408 *7)) (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *7 *8)))) (-2107 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-2107 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-592 *7)) (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *6 *7)))) (-2107 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-273 *6)) (-5 *4 (-110)) (-4 *6 (-408 *5)) (-4 *5 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51)) (-5 *1 (-295 *5 *6)))))
+(-10 -7 (-15 -2107 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-273 |#2|))) (-15 -2107 ((-51) (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -2107 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -2107 ((-51) (-592 (-273 |#2|)) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -2107 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 |#2|))) (-15 -2107 ((-51) (-592 |#2|) (-592 (-110)) (-273 |#2|) (-592 (-273 |#2|)))) (-15 -2107 ((-51) (-273 |#2|) (-110) (-273 |#2|) |#2|)) (-15 -2107 ((-51) |#2| (-110) (-273 |#2|) |#2|)) (-15 -2107 ((-51) |#2| (-110) (-273 |#2|) (-273 |#2|))) (-15 -2107 ((-51) |#2| (-110) (-273 |#2|) (-592 |#2|))))
+((-1856 (((-1123 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525) (-1074)) 46) (((-1123 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525)) 47) (((-1123 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525) (-1074)) 43) (((-1123 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525)) 44)) (-2248 (((-1 (-205) (-205)) (-205)) 45)))
+(((-296) (-10 -7 (-15 -2248 ((-1 (-205) (-205)) (-205))) (-15 -1856 ((-1123 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525))) (-15 -1856 ((-1123 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525) (-1074))) (-15 -1856 ((-1123 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525))) (-15 -1856 ((-1123 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525) (-1074))))) (T -296))
+((-1856 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1015 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *8 (-1074)) (-5 *2 (-1123 (-861))) (-5 *1 (-296)))) (-1856 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1015 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *2 (-1123 (-861))) (-5 *1 (-296)))) (-1856 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1015 (-205))) (-5 *6 (-525)) (-5 *7 (-1074)) (-5 *2 (-1123 (-861))) (-5 *1 (-296)))) (-1856 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1015 (-205))) (-5 *6 (-525)) (-5 *2 (-1123 (-861))) (-5 *1 (-296)))) (-2248 (*1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-296)) (-5 *3 (-205)))))
+(-10 -7 (-15 -2248 ((-1 (-205) (-205)) (-205))) (-15 -1856 ((-1123 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525))) (-15 -1856 ((-1123 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-1 (-205) (-205)) (-525) (-1074))) (-15 -1856 ((-1123 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525))) (-15 -1856 ((-1123 (-861)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-205) (-525) (-1074))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 25)) (-2383 (((-592 (-1005)) $) NIL)) (-2577 (((-1091) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-3642 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-4192 (((-1072 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 20)) (-2351 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL (|has| |#1| (-341)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3197 (((-108) $ $) NIL (|has| |#1| (-341)))) (-2320 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2307 (($ (-713) (-1072 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-2382 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) NIL T CONST)) (-1726 (($ $ $) NIL (|has| |#1| (-341)))) (-2571 (($ $) 32)) (-3762 (((-3 $ "failed") $) NIL)) (-1704 (($ $ $) NIL (|has| |#1| (-341)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3836 (((-108) $) NIL (|has| |#1| (-341)))) (-2911 (((-108) $) NIL)) (-1535 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3973 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) 16)) (-1985 (((-108) $) NIL)) (-3220 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3073 (($ $ (-856)) NIL) (($ $ (-385 (-525))) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-385 (-525))) NIL) (($ $ (-1005) (-385 (-525))) NIL) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) NIL)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-1415 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL (|has| |#1| (-341)))) (-2650 (($ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1091)) NIL (-3279 (-12 (|has| |#1| (-15 -2650 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -2383 ((-592 (-1091)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1113)))))) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-341)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2195 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-2182 (($ $ (-385 (-525))) NIL)) (-1680 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2008 (((-385 (-525)) $) 17)) (-1700 (($ (-1158 |#1| |#2| |#3|)) 11)) (-1864 (((-1158 |#1| |#2| |#3|) $) 12)) (-1250 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2602 (((-1072 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-1290 (((-713) $) NIL (|has| |#1| (-341)))) (-3410 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1032)))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-341)))) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-1587 (((-385 (-525)) $) NIL)) (-2396 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3577 (($ $) 10)) (-1270 (((-798) $) 38) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-3468 ((|#1| $ (-385 (-525))) 30)) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) NIL)) (-3144 ((|#1| $) NIL)) (-2438 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2410 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1369 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1270 (|#1| (-1091))))))) (-2687 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 27)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 33)) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-297 |#1| |#2| |#3|) (-13 (-1154 |#1|) (-734) (-10 -8 (-15 -1700 ($ (-1158 |#1| |#2| |#3|))) (-15 -1864 ((-1158 |#1| |#2| |#3|) $)) (-15 -2008 ((-385 (-525)) $)))) (-13 (-341) (-789)) (-1091) |#1|) (T -297))
+((-1700 (*1 *1 *2) (-12 (-5 *2 (-1158 *3 *4 *5)) (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-297 *3 *4 *5)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-1158 *3 *4 *5)) (-5 *1 (-297 *3 *4 *5)) (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1091)) (-14 *5 *3))) (-2008 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-297 *3 *4 *5)) (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1091)) (-14 *5 *3))))
+(-13 (-1154 |#1|) (-734) (-10 -8 (-15 -1700 ($ (-1158 |#1| |#2| |#3|))) (-15 -1864 ((-1158 |#1| |#2| |#3|) $)) (-15 -2008 ((-385 (-525)) $))))
+((-3220 (((-2 (|:| -1864 (-713)) (|:| -1655 |#1|) (|:| |radicand| (-592 |#1|))) (-396 |#1|) (-713)) 24)) (-1415 (((-592 (-2 (|:| -1655 (-713)) (|:| |logand| |#1|))) (-396 |#1|)) 28)))
+(((-298 |#1|) (-10 -7 (-15 -3220 ((-2 (|:| -1864 (-713)) (|:| -1655 |#1|) (|:| |radicand| (-592 |#1|))) (-396 |#1|) (-713))) (-15 -1415 ((-592 (-2 (|:| -1655 (-713)) (|:| |logand| |#1|))) (-396 |#1|)))) (-517)) (T -298))
+((-1415 (*1 *2 *3) (-12 (-5 *3 (-396 *4)) (-4 *4 (-517)) (-5 *2 (-592 (-2 (|:| -1655 (-713)) (|:| |logand| *4)))) (-5 *1 (-298 *4)))) (-3220 (*1 *2 *3 *4) (-12 (-5 *3 (-396 *5)) (-4 *5 (-517)) (-5 *2 (-2 (|:| -1864 (-713)) (|:| -1655 *5) (|:| |radicand| (-592 *5)))) (-5 *1 (-298 *5)) (-5 *4 (-713)))))
+(-10 -7 (-15 -3220 ((-2 (|:| -1864 (-713)) (|:| -1655 |#1|) (|:| |radicand| (-592 |#1|))) (-396 |#1|) (-713))) (-15 -1415 ((-592 (-2 (|:| -1655 (-713)) (|:| |logand| |#1|))) (-396 |#1|))))
+((-2383 (((-592 |#2|) (-1087 |#4|)) 43)) (-2076 ((|#3| (-525)) 46)) (-3001 (((-1087 |#4|) (-1087 |#3|)) 30)) (-2089 (((-1087 |#4|) (-1087 |#4|) (-525)) 56)) (-1487 (((-1087 |#3|) (-1087 |#4|)) 21)) (-1587 (((-592 (-713)) (-1087 |#4|) (-592 |#2|)) 40)) (-2792 (((-1087 |#3|) (-1087 |#4|) (-592 |#2|) (-592 |#3|)) 35)))
+(((-299 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2792 ((-1087 |#3|) (-1087 |#4|) (-592 |#2|) (-592 |#3|))) (-15 -1587 ((-592 (-713)) (-1087 |#4|) (-592 |#2|))) (-15 -2383 ((-592 |#2|) (-1087 |#4|))) (-15 -1487 ((-1087 |#3|) (-1087 |#4|))) (-15 -3001 ((-1087 |#4|) (-1087 |#3|))) (-15 -2089 ((-1087 |#4|) (-1087 |#4|) (-525))) (-15 -2076 (|#3| (-525)))) (-735) (-789) (-977) (-884 |#3| |#1| |#2|)) (T -299))
+((-2076 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-977)) (-5 *1 (-299 *4 *5 *2 *6)) (-4 *6 (-884 *2 *4 *5)))) (-2089 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 *7)) (-5 *3 (-525)) (-4 *7 (-884 *6 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-5 *1 (-299 *4 *5 *6 *7)))) (-3001 (*1 *2 *3) (-12 (-5 *3 (-1087 *6)) (-4 *6 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-1087 *7)) (-5 *1 (-299 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-1087 *7)) (-4 *7 (-884 *6 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-5 *2 (-1087 *6)) (-5 *1 (-299 *4 *5 *6 *7)))) (-2383 (*1 *2 *3) (-12 (-5 *3 (-1087 *7)) (-4 *7 (-884 *6 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-5 *2 (-592 *5)) (-5 *1 (-299 *4 *5 *6 *7)))) (-1587 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *8)) (-5 *4 (-592 *6)) (-4 *6 (-789)) (-4 *8 (-884 *7 *5 *6)) (-4 *5 (-735)) (-4 *7 (-977)) (-5 *2 (-592 (-713))) (-5 *1 (-299 *5 *6 *7 *8)))) (-2792 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1087 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 *8)) (-4 *7 (-789)) (-4 *8 (-977)) (-4 *9 (-884 *8 *6 *7)) (-4 *6 (-735)) (-5 *2 (-1087 *8)) (-5 *1 (-299 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2792 ((-1087 |#3|) (-1087 |#4|) (-592 |#2|) (-592 |#3|))) (-15 -1587 ((-592 (-713)) (-1087 |#4|) (-592 |#2|))) (-15 -2383 ((-592 |#2|) (-1087 |#4|))) (-15 -1487 ((-1087 |#3|) (-1087 |#4|))) (-15 -3001 ((-1087 |#4|) (-1087 |#3|))) (-15 -2089 ((-1087 |#4|) (-1087 |#4|) (-525))) (-15 -2076 (|#3| (-525))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 14)) (-4192 (((-592 (-2 (|:| |gen| |#1|) (|:| -1250 (-525)))) $) 18)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4190 (((-713) $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) NIL)) (-3898 ((|#1| $) NIL)) (-3285 ((|#1| $ (-525)) NIL)) (-2824 (((-525) $ (-525)) NIL)) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-2440 (($ (-1 |#1| |#1|) $) NIL)) (-3178 (($ (-1 (-525) (-525)) $) 10)) (-3451 (((-1074) $) NIL)) (-3182 (($ $ $) NIL (|has| (-525) (-734)))) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL) (($ |#1|) NIL)) (-3468 (((-525) |#1| $) NIL)) (-3355 (($) 15 T CONST)) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) 21 (|has| |#1| (-789)))) (-4090 (($ $) 11) (($ $ $) 20)) (-4080 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL) (($ (-525) |#1|) 19)))
+(((-300 |#1|) (-13 (-21) (-660 (-525)) (-301 |#1| (-525)) (-10 -7 (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|))) (-1020)) (T -300))
NIL
(-13 (-21) (-660 (-525)) (-301 |#1| (-525)) (-10 -7 (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-2911 (((-592 (-2 (|:| |gen| |#1|) (|:| -1982 |#2|))) $) 27)) (-3263 (((-3 $ "failed") $ $) 19)) (-3107 (((-713) $) 28)) (-1505 (($) 17 T CONST)) (-1264 (((-3 |#1| "failed") $) 32)) (-2831 ((|#1| $) 31)) (-2938 ((|#1| $ (-525)) 25)) (-1845 ((|#2| $ (-525)) 26)) (-2463 (($ (-1 |#1| |#1|) $) 22)) (-3698 (($ (-1 |#2| |#2|) $) 23)) (-2337 (((-1073) $) 9)) (-2924 (($ $ $) 21 (|has| |#2| (-734)))) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11) (($ |#1|) 33)) (-1657 ((|#2| |#1| $) 24)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4059 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ |#2| |#1|) 29)))
-(((-301 |#1| |#2|) (-131) (-1019) (-126)) (T -301))
-((-4059 (*1 *1 *2 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-126)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-126)))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-126)) (-5 *2 (-713)))) (-2911 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-126)) (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1982 *4)))))) (-1845 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-301 *4 *2)) (-4 *4 (-1019)) (-4 *2 (-126)))) (-2938 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-301 *2 *4)) (-4 *4 (-126)) (-4 *2 (-1019)))) (-1657 (*1 *2 *3 *1) (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-126)))) (-3698 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-126)))) (-2463 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-126)))) (-2924 (*1 *1 *1 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-126)) (-4 *3 (-734)))))
-(-13 (-126) (-967 |t#1|) (-10 -8 (-15 -4059 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3107 ((-713) $)) (-15 -2911 ((-592 (-2 (|:| |gen| |t#1|) (|:| -1982 |t#2|))) $)) (-15 -1845 (|t#2| $ (-525))) (-15 -2938 (|t#1| $ (-525))) (-15 -1657 (|t#2| |t#1| $)) (-15 -3698 ($ (-1 |t#2| |t#2|) $)) (-15 -2463 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-734)) (-15 -2924 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-967 |#1|) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-2911 (((-592 (-2 (|:| |gen| |#1|) (|:| -1982 (-713)))) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3107 (((-713) $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) NIL)) (-2831 ((|#1| $) NIL)) (-2938 ((|#1| $ (-525)) NIL)) (-1845 (((-713) $ (-525)) NIL)) (-2463 (($ (-1 |#1| |#1|) $) NIL)) (-3698 (($ (-1 (-713) (-713)) $) NIL)) (-2337 (((-1073) $) NIL)) (-2924 (($ $ $) NIL (|has| (-713) (-734)))) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL) (($ |#1|) NIL)) (-1657 (((-713) |#1| $) NIL)) (-3875 (($) NIL T CONST)) (-3961 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-713) |#1|) NIL)))
-(((-302 |#1|) (-301 |#1| (-713)) (-1019)) (T -302))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-4192 (((-592 (-2 (|:| |gen| |#1|) (|:| -1250 |#2|))) $) 27)) (-1342 (((-3 $ "failed") $ $) 19)) (-4190 (((-713) $) 28)) (-2305 (($) 17 T CONST)) (-2591 (((-3 |#1| "failed") $) 32)) (-3898 ((|#1| $) 31)) (-3285 ((|#1| $ (-525)) 25)) (-2824 ((|#2| $ (-525)) 26)) (-2440 (($ (-1 |#1| |#1|) $) 22)) (-3178 (($ (-1 |#2| |#2|) $) 23)) (-3451 (((-1074) $) 9)) (-3182 (($ $ $) 21 (|has| |#2| (-734)))) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11) (($ |#1|) 33)) (-3468 ((|#2| |#1| $) 24)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4080 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ |#2| |#1|) 29)))
+(((-301 |#1| |#2|) (-131) (-1020) (-126)) (T -301))
+((-4080 (*1 *1 *2 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-126)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-126)))) (-4190 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-126)) (-5 *2 (-713)))) (-4192 (*1 *2 *1) (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-126)) (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1250 *4)))))) (-2824 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-301 *4 *2)) (-4 *4 (-1020)) (-4 *2 (-126)))) (-3285 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-301 *2 *4)) (-4 *4 (-126)) (-4 *2 (-1020)))) (-3468 (*1 *2 *3 *1) (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-126)))) (-3178 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-126)))) (-2440 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-126)))) (-3182 (*1 *1 *1 *1) (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-126)) (-4 *3 (-734)))))
+(-13 (-126) (-968 |t#1|) (-10 -8 (-15 -4080 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -4190 ((-713) $)) (-15 -4192 ((-592 (-2 (|:| |gen| |t#1|) (|:| -1250 |t#2|))) $)) (-15 -2824 (|t#2| $ (-525))) (-15 -3285 (|t#1| $ (-525))) (-15 -3468 (|t#2| |t#1| $)) (-15 -3178 ($ (-1 |t#2| |t#2|) $)) (-15 -2440 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-734)) (-15 -3182 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-968 |#1|) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-4192 (((-592 (-2 (|:| |gen| |#1|) (|:| -1250 (-713)))) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4190 (((-713) $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) NIL)) (-3898 ((|#1| $) NIL)) (-3285 ((|#1| $ (-525)) NIL)) (-2824 (((-713) $ (-525)) NIL)) (-2440 (($ (-1 |#1| |#1|) $) NIL)) (-3178 (($ (-1 (-713) (-713)) $) NIL)) (-3451 (((-1074) $) NIL)) (-3182 (($ $ $) NIL (|has| (-713) (-734)))) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL) (($ |#1|) NIL)) (-3468 (((-713) |#1| $) NIL)) (-3355 (($) NIL T CONST)) (-3994 (((-108) $ $) NIL)) (-4080 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-713) |#1|) NIL)))
+(((-302 |#1|) (-301 |#1| (-713)) (-1020)) (T -302))
NIL
(-301 |#1| (-713))
-((-3811 (($ $) 53)) (-2099 (($ $ |#2| |#3| $) 14)) (-1331 (($ (-1 |#3| |#3|) $) 35)) (-4221 (((-108) $) 27)) (-4232 ((|#2| $) 29)) (-2338 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-2751 ((|#2| $) 49)) (-3600 (((-592 |#2|) $) 38)) (-4116 (($ $ $ (-713)) 23)) (-4082 (($ $ |#2|) 42)))
-(((-303 |#1| |#2| |#3|) (-10 -8 (-15 -3811 (|#1| |#1|)) (-15 -2751 (|#2| |#1|)) (-15 -2338 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4116 (|#1| |#1| |#1| (-713))) (-15 -2099 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1331 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3600 ((-592 |#2|) |#1|)) (-15 -4232 (|#2| |#1|)) (-15 -4221 ((-108) |#1|)) (-15 -2338 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4082 (|#1| |#1| |#2|))) (-304 |#2| |#3|) (-976) (-734)) (T -303))
-NIL
-(-10 -8 (-15 -3811 (|#1| |#1|)) (-15 -2751 (|#2| |#1|)) (-15 -2338 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4116 (|#1| |#1| |#1| (-713))) (-15 -2099 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1331 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3600 ((-592 |#2|) |#1|)) (-15 -4232 (|#2| |#1|)) (-15 -4221 ((-108) |#1|)) (-15 -2338 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4082 (|#1| |#1| |#2|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3635 (($ $) 52 (|has| |#1| (-517)))) (-2950 (((-108) $) 54 (|has| |#1| (-517)))) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-1264 (((-3 (-525) "failed") $) 90 (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 88 (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 87)) (-2831 (((-525) $) 91 (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) 89 (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 86)) (-1247 (($ $) 60)) (-2866 (((-3 $ "failed") $) 34)) (-3811 (($ $) 75 (|has| |#1| (-429)))) (-2099 (($ $ |#1| |#2| $) 79)) (-2133 (((-108) $) 31)) (-3610 (((-713) $) 82)) (-1819 (((-108) $) 62)) (-4079 (($ |#1| |#2|) 61)) (-3181 ((|#2| $) 81)) (-1331 (($ (-1 |#2| |#2|) $) 80)) (-1370 (($ (-1 |#1| |#1|) $) 63)) (-1212 (($ $) 65)) (-1224 ((|#1| $) 66)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-4221 (((-108) $) 85)) (-4232 ((|#1| $) 84)) (-2338 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-517)))) (-2513 ((|#2| $) 64)) (-2751 ((|#1| $) 76 (|has| |#1| (-429)))) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47) (($ (-385 (-525))) 57 (-3309 (|has| |#1| (-967 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525))))))) (-3600 (((-592 |#1|) $) 83)) (-1657 ((|#1| $ |#2|) 59)) (-3421 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2093 (((-713)) 29)) (-4116 (($ $ $ (-713)) 78 (|has| |#1| (-160)))) (-2262 (((-108) $ $) 53 (|has| |#1| (-517)))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4082 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
-(((-304 |#1| |#2|) (-131) (-976) (-734)) (T -304))
-((-4221 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) (-5 *2 (-108)))) (-4232 (*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) (-5 *2 (-592 *3)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) (-5 *2 (-713)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) (-1331 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)))) (-2099 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)))) (-4116 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) (-4 *3 (-160)))) (-2338 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-304 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)) (-4 *2 (-517)))) (-2751 (*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)) (-4 *2 (-429)))) (-3811 (*1 *1 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)) (-4 *2 (-429)))))
-(-13 (-46 |t#1| |t#2|) (-389 |t#1|) (-10 -8 (-15 -4221 ((-108) $)) (-15 -4232 (|t#1| $)) (-15 -3600 ((-592 |t#1|) $)) (-15 -3610 ((-713) $)) (-15 -3181 (|t#2| $)) (-15 -1331 ($ (-1 |t#2| |t#2|) $)) (-15 -2099 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-160)) (-15 -4116 ($ $ $ (-713))) |%noBranch|) (IF (|has| |t#1| (-517)) (-15 -2338 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -2751 (|t#1| $)) (-15 -3811 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-389 |#1|) . T) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-982 #0#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3072 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-1356 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789))))) (-3327 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3410 (((-108) $ (-713)) NIL)) (-2407 (((-108) (-108)) NIL)) (-2109 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255)))) (-3290 (($ (-1 (-108) |#1|) $) NIL)) (-2724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| $ (-6 -4255)))) (-1693 (($ $) NIL)) (-3143 (($ $) NIL (|has| |#1| (-1019)))) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2792 (($ |#1| $) NIL (|has| |#1| (-1019))) (($ (-1 (-108) |#1|) $) NIL)) (-2273 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2870 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) NIL)) (-3763 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019)))) (-2579 (($ $ (-525)) NIL)) (-2808 (((-713) $) NIL)) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4018 (($ (-713) |#1|) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) NIL (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-2749 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1932 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2573 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-3167 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3435 (($ (-592 |#1|)) NIL)) (-3135 ((|#1| $) NIL (|has| (-525) (-789)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1911 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-3977 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-3653 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3703 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) NIL)) (-1497 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2664 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-305 |#1|) (-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -3435 ($ (-592 |#1|))) (-15 -2808 ((-713) $)) (-15 -2579 ($ $ (-525))) (-15 -2407 ((-108) (-108))))) (-1126)) (T -305))
-((-3435 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-305 *3)))) (-2808 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-305 *3)) (-4 *3 (-1126)))) (-2579 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-305 *3)) (-4 *3 (-1126)))) (-2407 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-305 *3)) (-4 *3 (-1126)))))
-(-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -3435 ($ (-592 |#1|))) (-15 -2808 ((-713) $)) (-15 -2579 ($ $ (-525))) (-15 -2407 ((-108) (-108)))))
-((-1831 (((-108) $) 42)) (-3425 (((-713)) 22)) (-3512 ((|#2| $) 46) (($ $ (-855)) 104)) (-3107 (((-713)) 98)) (-2229 (($ (-1172 |#2|)) 20)) (-4037 (((-108) $) 116)) (-3477 ((|#2| $) 48) (($ $ (-855)) 102)) (-2362 (((-1086 |#2|) $) NIL) (((-1086 $) $ (-855)) 95)) (-3474 (((-1086 |#2|) $) 83)) (-2509 (((-1086 |#2|) $) 80) (((-3 (-1086 |#2|) "failed") $ $) 77)) (-2783 (($ $ (-1086 |#2|)) 53)) (-2864 (((-775 (-855))) 28) (((-855)) 43)) (-3191 (((-128)) 25)) (-2513 (((-775 (-855)) $) 30) (((-855) $) 118)) (-3555 (($) 110)) (-4093 (((-1172 |#2|) $) NIL) (((-632 |#2|) (-1172 $)) 39)) (-3421 (($ $) NIL) (((-3 $ "failed") $) 86)) (-1252 (((-108) $) 41)))
-(((-306 |#1| |#2|) (-10 -8 (-15 -3421 ((-3 |#1| "failed") |#1|)) (-15 -3107 ((-713))) (-15 -3421 (|#1| |#1|)) (-15 -2509 ((-3 (-1086 |#2|) "failed") |#1| |#1|)) (-15 -2509 ((-1086 |#2|) |#1|)) (-15 -3474 ((-1086 |#2|) |#1|)) (-15 -2783 (|#1| |#1| (-1086 |#2|))) (-15 -4037 ((-108) |#1|)) (-15 -3555 (|#1|)) (-15 -3512 (|#1| |#1| (-855))) (-15 -3477 (|#1| |#1| (-855))) (-15 -2362 ((-1086 |#1|) |#1| (-855))) (-15 -3512 (|#2| |#1|)) (-15 -3477 (|#2| |#1|)) (-15 -2513 ((-855) |#1|)) (-15 -2864 ((-855))) (-15 -2362 ((-1086 |#2|) |#1|)) (-15 -2229 (|#1| (-1172 |#2|))) (-15 -4093 ((-632 |#2|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1|)) (-15 -3425 ((-713))) (-15 -2864 ((-775 (-855)))) (-15 -2513 ((-775 (-855)) |#1|)) (-15 -1831 ((-108) |#1|)) (-15 -1252 ((-108) |#1|)) (-15 -3191 ((-128)))) (-307 |#2|) (-341)) (T -306))
-((-3191 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-128)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-2864 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-775 (-855))) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-3425 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-2864 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-855)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-3107 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))))
-(-10 -8 (-15 -3421 ((-3 |#1| "failed") |#1|)) (-15 -3107 ((-713))) (-15 -3421 (|#1| |#1|)) (-15 -2509 ((-3 (-1086 |#2|) "failed") |#1| |#1|)) (-15 -2509 ((-1086 |#2|) |#1|)) (-15 -3474 ((-1086 |#2|) |#1|)) (-15 -2783 (|#1| |#1| (-1086 |#2|))) (-15 -4037 ((-108) |#1|)) (-15 -3555 (|#1|)) (-15 -3512 (|#1| |#1| (-855))) (-15 -3477 (|#1| |#1| (-855))) (-15 -2362 ((-1086 |#1|) |#1| (-855))) (-15 -3512 (|#2| |#1|)) (-15 -3477 (|#2| |#1|)) (-15 -2513 ((-855) |#1|)) (-15 -2864 ((-855))) (-15 -2362 ((-1086 |#2|) |#1|)) (-15 -2229 (|#1| (-1172 |#2|))) (-15 -4093 ((-632 |#2|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1|)) (-15 -3425 ((-713))) (-15 -2864 ((-775 (-855)))) (-15 -2513 ((-775 (-855)) |#1|)) (-15 -1831 ((-108) |#1|)) (-15 -1252 ((-108) |#1|)) (-15 -3191 ((-128))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-1831 (((-108) $) 94)) (-3425 (((-713)) 90)) (-3512 ((|#1| $) 140) (($ $ (-855)) 137 (|has| |#1| (-346)))) (-2837 (((-1100 (-855) (-713)) (-525)) 122 (|has| |#1| (-346)))) (-3263 (((-3 $ "failed") $ $) 19)) (-3321 (($ $) 73)) (-1510 (((-396 $) $) 72)) (-2305 (((-108) $ $) 59)) (-3107 (((-713)) 112 (|has| |#1| (-346)))) (-1505 (($) 17 T CONST)) (-1264 (((-3 |#1| "failed") $) 101)) (-2831 ((|#1| $) 100)) (-2229 (($ (-1172 |#1|)) 146)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-346)))) (-2373 (($ $ $) 55)) (-2866 (((-3 $ "failed") $) 34)) (-3375 (($) 109 (|has| |#1| (-346)))) (-2356 (($ $ $) 56)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 51)) (-3205 (($) 124 (|has| |#1| (-346)))) (-3746 (((-108) $) 125 (|has| |#1| (-346)))) (-1410 (($ $ (-713)) 87 (-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) 86 (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2250 (((-108) $) 71)) (-1737 (((-855) $) 127 (|has| |#1| (-346))) (((-775 (-855)) $) 84 (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2133 (((-108) $) 31)) (-2537 (($) 135 (|has| |#1| (-346)))) (-4037 (((-108) $) 134 (|has| |#1| (-346)))) (-3477 ((|#1| $) 141) (($ $ (-855)) 138 (|has| |#1| (-346)))) (-1816 (((-3 $ "failed") $) 113 (|has| |#1| (-346)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2362 (((-1086 |#1|) $) 145) (((-1086 $) $ (-855)) 139 (|has| |#1| (-346)))) (-1780 (((-855) $) 110 (|has| |#1| (-346)))) (-3474 (((-1086 |#1|) $) 131 (|has| |#1| (-346)))) (-2509 (((-1086 |#1|) $) 130 (|has| |#1| (-346))) (((-3 (-1086 |#1|) "failed") $ $) 129 (|has| |#1| (-346)))) (-2783 (($ $ (-1086 |#1|)) 132 (|has| |#1| (-346)))) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-4211 (($ $) 70)) (-2279 (($) 114 (|has| |#1| (-346)) CONST)) (-4185 (($ (-855)) 111 (|has| |#1| (-346)))) (-2325 (((-108) $) 93)) (-2663 (((-1037) $) 10)) (-1669 (($) 133 (|has| |#1| (-346)))) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) 121 (|has| |#1| (-346)))) (-3959 (((-396 $) $) 74)) (-2864 (((-775 (-855))) 91) (((-855)) 143)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2338 (((-3 $ "failed") $ $) 42)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2183 (((-713) $) 58)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 57)) (-2443 (((-713) $) 126 (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) 85 (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3191 (((-128)) 99)) (-3013 (($ $) 118 (|has| |#1| (-346))) (($ $ (-713)) 116 (|has| |#1| (-346)))) (-2513 (((-775 (-855)) $) 92) (((-855) $) 142)) (-1654 (((-1086 |#1|)) 144)) (-3775 (($) 123 (|has| |#1| (-346)))) (-3555 (($) 136 (|has| |#1| (-346)))) (-4093 (((-1172 |#1|) $) 148) (((-632 |#1|) (-1172 $)) 147)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) 120 (|has| |#1| (-346)))) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 102)) (-3421 (($ $) 119 (|has| |#1| (-346))) (((-3 $ "failed") $) 83 (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2093 (((-713)) 29)) (-2499 (((-1172 $)) 150) (((-1172 $) (-855)) 149)) (-2262 (((-108) $ $) 39)) (-1252 (((-108) $) 95)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3192 (($ $) 89 (|has| |#1| (-346))) (($ $ (-713)) 88 (|has| |#1| (-346)))) (-1424 (($ $) 117 (|has| |#1| (-346))) (($ $ (-713)) 115 (|has| |#1| (-346)))) (-3961 (((-108) $ $) 6)) (-4082 (($ $ $) 64) (($ $ |#1|) 98)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+((-3026 (($ $) 53)) (-2192 (($ $ |#2| |#3| $) 14)) (-3922 (($ (-1 |#3| |#3|) $) 35)) (-2513 (((-108) $) 27)) (-2525 ((|#2| $) 29)) (-1680 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-2026 ((|#2| $) 49)) (-1562 (((-592 |#2|) $) 38)) (-3658 (($ $ $ (-713)) 23)) (-4100 (($ $ |#2|) 42)))
+(((-303 |#1| |#2| |#3|) (-10 -8 (-15 -3026 (|#1| |#1|)) (-15 -2026 (|#2| |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3658 (|#1| |#1| |#1| (-713))) (-15 -2192 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3922 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1562 ((-592 |#2|) |#1|)) (-15 -2525 (|#2| |#1|)) (-15 -2513 ((-108) |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4100 (|#1| |#1| |#2|))) (-304 |#2| |#3|) (-977) (-734)) (T -303))
+NIL
+(-10 -8 (-15 -3026 (|#1| |#1|)) (-15 -2026 (|#2| |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3658 (|#1| |#1| |#1| (-713))) (-15 -2192 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3922 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1562 ((-592 |#2|) |#1|)) (-15 -2525 (|#2| |#1|)) (-15 -2513 ((-108) |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4100 (|#1| |#1| |#2|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3711 (($ $) 52 (|has| |#1| (-517)))) (-3380 (((-108) $) 54 (|has| |#1| (-517)))) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-2591 (((-3 (-525) "failed") $) 90 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 88 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 87)) (-3898 (((-525) $) 91 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 89 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 86)) (-2571 (($ $) 60)) (-3762 (((-3 $ "failed") $) 34)) (-3026 (($ $) 75 (|has| |#1| (-429)))) (-2192 (($ $ |#1| |#2| $) 79)) (-1985 (((-108) $) 31)) (-1647 (((-713) $) 82)) (-1788 (((-108) $) 62)) (-2352 (($ |#1| |#2|) 61)) (-3724 ((|#2| $) 81)) (-3922 (($ (-1 |#2| |#2|) $) 80)) (-2694 (($ (-1 |#1| |#1|) $) 63)) (-2538 (($ $) 65)) (-2548 ((|#1| $) 66)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-2513 (((-108) $) 85)) (-2525 ((|#1| $) 84)) (-1680 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-517)))) (-1587 ((|#2| $) 64)) (-2026 ((|#1| $) 76 (|has| |#1| (-429)))) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47) (($ (-385 (-525))) 57 (-3279 (|has| |#1| (-968 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525))))))) (-1562 (((-592 |#1|) $) 83)) (-3468 ((|#1| $ |#2|) 59)) (-3425 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2104 (((-713)) 29)) (-3658 (($ $ $ (-713)) 78 (|has| |#1| (-160)))) (-3959 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4100 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+(((-304 |#1| |#2|) (-131) (-977) (-734)) (T -304))
+((-2513 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-108)))) (-2525 (*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))) (-1562 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-592 *3)))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-713)))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-3922 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)))) (-2192 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)))) (-3658 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-4 *3 (-160)))) (-1680 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)) (-4 *2 (-517)))) (-2026 (*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)) (-4 *2 (-429)))) (-3026 (*1 *1 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)) (-4 *2 (-429)))))
+(-13 (-46 |t#1| |t#2|) (-389 |t#1|) (-10 -8 (-15 -2513 ((-108) $)) (-15 -2525 (|t#1| $)) (-15 -1562 ((-592 |t#1|) $)) (-15 -1647 ((-713) $)) (-15 -3724 (|t#2| $)) (-15 -3922 ($ (-1 |t#2| |t#2|) $)) (-15 -2192 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-160)) (-15 -3658 ($ $ $ (-713))) |%noBranch|) (IF (|has| |t#1| (-517)) (-15 -1680 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -2026 (|t#1| $)) (-15 -3026 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-389 |#1|) . T) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-2151 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2549 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4256))) (($ $) NIL (-12 (|has| $ (-6 -4256)) (|has| |#1| (-789))))) (-2855 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3330 (((-108) $ (-713)) NIL)) (-3042 (((-108) (-108)) NIL)) (-1429 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) NIL (|has| $ (-6 -4256)))) (-1608 (($ (-1 (-108) |#1|) $) NIL)) (-3826 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-3559 (($ $) NIL (|has| $ (-6 -4256)))) (-3620 (($ $) NIL)) (-1540 (($ $) NIL (|has| |#1| (-1020)))) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2592 (($ |#1| $) NIL (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) NIL)) (-1614 (($ |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2632 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) NIL)) (-1916 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-4035 (($ $ (-525)) NIL)) (-1400 (((-713) $) NIL)) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-3489 (($ (-713) |#1|) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) NIL (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-1999 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3743 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-3985 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2683 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3542 (($ (-592 |#1|)) NIL)) (-3110 ((|#1| $) NIL (|has| (-525) (-789)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2042 (($ $ |#1|) NIL (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-3793 (($ $ (-1140 (-525))) NIL) (($ $ (-525)) NIL)) (-3157 (($ $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3216 (($ $ $ (-525)) NIL (|has| $ (-6 -4256)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) NIL)) (-2162 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2014 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-305 |#1|) (-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -3542 ($ (-592 |#1|))) (-15 -1400 ((-713) $)) (-15 -4035 ($ $ (-525))) (-15 -3042 ((-108) (-108))))) (-1127)) (T -305))
+((-3542 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-5 *1 (-305 *3)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-305 *3)) (-4 *3 (-1127)))) (-4035 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-305 *3)) (-4 *3 (-1127)))) (-3042 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-305 *3)) (-4 *3 (-1127)))))
+(-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -3542 ($ (-592 |#1|))) (-15 -1400 ((-713) $)) (-15 -4035 ($ $ (-525))) (-15 -3042 ((-108) (-108)))))
+((-2679 (((-108) $) 42)) (-3452 (((-713)) 22)) (-3029 ((|#2| $) 46) (($ $ (-856)) 104)) (-4190 (((-713)) 98)) (-3612 (($ (-1173 |#2|)) 20)) (-4200 (((-108) $) 116)) (-2900 ((|#2| $) 48) (($ $ (-856)) 102)) (-2640 (((-1087 |#2|) $) NIL) (((-1087 $) $ (-856)) 95)) (-2884 (((-1087 |#2|) $) 83)) (-1549 (((-1087 |#2|) $) 80) (((-3 (-1087 |#2|) "failed") $ $) 77)) (-2499 (($ $ (-1087 |#2|)) 53)) (-3748 (((-775 (-856))) 28) (((-856)) 43)) (-3831 (((-128)) 25)) (-1587 (((-775 (-856)) $) 30) (((-856) $) 118)) (-2411 (($) 110)) (-3464 (((-1173 |#2|) $) NIL) (((-632 |#2|) (-1173 $)) 39)) (-3425 (($ $) NIL) (((-3 $ "failed") $) 86)) (-1728 (((-108) $) 41)))
+(((-306 |#1| |#2|) (-10 -8 (-15 -3425 ((-3 |#1| "failed") |#1|)) (-15 -4190 ((-713))) (-15 -3425 (|#1| |#1|)) (-15 -1549 ((-3 (-1087 |#2|) "failed") |#1| |#1|)) (-15 -1549 ((-1087 |#2|) |#1|)) (-15 -2884 ((-1087 |#2|) |#1|)) (-15 -2499 (|#1| |#1| (-1087 |#2|))) (-15 -4200 ((-108) |#1|)) (-15 -2411 (|#1|)) (-15 -3029 (|#1| |#1| (-856))) (-15 -2900 (|#1| |#1| (-856))) (-15 -2640 ((-1087 |#1|) |#1| (-856))) (-15 -3029 (|#2| |#1|)) (-15 -2900 (|#2| |#1|)) (-15 -1587 ((-856) |#1|)) (-15 -3748 ((-856))) (-15 -2640 ((-1087 |#2|) |#1|)) (-15 -3612 (|#1| (-1173 |#2|))) (-15 -3464 ((-632 |#2|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1|)) (-15 -3452 ((-713))) (-15 -3748 ((-775 (-856)))) (-15 -1587 ((-775 (-856)) |#1|)) (-15 -2679 ((-108) |#1|)) (-15 -1728 ((-108) |#1|)) (-15 -3831 ((-128)))) (-307 |#2|) (-341)) (T -306))
+((-3831 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-128)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-3748 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-775 (-856))) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-3452 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-3748 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-856)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))) (-4190 (*1 *2) (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4)) (-4 *3 (-307 *4)))))
+(-10 -8 (-15 -3425 ((-3 |#1| "failed") |#1|)) (-15 -4190 ((-713))) (-15 -3425 (|#1| |#1|)) (-15 -1549 ((-3 (-1087 |#2|) "failed") |#1| |#1|)) (-15 -1549 ((-1087 |#2|) |#1|)) (-15 -2884 ((-1087 |#2|) |#1|)) (-15 -2499 (|#1| |#1| (-1087 |#2|))) (-15 -4200 ((-108) |#1|)) (-15 -2411 (|#1|)) (-15 -3029 (|#1| |#1| (-856))) (-15 -2900 (|#1| |#1| (-856))) (-15 -2640 ((-1087 |#1|) |#1| (-856))) (-15 -3029 (|#2| |#1|)) (-15 -2900 (|#2| |#1|)) (-15 -1587 ((-856) |#1|)) (-15 -3748 ((-856))) (-15 -2640 ((-1087 |#2|) |#1|)) (-15 -3612 (|#1| (-1173 |#2|))) (-15 -3464 ((-632 |#2|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1|)) (-15 -3452 ((-713))) (-15 -3748 ((-775 (-856)))) (-15 -1587 ((-775 (-856)) |#1|)) (-15 -2679 ((-108) |#1|)) (-15 -1728 ((-108) |#1|)) (-15 -3831 ((-128))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-2679 (((-108) $) 94)) (-3452 (((-713)) 90)) (-3029 ((|#1| $) 140) (($ $ (-856)) 137 (|has| |#1| (-346)))) (-1670 (((-1101 (-856) (-713)) (-525)) 122 (|has| |#1| (-346)))) (-1342 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 73)) (-2100 (((-396 $) $) 72)) (-3197 (((-108) $ $) 59)) (-4190 (((-713)) 112 (|has| |#1| (-346)))) (-2305 (($) 17 T CONST)) (-2591 (((-3 |#1| "failed") $) 101)) (-3898 ((|#1| $) 100)) (-3612 (($ (-1173 |#1|)) 146)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) 128 (|has| |#1| (-346)))) (-1726 (($ $ $) 55)) (-3762 (((-3 $ "failed") $) 34)) (-2899 (($) 109 (|has| |#1| (-346)))) (-1704 (($ $ $) 56)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 51)) (-3977 (($) 124 (|has| |#1| (-346)))) (-3564 (((-108) $) 125 (|has| |#1| (-346)))) (-2327 (($ $ (-713)) 87 (-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) 86 (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3836 (((-108) $) 71)) (-3973 (((-856) $) 127 (|has| |#1| (-346))) (((-775 (-856)) $) 84 (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1985 (((-108) $) 31)) (-1794 (($) 135 (|has| |#1| (-346)))) (-4200 (((-108) $) 134 (|has| |#1| (-346)))) (-2900 ((|#1| $) 141) (($ $ (-856)) 138 (|has| |#1| (-346)))) (-1760 (((-3 $ "failed") $) 113 (|has| |#1| (-346)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2640 (((-1087 |#1|) $) 145) (((-1087 $) $ (-856)) 139 (|has| |#1| (-346)))) (-1736 (((-856) $) 110 (|has| |#1| (-346)))) (-2884 (((-1087 |#1|) $) 131 (|has| |#1| (-346)))) (-1549 (((-1087 |#1|) $) 130 (|has| |#1| (-346))) (((-3 (-1087 |#1|) "failed") $ $) 129 (|has| |#1| (-346)))) (-2499 (($ $ (-1087 |#1|)) 132 (|has| |#1| (-346)))) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-2502 (($ $) 70)) (-3940 (($) 114 (|has| |#1| (-346)) CONST)) (-3640 (($ (-856)) 111 (|has| |#1| (-346)))) (-3341 (((-108) $) 93)) (-2012 (((-1038) $) 10)) (-3523 (($) 133 (|has| |#1| (-346)))) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) 121 (|has| |#1| (-346)))) (-2195 (((-396 $) $) 74)) (-3748 (((-775 (-856))) 91) (((-856)) 143)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1680 (((-3 $ "failed") $ $) 42)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1290 (((-713) $) 58)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 57)) (-2181 (((-713) $) 126 (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) 85 (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3831 (((-128)) 99)) (-2523 (($ $) 118 (|has| |#1| (-346))) (($ $ (-713)) 116 (|has| |#1| (-346)))) (-1587 (((-775 (-856)) $) 92) (((-856) $) 142)) (-1571 (((-1087 |#1|)) 144)) (-2726 (($) 123 (|has| |#1| (-346)))) (-2411 (($) 136 (|has| |#1| (-346)))) (-3464 (((-1173 |#1|) $) 148) (((-632 |#1|) (-1173 $)) 147)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) 120 (|has| |#1| (-346)))) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 102)) (-3425 (($ $) 119 (|has| |#1| (-346))) (((-3 $ "failed") $) 83 (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2104 (((-713)) 29)) (-1449 (((-1173 $)) 150) (((-1173 $) (-856)) 149)) (-3959 (((-108) $ $) 39)) (-1728 (((-108) $) 95)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3842 (($ $) 89 (|has| |#1| (-346))) (($ $ (-713)) 88 (|has| |#1| (-346)))) (-2093 (($ $) 117 (|has| |#1| (-346))) (($ $ (-713)) 115 (|has| |#1| (-346)))) (-3994 (((-108) $ $) 6)) (-4100 (($ $ $) 64) (($ $ |#1|) 98)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
(((-307 |#1|) (-131) (-341)) (T -307))
-((-2499 (*1 *2) (-12 (-4 *3 (-341)) (-5 *2 (-1172 *1)) (-4 *1 (-307 *3)))) (-2499 (*1 *2 *3) (-12 (-5 *3 (-855)) (-4 *4 (-341)) (-5 *2 (-1172 *1)) (-4 *1 (-307 *4)))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1172 *3)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-307 *4)) (-4 *4 (-341)) (-5 *2 (-632 *4)))) (-2229 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-341)) (-4 *1 (-307 *3)))) (-2362 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1086 *3)))) (-1654 (*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1086 *3)))) (-2864 (*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-855)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-855)))) (-3477 (*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341)))) (-3512 (*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341)))) (-2362 (*1 *2 *1 *3) (-12 (-5 *3 (-855)) (-4 *4 (-346)) (-4 *4 (-341)) (-5 *2 (-1086 *1)) (-4 *1 (-307 *4)))) (-3477 (*1 *1 *1 *2) (-12 (-5 *2 (-855)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) (-3512 (*1 *1 *1 *2) (-12 (-5 *2 (-855)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) (-3555 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-2537 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-4037 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-108)))) (-1669 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-2783 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-346)) (-4 *1 (-307 *3)) (-4 *3 (-341)))) (-3474 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1086 *3)))) (-2509 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1086 *3)))) (-2509 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1086 *3)))))
-(-13 (-1189 |t#1|) (-967 |t#1|) (-10 -8 (-15 -2499 ((-1172 $))) (-15 -2499 ((-1172 $) (-855))) (-15 -4093 ((-1172 |t#1|) $)) (-15 -4093 ((-632 |t#1|) (-1172 $))) (-15 -2229 ($ (-1172 |t#1|))) (-15 -2362 ((-1086 |t#1|) $)) (-15 -1654 ((-1086 |t#1|))) (-15 -2864 ((-855))) (-15 -2513 ((-855) $)) (-15 -3477 (|t#1| $)) (-15 -3512 (|t#1| $)) (IF (|has| |t#1| (-346)) (PROGN (-6 (-327)) (-15 -2362 ((-1086 $) $ (-855))) (-15 -3477 ($ $ (-855))) (-15 -3512 ($ $ (-855))) (-15 -3555 ($)) (-15 -2537 ($)) (-15 -4037 ((-108) $)) (-15 -1669 ($)) (-15 -2783 ($ $ (-1086 |t#1|))) (-15 -3474 ((-1086 |t#1|) $)) (-15 -2509 ((-1086 |t#1|) $)) (-15 -2509 ((-3 (-1086 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3309 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) . T) ((-213) |has| |#1| (-346)) ((-223) . T) ((-269) . T) ((-286) . T) ((-1189 |#1|) . T) ((-341) . T) ((-380) -3309 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-346) |has| |#1| (-346)) ((-327) |has| |#1| (-346)) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-669) . T) ((-854) . T) ((-967 |#1|) . T) ((-982 #0#) . T) ((-982 |#1|) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) |has| |#1| (-346)) ((-1130) . T) ((-1179 |#1|) . T))
-((-1893 (((-108) $ $) NIL)) (-1685 (($ (-1089) $) 88)) (-3956 (($) 77)) (-2404 (((-1037) (-1037)) 11)) (-2701 (($) 78)) (-3694 (($) 90) (($ (-294 (-641))) 98) (($ (-294 (-643))) 94) (($ (-294 (-636))) 102) (($ (-294 (-357))) 109) (($ (-294 (-525))) 105) (($ (-294 (-157 (-357)))) 113)) (-3745 (($ (-1089) $) 89)) (-3461 (($ (-592 (-797))) 79)) (-1769 (((-1177) $) 75)) (-3757 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2332 (($ (-1037)) 51)) (-2169 (((-1023) $) 25)) (-1884 (($ (-1012 (-886 (-525))) $) 85) (($ (-1012 (-886 (-525))) (-886 (-525)) $) 86)) (-1662 (($ (-1037)) 87)) (-3602 (($ (-1089) $) 115) (($ (-1089) $ $) 116)) (-3099 (($ (-1090) (-592 (-1090))) 76)) (-1655 (($ (-1073)) 82) (($ (-592 (-1073))) 80)) (-1908 (((-797) $) 118)) (-2958 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1090)) (|:| |arrayIndex| (-592 (-886 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1206 (-797)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1090)) (|:| |rand| (-797)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1089)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1613 (-108)) (|:| -3871 (-2 (|:| |ints2Floats?| (-108)) (|:| -1206 (-797)))))) (|:| |blockBranch| (-592 $)) (|:| |commentBranch| (-592 (-1073))) (|:| |callBranch| (-1073)) (|:| |forBranch| (-2 (|:| -4162 (-1012 (-886 (-525)))) (|:| |span| (-886 (-525))) (|:| -1938 $))) (|:| |labelBranch| (-1037)) (|:| |loopBranch| (-2 (|:| |switch| (-1089)) (|:| -1938 $))) (|:| |commonBranch| (-2 (|:| -1310 (-1090)) (|:| |contents| (-592 (-1090))))) (|:| |printBranch| (-592 (-797)))) $) 44)) (-4181 (($ (-1073)) 187)) (-1895 (($ (-592 $)) 114)) (-1785 (($ (-1090) (-1073)) 120) (($ (-1090) (-294 (-643))) 160) (($ (-1090) (-294 (-641))) 161) (($ (-1090) (-294 (-636))) 162) (($ (-1090) (-632 (-643))) 123) (($ (-1090) (-632 (-641))) 126) (($ (-1090) (-632 (-636))) 129) (($ (-1090) (-1172 (-643))) 132) (($ (-1090) (-1172 (-641))) 135) (($ (-1090) (-1172 (-636))) 138) (($ (-1090) (-632 (-294 (-643)))) 141) (($ (-1090) (-632 (-294 (-641)))) 144) (($ (-1090) (-632 (-294 (-636)))) 147) (($ (-1090) (-1172 (-294 (-643)))) 150) (($ (-1090) (-1172 (-294 (-641)))) 153) (($ (-1090) (-1172 (-294 (-636)))) 156) (($ (-1090) (-592 (-886 (-525))) (-294 (-643))) 157) (($ (-1090) (-592 (-886 (-525))) (-294 (-641))) 158) (($ (-1090) (-592 (-886 (-525))) (-294 (-636))) 159) (($ (-1090) (-294 (-525))) 184) (($ (-1090) (-294 (-357))) 185) (($ (-1090) (-294 (-157 (-357)))) 186) (($ (-1090) (-632 (-294 (-525)))) 165) (($ (-1090) (-632 (-294 (-357)))) 168) (($ (-1090) (-632 (-294 (-157 (-357))))) 171) (($ (-1090) (-1172 (-294 (-525)))) 174) (($ (-1090) (-1172 (-294 (-357)))) 177) (($ (-1090) (-1172 (-294 (-157 (-357))))) 180) (($ (-1090) (-592 (-886 (-525))) (-294 (-525))) 181) (($ (-1090) (-592 (-886 (-525))) (-294 (-357))) 182) (($ (-1090) (-592 (-886 (-525))) (-294 (-157 (-357)))) 183)) (-3961 (((-108) $ $) NIL)))
-(((-308) (-13 (-1019) (-10 -8 (-15 -1908 ((-797) $)) (-15 -1884 ($ (-1012 (-886 (-525))) $)) (-15 -1884 ($ (-1012 (-886 (-525))) (-886 (-525)) $)) (-15 -1685 ($ (-1089) $)) (-15 -3745 ($ (-1089) $)) (-15 -2332 ($ (-1037))) (-15 -1662 ($ (-1037))) (-15 -1655 ($ (-1073))) (-15 -1655 ($ (-592 (-1073)))) (-15 -4181 ($ (-1073))) (-15 -3694 ($)) (-15 -3694 ($ (-294 (-641)))) (-15 -3694 ($ (-294 (-643)))) (-15 -3694 ($ (-294 (-636)))) (-15 -3694 ($ (-294 (-357)))) (-15 -3694 ($ (-294 (-525)))) (-15 -3694 ($ (-294 (-157 (-357))))) (-15 -3602 ($ (-1089) $)) (-15 -3602 ($ (-1089) $ $)) (-15 -1785 ($ (-1090) (-1073))) (-15 -1785 ($ (-1090) (-294 (-643)))) (-15 -1785 ($ (-1090) (-294 (-641)))) (-15 -1785 ($ (-1090) (-294 (-636)))) (-15 -1785 ($ (-1090) (-632 (-643)))) (-15 -1785 ($ (-1090) (-632 (-641)))) (-15 -1785 ($ (-1090) (-632 (-636)))) (-15 -1785 ($ (-1090) (-1172 (-643)))) (-15 -1785 ($ (-1090) (-1172 (-641)))) (-15 -1785 ($ (-1090) (-1172 (-636)))) (-15 -1785 ($ (-1090) (-632 (-294 (-643))))) (-15 -1785 ($ (-1090) (-632 (-294 (-641))))) (-15 -1785 ($ (-1090) (-632 (-294 (-636))))) (-15 -1785 ($ (-1090) (-1172 (-294 (-643))))) (-15 -1785 ($ (-1090) (-1172 (-294 (-641))))) (-15 -1785 ($ (-1090) (-1172 (-294 (-636))))) (-15 -1785 ($ (-1090) (-592 (-886 (-525))) (-294 (-643)))) (-15 -1785 ($ (-1090) (-592 (-886 (-525))) (-294 (-641)))) (-15 -1785 ($ (-1090) (-592 (-886 (-525))) (-294 (-636)))) (-15 -1785 ($ (-1090) (-294 (-525)))) (-15 -1785 ($ (-1090) (-294 (-357)))) (-15 -1785 ($ (-1090) (-294 (-157 (-357))))) (-15 -1785 ($ (-1090) (-632 (-294 (-525))))) (-15 -1785 ($ (-1090) (-632 (-294 (-357))))) (-15 -1785 ($ (-1090) (-632 (-294 (-157 (-357)))))) (-15 -1785 ($ (-1090) (-1172 (-294 (-525))))) (-15 -1785 ($ (-1090) (-1172 (-294 (-357))))) (-15 -1785 ($ (-1090) (-1172 (-294 (-157 (-357)))))) (-15 -1785 ($ (-1090) (-592 (-886 (-525))) (-294 (-525)))) (-15 -1785 ($ (-1090) (-592 (-886 (-525))) (-294 (-357)))) (-15 -1785 ($ (-1090) (-592 (-886 (-525))) (-294 (-157 (-357))))) (-15 -1895 ($ (-592 $))) (-15 -3956 ($)) (-15 -2701 ($)) (-15 -3461 ($ (-592 (-797)))) (-15 -3099 ($ (-1090) (-592 (-1090)))) (-15 -3757 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2958 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1090)) (|:| |arrayIndex| (-592 (-886 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1206 (-797)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1090)) (|:| |rand| (-797)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1089)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1613 (-108)) (|:| -3871 (-2 (|:| |ints2Floats?| (-108)) (|:| -1206 (-797)))))) (|:| |blockBranch| (-592 $)) (|:| |commentBranch| (-592 (-1073))) (|:| |callBranch| (-1073)) (|:| |forBranch| (-2 (|:| -4162 (-1012 (-886 (-525)))) (|:| |span| (-886 (-525))) (|:| -1938 $))) (|:| |labelBranch| (-1037)) (|:| |loopBranch| (-2 (|:| |switch| (-1089)) (|:| -1938 $))) (|:| |commonBranch| (-2 (|:| -1310 (-1090)) (|:| |contents| (-592 (-1090))))) (|:| |printBranch| (-592 (-797)))) $)) (-15 -1769 ((-1177) $)) (-15 -2169 ((-1023) $)) (-15 -2404 ((-1037) (-1037)))))) (T -308))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-308)))) (-1884 (*1 *1 *2 *1) (-12 (-5 *2 (-1012 (-886 (-525)))) (-5 *1 (-308)))) (-1884 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1012 (-886 (-525)))) (-5 *3 (-886 (-525))) (-5 *1 (-308)))) (-1685 (*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-308)))) (-3745 (*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-308)))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-308)))) (-1662 (*1 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-308)))) (-1655 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-308)))) (-1655 (*1 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-308)))) (-4181 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-308)))) (-3694 (*1 *1) (-5 *1 (-308))) (-3694 (*1 *1 *2) (-12 (-5 *2 (-294 (-641))) (-5 *1 (-308)))) (-3694 (*1 *1 *2) (-12 (-5 *2 (-294 (-643))) (-5 *1 (-308)))) (-3694 (*1 *1 *2) (-12 (-5 *2 (-294 (-636))) (-5 *1 (-308)))) (-3694 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-308)))) (-3694 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-308)))) (-3694 (*1 *1 *2) (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-3602 (*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-308)))) (-3602 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1073)) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-643))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-641))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-636))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-643))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-641))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-636))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-643))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-641))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-636))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-643)))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-641)))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-636)))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-643)))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-641)))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-636)))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-294 (-643))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-294 (-641))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-294 (-636))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-525))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-357))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-525)))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-357)))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-157 (-357))))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-525)))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-357)))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-157 (-357))))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-294 (-525))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-294 (-357))) (-5 *1 (-308)))) (-1785 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-1895 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-5 *1 (-308)))) (-3956 (*1 *1) (-5 *1 (-308))) (-2701 (*1 *1) (-5 *1 (-308))) (-3461 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-308)))) (-3099 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-1090))) (-5 *1 (-308)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-308)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1090)) (|:| |arrayIndex| (-592 (-886 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1206 (-797)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1090)) (|:| |rand| (-797)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1089)) (|:| |thenClause| (-308)) (|:| |elseClause| (-308)))) (|:| |returnBranch| (-2 (|:| -1613 (-108)) (|:| -3871 (-2 (|:| |ints2Floats?| (-108)) (|:| -1206 (-797)))))) (|:| |blockBranch| (-592 (-308))) (|:| |commentBranch| (-592 (-1073))) (|:| |callBranch| (-1073)) (|:| |forBranch| (-2 (|:| -4162 (-1012 (-886 (-525)))) (|:| |span| (-886 (-525))) (|:| -1938 (-308)))) (|:| |labelBranch| (-1037)) (|:| |loopBranch| (-2 (|:| |switch| (-1089)) (|:| -1938 (-308)))) (|:| |commonBranch| (-2 (|:| -1310 (-1090)) (|:| |contents| (-592 (-1090))))) (|:| |printBranch| (-592 (-797))))) (-5 *1 (-308)))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-308)))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-308)))) (-2404 (*1 *2 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-308)))))
-(-13 (-1019) (-10 -8 (-15 -1908 ((-797) $)) (-15 -1884 ($ (-1012 (-886 (-525))) $)) (-15 -1884 ($ (-1012 (-886 (-525))) (-886 (-525)) $)) (-15 -1685 ($ (-1089) $)) (-15 -3745 ($ (-1089) $)) (-15 -2332 ($ (-1037))) (-15 -1662 ($ (-1037))) (-15 -1655 ($ (-1073))) (-15 -1655 ($ (-592 (-1073)))) (-15 -4181 ($ (-1073))) (-15 -3694 ($)) (-15 -3694 ($ (-294 (-641)))) (-15 -3694 ($ (-294 (-643)))) (-15 -3694 ($ (-294 (-636)))) (-15 -3694 ($ (-294 (-357)))) (-15 -3694 ($ (-294 (-525)))) (-15 -3694 ($ (-294 (-157 (-357))))) (-15 -3602 ($ (-1089) $)) (-15 -3602 ($ (-1089) $ $)) (-15 -1785 ($ (-1090) (-1073))) (-15 -1785 ($ (-1090) (-294 (-643)))) (-15 -1785 ($ (-1090) (-294 (-641)))) (-15 -1785 ($ (-1090) (-294 (-636)))) (-15 -1785 ($ (-1090) (-632 (-643)))) (-15 -1785 ($ (-1090) (-632 (-641)))) (-15 -1785 ($ (-1090) (-632 (-636)))) (-15 -1785 ($ (-1090) (-1172 (-643)))) (-15 -1785 ($ (-1090) (-1172 (-641)))) (-15 -1785 ($ (-1090) (-1172 (-636)))) (-15 -1785 ($ (-1090) (-632 (-294 (-643))))) (-15 -1785 ($ (-1090) (-632 (-294 (-641))))) (-15 -1785 ($ (-1090) (-632 (-294 (-636))))) (-15 -1785 ($ (-1090) (-1172 (-294 (-643))))) (-15 -1785 ($ (-1090) (-1172 (-294 (-641))))) (-15 -1785 ($ (-1090) (-1172 (-294 (-636))))) (-15 -1785 ($ (-1090) (-592 (-886 (-525))) (-294 (-643)))) (-15 -1785 ($ (-1090) (-592 (-886 (-525))) (-294 (-641)))) (-15 -1785 ($ (-1090) (-592 (-886 (-525))) (-294 (-636)))) (-15 -1785 ($ (-1090) (-294 (-525)))) (-15 -1785 ($ (-1090) (-294 (-357)))) (-15 -1785 ($ (-1090) (-294 (-157 (-357))))) (-15 -1785 ($ (-1090) (-632 (-294 (-525))))) (-15 -1785 ($ (-1090) (-632 (-294 (-357))))) (-15 -1785 ($ (-1090) (-632 (-294 (-157 (-357)))))) (-15 -1785 ($ (-1090) (-1172 (-294 (-525))))) (-15 -1785 ($ (-1090) (-1172 (-294 (-357))))) (-15 -1785 ($ (-1090) (-1172 (-294 (-157 (-357)))))) (-15 -1785 ($ (-1090) (-592 (-886 (-525))) (-294 (-525)))) (-15 -1785 ($ (-1090) (-592 (-886 (-525))) (-294 (-357)))) (-15 -1785 ($ (-1090) (-592 (-886 (-525))) (-294 (-157 (-357))))) (-15 -1895 ($ (-592 $))) (-15 -3956 ($)) (-15 -2701 ($)) (-15 -3461 ($ (-592 (-797)))) (-15 -3099 ($ (-1090) (-592 (-1090)))) (-15 -3757 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2958 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1090)) (|:| |arrayIndex| (-592 (-886 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -1206 (-797)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1090)) (|:| |rand| (-797)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1089)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1613 (-108)) (|:| -3871 (-2 (|:| |ints2Floats?| (-108)) (|:| -1206 (-797)))))) (|:| |blockBranch| (-592 $)) (|:| |commentBranch| (-592 (-1073))) (|:| |callBranch| (-1073)) (|:| |forBranch| (-2 (|:| -4162 (-1012 (-886 (-525)))) (|:| |span| (-886 (-525))) (|:| -1938 $))) (|:| |labelBranch| (-1037)) (|:| |loopBranch| (-2 (|:| |switch| (-1089)) (|:| -1938 $))) (|:| |commonBranch| (-2 (|:| -1310 (-1090)) (|:| |contents| (-592 (-1090))))) (|:| |printBranch| (-592 (-797)))) $)) (-15 -1769 ((-1177) $)) (-15 -2169 ((-1023) $)) (-15 -2404 ((-1037) (-1037)))))
-((-1893 (((-108) $ $) NIL)) (-2764 (((-108) $) 11)) (-3434 (($ |#1|) 8)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3455 (($ |#1|) 9)) (-1908 (((-797) $) 17)) (-1797 ((|#1| $) 12)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 19)))
-(((-309 |#1|) (-13 (-789) (-10 -8 (-15 -3434 ($ |#1|)) (-15 -3455 ($ |#1|)) (-15 -2764 ((-108) $)) (-15 -1797 (|#1| $)))) (-789)) (T -309))
-((-3434 (*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789)))) (-3455 (*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789)))) (-2764 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-309 *3)) (-4 *3 (-789)))) (-1797 (*1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789)))))
-(-13 (-789) (-10 -8 (-15 -3434 ($ |#1|)) (-15 -3455 ($ |#1|)) (-15 -2764 ((-108) $)) (-15 -1797 (|#1| $))))
-((-1458 (((-308) (-1090) (-886 (-525))) 23)) (-3925 (((-308) (-1090) (-886 (-525))) 27)) (-3767 (((-308) (-1090) (-1012 (-886 (-525))) (-1012 (-886 (-525)))) 26) (((-308) (-1090) (-886 (-525)) (-886 (-525))) 24)) (-2464 (((-308) (-1090) (-886 (-525))) 31)))
-(((-310) (-10 -7 (-15 -1458 ((-308) (-1090) (-886 (-525)))) (-15 -3767 ((-308) (-1090) (-886 (-525)) (-886 (-525)))) (-15 -3767 ((-308) (-1090) (-1012 (-886 (-525))) (-1012 (-886 (-525))))) (-15 -3925 ((-308) (-1090) (-886 (-525)))) (-15 -2464 ((-308) (-1090) (-886 (-525)))))) (T -310))
-((-2464 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-886 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-3925 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-886 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-3767 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-1012 (-886 (-525)))) (-5 *2 (-308)) (-5 *1 (-310)))) (-3767 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-886 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-1458 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-886 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))))
-(-10 -7 (-15 -1458 ((-308) (-1090) (-886 (-525)))) (-15 -3767 ((-308) (-1090) (-886 (-525)) (-886 (-525)))) (-15 -3767 ((-308) (-1090) (-1012 (-886 (-525))) (-1012 (-886 (-525))))) (-15 -3925 ((-308) (-1090) (-886 (-525)))) (-15 -2464 ((-308) (-1090) (-886 (-525)))))
-((-1370 (((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|)) 33)))
-(((-311 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1370 ((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|)))) (-341) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-341) (-1148 |#5|) (-1148 (-385 |#6|)) (-320 |#5| |#6| |#7|)) (T -311))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-314 *5 *6 *7 *8)) (-4 *5 (-341)) (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *9 (-341)) (-4 *10 (-1148 *9)) (-4 *11 (-1148 (-385 *10))) (-5 *2 (-314 *9 *10 *11 *12)) (-5 *1 (-311 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-320 *9 *10 *11)))))
-(-10 -7 (-15 -1370 ((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|))))
-((-3654 (((-108) $) 14)))
-(((-312 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3654 ((-108) |#1|))) (-313 |#2| |#3| |#4| |#5|) (-341) (-1148 |#2|) (-1148 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -312))
-NIL
-(-10 -8 (-15 -3654 ((-108) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-4004 (($ $) 26)) (-3654 (((-108) $) 25)) (-2337 (((-1073) $) 9)) (-3666 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 32)) (-2663 (((-1037) $) 10)) (-1669 (((-3 |#4| "failed") $) 24)) (-2577 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-525)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3149 (((-2 (|:| -2281 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-1908 (((-797) $) 11)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20)))
-(((-313 |#1| |#2| |#3| |#4|) (-131) (-341) (-1148 |t#1|) (-1148 (-385 |t#2|)) (-320 |t#1| |t#2| |t#3|)) (T -313))
-((-3666 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-391 *4 (-385 *4) *5 *6)))) (-2577 (*1 *1 *2) (-12 (-5 *2 (-391 *4 (-385 *4) *5 *6)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-4 *3 (-341)) (-4 *1 (-313 *3 *4 *5 *6)))) (-2577 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-4 *1 (-313 *3 *4 *5 *2)) (-4 *2 (-320 *3 *4 *5)))) (-2577 (*1 *1 *2 *2) (-12 (-4 *2 (-341)) (-4 *3 (-1148 *2)) (-4 *4 (-1148 (-385 *3))) (-4 *1 (-313 *2 *3 *4 *5)) (-4 *5 (-320 *2 *3 *4)))) (-2577 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-525)) (-4 *2 (-341)) (-4 *4 (-1148 *2)) (-4 *5 (-1148 (-385 *4))) (-4 *1 (-313 *2 *4 *5 *6)) (-4 *6 (-320 *2 *4 *5)))) (-3149 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-2 (|:| -2281 (-391 *4 (-385 *4) *5 *6)) (|:| |principalPart| *6))))) (-4004 (*1 *1 *1) (-12 (-4 *1 (-313 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *3 (-1148 *2)) (-4 *4 (-1148 (-385 *3))) (-4 *5 (-320 *2 *3 *4)))) (-3654 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-108)))) (-1669 (*1 *2 *1) (|partial| -12 (-4 *1 (-313 *3 *4 *5 *2)) (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-4 *2 (-320 *3 *4 *5)))) (-2577 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-341)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 (-385 *3))) (-4 *1 (-313 *4 *3 *5 *2)) (-4 *2 (-320 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -3666 ((-391 |t#2| (-385 |t#2|) |t#3| |t#4|) $)) (-15 -2577 ($ (-391 |t#2| (-385 |t#2|) |t#3| |t#4|))) (-15 -2577 ($ |t#4|)) (-15 -2577 ($ |t#1| |t#1|)) (-15 -2577 ($ |t#1| |t#1| (-525))) (-15 -3149 ((-2 (|:| -2281 (-391 |t#2| (-385 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4004 ($ $)) (-15 -3654 ((-108) $)) (-15 -1669 ((-3 |t#4| "failed") $)) (-15 -2577 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-4004 (($ $) 33)) (-3654 (((-108) $) NIL)) (-2337 (((-1073) $) NIL)) (-2747 (((-1172 |#4|) $) 125)) (-3666 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 31)) (-2663 (((-1037) $) NIL)) (-1669 (((-3 |#4| "failed") $) 36)) (-3950 (((-1172 |#4|) $) 118)) (-2577 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-525)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3149 (((-2 (|:| -2281 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-1908 (((-797) $) 17)) (-3875 (($) 14 T CONST)) (-3961 (((-108) $ $) 20)) (-4070 (($ $) 27) (($ $ $) NIL)) (-4059 (($ $ $) 25)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 23)))
-(((-314 |#1| |#2| |#3| |#4|) (-13 (-313 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3950 ((-1172 |#4|) $)) (-15 -2747 ((-1172 |#4|) $)))) (-341) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -314))
-((-3950 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-1172 *6)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *6 (-320 *3 *4 *5)))) (-2747 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-1172 *6)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *6 (-320 *3 *4 *5)))))
-(-13 (-313 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3950 ((-1172 |#4|) $)) (-15 -2747 ((-1172 |#4|) $))))
-((-3092 (($ $ (-1090) |#2|) NIL) (($ $ (-592 (-1090)) (-592 |#2|)) 20) (($ $ (-592 (-273 |#2|))) 15) (($ $ (-273 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-592 |#2|) (-592 |#2|)) NIL)) (-3928 (($ $ |#2|) 11)))
-(((-315 |#1| |#2|) (-10 -8 (-15 -3928 (|#1| |#1| |#2|)) (-15 -3092 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -3092 (|#1| |#1| |#2| |#2|)) (-15 -3092 (|#1| |#1| (-273 |#2|))) (-15 -3092 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -3092 (|#1| |#1| (-592 (-1090)) (-592 |#2|))) (-15 -3092 (|#1| |#1| (-1090) |#2|))) (-316 |#2|) (-1019)) (T -315))
-NIL
-(-10 -8 (-15 -3928 (|#1| |#1| |#2|)) (-15 -3092 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -3092 (|#1| |#1| |#2| |#2|)) (-15 -3092 (|#1| |#1| (-273 |#2|))) (-15 -3092 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -3092 (|#1| |#1| (-592 (-1090)) (-592 |#2|))) (-15 -3092 (|#1| |#1| (-1090) |#2|)))
-((-1370 (($ (-1 |#1| |#1|) $) 6)) (-3092 (($ $ (-1090) |#1|) 17 (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) 16 (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-592 (-273 |#1|))) 15 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 14 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-288 |#1|))) (($ $ (-592 |#1|) (-592 |#1|)) 12 (|has| |#1| (-288 |#1|)))) (-3928 (($ $ |#1|) 11 (|has| |#1| (-265 |#1| |#1|)))))
-(((-316 |#1|) (-131) (-1019)) (T -316))
-((-1370 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3)) (-4 *3 (-1019)))))
-(-13 (-10 -8 (-15 -1370 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-265 |t#1| |t#1|)) (-6 (-265 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-288 |t#1|)) (-6 (-288 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-486 (-1090) |t#1|)) (-6 (-486 (-1090) |t#1|)) |%noBranch|)))
-(((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-486 (-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-4104 (((-592 (-1090)) $) NIL)) (-2354 (((-108)) 91) (((-108) (-108)) 92)) (-3740 (((-592 (-565 $)) $) NIL)) (-4049 (($ $) NIL)) (-3911 (($ $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1962 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-3969 (($ $) NIL)) (-4026 (($ $) NIL)) (-3434 (($ $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-565 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-294 |#3|)) 71) (((-3 $ "failed") (-1090)) 97) (((-3 $ "failed") (-294 (-525))) 59 (|has| |#3| (-967 (-525)))) (((-3 $ "failed") (-385 (-886 (-525)))) 65 (|has| |#3| (-967 (-525)))) (((-3 $ "failed") (-886 (-525))) 60 (|has| |#3| (-967 (-525)))) (((-3 $ "failed") (-294 (-357))) 89 (|has| |#3| (-967 (-357)))) (((-3 $ "failed") (-385 (-886 (-357)))) 83 (|has| |#3| (-967 (-357)))) (((-3 $ "failed") (-886 (-357))) 78 (|has| |#3| (-967 (-357))))) (-2831 (((-565 $) $) NIL) ((|#3| $) NIL) (($ (-294 |#3|)) 72) (($ (-1090)) 98) (($ (-294 (-525))) 61 (|has| |#3| (-967 (-525)))) (($ (-385 (-886 (-525)))) 66 (|has| |#3| (-967 (-525)))) (($ (-886 (-525))) 62 (|has| |#3| (-967 (-525)))) (($ (-294 (-357))) 90 (|has| |#3| (-967 (-357)))) (($ (-385 (-886 (-357)))) 84 (|has| |#3| (-967 (-357)))) (($ (-886 (-357))) 80 (|has| |#3| (-967 (-357))))) (-2866 (((-3 $ "failed") $) NIL)) (-1335 (($) 10)) (-2237 (($ $) NIL) (($ (-592 $)) NIL)) (-2323 (((-592 (-110)) $) NIL)) (-4159 (((-110) (-110)) NIL)) (-2133 (((-108) $) NIL)) (-2144 (((-108) $) NIL (|has| $ (-967 (-525))))) (-3609 (((-1086 $) (-565 $)) NIL (|has| $ (-976)))) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-1370 (($ (-1 $ $) (-565 $)) NIL)) (-2218 (((-3 (-565 $) "failed") $) NIL)) (-3731 (($ $) 94)) (-2091 (($ $) NIL)) (-2337 (((-1073) $) NIL)) (-3914 (((-592 (-565 $)) $) NIL)) (-1377 (($ (-110) $) 93) (($ (-110) (-592 $)) NIL)) (-3034 (((-108) $ (-110)) NIL) (((-108) $ (-1090)) NIL)) (-3598 (((-713) $) NIL)) (-2663 (((-1037) $) NIL)) (-2148 (((-108) $ $) NIL) (((-108) $ (-1090)) NIL)) (-1982 (($ $) NIL)) (-2656 (((-108) $) NIL (|has| $ (-967 (-525))))) (-3092 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1090) (-1 $ (-592 $))) NIL) (($ $ (-1090) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3928 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-2825 (($ $) NIL) (($ $ $) NIL)) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) NIL)) (-1654 (($ $) NIL (|has| $ (-976)))) (-4038 (($ $) NIL)) (-3455 (($ $) NIL)) (-1908 (((-797) $) NIL) (($ (-565 $)) NIL) (($ |#3|) NIL) (($ (-525)) NIL) (((-294 |#3|) $) 96)) (-2093 (((-713)) NIL)) (-1268 (($ $) NIL) (($ (-592 $)) NIL)) (-3824 (((-108) (-110)) NIL)) (-3974 (($ $) NIL)) (-3951 (($ $) NIL)) (-3963 (($ $) NIL)) (-2092 (($ $) NIL)) (-3465 (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (-3875 (($) 95 T CONST)) (-3882 (($) 24 T CONST)) (-1424 (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) NIL)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4070 (($ $ $) NIL) (($ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-855) $) NIL)))
-(((-317 |#1| |#2| |#3|) (-13 (-281) (-37 |#3|) (-967 |#3|) (-834 (-1090)) (-10 -8 (-15 -2831 ($ (-294 |#3|))) (-15 -1264 ((-3 $ "failed") (-294 |#3|))) (-15 -2831 ($ (-1090))) (-15 -1264 ((-3 $ "failed") (-1090))) (-15 -1908 ((-294 |#3|) $)) (IF (|has| |#3| (-967 (-525))) (PROGN (-15 -2831 ($ (-294 (-525)))) (-15 -1264 ((-3 $ "failed") (-294 (-525)))) (-15 -2831 ($ (-385 (-886 (-525))))) (-15 -1264 ((-3 $ "failed") (-385 (-886 (-525))))) (-15 -2831 ($ (-886 (-525)))) (-15 -1264 ((-3 $ "failed") (-886 (-525))))) |%noBranch|) (IF (|has| |#3| (-967 (-357))) (PROGN (-15 -2831 ($ (-294 (-357)))) (-15 -1264 ((-3 $ "failed") (-294 (-357)))) (-15 -2831 ($ (-385 (-886 (-357))))) (-15 -1264 ((-3 $ "failed") (-385 (-886 (-357))))) (-15 -2831 ($ (-886 (-357)))) (-15 -1264 ((-3 $ "failed") (-886 (-357))))) |%noBranch|) (-15 -2092 ($ $)) (-15 -3969 ($ $)) (-15 -1982 ($ $)) (-15 -2091 ($ $)) (-15 -3731 ($ $)) (-15 -3434 ($ $)) (-15 -3455 ($ $)) (-15 -3911 ($ $)) (-15 -3951 ($ $)) (-15 -3963 ($ $)) (-15 -3974 ($ $)) (-15 -4026 ($ $)) (-15 -4038 ($ $)) (-15 -4049 ($ $)) (-15 -1335 ($)) (-15 -4104 ((-592 (-1090)) $)) (-15 -2354 ((-108))) (-15 -2354 ((-108) (-108))))) (-592 (-1090)) (-592 (-1090)) (-365)) (T -317))
-((-2831 (*1 *1 *2) (-12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-294 *5)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-385 (-886 (-525)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-886 (-525)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-886 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-886 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-385 (-886 (-357)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-886 (-357)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-886 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-886 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2092 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3969 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-1982 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-2091 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3731 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3434 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3455 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3911 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3951 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3963 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-3974 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-4026 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-4038 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-4049 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-1335 (*1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090))) (-14 *3 (-592 (-1090))) (-4 *4 (-365)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2354 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))) (-2354 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365)))))
-(-13 (-281) (-37 |#3|) (-967 |#3|) (-834 (-1090)) (-10 -8 (-15 -2831 ($ (-294 |#3|))) (-15 -1264 ((-3 $ "failed") (-294 |#3|))) (-15 -2831 ($ (-1090))) (-15 -1264 ((-3 $ "failed") (-1090))) (-15 -1908 ((-294 |#3|) $)) (IF (|has| |#3| (-967 (-525))) (PROGN (-15 -2831 ($ (-294 (-525)))) (-15 -1264 ((-3 $ "failed") (-294 (-525)))) (-15 -2831 ($ (-385 (-886 (-525))))) (-15 -1264 ((-3 $ "failed") (-385 (-886 (-525))))) (-15 -2831 ($ (-886 (-525)))) (-15 -1264 ((-3 $ "failed") (-886 (-525))))) |%noBranch|) (IF (|has| |#3| (-967 (-357))) (PROGN (-15 -2831 ($ (-294 (-357)))) (-15 -1264 ((-3 $ "failed") (-294 (-357)))) (-15 -2831 ($ (-385 (-886 (-357))))) (-15 -1264 ((-3 $ "failed") (-385 (-886 (-357))))) (-15 -2831 ($ (-886 (-357)))) (-15 -1264 ((-3 $ "failed") (-886 (-357))))) |%noBranch|) (-15 -2092 ($ $)) (-15 -3969 ($ $)) (-15 -1982 ($ $)) (-15 -2091 ($ $)) (-15 -3731 ($ $)) (-15 -3434 ($ $)) (-15 -3455 ($ $)) (-15 -3911 ($ $)) (-15 -3951 ($ $)) (-15 -3963 ($ $)) (-15 -3974 ($ $)) (-15 -4026 ($ $)) (-15 -4038 ($ $)) (-15 -4049 ($ $)) (-15 -1335 ($)) (-15 -4104 ((-592 (-1090)) $)) (-15 -2354 ((-108))) (-15 -2354 ((-108) (-108)))))
-((-1370 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-318 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1370 (|#8| (-1 |#5| |#1|) |#4|))) (-1130) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-1130) (-1148 |#5|) (-1148 (-385 |#6|)) (-320 |#5| |#6| |#7|)) (T -318))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1130)) (-4 *8 (-1130)) (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-4 *9 (-1148 *8)) (-4 *2 (-320 *8 *9 *10)) (-5 *1 (-318 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-320 *5 *6 *7)) (-4 *10 (-1148 (-385 *9))))))
-(-10 -7 (-15 -1370 (|#8| (-1 |#5| |#1|) |#4|)))
-((-4124 (((-2 (|:| |num| (-1172 |#3|)) (|:| |den| |#3|)) $) 38)) (-2229 (($ (-1172 (-385 |#3|)) (-1172 $)) NIL) (($ (-1172 (-385 |#3|))) NIL) (($ (-1172 |#3|) |#3|) 161)) (-3507 (((-1172 $) (-1172 $)) 145)) (-2654 (((-592 (-592 |#2|))) 119)) (-3619 (((-108) |#2| |#2|) 73)) (-3811 (($ $) 139)) (-2324 (((-713)) 31)) (-3248 (((-1172 $) (-1172 $)) 198)) (-3256 (((-592 (-886 |#2|)) (-1090)) 110)) (-1738 (((-108) $) 158)) (-3801 (((-108) $) 25) (((-108) $ |#2|) 29) (((-108) $ |#3|) 202)) (-1973 (((-3 |#3| "failed")) 50)) (-3717 (((-713)) 170)) (-3928 ((|#2| $ |#2| |#2|) 132)) (-4182 (((-3 |#3| "failed")) 68)) (-3013 (($ $ (-1 (-385 |#3|) (-385 |#3|)) (-713)) NIL) (($ $ (-1 (-385 |#3|) (-385 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-3641 (((-1172 $) (-1172 $)) 151)) (-2820 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-3552 (((-108)) 33)))
-(((-319 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3013 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -2654 ((-592 (-592 |#2|)))) (-15 -3256 ((-592 (-886 |#2|)) (-1090))) (-15 -2820 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1973 ((-3 |#3| "failed"))) (-15 -4182 ((-3 |#3| "failed"))) (-15 -3928 (|#2| |#1| |#2| |#2|)) (-15 -3811 (|#1| |#1|)) (-15 -2229 (|#1| (-1172 |#3|) |#3|)) (-15 -3013 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3801 ((-108) |#1| |#3|)) (-15 -3801 ((-108) |#1| |#2|)) (-15 -4124 ((-2 (|:| |num| (-1172 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3507 ((-1172 |#1|) (-1172 |#1|))) (-15 -3248 ((-1172 |#1|) (-1172 |#1|))) (-15 -3641 ((-1172 |#1|) (-1172 |#1|))) (-15 -3801 ((-108) |#1|)) (-15 -1738 ((-108) |#1|)) (-15 -3619 ((-108) |#2| |#2|)) (-15 -3552 ((-108))) (-15 -3717 ((-713))) (-15 -2324 ((-713))) (-15 -3013 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)))) (-15 -3013 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)) (-713))) (-15 -2229 (|#1| (-1172 (-385 |#3|)))) (-15 -2229 (|#1| (-1172 (-385 |#3|)) (-1172 |#1|)))) (-320 |#2| |#3| |#4|) (-1130) (-1148 |#2|) (-1148 (-385 |#3|))) (T -319))
-((-2324 (*1 *2) (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-3717 (*1 *2) (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-3552 (*1 *2) (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-5 *2 (-108)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-3619 (*1 *2 *3 *3) (-12 (-4 *3 (-1130)) (-4 *5 (-1148 *3)) (-4 *6 (-1148 (-385 *5))) (-5 *2 (-108)) (-5 *1 (-319 *4 *3 *5 *6)) (-4 *4 (-320 *3 *5 *6)))) (-4182 (*1 *2) (|partial| -12 (-4 *4 (-1130)) (-4 *5 (-1148 (-385 *2))) (-4 *2 (-1148 *4)) (-5 *1 (-319 *3 *4 *2 *5)) (-4 *3 (-320 *4 *2 *5)))) (-1973 (*1 *2) (|partial| -12 (-4 *4 (-1130)) (-4 *5 (-1148 (-385 *2))) (-4 *2 (-1148 *4)) (-5 *1 (-319 *3 *4 *2 *5)) (-4 *3 (-320 *4 *2 *5)))) (-3256 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *5 (-1130)) (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-5 *2 (-592 (-886 *5))) (-5 *1 (-319 *4 *5 *6 *7)) (-4 *4 (-320 *5 *6 *7)))) (-2654 (*1 *2) (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-5 *2 (-592 (-592 *4))) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))))
-(-10 -8 (-15 -3013 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -2654 ((-592 (-592 |#2|)))) (-15 -3256 ((-592 (-886 |#2|)) (-1090))) (-15 -2820 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1973 ((-3 |#3| "failed"))) (-15 -4182 ((-3 |#3| "failed"))) (-15 -3928 (|#2| |#1| |#2| |#2|)) (-15 -3811 (|#1| |#1|)) (-15 -2229 (|#1| (-1172 |#3|) |#3|)) (-15 -3013 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3801 ((-108) |#1| |#3|)) (-15 -3801 ((-108) |#1| |#2|)) (-15 -4124 ((-2 (|:| |num| (-1172 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3507 ((-1172 |#1|) (-1172 |#1|))) (-15 -3248 ((-1172 |#1|) (-1172 |#1|))) (-15 -3641 ((-1172 |#1|) (-1172 |#1|))) (-15 -3801 ((-108) |#1|)) (-15 -1738 ((-108) |#1|)) (-15 -3619 ((-108) |#2| |#2|)) (-15 -3552 ((-108))) (-15 -3717 ((-713))) (-15 -2324 ((-713))) (-15 -3013 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)))) (-15 -3013 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)) (-713))) (-15 -2229 (|#1| (-1172 (-385 |#3|)))) (-15 -2229 (|#1| (-1172 (-385 |#3|)) (-1172 |#1|))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-4124 (((-2 (|:| |num| (-1172 |#2|)) (|:| |den| |#2|)) $) 196)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 93 (|has| (-385 |#2|) (-341)))) (-3635 (($ $) 94 (|has| (-385 |#2|) (-341)))) (-2950 (((-108) $) 96 (|has| (-385 |#2|) (-341)))) (-2794 (((-632 (-385 |#2|)) (-1172 $)) 46) (((-632 (-385 |#2|))) 61)) (-3512 (((-385 |#2|) $) 52)) (-2837 (((-1100 (-855) (-713)) (-525)) 147 (|has| (-385 |#2|) (-327)))) (-3263 (((-3 $ "failed") $ $) 19)) (-3321 (($ $) 113 (|has| (-385 |#2|) (-341)))) (-1510 (((-396 $) $) 114 (|has| (-385 |#2|) (-341)))) (-2305 (((-108) $ $) 104 (|has| (-385 |#2|) (-341)))) (-3107 (((-713)) 87 (|has| (-385 |#2|) (-346)))) (-3741 (((-108)) 213)) (-4193 (((-108) |#1|) 212) (((-108) |#2|) 211)) (-1505 (($) 17 T CONST)) (-1264 (((-3 (-525) "failed") $) 169 (|has| (-385 |#2|) (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| (-385 |#2|) (-967 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) 166)) (-2831 (((-525) $) 170 (|has| (-385 |#2|) (-967 (-525)))) (((-385 (-525)) $) 168 (|has| (-385 |#2|) (-967 (-385 (-525))))) (((-385 |#2|) $) 165)) (-2229 (($ (-1172 (-385 |#2|)) (-1172 $)) 48) (($ (-1172 (-385 |#2|))) 64) (($ (-1172 |#2|) |#2|) 189)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-385 |#2|) (-327)))) (-2373 (($ $ $) 108 (|has| (-385 |#2|) (-341)))) (-1409 (((-632 (-385 |#2|)) $ (-1172 $)) 53) (((-632 (-385 |#2|)) $) 59)) (-1860 (((-632 (-525)) (-632 $)) 164 (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 163 (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-385 |#2|))) (|:| |vec| (-1172 (-385 |#2|)))) (-632 $) (-1172 $)) 162) (((-632 (-385 |#2|)) (-632 $)) 161)) (-3507 (((-1172 $) (-1172 $)) 201)) (-4004 (($ |#3|) 158) (((-3 $ "failed") (-385 |#3|)) 155 (|has| (-385 |#2|) (-341)))) (-2866 (((-3 $ "failed") $) 34)) (-2654 (((-592 (-592 |#1|))) 182 (|has| |#1| (-346)))) (-3619 (((-108) |#1| |#1|) 217)) (-2239 (((-855)) 54)) (-3375 (($) 90 (|has| (-385 |#2|) (-346)))) (-1993 (((-108)) 210)) (-1351 (((-108) |#1|) 209) (((-108) |#2|) 208)) (-2356 (($ $ $) 107 (|has| (-385 |#2|) (-341)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 102 (|has| (-385 |#2|) (-341)))) (-3811 (($ $) 188)) (-3205 (($) 149 (|has| (-385 |#2|) (-327)))) (-3746 (((-108) $) 150 (|has| (-385 |#2|) (-327)))) (-1410 (($ $ (-713)) 141 (|has| (-385 |#2|) (-327))) (($ $) 140 (|has| (-385 |#2|) (-327)))) (-2250 (((-108) $) 115 (|has| (-385 |#2|) (-341)))) (-1737 (((-855) $) 152 (|has| (-385 |#2|) (-327))) (((-775 (-855)) $) 138 (|has| (-385 |#2|) (-327)))) (-2133 (((-108) $) 31)) (-2324 (((-713)) 220)) (-3248 (((-1172 $) (-1172 $)) 202)) (-3477 (((-385 |#2|) $) 51)) (-3256 (((-592 (-886 |#1|)) (-1090)) 183 (|has| |#1| (-341)))) (-1816 (((-3 $ "failed") $) 142 (|has| (-385 |#2|) (-327)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 111 (|has| (-385 |#2|) (-341)))) (-2362 ((|#3| $) 44 (|has| (-385 |#2|) (-341)))) (-1780 (((-855) $) 89 (|has| (-385 |#2|) (-346)))) (-3774 ((|#3| $) 156)) (-3216 (($ (-592 $)) 100 (|has| (-385 |#2|) (-341))) (($ $ $) 99 (|has| (-385 |#2|) (-341)))) (-2337 (((-1073) $) 9)) (-3214 (((-632 (-385 |#2|))) 197)) (-3596 (((-632 (-385 |#2|))) 199)) (-4211 (($ $) 116 (|has| (-385 |#2|) (-341)))) (-2367 (($ (-1172 |#2|) |#2|) 194)) (-2744 (((-632 (-385 |#2|))) 198)) (-3998 (((-632 (-385 |#2|))) 200)) (-1664 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-1323 (((-2 (|:| |num| (-1172 |#2|)) (|:| |den| |#2|)) $) 195)) (-3382 (((-1172 $)) 206)) (-2780 (((-1172 $)) 207)) (-1738 (((-108) $) 205)) (-3801 (((-108) $) 204) (((-108) $ |#1|) 192) (((-108) $ |#2|) 191)) (-2279 (($) 143 (|has| (-385 |#2|) (-327)) CONST)) (-4185 (($ (-855)) 88 (|has| (-385 |#2|) (-346)))) (-1973 (((-3 |#2| "failed")) 185)) (-2663 (((-1037) $) 10)) (-3717 (((-713)) 219)) (-1669 (($) 160)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 101 (|has| (-385 |#2|) (-341)))) (-3244 (($ (-592 $)) 98 (|has| (-385 |#2|) (-341))) (($ $ $) 97 (|has| (-385 |#2|) (-341)))) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) 146 (|has| (-385 |#2|) (-327)))) (-3959 (((-396 $) $) 112 (|has| (-385 |#2|) (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 109 (|has| (-385 |#2|) (-341)))) (-2338 (((-3 $ "failed") $ $) 92 (|has| (-385 |#2|) (-341)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 103 (|has| (-385 |#2|) (-341)))) (-2183 (((-713) $) 105 (|has| (-385 |#2|) (-341)))) (-3928 ((|#1| $ |#1| |#1|) 187)) (-4182 (((-3 |#2| "failed")) 186)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 106 (|has| (-385 |#2|) (-341)))) (-1400 (((-385 |#2|) (-1172 $)) 47) (((-385 |#2|)) 60)) (-2443 (((-713) $) 151 (|has| (-385 |#2|) (-327))) (((-3 (-713) "failed") $ $) 139 (|has| (-385 |#2|) (-327)))) (-3013 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) 123 (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) 122 (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-592 (-1090)) (-592 (-713))) 130 (-3309 (-1341 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) (-1341 (|has| (-385 |#2|) (-834 (-1090))) (|has| (-385 |#2|) (-341))))) (($ $ (-1090) (-713)) 131 (-3309 (-1341 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) (-1341 (|has| (-385 |#2|) (-834 (-1090))) (|has| (-385 |#2|) (-341))))) (($ $ (-592 (-1090))) 132 (-3309 (-1341 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) (-1341 (|has| (-385 |#2|) (-834 (-1090))) (|has| (-385 |#2|) (-341))))) (($ $ (-1090)) 133 (-3309 (-1341 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) (-1341 (|has| (-385 |#2|) (-834 (-1090))) (|has| (-385 |#2|) (-341))))) (($ $ (-713)) 135 (-3309 (-1341 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-1341 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) 137 (-3309 (-1341 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-1341 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-2160 (((-632 (-385 |#2|)) (-1172 $) (-1 (-385 |#2|) (-385 |#2|))) 154 (|has| (-385 |#2|) (-341)))) (-1654 ((|#3|) 159)) (-3775 (($) 148 (|has| (-385 |#2|) (-327)))) (-4093 (((-1172 (-385 |#2|)) $ (-1172 $)) 50) (((-632 (-385 |#2|)) (-1172 $) (-1172 $)) 49) (((-1172 (-385 |#2|)) $) 66) (((-632 (-385 |#2|)) (-1172 $)) 65)) (-1427 (((-1172 (-385 |#2|)) $) 63) (($ (-1172 (-385 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) 145 (|has| (-385 |#2|) (-327)))) (-3641 (((-1172 $) (-1172 $)) 203)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ (-385 |#2|)) 37) (($ (-385 (-525))) 86 (-3309 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-967 (-385 (-525)))))) (($ $) 91 (|has| (-385 |#2|) (-341)))) (-3421 (($ $) 144 (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) 43 (|has| (-385 |#2|) (-136)))) (-1260 ((|#3| $) 45)) (-2093 (((-713)) 29)) (-2476 (((-108)) 216)) (-4214 (((-108) |#1|) 215) (((-108) |#2|) 214)) (-2499 (((-1172 $)) 67)) (-2262 (((-108) $ $) 95 (|has| (-385 |#2|) (-341)))) (-2820 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-3552 (((-108)) 218)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 117 (|has| (-385 |#2|) (-341)))) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) 125 (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) 124 (|has| (-385 |#2|) (-341))) (($ $ (-592 (-1090)) (-592 (-713))) 126 (-3309 (-1341 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) (-1341 (|has| (-385 |#2|) (-834 (-1090))) (|has| (-385 |#2|) (-341))))) (($ $ (-1090) (-713)) 127 (-3309 (-1341 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) (-1341 (|has| (-385 |#2|) (-834 (-1090))) (|has| (-385 |#2|) (-341))))) (($ $ (-592 (-1090))) 128 (-3309 (-1341 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) (-1341 (|has| (-385 |#2|) (-834 (-1090))) (|has| (-385 |#2|) (-341))))) (($ $ (-1090)) 129 (-3309 (-1341 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) (-1341 (|has| (-385 |#2|) (-834 (-1090))) (|has| (-385 |#2|) (-341))))) (($ $ (-713)) 134 (-3309 (-1341 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-1341 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) 136 (-3309 (-1341 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-1341 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3961 (((-108) $ $) 6)) (-4082 (($ $ $) 121 (|has| (-385 |#2|) (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 118 (|has| (-385 |#2|) (-341)))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 |#2|)) 39) (($ (-385 |#2|) $) 38) (($ (-385 (-525)) $) 120 (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) 119 (|has| (-385 |#2|) (-341)))))
-(((-320 |#1| |#2| |#3|) (-131) (-1130) (-1148 |t#1|) (-1148 (-385 |t#2|))) (T -320))
-((-2324 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-713)))) (-3717 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-713)))) (-3552 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-3619 (*1 *2 *3 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-2476 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-4214 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-4214 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 (-385 *3))) (-5 *2 (-108)))) (-3741 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-4193 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-4193 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 (-385 *3))) (-5 *2 (-108)))) (-1993 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-1351 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-1351 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 (-385 *3))) (-5 *2 (-108)))) (-2780 (*1 *2) (-12 (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)))) (-3382 (*1 *2) (-12 (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)))) (-1738 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-3801 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-3641 (*1 *2 *2) (-12 (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))))) (-3248 (*1 *2 *2) (-12 (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))))) (-3507 (*1 *2 *2) (-12 (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))))) (-3998 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-3596 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-2744 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-3214 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-4124 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-2 (|:| |num| (-1172 *4)) (|:| |den| *4))))) (-1323 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-2 (|:| |num| (-1172 *4)) (|:| |den| *4))))) (-2367 (*1 *1 *2 *3) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1148 *4)) (-4 *4 (-1130)) (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1148 (-385 *3))))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-5 *2 (-2 (|:| |num| (-632 *5)) (|:| |den| *5))))) (-3801 (*1 *2 *1 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))) (-3801 (*1 *2 *1 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 (-385 *3))) (-5 *2 (-108)))) (-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))))) (-2229 (*1 *1 *2 *3) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1148 *4)) (-4 *4 (-1130)) (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1148 (-385 *3))))) (-3811 (*1 *1 *1) (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-1148 *2)) (-4 *4 (-1148 (-385 *3))))) (-3928 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-1148 *2)) (-4 *4 (-1148 (-385 *3))))) (-4182 (*1 *2) (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1130)) (-4 *4 (-1148 (-385 *2))) (-4 *2 (-1148 *3)))) (-1973 (*1 *2) (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1130)) (-4 *4 (-1148 (-385 *2))) (-4 *2 (-1148 *3)))) (-2820 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-1130)) (-4 *6 (-1148 (-385 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-320 *4 *5 *6)))) (-3256 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-4 *4 (-341)) (-5 *2 (-592 (-886 *4))))) (-2654 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))) (-4 *3 (-346)) (-5 *2 (-592 (-592 *3))))))
-(-13 (-667 (-385 |t#2|) |t#3|) (-10 -8 (-15 -2324 ((-713))) (-15 -3717 ((-713))) (-15 -3552 ((-108))) (-15 -3619 ((-108) |t#1| |t#1|)) (-15 -2476 ((-108))) (-15 -4214 ((-108) |t#1|)) (-15 -4214 ((-108) |t#2|)) (-15 -3741 ((-108))) (-15 -4193 ((-108) |t#1|)) (-15 -4193 ((-108) |t#2|)) (-15 -1993 ((-108))) (-15 -1351 ((-108) |t#1|)) (-15 -1351 ((-108) |t#2|)) (-15 -2780 ((-1172 $))) (-15 -3382 ((-1172 $))) (-15 -1738 ((-108) $)) (-15 -3801 ((-108) $)) (-15 -3641 ((-1172 $) (-1172 $))) (-15 -3248 ((-1172 $) (-1172 $))) (-15 -3507 ((-1172 $) (-1172 $))) (-15 -3998 ((-632 (-385 |t#2|)))) (-15 -3596 ((-632 (-385 |t#2|)))) (-15 -2744 ((-632 (-385 |t#2|)))) (-15 -3214 ((-632 (-385 |t#2|)))) (-15 -4124 ((-2 (|:| |num| (-1172 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2229 ($ (-1172 |t#2|) |t#2|)) (-15 -1323 ((-2 (|:| |num| (-1172 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2367 ($ (-1172 |t#2|) |t#2|)) (-15 -1664 ((-2 (|:| |num| (-632 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3801 ((-108) $ |t#1|)) (-15 -3801 ((-108) $ |t#2|)) (-15 -3013 ($ $ (-1 |t#2| |t#2|))) (-15 -2229 ($ (-1172 |t#2|) |t#2|)) (-15 -3811 ($ $)) (-15 -3928 (|t#1| $ |t#1| |t#1|)) (-15 -4182 ((-3 |t#2| "failed"))) (-15 -1973 ((-3 |t#2| "failed"))) (-15 -2820 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-341)) (-15 -3256 ((-592 (-886 |t#1|)) (-1090))) |%noBranch|) (IF (|has| |t#1| (-346)) (-15 -2654 ((-592 (-592 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -3309 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-37 #1=(-385 |#2|)) . T) ((-37 $) -3309 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-97) . T) ((-107 #0# #0#) -3309 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3309 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-136))) ((-138) |has| (-385 |#2|) (-138)) ((-566 (-797)) . T) ((-160) . T) ((-567 |#3|) . T) ((-211 #1#) |has| (-385 |#2|) (-341)) ((-213) -3309 (|has| (-385 |#2|) (-327)) (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341)))) ((-223) -3309 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-269) -3309 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-286) -3309 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-341) -3309 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-380) |has| (-385 |#2|) (-327)) ((-346) -3309 (|has| (-385 |#2|) (-346)) (|has| (-385 |#2|) (-327))) ((-327) |has| (-385 |#2|) (-327)) ((-348 #1# |#3|) . T) ((-387 #1# |#3|) . T) ((-355 #1#) . T) ((-389 #1#) . T) ((-429) -3309 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-517) -3309 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-594 #0#) -3309 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-594 #1#) . T) ((-594 $) . T) ((-588 #1#) . T) ((-588 (-525)) |has| (-385 |#2|) (-588 (-525))) ((-660 #0#) -3309 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-660 #1#) . T) ((-660 $) -3309 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-667 #1# |#3|) . T) ((-669) . T) ((-834 (-1090)) -12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090)))) ((-854) -3309 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-967 (-385 (-525))) |has| (-385 |#2|) (-967 (-385 (-525)))) ((-967 #1#) . T) ((-967 (-525)) |has| (-385 |#2|) (-967 (-525))) ((-982 #0#) -3309 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-982 #1#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) |has| (-385 |#2|) (-327)) ((-1130) -3309 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-1831 (((-108) $) NIL)) (-3425 (((-713)) NIL)) (-3512 (((-844 |#1|) $) NIL) (($ $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-2837 (((-1100 (-855) (-713)) (-525)) NIL (|has| (-844 |#1|) (-346)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2305 (((-108) $ $) NIL)) (-3107 (((-713)) NIL (|has| (-844 |#1|) (-346)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-844 |#1|) "failed") $) NIL)) (-2831 (((-844 |#1|) $) NIL)) (-2229 (($ (-1172 (-844 |#1|))) NIL)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-844 |#1|) (-346)))) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) NIL (|has| (-844 |#1|) (-346)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-3205 (($) NIL (|has| (-844 |#1|) (-346)))) (-3746 (((-108) $) NIL (|has| (-844 |#1|) (-346)))) (-1410 (($ $ (-713)) NIL (-3309 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346)))) (($ $) NIL (-3309 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2250 (((-108) $) NIL)) (-1737 (((-855) $) NIL (|has| (-844 |#1|) (-346))) (((-775 (-855)) $) NIL (-3309 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2133 (((-108) $) NIL)) (-2537 (($) NIL (|has| (-844 |#1|) (-346)))) (-4037 (((-108) $) NIL (|has| (-844 |#1|) (-346)))) (-3477 (((-844 |#1|) $) NIL) (($ $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-1816 (((-3 $ "failed") $) NIL (|has| (-844 |#1|) (-346)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2362 (((-1086 (-844 |#1|)) $) NIL) (((-1086 $) $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-1780 (((-855) $) NIL (|has| (-844 |#1|) (-346)))) (-3474 (((-1086 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-346)))) (-2509 (((-1086 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-346))) (((-3 (-1086 (-844 |#1|)) "failed") $ $) NIL (|has| (-844 |#1|) (-346)))) (-2783 (($ $ (-1086 (-844 |#1|))) NIL (|has| (-844 |#1|) (-346)))) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL (|has| (-844 |#1|) (-346)) CONST)) (-4185 (($ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-2325 (((-108) $) NIL)) (-2663 (((-1037) $) NIL)) (-3122 (((-891 (-1037))) NIL)) (-1669 (($) NIL (|has| (-844 |#1|) (-346)))) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) NIL (|has| (-844 |#1|) (-346)))) (-3959 (((-396 $) $) NIL)) (-2864 (((-775 (-855))) NIL) (((-855)) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-2443 (((-713) $) NIL (|has| (-844 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-3309 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-3191 (((-128)) NIL)) (-3013 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-2513 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-1654 (((-1086 (-844 |#1|))) NIL)) (-3775 (($) NIL (|has| (-844 |#1|) (-346)))) (-3555 (($) NIL (|has| (-844 |#1|) (-346)))) (-4093 (((-1172 (-844 |#1|)) $) NIL) (((-632 (-844 |#1|)) (-1172 $)) NIL)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| (-844 |#1|) (-346)))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-844 |#1|)) NIL)) (-3421 (($ $) NIL (|has| (-844 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3309 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2093 (((-713)) NIL)) (-2499 (((-1172 $)) NIL) (((-1172 $) (-855)) NIL)) (-2262 (((-108) $ $) NIL)) (-1252 (((-108) $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-3192 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-1424 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ $) NIL) (($ $ (-844 |#1|)) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-844 |#1|)) NIL) (($ (-844 |#1|) $) NIL)))
-(((-321 |#1| |#2|) (-13 (-307 (-844 |#1|)) (-10 -7 (-15 -3122 ((-891 (-1037)))))) (-855) (-855)) (T -321))
-((-3122 (*1 *2) (-12 (-5 *2 (-891 (-1037))) (-5 *1 (-321 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855)))))
-(-13 (-307 (-844 |#1|)) (-10 -7 (-15 -3122 ((-891 (-1037))))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 46)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-1831 (((-108) $) NIL)) (-3425 (((-713)) NIL)) (-3512 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-2837 (((-1100 (-855) (-713)) (-525)) 43 (|has| |#1| (-346)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2305 (((-108) $ $) NIL)) (-3107 (((-713)) NIL (|has| |#1| (-346)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) 115)) (-2831 ((|#1| $) 86)) (-2229 (($ (-1172 |#1|)) 104)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-346)))) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) 98 (|has| |#1| (-346)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-3205 (($) 130 (|has| |#1| (-346)))) (-3746 (((-108) $) 49 (|has| |#1| (-346)))) (-1410 (($ $ (-713)) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2250 (((-108) $) NIL)) (-1737 (((-855) $) 47 (|has| |#1| (-346))) (((-775 (-855)) $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2133 (((-108) $) NIL)) (-2537 (($) 132 (|has| |#1| (-346)))) (-4037 (((-108) $) NIL (|has| |#1| (-346)))) (-3477 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-1816 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2362 (((-1086 |#1|) $) 90) (((-1086 $) $ (-855)) NIL (|has| |#1| (-346)))) (-1780 (((-855) $) 140 (|has| |#1| (-346)))) (-3474 (((-1086 |#1|) $) NIL (|has| |#1| (-346)))) (-2509 (((-1086 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1086 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2783 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-346)))) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 147)) (-2279 (($) NIL (|has| |#1| (-346)) CONST)) (-4185 (($ (-855)) 71 (|has| |#1| (-346)))) (-2325 (((-108) $) 118)) (-2663 (((-1037) $) NIL)) (-3122 (((-891 (-1037))) 44)) (-1669 (($) 128 (|has| |#1| (-346)))) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) 93 (|has| |#1| (-346)))) (-3959 (((-396 $) $) NIL)) (-2864 (((-775 (-855))) 67) (((-855)) 68)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-2443 (((-713) $) 131 (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) 125 (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3191 (((-128)) NIL)) (-3013 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2513 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-1654 (((-1086 |#1|)) 96)) (-3775 (($) 129 (|has| |#1| (-346)))) (-3555 (($) 137 (|has| |#1| (-346)))) (-4093 (((-1172 |#1|) $) 59) (((-632 |#1|) (-1172 $)) NIL)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1908 (((-797) $) 143) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 75)) (-3421 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2093 (((-713)) 139)) (-2499 (((-1172 $)) 117) (((-1172 $) (-855)) 73)) (-2262 (((-108) $ $) NIL)) (-1252 (((-108) $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) 32 T CONST)) (-3882 (($) 19 T CONST)) (-3192 (($ $) 81 (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1424 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3961 (((-108) $ $) 48)) (-4082 (($ $ $) 145) (($ $ |#1|) 146)) (-4070 (($ $) 127) (($ $ $) NIL)) (-4059 (($ $ $) 61)) (** (($ $ (-855)) 149) (($ $ (-713)) 150) (($ $ (-525)) 148)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 77) (($ $ $) 76) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144)))
-(((-322 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -3122 ((-891 (-1037)))))) (-327) (-1086 |#1|)) (T -322))
-((-3122 (*1 *2) (-12 (-5 *2 (-891 (-1037))) (-5 *1 (-322 *3 *4)) (-4 *3 (-327)) (-14 *4 (-1086 *3)))))
-(-13 (-307 |#1|) (-10 -7 (-15 -3122 ((-891 (-1037))))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-1831 (((-108) $) NIL)) (-3425 (((-713)) NIL)) (-3512 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-2837 (((-1100 (-855) (-713)) (-525)) NIL (|has| |#1| (-346)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2305 (((-108) $ $) NIL)) (-3107 (((-713)) NIL (|has| |#1| (-346)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) NIL)) (-2831 ((|#1| $) NIL)) (-2229 (($ (-1172 |#1|)) NIL)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) NIL (|has| |#1| (-346)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-3205 (($) NIL (|has| |#1| (-346)))) (-3746 (((-108) $) NIL (|has| |#1| (-346)))) (-1410 (($ $ (-713)) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2250 (((-108) $) NIL)) (-1737 (((-855) $) NIL (|has| |#1| (-346))) (((-775 (-855)) $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2133 (((-108) $) NIL)) (-2537 (($) NIL (|has| |#1| (-346)))) (-4037 (((-108) $) NIL (|has| |#1| (-346)))) (-3477 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-1816 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2362 (((-1086 |#1|) $) NIL) (((-1086 $) $ (-855)) NIL (|has| |#1| (-346)))) (-1780 (((-855) $) NIL (|has| |#1| (-346)))) (-3474 (((-1086 |#1|) $) NIL (|has| |#1| (-346)))) (-2509 (((-1086 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1086 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2783 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-346)))) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL (|has| |#1| (-346)) CONST)) (-4185 (($ (-855)) NIL (|has| |#1| (-346)))) (-2325 (((-108) $) NIL)) (-2663 (((-1037) $) NIL)) (-3122 (((-891 (-1037))) NIL)) (-1669 (($) NIL (|has| |#1| (-346)))) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) NIL (|has| |#1| (-346)))) (-3959 (((-396 $) $) NIL)) (-2864 (((-775 (-855))) NIL) (((-855)) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-2443 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3191 (((-128)) NIL)) (-3013 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2513 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-1654 (((-1086 |#1|)) NIL)) (-3775 (($) NIL (|has| |#1| (-346)))) (-3555 (($) NIL (|has| |#1| (-346)))) (-4093 (((-1172 |#1|) $) NIL) (((-632 |#1|) (-1172 $)) NIL)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-3421 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2093 (((-713)) NIL)) (-2499 (((-1172 $)) NIL) (((-1172 $) (-855)) NIL)) (-2262 (((-108) $ $) NIL)) (-1252 (((-108) $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-3192 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1424 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-323 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -3122 ((-891 (-1037)))))) (-327) (-855)) (T -323))
-((-3122 (*1 *2) (-12 (-5 *2 (-891 (-1037))) (-5 *1 (-323 *3 *4)) (-4 *3 (-327)) (-14 *4 (-855)))))
-(-13 (-307 |#1|) (-10 -7 (-15 -3122 ((-891 (-1037))))))
-((-2116 (((-713) (-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037)))))) 42)) (-2677 (((-891 (-1037)) (-1086 |#1|)) 85)) (-2119 (((-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))) (-1086 |#1|)) 78)) (-1253 (((-632 |#1|) (-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037)))))) 86)) (-2335 (((-3 (-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))) "failed") (-855)) 13)) (-2733 (((-3 (-1086 |#1|) (-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037)))))) (-855)) 18)))
-(((-324 |#1|) (-10 -7 (-15 -2677 ((-891 (-1037)) (-1086 |#1|))) (-15 -2119 ((-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))) (-1086 |#1|))) (-15 -1253 ((-632 |#1|) (-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))))) (-15 -2116 ((-713) (-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))))) (-15 -2335 ((-3 (-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))) "failed") (-855))) (-15 -2733 ((-3 (-1086 |#1|) (-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037)))))) (-855)))) (-327)) (T -324))
-((-2733 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-3 (-1086 *4) (-1172 (-592 (-2 (|:| -3871 *4) (|:| -4185 (-1037))))))) (-5 *1 (-324 *4)) (-4 *4 (-327)))) (-2335 (*1 *2 *3) (|partial| -12 (-5 *3 (-855)) (-5 *2 (-1172 (-592 (-2 (|:| -3871 *4) (|:| -4185 (-1037)))))) (-5 *1 (-324 *4)) (-4 *4 (-327)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-1172 (-592 (-2 (|:| -3871 *4) (|:| -4185 (-1037)))))) (-4 *4 (-327)) (-5 *2 (-713)) (-5 *1 (-324 *4)))) (-1253 (*1 *2 *3) (-12 (-5 *3 (-1172 (-592 (-2 (|:| -3871 *4) (|:| -4185 (-1037)))))) (-4 *4 (-327)) (-5 *2 (-632 *4)) (-5 *1 (-324 *4)))) (-2119 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) (-5 *2 (-1172 (-592 (-2 (|:| -3871 *4) (|:| -4185 (-1037)))))) (-5 *1 (-324 *4)))) (-2677 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) (-5 *2 (-891 (-1037))) (-5 *1 (-324 *4)))))
-(-10 -7 (-15 -2677 ((-891 (-1037)) (-1086 |#1|))) (-15 -2119 ((-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))) (-1086 |#1|))) (-15 -1253 ((-632 |#1|) (-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))))) (-15 -2116 ((-713) (-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))))) (-15 -2335 ((-3 (-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))) "failed") (-855))) (-15 -2733 ((-3 (-1086 |#1|) (-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037)))))) (-855))))
-((-1908 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
-(((-325 |#1| |#2| |#3|) (-10 -7 (-15 -1908 (|#3| |#1|)) (-15 -1908 (|#1| |#3|))) (-307 |#2|) (-327) (-307 |#2|)) (T -325))
-((-1908 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *2 *4 *3)) (-4 *3 (-307 *4)))) (-1908 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *3 *4 *2)) (-4 *3 (-307 *4)))))
-(-10 -7 (-15 -1908 (|#3| |#1|)) (-15 -1908 (|#1| |#3|)))
-((-3746 (((-108) $) 52)) (-1737 (((-775 (-855)) $) 21) (((-855) $) 53)) (-1816 (((-3 $ "failed") $) 16)) (-2279 (($) 9)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 94)) (-2443 (((-3 (-713) "failed") $ $) 72) (((-713) $) 61)) (-3013 (($ $ (-713)) NIL) (($ $) 8)) (-3775 (($) 46)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) 34)) (-3421 (((-3 $ "failed") $) 40) (($ $) 39)))
-(((-326 |#1|) (-10 -8 (-15 -1737 ((-855) |#1|)) (-15 -2443 ((-713) |#1|)) (-15 -3746 ((-108) |#1|)) (-15 -3775 (|#1|)) (-15 -2438 ((-3 (-1172 |#1|) "failed") (-632 |#1|))) (-15 -3421 (|#1| |#1|)) (-15 -3013 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -2279 (|#1|)) (-15 -1816 ((-3 |#1| "failed") |#1|)) (-15 -2443 ((-3 (-713) "failed") |#1| |#1|)) (-15 -1737 ((-775 (-855)) |#1|)) (-15 -3421 ((-3 |#1| "failed") |#1|)) (-15 -1763 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|)))) (-327)) (T -326))
-NIL
-(-10 -8 (-15 -1737 ((-855) |#1|)) (-15 -2443 ((-713) |#1|)) (-15 -3746 ((-108) |#1|)) (-15 -3775 (|#1|)) (-15 -2438 ((-3 (-1172 |#1|) "failed") (-632 |#1|))) (-15 -3421 (|#1| |#1|)) (-15 -3013 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -2279 (|#1|)) (-15 -1816 ((-3 |#1| "failed") |#1|)) (-15 -2443 ((-3 (-713) "failed") |#1| |#1|)) (-15 -1737 ((-775 (-855)) |#1|)) (-15 -3421 ((-3 |#1| "failed") |#1|)) (-15 -1763 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-2837 (((-1100 (-855) (-713)) (-525)) 93)) (-3263 (((-3 $ "failed") $ $) 19)) (-3321 (($ $) 73)) (-1510 (((-396 $) $) 72)) (-2305 (((-108) $ $) 59)) (-3107 (((-713)) 103)) (-1505 (($) 17 T CONST)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-2373 (($ $ $) 55)) (-2866 (((-3 $ "failed") $) 34)) (-3375 (($) 106)) (-2356 (($ $ $) 56)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 51)) (-3205 (($) 91)) (-3746 (((-108) $) 90)) (-1410 (($ $) 79) (($ $ (-713)) 78)) (-2250 (((-108) $) 71)) (-1737 (((-775 (-855)) $) 81) (((-855) $) 88)) (-2133 (((-108) $) 31)) (-1816 (((-3 $ "failed") $) 102)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-1780 (((-855) $) 105)) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-4211 (($ $) 70)) (-2279 (($) 101 T CONST)) (-4185 (($ (-855)) 104)) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) 94)) (-3959 (((-396 $) $) 74)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2338 (((-3 $ "failed") $ $) 42)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2183 (((-713) $) 58)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 57)) (-2443 (((-3 (-713) "failed") $ $) 80) (((-713) $) 89)) (-3013 (($ $ (-713)) 99) (($ $) 97)) (-3775 (($) 92)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) 95)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-3421 (((-3 $ "failed") $) 82) (($ $) 96)) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) 39)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ (-713)) 100) (($ $) 98)) (-3961 (((-108) $ $) 6)) (-4082 (($ $ $) 64)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
+((-1449 (*1 *2) (-12 (-4 *3 (-341)) (-5 *2 (-1173 *1)) (-4 *1 (-307 *3)))) (-1449 (*1 *2 *3) (-12 (-5 *3 (-856)) (-4 *4 (-341)) (-5 *2 (-1173 *1)) (-4 *1 (-307 *4)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1173 *3)))) (-3464 (*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-307 *4)) (-4 *4 (-341)) (-5 *2 (-632 *4)))) (-3612 (*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-341)) (-4 *1 (-307 *3)))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1087 *3)))) (-1571 (*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1087 *3)))) (-3748 (*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-856)))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-856)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341)))) (-3029 (*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341)))) (-2640 (*1 *2 *1 *3) (-12 (-5 *3 (-856)) (-4 *4 (-346)) (-4 *4 (-341)) (-5 *2 (-1087 *1)) (-4 *1 (-307 *4)))) (-2900 (*1 *1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) (-3029 (*1 *1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)))) (-2411 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-1794 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-4200 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-108)))) (-3523 (*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))) (-2499 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-346)) (-4 *1 (-307 *3)) (-4 *3 (-341)))) (-2884 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1087 *3)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1087 *3)))) (-1549 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-1087 *3)))))
+(-13 (-1190 |t#1|) (-968 |t#1|) (-10 -8 (-15 -1449 ((-1173 $))) (-15 -1449 ((-1173 $) (-856))) (-15 -3464 ((-1173 |t#1|) $)) (-15 -3464 ((-632 |t#1|) (-1173 $))) (-15 -3612 ($ (-1173 |t#1|))) (-15 -2640 ((-1087 |t#1|) $)) (-15 -1571 ((-1087 |t#1|))) (-15 -3748 ((-856))) (-15 -1587 ((-856) $)) (-15 -2900 (|t#1| $)) (-15 -3029 (|t#1| $)) (IF (|has| |t#1| (-346)) (PROGN (-6 (-327)) (-15 -2640 ((-1087 $) $ (-856))) (-15 -2900 ($ $ (-856))) (-15 -3029 ($ $ (-856))) (-15 -2411 ($)) (-15 -1794 ($)) (-15 -4200 ((-108) $)) (-15 -3523 ($)) (-15 -2499 ($ $ (-1087 |t#1|))) (-15 -2884 ((-1087 |t#1|) $)) (-15 -1549 ((-1087 |t#1|) $)) (-15 -1549 ((-3 (-1087 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3279 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-213) |has| |#1| (-346)) ((-223) . T) ((-269) . T) ((-286) . T) ((-1190 |#1|) . T) ((-341) . T) ((-380) -3279 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-346) |has| |#1| (-346)) ((-327) |has| |#1| (-346)) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-968 |#1|) . T) ((-983 #0#) . T) ((-983 |#1|) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1067) |has| |#1| (-346)) ((-1131) . T) ((-1180 |#1|) . T))
+((-1260 (((-108) $ $) NIL)) (-1383 (($ (-1090) $) 88)) (-2916 (($) 77)) (-3021 (((-1038) (-1038)) 11)) (-3714 (($) 78)) (-3150 (($) 90) (($ (-294 (-641))) 98) (($ (-294 (-643))) 94) (($ (-294 (-636))) 102) (($ (-294 (-357))) 109) (($ (-294 (-525))) 105) (($ (-294 (-157 (-357)))) 113)) (-3555 (($ (-1090) $) 89)) (-2755 (($ (-592 (-798))) 79)) (-1602 (((-1178) $) 75)) (-4110 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3404 (($ (-1038)) 51)) (-2484 (((-1024) $) 25)) (-3614 (($ (-1013 (-887 (-525))) $) 85) (($ (-1013 (-887 (-525))) (-887 (-525)) $) 86)) (-2945 (($ (-1038)) 87)) (-1716 (($ (-1090) $) 115) (($ (-1090) $ $) 116)) (-3244 (($ (-1091) (-592 (-1091))) 76)) (-2800 (($ (-1074)) 82) (($ (-592 (-1074))) 80)) (-1270 (((-798) $) 118)) (-4070 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1091)) (|:| |arrayIndex| (-592 (-887 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2531 (-798)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1091)) (|:| |rand| (-798)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1090)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2013 (-108)) (|:| -3352 (-2 (|:| |ints2Floats?| (-108)) (|:| -2531 (-798)))))) (|:| |blockBranch| (-592 $)) (|:| |commentBranch| (-592 (-1074))) (|:| |callBranch| (-1074)) (|:| |forBranch| (-2 (|:| -2990 (-1013 (-887 (-525)))) (|:| |span| (-887 (-525))) (|:| -3102 $))) (|:| |labelBranch| (-1038)) (|:| |loopBranch| (-2 (|:| |switch| (-1090)) (|:| -3102 $))) (|:| |commonBranch| (-2 (|:| -3800 (-1091)) (|:| |contents| (-592 (-1091))))) (|:| |printBranch| (-592 (-798)))) $) 44)) (-2466 (($ (-1074)) 187)) (-1884 (($ (-592 $)) 114)) (-3226 (($ (-1091) (-1074)) 120) (($ (-1091) (-294 (-643))) 160) (($ (-1091) (-294 (-641))) 161) (($ (-1091) (-294 (-636))) 162) (($ (-1091) (-632 (-643))) 123) (($ (-1091) (-632 (-641))) 126) (($ (-1091) (-632 (-636))) 129) (($ (-1091) (-1173 (-643))) 132) (($ (-1091) (-1173 (-641))) 135) (($ (-1091) (-1173 (-636))) 138) (($ (-1091) (-632 (-294 (-643)))) 141) (($ (-1091) (-632 (-294 (-641)))) 144) (($ (-1091) (-632 (-294 (-636)))) 147) (($ (-1091) (-1173 (-294 (-643)))) 150) (($ (-1091) (-1173 (-294 (-641)))) 153) (($ (-1091) (-1173 (-294 (-636)))) 156) (($ (-1091) (-592 (-887 (-525))) (-294 (-643))) 157) (($ (-1091) (-592 (-887 (-525))) (-294 (-641))) 158) (($ (-1091) (-592 (-887 (-525))) (-294 (-636))) 159) (($ (-1091) (-294 (-525))) 184) (($ (-1091) (-294 (-357))) 185) (($ (-1091) (-294 (-157 (-357)))) 186) (($ (-1091) (-632 (-294 (-525)))) 165) (($ (-1091) (-632 (-294 (-357)))) 168) (($ (-1091) (-632 (-294 (-157 (-357))))) 171) (($ (-1091) (-1173 (-294 (-525)))) 174) (($ (-1091) (-1173 (-294 (-357)))) 177) (($ (-1091) (-1173 (-294 (-157 (-357))))) 180) (($ (-1091) (-592 (-887 (-525))) (-294 (-525))) 181) (($ (-1091) (-592 (-887 (-525))) (-294 (-357))) 182) (($ (-1091) (-592 (-887 (-525))) (-294 (-157 (-357)))) 183)) (-3994 (((-108) $ $) NIL)))
+(((-308) (-13 (-1020) (-10 -8 (-15 -1270 ((-798) $)) (-15 -3614 ($ (-1013 (-887 (-525))) $)) (-15 -3614 ($ (-1013 (-887 (-525))) (-887 (-525)) $)) (-15 -1383 ($ (-1090) $)) (-15 -3555 ($ (-1090) $)) (-15 -3404 ($ (-1038))) (-15 -2945 ($ (-1038))) (-15 -2800 ($ (-1074))) (-15 -2800 ($ (-592 (-1074)))) (-15 -2466 ($ (-1074))) (-15 -3150 ($)) (-15 -3150 ($ (-294 (-641)))) (-15 -3150 ($ (-294 (-643)))) (-15 -3150 ($ (-294 (-636)))) (-15 -3150 ($ (-294 (-357)))) (-15 -3150 ($ (-294 (-525)))) (-15 -3150 ($ (-294 (-157 (-357))))) (-15 -1716 ($ (-1090) $)) (-15 -1716 ($ (-1090) $ $)) (-15 -3226 ($ (-1091) (-1074))) (-15 -3226 ($ (-1091) (-294 (-643)))) (-15 -3226 ($ (-1091) (-294 (-641)))) (-15 -3226 ($ (-1091) (-294 (-636)))) (-15 -3226 ($ (-1091) (-632 (-643)))) (-15 -3226 ($ (-1091) (-632 (-641)))) (-15 -3226 ($ (-1091) (-632 (-636)))) (-15 -3226 ($ (-1091) (-1173 (-643)))) (-15 -3226 ($ (-1091) (-1173 (-641)))) (-15 -3226 ($ (-1091) (-1173 (-636)))) (-15 -3226 ($ (-1091) (-632 (-294 (-643))))) (-15 -3226 ($ (-1091) (-632 (-294 (-641))))) (-15 -3226 ($ (-1091) (-632 (-294 (-636))))) (-15 -3226 ($ (-1091) (-1173 (-294 (-643))))) (-15 -3226 ($ (-1091) (-1173 (-294 (-641))))) (-15 -3226 ($ (-1091) (-1173 (-294 (-636))))) (-15 -3226 ($ (-1091) (-592 (-887 (-525))) (-294 (-643)))) (-15 -3226 ($ (-1091) (-592 (-887 (-525))) (-294 (-641)))) (-15 -3226 ($ (-1091) (-592 (-887 (-525))) (-294 (-636)))) (-15 -3226 ($ (-1091) (-294 (-525)))) (-15 -3226 ($ (-1091) (-294 (-357)))) (-15 -3226 ($ (-1091) (-294 (-157 (-357))))) (-15 -3226 ($ (-1091) (-632 (-294 (-525))))) (-15 -3226 ($ (-1091) (-632 (-294 (-357))))) (-15 -3226 ($ (-1091) (-632 (-294 (-157 (-357)))))) (-15 -3226 ($ (-1091) (-1173 (-294 (-525))))) (-15 -3226 ($ (-1091) (-1173 (-294 (-357))))) (-15 -3226 ($ (-1091) (-1173 (-294 (-157 (-357)))))) (-15 -3226 ($ (-1091) (-592 (-887 (-525))) (-294 (-525)))) (-15 -3226 ($ (-1091) (-592 (-887 (-525))) (-294 (-357)))) (-15 -3226 ($ (-1091) (-592 (-887 (-525))) (-294 (-157 (-357))))) (-15 -1884 ($ (-592 $))) (-15 -2916 ($)) (-15 -3714 ($)) (-15 -2755 ($ (-592 (-798)))) (-15 -3244 ($ (-1091) (-592 (-1091)))) (-15 -4110 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4070 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1091)) (|:| |arrayIndex| (-592 (-887 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2531 (-798)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1091)) (|:| |rand| (-798)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1090)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2013 (-108)) (|:| -3352 (-2 (|:| |ints2Floats?| (-108)) (|:| -2531 (-798)))))) (|:| |blockBranch| (-592 $)) (|:| |commentBranch| (-592 (-1074))) (|:| |callBranch| (-1074)) (|:| |forBranch| (-2 (|:| -2990 (-1013 (-887 (-525)))) (|:| |span| (-887 (-525))) (|:| -3102 $))) (|:| |labelBranch| (-1038)) (|:| |loopBranch| (-2 (|:| |switch| (-1090)) (|:| -3102 $))) (|:| |commonBranch| (-2 (|:| -3800 (-1091)) (|:| |contents| (-592 (-1091))))) (|:| |printBranch| (-592 (-798)))) $)) (-15 -1602 ((-1178) $)) (-15 -2484 ((-1024) $)) (-15 -3021 ((-1038) (-1038)))))) (T -308))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-308)))) (-3614 (*1 *1 *2 *1) (-12 (-5 *2 (-1013 (-887 (-525)))) (-5 *1 (-308)))) (-3614 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1013 (-887 (-525)))) (-5 *3 (-887 (-525))) (-5 *1 (-308)))) (-1383 (*1 *1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-308)))) (-3555 (*1 *1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-308)))) (-3404 (*1 *1 *2) (-12 (-5 *2 (-1038)) (-5 *1 (-308)))) (-2945 (*1 *1 *2) (-12 (-5 *2 (-1038)) (-5 *1 (-308)))) (-2800 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-308)))) (-2800 (*1 *1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-308)))) (-2466 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-308)))) (-3150 (*1 *1) (-5 *1 (-308))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-294 (-641))) (-5 *1 (-308)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-294 (-643))) (-5 *1 (-308)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-294 (-636))) (-5 *1 (-308)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-308)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-308)))) (-3150 (*1 *1 *2) (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-1716 (*1 *1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-308)))) (-1716 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1074)) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-294 (-643))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-294 (-641))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-294 (-636))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-643))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-641))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-636))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-643))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-641))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-636))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-294 (-643)))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-294 (-641)))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-294 (-636)))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-294 (-643)))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-294 (-641)))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-294 (-636)))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-643))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-641))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-636))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-294 (-525))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-294 (-357))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-294 (-525)))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-294 (-357)))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-294 (-157 (-357))))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-294 (-525)))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-294 (-357)))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-294 (-157 (-357))))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-525))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-357))) (-5 *1 (-308)))) (-3226 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-294 (-157 (-357)))) (-5 *1 (-308)))) (-1884 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-5 *1 (-308)))) (-2916 (*1 *1) (-5 *1 (-308))) (-3714 (*1 *1) (-5 *1 (-308))) (-2755 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-308)))) (-3244 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-1091))) (-5 *1 (-308)))) (-4110 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-308)))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1091)) (|:| |arrayIndex| (-592 (-887 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2531 (-798)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1091)) (|:| |rand| (-798)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1090)) (|:| |thenClause| (-308)) (|:| |elseClause| (-308)))) (|:| |returnBranch| (-2 (|:| -2013 (-108)) (|:| -3352 (-2 (|:| |ints2Floats?| (-108)) (|:| -2531 (-798)))))) (|:| |blockBranch| (-592 (-308))) (|:| |commentBranch| (-592 (-1074))) (|:| |callBranch| (-1074)) (|:| |forBranch| (-2 (|:| -2990 (-1013 (-887 (-525)))) (|:| |span| (-887 (-525))) (|:| -3102 (-308)))) (|:| |labelBranch| (-1038)) (|:| |loopBranch| (-2 (|:| |switch| (-1090)) (|:| -3102 (-308)))) (|:| |commonBranch| (-2 (|:| -3800 (-1091)) (|:| |contents| (-592 (-1091))))) (|:| |printBranch| (-592 (-798))))) (-5 *1 (-308)))) (-1602 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-308)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-308)))) (-3021 (*1 *2 *2) (-12 (-5 *2 (-1038)) (-5 *1 (-308)))))
+(-13 (-1020) (-10 -8 (-15 -1270 ((-798) $)) (-15 -3614 ($ (-1013 (-887 (-525))) $)) (-15 -3614 ($ (-1013 (-887 (-525))) (-887 (-525)) $)) (-15 -1383 ($ (-1090) $)) (-15 -3555 ($ (-1090) $)) (-15 -3404 ($ (-1038))) (-15 -2945 ($ (-1038))) (-15 -2800 ($ (-1074))) (-15 -2800 ($ (-592 (-1074)))) (-15 -2466 ($ (-1074))) (-15 -3150 ($)) (-15 -3150 ($ (-294 (-641)))) (-15 -3150 ($ (-294 (-643)))) (-15 -3150 ($ (-294 (-636)))) (-15 -3150 ($ (-294 (-357)))) (-15 -3150 ($ (-294 (-525)))) (-15 -3150 ($ (-294 (-157 (-357))))) (-15 -1716 ($ (-1090) $)) (-15 -1716 ($ (-1090) $ $)) (-15 -3226 ($ (-1091) (-1074))) (-15 -3226 ($ (-1091) (-294 (-643)))) (-15 -3226 ($ (-1091) (-294 (-641)))) (-15 -3226 ($ (-1091) (-294 (-636)))) (-15 -3226 ($ (-1091) (-632 (-643)))) (-15 -3226 ($ (-1091) (-632 (-641)))) (-15 -3226 ($ (-1091) (-632 (-636)))) (-15 -3226 ($ (-1091) (-1173 (-643)))) (-15 -3226 ($ (-1091) (-1173 (-641)))) (-15 -3226 ($ (-1091) (-1173 (-636)))) (-15 -3226 ($ (-1091) (-632 (-294 (-643))))) (-15 -3226 ($ (-1091) (-632 (-294 (-641))))) (-15 -3226 ($ (-1091) (-632 (-294 (-636))))) (-15 -3226 ($ (-1091) (-1173 (-294 (-643))))) (-15 -3226 ($ (-1091) (-1173 (-294 (-641))))) (-15 -3226 ($ (-1091) (-1173 (-294 (-636))))) (-15 -3226 ($ (-1091) (-592 (-887 (-525))) (-294 (-643)))) (-15 -3226 ($ (-1091) (-592 (-887 (-525))) (-294 (-641)))) (-15 -3226 ($ (-1091) (-592 (-887 (-525))) (-294 (-636)))) (-15 -3226 ($ (-1091) (-294 (-525)))) (-15 -3226 ($ (-1091) (-294 (-357)))) (-15 -3226 ($ (-1091) (-294 (-157 (-357))))) (-15 -3226 ($ (-1091) (-632 (-294 (-525))))) (-15 -3226 ($ (-1091) (-632 (-294 (-357))))) (-15 -3226 ($ (-1091) (-632 (-294 (-157 (-357)))))) (-15 -3226 ($ (-1091) (-1173 (-294 (-525))))) (-15 -3226 ($ (-1091) (-1173 (-294 (-357))))) (-15 -3226 ($ (-1091) (-1173 (-294 (-157 (-357)))))) (-15 -3226 ($ (-1091) (-592 (-887 (-525))) (-294 (-525)))) (-15 -3226 ($ (-1091) (-592 (-887 (-525))) (-294 (-357)))) (-15 -3226 ($ (-1091) (-592 (-887 (-525))) (-294 (-157 (-357))))) (-15 -1884 ($ (-592 $))) (-15 -2916 ($)) (-15 -3714 ($)) (-15 -2755 ($ (-592 (-798)))) (-15 -3244 ($ (-1091) (-592 (-1091)))) (-15 -4110 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -4070 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1091)) (|:| |arrayIndex| (-592 (-887 (-525)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-108)) (|:| -2531 (-798)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1091)) (|:| |rand| (-798)) (|:| |ints2Floats?| (-108)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1090)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2013 (-108)) (|:| -3352 (-2 (|:| |ints2Floats?| (-108)) (|:| -2531 (-798)))))) (|:| |blockBranch| (-592 $)) (|:| |commentBranch| (-592 (-1074))) (|:| |callBranch| (-1074)) (|:| |forBranch| (-2 (|:| -2990 (-1013 (-887 (-525)))) (|:| |span| (-887 (-525))) (|:| -3102 $))) (|:| |labelBranch| (-1038)) (|:| |loopBranch| (-2 (|:| |switch| (-1090)) (|:| -3102 $))) (|:| |commonBranch| (-2 (|:| -3800 (-1091)) (|:| |contents| (-592 (-1091))))) (|:| |printBranch| (-592 (-798)))) $)) (-15 -1602 ((-1178) $)) (-15 -2484 ((-1024) $)) (-15 -3021 ((-1038) (-1038)))))
+((-1260 (((-108) $ $) NIL)) (-2218 (((-108) $) 11)) (-1569 (($ |#1|) 8)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1584 (($ |#1|) 9)) (-1270 (((-798) $) 17)) (-3538 ((|#1| $) 12)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 19)))
+(((-309 |#1|) (-13 (-789) (-10 -8 (-15 -1569 ($ |#1|)) (-15 -1584 ($ |#1|)) (-15 -2218 ((-108) $)) (-15 -3538 (|#1| $)))) (-789)) (T -309))
+((-1569 (*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789)))) (-1584 (*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789)))) (-2218 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-309 *3)) (-4 *3 (-789)))) (-3538 (*1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789)))))
+(-13 (-789) (-10 -8 (-15 -1569 ($ |#1|)) (-15 -1584 ($ |#1|)) (-15 -2218 ((-108) $)) (-15 -3538 (|#1| $))))
+((-2291 (((-308) (-1091) (-887 (-525))) 23)) (-1552 (((-308) (-1091) (-887 (-525))) 27)) (-2661 (((-308) (-1091) (-1013 (-887 (-525))) (-1013 (-887 (-525)))) 26) (((-308) (-1091) (-887 (-525)) (-887 (-525))) 24)) (-2452 (((-308) (-1091) (-887 (-525))) 31)))
+(((-310) (-10 -7 (-15 -2291 ((-308) (-1091) (-887 (-525)))) (-15 -2661 ((-308) (-1091) (-887 (-525)) (-887 (-525)))) (-15 -2661 ((-308) (-1091) (-1013 (-887 (-525))) (-1013 (-887 (-525))))) (-15 -1552 ((-308) (-1091) (-887 (-525)))) (-15 -2452 ((-308) (-1091) (-887 (-525)))))) (T -310))
+((-2452 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-887 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-1552 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-887 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-2661 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-1013 (-887 (-525)))) (-5 *2 (-308)) (-5 *1 (-310)))) (-2661 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-887 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))) (-2291 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-887 (-525))) (-5 *2 (-308)) (-5 *1 (-310)))))
+(-10 -7 (-15 -2291 ((-308) (-1091) (-887 (-525)))) (-15 -2661 ((-308) (-1091) (-887 (-525)) (-887 (-525)))) (-15 -2661 ((-308) (-1091) (-1013 (-887 (-525))) (-1013 (-887 (-525))))) (-15 -1552 ((-308) (-1091) (-887 (-525)))) (-15 -2452 ((-308) (-1091) (-887 (-525)))))
+((-2694 (((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|)) 33)))
+(((-311 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2694 ((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|)))) (-341) (-1149 |#1|) (-1149 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-341) (-1149 |#5|) (-1149 (-385 |#6|)) (-320 |#5| |#6| |#7|)) (T -311))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-314 *5 *6 *7 *8)) (-4 *5 (-341)) (-4 *6 (-1149 *5)) (-4 *7 (-1149 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *9 (-341)) (-4 *10 (-1149 *9)) (-4 *11 (-1149 (-385 *10))) (-5 *2 (-314 *9 *10 *11 *12)) (-5 *1 (-311 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-320 *9 *10 *11)))))
+(-10 -7 (-15 -2694 ((-314 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-314 |#1| |#2| |#3| |#4|))))
+((-3905 (((-108) $) 14)))
+(((-312 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3905 ((-108) |#1|))) (-313 |#2| |#3| |#4| |#5|) (-341) (-1149 |#2|) (-1149 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -312))
+NIL
+(-10 -8 (-15 -3905 ((-108) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3503 (($ $) 26)) (-3905 (((-108) $) 25)) (-3451 (((-1074) $) 9)) (-4015 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 32)) (-2012 (((-1038) $) 10)) (-3523 (((-3 |#4| "failed") $) 24)) (-4014 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-525)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-1588 (((-2 (|:| -3450 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-1270 (((-798) $) 11)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20)))
+(((-313 |#1| |#2| |#3| |#4|) (-131) (-341) (-1149 |t#1|) (-1149 (-385 |t#2|)) (-320 |t#1| |t#2| |t#3|)) (T -313))
+((-4015 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-391 *4 (-385 *4) *5 *6)))) (-4014 (*1 *1 *2) (-12 (-5 *2 (-391 *4 (-385 *4) *5 *6)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-4 *3 (-341)) (-4 *1 (-313 *3 *4 *5 *6)))) (-4014 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-4 *1 (-313 *3 *4 *5 *2)) (-4 *2 (-320 *3 *4 *5)))) (-4014 (*1 *1 *2 *2) (-12 (-4 *2 (-341)) (-4 *3 (-1149 *2)) (-4 *4 (-1149 (-385 *3))) (-4 *1 (-313 *2 *3 *4 *5)) (-4 *5 (-320 *2 *3 *4)))) (-4014 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-525)) (-4 *2 (-341)) (-4 *4 (-1149 *2)) (-4 *5 (-1149 (-385 *4))) (-4 *1 (-313 *2 *4 *5 *6)) (-4 *6 (-320 *2 *4 *5)))) (-1588 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-2 (|:| -3450 (-391 *4 (-385 *4) *5 *6)) (|:| |principalPart| *6))))) (-3503 (*1 *1 *1) (-12 (-4 *1 (-313 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *3 (-1149 *2)) (-4 *4 (-1149 (-385 *3))) (-4 *5 (-320 *2 *3 *4)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-108)))) (-3523 (*1 *2 *1) (|partial| -12 (-4 *1 (-313 *3 *4 *5 *2)) (-4 *3 (-341)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-4 *2 (-320 *3 *4 *5)))) (-4014 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-341)) (-4 *3 (-1149 *4)) (-4 *5 (-1149 (-385 *3))) (-4 *1 (-313 *4 *3 *5 *2)) (-4 *2 (-320 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -4015 ((-391 |t#2| (-385 |t#2|) |t#3| |t#4|) $)) (-15 -4014 ($ (-391 |t#2| (-385 |t#2|) |t#3| |t#4|))) (-15 -4014 ($ |t#4|)) (-15 -4014 ($ |t#1| |t#1|)) (-15 -4014 ($ |t#1| |t#1| (-525))) (-15 -1588 ((-2 (|:| -3450 (-391 |t#2| (-385 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -3503 ($ $)) (-15 -3905 ((-108) $)) (-15 -3523 ((-3 |t#4| "failed") $)) (-15 -4014 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-3503 (($ $) 33)) (-3905 (((-108) $) NIL)) (-3451 (((-1074) $) NIL)) (-1972 (((-1173 |#4|) $) 125)) (-4015 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 31)) (-2012 (((-1038) $) NIL)) (-3523 (((-3 |#4| "failed") $) 36)) (-1754 (((-1173 |#4|) $) 118)) (-4014 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-525)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-1588 (((-2 (|:| -3450 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-1270 (((-798) $) 17)) (-3355 (($) 14 T CONST)) (-3994 (((-108) $ $) 20)) (-4090 (($ $) 27) (($ $ $) NIL)) (-4080 (($ $ $) 25)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 23)))
+(((-314 |#1| |#2| |#3| |#4|) (-13 (-313 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1754 ((-1173 |#4|) $)) (-15 -1972 ((-1173 |#4|) $)))) (-341) (-1149 |#1|) (-1149 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -314))
+((-1754 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-1173 *6)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *6 (-320 *3 *4 *5)))) (-1972 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-1173 *6)) (-5 *1 (-314 *3 *4 *5 *6)) (-4 *6 (-320 *3 *4 *5)))))
+(-13 (-313 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1754 ((-1173 |#4|) $)) (-15 -1972 ((-1173 |#4|) $))))
+((-2602 (($ $ (-1091) |#2|) NIL) (($ $ (-592 (-1091)) (-592 |#2|)) 20) (($ $ (-592 (-273 |#2|))) 15) (($ $ (-273 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-592 |#2|) (-592 |#2|)) NIL)) (-3410 (($ $ |#2|) 11)))
+(((-315 |#1| |#2|) (-10 -8 (-15 -3410 (|#1| |#1| |#2|)) (-15 -2602 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -2602 (|#1| |#1| |#2| |#2|)) (-15 -2602 (|#1| |#1| (-273 |#2|))) (-15 -2602 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2602 (|#1| |#1| (-592 (-1091)) (-592 |#2|))) (-15 -2602 (|#1| |#1| (-1091) |#2|))) (-316 |#2|) (-1020)) (T -315))
+NIL
+(-10 -8 (-15 -3410 (|#1| |#1| |#2|)) (-15 -2602 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -2602 (|#1| |#1| |#2| |#2|)) (-15 -2602 (|#1| |#1| (-273 |#2|))) (-15 -2602 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2602 (|#1| |#1| (-592 (-1091)) (-592 |#2|))) (-15 -2602 (|#1| |#1| (-1091) |#2|)))
+((-2694 (($ (-1 |#1| |#1|) $) 6)) (-2602 (($ $ (-1091) |#1|) 17 (|has| |#1| (-486 (-1091) |#1|))) (($ $ (-592 (-1091)) (-592 |#1|)) 16 (|has| |#1| (-486 (-1091) |#1|))) (($ $ (-592 (-273 |#1|))) 15 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 14 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-288 |#1|))) (($ $ (-592 |#1|) (-592 |#1|)) 12 (|has| |#1| (-288 |#1|)))) (-3410 (($ $ |#1|) 11 (|has| |#1| (-265 |#1| |#1|)))))
+(((-316 |#1|) (-131) (-1020)) (T -316))
+((-2694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3)) (-4 *3 (-1020)))))
+(-13 (-10 -8 (-15 -2694 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-265 |t#1| |t#1|)) (-6 (-265 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-288 |t#1|)) (-6 (-288 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-486 (-1091) |t#1|)) (-6 (-486 (-1091) |t#1|)) |%noBranch|)))
+(((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-486 (-1091) |#1|) |has| |#1| (-486 (-1091) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2383 (((-592 (-1091)) $) NIL)) (-2564 (((-108)) 91) (((-108) (-108)) 92)) (-1895 (((-592 (-565 $)) $) NIL)) (-2351 (($ $) NIL)) (-1603 (($ $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-2211 (($ $) NIL)) (-2320 (($ $) NIL)) (-1569 (($ $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-565 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-294 |#3|)) 71) (((-3 $ "failed") (-1091)) 97) (((-3 $ "failed") (-294 (-525))) 59 (|has| |#3| (-968 (-525)))) (((-3 $ "failed") (-385 (-887 (-525)))) 65 (|has| |#3| (-968 (-525)))) (((-3 $ "failed") (-887 (-525))) 60 (|has| |#3| (-968 (-525)))) (((-3 $ "failed") (-294 (-357))) 89 (|has| |#3| (-968 (-357)))) (((-3 $ "failed") (-385 (-887 (-357)))) 83 (|has| |#3| (-968 (-357)))) (((-3 $ "failed") (-887 (-357))) 78 (|has| |#3| (-968 (-357))))) (-3898 (((-565 $) $) NIL) ((|#3| $) NIL) (($ (-294 |#3|)) 72) (($ (-1091)) 98) (($ (-294 (-525))) 61 (|has| |#3| (-968 (-525)))) (($ (-385 (-887 (-525)))) 66 (|has| |#3| (-968 (-525)))) (($ (-887 (-525))) 62 (|has| |#3| (-968 (-525)))) (($ (-294 (-357))) 90 (|has| |#3| (-968 (-357)))) (($ (-385 (-887 (-357)))) 84 (|has| |#3| (-968 (-357)))) (($ (-887 (-357))) 80 (|has| |#3| (-968 (-357))))) (-3762 (((-3 $ "failed") $) NIL)) (-1535 (($) 10)) (-3694 (($ $) NIL) (($ (-592 $)) NIL)) (-3321 (((-592 (-110)) $) NIL)) (-2972 (((-110) (-110)) NIL)) (-1985 (((-108) $) NIL)) (-2126 (((-108) $) NIL (|has| $ (-968 (-525))))) (-1637 (((-1087 $) (-565 $)) NIL (|has| $ (-977)))) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-2694 (($ (-1 $ $) (-565 $)) NIL)) (-1661 (((-3 (-565 $) "failed") $) NIL)) (-3234 (($ $) 94)) (-1415 (($ $) NIL)) (-3451 (((-1074) $) NIL)) (-2129 (((-592 (-565 $)) $) NIL)) (-1581 (($ (-110) $) 93) (($ (-110) (-592 $)) NIL)) (-3069 (((-108) $ (-110)) NIL) (((-108) $ (-1091)) NIL)) (-1751 (((-713) $) NIL)) (-2012 (((-1038) $) NIL)) (-2186 (((-108) $ $) NIL) (((-108) $ (-1091)) NIL)) (-1250 (($ $) NIL)) (-3545 (((-108) $) NIL (|has| $ (-968 (-525))))) (-2602 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1091)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1091)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1091) (-1 $ (-592 $))) NIL) (($ $ (-1091) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-3410 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-1567 (($ $) NIL) (($ $ $) NIL)) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091)) NIL)) (-1571 (($ $) NIL (|has| $ (-977)))) (-2335 (($ $) NIL)) (-1584 (($ $) NIL)) (-1270 (((-798) $) NIL) (($ (-565 $)) NIL) (($ |#3|) NIL) (($ (-525)) NIL) (((-294 |#3|) $) 96)) (-2104 (((-713)) NIL)) (-1604 (($ $) NIL) (($ (-592 $)) NIL)) (-1863 (((-108) (-110)) NIL)) (-2257 (($ $) NIL)) (-2226 (($ $) NIL)) (-2242 (($ $) NIL)) (-2086 (($ $) NIL)) (-1576 (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3355 (($) 95 T CONST)) (-3363 (($) 24 T CONST)) (-2093 (($ $ (-592 (-1091)) (-592 (-713))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091)) NIL)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) NIL)) (-4090 (($ $ $) NIL) (($ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL)))
+(((-317 |#1| |#2| |#3|) (-13 (-281) (-37 |#3|) (-968 |#3|) (-835 (-1091)) (-10 -8 (-15 -3898 ($ (-294 |#3|))) (-15 -2591 ((-3 $ "failed") (-294 |#3|))) (-15 -3898 ($ (-1091))) (-15 -2591 ((-3 $ "failed") (-1091))) (-15 -1270 ((-294 |#3|) $)) (IF (|has| |#3| (-968 (-525))) (PROGN (-15 -3898 ($ (-294 (-525)))) (-15 -2591 ((-3 $ "failed") (-294 (-525)))) (-15 -3898 ($ (-385 (-887 (-525))))) (-15 -2591 ((-3 $ "failed") (-385 (-887 (-525))))) (-15 -3898 ($ (-887 (-525)))) (-15 -2591 ((-3 $ "failed") (-887 (-525))))) |%noBranch|) (IF (|has| |#3| (-968 (-357))) (PROGN (-15 -3898 ($ (-294 (-357)))) (-15 -2591 ((-3 $ "failed") (-294 (-357)))) (-15 -3898 ($ (-385 (-887 (-357))))) (-15 -2591 ((-3 $ "failed") (-385 (-887 (-357))))) (-15 -3898 ($ (-887 (-357)))) (-15 -2591 ((-3 $ "failed") (-887 (-357))))) |%noBranch|) (-15 -2086 ($ $)) (-15 -2211 ($ $)) (-15 -1250 ($ $)) (-15 -1415 ($ $)) (-15 -3234 ($ $)) (-15 -1569 ($ $)) (-15 -1584 ($ $)) (-15 -1603 ($ $)) (-15 -2226 ($ $)) (-15 -2242 ($ $)) (-15 -2257 ($ $)) (-15 -2320 ($ $)) (-15 -2335 ($ $)) (-15 -2351 ($ $)) (-15 -1535 ($)) (-15 -2383 ((-592 (-1091)) $)) (-15 -2564 ((-108))) (-15 -2564 ((-108) (-108))))) (-592 (-1091)) (-592 (-1091)) (-365)) (T -317))
+((-3898 (*1 *1 *2) (-12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-294 *5)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-525)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-887 (-525)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-887 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-525))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-357)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-887 (-357)))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-887 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-357))) (-5 *1 (-317 *3 *4 *5)) (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))) (-2086 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091))) (-14 *3 (-592 (-1091))) (-4 *4 (-365)))) (-2211 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091))) (-14 *3 (-592 (-1091))) (-4 *4 (-365)))) (-1250 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091))) (-14 *3 (-592 (-1091))) (-4 *4 (-365)))) (-1415 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091))) (-14 *3 (-592 (-1091))) (-4 *4 (-365)))) (-3234 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091))) (-14 *3 (-592 (-1091))) (-4 *4 (-365)))) (-1569 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091))) (-14 *3 (-592 (-1091))) (-4 *4 (-365)))) (-1584 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091))) (-14 *3 (-592 (-1091))) (-4 *4 (-365)))) (-1603 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091))) (-14 *3 (-592 (-1091))) (-4 *4 (-365)))) (-2226 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091))) (-14 *3 (-592 (-1091))) (-4 *4 (-365)))) (-2242 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091))) (-14 *3 (-592 (-1091))) (-4 *4 (-365)))) (-2257 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091))) (-14 *3 (-592 (-1091))) (-4 *4 (-365)))) (-2320 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091))) (-14 *3 (-592 (-1091))) (-4 *4 (-365)))) (-2335 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091))) (-14 *3 (-592 (-1091))) (-4 *4 (-365)))) (-2351 (*1 *1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091))) (-14 *3 (-592 (-1091))) (-4 *4 (-365)))) (-1535 (*1 *1) (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091))) (-14 *3 (-592 (-1091))) (-4 *4 (-365)))) (-2383 (*1 *2 *1) (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))) (-2564 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))) (-2564 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365)))))
+(-13 (-281) (-37 |#3|) (-968 |#3|) (-835 (-1091)) (-10 -8 (-15 -3898 ($ (-294 |#3|))) (-15 -2591 ((-3 $ "failed") (-294 |#3|))) (-15 -3898 ($ (-1091))) (-15 -2591 ((-3 $ "failed") (-1091))) (-15 -1270 ((-294 |#3|) $)) (IF (|has| |#3| (-968 (-525))) (PROGN (-15 -3898 ($ (-294 (-525)))) (-15 -2591 ((-3 $ "failed") (-294 (-525)))) (-15 -3898 ($ (-385 (-887 (-525))))) (-15 -2591 ((-3 $ "failed") (-385 (-887 (-525))))) (-15 -3898 ($ (-887 (-525)))) (-15 -2591 ((-3 $ "failed") (-887 (-525))))) |%noBranch|) (IF (|has| |#3| (-968 (-357))) (PROGN (-15 -3898 ($ (-294 (-357)))) (-15 -2591 ((-3 $ "failed") (-294 (-357)))) (-15 -3898 ($ (-385 (-887 (-357))))) (-15 -2591 ((-3 $ "failed") (-385 (-887 (-357))))) (-15 -3898 ($ (-887 (-357)))) (-15 -2591 ((-3 $ "failed") (-887 (-357))))) |%noBranch|) (-15 -2086 ($ $)) (-15 -2211 ($ $)) (-15 -1250 ($ $)) (-15 -1415 ($ $)) (-15 -3234 ($ $)) (-15 -1569 ($ $)) (-15 -1584 ($ $)) (-15 -1603 ($ $)) (-15 -2226 ($ $)) (-15 -2242 ($ $)) (-15 -2257 ($ $)) (-15 -2320 ($ $)) (-15 -2335 ($ $)) (-15 -2351 ($ $)) (-15 -1535 ($)) (-15 -2383 ((-592 (-1091)) $)) (-15 -2564 ((-108))) (-15 -2564 ((-108) (-108)))))
+((-2694 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-318 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2694 (|#8| (-1 |#5| |#1|) |#4|))) (-1131) (-1149 |#1|) (-1149 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-1131) (-1149 |#5|) (-1149 (-385 |#6|)) (-320 |#5| |#6| |#7|)) (T -318))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1131)) (-4 *8 (-1131)) (-4 *6 (-1149 *5)) (-4 *7 (-1149 (-385 *6))) (-4 *9 (-1149 *8)) (-4 *2 (-320 *8 *9 *10)) (-5 *1 (-318 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-320 *5 *6 *7)) (-4 *10 (-1149 (-385 *9))))))
+(-10 -7 (-15 -2694 (|#8| (-1 |#5| |#1|) |#4|)))
+((-2698 (((-2 (|:| |num| (-1173 |#3|)) (|:| |den| |#3|)) $) 38)) (-3612 (($ (-1173 (-385 |#3|)) (-1173 $)) NIL) (($ (-1173 (-385 |#3|))) NIL) (($ (-1173 |#3|) |#3|) 161)) (-1826 (((-1173 $) (-1173 $)) 145)) (-3535 (((-592 (-592 |#2|))) 119)) (-1737 (((-108) |#2| |#2|) 73)) (-3026 (($ $) 139)) (-3332 (((-713)) 31)) (-1211 (((-1173 $) (-1173 $)) 198)) (-1280 (((-592 (-887 |#2|)) (-1091)) 110)) (-3983 (((-108) $) 158)) (-2960 (((-108) $) 25) (((-108) $ |#2|) 29) (((-108) $ |#3|) 202)) (-4223 (((-3 |#3| "failed")) 50)) (-3309 (((-713)) 170)) (-3410 ((|#2| $ |#2| |#2|) 132)) (-3100 (((-3 |#3| "failed")) 68)) (-2523 (($ $ (-1 (-385 |#3|) (-385 |#3|)) (-713)) NIL) (($ $ (-1 (-385 |#3|) (-385 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-592 (-1091)) (-592 (-713))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-3777 (((-1173 $) (-1173 $)) 151)) (-1532 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-2366 (((-108)) 33)))
+(((-319 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2523 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -3535 ((-592 (-592 |#2|)))) (-15 -1280 ((-592 (-887 |#2|)) (-1091))) (-15 -1532 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4223 ((-3 |#3| "failed"))) (-15 -3100 ((-3 |#3| "failed"))) (-15 -3410 (|#2| |#1| |#2| |#2|)) (-15 -3026 (|#1| |#1|)) (-15 -3612 (|#1| (-1173 |#3|) |#3|)) (-15 -2523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2960 ((-108) |#1| |#3|)) (-15 -2960 ((-108) |#1| |#2|)) (-15 -2698 ((-2 (|:| |num| (-1173 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1826 ((-1173 |#1|) (-1173 |#1|))) (-15 -1211 ((-1173 |#1|) (-1173 |#1|))) (-15 -3777 ((-1173 |#1|) (-1173 |#1|))) (-15 -2960 ((-108) |#1|)) (-15 -3983 ((-108) |#1|)) (-15 -1737 ((-108) |#2| |#2|)) (-15 -2366 ((-108))) (-15 -3309 ((-713))) (-15 -3332 ((-713))) (-15 -2523 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)))) (-15 -2523 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)) (-713))) (-15 -3612 (|#1| (-1173 (-385 |#3|)))) (-15 -3612 (|#1| (-1173 (-385 |#3|)) (-1173 |#1|)))) (-320 |#2| |#3| |#4|) (-1131) (-1149 |#2|) (-1149 (-385 |#3|))) (T -319))
+((-3332 (*1 *2) (-12 (-4 *4 (-1131)) (-4 *5 (-1149 *4)) (-4 *6 (-1149 (-385 *5))) (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-3309 (*1 *2) (-12 (-4 *4 (-1131)) (-4 *5 (-1149 *4)) (-4 *6 (-1149 (-385 *5))) (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-2366 (*1 *2) (-12 (-4 *4 (-1131)) (-4 *5 (-1149 *4)) (-4 *6 (-1149 (-385 *5))) (-5 *2 (-108)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))) (-1737 (*1 *2 *3 *3) (-12 (-4 *3 (-1131)) (-4 *5 (-1149 *3)) (-4 *6 (-1149 (-385 *5))) (-5 *2 (-108)) (-5 *1 (-319 *4 *3 *5 *6)) (-4 *4 (-320 *3 *5 *6)))) (-3100 (*1 *2) (|partial| -12 (-4 *4 (-1131)) (-4 *5 (-1149 (-385 *2))) (-4 *2 (-1149 *4)) (-5 *1 (-319 *3 *4 *2 *5)) (-4 *3 (-320 *4 *2 *5)))) (-4223 (*1 *2) (|partial| -12 (-4 *4 (-1131)) (-4 *5 (-1149 (-385 *2))) (-4 *2 (-1149 *4)) (-5 *1 (-319 *3 *4 *2 *5)) (-4 *3 (-320 *4 *2 *5)))) (-1280 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *5 (-1131)) (-4 *6 (-1149 *5)) (-4 *7 (-1149 (-385 *6))) (-5 *2 (-592 (-887 *5))) (-5 *1 (-319 *4 *5 *6 *7)) (-4 *4 (-320 *5 *6 *7)))) (-3535 (*1 *2) (-12 (-4 *4 (-1131)) (-4 *5 (-1149 *4)) (-4 *6 (-1149 (-385 *5))) (-5 *2 (-592 (-592 *4))) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6)))))
+(-10 -8 (-15 -2523 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -3535 ((-592 (-592 |#2|)))) (-15 -1280 ((-592 (-887 |#2|)) (-1091))) (-15 -1532 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4223 ((-3 |#3| "failed"))) (-15 -3100 ((-3 |#3| "failed"))) (-15 -3410 (|#2| |#1| |#2| |#2|)) (-15 -3026 (|#1| |#1|)) (-15 -3612 (|#1| (-1173 |#3|) |#3|)) (-15 -2523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2960 ((-108) |#1| |#3|)) (-15 -2960 ((-108) |#1| |#2|)) (-15 -2698 ((-2 (|:| |num| (-1173 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1826 ((-1173 |#1|) (-1173 |#1|))) (-15 -1211 ((-1173 |#1|) (-1173 |#1|))) (-15 -3777 ((-1173 |#1|) (-1173 |#1|))) (-15 -2960 ((-108) |#1|)) (-15 -3983 ((-108) |#1|)) (-15 -1737 ((-108) |#2| |#2|)) (-15 -2366 ((-108))) (-15 -3309 ((-713))) (-15 -3332 ((-713))) (-15 -2523 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)))) (-15 -2523 (|#1| |#1| (-1 (-385 |#3|) (-385 |#3|)) (-713))) (-15 -3612 (|#1| (-1173 (-385 |#3|)))) (-15 -3612 (|#1| (-1173 (-385 |#3|)) (-1173 |#1|))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2698 (((-2 (|:| |num| (-1173 |#2|)) (|:| |den| |#2|)) $) 196)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 93 (|has| (-385 |#2|) (-341)))) (-3711 (($ $) 94 (|has| (-385 |#2|) (-341)))) (-3380 (((-108) $) 96 (|has| (-385 |#2|) (-341)))) (-1264 (((-632 (-385 |#2|)) (-1173 $)) 46) (((-632 (-385 |#2|))) 61)) (-3029 (((-385 |#2|) $) 52)) (-1670 (((-1101 (-856) (-713)) (-525)) 147 (|has| (-385 |#2|) (-327)))) (-1342 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 113 (|has| (-385 |#2|) (-341)))) (-2100 (((-396 $) $) 114 (|has| (-385 |#2|) (-341)))) (-3197 (((-108) $ $) 104 (|has| (-385 |#2|) (-341)))) (-4190 (((-713)) 87 (|has| (-385 |#2|) (-346)))) (-3513 (((-108)) 213)) (-1914 (((-108) |#1|) 212) (((-108) |#2|) 211)) (-2305 (($) 17 T CONST)) (-2591 (((-3 (-525) "failed") $) 169 (|has| (-385 |#2|) (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) 166)) (-3898 (((-525) $) 170 (|has| (-385 |#2|) (-968 (-525)))) (((-385 (-525)) $) 168 (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-385 |#2|) $) 165)) (-3612 (($ (-1173 (-385 |#2|)) (-1173 $)) 48) (($ (-1173 (-385 |#2|))) 64) (($ (-1173 |#2|) |#2|) 189)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| (-385 |#2|) (-327)))) (-1726 (($ $ $) 108 (|has| (-385 |#2|) (-341)))) (-2312 (((-632 (-385 |#2|)) $ (-1173 $)) 53) (((-632 (-385 |#2|)) $) 59)) (-3416 (((-632 (-525)) (-632 $)) 164 (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 163 (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-385 |#2|))) (|:| |vec| (-1173 (-385 |#2|)))) (-632 $) (-1173 $)) 162) (((-632 (-385 |#2|)) (-632 $)) 161)) (-1826 (((-1173 $) (-1173 $)) 201)) (-3503 (($ |#3|) 158) (((-3 $ "failed") (-385 |#3|)) 155 (|has| (-385 |#2|) (-341)))) (-3762 (((-3 $ "failed") $) 34)) (-3535 (((-592 (-592 |#1|))) 182 (|has| |#1| (-346)))) (-1737 (((-108) |#1| |#1|) 217)) (-3318 (((-856)) 54)) (-2899 (($) 90 (|has| (-385 |#2|) (-346)))) (-2524 (((-108)) 210)) (-2503 (((-108) |#1|) 209) (((-108) |#2|) 208)) (-1704 (($ $ $) 107 (|has| (-385 |#2|) (-341)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 102 (|has| (-385 |#2|) (-341)))) (-3026 (($ $) 188)) (-3977 (($) 149 (|has| (-385 |#2|) (-327)))) (-3564 (((-108) $) 150 (|has| (-385 |#2|) (-327)))) (-2327 (($ $ (-713)) 141 (|has| (-385 |#2|) (-327))) (($ $) 140 (|has| (-385 |#2|) (-327)))) (-3836 (((-108) $) 115 (|has| (-385 |#2|) (-341)))) (-3973 (((-856) $) 152 (|has| (-385 |#2|) (-327))) (((-775 (-856)) $) 138 (|has| (-385 |#2|) (-327)))) (-1985 (((-108) $) 31)) (-3332 (((-713)) 220)) (-1211 (((-1173 $) (-1173 $)) 202)) (-2900 (((-385 |#2|) $) 51)) (-1280 (((-592 (-887 |#1|)) (-1091)) 183 (|has| |#1| (-341)))) (-1760 (((-3 $ "failed") $) 142 (|has| (-385 |#2|) (-327)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 111 (|has| (-385 |#2|) (-341)))) (-2640 ((|#3| $) 44 (|has| (-385 |#2|) (-341)))) (-1736 (((-856) $) 89 (|has| (-385 |#2|) (-346)))) (-3492 ((|#3| $) 156)) (-2756 (($ (-592 $)) 100 (|has| (-385 |#2|) (-341))) (($ $ $) 99 (|has| (-385 |#2|) (-341)))) (-3451 (((-1074) $) 9)) (-4069 (((-632 (-385 |#2|))) 197)) (-1525 (((-632 (-385 |#2|))) 199)) (-2502 (($ $) 116 (|has| (-385 |#2|) (-341)))) (-2697 (($ (-1173 |#2|) |#2|) 194)) (-1938 (((-632 (-385 |#2|))) 198)) (-3952 (((-632 (-385 |#2|))) 200)) (-3547 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 193)) (-3832 (((-2 (|:| |num| (-1173 |#2|)) (|:| |den| |#2|)) $) 195)) (-3153 (((-1173 $)) 206)) (-2463 (((-1173 $)) 207)) (-3983 (((-108) $) 205)) (-2960 (((-108) $) 204) (((-108) $ |#1|) 192) (((-108) $ |#2|) 191)) (-3940 (($) 143 (|has| (-385 |#2|) (-327)) CONST)) (-3640 (($ (-856)) 88 (|has| (-385 |#2|) (-346)))) (-4223 (((-3 |#2| "failed")) 185)) (-2012 (((-1038) $) 10)) (-3309 (((-713)) 219)) (-3523 (($) 160)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 101 (|has| (-385 |#2|) (-341)))) (-2794 (($ (-592 $)) 98 (|has| (-385 |#2|) (-341))) (($ $ $) 97 (|has| (-385 |#2|) (-341)))) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) 146 (|has| (-385 |#2|) (-327)))) (-2195 (((-396 $) $) 112 (|has| (-385 |#2|) (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 109 (|has| (-385 |#2|) (-341)))) (-1680 (((-3 $ "failed") $ $) 92 (|has| (-385 |#2|) (-341)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 103 (|has| (-385 |#2|) (-341)))) (-1290 (((-713) $) 105 (|has| (-385 |#2|) (-341)))) (-3410 ((|#1| $ |#1| |#1|) 187)) (-3100 (((-3 |#2| "failed")) 186)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 106 (|has| (-385 |#2|) (-341)))) (-2094 (((-385 |#2|) (-1173 $)) 47) (((-385 |#2|)) 60)) (-2181 (((-713) $) 151 (|has| (-385 |#2|) (-327))) (((-3 (-713) "failed") $ $) 139 (|has| (-385 |#2|) (-327)))) (-2523 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) 123 (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) 122 (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) 190) (($ $ (-592 (-1091)) (-592 (-713))) 130 (-3279 (-3830 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091)))) (-3830 (|has| (-385 |#2|) (-835 (-1091))) (|has| (-385 |#2|) (-341))))) (($ $ (-1091) (-713)) 131 (-3279 (-3830 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091)))) (-3830 (|has| (-385 |#2|) (-835 (-1091))) (|has| (-385 |#2|) (-341))))) (($ $ (-592 (-1091))) 132 (-3279 (-3830 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091)))) (-3830 (|has| (-385 |#2|) (-835 (-1091))) (|has| (-385 |#2|) (-341))))) (($ $ (-1091)) 133 (-3279 (-3830 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091)))) (-3830 (|has| (-385 |#2|) (-835 (-1091))) (|has| (-385 |#2|) (-341))))) (($ $ (-713)) 135 (-3279 (-3830 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-3830 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) 137 (-3279 (-3830 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-3830 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-2361 (((-632 (-385 |#2|)) (-1173 $) (-1 (-385 |#2|) (-385 |#2|))) 154 (|has| (-385 |#2|) (-341)))) (-1571 ((|#3|) 159)) (-2726 (($) 148 (|has| (-385 |#2|) (-327)))) (-3464 (((-1173 (-385 |#2|)) $ (-1173 $)) 50) (((-632 (-385 |#2|)) (-1173 $) (-1173 $)) 49) (((-1173 (-385 |#2|)) $) 66) (((-632 (-385 |#2|)) (-1173 $)) 65)) (-2749 (((-1173 (-385 |#2|)) $) 63) (($ (-1173 (-385 |#2|))) 62) ((|#3| $) 171) (($ |#3|) 157)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) 145 (|has| (-385 |#2|) (-327)))) (-3777 (((-1173 $) (-1173 $)) 203)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ (-385 |#2|)) 37) (($ (-385 (-525))) 86 (-3279 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-968 (-385 (-525)))))) (($ $) 91 (|has| (-385 |#2|) (-341)))) (-3425 (($ $) 144 (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) 43 (|has| (-385 |#2|) (-136)))) (-1805 ((|#3| $) 45)) (-2104 (((-713)) 29)) (-1227 (((-108)) 216)) (-2183 (((-108) |#1|) 215) (((-108) |#2|) 214)) (-1449 (((-1173 $)) 67)) (-3959 (((-108) $ $) 95 (|has| (-385 |#2|) (-341)))) (-1532 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 184)) (-2366 (((-108)) 218)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 117 (|has| (-385 |#2|) (-341)))) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) 125 (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) 124 (|has| (-385 |#2|) (-341))) (($ $ (-592 (-1091)) (-592 (-713))) 126 (-3279 (-3830 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091)))) (-3830 (|has| (-385 |#2|) (-835 (-1091))) (|has| (-385 |#2|) (-341))))) (($ $ (-1091) (-713)) 127 (-3279 (-3830 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091)))) (-3830 (|has| (-385 |#2|) (-835 (-1091))) (|has| (-385 |#2|) (-341))))) (($ $ (-592 (-1091))) 128 (-3279 (-3830 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091)))) (-3830 (|has| (-385 |#2|) (-835 (-1091))) (|has| (-385 |#2|) (-341))))) (($ $ (-1091)) 129 (-3279 (-3830 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091)))) (-3830 (|has| (-385 |#2|) (-835 (-1091))) (|has| (-385 |#2|) (-341))))) (($ $ (-713)) 134 (-3279 (-3830 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-3830 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) 136 (-3279 (-3830 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-213))) (-3830 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3994 (((-108) $ $) 6)) (-4100 (($ $ $) 121 (|has| (-385 |#2|) (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 118 (|has| (-385 |#2|) (-341)))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 |#2|)) 39) (($ (-385 |#2|) $) 38) (($ (-385 (-525)) $) 120 (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) 119 (|has| (-385 |#2|) (-341)))))
+(((-320 |#1| |#2| |#3|) (-131) (-1131) (-1149 |t#1|) (-1149 (-385 |t#2|))) (T -320))
+((-3332 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-713)))) (-3309 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-713)))) (-2366 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))) (-1737 (*1 *2 *3 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))) (-1227 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))) (-2183 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))) (-2183 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1131)) (-4 *3 (-1149 *4)) (-4 *5 (-1149 (-385 *3))) (-5 *2 (-108)))) (-3513 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))) (-1914 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))) (-1914 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1131)) (-4 *3 (-1149 *4)) (-4 *5 (-1149 (-385 *3))) (-5 *2 (-108)))) (-2524 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))) (-2503 (*1 *2 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))) (-2503 (*1 *2 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1131)) (-4 *3 (-1149 *4)) (-4 *5 (-1149 (-385 *3))) (-5 *2 (-108)))) (-2463 (*1 *2) (-12 (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-1173 *1)) (-4 *1 (-320 *3 *4 *5)))) (-3153 (*1 *2) (-12 (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-1173 *1)) (-4 *1 (-320 *3 *4 *5)))) (-3983 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))) (-3777 (*1 *2 *2) (-12 (-5 *2 (-1173 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))))) (-1211 (*1 *2 *2) (-12 (-5 *2 (-1173 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-1173 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))))) (-3952 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-1525 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-1938 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-4069 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-632 (-385 *4))))) (-2698 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-2 (|:| |num| (-1173 *4)) (|:| |den| *4))))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-2 (|:| |num| (-1173 *4)) (|:| |den| *4))))) (-2697 (*1 *1 *2 *3) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1149 *4)) (-4 *4 (-1131)) (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1149 (-385 *3))))) (-3547 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1131)) (-4 *5 (-1149 *4)) (-4 *6 (-1149 (-385 *5))) (-5 *2 (-2 (|:| |num| (-632 *5)) (|:| |den| *5))))) (-2960 (*1 *2 *1 *3) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))) (-2960 (*1 *2 *1 *3) (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1131)) (-4 *3 (-1149 *4)) (-4 *5 (-1149 (-385 *3))) (-5 *2 (-108)))) (-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))))) (-3612 (*1 *1 *2 *3) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1149 *4)) (-4 *4 (-1131)) (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1149 (-385 *3))))) (-3026 (*1 *1 *1) (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-1149 *2)) (-4 *4 (-1149 (-385 *3))))) (-3410 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-1149 *2)) (-4 *4 (-1149 (-385 *3))))) (-3100 (*1 *2) (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1131)) (-4 *4 (-1149 (-385 *2))) (-4 *2 (-1149 *3)))) (-4223 (*1 *2) (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1131)) (-4 *4 (-1149 (-385 *2))) (-4 *2 (-1149 *3)))) (-1532 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1149 *4)) (-4 *4 (-1131)) (-4 *6 (-1149 (-385 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-320 *4 *5 *6)))) (-1280 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1131)) (-4 *5 (-1149 *4)) (-4 *6 (-1149 (-385 *5))) (-4 *4 (-341)) (-5 *2 (-592 (-887 *4))))) (-3535 (*1 *2) (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))) (-4 *3 (-346)) (-5 *2 (-592 (-592 *3))))))
+(-13 (-667 (-385 |t#2|) |t#3|) (-10 -8 (-15 -3332 ((-713))) (-15 -3309 ((-713))) (-15 -2366 ((-108))) (-15 -1737 ((-108) |t#1| |t#1|)) (-15 -1227 ((-108))) (-15 -2183 ((-108) |t#1|)) (-15 -2183 ((-108) |t#2|)) (-15 -3513 ((-108))) (-15 -1914 ((-108) |t#1|)) (-15 -1914 ((-108) |t#2|)) (-15 -2524 ((-108))) (-15 -2503 ((-108) |t#1|)) (-15 -2503 ((-108) |t#2|)) (-15 -2463 ((-1173 $))) (-15 -3153 ((-1173 $))) (-15 -3983 ((-108) $)) (-15 -2960 ((-108) $)) (-15 -3777 ((-1173 $) (-1173 $))) (-15 -1211 ((-1173 $) (-1173 $))) (-15 -1826 ((-1173 $) (-1173 $))) (-15 -3952 ((-632 (-385 |t#2|)))) (-15 -1525 ((-632 (-385 |t#2|)))) (-15 -1938 ((-632 (-385 |t#2|)))) (-15 -4069 ((-632 (-385 |t#2|)))) (-15 -2698 ((-2 (|:| |num| (-1173 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3612 ($ (-1173 |t#2|) |t#2|)) (-15 -3832 ((-2 (|:| |num| (-1173 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2697 ($ (-1173 |t#2|) |t#2|)) (-15 -3547 ((-2 (|:| |num| (-632 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2960 ((-108) $ |t#1|)) (-15 -2960 ((-108) $ |t#2|)) (-15 -2523 ($ $ (-1 |t#2| |t#2|))) (-15 -3612 ($ (-1173 |t#2|) |t#2|)) (-15 -3026 ($ $)) (-15 -3410 (|t#1| $ |t#1| |t#1|)) (-15 -3100 ((-3 |t#2| "failed"))) (-15 -4223 ((-3 |t#2| "failed"))) (-15 -1532 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-341)) (-15 -1280 ((-592 (-887 |t#1|)) (-1091))) |%noBranch|) (IF (|has| |t#1| (-346)) (-15 -3535 ((-592 (-592 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -3279 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-37 #1=(-385 |#2|)) . T) ((-37 $) -3279 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-97) . T) ((-107 #0# #0#) -3279 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3279 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-136))) ((-138) |has| (-385 |#2|) (-138)) ((-566 (-798)) . T) ((-160) . T) ((-567 |#3|) . T) ((-211 #1#) |has| (-385 |#2|) (-341)) ((-213) -3279 (|has| (-385 |#2|) (-327)) (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341)))) ((-223) -3279 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-269) -3279 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-286) -3279 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-341) -3279 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-380) |has| (-385 |#2|) (-327)) ((-346) -3279 (|has| (-385 |#2|) (-346)) (|has| (-385 |#2|) (-327))) ((-327) |has| (-385 |#2|) (-327)) ((-348 #1# |#3|) . T) ((-387 #1# |#3|) . T) ((-355 #1#) . T) ((-389 #1#) . T) ((-429) -3279 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-517) -3279 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-594 #0#) -3279 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-594 #1#) . T) ((-594 $) . T) ((-588 #1#) . T) ((-588 (-525)) |has| (-385 |#2|) (-588 (-525))) ((-660 #0#) -3279 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-660 #1#) . T) ((-660 $) -3279 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-667 #1# |#3|) . T) ((-669) . T) ((-835 (-1091)) -12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091)))) ((-855) -3279 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-968 (-385 (-525))) |has| (-385 |#2|) (-968 (-385 (-525)))) ((-968 #1#) . T) ((-968 (-525)) |has| (-385 |#2|) (-968 (-525))) ((-983 #0#) -3279 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))) ((-983 #1#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1067) |has| (-385 |#2|) (-327)) ((-1131) -3279 (|has| (-385 |#2|) (-327)) (|has| (-385 |#2|) (-341))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-2679 (((-108) $) NIL)) (-3452 (((-713)) NIL)) (-3029 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-1670 (((-1101 (-856) (-713)) (-525)) NIL (|has| (-845 |#1|) (-346)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3197 (((-108) $ $) NIL)) (-4190 (((-713)) NIL (|has| (-845 |#1|) (-346)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-845 |#1|) "failed") $) NIL)) (-3898 (((-845 |#1|) $) NIL)) (-3612 (($ (-1173 (-845 |#1|))) NIL)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-845 |#1|) (-346)))) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) NIL (|has| (-845 |#1|) (-346)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3977 (($) NIL (|has| (-845 |#1|) (-346)))) (-3564 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-2327 (($ $ (-713)) NIL (-3279 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346)))) (($ $) NIL (-3279 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3836 (((-108) $) NIL)) (-3973 (((-856) $) NIL (|has| (-845 |#1|) (-346))) (((-775 (-856)) $) NIL (-3279 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-1985 (((-108) $) NIL)) (-1794 (($) NIL (|has| (-845 |#1|) (-346)))) (-4200 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-2900 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-1760 (((-3 $ "failed") $) NIL (|has| (-845 |#1|) (-346)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2640 (((-1087 (-845 |#1|)) $) NIL) (((-1087 $) $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-1736 (((-856) $) NIL (|has| (-845 |#1|) (-346)))) (-2884 (((-1087 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346)))) (-1549 (((-1087 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-1087 (-845 |#1|)) "failed") $ $) NIL (|has| (-845 |#1|) (-346)))) (-2499 (($ $ (-1087 (-845 |#1|))) NIL (|has| (-845 |#1|) (-346)))) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL (|has| (-845 |#1|) (-346)) CONST)) (-3640 (($ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-3341 (((-108) $) NIL)) (-2012 (((-1038) $) NIL)) (-1353 (((-892 (-1038))) NIL)) (-3523 (($) NIL (|has| (-845 |#1|) (-346)))) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) NIL (|has| (-845 |#1|) (-346)))) (-2195 (((-396 $) $) NIL)) (-3748 (((-775 (-856))) NIL) (((-856)) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2181 (((-713) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-3279 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3831 (((-128)) NIL)) (-2523 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-1587 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-1571 (((-1087 (-845 |#1|))) NIL)) (-2726 (($) NIL (|has| (-845 |#1|) (-346)))) (-2411 (($) NIL (|has| (-845 |#1|) (-346)))) (-3464 (((-1173 (-845 |#1|)) $) NIL) (((-632 (-845 |#1|)) (-1173 $)) NIL)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (|has| (-845 |#1|) (-346)))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-845 |#1|)) NIL)) (-3425 (($ $) NIL (|has| (-845 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3279 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-2104 (((-713)) NIL)) (-1449 (((-1173 $)) NIL) (((-1173 $) (-856)) NIL)) (-3959 (((-108) $ $) NIL)) (-1728 (((-108) $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-3842 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-2093 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ $) NIL) (($ $ (-845 |#1|)) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-845 |#1|)) NIL) (($ (-845 |#1|) $) NIL)))
+(((-321 |#1| |#2|) (-13 (-307 (-845 |#1|)) (-10 -7 (-15 -1353 ((-892 (-1038)))))) (-856) (-856)) (T -321))
+((-1353 (*1 *2) (-12 (-5 *2 (-892 (-1038))) (-5 *1 (-321 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))))
+(-13 (-307 (-845 |#1|)) (-10 -7 (-15 -1353 ((-892 (-1038))))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 46)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-2679 (((-108) $) NIL)) (-3452 (((-713)) NIL)) (-3029 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-1670 (((-1101 (-856) (-713)) (-525)) 43 (|has| |#1| (-346)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3197 (((-108) $ $) NIL)) (-4190 (((-713)) NIL (|has| |#1| (-346)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) 115)) (-3898 ((|#1| $) 86)) (-3612 (($ (-1173 |#1|)) 104)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-346)))) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) 98 (|has| |#1| (-346)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3977 (($) 130 (|has| |#1| (-346)))) (-3564 (((-108) $) 49 (|has| |#1| (-346)))) (-2327 (($ $ (-713)) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3836 (((-108) $) NIL)) (-3973 (((-856) $) 47 (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1985 (((-108) $) NIL)) (-1794 (($) 132 (|has| |#1| (-346)))) (-4200 (((-108) $) NIL (|has| |#1| (-346)))) (-2900 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2640 (((-1087 |#1|) $) 90) (((-1087 $) $ (-856)) NIL (|has| |#1| (-346)))) (-1736 (((-856) $) 140 (|has| |#1| (-346)))) (-2884 (((-1087 |#1|) $) NIL (|has| |#1| (-346)))) (-1549 (((-1087 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1087 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2499 (($ $ (-1087 |#1|)) NIL (|has| |#1| (-346)))) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 147)) (-3940 (($) NIL (|has| |#1| (-346)) CONST)) (-3640 (($ (-856)) 71 (|has| |#1| (-346)))) (-3341 (((-108) $) 118)) (-2012 (((-1038) $) NIL)) (-1353 (((-892 (-1038))) 44)) (-3523 (($) 128 (|has| |#1| (-346)))) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) 93 (|has| |#1| (-346)))) (-2195 (((-396 $) $) NIL)) (-3748 (((-775 (-856))) 67) (((-856)) 68)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2181 (((-713) $) 131 (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) 125 (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3831 (((-128)) NIL)) (-2523 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1587 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-1571 (((-1087 |#1|)) 96)) (-2726 (($) 129 (|has| |#1| (-346)))) (-2411 (($) 137 (|has| |#1| (-346)))) (-3464 (((-1173 |#1|) $) 59) (((-632 |#1|) (-1173 $)) NIL)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1270 (((-798) $) 143) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 75)) (-3425 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2104 (((-713)) 139)) (-1449 (((-1173 $)) 117) (((-1173 $) (-856)) 73)) (-3959 (((-108) $ $) NIL)) (-1728 (((-108) $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) 32 T CONST)) (-3363 (($) 19 T CONST)) (-3842 (($ $) 81 (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2093 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3994 (((-108) $ $) 48)) (-4100 (($ $ $) 145) (($ $ |#1|) 146)) (-4090 (($ $) 127) (($ $ $) NIL)) (-4080 (($ $ $) 61)) (** (($ $ (-856)) 149) (($ $ (-713)) 150) (($ $ (-525)) 148)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 77) (($ $ $) 76) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144)))
+(((-322 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -1353 ((-892 (-1038)))))) (-327) (-1087 |#1|)) (T -322))
+((-1353 (*1 *2) (-12 (-5 *2 (-892 (-1038))) (-5 *1 (-322 *3 *4)) (-4 *3 (-327)) (-14 *4 (-1087 *3)))))
+(-13 (-307 |#1|) (-10 -7 (-15 -1353 ((-892 (-1038))))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-2679 (((-108) $) NIL)) (-3452 (((-713)) NIL)) (-3029 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-1670 (((-1101 (-856) (-713)) (-525)) NIL (|has| |#1| (-346)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3197 (((-108) $ $) NIL)) (-4190 (((-713)) NIL (|has| |#1| (-346)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) NIL)) (-3898 ((|#1| $) NIL)) (-3612 (($ (-1173 |#1|)) NIL)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) NIL (|has| |#1| (-346)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3977 (($) NIL (|has| |#1| (-346)))) (-3564 (((-108) $) NIL (|has| |#1| (-346)))) (-2327 (($ $ (-713)) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3836 (((-108) $) NIL)) (-3973 (((-856) $) NIL (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1985 (((-108) $) NIL)) (-1794 (($) NIL (|has| |#1| (-346)))) (-4200 (((-108) $) NIL (|has| |#1| (-346)))) (-2900 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2640 (((-1087 |#1|) $) NIL) (((-1087 $) $ (-856)) NIL (|has| |#1| (-346)))) (-1736 (((-856) $) NIL (|has| |#1| (-346)))) (-2884 (((-1087 |#1|) $) NIL (|has| |#1| (-346)))) (-1549 (((-1087 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1087 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2499 (($ $ (-1087 |#1|)) NIL (|has| |#1| (-346)))) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL (|has| |#1| (-346)) CONST)) (-3640 (($ (-856)) NIL (|has| |#1| (-346)))) (-3341 (((-108) $) NIL)) (-2012 (((-1038) $) NIL)) (-1353 (((-892 (-1038))) NIL)) (-3523 (($) NIL (|has| |#1| (-346)))) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) NIL (|has| |#1| (-346)))) (-2195 (((-396 $) $) NIL)) (-3748 (((-775 (-856))) NIL) (((-856)) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2181 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3831 (((-128)) NIL)) (-2523 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1587 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-1571 (((-1087 |#1|)) NIL)) (-2726 (($) NIL (|has| |#1| (-346)))) (-2411 (($) NIL (|has| |#1| (-346)))) (-3464 (((-1173 |#1|) $) NIL) (((-632 |#1|) (-1173 $)) NIL)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-3425 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2104 (((-713)) NIL)) (-1449 (((-1173 $)) NIL) (((-1173 $) (-856)) NIL)) (-3959 (((-108) $ $) NIL)) (-1728 (((-108) $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-3842 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2093 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-323 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -1353 ((-892 (-1038)))))) (-327) (-856)) (T -323))
+((-1353 (*1 *2) (-12 (-5 *2 (-892 (-1038))) (-5 *1 (-323 *3 *4)) (-4 *3 (-327)) (-14 *4 (-856)))))
+(-13 (-307 |#1|) (-10 -7 (-15 -1353 ((-892 (-1038))))))
+((-1808 (((-713) (-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038)))))) 42)) (-2660 (((-892 (-1038)) (-1087 |#1|)) 85)) (-1842 (((-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))) (-1087 |#1|)) 78)) (-1738 (((-632 |#1|) (-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038)))))) 86)) (-3430 (((-3 (-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))) "failed") (-856)) 13)) (-3095 (((-3 (-1087 |#1|) (-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038)))))) (-856)) 18)))
+(((-324 |#1|) (-10 -7 (-15 -2660 ((-892 (-1038)) (-1087 |#1|))) (-15 -1842 ((-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))) (-1087 |#1|))) (-15 -1738 ((-632 |#1|) (-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))))) (-15 -1808 ((-713) (-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))))) (-15 -3430 ((-3 (-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))) "failed") (-856))) (-15 -3095 ((-3 (-1087 |#1|) (-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038)))))) (-856)))) (-327)) (T -324))
+((-3095 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-3 (-1087 *4) (-1173 (-592 (-2 (|:| -3352 *4) (|:| -3640 (-1038))))))) (-5 *1 (-324 *4)) (-4 *4 (-327)))) (-3430 (*1 *2 *3) (|partial| -12 (-5 *3 (-856)) (-5 *2 (-1173 (-592 (-2 (|:| -3352 *4) (|:| -3640 (-1038)))))) (-5 *1 (-324 *4)) (-4 *4 (-327)))) (-1808 (*1 *2 *3) (-12 (-5 *3 (-1173 (-592 (-2 (|:| -3352 *4) (|:| -3640 (-1038)))))) (-4 *4 (-327)) (-5 *2 (-713)) (-5 *1 (-324 *4)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1173 (-592 (-2 (|:| -3352 *4) (|:| -3640 (-1038)))))) (-4 *4 (-327)) (-5 *2 (-632 *4)) (-5 *1 (-324 *4)))) (-1842 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-327)) (-5 *2 (-1173 (-592 (-2 (|:| -3352 *4) (|:| -3640 (-1038)))))) (-5 *1 (-324 *4)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-327)) (-5 *2 (-892 (-1038))) (-5 *1 (-324 *4)))))
+(-10 -7 (-15 -2660 ((-892 (-1038)) (-1087 |#1|))) (-15 -1842 ((-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))) (-1087 |#1|))) (-15 -1738 ((-632 |#1|) (-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))))) (-15 -1808 ((-713) (-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))))) (-15 -3430 ((-3 (-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))) "failed") (-856))) (-15 -3095 ((-3 (-1087 |#1|) (-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038)))))) (-856))))
+((-1270 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
+(((-325 |#1| |#2| |#3|) (-10 -7 (-15 -1270 (|#3| |#1|)) (-15 -1270 (|#1| |#3|))) (-307 |#2|) (-327) (-307 |#2|)) (T -325))
+((-1270 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *2 *4 *3)) (-4 *3 (-307 *4)))) (-1270 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *3 *4 *2)) (-4 *3 (-307 *4)))))
+(-10 -7 (-15 -1270 (|#3| |#1|)) (-15 -1270 (|#1| |#3|)))
+((-3564 (((-108) $) 52)) (-3973 (((-775 (-856)) $) 21) (((-856) $) 53)) (-1760 (((-3 $ "failed") $) 16)) (-3940 (($) 9)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 94)) (-2181 (((-3 (-713) "failed") $ $) 72) (((-713) $) 61)) (-2523 (($ $ (-713)) NIL) (($ $) 8)) (-2726 (($) 46)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) 34)) (-3425 (((-3 $ "failed") $) 40) (($ $) 39)))
+(((-326 |#1|) (-10 -8 (-15 -3973 ((-856) |#1|)) (-15 -2181 ((-713) |#1|)) (-15 -3564 ((-108) |#1|)) (-15 -2726 (|#1|)) (-15 -2105 ((-3 (-1173 |#1|) "failed") (-632 |#1|))) (-15 -3425 (|#1| |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -3940 (|#1|)) (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -2181 ((-3 (-713) "failed") |#1| |#1|)) (-15 -3973 ((-775 (-856)) |#1|)) (-15 -3425 ((-3 |#1| "failed") |#1|)) (-15 -1534 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|)))) (-327)) (T -326))
+NIL
+(-10 -8 (-15 -3973 ((-856) |#1|)) (-15 -2181 ((-713) |#1|)) (-15 -3564 ((-108) |#1|)) (-15 -2726 (|#1|)) (-15 -2105 ((-3 (-1173 |#1|) "failed") (-632 |#1|))) (-15 -3425 (|#1| |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -3940 (|#1|)) (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -2181 ((-3 (-713) "failed") |#1| |#1|)) (-15 -3973 ((-775 (-856)) |#1|)) (-15 -3425 ((-3 |#1| "failed") |#1|)) (-15 -1534 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-1670 (((-1101 (-856) (-713)) (-525)) 93)) (-1342 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 73)) (-2100 (((-396 $) $) 72)) (-3197 (((-108) $ $) 59)) (-4190 (((-713)) 103)) (-2305 (($) 17 T CONST)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) 87)) (-1726 (($ $ $) 55)) (-3762 (((-3 $ "failed") $) 34)) (-2899 (($) 106)) (-1704 (($ $ $) 56)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 51)) (-3977 (($) 91)) (-3564 (((-108) $) 90)) (-2327 (($ $) 79) (($ $ (-713)) 78)) (-3836 (((-108) $) 71)) (-3973 (((-775 (-856)) $) 81) (((-856) $) 88)) (-1985 (((-108) $) 31)) (-1760 (((-3 $ "failed") $) 102)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-1736 (((-856) $) 105)) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-2502 (($ $) 70)) (-3940 (($) 101 T CONST)) (-3640 (($ (-856)) 104)) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) 94)) (-2195 (((-396 $) $) 74)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1680 (((-3 $ "failed") $ $) 42)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1290 (((-713) $) 58)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 57)) (-2181 (((-3 (-713) "failed") $ $) 80) (((-713) $) 89)) (-2523 (($ $ (-713)) 99) (($ $) 97)) (-2726 (($) 92)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) 95)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-3425 (((-3 $ "failed") $) 82) (($ $) 96)) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) 39)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ (-713)) 100) (($ $) 98)) (-3994 (((-108) $ $) 6)) (-4100 (($ $ $) 64)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
(((-327) (-131)) (T -327))
-((-3421 (*1 *1 *1) (-4 *1 (-327))) (-2438 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-327)) (-5 *2 (-1172 *1)))) (-3005 (*1 *2) (-12 (-4 *1 (-327)) (-5 *2 (-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))))) (-2837 (*1 *2 *3) (-12 (-4 *1 (-327)) (-5 *3 (-525)) (-5 *2 (-1100 (-855) (-713))))) (-3775 (*1 *1) (-4 *1 (-327))) (-3205 (*1 *1) (-4 *1 (-327))) (-3746 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-108)))) (-2443 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-713)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-855)))) (-3749 (*1 *2) (-12 (-4 *1 (-327)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-380) (-346) (-1066) (-213) (-10 -8 (-15 -3421 ($ $)) (-15 -2438 ((-3 (-1172 $) "failed") (-632 $))) (-15 -3005 ((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525)))))) (-15 -2837 ((-1100 (-855) (-713)) (-525))) (-15 -3775 ($)) (-15 -3205 ($)) (-15 -3746 ((-108) $)) (-15 -2443 ((-713) $)) (-15 -1737 ((-855) $)) (-15 -3749 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-136) . T) ((-566 (-797)) . T) ((-160) . T) ((-213) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-380) . T) ((-346) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-854) . T) ((-982 #0#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) . T) ((-1130) . T))
-((-1776 (((-2 (|:| -2499 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|) 53)) (-2780 (((-2 (|:| -2499 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))) 51)))
-(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -2780 ((-2 (|:| -2499 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))))) (-15 -1776 ((-2 (|:| -2499 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|))) (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $)))) (-1148 |#1|) (-387 |#1| |#2|)) (T -328))
-((-1776 (*1 *2 *3) (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $))))) (-4 *4 (-1148 *3)) (-5 *2 (-2 (|:| -2499 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-2780 (*1 *2) (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $))))) (-4 *4 (-1148 *3)) (-5 *2 (-2 (|:| -2499 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
-(-10 -7 (-15 -2780 ((-2 (|:| -2499 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))))) (-15 -1776 ((-2 (|:| -2499 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-1831 (((-108) $) NIL)) (-3425 (((-713)) NIL)) (-3512 (((-844 |#1|) $) NIL) (($ $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-2837 (((-1100 (-855) (-713)) (-525)) NIL (|has| (-844 |#1|) (-346)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2116 (((-713)) NIL)) (-2305 (((-108) $ $) NIL)) (-3107 (((-713)) NIL (|has| (-844 |#1|) (-346)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-844 |#1|) "failed") $) NIL)) (-2831 (((-844 |#1|) $) NIL)) (-2229 (($ (-1172 (-844 |#1|))) NIL)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-844 |#1|) (-346)))) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) NIL (|has| (-844 |#1|) (-346)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-3205 (($) NIL (|has| (-844 |#1|) (-346)))) (-3746 (((-108) $) NIL (|has| (-844 |#1|) (-346)))) (-1410 (($ $ (-713)) NIL (-3309 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346)))) (($ $) NIL (-3309 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2250 (((-108) $) NIL)) (-1737 (((-855) $) NIL (|has| (-844 |#1|) (-346))) (((-775 (-855)) $) NIL (-3309 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2133 (((-108) $) NIL)) (-2537 (($) NIL (|has| (-844 |#1|) (-346)))) (-4037 (((-108) $) NIL (|has| (-844 |#1|) (-346)))) (-3477 (((-844 |#1|) $) NIL) (($ $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-1816 (((-3 $ "failed") $) NIL (|has| (-844 |#1|) (-346)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2362 (((-1086 (-844 |#1|)) $) NIL) (((-1086 $) $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-1780 (((-855) $) NIL (|has| (-844 |#1|) (-346)))) (-3474 (((-1086 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-346)))) (-2509 (((-1086 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-346))) (((-3 (-1086 (-844 |#1|)) "failed") $ $) NIL (|has| (-844 |#1|) (-346)))) (-2783 (($ $ (-1086 (-844 |#1|))) NIL (|has| (-844 |#1|) (-346)))) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL (|has| (-844 |#1|) (-346)) CONST)) (-4185 (($ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-2325 (((-108) $) NIL)) (-2663 (((-1037) $) NIL)) (-3920 (((-1172 (-592 (-2 (|:| -3871 (-844 |#1|)) (|:| -4185 (-1037)))))) NIL)) (-2355 (((-632 (-844 |#1|))) NIL)) (-1669 (($) NIL (|has| (-844 |#1|) (-346)))) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) NIL (|has| (-844 |#1|) (-346)))) (-3959 (((-396 $) $) NIL)) (-2864 (((-775 (-855))) NIL) (((-855)) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-2443 (((-713) $) NIL (|has| (-844 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-3309 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-3191 (((-128)) NIL)) (-3013 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-2513 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-1654 (((-1086 (-844 |#1|))) NIL)) (-3775 (($) NIL (|has| (-844 |#1|) (-346)))) (-3555 (($) NIL (|has| (-844 |#1|) (-346)))) (-4093 (((-1172 (-844 |#1|)) $) NIL) (((-632 (-844 |#1|)) (-1172 $)) NIL)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| (-844 |#1|) (-346)))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-844 |#1|)) NIL)) (-3421 (($ $) NIL (|has| (-844 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3309 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2093 (((-713)) NIL)) (-2499 (((-1172 $)) NIL) (((-1172 $) (-855)) NIL)) (-2262 (((-108) $ $) NIL)) (-1252 (((-108) $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-3192 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-1424 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ $) NIL) (($ $ (-844 |#1|)) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-844 |#1|)) NIL) (($ (-844 |#1|) $) NIL)))
-(((-329 |#1| |#2|) (-13 (-307 (-844 |#1|)) (-10 -7 (-15 -3920 ((-1172 (-592 (-2 (|:| -3871 (-844 |#1|)) (|:| -4185 (-1037))))))) (-15 -2355 ((-632 (-844 |#1|)))) (-15 -2116 ((-713))))) (-855) (-855)) (T -329))
-((-3920 (*1 *2) (-12 (-5 *2 (-1172 (-592 (-2 (|:| -3871 (-844 *3)) (|:| -4185 (-1037)))))) (-5 *1 (-329 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855)))) (-2355 (*1 *2) (-12 (-5 *2 (-632 (-844 *3))) (-5 *1 (-329 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855)))) (-2116 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-329 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855)))))
-(-13 (-307 (-844 |#1|)) (-10 -7 (-15 -3920 ((-1172 (-592 (-2 (|:| -3871 (-844 |#1|)) (|:| -4185 (-1037))))))) (-15 -2355 ((-632 (-844 |#1|)))) (-15 -2116 ((-713)))))
-((-1893 (((-108) $ $) 62)) (-1611 (((-108) $) 75)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-1831 (((-108) $) NIL)) (-3425 (((-713)) NIL)) (-3512 ((|#1| $) 93) (($ $ (-855)) 91 (|has| |#1| (-346)))) (-2837 (((-1100 (-855) (-713)) (-525)) 149 (|has| |#1| (-346)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2116 (((-713)) 90)) (-2305 (((-108) $ $) NIL)) (-3107 (((-713)) 163 (|has| |#1| (-346)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) 113)) (-2831 ((|#1| $) 92)) (-2229 (($ (-1172 |#1|)) 59)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) 189 (|has| |#1| (-346)))) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) 159 (|has| |#1| (-346)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-3205 (($) 150 (|has| |#1| (-346)))) (-3746 (((-108) $) NIL (|has| |#1| (-346)))) (-1410 (($ $ (-713)) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2250 (((-108) $) NIL)) (-1737 (((-855) $) NIL (|has| |#1| (-346))) (((-775 (-855)) $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2133 (((-108) $) NIL)) (-2537 (($) 99 (|has| |#1| (-346)))) (-4037 (((-108) $) 176 (|has| |#1| (-346)))) (-3477 ((|#1| $) 95) (($ $ (-855)) 94 (|has| |#1| (-346)))) (-1816 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2362 (((-1086 |#1|) $) 190) (((-1086 $) $ (-855)) NIL (|has| |#1| (-346)))) (-1780 (((-855) $) 135 (|has| |#1| (-346)))) (-3474 (((-1086 |#1|) $) 74 (|has| |#1| (-346)))) (-2509 (((-1086 |#1|) $) 71 (|has| |#1| (-346))) (((-3 (-1086 |#1|) "failed") $ $) 83 (|has| |#1| (-346)))) (-2783 (($ $ (-1086 |#1|)) 70 (|has| |#1| (-346)))) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 193)) (-2279 (($) NIL (|has| |#1| (-346)) CONST)) (-4185 (($ (-855)) 138 (|has| |#1| (-346)))) (-2325 (((-108) $) 109)) (-2663 (((-1037) $) NIL)) (-3920 (((-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037)))))) 84)) (-2355 (((-632 |#1|)) 88)) (-1669 (($) 97 (|has| |#1| (-346)))) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) 151 (|has| |#1| (-346)))) (-3959 (((-396 $) $) NIL)) (-2864 (((-775 (-855))) NIL) (((-855)) 152)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-2443 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3191 (((-128)) NIL)) (-3013 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2513 (((-775 (-855)) $) NIL) (((-855) $) 63)) (-1654 (((-1086 |#1|)) 153)) (-3775 (($) 134 (|has| |#1| (-346)))) (-3555 (($) NIL (|has| |#1| (-346)))) (-4093 (((-1172 |#1|) $) 107) (((-632 |#1|) (-1172 $)) NIL)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1908 (((-797) $) 125) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 58)) (-3421 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2093 (((-713)) 157)) (-2499 (((-1172 $)) 173) (((-1172 $) (-855)) 102)) (-2262 (((-108) $ $) NIL)) (-1252 (((-108) $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) 30 T CONST)) (-3882 (($) 22 T CONST)) (-3192 (($ $) 108 (|has| |#1| (-346))) (($ $ (-713)) 100 (|has| |#1| (-346)))) (-1424 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3961 (((-108) $ $) 184)) (-4082 (($ $ $) 105) (($ $ |#1|) 106)) (-4070 (($ $) 178) (($ $ $) 182)) (-4059 (($ $ $) 180)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 139)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 187) (($ $ $) 143) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 104)))
-(((-330 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -3920 ((-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))))) (-15 -2355 ((-632 |#1|))) (-15 -2116 ((-713))))) (-327) (-3 (-1086 |#1|) (-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))))) (T -330))
-((-3920 (*1 *2) (-12 (-5 *2 (-1172 (-592 (-2 (|:| -3871 *3) (|:| -4185 (-1037)))))) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1086 *3) (-1172 (-592 (-2 (|:| -3871 *3) (|:| -4185 (-1037))))))))) (-2355 (*1 *2) (-12 (-5 *2 (-632 *3)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1086 *3) (-1172 (-592 (-2 (|:| -3871 *3) (|:| -4185 (-1037))))))))) (-2116 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1086 *3) (-1172 (-592 (-2 (|:| -3871 *3) (|:| -4185 (-1037))))))))))
-(-13 (-307 |#1|) (-10 -7 (-15 -3920 ((-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))))) (-15 -2355 ((-632 |#1|))) (-15 -2116 ((-713)))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-1831 (((-108) $) NIL)) (-3425 (((-713)) NIL)) (-3512 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-2837 (((-1100 (-855) (-713)) (-525)) NIL (|has| |#1| (-346)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2116 (((-713)) NIL)) (-2305 (((-108) $ $) NIL)) (-3107 (((-713)) NIL (|has| |#1| (-346)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) NIL)) (-2831 ((|#1| $) NIL)) (-2229 (($ (-1172 |#1|)) NIL)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) NIL (|has| |#1| (-346)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-3205 (($) NIL (|has| |#1| (-346)))) (-3746 (((-108) $) NIL (|has| |#1| (-346)))) (-1410 (($ $ (-713)) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2250 (((-108) $) NIL)) (-1737 (((-855) $) NIL (|has| |#1| (-346))) (((-775 (-855)) $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2133 (((-108) $) NIL)) (-2537 (($) NIL (|has| |#1| (-346)))) (-4037 (((-108) $) NIL (|has| |#1| (-346)))) (-3477 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-1816 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2362 (((-1086 |#1|) $) NIL) (((-1086 $) $ (-855)) NIL (|has| |#1| (-346)))) (-1780 (((-855) $) NIL (|has| |#1| (-346)))) (-3474 (((-1086 |#1|) $) NIL (|has| |#1| (-346)))) (-2509 (((-1086 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1086 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2783 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-346)))) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL (|has| |#1| (-346)) CONST)) (-4185 (($ (-855)) NIL (|has| |#1| (-346)))) (-2325 (((-108) $) NIL)) (-2663 (((-1037) $) NIL)) (-3920 (((-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037)))))) NIL)) (-2355 (((-632 |#1|)) NIL)) (-1669 (($) NIL (|has| |#1| (-346)))) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) NIL (|has| |#1| (-346)))) (-3959 (((-396 $) $) NIL)) (-2864 (((-775 (-855))) NIL) (((-855)) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-2443 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3191 (((-128)) NIL)) (-3013 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2513 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-1654 (((-1086 |#1|)) NIL)) (-3775 (($) NIL (|has| |#1| (-346)))) (-3555 (($) NIL (|has| |#1| (-346)))) (-4093 (((-1172 |#1|) $) NIL) (((-632 |#1|) (-1172 $)) NIL)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-3421 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2093 (((-713)) NIL)) (-2499 (((-1172 $)) NIL) (((-1172 $) (-855)) NIL)) (-2262 (((-108) $ $) NIL)) (-1252 (((-108) $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-3192 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1424 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-331 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -3920 ((-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))))) (-15 -2355 ((-632 |#1|))) (-15 -2116 ((-713))))) (-327) (-855)) (T -331))
-((-3920 (*1 *2) (-12 (-5 *2 (-1172 (-592 (-2 (|:| -3871 *3) (|:| -4185 (-1037)))))) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-855)))) (-2355 (*1 *2) (-12 (-5 *2 (-632 *3)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-855)))) (-2116 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-855)))))
-(-13 (-307 |#1|) (-10 -7 (-15 -3920 ((-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))))) (-15 -2355 ((-632 |#1|))) (-15 -2116 ((-713)))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-1831 (((-108) $) NIL)) (-3425 (((-713)) NIL)) (-3512 (((-844 |#1|) $) NIL) (($ $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-2837 (((-1100 (-855) (-713)) (-525)) NIL (|has| (-844 |#1|) (-346)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2305 (((-108) $ $) NIL)) (-3107 (((-713)) NIL (|has| (-844 |#1|) (-346)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-844 |#1|) "failed") $) NIL)) (-2831 (((-844 |#1|) $) NIL)) (-2229 (($ (-1172 (-844 |#1|))) NIL)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-844 |#1|) (-346)))) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) NIL (|has| (-844 |#1|) (-346)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-3205 (($) NIL (|has| (-844 |#1|) (-346)))) (-3746 (((-108) $) NIL (|has| (-844 |#1|) (-346)))) (-1410 (($ $ (-713)) NIL (-3309 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346)))) (($ $) NIL (-3309 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2250 (((-108) $) NIL)) (-1737 (((-855) $) NIL (|has| (-844 |#1|) (-346))) (((-775 (-855)) $) NIL (-3309 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2133 (((-108) $) NIL)) (-2537 (($) NIL (|has| (-844 |#1|) (-346)))) (-4037 (((-108) $) NIL (|has| (-844 |#1|) (-346)))) (-3477 (((-844 |#1|) $) NIL) (($ $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-1816 (((-3 $ "failed") $) NIL (|has| (-844 |#1|) (-346)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2362 (((-1086 (-844 |#1|)) $) NIL) (((-1086 $) $ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-1780 (((-855) $) NIL (|has| (-844 |#1|) (-346)))) (-3474 (((-1086 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-346)))) (-2509 (((-1086 (-844 |#1|)) $) NIL (|has| (-844 |#1|) (-346))) (((-3 (-1086 (-844 |#1|)) "failed") $ $) NIL (|has| (-844 |#1|) (-346)))) (-2783 (($ $ (-1086 (-844 |#1|))) NIL (|has| (-844 |#1|) (-346)))) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL (|has| (-844 |#1|) (-346)) CONST)) (-4185 (($ (-855)) NIL (|has| (-844 |#1|) (-346)))) (-2325 (((-108) $) NIL)) (-2663 (((-1037) $) NIL)) (-1669 (($) NIL (|has| (-844 |#1|) (-346)))) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) NIL (|has| (-844 |#1|) (-346)))) (-3959 (((-396 $) $) NIL)) (-2864 (((-775 (-855))) NIL) (((-855)) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-2443 (((-713) $) NIL (|has| (-844 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-3309 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-3191 (((-128)) NIL)) (-3013 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-2513 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-1654 (((-1086 (-844 |#1|))) NIL)) (-3775 (($) NIL (|has| (-844 |#1|) (-346)))) (-3555 (($) NIL (|has| (-844 |#1|) (-346)))) (-4093 (((-1172 (-844 |#1|)) $) NIL) (((-632 (-844 |#1|)) (-1172 $)) NIL)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| (-844 |#1|) (-346)))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-844 |#1|)) NIL)) (-3421 (($ $) NIL (|has| (-844 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3309 (|has| (-844 |#1|) (-136)) (|has| (-844 |#1|) (-346))))) (-2093 (((-713)) NIL)) (-2499 (((-1172 $)) NIL) (((-1172 $) (-855)) NIL)) (-2262 (((-108) $ $) NIL)) (-1252 (((-108) $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-3192 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-1424 (($ $) NIL (|has| (-844 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-844 |#1|) (-346)))) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ $) NIL) (($ $ (-844 |#1|)) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-844 |#1|)) NIL) (($ (-844 |#1|) $) NIL)))
-(((-332 |#1| |#2|) (-307 (-844 |#1|)) (-855) (-855)) (T -332))
-NIL
-(-307 (-844 |#1|))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-1831 (((-108) $) NIL)) (-3425 (((-713)) NIL)) (-3512 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-2837 (((-1100 (-855) (-713)) (-525)) 120 (|has| |#1| (-346)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2305 (((-108) $ $) NIL)) (-3107 (((-713)) 140 (|has| |#1| (-346)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) 93)) (-2831 ((|#1| $) 90)) (-2229 (($ (-1172 |#1|)) 85)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-346)))) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) 82 (|has| |#1| (-346)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-3205 (($) 42 (|has| |#1| (-346)))) (-3746 (((-108) $) NIL (|has| |#1| (-346)))) (-1410 (($ $ (-713)) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2250 (((-108) $) NIL)) (-1737 (((-855) $) NIL (|has| |#1| (-346))) (((-775 (-855)) $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2133 (((-108) $) NIL)) (-2537 (($) 121 (|has| |#1| (-346)))) (-4037 (((-108) $) 74 (|has| |#1| (-346)))) (-3477 ((|#1| $) 39) (($ $ (-855)) 43 (|has| |#1| (-346)))) (-1816 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2362 (((-1086 |#1|) $) 65) (((-1086 $) $ (-855)) NIL (|has| |#1| (-346)))) (-1780 (((-855) $) 97 (|has| |#1| (-346)))) (-3474 (((-1086 |#1|) $) NIL (|has| |#1| (-346)))) (-2509 (((-1086 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1086 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2783 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-346)))) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL (|has| |#1| (-346)) CONST)) (-4185 (($ (-855)) 95 (|has| |#1| (-346)))) (-2325 (((-108) $) 142)) (-2663 (((-1037) $) NIL)) (-1669 (($) 36 (|has| |#1| (-346)))) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) 115 (|has| |#1| (-346)))) (-3959 (((-396 $) $) NIL)) (-2864 (((-775 (-855))) NIL) (((-855)) 139)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-2443 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3191 (((-128)) NIL)) (-3013 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2513 (((-775 (-855)) $) NIL) (((-855) $) 59)) (-1654 (((-1086 |#1|)) 88)) (-3775 (($) 126 (|has| |#1| (-346)))) (-3555 (($) NIL (|has| |#1| (-346)))) (-4093 (((-1172 |#1|) $) 53) (((-632 |#1|) (-1172 $)) NIL)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1908 (((-797) $) 138) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 87)) (-3421 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2093 (((-713)) 144)) (-2499 (((-1172 $)) 109) (((-1172 $) (-855)) 49)) (-2262 (((-108) $ $) NIL)) (-1252 (((-108) $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) 111 T CONST)) (-3882 (($) 32 T CONST)) (-3192 (($ $) 68 (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1424 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3961 (((-108) $ $) 107)) (-4082 (($ $ $) 99) (($ $ |#1|) 100)) (-4070 (($ $) 80) (($ $ $) 105)) (-4059 (($ $ $) 103)) (** (($ $ (-855)) NIL) (($ $ (-713)) 44) (($ $ (-525)) 130)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 78) (($ $ $) 56) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
-(((-333 |#1| |#2|) (-307 |#1|) (-327) (-1086 |#1|)) (T -333))
+((-3425 (*1 *1 *1) (-4 *1 (-327))) (-2105 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-327)) (-5 *2 (-1173 *1)))) (-2859 (*1 *2) (-12 (-4 *1 (-327)) (-5 *2 (-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))))) (-1670 (*1 *2 *3) (-12 (-4 *1 (-327)) (-5 *3 (-525)) (-5 *2 (-1101 (-856) (-713))))) (-2726 (*1 *1) (-4 *1 (-327))) (-3977 (*1 *1) (-4 *1 (-327))) (-3564 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-108)))) (-2181 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-713)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-856)))) (-3585 (*1 *2) (-12 (-4 *1 (-327)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-380) (-346) (-1067) (-213) (-10 -8 (-15 -3425 ($ $)) (-15 -2105 ((-3 (-1173 $) "failed") (-632 $))) (-15 -2859 ((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525)))))) (-15 -1670 ((-1101 (-856) (-713)) (-525))) (-15 -2726 ($)) (-15 -3977 ($)) (-15 -3564 ((-108) $)) (-15 -2181 ((-713) $)) (-15 -3973 ((-856) $)) (-15 -3585 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-136) . T) ((-566 (-798)) . T) ((-160) . T) ((-213) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-380) . T) ((-346) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-983 #0#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1067) . T) ((-1131) . T))
+((-1681 (((-2 (|:| -1449 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|) 53)) (-2463 (((-2 (|:| -1449 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))) 51)))
+(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -2463 ((-2 (|:| -1449 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))))) (-15 -1681 ((-2 (|:| -1449 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|))) (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $)))) (-1149 |#1|) (-387 |#1| |#2|)) (T -328))
+((-1681 (*1 *2 *3) (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $))))) (-4 *4 (-1149 *3)) (-5 *2 (-2 (|:| -1449 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-2463 (*1 *2) (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $))))) (-4 *4 (-1149 *3)) (-5 *2 (-2 (|:| -1449 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
+(-10 -7 (-15 -2463 ((-2 (|:| -1449 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))))) (-15 -1681 ((-2 (|:| -1449 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) |#1|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-2679 (((-108) $) NIL)) (-3452 (((-713)) NIL)) (-3029 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-1670 (((-1101 (-856) (-713)) (-525)) NIL (|has| (-845 |#1|) (-346)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-1808 (((-713)) NIL)) (-3197 (((-108) $ $) NIL)) (-4190 (((-713)) NIL (|has| (-845 |#1|) (-346)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-845 |#1|) "failed") $) NIL)) (-3898 (((-845 |#1|) $) NIL)) (-3612 (($ (-1173 (-845 |#1|))) NIL)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-845 |#1|) (-346)))) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) NIL (|has| (-845 |#1|) (-346)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3977 (($) NIL (|has| (-845 |#1|) (-346)))) (-3564 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-2327 (($ $ (-713)) NIL (-3279 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346)))) (($ $) NIL (-3279 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3836 (((-108) $) NIL)) (-3973 (((-856) $) NIL (|has| (-845 |#1|) (-346))) (((-775 (-856)) $) NIL (-3279 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-1985 (((-108) $) NIL)) (-1794 (($) NIL (|has| (-845 |#1|) (-346)))) (-4200 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-2900 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-1760 (((-3 $ "failed") $) NIL (|has| (-845 |#1|) (-346)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2640 (((-1087 (-845 |#1|)) $) NIL) (((-1087 $) $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-1736 (((-856) $) NIL (|has| (-845 |#1|) (-346)))) (-2884 (((-1087 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346)))) (-1549 (((-1087 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-1087 (-845 |#1|)) "failed") $ $) NIL (|has| (-845 |#1|) (-346)))) (-2499 (($ $ (-1087 (-845 |#1|))) NIL (|has| (-845 |#1|) (-346)))) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL (|has| (-845 |#1|) (-346)) CONST)) (-3640 (($ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-3341 (((-108) $) NIL)) (-2012 (((-1038) $) NIL)) (-1507 (((-1173 (-592 (-2 (|:| -3352 (-845 |#1|)) (|:| -3640 (-1038)))))) NIL)) (-2582 (((-632 (-845 |#1|))) NIL)) (-3523 (($) NIL (|has| (-845 |#1|) (-346)))) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) NIL (|has| (-845 |#1|) (-346)))) (-2195 (((-396 $) $) NIL)) (-3748 (((-775 (-856))) NIL) (((-856)) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2181 (((-713) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-3279 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3831 (((-128)) NIL)) (-2523 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-1587 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-1571 (((-1087 (-845 |#1|))) NIL)) (-2726 (($) NIL (|has| (-845 |#1|) (-346)))) (-2411 (($) NIL (|has| (-845 |#1|) (-346)))) (-3464 (((-1173 (-845 |#1|)) $) NIL) (((-632 (-845 |#1|)) (-1173 $)) NIL)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (|has| (-845 |#1|) (-346)))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-845 |#1|)) NIL)) (-3425 (($ $) NIL (|has| (-845 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3279 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-2104 (((-713)) NIL)) (-1449 (((-1173 $)) NIL) (((-1173 $) (-856)) NIL)) (-3959 (((-108) $ $) NIL)) (-1728 (((-108) $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-3842 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-2093 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ $) NIL) (($ $ (-845 |#1|)) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-845 |#1|)) NIL) (($ (-845 |#1|) $) NIL)))
+(((-329 |#1| |#2|) (-13 (-307 (-845 |#1|)) (-10 -7 (-15 -1507 ((-1173 (-592 (-2 (|:| -3352 (-845 |#1|)) (|:| -3640 (-1038))))))) (-15 -2582 ((-632 (-845 |#1|)))) (-15 -1808 ((-713))))) (-856) (-856)) (T -329))
+((-1507 (*1 *2) (-12 (-5 *2 (-1173 (-592 (-2 (|:| -3352 (-845 *3)) (|:| -3640 (-1038)))))) (-5 *1 (-329 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))) (-2582 (*1 *2) (-12 (-5 *2 (-632 (-845 *3))) (-5 *1 (-329 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))) (-1808 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-329 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))))
+(-13 (-307 (-845 |#1|)) (-10 -7 (-15 -1507 ((-1173 (-592 (-2 (|:| -3352 (-845 |#1|)) (|:| -3640 (-1038))))))) (-15 -2582 ((-632 (-845 |#1|)))) (-15 -1808 ((-713)))))
+((-1260 (((-108) $ $) 62)) (-1989 (((-108) $) 75)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-2679 (((-108) $) NIL)) (-3452 (((-713)) NIL)) (-3029 ((|#1| $) 93) (($ $ (-856)) 91 (|has| |#1| (-346)))) (-1670 (((-1101 (-856) (-713)) (-525)) 149 (|has| |#1| (-346)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-1808 (((-713)) 90)) (-3197 (((-108) $ $) NIL)) (-4190 (((-713)) 163 (|has| |#1| (-346)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) 113)) (-3898 ((|#1| $) 92)) (-3612 (($ (-1173 |#1|)) 59)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) 189 (|has| |#1| (-346)))) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) 159 (|has| |#1| (-346)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3977 (($) 150 (|has| |#1| (-346)))) (-3564 (((-108) $) NIL (|has| |#1| (-346)))) (-2327 (($ $ (-713)) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3836 (((-108) $) NIL)) (-3973 (((-856) $) NIL (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1985 (((-108) $) NIL)) (-1794 (($) 99 (|has| |#1| (-346)))) (-4200 (((-108) $) 176 (|has| |#1| (-346)))) (-2900 ((|#1| $) 95) (($ $ (-856)) 94 (|has| |#1| (-346)))) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2640 (((-1087 |#1|) $) 190) (((-1087 $) $ (-856)) NIL (|has| |#1| (-346)))) (-1736 (((-856) $) 135 (|has| |#1| (-346)))) (-2884 (((-1087 |#1|) $) 74 (|has| |#1| (-346)))) (-1549 (((-1087 |#1|) $) 71 (|has| |#1| (-346))) (((-3 (-1087 |#1|) "failed") $ $) 83 (|has| |#1| (-346)))) (-2499 (($ $ (-1087 |#1|)) 70 (|has| |#1| (-346)))) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 193)) (-3940 (($) NIL (|has| |#1| (-346)) CONST)) (-3640 (($ (-856)) 138 (|has| |#1| (-346)))) (-3341 (((-108) $) 109)) (-2012 (((-1038) $) NIL)) (-1507 (((-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038)))))) 84)) (-2582 (((-632 |#1|)) 88)) (-3523 (($) 97 (|has| |#1| (-346)))) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) 151 (|has| |#1| (-346)))) (-2195 (((-396 $) $) NIL)) (-3748 (((-775 (-856))) NIL) (((-856)) 152)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2181 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3831 (((-128)) NIL)) (-2523 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1587 (((-775 (-856)) $) NIL) (((-856) $) 63)) (-1571 (((-1087 |#1|)) 153)) (-2726 (($) 134 (|has| |#1| (-346)))) (-2411 (($) NIL (|has| |#1| (-346)))) (-3464 (((-1173 |#1|) $) 107) (((-632 |#1|) (-1173 $)) NIL)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1270 (((-798) $) 125) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 58)) (-3425 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2104 (((-713)) 157)) (-1449 (((-1173 $)) 173) (((-1173 $) (-856)) 102)) (-3959 (((-108) $ $) NIL)) (-1728 (((-108) $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) 30 T CONST)) (-3363 (($) 22 T CONST)) (-3842 (($ $) 108 (|has| |#1| (-346))) (($ $ (-713)) 100 (|has| |#1| (-346)))) (-2093 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3994 (((-108) $ $) 184)) (-4100 (($ $ $) 105) (($ $ |#1|) 106)) (-4090 (($ $) 178) (($ $ $) 182)) (-4080 (($ $ $) 180)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 139)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 187) (($ $ $) 143) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 104)))
+(((-330 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -1507 ((-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))))) (-15 -2582 ((-632 |#1|))) (-15 -1808 ((-713))))) (-327) (-3 (-1087 |#1|) (-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))))) (T -330))
+((-1507 (*1 *2) (-12 (-5 *2 (-1173 (-592 (-2 (|:| -3352 *3) (|:| -3640 (-1038)))))) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1087 *3) (-1173 (-592 (-2 (|:| -3352 *3) (|:| -3640 (-1038))))))))) (-2582 (*1 *2) (-12 (-5 *2 (-632 *3)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1087 *3) (-1173 (-592 (-2 (|:| -3352 *3) (|:| -3640 (-1038))))))))) (-1808 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327)) (-14 *4 (-3 (-1087 *3) (-1173 (-592 (-2 (|:| -3352 *3) (|:| -3640 (-1038))))))))))
+(-13 (-307 |#1|) (-10 -7 (-15 -1507 ((-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))))) (-15 -2582 ((-632 |#1|))) (-15 -1808 ((-713)))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-2679 (((-108) $) NIL)) (-3452 (((-713)) NIL)) (-3029 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-1670 (((-1101 (-856) (-713)) (-525)) NIL (|has| |#1| (-346)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-1808 (((-713)) NIL)) (-3197 (((-108) $ $) NIL)) (-4190 (((-713)) NIL (|has| |#1| (-346)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) NIL)) (-3898 ((|#1| $) NIL)) (-3612 (($ (-1173 |#1|)) NIL)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) NIL (|has| |#1| (-346)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3977 (($) NIL (|has| |#1| (-346)))) (-3564 (((-108) $) NIL (|has| |#1| (-346)))) (-2327 (($ $ (-713)) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3836 (((-108) $) NIL)) (-3973 (((-856) $) NIL (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1985 (((-108) $) NIL)) (-1794 (($) NIL (|has| |#1| (-346)))) (-4200 (((-108) $) NIL (|has| |#1| (-346)))) (-2900 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2640 (((-1087 |#1|) $) NIL) (((-1087 $) $ (-856)) NIL (|has| |#1| (-346)))) (-1736 (((-856) $) NIL (|has| |#1| (-346)))) (-2884 (((-1087 |#1|) $) NIL (|has| |#1| (-346)))) (-1549 (((-1087 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1087 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2499 (($ $ (-1087 |#1|)) NIL (|has| |#1| (-346)))) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL (|has| |#1| (-346)) CONST)) (-3640 (($ (-856)) NIL (|has| |#1| (-346)))) (-3341 (((-108) $) NIL)) (-2012 (((-1038) $) NIL)) (-1507 (((-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038)))))) NIL)) (-2582 (((-632 |#1|)) NIL)) (-3523 (($) NIL (|has| |#1| (-346)))) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) NIL (|has| |#1| (-346)))) (-2195 (((-396 $) $) NIL)) (-3748 (((-775 (-856))) NIL) (((-856)) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2181 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3831 (((-128)) NIL)) (-2523 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1587 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-1571 (((-1087 |#1|)) NIL)) (-2726 (($) NIL (|has| |#1| (-346)))) (-2411 (($) NIL (|has| |#1| (-346)))) (-3464 (((-1173 |#1|) $) NIL) (((-632 |#1|) (-1173 $)) NIL)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-3425 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2104 (((-713)) NIL)) (-1449 (((-1173 $)) NIL) (((-1173 $) (-856)) NIL)) (-3959 (((-108) $ $) NIL)) (-1728 (((-108) $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-3842 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2093 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-331 |#1| |#2|) (-13 (-307 |#1|) (-10 -7 (-15 -1507 ((-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))))) (-15 -2582 ((-632 |#1|))) (-15 -1808 ((-713))))) (-327) (-856)) (T -331))
+((-1507 (*1 *2) (-12 (-5 *2 (-1173 (-592 (-2 (|:| -3352 *3) (|:| -3640 (-1038)))))) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-856)))) (-2582 (*1 *2) (-12 (-5 *2 (-632 *3)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-856)))) (-1808 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-856)))))
+(-13 (-307 |#1|) (-10 -7 (-15 -1507 ((-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))))) (-15 -2582 ((-632 |#1|))) (-15 -1808 ((-713)))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-2679 (((-108) $) NIL)) (-3452 (((-713)) NIL)) (-3029 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-1670 (((-1101 (-856) (-713)) (-525)) NIL (|has| (-845 |#1|) (-346)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3197 (((-108) $ $) NIL)) (-4190 (((-713)) NIL (|has| (-845 |#1|) (-346)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-845 |#1|) "failed") $) NIL)) (-3898 (((-845 |#1|) $) NIL)) (-3612 (($ (-1173 (-845 |#1|))) NIL)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-845 |#1|) (-346)))) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) NIL (|has| (-845 |#1|) (-346)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3977 (($) NIL (|has| (-845 |#1|) (-346)))) (-3564 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-2327 (($ $ (-713)) NIL (-3279 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346)))) (($ $) NIL (-3279 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3836 (((-108) $) NIL)) (-3973 (((-856) $) NIL (|has| (-845 |#1|) (-346))) (((-775 (-856)) $) NIL (-3279 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-1985 (((-108) $) NIL)) (-1794 (($) NIL (|has| (-845 |#1|) (-346)))) (-4200 (((-108) $) NIL (|has| (-845 |#1|) (-346)))) (-2900 (((-845 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-1760 (((-3 $ "failed") $) NIL (|has| (-845 |#1|) (-346)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2640 (((-1087 (-845 |#1|)) $) NIL) (((-1087 $) $ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-1736 (((-856) $) NIL (|has| (-845 |#1|) (-346)))) (-2884 (((-1087 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346)))) (-1549 (((-1087 (-845 |#1|)) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-1087 (-845 |#1|)) "failed") $ $) NIL (|has| (-845 |#1|) (-346)))) (-2499 (($ $ (-1087 (-845 |#1|))) NIL (|has| (-845 |#1|) (-346)))) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL (|has| (-845 |#1|) (-346)) CONST)) (-3640 (($ (-856)) NIL (|has| (-845 |#1|) (-346)))) (-3341 (((-108) $) NIL)) (-2012 (((-1038) $) NIL)) (-3523 (($) NIL (|has| (-845 |#1|) (-346)))) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) NIL (|has| (-845 |#1|) (-346)))) (-2195 (((-396 $) $) NIL)) (-3748 (((-775 (-856))) NIL) (((-856)) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2181 (((-713) $) NIL (|has| (-845 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-3279 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-3831 (((-128)) NIL)) (-2523 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-1587 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-1571 (((-1087 (-845 |#1|))) NIL)) (-2726 (($) NIL (|has| (-845 |#1|) (-346)))) (-2411 (($) NIL (|has| (-845 |#1|) (-346)))) (-3464 (((-1173 (-845 |#1|)) $) NIL) (((-632 (-845 |#1|)) (-1173 $)) NIL)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (|has| (-845 |#1|) (-346)))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-845 |#1|)) NIL)) (-3425 (($ $) NIL (|has| (-845 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3279 (|has| (-845 |#1|) (-136)) (|has| (-845 |#1|) (-346))))) (-2104 (((-713)) NIL)) (-1449 (((-1173 $)) NIL) (((-1173 $) (-856)) NIL)) (-3959 (((-108) $ $) NIL)) (-1728 (((-108) $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-3842 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-2093 (($ $) NIL (|has| (-845 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-845 |#1|) (-346)))) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ $) NIL) (($ $ (-845 |#1|)) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-845 |#1|)) NIL) (($ (-845 |#1|) $) NIL)))
+(((-332 |#1| |#2|) (-307 (-845 |#1|)) (-856) (-856)) (T -332))
+NIL
+(-307 (-845 |#1|))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-2679 (((-108) $) NIL)) (-3452 (((-713)) NIL)) (-3029 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-1670 (((-1101 (-856) (-713)) (-525)) 120 (|has| |#1| (-346)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3197 (((-108) $ $) NIL)) (-4190 (((-713)) 140 (|has| |#1| (-346)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) 93)) (-3898 ((|#1| $) 90)) (-3612 (($ (-1173 |#1|)) 85)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-346)))) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) 82 (|has| |#1| (-346)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3977 (($) 42 (|has| |#1| (-346)))) (-3564 (((-108) $) NIL (|has| |#1| (-346)))) (-2327 (($ $ (-713)) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3836 (((-108) $) NIL)) (-3973 (((-856) $) NIL (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1985 (((-108) $) NIL)) (-1794 (($) 121 (|has| |#1| (-346)))) (-4200 (((-108) $) 74 (|has| |#1| (-346)))) (-2900 ((|#1| $) 39) (($ $ (-856)) 43 (|has| |#1| (-346)))) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2640 (((-1087 |#1|) $) 65) (((-1087 $) $ (-856)) NIL (|has| |#1| (-346)))) (-1736 (((-856) $) 97 (|has| |#1| (-346)))) (-2884 (((-1087 |#1|) $) NIL (|has| |#1| (-346)))) (-1549 (((-1087 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1087 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2499 (($ $ (-1087 |#1|)) NIL (|has| |#1| (-346)))) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL (|has| |#1| (-346)) CONST)) (-3640 (($ (-856)) 95 (|has| |#1| (-346)))) (-3341 (((-108) $) 142)) (-2012 (((-1038) $) NIL)) (-3523 (($) 36 (|has| |#1| (-346)))) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) 115 (|has| |#1| (-346)))) (-2195 (((-396 $) $) NIL)) (-3748 (((-775 (-856))) NIL) (((-856)) 139)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2181 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3831 (((-128)) NIL)) (-2523 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1587 (((-775 (-856)) $) NIL) (((-856) $) 59)) (-1571 (((-1087 |#1|)) 88)) (-2726 (($) 126 (|has| |#1| (-346)))) (-2411 (($) NIL (|has| |#1| (-346)))) (-3464 (((-1173 |#1|) $) 53) (((-632 |#1|) (-1173 $)) NIL)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1270 (((-798) $) 138) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 87)) (-3425 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2104 (((-713)) 144)) (-1449 (((-1173 $)) 109) (((-1173 $) (-856)) 49)) (-3959 (((-108) $ $) NIL)) (-1728 (((-108) $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) 111 T CONST)) (-3363 (($) 32 T CONST)) (-3842 (($ $) 68 (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2093 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3994 (((-108) $ $) 107)) (-4100 (($ $ $) 99) (($ $ |#1|) 100)) (-4090 (($ $) 80) (($ $ $) 105)) (-4080 (($ $ $) 103)) (** (($ $ (-856)) NIL) (($ $ (-713)) 44) (($ $ (-525)) 130)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 78) (($ $ $) 56) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
+(((-333 |#1| |#2|) (-307 |#1|) (-327) (-1087 |#1|)) (T -333))
NIL
(-307 |#1|)
-((-1233 ((|#1| (-1086 |#2|)) 52)))
-(((-334 |#1| |#2|) (-10 -7 (-15 -1233 (|#1| (-1086 |#2|)))) (-13 (-380) (-10 -7 (-15 -1908 (|#1| |#2|)) (-15 -1780 ((-855) |#1|)) (-15 -2499 ((-1172 |#1|) (-855))) (-15 -3192 (|#1| |#1|)))) (-327)) (T -334))
-((-1233 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) (-4 *2 (-13 (-380) (-10 -7 (-15 -1908 (*2 *4)) (-15 -1780 ((-855) *2)) (-15 -2499 ((-1172 *2) (-855))) (-15 -3192 (*2 *2))))) (-5 *1 (-334 *2 *4)))))
-(-10 -7 (-15 -1233 (|#1| (-1086 |#2|))))
-((-4183 (((-891 (-1086 |#1|)) (-1086 |#1|)) 36)) (-3375 (((-1086 |#1|) (-855) (-855)) 113) (((-1086 |#1|) (-855)) 112)) (-3746 (((-108) (-1086 |#1|)) 84)) (-1500 (((-855) (-855)) 71)) (-3779 (((-855) (-855)) 74)) (-3828 (((-855) (-855)) 69)) (-4037 (((-108) (-1086 |#1|)) 88)) (-3679 (((-3 (-1086 |#1|) "failed") (-1086 |#1|)) 101)) (-3728 (((-3 (-1086 |#1|) "failed") (-1086 |#1|)) 104)) (-1943 (((-3 (-1086 |#1|) "failed") (-1086 |#1|)) 103)) (-2725 (((-3 (-1086 |#1|) "failed") (-1086 |#1|)) 102)) (-1545 (((-3 (-1086 |#1|) "failed") (-1086 |#1|)) 98)) (-1441 (((-1086 |#1|) (-1086 |#1|)) 62)) (-4032 (((-1086 |#1|) (-855)) 107)) (-2341 (((-1086 |#1|) (-855)) 110)) (-2406 (((-1086 |#1|) (-855)) 109)) (-3314 (((-1086 |#1|) (-855)) 108)) (-1858 (((-1086 |#1|) (-855)) 105)))
-(((-335 |#1|) (-10 -7 (-15 -3746 ((-108) (-1086 |#1|))) (-15 -4037 ((-108) (-1086 |#1|))) (-15 -3828 ((-855) (-855))) (-15 -1500 ((-855) (-855))) (-15 -3779 ((-855) (-855))) (-15 -1858 ((-1086 |#1|) (-855))) (-15 -4032 ((-1086 |#1|) (-855))) (-15 -3314 ((-1086 |#1|) (-855))) (-15 -2406 ((-1086 |#1|) (-855))) (-15 -2341 ((-1086 |#1|) (-855))) (-15 -1545 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -3679 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -2725 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -1943 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -3728 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -3375 ((-1086 |#1|) (-855))) (-15 -3375 ((-1086 |#1|) (-855) (-855))) (-15 -1441 ((-1086 |#1|) (-1086 |#1|))) (-15 -4183 ((-891 (-1086 |#1|)) (-1086 |#1|)))) (-327)) (T -335))
-((-4183 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-891 (-1086 *4))) (-5 *1 (-335 *4)) (-5 *3 (-1086 *4)))) (-1441 (*1 *2 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-3375 (*1 *2 *3 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-3375 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-3728 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-1943 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-2725 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-3679 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-1545 (*1 *2 *2) (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-4032 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-1858 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-3779 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-1500 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-335 *4)))) (-3746 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-335 *4)))))
-(-10 -7 (-15 -3746 ((-108) (-1086 |#1|))) (-15 -4037 ((-108) (-1086 |#1|))) (-15 -3828 ((-855) (-855))) (-15 -1500 ((-855) (-855))) (-15 -3779 ((-855) (-855))) (-15 -1858 ((-1086 |#1|) (-855))) (-15 -4032 ((-1086 |#1|) (-855))) (-15 -3314 ((-1086 |#1|) (-855))) (-15 -2406 ((-1086 |#1|) (-855))) (-15 -2341 ((-1086 |#1|) (-855))) (-15 -1545 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -3679 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -2725 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -1943 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -3728 ((-3 (-1086 |#1|) "failed") (-1086 |#1|))) (-15 -3375 ((-1086 |#1|) (-855))) (-15 -3375 ((-1086 |#1|) (-855) (-855))) (-15 -1441 ((-1086 |#1|) (-1086 |#1|))) (-15 -4183 ((-891 (-1086 |#1|)) (-1086 |#1|))))
-((-2620 (((-3 (-592 |#3|) "failed") (-592 |#3|) |#3|) 34)))
-(((-336 |#1| |#2| |#3|) (-10 -7 (-15 -2620 ((-3 (-592 |#3|) "failed") (-592 |#3|) |#3|))) (-327) (-1148 |#1|) (-1148 |#2|)) (T -336))
-((-2620 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-327)) (-5 *1 (-336 *4 *5 *3)))))
-(-10 -7 (-15 -2620 ((-3 (-592 |#3|) "failed") (-592 |#3|) |#3|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-1831 (((-108) $) NIL)) (-3425 (((-713)) NIL)) (-3512 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-2837 (((-1100 (-855) (-713)) (-525)) NIL (|has| |#1| (-346)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2305 (((-108) $ $) NIL)) (-3107 (((-713)) NIL (|has| |#1| (-346)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) NIL)) (-2831 ((|#1| $) NIL)) (-2229 (($ (-1172 |#1|)) NIL)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) NIL (|has| |#1| (-346)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-3205 (($) NIL (|has| |#1| (-346)))) (-3746 (((-108) $) NIL (|has| |#1| (-346)))) (-1410 (($ $ (-713)) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2250 (((-108) $) NIL)) (-1737 (((-855) $) NIL (|has| |#1| (-346))) (((-775 (-855)) $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2133 (((-108) $) NIL)) (-2537 (($) NIL (|has| |#1| (-346)))) (-4037 (((-108) $) NIL (|has| |#1| (-346)))) (-3477 ((|#1| $) NIL) (($ $ (-855)) NIL (|has| |#1| (-346)))) (-1816 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2362 (((-1086 |#1|) $) NIL) (((-1086 $) $ (-855)) NIL (|has| |#1| (-346)))) (-1780 (((-855) $) NIL (|has| |#1| (-346)))) (-3474 (((-1086 |#1|) $) NIL (|has| |#1| (-346)))) (-2509 (((-1086 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1086 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2783 (($ $ (-1086 |#1|)) NIL (|has| |#1| (-346)))) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL (|has| |#1| (-346)) CONST)) (-4185 (($ (-855)) NIL (|has| |#1| (-346)))) (-2325 (((-108) $) NIL)) (-2663 (((-1037) $) NIL)) (-1669 (($) NIL (|has| |#1| (-346)))) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) NIL (|has| |#1| (-346)))) (-3959 (((-396 $) $) NIL)) (-2864 (((-775 (-855))) NIL) (((-855)) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-2443 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3191 (((-128)) NIL)) (-3013 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2513 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-1654 (((-1086 |#1|)) NIL)) (-3775 (($) NIL (|has| |#1| (-346)))) (-3555 (($) NIL (|has| |#1| (-346)))) (-4093 (((-1172 |#1|) $) NIL) (((-632 |#1|) (-1172 $)) NIL)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-3421 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2093 (((-713)) NIL)) (-2499 (((-1172 $)) NIL) (((-1172 $) (-855)) NIL)) (-2262 (((-108) $ $) NIL)) (-1252 (((-108) $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-3192 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1424 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-337 |#1| |#2|) (-307 |#1|) (-327) (-855)) (T -337))
+((-2830 ((|#1| (-1087 |#2|)) 52)))
+(((-334 |#1| |#2|) (-10 -7 (-15 -2830 (|#1| (-1087 |#2|)))) (-13 (-380) (-10 -7 (-15 -1270 (|#1| |#2|)) (-15 -1736 ((-856) |#1|)) (-15 -1449 ((-1173 |#1|) (-856))) (-15 -3842 (|#1| |#1|)))) (-327)) (T -334))
+((-2830 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-327)) (-4 *2 (-13 (-380) (-10 -7 (-15 -1270 (*2 *4)) (-15 -1736 ((-856) *2)) (-15 -1449 ((-1173 *2) (-856))) (-15 -3842 (*2 *2))))) (-5 *1 (-334 *2 *4)))))
+(-10 -7 (-15 -2830 (|#1| (-1087 |#2|))))
+((-3112 (((-892 (-1087 |#1|)) (-1087 |#1|)) 36)) (-2899 (((-1087 |#1|) (-856) (-856)) 113) (((-1087 |#1|) (-856)) 112)) (-3564 (((-108) (-1087 |#1|)) 84)) (-2208 (((-856) (-856)) 71)) (-2776 (((-856) (-856)) 74)) (-1906 (((-856) (-856)) 69)) (-4200 (((-108) (-1087 |#1|)) 88)) (-4139 (((-3 (-1087 |#1|) "failed") (-1087 |#1|)) 101)) (-3407 (((-3 (-1087 |#1|) "failed") (-1087 |#1|)) 104)) (-3861 (((-3 (-1087 |#1|) "failed") (-1087 |#1|)) 103)) (-3032 (((-3 (-1087 |#1|) "failed") (-1087 |#1|)) 102)) (-3794 (((-3 (-1087 |#1|) "failed") (-1087 |#1|)) 98)) (-3615 (((-1087 |#1|) (-1087 |#1|)) 62)) (-4158 (((-1087 |#1|) (-856)) 107)) (-3484 (((-1087 |#1|) (-856)) 110)) (-3034 (((-1087 |#1|) (-856)) 109)) (-3645 (((-1087 |#1|) (-856)) 108)) (-3394 (((-1087 |#1|) (-856)) 105)))
+(((-335 |#1|) (-10 -7 (-15 -3564 ((-108) (-1087 |#1|))) (-15 -4200 ((-108) (-1087 |#1|))) (-15 -1906 ((-856) (-856))) (-15 -2208 ((-856) (-856))) (-15 -2776 ((-856) (-856))) (-15 -3394 ((-1087 |#1|) (-856))) (-15 -4158 ((-1087 |#1|) (-856))) (-15 -3645 ((-1087 |#1|) (-856))) (-15 -3034 ((-1087 |#1|) (-856))) (-15 -3484 ((-1087 |#1|) (-856))) (-15 -3794 ((-3 (-1087 |#1|) "failed") (-1087 |#1|))) (-15 -4139 ((-3 (-1087 |#1|) "failed") (-1087 |#1|))) (-15 -3032 ((-3 (-1087 |#1|) "failed") (-1087 |#1|))) (-15 -3861 ((-3 (-1087 |#1|) "failed") (-1087 |#1|))) (-15 -3407 ((-3 (-1087 |#1|) "failed") (-1087 |#1|))) (-15 -2899 ((-1087 |#1|) (-856))) (-15 -2899 ((-1087 |#1|) (-856) (-856))) (-15 -3615 ((-1087 |#1|) (-1087 |#1|))) (-15 -3112 ((-892 (-1087 |#1|)) (-1087 |#1|)))) (-327)) (T -335))
+((-3112 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-892 (-1087 *4))) (-5 *1 (-335 *4)) (-5 *3 (-1087 *4)))) (-3615 (*1 *2 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-2899 (*1 *2 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1087 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-2899 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1087 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-3407 (*1 *2 *2) (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-3861 (*1 *2 *2) (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-3032 (*1 *2 *2) (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-4139 (*1 *2 *2) (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-3794 (*1 *2 *2) (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))) (-3484 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1087 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1087 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-3645 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1087 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-4158 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1087 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1087 *4)) (-5 *1 (-335 *4)) (-4 *4 (-327)))) (-2776 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-2208 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-1906 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))) (-4200 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-335 *4)))) (-3564 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-335 *4)))))
+(-10 -7 (-15 -3564 ((-108) (-1087 |#1|))) (-15 -4200 ((-108) (-1087 |#1|))) (-15 -1906 ((-856) (-856))) (-15 -2208 ((-856) (-856))) (-15 -2776 ((-856) (-856))) (-15 -3394 ((-1087 |#1|) (-856))) (-15 -4158 ((-1087 |#1|) (-856))) (-15 -3645 ((-1087 |#1|) (-856))) (-15 -3034 ((-1087 |#1|) (-856))) (-15 -3484 ((-1087 |#1|) (-856))) (-15 -3794 ((-3 (-1087 |#1|) "failed") (-1087 |#1|))) (-15 -4139 ((-3 (-1087 |#1|) "failed") (-1087 |#1|))) (-15 -3032 ((-3 (-1087 |#1|) "failed") (-1087 |#1|))) (-15 -3861 ((-3 (-1087 |#1|) "failed") (-1087 |#1|))) (-15 -3407 ((-3 (-1087 |#1|) "failed") (-1087 |#1|))) (-15 -2899 ((-1087 |#1|) (-856))) (-15 -2899 ((-1087 |#1|) (-856) (-856))) (-15 -3615 ((-1087 |#1|) (-1087 |#1|))) (-15 -3112 ((-892 (-1087 |#1|)) (-1087 |#1|))))
+((-3259 (((-3 (-592 |#3|) "failed") (-592 |#3|) |#3|) 34)))
+(((-336 |#1| |#2| |#3|) (-10 -7 (-15 -3259 ((-3 (-592 |#3|) "failed") (-592 |#3|) |#3|))) (-327) (-1149 |#1|) (-1149 |#2|)) (T -336))
+((-3259 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 *3)) (-4 *3 (-1149 *5)) (-4 *5 (-1149 *4)) (-4 *4 (-327)) (-5 *1 (-336 *4 *5 *3)))))
+(-10 -7 (-15 -3259 ((-3 (-592 |#3|) "failed") (-592 |#3|) |#3|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-2679 (((-108) $) NIL)) (-3452 (((-713)) NIL)) (-3029 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-1670 (((-1101 (-856) (-713)) (-525)) NIL (|has| |#1| (-346)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3197 (((-108) $ $) NIL)) (-4190 (((-713)) NIL (|has| |#1| (-346)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) NIL)) (-3898 ((|#1| $) NIL)) (-3612 (($ (-1173 |#1|)) NIL)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-346)))) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) NIL (|has| |#1| (-346)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3977 (($) NIL (|has| |#1| (-346)))) (-3564 (((-108) $) NIL (|has| |#1| (-346)))) (-2327 (($ $ (-713)) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3836 (((-108) $) NIL)) (-3973 (((-856) $) NIL (|has| |#1| (-346))) (((-775 (-856)) $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1985 (((-108) $) NIL)) (-1794 (($) NIL (|has| |#1| (-346)))) (-4200 (((-108) $) NIL (|has| |#1| (-346)))) (-2900 ((|#1| $) NIL) (($ $ (-856)) NIL (|has| |#1| (-346)))) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-346)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2640 (((-1087 |#1|) $) NIL) (((-1087 $) $ (-856)) NIL (|has| |#1| (-346)))) (-1736 (((-856) $) NIL (|has| |#1| (-346)))) (-2884 (((-1087 |#1|) $) NIL (|has| |#1| (-346)))) (-1549 (((-1087 |#1|) $) NIL (|has| |#1| (-346))) (((-3 (-1087 |#1|) "failed") $ $) NIL (|has| |#1| (-346)))) (-2499 (($ $ (-1087 |#1|)) NIL (|has| |#1| (-346)))) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL (|has| |#1| (-346)) CONST)) (-3640 (($ (-856)) NIL (|has| |#1| (-346)))) (-3341 (((-108) $) NIL)) (-2012 (((-1038) $) NIL)) (-3523 (($) NIL (|has| |#1| (-346)))) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) NIL (|has| |#1| (-346)))) (-2195 (((-396 $) $) NIL)) (-3748 (((-775 (-856))) NIL) (((-856)) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2181 (((-713) $) NIL (|has| |#1| (-346))) (((-3 (-713) "failed") $ $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3831 (((-128)) NIL)) (-2523 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-1587 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-1571 (((-1087 |#1|)) NIL)) (-2726 (($) NIL (|has| |#1| (-346)))) (-2411 (($) NIL (|has| |#1| (-346)))) (-3464 (((-1173 |#1|) $) NIL) (((-632 |#1|) (-1173 $)) NIL)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (|has| |#1| (-346)))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) NIL)) (-3425 (($ $) NIL (|has| |#1| (-346))) (((-3 $ "failed") $) NIL (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2104 (((-713)) NIL)) (-1449 (((-1173 $)) NIL) (((-1173 $) (-856)) NIL)) (-3959 (((-108) $ $) NIL)) (-1728 (((-108) $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-3842 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-2093 (($ $) NIL (|has| |#1| (-346))) (($ $ (-713)) NIL (|has| |#1| (-346)))) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ $) NIL) (($ $ |#1|) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-337 |#1| |#2|) (-307 |#1|) (-327) (-856)) (T -337))
NIL
(-307 |#1|)
-((-1852 (((-108) (-592 (-886 |#1|))) 34)) (-2424 (((-592 (-886 |#1|)) (-592 (-886 |#1|))) 46)) (-3385 (((-3 (-592 (-886 |#1|)) "failed") (-592 (-886 |#1|))) 41)))
-(((-338 |#1| |#2|) (-10 -7 (-15 -1852 ((-108) (-592 (-886 |#1|)))) (-15 -3385 ((-3 (-592 (-886 |#1|)) "failed") (-592 (-886 |#1|)))) (-15 -2424 ((-592 (-886 |#1|)) (-592 (-886 |#1|))))) (-429) (-592 (-1090))) (T -338))
-((-2424 (*1 *2 *2) (-12 (-5 *2 (-592 (-886 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4)) (-14 *4 (-592 (-1090))))) (-3385 (*1 *2 *2) (|partial| -12 (-5 *2 (-592 (-886 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4)) (-14 *4 (-592 (-1090))))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-429)) (-5 *2 (-108)) (-5 *1 (-338 *4 *5)) (-14 *5 (-592 (-1090))))))
-(-10 -7 (-15 -1852 ((-108) (-592 (-886 |#1|)))) (-15 -3385 ((-3 (-592 (-886 |#1|)) "failed") (-592 (-886 |#1|)))) (-15 -2424 ((-592 (-886 |#1|)) (-592 (-886 |#1|)))))
-((-1893 (((-108) $ $) NIL)) (-3107 (((-713) $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) NIL)) (-2831 ((|#1| $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-2133 (((-108) $) 15)) (-2938 ((|#1| $ (-525)) NIL)) (-3084 (((-525) $ (-525)) NIL)) (-2463 (($ (-1 |#1| |#1|) $) 32)) (-3358 (($ (-1 (-525) (-525)) $) 24)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 26)) (-2663 (((-1037) $) NIL)) (-2203 (((-592 (-2 (|:| |gen| |#1|) (|:| -1982 (-525)))) $) 28)) (-3634 (($ $ $) NIL)) (-1518 (($ $ $) NIL)) (-1908 (((-797) $) 38) (($ |#1|) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3882 (($) 9 T CONST)) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ |#1| (-525)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-339 |#1|) (-13 (-450) (-967 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-525))) (-15 -3107 ((-713) $)) (-15 -3084 ((-525) $ (-525))) (-15 -2938 (|#1| $ (-525))) (-15 -3358 ($ (-1 (-525) (-525)) $)) (-15 -2463 ($ (-1 |#1| |#1|) $)) (-15 -2203 ((-592 (-2 (|:| |gen| |#1|) (|:| -1982 (-525)))) $)))) (-1019)) (T -339))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1019)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1019)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1019)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-339 *3)) (-4 *3 (-1019)))) (-3084 (*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-339 *3)) (-4 *3 (-1019)))) (-2938 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1019)))) (-3358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-525) (-525))) (-5 *1 (-339 *3)) (-4 *3 (-1019)))) (-2463 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1019)) (-5 *1 (-339 *3)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1982 (-525))))) (-5 *1 (-339 *3)) (-4 *3 (-1019)))))
-(-13 (-450) (-967 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-525))) (-15 -3107 ((-713) $)) (-15 -3084 ((-525) $ (-525))) (-15 -2938 (|#1| $ (-525))) (-15 -3358 ($ (-1 (-525) (-525)) $)) (-15 -2463 ($ (-1 |#1| |#1|) $)) (-15 -2203 ((-592 (-2 (|:| |gen| |#1|) (|:| -1982 (-525)))) $))))
-((-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 13)) (-3635 (($ $) 14)) (-1510 (((-396 $) $) 30)) (-2250 (((-108) $) 26)) (-4211 (($ $) 19)) (-3244 (($ $ $) 23) (($ (-592 $)) NIL)) (-3959 (((-396 $) $) 31)) (-2338 (((-3 $ "failed") $ $) 22)) (-2183 (((-713) $) 25)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 35)) (-2262 (((-108) $ $) 16)) (-4082 (($ $ $) 33)))
-(((-340 |#1|) (-10 -8 (-15 -4082 (|#1| |#1| |#1|)) (-15 -4211 (|#1| |#1|)) (-15 -2250 ((-108) |#1|)) (-15 -1510 ((-396 |#1|) |#1|)) (-15 -3959 ((-396 |#1|) |#1|)) (-15 -1760 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|)) (-15 -2183 ((-713) |#1|)) (-15 -3244 (|#1| (-592 |#1|))) (-15 -3244 (|#1| |#1| |#1|)) (-15 -2262 ((-108) |#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -1214 ((-2 (|:| -3957 |#1|) (|:| -4241 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2338 ((-3 |#1| "failed") |#1| |#1|))) (-341)) (T -340))
-NIL
-(-10 -8 (-15 -4082 (|#1| |#1| |#1|)) (-15 -4211 (|#1| |#1|)) (-15 -2250 ((-108) |#1|)) (-15 -1510 ((-396 |#1|) |#1|)) (-15 -3959 ((-396 |#1|) |#1|)) (-15 -1760 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|)) (-15 -2183 ((-713) |#1|)) (-15 -3244 (|#1| (-592 |#1|))) (-15 -3244 (|#1| |#1| |#1|)) (-15 -2262 ((-108) |#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -1214 ((-2 (|:| -3957 |#1|) (|:| -4241 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2338 ((-3 |#1| "failed") |#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-3263 (((-3 $ "failed") $ $) 19)) (-3321 (($ $) 73)) (-1510 (((-396 $) $) 72)) (-2305 (((-108) $ $) 59)) (-1505 (($) 17 T CONST)) (-2373 (($ $ $) 55)) (-2866 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 51)) (-2250 (((-108) $) 71)) (-2133 (((-108) $) 31)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-4211 (($ $) 70)) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-3959 (((-396 $) $) 74)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2338 (((-3 $ "failed") $ $) 42)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2183 (((-713) $) 58)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 57)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) 39)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4082 (($ $ $) 64)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
+((-3339 (((-108) (-592 (-887 |#1|))) 34)) (-1933 (((-592 (-887 |#1|)) (-592 (-887 |#1|))) 46)) (-3174 (((-3 (-592 (-887 |#1|)) "failed") (-592 (-887 |#1|))) 41)))
+(((-338 |#1| |#2|) (-10 -7 (-15 -3339 ((-108) (-592 (-887 |#1|)))) (-15 -3174 ((-3 (-592 (-887 |#1|)) "failed") (-592 (-887 |#1|)))) (-15 -1933 ((-592 (-887 |#1|)) (-592 (-887 |#1|))))) (-429) (-592 (-1091))) (T -338))
+((-1933 (*1 *2 *2) (-12 (-5 *2 (-592 (-887 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4)) (-14 *4 (-592 (-1091))))) (-3174 (*1 *2 *2) (|partial| -12 (-5 *2 (-592 (-887 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4)) (-14 *4 (-592 (-1091))))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-429)) (-5 *2 (-108)) (-5 *1 (-338 *4 *5)) (-14 *5 (-592 (-1091))))))
+(-10 -7 (-15 -3339 ((-108) (-592 (-887 |#1|)))) (-15 -3174 ((-3 (-592 (-887 |#1|)) "failed") (-592 (-887 |#1|)))) (-15 -1933 ((-592 (-887 |#1|)) (-592 (-887 |#1|)))))
+((-1260 (((-108) $ $) NIL)) (-4190 (((-713) $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) NIL)) (-3898 ((|#1| $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-1985 (((-108) $) 15)) (-3285 ((|#1| $ (-525)) NIL)) (-2311 (((-525) $ (-525)) NIL)) (-2440 (($ (-1 |#1| |#1|) $) 32)) (-4060 (($ (-1 (-525) (-525)) $) 24)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 26)) (-2012 (((-1038) $) NIL)) (-1494 (((-592 (-2 (|:| |gen| |#1|) (|:| -1250 (-525)))) $) 28)) (-3700 (($ $ $) NIL)) (-2222 (($ $ $) NIL)) (-1270 (((-798) $) 38) (($ |#1|) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3363 (($) 9 T CONST)) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ |#1| (-525)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-339 |#1|) (-13 (-450) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-525))) (-15 -4190 ((-713) $)) (-15 -2311 ((-525) $ (-525))) (-15 -3285 (|#1| $ (-525))) (-15 -4060 ($ (-1 (-525) (-525)) $)) (-15 -2440 ($ (-1 |#1| |#1|) $)) (-15 -1494 ((-592 (-2 (|:| |gen| |#1|) (|:| -1250 (-525)))) $)))) (-1020)) (T -339))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1020)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1020)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1020)))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-339 *3)) (-4 *3 (-1020)))) (-2311 (*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-339 *3)) (-4 *3 (-1020)))) (-3285 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1020)))) (-4060 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-525) (-525))) (-5 *1 (-339 *3)) (-4 *3 (-1020)))) (-2440 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-339 *3)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1250 (-525))))) (-5 *1 (-339 *3)) (-4 *3 (-1020)))))
+(-13 (-450) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-525))) (-15 -4190 ((-713) $)) (-15 -2311 ((-525) $ (-525))) (-15 -3285 (|#1| $ (-525))) (-15 -4060 ($ (-1 (-525) (-525)) $)) (-15 -2440 ($ (-1 |#1| |#1|) $)) (-15 -1494 ((-592 (-2 (|:| |gen| |#1|) (|:| -1250 (-525)))) $))))
+((-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 13)) (-3711 (($ $) 14)) (-2100 (((-396 $) $) 30)) (-3836 (((-108) $) 26)) (-2502 (($ $) 19)) (-2794 (($ $ $) 23) (($ (-592 $)) NIL)) (-2195 (((-396 $) $) 31)) (-1680 (((-3 $ "failed") $ $) 22)) (-1290 (((-713) $) 25)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 35)) (-3959 (((-108) $ $) 16)) (-4100 (($ $ $) 33)))
+(((-340 |#1|) (-10 -8 (-15 -4100 (|#1| |#1| |#1|)) (-15 -2502 (|#1| |#1|)) (-15 -3836 ((-108) |#1|)) (-15 -2100 ((-396 |#1|) |#1|)) (-15 -2195 ((-396 |#1|) |#1|)) (-15 -1496 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|)) (-15 -1290 ((-713) |#1|)) (-15 -2794 (|#1| (-592 |#1|))) (-15 -2794 (|#1| |#1| |#1|)) (-15 -3959 ((-108) |#1| |#1|)) (-15 -3711 (|#1| |#1|)) (-15 -2658 ((-2 (|:| -1790 |#1|) (|:| -4242 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1| |#1|))) (-341)) (T -340))
+NIL
+(-10 -8 (-15 -4100 (|#1| |#1| |#1|)) (-15 -2502 (|#1| |#1|)) (-15 -3836 ((-108) |#1|)) (-15 -2100 ((-396 |#1|) |#1|)) (-15 -2195 ((-396 |#1|) |#1|)) (-15 -1496 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|)) (-15 -1290 ((-713) |#1|)) (-15 -2794 (|#1| (-592 |#1|))) (-15 -2794 (|#1| |#1| |#1|)) (-15 -3959 ((-108) |#1| |#1|)) (-15 -3711 (|#1| |#1|)) (-15 -2658 ((-2 (|:| -1790 |#1|) (|:| -4242 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-1342 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 73)) (-2100 (((-396 $) $) 72)) (-3197 (((-108) $ $) 59)) (-2305 (($) 17 T CONST)) (-1726 (($ $ $) 55)) (-3762 (((-3 $ "failed") $) 34)) (-1704 (($ $ $) 56)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 51)) (-3836 (((-108) $) 71)) (-1985 (((-108) $) 31)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-2502 (($ $) 70)) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-2195 (((-396 $) $) 74)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1680 (((-3 $ "failed") $ $) 42)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1290 (((-713) $) 58)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 57)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) 39)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4100 (($ $ $) 64)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
(((-341) (-131)) (T -341))
-((-4082 (*1 *1 *1 *1) (-4 *1 (-341))))
-(-13 (-286) (-1130) (-223) (-10 -8 (-15 -4082 ($ $ $)) (-6 -4252) (-6 -4246)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-854) . T) ((-982 #0#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) . T))
-((-1893 (((-108) $ $) 7)) (-1287 ((|#2| $ |#2|) 13)) (-1332 (($ $ (-1073)) 18)) (-1300 ((|#2| $) 14)) (-2396 (($ |#1|) 20) (($ |#1| (-1073)) 19)) (-1310 ((|#1| $) 16)) (-2337 (((-1073) $) 9)) (-2388 (((-1073) $) 15)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-2702 (($ $) 17)) (-3961 (((-108) $ $) 6)))
-(((-342 |#1| |#2|) (-131) (-1019) (-1019)) (T -342))
-((-2396 (*1 *1 *2) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) (-2396 (*1 *1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *1 (-342 *2 *4)) (-4 *2 (-1019)) (-4 *4 (-1019)))) (-1332 (*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-342 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-2702 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) (-1310 (*1 *2 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *3 (-1019)) (-4 *2 (-1019)))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-5 *2 (-1073)))) (-1300 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019)))) (-1287 (*1 *2 *1 *2) (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019)))))
-(-13 (-1019) (-10 -8 (-15 -2396 ($ |t#1|)) (-15 -2396 ($ |t#1| (-1073))) (-15 -1332 ($ $ (-1073))) (-15 -2702 ($ $)) (-15 -1310 (|t#1| $)) (-15 -2388 ((-1073) $)) (-15 -1300 (|t#2| $)) (-15 -1287 (|t#2| $ |t#2|))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-1287 ((|#1| $ |#1|) 30)) (-1332 (($ $ (-1073)) 22)) (-3720 (((-3 |#1| "failed") $) 29)) (-1300 ((|#1| $) 27)) (-2396 (($ (-366)) 21) (($ (-366) (-1073)) 20)) (-1310 (((-366) $) 24)) (-2337 (((-1073) $) NIL)) (-2388 (((-1073) $) 25)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 19)) (-2702 (($ $) 23)) (-3961 (((-108) $ $) 18)))
-(((-343 |#1|) (-13 (-342 (-366) |#1|) (-10 -8 (-15 -3720 ((-3 |#1| "failed") $)))) (-1019)) (T -343))
-((-3720 (*1 *2 *1) (|partial| -12 (-5 *1 (-343 *2)) (-4 *2 (-1019)))))
-(-13 (-342 (-366) |#1|) (-10 -8 (-15 -3720 ((-3 |#1| "failed") $))))
-((-2722 (((-1172 (-632 |#2|)) (-1172 $)) 61)) (-1460 (((-632 |#2|) (-1172 $)) 120)) (-2386 ((|#2| $) 32)) (-3440 (((-632 |#2|) $ (-1172 $)) 123)) (-1391 (((-3 $ "failed") $) 75)) (-3376 ((|#2| $) 35)) (-2706 (((-1086 |#2|) $) 83)) (-2519 ((|#2| (-1172 $)) 106)) (-2908 (((-1086 |#2|) $) 28)) (-1814 (((-108)) 100)) (-2229 (($ (-1172 |#2|) (-1172 $)) 113)) (-2866 (((-3 $ "failed") $) 79)) (-2795 (((-108)) 95)) (-3251 (((-108)) 90)) (-2775 (((-108)) 53)) (-2205 (((-632 |#2|) (-1172 $)) 118)) (-2389 ((|#2| $) 31)) (-1306 (((-632 |#2|) $ (-1172 $)) 122)) (-2364 (((-3 $ "failed") $) 73)) (-3342 ((|#2| $) 34)) (-2900 (((-1086 |#2|) $) 82)) (-3060 ((|#2| (-1172 $)) 104)) (-2535 (((-1086 |#2|) $) 26)) (-1506 (((-108)) 99)) (-3886 (((-108)) 92)) (-1886 (((-108)) 51)) (-2597 (((-108)) 87)) (-2120 (((-108)) 101)) (-4093 (((-1172 |#2|) $ (-1172 $)) NIL) (((-632 |#2|) (-1172 $) (-1172 $)) 111)) (-1380 (((-108)) 97)) (-1648 (((-592 (-1172 |#2|))) 86)) (-3132 (((-108)) 98)) (-1447 (((-108)) 96)) (-3432 (((-108)) 46)) (-2303 (((-108)) 102)))
-(((-344 |#1| |#2|) (-10 -8 (-15 -2706 ((-1086 |#2|) |#1|)) (-15 -2900 ((-1086 |#2|) |#1|)) (-15 -1648 ((-592 (-1172 |#2|)))) (-15 -1391 ((-3 |#1| "failed") |#1|)) (-15 -2364 ((-3 |#1| "failed") |#1|)) (-15 -2866 ((-3 |#1| "failed") |#1|)) (-15 -3251 ((-108))) (-15 -3886 ((-108))) (-15 -2795 ((-108))) (-15 -1886 ((-108))) (-15 -2775 ((-108))) (-15 -2597 ((-108))) (-15 -2303 ((-108))) (-15 -2120 ((-108))) (-15 -1814 ((-108))) (-15 -1506 ((-108))) (-15 -3432 ((-108))) (-15 -3132 ((-108))) (-15 -1447 ((-108))) (-15 -1380 ((-108))) (-15 -2908 ((-1086 |#2|) |#1|)) (-15 -2535 ((-1086 |#2|) |#1|)) (-15 -1460 ((-632 |#2|) (-1172 |#1|))) (-15 -2205 ((-632 |#2|) (-1172 |#1|))) (-15 -2519 (|#2| (-1172 |#1|))) (-15 -3060 (|#2| (-1172 |#1|))) (-15 -2229 (|#1| (-1172 |#2|) (-1172 |#1|))) (-15 -4093 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -3376 (|#2| |#1|)) (-15 -3342 (|#2| |#1|)) (-15 -2386 (|#2| |#1|)) (-15 -2389 (|#2| |#1|)) (-15 -3440 ((-632 |#2|) |#1| (-1172 |#1|))) (-15 -1306 ((-632 |#2|) |#1| (-1172 |#1|))) (-15 -2722 ((-1172 (-632 |#2|)) (-1172 |#1|)))) (-345 |#2|) (-160)) (T -344))
-((-1380 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1447 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3132 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3432 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1506 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1814 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2120 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2303 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2597 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2775 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1886 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2795 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3886 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3251 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1648 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-592 (-1172 *4))) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))))
-(-10 -8 (-15 -2706 ((-1086 |#2|) |#1|)) (-15 -2900 ((-1086 |#2|) |#1|)) (-15 -1648 ((-592 (-1172 |#2|)))) (-15 -1391 ((-3 |#1| "failed") |#1|)) (-15 -2364 ((-3 |#1| "failed") |#1|)) (-15 -2866 ((-3 |#1| "failed") |#1|)) (-15 -3251 ((-108))) (-15 -3886 ((-108))) (-15 -2795 ((-108))) (-15 -1886 ((-108))) (-15 -2775 ((-108))) (-15 -2597 ((-108))) (-15 -2303 ((-108))) (-15 -2120 ((-108))) (-15 -1814 ((-108))) (-15 -1506 ((-108))) (-15 -3432 ((-108))) (-15 -3132 ((-108))) (-15 -1447 ((-108))) (-15 -1380 ((-108))) (-15 -2908 ((-1086 |#2|) |#1|)) (-15 -2535 ((-1086 |#2|) |#1|)) (-15 -1460 ((-632 |#2|) (-1172 |#1|))) (-15 -2205 ((-632 |#2|) (-1172 |#1|))) (-15 -2519 (|#2| (-1172 |#1|))) (-15 -3060 (|#2| (-1172 |#1|))) (-15 -2229 (|#1| (-1172 |#2|) (-1172 |#1|))) (-15 -4093 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -3376 (|#2| |#1|)) (-15 -3342 (|#2| |#1|)) (-15 -2386 (|#2| |#1|)) (-15 -2389 (|#2| |#1|)) (-15 -3440 ((-632 |#2|) |#1| (-1172 |#1|))) (-15 -1306 ((-632 |#2|) |#1| (-1172 |#1|))) (-15 -2722 ((-1172 (-632 |#2|)) (-1172 |#1|))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3957 (((-3 $ "failed")) 37 (|has| |#1| (-517)))) (-3263 (((-3 $ "failed") $ $) 19)) (-2722 (((-1172 (-632 |#1|)) (-1172 $)) 78)) (-1917 (((-1172 $)) 81)) (-1505 (($) 17 T CONST)) (-2800 (((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed")) 40 (|has| |#1| (-517)))) (-1496 (((-3 $ "failed")) 38 (|has| |#1| (-517)))) (-1460 (((-632 |#1|) (-1172 $)) 65)) (-2386 ((|#1| $) 74)) (-3440 (((-632 |#1|) $ (-1172 $)) 76)) (-1391 (((-3 $ "failed") $) 45 (|has| |#1| (-517)))) (-2979 (($ $ (-855)) 28)) (-3376 ((|#1| $) 72)) (-2706 (((-1086 |#1|) $) 42 (|has| |#1| (-517)))) (-2519 ((|#1| (-1172 $)) 67)) (-2908 (((-1086 |#1|) $) 63)) (-1814 (((-108)) 57)) (-2229 (($ (-1172 |#1|) (-1172 $)) 69)) (-2866 (((-3 $ "failed") $) 47 (|has| |#1| (-517)))) (-2239 (((-855)) 80)) (-2301 (((-108)) 54)) (-2097 (($ $ (-855)) 33)) (-2795 (((-108)) 50)) (-3251 (((-108)) 48)) (-2775 (((-108)) 52)) (-4033 (((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed")) 41 (|has| |#1| (-517)))) (-1850 (((-3 $ "failed")) 39 (|has| |#1| (-517)))) (-2205 (((-632 |#1|) (-1172 $)) 66)) (-2389 ((|#1| $) 75)) (-1306 (((-632 |#1|) $ (-1172 $)) 77)) (-2364 (((-3 $ "failed") $) 46 (|has| |#1| (-517)))) (-1640 (($ $ (-855)) 29)) (-3342 ((|#1| $) 73)) (-2900 (((-1086 |#1|) $) 43 (|has| |#1| (-517)))) (-3060 ((|#1| (-1172 $)) 68)) (-2535 (((-1086 |#1|) $) 64)) (-1506 (((-108)) 58)) (-2337 (((-1073) $) 9)) (-3886 (((-108)) 49)) (-1886 (((-108)) 51)) (-2597 (((-108)) 53)) (-2663 (((-1037) $) 10)) (-2120 (((-108)) 56)) (-4093 (((-1172 |#1|) $ (-1172 $)) 71) (((-632 |#1|) (-1172 $) (-1172 $)) 70)) (-2274 (((-592 (-886 |#1|)) (-1172 $)) 79)) (-1518 (($ $ $) 25)) (-1380 (((-108)) 62)) (-1908 (((-797) $) 11)) (-1648 (((-592 (-1172 |#1|))) 44 (|has| |#1| (-517)))) (-2260 (($ $ $ $) 26)) (-3132 (((-108)) 60)) (-2331 (($ $ $) 24)) (-1447 (((-108)) 61)) (-3432 (((-108)) 59)) (-2303 (((-108)) 55)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 30)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-4100 (*1 *1 *1 *1) (-4 *1 (-341))))
+(-13 (-286) (-1131) (-223) (-10 -8 (-15 -4100 ($ $ $)) (-6 -4253) (-6 -4247)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-983 #0#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1131) . T))
+((-1260 (((-108) $ $) 7)) (-2336 ((|#2| $ |#2|) 13)) (-3933 (($ $ (-1074)) 18)) (-2506 ((|#2| $) 14)) (-2409 (($ |#1|) 20) (($ |#1| (-1074)) 19)) (-3800 ((|#1| $) 16)) (-3451 (((-1074) $) 9)) (-2908 (((-1074) $) 15)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-2881 (($ $) 17)) (-3994 (((-108) $ $) 6)))
+(((-342 |#1| |#2|) (-131) (-1020) (-1020)) (T -342))
+((-2409 (*1 *1 *2) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-2409 (*1 *1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *1 (-342 *2 *4)) (-4 *2 (-1020)) (-4 *4 (-1020)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-342 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-2881 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-342 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-1020)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-5 *2 (-1074)))) (-2506 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))) (-2336 (*1 *2 *1 *2) (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
+(-13 (-1020) (-10 -8 (-15 -2409 ($ |t#1|)) (-15 -2409 ($ |t#1| (-1074))) (-15 -3933 ($ $ (-1074))) (-15 -2881 ($ $)) (-15 -3800 (|t#1| $)) (-15 -2908 ((-1074) $)) (-15 -2506 (|t#2| $)) (-15 -2336 (|t#2| $ |t#2|))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-2336 ((|#1| $ |#1|) 30)) (-3933 (($ $ (-1074)) 22)) (-3338 (((-3 |#1| "failed") $) 29)) (-2506 ((|#1| $) 27)) (-2409 (($ (-366)) 21) (($ (-366) (-1074)) 20)) (-3800 (((-366) $) 24)) (-3451 (((-1074) $) NIL)) (-2908 (((-1074) $) 25)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 19)) (-2881 (($ $) 23)) (-3994 (((-108) $ $) 18)))
+(((-343 |#1|) (-13 (-342 (-366) |#1|) (-10 -8 (-15 -3338 ((-3 |#1| "failed") $)))) (-1020)) (T -343))
+((-3338 (*1 *2 *1) (|partial| -12 (-5 *1 (-343 *2)) (-4 *2 (-1020)))))
+(-13 (-342 (-366) |#1|) (-10 -8 (-15 -3338 ((-3 |#1| "failed") $))))
+((-3019 (((-1173 (-632 |#2|)) (-1173 $)) 61)) (-2306 (((-632 |#2|) (-1173 $)) 120)) (-2892 ((|#2| $) 32)) (-3591 (((-632 |#2|) $ (-1173 $)) 123)) (-2962 (((-3 $ "failed") $) 75)) (-3108 ((|#2| $) 35)) (-2904 (((-1087 |#2|) $) 83)) (-1638 ((|#2| (-1173 $)) 106)) (-4159 (((-1087 |#2|) $) 28)) (-1740 (((-108)) 100)) (-3612 (($ (-1173 |#2|) (-1173 $)) 113)) (-3762 (((-3 $ "failed") $) 79)) (-1275 (((-108)) 95)) (-1242 (((-108)) 90)) (-2394 (((-108)) 53)) (-1518 (((-632 |#2|) (-1173 $)) 118)) (-2917 ((|#2| $) 31)) (-2561 (((-632 |#2|) $ (-1173 $)) 122)) (-2665 (((-3 $ "failed") $) 73)) (-3908 ((|#2| $) 34)) (-4073 (((-1087 |#2|) $) 82)) (-2021 ((|#2| (-1173 $)) 104)) (-1774 (((-1087 |#2|) $) 26)) (-3171 (((-108)) 99)) (-2556 (((-108)) 92)) (-3639 (((-108)) 51)) (-4211 (((-108)) 87)) (-1851 (((-108)) 101)) (-3464 (((-1173 |#2|) $ (-1173 $)) NIL) (((-632 |#2|) (-1173 $) (-1173 $)) 111)) (-2883 (((-108)) 97)) (-1500 (((-592 (-1173 |#2|))) 86)) (-1440 (((-108)) 98)) (-3665 (((-108)) 96)) (-3529 (((-108)) 46)) (-3180 (((-108)) 102)))
+(((-344 |#1| |#2|) (-10 -8 (-15 -2904 ((-1087 |#2|) |#1|)) (-15 -4073 ((-1087 |#2|) |#1|)) (-15 -1500 ((-592 (-1173 |#2|)))) (-15 -2962 ((-3 |#1| "failed") |#1|)) (-15 -2665 ((-3 |#1| "failed") |#1|)) (-15 -3762 ((-3 |#1| "failed") |#1|)) (-15 -1242 ((-108))) (-15 -2556 ((-108))) (-15 -1275 ((-108))) (-15 -3639 ((-108))) (-15 -2394 ((-108))) (-15 -4211 ((-108))) (-15 -3180 ((-108))) (-15 -1851 ((-108))) (-15 -1740 ((-108))) (-15 -3171 ((-108))) (-15 -3529 ((-108))) (-15 -1440 ((-108))) (-15 -3665 ((-108))) (-15 -2883 ((-108))) (-15 -4159 ((-1087 |#2|) |#1|)) (-15 -1774 ((-1087 |#2|) |#1|)) (-15 -2306 ((-632 |#2|) (-1173 |#1|))) (-15 -1518 ((-632 |#2|) (-1173 |#1|))) (-15 -1638 (|#2| (-1173 |#1|))) (-15 -2021 (|#2| (-1173 |#1|))) (-15 -3612 (|#1| (-1173 |#2|) (-1173 |#1|))) (-15 -3464 ((-632 |#2|) (-1173 |#1|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1| (-1173 |#1|))) (-15 -3108 (|#2| |#1|)) (-15 -3908 (|#2| |#1|)) (-15 -2892 (|#2| |#1|)) (-15 -2917 (|#2| |#1|)) (-15 -3591 ((-632 |#2|) |#1| (-1173 |#1|))) (-15 -2561 ((-632 |#2|) |#1| (-1173 |#1|))) (-15 -3019 ((-1173 (-632 |#2|)) (-1173 |#1|)))) (-345 |#2|) (-160)) (T -344))
+((-2883 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3665 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1440 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3529 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3171 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1740 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1851 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3180 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-4211 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2394 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-3639 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1275 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-2556 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1242 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))) (-1500 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-592 (-1173 *4))) (-5 *1 (-344 *3 *4)) (-4 *3 (-345 *4)))))
+(-10 -8 (-15 -2904 ((-1087 |#2|) |#1|)) (-15 -4073 ((-1087 |#2|) |#1|)) (-15 -1500 ((-592 (-1173 |#2|)))) (-15 -2962 ((-3 |#1| "failed") |#1|)) (-15 -2665 ((-3 |#1| "failed") |#1|)) (-15 -3762 ((-3 |#1| "failed") |#1|)) (-15 -1242 ((-108))) (-15 -2556 ((-108))) (-15 -1275 ((-108))) (-15 -3639 ((-108))) (-15 -2394 ((-108))) (-15 -4211 ((-108))) (-15 -3180 ((-108))) (-15 -1851 ((-108))) (-15 -1740 ((-108))) (-15 -3171 ((-108))) (-15 -3529 ((-108))) (-15 -1440 ((-108))) (-15 -3665 ((-108))) (-15 -2883 ((-108))) (-15 -4159 ((-1087 |#2|) |#1|)) (-15 -1774 ((-1087 |#2|) |#1|)) (-15 -2306 ((-632 |#2|) (-1173 |#1|))) (-15 -1518 ((-632 |#2|) (-1173 |#1|))) (-15 -1638 (|#2| (-1173 |#1|))) (-15 -2021 (|#2| (-1173 |#1|))) (-15 -3612 (|#1| (-1173 |#2|) (-1173 |#1|))) (-15 -3464 ((-632 |#2|) (-1173 |#1|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1| (-1173 |#1|))) (-15 -3108 (|#2| |#1|)) (-15 -3908 (|#2| |#1|)) (-15 -2892 (|#2| |#1|)) (-15 -2917 (|#2| |#1|)) (-15 -3591 ((-632 |#2|) |#1| (-1173 |#1|))) (-15 -2561 ((-632 |#2|) |#1| (-1173 |#1|))) (-15 -3019 ((-1173 (-632 |#2|)) (-1173 |#1|))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1790 (((-3 $ "failed")) 37 (|has| |#1| (-517)))) (-1342 (((-3 $ "failed") $ $) 19)) (-3019 (((-1173 (-632 |#1|)) (-1173 $)) 78)) (-2138 (((-1173 $)) 81)) (-2305 (($) 17 T CONST)) (-1316 (((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed")) 40 (|has| |#1| (-517)))) (-2144 (((-3 $ "failed")) 38 (|has| |#1| (-517)))) (-2306 (((-632 |#1|) (-1173 $)) 65)) (-2892 ((|#1| $) 74)) (-3591 (((-632 |#1|) $ (-1173 $)) 76)) (-2962 (((-3 $ "failed") $) 45 (|has| |#1| (-517)))) (-3627 (($ $ (-856)) 28)) (-3108 ((|#1| $) 72)) (-2904 (((-1087 |#1|) $) 42 (|has| |#1| (-517)))) (-1638 ((|#1| (-1173 $)) 67)) (-4159 (((-1087 |#1|) $) 63)) (-1740 (((-108)) 57)) (-3612 (($ (-1173 |#1|) (-1173 $)) 69)) (-3762 (((-3 $ "failed") $) 47 (|has| |#1| (-517)))) (-3318 (((-856)) 80)) (-3165 (((-108)) 54)) (-2161 (($ $ (-856)) 33)) (-1275 (((-108)) 50)) (-1242 (((-108)) 48)) (-2394 (((-108)) 52)) (-4167 (((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed")) 41 (|has| |#1| (-517)))) (-3322 (((-3 $ "failed")) 39 (|has| |#1| (-517)))) (-1518 (((-632 |#1|) (-1173 $)) 66)) (-2917 ((|#1| $) 75)) (-2561 (((-632 |#1|) $ (-1173 $)) 77)) (-2665 (((-3 $ "failed") $) 46 (|has| |#1| (-517)))) (-1404 (($ $ (-856)) 29)) (-3908 ((|#1| $) 73)) (-4073 (((-1087 |#1|) $) 43 (|has| |#1| (-517)))) (-2021 ((|#1| (-1173 $)) 68)) (-1774 (((-1087 |#1|) $) 64)) (-3171 (((-108)) 58)) (-3451 (((-1074) $) 9)) (-2556 (((-108)) 49)) (-3639 (((-108)) 51)) (-4211 (((-108)) 53)) (-2012 (((-1038) $) 10)) (-1851 (((-108)) 56)) (-3464 (((-1173 |#1|) $ (-1173 $)) 71) (((-632 |#1|) (-1173 $) (-1173 $)) 70)) (-4059 (((-592 (-887 |#1|)) (-1173 $)) 79)) (-2222 (($ $ $) 25)) (-2883 (((-108)) 62)) (-1270 (((-798) $) 11)) (-1500 (((-592 (-1173 |#1|))) 44 (|has| |#1| (-517)))) (-3941 (($ $ $ $) 26)) (-1440 (((-108)) 60)) (-3395 (($ $ $) 24)) (-3665 (((-108)) 61)) (-3529 (((-108)) 59)) (-3180 (((-108)) 55)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 30)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-345 |#1|) (-131) (-160)) (T -345))
-((-1917 (*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1172 *1)) (-4 *1 (-345 *3)))) (-2239 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-855)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-592 (-886 *4))))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-1172 (-632 *4))))) (-1306 (*1 *2 *1 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-3440 (*1 *2 *1 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-2389 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-2386 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-3342 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-3376 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-4093 (*1 *2 *1 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-1172 *4)))) (-4093 (*1 *2 *3 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-2229 (*1 *1 *2 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-1172 *1)) (-4 *4 (-160)) (-4 *1 (-345 *4)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-2205 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-2535 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1086 *3)))) (-2908 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1086 *3)))) (-1380 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1447 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3132 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3432 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1506 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1814 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2120 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2303 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2301 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2597 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2775 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1886 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2795 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3886 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3251 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2866 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-2364 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-1391 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-1648 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-592 (-1172 *3))))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-1086 *3)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-1086 *3)))) (-4033 (*1 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2499 (-592 *1)))) (-4 *1 (-345 *3)))) (-2800 (*1 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2499 (-592 *1)))) (-4 *1 (-345 *3)))) (-1850 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))) (-1496 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))) (-3957 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))))
-(-13 (-687 |t#1|) (-10 -8 (-15 -1917 ((-1172 $))) (-15 -2239 ((-855))) (-15 -2274 ((-592 (-886 |t#1|)) (-1172 $))) (-15 -2722 ((-1172 (-632 |t#1|)) (-1172 $))) (-15 -1306 ((-632 |t#1|) $ (-1172 $))) (-15 -3440 ((-632 |t#1|) $ (-1172 $))) (-15 -2389 (|t#1| $)) (-15 -2386 (|t#1| $)) (-15 -3342 (|t#1| $)) (-15 -3376 (|t#1| $)) (-15 -4093 ((-1172 |t#1|) $ (-1172 $))) (-15 -4093 ((-632 |t#1|) (-1172 $) (-1172 $))) (-15 -2229 ($ (-1172 |t#1|) (-1172 $))) (-15 -3060 (|t#1| (-1172 $))) (-15 -2519 (|t#1| (-1172 $))) (-15 -2205 ((-632 |t#1|) (-1172 $))) (-15 -1460 ((-632 |t#1|) (-1172 $))) (-15 -2535 ((-1086 |t#1|) $)) (-15 -2908 ((-1086 |t#1|) $)) (-15 -1380 ((-108))) (-15 -1447 ((-108))) (-15 -3132 ((-108))) (-15 -3432 ((-108))) (-15 -1506 ((-108))) (-15 -1814 ((-108))) (-15 -2120 ((-108))) (-15 -2303 ((-108))) (-15 -2301 ((-108))) (-15 -2597 ((-108))) (-15 -2775 ((-108))) (-15 -1886 ((-108))) (-15 -2795 ((-108))) (-15 -3886 ((-108))) (-15 -3251 ((-108))) (IF (|has| |t#1| (-517)) (PROGN (-15 -2866 ((-3 $ "failed") $)) (-15 -2364 ((-3 $ "failed") $)) (-15 -1391 ((-3 $ "failed") $)) (-15 -1648 ((-592 (-1172 |t#1|)))) (-15 -2900 ((-1086 |t#1|) $)) (-15 -2706 ((-1086 |t#1|) $)) (-15 -4033 ((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed"))) (-15 -2800 ((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed"))) (-15 -1850 ((-3 $ "failed"))) (-15 -1496 ((-3 $ "failed"))) (-15 -3957 ((-3 $ "failed"))) (-6 -4251)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-663) . T) ((-687 |#1|) . T) ((-704) . T) ((-982 |#1|) . T) ((-1019) . T))
-((-1893 (((-108) $ $) 7)) (-3107 (((-713)) 16)) (-3375 (($) 13)) (-1780 (((-855) $) 14)) (-2337 (((-1073) $) 9)) (-4185 (($ (-855)) 15)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3961 (((-108) $ $) 6)))
+((-2138 (*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1173 *1)) (-4 *1 (-345 *3)))) (-3318 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-856)))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-592 (-887 *4))))) (-3019 (*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-1173 (-632 *4))))) (-2561 (*1 *2 *1 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-3591 (*1 *2 *1 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-2917 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-2892 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-3464 (*1 *2 *1 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-1173 *4)))) (-3464 (*1 *2 *3 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-3612 (*1 *1 *2 *3) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-1173 *1)) (-4 *4 (-160)) (-4 *1 (-345 *4)))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-1638 (*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160)))) (-1518 (*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-2306 (*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-1774 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1087 *3)))) (-4159 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1087 *3)))) (-2883 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3665 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1440 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3529 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3171 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1740 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1851 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3180 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3165 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-4211 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2394 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3639 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1275 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-2556 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-1242 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))) (-3762 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-2665 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-2962 (*1 *1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517)))) (-1500 (*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-592 (-1173 *3))))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-1087 *3)))) (-2904 (*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517)) (-5 *2 (-1087 *3)))) (-4167 (*1 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1449 (-592 *1)))) (-4 *1 (-345 *3)))) (-1316 (*1 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1449 (-592 *1)))) (-4 *1 (-345 *3)))) (-3322 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))) (-2144 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))) (-1790 (*1 *1) (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))))
+(-13 (-687 |t#1|) (-10 -8 (-15 -2138 ((-1173 $))) (-15 -3318 ((-856))) (-15 -4059 ((-592 (-887 |t#1|)) (-1173 $))) (-15 -3019 ((-1173 (-632 |t#1|)) (-1173 $))) (-15 -2561 ((-632 |t#1|) $ (-1173 $))) (-15 -3591 ((-632 |t#1|) $ (-1173 $))) (-15 -2917 (|t#1| $)) (-15 -2892 (|t#1| $)) (-15 -3908 (|t#1| $)) (-15 -3108 (|t#1| $)) (-15 -3464 ((-1173 |t#1|) $ (-1173 $))) (-15 -3464 ((-632 |t#1|) (-1173 $) (-1173 $))) (-15 -3612 ($ (-1173 |t#1|) (-1173 $))) (-15 -2021 (|t#1| (-1173 $))) (-15 -1638 (|t#1| (-1173 $))) (-15 -1518 ((-632 |t#1|) (-1173 $))) (-15 -2306 ((-632 |t#1|) (-1173 $))) (-15 -1774 ((-1087 |t#1|) $)) (-15 -4159 ((-1087 |t#1|) $)) (-15 -2883 ((-108))) (-15 -3665 ((-108))) (-15 -1440 ((-108))) (-15 -3529 ((-108))) (-15 -3171 ((-108))) (-15 -1740 ((-108))) (-15 -1851 ((-108))) (-15 -3180 ((-108))) (-15 -3165 ((-108))) (-15 -4211 ((-108))) (-15 -2394 ((-108))) (-15 -3639 ((-108))) (-15 -1275 ((-108))) (-15 -2556 ((-108))) (-15 -1242 ((-108))) (IF (|has| |t#1| (-517)) (PROGN (-15 -3762 ((-3 $ "failed") $)) (-15 -2665 ((-3 $ "failed") $)) (-15 -2962 ((-3 $ "failed") $)) (-15 -1500 ((-592 (-1173 |t#1|)))) (-15 -4073 ((-1087 |t#1|) $)) (-15 -2904 ((-1087 |t#1|) $)) (-15 -4167 ((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed"))) (-15 -1316 ((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed"))) (-15 -3322 ((-3 $ "failed"))) (-15 -2144 ((-3 $ "failed"))) (-15 -1790 ((-3 $ "failed"))) (-6 -4252)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-663) . T) ((-687 |#1|) . T) ((-704) . T) ((-983 |#1|) . T) ((-1020) . T))
+((-1260 (((-108) $ $) 7)) (-4190 (((-713)) 16)) (-2899 (($) 13)) (-1736 (((-856) $) 14)) (-3451 (((-1074) $) 9)) (-3640 (($ (-856)) 15)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3994 (((-108) $ $) 6)))
(((-346) (-131)) (T -346))
-((-3107 (*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-713)))) (-4185 (*1 *1 *2) (-12 (-5 *2 (-855)) (-4 *1 (-346)))) (-1780 (*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-855)))) (-3375 (*1 *1) (-4 *1 (-346))))
-(-13 (-1019) (-10 -8 (-15 -3107 ((-713))) (-15 -4185 ($ (-855))) (-15 -1780 ((-855) $)) (-15 -3375 ($))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-2794 (((-632 |#2|) (-1172 $)) 41)) (-2229 (($ (-1172 |#2|) (-1172 $)) 35)) (-1409 (((-632 |#2|) $ (-1172 $)) 43)) (-1400 ((|#2| (-1172 $)) 13)) (-4093 (((-1172 |#2|) $ (-1172 $)) NIL) (((-632 |#2|) (-1172 $) (-1172 $)) 25)))
-(((-347 |#1| |#2| |#3|) (-10 -8 (-15 -2794 ((-632 |#2|) (-1172 |#1|))) (-15 -1400 (|#2| (-1172 |#1|))) (-15 -2229 (|#1| (-1172 |#2|) (-1172 |#1|))) (-15 -4093 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -1409 ((-632 |#2|) |#1| (-1172 |#1|)))) (-348 |#2| |#3|) (-160) (-1148 |#2|)) (T -347))
-NIL
-(-10 -8 (-15 -2794 ((-632 |#2|) (-1172 |#1|))) (-15 -1400 (|#2| (-1172 |#1|))) (-15 -2229 (|#1| (-1172 |#2|) (-1172 |#1|))) (-15 -4093 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -1409 ((-632 |#2|) |#1| (-1172 |#1|))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-2794 (((-632 |#1|) (-1172 $)) 46)) (-3512 ((|#1| $) 52)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2229 (($ (-1172 |#1|) (-1172 $)) 48)) (-1409 (((-632 |#1|) $ (-1172 $)) 53)) (-2866 (((-3 $ "failed") $) 34)) (-2239 (((-855)) 54)) (-2133 (((-108) $) 31)) (-3477 ((|#1| $) 51)) (-2362 ((|#2| $) 44 (|has| |#1| (-341)))) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1400 ((|#1| (-1172 $)) 47)) (-4093 (((-1172 |#1|) $ (-1172 $)) 50) (((-632 |#1|) (-1172 $) (-1172 $)) 49)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-3421 (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-1260 ((|#2| $) 45)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-348 |#1| |#2|) (-131) (-160) (-1148 |t#1|)) (T -348))
-((-2239 (*1 *2) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3)) (-5 *2 (-855)))) (-1409 (*1 *2 *1 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-632 *4)))) (-3512 (*1 *2 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1148 *2)) (-4 *2 (-160)))) (-3477 (*1 *2 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1148 *2)) (-4 *2 (-160)))) (-4093 (*1 *2 *1 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-1172 *4)))) (-4093 (*1 *2 *3 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-632 *4)))) (-2229 (*1 *1 *2 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-1172 *1)) (-4 *4 (-160)) (-4 *1 (-348 *4 *5)) (-4 *5 (-1148 *4)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *2 *4)) (-4 *4 (-1148 *2)) (-4 *2 (-160)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-632 *4)))) (-1260 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1148 *3)))) (-2362 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *3 (-341)) (-4 *2 (-1148 *3)))))
-(-13 (-37 |t#1|) (-10 -8 (-15 -2239 ((-855))) (-15 -1409 ((-632 |t#1|) $ (-1172 $))) (-15 -3512 (|t#1| $)) (-15 -3477 (|t#1| $)) (-15 -4093 ((-1172 |t#1|) $ (-1172 $))) (-15 -4093 ((-632 |t#1|) (-1172 $) (-1172 $))) (-15 -2229 ($ (-1172 |t#1|) (-1172 $))) (-15 -1400 (|t#1| (-1172 $))) (-15 -2794 ((-632 |t#1|) (-1172 $))) (-15 -1260 (|t#2| $)) (IF (|has| |t#1| (-341)) (-15 -2362 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) . T) ((-669) . T) ((-982 |#1|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-4186 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-4004 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-1370 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-349 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1370 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4004 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4186 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1126) (-351 |#1|) (-1126) (-351 |#3|)) (T -349))
-((-4186 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1126)) (-4 *5 (-1126)) (-4 *2 (-351 *5)) (-5 *1 (-349 *6 *4 *5 *2)) (-4 *4 (-351 *6)))) (-4004 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1126)) (-4 *2 (-1126)) (-5 *1 (-349 *5 *4 *2 *6)) (-4 *4 (-351 *5)) (-4 *6 (-351 *2)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-4 *2 (-351 *6)) (-5 *1 (-349 *5 *4 *6 *2)) (-4 *4 (-351 *5)))))
-(-10 -7 (-15 -1370 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4004 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4186 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-3072 (((-108) (-1 (-108) |#2| |#2|) $) NIL) (((-108) $) 18)) (-1356 (($ (-1 (-108) |#2| |#2|) $) NIL) (($ $) 28)) (-3327 (($ (-1 (-108) |#2| |#2|) $) 27) (($ $) 22)) (-1693 (($ $) 25)) (-3763 (((-525) (-1 (-108) |#2|) $) NIL) (((-525) |#2| $) 11) (((-525) |#2| $ (-525)) NIL)) (-1932 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-350 |#1| |#2|) (-10 -8 (-15 -1356 (|#1| |#1|)) (-15 -1356 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3072 ((-108) |#1|)) (-15 -3327 (|#1| |#1|)) (-15 -1932 (|#1| |#1| |#1|)) (-15 -3763 ((-525) |#2| |#1| (-525))) (-15 -3763 ((-525) |#2| |#1|)) (-15 -3763 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -3072 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3327 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1693 (|#1| |#1|)) (-15 -1932 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) (-351 |#2|) (-1126)) (T -350))
-NIL
-(-10 -8 (-15 -1356 (|#1| |#1|)) (-15 -1356 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3072 ((-108) |#1|)) (-15 -3327 (|#1| |#1|)) (-15 -1932 (|#1| |#1| |#1|)) (-15 -3763 ((-525) |#2| |#1| (-525))) (-15 -3763 ((-525) |#2| |#1|)) (-15 -3763 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -3072 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3327 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1693 (|#1| |#1|)) (-15 -1932 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-1840 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-3072 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-1356 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4255))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4255))))) (-3327 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-3410 (((-108) $ (-713)) 8)) (-2109 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 58 (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4254)))) (-1505 (($) 7 T CONST)) (-4103 (($ $) 90 (|has| $ (-6 -4255)))) (-1693 (($ $) 100)) (-3163 (($ $) 78 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ |#1| $) 77 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4254)))) (-2870 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) 51)) (-3763 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1019)))) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-4018 (($ (-713) |#1|) 69)) (-3100 (((-108) $ (-713)) 9)) (-2009 (((-525) $) 43 (|has| (-525) (-789)))) (-3525 (($ $ $) 87 (|has| |#1| (-789)))) (-1932 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1792 (((-525) $) 44 (|has| (-525) (-789)))) (-3630 (($ $ $) 86 (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-3167 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3222 (((-592 (-525)) $) 46)) (-1548 (((-108) (-525) $) 47)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3135 ((|#1| $) 42 (|has| (-525) (-789)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1911 (($ $ |#1|) 41 (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-3218 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) 48)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1139 (-525))) 63)) (-3653 (($ $ (-525)) 62) (($ $ (-1139 (-525))) 61)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-3703 (($ $ $ (-525)) 91 (|has| $ (-6 -4255)))) (-2135 (($ $) 13)) (-1427 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 70)) (-2664 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) 84 (|has| |#1| (-789)))) (-3995 (((-108) $ $) 83 (|has| |#1| (-789)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4010 (((-108) $ $) 85 (|has| |#1| (-789)))) (-3983 (((-108) $ $) 82 (|has| |#1| (-789)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-351 |#1|) (-131) (-1126)) (T -351))
-((-1932 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1126)))) (-1693 (*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1126)))) (-3327 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1126)))) (-3072 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-351 *4)) (-4 *4 (-1126)) (-5 *2 (-108)))) (-3763 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-351 *4)) (-4 *4 (-1126)) (-5 *2 (-525)))) (-3763 (*1 *2 *3 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-1126)) (-4 *3 (-1019)) (-5 *2 (-525)))) (-3763 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-351 *3)) (-4 *3 (-1126)) (-4 *3 (-1019)))) (-1932 (*1 *1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1126)) (-4 *2 (-789)))) (-3327 (*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1126)) (-4 *2 (-789)))) (-3072 (*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-1126)) (-4 *3 (-789)) (-5 *2 (-108)))) (-3703 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (|has| *1 (-6 -4255)) (-4 *1 (-351 *3)) (-4 *3 (-1126)))) (-4103 (*1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-351 *2)) (-4 *2 (-1126)))) (-1356 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4255)) (-4 *1 (-351 *3)) (-4 *3 (-1126)))) (-1356 (*1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-351 *2)) (-4 *2 (-1126)) (-4 *2 (-789)))))
-(-13 (-597 |t#1|) (-10 -8 (-6 -4254) (-15 -1932 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -1693 ($ $)) (-15 -3327 ($ (-1 (-108) |t#1| |t#1|) $)) (-15 -3072 ((-108) (-1 (-108) |t#1| |t#1|) $)) (-15 -3763 ((-525) (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1019)) (PROGN (-15 -3763 ((-525) |t#1| $)) (-15 -3763 ((-525) |t#1| $ (-525)))) |%noBranch|) (IF (|has| |t#1| (-789)) (PROGN (-6 (-789)) (-15 -1932 ($ $ $)) (-15 -3327 ($ $)) (-15 -3072 ((-108) $))) |%noBranch|) (IF (|has| $ (-6 -4255)) (PROGN (-15 -3703 ($ $ $ (-525))) (-15 -4103 ($ $)) (-15 -1356 ($ (-1 (-108) |t#1| |t#1|) $)) (IF (|has| |t#1| (-789)) (-15 -1356 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-97) -3309 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-789)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-597 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1019) -3309 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-1126) . T))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3908 (((-592 |#1|) $) 32)) (-2005 (($ $ (-713)) 33)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-1225 (((-1194 |#1| |#2|) (-1194 |#1| |#2|) $) 36)) (-2387 (($ $) 34)) (-1475 (((-1194 |#1| |#2|) (-1194 |#1| |#2|) $) 37)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-3092 (($ $ |#1| $) 31) (($ $ (-592 |#1|) (-592 $)) 30)) (-2513 (((-713) $) 38)) (-1922 (($ $ $) 29)) (-1908 (((-797) $) 11) (($ |#1|) 41) (((-1185 |#1| |#2|) $) 40) (((-1194 |#1| |#2|) $) 39)) (-1459 ((|#2| (-1194 |#1| |#2|) $) 42)) (-3875 (($) 18 T CONST)) (-3202 (($ (-617 |#1|)) 35)) (-3961 (((-108) $ $) 6)) (-4082 (($ $ |#2|) 28 (|has| |#2| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+((-4190 (*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-713)))) (-3640 (*1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-346)))) (-1736 (*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-856)))) (-2899 (*1 *1) (-4 *1 (-346))))
+(-13 (-1020) (-10 -8 (-15 -4190 ((-713))) (-15 -3640 ($ (-856))) (-15 -1736 ((-856) $)) (-15 -2899 ($))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-1264 (((-632 |#2|) (-1173 $)) 41)) (-3612 (($ (-1173 |#2|) (-1173 $)) 35)) (-2312 (((-632 |#2|) $ (-1173 $)) 43)) (-2094 ((|#2| (-1173 $)) 13)) (-3464 (((-1173 |#2|) $ (-1173 $)) NIL) (((-632 |#2|) (-1173 $) (-1173 $)) 25)))
+(((-347 |#1| |#2| |#3|) (-10 -8 (-15 -1264 ((-632 |#2|) (-1173 |#1|))) (-15 -2094 (|#2| (-1173 |#1|))) (-15 -3612 (|#1| (-1173 |#2|) (-1173 |#1|))) (-15 -3464 ((-632 |#2|) (-1173 |#1|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1| (-1173 |#1|))) (-15 -2312 ((-632 |#2|) |#1| (-1173 |#1|)))) (-348 |#2| |#3|) (-160) (-1149 |#2|)) (T -347))
+NIL
+(-10 -8 (-15 -1264 ((-632 |#2|) (-1173 |#1|))) (-15 -2094 (|#2| (-1173 |#1|))) (-15 -3612 (|#1| (-1173 |#2|) (-1173 |#1|))) (-15 -3464 ((-632 |#2|) (-1173 |#1|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1| (-1173 |#1|))) (-15 -2312 ((-632 |#2|) |#1| (-1173 |#1|))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1264 (((-632 |#1|) (-1173 $)) 46)) (-3029 ((|#1| $) 52)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3612 (($ (-1173 |#1|) (-1173 $)) 48)) (-2312 (((-632 |#1|) $ (-1173 $)) 53)) (-3762 (((-3 $ "failed") $) 34)) (-3318 (((-856)) 54)) (-1985 (((-108) $) 31)) (-2900 ((|#1| $) 51)) (-2640 ((|#2| $) 44 (|has| |#1| (-341)))) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-2094 ((|#1| (-1173 $)) 47)) (-3464 (((-1173 |#1|) $ (-1173 $)) 50) (((-632 |#1|) (-1173 $) (-1173 $)) 49)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-3425 (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-1805 ((|#2| $) 45)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-348 |#1| |#2|) (-131) (-160) (-1149 |t#1|)) (T -348))
+((-3318 (*1 *2) (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1149 *3)) (-5 *2 (-856)))) (-2312 (*1 *2 *1 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1149 *4)) (-5 *2 (-632 *4)))) (-3029 (*1 *2 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1149 *2)) (-4 *2 (-160)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1149 *2)) (-4 *2 (-160)))) (-3464 (*1 *2 *1 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1149 *4)) (-5 *2 (-1173 *4)))) (-3464 (*1 *2 *3 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1149 *4)) (-5 *2 (-632 *4)))) (-3612 (*1 *1 *2 *3) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-1173 *1)) (-4 *4 (-160)) (-4 *1 (-348 *4 *5)) (-4 *5 (-1149 *4)))) (-2094 (*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-348 *2 *4)) (-4 *4 (-1149 *2)) (-4 *2 (-160)))) (-1264 (*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1149 *4)) (-5 *2 (-632 *4)))) (-1805 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1149 *3)))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *3 (-341)) (-4 *2 (-1149 *3)))))
+(-13 (-37 |t#1|) (-10 -8 (-15 -3318 ((-856))) (-15 -2312 ((-632 |t#1|) $ (-1173 $))) (-15 -3029 (|t#1| $)) (-15 -2900 (|t#1| $)) (-15 -3464 ((-1173 |t#1|) $ (-1173 $))) (-15 -3464 ((-632 |t#1|) (-1173 $) (-1173 $))) (-15 -3612 ($ (-1173 |t#1|) (-1173 $))) (-15 -2094 (|t#1| (-1173 $))) (-15 -1264 ((-632 |t#1|) (-1173 $))) (-15 -1805 (|t#2| $)) (IF (|has| |t#1| (-341)) (-15 -2640 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) . T) ((-669) . T) ((-983 |#1|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-3123 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-3503 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-2694 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
+(((-349 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2694 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3503 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3123 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1127) (-351 |#1|) (-1127) (-351 |#3|)) (T -349))
+((-3123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-4 *2 (-351 *5)) (-5 *1 (-349 *6 *4 *5 *2)) (-4 *4 (-351 *6)))) (-3503 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-349 *5 *4 *2 *6)) (-4 *4 (-351 *5)) (-4 *6 (-351 *2)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *2 (-351 *6)) (-5 *1 (-349 *5 *4 *6 *2)) (-4 *4 (-351 *5)))))
+(-10 -7 (-15 -2694 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3503 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3123 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2151 (((-108) (-1 (-108) |#2| |#2|) $) NIL) (((-108) $) 18)) (-2549 (($ (-1 (-108) |#2| |#2|) $) NIL) (($ $) 28)) (-2855 (($ (-1 (-108) |#2| |#2|) $) 27) (($ $) 22)) (-3620 (($ $) 25)) (-1916 (((-525) (-1 (-108) |#2|) $) NIL) (((-525) |#2| $) 11) (((-525) |#2| $ (-525)) NIL)) (-3743 (($ (-1 (-108) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-350 |#1| |#2|) (-10 -8 (-15 -2549 (|#1| |#1|)) (-15 -2549 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2151 ((-108) |#1|)) (-15 -2855 (|#1| |#1|)) (-15 -3743 (|#1| |#1| |#1|)) (-15 -1916 ((-525) |#2| |#1| (-525))) (-15 -1916 ((-525) |#2| |#1|)) (-15 -1916 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -2151 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -2855 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3620 (|#1| |#1|)) (-15 -3743 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|))) (-351 |#2|) (-1127)) (T -350))
+NIL
+(-10 -8 (-15 -2549 (|#1| |#1|)) (-15 -2549 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2151 ((-108) |#1|)) (-15 -2855 (|#1| |#1|)) (-15 -3743 (|#1| |#1| |#1|)) (-15 -1916 ((-525) |#2| |#1| (-525))) (-15 -1916 ((-525) |#2| |#1|)) (-15 -1916 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -2151 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -2855 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -3620 (|#1| |#1|)) (-15 -3743 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2782 (((-1178) $ (-525) (-525)) 40 (|has| $ (-6 -4256)))) (-2151 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-2549 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4256))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4256))))) (-2855 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-3330 (((-108) $ (-713)) 8)) (-1429 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) 58 (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4255)))) (-2305 (($) 7 T CONST)) (-3559 (($ $) 90 (|has| $ (-6 -4256)))) (-3620 (($ $) 100)) (-3137 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4255)))) (-2632 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) 51)) (-1916 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1020)))) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-3489 (($ (-713) |#1|) 69)) (-2482 (((-108) $ (-713)) 9)) (-2710 (((-525) $) 43 (|has| (-525) (-789)))) (-2371 (($ $ $) 87 (|has| |#1| (-789)))) (-3743 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3478 (((-525) $) 44 (|has| (-525) (-789)))) (-2535 (($ $ $) 86 (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-2683 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-4142 (((-592 (-525)) $) 46)) (-3845 (((-108) (-525) $) 47)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3110 ((|#1| $) 42 (|has| (-525) (-789)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2042 (($ $ |#1|) 41 (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-4101 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) 48)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1140 (-525))) 63)) (-3157 (($ $ (-525)) 62) (($ $ (-1140 (-525))) 61)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3216 (($ $ $ (-525)) 91 (|has| $ (-6 -4256)))) (-1451 (($ $) 13)) (-2749 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 70)) (-2014 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) 84 (|has| |#1| (-789)))) (-4026 (((-108) $ $) 83 (|has| |#1| (-789)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-4037 (((-108) $ $) 85 (|has| |#1| (-789)))) (-4017 (((-108) $ $) 82 (|has| |#1| (-789)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-351 |#1|) (-131) (-1127)) (T -351))
+((-3743 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1127)))) (-3620 (*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1127)))) (-2855 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1127)))) (-2151 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-351 *4)) (-4 *4 (-1127)) (-5 *2 (-108)))) (-1916 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-351 *4)) (-4 *4 (-1127)) (-5 *2 (-525)))) (-1916 (*1 *2 *3 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-1127)) (-4 *3 (-1020)) (-5 *2 (-525)))) (-1916 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-351 *3)) (-4 *3 (-1127)) (-4 *3 (-1020)))) (-3743 (*1 *1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1127)) (-4 *2 (-789)))) (-2855 (*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1127)) (-4 *2 (-789)))) (-2151 (*1 *2 *1) (-12 (-4 *1 (-351 *3)) (-4 *3 (-1127)) (-4 *3 (-789)) (-5 *2 (-108)))) (-3216 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (|has| *1 (-6 -4256)) (-4 *1 (-351 *3)) (-4 *3 (-1127)))) (-3559 (*1 *1 *1) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-351 *2)) (-4 *2 (-1127)))) (-2549 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4256)) (-4 *1 (-351 *3)) (-4 *3 (-1127)))) (-2549 (*1 *1 *1) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-351 *2)) (-4 *2 (-1127)) (-4 *2 (-789)))))
+(-13 (-597 |t#1|) (-10 -8 (-6 -4255) (-15 -3743 ($ (-1 (-108) |t#1| |t#1|) $ $)) (-15 -3620 ($ $)) (-15 -2855 ($ (-1 (-108) |t#1| |t#1|) $)) (-15 -2151 ((-108) (-1 (-108) |t#1| |t#1|) $)) (-15 -1916 ((-525) (-1 (-108) |t#1|) $)) (IF (|has| |t#1| (-1020)) (PROGN (-15 -1916 ((-525) |t#1| $)) (-15 -1916 ((-525) |t#1| $ (-525)))) |%noBranch|) (IF (|has| |t#1| (-789)) (PROGN (-6 (-789)) (-15 -3743 ($ $ $)) (-15 -2855 ($ $)) (-15 -2151 ((-108) $))) |%noBranch|) (IF (|has| $ (-6 -4256)) (PROGN (-15 -3216 ($ $ $ (-525))) (-15 -3559 ($ $)) (-15 -2549 ($ (-1 (-108) |t#1| |t#1|) $)) (IF (|has| |t#1| (-789)) (-15 -2549 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-97) -3279 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-789)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1020) -3279 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-1127) . T))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-4143 (((-592 |#1|) $) 32)) (-2653 (($ $ (-713)) 33)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-2747 (((-1195 |#1| |#2|) (-1195 |#1| |#2|) $) 36)) (-2901 (($ $) 34)) (-2377 (((-1195 |#1| |#2|) (-1195 |#1| |#2|) $) 37)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-2602 (($ $ |#1| $) 31) (($ $ (-592 |#1|) (-592 $)) 30)) (-1587 (((-713) $) 38)) (-1279 (($ $ $) 29)) (-1270 (((-798) $) 11) (($ |#1|) 41) (((-1186 |#1| |#2|) $) 40) (((-1195 |#1| |#2|) $) 39)) (-1655 ((|#2| (-1195 |#1| |#2|) $) 42)) (-3355 (($) 18 T CONST)) (-3949 (($ (-617 |#1|)) 35)) (-3994 (((-108) $ $) 6)) (-4100 (($ $ |#2|) 28 (|has| |#2| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
(((-352 |#1| |#2|) (-131) (-789) (-160)) (T -352))
-((-1459 (*1 *2 *3 *1) (-12 (-5 *3 (-1194 *4 *2)) (-4 *1 (-352 *4 *2)) (-4 *4 (-789)) (-4 *2 (-160)))) (-1908 (*1 *1 *2) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) (-1908 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-1185 *3 *4)))) (-1908 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-1194 *3 *4)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-713)))) (-1475 (*1 *2 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-1225 (*1 *2 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-3202 (*1 *1 *2) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-4 *1 (-352 *3 *4)) (-4 *4 (-160)))) (-2387 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) (-2005 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-592 *3)))) (-3092 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) (-3092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *1)) (-4 *1 (-352 *4 *5)) (-4 *4 (-789)) (-4 *5 (-160)))))
-(-13 (-583 |t#2|) (-10 -8 (-15 -1459 (|t#2| (-1194 |t#1| |t#2|) $)) (-15 -1908 ($ |t#1|)) (-15 -1908 ((-1185 |t#1| |t#2|) $)) (-15 -1908 ((-1194 |t#1| |t#2|) $)) (-15 -2513 ((-713) $)) (-15 -1475 ((-1194 |t#1| |t#2|) (-1194 |t#1| |t#2|) $)) (-15 -1225 ((-1194 |t#1| |t#2|) (-1194 |t#1| |t#2|) $)) (-15 -3202 ($ (-617 |t#1|))) (-15 -2387 ($ $)) (-15 -2005 ($ $ (-713))) (-15 -3908 ((-592 |t#1|) $)) (-15 -3092 ($ $ |t#1| $)) (-15 -3092 ($ $ (-592 |t#1|) (-592 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#2|) . T) ((-583 |#2|) . T) ((-660 |#2|) . T) ((-982 |#2|) . T) ((-1019) . T))
-((-2291 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 24)) (-3027 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 13)) (-3839 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 22)))
-(((-353 |#1| |#2|) (-10 -7 (-15 -3027 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3839 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2291 (|#2| (-1 (-108) |#1| |#1|) |#2|))) (-1126) (-13 (-351 |#1|) (-10 -7 (-6 -4255)))) (T -353))
-((-2291 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4255)))))) (-3839 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4255)))))) (-3027 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4255)))))))
-(-10 -7 (-15 -3027 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3839 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2291 (|#2| (-1 (-108) |#1| |#1|) |#2|)))
-((-1860 (((-632 |#2|) (-632 $)) NIL) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 22) (((-632 (-525)) (-632 $)) 14)))
-(((-354 |#1| |#2|) (-10 -8 (-15 -1860 ((-632 (-525)) (-632 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-632 |#2|) (-632 |#1|)))) (-355 |#2|) (-976)) (T -354))
-NIL
-(-10 -8 (-15 -1860 ((-632 (-525)) (-632 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-632 |#2|) (-632 |#1|))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-1860 (((-632 |#1|) (-632 $)) 36) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 35) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 43 (|has| |#1| (-588 (-525)))) (((-632 (-525)) (-632 $)) 42 (|has| |#1| (-588 (-525))))) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11) (($ (-525)) 28)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
-(((-355 |#1|) (-131) (-976)) (T -355))
+((-1655 (*1 *2 *3 *1) (-12 (-5 *3 (-1195 *4 *2)) (-4 *1 (-352 *4 *2)) (-4 *4 (-789)) (-4 *2 (-160)))) (-1270 (*1 *1 *2) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) (-1270 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-1186 *3 *4)))) (-1270 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-1195 *3 *4)))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-713)))) (-2377 (*1 *2 *2 *1) (-12 (-5 *2 (-1195 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-2747 (*1 *2 *2 *1) (-12 (-5 *2 (-1195 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-4 *1 (-352 *3 *4)) (-4 *4 (-160)))) (-2901 (*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) (-2653 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *2 (-592 *3)))) (-2602 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160)))) (-2602 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *1)) (-4 *1 (-352 *4 *5)) (-4 *4 (-789)) (-4 *5 (-160)))))
+(-13 (-583 |t#2|) (-10 -8 (-15 -1655 (|t#2| (-1195 |t#1| |t#2|) $)) (-15 -1270 ($ |t#1|)) (-15 -1270 ((-1186 |t#1| |t#2|) $)) (-15 -1270 ((-1195 |t#1| |t#2|) $)) (-15 -1587 ((-713) $)) (-15 -2377 ((-1195 |t#1| |t#2|) (-1195 |t#1| |t#2|) $)) (-15 -2747 ((-1195 |t#1| |t#2|) (-1195 |t#1| |t#2|) $)) (-15 -3949 ($ (-617 |t#1|))) (-15 -2901 ($ $)) (-15 -2653 ($ $ (-713))) (-15 -4143 ((-592 |t#1|) $)) (-15 -2602 ($ $ |t#1| $)) (-15 -2602 ($ $ (-592 |t#1|) (-592 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#2|) . T) ((-583 |#2|) . T) ((-660 |#2|) . T) ((-983 |#2|) . T) ((-1020) . T))
+((-3098 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 24)) (-3022 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 13)) (-2009 ((|#2| (-1 (-108) |#1| |#1|) |#2|) 22)))
+(((-353 |#1| |#2|) (-10 -7 (-15 -3022 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2009 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3098 (|#2| (-1 (-108) |#1| |#1|) |#2|))) (-1127) (-13 (-351 |#1|) (-10 -7 (-6 -4256)))) (T -353))
+((-3098 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4256)))))) (-2009 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4256)))))) (-3022 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-353 *4 *2)) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4256)))))))
+(-10 -7 (-15 -3022 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -2009 (|#2| (-1 (-108) |#1| |#1|) |#2|)) (-15 -3098 (|#2| (-1 (-108) |#1| |#1|) |#2|)))
+((-3416 (((-632 |#2|) (-632 $)) NIL) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) NIL) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 22) (((-632 (-525)) (-632 $)) 14)))
+(((-354 |#1| |#2|) (-10 -8 (-15 -3416 ((-632 (-525)) (-632 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-632 |#2|) (-632 |#1|)))) (-355 |#2|) (-977)) (T -354))
+NIL
+(-10 -8 (-15 -3416 ((-632 (-525)) (-632 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-632 |#2|) (-632 |#1|))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3416 (((-632 |#1|) (-632 $)) 36) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) 35) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 43 (|has| |#1| (-588 (-525)))) (((-632 (-525)) (-632 $)) 42 (|has| |#1| (-588 (-525))))) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11) (($ (-525)) 28)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+(((-355 |#1|) (-131) (-977)) (T -355))
NIL
(-13 (-588 |t#1|) (-10 -7 (IF (|has| |t#1| (-588 (-525))) (-6 (-588 (-525))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-669) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-2742 (((-592 (-273 (-886 (-157 |#1|)))) (-273 (-385 (-886 (-157 (-525))))) |#1|) 51) (((-592 (-273 (-886 (-157 |#1|)))) (-385 (-886 (-157 (-525)))) |#1|) 50) (((-592 (-592 (-273 (-886 (-157 |#1|))))) (-592 (-273 (-385 (-886 (-157 (-525)))))) |#1|) 47) (((-592 (-592 (-273 (-886 (-157 |#1|))))) (-592 (-385 (-886 (-157 (-525))))) |#1|) 41)) (-4107 (((-592 (-592 (-157 |#1|))) (-592 (-385 (-886 (-157 (-525))))) (-592 (-1090)) |#1|) 30) (((-592 (-157 |#1|)) (-385 (-886 (-157 (-525)))) |#1|) 18)))
-(((-356 |#1|) (-10 -7 (-15 -2742 ((-592 (-592 (-273 (-886 (-157 |#1|))))) (-592 (-385 (-886 (-157 (-525))))) |#1|)) (-15 -2742 ((-592 (-592 (-273 (-886 (-157 |#1|))))) (-592 (-273 (-385 (-886 (-157 (-525)))))) |#1|)) (-15 -2742 ((-592 (-273 (-886 (-157 |#1|)))) (-385 (-886 (-157 (-525)))) |#1|)) (-15 -2742 ((-592 (-273 (-886 (-157 |#1|)))) (-273 (-385 (-886 (-157 (-525))))) |#1|)) (-15 -4107 ((-592 (-157 |#1|)) (-385 (-886 (-157 (-525)))) |#1|)) (-15 -4107 ((-592 (-592 (-157 |#1|))) (-592 (-385 (-886 (-157 (-525))))) (-592 (-1090)) |#1|))) (-13 (-341) (-787))) (T -356))
-((-4107 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-385 (-886 (-157 (-525)))))) (-5 *4 (-592 (-1090))) (-5 *2 (-592 (-592 (-157 *5)))) (-5 *1 (-356 *5)) (-4 *5 (-13 (-341) (-787))))) (-4107 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 (-157 (-525))))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-886 (-157 (-525)))))) (-5 *2 (-592 (-273 (-886 (-157 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 (-157 (-525))))) (-5 *2 (-592 (-273 (-886 (-157 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-273 (-385 (-886 (-157 (-525))))))) (-5 *2 (-592 (-592 (-273 (-886 (-157 *4)))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-2742 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-886 (-157 (-525)))))) (-5 *2 (-592 (-592 (-273 (-886 (-157 *4)))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))))
-(-10 -7 (-15 -2742 ((-592 (-592 (-273 (-886 (-157 |#1|))))) (-592 (-385 (-886 (-157 (-525))))) |#1|)) (-15 -2742 ((-592 (-592 (-273 (-886 (-157 |#1|))))) (-592 (-273 (-385 (-886 (-157 (-525)))))) |#1|)) (-15 -2742 ((-592 (-273 (-886 (-157 |#1|)))) (-385 (-886 (-157 (-525)))) |#1|)) (-15 -2742 ((-592 (-273 (-886 (-157 |#1|)))) (-273 (-385 (-886 (-157 (-525))))) |#1|)) (-15 -4107 ((-592 (-157 |#1|)) (-385 (-886 (-157 (-525)))) |#1|)) (-15 -4107 ((-592 (-592 (-157 |#1|))) (-592 (-385 (-886 (-157 (-525))))) (-592 (-1090)) |#1|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 33)) (-3115 (((-525) $) 55)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-4114 (($ $) 110)) (-4049 (($ $) 82)) (-3911 (($ $) 71)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-3969 (($ $) 44)) (-2305 (((-108) $ $) NIL)) (-4026 (($ $) 80)) (-3434 (($ $) 69)) (-1690 (((-525) $) 64)) (-3097 (($ $ (-525)) 62)) (-4072 (($ $) NIL)) (-3931 (($ $) NIL)) (-1505 (($) NIL T CONST)) (-3608 (($ $) 112)) (-1264 (((-3 (-525) "failed") $) 189) (((-3 (-385 (-525)) "failed") $) 185)) (-2831 (((-525) $) 187) (((-385 (-525)) $) 183)) (-2373 (($ $ $) NIL)) (-3524 (((-525) $ $) 102)) (-2866 (((-3 $ "failed") $) 114)) (-2687 (((-385 (-525)) $ (-713)) 190) (((-385 (-525)) $ (-713) (-713)) 182)) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-1352 (((-855)) 73) (((-855) (-855)) 98 (|has| $ (-6 -4245)))) (-3026 (((-108) $) 106)) (-1335 (($) 40)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL)) (-3901 (((-1177) (-713)) 152)) (-1453 (((-1177)) 157) (((-1177) (-713)) 158)) (-2028 (((-1177)) 159) (((-1177) (-713)) 160)) (-1646 (((-1177)) 155) (((-1177) (-713)) 156)) (-1737 (((-525) $) 58)) (-2133 (((-108) $) 104)) (-3391 (($ $ (-525)) NIL)) (-4216 (($ $) 48)) (-3477 (($ $) NIL)) (-2882 (((-108) $) 35)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3525 (($ $ $) NIL) (($) NIL (-12 (-2480 (|has| $ (-6 -4237))) (-2480 (|has| $ (-6 -4245)))))) (-3630 (($ $ $) NIL) (($) 99 (-12 (-2480 (|has| $ (-6 -4237))) (-2480 (|has| $ (-6 -4245)))))) (-3689 (((-525) $) 17)) (-3952 (($) 87) (($ $) 92)) (-3731 (($) 91) (($ $) 93)) (-2091 (($ $) 83)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 116)) (-1398 (((-855) (-525)) 43 (|has| $ (-6 -4245)))) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2723 (($ $) 53)) (-1720 (($ $) 109)) (-3905 (($ (-525) (-525)) 107) (($ (-525) (-525) (-855)) 108)) (-3959 (((-396 $) $) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1600 (((-525) $) 19)) (-2146 (($) 94)) (-1982 (($ $) 79)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-4076 (((-855)) 100) (((-855) (-855)) 101 (|has| $ (-6 -4245)))) (-3013 (($ $ (-713)) NIL) (($ $) 115)) (-2462 (((-855) (-525)) 47 (|has| $ (-6 -4245)))) (-4084 (($ $) NIL)) (-3942 (($ $) NIL)) (-4061 (($ $) NIL)) (-3919 (($ $) NIL)) (-4038 (($ $) 81)) (-3455 (($ $) 70)) (-1427 (((-357) $) 175) (((-205) $) 177) (((-826 (-357)) $) NIL) (((-1073) $) 162) (((-501) $) 173) (($ (-205)) 181)) (-1908 (((-797) $) 164) (($ (-525)) 186) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-525)) 186) (($ (-385 (-525))) NIL) (((-205) $) 178)) (-2093 (((-713)) NIL)) (-2498 (($ $) 111)) (-2848 (((-855)) 54) (((-855) (-855)) 66 (|has| $ (-6 -4245)))) (-3772 (((-855)) 103)) (-4121 (($ $) 86)) (-3974 (($ $) 46) (($ $ $) 52)) (-2262 (((-108) $ $) NIL)) (-4096 (($ $) 84)) (-3951 (($ $) 37)) (-4147 (($ $) NIL)) (-3999 (($ $) NIL)) (-2929 (($ $) NIL)) (-4013 (($ $) NIL)) (-4133 (($ $) NIL)) (-3985 (($ $) NIL)) (-4110 (($ $) 85)) (-3963 (($ $) 49)) (-2092 (($ $) 51)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) 34 T CONST)) (-3882 (($) 38 T CONST)) (-2766 (((-1073) $) 27) (((-1073) $ (-108)) 29) (((-1177) (-764) $) 30) (((-1177) (-764) $ (-108)) 31)) (-1424 (($ $ (-713)) NIL) (($ $) NIL)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 39)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 42)) (-4082 (($ $ $) 45) (($ $ (-525)) 41)) (-4070 (($ $) 36) (($ $ $) 50)) (-4059 (($ $ $) 61)) (** (($ $ (-855)) 67) (($ $ (-713)) NIL) (($ $ (-525)) 88) (($ $ (-385 (-525))) 125) (($ $ $) 117)) (* (($ (-855) $) 65) (($ (-713) $) NIL) (($ (-525) $) 68) (($ $ $) 60) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
-(((-357) (-13 (-382) (-213) (-567 (-1073)) (-770) (-566 (-205)) (-1112) (-567 (-501)) (-10 -8 (-15 -4082 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -4216 ($ $)) (-15 -3524 ((-525) $ $)) (-15 -3097 ($ $ (-525))) (-15 -2687 ((-385 (-525)) $ (-713))) (-15 -2687 ((-385 (-525)) $ (-713) (-713))) (-15 -3952 ($)) (-15 -3731 ($)) (-15 -2146 ($)) (-15 -3974 ($ $ $)) (-15 -3952 ($ $)) (-15 -3731 ($ $)) (-15 -1427 ($ (-205))) (-15 -2028 ((-1177))) (-15 -2028 ((-1177) (-713))) (-15 -1646 ((-1177))) (-15 -1646 ((-1177) (-713))) (-15 -1453 ((-1177))) (-15 -1453 ((-1177) (-713))) (-15 -3901 ((-1177) (-713))) (-6 -4245) (-6 -4237)))) (T -357))
-((** (*1 *1 *1 *1) (-5 *1 (-357))) (-4082 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-4216 (*1 *1 *1) (-5 *1 (-357))) (-3524 (*1 *2 *1 *1) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-3097 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-2687 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))) (-2687 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))) (-3952 (*1 *1) (-5 *1 (-357))) (-3731 (*1 *1) (-5 *1 (-357))) (-2146 (*1 *1) (-5 *1 (-357))) (-3974 (*1 *1 *1 *1) (-5 *1 (-357))) (-3952 (*1 *1 *1) (-5 *1 (-357))) (-3731 (*1 *1 *1) (-5 *1 (-357))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-357)))) (-2028 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-357)))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-357)))) (-1646 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-357)))) (-1646 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-357)))) (-1453 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-357)))) (-1453 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-357)))) (-3901 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-357)))))
-(-13 (-382) (-213) (-567 (-1073)) (-770) (-566 (-205)) (-1112) (-567 (-501)) (-10 -8 (-15 -4082 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -4216 ($ $)) (-15 -3524 ((-525) $ $)) (-15 -3097 ($ $ (-525))) (-15 -2687 ((-385 (-525)) $ (-713))) (-15 -2687 ((-385 (-525)) $ (-713) (-713))) (-15 -3952 ($)) (-15 -3731 ($)) (-15 -2146 ($)) (-15 -3974 ($ $ $)) (-15 -3952 ($ $)) (-15 -3731 ($ $)) (-15 -1427 ($ (-205))) (-15 -2028 ((-1177))) (-15 -2028 ((-1177) (-713))) (-15 -1646 ((-1177))) (-15 -1646 ((-1177) (-713))) (-15 -1453 ((-1177))) (-15 -1453 ((-1177) (-713))) (-15 -3901 ((-1177) (-713))) (-6 -4245) (-6 -4237)))
-((-2925 (((-592 (-273 (-886 |#1|))) (-273 (-385 (-886 (-525)))) |#1|) 46) (((-592 (-273 (-886 |#1|))) (-385 (-886 (-525))) |#1|) 45) (((-592 (-592 (-273 (-886 |#1|)))) (-592 (-273 (-385 (-886 (-525))))) |#1|) 42) (((-592 (-592 (-273 (-886 |#1|)))) (-592 (-385 (-886 (-525)))) |#1|) 36)) (-2804 (((-592 |#1|) (-385 (-886 (-525))) |#1|) 20) (((-592 (-592 |#1|)) (-592 (-385 (-886 (-525)))) (-592 (-1090)) |#1|) 30)))
-(((-358 |#1|) (-10 -7 (-15 -2925 ((-592 (-592 (-273 (-886 |#1|)))) (-592 (-385 (-886 (-525)))) |#1|)) (-15 -2925 ((-592 (-592 (-273 (-886 |#1|)))) (-592 (-273 (-385 (-886 (-525))))) |#1|)) (-15 -2925 ((-592 (-273 (-886 |#1|))) (-385 (-886 (-525))) |#1|)) (-15 -2925 ((-592 (-273 (-886 |#1|))) (-273 (-385 (-886 (-525)))) |#1|)) (-15 -2804 ((-592 (-592 |#1|)) (-592 (-385 (-886 (-525)))) (-592 (-1090)) |#1|)) (-15 -2804 ((-592 |#1|) (-385 (-886 (-525))) |#1|))) (-13 (-787) (-341))) (T -358))
-((-2804 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-2804 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-385 (-886 (-525))))) (-5 *4 (-592 (-1090))) (-5 *2 (-592 (-592 *5))) (-5 *1 (-358 *5)) (-4 *5 (-13 (-787) (-341))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-886 (-525))))) (-5 *2 (-592 (-273 (-886 *4)))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 (-525)))) (-5 *2 (-592 (-273 (-886 *4)))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-273 (-385 (-886 (-525)))))) (-5 *2 (-592 (-592 (-273 (-886 *4))))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-886 (-525))))) (-5 *2 (-592 (-592 (-273 (-886 *4))))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))))
-(-10 -7 (-15 -2925 ((-592 (-592 (-273 (-886 |#1|)))) (-592 (-385 (-886 (-525)))) |#1|)) (-15 -2925 ((-592 (-592 (-273 (-886 |#1|)))) (-592 (-273 (-385 (-886 (-525))))) |#1|)) (-15 -2925 ((-592 (-273 (-886 |#1|))) (-385 (-886 (-525))) |#1|)) (-15 -2925 ((-592 (-273 (-886 |#1|))) (-273 (-385 (-886 (-525)))) |#1|)) (-15 -2804 ((-592 (-592 |#1|)) (-592 (-385 (-886 (-525)))) (-592 (-1090)) |#1|)) (-15 -2804 ((-592 |#1|) (-385 (-886 (-525))) |#1|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#2| "failed") $) 26)) (-2831 ((|#2| $) 28)) (-1247 (($ $) NIL)) (-3610 (((-713) $) 10)) (-1986 (((-592 $) $) 20)) (-1819 (((-108) $) NIL)) (-4157 (($ |#2| |#1|) 18)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-2614 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-1212 ((|#2| $) 15)) (-1224 ((|#1| $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 45) (($ |#2|) 27)) (-3600 (((-592 |#1|) $) 17)) (-1657 ((|#1| $ |#2|) 47)) (-3875 (($) 29 T CONST)) (-3415 (((-592 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36)))
-(((-359 |#1| |#2|) (-13 (-360 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-976) (-789)) (T -359))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-359 *3 *2)) (-4 *3 (-976)) (-4 *2 (-789)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-669) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-1917 (((-592 (-273 (-887 (-157 |#1|)))) (-273 (-385 (-887 (-157 (-525))))) |#1|) 51) (((-592 (-273 (-887 (-157 |#1|)))) (-385 (-887 (-157 (-525)))) |#1|) 50) (((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-273 (-385 (-887 (-157 (-525)))))) |#1|) 47) (((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-385 (-887 (-157 (-525))))) |#1|) 41)) (-3582 (((-592 (-592 (-157 |#1|))) (-592 (-385 (-887 (-157 (-525))))) (-592 (-1091)) |#1|) 30) (((-592 (-157 |#1|)) (-385 (-887 (-157 (-525)))) |#1|) 18)))
+(((-356 |#1|) (-10 -7 (-15 -1917 ((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-385 (-887 (-157 (-525))))) |#1|)) (-15 -1917 ((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-273 (-385 (-887 (-157 (-525)))))) |#1|)) (-15 -1917 ((-592 (-273 (-887 (-157 |#1|)))) (-385 (-887 (-157 (-525)))) |#1|)) (-15 -1917 ((-592 (-273 (-887 (-157 |#1|)))) (-273 (-385 (-887 (-157 (-525))))) |#1|)) (-15 -3582 ((-592 (-157 |#1|)) (-385 (-887 (-157 (-525)))) |#1|)) (-15 -3582 ((-592 (-592 (-157 |#1|))) (-592 (-385 (-887 (-157 (-525))))) (-592 (-1091)) |#1|))) (-13 (-341) (-787))) (T -356))
+((-3582 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-385 (-887 (-157 (-525)))))) (-5 *4 (-592 (-1091))) (-5 *2 (-592 (-592 (-157 *5)))) (-5 *1 (-356 *5)) (-4 *5 (-13 (-341) (-787))))) (-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 (-157 (-525))))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-1917 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-887 (-157 (-525)))))) (-5 *2 (-592 (-273 (-887 (-157 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-1917 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 (-157 (-525))))) (-5 *2 (-592 (-273 (-887 (-157 *4))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-1917 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-273 (-385 (-887 (-157 (-525))))))) (-5 *2 (-592 (-592 (-273 (-887 (-157 *4)))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))) (-1917 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 (-157 (-525)))))) (-5 *2 (-592 (-592 (-273 (-887 (-157 *4)))))) (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787))))))
+(-10 -7 (-15 -1917 ((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-385 (-887 (-157 (-525))))) |#1|)) (-15 -1917 ((-592 (-592 (-273 (-887 (-157 |#1|))))) (-592 (-273 (-385 (-887 (-157 (-525)))))) |#1|)) (-15 -1917 ((-592 (-273 (-887 (-157 |#1|)))) (-385 (-887 (-157 (-525)))) |#1|)) (-15 -1917 ((-592 (-273 (-887 (-157 |#1|)))) (-273 (-385 (-887 (-157 (-525))))) |#1|)) (-15 -3582 ((-592 (-157 |#1|)) (-385 (-887 (-157 (-525)))) |#1|)) (-15 -3582 ((-592 (-592 (-157 |#1|))) (-592 (-385 (-887 (-157 (-525))))) (-592 (-1091)) |#1|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 33)) (-2628 (((-525) $) 55)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-3642 (($ $) 110)) (-2351 (($ $) 82)) (-1603 (($ $) 71)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-2211 (($ $) 44)) (-3197 (((-108) $ $) NIL)) (-2320 (($ $) 80)) (-1569 (($ $) 69)) (-1436 (((-525) $) 64)) (-4177 (($ $ (-525)) 62)) (-2382 (($ $) NIL)) (-2193 (($ $) NIL)) (-2305 (($) NIL T CONST)) (-1625 (($ $) 112)) (-2591 (((-3 (-525) "failed") $) 189) (((-3 (-385 (-525)) "failed") $) 185)) (-3898 (((-525) $) 187) (((-385 (-525)) $) 183)) (-1726 (($ $ $) NIL)) (-1991 (((-525) $ $) 102)) (-3762 (((-3 $ "failed") $) 114)) (-2751 (((-385 (-525)) $ (-713)) 190) (((-385 (-525)) $ (-713) (-713)) 182)) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-1683 (((-856)) 73) (((-856) (-856)) 98 (|has| $ (-6 -4246)))) (-3017 (((-108) $) 106)) (-1535 (($) 40)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL)) (-1357 (((-1178) (-713)) 152)) (-2196 (((-1178)) 157) (((-1178) (-713)) 158)) (-3391 (((-1178)) 159) (((-1178) (-713)) 160)) (-1468 (((-1178)) 155) (((-1178) (-713)) 156)) (-3973 (((-525) $) 58)) (-1985 (((-108) $) 104)) (-3220 (($ $ (-525)) NIL)) (-2200 (($ $) 48)) (-2900 (($ $) NIL)) (-3912 (((-108) $) 35)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2371 (($ $ $) NIL) (($) NIL (-12 (-1825 (|has| $ (-6 -4238))) (-1825 (|has| $ (-6 -4246)))))) (-2535 (($ $ $) NIL) (($) 99 (-12 (-1825 (|has| $ (-6 -4238))) (-1825 (|has| $ (-6 -4246)))))) (-1820 (((-525) $) 17)) (-1763 (($) 87) (($ $) 92)) (-3234 (($) 91) (($ $) 93)) (-1415 (($ $) 83)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 116)) (-2064 (((-856) (-525)) 43 (|has| $ (-6 -4246)))) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3025 (($ $) 53)) (-2793 (($ $) 109)) (-2294 (($ (-525) (-525)) 107) (($ (-525) (-525) (-856)) 108)) (-2195 (((-396 $) $) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1864 (((-525) $) 19)) (-2154 (($) 94)) (-1250 (($ $) 79)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-3342 (((-856)) 100) (((-856) (-856)) 101 (|has| $ (-6 -4246)))) (-2523 (($ $ (-713)) NIL) (($ $) 115)) (-2425 (((-856) (-525)) 47 (|has| $ (-6 -4246)))) (-2396 (($ $) NIL)) (-2209 (($ $) NIL)) (-2367 (($ $) NIL)) (-2176 (($ $) NIL)) (-2335 (($ $) 81)) (-1584 (($ $) 70)) (-2749 (((-357) $) 175) (((-205) $) 177) (((-827 (-357)) $) NIL) (((-1074) $) 162) (((-501) $) 173) (($ (-205)) 181)) (-1270 (((-798) $) 164) (($ (-525)) 186) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-525)) 186) (($ (-385 (-525))) NIL) (((-205) $) 178)) (-2104 (((-713)) NIL)) (-1438 (($ $) 111)) (-1764 (((-856)) 54) (((-856) (-856)) 66 (|has| $ (-6 -4246)))) (-3200 (((-856)) 103)) (-2438 (($ $) 86)) (-2257 (($ $) 46) (($ $ $) 52)) (-3959 (((-108) $ $) NIL)) (-2410 (($ $) 84)) (-2226 (($ $) 37)) (-2464 (($ $) NIL)) (-2287 (($ $) NIL)) (-2687 (($ $) NIL)) (-2303 (($ $) NIL)) (-2450 (($ $) NIL)) (-2273 (($ $) NIL)) (-2424 (($ $) 85)) (-2242 (($ $) 49)) (-2086 (($ $) 51)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) 34 T CONST)) (-3363 (($) 38 T CONST)) (-2255 (((-1074) $) 27) (((-1074) $ (-108)) 29) (((-1178) (-764) $) 30) (((-1178) (-764) $ (-108)) 31)) (-2093 (($ $ (-713)) NIL) (($ $) NIL)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 39)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 42)) (-4100 (($ $ $) 45) (($ $ (-525)) 41)) (-4090 (($ $) 36) (($ $ $) 50)) (-4080 (($ $ $) 61)) (** (($ $ (-856)) 67) (($ $ (-713)) NIL) (($ $ (-525)) 88) (($ $ (-385 (-525))) 125) (($ $ $) 117)) (* (($ (-856) $) 65) (($ (-713) $) NIL) (($ (-525) $) 68) (($ $ $) 60) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
+(((-357) (-13 (-382) (-213) (-567 (-1074)) (-770) (-566 (-205)) (-1113) (-567 (-501)) (-10 -8 (-15 -4100 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -2200 ($ $)) (-15 -1991 ((-525) $ $)) (-15 -4177 ($ $ (-525))) (-15 -2751 ((-385 (-525)) $ (-713))) (-15 -2751 ((-385 (-525)) $ (-713) (-713))) (-15 -1763 ($)) (-15 -3234 ($)) (-15 -2154 ($)) (-15 -2257 ($ $ $)) (-15 -1763 ($ $)) (-15 -3234 ($ $)) (-15 -2749 ($ (-205))) (-15 -3391 ((-1178))) (-15 -3391 ((-1178) (-713))) (-15 -1468 ((-1178))) (-15 -1468 ((-1178) (-713))) (-15 -2196 ((-1178))) (-15 -2196 ((-1178) (-713))) (-15 -1357 ((-1178) (-713))) (-6 -4246) (-6 -4238)))) (T -357))
+((** (*1 *1 *1 *1) (-5 *1 (-357))) (-4100 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-2200 (*1 *1 *1) (-5 *1 (-357))) (-1991 (*1 *2 *1 *1) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-4177 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357)))) (-2751 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))) (-2751 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))) (-1763 (*1 *1) (-5 *1 (-357))) (-3234 (*1 *1) (-5 *1 (-357))) (-2154 (*1 *1) (-5 *1 (-357))) (-2257 (*1 *1 *1 *1) (-5 *1 (-357))) (-1763 (*1 *1 *1) (-5 *1 (-357))) (-3234 (*1 *1 *1) (-5 *1 (-357))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-357)))) (-3391 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-357)))) (-3391 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1178)) (-5 *1 (-357)))) (-1468 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-357)))) (-1468 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1178)) (-5 *1 (-357)))) (-2196 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-357)))) (-2196 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1178)) (-5 *1 (-357)))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1178)) (-5 *1 (-357)))))
+(-13 (-382) (-213) (-567 (-1074)) (-770) (-566 (-205)) (-1113) (-567 (-501)) (-10 -8 (-15 -4100 ($ $ (-525))) (-15 ** ($ $ $)) (-15 -2200 ($ $)) (-15 -1991 ((-525) $ $)) (-15 -4177 ($ $ (-525))) (-15 -2751 ((-385 (-525)) $ (-713))) (-15 -2751 ((-385 (-525)) $ (-713) (-713))) (-15 -1763 ($)) (-15 -3234 ($)) (-15 -2154 ($)) (-15 -2257 ($ $ $)) (-15 -1763 ($ $)) (-15 -3234 ($ $)) (-15 -2749 ($ (-205))) (-15 -3391 ((-1178))) (-15 -3391 ((-1178) (-713))) (-15 -1468 ((-1178))) (-15 -1468 ((-1178) (-713))) (-15 -2196 ((-1178))) (-15 -2196 ((-1178) (-713))) (-15 -1357 ((-1178) (-713))) (-6 -4246) (-6 -4238)))
+((-3193 (((-592 (-273 (-887 |#1|))) (-273 (-385 (-887 (-525)))) |#1|) 46) (((-592 (-273 (-887 |#1|))) (-385 (-887 (-525))) |#1|) 45) (((-592 (-592 (-273 (-887 |#1|)))) (-592 (-273 (-385 (-887 (-525))))) |#1|) 42) (((-592 (-592 (-273 (-887 |#1|)))) (-592 (-385 (-887 (-525)))) |#1|) 36)) (-1358 (((-592 |#1|) (-385 (-887 (-525))) |#1|) 20) (((-592 (-592 |#1|)) (-592 (-385 (-887 (-525)))) (-592 (-1091)) |#1|) 30)))
+(((-358 |#1|) (-10 -7 (-15 -3193 ((-592 (-592 (-273 (-887 |#1|)))) (-592 (-385 (-887 (-525)))) |#1|)) (-15 -3193 ((-592 (-592 (-273 (-887 |#1|)))) (-592 (-273 (-385 (-887 (-525))))) |#1|)) (-15 -3193 ((-592 (-273 (-887 |#1|))) (-385 (-887 (-525))) |#1|)) (-15 -3193 ((-592 (-273 (-887 |#1|))) (-273 (-385 (-887 (-525)))) |#1|)) (-15 -1358 ((-592 (-592 |#1|)) (-592 (-385 (-887 (-525)))) (-592 (-1091)) |#1|)) (-15 -1358 ((-592 |#1|) (-385 (-887 (-525))) |#1|))) (-13 (-787) (-341))) (T -358))
+((-1358 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-1358 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-385 (-887 (-525))))) (-5 *4 (-592 (-1091))) (-5 *2 (-592 (-592 *5))) (-5 *1 (-358 *5)) (-4 *5 (-13 (-787) (-341))))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-887 (-525))))) (-5 *2 (-592 (-273 (-887 *4)))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 (-525)))) (-5 *2 (-592 (-273 (-887 *4)))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-273 (-385 (-887 (-525)))))) (-5 *2 (-592 (-592 (-273 (-887 *4))))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 (-525))))) (-5 *2 (-592 (-592 (-273 (-887 *4))))) (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341))))))
+(-10 -7 (-15 -3193 ((-592 (-592 (-273 (-887 |#1|)))) (-592 (-385 (-887 (-525)))) |#1|)) (-15 -3193 ((-592 (-592 (-273 (-887 |#1|)))) (-592 (-273 (-385 (-887 (-525))))) |#1|)) (-15 -3193 ((-592 (-273 (-887 |#1|))) (-385 (-887 (-525))) |#1|)) (-15 -3193 ((-592 (-273 (-887 |#1|))) (-273 (-385 (-887 (-525)))) |#1|)) (-15 -1358 ((-592 (-592 |#1|)) (-592 (-385 (-887 (-525)))) (-592 (-1091)) |#1|)) (-15 -1358 ((-592 |#1|) (-385 (-887 (-525))) |#1|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#2| "failed") $) 26)) (-3898 ((|#2| $) 28)) (-2571 (($ $) NIL)) (-1647 (((-713) $) 10)) (-2177 (((-592 $) $) 20)) (-1788 (((-108) $) NIL)) (-3219 (($ |#2| |#1|) 18)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-3217 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2538 ((|#2| $) 15)) (-2548 ((|#1| $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 45) (($ |#2|) 27)) (-1562 (((-592 |#1|) $) 17)) (-3468 ((|#1| $ |#2|) 47)) (-3355 (($) 29 T CONST)) (-3379 (((-592 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36)))
+(((-359 |#1| |#2|) (-13 (-360 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-977) (-789)) (T -359))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-359 *3 *2)) (-4 *3 (-977)) (-4 *2 (-789)))))
(-13 (-360 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-1264 (((-3 |#2| "failed") $) 44)) (-2831 ((|#2| $) 43)) (-1247 (($ $) 30)) (-3610 (((-713) $) 34)) (-1986 (((-592 $) $) 35)) (-1819 (((-108) $) 38)) (-4157 (($ |#2| |#1|) 39)) (-1370 (($ (-1 |#1| |#1|) $) 40)) (-2614 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-1212 ((|#2| $) 33)) (-1224 ((|#1| $) 32)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11) (($ |#2|) 45)) (-3600 (((-592 |#1|) $) 36)) (-1657 ((|#1| $ |#2|) 41)) (-3875 (($) 18 T CONST)) (-3415 (((-592 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
-(((-360 |#1| |#2|) (-131) (-976) (-1019)) (T -360))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-976)) (-4 *3 (-1019)))) (-1657 (*1 *2 *1 *3) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1019)) (-4 *2 (-976)))) (-1370 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019)))) (-4157 (*1 *1 *2 *3) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1019)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019)) (-5 *2 (-108)))) (-3415 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019)) (-5 *2 (-592 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019)) (-5 *2 (-592 *3)))) (-1986 (*1 *2 *1) (-12 (-4 *3 (-976)) (-4 *4 (-1019)) (-5 *2 (-592 *1)) (-4 *1 (-360 *3 *4)))) (-3610 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019)) (-5 *2 (-713)))) (-1212 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1019)))) (-1224 (*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1019)) (-4 *2 (-976)))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1247 (*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-976)) (-4 *3 (-1019)))))
-(-13 (-107 |t#1| |t#1|) (-967 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1657 (|t#1| $ |t#2|)) (-15 -1370 ($ (-1 |t#1| |t#1|) $)) (-15 -4157 ($ |t#2| |t#1|)) (-15 -1819 ((-108) $)) (-15 -3415 ((-592 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3600 ((-592 |t#1|) $)) (-15 -1986 ((-592 $) $)) (-15 -3610 ((-713) $)) (-15 -1212 (|t#2| $)) (-15 -1224 (|t#1| $)) (-15 -2614 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1247 ($ $)) (IF (|has| |t#1| (-160)) (-6 (-660 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-660 |#1|) |has| |#1| (-160)) ((-967 |#2|) . T) ((-982 |#1|) . T) ((-1019) . T))
-((-2891 (((-1177) $) 7)) (-1908 (((-797) $) 8) (($ (-632 (-641))) 14) (($ (-592 (-308))) 13) (($ (-308)) 12) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 11)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-2591 (((-3 |#2| "failed") $) 44)) (-3898 ((|#2| $) 43)) (-2571 (($ $) 30)) (-1647 (((-713) $) 34)) (-2177 (((-592 $) $) 35)) (-1788 (((-108) $) 38)) (-3219 (($ |#2| |#1|) 39)) (-2694 (($ (-1 |#1| |#1|) $) 40)) (-3217 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2538 ((|#2| $) 33)) (-2548 ((|#1| $) 32)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11) (($ |#2|) 45)) (-1562 (((-592 |#1|) $) 36)) (-3468 ((|#1| $ |#2|) 41)) (-3355 (($) 18 T CONST)) (-3379 (((-592 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+(((-360 |#1| |#2|) (-131) (-977) (-1020)) (T -360))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-977)) (-4 *3 (-1020)))) (-3468 (*1 *2 *1 *3) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-977)))) (-2694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)))) (-3219 (*1 *1 *2 *3) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1020)))) (-1788 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-108)))) (-3379 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-592 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1562 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-592 *3)))) (-2177 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-592 *1)) (-4 *1 (-360 *3 *4)))) (-1647 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-713)))) (-2538 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1020)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-977)))) (-3217 (*1 *2 *1) (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2571 (*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-977)) (-4 *3 (-1020)))))
+(-13 (-107 |t#1| |t#1|) (-968 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3468 (|t#1| $ |t#2|)) (-15 -2694 ($ (-1 |t#1| |t#1|) $)) (-15 -3219 ($ |t#2| |t#1|)) (-15 -1788 ((-108) $)) (-15 -3379 ((-592 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1562 ((-592 |t#1|) $)) (-15 -2177 ((-592 $) $)) (-15 -1647 ((-713) $)) (-15 -2538 (|t#2| $)) (-15 -2548 (|t#1| $)) (-15 -3217 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2571 ($ $)) (IF (|has| |t#1| (-160)) (-6 (-660 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-660 |#1|) |has| |#1| (-160)) ((-968 |#2|) . T) ((-983 |#1|) . T) ((-1020) . T))
+((-2350 (((-1178) $) 7)) (-1270 (((-798) $) 8) (($ (-632 (-641))) 14) (($ (-592 (-308))) 13) (($ (-308)) 12) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 11)))
(((-361) (-131)) (T -361))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-632 (-641))) (-4 *1 (-361)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-361)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-361)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) (-4 *1 (-361)))))
-(-13 (-373) (-10 -8 (-15 -1908 ($ (-632 (-641)))) (-15 -1908 ($ (-592 (-308)))) (-15 -1908 ($ (-308))) (-15 -1908 ($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))))))
-(((-566 (-797)) . T) ((-373) . T) ((-1126) . T))
-((-1264 (((-3 $ "failed") (-632 (-294 (-357)))) 21) (((-3 $ "failed") (-632 (-294 (-525)))) 19) (((-3 $ "failed") (-632 (-886 (-357)))) 17) (((-3 $ "failed") (-632 (-886 (-525)))) 15) (((-3 $ "failed") (-632 (-385 (-886 (-357))))) 13) (((-3 $ "failed") (-632 (-385 (-886 (-525))))) 11)) (-2831 (($ (-632 (-294 (-357)))) 22) (($ (-632 (-294 (-525)))) 20) (($ (-632 (-886 (-357)))) 18) (($ (-632 (-886 (-525)))) 16) (($ (-632 (-385 (-886 (-357))))) 14) (($ (-632 (-385 (-886 (-525))))) 12)) (-2891 (((-1177) $) 7)) (-1908 (((-797) $) 8) (($ (-592 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 23)))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-632 (-641))) (-4 *1 (-361)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-361)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-361)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) (-4 *1 (-361)))))
+(-13 (-373) (-10 -8 (-15 -1270 ($ (-632 (-641)))) (-15 -1270 ($ (-592 (-308)))) (-15 -1270 ($ (-308))) (-15 -1270 ($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))))))
+(((-566 (-798)) . T) ((-373) . T) ((-1127) . T))
+((-2591 (((-3 $ "failed") (-632 (-294 (-357)))) 21) (((-3 $ "failed") (-632 (-294 (-525)))) 19) (((-3 $ "failed") (-632 (-887 (-357)))) 17) (((-3 $ "failed") (-632 (-887 (-525)))) 15) (((-3 $ "failed") (-632 (-385 (-887 (-357))))) 13) (((-3 $ "failed") (-632 (-385 (-887 (-525))))) 11)) (-3898 (($ (-632 (-294 (-357)))) 22) (($ (-632 (-294 (-525)))) 20) (($ (-632 (-887 (-357)))) 18) (($ (-632 (-887 (-525)))) 16) (($ (-632 (-385 (-887 (-357))))) 14) (($ (-632 (-385 (-887 (-525))))) 12)) (-2350 (((-1178) $) 7)) (-1270 (((-798) $) 8) (($ (-592 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 23)))
(((-362) (-131)) (T -362))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-362)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-362)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) (-4 *1 (-362)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-632 (-886 (-357)))) (-4 *1 (-362)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-886 (-357)))) (-4 *1 (-362)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-632 (-886 (-525)))) (-4 *1 (-362)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-886 (-525)))) (-4 *1 (-362)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-886 (-357))))) (-4 *1 (-362)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-385 (-886 (-357))))) (-4 *1 (-362)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-886 (-525))))) (-4 *1 (-362)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-385 (-886 (-525))))) (-4 *1 (-362)))))
-(-13 (-373) (-10 -8 (-15 -1908 ($ (-592 (-308)))) (-15 -1908 ($ (-308))) (-15 -1908 ($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308)))))) (-15 -2831 ($ (-632 (-294 (-357))))) (-15 -1264 ((-3 $ "failed") (-632 (-294 (-357))))) (-15 -2831 ($ (-632 (-294 (-525))))) (-15 -1264 ((-3 $ "failed") (-632 (-294 (-525))))) (-15 -2831 ($ (-632 (-886 (-357))))) (-15 -1264 ((-3 $ "failed") (-632 (-886 (-357))))) (-15 -2831 ($ (-632 (-886 (-525))))) (-15 -1264 ((-3 $ "failed") (-632 (-886 (-525))))) (-15 -2831 ($ (-632 (-385 (-886 (-357)))))) (-15 -1264 ((-3 $ "failed") (-632 (-385 (-886 (-357)))))) (-15 -2831 ($ (-632 (-385 (-886 (-525)))))) (-15 -1264 ((-3 $ "failed") (-632 (-385 (-886 (-525))))))))
-(((-566 (-797)) . T) ((-373) . T) ((-1126) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1247 (($ $) NIL)) (-4079 (($ |#1| |#2|) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-1470 ((|#2| $) NIL)) (-1224 ((|#1| $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 28)) (-3875 (($) 12 T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
-(((-363 |#1| |#2|) (-13 (-107 |#1| |#1|) (-481 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-160)) (-6 (-660 |#1|)) |%noBranch|))) (-976) (-789)) (T -363))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-362)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-362)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) (-4 *1 (-362)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-632 (-887 (-357)))) (-4 *1 (-362)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-887 (-357)))) (-4 *1 (-362)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-632 (-887 (-525)))) (-4 *1 (-362)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-887 (-525)))) (-4 *1 (-362)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-887 (-357))))) (-4 *1 (-362)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-385 (-887 (-357))))) (-4 *1 (-362)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-887 (-525))))) (-4 *1 (-362)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-632 (-385 (-887 (-525))))) (-4 *1 (-362)))))
+(-13 (-373) (-10 -8 (-15 -1270 ($ (-592 (-308)))) (-15 -1270 ($ (-308))) (-15 -1270 ($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308)))))) (-15 -3898 ($ (-632 (-294 (-357))))) (-15 -2591 ((-3 $ "failed") (-632 (-294 (-357))))) (-15 -3898 ($ (-632 (-294 (-525))))) (-15 -2591 ((-3 $ "failed") (-632 (-294 (-525))))) (-15 -3898 ($ (-632 (-887 (-357))))) (-15 -2591 ((-3 $ "failed") (-632 (-887 (-357))))) (-15 -3898 ($ (-632 (-887 (-525))))) (-15 -2591 ((-3 $ "failed") (-632 (-887 (-525))))) (-15 -3898 ($ (-632 (-385 (-887 (-357)))))) (-15 -2591 ((-3 $ "failed") (-632 (-385 (-887 (-357)))))) (-15 -3898 ($ (-632 (-385 (-887 (-525)))))) (-15 -2591 ((-3 $ "failed") (-632 (-385 (-887 (-525))))))))
+(((-566 (-798)) . T) ((-373) . T) ((-1127) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2571 (($ $) NIL)) (-2352 (($ |#1| |#2|) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2282 ((|#2| $) NIL)) (-2548 ((|#1| $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 28)) (-3355 (($) 12 T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
+(((-363 |#1| |#2|) (-13 (-107 |#1| |#1|) (-481 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-160)) (-6 (-660 |#1|)) |%noBranch|))) (-977) (-789)) (T -363))
NIL
(-13 (-107 |#1| |#1|) (-481 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-160)) (-6 (-660 |#1|)) |%noBranch|)))
-((-1893 (((-108) $ $) NIL)) (-3107 (((-713) $) 59)) (-1505 (($) NIL T CONST)) (-1225 (((-3 $ "failed") $ $) 61)) (-1264 (((-3 |#1| "failed") $) NIL)) (-2831 ((|#1| $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-1381 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2133 (((-108) $) 15)) (-2938 ((|#1| $ (-525)) NIL)) (-3084 (((-713) $ (-525)) NIL)) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-2463 (($ (-1 |#1| |#1|) $) 38)) (-3358 (($ (-1 (-713) (-713)) $) 35)) (-1475 (((-3 $ "failed") $ $) 50)) (-2337 (((-1073) $) NIL)) (-1578 (($ $ $) 26)) (-3770 (($ $ $) 24)) (-2663 (((-1037) $) NIL)) (-2203 (((-592 (-2 (|:| |gen| |#1|) (|:| -1982 (-713)))) $) 32)) (-1760 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-1908 (((-797) $) 22) (($ |#1|) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3882 (($) 9 T CONST)) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) 41)) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) 63 (|has| |#1| (-789)))) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ |#1| (-713)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
-(((-364 |#1|) (-13 (-669) (-967 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -3770 ($ $ $)) (-15 -1578 ($ $ $)) (-15 -1475 ((-3 $ "failed") $ $)) (-15 -1225 ((-3 $ "failed") $ $)) (-15 -1760 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1381 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3107 ((-713) $)) (-15 -2203 ((-592 (-2 (|:| |gen| |#1|) (|:| -1982 (-713)))) $)) (-15 -3084 ((-713) $ (-525))) (-15 -2938 (|#1| $ (-525))) (-15 -3358 ($ (-1 (-713) (-713)) $)) (-15 -2463 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|))) (-1019)) (T -364))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-364 *2)) (-4 *2 (-1019)))) (-3770 (*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) (-1578 (*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) (-1475 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) (-1225 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1019)))) (-1760 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |rm| (-364 *3)))) (-5 *1 (-364 *3)) (-4 *3 (-1019)))) (-1381 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |mm| (-364 *3)) (|:| |rm| (-364 *3)))) (-5 *1 (-364 *3)) (-4 *3 (-1019)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-364 *3)) (-4 *3 (-1019)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1982 (-713))))) (-5 *1 (-364 *3)) (-4 *3 (-1019)))) (-3084 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-364 *4)) (-4 *4 (-1019)))) (-2938 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-364 *2)) (-4 *2 (-1019)))) (-3358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-713) (-713))) (-5 *1 (-364 *3)) (-4 *3 (-1019)))) (-2463 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1019)) (-5 *1 (-364 *3)))))
-(-13 (-669) (-967 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -3770 ($ $ $)) (-15 -1578 ($ $ $)) (-15 -1475 ((-3 $ "failed") $ $)) (-15 -1225 ((-3 $ "failed") $ $)) (-15 -1760 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1381 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3107 ((-713) $)) (-15 -2203 ((-592 (-2 (|:| |gen| |#1|) (|:| -1982 (-713)))) $)) (-15 -3084 ((-713) $ (-525))) (-15 -2938 (|#1| $ (-525))) (-15 -3358 ($ (-1 (-713) (-713)) $)) (-15 -2463 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-1264 (((-3 (-525) "failed") $) 47)) (-2831 (((-525) $) 46)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-3525 (($ $ $) 54)) (-3630 (($ $ $) 53)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-2338 (((-3 $ "failed") $ $) 42)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 48)) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) 39)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-4024 (((-108) $ $) 51)) (-3995 (((-108) $ $) 50)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 52)) (-3983 (((-108) $ $) 49)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-1260 (((-108) $ $) NIL)) (-4190 (((-713) $) 59)) (-2305 (($) NIL T CONST)) (-2747 (((-3 $ "failed") $ $) 61)) (-2591 (((-3 |#1| "failed") $) NIL)) (-3898 ((|#1| $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2891 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-1985 (((-108) $) 15)) (-3285 ((|#1| $ (-525)) NIL)) (-2311 (((-713) $ (-525)) NIL)) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-2440 (($ (-1 |#1| |#1|) $) 38)) (-4060 (($ (-1 (-713) (-713)) $) 35)) (-2377 (((-3 $ "failed") $ $) 50)) (-3451 (((-1074) $) NIL)) (-1209 (($ $ $) 26)) (-2696 (($ $ $) 24)) (-2012 (((-1038) $) NIL)) (-1494 (((-592 (-2 (|:| |gen| |#1|) (|:| -1250 (-713)))) $) 32)) (-1496 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-1270 (((-798) $) 22) (($ |#1|) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3363 (($) 9 T CONST)) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) 41)) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) 63 (|has| |#1| (-789)))) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ |#1| (-713)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
+(((-364 |#1|) (-13 (-669) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -2696 ($ $ $)) (-15 -1209 ($ $ $)) (-15 -2377 ((-3 $ "failed") $ $)) (-15 -2747 ((-3 $ "failed") $ $)) (-15 -1496 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2891 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -4190 ((-713) $)) (-15 -1494 ((-592 (-2 (|:| |gen| |#1|) (|:| -1250 (-713)))) $)) (-15 -2311 ((-713) $ (-525))) (-15 -3285 (|#1| $ (-525))) (-15 -4060 ($ (-1 (-713) (-713)) $)) (-15 -2440 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|))) (-1020)) (T -364))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-2696 (*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-1209 (*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-2377 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-2747 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-1496 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |rm| (-364 *3)))) (-5 *1 (-364 *3)) (-4 *3 (-1020)))) (-2891 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |mm| (-364 *3)) (|:| |rm| (-364 *3)))) (-5 *1 (-364 *3)) (-4 *3 (-1020)))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-364 *3)) (-4 *3 (-1020)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1250 (-713))))) (-5 *1 (-364 *3)) (-4 *3 (-1020)))) (-2311 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-364 *4)) (-4 *4 (-1020)))) (-3285 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-364 *2)) (-4 *2 (-1020)))) (-4060 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-713) (-713))) (-5 *1 (-364 *3)) (-4 *3 (-1020)))) (-2440 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-364 *3)))))
+(-13 (-669) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -2696 ($ $ $)) (-15 -1209 ($ $ $)) (-15 -2377 ((-3 $ "failed") $ $)) (-15 -2747 ((-3 $ "failed") $ $)) (-15 -1496 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2891 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -4190 ((-713) $)) (-15 -1494 ((-592 (-2 (|:| |gen| |#1|) (|:| -1250 (-713)))) $)) (-15 -2311 ((-713) $ (-525))) (-15 -3285 (|#1| $ (-525))) (-15 -4060 ($ (-1 (-713) (-713)) $)) (-15 -2440 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-789)) (-6 (-789)) |%noBranch|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-2591 (((-3 (-525) "failed") $) 47)) (-3898 (((-525) $) 46)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-2371 (($ $ $) 54)) (-2535 (($ $ $) 53)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1680 (((-3 $ "failed") $ $) 42)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 48)) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) 39)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-4045 (((-108) $ $) 51)) (-4026 (((-108) $ $) 50)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 52)) (-4017 (((-108) $ $) 49)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-365) (-131)) (T -365))
NIL
-(-13 (-517) (-789) (-967 (-525)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-789) . T) ((-967 (-525)) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-2132 (((-108) $) 20)) (-3383 (((-108) $) 19)) (-4018 (($ (-1073) (-1073) (-1073)) 21)) (-1310 (((-1073) $) 16)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3978 (($ (-1073) (-1073) (-1073)) 14)) (-4128 (((-1073) $) 17)) (-3706 (((-108) $) 18)) (-3750 (((-1073) $) 15)) (-1908 (((-797) $) 12) (($ (-1073)) 13) (((-1073) $) 9)) (-3961 (((-108) $ $) 7)))
+(-13 (-517) (-789) (-968 (-525)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-789) . T) ((-968 (-525)) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-1973 (((-108) $) 20)) (-3159 (((-108) $) 19)) (-3489 (($ (-1074) (-1074) (-1074)) 21)) (-3800 (((-1074) $) 16)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3449 (($ (-1074) (-1074) (-1074)) 14)) (-2734 (((-1074) $) 17)) (-3242 (((-108) $) 18)) (-2699 (((-1074) $) 15)) (-1270 (((-798) $) 12) (($ (-1074)) 13) (((-1074) $) 9)) (-3994 (((-108) $ $) 7)))
(((-366) (-367)) (T -366))
NIL
(-367)
-((-1893 (((-108) $ $) 7)) (-2132 (((-108) $) 14)) (-3383 (((-108) $) 15)) (-4018 (($ (-1073) (-1073) (-1073)) 13)) (-1310 (((-1073) $) 18)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-3978 (($ (-1073) (-1073) (-1073)) 20)) (-4128 (((-1073) $) 17)) (-3706 (((-108) $) 16)) (-3750 (((-1073) $) 19)) (-1908 (((-797) $) 11) (($ (-1073)) 22) (((-1073) $) 21)) (-3961 (((-108) $ $) 6)))
+((-1260 (((-108) $ $) 7)) (-1973 (((-108) $) 14)) (-3159 (((-108) $) 15)) (-3489 (($ (-1074) (-1074) (-1074)) 13)) (-3800 (((-1074) $) 18)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-3449 (($ (-1074) (-1074) (-1074)) 20)) (-2734 (((-1074) $) 17)) (-3242 (((-108) $) 16)) (-2699 (((-1074) $) 19)) (-1270 (((-798) $) 11) (($ (-1074)) 22) (((-1074) $) 21)) (-3994 (((-108) $ $) 6)))
(((-367) (-131)) (T -367))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-367)))) (-1908 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1073)))) (-3978 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-367)))) (-3750 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1073)))) (-1310 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1073)))) (-4128 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1073)))) (-3706 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-2132 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-4018 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-367)))))
-(-13 (-1019) (-10 -8 (-15 -1908 ($ (-1073))) (-15 -1908 ((-1073) $)) (-15 -3978 ($ (-1073) (-1073) (-1073))) (-15 -3750 ((-1073) $)) (-15 -1310 ((-1073) $)) (-15 -4128 ((-1073) $)) (-15 -3706 ((-108) $)) (-15 -3383 ((-108) $)) (-15 -2132 ((-108) $)) (-15 -4018 ($ (-1073) (-1073) (-1073)))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3953 (((-797) $) 50)) (-1505 (($) NIL T CONST)) (-2979 (($ $ (-855)) NIL)) (-2097 (($ $ (-855)) NIL)) (-1640 (($ $ (-855)) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1669 (($ (-713)) 26)) (-3191 (((-713)) 17)) (-1222 (((-797) $) 52)) (-1518 (($ $ $) NIL)) (-1908 (((-797) $) NIL)) (-2260 (($ $ $ $) NIL)) (-2331 (($ $ $) NIL)) (-3875 (($) 20 T CONST)) (-3961 (((-108) $ $) 28)) (-4070 (($ $) 34) (($ $ $) 36)) (-4059 (($ $ $) 37)) (** (($ $ (-855)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-368 |#1| |#2| |#3|) (-13 (-687 |#3|) (-10 -8 (-15 -3191 ((-713))) (-15 -1222 ((-797) $)) (-15 -3953 ((-797) $)) (-15 -1669 ($ (-713))))) (-713) (-713) (-160)) (T -368))
-((-3191 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-160)))) (-1222 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-160)))) (-1669 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-160)))))
-(-13 (-687 |#3|) (-10 -8 (-15 -3191 ((-713))) (-15 -1222 ((-797) $)) (-15 -3953 ((-797) $)) (-15 -1669 ($ (-713)))))
-((-2411 (((-1073)) 10)) (-1629 (((-1062 (-1073))) 28)) (-2865 (((-1177) (-1073)) 25) (((-1177) (-366)) 24)) (-2878 (((-1177)) 26)) (-1739 (((-1062 (-1073))) 27)))
-(((-369) (-10 -7 (-15 -1739 ((-1062 (-1073)))) (-15 -1629 ((-1062 (-1073)))) (-15 -2878 ((-1177))) (-15 -2865 ((-1177) (-366))) (-15 -2865 ((-1177) (-1073))) (-15 -2411 ((-1073))))) (T -369))
-((-2411 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-369)))) (-2865 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-369)))) (-2865 (*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1177)) (-5 *1 (-369)))) (-2878 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-369)))) (-1629 (*1 *2) (-12 (-5 *2 (-1062 (-1073))) (-5 *1 (-369)))) (-1739 (*1 *2) (-12 (-5 *2 (-1062 (-1073))) (-5 *1 (-369)))))
-(-10 -7 (-15 -1739 ((-1062 (-1073)))) (-15 -1629 ((-1062 (-1073)))) (-15 -2878 ((-1177))) (-15 -2865 ((-1177) (-366))) (-15 -2865 ((-1177) (-1073))) (-15 -2411 ((-1073))))
-((-1737 (((-713) (-314 |#1| |#2| |#3| |#4|)) 16)))
-(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1737 ((-713) (-314 |#1| |#2| |#3| |#4|)))) (-13 (-346) (-341)) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -370))
-((-1737 (*1 *2 *3) (-12 (-5 *3 (-314 *4 *5 *6 *7)) (-4 *4 (-13 (-346) (-341))) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-4 *7 (-320 *4 *5 *6)) (-5 *2 (-713)) (-5 *1 (-370 *4 *5 *6 *7)))))
-(-10 -7 (-15 -1737 ((-713) (-314 |#1| |#2| |#3| |#4|))))
-((-1908 (((-372) |#1|) 11)))
-(((-371 |#1|) (-10 -7 (-15 -1908 ((-372) |#1|))) (-1019)) (T -371))
-((-1908 (*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-371 *3)) (-4 *3 (-1019)))))
-(-10 -7 (-15 -1908 ((-372) |#1|)))
-((-1893 (((-108) $ $) NIL)) (-1748 (((-592 (-1073)) $ (-592 (-1073))) 38)) (-3041 (((-592 (-1073)) $ (-592 (-1073))) 39)) (-1471 (((-592 (-1073)) $ (-592 (-1073))) 40)) (-1425 (((-592 (-1073)) $) 35)) (-4018 (($) 23)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2564 (((-592 (-1073)) $) 36)) (-3579 (((-592 (-1073)) $) 37)) (-3303 (((-1177) $ (-525)) 33) (((-1177) $) 34)) (-1427 (($ (-797) (-525)) 30)) (-1908 (((-797) $) 42) (($ (-797)) 25)) (-3961 (((-108) $ $) NIL)))
-(((-372) (-13 (-1019) (-10 -8 (-15 -1908 ($ (-797))) (-15 -1427 ($ (-797) (-525))) (-15 -3303 ((-1177) $ (-525))) (-15 -3303 ((-1177) $)) (-15 -3579 ((-592 (-1073)) $)) (-15 -2564 ((-592 (-1073)) $)) (-15 -4018 ($)) (-15 -1425 ((-592 (-1073)) $)) (-15 -1471 ((-592 (-1073)) $ (-592 (-1073)))) (-15 -3041 ((-592 (-1073)) $ (-592 (-1073)))) (-15 -1748 ((-592 (-1073)) $ (-592 (-1073))))))) (T -372))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-372)))) (-1427 (*1 *1 *2 *3) (-12 (-5 *2 (-797)) (-5 *3 (-525)) (-5 *1 (-372)))) (-3303 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-372)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-372)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372)))) (-4018 (*1 *1) (-5 *1 (-372))) (-1425 (*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372)))) (-1471 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372)))) (-3041 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372)))) (-1748 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372)))))
-(-13 (-1019) (-10 -8 (-15 -1908 ($ (-797))) (-15 -1427 ($ (-797) (-525))) (-15 -3303 ((-1177) $ (-525))) (-15 -3303 ((-1177) $)) (-15 -3579 ((-592 (-1073)) $)) (-15 -2564 ((-592 (-1073)) $)) (-15 -4018 ($)) (-15 -1425 ((-592 (-1073)) $)) (-15 -1471 ((-592 (-1073)) $ (-592 (-1073)))) (-15 -3041 ((-592 (-1073)) $ (-592 (-1073)))) (-15 -1748 ((-592 (-1073)) $ (-592 (-1073))))))
-((-2891 (((-1177) $) 7)) (-1908 (((-797) $) 8)))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-367)))) (-1270 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1074)))) (-3449 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-367)))) (-2699 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1074)))) (-3800 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1074)))) (-2734 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1074)))) (-3242 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))) (-3489 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-367)))))
+(-13 (-1020) (-10 -8 (-15 -1270 ($ (-1074))) (-15 -1270 ((-1074) $)) (-15 -3449 ($ (-1074) (-1074) (-1074))) (-15 -2699 ((-1074) $)) (-15 -3800 ((-1074) $)) (-15 -2734 ((-1074) $)) (-15 -3242 ((-108) $)) (-15 -3159 ((-108) $)) (-15 -1973 ((-108) $)) (-15 -3489 ($ (-1074) (-1074) (-1074)))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-1771 (((-798) $) 50)) (-2305 (($) NIL T CONST)) (-3627 (($ $ (-856)) NIL)) (-2161 (($ $ (-856)) NIL)) (-1404 (($ $ (-856)) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3523 (($ (-713)) 26)) (-3831 (((-713)) 17)) (-2724 (((-798) $) 52)) (-2222 (($ $ $) NIL)) (-1270 (((-798) $) NIL)) (-3941 (($ $ $ $) NIL)) (-3395 (($ $ $) NIL)) (-3355 (($) 20 T CONST)) (-3994 (((-108) $ $) 28)) (-4090 (($ $) 34) (($ $ $) 36)) (-4080 (($ $ $) 37)) (** (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-368 |#1| |#2| |#3|) (-13 (-687 |#3|) (-10 -8 (-15 -3831 ((-713))) (-15 -2724 ((-798) $)) (-15 -1771 ((-798) $)) (-15 -3523 ($ (-713))))) (-713) (-713) (-160)) (T -368))
+((-3831 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-160)))) (-2724 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-160)))) (-1771 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-160)))) (-3523 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-160)))))
+(-13 (-687 |#3|) (-10 -8 (-15 -3831 ((-713))) (-15 -2724 ((-798) $)) (-15 -1771 ((-798) $)) (-15 -3523 ($ (-713)))))
+((-3075 (((-1074)) 10)) (-3460 (((-1063 (-1074))) 28)) (-2319 (((-1178) (-1074)) 25) (((-1178) (-366)) 24)) (-2334 (((-1178)) 26)) (-4002 (((-1063 (-1074))) 27)))
+(((-369) (-10 -7 (-15 -4002 ((-1063 (-1074)))) (-15 -3460 ((-1063 (-1074)))) (-15 -2334 ((-1178))) (-15 -2319 ((-1178) (-366))) (-15 -2319 ((-1178) (-1074))) (-15 -3075 ((-1074))))) (T -369))
+((-3075 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-369)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-369)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1178)) (-5 *1 (-369)))) (-2334 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-369)))) (-3460 (*1 *2) (-12 (-5 *2 (-1063 (-1074))) (-5 *1 (-369)))) (-4002 (*1 *2) (-12 (-5 *2 (-1063 (-1074))) (-5 *1 (-369)))))
+(-10 -7 (-15 -4002 ((-1063 (-1074)))) (-15 -3460 ((-1063 (-1074)))) (-15 -2334 ((-1178))) (-15 -2319 ((-1178) (-366))) (-15 -2319 ((-1178) (-1074))) (-15 -3075 ((-1074))))
+((-3973 (((-713) (-314 |#1| |#2| |#3| |#4|)) 16)))
+(((-370 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3973 ((-713) (-314 |#1| |#2| |#3| |#4|)))) (-13 (-346) (-341)) (-1149 |#1|) (-1149 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -370))
+((-3973 (*1 *2 *3) (-12 (-5 *3 (-314 *4 *5 *6 *7)) (-4 *4 (-13 (-346) (-341))) (-4 *5 (-1149 *4)) (-4 *6 (-1149 (-385 *5))) (-4 *7 (-320 *4 *5 *6)) (-5 *2 (-713)) (-5 *1 (-370 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3973 ((-713) (-314 |#1| |#2| |#3| |#4|))))
+((-1270 (((-372) |#1|) 11)))
+(((-371 |#1|) (-10 -7 (-15 -1270 ((-372) |#1|))) (-1020)) (T -371))
+((-1270 (*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-371 *3)) (-4 *3 (-1020)))))
+(-10 -7 (-15 -1270 ((-372) |#1|)))
+((-1260 (((-108) $ $) NIL)) (-1372 (((-592 (-1074)) $ (-592 (-1074))) 38)) (-3101 (((-592 (-1074)) $ (-592 (-1074))) 39)) (-2298 (((-592 (-1074)) $ (-592 (-1074))) 40)) (-2508 (((-592 (-1074)) $) 35)) (-3489 (($) 23)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1812 (((-592 (-1074)) $) 36)) (-1340 (((-592 (-1074)) $) 37)) (-2868 (((-1178) $ (-525)) 33) (((-1178) $) 34)) (-2749 (($ (-798) (-525)) 30)) (-1270 (((-798) $) 42) (($ (-798)) 25)) (-3994 (((-108) $ $) NIL)))
+(((-372) (-13 (-1020) (-10 -8 (-15 -1270 ($ (-798))) (-15 -2749 ($ (-798) (-525))) (-15 -2868 ((-1178) $ (-525))) (-15 -2868 ((-1178) $)) (-15 -1340 ((-592 (-1074)) $)) (-15 -1812 ((-592 (-1074)) $)) (-15 -3489 ($)) (-15 -2508 ((-592 (-1074)) $)) (-15 -2298 ((-592 (-1074)) $ (-592 (-1074)))) (-15 -3101 ((-592 (-1074)) $ (-592 (-1074)))) (-15 -1372 ((-592 (-1074)) $ (-592 (-1074))))))) (T -372))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-372)))) (-2749 (*1 *1 *2 *3) (-12 (-5 *2 (-798)) (-5 *3 (-525)) (-5 *1 (-372)))) (-2868 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1178)) (-5 *1 (-372)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-372)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-372)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-372)))) (-3489 (*1 *1) (-5 *1 (-372))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-372)))) (-2298 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-372)))) (-3101 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-372)))) (-1372 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-372)))))
+(-13 (-1020) (-10 -8 (-15 -1270 ($ (-798))) (-15 -2749 ($ (-798) (-525))) (-15 -2868 ((-1178) $ (-525))) (-15 -2868 ((-1178) $)) (-15 -1340 ((-592 (-1074)) $)) (-15 -1812 ((-592 (-1074)) $)) (-15 -3489 ($)) (-15 -2508 ((-592 (-1074)) $)) (-15 -2298 ((-592 (-1074)) $ (-592 (-1074)))) (-15 -3101 ((-592 (-1074)) $ (-592 (-1074)))) (-15 -1372 ((-592 (-1074)) $ (-592 (-1074))))))
+((-2350 (((-1178) $) 7)) (-1270 (((-798) $) 8)))
(((-373) (-131)) (T -373))
-((-2891 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1177)))))
-(-13 (-1126) (-566 (-797)) (-10 -8 (-15 -2891 ((-1177) $))))
-(((-566 (-797)) . T) ((-1126) . T))
-((-1264 (((-3 $ "failed") (-294 (-357))) 21) (((-3 $ "failed") (-294 (-525))) 19) (((-3 $ "failed") (-886 (-357))) 17) (((-3 $ "failed") (-886 (-525))) 15) (((-3 $ "failed") (-385 (-886 (-357)))) 13) (((-3 $ "failed") (-385 (-886 (-525)))) 11)) (-2831 (($ (-294 (-357))) 22) (($ (-294 (-525))) 20) (($ (-886 (-357))) 18) (($ (-886 (-525))) 16) (($ (-385 (-886 (-357)))) 14) (($ (-385 (-886 (-525)))) 12)) (-2891 (((-1177) $) 7)) (-1908 (((-797) $) 8) (($ (-592 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 23)))
+((-2350 (*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1178)))))
+(-13 (-1127) (-566 (-798)) (-10 -8 (-15 -2350 ((-1178) $))))
+(((-566 (-798)) . T) ((-1127) . T))
+((-2591 (((-3 $ "failed") (-294 (-357))) 21) (((-3 $ "failed") (-294 (-525))) 19) (((-3 $ "failed") (-887 (-357))) 17) (((-3 $ "failed") (-887 (-525))) 15) (((-3 $ "failed") (-385 (-887 (-357)))) 13) (((-3 $ "failed") (-385 (-887 (-525)))) 11)) (-3898 (($ (-294 (-357))) 22) (($ (-294 (-525))) 20) (($ (-887 (-357))) 18) (($ (-887 (-525))) 16) (($ (-385 (-887 (-357)))) 14) (($ (-385 (-887 (-525)))) 12)) (-2350 (((-1178) $) 7)) (-1270 (((-798) $) 8) (($ (-592 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 23)))
(((-374) (-131)) (T -374))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-374)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-374)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) (-4 *1 (-374)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-4 *1 (-374)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-357))) (-4 *1 (-374)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-4 *1 (-374)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-525))) (-4 *1 (-374)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-886 (-357))) (-4 *1 (-374)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-886 (-357))) (-4 *1 (-374)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-886 (-525))) (-4 *1 (-374)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-886 (-525))) (-4 *1 (-374)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-385 (-886 (-357)))) (-4 *1 (-374)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-886 (-357)))) (-4 *1 (-374)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-385 (-886 (-525)))) (-4 *1 (-374)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-886 (-525)))) (-4 *1 (-374)))))
-(-13 (-373) (-10 -8 (-15 -1908 ($ (-592 (-308)))) (-15 -1908 ($ (-308))) (-15 -1908 ($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308)))))) (-15 -2831 ($ (-294 (-357)))) (-15 -1264 ((-3 $ "failed") (-294 (-357)))) (-15 -2831 ($ (-294 (-525)))) (-15 -1264 ((-3 $ "failed") (-294 (-525)))) (-15 -2831 ($ (-886 (-357)))) (-15 -1264 ((-3 $ "failed") (-886 (-357)))) (-15 -2831 ($ (-886 (-525)))) (-15 -1264 ((-3 $ "failed") (-886 (-525)))) (-15 -2831 ($ (-385 (-886 (-357))))) (-15 -1264 ((-3 $ "failed") (-385 (-886 (-357))))) (-15 -2831 ($ (-385 (-886 (-525))))) (-15 -1264 ((-3 $ "failed") (-385 (-886 (-525)))))))
-(((-566 (-797)) . T) ((-373) . T) ((-1126) . T))
-((-3252 (((-592 (-1073)) (-592 (-1073))) 9)) (-2891 (((-1177) (-366)) 27)) (-2428 (((-1023) (-1090) (-592 (-1090)) (-1093) (-592 (-1090))) 60) (((-1023) (-1090) (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090)))) (-592 (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090))))) (-592 (-1090)) (-1090)) 35) (((-1023) (-1090) (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090)))) (-592 (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090))))) (-592 (-1090))) 34)))
-(((-375) (-10 -7 (-15 -2428 ((-1023) (-1090) (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090)))) (-592 (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090))))) (-592 (-1090)))) (-15 -2428 ((-1023) (-1090) (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090)))) (-592 (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090))))) (-592 (-1090)) (-1090))) (-15 -2428 ((-1023) (-1090) (-592 (-1090)) (-1093) (-592 (-1090)))) (-15 -2891 ((-1177) (-366))) (-15 -3252 ((-592 (-1073)) (-592 (-1073)))))) (T -375))
-((-3252 (*1 *2 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-375)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1177)) (-5 *1 (-375)))) (-2428 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-592 (-1090))) (-5 *5 (-1093)) (-5 *2 (-1023)) (-5 *1 (-375)))) (-2428 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *3 (-1090)) (-5 *4 (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090))))) (-5 *5 (-592 (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090)))))) (-5 *6 (-592 (-1090))) (-5 *2 (-1023)) (-5 *1 (-375)))) (-2428 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1090)) (-5 *4 (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090))))) (-5 *5 (-592 (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090)))))) (-5 *6 (-592 (-1090))) (-5 *2 (-1023)) (-5 *1 (-375)))))
-(-10 -7 (-15 -2428 ((-1023) (-1090) (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090)))) (-592 (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090))))) (-592 (-1090)))) (-15 -2428 ((-1023) (-1090) (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090)))) (-592 (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090))))) (-592 (-1090)) (-1090))) (-15 -2428 ((-1023) (-1090) (-592 (-1090)) (-1093) (-592 (-1090)))) (-15 -2891 ((-1177) (-366))) (-15 -3252 ((-592 (-1073)) (-592 (-1073)))))
-((-2891 (((-1177) $) 38)) (-1908 (((-797) $) 98) (($ (-308)) 100) (($ (-592 (-308))) 99) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 97) (($ (-294 (-643))) 54) (($ (-294 (-641))) 73) (($ (-294 (-636))) 86) (($ (-273 (-294 (-643)))) 68) (($ (-273 (-294 (-641)))) 81) (($ (-273 (-294 (-636)))) 94) (($ (-294 (-525))) 104) (($ (-294 (-357))) 117) (($ (-294 (-157 (-357)))) 130) (($ (-273 (-294 (-525)))) 112) (($ (-273 (-294 (-357)))) 125) (($ (-273 (-294 (-157 (-357))))) 138)))
-(((-376 |#1| |#2| |#3| |#4|) (-13 (-373) (-10 -8 (-15 -1908 ($ (-308))) (-15 -1908 ($ (-592 (-308)))) (-15 -1908 ($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308)))))) (-15 -1908 ($ (-294 (-643)))) (-15 -1908 ($ (-294 (-641)))) (-15 -1908 ($ (-294 (-636)))) (-15 -1908 ($ (-273 (-294 (-643))))) (-15 -1908 ($ (-273 (-294 (-641))))) (-15 -1908 ($ (-273 (-294 (-636))))) (-15 -1908 ($ (-294 (-525)))) (-15 -1908 ($ (-294 (-357)))) (-15 -1908 ($ (-294 (-157 (-357))))) (-15 -1908 ($ (-273 (-294 (-525))))) (-15 -1908 ($ (-273 (-294 (-357))))) (-15 -1908 ($ (-273 (-294 (-157 (-357)))))))) (-1090) (-3 (|:| |fst| (-412)) (|:| -3190 "void")) (-592 (-1090)) (-1094)) (T -376))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-308)) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-294 (-643))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-294 (-641))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-294 (-636))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-643)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-641)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-636)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-525)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-357)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-157 (-357))))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-14 *5 (-592 (-1090))) (-14 *6 (-1094)))))
-(-13 (-373) (-10 -8 (-15 -1908 ($ (-308))) (-15 -1908 ($ (-592 (-308)))) (-15 -1908 ($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308)))))) (-15 -1908 ($ (-294 (-643)))) (-15 -1908 ($ (-294 (-641)))) (-15 -1908 ($ (-294 (-636)))) (-15 -1908 ($ (-273 (-294 (-643))))) (-15 -1908 ($ (-273 (-294 (-641))))) (-15 -1908 ($ (-273 (-294 (-636))))) (-15 -1908 ($ (-294 (-525)))) (-15 -1908 ($ (-294 (-357)))) (-15 -1908 ($ (-294 (-157 (-357))))) (-15 -1908 ($ (-273 (-294 (-525))))) (-15 -1908 ($ (-273 (-294 (-357))))) (-15 -1908 ($ (-273 (-294 (-157 (-357))))))))
-((-1893 (((-108) $ $) NIL)) (-1889 ((|#2| $) 36)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3585 (($ (-385 |#2|)) 85)) (-1407 (((-592 (-2 (|:| -1600 (-713)) (|:| -2563 |#2|) (|:| |num| |#2|))) $) 37)) (-3013 (($ $) 32) (($ $ (-713)) 34)) (-1427 (((-385 |#2|) $) 46)) (-1922 (($ (-592 (-2 (|:| -1600 (-713)) (|:| -2563 |#2|) (|:| |num| |#2|)))) 31)) (-1908 (((-797) $) 120)) (-1424 (($ $) 33) (($ $ (-713)) 35)) (-3961 (((-108) $ $) NIL)) (-4059 (($ |#2| $) 39)))
-(((-377 |#1| |#2|) (-13 (-1019) (-567 (-385 |#2|)) (-10 -8 (-15 -4059 ($ |#2| $)) (-15 -3585 ($ (-385 |#2|))) (-15 -1889 (|#2| $)) (-15 -1407 ((-592 (-2 (|:| -1600 (-713)) (|:| -2563 |#2|) (|:| |num| |#2|))) $)) (-15 -1922 ($ (-592 (-2 (|:| -1600 (-713)) (|:| -2563 |#2|) (|:| |num| |#2|))))) (-15 -3013 ($ $)) (-15 -1424 ($ $)) (-15 -3013 ($ $ (-713))) (-15 -1424 ($ $ (-713))))) (-13 (-341) (-138)) (-1148 |#1|)) (T -377))
-((-4059 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *2)) (-4 *2 (-1148 *3)))) (-3585 (*1 *1 *2) (-12 (-5 *2 (-385 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)))) (-1889 (*1 *2 *1) (-12 (-4 *2 (-1148 *3)) (-5 *1 (-377 *3 *2)) (-4 *3 (-13 (-341) (-138))))) (-1407 (*1 *2 *1) (-12 (-4 *3 (-13 (-341) (-138))) (-5 *2 (-592 (-2 (|:| -1600 (-713)) (|:| -2563 *4) (|:| |num| *4)))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1148 *3)))) (-1922 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -1600 (-713)) (|:| -2563 *4) (|:| |num| *4)))) (-4 *4 (-1148 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)))) (-3013 (*1 *1 *1) (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3)) (-4 *3 (-1148 *2)))) (-1424 (*1 *1 *1) (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3)) (-4 *3 (-1148 *2)))) (-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1148 *3)))) (-1424 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1148 *3)))))
-(-13 (-1019) (-567 (-385 |#2|)) (-10 -8 (-15 -4059 ($ |#2| $)) (-15 -3585 ($ (-385 |#2|))) (-15 -1889 (|#2| $)) (-15 -1407 ((-592 (-2 (|:| -1600 (-713)) (|:| -2563 |#2|) (|:| |num| |#2|))) $)) (-15 -1922 ($ (-592 (-2 (|:| -1600 (-713)) (|:| -2563 |#2|) (|:| |num| |#2|))))) (-15 -3013 ($ $)) (-15 -1424 ($ $)) (-15 -3013 ($ $ (-713))) (-15 -1424 ($ $ (-713)))))
-((-1893 (((-108) $ $) 9 (-3309 (|has| |#1| (-820 (-525))) (|has| |#1| (-820 (-357)))))) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 15 (|has| |#1| (-820 (-357)))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 14 (|has| |#1| (-820 (-525))))) (-2337 (((-1073) $) 13 (-3309 (|has| |#1| (-820 (-525))) (|has| |#1| (-820 (-357)))))) (-2663 (((-1037) $) 12 (-3309 (|has| |#1| (-820 (-525))) (|has| |#1| (-820 (-357)))))) (-1908 (((-797) $) 11 (-3309 (|has| |#1| (-820 (-525))) (|has| |#1| (-820 (-357)))))) (-3961 (((-108) $ $) 10 (-3309 (|has| |#1| (-820 (-525))) (|has| |#1| (-820 (-357)))))))
-(((-378 |#1|) (-131) (-1126)) (T -378))
-NIL
-(-13 (-1126) (-10 -7 (IF (|has| |t#1| (-820 (-525))) (-6 (-820 (-525))) |%noBranch|) (IF (|has| |t#1| (-820 (-357))) (-6 (-820 (-357))) |%noBranch|)))
-(((-97) -3309 (|has| |#1| (-820 (-525))) (|has| |#1| (-820 (-357)))) ((-566 (-797)) -3309 (|has| |#1| (-820 (-525))) (|has| |#1| (-820 (-357)))) ((-820 (-357)) |has| |#1| (-820 (-357))) ((-820 (-525)) |has| |#1| (-820 (-525))) ((-1019) -3309 (|has| |#1| (-820 (-525))) (|has| |#1| (-820 (-357)))) ((-1126) . T))
-((-1410 (($ $) 10) (($ $ (-713)) 11)))
-(((-379 |#1|) (-10 -8 (-15 -1410 (|#1| |#1| (-713))) (-15 -1410 (|#1| |#1|))) (-380)) (T -379))
-NIL
-(-10 -8 (-15 -1410 (|#1| |#1| (-713))) (-15 -1410 (|#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-3263 (((-3 $ "failed") $ $) 19)) (-3321 (($ $) 73)) (-1510 (((-396 $) $) 72)) (-2305 (((-108) $ $) 59)) (-1505 (($) 17 T CONST)) (-2373 (($ $ $) 55)) (-2866 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 51)) (-1410 (($ $) 79) (($ $ (-713)) 78)) (-2250 (((-108) $) 71)) (-1737 (((-775 (-855)) $) 81)) (-2133 (((-108) $) 31)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-4211 (($ $) 70)) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-3959 (((-396 $) $) 74)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2338 (((-3 $ "failed") $ $) 42)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2183 (((-713) $) 58)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 57)) (-2443 (((-3 (-713) "failed") $ $) 80)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-3421 (((-3 $ "failed") $) 82)) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) 39)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4082 (($ $ $) 64)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-374)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-374)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) (-4 *1 (-374)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-4 *1 (-374)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-357))) (-4 *1 (-374)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-4 *1 (-374)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-525))) (-4 *1 (-374)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-887 (-357))) (-4 *1 (-374)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-357))) (-4 *1 (-374)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-887 (-525))) (-4 *1 (-374)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-525))) (-4 *1 (-374)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-357)))) (-4 *1 (-374)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-887 (-357)))) (-4 *1 (-374)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-525)))) (-4 *1 (-374)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 (-887 (-525)))) (-4 *1 (-374)))))
+(-13 (-373) (-10 -8 (-15 -1270 ($ (-592 (-308)))) (-15 -1270 ($ (-308))) (-15 -1270 ($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308)))))) (-15 -3898 ($ (-294 (-357)))) (-15 -2591 ((-3 $ "failed") (-294 (-357)))) (-15 -3898 ($ (-294 (-525)))) (-15 -2591 ((-3 $ "failed") (-294 (-525)))) (-15 -3898 ($ (-887 (-357)))) (-15 -2591 ((-3 $ "failed") (-887 (-357)))) (-15 -3898 ($ (-887 (-525)))) (-15 -2591 ((-3 $ "failed") (-887 (-525)))) (-15 -3898 ($ (-385 (-887 (-357))))) (-15 -2591 ((-3 $ "failed") (-385 (-887 (-357))))) (-15 -3898 ($ (-385 (-887 (-525))))) (-15 -2591 ((-3 $ "failed") (-385 (-887 (-525)))))))
+(((-566 (-798)) . T) ((-373) . T) ((-1127) . T))
+((-1251 (((-592 (-1074)) (-592 (-1074))) 9)) (-2350 (((-1178) (-366)) 27)) (-1980 (((-1024) (-1091) (-592 (-1091)) (-1094) (-592 (-1091))) 60) (((-1024) (-1091) (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091)))) (-592 (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091))))) (-592 (-1091)) (-1091)) 35) (((-1024) (-1091) (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091)))) (-592 (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091))))) (-592 (-1091))) 34)))
+(((-375) (-10 -7 (-15 -1980 ((-1024) (-1091) (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091)))) (-592 (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091))))) (-592 (-1091)))) (-15 -1980 ((-1024) (-1091) (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091)))) (-592 (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091))))) (-592 (-1091)) (-1091))) (-15 -1980 ((-1024) (-1091) (-592 (-1091)) (-1094) (-592 (-1091)))) (-15 -2350 ((-1178) (-366))) (-15 -1251 ((-592 (-1074)) (-592 (-1074)))))) (T -375))
+((-1251 (*1 *2 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-375)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1178)) (-5 *1 (-375)))) (-1980 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-592 (-1091))) (-5 *5 (-1094)) (-5 *2 (-1024)) (-5 *1 (-375)))) (-1980 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *3 (-1091)) (-5 *4 (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091))))) (-5 *5 (-592 (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091)))))) (-5 *6 (-592 (-1091))) (-5 *2 (-1024)) (-5 *1 (-375)))) (-1980 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1091)) (-5 *4 (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091))))) (-5 *5 (-592 (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091)))))) (-5 *6 (-592 (-1091))) (-5 *2 (-1024)) (-5 *1 (-375)))))
+(-10 -7 (-15 -1980 ((-1024) (-1091) (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091)))) (-592 (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091))))) (-592 (-1091)))) (-15 -1980 ((-1024) (-1091) (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091)))) (-592 (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091))))) (-592 (-1091)) (-1091))) (-15 -1980 ((-1024) (-1091) (-592 (-1091)) (-1094) (-592 (-1091)))) (-15 -2350 ((-1178) (-366))) (-15 -1251 ((-592 (-1074)) (-592 (-1074)))))
+((-2350 (((-1178) $) 38)) (-1270 (((-798) $) 98) (($ (-308)) 100) (($ (-592 (-308))) 99) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 97) (($ (-294 (-643))) 54) (($ (-294 (-641))) 73) (($ (-294 (-636))) 86) (($ (-273 (-294 (-643)))) 68) (($ (-273 (-294 (-641)))) 81) (($ (-273 (-294 (-636)))) 94) (($ (-294 (-525))) 104) (($ (-294 (-357))) 117) (($ (-294 (-157 (-357)))) 130) (($ (-273 (-294 (-525)))) 112) (($ (-273 (-294 (-357)))) 125) (($ (-273 (-294 (-157 (-357))))) 138)))
+(((-376 |#1| |#2| |#3| |#4|) (-13 (-373) (-10 -8 (-15 -1270 ($ (-308))) (-15 -1270 ($ (-592 (-308)))) (-15 -1270 ($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308)))))) (-15 -1270 ($ (-294 (-643)))) (-15 -1270 ($ (-294 (-641)))) (-15 -1270 ($ (-294 (-636)))) (-15 -1270 ($ (-273 (-294 (-643))))) (-15 -1270 ($ (-273 (-294 (-641))))) (-15 -1270 ($ (-273 (-294 (-636))))) (-15 -1270 ($ (-294 (-525)))) (-15 -1270 ($ (-294 (-357)))) (-15 -1270 ($ (-294 (-157 (-357))))) (-15 -1270 ($ (-273 (-294 (-525))))) (-15 -1270 ($ (-273 (-294 (-357))))) (-15 -1270 ($ (-273 (-294 (-157 (-357)))))))) (-1091) (-3 (|:| |fst| (-412)) (|:| -3326 "void")) (-592 (-1091)) (-1095)) (T -376))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-308)) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-14 *5 (-592 (-1091))) (-14 *6 (-1095)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-14 *5 (-592 (-1091))) (-14 *6 (-1095)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-14 *5 (-592 (-1091))) (-14 *6 (-1095)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-294 (-643))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-14 *5 (-592 (-1091))) (-14 *6 (-1095)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-294 (-641))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-14 *5 (-592 (-1091))) (-14 *6 (-1095)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-294 (-636))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-14 *5 (-592 (-1091))) (-14 *6 (-1095)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-643)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-14 *5 (-592 (-1091))) (-14 *6 (-1095)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-641)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-14 *5 (-592 (-1091))) (-14 *6 (-1095)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-636)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-14 *5 (-592 (-1091))) (-14 *6 (-1095)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-14 *5 (-592 (-1091))) (-14 *6 (-1095)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-14 *5 (-592 (-1091))) (-14 *6 (-1095)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-14 *5 (-592 (-1091))) (-14 *6 (-1095)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-525)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-14 *5 (-592 (-1091))) (-14 *6 (-1095)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-357)))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-14 *5 (-592 (-1091))) (-14 *6 (-1095)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-273 (-294 (-157 (-357))))) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-14 *5 (-592 (-1091))) (-14 *6 (-1095)))))
+(-13 (-373) (-10 -8 (-15 -1270 ($ (-308))) (-15 -1270 ($ (-592 (-308)))) (-15 -1270 ($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308)))))) (-15 -1270 ($ (-294 (-643)))) (-15 -1270 ($ (-294 (-641)))) (-15 -1270 ($ (-294 (-636)))) (-15 -1270 ($ (-273 (-294 (-643))))) (-15 -1270 ($ (-273 (-294 (-641))))) (-15 -1270 ($ (-273 (-294 (-636))))) (-15 -1270 ($ (-294 (-525)))) (-15 -1270 ($ (-294 (-357)))) (-15 -1270 ($ (-294 (-157 (-357))))) (-15 -1270 ($ (-273 (-294 (-525))))) (-15 -1270 ($ (-273 (-294 (-357))))) (-15 -1270 ($ (-273 (-294 (-157 (-357))))))))
+((-1260 (((-108) $ $) NIL)) (-3659 ((|#2| $) 36)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1405 (($ (-385 |#2|)) 85)) (-2281 (((-592 (-2 (|:| -1864 (-713)) (|:| -3144 |#2|) (|:| |num| |#2|))) $) 37)) (-2523 (($ $) 32) (($ $ (-713)) 34)) (-2749 (((-385 |#2|) $) 46)) (-1279 (($ (-592 (-2 (|:| -1864 (-713)) (|:| -3144 |#2|) (|:| |num| |#2|)))) 31)) (-1270 (((-798) $) 120)) (-2093 (($ $) 33) (($ $ (-713)) 35)) (-3994 (((-108) $ $) NIL)) (-4080 (($ |#2| $) 39)))
+(((-377 |#1| |#2|) (-13 (-1020) (-567 (-385 |#2|)) (-10 -8 (-15 -4080 ($ |#2| $)) (-15 -1405 ($ (-385 |#2|))) (-15 -3659 (|#2| $)) (-15 -2281 ((-592 (-2 (|:| -1864 (-713)) (|:| -3144 |#2|) (|:| |num| |#2|))) $)) (-15 -1279 ($ (-592 (-2 (|:| -1864 (-713)) (|:| -3144 |#2|) (|:| |num| |#2|))))) (-15 -2523 ($ $)) (-15 -2093 ($ $)) (-15 -2523 ($ $ (-713))) (-15 -2093 ($ $ (-713))))) (-13 (-341) (-138)) (-1149 |#1|)) (T -377))
+((-4080 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *2)) (-4 *2 (-1149 *3)))) (-1405 (*1 *1 *2) (-12 (-5 *2 (-385 *4)) (-4 *4 (-1149 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)))) (-3659 (*1 *2 *1) (-12 (-4 *2 (-1149 *3)) (-5 *1 (-377 *3 *2)) (-4 *3 (-13 (-341) (-138))))) (-2281 (*1 *2 *1) (-12 (-4 *3 (-13 (-341) (-138))) (-5 *2 (-592 (-2 (|:| -1864 (-713)) (|:| -3144 *4) (|:| |num| *4)))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1149 *3)))) (-1279 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -1864 (-713)) (|:| -3144 *4) (|:| |num| *4)))) (-4 *4 (-1149 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)))) (-2523 (*1 *1 *1) (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3)) (-4 *3 (-1149 *2)))) (-2093 (*1 *1 *1) (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3)) (-4 *3 (-1149 *2)))) (-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1149 *3)))) (-2093 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4)) (-4 *4 (-1149 *3)))))
+(-13 (-1020) (-567 (-385 |#2|)) (-10 -8 (-15 -4080 ($ |#2| $)) (-15 -1405 ($ (-385 |#2|))) (-15 -3659 (|#2| $)) (-15 -2281 ((-592 (-2 (|:| -1864 (-713)) (|:| -3144 |#2|) (|:| |num| |#2|))) $)) (-15 -1279 ($ (-592 (-2 (|:| -1864 (-713)) (|:| -3144 |#2|) (|:| |num| |#2|))))) (-15 -2523 ($ $)) (-15 -2093 ($ $)) (-15 -2523 ($ $ (-713))) (-15 -2093 ($ $ (-713)))))
+((-1260 (((-108) $ $) 9 (-3279 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))))) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 15 (|has| |#1| (-821 (-357)))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 14 (|has| |#1| (-821 (-525))))) (-3451 (((-1074) $) 13 (-3279 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))))) (-2012 (((-1038) $) 12 (-3279 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))))) (-1270 (((-798) $) 11 (-3279 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))))) (-3994 (((-108) $ $) 10 (-3279 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))))))
+(((-378 |#1|) (-131) (-1127)) (T -378))
+NIL
+(-13 (-1127) (-10 -7 (IF (|has| |t#1| (-821 (-525))) (-6 (-821 (-525))) |%noBranch|) (IF (|has| |t#1| (-821 (-357))) (-6 (-821 (-357))) |%noBranch|)))
+(((-97) -3279 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))) ((-566 (-798)) -3279 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))) ((-821 (-357)) |has| |#1| (-821 (-357))) ((-821 (-525)) |has| |#1| (-821 (-525))) ((-1020) -3279 (|has| |#1| (-821 (-525))) (|has| |#1| (-821 (-357)))) ((-1127) . T))
+((-2327 (($ $) 10) (($ $ (-713)) 11)))
+(((-379 |#1|) (-10 -8 (-15 -2327 (|#1| |#1| (-713))) (-15 -2327 (|#1| |#1|))) (-380)) (T -379))
+NIL
+(-10 -8 (-15 -2327 (|#1| |#1| (-713))) (-15 -2327 (|#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-1342 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 73)) (-2100 (((-396 $) $) 72)) (-3197 (((-108) $ $) 59)) (-2305 (($) 17 T CONST)) (-1726 (($ $ $) 55)) (-3762 (((-3 $ "failed") $) 34)) (-1704 (($ $ $) 56)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 51)) (-2327 (($ $) 79) (($ $ (-713)) 78)) (-3836 (((-108) $) 71)) (-3973 (((-775 (-856)) $) 81)) (-1985 (((-108) $) 31)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-2502 (($ $) 70)) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-2195 (((-396 $) $) 74)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1680 (((-3 $ "failed") $ $) 42)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1290 (((-713) $) 58)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 57)) (-2181 (((-3 (-713) "failed") $ $) 80)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65)) (-3425 (((-3 $ "failed") $) 82)) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) 39)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4100 (($ $ $) 64)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
(((-380) (-131)) (T -380))
-((-1737 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-775 (-855))))) (-2443 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-380)) (-5 *2 (-713)))) (-1410 (*1 *1 *1) (-4 *1 (-380))) (-1410 (*1 *1 *1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-713)))))
-(-13 (-341) (-136) (-10 -8 (-15 -1737 ((-775 (-855)) $)) (-15 -2443 ((-3 (-713) "failed") $ $)) (-15 -1410 ($ $)) (-15 -1410 ($ $ (-713)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-136) . T) ((-566 (-797)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-854) . T) ((-982 #0#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) . T))
-((-3905 (($ (-525) (-525)) 11) (($ (-525) (-525) (-855)) NIL)) (-4076 (((-855)) 16) (((-855) (-855)) NIL)))
-(((-381 |#1|) (-10 -8 (-15 -4076 ((-855) (-855))) (-15 -4076 ((-855))) (-15 -3905 (|#1| (-525) (-525) (-855))) (-15 -3905 (|#1| (-525) (-525)))) (-382)) (T -381))
-((-4076 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-381 *3)) (-4 *3 (-382)))) (-4076 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-381 *3)) (-4 *3 (-382)))))
-(-10 -8 (-15 -4076 ((-855) (-855))) (-15 -4076 ((-855))) (-15 -3905 (|#1| (-525) (-525) (-855))) (-15 -3905 (|#1| (-525) (-525))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3115 (((-525) $) 89)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-4114 (($ $) 87)) (-3263 (((-3 $ "failed") $ $) 19)) (-3321 (($ $) 73)) (-1510 (((-396 $) $) 72)) (-3969 (($ $) 97)) (-2305 (((-108) $ $) 59)) (-1690 (((-525) $) 114)) (-1505 (($) 17 T CONST)) (-3608 (($ $) 86)) (-1264 (((-3 (-525) "failed") $) 102) (((-3 (-385 (-525)) "failed") $) 99)) (-2831 (((-525) $) 101) (((-385 (-525)) $) 98)) (-2373 (($ $ $) 55)) (-2866 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 51)) (-2250 (((-108) $) 71)) (-1352 (((-855)) 130) (((-855) (-855)) 127 (|has| $ (-6 -4245)))) (-3026 (((-108) $) 112)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 93)) (-1737 (((-525) $) 136)) (-2133 (((-108) $) 31)) (-3391 (($ $ (-525)) 96)) (-3477 (($ $) 92)) (-2882 (((-108) $) 113)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-3525 (($ $ $) 111) (($) 124 (-12 (-2480 (|has| $ (-6 -4245))) (-2480 (|has| $ (-6 -4237)))))) (-3630 (($ $ $) 110) (($) 123 (-12 (-2480 (|has| $ (-6 -4245))) (-2480 (|has| $ (-6 -4237)))))) (-3689 (((-525) $) 133)) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-4211 (($ $) 70)) (-1398 (((-855) (-525)) 126 (|has| $ (-6 -4245)))) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-2723 (($ $) 88)) (-1720 (($ $) 90)) (-3905 (($ (-525) (-525)) 138) (($ (-525) (-525) (-855)) 137)) (-3959 (((-396 $) $) 74)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2338 (((-3 $ "failed") $ $) 42)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1600 (((-525) $) 134)) (-2183 (((-713) $) 58)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 57)) (-4076 (((-855)) 131) (((-855) (-855)) 128 (|has| $ (-6 -4245)))) (-2462 (((-855) (-525)) 125 (|has| $ (-6 -4245)))) (-1427 (((-357) $) 105) (((-205) $) 104) (((-826 (-357)) $) 94)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-525)) 103) (($ (-385 (-525))) 100)) (-2093 (((-713)) 29)) (-2498 (($ $) 91)) (-2848 (((-855)) 132) (((-855) (-855)) 129 (|has| $ (-6 -4245)))) (-3772 (((-855)) 135)) (-2262 (((-108) $ $) 39)) (-2092 (($ $) 115)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-4024 (((-108) $ $) 108)) (-3995 (((-108) $ $) 107)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 109)) (-3983 (((-108) $ $) 106)) (-4082 (($ $ $) 64)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 95)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
+((-3973 (*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-775 (-856))))) (-2181 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-380)) (-5 *2 (-713)))) (-2327 (*1 *1 *1) (-4 *1 (-380))) (-2327 (*1 *1 *1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-713)))))
+(-13 (-341) (-136) (-10 -8 (-15 -3973 ((-775 (-856)) $)) (-15 -2181 ((-3 (-713) "failed") $ $)) (-15 -2327 ($ $)) (-15 -2327 ($ $ (-713)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-136) . T) ((-566 (-798)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-983 #0#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1131) . T))
+((-2294 (($ (-525) (-525)) 11) (($ (-525) (-525) (-856)) NIL)) (-3342 (((-856)) 16) (((-856) (-856)) NIL)))
+(((-381 |#1|) (-10 -8 (-15 -3342 ((-856) (-856))) (-15 -3342 ((-856))) (-15 -2294 (|#1| (-525) (-525) (-856))) (-15 -2294 (|#1| (-525) (-525)))) (-382)) (T -381))
+((-3342 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-381 *3)) (-4 *3 (-382)))) (-3342 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-381 *3)) (-4 *3 (-382)))))
+(-10 -8 (-15 -3342 ((-856) (-856))) (-15 -3342 ((-856))) (-15 -2294 (|#1| (-525) (-525) (-856))) (-15 -2294 (|#1| (-525) (-525))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2628 (((-525) $) 89)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-3642 (($ $) 87)) (-1342 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 73)) (-2100 (((-396 $) $) 72)) (-2211 (($ $) 97)) (-3197 (((-108) $ $) 59)) (-1436 (((-525) $) 114)) (-2305 (($) 17 T CONST)) (-1625 (($ $) 86)) (-2591 (((-3 (-525) "failed") $) 102) (((-3 (-385 (-525)) "failed") $) 99)) (-3898 (((-525) $) 101) (((-385 (-525)) $) 98)) (-1726 (($ $ $) 55)) (-3762 (((-3 $ "failed") $) 34)) (-1704 (($ $ $) 56)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 51)) (-3836 (((-108) $) 71)) (-1683 (((-856)) 130) (((-856) (-856)) 127 (|has| $ (-6 -4246)))) (-3017 (((-108) $) 112)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 93)) (-3973 (((-525) $) 136)) (-1985 (((-108) $) 31)) (-3220 (($ $ (-525)) 96)) (-2900 (($ $) 92)) (-3912 (((-108) $) 113)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2371 (($ $ $) 111) (($) 124 (-12 (-1825 (|has| $ (-6 -4246))) (-1825 (|has| $ (-6 -4238)))))) (-2535 (($ $ $) 110) (($) 123 (-12 (-1825 (|has| $ (-6 -4246))) (-1825 (|has| $ (-6 -4238)))))) (-1820 (((-525) $) 133)) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-2502 (($ $) 70)) (-2064 (((-856) (-525)) 126 (|has| $ (-6 -4246)))) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-3025 (($ $) 88)) (-2793 (($ $) 90)) (-2294 (($ (-525) (-525)) 138) (($ (-525) (-525) (-856)) 137)) (-2195 (((-396 $) $) 74)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1680 (((-3 $ "failed") $ $) 42)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1864 (((-525) $) 134)) (-1290 (((-713) $) 58)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 57)) (-3342 (((-856)) 131) (((-856) (-856)) 128 (|has| $ (-6 -4246)))) (-2425 (((-856) (-525)) 125 (|has| $ (-6 -4246)))) (-2749 (((-357) $) 105) (((-205) $) 104) (((-827 (-357)) $) 94)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-525)) 103) (($ (-385 (-525))) 100)) (-2104 (((-713)) 29)) (-1438 (($ $) 91)) (-1764 (((-856)) 132) (((-856) (-856)) 129 (|has| $ (-6 -4246)))) (-3200 (((-856)) 135)) (-3959 (((-108) $ $) 39)) (-2086 (($ $) 115)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-4045 (((-108) $ $) 108)) (-4026 (((-108) $ $) 107)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 109)) (-4017 (((-108) $ $) 106)) (-4100 (($ $ $) 64)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 95)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
(((-382) (-131)) (T -382))
-((-3905 (*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-382)))) (-3905 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-855)) (-4 *1 (-382)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-3772 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-855)))) (-1600 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-2848 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-855)))) (-4076 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-855)))) (-1352 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-855)))) (-2848 (*1 *2 *2) (-12 (-5 *2 (-855)) (|has| *1 (-6 -4245)) (-4 *1 (-382)))) (-4076 (*1 *2 *2) (-12 (-5 *2 (-855)) (|has| *1 (-6 -4245)) (-4 *1 (-382)))) (-1352 (*1 *2 *2) (-12 (-5 *2 (-855)) (|has| *1 (-6 -4245)) (-4 *1 (-382)))) (-1398 (*1 *2 *3) (-12 (-5 *3 (-525)) (|has| *1 (-6 -4245)) (-4 *1 (-382)) (-5 *2 (-855)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-525)) (|has| *1 (-6 -4245)) (-4 *1 (-382)) (-5 *2 (-855)))) (-3525 (*1 *1) (-12 (-4 *1 (-382)) (-2480 (|has| *1 (-6 -4245))) (-2480 (|has| *1 (-6 -4237))))) (-3630 (*1 *1) (-12 (-4 *1 (-382)) (-2480 (|has| *1 (-6 -4245))) (-2480 (|has| *1 (-6 -4237))))))
-(-13 (-985) (-10 -8 (-6 -2038) (-15 -3905 ($ (-525) (-525))) (-15 -3905 ($ (-525) (-525) (-855))) (-15 -1737 ((-525) $)) (-15 -3772 ((-855))) (-15 -1600 ((-525) $)) (-15 -3689 ((-525) $)) (-15 -2848 ((-855))) (-15 -4076 ((-855))) (-15 -1352 ((-855))) (IF (|has| $ (-6 -4245)) (PROGN (-15 -2848 ((-855) (-855))) (-15 -4076 ((-855) (-855))) (-15 -1352 ((-855) (-855))) (-15 -1398 ((-855) (-525))) (-15 -2462 ((-855) (-525)))) |%noBranch|) (IF (|has| $ (-6 -4237)) |%noBranch| (IF (|has| $ (-6 -4245)) |%noBranch| (PROGN (-15 -3525 ($)) (-15 -3630 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-797)) . T) ((-160) . T) ((-567 (-205)) . T) ((-567 (-357)) . T) ((-567 (-826 (-357))) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-787) . T) ((-789) . T) ((-820 (-357)) . T) ((-854) . T) ((-933) . T) ((-952) . T) ((-985) . T) ((-967 (-385 (-525))) . T) ((-967 (-525)) . T) ((-982 #0#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) . T))
-((-1370 (((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|)) 20)))
-(((-383 |#1| |#2|) (-10 -7 (-15 -1370 ((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|)))) (-517) (-517)) (T -383))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-396 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-5 *2 (-396 *6)) (-5 *1 (-383 *5 *6)))))
-(-10 -7 (-15 -1370 ((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|))))
-((-1370 (((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|)) 13)))
-(((-384 |#1| |#2|) (-10 -7 (-15 -1370 ((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|)))) (-517) (-517)) (T -384))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-385 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-5 *2 (-385 *6)) (-5 *1 (-384 *5 *6)))))
-(-10 -7 (-15 -1370 ((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 13)) (-3115 ((|#1| $) 21 (|has| |#1| (-286)))) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2305 (((-108) $ $) NIL)) (-1690 (((-525) $) NIL (|has| |#1| (-762)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) 17) (((-3 (-1090) "failed") $) NIL (|has| |#1| (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) 70 (|has| |#1| (-967 (-525)))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525))))) (-2831 ((|#1| $) 15) (((-1090) $) NIL (|has| |#1| (-967 (-1090)))) (((-385 (-525)) $) 67 (|has| |#1| (-967 (-525)))) (((-525) $) NIL (|has| |#1| (-967 (-525))))) (-2373 (($ $ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) 50)) (-3375 (($) NIL (|has| |#1| (-510)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-3026 (((-108) $) NIL (|has| |#1| (-762)))) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| |#1| (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| |#1| (-820 (-357))))) (-2133 (((-108) $) 64)) (-3830 (($ $) NIL)) (-1303 ((|#1| $) 71)) (-1816 (((-3 $ "failed") $) NIL (|has| |#1| (-1066)))) (-2882 (((-108) $) NIL (|has| |#1| (-762)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL (|has| |#1| (-1066)) CONST)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 97)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2723 (($ $) NIL (|has| |#1| (-286)))) (-1720 ((|#1| $) 28 (|has| |#1| (-510)))) (-2918 (((-396 (-1086 $)) (-1086 $)) 135 (|has| |#1| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) 131 (|has| |#1| (-843)))) (-3959 (((-396 $) $) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3092 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) NIL (|has| |#1| (-486 (-1090) |#1|)))) (-2183 (((-713) $) NIL)) (-3928 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-3013 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-1915 (($ $) NIL)) (-1312 ((|#1| $) 73)) (-1427 (((-826 (-525)) $) NIL (|has| |#1| (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| |#1| (-567 (-826 (-357))))) (((-501) $) NIL (|has| |#1| (-567 (-501)))) (((-357) $) NIL (|has| |#1| (-952))) (((-205) $) NIL (|has| |#1| (-952)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) 115 (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 10) (($ (-1090)) NIL (|has| |#1| (-967 (-1090))))) (-3421 (((-3 $ "failed") $) 99 (-3309 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2093 (((-713)) 100)) (-2498 ((|#1| $) 26 (|has| |#1| (-510)))) (-2262 (((-108) $ $) NIL)) (-2092 (($ $) NIL (|has| |#1| (-762)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) 22 T CONST)) (-3882 (($) 8 T CONST)) (-2766 (((-1073) $) 43 (-12 (|has| |#1| (-510)) (|has| |#1| (-770)))) (((-1073) $ (-108)) 44 (-12 (|has| |#1| (-510)) (|has| |#1| (-770)))) (((-1177) (-764) $) 45 (-12 (|has| |#1| (-510)) (|has| |#1| (-770)))) (((-1177) (-764) $ (-108)) 46 (-12 (|has| |#1| (-510)) (|has| |#1| (-770))))) (-1424 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) 56)) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) 24 (|has| |#1| (-789)))) (-4082 (($ $ $) 126) (($ |#1| |#1|) 52)) (-4070 (($ $) 25) (($ $ $) 55)) (-4059 (($ $ $) 53)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 125)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 60) (($ $ $) 57) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
-(((-385 |#1|) (-13 (-924 |#1|) (-10 -7 (IF (|has| |#1| (-510)) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4241)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-6 -4252)) (-6 -4241) |%noBranch|) |%noBranch|) |%noBranch|))) (-517)) (T -385))
-NIL
-(-13 (-924 |#1|) (-10 -7 (IF (|has| |#1| (-510)) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4241)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-6 -4252)) (-6 -4241) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-2794 (((-632 |#2|) (-1172 $)) NIL) (((-632 |#2|)) 18)) (-2229 (($ (-1172 |#2|) (-1172 $)) NIL) (($ (-1172 |#2|)) 26)) (-1409 (((-632 |#2|) $ (-1172 $)) NIL) (((-632 |#2|) $) 22)) (-2362 ((|#3| $) 60)) (-1400 ((|#2| (-1172 $)) NIL) ((|#2|) 20)) (-4093 (((-1172 |#2|) $ (-1172 $)) NIL) (((-632 |#2|) (-1172 $) (-1172 $)) NIL) (((-1172 |#2|) $) NIL) (((-632 |#2|) (-1172 $)) 24)) (-1427 (((-1172 |#2|) $) 11) (($ (-1172 |#2|)) 13)) (-1260 ((|#3| $) 52)))
-(((-386 |#1| |#2| |#3|) (-10 -8 (-15 -1409 ((-632 |#2|) |#1|)) (-15 -1400 (|#2|)) (-15 -2794 ((-632 |#2|))) (-15 -1427 (|#1| (-1172 |#2|))) (-15 -1427 ((-1172 |#2|) |#1|)) (-15 -2229 (|#1| (-1172 |#2|))) (-15 -4093 ((-632 |#2|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1|)) (-15 -2362 (|#3| |#1|)) (-15 -1260 (|#3| |#1|)) (-15 -2794 ((-632 |#2|) (-1172 |#1|))) (-15 -1400 (|#2| (-1172 |#1|))) (-15 -2229 (|#1| (-1172 |#2|) (-1172 |#1|))) (-15 -4093 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -1409 ((-632 |#2|) |#1| (-1172 |#1|)))) (-387 |#2| |#3|) (-160) (-1148 |#2|)) (T -386))
-((-2794 (*1 *2) (-12 (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-632 *4)) (-5 *1 (-386 *3 *4 *5)) (-4 *3 (-387 *4 *5)))) (-1400 (*1 *2) (-12 (-4 *4 (-1148 *2)) (-4 *2 (-160)) (-5 *1 (-386 *3 *2 *4)) (-4 *3 (-387 *2 *4)))))
-(-10 -8 (-15 -1409 ((-632 |#2|) |#1|)) (-15 -1400 (|#2|)) (-15 -2794 ((-632 |#2|))) (-15 -1427 (|#1| (-1172 |#2|))) (-15 -1427 ((-1172 |#2|) |#1|)) (-15 -2229 (|#1| (-1172 |#2|))) (-15 -4093 ((-632 |#2|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1|)) (-15 -2362 (|#3| |#1|)) (-15 -1260 (|#3| |#1|)) (-15 -2794 ((-632 |#2|) (-1172 |#1|))) (-15 -1400 (|#2| (-1172 |#1|))) (-15 -2229 (|#1| (-1172 |#2|) (-1172 |#1|))) (-15 -4093 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -1409 ((-632 |#2|) |#1| (-1172 |#1|))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-2794 (((-632 |#1|) (-1172 $)) 46) (((-632 |#1|)) 61)) (-3512 ((|#1| $) 52)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2229 (($ (-1172 |#1|) (-1172 $)) 48) (($ (-1172 |#1|)) 64)) (-1409 (((-632 |#1|) $ (-1172 $)) 53) (((-632 |#1|) $) 59)) (-2866 (((-3 $ "failed") $) 34)) (-2239 (((-855)) 54)) (-2133 (((-108) $) 31)) (-3477 ((|#1| $) 51)) (-2362 ((|#2| $) 44 (|has| |#1| (-341)))) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1400 ((|#1| (-1172 $)) 47) ((|#1|) 60)) (-4093 (((-1172 |#1|) $ (-1172 $)) 50) (((-632 |#1|) (-1172 $) (-1172 $)) 49) (((-1172 |#1|) $) 66) (((-632 |#1|) (-1172 $)) 65)) (-1427 (((-1172 |#1|) $) 63) (($ (-1172 |#1|)) 62)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-3421 (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-1260 ((|#2| $) 45)) (-2093 (((-713)) 29)) (-2499 (((-1172 $)) 67)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
-(((-387 |#1| |#2|) (-131) (-160) (-1148 |t#1|)) (T -387))
-((-2499 (*1 *2) (-12 (-4 *3 (-160)) (-4 *4 (-1148 *3)) (-5 *2 (-1172 *1)) (-4 *1 (-387 *3 *4)))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3)) (-5 *2 (-1172 *3)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-632 *4)))) (-2229 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4)) (-4 *4 (-1148 *3)))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3)) (-5 *2 (-1172 *3)))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4)) (-4 *4 (-1148 *3)))) (-2794 (*1 *2) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3)) (-5 *2 (-632 *3)))) (-1400 (*1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1148 *2)) (-4 *2 (-160)))) (-1409 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3)) (-5 *2 (-632 *3)))))
-(-13 (-348 |t#1| |t#2|) (-10 -8 (-15 -2499 ((-1172 $))) (-15 -4093 ((-1172 |t#1|) $)) (-15 -4093 ((-632 |t#1|) (-1172 $))) (-15 -2229 ($ (-1172 |t#1|))) (-15 -1427 ((-1172 |t#1|) $)) (-15 -1427 ($ (-1172 |t#1|))) (-15 -2794 ((-632 |t#1|))) (-15 -1400 (|t#1|)) (-15 -1409 ((-632 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-348 |#1| |#2|) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) . T) ((-669) . T) ((-982 |#1|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1264 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) 27) (((-3 (-525) "failed") $) 19)) (-2831 ((|#2| $) NIL) (((-385 (-525)) $) 24) (((-525) $) 14)) (-1908 (($ |#2|) NIL) (($ (-385 (-525))) 22) (($ (-525)) 11)))
-(((-388 |#1| |#2|) (-10 -8 (-15 -2831 ((-525) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -1908 (|#1| (-525))) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1908 (|#1| |#2|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -2831 (|#2| |#1|))) (-389 |#2|) (-1126)) (T -388))
-NIL
-(-10 -8 (-15 -2831 ((-525) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -1908 (|#1| (-525))) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1908 (|#1| |#2|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -2831 (|#2| |#1|)))
-((-1264 (((-3 |#1| "failed") $) 7) (((-3 (-385 (-525)) "failed") $) 16 (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) 13 (|has| |#1| (-967 (-525))))) (-2831 ((|#1| $) 8) (((-385 (-525)) $) 15 (|has| |#1| (-967 (-385 (-525))))) (((-525) $) 12 (|has| |#1| (-967 (-525))))) (-1908 (($ |#1|) 6) (($ (-385 (-525))) 17 (|has| |#1| (-967 (-385 (-525))))) (($ (-525)) 14 (|has| |#1| (-967 (-525))))))
-(((-389 |#1|) (-131) (-1126)) (T -389))
-NIL
-(-13 (-967 |t#1|) (-10 -7 (IF (|has| |t#1| (-967 (-525))) (-6 (-967 (-525))) |%noBranch|) (IF (|has| |t#1| (-967 (-385 (-525)))) (-6 (-967 (-385 (-525)))) |%noBranch|)))
-(((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T))
-((-1370 (((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|)) 33)))
-(((-390 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1370 ((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|)))) (-286) (-924 |#1|) (-1148 |#2|) (-13 (-387 |#2| |#3|) (-967 |#2|)) (-286) (-924 |#5|) (-1148 |#6|) (-13 (-387 |#6| |#7|) (-967 |#6|))) (T -390))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-391 *5 *6 *7 *8)) (-4 *5 (-286)) (-4 *6 (-924 *5)) (-4 *7 (-1148 *6)) (-4 *8 (-13 (-387 *6 *7) (-967 *6))) (-4 *9 (-286)) (-4 *10 (-924 *9)) (-4 *11 (-1148 *10)) (-5 *2 (-391 *9 *10 *11 *12)) (-5 *1 (-390 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-387 *10 *11) (-967 *10))))))
-(-10 -7 (-15 -1370 ((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|))))
-((-1893 (((-108) $ $) NIL)) (-1505 (($) NIL T CONST)) (-2866 (((-3 $ "failed") $) NIL)) (-3923 ((|#4| (-713) (-1172 |#4|)) 56)) (-2133 (((-108) $) NIL)) (-1303 (((-1172 |#4|) $) 17)) (-3477 ((|#2| $) 54)) (-2699 (($ $) 139)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 100)) (-3666 (($ (-1172 |#4|)) 99)) (-2663 (((-1037) $) NIL)) (-1312 ((|#1| $) 18)) (-3634 (($ $ $) NIL)) (-1518 (($ $ $) NIL)) (-1908 (((-797) $) 134)) (-2499 (((-1172 |#4|) $) 129)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3882 (($) 11 T CONST)) (-3961 (((-108) $ $) 40)) (-4082 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 122)) (* (($ $ $) 121)))
-(((-391 |#1| |#2| |#3| |#4|) (-13 (-450) (-10 -8 (-15 -3666 ($ (-1172 |#4|))) (-15 -2499 ((-1172 |#4|) $)) (-15 -3477 (|#2| $)) (-15 -1303 ((-1172 |#4|) $)) (-15 -1312 (|#1| $)) (-15 -2699 ($ $)) (-15 -3923 (|#4| (-713) (-1172 |#4|))))) (-286) (-924 |#1|) (-1148 |#2|) (-13 (-387 |#2| |#3|) (-967 |#2|))) (T -391))
-((-3666 (*1 *1 *2) (-12 (-5 *2 (-1172 *6)) (-4 *6 (-13 (-387 *4 *5) (-967 *4))) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) (-4 *3 (-286)) (-5 *1 (-391 *3 *4 *5 *6)))) (-2499 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) (-5 *2 (-1172 *6)) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *6 (-13 (-387 *4 *5) (-967 *4))))) (-3477 (*1 *2 *1) (-12 (-4 *4 (-1148 *2)) (-4 *2 (-924 *3)) (-5 *1 (-391 *3 *2 *4 *5)) (-4 *3 (-286)) (-4 *5 (-13 (-387 *2 *4) (-967 *2))))) (-1303 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) (-5 *2 (-1172 *6)) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *6 (-13 (-387 *4 *5) (-967 *4))))) (-1312 (*1 *2 *1) (-12 (-4 *3 (-924 *2)) (-4 *4 (-1148 *3)) (-4 *2 (-286)) (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-967 *3))))) (-2699 (*1 *1 *1) (-12 (-4 *2 (-286)) (-4 *3 (-924 *2)) (-4 *4 (-1148 *3)) (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-967 *3))))) (-3923 (*1 *2 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-1172 *2)) (-4 *5 (-286)) (-4 *6 (-924 *5)) (-4 *2 (-13 (-387 *6 *7) (-967 *6))) (-5 *1 (-391 *5 *6 *7 *2)) (-4 *7 (-1148 *6)))))
-(-13 (-450) (-10 -8 (-15 -3666 ($ (-1172 |#4|))) (-15 -2499 ((-1172 |#4|) $)) (-15 -3477 (|#2| $)) (-15 -1303 ((-1172 |#4|) $)) (-15 -1312 (|#1| $)) (-15 -2699 ($ $)) (-15 -3923 (|#4| (-713) (-1172 |#4|)))))
-((-1893 (((-108) $ $) NIL)) (-1505 (($) NIL T CONST)) (-2866 (((-3 $ "failed") $) NIL)) (-2133 (((-108) $) NIL)) (-3477 ((|#2| $) 61)) (-4101 (($ (-1172 |#4|)) 25) (($ (-391 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-967 |#2|)))) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 34)) (-2499 (((-1172 |#4|) $) 26)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3882 (($) 23 T CONST)) (-3961 (((-108) $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ $ $) 72)))
-(((-392 |#1| |#2| |#3| |#4| |#5|) (-13 (-669) (-10 -8 (-15 -2499 ((-1172 |#4|) $)) (-15 -3477 (|#2| $)) (-15 -4101 ($ (-1172 |#4|))) (IF (|has| |#4| (-967 |#2|)) (-15 -4101 ($ (-391 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-286) (-924 |#1|) (-1148 |#2|) (-387 |#2| |#3|) (-1172 |#4|)) (T -392))
-((-2499 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) (-5 *2 (-1172 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7)) (-4 *6 (-387 *4 *5)) (-14 *7 (-1172 *6)))) (-3477 (*1 *2 *1) (-12 (-4 *4 (-1148 *2)) (-4 *2 (-924 *3)) (-5 *1 (-392 *3 *2 *4 *5 *6)) (-4 *3 (-286)) (-4 *5 (-387 *2 *4)) (-14 *6 (-1172 *5)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-1172 *6)) (-4 *6 (-387 *4 *5)) (-14 *7 (-1172 *6)) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) (-4 *3 (-286)) (-5 *1 (-392 *3 *4 *5 *6 *7)))) (-4101 (*1 *1 *2) (-12 (-5 *2 (-391 *3 *4 *5 *6)) (-4 *6 (-967 *4)) (-4 *3 (-286)) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) (-4 *6 (-387 *4 *5)) (-14 *7 (-1172 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7)))))
-(-13 (-669) (-10 -8 (-15 -2499 ((-1172 |#4|) $)) (-15 -3477 (|#2| $)) (-15 -4101 ($ (-1172 |#4|))) (IF (|has| |#4| (-967 |#2|)) (-15 -4101 ($ (-391 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-1370 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1370 (|#3| (-1 |#4| |#2|) |#1|))) (-395 |#2|) (-160) (-395 |#4|) (-160)) (T -393))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-395 *6)) (-5 *1 (-393 *4 *5 *2 *6)) (-4 *4 (-395 *5)))))
-(-10 -7 (-15 -1370 (|#3| (-1 |#4| |#2|) |#1|)))
-((-3957 (((-3 $ "failed")) 86)) (-2722 (((-1172 (-632 |#2|)) (-1172 $)) NIL) (((-1172 (-632 |#2|))) 91)) (-2800 (((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed")) 85)) (-1496 (((-3 $ "failed")) 84)) (-1460 (((-632 |#2|) (-1172 $)) NIL) (((-632 |#2|)) 102)) (-3440 (((-632 |#2|) $ (-1172 $)) NIL) (((-632 |#2|) $) 110)) (-1743 (((-1086 (-886 |#2|))) 55)) (-2519 ((|#2| (-1172 $)) NIL) ((|#2|) 106)) (-2229 (($ (-1172 |#2|) (-1172 $)) NIL) (($ (-1172 |#2|)) 113)) (-4033 (((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed")) 83)) (-1850 (((-3 $ "failed")) 75)) (-2205 (((-632 |#2|) (-1172 $)) NIL) (((-632 |#2|)) 100)) (-1306 (((-632 |#2|) $ (-1172 $)) NIL) (((-632 |#2|) $) 108)) (-2568 (((-1086 (-886 |#2|))) 54)) (-3060 ((|#2| (-1172 $)) NIL) ((|#2|) 104)) (-4093 (((-1172 |#2|) $ (-1172 $)) NIL) (((-632 |#2|) (-1172 $) (-1172 $)) NIL) (((-1172 |#2|) $) NIL) (((-632 |#2|) (-1172 $)) 112)) (-1427 (((-1172 |#2|) $) 96) (($ (-1172 |#2|)) 98)) (-2274 (((-592 (-886 |#2|)) (-1172 $)) NIL) (((-592 (-886 |#2|))) 94)) (-3088 (($ (-632 |#2|) $) 90)))
-(((-394 |#1| |#2|) (-10 -8 (-15 -3088 (|#1| (-632 |#2|) |#1|)) (-15 -1743 ((-1086 (-886 |#2|)))) (-15 -2568 ((-1086 (-886 |#2|)))) (-15 -3440 ((-632 |#2|) |#1|)) (-15 -1306 ((-632 |#2|) |#1|)) (-15 -1460 ((-632 |#2|))) (-15 -2205 ((-632 |#2|))) (-15 -2519 (|#2|)) (-15 -3060 (|#2|)) (-15 -1427 (|#1| (-1172 |#2|))) (-15 -1427 ((-1172 |#2|) |#1|)) (-15 -2229 (|#1| (-1172 |#2|))) (-15 -2274 ((-592 (-886 |#2|)))) (-15 -2722 ((-1172 (-632 |#2|)))) (-15 -4093 ((-632 |#2|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1|)) (-15 -3957 ((-3 |#1| "failed"))) (-15 -1496 ((-3 |#1| "failed"))) (-15 -1850 ((-3 |#1| "failed"))) (-15 -2800 ((-3 (-2 (|:| |particular| |#1|) (|:| -2499 (-592 |#1|))) "failed"))) (-15 -4033 ((-3 (-2 (|:| |particular| |#1|) (|:| -2499 (-592 |#1|))) "failed"))) (-15 -1460 ((-632 |#2|) (-1172 |#1|))) (-15 -2205 ((-632 |#2|) (-1172 |#1|))) (-15 -2519 (|#2| (-1172 |#1|))) (-15 -3060 (|#2| (-1172 |#1|))) (-15 -2229 (|#1| (-1172 |#2|) (-1172 |#1|))) (-15 -4093 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -3440 ((-632 |#2|) |#1| (-1172 |#1|))) (-15 -1306 ((-632 |#2|) |#1| (-1172 |#1|))) (-15 -2722 ((-1172 (-632 |#2|)) (-1172 |#1|))) (-15 -2274 ((-592 (-886 |#2|)) (-1172 |#1|)))) (-395 |#2|) (-160)) (T -394))
-((-2722 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1172 (-632 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-2274 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-592 (-886 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-3060 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2)))) (-2519 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2)))) (-2205 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-1460 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-2568 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1086 (-886 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-1743 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1086 (-886 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))))
-(-10 -8 (-15 -3088 (|#1| (-632 |#2|) |#1|)) (-15 -1743 ((-1086 (-886 |#2|)))) (-15 -2568 ((-1086 (-886 |#2|)))) (-15 -3440 ((-632 |#2|) |#1|)) (-15 -1306 ((-632 |#2|) |#1|)) (-15 -1460 ((-632 |#2|))) (-15 -2205 ((-632 |#2|))) (-15 -2519 (|#2|)) (-15 -3060 (|#2|)) (-15 -1427 (|#1| (-1172 |#2|))) (-15 -1427 ((-1172 |#2|) |#1|)) (-15 -2229 (|#1| (-1172 |#2|))) (-15 -2274 ((-592 (-886 |#2|)))) (-15 -2722 ((-1172 (-632 |#2|)))) (-15 -4093 ((-632 |#2|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1|)) (-15 -3957 ((-3 |#1| "failed"))) (-15 -1496 ((-3 |#1| "failed"))) (-15 -1850 ((-3 |#1| "failed"))) (-15 -2800 ((-3 (-2 (|:| |particular| |#1|) (|:| -2499 (-592 |#1|))) "failed"))) (-15 -4033 ((-3 (-2 (|:| |particular| |#1|) (|:| -2499 (-592 |#1|))) "failed"))) (-15 -1460 ((-632 |#2|) (-1172 |#1|))) (-15 -2205 ((-632 |#2|) (-1172 |#1|))) (-15 -2519 (|#2| (-1172 |#1|))) (-15 -3060 (|#2| (-1172 |#1|))) (-15 -2229 (|#1| (-1172 |#2|) (-1172 |#1|))) (-15 -4093 ((-632 |#2|) (-1172 |#1|) (-1172 |#1|))) (-15 -4093 ((-1172 |#2|) |#1| (-1172 |#1|))) (-15 -3440 ((-632 |#2|) |#1| (-1172 |#1|))) (-15 -1306 ((-632 |#2|) |#1| (-1172 |#1|))) (-15 -2722 ((-1172 (-632 |#2|)) (-1172 |#1|))) (-15 -2274 ((-592 (-886 |#2|)) (-1172 |#1|))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3957 (((-3 $ "failed")) 37 (|has| |#1| (-517)))) (-3263 (((-3 $ "failed") $ $) 19)) (-2722 (((-1172 (-632 |#1|)) (-1172 $)) 78) (((-1172 (-632 |#1|))) 100)) (-1917 (((-1172 $)) 81)) (-1505 (($) 17 T CONST)) (-2800 (((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed")) 40 (|has| |#1| (-517)))) (-1496 (((-3 $ "failed")) 38 (|has| |#1| (-517)))) (-1460 (((-632 |#1|) (-1172 $)) 65) (((-632 |#1|)) 92)) (-2386 ((|#1| $) 74)) (-3440 (((-632 |#1|) $ (-1172 $)) 76) (((-632 |#1|) $) 90)) (-1391 (((-3 $ "failed") $) 45 (|has| |#1| (-517)))) (-1743 (((-1086 (-886 |#1|))) 88 (|has| |#1| (-341)))) (-2979 (($ $ (-855)) 28)) (-3376 ((|#1| $) 72)) (-2706 (((-1086 |#1|) $) 42 (|has| |#1| (-517)))) (-2519 ((|#1| (-1172 $)) 67) ((|#1|) 94)) (-2908 (((-1086 |#1|) $) 63)) (-1814 (((-108)) 57)) (-2229 (($ (-1172 |#1|) (-1172 $)) 69) (($ (-1172 |#1|)) 98)) (-2866 (((-3 $ "failed") $) 47 (|has| |#1| (-517)))) (-2239 (((-855)) 80)) (-2301 (((-108)) 54)) (-2097 (($ $ (-855)) 33)) (-2795 (((-108)) 50)) (-3251 (((-108)) 48)) (-2775 (((-108)) 52)) (-4033 (((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed")) 41 (|has| |#1| (-517)))) (-1850 (((-3 $ "failed")) 39 (|has| |#1| (-517)))) (-2205 (((-632 |#1|) (-1172 $)) 66) (((-632 |#1|)) 93)) (-2389 ((|#1| $) 75)) (-1306 (((-632 |#1|) $ (-1172 $)) 77) (((-632 |#1|) $) 91)) (-2364 (((-3 $ "failed") $) 46 (|has| |#1| (-517)))) (-2568 (((-1086 (-886 |#1|))) 89 (|has| |#1| (-341)))) (-1640 (($ $ (-855)) 29)) (-3342 ((|#1| $) 73)) (-2900 (((-1086 |#1|) $) 43 (|has| |#1| (-517)))) (-3060 ((|#1| (-1172 $)) 68) ((|#1|) 95)) (-2535 (((-1086 |#1|) $) 64)) (-1506 (((-108)) 58)) (-2337 (((-1073) $) 9)) (-3886 (((-108)) 49)) (-1886 (((-108)) 51)) (-2597 (((-108)) 53)) (-2663 (((-1037) $) 10)) (-2120 (((-108)) 56)) (-3928 ((|#1| $ (-525)) 101)) (-4093 (((-1172 |#1|) $ (-1172 $)) 71) (((-632 |#1|) (-1172 $) (-1172 $)) 70) (((-1172 |#1|) $) 103) (((-632 |#1|) (-1172 $)) 102)) (-1427 (((-1172 |#1|) $) 97) (($ (-1172 |#1|)) 96)) (-2274 (((-592 (-886 |#1|)) (-1172 $)) 79) (((-592 (-886 |#1|))) 99)) (-1518 (($ $ $) 25)) (-1380 (((-108)) 62)) (-1908 (((-797) $) 11)) (-2499 (((-1172 $)) 104)) (-1648 (((-592 (-1172 |#1|))) 44 (|has| |#1| (-517)))) (-2260 (($ $ $ $) 26)) (-3132 (((-108)) 60)) (-3088 (($ (-632 |#1|) $) 87)) (-2331 (($ $ $) 24)) (-1447 (((-108)) 61)) (-3432 (((-108)) 59)) (-2303 (((-108)) 55)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 30)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-2294 (*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-382)))) (-2294 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-856)) (-4 *1 (-382)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-3200 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-1820 (*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525)))) (-1764 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))) (-3342 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))) (-1683 (*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))) (-1764 (*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4246)) (-4 *1 (-382)))) (-3342 (*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4246)) (-4 *1 (-382)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4246)) (-4 *1 (-382)))) (-2064 (*1 *2 *3) (-12 (-5 *3 (-525)) (|has| *1 (-6 -4246)) (-4 *1 (-382)) (-5 *2 (-856)))) (-2425 (*1 *2 *3) (-12 (-5 *3 (-525)) (|has| *1 (-6 -4246)) (-4 *1 (-382)) (-5 *2 (-856)))) (-2371 (*1 *1) (-12 (-4 *1 (-382)) (-1825 (|has| *1 (-6 -4246))) (-1825 (|has| *1 (-6 -4238))))) (-2535 (*1 *1) (-12 (-4 *1 (-382)) (-1825 (|has| *1 (-6 -4246))) (-1825 (|has| *1 (-6 -4238))))))
+(-13 (-986) (-10 -8 (-6 -1369) (-15 -2294 ($ (-525) (-525))) (-15 -2294 ($ (-525) (-525) (-856))) (-15 -3973 ((-525) $)) (-15 -3200 ((-856))) (-15 -1864 ((-525) $)) (-15 -1820 ((-525) $)) (-15 -1764 ((-856))) (-15 -3342 ((-856))) (-15 -1683 ((-856))) (IF (|has| $ (-6 -4246)) (PROGN (-15 -1764 ((-856) (-856))) (-15 -3342 ((-856) (-856))) (-15 -1683 ((-856) (-856))) (-15 -2064 ((-856) (-525))) (-15 -2425 ((-856) (-525)))) |%noBranch|) (IF (|has| $ (-6 -4238)) |%noBranch| (IF (|has| $ (-6 -4246)) |%noBranch| (PROGN (-15 -2371 ($)) (-15 -2535 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-798)) . T) ((-160) . T) ((-567 (-205)) . T) ((-567 (-357)) . T) ((-567 (-827 (-357))) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-787) . T) ((-789) . T) ((-821 (-357)) . T) ((-855) . T) ((-934) . T) ((-953) . T) ((-986) . T) ((-968 (-385 (-525))) . T) ((-968 (-525)) . T) ((-983 #0#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1131) . T))
+((-2694 (((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|)) 20)))
+(((-383 |#1| |#2|) (-10 -7 (-15 -2694 ((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|)))) (-517) (-517)) (T -383))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-396 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-5 *2 (-396 *6)) (-5 *1 (-383 *5 *6)))))
+(-10 -7 (-15 -2694 ((-396 |#2|) (-1 |#2| |#1|) (-396 |#1|))))
+((-2694 (((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|)) 13)))
+(((-384 |#1| |#2|) (-10 -7 (-15 -2694 ((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|)))) (-517) (-517)) (T -384))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-385 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-5 *2 (-385 *6)) (-5 *1 (-384 *5 *6)))))
+(-10 -7 (-15 -2694 ((-385 |#2|) (-1 |#2| |#1|) (-385 |#1|))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 13)) (-2628 ((|#1| $) 21 (|has| |#1| (-286)))) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-3197 (((-108) $ $) NIL)) (-1436 (((-525) $) NIL (|has| |#1| (-762)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) 17) (((-3 (-1091) "failed") $) NIL (|has| |#1| (-968 (-1091)))) (((-3 (-385 (-525)) "failed") $) 70 (|has| |#1| (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525))))) (-3898 ((|#1| $) 15) (((-1091) $) NIL (|has| |#1| (-968 (-1091)))) (((-385 (-525)) $) 67 (|has| |#1| (-968 (-525)))) (((-525) $) NIL (|has| |#1| (-968 (-525))))) (-1726 (($ $ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) 50)) (-2899 (($) NIL (|has| |#1| (-510)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-3017 (((-108) $) NIL (|has| |#1| (-762)))) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| |#1| (-821 (-357))))) (-1985 (((-108) $) 64)) (-1931 (($ $) NIL)) (-1498 ((|#1| $) 71)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-1067)))) (-3912 (((-108) $) NIL (|has| |#1| (-762)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL (|has| |#1| (-1067)) CONST)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 97)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3025 (($ $) NIL (|has| |#1| (-286)))) (-2793 ((|#1| $) 28 (|has| |#1| (-510)))) (-1215 (((-396 (-1087 $)) (-1087 $)) 135 (|has| |#1| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) 131 (|has| |#1| (-844)))) (-2195 (((-396 $) $) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2602 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1091)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1091) |#1|))) (($ $ (-1091) |#1|) NIL (|has| |#1| (-486 (-1091) |#1|)))) (-1290 (((-713) $) NIL)) (-3410 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2523 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2097 (($ $) NIL)) (-1512 ((|#1| $) 73)) (-2749 (((-827 (-525)) $) NIL (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| |#1| (-567 (-827 (-357))))) (((-501) $) NIL (|has| |#1| (-567 (-501)))) (((-357) $) NIL (|has| |#1| (-953))) (((-205) $) NIL (|has| |#1| (-953)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) 115 (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 10) (($ (-1091)) NIL (|has| |#1| (-968 (-1091))))) (-3425 (((-3 $ "failed") $) 99 (-3279 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2104 (((-713)) 100)) (-1438 ((|#1| $) 26 (|has| |#1| (-510)))) (-3959 (((-108) $ $) NIL)) (-2086 (($ $) NIL (|has| |#1| (-762)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) 22 T CONST)) (-3363 (($) 8 T CONST)) (-2255 (((-1074) $) 43 (-12 (|has| |#1| (-510)) (|has| |#1| (-770)))) (((-1074) $ (-108)) 44 (-12 (|has| |#1| (-510)) (|has| |#1| (-770)))) (((-1178) (-764) $) 45 (-12 (|has| |#1| (-510)) (|has| |#1| (-770)))) (((-1178) (-764) $ (-108)) 46 (-12 (|has| |#1| (-510)) (|has| |#1| (-770))))) (-2093 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) 56)) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) 24 (|has| |#1| (-789)))) (-4100 (($ $ $) 126) (($ |#1| |#1|) 52)) (-4090 (($ $) 25) (($ $ $) 55)) (-4080 (($ $ $) 53)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 125)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 60) (($ $ $) 57) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
+(((-385 |#1|) (-13 (-925 |#1|) (-10 -7 (IF (|has| |#1| (-510)) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4242)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-6 -4253)) (-6 -4242) |%noBranch|) |%noBranch|) |%noBranch|))) (-517)) (T -385))
+NIL
+(-13 (-925 |#1|) (-10 -7 (IF (|has| |#1| (-510)) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4242)) (IF (|has| |#1| (-429)) (IF (|has| |#1| (-6 -4253)) (-6 -4242) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-1264 (((-632 |#2|) (-1173 $)) NIL) (((-632 |#2|)) 18)) (-3612 (($ (-1173 |#2|) (-1173 $)) NIL) (($ (-1173 |#2|)) 26)) (-2312 (((-632 |#2|) $ (-1173 $)) NIL) (((-632 |#2|) $) 22)) (-2640 ((|#3| $) 60)) (-2094 ((|#2| (-1173 $)) NIL) ((|#2|) 20)) (-3464 (((-1173 |#2|) $ (-1173 $)) NIL) (((-632 |#2|) (-1173 $) (-1173 $)) NIL) (((-1173 |#2|) $) NIL) (((-632 |#2|) (-1173 $)) 24)) (-2749 (((-1173 |#2|) $) 11) (($ (-1173 |#2|)) 13)) (-1805 ((|#3| $) 52)))
+(((-386 |#1| |#2| |#3|) (-10 -8 (-15 -2312 ((-632 |#2|) |#1|)) (-15 -2094 (|#2|)) (-15 -1264 ((-632 |#2|))) (-15 -2749 (|#1| (-1173 |#2|))) (-15 -2749 ((-1173 |#2|) |#1|)) (-15 -3612 (|#1| (-1173 |#2|))) (-15 -3464 ((-632 |#2|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1|)) (-15 -2640 (|#3| |#1|)) (-15 -1805 (|#3| |#1|)) (-15 -1264 ((-632 |#2|) (-1173 |#1|))) (-15 -2094 (|#2| (-1173 |#1|))) (-15 -3612 (|#1| (-1173 |#2|) (-1173 |#1|))) (-15 -3464 ((-632 |#2|) (-1173 |#1|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1| (-1173 |#1|))) (-15 -2312 ((-632 |#2|) |#1| (-1173 |#1|)))) (-387 |#2| |#3|) (-160) (-1149 |#2|)) (T -386))
+((-1264 (*1 *2) (-12 (-4 *4 (-160)) (-4 *5 (-1149 *4)) (-5 *2 (-632 *4)) (-5 *1 (-386 *3 *4 *5)) (-4 *3 (-387 *4 *5)))) (-2094 (*1 *2) (-12 (-4 *4 (-1149 *2)) (-4 *2 (-160)) (-5 *1 (-386 *3 *2 *4)) (-4 *3 (-387 *2 *4)))))
+(-10 -8 (-15 -2312 ((-632 |#2|) |#1|)) (-15 -2094 (|#2|)) (-15 -1264 ((-632 |#2|))) (-15 -2749 (|#1| (-1173 |#2|))) (-15 -2749 ((-1173 |#2|) |#1|)) (-15 -3612 (|#1| (-1173 |#2|))) (-15 -3464 ((-632 |#2|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1|)) (-15 -2640 (|#3| |#1|)) (-15 -1805 (|#3| |#1|)) (-15 -1264 ((-632 |#2|) (-1173 |#1|))) (-15 -2094 (|#2| (-1173 |#1|))) (-15 -3612 (|#1| (-1173 |#2|) (-1173 |#1|))) (-15 -3464 ((-632 |#2|) (-1173 |#1|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1| (-1173 |#1|))) (-15 -2312 ((-632 |#2|) |#1| (-1173 |#1|))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1264 (((-632 |#1|) (-1173 $)) 46) (((-632 |#1|)) 61)) (-3029 ((|#1| $) 52)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3612 (($ (-1173 |#1|) (-1173 $)) 48) (($ (-1173 |#1|)) 64)) (-2312 (((-632 |#1|) $ (-1173 $)) 53) (((-632 |#1|) $) 59)) (-3762 (((-3 $ "failed") $) 34)) (-3318 (((-856)) 54)) (-1985 (((-108) $) 31)) (-2900 ((|#1| $) 51)) (-2640 ((|#2| $) 44 (|has| |#1| (-341)))) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-2094 ((|#1| (-1173 $)) 47) ((|#1|) 60)) (-3464 (((-1173 |#1|) $ (-1173 $)) 50) (((-632 |#1|) (-1173 $) (-1173 $)) 49) (((-1173 |#1|) $) 66) (((-632 |#1|) (-1173 $)) 65)) (-2749 (((-1173 |#1|) $) 63) (($ (-1173 |#1|)) 62)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37)) (-3425 (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-1805 ((|#2| $) 45)) (-2104 (((-713)) 29)) (-1449 (((-1173 $)) 67)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-387 |#1| |#2|) (-131) (-160) (-1149 |t#1|)) (T -387))
+((-1449 (*1 *2) (-12 (-4 *3 (-160)) (-4 *4 (-1149 *3)) (-5 *2 (-1173 *1)) (-4 *1 (-387 *3 *4)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1149 *3)) (-5 *2 (-1173 *3)))) (-3464 (*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-160)) (-4 *5 (-1149 *4)) (-5 *2 (-632 *4)))) (-3612 (*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4)) (-4 *4 (-1149 *3)))) (-2749 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1149 *3)) (-5 *2 (-1173 *3)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4)) (-4 *4 (-1149 *3)))) (-1264 (*1 *2) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1149 *3)) (-5 *2 (-632 *3)))) (-2094 (*1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1149 *2)) (-4 *2 (-160)))) (-2312 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1149 *3)) (-5 *2 (-632 *3)))))
+(-13 (-348 |t#1| |t#2|) (-10 -8 (-15 -1449 ((-1173 $))) (-15 -3464 ((-1173 |t#1|) $)) (-15 -3464 ((-632 |t#1|) (-1173 $))) (-15 -3612 ($ (-1173 |t#1|))) (-15 -2749 ((-1173 |t#1|) $)) (-15 -2749 ($ (-1173 |t#1|))) (-15 -1264 ((-632 |t#1|))) (-15 -2094 (|t#1|)) (-15 -2312 ((-632 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-348 |#1| |#2|) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) . T) ((-669) . T) ((-983 |#1|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-2591 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) 27) (((-3 (-525) "failed") $) 19)) (-3898 ((|#2| $) NIL) (((-385 (-525)) $) 24) (((-525) $) 14)) (-1270 (($ |#2|) NIL) (($ (-385 (-525))) 22) (($ (-525)) 11)))
+(((-388 |#1| |#2|) (-10 -8 (-15 -3898 ((-525) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -1270 (|#1| (-525))) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -1270 (|#1| |#2|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -3898 (|#2| |#1|))) (-389 |#2|) (-1127)) (T -388))
+NIL
+(-10 -8 (-15 -3898 ((-525) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -1270 (|#1| (-525))) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -1270 (|#1| |#2|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -3898 (|#2| |#1|)))
+((-2591 (((-3 |#1| "failed") $) 7) (((-3 (-385 (-525)) "failed") $) 16 (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) 13 (|has| |#1| (-968 (-525))))) (-3898 ((|#1| $) 8) (((-385 (-525)) $) 15 (|has| |#1| (-968 (-385 (-525))))) (((-525) $) 12 (|has| |#1| (-968 (-525))))) (-1270 (($ |#1|) 6) (($ (-385 (-525))) 17 (|has| |#1| (-968 (-385 (-525))))) (($ (-525)) 14 (|has| |#1| (-968 (-525))))))
+(((-389 |#1|) (-131) (-1127)) (T -389))
+NIL
+(-13 (-968 |t#1|) (-10 -7 (IF (|has| |t#1| (-968 (-525))) (-6 (-968 (-525))) |%noBranch|) (IF (|has| |t#1| (-968 (-385 (-525)))) (-6 (-968 (-385 (-525)))) |%noBranch|)))
+(((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T))
+((-2694 (((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|)) 33)))
+(((-390 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2694 ((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|)))) (-286) (-925 |#1|) (-1149 |#2|) (-13 (-387 |#2| |#3|) (-968 |#2|)) (-286) (-925 |#5|) (-1149 |#6|) (-13 (-387 |#6| |#7|) (-968 |#6|))) (T -390))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-391 *5 *6 *7 *8)) (-4 *5 (-286)) (-4 *6 (-925 *5)) (-4 *7 (-1149 *6)) (-4 *8 (-13 (-387 *6 *7) (-968 *6))) (-4 *9 (-286)) (-4 *10 (-925 *9)) (-4 *11 (-1149 *10)) (-5 *2 (-391 *9 *10 *11 *12)) (-5 *1 (-390 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-387 *10 *11) (-968 *10))))))
+(-10 -7 (-15 -2694 ((-391 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-391 |#1| |#2| |#3| |#4|))))
+((-1260 (((-108) $ $) NIL)) (-2305 (($) NIL T CONST)) (-3762 (((-3 $ "failed") $) NIL)) (-1541 ((|#4| (-713) (-1173 |#4|)) 56)) (-1985 (((-108) $) NIL)) (-1498 (((-1173 |#4|) $) 17)) (-2900 ((|#2| $) 54)) (-2863 (($ $) 139)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 100)) (-4015 (($ (-1173 |#4|)) 99)) (-2012 (((-1038) $) NIL)) (-1512 ((|#1| $) 18)) (-3700 (($ $ $) NIL)) (-2222 (($ $ $) NIL)) (-1270 (((-798) $) 134)) (-1449 (((-1173 |#4|) $) 129)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3363 (($) 11 T CONST)) (-3994 (((-108) $ $) 40)) (-4100 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 122)) (* (($ $ $) 121)))
+(((-391 |#1| |#2| |#3| |#4|) (-13 (-450) (-10 -8 (-15 -4015 ($ (-1173 |#4|))) (-15 -1449 ((-1173 |#4|) $)) (-15 -2900 (|#2| $)) (-15 -1498 ((-1173 |#4|) $)) (-15 -1512 (|#1| $)) (-15 -2863 ($ $)) (-15 -1541 (|#4| (-713) (-1173 |#4|))))) (-286) (-925 |#1|) (-1149 |#2|) (-13 (-387 |#2| |#3|) (-968 |#2|))) (T -391))
+((-4015 (*1 *1 *2) (-12 (-5 *2 (-1173 *6)) (-4 *6 (-13 (-387 *4 *5) (-968 *4))) (-4 *4 (-925 *3)) (-4 *5 (-1149 *4)) (-4 *3 (-286)) (-5 *1 (-391 *3 *4 *5 *6)))) (-1449 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1149 *4)) (-5 *2 (-1173 *6)) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *6 (-13 (-387 *4 *5) (-968 *4))))) (-2900 (*1 *2 *1) (-12 (-4 *4 (-1149 *2)) (-4 *2 (-925 *3)) (-5 *1 (-391 *3 *2 *4 *5)) (-4 *3 (-286)) (-4 *5 (-13 (-387 *2 *4) (-968 *2))))) (-1498 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1149 *4)) (-5 *2 (-1173 *6)) (-5 *1 (-391 *3 *4 *5 *6)) (-4 *6 (-13 (-387 *4 *5) (-968 *4))))) (-1512 (*1 *2 *1) (-12 (-4 *3 (-925 *2)) (-4 *4 (-1149 *3)) (-4 *2 (-286)) (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-968 *3))))) (-2863 (*1 *1 *1) (-12 (-4 *2 (-286)) (-4 *3 (-925 *2)) (-4 *4 (-1149 *3)) (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-968 *3))))) (-1541 (*1 *2 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-1173 *2)) (-4 *5 (-286)) (-4 *6 (-925 *5)) (-4 *2 (-13 (-387 *6 *7) (-968 *6))) (-5 *1 (-391 *5 *6 *7 *2)) (-4 *7 (-1149 *6)))))
+(-13 (-450) (-10 -8 (-15 -4015 ($ (-1173 |#4|))) (-15 -1449 ((-1173 |#4|) $)) (-15 -2900 (|#2| $)) (-15 -1498 ((-1173 |#4|) $)) (-15 -1512 (|#1| $)) (-15 -2863 ($ $)) (-15 -1541 (|#4| (-713) (-1173 |#4|)))))
+((-1260 (((-108) $ $) NIL)) (-2305 (($) NIL T CONST)) (-3762 (((-3 $ "failed") $) NIL)) (-1985 (((-108) $) NIL)) (-2900 ((|#2| $) 61)) (-3541 (($ (-1173 |#4|)) 25) (($ (-391 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-968 |#2|)))) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 34)) (-1449 (((-1173 |#4|) $) 26)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3363 (($) 23 T CONST)) (-3994 (((-108) $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ $ $) 72)))
+(((-392 |#1| |#2| |#3| |#4| |#5|) (-13 (-669) (-10 -8 (-15 -1449 ((-1173 |#4|) $)) (-15 -2900 (|#2| $)) (-15 -3541 ($ (-1173 |#4|))) (IF (|has| |#4| (-968 |#2|)) (-15 -3541 ($ (-391 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-286) (-925 |#1|) (-1149 |#2|) (-387 |#2| |#3|) (-1173 |#4|)) (T -392))
+((-1449 (*1 *2 *1) (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1149 *4)) (-5 *2 (-1173 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7)) (-4 *6 (-387 *4 *5)) (-14 *7 (-1173 *6)))) (-2900 (*1 *2 *1) (-12 (-4 *4 (-1149 *2)) (-4 *2 (-925 *3)) (-5 *1 (-392 *3 *2 *4 *5 *6)) (-4 *3 (-286)) (-4 *5 (-387 *2 *4)) (-14 *6 (-1173 *5)))) (-3541 (*1 *1 *2) (-12 (-5 *2 (-1173 *6)) (-4 *6 (-387 *4 *5)) (-14 *7 (-1173 *6)) (-4 *4 (-925 *3)) (-4 *5 (-1149 *4)) (-4 *3 (-286)) (-5 *1 (-392 *3 *4 *5 *6 *7)))) (-3541 (*1 *1 *2) (-12 (-5 *2 (-391 *3 *4 *5 *6)) (-4 *6 (-968 *4)) (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1149 *4)) (-4 *6 (-387 *4 *5)) (-14 *7 (-1173 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7)))))
+(-13 (-669) (-10 -8 (-15 -1449 ((-1173 |#4|) $)) (-15 -2900 (|#2| $)) (-15 -3541 ($ (-1173 |#4|))) (IF (|has| |#4| (-968 |#2|)) (-15 -3541 ($ (-391 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-2694 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-393 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2694 (|#3| (-1 |#4| |#2|) |#1|))) (-395 |#2|) (-160) (-395 |#4|) (-160)) (T -393))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-395 *6)) (-5 *1 (-393 *4 *5 *2 *6)) (-4 *4 (-395 *5)))))
+(-10 -7 (-15 -2694 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1790 (((-3 $ "failed")) 86)) (-3019 (((-1173 (-632 |#2|)) (-1173 $)) NIL) (((-1173 (-632 |#2|))) 91)) (-1316 (((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed")) 85)) (-2144 (((-3 $ "failed")) 84)) (-2306 (((-632 |#2|) (-1173 $)) NIL) (((-632 |#2|)) 102)) (-3591 (((-632 |#2|) $ (-1173 $)) NIL) (((-632 |#2|) $) 110)) (-4043 (((-1087 (-887 |#2|))) 55)) (-1638 ((|#2| (-1173 $)) NIL) ((|#2|) 106)) (-3612 (($ (-1173 |#2|) (-1173 $)) NIL) (($ (-1173 |#2|)) 113)) (-4167 (((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed")) 83)) (-3322 (((-3 $ "failed")) 75)) (-1518 (((-632 |#2|) (-1173 $)) NIL) (((-632 |#2|)) 100)) (-2561 (((-632 |#2|) $ (-1173 $)) NIL) (((-632 |#2|) $) 108)) (-3935 (((-1087 (-887 |#2|))) 54)) (-2021 ((|#2| (-1173 $)) NIL) ((|#2|) 104)) (-3464 (((-1173 |#2|) $ (-1173 $)) NIL) (((-632 |#2|) (-1173 $) (-1173 $)) NIL) (((-1173 |#2|) $) NIL) (((-632 |#2|) (-1173 $)) 112)) (-2749 (((-1173 |#2|) $) 96) (($ (-1173 |#2|)) 98)) (-4059 (((-592 (-887 |#2|)) (-1173 $)) NIL) (((-592 (-887 |#2|))) 94)) (-4169 (($ (-632 |#2|) $) 90)))
+(((-394 |#1| |#2|) (-10 -8 (-15 -4169 (|#1| (-632 |#2|) |#1|)) (-15 -4043 ((-1087 (-887 |#2|)))) (-15 -3935 ((-1087 (-887 |#2|)))) (-15 -3591 ((-632 |#2|) |#1|)) (-15 -2561 ((-632 |#2|) |#1|)) (-15 -2306 ((-632 |#2|))) (-15 -1518 ((-632 |#2|))) (-15 -1638 (|#2|)) (-15 -2021 (|#2|)) (-15 -2749 (|#1| (-1173 |#2|))) (-15 -2749 ((-1173 |#2|) |#1|)) (-15 -3612 (|#1| (-1173 |#2|))) (-15 -4059 ((-592 (-887 |#2|)))) (-15 -3019 ((-1173 (-632 |#2|)))) (-15 -3464 ((-632 |#2|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1|)) (-15 -1790 ((-3 |#1| "failed"))) (-15 -2144 ((-3 |#1| "failed"))) (-15 -3322 ((-3 |#1| "failed"))) (-15 -1316 ((-3 (-2 (|:| |particular| |#1|) (|:| -1449 (-592 |#1|))) "failed"))) (-15 -4167 ((-3 (-2 (|:| |particular| |#1|) (|:| -1449 (-592 |#1|))) "failed"))) (-15 -2306 ((-632 |#2|) (-1173 |#1|))) (-15 -1518 ((-632 |#2|) (-1173 |#1|))) (-15 -1638 (|#2| (-1173 |#1|))) (-15 -2021 (|#2| (-1173 |#1|))) (-15 -3612 (|#1| (-1173 |#2|) (-1173 |#1|))) (-15 -3464 ((-632 |#2|) (-1173 |#1|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1| (-1173 |#1|))) (-15 -3591 ((-632 |#2|) |#1| (-1173 |#1|))) (-15 -2561 ((-632 |#2|) |#1| (-1173 |#1|))) (-15 -3019 ((-1173 (-632 |#2|)) (-1173 |#1|))) (-15 -4059 ((-592 (-887 |#2|)) (-1173 |#1|)))) (-395 |#2|) (-160)) (T -394))
+((-3019 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1173 (-632 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-4059 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-592 (-887 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-2021 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2)))) (-1638 (*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2)))) (-1518 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-2306 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-3935 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1087 (-887 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))) (-4043 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-1087 (-887 *4))) (-5 *1 (-394 *3 *4)) (-4 *3 (-395 *4)))))
+(-10 -8 (-15 -4169 (|#1| (-632 |#2|) |#1|)) (-15 -4043 ((-1087 (-887 |#2|)))) (-15 -3935 ((-1087 (-887 |#2|)))) (-15 -3591 ((-632 |#2|) |#1|)) (-15 -2561 ((-632 |#2|) |#1|)) (-15 -2306 ((-632 |#2|))) (-15 -1518 ((-632 |#2|))) (-15 -1638 (|#2|)) (-15 -2021 (|#2|)) (-15 -2749 (|#1| (-1173 |#2|))) (-15 -2749 ((-1173 |#2|) |#1|)) (-15 -3612 (|#1| (-1173 |#2|))) (-15 -4059 ((-592 (-887 |#2|)))) (-15 -3019 ((-1173 (-632 |#2|)))) (-15 -3464 ((-632 |#2|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1|)) (-15 -1790 ((-3 |#1| "failed"))) (-15 -2144 ((-3 |#1| "failed"))) (-15 -3322 ((-3 |#1| "failed"))) (-15 -1316 ((-3 (-2 (|:| |particular| |#1|) (|:| -1449 (-592 |#1|))) "failed"))) (-15 -4167 ((-3 (-2 (|:| |particular| |#1|) (|:| -1449 (-592 |#1|))) "failed"))) (-15 -2306 ((-632 |#2|) (-1173 |#1|))) (-15 -1518 ((-632 |#2|) (-1173 |#1|))) (-15 -1638 (|#2| (-1173 |#1|))) (-15 -2021 (|#2| (-1173 |#1|))) (-15 -3612 (|#1| (-1173 |#2|) (-1173 |#1|))) (-15 -3464 ((-632 |#2|) (-1173 |#1|) (-1173 |#1|))) (-15 -3464 ((-1173 |#2|) |#1| (-1173 |#1|))) (-15 -3591 ((-632 |#2|) |#1| (-1173 |#1|))) (-15 -2561 ((-632 |#2|) |#1| (-1173 |#1|))) (-15 -3019 ((-1173 (-632 |#2|)) (-1173 |#1|))) (-15 -4059 ((-592 (-887 |#2|)) (-1173 |#1|))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1790 (((-3 $ "failed")) 37 (|has| |#1| (-517)))) (-1342 (((-3 $ "failed") $ $) 19)) (-3019 (((-1173 (-632 |#1|)) (-1173 $)) 78) (((-1173 (-632 |#1|))) 100)) (-2138 (((-1173 $)) 81)) (-2305 (($) 17 T CONST)) (-1316 (((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed")) 40 (|has| |#1| (-517)))) (-2144 (((-3 $ "failed")) 38 (|has| |#1| (-517)))) (-2306 (((-632 |#1|) (-1173 $)) 65) (((-632 |#1|)) 92)) (-2892 ((|#1| $) 74)) (-3591 (((-632 |#1|) $ (-1173 $)) 76) (((-632 |#1|) $) 90)) (-2962 (((-3 $ "failed") $) 45 (|has| |#1| (-517)))) (-4043 (((-1087 (-887 |#1|))) 88 (|has| |#1| (-341)))) (-3627 (($ $ (-856)) 28)) (-3108 ((|#1| $) 72)) (-2904 (((-1087 |#1|) $) 42 (|has| |#1| (-517)))) (-1638 ((|#1| (-1173 $)) 67) ((|#1|) 94)) (-4159 (((-1087 |#1|) $) 63)) (-1740 (((-108)) 57)) (-3612 (($ (-1173 |#1|) (-1173 $)) 69) (($ (-1173 |#1|)) 98)) (-3762 (((-3 $ "failed") $) 47 (|has| |#1| (-517)))) (-3318 (((-856)) 80)) (-3165 (((-108)) 54)) (-2161 (($ $ (-856)) 33)) (-1275 (((-108)) 50)) (-1242 (((-108)) 48)) (-2394 (((-108)) 52)) (-4167 (((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed")) 41 (|has| |#1| (-517)))) (-3322 (((-3 $ "failed")) 39 (|has| |#1| (-517)))) (-1518 (((-632 |#1|) (-1173 $)) 66) (((-632 |#1|)) 93)) (-2917 ((|#1| $) 75)) (-2561 (((-632 |#1|) $ (-1173 $)) 77) (((-632 |#1|) $) 91)) (-2665 (((-3 $ "failed") $) 46 (|has| |#1| (-517)))) (-3935 (((-1087 (-887 |#1|))) 89 (|has| |#1| (-341)))) (-1404 (($ $ (-856)) 29)) (-3908 ((|#1| $) 73)) (-4073 (((-1087 |#1|) $) 43 (|has| |#1| (-517)))) (-2021 ((|#1| (-1173 $)) 68) ((|#1|) 95)) (-1774 (((-1087 |#1|) $) 64)) (-3171 (((-108)) 58)) (-3451 (((-1074) $) 9)) (-2556 (((-108)) 49)) (-3639 (((-108)) 51)) (-4211 (((-108)) 53)) (-2012 (((-1038) $) 10)) (-1851 (((-108)) 56)) (-3410 ((|#1| $ (-525)) 101)) (-3464 (((-1173 |#1|) $ (-1173 $)) 71) (((-632 |#1|) (-1173 $) (-1173 $)) 70) (((-1173 |#1|) $) 103) (((-632 |#1|) (-1173 $)) 102)) (-2749 (((-1173 |#1|) $) 97) (($ (-1173 |#1|)) 96)) (-4059 (((-592 (-887 |#1|)) (-1173 $)) 79) (((-592 (-887 |#1|))) 99)) (-2222 (($ $ $) 25)) (-2883 (((-108)) 62)) (-1270 (((-798) $) 11)) (-1449 (((-1173 $)) 104)) (-1500 (((-592 (-1173 |#1|))) 44 (|has| |#1| (-517)))) (-3941 (($ $ $ $) 26)) (-1440 (((-108)) 60)) (-4169 (($ (-632 |#1|) $) 87)) (-3395 (($ $ $) 24)) (-3665 (((-108)) 61)) (-3529 (((-108)) 59)) (-3180 (((-108)) 55)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 30)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-395 |#1|) (-131) (-160)) (T -395))
-((-2499 (*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1172 *1)) (-4 *1 (-395 *3)))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1172 *3)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-395 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-3928 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-2722 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1172 (-632 *3))))) (-2274 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-592 (-886 *3))))) (-2229 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))) (-1427 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1172 *3)))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))) (-3060 (*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-2519 (*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-2205 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-1460 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-1306 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-3440 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-2568 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341)) (-5 *2 (-1086 (-886 *3))))) (-1743 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341)) (-5 *2 (-1086 (-886 *3))))) (-3088 (*1 *1 *2 *1) (-12 (-5 *2 (-632 *3)) (-4 *1 (-395 *3)) (-4 *3 (-160)))))
-(-13 (-345 |t#1|) (-10 -8 (-15 -2499 ((-1172 $))) (-15 -4093 ((-1172 |t#1|) $)) (-15 -4093 ((-632 |t#1|) (-1172 $))) (-15 -3928 (|t#1| $ (-525))) (-15 -2722 ((-1172 (-632 |t#1|)))) (-15 -2274 ((-592 (-886 |t#1|)))) (-15 -2229 ($ (-1172 |t#1|))) (-15 -1427 ((-1172 |t#1|) $)) (-15 -1427 ($ (-1172 |t#1|))) (-15 -3060 (|t#1|)) (-15 -2519 (|t#1|)) (-15 -2205 ((-632 |t#1|))) (-15 -1460 ((-632 |t#1|))) (-15 -1306 ((-632 |t#1|) $)) (-15 -3440 ((-632 |t#1|) $)) (IF (|has| |t#1| (-341)) (PROGN (-15 -2568 ((-1086 (-886 |t#1|)))) (-15 -1743 ((-1086 (-886 |t#1|))))) |%noBranch|) (-15 -3088 ($ (-632 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-345 |#1|) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-663) . T) ((-687 |#1|) . T) ((-704) . T) ((-982 |#1|) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 42)) (-1683 (($ $) 57)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 146)) (-3635 (($ $) NIL)) (-2950 (((-108) $) 36)) (-3957 ((|#1| $) 13)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL (|has| |#1| (-1130)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-1130)))) (-1309 (($ |#1| (-525)) 31)) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 116)) (-2831 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 55)) (-2866 (((-3 $ "failed") $) 131)) (-1468 (((-3 (-385 (-525)) "failed") $) 63 (|has| |#1| (-510)))) (-3081 (((-108) $) 59 (|has| |#1| (-510)))) (-2098 (((-385 (-525)) $) 70 (|has| |#1| (-510)))) (-1851 (($ |#1| (-525)) 33)) (-2250 (((-108) $) 152 (|has| |#1| (-1130)))) (-2133 (((-108) $) 43)) (-1481 (((-713) $) 38)) (-2539 (((-3 "nil" "sqfr" "irred" "prime") $ (-525)) 137)) (-2938 ((|#1| $ (-525)) 136)) (-1989 (((-525) $ (-525)) 135)) (-1947 (($ |#1| (-525)) 30)) (-1370 (($ (-1 |#1| |#1|) $) 143)) (-1203 (($ |#1| (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525))))) 58)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2337 (((-1073) $) NIL)) (-1572 (($ |#1| (-525)) 32)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-429)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) 147 (|has| |#1| (-429)))) (-3497 (($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-2203 (((-592 (-2 (|:| -3959 |#1|) (|:| -1600 (-525)))) $) 54)) (-1223 (((-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $) 12)) (-3959 (((-396 $) $) NIL (|has| |#1| (-1130)))) (-2338 (((-3 $ "failed") $ $) 138)) (-1600 (((-525) $) 132)) (-2692 ((|#1| $) 56)) (-3092 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 79 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) 85 (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) NIL (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) $) NIL (|has| |#1| (-486 (-1090) $))) (($ $ (-592 (-1090)) (-592 $)) 86 (|has| |#1| (-486 (-1090) $))) (($ $ (-592 (-273 $))) 82 (|has| |#1| (-288 $))) (($ $ (-273 $)) NIL (|has| |#1| (-288 $))) (($ $ $ $) NIL (|has| |#1| (-288 $))) (($ $ (-592 $) (-592 $)) NIL (|has| |#1| (-288 $)))) (-3928 (($ $ |#1|) 71 (|has| |#1| (-265 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-265 $ $)))) (-3013 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-1427 (((-501) $) 27 (|has| |#1| (-567 (-501)))) (((-357) $) 92 (|has| |#1| (-952))) (((-205) $) 95 (|has| |#1| (-952)))) (-1908 (((-797) $) 114) (($ (-525)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-385 (-525))) NIL (|has| |#1| (-967 (-385 (-525)))))) (-2093 (((-713)) 48)) (-2262 (((-108) $ $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 40 T CONST)) (-3882 (($) 39 T CONST)) (-1424 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3961 (((-108) $ $) 96)) (-4070 (($ $) 128) (($ $ $) NIL)) (-4059 (($ $ $) 140)) (** (($ $ (-855)) NIL) (($ $ (-713)) 102)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL)))
-(((-396 |#1|) (-13 (-517) (-211 |#1|) (-37 |#1|) (-316 |#1|) (-389 |#1|) (-10 -8 (-15 -2692 (|#1| $)) (-15 -1600 ((-525) $)) (-15 -1203 ($ |#1| (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))))) (-15 -1223 ((-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $)) (-15 -1947 ($ |#1| (-525))) (-15 -2203 ((-592 (-2 (|:| -3959 |#1|) (|:| -1600 (-525)))) $)) (-15 -1572 ($ |#1| (-525))) (-15 -1989 ((-525) $ (-525))) (-15 -2938 (|#1| $ (-525))) (-15 -2539 ((-3 "nil" "sqfr" "irred" "prime") $ (-525))) (-15 -1481 ((-713) $)) (-15 -1851 ($ |#1| (-525))) (-15 -1309 ($ |#1| (-525))) (-15 -3497 ($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3957 (|#1| $)) (-15 -1683 ($ $)) (-15 -1370 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-429)) (-6 (-429)) |%noBranch|) (IF (|has| |#1| (-952)) (-6 (-952)) |%noBranch|) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3081 ((-108) $)) (-15 -2098 ((-385 (-525)) $)) (-15 -1468 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-265 $ $)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |#1| (-288 $)) (-6 (-288 $)) |%noBranch|) (IF (|has| |#1| (-486 (-1090) $)) (-6 (-486 (-1090) $)) |%noBranch|))) (-517)) (T -396))
-((-1370 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-517)) (-5 *1 (-396 *3)))) (-2692 (*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-1203 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-525))))) (-4 *2 (-517)) (-5 *1 (-396 *2)))) (-1223 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-525))))) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-1947 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -3959 *3) (|:| -1600 (-525))))) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-1572 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1989 (*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-2938 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-2539 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-396 *4)) (-4 *4 (-517)))) (-1481 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-1851 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1309 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3497 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3957 (*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1683 (*1 *1 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))) (-1468 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))))
-(-13 (-517) (-211 |#1|) (-37 |#1|) (-316 |#1|) (-389 |#1|) (-10 -8 (-15 -2692 (|#1| $)) (-15 -1600 ((-525) $)) (-15 -1203 ($ |#1| (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))))) (-15 -1223 ((-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $)) (-15 -1947 ($ |#1| (-525))) (-15 -2203 ((-592 (-2 (|:| -3959 |#1|) (|:| -1600 (-525)))) $)) (-15 -1572 ($ |#1| (-525))) (-15 -1989 ((-525) $ (-525))) (-15 -2938 (|#1| $ (-525))) (-15 -2539 ((-3 "nil" "sqfr" "irred" "prime") $ (-525))) (-15 -1481 ((-713) $)) (-15 -1851 ($ |#1| (-525))) (-15 -1309 ($ |#1| (-525))) (-15 -3497 ($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3957 (|#1| $)) (-15 -1683 ($ $)) (-15 -1370 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-429)) (-6 (-429)) |%noBranch|) (IF (|has| |#1| (-952)) (-6 (-952)) |%noBranch|) (IF (|has| |#1| (-1130)) (-6 (-1130)) |%noBranch|) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3081 ((-108) $)) (-15 -2098 ((-385 (-525)) $)) (-15 -1468 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-265 $ $)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |#1| (-288 $)) (-6 (-288 $)) |%noBranch|) (IF (|has| |#1| (-486 (-1090) $)) (-6 (-486 (-1090) $)) |%noBranch|)))
-((-1808 (((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|)) 21)) (-1390 (((-396 |#1|) (-396 |#1|) (-396 |#1|)) 16)))
-(((-397 |#1|) (-10 -7 (-15 -1808 ((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|))) (-15 -1390 ((-396 |#1|) (-396 |#1|) (-396 |#1|)))) (-517)) (T -397))
-((-1390 (*1 *2 *2 *2) (-12 (-5 *2 (-396 *3)) (-4 *3 (-517)) (-5 *1 (-397 *3)))) (-1808 (*1 *2 *2 *3) (-12 (-5 *2 (-396 *4)) (-5 *3 (-1 (-396 *4) *4)) (-4 *4 (-517)) (-5 *1 (-397 *4)))))
-(-10 -7 (-15 -1808 ((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|))) (-15 -1390 ((-396 |#1|) (-396 |#1|) (-396 |#1|))))
-((-1541 ((|#2| |#2|) 166)) (-2251 (((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108)) 57)))
-(((-398 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2251 ((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108))) (-15 -1541 (|#2| |#2|))) (-13 (-429) (-789) (-967 (-525)) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|)) (-1090) |#2|) (T -398))
-((-1541 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-398 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1112) (-408 *3))) (-14 *4 (-1090)) (-14 *5 *2))) (-2251 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |%expansion| (-291 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) (-5 *1 (-398 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1112) (-408 *5))) (-14 *6 (-1090)) (-14 *7 *3))))
-(-10 -7 (-15 -2251 ((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108))) (-15 -1541 (|#2| |#2|)))
-((-1370 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-399 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1370 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-976) (-789)) (-408 |#1|) (-13 (-976) (-789)) (-408 |#3|)) (T -399))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-976) (-789))) (-4 *6 (-13 (-976) (-789))) (-4 *2 (-408 *6)) (-5 *1 (-399 *5 *4 *6 *2)) (-4 *4 (-408 *5)))))
-(-10 -7 (-15 -1370 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1541 ((|#2| |#2|) 90)) (-2035 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108) (-1073)) 48)) (-4234 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108) (-1073)) 154)))
-(((-400 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2035 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108) (-1073))) (-15 -4234 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108) (-1073))) (-15 -1541 (|#2| |#2|))) (-13 (-429) (-789) (-967 (-525)) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|) (-10 -8 (-15 -1908 ($ |#3|)))) (-787) (-13 (-1150 |#2| |#3|) (-341) (-1112) (-10 -8 (-15 -3013 ($ $)) (-15 -3766 ($ $)))) (-915 |#4|) (-1090)) (T -400))
-((-1541 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-4 *2 (-13 (-27) (-1112) (-408 *3) (-10 -8 (-15 -1908 ($ *4))))) (-4 *4 (-787)) (-4 *5 (-13 (-1150 *2 *4) (-341) (-1112) (-10 -8 (-15 -3013 ($ $)) (-15 -3766 ($ $))))) (-5 *1 (-400 *3 *2 *4 *5 *6 *7)) (-4 *6 (-915 *5)) (-14 *7 (-1090)))) (-4234 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-4 *3 (-13 (-27) (-1112) (-408 *6) (-10 -8 (-15 -1908 ($ *7))))) (-4 *7 (-787)) (-4 *8 (-13 (-1150 *3 *7) (-341) (-1112) (-10 -8 (-15 -3013 ($ $)) (-15 -3766 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-915 *8)) (-14 *10 (-1090)))) (-2035 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-4 *3 (-13 (-27) (-1112) (-408 *6) (-10 -8 (-15 -1908 ($ *7))))) (-4 *7 (-787)) (-4 *8 (-13 (-1150 *3 *7) (-341) (-1112) (-10 -8 (-15 -3013 ($ $)) (-15 -3766 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073)))))) (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-915 *8)) (-14 *10 (-1090)))))
-(-10 -7 (-15 -2035 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108) (-1073))) (-15 -4234 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))) |#2| (-108) (-1073))) (-15 -1541 (|#2| |#2|)))
-((-4186 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-4004 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-1370 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1370 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4004 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4186 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1019) (-403 |#1|) (-1019) (-403 |#3|)) (T -401))
-((-4186 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1019)) (-4 *5 (-1019)) (-4 *2 (-403 *5)) (-5 *1 (-401 *6 *4 *5 *2)) (-4 *4 (-403 *6)))) (-4004 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1019)) (-4 *2 (-1019)) (-5 *1 (-401 *5 *4 *2 *6)) (-4 *4 (-403 *5)) (-4 *6 (-403 *2)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-403 *6)) (-5 *1 (-401 *5 *4 *6 *2)) (-4 *4 (-403 *5)))))
-(-10 -7 (-15 -1370 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4004 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4186 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2085 (($) 44)) (-3254 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-1914 (($ $ $) 39)) (-2258 (((-108) $ $) 28)) (-3107 (((-713)) 47)) (-3399 (($ (-592 |#2|)) 20) (($) NIL)) (-3375 (($) 53)) (-3525 ((|#2| $) 61)) (-3630 ((|#2| $) 59)) (-1780 (((-855) $) 55)) (-3187 (($ $ $) 35)) (-4185 (($ (-855)) 50)) (-1706 (($ $ |#2|) NIL) (($ $ $) 38)) (-2686 (((-713) (-1 (-108) |#2|) $) NIL) (((-713) |#2| $) 26)) (-1922 (($ (-592 |#2|)) 24)) (-2082 (($ $) 46)) (-1908 (((-797) $) 33)) (-3835 (((-713) $) 21)) (-3832 (($ (-592 |#2|)) 19) (($) NIL)) (-3961 (((-108) $ $) 16)) (-3983 (((-108) $ $) 13)))
-(((-402 |#1| |#2|) (-10 -8 (-15 -3107 ((-713))) (-15 -4185 (|#1| (-855))) (-15 -1780 ((-855) |#1|)) (-15 -3375 (|#1|)) (-15 -3525 (|#2| |#1|)) (-15 -3630 (|#2| |#1|)) (-15 -2085 (|#1|)) (-15 -2082 (|#1| |#1|)) (-15 -3835 ((-713) |#1|)) (-15 -3961 ((-108) |#1| |#1|)) (-15 -1908 ((-797) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -3832 (|#1|)) (-15 -3832 (|#1| (-592 |#2|))) (-15 -3399 (|#1|)) (-15 -3399 (|#1| (-592 |#2|))) (-15 -3187 (|#1| |#1| |#1|)) (-15 -1706 (|#1| |#1| |#1|)) (-15 -1706 (|#1| |#1| |#2|)) (-15 -1914 (|#1| |#1| |#1|)) (-15 -2258 ((-108) |#1| |#1|)) (-15 -3254 (|#1| |#1| |#1|)) (-15 -3254 (|#1| |#1| |#2|)) (-15 -3254 (|#1| |#2| |#1|)) (-15 -1922 (|#1| (-592 |#2|))) (-15 -2686 ((-713) |#2| |#1|)) (-15 -2686 ((-713) (-1 (-108) |#2|) |#1|))) (-403 |#2|) (-1019)) (T -402))
-((-3107 (*1 *2) (-12 (-4 *4 (-1019)) (-5 *2 (-713)) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4)))))
-(-10 -8 (-15 -3107 ((-713))) (-15 -4185 (|#1| (-855))) (-15 -1780 ((-855) |#1|)) (-15 -3375 (|#1|)) (-15 -3525 (|#2| |#1|)) (-15 -3630 (|#2| |#1|)) (-15 -2085 (|#1|)) (-15 -2082 (|#1| |#1|)) (-15 -3835 ((-713) |#1|)) (-15 -3961 ((-108) |#1| |#1|)) (-15 -1908 ((-797) |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -3832 (|#1|)) (-15 -3832 (|#1| (-592 |#2|))) (-15 -3399 (|#1|)) (-15 -3399 (|#1| (-592 |#2|))) (-15 -3187 (|#1| |#1| |#1|)) (-15 -1706 (|#1| |#1| |#1|)) (-15 -1706 (|#1| |#1| |#2|)) (-15 -1914 (|#1| |#1| |#1|)) (-15 -2258 ((-108) |#1| |#1|)) (-15 -3254 (|#1| |#1| |#1|)) (-15 -3254 (|#1| |#1| |#2|)) (-15 -3254 (|#1| |#2| |#1|)) (-15 -1922 (|#1| (-592 |#2|))) (-15 -2686 ((-713) |#2| |#1|)) (-15 -2686 ((-713) (-1 (-108) |#2|) |#1|)))
-((-1893 (((-108) $ $) 19)) (-2085 (($) 67 (|has| |#1| (-346)))) (-3254 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-1914 (($ $ $) 78)) (-2258 (((-108) $ $) 79)) (-3410 (((-108) $ (-713)) 8)) (-3107 (((-713)) 61 (|has| |#1| (-346)))) (-3399 (($ (-592 |#1|)) 74) (($) 73)) (-3290 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4254)))) (-1505 (($) 7 T CONST)) (-3163 (($ $) 58 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2792 (($ |#1| $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4254)))) (-2273 (($ |#1| $) 57 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4254)))) (-3375 (($) 64 (|has| |#1| (-346)))) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) 9)) (-3525 ((|#1| $) 65 (|has| |#1| (-789)))) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-3630 ((|#1| $) 66 (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-1780 (((-855) $) 63 (|has| |#1| (-346)))) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22)) (-3187 (($ $ $) 75)) (-2570 ((|#1| $) 39)) (-2573 (($ |#1| $) 40)) (-4185 (($ (-855)) 62 (|has| |#1| (-346)))) (-2663 (((-1037) $) 21)) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3513 ((|#1| $) 41)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-1706 (($ $ |#1|) 77) (($ $ $) 76)) (-4006 (($) 49) (($ (-592 |#1|)) 48)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1427 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 50)) (-2082 (($ $) 68 (|has| |#1| (-346)))) (-1908 (((-797) $) 18)) (-3835 (((-713) $) 69)) (-3832 (($ (-592 |#1|)) 72) (($) 71)) (-3612 (($ (-592 |#1|)) 42)) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20)) (-3983 (((-108) $ $) 70)) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-403 |#1|) (-131) (-1019)) (T -403))
-((-3835 (*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-1019)) (-5 *2 (-713)))) (-2082 (*1 *1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1019)) (-4 *2 (-346)))) (-2085 (*1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-346)) (-4 *2 (-1019)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1019)) (-4 *2 (-789)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1019)) (-4 *2 (-789)))))
-(-13 (-209 |t#1|) (-1017 |t#1|) (-10 -8 (-6 -4254) (-15 -3835 ((-713) $)) (IF (|has| |t#1| (-346)) (PROGN (-6 (-346)) (-15 -2082 ($ $)) (-15 -2085 ($))) |%noBranch|) (IF (|has| |t#1| (-789)) (PROGN (-15 -3630 (|t#1| $)) (-15 -3525 (|t#1| $))) |%noBranch|)))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-566 (-797)) . T) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-209 |#1|) . T) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-346) |has| |#1| (-346)) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1017 |#1|) . T) ((-1019) . T) ((-1126) . T))
-((-4209 (((-542 |#2|) |#2| (-1090)) 36)) (-2726 (((-542 |#2|) |#2| (-1090)) 20)) (-2488 ((|#2| |#2| (-1090)) 25)))
-(((-404 |#1| |#2|) (-10 -7 (-15 -2726 ((-542 |#2|) |#2| (-1090))) (-15 -4209 ((-542 |#2|) |#2| (-1090))) (-15 -2488 (|#2| |#2| (-1090)))) (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))) (-13 (-1112) (-29 |#1|))) (T -404))
-((-2488 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *1 (-404 *4 *2)) (-4 *2 (-13 (-1112) (-29 *4))))) (-4209 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3)) (-4 *3 (-13 (-1112) (-29 *5))))) (-2726 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3)) (-4 *3 (-13 (-1112) (-29 *5))))))
-(-10 -7 (-15 -2726 ((-542 |#2|) |#2| (-1090))) (-15 -4209 ((-542 |#2|) |#2| (-1090))) (-15 -2488 (|#2| |#2| (-1090))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-2866 (((-3 $ "failed") $) NIL)) (-2133 (((-108) $) NIL)) (-1368 (($ |#2| |#1|) 35)) (-2090 (($ |#2| |#1|) 33)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-309 |#2|)) 25)) (-2093 (((-713)) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 10 T CONST)) (-3882 (($) 16 T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) 34)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-405 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4241)) (IF (|has| |#1| (-6 -4241)) (-6 -4241) |%noBranch|) |%noBranch|) (-15 -1908 ($ |#1|)) (-15 -1908 ($ (-309 |#2|))) (-15 -1368 ($ |#2| |#1|)) (-15 -2090 ($ |#2| |#1|)))) (-13 (-160) (-37 (-385 (-525)))) (-13 (-789) (-21))) (T -405))
-((-1908 (*1 *1 *2) (-12 (-5 *1 (-405 *2 *3)) (-4 *2 (-13 (-160) (-37 (-385 (-525))))) (-4 *3 (-13 (-789) (-21))))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-309 *4)) (-4 *4 (-13 (-789) (-21))) (-5 *1 (-405 *3 *4)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))))) (-1368 (*1 *1 *2 *3) (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))) (-4 *2 (-13 (-789) (-21))))) (-2090 (*1 *1 *2 *3) (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))) (-4 *2 (-13 (-789) (-21))))))
-(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4241)) (IF (|has| |#1| (-6 -4241)) (-6 -4241) |%noBranch|) |%noBranch|) (-15 -1908 ($ |#1|)) (-15 -1908 ($ (-309 |#2|))) (-15 -1368 ($ |#2| |#1|)) (-15 -2090 ($ |#2| |#1|))))
-((-3766 (((-3 |#2| (-592 |#2|)) |#2| (-1090)) 109)))
-(((-406 |#1| |#2|) (-10 -7 (-15 -3766 ((-3 |#2| (-592 |#2|)) |#2| (-1090)))) (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))) (-13 (-1112) (-892) (-29 |#1|))) (T -406))
-((-3766 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 *3 (-592 *3))) (-5 *1 (-406 *5 *3)) (-4 *3 (-13 (-1112) (-892) (-29 *5))))))
-(-10 -7 (-15 -3766 ((-3 |#2| (-592 |#2|)) |#2| (-1090))))
-((-4104 (((-592 (-1090)) $) 72)) (-3927 (((-385 (-1086 $)) $ (-565 $)) 273)) (-1962 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) 237)) (-1264 (((-3 (-565 $) "failed") $) NIL) (((-3 (-1090) "failed") $) 75) (((-3 (-525) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-385 (-886 |#2|)) "failed") $) 324) (((-3 (-886 |#2|) "failed") $) 235) (((-3 (-385 (-525)) "failed") $) NIL)) (-2831 (((-565 $) $) NIL) (((-1090) $) 30) (((-525) $) NIL) ((|#2| $) 231) (((-385 (-886 |#2|)) $) 305) (((-886 |#2|) $) 232) (((-385 (-525)) $) NIL)) (-4159 (((-110) (-110)) 47)) (-3830 (($ $) 87)) (-2218 (((-3 (-565 $) "failed") $) 228)) (-3914 (((-592 (-565 $)) $) 229)) (-3245 (((-3 (-592 $) "failed") $) 247)) (-3152 (((-3 (-2 (|:| |val| $) (|:| -1600 (-525))) "failed") $) 254)) (-3193 (((-3 (-592 $) "failed") $) 245)) (-2104 (((-3 (-2 (|:| -1459 (-525)) (|:| |var| (-565 $))) "failed") $) 264)) (-3283 (((-3 (-2 (|:| |var| (-565 $)) (|:| -1600 (-525))) "failed") $) 251) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1600 (-525))) "failed") $ (-110)) 217) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1600 (-525))) "failed") $ (-1090)) 219)) (-4221 (((-108) $) 19)) (-4232 ((|#2| $) 21)) (-3092 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) 236) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) 96) (($ $ (-1090) (-1 $ (-592 $))) NIL) (($ $ (-1090) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1090)) 57) (($ $ (-592 (-1090))) 240) (($ $) 241) (($ $ (-110) $ (-1090)) 60) (($ $ (-592 (-110)) (-592 $) (-1090)) 67) (($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ $))) 107) (($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ (-592 $)))) 242) (($ $ (-1090) (-713) (-1 $ (-592 $))) 94) (($ $ (-1090) (-713) (-1 $ $)) 93)) (-3928 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) 106)) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) 238)) (-1915 (($ $) 284)) (-1427 (((-826 (-525)) $) 257) (((-826 (-357)) $) 261) (($ (-396 $)) 320) (((-501) $) NIL)) (-1908 (((-797) $) 239) (($ (-565 $)) 84) (($ (-1090)) 26) (($ |#2|) NIL) (($ (-1042 |#2| (-565 $))) NIL) (($ (-385 |#2|)) 289) (($ (-886 (-385 |#2|))) 329) (($ (-385 (-886 (-385 |#2|)))) 301) (($ (-385 (-886 |#2|))) 295) (($ $) NIL) (($ (-886 |#2|)) 185) (($ (-385 (-525))) 334) (($ (-525)) NIL)) (-2093 (((-713)) 79)) (-3824 (((-108) (-110)) 41)) (-4184 (($ (-1090) $) 33) (($ (-1090) $ $) 34) (($ (-1090) $ $ $) 35) (($ (-1090) $ $ $ $) 36) (($ (-1090) (-592 $)) 39)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-855) $) NIL)))
-(((-407 |#1| |#2|) (-10 -8 (-15 * (|#1| (-855) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2093 ((-713))) (-15 -1908 (|#1| (-525))) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1427 ((-501) |#1|)) (-15 -2831 ((-886 |#2|) |#1|)) (-15 -1264 ((-3 (-886 |#2|) "failed") |#1|)) (-15 -1908 (|#1| (-886 |#2|))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1908 (|#1| |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -2831 ((-385 (-886 |#2|)) |#1|)) (-15 -1264 ((-3 (-385 (-886 |#2|)) "failed") |#1|)) (-15 -1908 (|#1| (-385 (-886 |#2|)))) (-15 -3927 ((-385 (-1086 |#1|)) |#1| (-565 |#1|))) (-15 -1908 (|#1| (-385 (-886 (-385 |#2|))))) (-15 -1908 (|#1| (-886 (-385 |#2|)))) (-15 -1908 (|#1| (-385 |#2|))) (-15 -1915 (|#1| |#1|)) (-15 -1427 (|#1| (-396 |#1|))) (-15 -3092 (|#1| |#1| (-1090) (-713) (-1 |#1| |#1|))) (-15 -3092 (|#1| |#1| (-1090) (-713) (-1 |#1| (-592 |#1|)))) (-15 -3092 (|#1| |#1| (-592 (-1090)) (-592 (-713)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -3092 (|#1| |#1| (-592 (-1090)) (-592 (-713)) (-592 (-1 |#1| |#1|)))) (-15 -3152 ((-3 (-2 (|:| |val| |#1|) (|:| -1600 (-525))) "failed") |#1|)) (-15 -3283 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1600 (-525))) "failed") |#1| (-1090))) (-15 -3283 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1600 (-525))) "failed") |#1| (-110))) (-15 -3830 (|#1| |#1|)) (-15 -1908 (|#1| (-1042 |#2| (-565 |#1|)))) (-15 -2104 ((-3 (-2 (|:| -1459 (-525)) (|:| |var| (-565 |#1|))) "failed") |#1|)) (-15 -3193 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3283 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1600 (-525))) "failed") |#1|)) (-15 -3245 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3092 (|#1| |#1| (-592 (-110)) (-592 |#1|) (-1090))) (-15 -3092 (|#1| |#1| (-110) |#1| (-1090))) (-15 -3092 (|#1| |#1|)) (-15 -3092 (|#1| |#1| (-592 (-1090)))) (-15 -3092 (|#1| |#1| (-1090))) (-15 -4184 (|#1| (-1090) (-592 |#1|))) (-15 -4184 (|#1| (-1090) |#1| |#1| |#1| |#1|)) (-15 -4184 (|#1| (-1090) |#1| |#1| |#1|)) (-15 -4184 (|#1| (-1090) |#1| |#1|)) (-15 -4184 (|#1| (-1090) |#1|)) (-15 -4104 ((-592 (-1090)) |#1|)) (-15 -4232 (|#2| |#1|)) (-15 -4221 ((-108) |#1|)) (-15 -2831 (|#2| |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -1908 (|#1| |#2|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -1427 ((-826 (-357)) |#1|)) (-15 -1427 ((-826 (-525)) |#1|)) (-15 -2831 ((-1090) |#1|)) (-15 -1264 ((-3 (-1090) "failed") |#1|)) (-15 -1908 (|#1| (-1090))) (-15 -3092 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -3092 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -3092 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -3092 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -3092 (|#1| |#1| (-1090) (-1 |#1| |#1|))) (-15 -3092 (|#1| |#1| (-1090) (-1 |#1| (-592 |#1|)))) (-15 -3092 (|#1| |#1| (-592 (-1090)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -3092 (|#1| |#1| (-592 (-1090)) (-592 (-1 |#1| |#1|)))) (-15 -3824 ((-108) (-110))) (-15 -4159 ((-110) (-110))) (-15 -3914 ((-592 (-565 |#1|)) |#1|)) (-15 -2218 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -1962 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -1962 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1962 (|#1| |#1| (-273 |#1|))) (-15 -3928 (|#1| (-110) (-592 |#1|))) (-15 -3928 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3928 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3928 (|#1| (-110) |#1| |#1|)) (-15 -3928 (|#1| (-110) |#1|)) (-15 -3092 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -3092 (|#1| |#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| (-273 |#1|))) (-15 -3092 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3092 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -3092 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -2831 ((-565 |#1|) |#1|)) (-15 -1264 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -1908 (|#1| (-565 |#1|))) (-15 -1908 ((-797) |#1|))) (-408 |#2|) (-789)) (T -407))
-((-4159 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *4 (-789)) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))) (-3824 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-407 *4 *5)) (-4 *4 (-408 *5)))) (-2093 (*1 *2) (-12 (-4 *4 (-789)) (-5 *2 (-713)) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))))
-(-10 -8 (-15 * (|#1| (-855) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2093 ((-713))) (-15 -1908 (|#1| (-525))) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1427 ((-501) |#1|)) (-15 -2831 ((-886 |#2|) |#1|)) (-15 -1264 ((-3 (-886 |#2|) "failed") |#1|)) (-15 -1908 (|#1| (-886 |#2|))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1908 (|#1| |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -2831 ((-385 (-886 |#2|)) |#1|)) (-15 -1264 ((-3 (-385 (-886 |#2|)) "failed") |#1|)) (-15 -1908 (|#1| (-385 (-886 |#2|)))) (-15 -3927 ((-385 (-1086 |#1|)) |#1| (-565 |#1|))) (-15 -1908 (|#1| (-385 (-886 (-385 |#2|))))) (-15 -1908 (|#1| (-886 (-385 |#2|)))) (-15 -1908 (|#1| (-385 |#2|))) (-15 -1915 (|#1| |#1|)) (-15 -1427 (|#1| (-396 |#1|))) (-15 -3092 (|#1| |#1| (-1090) (-713) (-1 |#1| |#1|))) (-15 -3092 (|#1| |#1| (-1090) (-713) (-1 |#1| (-592 |#1|)))) (-15 -3092 (|#1| |#1| (-592 (-1090)) (-592 (-713)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -3092 (|#1| |#1| (-592 (-1090)) (-592 (-713)) (-592 (-1 |#1| |#1|)))) (-15 -3152 ((-3 (-2 (|:| |val| |#1|) (|:| -1600 (-525))) "failed") |#1|)) (-15 -3283 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1600 (-525))) "failed") |#1| (-1090))) (-15 -3283 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1600 (-525))) "failed") |#1| (-110))) (-15 -3830 (|#1| |#1|)) (-15 -1908 (|#1| (-1042 |#2| (-565 |#1|)))) (-15 -2104 ((-3 (-2 (|:| -1459 (-525)) (|:| |var| (-565 |#1|))) "failed") |#1|)) (-15 -3193 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3283 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1600 (-525))) "failed") |#1|)) (-15 -3245 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3092 (|#1| |#1| (-592 (-110)) (-592 |#1|) (-1090))) (-15 -3092 (|#1| |#1| (-110) |#1| (-1090))) (-15 -3092 (|#1| |#1|)) (-15 -3092 (|#1| |#1| (-592 (-1090)))) (-15 -3092 (|#1| |#1| (-1090))) (-15 -4184 (|#1| (-1090) (-592 |#1|))) (-15 -4184 (|#1| (-1090) |#1| |#1| |#1| |#1|)) (-15 -4184 (|#1| (-1090) |#1| |#1| |#1|)) (-15 -4184 (|#1| (-1090) |#1| |#1|)) (-15 -4184 (|#1| (-1090) |#1|)) (-15 -4104 ((-592 (-1090)) |#1|)) (-15 -4232 (|#2| |#1|)) (-15 -4221 ((-108) |#1|)) (-15 -2831 (|#2| |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -1908 (|#1| |#2|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -1427 ((-826 (-357)) |#1|)) (-15 -1427 ((-826 (-525)) |#1|)) (-15 -2831 ((-1090) |#1|)) (-15 -1264 ((-3 (-1090) "failed") |#1|)) (-15 -1908 (|#1| (-1090))) (-15 -3092 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -3092 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -3092 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -3092 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -3092 (|#1| |#1| (-1090) (-1 |#1| |#1|))) (-15 -3092 (|#1| |#1| (-1090) (-1 |#1| (-592 |#1|)))) (-15 -3092 (|#1| |#1| (-592 (-1090)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -3092 (|#1| |#1| (-592 (-1090)) (-592 (-1 |#1| |#1|)))) (-15 -3824 ((-108) (-110))) (-15 -4159 ((-110) (-110))) (-15 -3914 ((-592 (-565 |#1|)) |#1|)) (-15 -2218 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -1962 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -1962 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1962 (|#1| |#1| (-273 |#1|))) (-15 -3928 (|#1| (-110) (-592 |#1|))) (-15 -3928 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3928 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3928 (|#1| (-110) |#1| |#1|)) (-15 -3928 (|#1| (-110) |#1|)) (-15 -3092 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -3092 (|#1| |#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| (-273 |#1|))) (-15 -3092 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -3092 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -3092 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -2831 ((-565 |#1|) |#1|)) (-15 -1264 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -1908 (|#1| (-565 |#1|))) (-15 -1908 ((-797) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 116 (|has| |#1| (-25)))) (-4104 (((-592 (-1090)) $) 203)) (-3927 (((-385 (-1086 $)) $ (-565 $)) 171 (|has| |#1| (-517)))) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 143 (|has| |#1| (-517)))) (-3635 (($ $) 144 (|has| |#1| (-517)))) (-2950 (((-108) $) 146 (|has| |#1| (-517)))) (-3740 (((-592 (-565 $)) $) 44)) (-3263 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-1962 (($ $ (-273 $)) 56) (($ $ (-592 (-273 $))) 55) (($ $ (-592 (-565 $)) (-592 $)) 54)) (-3321 (($ $) 163 (|has| |#1| (-517)))) (-1510 (((-396 $) $) 164 (|has| |#1| (-517)))) (-2305 (((-108) $ $) 154 (|has| |#1| (-517)))) (-1505 (($) 102 (-3309 (|has| |#1| (-1031)) (|has| |#1| (-25))) CONST)) (-1264 (((-3 (-565 $) "failed") $) 69) (((-3 (-1090) "failed") $) 216) (((-3 (-525) "failed") $) 209 (|has| |#1| (-967 (-525)))) (((-3 |#1| "failed") $) 207) (((-3 (-385 (-886 |#1|)) "failed") $) 169 (|has| |#1| (-517))) (((-3 (-886 |#1|) "failed") $) 123 (|has| |#1| (-976))) (((-3 (-385 (-525)) "failed") $) 95 (-3309 (-12 (|has| |#1| (-967 (-525))) (|has| |#1| (-517))) (|has| |#1| (-967 (-385 (-525))))))) (-2831 (((-565 $) $) 68) (((-1090) $) 215) (((-525) $) 210 (|has| |#1| (-967 (-525)))) ((|#1| $) 206) (((-385 (-886 |#1|)) $) 168 (|has| |#1| (-517))) (((-886 |#1|) $) 122 (|has| |#1| (-976))) (((-385 (-525)) $) 94 (-3309 (-12 (|has| |#1| (-967 (-525))) (|has| |#1| (-517))) (|has| |#1| (-967 (-385 (-525))))))) (-2373 (($ $ $) 158 (|has| |#1| (-517)))) (-1860 (((-632 (-525)) (-632 $)) 137 (-1341 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 136 (-1341 (|has| |#1| (-588 (-525))) (|has| |#1| (-976)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 135 (|has| |#1| (-976))) (((-632 |#1|) (-632 $)) 134 (|has| |#1| (-976)))) (-2866 (((-3 $ "failed") $) 105 (|has| |#1| (-1031)))) (-2356 (($ $ $) 157 (|has| |#1| (-517)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 152 (|has| |#1| (-517)))) (-2250 (((-108) $) 165 (|has| |#1| (-517)))) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 212 (|has| |#1| (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 211 (|has| |#1| (-820 (-357))))) (-2237 (($ $) 51) (($ (-592 $)) 50)) (-2323 (((-592 (-110)) $) 43)) (-4159 (((-110) (-110)) 42)) (-2133 (((-108) $) 103 (|has| |#1| (-1031)))) (-2144 (((-108) $) 22 (|has| $ (-967 (-525))))) (-3830 (($ $) 186 (|has| |#1| (-976)))) (-1303 (((-1042 |#1| (-565 $)) $) 187 (|has| |#1| (-976)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 161 (|has| |#1| (-517)))) (-3609 (((-1086 $) (-565 $)) 25 (|has| $ (-976)))) (-3525 (($ $ $) 13)) (-3630 (($ $ $) 14)) (-1370 (($ (-1 $ $) (-565 $)) 36)) (-2218 (((-3 (-565 $) "failed") $) 46)) (-3216 (($ (-592 $)) 150 (|has| |#1| (-517))) (($ $ $) 149 (|has| |#1| (-517)))) (-2337 (((-1073) $) 9)) (-3914 (((-592 (-565 $)) $) 45)) (-1377 (($ (-110) $) 38) (($ (-110) (-592 $)) 37)) (-3245 (((-3 (-592 $) "failed") $) 192 (|has| |#1| (-1031)))) (-3152 (((-3 (-2 (|:| |val| $) (|:| -1600 (-525))) "failed") $) 183 (|has| |#1| (-976)))) (-3193 (((-3 (-592 $) "failed") $) 190 (|has| |#1| (-25)))) (-2104 (((-3 (-2 (|:| -1459 (-525)) (|:| |var| (-565 $))) "failed") $) 189 (|has| |#1| (-25)))) (-3283 (((-3 (-2 (|:| |var| (-565 $)) (|:| -1600 (-525))) "failed") $) 191 (|has| |#1| (-1031))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1600 (-525))) "failed") $ (-110)) 185 (|has| |#1| (-976))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1600 (-525))) "failed") $ (-1090)) 184 (|has| |#1| (-976)))) (-3034 (((-108) $ (-110)) 40) (((-108) $ (-1090)) 39)) (-4211 (($ $) 107 (-3309 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-3598 (((-713) $) 47)) (-2663 (((-1037) $) 10)) (-4221 (((-108) $) 205)) (-4232 ((|#1| $) 204)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 151 (|has| |#1| (-517)))) (-3244 (($ (-592 $)) 148 (|has| |#1| (-517))) (($ $ $) 147 (|has| |#1| (-517)))) (-2148 (((-108) $ $) 35) (((-108) $ (-1090)) 34)) (-3959 (((-396 $) $) 162 (|has| |#1| (-517)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-517))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 159 (|has| |#1| (-517)))) (-2338 (((-3 $ "failed") $ $) 142 (|has| |#1| (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 153 (|has| |#1| (-517)))) (-2656 (((-108) $) 23 (|has| $ (-967 (-525))))) (-3092 (($ $ (-565 $) $) 67) (($ $ (-592 (-565 $)) (-592 $)) 66) (($ $ (-592 (-273 $))) 65) (($ $ (-273 $)) 64) (($ $ $ $) 63) (($ $ (-592 $) (-592 $)) 62) (($ $ (-592 (-1090)) (-592 (-1 $ $))) 33) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) 32) (($ $ (-1090) (-1 $ (-592 $))) 31) (($ $ (-1090) (-1 $ $)) 30) (($ $ (-592 (-110)) (-592 (-1 $ $))) 29) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 28) (($ $ (-110) (-1 $ (-592 $))) 27) (($ $ (-110) (-1 $ $)) 26) (($ $ (-1090)) 197 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1090))) 196 (|has| |#1| (-567 (-501)))) (($ $) 195 (|has| |#1| (-567 (-501)))) (($ $ (-110) $ (-1090)) 194 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-110)) (-592 $) (-1090)) 193 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ $))) 182 (|has| |#1| (-976))) (($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ (-592 $)))) 181 (|has| |#1| (-976))) (($ $ (-1090) (-713) (-1 $ (-592 $))) 180 (|has| |#1| (-976))) (($ $ (-1090) (-713) (-1 $ $)) 179 (|has| |#1| (-976)))) (-2183 (((-713) $) 155 (|has| |#1| (-517)))) (-3928 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-592 $)) 57)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 156 (|has| |#1| (-517)))) (-2825 (($ $) 49) (($ $ $) 48)) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) 128 (|has| |#1| (-976))) (($ $ (-1090) (-713)) 127 (|has| |#1| (-976))) (($ $ (-592 (-1090))) 126 (|has| |#1| (-976))) (($ $ (-1090)) 125 (|has| |#1| (-976)))) (-1915 (($ $) 176 (|has| |#1| (-517)))) (-1312 (((-1042 |#1| (-565 $)) $) 177 (|has| |#1| (-517)))) (-1654 (($ $) 24 (|has| $ (-976)))) (-1427 (((-826 (-525)) $) 214 (|has| |#1| (-567 (-826 (-525))))) (((-826 (-357)) $) 213 (|has| |#1| (-567 (-826 (-357))))) (($ (-396 $)) 178 (|has| |#1| (-517))) (((-501) $) 97 (|has| |#1| (-567 (-501))))) (-3634 (($ $ $) 111 (|has| |#1| (-450)))) (-1518 (($ $ $) 112 (|has| |#1| (-450)))) (-1908 (((-797) $) 11) (($ (-565 $)) 70) (($ (-1090)) 217) (($ |#1|) 208) (($ (-1042 |#1| (-565 $))) 188 (|has| |#1| (-976))) (($ (-385 |#1|)) 174 (|has| |#1| (-517))) (($ (-886 (-385 |#1|))) 173 (|has| |#1| (-517))) (($ (-385 (-886 (-385 |#1|)))) 172 (|has| |#1| (-517))) (($ (-385 (-886 |#1|))) 170 (|has| |#1| (-517))) (($ $) 141 (|has| |#1| (-517))) (($ (-886 |#1|)) 124 (|has| |#1| (-976))) (($ (-385 (-525))) 96 (-3309 (|has| |#1| (-517)) (-12 (|has| |#1| (-967 (-525))) (|has| |#1| (-517))) (|has| |#1| (-967 (-385 (-525)))))) (($ (-525)) 93 (-3309 (|has| |#1| (-976)) (|has| |#1| (-967 (-525)))))) (-3421 (((-3 $ "failed") $) 138 (|has| |#1| (-136)))) (-2093 (((-713)) 133 (|has| |#1| (-976)))) (-1268 (($ $) 53) (($ (-592 $)) 52)) (-3824 (((-108) (-110)) 41)) (-2262 (((-108) $ $) 145 (|has| |#1| (-517)))) (-4184 (($ (-1090) $) 202) (($ (-1090) $ $) 201) (($ (-1090) $ $ $) 200) (($ (-1090) $ $ $ $) 199) (($ (-1090) (-592 $)) 198)) (-3465 (($ $ (-525)) 110 (-3309 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) 104 (|has| |#1| (-1031))) (($ $ (-855)) 100 (|has| |#1| (-1031)))) (-3875 (($) 115 (|has| |#1| (-25)) CONST)) (-3882 (($) 101 (|has| |#1| (-1031)) CONST)) (-1424 (($ $ (-592 (-1090)) (-592 (-713))) 132 (|has| |#1| (-976))) (($ $ (-1090) (-713)) 131 (|has| |#1| (-976))) (($ $ (-592 (-1090))) 130 (|has| |#1| (-976))) (($ $ (-1090)) 129 (|has| |#1| (-976)))) (-4024 (((-108) $ $) 16)) (-3995 (((-108) $ $) 17)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 15)) (-3983 (((-108) $ $) 18)) (-4082 (($ (-1042 |#1| (-565 $)) (-1042 |#1| (-565 $))) 175 (|has| |#1| (-517))) (($ $ $) 108 (-3309 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-4070 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-4059 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-525)) 109 (-3309 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) 106 (|has| |#1| (-1031))) (($ $ (-855)) 99 (|has| |#1| (-1031)))) (* (($ (-385 (-525)) $) 167 (|has| |#1| (-517))) (($ $ (-385 (-525))) 166 (|has| |#1| (-517))) (($ |#1| $) 140 (|has| |#1| (-160))) (($ $ |#1|) 139 (|has| |#1| (-160))) (($ (-525) $) 121 (|has| |#1| (-21))) (($ (-713) $) 117 (|has| |#1| (-25))) (($ (-855) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1031)))))
+((-1449 (*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1173 *1)) (-4 *1 (-395 *3)))) (-3464 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1173 *3)))) (-3464 (*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-395 *4)) (-4 *4 (-160)) (-5 *2 (-632 *4)))) (-3410 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-3019 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1173 (-632 *3))))) (-4059 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-592 (-887 *3))))) (-3612 (*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))) (-2749 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1173 *3)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))) (-2021 (*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-1638 (*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))) (-1518 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-2306 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-2561 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))) (-3935 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341)) (-5 *2 (-1087 (-887 *3))))) (-4043 (*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341)) (-5 *2 (-1087 (-887 *3))))) (-4169 (*1 *1 *2 *1) (-12 (-5 *2 (-632 *3)) (-4 *1 (-395 *3)) (-4 *3 (-160)))))
+(-13 (-345 |t#1|) (-10 -8 (-15 -1449 ((-1173 $))) (-15 -3464 ((-1173 |t#1|) $)) (-15 -3464 ((-632 |t#1|) (-1173 $))) (-15 -3410 (|t#1| $ (-525))) (-15 -3019 ((-1173 (-632 |t#1|)))) (-15 -4059 ((-592 (-887 |t#1|)))) (-15 -3612 ($ (-1173 |t#1|))) (-15 -2749 ((-1173 |t#1|) $)) (-15 -2749 ($ (-1173 |t#1|))) (-15 -2021 (|t#1|)) (-15 -1638 (|t#1|)) (-15 -1518 ((-632 |t#1|))) (-15 -2306 ((-632 |t#1|))) (-15 -2561 ((-632 |t#1|) $)) (-15 -3591 ((-632 |t#1|) $)) (IF (|has| |t#1| (-341)) (PROGN (-15 -3935 ((-1087 (-887 |t#1|)))) (-15 -4043 ((-1087 (-887 |t#1|))))) |%noBranch|) (-15 -4169 ($ (-632 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-345 |#1|) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-663) . T) ((-687 |#1|) . T) ((-704) . T) ((-983 |#1|) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 42)) (-1359 (($ $) 57)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 146)) (-3711 (($ $) NIL)) (-3380 (((-108) $) 36)) (-1790 ((|#1| $) 13)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL (|has| |#1| (-1131)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-1131)))) (-1560 (($ |#1| (-525)) 31)) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 116)) (-3898 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 55)) (-3762 (((-3 $ "failed") $) 131)) (-2251 (((-3 (-385 (-525)) "failed") $) 63 (|has| |#1| (-510)))) (-2265 (((-108) $) 59 (|has| |#1| (-510)))) (-2178 (((-385 (-525)) $) 70 (|has| |#1| (-510)))) (-3333 (($ |#1| (-525)) 33)) (-3836 (((-108) $) 152 (|has| |#1| (-1131)))) (-1985 (((-108) $) 43)) (-2725 (((-713) $) 38)) (-3662 (((-3 "nil" "sqfr" "irred" "prime") $ (-525)) 137)) (-3285 ((|#1| $ (-525)) 136)) (-2476 (((-525) $ (-525)) 135)) (-3916 (($ |#1| (-525)) 30)) (-2694 (($ (-1 |#1| |#1|) $) 143)) (-2575 (($ |#1| (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525))))) 58)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3451 (((-1074) $) NIL)) (-4181 (($ |#1| (-525)) 32)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-429)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) 147 (|has| |#1| (-429)))) (-3027 (($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-1494 (((-592 (-2 (|:| -2195 |#1|) (|:| -1864 (-525)))) $) 54)) (-2735 (((-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $) 12)) (-2195 (((-396 $) $) NIL (|has| |#1| (-1131)))) (-1680 (((-3 $ "failed") $ $) 138)) (-1864 (((-525) $) 132)) (-3788 ((|#1| $) 56)) (-2602 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 79 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1091)) (-592 |#1|)) 85 (|has| |#1| (-486 (-1091) |#1|))) (($ $ (-1091) |#1|) NIL (|has| |#1| (-486 (-1091) |#1|))) (($ $ (-1091) $) NIL (|has| |#1| (-486 (-1091) $))) (($ $ (-592 (-1091)) (-592 $)) 86 (|has| |#1| (-486 (-1091) $))) (($ $ (-592 (-273 $))) 82 (|has| |#1| (-288 $))) (($ $ (-273 $)) NIL (|has| |#1| (-288 $))) (($ $ $ $) NIL (|has| |#1| (-288 $))) (($ $ (-592 $) (-592 $)) NIL (|has| |#1| (-288 $)))) (-3410 (($ $ |#1|) 71 (|has| |#1| (-265 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-265 $ $)))) (-2523 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-2749 (((-501) $) 27 (|has| |#1| (-567 (-501)))) (((-357) $) 92 (|has| |#1| (-953))) (((-205) $) 95 (|has| |#1| (-953)))) (-1270 (((-798) $) 114) (($ (-525)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525)))))) (-2104 (((-713)) 48)) (-3959 (((-108) $ $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 40 T CONST)) (-3363 (($) 39 T CONST)) (-2093 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3994 (((-108) $ $) 96)) (-4090 (($ $) 128) (($ $ $) NIL)) (-4080 (($ $ $) 140)) (** (($ $ (-856)) NIL) (($ $ (-713)) 102)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL)))
+(((-396 |#1|) (-13 (-517) (-211 |#1|) (-37 |#1|) (-316 |#1|) (-389 |#1|) (-10 -8 (-15 -3788 (|#1| $)) (-15 -1864 ((-525) $)) (-15 -2575 ($ |#1| (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))))) (-15 -2735 ((-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $)) (-15 -3916 ($ |#1| (-525))) (-15 -1494 ((-592 (-2 (|:| -2195 |#1|) (|:| -1864 (-525)))) $)) (-15 -4181 ($ |#1| (-525))) (-15 -2476 ((-525) $ (-525))) (-15 -3285 (|#1| $ (-525))) (-15 -3662 ((-3 "nil" "sqfr" "irred" "prime") $ (-525))) (-15 -2725 ((-713) $)) (-15 -3333 ($ |#1| (-525))) (-15 -1560 ($ |#1| (-525))) (-15 -3027 ($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1790 (|#1| $)) (-15 -1359 ($ $)) (-15 -2694 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-429)) (-6 (-429)) |%noBranch|) (IF (|has| |#1| (-953)) (-6 (-953)) |%noBranch|) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -2265 ((-108) $)) (-15 -2178 ((-385 (-525)) $)) (-15 -2251 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-265 $ $)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |#1| (-288 $)) (-6 (-288 $)) |%noBranch|) (IF (|has| |#1| (-486 (-1091) $)) (-6 (-486 (-1091) $)) |%noBranch|))) (-517)) (T -396))
+((-2694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-517)) (-5 *1 (-396 *3)))) (-3788 (*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-2575 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-525))))) (-4 *2 (-517)) (-5 *1 (-396 *2)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-525))))) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-3916 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -2195 *3) (|:| -1864 (-525))))) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-4181 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-2476 (*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-3285 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3662 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-396 *4)) (-4 *4 (-517)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-396 *3)) (-4 *3 (-517)))) (-3333 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1560 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-3027 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1790 (*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-1359 (*1 *1 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))) (-2178 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))) (-2251 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517)))))
+(-13 (-517) (-211 |#1|) (-37 |#1|) (-316 |#1|) (-389 |#1|) (-10 -8 (-15 -3788 (|#1| $)) (-15 -1864 ((-525) $)) (-15 -2575 ($ |#1| (-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))))) (-15 -2735 ((-592 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-525)))) $)) (-15 -3916 ($ |#1| (-525))) (-15 -1494 ((-592 (-2 (|:| -2195 |#1|) (|:| -1864 (-525)))) $)) (-15 -4181 ($ |#1| (-525))) (-15 -2476 ((-525) $ (-525))) (-15 -3285 (|#1| $ (-525))) (-15 -3662 ((-3 "nil" "sqfr" "irred" "prime") $ (-525))) (-15 -2725 ((-713) $)) (-15 -3333 ($ |#1| (-525))) (-15 -1560 ($ |#1| (-525))) (-15 -3027 ($ |#1| (-525) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -1790 (|#1| $)) (-15 -1359 ($ $)) (-15 -2694 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-429)) (-6 (-429)) |%noBranch|) (IF (|has| |#1| (-953)) (-6 (-953)) |%noBranch|) (IF (|has| |#1| (-1131)) (-6 (-1131)) |%noBranch|) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -2265 ((-108) $)) (-15 -2178 ((-385 (-525)) $)) (-15 -2251 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-265 $ $)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |#1| (-288 $)) (-6 (-288 $)) |%noBranch|) (IF (|has| |#1| (-486 (-1091) $)) (-6 (-486 (-1091) $)) |%noBranch|)))
+((-3676 (((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|)) 21)) (-2944 (((-396 |#1|) (-396 |#1|) (-396 |#1|)) 16)))
+(((-397 |#1|) (-10 -7 (-15 -3676 ((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|))) (-15 -2944 ((-396 |#1|) (-396 |#1|) (-396 |#1|)))) (-517)) (T -397))
+((-2944 (*1 *2 *2 *2) (-12 (-5 *2 (-396 *3)) (-4 *3 (-517)) (-5 *1 (-397 *3)))) (-3676 (*1 *2 *2 *3) (-12 (-5 *2 (-396 *4)) (-5 *3 (-1 (-396 *4) *4)) (-4 *4 (-517)) (-5 *1 (-397 *4)))))
+(-10 -7 (-15 -3676 ((-396 |#1|) (-396 |#1|) (-1 (-396 |#1|) |#1|))) (-15 -2944 ((-396 |#1|) (-396 |#1|) (-396 |#1|))))
+((-3745 ((|#2| |#2|) 166)) (-3844 (((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-108)) 57)))
+(((-398 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3844 ((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-108))) (-15 -3745 (|#2| |#2|))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1113) (-408 |#1|)) (-1091) |#2|) (T -398))
+((-3745 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-398 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1113) (-408 *3))) (-14 *4 (-1091)) (-14 *5 *2))) (-3844 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (|:| |%expansion| (-291 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-398 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1113) (-408 *5))) (-14 *6 (-1091)) (-14 *7 *3))))
+(-10 -7 (-15 -3844 ((-3 (|:| |%expansion| (-291 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-108))) (-15 -3745 (|#2| |#2|)))
+((-2694 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-399 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2694 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-977) (-789)) (-408 |#1|) (-13 (-977) (-789)) (-408 |#3|)) (T -399))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-977) (-789))) (-4 *6 (-13 (-977) (-789))) (-4 *2 (-408 *6)) (-5 *1 (-399 *5 *4 *6 *2)) (-4 *4 (-408 *5)))))
+(-10 -7 (-15 -2694 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3745 ((|#2| |#2|) 90)) (-2125 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-108) (-1074)) 48)) (-2426 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-108) (-1074)) 154)))
+(((-400 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2125 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-108) (-1074))) (-15 -2426 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-108) (-1074))) (-15 -3745 (|#2| |#2|))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1113) (-408 |#1|) (-10 -8 (-15 -1270 ($ |#3|)))) (-787) (-13 (-1151 |#2| |#3|) (-341) (-1113) (-10 -8 (-15 -2523 ($ $)) (-15 -2650 ($ $)))) (-916 |#4|) (-1091)) (T -400))
+((-3745 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-4 *2 (-13 (-27) (-1113) (-408 *3) (-10 -8 (-15 -1270 ($ *4))))) (-4 *4 (-787)) (-4 *5 (-13 (-1151 *2 *4) (-341) (-1113) (-10 -8 (-15 -2523 ($ $)) (-15 -2650 ($ $))))) (-5 *1 (-400 *3 *2 *4 *5 *6 *7)) (-4 *6 (-916 *5)) (-14 *7 (-1091)))) (-2426 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-4 *3 (-13 (-27) (-1113) (-408 *6) (-10 -8 (-15 -1270 ($ *7))))) (-4 *7 (-787)) (-4 *8 (-13 (-1151 *3 *7) (-341) (-1113) (-10 -8 (-15 -2523 ($ $)) (-15 -2650 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-916 *8)) (-14 *10 (-1091)))) (-2125 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-108)) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-4 *3 (-13 (-27) (-1113) (-408 *6) (-10 -8 (-15 -1270 ($ *7))))) (-4 *7 (-787)) (-4 *8 (-13 (-1151 *3 *7) (-341) (-1113) (-10 -8 (-15 -2523 ($ $)) (-15 -2650 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074)))))) (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-916 *8)) (-14 *10 (-1091)))))
+(-10 -7 (-15 -2125 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-108) (-1074))) (-15 -2426 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))) |#2| (-108) (-1074))) (-15 -3745 (|#2| |#2|)))
+((-3123 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-3503 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2694 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2694 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3503 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3123 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1020) (-403 |#1|) (-1020) (-403 |#3|)) (T -401))
+((-3123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1020)) (-4 *5 (-1020)) (-4 *2 (-403 *5)) (-5 *1 (-401 *6 *4 *5 *2)) (-4 *4 (-403 *6)))) (-3503 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1020)) (-4 *2 (-1020)) (-5 *1 (-401 *5 *4 *2 *6)) (-4 *4 (-403 *5)) (-4 *6 (-403 *2)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-403 *6)) (-5 *1 (-401 *5 *4 *6 *2)) (-4 *4 (-403 *5)))))
+(-10 -7 (-15 -2694 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -3503 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3123 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2001 (($) 44)) (-2805 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-2083 (($ $ $) 39)) (-3921 (((-108) $ $) 28)) (-4190 (((-713)) 47)) (-2955 (($ (-592 |#2|)) 20) (($) NIL)) (-2899 (($) 53)) (-2371 ((|#2| $) 61)) (-2535 ((|#2| $) 59)) (-1736 (((-856) $) 55)) (-3792 (($ $ $) 35)) (-3640 (($ (-856)) 50)) (-4004 (($ $ |#2|) NIL) (($ $ $) 38)) (-2040 (((-713) (-1 (-108) |#2|) $) NIL) (((-713) |#2| $) 26)) (-1279 (($ (-592 |#2|)) 24)) (-1966 (($ $) 46)) (-1270 (((-798) $) 33)) (-1974 (((-713) $) 21)) (-3316 (($ (-592 |#2|)) 19) (($) NIL)) (-3994 (((-108) $ $) 16)) (-4017 (((-108) $ $) 13)))
+(((-402 |#1| |#2|) (-10 -8 (-15 -4190 ((-713))) (-15 -3640 (|#1| (-856))) (-15 -1736 ((-856) |#1|)) (-15 -2899 (|#1|)) (-15 -2371 (|#2| |#1|)) (-15 -2535 (|#2| |#1|)) (-15 -2001 (|#1|)) (-15 -1966 (|#1| |#1|)) (-15 -1974 ((-713) |#1|)) (-15 -3994 ((-108) |#1| |#1|)) (-15 -1270 ((-798) |#1|)) (-15 -4017 ((-108) |#1| |#1|)) (-15 -3316 (|#1|)) (-15 -3316 (|#1| (-592 |#2|))) (-15 -2955 (|#1|)) (-15 -2955 (|#1| (-592 |#2|))) (-15 -3792 (|#1| |#1| |#1|)) (-15 -4004 (|#1| |#1| |#1|)) (-15 -4004 (|#1| |#1| |#2|)) (-15 -2083 (|#1| |#1| |#1|)) (-15 -3921 ((-108) |#1| |#1|)) (-15 -2805 (|#1| |#1| |#1|)) (-15 -2805 (|#1| |#1| |#2|)) (-15 -2805 (|#1| |#2| |#1|)) (-15 -1279 (|#1| (-592 |#2|))) (-15 -2040 ((-713) |#2| |#1|)) (-15 -2040 ((-713) (-1 (-108) |#2|) |#1|))) (-403 |#2|) (-1020)) (T -402))
+((-4190 (*1 *2) (-12 (-4 *4 (-1020)) (-5 *2 (-713)) (-5 *1 (-402 *3 *4)) (-4 *3 (-403 *4)))))
+(-10 -8 (-15 -4190 ((-713))) (-15 -3640 (|#1| (-856))) (-15 -1736 ((-856) |#1|)) (-15 -2899 (|#1|)) (-15 -2371 (|#2| |#1|)) (-15 -2535 (|#2| |#1|)) (-15 -2001 (|#1|)) (-15 -1966 (|#1| |#1|)) (-15 -1974 ((-713) |#1|)) (-15 -3994 ((-108) |#1| |#1|)) (-15 -1270 ((-798) |#1|)) (-15 -4017 ((-108) |#1| |#1|)) (-15 -3316 (|#1|)) (-15 -3316 (|#1| (-592 |#2|))) (-15 -2955 (|#1|)) (-15 -2955 (|#1| (-592 |#2|))) (-15 -3792 (|#1| |#1| |#1|)) (-15 -4004 (|#1| |#1| |#1|)) (-15 -4004 (|#1| |#1| |#2|)) (-15 -2083 (|#1| |#1| |#1|)) (-15 -3921 ((-108) |#1| |#1|)) (-15 -2805 (|#1| |#1| |#1|)) (-15 -2805 (|#1| |#1| |#2|)) (-15 -2805 (|#1| |#2| |#1|)) (-15 -1279 (|#1| (-592 |#2|))) (-15 -2040 ((-713) |#2| |#1|)) (-15 -2040 ((-713) (-1 (-108) |#2|) |#1|)))
+((-1260 (((-108) $ $) 19)) (-2001 (($) 67 (|has| |#1| (-346)))) (-2805 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2083 (($ $ $) 78)) (-3921 (((-108) $ $) 79)) (-3330 (((-108) $ (-713)) 8)) (-4190 (((-713)) 61 (|has| |#1| (-346)))) (-2955 (($ (-592 |#1|)) 74) (($) 73)) (-1608 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4255)))) (-2305 (($) 7 T CONST)) (-3137 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2592 (($ |#1| $) 47 (|has| $ (-6 -4255))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4255)))) (-1614 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4255)))) (-2899 (($) 64 (|has| |#1| (-346)))) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) 9)) (-2371 ((|#1| $) 65 (|has| |#1| (-789)))) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2535 ((|#1| $) 66 (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-1736 (((-856) $) 63 (|has| |#1| (-346)))) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22)) (-3792 (($ $ $) 75)) (-3955 ((|#1| $) 39)) (-3985 (($ |#1| $) 40)) (-3640 (($ (-856)) 62 (|has| |#1| (-346)))) (-2012 (((-1038) $) 21)) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-1881 ((|#1| $) 41)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-4004 (($ $ |#1|) 77) (($ $ $) 76)) (-3981 (($) 49) (($ (-592 |#1|)) 48)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-2749 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 50)) (-1966 (($ $) 68 (|has| |#1| (-346)))) (-1270 (((-798) $) 18)) (-1974 (((-713) $) 69)) (-3316 (($ (-592 |#1|)) 72) (($) 71)) (-1665 (($ (-592 |#1|)) 42)) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20)) (-4017 (((-108) $ $) 70)) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-403 |#1|) (-131) (-1020)) (T -403))
+((-1974 (*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-1020)) (-5 *2 (-713)))) (-1966 (*1 *1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-346)))) (-2001 (*1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-346)) (-4 *2 (-1020)))) (-2535 (*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-789)))) (-2371 (*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-789)))))
+(-13 (-209 |t#1|) (-1018 |t#1|) (-10 -8 (-6 -4255) (-15 -1974 ((-713) $)) (IF (|has| |t#1| (-346)) (PROGN (-6 (-346)) (-15 -1966 ($ $)) (-15 -2001 ($))) |%noBranch|) (IF (|has| |t#1| (-789)) (PROGN (-15 -2535 (|t#1| $)) (-15 -2371 (|t#1| $))) |%noBranch|)))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-566 (-798)) . T) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-209 |#1|) . T) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-346) |has| |#1| (-346)) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1018 |#1|) . T) ((-1020) . T) ((-1127) . T))
+((-2120 (((-542 |#2|) |#2| (-1091)) 36)) (-3038 (((-542 |#2|) |#2| (-1091)) 20)) (-1328 ((|#2| |#2| (-1091)) 25)))
+(((-404 |#1| |#2|) (-10 -7 (-15 -3038 ((-542 |#2|) |#2| (-1091))) (-15 -2120 ((-542 |#2|) |#2| (-1091))) (-15 -1328 (|#2| |#2| (-1091)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1113) (-29 |#1|))) (T -404))
+((-1328 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *1 (-404 *4 *2)) (-4 *2 (-13 (-1113) (-29 *4))))) (-2120 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3)) (-4 *3 (-13 (-1113) (-29 *5))))) (-3038 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3)) (-4 *3 (-13 (-1113) (-29 *5))))))
+(-10 -7 (-15 -3038 ((-542 |#2|) |#2| (-1091))) (-15 -2120 ((-542 |#2|) |#2| (-1091))) (-15 -1328 (|#2| |#2| (-1091))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-3762 (((-3 $ "failed") $) NIL)) (-1985 (((-108) $) NIL)) (-2777 (($ |#2| |#1|) 35)) (-2070 (($ |#2| |#1|) 33)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-309 |#2|)) 25)) (-2104 (((-713)) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 10 T CONST)) (-3363 (($) 16 T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) 34)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-405 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4242)) (IF (|has| |#1| (-6 -4242)) (-6 -4242) |%noBranch|) |%noBranch|) (-15 -1270 ($ |#1|)) (-15 -1270 ($ (-309 |#2|))) (-15 -2777 ($ |#2| |#1|)) (-15 -2070 ($ |#2| |#1|)))) (-13 (-160) (-37 (-385 (-525)))) (-13 (-789) (-21))) (T -405))
+((-1270 (*1 *1 *2) (-12 (-5 *1 (-405 *2 *3)) (-4 *2 (-13 (-160) (-37 (-385 (-525))))) (-4 *3 (-13 (-789) (-21))))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-309 *4)) (-4 *4 (-13 (-789) (-21))) (-5 *1 (-405 *3 *4)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))))) (-2777 (*1 *1 *2 *3) (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))) (-4 *2 (-13 (-789) (-21))))) (-2070 (*1 *1 *2 *3) (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525))))) (-4 *2 (-13 (-789) (-21))))))
+(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4242)) (IF (|has| |#1| (-6 -4242)) (-6 -4242) |%noBranch|) |%noBranch|) (-15 -1270 ($ |#1|)) (-15 -1270 ($ (-309 |#2|))) (-15 -2777 ($ |#2| |#1|)) (-15 -2070 ($ |#2| |#1|))))
+((-2650 (((-3 |#2| (-592 |#2|)) |#2| (-1091)) 109)))
+(((-406 |#1| |#2|) (-10 -7 (-15 -2650 ((-3 |#2| (-592 |#2|)) |#2| (-1091)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1113) (-893) (-29 |#1|))) (T -406))
+((-2650 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 *3 (-592 *3))) (-5 *1 (-406 *5 *3)) (-4 *3 (-13 (-1113) (-893) (-29 *5))))))
+(-10 -7 (-15 -2650 ((-3 |#2| (-592 |#2|)) |#2| (-1091))))
+((-2383 (((-592 (-1091)) $) 72)) (-2146 (((-385 (-1087 $)) $ (-565 $)) 273)) (-1224 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) 237)) (-2591 (((-3 (-565 $) "failed") $) NIL) (((-3 (-1091) "failed") $) 75) (((-3 (-525) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-385 (-887 |#2|)) "failed") $) 324) (((-3 (-887 |#2|) "failed") $) 235) (((-3 (-385 (-525)) "failed") $) NIL)) (-3898 (((-565 $) $) NIL) (((-1091) $) 30) (((-525) $) NIL) ((|#2| $) 231) (((-385 (-887 |#2|)) $) 305) (((-887 |#2|) $) 232) (((-385 (-525)) $) NIL)) (-2972 (((-110) (-110)) 47)) (-1931 (($ $) 87)) (-1661 (((-3 (-565 $) "failed") $) 228)) (-2129 (((-592 (-565 $)) $) 229)) (-4228 (((-3 (-592 $) "failed") $) 247)) (-1617 (((-3 (-2 (|:| |val| $) (|:| -1864 (-525))) "failed") $) 254)) (-3852 (((-3 (-592 $) "failed") $) 245)) (-2274 (((-3 (-2 (|:| -1655 (-525)) (|:| |var| (-565 $))) "failed") $) 264)) (-1553 (((-3 (-2 (|:| |var| (-565 $)) (|:| -1864 (-525))) "failed") $) 251) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1864 (-525))) "failed") $ (-110)) 217) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1864 (-525))) "failed") $ (-1091)) 219)) (-2513 (((-108) $) 19)) (-2525 ((|#2| $) 21)) (-2602 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) 236) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1091)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1091)) (-592 (-1 $ (-592 $)))) 96) (($ $ (-1091) (-1 $ (-592 $))) NIL) (($ $ (-1091) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL) (($ $ (-1091)) 57) (($ $ (-592 (-1091))) 240) (($ $) 241) (($ $ (-110) $ (-1091)) 60) (($ $ (-592 (-110)) (-592 $) (-1091)) 67) (($ $ (-592 (-1091)) (-592 (-713)) (-592 (-1 $ $))) 107) (($ $ (-592 (-1091)) (-592 (-713)) (-592 (-1 $ (-592 $)))) 242) (($ $ (-1091) (-713) (-1 $ (-592 $))) 94) (($ $ (-1091) (-713) (-1 $ $)) 93)) (-3410 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) 106)) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091)) 238)) (-2097 (($ $) 284)) (-2749 (((-827 (-525)) $) 257) (((-827 (-357)) $) 261) (($ (-396 $)) 320) (((-501) $) NIL)) (-1270 (((-798) $) 239) (($ (-565 $)) 84) (($ (-1091)) 26) (($ |#2|) NIL) (($ (-1043 |#2| (-565 $))) NIL) (($ (-385 |#2|)) 289) (($ (-887 (-385 |#2|))) 329) (($ (-385 (-887 (-385 |#2|)))) 301) (($ (-385 (-887 |#2|))) 295) (($ $) NIL) (($ (-887 |#2|)) 185) (($ (-385 (-525))) 334) (($ (-525)) NIL)) (-2104 (((-713)) 79)) (-1863 (((-108) (-110)) 41)) (-2500 (($ (-1091) $) 33) (($ (-1091) $ $) 34) (($ (-1091) $ $ $) 35) (($ (-1091) $ $ $ $) 36) (($ (-1091) (-592 $)) 39)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL)))
+(((-407 |#1| |#2|) (-10 -8 (-15 * (|#1| (-856) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2104 ((-713))) (-15 -1270 (|#1| (-525))) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -2749 ((-501) |#1|)) (-15 -3898 ((-887 |#2|) |#1|)) (-15 -2591 ((-3 (-887 |#2|) "failed") |#1|)) (-15 -1270 (|#1| (-887 |#2|))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1270 (|#1| |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -3898 ((-385 (-887 |#2|)) |#1|)) (-15 -2591 ((-3 (-385 (-887 |#2|)) "failed") |#1|)) (-15 -1270 (|#1| (-385 (-887 |#2|)))) (-15 -2146 ((-385 (-1087 |#1|)) |#1| (-565 |#1|))) (-15 -1270 (|#1| (-385 (-887 (-385 |#2|))))) (-15 -1270 (|#1| (-887 (-385 |#2|)))) (-15 -1270 (|#1| (-385 |#2|))) (-15 -2097 (|#1| |#1|)) (-15 -2749 (|#1| (-396 |#1|))) (-15 -2602 (|#1| |#1| (-1091) (-713) (-1 |#1| |#1|))) (-15 -2602 (|#1| |#1| (-1091) (-713) (-1 |#1| (-592 |#1|)))) (-15 -2602 (|#1| |#1| (-592 (-1091)) (-592 (-713)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2602 (|#1| |#1| (-592 (-1091)) (-592 (-713)) (-592 (-1 |#1| |#1|)))) (-15 -1617 ((-3 (-2 (|:| |val| |#1|) (|:| -1864 (-525))) "failed") |#1|)) (-15 -1553 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1864 (-525))) "failed") |#1| (-1091))) (-15 -1553 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1864 (-525))) "failed") |#1| (-110))) (-15 -1931 (|#1| |#1|)) (-15 -1270 (|#1| (-1043 |#2| (-565 |#1|)))) (-15 -2274 ((-3 (-2 (|:| -1655 (-525)) (|:| |var| (-565 |#1|))) "failed") |#1|)) (-15 -3852 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -1553 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1864 (-525))) "failed") |#1|)) (-15 -4228 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -2602 (|#1| |#1| (-592 (-110)) (-592 |#1|) (-1091))) (-15 -2602 (|#1| |#1| (-110) |#1| (-1091))) (-15 -2602 (|#1| |#1|)) (-15 -2602 (|#1| |#1| (-592 (-1091)))) (-15 -2602 (|#1| |#1| (-1091))) (-15 -2500 (|#1| (-1091) (-592 |#1|))) (-15 -2500 (|#1| (-1091) |#1| |#1| |#1| |#1|)) (-15 -2500 (|#1| (-1091) |#1| |#1| |#1|)) (-15 -2500 (|#1| (-1091) |#1| |#1|)) (-15 -2500 (|#1| (-1091) |#1|)) (-15 -2383 ((-592 (-1091)) |#1|)) (-15 -2525 (|#2| |#1|)) (-15 -2513 ((-108) |#1|)) (-15 -3898 (|#2| |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -1270 (|#1| |#2|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -2749 ((-827 (-357)) |#1|)) (-15 -2749 ((-827 (-525)) |#1|)) (-15 -3898 ((-1091) |#1|)) (-15 -2591 ((-3 (-1091) "failed") |#1|)) (-15 -1270 (|#1| (-1091))) (-15 -2602 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2602 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -2602 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2602 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -2602 (|#1| |#1| (-1091) (-1 |#1| |#1|))) (-15 -2602 (|#1| |#1| (-1091) (-1 |#1| (-592 |#1|)))) (-15 -2602 (|#1| |#1| (-592 (-1091)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2602 (|#1| |#1| (-592 (-1091)) (-592 (-1 |#1| |#1|)))) (-15 -1863 ((-108) (-110))) (-15 -2972 ((-110) (-110))) (-15 -2129 ((-592 (-565 |#1|)) |#1|)) (-15 -1661 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -1224 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -1224 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1224 (|#1| |#1| (-273 |#1|))) (-15 -3410 (|#1| (-110) (-592 |#1|))) (-15 -3410 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3410 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3410 (|#1| (-110) |#1| |#1|)) (-15 -3410 (|#1| (-110) |#1|)) (-15 -2602 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2602 (|#1| |#1| |#1| |#1|)) (-15 -2602 (|#1| |#1| (-273 |#1|))) (-15 -2602 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2602 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -2602 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -3898 ((-565 |#1|) |#1|)) (-15 -2591 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -1270 (|#1| (-565 |#1|))) (-15 -1270 ((-798) |#1|))) (-408 |#2|) (-789)) (T -407))
+((-2972 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *4 (-789)) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-407 *4 *5)) (-4 *4 (-408 *5)))) (-2104 (*1 *2) (-12 (-4 *4 (-789)) (-5 *2 (-713)) (-5 *1 (-407 *3 *4)) (-4 *3 (-408 *4)))))
+(-10 -8 (-15 * (|#1| (-856) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2104 ((-713))) (-15 -1270 (|#1| (-525))) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -2749 ((-501) |#1|)) (-15 -3898 ((-887 |#2|) |#1|)) (-15 -2591 ((-3 (-887 |#2|) "failed") |#1|)) (-15 -1270 (|#1| (-887 |#2|))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1270 (|#1| |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -3898 ((-385 (-887 |#2|)) |#1|)) (-15 -2591 ((-3 (-385 (-887 |#2|)) "failed") |#1|)) (-15 -1270 (|#1| (-385 (-887 |#2|)))) (-15 -2146 ((-385 (-1087 |#1|)) |#1| (-565 |#1|))) (-15 -1270 (|#1| (-385 (-887 (-385 |#2|))))) (-15 -1270 (|#1| (-887 (-385 |#2|)))) (-15 -1270 (|#1| (-385 |#2|))) (-15 -2097 (|#1| |#1|)) (-15 -2749 (|#1| (-396 |#1|))) (-15 -2602 (|#1| |#1| (-1091) (-713) (-1 |#1| |#1|))) (-15 -2602 (|#1| |#1| (-1091) (-713) (-1 |#1| (-592 |#1|)))) (-15 -2602 (|#1| |#1| (-592 (-1091)) (-592 (-713)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2602 (|#1| |#1| (-592 (-1091)) (-592 (-713)) (-592 (-1 |#1| |#1|)))) (-15 -1617 ((-3 (-2 (|:| |val| |#1|) (|:| -1864 (-525))) "failed") |#1|)) (-15 -1553 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1864 (-525))) "failed") |#1| (-1091))) (-15 -1553 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1864 (-525))) "failed") |#1| (-110))) (-15 -1931 (|#1| |#1|)) (-15 -1270 (|#1| (-1043 |#2| (-565 |#1|)))) (-15 -2274 ((-3 (-2 (|:| -1655 (-525)) (|:| |var| (-565 |#1|))) "failed") |#1|)) (-15 -3852 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -1553 ((-3 (-2 (|:| |var| (-565 |#1|)) (|:| -1864 (-525))) "failed") |#1|)) (-15 -4228 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -2602 (|#1| |#1| (-592 (-110)) (-592 |#1|) (-1091))) (-15 -2602 (|#1| |#1| (-110) |#1| (-1091))) (-15 -2602 (|#1| |#1|)) (-15 -2602 (|#1| |#1| (-592 (-1091)))) (-15 -2602 (|#1| |#1| (-1091))) (-15 -2500 (|#1| (-1091) (-592 |#1|))) (-15 -2500 (|#1| (-1091) |#1| |#1| |#1| |#1|)) (-15 -2500 (|#1| (-1091) |#1| |#1| |#1|)) (-15 -2500 (|#1| (-1091) |#1| |#1|)) (-15 -2500 (|#1| (-1091) |#1|)) (-15 -2383 ((-592 (-1091)) |#1|)) (-15 -2525 (|#2| |#1|)) (-15 -2513 ((-108) |#1|)) (-15 -3898 (|#2| |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -1270 (|#1| |#2|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -2749 ((-827 (-357)) |#1|)) (-15 -2749 ((-827 (-525)) |#1|)) (-15 -3898 ((-1091) |#1|)) (-15 -2591 ((-3 (-1091) "failed") |#1|)) (-15 -1270 (|#1| (-1091))) (-15 -2602 (|#1| |#1| (-110) (-1 |#1| |#1|))) (-15 -2602 (|#1| |#1| (-110) (-1 |#1| (-592 |#1|)))) (-15 -2602 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2602 (|#1| |#1| (-592 (-110)) (-592 (-1 |#1| |#1|)))) (-15 -2602 (|#1| |#1| (-1091) (-1 |#1| |#1|))) (-15 -2602 (|#1| |#1| (-1091) (-1 |#1| (-592 |#1|)))) (-15 -2602 (|#1| |#1| (-592 (-1091)) (-592 (-1 |#1| (-592 |#1|))))) (-15 -2602 (|#1| |#1| (-592 (-1091)) (-592 (-1 |#1| |#1|)))) (-15 -1863 ((-108) (-110))) (-15 -2972 ((-110) (-110))) (-15 -2129 ((-592 (-565 |#1|)) |#1|)) (-15 -1661 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -1224 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -1224 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1224 (|#1| |#1| (-273 |#1|))) (-15 -3410 (|#1| (-110) (-592 |#1|))) (-15 -3410 (|#1| (-110) |#1| |#1| |#1| |#1|)) (-15 -3410 (|#1| (-110) |#1| |#1| |#1|)) (-15 -3410 (|#1| (-110) |#1| |#1|)) (-15 -3410 (|#1| (-110) |#1|)) (-15 -2602 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2602 (|#1| |#1| |#1| |#1|)) (-15 -2602 (|#1| |#1| (-273 |#1|))) (-15 -2602 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2602 (|#1| |#1| (-592 (-565 |#1|)) (-592 |#1|))) (-15 -2602 (|#1| |#1| (-565 |#1|) |#1|)) (-15 -3898 ((-565 |#1|) |#1|)) (-15 -2591 ((-3 (-565 |#1|) "failed") |#1|)) (-15 -1270 (|#1| (-565 |#1|))) (-15 -1270 ((-798) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 116 (|has| |#1| (-25)))) (-2383 (((-592 (-1091)) $) 203)) (-2146 (((-385 (-1087 $)) $ (-565 $)) 171 (|has| |#1| (-517)))) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 143 (|has| |#1| (-517)))) (-3711 (($ $) 144 (|has| |#1| (-517)))) (-3380 (((-108) $) 146 (|has| |#1| (-517)))) (-1895 (((-592 (-565 $)) $) 44)) (-1342 (((-3 $ "failed") $ $) 118 (|has| |#1| (-21)))) (-1224 (($ $ (-273 $)) 56) (($ $ (-592 (-273 $))) 55) (($ $ (-592 (-565 $)) (-592 $)) 54)) (-3706 (($ $) 163 (|has| |#1| (-517)))) (-2100 (((-396 $) $) 164 (|has| |#1| (-517)))) (-3197 (((-108) $ $) 154 (|has| |#1| (-517)))) (-2305 (($) 102 (-3279 (|has| |#1| (-1032)) (|has| |#1| (-25))) CONST)) (-2591 (((-3 (-565 $) "failed") $) 69) (((-3 (-1091) "failed") $) 216) (((-3 (-525) "failed") $) 209 (|has| |#1| (-968 (-525)))) (((-3 |#1| "failed") $) 207) (((-3 (-385 (-887 |#1|)) "failed") $) 169 (|has| |#1| (-517))) (((-3 (-887 |#1|) "failed") $) 123 (|has| |#1| (-977))) (((-3 (-385 (-525)) "failed") $) 95 (-3279 (-12 (|has| |#1| (-968 (-525))) (|has| |#1| (-517))) (|has| |#1| (-968 (-385 (-525))))))) (-3898 (((-565 $) $) 68) (((-1091) $) 215) (((-525) $) 210 (|has| |#1| (-968 (-525)))) ((|#1| $) 206) (((-385 (-887 |#1|)) $) 168 (|has| |#1| (-517))) (((-887 |#1|) $) 122 (|has| |#1| (-977))) (((-385 (-525)) $) 94 (-3279 (-12 (|has| |#1| (-968 (-525))) (|has| |#1| (-517))) (|has| |#1| (-968 (-385 (-525))))))) (-1726 (($ $ $) 158 (|has| |#1| (-517)))) (-3416 (((-632 (-525)) (-632 $)) 137 (-3830 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 136 (-3830 (|has| |#1| (-588 (-525))) (|has| |#1| (-977)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) 135 (|has| |#1| (-977))) (((-632 |#1|) (-632 $)) 134 (|has| |#1| (-977)))) (-3762 (((-3 $ "failed") $) 105 (|has| |#1| (-1032)))) (-1704 (($ $ $) 157 (|has| |#1| (-517)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 152 (|has| |#1| (-517)))) (-3836 (((-108) $) 165 (|has| |#1| (-517)))) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 212 (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 211 (|has| |#1| (-821 (-357))))) (-3694 (($ $) 51) (($ (-592 $)) 50)) (-3321 (((-592 (-110)) $) 43)) (-2972 (((-110) (-110)) 42)) (-1985 (((-108) $) 103 (|has| |#1| (-1032)))) (-2126 (((-108) $) 22 (|has| $ (-968 (-525))))) (-1931 (($ $) 186 (|has| |#1| (-977)))) (-1498 (((-1043 |#1| (-565 $)) $) 187 (|has| |#1| (-977)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 161 (|has| |#1| (-517)))) (-1637 (((-1087 $) (-565 $)) 25 (|has| $ (-977)))) (-2371 (($ $ $) 13)) (-2535 (($ $ $) 14)) (-2694 (($ (-1 $ $) (-565 $)) 36)) (-1661 (((-3 (-565 $) "failed") $) 46)) (-2756 (($ (-592 $)) 150 (|has| |#1| (-517))) (($ $ $) 149 (|has| |#1| (-517)))) (-3451 (((-1074) $) 9)) (-2129 (((-592 (-565 $)) $) 45)) (-1581 (($ (-110) $) 38) (($ (-110) (-592 $)) 37)) (-4228 (((-3 (-592 $) "failed") $) 192 (|has| |#1| (-1032)))) (-1617 (((-3 (-2 (|:| |val| $) (|:| -1864 (-525))) "failed") $) 183 (|has| |#1| (-977)))) (-3852 (((-3 (-592 $) "failed") $) 190 (|has| |#1| (-25)))) (-2274 (((-3 (-2 (|:| -1655 (-525)) (|:| |var| (-565 $))) "failed") $) 189 (|has| |#1| (-25)))) (-1553 (((-3 (-2 (|:| |var| (-565 $)) (|:| -1864 (-525))) "failed") $) 191 (|has| |#1| (-1032))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1864 (-525))) "failed") $ (-110)) 185 (|has| |#1| (-977))) (((-3 (-2 (|:| |var| (-565 $)) (|:| -1864 (-525))) "failed") $ (-1091)) 184 (|has| |#1| (-977)))) (-3069 (((-108) $ (-110)) 40) (((-108) $ (-1091)) 39)) (-2502 (($ $) 107 (-3279 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-1751 (((-713) $) 47)) (-2012 (((-1038) $) 10)) (-2513 (((-108) $) 205)) (-2525 ((|#1| $) 204)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 151 (|has| |#1| (-517)))) (-2794 (($ (-592 $)) 148 (|has| |#1| (-517))) (($ $ $) 147 (|has| |#1| (-517)))) (-2186 (((-108) $ $) 35) (((-108) $ (-1091)) 34)) (-2195 (((-396 $) $) 162 (|has| |#1| (-517)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 160 (|has| |#1| (-517))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 159 (|has| |#1| (-517)))) (-1680 (((-3 $ "failed") $ $) 142 (|has| |#1| (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 153 (|has| |#1| (-517)))) (-3545 (((-108) $) 23 (|has| $ (-968 (-525))))) (-2602 (($ $ (-565 $) $) 67) (($ $ (-592 (-565 $)) (-592 $)) 66) (($ $ (-592 (-273 $))) 65) (($ $ (-273 $)) 64) (($ $ $ $) 63) (($ $ (-592 $) (-592 $)) 62) (($ $ (-592 (-1091)) (-592 (-1 $ $))) 33) (($ $ (-592 (-1091)) (-592 (-1 $ (-592 $)))) 32) (($ $ (-1091) (-1 $ (-592 $))) 31) (($ $ (-1091) (-1 $ $)) 30) (($ $ (-592 (-110)) (-592 (-1 $ $))) 29) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) 28) (($ $ (-110) (-1 $ (-592 $))) 27) (($ $ (-110) (-1 $ $)) 26) (($ $ (-1091)) 197 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1091))) 196 (|has| |#1| (-567 (-501)))) (($ $) 195 (|has| |#1| (-567 (-501)))) (($ $ (-110) $ (-1091)) 194 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-110)) (-592 $) (-1091)) 193 (|has| |#1| (-567 (-501)))) (($ $ (-592 (-1091)) (-592 (-713)) (-592 (-1 $ $))) 182 (|has| |#1| (-977))) (($ $ (-592 (-1091)) (-592 (-713)) (-592 (-1 $ (-592 $)))) 181 (|has| |#1| (-977))) (($ $ (-1091) (-713) (-1 $ (-592 $))) 180 (|has| |#1| (-977))) (($ $ (-1091) (-713) (-1 $ $)) 179 (|has| |#1| (-977)))) (-1290 (((-713) $) 155 (|has| |#1| (-517)))) (-3410 (($ (-110) $) 61) (($ (-110) $ $) 60) (($ (-110) $ $ $) 59) (($ (-110) $ $ $ $) 58) (($ (-110) (-592 $)) 57)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 156 (|has| |#1| (-517)))) (-1567 (($ $) 49) (($ $ $) 48)) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) 128 (|has| |#1| (-977))) (($ $ (-1091) (-713)) 127 (|has| |#1| (-977))) (($ $ (-592 (-1091))) 126 (|has| |#1| (-977))) (($ $ (-1091)) 125 (|has| |#1| (-977)))) (-2097 (($ $) 176 (|has| |#1| (-517)))) (-1512 (((-1043 |#1| (-565 $)) $) 177 (|has| |#1| (-517)))) (-1571 (($ $) 24 (|has| $ (-977)))) (-2749 (((-827 (-525)) $) 214 (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) 213 (|has| |#1| (-567 (-827 (-357))))) (($ (-396 $)) 178 (|has| |#1| (-517))) (((-501) $) 97 (|has| |#1| (-567 (-501))))) (-3700 (($ $ $) 111 (|has| |#1| (-450)))) (-2222 (($ $ $) 112 (|has| |#1| (-450)))) (-1270 (((-798) $) 11) (($ (-565 $)) 70) (($ (-1091)) 217) (($ |#1|) 208) (($ (-1043 |#1| (-565 $))) 188 (|has| |#1| (-977))) (($ (-385 |#1|)) 174 (|has| |#1| (-517))) (($ (-887 (-385 |#1|))) 173 (|has| |#1| (-517))) (($ (-385 (-887 (-385 |#1|)))) 172 (|has| |#1| (-517))) (($ (-385 (-887 |#1|))) 170 (|has| |#1| (-517))) (($ $) 141 (|has| |#1| (-517))) (($ (-887 |#1|)) 124 (|has| |#1| (-977))) (($ (-385 (-525))) 96 (-3279 (|has| |#1| (-517)) (-12 (|has| |#1| (-968 (-525))) (|has| |#1| (-517))) (|has| |#1| (-968 (-385 (-525)))))) (($ (-525)) 93 (-3279 (|has| |#1| (-977)) (|has| |#1| (-968 (-525)))))) (-3425 (((-3 $ "failed") $) 138 (|has| |#1| (-136)))) (-2104 (((-713)) 133 (|has| |#1| (-977)))) (-1604 (($ $) 53) (($ (-592 $)) 52)) (-1863 (((-108) (-110)) 41)) (-3959 (((-108) $ $) 145 (|has| |#1| (-517)))) (-2500 (($ (-1091) $) 202) (($ (-1091) $ $) 201) (($ (-1091) $ $ $) 200) (($ (-1091) $ $ $ $) 199) (($ (-1091) (-592 $)) 198)) (-1576 (($ $ (-525)) 110 (-3279 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) 104 (|has| |#1| (-1032))) (($ $ (-856)) 100 (|has| |#1| (-1032)))) (-3355 (($) 115 (|has| |#1| (-25)) CONST)) (-3363 (($) 101 (|has| |#1| (-1032)) CONST)) (-2093 (($ $ (-592 (-1091)) (-592 (-713))) 132 (|has| |#1| (-977))) (($ $ (-1091) (-713)) 131 (|has| |#1| (-977))) (($ $ (-592 (-1091))) 130 (|has| |#1| (-977))) (($ $ (-1091)) 129 (|has| |#1| (-977)))) (-4045 (((-108) $ $) 16)) (-4026 (((-108) $ $) 17)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 15)) (-4017 (((-108) $ $) 18)) (-4100 (($ (-1043 |#1| (-565 $)) (-1043 |#1| (-565 $))) 175 (|has| |#1| (-517))) (($ $ $) 108 (-3279 (|has| |#1| (-450)) (|has| |#1| (-517))))) (-4090 (($ $ $) 120 (|has| |#1| (-21))) (($ $) 119 (|has| |#1| (-21)))) (-4080 (($ $ $) 113 (|has| |#1| (-25)))) (** (($ $ (-525)) 109 (-3279 (|has| |#1| (-450)) (|has| |#1| (-517)))) (($ $ (-713)) 106 (|has| |#1| (-1032))) (($ $ (-856)) 99 (|has| |#1| (-1032)))) (* (($ (-385 (-525)) $) 167 (|has| |#1| (-517))) (($ $ (-385 (-525))) 166 (|has| |#1| (-517))) (($ |#1| $) 140 (|has| |#1| (-160))) (($ $ |#1|) 139 (|has| |#1| (-160))) (($ (-525) $) 121 (|has| |#1| (-21))) (($ (-713) $) 117 (|has| |#1| (-25))) (($ (-856) $) 114 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1032)))))
(((-408 |#1|) (-131) (-789)) (T -408))
-((-4221 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-108)))) (-4232 (*1 *2 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-592 (-1090))))) (-4184 (*1 *1 *2 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-4184 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-4184 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-4184 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-4184 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-592 *1)) (-4 *1 (-408 *4)) (-4 *4 (-789)))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-567 (-501))))) (-3092 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1090))) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-567 (-501))))) (-3092 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-567 (-501))))) (-3092 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1090)) (-4 *1 (-408 *4)) (-4 *4 (-789)) (-4 *4 (-567 (-501))))) (-3092 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 *1)) (-5 *4 (-1090)) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-567 (-501))))) (-3245 (*1 *2 *1) (|partial| -12 (-4 *3 (-1031)) (-4 *3 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-408 *3)))) (-3283 (*1 *2 *1) (|partial| -12 (-4 *3 (-1031)) (-4 *3 (-789)) (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1600 (-525)))) (-4 *1 (-408 *3)))) (-3193 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-408 *3)))) (-2104 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -1459 (-525)) (|:| |var| (-565 *1)))) (-4 *1 (-408 *3)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-1042 *3 (-565 *1))) (-4 *3 (-976)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-1303 (*1 *2 *1) (-12 (-4 *3 (-976)) (-4 *3 (-789)) (-5 *2 (-1042 *3 (-565 *1))) (-4 *1 (-408 *3)))) (-3830 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-976)))) (-3283 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-4 *4 (-976)) (-4 *4 (-789)) (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1600 (-525)))) (-4 *1 (-408 *4)))) (-3283 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-976)) (-4 *4 (-789)) (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1600 (-525)))) (-4 *1 (-408 *4)))) (-3152 (*1 *2 *1) (|partial| -12 (-4 *3 (-976)) (-4 *3 (-789)) (-5 *2 (-2 (|:| |val| *1) (|:| -1600 (-525)))) (-4 *1 (-408 *3)))) (-3092 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-592 (-713))) (-5 *4 (-592 (-1 *1 *1))) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-976)))) (-3092 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-592 (-713))) (-5 *4 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-976)))) (-3092 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-713)) (-5 *4 (-1 *1 (-592 *1))) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-976)))) (-3092 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-713)) (-5 *4 (-1 *1 *1)) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-976)))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-396 *1)) (-4 *1 (-408 *3)) (-4 *3 (-517)) (-4 *3 (-789)))) (-1312 (*1 *2 *1) (-12 (-4 *3 (-517)) (-4 *3 (-789)) (-5 *2 (-1042 *3 (-565 *1))) (-4 *1 (-408 *3)))) (-1915 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-517)))) (-4082 (*1 *1 *2 *2) (-12 (-5 *2 (-1042 *3 (-565 *1))) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-886 (-385 *3))) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-385 (-886 (-385 *3)))) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-3927 (*1 *2 *1 *3) (-12 (-5 *3 (-565 *1)) (-4 *1 (-408 *4)) (-4 *4 (-789)) (-4 *4 (-517)) (-5 *2 (-385 (-1086 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-1031)))))
-(-13 (-281) (-967 (-1090)) (-818 |t#1|) (-378 |t#1|) (-389 |t#1|) (-10 -8 (-15 -4221 ((-108) $)) (-15 -4232 (|t#1| $)) (-15 -4104 ((-592 (-1090)) $)) (-15 -4184 ($ (-1090) $)) (-15 -4184 ($ (-1090) $ $)) (-15 -4184 ($ (-1090) $ $ $)) (-15 -4184 ($ (-1090) $ $ $ $)) (-15 -4184 ($ (-1090) (-592 $))) (IF (|has| |t#1| (-567 (-501))) (PROGN (-6 (-567 (-501))) (-15 -3092 ($ $ (-1090))) (-15 -3092 ($ $ (-592 (-1090)))) (-15 -3092 ($ $)) (-15 -3092 ($ $ (-110) $ (-1090))) (-15 -3092 ($ $ (-592 (-110)) (-592 $) (-1090)))) |%noBranch|) (IF (|has| |t#1| (-1031)) (PROGN (-6 (-669)) (-15 ** ($ $ (-713))) (-15 -3245 ((-3 (-592 $) "failed") $)) (-15 -3283 ((-3 (-2 (|:| |var| (-565 $)) (|:| -1600 (-525))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3193 ((-3 (-592 $) "failed") $)) (-15 -2104 ((-3 (-2 (|:| -1459 (-525)) (|:| |var| (-565 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-976)) (PROGN (-6 (-976)) (-6 (-967 (-886 |t#1|))) (-6 (-834 (-1090))) (-6 (-355 |t#1|)) (-15 -1908 ($ (-1042 |t#1| (-565 $)))) (-15 -1303 ((-1042 |t#1| (-565 $)) $)) (-15 -3830 ($ $)) (-15 -3283 ((-3 (-2 (|:| |var| (-565 $)) (|:| -1600 (-525))) "failed") $ (-110))) (-15 -3283 ((-3 (-2 (|:| |var| (-565 $)) (|:| -1600 (-525))) "failed") $ (-1090))) (-15 -3152 ((-3 (-2 (|:| |val| $) (|:| -1600 (-525))) "failed") $)) (-15 -3092 ($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ $)))) (-15 -3092 ($ $ (-592 (-1090)) (-592 (-713)) (-592 (-1 $ (-592 $))))) (-15 -3092 ($ $ (-1090) (-713) (-1 $ (-592 $)))) (-15 -3092 ($ $ (-1090) (-713) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-341)) (-6 (-967 (-385 (-886 |t#1|)))) (-15 -1427 ($ (-396 $))) (-15 -1312 ((-1042 |t#1| (-565 $)) $)) (-15 -1915 ($ $)) (-15 -4082 ($ (-1042 |t#1| (-565 $)) (-1042 |t#1| (-565 $)))) (-15 -1908 ($ (-385 |t#1|))) (-15 -1908 ($ (-886 (-385 |t#1|)))) (-15 -1908 ($ (-385 (-886 (-385 |t#1|))))) (-15 -3927 ((-385 (-1086 $)) $ (-565 $))) (IF (|has| |t#1| (-967 (-525))) (-6 (-967 (-385 (-525)))) |%noBranch|)) |%noBranch|)))
-(((-21) -3309 (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-21))) ((-23) -3309 (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3309 (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-385 (-525))) |has| |#1| (-517)) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-517)) ((-107 |#1| |#1|) |has| |#1| (-160)) ((-107 $ $) |has| |#1| (-517)) ((-126) -3309 (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-21))) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) |has| |#1| (-517)) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-826 (-357))) |has| |#1| (-567 (-826 (-357)))) ((-567 (-826 (-525))) |has| |#1| (-567 (-826 (-525)))) ((-223) |has| |#1| (-517)) ((-269) |has| |#1| (-517)) ((-286) |has| |#1| (-517)) ((-288 $) . T) ((-281) . T) ((-341) |has| |#1| (-517)) ((-355 |#1|) |has| |#1| (-976)) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-429) |has| |#1| (-517)) ((-450) |has| |#1| (-450)) ((-486 (-565 $) $) . T) ((-486 $ $) . T) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-517)) ((-594 |#1|) |has| |#1| (-160)) ((-594 $) -3309 (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-588 (-525)) -12 (|has| |#1| (-588 (-525))) (|has| |#1| (-976))) ((-588 |#1|) |has| |#1| (-976)) ((-660 #0#) |has| |#1| (-517)) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) -3309 (|has| |#1| (-1031)) (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-450)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-789) . T) ((-834 (-1090)) |has| |#1| (-976)) ((-820 (-357)) |has| |#1| (-820 (-357))) ((-820 (-525)) |has| |#1| (-820 (-525))) ((-818 |#1|) . T) ((-854) |has| |#1| (-517)) ((-967 (-385 (-525))) -3309 (|has| |#1| (-967 (-385 (-525)))) (-12 (|has| |#1| (-517)) (|has| |#1| (-967 (-525))))) ((-967 (-385 (-886 |#1|))) |has| |#1| (-517)) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 (-565 $)) . T) ((-967 (-886 |#1|)) |has| |#1| (-976)) ((-967 (-1090)) . T) ((-967 |#1|) . T) ((-982 #0#) |has| |#1| (-517)) ((-982 |#1|) |has| |#1| (-160)) ((-982 $) |has| |#1| (-517)) ((-976) -3309 (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-983) -3309 (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-1031) -3309 (|has| |#1| (-1031)) (|has| |#1| (-976)) (|has| |#1| (-517)) (|has| |#1| (-450)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-1019) . T) ((-1126) . T) ((-1130) |has| |#1| (-517)))
-((-3351 ((|#2| |#2| |#2|) 33)) (-4159 (((-110) (-110)) 44)) (-2613 ((|#2| |#2|) 66)) (-3982 ((|#2| |#2|) 69)) (-4046 ((|#2| |#2|) 32)) (-3442 ((|#2| |#2| |#2|) 35)) (-2016 ((|#2| |#2| |#2|) 37)) (-1414 ((|#2| |#2| |#2|) 34)) (-3902 ((|#2| |#2| |#2|) 36)) (-3824 (((-108) (-110)) 42)) (-1476 ((|#2| |#2|) 39)) (-3020 ((|#2| |#2|) 38)) (-2092 ((|#2| |#2|) 27)) (-2126 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-2851 ((|#2| |#2| |#2|) 31)))
-(((-409 |#1| |#2|) (-10 -7 (-15 -3824 ((-108) (-110))) (-15 -4159 ((-110) (-110))) (-15 -2092 (|#2| |#2|)) (-15 -2126 (|#2| |#2|)) (-15 -2126 (|#2| |#2| |#2|)) (-15 -2851 (|#2| |#2| |#2|)) (-15 -4046 (|#2| |#2|)) (-15 -3351 (|#2| |#2| |#2|)) (-15 -1414 (|#2| |#2| |#2|)) (-15 -3442 (|#2| |#2| |#2|)) (-15 -3902 (|#2| |#2| |#2|)) (-15 -2016 (|#2| |#2| |#2|)) (-15 -3020 (|#2| |#2|)) (-15 -1476 (|#2| |#2|)) (-15 -3982 (|#2| |#2|)) (-15 -2613 (|#2| |#2|))) (-13 (-789) (-517)) (-408 |#1|)) (T -409))
-((-2613 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3982 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1476 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3020 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2016 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3902 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3442 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1414 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3351 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-4046 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2851 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2126 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2126 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2092 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *4)) (-4 *4 (-408 *3)))) (-3824 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-409 *4 *5)) (-4 *5 (-408 *4)))))
-(-10 -7 (-15 -3824 ((-108) (-110))) (-15 -4159 ((-110) (-110))) (-15 -2092 (|#2| |#2|)) (-15 -2126 (|#2| |#2|)) (-15 -2126 (|#2| |#2| |#2|)) (-15 -2851 (|#2| |#2| |#2|)) (-15 -4046 (|#2| |#2|)) (-15 -3351 (|#2| |#2| |#2|)) (-15 -1414 (|#2| |#2| |#2|)) (-15 -3442 (|#2| |#2| |#2|)) (-15 -3902 (|#2| |#2| |#2|)) (-15 -2016 (|#2| |#2| |#2|)) (-15 -3020 (|#2| |#2|)) (-15 -1476 (|#2| |#2|)) (-15 -3982 (|#2| |#2|)) (-15 -2613 (|#2| |#2|)))
-((-3205 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1086 |#2|)) (|:| |pol2| (-1086 |#2|)) (|:| |prim| (-1086 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-592 (-1086 |#2|))) (|:| |prim| (-1086 |#2|))) (-592 |#2|)) 61)))
-(((-410 |#1| |#2|) (-10 -7 (-15 -3205 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-592 (-1086 |#2|))) (|:| |prim| (-1086 |#2|))) (-592 |#2|))) (IF (|has| |#2| (-27)) (-15 -3205 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1086 |#2|)) (|:| |pol2| (-1086 |#2|)) (|:| |prim| (-1086 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-517) (-789) (-138)) (-408 |#1|)) (T -410))
-((-3205 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-517) (-789) (-138))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1086 *3)) (|:| |pol2| (-1086 *3)) (|:| |prim| (-1086 *3)))) (-5 *1 (-410 *4 *3)) (-4 *3 (-27)) (-4 *3 (-408 *4)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-517) (-789) (-138))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-592 (-1086 *5))) (|:| |prim| (-1086 *5)))) (-5 *1 (-410 *4 *5)))))
-(-10 -7 (-15 -3205 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-592 (-1086 |#2|))) (|:| |prim| (-1086 |#2|))) (-592 |#2|))) (IF (|has| |#2| (-27)) (-15 -3205 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1086 |#2|)) (|:| |pol2| (-1086 |#2|)) (|:| |prim| (-1086 |#2|))) |#2| |#2|)) |%noBranch|))
-((-4148 (((-1177)) 19)) (-1421 (((-1086 (-385 (-525))) |#2| (-565 |#2|)) 41) (((-385 (-525)) |#2|) 25)))
-(((-411 |#1| |#2|) (-10 -7 (-15 -1421 ((-385 (-525)) |#2|)) (-15 -1421 ((-1086 (-385 (-525))) |#2| (-565 |#2|))) (-15 -4148 ((-1177)))) (-13 (-789) (-517) (-967 (-525))) (-408 |#1|)) (T -411))
-((-4148 (*1 *2) (-12 (-4 *3 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-1177)) (-5 *1 (-411 *3 *4)) (-4 *4 (-408 *3)))) (-1421 (*1 *2 *3 *4) (-12 (-5 *4 (-565 *3)) (-4 *3 (-408 *5)) (-4 *5 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-1086 (-385 (-525)))) (-5 *1 (-411 *5 *3)))) (-1421 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-411 *4 *3)) (-4 *3 (-408 *4)))))
-(-10 -7 (-15 -1421 ((-385 (-525)) |#2|)) (-15 -1421 ((-1086 (-385 (-525))) |#2| (-565 |#2|))) (-15 -4148 ((-1177))))
-((-1349 (((-108) $) 28)) (-3150 (((-108) $) 30)) (-2318 (((-108) $) 31)) (-3125 (((-108) $) 34)) (-2232 (((-108) $) 29)) (-3896 (((-108) $) 33)) (-1908 (((-797) $) 18) (($ (-1073)) 27) (($ (-1090)) 23) (((-1090) $) 22) (((-1023) $) 21)) (-3471 (((-108) $) 32)) (-3961 (((-108) $ $) 15)))
-(((-412) (-13 (-566 (-797)) (-10 -8 (-15 -1908 ($ (-1073))) (-15 -1908 ($ (-1090))) (-15 -1908 ((-1090) $)) (-15 -1908 ((-1023) $)) (-15 -1349 ((-108) $)) (-15 -2232 ((-108) $)) (-15 -2318 ((-108) $)) (-15 -3896 ((-108) $)) (-15 -3125 ((-108) $)) (-15 -3471 ((-108) $)) (-15 -3150 ((-108) $)) (-15 -3961 ((-108) $ $))))) (T -412))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-412)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-412)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-412)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-412)))) (-1349 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2318 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3896 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3125 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3471 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3961 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
-(-13 (-566 (-797)) (-10 -8 (-15 -1908 ($ (-1073))) (-15 -1908 ($ (-1090))) (-15 -1908 ((-1090) $)) (-15 -1908 ((-1023) $)) (-15 -1349 ((-108) $)) (-15 -2232 ((-108) $)) (-15 -2318 ((-108) $)) (-15 -3896 ((-108) $)) (-15 -3125 ((-108) $)) (-15 -3471 ((-108) $)) (-15 -3150 ((-108) $)) (-15 -3961 ((-108) $ $))))
-((-2195 (((-3 (-396 (-1086 (-385 (-525)))) "failed") |#3|) 70)) (-1756 (((-396 |#3|) |#3|) 34)) (-2283 (((-3 (-396 (-1086 (-47))) "failed") |#3|) 46 (|has| |#2| (-967 (-47))))) (-2616 (((-3 (|:| |overq| (-1086 (-385 (-525)))) (|:| |overan| (-1086 (-47))) (|:| -4126 (-108))) |#3|) 37)))
-(((-413 |#1| |#2| |#3|) (-10 -7 (-15 -1756 ((-396 |#3|) |#3|)) (-15 -2195 ((-3 (-396 (-1086 (-385 (-525)))) "failed") |#3|)) (-15 -2616 ((-3 (|:| |overq| (-1086 (-385 (-525)))) (|:| |overan| (-1086 (-47))) (|:| -4126 (-108))) |#3|)) (IF (|has| |#2| (-967 (-47))) (-15 -2283 ((-3 (-396 (-1086 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-517) (-789) (-967 (-525))) (-408 |#1|) (-1148 |#2|)) (T -413))
-((-2283 (*1 *2 *3) (|partial| -12 (-4 *5 (-967 (-47))) (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 (-1086 (-47)))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1148 *5)))) (-2616 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-3 (|:| |overq| (-1086 (-385 (-525)))) (|:| |overan| (-1086 (-47))) (|:| -4126 (-108)))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1148 *5)))) (-2195 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 (-1086 (-385 (-525))))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1148 *5)))) (-1756 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 *3)) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1148 *5)))))
-(-10 -7 (-15 -1756 ((-396 |#3|) |#3|)) (-15 -2195 ((-3 (-396 (-1086 (-385 (-525)))) "failed") |#3|)) (-15 -2616 ((-3 (|:| |overq| (-1086 (-385 (-525)))) (|:| |overan| (-1086 (-47))) (|:| -4126 (-108))) |#3|)) (IF (|has| |#2| (-967 (-47))) (-15 -2283 ((-3 (-396 (-1086 (-47))) "failed") |#3|)) |%noBranch|))
-((-1893 (((-108) $ $) NIL)) (-1287 (((-1073) $ (-1073)) NIL)) (-1332 (($ $ (-1073)) NIL)) (-1300 (((-1073) $) NIL)) (-1226 (((-366) (-366) (-366)) 17) (((-366) (-366)) 15)) (-2396 (($ (-366)) NIL) (($ (-366) (-1073)) NIL)) (-1310 (((-366) $) NIL)) (-2337 (((-1073) $) NIL)) (-2388 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2041 (((-1177) (-1073)) 9)) (-3621 (((-1177) (-1073)) 10)) (-2552 (((-1177)) 11)) (-1908 (((-797) $) NIL)) (-2702 (($ $) 35)) (-3961 (((-108) $ $) NIL)))
-(((-414) (-13 (-342 (-366) (-1073)) (-10 -7 (-15 -1226 ((-366) (-366) (-366))) (-15 -1226 ((-366) (-366))) (-15 -2041 ((-1177) (-1073))) (-15 -3621 ((-1177) (-1073))) (-15 -2552 ((-1177)))))) (T -414))
-((-1226 (*1 *2 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))) (-1226 (*1 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))) (-2041 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-414)))) (-3621 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-414)))) (-2552 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-414)))))
-(-13 (-342 (-366) (-1073)) (-10 -7 (-15 -1226 ((-366) (-366) (-366))) (-15 -1226 ((-366) (-366))) (-15 -2041 ((-1177) (-1073))) (-15 -3621 ((-1177) (-1073))) (-15 -2552 ((-1177)))))
-((-1893 (((-108) $ $) NIL)) (-2879 (((-3 (|:| |fst| (-412)) (|:| -3190 "void")) $) 11)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-4077 (($) 32)) (-2457 (($) 38)) (-3508 (($) 34)) (-3355 (($) 36)) (-1723 (($) 33)) (-2557 (($) 35)) (-4099 (($) 37)) (-2427 (((-108) $) 8)) (-4222 (((-592 (-886 (-525))) $) 19)) (-1922 (($ (-3 (|:| |fst| (-412)) (|:| -3190 "void")) (-592 (-1090)) (-108)) 27) (($ (-3 (|:| |fst| (-412)) (|:| -3190 "void")) (-592 (-886 (-525))) (-108)) 28)) (-1908 (((-797) $) 23) (($ (-412)) 29)) (-3961 (((-108) $ $) NIL)))
-(((-415) (-13 (-1019) (-10 -8 (-15 -1908 ((-797) $)) (-15 -1908 ($ (-412))) (-15 -2879 ((-3 (|:| |fst| (-412)) (|:| -3190 "void")) $)) (-15 -4222 ((-592 (-886 (-525))) $)) (-15 -2427 ((-108) $)) (-15 -1922 ($ (-3 (|:| |fst| (-412)) (|:| -3190 "void")) (-592 (-1090)) (-108))) (-15 -1922 ($ (-3 (|:| |fst| (-412)) (|:| -3190 "void")) (-592 (-886 (-525))) (-108))) (-15 -4077 ($)) (-15 -1723 ($)) (-15 -3508 ($)) (-15 -2457 ($)) (-15 -2557 ($)) (-15 -3355 ($)) (-15 -4099 ($))))) (T -415))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-415)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-412)) (-5 *1 (-415)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-5 *1 (-415)))) (-4222 (*1 *2 *1) (-12 (-5 *2 (-592 (-886 (-525)))) (-5 *1 (-415)))) (-2427 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-415)))) (-1922 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-5 *3 (-592 (-1090))) (-5 *4 (-108)) (-5 *1 (-415)))) (-1922 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-108)) (-5 *1 (-415)))) (-4077 (*1 *1) (-5 *1 (-415))) (-1723 (*1 *1) (-5 *1 (-415))) (-3508 (*1 *1) (-5 *1 (-415))) (-2457 (*1 *1) (-5 *1 (-415))) (-2557 (*1 *1) (-5 *1 (-415))) (-3355 (*1 *1) (-5 *1 (-415))) (-4099 (*1 *1) (-5 *1 (-415))))
-(-13 (-1019) (-10 -8 (-15 -1908 ((-797) $)) (-15 -1908 ($ (-412))) (-15 -2879 ((-3 (|:| |fst| (-412)) (|:| -3190 "void")) $)) (-15 -4222 ((-592 (-886 (-525))) $)) (-15 -2427 ((-108) $)) (-15 -1922 ($ (-3 (|:| |fst| (-412)) (|:| -3190 "void")) (-592 (-1090)) (-108))) (-15 -1922 ($ (-3 (|:| |fst| (-412)) (|:| -3190 "void")) (-592 (-886 (-525))) (-108))) (-15 -4077 ($)) (-15 -1723 ($)) (-15 -3508 ($)) (-15 -2457 ($)) (-15 -2557 ($)) (-15 -3355 ($)) (-15 -4099 ($))))
-((-1893 (((-108) $ $) NIL)) (-1310 (((-1090) $) 8)) (-2337 (((-1073) $) 16)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 11)) (-3961 (((-108) $ $) 13)))
-(((-416 |#1|) (-13 (-1019) (-10 -8 (-15 -1310 ((-1090) $)))) (-1090)) (T -416))
-((-1310 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-416 *3)) (-14 *3 (-1090)))))
-(-13 (-1019) (-10 -8 (-15 -1310 ((-1090) $))))
-((-2891 (((-1177) $) 7)) (-1908 (((-797) $) 8) (($ (-1172 (-641))) 14) (($ (-592 (-308))) 13) (($ (-308)) 12) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 11)))
+((-2513 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-108)))) (-2525 (*1 *2 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)))) (-2383 (*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-592 (-1091))))) (-2500 (*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-2500 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-2500 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-2500 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-408 *3)) (-4 *3 (-789)))) (-2500 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-592 *1)) (-4 *1 (-408 *4)) (-4 *4 (-789)))) (-2602 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-567 (-501))))) (-2602 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1091))) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-567 (-501))))) (-2602 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-567 (-501))))) (-2602 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-110)) (-5 *3 (-1091)) (-4 *1 (-408 *4)) (-4 *4 (-789)) (-4 *4 (-567 (-501))))) (-2602 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 *1)) (-5 *4 (-1091)) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-567 (-501))))) (-4228 (*1 *2 *1) (|partial| -12 (-4 *3 (-1032)) (-4 *3 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-408 *3)))) (-1553 (*1 *2 *1) (|partial| -12 (-4 *3 (-1032)) (-4 *3 (-789)) (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1864 (-525)))) (-4 *1 (-408 *3)))) (-3852 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-408 *3)))) (-2274 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -1655 (-525)) (|:| |var| (-565 *1)))) (-4 *1 (-408 *3)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1043 *3 (-565 *1))) (-4 *3 (-977)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-1498 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *3 (-789)) (-5 *2 (-1043 *3 (-565 *1))) (-4 *1 (-408 *3)))) (-1931 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-977)))) (-1553 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-4 *4 (-977)) (-4 *4 (-789)) (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1864 (-525)))) (-4 *1 (-408 *4)))) (-1553 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-977)) (-4 *4 (-789)) (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1864 (-525)))) (-4 *1 (-408 *4)))) (-1617 (*1 *2 *1) (|partial| -12 (-4 *3 (-977)) (-4 *3 (-789)) (-5 *2 (-2 (|:| |val| *1) (|:| -1864 (-525)))) (-4 *1 (-408 *3)))) (-2602 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-1091))) (-5 *3 (-592 (-713))) (-5 *4 (-592 (-1 *1 *1))) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977)))) (-2602 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-1091))) (-5 *3 (-592 (-713))) (-5 *4 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977)))) (-2602 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1091)) (-5 *3 (-713)) (-5 *4 (-1 *1 (-592 *1))) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977)))) (-2602 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1091)) (-5 *3 (-713)) (-5 *4 (-1 *1 *1)) (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-396 *1)) (-4 *1 (-408 *3)) (-4 *3 (-517)) (-4 *3 (-789)))) (-1512 (*1 *2 *1) (-12 (-4 *3 (-517)) (-4 *3 (-789)) (-5 *2 (-1043 *3 (-565 *1))) (-4 *1 (-408 *3)))) (-2097 (*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-517)))) (-4100 (*1 *1 *2 *2) (-12 (-5 *2 (-1043 *3 (-565 *1))) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-887 (-385 *3))) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-385 *3)))) (-4 *3 (-517)) (-4 *3 (-789)) (-4 *1 (-408 *3)))) (-2146 (*1 *2 *1 *3) (-12 (-5 *3 (-565 *1)) (-4 *1 (-408 *4)) (-4 *4 (-789)) (-4 *4 (-517)) (-5 *2 (-385 (-1087 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-1032)))))
+(-13 (-281) (-968 (-1091)) (-819 |t#1|) (-378 |t#1|) (-389 |t#1|) (-10 -8 (-15 -2513 ((-108) $)) (-15 -2525 (|t#1| $)) (-15 -2383 ((-592 (-1091)) $)) (-15 -2500 ($ (-1091) $)) (-15 -2500 ($ (-1091) $ $)) (-15 -2500 ($ (-1091) $ $ $)) (-15 -2500 ($ (-1091) $ $ $ $)) (-15 -2500 ($ (-1091) (-592 $))) (IF (|has| |t#1| (-567 (-501))) (PROGN (-6 (-567 (-501))) (-15 -2602 ($ $ (-1091))) (-15 -2602 ($ $ (-592 (-1091)))) (-15 -2602 ($ $)) (-15 -2602 ($ $ (-110) $ (-1091))) (-15 -2602 ($ $ (-592 (-110)) (-592 $) (-1091)))) |%noBranch|) (IF (|has| |t#1| (-1032)) (PROGN (-6 (-669)) (-15 ** ($ $ (-713))) (-15 -4228 ((-3 (-592 $) "failed") $)) (-15 -1553 ((-3 (-2 (|:| |var| (-565 $)) (|:| -1864 (-525))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-450)) (-6 (-450)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3852 ((-3 (-592 $) "failed") $)) (-15 -2274 ((-3 (-2 (|:| -1655 (-525)) (|:| |var| (-565 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-977)) (PROGN (-6 (-977)) (-6 (-968 (-887 |t#1|))) (-6 (-835 (-1091))) (-6 (-355 |t#1|)) (-15 -1270 ($ (-1043 |t#1| (-565 $)))) (-15 -1498 ((-1043 |t#1| (-565 $)) $)) (-15 -1931 ($ $)) (-15 -1553 ((-3 (-2 (|:| |var| (-565 $)) (|:| -1864 (-525))) "failed") $ (-110))) (-15 -1553 ((-3 (-2 (|:| |var| (-565 $)) (|:| -1864 (-525))) "failed") $ (-1091))) (-15 -1617 ((-3 (-2 (|:| |val| $) (|:| -1864 (-525))) "failed") $)) (-15 -2602 ($ $ (-592 (-1091)) (-592 (-713)) (-592 (-1 $ $)))) (-15 -2602 ($ $ (-592 (-1091)) (-592 (-713)) (-592 (-1 $ (-592 $))))) (-15 -2602 ($ $ (-1091) (-713) (-1 $ (-592 $)))) (-15 -2602 ($ $ (-1091) (-713) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-341)) (-6 (-968 (-385 (-887 |t#1|)))) (-15 -2749 ($ (-396 $))) (-15 -1512 ((-1043 |t#1| (-565 $)) $)) (-15 -2097 ($ $)) (-15 -4100 ($ (-1043 |t#1| (-565 $)) (-1043 |t#1| (-565 $)))) (-15 -1270 ($ (-385 |t#1|))) (-15 -1270 ($ (-887 (-385 |t#1|)))) (-15 -1270 ($ (-385 (-887 (-385 |t#1|))))) (-15 -2146 ((-385 (-1087 $)) $ (-565 $))) (IF (|has| |t#1| (-968 (-525))) (-6 (-968 (-385 (-525)))) |%noBranch|)) |%noBranch|)))
+(((-21) -3279 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-21))) ((-23) -3279 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3279 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-385 (-525))) |has| |#1| (-517)) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-517)) ((-107 |#1| |#1|) |has| |#1| (-160)) ((-107 $ $) |has| |#1| (-517)) ((-126) -3279 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136)) (|has| |#1| (-21))) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) |has| |#1| (-517)) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-827 (-357))) |has| |#1| (-567 (-827 (-357)))) ((-567 (-827 (-525))) |has| |#1| (-567 (-827 (-525)))) ((-223) |has| |#1| (-517)) ((-269) |has| |#1| (-517)) ((-286) |has| |#1| (-517)) ((-288 $) . T) ((-281) . T) ((-341) |has| |#1| (-517)) ((-355 |#1|) |has| |#1| (-977)) ((-378 |#1|) . T) ((-389 |#1|) . T) ((-429) |has| |#1| (-517)) ((-450) |has| |#1| (-450)) ((-486 (-565 $) $) . T) ((-486 $ $) . T) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-517)) ((-594 |#1|) |has| |#1| (-160)) ((-594 $) -3279 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-588 (-525)) -12 (|has| |#1| (-588 (-525))) (|has| |#1| (-977))) ((-588 |#1|) |has| |#1| (-977)) ((-660 #0#) |has| |#1| (-517)) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) -3279 (|has| |#1| (-1032)) (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-450)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-789) . T) ((-835 (-1091)) |has| |#1| (-977)) ((-821 (-357)) |has| |#1| (-821 (-357))) ((-821 (-525)) |has| |#1| (-821 (-525))) ((-819 |#1|) . T) ((-855) |has| |#1| (-517)) ((-968 (-385 (-525))) -3279 (|has| |#1| (-968 (-385 (-525)))) (-12 (|has| |#1| (-517)) (|has| |#1| (-968 (-525))))) ((-968 (-385 (-887 |#1|))) |has| |#1| (-517)) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 (-565 $)) . T) ((-968 (-887 |#1|)) |has| |#1| (-977)) ((-968 (-1091)) . T) ((-968 |#1|) . T) ((-983 #0#) |has| |#1| (-517)) ((-983 |#1|) |has| |#1| (-160)) ((-983 $) |has| |#1| (-517)) ((-977) -3279 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-984) -3279 (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-1032) -3279 (|has| |#1| (-1032)) (|has| |#1| (-977)) (|has| |#1| (-517)) (|has| |#1| (-450)) (|has| |#1| (-160)) (|has| |#1| (-138)) (|has| |#1| (-136))) ((-1020) . T) ((-1127) . T) ((-1131) |has| |#1| (-517)))
+((-3998 ((|#2| |#2| |#2|) 33)) (-2972 (((-110) (-110)) 44)) (-3209 ((|#2| |#2|) 66)) (-3833 ((|#2| |#2|) 69)) (-3161 ((|#2| |#2|) 32)) (-2585 ((|#2| |#2| |#2|) 35)) (-2839 ((|#2| |#2| |#2|) 37)) (-2390 ((|#2| |#2| |#2|) 34)) (-1368 ((|#2| |#2| |#2|) 36)) (-1863 (((-108) (-110)) 42)) (-2391 ((|#2| |#2|) 39)) (-2979 ((|#2| |#2|) 38)) (-2086 ((|#2| |#2|) 27)) (-1908 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-1791 ((|#2| |#2| |#2|) 31)))
+(((-409 |#1| |#2|) (-10 -7 (-15 -1863 ((-108) (-110))) (-15 -2972 ((-110) (-110))) (-15 -2086 (|#2| |#2|)) (-15 -1908 (|#2| |#2|)) (-15 -1908 (|#2| |#2| |#2|)) (-15 -1791 (|#2| |#2| |#2|)) (-15 -3161 (|#2| |#2|)) (-15 -3998 (|#2| |#2| |#2|)) (-15 -2390 (|#2| |#2| |#2|)) (-15 -2585 (|#2| |#2| |#2|)) (-15 -1368 (|#2| |#2| |#2|)) (-15 -2839 (|#2| |#2| |#2|)) (-15 -2979 (|#2| |#2|)) (-15 -2391 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -3209 (|#2| |#2|))) (-13 (-789) (-517)) (-408 |#1|)) (T -409))
+((-3209 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2391 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2979 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2839 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1368 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2585 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2390 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3998 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-3161 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1791 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1908 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-1908 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2086 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2)) (-4 *2 (-408 *3)))) (-2972 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *4)) (-4 *4 (-408 *3)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-409 *4 *5)) (-4 *5 (-408 *4)))))
+(-10 -7 (-15 -1863 ((-108) (-110))) (-15 -2972 ((-110) (-110))) (-15 -2086 (|#2| |#2|)) (-15 -1908 (|#2| |#2|)) (-15 -1908 (|#2| |#2| |#2|)) (-15 -1791 (|#2| |#2| |#2|)) (-15 -3161 (|#2| |#2|)) (-15 -3998 (|#2| |#2| |#2|)) (-15 -2390 (|#2| |#2| |#2|)) (-15 -2585 (|#2| |#2| |#2|)) (-15 -1368 (|#2| |#2| |#2|)) (-15 -2839 (|#2| |#2| |#2|)) (-15 -2979 (|#2| |#2|)) (-15 -2391 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -3209 (|#2| |#2|)))
+((-3977 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1087 |#2|)) (|:| |pol2| (-1087 |#2|)) (|:| |prim| (-1087 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-592 (-1087 |#2|))) (|:| |prim| (-1087 |#2|))) (-592 |#2|)) 61)))
+(((-410 |#1| |#2|) (-10 -7 (-15 -3977 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-592 (-1087 |#2|))) (|:| |prim| (-1087 |#2|))) (-592 |#2|))) (IF (|has| |#2| (-27)) (-15 -3977 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1087 |#2|)) (|:| |pol2| (-1087 |#2|)) (|:| |prim| (-1087 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-517) (-789) (-138)) (-408 |#1|)) (T -410))
+((-3977 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-517) (-789) (-138))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1087 *3)) (|:| |pol2| (-1087 *3)) (|:| |prim| (-1087 *3)))) (-5 *1 (-410 *4 *3)) (-4 *3 (-27)) (-4 *3 (-408 *4)))) (-3977 (*1 *2 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-517) (-789) (-138))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-592 (-1087 *5))) (|:| |prim| (-1087 *5)))) (-5 *1 (-410 *4 *5)))))
+(-10 -7 (-15 -3977 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-592 (-1087 |#2|))) (|:| |prim| (-1087 |#2|))) (-592 |#2|))) (IF (|has| |#2| (-27)) (-15 -3977 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1087 |#2|)) (|:| |pol2| (-1087 |#2|)) (|:| |prim| (-1087 |#2|))) |#2| |#2|)) |%noBranch|))
+((-2894 (((-1178)) 19)) (-2472 (((-1087 (-385 (-525))) |#2| (-565 |#2|)) 41) (((-385 (-525)) |#2|) 25)))
+(((-411 |#1| |#2|) (-10 -7 (-15 -2472 ((-385 (-525)) |#2|)) (-15 -2472 ((-1087 (-385 (-525))) |#2| (-565 |#2|))) (-15 -2894 ((-1178)))) (-13 (-789) (-517) (-968 (-525))) (-408 |#1|)) (T -411))
+((-2894 (*1 *2) (-12 (-4 *3 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-1178)) (-5 *1 (-411 *3 *4)) (-4 *4 (-408 *3)))) (-2472 (*1 *2 *3 *4) (-12 (-5 *4 (-565 *3)) (-4 *3 (-408 *5)) (-4 *5 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-1087 (-385 (-525)))) (-5 *1 (-411 *5 *3)))) (-2472 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-385 (-525))) (-5 *1 (-411 *4 *3)) (-4 *3 (-408 *4)))))
+(-10 -7 (-15 -2472 ((-385 (-525)) |#2|)) (-15 -2472 ((-1087 (-385 (-525))) |#2| (-565 |#2|))) (-15 -2894 ((-1178))))
+((-2478 (((-108) $) 28)) (-1597 (((-108) $) 30)) (-3283 (((-108) $) 31)) (-1387 (((-108) $) 34)) (-3646 (((-108) $) 29)) (-1315 (((-108) $) 33)) (-1270 (((-798) $) 18) (($ (-1074)) 27) (($ (-1091)) 23) (((-1091) $) 22) (((-1024) $) 21)) (-2857 (((-108) $) 32)) (-3994 (((-108) $ $) 15)))
+(((-412) (-13 (-566 (-798)) (-10 -8 (-15 -1270 ($ (-1074))) (-15 -1270 ($ (-1091))) (-15 -1270 ((-1091) $)) (-15 -1270 ((-1024) $)) (-15 -2478 ((-108) $)) (-15 -3646 ((-108) $)) (-15 -3283 ((-108) $)) (-15 -1315 ((-108) $)) (-15 -1387 ((-108) $)) (-15 -2857 ((-108) $)) (-15 -1597 ((-108) $)) (-15 -3994 ((-108) $ $))))) (T -412))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-412)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-412)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-412)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-412)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3646 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3283 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-1387 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-2857 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-1597 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))) (-3994 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -1270 ($ (-1074))) (-15 -1270 ($ (-1091))) (-15 -1270 ((-1091) $)) (-15 -1270 ((-1024) $)) (-15 -2478 ((-108) $)) (-15 -3646 ((-108) $)) (-15 -3283 ((-108) $)) (-15 -1315 ((-108) $)) (-15 -1387 ((-108) $)) (-15 -2857 ((-108) $)) (-15 -1597 ((-108) $)) (-15 -3994 ((-108) $ $))))
+((-1420 (((-3 (-396 (-1087 (-385 (-525)))) "failed") |#3|) 70)) (-1456 (((-396 |#3|) |#3|) 34)) (-4132 (((-3 (-396 (-1087 (-47))) "failed") |#3|) 46 (|has| |#2| (-968 (-47))))) (-3233 (((-3 (|:| |overq| (-1087 (-385 (-525)))) (|:| |overan| (-1087 (-47))) (|:| -4149 (-108))) |#3|) 37)))
+(((-413 |#1| |#2| |#3|) (-10 -7 (-15 -1456 ((-396 |#3|) |#3|)) (-15 -1420 ((-3 (-396 (-1087 (-385 (-525)))) "failed") |#3|)) (-15 -3233 ((-3 (|:| |overq| (-1087 (-385 (-525)))) (|:| |overan| (-1087 (-47))) (|:| -4149 (-108))) |#3|)) (IF (|has| |#2| (-968 (-47))) (-15 -4132 ((-3 (-396 (-1087 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-517) (-789) (-968 (-525))) (-408 |#1|) (-1149 |#2|)) (T -413))
+((-4132 (*1 *2 *3) (|partial| -12 (-4 *5 (-968 (-47))) (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 (-1087 (-47)))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1149 *5)))) (-3233 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-3 (|:| |overq| (-1087 (-385 (-525)))) (|:| |overan| (-1087 (-47))) (|:| -4149 (-108)))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1149 *5)))) (-1420 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 (-1087 (-385 (-525))))) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1149 *5)))) (-1456 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4)) (-5 *2 (-396 *3)) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1149 *5)))))
+(-10 -7 (-15 -1456 ((-396 |#3|) |#3|)) (-15 -1420 ((-3 (-396 (-1087 (-385 (-525)))) "failed") |#3|)) (-15 -3233 ((-3 (|:| |overq| (-1087 (-385 (-525)))) (|:| |overan| (-1087 (-47))) (|:| -4149 (-108))) |#3|)) (IF (|has| |#2| (-968 (-47))) (-15 -4132 ((-3 (-396 (-1087 (-47))) "failed") |#3|)) |%noBranch|))
+((-1260 (((-108) $ $) NIL)) (-2336 (((-1074) $ (-1074)) NIL)) (-3933 (($ $ (-1074)) NIL)) (-2506 (((-1074) $) NIL)) (-2761 (((-366) (-366) (-366)) 17) (((-366) (-366)) 15)) (-2409 (($ (-366)) NIL) (($ (-366) (-1074)) NIL)) (-3800 (((-366) $) NIL)) (-3451 (((-1074) $) NIL)) (-2908 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2202 (((-1178) (-1074)) 9)) (-1746 (((-1178) (-1074)) 10)) (-3790 (((-1178)) 11)) (-1270 (((-798) $) NIL)) (-2881 (($ $) 35)) (-3994 (((-108) $ $) NIL)))
+(((-414) (-13 (-342 (-366) (-1074)) (-10 -7 (-15 -2761 ((-366) (-366) (-366))) (-15 -2761 ((-366) (-366))) (-15 -2202 ((-1178) (-1074))) (-15 -1746 ((-1178) (-1074))) (-15 -3790 ((-1178)))))) (T -414))
+((-2761 (*1 *2 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))) (-2202 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-414)))) (-1746 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-414)))) (-3790 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-414)))))
+(-13 (-342 (-366) (-1074)) (-10 -7 (-15 -2761 ((-366) (-366) (-366))) (-15 -2761 ((-366) (-366))) (-15 -2202 ((-1178) (-1074))) (-15 -1746 ((-1178) (-1074))) (-15 -3790 ((-1178)))))
+((-1260 (((-108) $ $) NIL)) (-3877 (((-3 (|:| |fst| (-412)) (|:| -3326 "void")) $) 11)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3347 (($) 32)) (-2354 (($) 38)) (-1837 (($) 34)) (-4029 (($) 36)) (-2814 (($) 33)) (-3839 (($) 35)) (-3519 (($) 37)) (-1967 (((-108) $) 8)) (-2264 (((-592 (-887 (-525))) $) 19)) (-1279 (($ (-3 (|:| |fst| (-412)) (|:| -3326 "void")) (-592 (-1091)) (-108)) 27) (($ (-3 (|:| |fst| (-412)) (|:| -3326 "void")) (-592 (-887 (-525))) (-108)) 28)) (-1270 (((-798) $) 23) (($ (-412)) 29)) (-3994 (((-108) $ $) NIL)))
+(((-415) (-13 (-1020) (-10 -8 (-15 -1270 ((-798) $)) (-15 -1270 ($ (-412))) (-15 -3877 ((-3 (|:| |fst| (-412)) (|:| -3326 "void")) $)) (-15 -2264 ((-592 (-887 (-525))) $)) (-15 -1967 ((-108) $)) (-15 -1279 ($ (-3 (|:| |fst| (-412)) (|:| -3326 "void")) (-592 (-1091)) (-108))) (-15 -1279 ($ (-3 (|:| |fst| (-412)) (|:| -3326 "void")) (-592 (-887 (-525))) (-108))) (-15 -3347 ($)) (-15 -2814 ($)) (-15 -1837 ($)) (-15 -2354 ($)) (-15 -3839 ($)) (-15 -4029 ($)) (-15 -3519 ($))))) (T -415))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-415)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-412)) (-5 *1 (-415)))) (-3877 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-5 *1 (-415)))) (-2264 (*1 *2 *1) (-12 (-5 *2 (-592 (-887 (-525)))) (-5 *1 (-415)))) (-1967 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-415)))) (-1279 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-5 *3 (-592 (-1091))) (-5 *4 (-108)) (-5 *1 (-415)))) (-1279 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-108)) (-5 *1 (-415)))) (-3347 (*1 *1) (-5 *1 (-415))) (-2814 (*1 *1) (-5 *1 (-415))) (-1837 (*1 *1) (-5 *1 (-415))) (-2354 (*1 *1) (-5 *1 (-415))) (-3839 (*1 *1) (-5 *1 (-415))) (-4029 (*1 *1) (-5 *1 (-415))) (-3519 (*1 *1) (-5 *1 (-415))))
+(-13 (-1020) (-10 -8 (-15 -1270 ((-798) $)) (-15 -1270 ($ (-412))) (-15 -3877 ((-3 (|:| |fst| (-412)) (|:| -3326 "void")) $)) (-15 -2264 ((-592 (-887 (-525))) $)) (-15 -1967 ((-108) $)) (-15 -1279 ($ (-3 (|:| |fst| (-412)) (|:| -3326 "void")) (-592 (-1091)) (-108))) (-15 -1279 ($ (-3 (|:| |fst| (-412)) (|:| -3326 "void")) (-592 (-887 (-525))) (-108))) (-15 -3347 ($)) (-15 -2814 ($)) (-15 -1837 ($)) (-15 -2354 ($)) (-15 -3839 ($)) (-15 -4029 ($)) (-15 -3519 ($))))
+((-1260 (((-108) $ $) NIL)) (-3800 (((-1091) $) 8)) (-3451 (((-1074) $) 16)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 11)) (-3994 (((-108) $ $) 13)))
+(((-416 |#1|) (-13 (-1020) (-10 -8 (-15 -3800 ((-1091) $)))) (-1091)) (T -416))
+((-3800 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-416 *3)) (-14 *3 (-1091)))))
+(-13 (-1020) (-10 -8 (-15 -3800 ((-1091) $))))
+((-2350 (((-1178) $) 7)) (-1270 (((-798) $) 8) (($ (-1173 (-641))) 14) (($ (-592 (-308))) 13) (($ (-308)) 12) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 11)))
(((-417) (-131)) (T -417))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1172 (-641))) (-4 *1 (-417)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-417)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-417)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) (-4 *1 (-417)))))
-(-13 (-373) (-10 -8 (-15 -1908 ($ (-1172 (-641)))) (-15 -1908 ($ (-592 (-308)))) (-15 -1908 ($ (-308))) (-15 -1908 ($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))))))
-(((-566 (-797)) . T) ((-373) . T) ((-1126) . T))
-((-1264 (((-3 $ "failed") (-1172 (-294 (-357)))) 21) (((-3 $ "failed") (-1172 (-294 (-525)))) 19) (((-3 $ "failed") (-1172 (-886 (-357)))) 17) (((-3 $ "failed") (-1172 (-886 (-525)))) 15) (((-3 $ "failed") (-1172 (-385 (-886 (-357))))) 13) (((-3 $ "failed") (-1172 (-385 (-886 (-525))))) 11)) (-2831 (($ (-1172 (-294 (-357)))) 22) (($ (-1172 (-294 (-525)))) 20) (($ (-1172 (-886 (-357)))) 18) (($ (-1172 (-886 (-525)))) 16) (($ (-1172 (-385 (-886 (-357))))) 14) (($ (-1172 (-385 (-886 (-525))))) 12)) (-2891 (((-1177) $) 7)) (-1908 (((-797) $) 8) (($ (-592 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) 23)))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1173 (-641))) (-4 *1 (-417)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-417)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-417)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) (-4 *1 (-417)))))
+(-13 (-373) (-10 -8 (-15 -1270 ($ (-1173 (-641)))) (-15 -1270 ($ (-592 (-308)))) (-15 -1270 ($ (-308))) (-15 -1270 ($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))))))
+(((-566 (-798)) . T) ((-373) . T) ((-1127) . T))
+((-2591 (((-3 $ "failed") (-1173 (-294 (-357)))) 21) (((-3 $ "failed") (-1173 (-294 (-525)))) 19) (((-3 $ "failed") (-1173 (-887 (-357)))) 17) (((-3 $ "failed") (-1173 (-887 (-525)))) 15) (((-3 $ "failed") (-1173 (-385 (-887 (-357))))) 13) (((-3 $ "failed") (-1173 (-385 (-887 (-525))))) 11)) (-3898 (($ (-1173 (-294 (-357)))) 22) (($ (-1173 (-294 (-525)))) 20) (($ (-1173 (-887 (-357)))) 18) (($ (-1173 (-887 (-525)))) 16) (($ (-1173 (-385 (-887 (-357))))) 14) (($ (-1173 (-385 (-887 (-525))))) 12)) (-2350 (((-1178) $) 7)) (-1270 (((-798) $) 8) (($ (-592 (-308))) 25) (($ (-308)) 24) (($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) 23)))
(((-418) (-131)) (T -418))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-418)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-418)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308))))) (-4 *1 (-418)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-1172 (-294 (-357)))) (-4 *1 (-418)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-1172 (-294 (-357)))) (-4 *1 (-418)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-1172 (-294 (-525)))) (-4 *1 (-418)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-1172 (-294 (-525)))) (-4 *1 (-418)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-1172 (-886 (-357)))) (-4 *1 (-418)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-1172 (-886 (-357)))) (-4 *1 (-418)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-1172 (-886 (-525)))) (-4 *1 (-418)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-1172 (-886 (-525)))) (-4 *1 (-418)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-1172 (-385 (-886 (-357))))) (-4 *1 (-418)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-1172 (-385 (-886 (-357))))) (-4 *1 (-418)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-1172 (-385 (-886 (-525))))) (-4 *1 (-418)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-1172 (-385 (-886 (-525))))) (-4 *1 (-418)))))
-(-13 (-373) (-10 -8 (-15 -1908 ($ (-592 (-308)))) (-15 -1908 ($ (-308))) (-15 -1908 ($ (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308)))))) (-15 -2831 ($ (-1172 (-294 (-357))))) (-15 -1264 ((-3 $ "failed") (-1172 (-294 (-357))))) (-15 -2831 ($ (-1172 (-294 (-525))))) (-15 -1264 ((-3 $ "failed") (-1172 (-294 (-525))))) (-15 -2831 ($ (-1172 (-886 (-357))))) (-15 -1264 ((-3 $ "failed") (-1172 (-886 (-357))))) (-15 -2831 ($ (-1172 (-886 (-525))))) (-15 -1264 ((-3 $ "failed") (-1172 (-886 (-525))))) (-15 -2831 ($ (-1172 (-385 (-886 (-357)))))) (-15 -1264 ((-3 $ "failed") (-1172 (-385 (-886 (-357)))))) (-15 -2831 ($ (-1172 (-385 (-886 (-525)))))) (-15 -1264 ((-3 $ "failed") (-1172 (-385 (-886 (-525))))))))
-(((-566 (-797)) . T) ((-373) . T) ((-1126) . T))
-((-2856 (((-108)) 17)) (-3105 (((-108) (-108)) 18)) (-2806 (((-108)) 13)) (-3420 (((-108) (-108)) 14)) (-1593 (((-108)) 15)) (-2086 (((-108) (-108)) 16)) (-1994 (((-855) (-855)) 21) (((-855)) 20)) (-1481 (((-713) (-592 (-2 (|:| -3959 |#1|) (|:| -2513 (-525))))) 42)) (-2768 (((-855) (-855)) 23) (((-855)) 22)) (-2740 (((-2 (|:| -1440 (-525)) (|:| -2203 (-592 |#1|))) |#1|) 62)) (-1203 (((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -2203 (-592 (-2 (|:| |irr| |#1|) (|:| -1591 (-525))))))) 126)) (-4163 (((-2 (|:| |contp| (-525)) (|:| -2203 (-592 (-2 (|:| |irr| |#1|) (|:| -1591 (-525)))))) |#1| (-108)) 152)) (-4169 (((-396 |#1|) |#1| (-713) (-713)) 165) (((-396 |#1|) |#1| (-592 (-713)) (-713)) 162) (((-396 |#1|) |#1| (-592 (-713))) 164) (((-396 |#1|) |#1| (-713)) 163) (((-396 |#1|) |#1|) 161)) (-3526 (((-3 |#1| "failed") (-855) |#1| (-592 (-713)) (-713) (-108)) 167) (((-3 |#1| "failed") (-855) |#1| (-592 (-713)) (-713)) 168) (((-3 |#1| "failed") (-855) |#1| (-592 (-713))) 170) (((-3 |#1| "failed") (-855) |#1| (-713)) 169) (((-3 |#1| "failed") (-855) |#1|) 171)) (-3959 (((-396 |#1|) |#1| (-713) (-713)) 160) (((-396 |#1|) |#1| (-592 (-713)) (-713)) 156) (((-396 |#1|) |#1| (-592 (-713))) 158) (((-396 |#1|) |#1| (-713)) 157) (((-396 |#1|) |#1|) 155)) (-3427 (((-108) |#1|) 37)) (-2936 (((-680 (-713)) (-592 (-2 (|:| -3959 |#1|) (|:| -2513 (-525))))) 67)) (-1822 (((-2 (|:| |contp| (-525)) (|:| -2203 (-592 (-2 (|:| |irr| |#1|) (|:| -1591 (-525)))))) |#1| (-108) (-1021 (-713)) (-713)) 154)))
-(((-419 |#1|) (-10 -7 (-15 -1203 ((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -2203 (-592 (-2 (|:| |irr| |#1|) (|:| -1591 (-525)))))))) (-15 -2936 ((-680 (-713)) (-592 (-2 (|:| -3959 |#1|) (|:| -2513 (-525)))))) (-15 -2768 ((-855))) (-15 -2768 ((-855) (-855))) (-15 -1994 ((-855))) (-15 -1994 ((-855) (-855))) (-15 -1481 ((-713) (-592 (-2 (|:| -3959 |#1|) (|:| -2513 (-525)))))) (-15 -2740 ((-2 (|:| -1440 (-525)) (|:| -2203 (-592 |#1|))) |#1|)) (-15 -2856 ((-108))) (-15 -3105 ((-108) (-108))) (-15 -2806 ((-108))) (-15 -3420 ((-108) (-108))) (-15 -3427 ((-108) |#1|)) (-15 -1593 ((-108))) (-15 -2086 ((-108) (-108))) (-15 -3959 ((-396 |#1|) |#1|)) (-15 -3959 ((-396 |#1|) |#1| (-713))) (-15 -3959 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -3959 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -3959 ((-396 |#1|) |#1| (-713) (-713))) (-15 -4169 ((-396 |#1|) |#1|)) (-15 -4169 ((-396 |#1|) |#1| (-713))) (-15 -4169 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -4169 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -4169 ((-396 |#1|) |#1| (-713) (-713))) (-15 -3526 ((-3 |#1| "failed") (-855) |#1|)) (-15 -3526 ((-3 |#1| "failed") (-855) |#1| (-713))) (-15 -3526 ((-3 |#1| "failed") (-855) |#1| (-592 (-713)))) (-15 -3526 ((-3 |#1| "failed") (-855) |#1| (-592 (-713)) (-713))) (-15 -3526 ((-3 |#1| "failed") (-855) |#1| (-592 (-713)) (-713) (-108))) (-15 -4163 ((-2 (|:| |contp| (-525)) (|:| -2203 (-592 (-2 (|:| |irr| |#1|) (|:| -1591 (-525)))))) |#1| (-108))) (-15 -1822 ((-2 (|:| |contp| (-525)) (|:| -2203 (-592 (-2 (|:| |irr| |#1|) (|:| -1591 (-525)))))) |#1| (-108) (-1021 (-713)) (-713)))) (-1148 (-525))) (T -419))
-((-1822 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-1021 (-713))) (-5 *6 (-713)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -2203 (-592 (-2 (|:| |irr| *3) (|:| -1591 (-525))))))) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-4163 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -2203 (-592 (-2 (|:| |irr| *3) (|:| -1591 (-525))))))) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3526 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-855)) (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *6 (-108)) (-5 *1 (-419 *2)) (-4 *2 (-1148 (-525))))) (-3526 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-855)) (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *1 (-419 *2)) (-4 *2 (-1148 (-525))))) (-3526 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-855)) (-5 *4 (-592 (-713))) (-5 *1 (-419 *2)) (-4 *2 (-1148 (-525))))) (-3526 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-855)) (-5 *4 (-713)) (-5 *1 (-419 *2)) (-4 *2 (-1148 (-525))))) (-3526 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-855)) (-5 *1 (-419 *2)) (-4 *2 (-1148 (-525))))) (-4169 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-4169 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-4169 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-4169 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-4169 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3959 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3959 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3959 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3959 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3959 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-2086 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-1593 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3427 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3420 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-2806 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-3105 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-2856 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-2740 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1440 (-525)) (|:| -2203 (-592 *3)))) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-1481 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3959 *4) (|:| -2513 (-525))))) (-4 *4 (-1148 (-525))) (-5 *2 (-713)) (-5 *1 (-419 *4)))) (-1994 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-1994 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-2768 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-2768 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3959 *4) (|:| -2513 (-525))))) (-4 *4 (-1148 (-525))) (-5 *2 (-680 (-713))) (-5 *1 (-419 *4)))) (-1203 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-525)) (|:| -2203 (-592 (-2 (|:| |irr| *4) (|:| -1591 (-525))))))) (-4 *4 (-1148 (-525))) (-5 *2 (-396 *4)) (-5 *1 (-419 *4)))))
-(-10 -7 (-15 -1203 ((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -2203 (-592 (-2 (|:| |irr| |#1|) (|:| -1591 (-525)))))))) (-15 -2936 ((-680 (-713)) (-592 (-2 (|:| -3959 |#1|) (|:| -2513 (-525)))))) (-15 -2768 ((-855))) (-15 -2768 ((-855) (-855))) (-15 -1994 ((-855))) (-15 -1994 ((-855) (-855))) (-15 -1481 ((-713) (-592 (-2 (|:| -3959 |#1|) (|:| -2513 (-525)))))) (-15 -2740 ((-2 (|:| -1440 (-525)) (|:| -2203 (-592 |#1|))) |#1|)) (-15 -2856 ((-108))) (-15 -3105 ((-108) (-108))) (-15 -2806 ((-108))) (-15 -3420 ((-108) (-108))) (-15 -3427 ((-108) |#1|)) (-15 -1593 ((-108))) (-15 -2086 ((-108) (-108))) (-15 -3959 ((-396 |#1|) |#1|)) (-15 -3959 ((-396 |#1|) |#1| (-713))) (-15 -3959 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -3959 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -3959 ((-396 |#1|) |#1| (-713) (-713))) (-15 -4169 ((-396 |#1|) |#1|)) (-15 -4169 ((-396 |#1|) |#1| (-713))) (-15 -4169 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -4169 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -4169 ((-396 |#1|) |#1| (-713) (-713))) (-15 -3526 ((-3 |#1| "failed") (-855) |#1|)) (-15 -3526 ((-3 |#1| "failed") (-855) |#1| (-713))) (-15 -3526 ((-3 |#1| "failed") (-855) |#1| (-592 (-713)))) (-15 -3526 ((-3 |#1| "failed") (-855) |#1| (-592 (-713)) (-713))) (-15 -3526 ((-3 |#1| "failed") (-855) |#1| (-592 (-713)) (-713) (-108))) (-15 -4163 ((-2 (|:| |contp| (-525)) (|:| -2203 (-592 (-2 (|:| |irr| |#1|) (|:| -1591 (-525)))))) |#1| (-108))) (-15 -1822 ((-2 (|:| |contp| (-525)) (|:| -2203 (-592 (-2 (|:| |irr| |#1|) (|:| -1591 (-525)))))) |#1| (-108) (-1021 (-713)) (-713))))
-((-4019 (((-525) |#2|) 48) (((-525) |#2| (-713)) 47)) (-4190 (((-525) |#2|) 55)) (-1530 ((|#3| |#2|) 25)) (-3477 ((|#3| |#2| (-855)) 14)) (-1722 ((|#3| |#2|) 15)) (-1805 ((|#3| |#2|) 9)) (-3598 ((|#3| |#2|) 10)) (-4058 ((|#3| |#2| (-855)) 62) ((|#3| |#2|) 30)) (-1686 (((-525) |#2|) 57)))
-(((-420 |#1| |#2| |#3|) (-10 -7 (-15 -1686 ((-525) |#2|)) (-15 -4058 (|#3| |#2|)) (-15 -4058 (|#3| |#2| (-855))) (-15 -4190 ((-525) |#2|)) (-15 -4019 ((-525) |#2| (-713))) (-15 -4019 ((-525) |#2|)) (-15 -3477 (|#3| |#2| (-855))) (-15 -1530 (|#3| |#2|)) (-15 -1805 (|#3| |#2|)) (-15 -3598 (|#3| |#2|)) (-15 -1722 (|#3| |#2|))) (-976) (-1148 |#1|) (-13 (-382) (-967 |#1|) (-341) (-1112) (-263))) (T -420))
-((-1722 (*1 *2 *3) (-12 (-4 *4 (-976)) (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4)))) (-3598 (*1 *2 *3) (-12 (-4 *4 (-976)) (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4)))) (-1805 (*1 *2 *3) (-12 (-4 *4 (-976)) (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4)))) (-1530 (*1 *2 *3) (-12 (-4 *4 (-976)) (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4)))) (-3477 (*1 *2 *3 *4) (-12 (-5 *4 (-855)) (-4 *5 (-976)) (-4 *2 (-13 (-382) (-967 *5) (-341) (-1112) (-263))) (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1148 *5)))) (-4019 (*1 *2 *3) (-12 (-4 *4 (-976)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1148 *4)) (-4 *5 (-13 (-382) (-967 *4) (-341) (-1112) (-263))))) (-4019 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-976)) (-5 *2 (-525)) (-5 *1 (-420 *5 *3 *6)) (-4 *3 (-1148 *5)) (-4 *6 (-13 (-382) (-967 *5) (-341) (-1112) (-263))))) (-4190 (*1 *2 *3) (-12 (-4 *4 (-976)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1148 *4)) (-4 *5 (-13 (-382) (-967 *4) (-341) (-1112) (-263))))) (-4058 (*1 *2 *3 *4) (-12 (-5 *4 (-855)) (-4 *5 (-976)) (-4 *2 (-13 (-382) (-967 *5) (-341) (-1112) (-263))) (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1148 *5)))) (-4058 (*1 *2 *3) (-12 (-4 *4 (-976)) (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4)))) (-1686 (*1 *2 *3) (-12 (-4 *4 (-976)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1148 *4)) (-4 *5 (-13 (-382) (-967 *4) (-341) (-1112) (-263))))))
-(-10 -7 (-15 -1686 ((-525) |#2|)) (-15 -4058 (|#3| |#2|)) (-15 -4058 (|#3| |#2| (-855))) (-15 -4190 ((-525) |#2|)) (-15 -4019 ((-525) |#2| (-713))) (-15 -4019 ((-525) |#2|)) (-15 -3477 (|#3| |#2| (-855))) (-15 -1530 (|#3| |#2|)) (-15 -1805 (|#3| |#2|)) (-15 -3598 (|#3| |#2|)) (-15 -1722 (|#3| |#2|)))
-((-3826 ((|#2| (-1172 |#1|)) 36)) (-3546 ((|#2| |#2| |#1|) 49)) (-2361 ((|#2| |#2| |#1|) 41)) (-1693 ((|#2| |#2|) 38)) (-2125 (((-108) |#2|) 30)) (-3284 (((-592 |#2|) (-855) (-396 |#2|)) 17)) (-3526 ((|#2| (-855) (-396 |#2|)) 21)) (-2936 (((-680 (-713)) (-396 |#2|)) 25)))
-(((-421 |#1| |#2|) (-10 -7 (-15 -2125 ((-108) |#2|)) (-15 -3826 (|#2| (-1172 |#1|))) (-15 -1693 (|#2| |#2|)) (-15 -2361 (|#2| |#2| |#1|)) (-15 -3546 (|#2| |#2| |#1|)) (-15 -2936 ((-680 (-713)) (-396 |#2|))) (-15 -3526 (|#2| (-855) (-396 |#2|))) (-15 -3284 ((-592 |#2|) (-855) (-396 |#2|)))) (-976) (-1148 |#1|)) (T -421))
-((-3284 (*1 *2 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-396 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-976)) (-5 *2 (-592 *6)) (-5 *1 (-421 *5 *6)))) (-3526 (*1 *2 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-396 *2)) (-4 *2 (-1148 *5)) (-5 *1 (-421 *5 *2)) (-4 *5 (-976)))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-396 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-976)) (-5 *2 (-680 (-713))) (-5 *1 (-421 *4 *5)))) (-3546 (*1 *2 *2 *3) (-12 (-4 *3 (-976)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1148 *3)))) (-2361 (*1 *2 *2 *3) (-12 (-4 *3 (-976)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1148 *3)))) (-1693 (*1 *2 *2) (-12 (-4 *3 (-976)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1148 *3)))) (-3826 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-976)) (-4 *2 (-1148 *4)) (-5 *1 (-421 *4 *2)))) (-2125 (*1 *2 *3) (-12 (-4 *4 (-976)) (-5 *2 (-108)) (-5 *1 (-421 *4 *3)) (-4 *3 (-1148 *4)))))
-(-10 -7 (-15 -2125 ((-108) |#2|)) (-15 -3826 (|#2| (-1172 |#1|))) (-15 -1693 (|#2| |#2|)) (-15 -2361 (|#2| |#2| |#1|)) (-15 -3546 (|#2| |#2| |#1|)) (-15 -2936 ((-680 (-713)) (-396 |#2|))) (-15 -3526 (|#2| (-855) (-396 |#2|))) (-15 -3284 ((-592 |#2|) (-855) (-396 |#2|))))
-((-3827 (((-713)) 41)) (-1301 (((-713)) 23 (|has| |#1| (-382))) (((-713) (-713)) 22 (|has| |#1| (-382)))) (-3201 (((-525) |#1|) 18 (|has| |#1| (-382)))) (-2875 (((-525) |#1|) 20 (|has| |#1| (-382)))) (-3735 (((-713)) 40) (((-713) (-713)) 39)) (-1791 ((|#1| (-713) (-525)) 29)) (-3964 (((-1177)) 43)))
-(((-422 |#1|) (-10 -7 (-15 -1791 (|#1| (-713) (-525))) (-15 -3735 ((-713) (-713))) (-15 -3735 ((-713))) (-15 -3827 ((-713))) (-15 -3964 ((-1177))) (IF (|has| |#1| (-382)) (PROGN (-15 -2875 ((-525) |#1|)) (-15 -3201 ((-525) |#1|)) (-15 -1301 ((-713) (-713))) (-15 -1301 ((-713)))) |%noBranch|)) (-976)) (T -422))
-((-1301 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-976)))) (-1301 (*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-976)))) (-3201 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-976)))) (-2875 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-976)))) (-3964 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-422 *3)) (-4 *3 (-976)))) (-3827 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-976)))) (-3735 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-976)))) (-3735 (*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-976)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-525)) (-5 *1 (-422 *2)) (-4 *2 (-976)))))
-(-10 -7 (-15 -1791 (|#1| (-713) (-525))) (-15 -3735 ((-713) (-713))) (-15 -3735 ((-713))) (-15 -3827 ((-713))) (-15 -3964 ((-1177))) (IF (|has| |#1| (-382)) (PROGN (-15 -2875 ((-525) |#1|)) (-15 -3201 ((-525) |#1|)) (-15 -1301 ((-713) (-713))) (-15 -1301 ((-713)))) |%noBranch|))
-((-2902 (((-592 (-525)) (-525)) 61)) (-2250 (((-108) (-157 (-525))) 65)) (-3959 (((-396 (-157 (-525))) (-157 (-525))) 60)))
-(((-423) (-10 -7 (-15 -3959 ((-396 (-157 (-525))) (-157 (-525)))) (-15 -2902 ((-592 (-525)) (-525))) (-15 -2250 ((-108) (-157 (-525)))))) (T -423))
-((-2250 (*1 *2 *3) (-12 (-5 *3 (-157 (-525))) (-5 *2 (-108)) (-5 *1 (-423)))) (-2902 (*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-423)) (-5 *3 (-525)))) (-3959 (*1 *2 *3) (-12 (-5 *2 (-396 (-157 (-525)))) (-5 *1 (-423)) (-5 *3 (-157 (-525))))))
-(-10 -7 (-15 -3959 ((-396 (-157 (-525))) (-157 (-525)))) (-15 -2902 ((-592 (-525)) (-525))) (-15 -2250 ((-108) (-157 (-525)))))
-((-2138 ((|#4| |#4| (-592 |#4|)) 61)) (-4066 (((-592 |#4|) (-592 |#4|) (-1073) (-1073)) 17) (((-592 |#4|) (-592 |#4|) (-1073)) 16) (((-592 |#4|) (-592 |#4|)) 11)))
-(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2138 (|#4| |#4| (-592 |#4|))) (-15 -4066 ((-592 |#4|) (-592 |#4|))) (-15 -4066 ((-592 |#4|) (-592 |#4|) (-1073))) (-15 -4066 ((-592 |#4|) (-592 |#4|) (-1073) (-1073)))) (-286) (-735) (-789) (-883 |#1| |#2| |#3|)) (T -424))
-((-4066 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1073)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *7)))) (-4066 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1073)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *7)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-424 *3 *4 *5 *6)))) (-2138 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *2)))))
-(-10 -7 (-15 -2138 (|#4| |#4| (-592 |#4|))) (-15 -4066 ((-592 |#4|) (-592 |#4|))) (-15 -4066 ((-592 |#4|) (-592 |#4|) (-1073))) (-15 -4066 ((-592 |#4|) (-592 |#4|) (-1073) (-1073))))
-((-3454 (((-592 (-592 |#4|)) (-592 |#4|) (-108)) 73) (((-592 (-592 |#4|)) (-592 |#4|)) 72) (((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|) (-108)) 66) (((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|)) 67)) (-1671 (((-592 (-592 |#4|)) (-592 |#4|) (-108)) 42) (((-592 (-592 |#4|)) (-592 |#4|)) 63)))
-(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1671 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -1671 ((-592 (-592 |#4|)) (-592 |#4|) (-108))) (-15 -3454 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|))) (-15 -3454 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|) (-108))) (-15 -3454 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -3454 ((-592 (-592 |#4|)) (-592 |#4|) (-108)))) (-13 (-286) (-138)) (-735) (-789) (-883 |#1| |#2| |#3|)) (T -425))
-((-3454 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-883 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))) (-3454 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-3454 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-883 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))) (-3454 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-1671 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-883 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))) (-1671 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
-(-10 -7 (-15 -1671 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -1671 ((-592 (-592 |#4|)) (-592 |#4|) (-108))) (-15 -3454 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|))) (-15 -3454 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|) (-108))) (-15 -3454 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -3454 ((-592 (-592 |#4|)) (-592 |#4|) (-108))))
-((-3417 (((-713) |#4|) 12)) (-2903 (((-592 (-2 (|:| |totdeg| (-713)) (|:| -3966 |#4|))) |#4| (-713) (-592 (-2 (|:| |totdeg| (-713)) (|:| -3966 |#4|)))) 31)) (-3788 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-2235 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1905 ((|#4| |#4| (-592 |#4|)) 40)) (-3116 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-592 |#4|)) 70)) (-1463 (((-1177) |#4|) 42)) (-2490 (((-1177) (-592 |#4|)) 51)) (-2586 (((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525)) 48)) (-2682 (((-1177) (-525)) 79)) (-4203 (((-592 |#4|) (-592 |#4|)) 77)) (-1933 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-713)) (|:| -3966 |#4|)) |#4| (-713)) 25)) (-2489 (((-525) |#4|) 78)) (-2774 ((|#4| |#4|) 29)) (-1713 (((-592 |#4|) (-592 |#4|) (-525) (-525)) 56)) (-3057 (((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525)) 89)) (-1333 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2167 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-2036 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-3090 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-3758 (((-108) |#2| |#2|) 57)) (-2436 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2064 (((-108) |#2| |#2| |#2| |#2|) 60)) (-2029 ((|#4| |#4| (-592 |#4|)) 71)))
-(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2029 (|#4| |#4| (-592 |#4|))) (-15 -1905 (|#4| |#4| (-592 |#4|))) (-15 -1713 ((-592 |#4|) (-592 |#4|) (-525) (-525))) (-15 -2167 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3758 ((-108) |#2| |#2|)) (-15 -2064 ((-108) |#2| |#2| |#2| |#2|)) (-15 -2436 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3090 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2036 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3116 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-592 |#4|))) (-15 -2774 (|#4| |#4|)) (-15 -2903 ((-592 (-2 (|:| |totdeg| (-713)) (|:| -3966 |#4|))) |#4| (-713) (-592 (-2 (|:| |totdeg| (-713)) (|:| -3966 |#4|))))) (-15 -2235 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3788 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4203 ((-592 |#4|) (-592 |#4|))) (-15 -2489 ((-525) |#4|)) (-15 -1463 ((-1177) |#4|)) (-15 -2586 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525))) (-15 -3057 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525))) (-15 -2490 ((-1177) (-592 |#4|))) (-15 -2682 ((-1177) (-525))) (-15 -1333 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1933 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-713)) (|:| -3966 |#4|)) |#4| (-713))) (-15 -3417 ((-713) |#4|))) (-429) (-735) (-789) (-883 |#1| |#2| |#3|)) (T -426))
-((-3417 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6)))) (-1933 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-713)) (|:| -3966 *4))) (-5 *5 (-713)) (-4 *4 (-883 *6 *7 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-426 *6 *7 *8 *4)))) (-1333 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-735)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))) (-2682 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1177)) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *7 (-883 *4 *5 *6)))) (-2490 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1177)) (-5 *1 (-426 *4 *5 *6 *7)))) (-3057 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-735)) (-4 *4 (-883 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *4)))) (-2586 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-735)) (-4 *4 (-883 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *4)))) (-1463 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1177)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6)))) (-2489 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-525)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6)))) (-4203 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))) (-3788 (*1 *2 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-735)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-735)) (-4 *2 (-883 *4 *5 *6)) (-5 *1 (-426 *4 *5 *6 *2)) (-4 *4 (-429)) (-4 *6 (-789)))) (-2903 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-592 (-2 (|:| |totdeg| (-713)) (|:| -3966 *3)))) (-5 *4 (-713)) (-4 *3 (-883 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *3)))) (-2774 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *2)) (-4 *2 (-883 *3 *4 *5)))) (-3116 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-883 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-426 *5 *6 *7 *3)))) (-2036 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-713)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-735)) (-4 *6 (-883 *4 *3 *5)) (-4 *4 (-429)) (-4 *5 (-789)) (-5 *1 (-426 *4 *3 *5 *6)))) (-3090 (*1 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-735)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))) (-2436 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-735)) (-4 *3 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *3)))) (-2064 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-883 *4 *3 *5)))) (-3758 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-883 *4 *3 *5)))) (-2167 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-735)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))) (-1713 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-525)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *7)))) (-1905 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2)))) (-2029 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2)))))
-(-10 -7 (-15 -2029 (|#4| |#4| (-592 |#4|))) (-15 -1905 (|#4| |#4| (-592 |#4|))) (-15 -1713 ((-592 |#4|) (-592 |#4|) (-525) (-525))) (-15 -2167 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3758 ((-108) |#2| |#2|)) (-15 -2064 ((-108) |#2| |#2| |#2| |#2|)) (-15 -2436 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3090 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2036 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3116 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-592 |#4|))) (-15 -2774 (|#4| |#4|)) (-15 -2903 ((-592 (-2 (|:| |totdeg| (-713)) (|:| -3966 |#4|))) |#4| (-713) (-592 (-2 (|:| |totdeg| (-713)) (|:| -3966 |#4|))))) (-15 -2235 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3788 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4203 ((-592 |#4|) (-592 |#4|))) (-15 -2489 ((-525) |#4|)) (-15 -1463 ((-1177) |#4|)) (-15 -2586 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525))) (-15 -3057 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525))) (-15 -2490 ((-1177) (-592 |#4|))) (-15 -2682 ((-1177) (-525))) (-15 -1333 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1933 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-713)) (|:| -3966 |#4|)) |#4| (-713))) (-15 -3417 ((-713) |#4|)))
-((-2294 ((|#4| |#4| (-592 |#4|)) 22 (|has| |#1| (-341)))) (-2424 (((-592 |#4|) (-592 |#4|) (-1073) (-1073)) 41) (((-592 |#4|) (-592 |#4|) (-1073)) 40) (((-592 |#4|) (-592 |#4|)) 35)))
-(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2424 ((-592 |#4|) (-592 |#4|))) (-15 -2424 ((-592 |#4|) (-592 |#4|) (-1073))) (-15 -2424 ((-592 |#4|) (-592 |#4|) (-1073) (-1073))) (IF (|has| |#1| (-341)) (-15 -2294 (|#4| |#4| (-592 |#4|))) |%noBranch|)) (-429) (-735) (-789) (-883 |#1| |#2| |#3|)) (T -427))
-((-2294 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *4 *5 *6)) (-4 *4 (-341)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-427 *4 *5 *6 *2)))) (-2424 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1073)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-427 *4 *5 *6 *7)))) (-2424 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1073)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-427 *4 *5 *6 *7)))) (-2424 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-427 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2424 ((-592 |#4|) (-592 |#4|))) (-15 -2424 ((-592 |#4|) (-592 |#4|) (-1073))) (-15 -2424 ((-592 |#4|) (-592 |#4|) (-1073) (-1073))) (IF (|has| |#1| (-341)) (-15 -2294 (|#4| |#4| (-592 |#4|))) |%noBranch|))
-((-3216 (($ $ $) 14) (($ (-592 $)) 21)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 41)) (-3244 (($ $ $) NIL) (($ (-592 $)) 22)))
-(((-428 |#1|) (-10 -8 (-15 -1763 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -3216 (|#1| (-592 |#1|))) (-15 -3216 (|#1| |#1| |#1|)) (-15 -3244 (|#1| (-592 |#1|))) (-15 -3244 (|#1| |#1| |#1|))) (-429)) (T -428))
-NIL
-(-10 -8 (-15 -1763 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -3216 (|#1| (-592 |#1|))) (-15 -3216 (|#1| |#1| |#1|)) (-15 -3244 (|#1| (-592 |#1|))) (-15 -3244 (|#1| |#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-2338 (((-3 $ "failed") $ $) 42)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43)) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) 39)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-418)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-418)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308))))) (-4 *1 (-418)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-1173 (-294 (-357)))) (-4 *1 (-418)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-1173 (-294 (-357)))) (-4 *1 (-418)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-1173 (-294 (-525)))) (-4 *1 (-418)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-1173 (-294 (-525)))) (-4 *1 (-418)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-1173 (-887 (-357)))) (-4 *1 (-418)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-1173 (-887 (-357)))) (-4 *1 (-418)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-1173 (-887 (-525)))) (-4 *1 (-418)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-1173 (-887 (-525)))) (-4 *1 (-418)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-1173 (-385 (-887 (-357))))) (-4 *1 (-418)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-1173 (-385 (-887 (-357))))) (-4 *1 (-418)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-1173 (-385 (-887 (-525))))) (-4 *1 (-418)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-1173 (-385 (-887 (-525))))) (-4 *1 (-418)))))
+(-13 (-373) (-10 -8 (-15 -1270 ($ (-592 (-308)))) (-15 -1270 ($ (-308))) (-15 -1270 ($ (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308)))))) (-15 -3898 ($ (-1173 (-294 (-357))))) (-15 -2591 ((-3 $ "failed") (-1173 (-294 (-357))))) (-15 -3898 ($ (-1173 (-294 (-525))))) (-15 -2591 ((-3 $ "failed") (-1173 (-294 (-525))))) (-15 -3898 ($ (-1173 (-887 (-357))))) (-15 -2591 ((-3 $ "failed") (-1173 (-887 (-357))))) (-15 -3898 ($ (-1173 (-887 (-525))))) (-15 -2591 ((-3 $ "failed") (-1173 (-887 (-525))))) (-15 -3898 ($ (-1173 (-385 (-887 (-357)))))) (-15 -2591 ((-3 $ "failed") (-1173 (-385 (-887 (-357)))))) (-15 -3898 ($ (-1173 (-385 (-887 (-525)))))) (-15 -2591 ((-3 $ "failed") (-1173 (-385 (-887 (-525))))))))
+(((-566 (-798)) . T) ((-373) . T) ((-1127) . T))
+((-3687 (((-108)) 17)) (-2542 (((-108) (-108)) 18)) (-1380 (((-108)) 13)) (-3414 (((-108) (-108)) 14)) (-1645 (((-108)) 15)) (-2015 (((-108) (-108)) 16)) (-2537 (((-856) (-856)) 21) (((-856)) 20)) (-2725 (((-713) (-592 (-2 (|:| -2195 |#1|) (|:| -1587 (-525))))) 42)) (-2285 (((-856) (-856)) 23) (((-856)) 22)) (-1896 (((-2 (|:| -3603 (-525)) (|:| -1494 (-592 |#1|))) |#1|) 62)) (-2575 (((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -1494 (-592 (-2 (|:| |irr| |#1|) (|:| -1623 (-525))))))) 126)) (-2997 (((-2 (|:| |contp| (-525)) (|:| -1494 (-592 (-2 (|:| |irr| |#1|) (|:| -1623 (-525)))))) |#1| (-108)) 152)) (-3024 (((-396 |#1|) |#1| (-713) (-713)) 165) (((-396 |#1|) |#1| (-592 (-713)) (-713)) 162) (((-396 |#1|) |#1| (-592 (-713))) 164) (((-396 |#1|) |#1| (-713)) 163) (((-396 |#1|) |#1|) 161)) (-2002 (((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713) (-108)) 167) (((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713)) 168) (((-3 |#1| "failed") (-856) |#1| (-592 (-713))) 170) (((-3 |#1| "failed") (-856) |#1| (-713)) 169) (((-3 |#1| "failed") (-856) |#1|) 171)) (-2195 (((-396 |#1|) |#1| (-713) (-713)) 160) (((-396 |#1|) |#1| (-592 (-713)) (-713)) 156) (((-396 |#1|) |#1| (-592 (-713))) 158) (((-396 |#1|) |#1| (-713)) 157) (((-396 |#1|) |#1|) 155)) (-3470 (((-108) |#1|) 37)) (-3269 (((-680 (-713)) (-592 (-2 (|:| -2195 |#1|) (|:| -1587 (-525))))) 67)) (-1817 (((-2 (|:| |contp| (-525)) (|:| -1494 (-592 (-2 (|:| |irr| |#1|) (|:| -1623 (-525)))))) |#1| (-108) (-1022 (-713)) (-713)) 154)))
+(((-419 |#1|) (-10 -7 (-15 -2575 ((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -1494 (-592 (-2 (|:| |irr| |#1|) (|:| -1623 (-525)))))))) (-15 -3269 ((-680 (-713)) (-592 (-2 (|:| -2195 |#1|) (|:| -1587 (-525)))))) (-15 -2285 ((-856))) (-15 -2285 ((-856) (-856))) (-15 -2537 ((-856))) (-15 -2537 ((-856) (-856))) (-15 -2725 ((-713) (-592 (-2 (|:| -2195 |#1|) (|:| -1587 (-525)))))) (-15 -1896 ((-2 (|:| -3603 (-525)) (|:| -1494 (-592 |#1|))) |#1|)) (-15 -3687 ((-108))) (-15 -2542 ((-108) (-108))) (-15 -1380 ((-108))) (-15 -3414 ((-108) (-108))) (-15 -3470 ((-108) |#1|)) (-15 -1645 ((-108))) (-15 -2015 ((-108) (-108))) (-15 -2195 ((-396 |#1|) |#1|)) (-15 -2195 ((-396 |#1|) |#1| (-713))) (-15 -2195 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -2195 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -2195 ((-396 |#1|) |#1| (-713) (-713))) (-15 -3024 ((-396 |#1|) |#1|)) (-15 -3024 ((-396 |#1|) |#1| (-713))) (-15 -3024 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -3024 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -3024 ((-396 |#1|) |#1| (-713) (-713))) (-15 -2002 ((-3 |#1| "failed") (-856) |#1|)) (-15 -2002 ((-3 |#1| "failed") (-856) |#1| (-713))) (-15 -2002 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)))) (-15 -2002 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713))) (-15 -2002 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713) (-108))) (-15 -2997 ((-2 (|:| |contp| (-525)) (|:| -1494 (-592 (-2 (|:| |irr| |#1|) (|:| -1623 (-525)))))) |#1| (-108))) (-15 -1817 ((-2 (|:| |contp| (-525)) (|:| -1494 (-592 (-2 (|:| |irr| |#1|) (|:| -1623 (-525)))))) |#1| (-108) (-1022 (-713)) (-713)))) (-1149 (-525))) (T -419))
+((-1817 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-108)) (-5 *5 (-1022 (-713))) (-5 *6 (-713)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -1494 (-592 (-2 (|:| |irr| *3) (|:| -1623 (-525))))))) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-2997 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -1494 (-592 (-2 (|:| |irr| *3) (|:| -1623 (-525))))))) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-2002 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *6 (-108)) (-5 *1 (-419 *2)) (-4 *2 (-1149 (-525))))) (-2002 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *1 (-419 *2)) (-4 *2 (-1149 (-525))))) (-2002 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *1 (-419 *2)) (-4 *2 (-1149 (-525))))) (-2002 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-856)) (-5 *4 (-713)) (-5 *1 (-419 *2)) (-4 *2 (-1149 (-525))))) (-2002 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-856)) (-5 *1 (-419 *2)) (-4 *2 (-1149 (-525))))) (-3024 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-3024 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-3024 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-3024 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-3024 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-2195 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-2195 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-2195 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-2195 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-2195 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-2015 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-1645 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-3470 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-3414 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-1380 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-2542 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-3687 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-1896 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3603 (-525)) (|:| -1494 (-592 *3)))) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-2725 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -2195 *4) (|:| -1587 (-525))))) (-4 *4 (-1149 (-525))) (-5 *2 (-713)) (-5 *1 (-419 *4)))) (-2537 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-2537 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-2285 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-2285 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))) (-3269 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -2195 *4) (|:| -1587 (-525))))) (-4 *4 (-1149 (-525))) (-5 *2 (-680 (-713))) (-5 *1 (-419 *4)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-525)) (|:| -1494 (-592 (-2 (|:| |irr| *4) (|:| -1623 (-525))))))) (-4 *4 (-1149 (-525))) (-5 *2 (-396 *4)) (-5 *1 (-419 *4)))))
+(-10 -7 (-15 -2575 ((-396 |#1|) (-2 (|:| |contp| (-525)) (|:| -1494 (-592 (-2 (|:| |irr| |#1|) (|:| -1623 (-525)))))))) (-15 -3269 ((-680 (-713)) (-592 (-2 (|:| -2195 |#1|) (|:| -1587 (-525)))))) (-15 -2285 ((-856))) (-15 -2285 ((-856) (-856))) (-15 -2537 ((-856))) (-15 -2537 ((-856) (-856))) (-15 -2725 ((-713) (-592 (-2 (|:| -2195 |#1|) (|:| -1587 (-525)))))) (-15 -1896 ((-2 (|:| -3603 (-525)) (|:| -1494 (-592 |#1|))) |#1|)) (-15 -3687 ((-108))) (-15 -2542 ((-108) (-108))) (-15 -1380 ((-108))) (-15 -3414 ((-108) (-108))) (-15 -3470 ((-108) |#1|)) (-15 -1645 ((-108))) (-15 -2015 ((-108) (-108))) (-15 -2195 ((-396 |#1|) |#1|)) (-15 -2195 ((-396 |#1|) |#1| (-713))) (-15 -2195 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -2195 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -2195 ((-396 |#1|) |#1| (-713) (-713))) (-15 -3024 ((-396 |#1|) |#1|)) (-15 -3024 ((-396 |#1|) |#1| (-713))) (-15 -3024 ((-396 |#1|) |#1| (-592 (-713)))) (-15 -3024 ((-396 |#1|) |#1| (-592 (-713)) (-713))) (-15 -3024 ((-396 |#1|) |#1| (-713) (-713))) (-15 -2002 ((-3 |#1| "failed") (-856) |#1|)) (-15 -2002 ((-3 |#1| "failed") (-856) |#1| (-713))) (-15 -2002 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)))) (-15 -2002 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713))) (-15 -2002 ((-3 |#1| "failed") (-856) |#1| (-592 (-713)) (-713) (-108))) (-15 -2997 ((-2 (|:| |contp| (-525)) (|:| -1494 (-592 (-2 (|:| |irr| |#1|) (|:| -1623 (-525)))))) |#1| (-108))) (-15 -1817 ((-2 (|:| |contp| (-525)) (|:| -1494 (-592 (-2 (|:| |irr| |#1|) (|:| -1623 (-525)))))) |#1| (-108) (-1022 (-713)) (-713))))
+((-4061 (((-525) |#2|) 48) (((-525) |#2| (-713)) 47)) (-1889 (((-525) |#2|) 55)) (-2420 ((|#3| |#2|) 25)) (-2900 ((|#3| |#2| (-856)) 14)) (-2023 ((|#3| |#2|) 15)) (-3635 ((|#3| |#2|) 9)) (-1751 ((|#3| |#2|) 10)) (-3230 ((|#3| |#2| (-856)) 62) ((|#3| |#2|) 30)) (-1392 (((-525) |#2|) 57)))
+(((-420 |#1| |#2| |#3|) (-10 -7 (-15 -1392 ((-525) |#2|)) (-15 -3230 (|#3| |#2|)) (-15 -3230 (|#3| |#2| (-856))) (-15 -1889 ((-525) |#2|)) (-15 -4061 ((-525) |#2| (-713))) (-15 -4061 ((-525) |#2|)) (-15 -2900 (|#3| |#2| (-856))) (-15 -2420 (|#3| |#2|)) (-15 -3635 (|#3| |#2|)) (-15 -1751 (|#3| |#2|)) (-15 -2023 (|#3| |#2|))) (-977) (-1149 |#1|) (-13 (-382) (-968 |#1|) (-341) (-1113) (-263))) (T -420))
+((-2023 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *2 (-13 (-382) (-968 *4) (-341) (-1113) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1149 *4)))) (-1751 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *2 (-13 (-382) (-968 *4) (-341) (-1113) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1149 *4)))) (-3635 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *2 (-13 (-382) (-968 *4) (-341) (-1113) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1149 *4)))) (-2420 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *2 (-13 (-382) (-968 *4) (-341) (-1113) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1149 *4)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-4 *5 (-977)) (-4 *2 (-13 (-382) (-968 *5) (-341) (-1113) (-263))) (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1149 *5)))) (-4061 (*1 *2 *3) (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1149 *4)) (-4 *5 (-13 (-382) (-968 *4) (-341) (-1113) (-263))))) (-4061 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *5 *3 *6)) (-4 *3 (-1149 *5)) (-4 *6 (-13 (-382) (-968 *5) (-341) (-1113) (-263))))) (-1889 (*1 *2 *3) (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1149 *4)) (-4 *5 (-13 (-382) (-968 *4) (-341) (-1113) (-263))))) (-3230 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-4 *5 (-977)) (-4 *2 (-13 (-382) (-968 *5) (-341) (-1113) (-263))) (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1149 *5)))) (-3230 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *2 (-13 (-382) (-968 *4) (-341) (-1113) (-263))) (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1149 *4)))) (-1392 (*1 *2 *3) (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5)) (-4 *3 (-1149 *4)) (-4 *5 (-13 (-382) (-968 *4) (-341) (-1113) (-263))))))
+(-10 -7 (-15 -1392 ((-525) |#2|)) (-15 -3230 (|#3| |#2|)) (-15 -3230 (|#3| |#2| (-856))) (-15 -1889 ((-525) |#2|)) (-15 -4061 ((-525) |#2| (-713))) (-15 -4061 ((-525) |#2|)) (-15 -2900 (|#3| |#2| (-856))) (-15 -2420 (|#3| |#2|)) (-15 -3635 (|#3| |#2|)) (-15 -1751 (|#3| |#2|)) (-15 -2023 (|#3| |#2|)))
+((-1886 ((|#2| (-1173 |#1|)) 36)) (-2292 ((|#2| |#2| |#1|) 49)) (-2633 ((|#2| |#2| |#1|) 41)) (-3620 ((|#2| |#2|) 38)) (-1898 (((-108) |#2|) 30)) (-1565 (((-592 |#2|) (-856) (-396 |#2|)) 17)) (-2002 ((|#2| (-856) (-396 |#2|)) 21)) (-3269 (((-680 (-713)) (-396 |#2|)) 25)))
+(((-421 |#1| |#2|) (-10 -7 (-15 -1898 ((-108) |#2|)) (-15 -1886 (|#2| (-1173 |#1|))) (-15 -3620 (|#2| |#2|)) (-15 -2633 (|#2| |#2| |#1|)) (-15 -2292 (|#2| |#2| |#1|)) (-15 -3269 ((-680 (-713)) (-396 |#2|))) (-15 -2002 (|#2| (-856) (-396 |#2|))) (-15 -1565 ((-592 |#2|) (-856) (-396 |#2|)))) (-977) (-1149 |#1|)) (T -421))
+((-1565 (*1 *2 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-396 *6)) (-4 *6 (-1149 *5)) (-4 *5 (-977)) (-5 *2 (-592 *6)) (-5 *1 (-421 *5 *6)))) (-2002 (*1 *2 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-396 *2)) (-4 *2 (-1149 *5)) (-5 *1 (-421 *5 *2)) (-4 *5 (-977)))) (-3269 (*1 *2 *3) (-12 (-5 *3 (-396 *5)) (-4 *5 (-1149 *4)) (-4 *4 (-977)) (-5 *2 (-680 (-713))) (-5 *1 (-421 *4 *5)))) (-2292 (*1 *2 *2 *3) (-12 (-4 *3 (-977)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1149 *3)))) (-2633 (*1 *2 *2 *3) (-12 (-4 *3 (-977)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1149 *3)))) (-3620 (*1 *2 *2) (-12 (-4 *3 (-977)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1149 *3)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-1173 *4)) (-4 *4 (-977)) (-4 *2 (-1149 *4)) (-5 *1 (-421 *4 *2)))) (-1898 (*1 *2 *3) (-12 (-4 *4 (-977)) (-5 *2 (-108)) (-5 *1 (-421 *4 *3)) (-4 *3 (-1149 *4)))))
+(-10 -7 (-15 -1898 ((-108) |#2|)) (-15 -1886 (|#2| (-1173 |#1|))) (-15 -3620 (|#2| |#2|)) (-15 -2633 (|#2| |#2| |#1|)) (-15 -2292 (|#2| |#2| |#1|)) (-15 -3269 ((-680 (-713)) (-396 |#2|))) (-15 -2002 (|#2| (-856) (-396 |#2|))) (-15 -1565 ((-592 |#2|) (-856) (-396 |#2|))))
+((-1897 (((-713)) 41)) (-2518 (((-713)) 23 (|has| |#1| (-382))) (((-713) (-713)) 22 (|has| |#1| (-382)))) (-3938 (((-525) |#1|) 18 (|has| |#1| (-382)))) (-3857 (((-525) |#1|) 20 (|has| |#1| (-382)))) (-3465 (((-713)) 40) (((-713) (-713)) 39)) (-3467 ((|#1| (-713) (-525)) 29)) (-1834 (((-1178)) 43)))
+(((-422 |#1|) (-10 -7 (-15 -3467 (|#1| (-713) (-525))) (-15 -3465 ((-713) (-713))) (-15 -3465 ((-713))) (-15 -1897 ((-713))) (-15 -1834 ((-1178))) (IF (|has| |#1| (-382)) (PROGN (-15 -3857 ((-525) |#1|)) (-15 -3938 ((-525) |#1|)) (-15 -2518 ((-713) (-713))) (-15 -2518 ((-713)))) |%noBranch|)) (-977)) (T -422))
+((-2518 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))) (-2518 (*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))) (-3938 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))) (-3857 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))) (-1834 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-422 *3)) (-4 *3 (-977)))) (-1897 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977)))) (-3465 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977)))) (-3465 (*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-525)) (-5 *1 (-422 *2)) (-4 *2 (-977)))))
+(-10 -7 (-15 -3467 (|#1| (-713) (-525))) (-15 -3465 ((-713) (-713))) (-15 -3465 ((-713))) (-15 -1897 ((-713))) (-15 -1834 ((-1178))) (IF (|has| |#1| (-382)) (PROGN (-15 -3857 ((-525) |#1|)) (-15 -3938 ((-525) |#1|)) (-15 -2518 ((-713) (-713))) (-15 -2518 ((-713)))) |%noBranch|))
+((-4094 (((-592 (-525)) (-525)) 61)) (-3836 (((-108) (-157 (-525))) 65)) (-2195 (((-396 (-157 (-525))) (-157 (-525))) 60)))
+(((-423) (-10 -7 (-15 -2195 ((-396 (-157 (-525))) (-157 (-525)))) (-15 -4094 ((-592 (-525)) (-525))) (-15 -3836 ((-108) (-157 (-525)))))) (T -423))
+((-3836 (*1 *2 *3) (-12 (-5 *3 (-157 (-525))) (-5 *2 (-108)) (-5 *1 (-423)))) (-4094 (*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-423)) (-5 *3 (-525)))) (-2195 (*1 *2 *3) (-12 (-5 *2 (-396 (-157 (-525)))) (-5 *1 (-423)) (-5 *3 (-157 (-525))))))
+(-10 -7 (-15 -2195 ((-396 (-157 (-525))) (-157 (-525)))) (-15 -4094 ((-592 (-525)) (-525))) (-15 -3836 ((-108) (-157 (-525)))))
+((-2039 ((|#4| |#4| (-592 |#4|)) 61)) (-3276 (((-592 |#4|) (-592 |#4|) (-1074) (-1074)) 17) (((-592 |#4|) (-592 |#4|) (-1074)) 16) (((-592 |#4|) (-592 |#4|)) 11)))
+(((-424 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2039 (|#4| |#4| (-592 |#4|))) (-15 -3276 ((-592 |#4|) (-592 |#4|))) (-15 -3276 ((-592 |#4|) (-592 |#4|) (-1074))) (-15 -3276 ((-592 |#4|) (-592 |#4|) (-1074) (-1074)))) (-286) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -424))
+((-3276 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1074)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *7)))) (-3276 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1074)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *7)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-424 *3 *4 *5 *6)))) (-2039 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *2)))))
+(-10 -7 (-15 -2039 (|#4| |#4| (-592 |#4|))) (-15 -3276 ((-592 |#4|) (-592 |#4|))) (-15 -3276 ((-592 |#4|) (-592 |#4|) (-1074))) (-15 -3276 ((-592 |#4|) (-592 |#4|) (-1074) (-1074))))
+((-2686 (((-592 (-592 |#4|)) (-592 |#4|) (-108)) 73) (((-592 (-592 |#4|)) (-592 |#4|)) 72) (((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|) (-108)) 66) (((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|)) 67)) (-1232 (((-592 (-592 |#4|)) (-592 |#4|) (-108)) 42) (((-592 (-592 |#4|)) (-592 |#4|)) 63)))
+(((-425 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1232 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -1232 ((-592 (-592 |#4|)) (-592 |#4|) (-108))) (-15 -2686 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|))) (-15 -2686 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|) (-108))) (-15 -2686 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -2686 ((-592 (-592 |#4|)) (-592 |#4|) (-108)))) (-13 (-286) (-138)) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -425))
+((-2686 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))) (-2686 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-2686 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))) (-2686 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-1232 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8))) (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))) (-1232 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
+(-10 -7 (-15 -1232 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -1232 ((-592 (-592 |#4|)) (-592 |#4|) (-108))) (-15 -2686 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|))) (-15 -2686 ((-592 (-592 |#4|)) (-592 |#4|) (-592 |#4|) (-108))) (-15 -2686 ((-592 (-592 |#4|)) (-592 |#4|))) (-15 -2686 ((-592 (-592 |#4|)) (-592 |#4|) (-108))))
+((-3388 (((-713) |#4|) 12)) (-4105 (((-592 (-2 (|:| |totdeg| (-713)) (|:| -3696 |#4|))) |#4| (-713) (-592 (-2 (|:| |totdeg| (-713)) (|:| -3696 |#4|)))) 31)) (-2864 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-3677 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1975 ((|#4| |#4| (-592 |#4|)) 40)) (-1288 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-592 |#4|)) 70)) (-2168 (((-1178) |#4|) 42)) (-1351 (((-1178) (-592 |#4|)) 51)) (-4097 (((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525)) 48)) (-2705 (((-1178) (-525)) 79)) (-2033 (((-592 |#4|) (-592 |#4|)) 77)) (-3753 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-713)) (|:| -3696 |#4|)) |#4| (-713)) 25)) (-1339 (((-525) |#4|) 78)) (-2378 ((|#4| |#4|) 29)) (-4087 (((-592 |#4|) (-592 |#4|) (-525) (-525)) 56)) (-1981 (((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525)) 89)) (-3939 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-2461 (((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-2139 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-2384 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-2609 (((-108) |#2| |#2|) 57)) (-2090 (((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-1792 (((-108) |#2| |#2| |#2| |#2|) 60)) (-3408 ((|#4| |#4| (-592 |#4|)) 71)))
+(((-426 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3408 (|#4| |#4| (-592 |#4|))) (-15 -1975 (|#4| |#4| (-592 |#4|))) (-15 -4087 ((-592 |#4|) (-592 |#4|) (-525) (-525))) (-15 -2461 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2609 ((-108) |#2| |#2|)) (-15 -1792 ((-108) |#2| |#2| |#2| |#2|)) (-15 -2090 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2384 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2139 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1288 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-592 |#4|))) (-15 -2378 (|#4| |#4|)) (-15 -4105 ((-592 (-2 (|:| |totdeg| (-713)) (|:| -3696 |#4|))) |#4| (-713) (-592 (-2 (|:| |totdeg| (-713)) (|:| -3696 |#4|))))) (-15 -3677 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2864 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2033 ((-592 |#4|) (-592 |#4|))) (-15 -1339 ((-525) |#4|)) (-15 -2168 ((-1178) |#4|)) (-15 -4097 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525))) (-15 -1981 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525))) (-15 -1351 ((-1178) (-592 |#4|))) (-15 -2705 ((-1178) (-525))) (-15 -3939 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3753 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-713)) (|:| -3696 |#4|)) |#4| (-713))) (-15 -3388 ((-713) |#4|))) (-429) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -426))
+((-3388 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))) (-3753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-713)) (|:| -3696 *4))) (-5 *5 (-713)) (-4 *4 (-884 *6 *7 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-426 *6 *7 *8 *4)))) (-3939 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-735)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1178)) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))) (-1351 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1178)) (-5 *1 (-426 *4 *5 *6 *7)))) (-1981 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-735)) (-4 *4 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *4)))) (-4097 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-735)) (-4 *4 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *4)))) (-2168 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1178)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))) (-1339 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-525)) (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))) (-2033 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))) (-2864 (*1 *2 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-735)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))) (-3677 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-735)) (-4 *2 (-884 *4 *5 *6)) (-5 *1 (-426 *4 *5 *6 *2)) (-4 *4 (-429)) (-4 *6 (-789)))) (-4105 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-592 (-2 (|:| |totdeg| (-713)) (|:| -3696 *3)))) (-5 *4 (-713)) (-4 *3 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *3)))) (-2378 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5)))) (-1288 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-426 *5 *6 *7 *3)))) (-2139 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-713)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-735)) (-4 *6 (-884 *4 *3 *5)) (-4 *4 (-429)) (-4 *5 (-789)) (-5 *1 (-426 *4 *3 *5 *6)))) (-2384 (*1 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-735)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))) (-2090 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-735)) (-4 *3 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *3)))) (-1792 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-884 *4 *3 *5)))) (-2609 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-884 *4 *3 *5)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-735)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))) (-4087 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-525)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *7)))) (-1975 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2)))) (-3408 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3408 (|#4| |#4| (-592 |#4|))) (-15 -1975 (|#4| |#4| (-592 |#4|))) (-15 -4087 ((-592 |#4|) (-592 |#4|) (-525) (-525))) (-15 -2461 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2609 ((-108) |#2| |#2|)) (-15 -1792 ((-108) |#2| |#2| |#2| |#2|)) (-15 -2090 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2384 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2139 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1288 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-592 |#4|))) (-15 -2378 (|#4| |#4|)) (-15 -4105 ((-592 (-2 (|:| |totdeg| (-713)) (|:| -3696 |#4|))) |#4| (-713) (-592 (-2 (|:| |totdeg| (-713)) (|:| -3696 |#4|))))) (-15 -3677 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2864 ((-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-592 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2033 ((-592 |#4|) (-592 |#4|))) (-15 -1339 ((-525) |#4|)) (-15 -2168 ((-1178) |#4|)) (-15 -4097 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525))) (-15 -1981 ((-525) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-525) (-525) (-525) (-525))) (-15 -1351 ((-1178) (-592 |#4|))) (-15 -2705 ((-1178) (-525))) (-15 -3939 ((-108) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3753 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-713)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-713)) (|:| -3696 |#4|)) |#4| (-713))) (-15 -3388 ((-713) |#4|)))
+((-3120 ((|#4| |#4| (-592 |#4|)) 22 (|has| |#1| (-341)))) (-1933 (((-592 |#4|) (-592 |#4|) (-1074) (-1074)) 41) (((-592 |#4|) (-592 |#4|) (-1074)) 40) (((-592 |#4|) (-592 |#4|)) 35)))
+(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1933 ((-592 |#4|) (-592 |#4|))) (-15 -1933 ((-592 |#4|) (-592 |#4|) (-1074))) (-15 -1933 ((-592 |#4|) (-592 |#4|) (-1074) (-1074))) (IF (|has| |#1| (-341)) (-15 -3120 (|#4| |#4| (-592 |#4|))) |%noBranch|)) (-429) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -427))
+((-3120 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-341)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-427 *4 *5 *6 *2)))) (-1933 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1074)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-427 *4 *5 *6 *7)))) (-1933 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1074)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-427 *4 *5 *6 *7)))) (-1933 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-427 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1933 ((-592 |#4|) (-592 |#4|))) (-15 -1933 ((-592 |#4|) (-592 |#4|) (-1074))) (-15 -1933 ((-592 |#4|) (-592 |#4|) (-1074) (-1074))) (IF (|has| |#1| (-341)) (-15 -3120 (|#4| |#4| (-592 |#4|))) |%noBranch|))
+((-2756 (($ $ $) 14) (($ (-592 $)) 21)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 41)) (-2794 (($ $ $) NIL) (($ (-592 $)) 22)))
+(((-428 |#1|) (-10 -8 (-15 -1534 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|))) (-15 -2756 (|#1| (-592 |#1|))) (-15 -2756 (|#1| |#1| |#1|)) (-15 -2794 (|#1| (-592 |#1|))) (-15 -2794 (|#1| |#1| |#1|))) (-429)) (T -428))
+NIL
+(-10 -8 (-15 -1534 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|))) (-15 -2756 (|#1| (-592 |#1|))) (-15 -2756 (|#1| |#1| |#1|)) (-15 -2794 (|#1| (-592 |#1|))) (-15 -2794 (|#1| |#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-1680 (((-3 $ "failed") $ $) 42)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) 39)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-429) (-131)) (T -429))
-((-3244 (*1 *1 *1 *1) (-4 *1 (-429))) (-3244 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429)))) (-3216 (*1 *1 *1 *1) (-4 *1 (-429))) (-3216 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429)))) (-1763 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-429)))))
-(-13 (-517) (-10 -8 (-15 -3244 ($ $ $)) (-15 -3244 ($ (-592 $))) (-15 -3216 ($ $ $)) (-15 -3216 ($ (-592 $))) (-15 -1763 ((-1086 $) (-1086 $) (-1086 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3957 (((-3 $ "failed")) NIL (|has| (-385 (-886 |#1|)) (-517)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-2722 (((-1172 (-632 (-385 (-886 |#1|)))) (-1172 $)) NIL) (((-1172 (-632 (-385 (-886 |#1|))))) NIL)) (-1917 (((-1172 $)) NIL)) (-1505 (($) NIL T CONST)) (-2800 (((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed")) NIL)) (-1496 (((-3 $ "failed")) NIL (|has| (-385 (-886 |#1|)) (-517)))) (-1460 (((-632 (-385 (-886 |#1|))) (-1172 $)) NIL) (((-632 (-385 (-886 |#1|)))) NIL)) (-2386 (((-385 (-886 |#1|)) $) NIL)) (-3440 (((-632 (-385 (-886 |#1|))) $ (-1172 $)) NIL) (((-632 (-385 (-886 |#1|))) $) NIL)) (-1391 (((-3 $ "failed") $) NIL (|has| (-385 (-886 |#1|)) (-517)))) (-1743 (((-1086 (-886 (-385 (-886 |#1|))))) NIL (|has| (-385 (-886 |#1|)) (-341))) (((-1086 (-385 (-886 |#1|)))) 84 (|has| |#1| (-517)))) (-2979 (($ $ (-855)) NIL)) (-3376 (((-385 (-886 |#1|)) $) NIL)) (-2706 (((-1086 (-385 (-886 |#1|))) $) 82 (|has| (-385 (-886 |#1|)) (-517)))) (-2519 (((-385 (-886 |#1|)) (-1172 $)) NIL) (((-385 (-886 |#1|))) NIL)) (-2908 (((-1086 (-385 (-886 |#1|))) $) NIL)) (-1814 (((-108)) NIL)) (-2229 (($ (-1172 (-385 (-886 |#1|))) (-1172 $)) 103) (($ (-1172 (-385 (-886 |#1|)))) NIL)) (-2866 (((-3 $ "failed") $) NIL (|has| (-385 (-886 |#1|)) (-517)))) (-2239 (((-855)) NIL)) (-2301 (((-108)) NIL)) (-2097 (($ $ (-855)) NIL)) (-2795 (((-108)) NIL)) (-3251 (((-108)) NIL)) (-2775 (((-108)) NIL)) (-4033 (((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed")) NIL)) (-1850 (((-3 $ "failed")) NIL (|has| (-385 (-886 |#1|)) (-517)))) (-2205 (((-632 (-385 (-886 |#1|))) (-1172 $)) NIL) (((-632 (-385 (-886 |#1|)))) NIL)) (-2389 (((-385 (-886 |#1|)) $) NIL)) (-1306 (((-632 (-385 (-886 |#1|))) $ (-1172 $)) NIL) (((-632 (-385 (-886 |#1|))) $) NIL)) (-2364 (((-3 $ "failed") $) NIL (|has| (-385 (-886 |#1|)) (-517)))) (-2568 (((-1086 (-886 (-385 (-886 |#1|))))) NIL (|has| (-385 (-886 |#1|)) (-341))) (((-1086 (-385 (-886 |#1|)))) 83 (|has| |#1| (-517)))) (-1640 (($ $ (-855)) NIL)) (-3342 (((-385 (-886 |#1|)) $) NIL)) (-2900 (((-1086 (-385 (-886 |#1|))) $) 77 (|has| (-385 (-886 |#1|)) (-517)))) (-3060 (((-385 (-886 |#1|)) (-1172 $)) NIL) (((-385 (-886 |#1|))) NIL)) (-2535 (((-1086 (-385 (-886 |#1|))) $) NIL)) (-1506 (((-108)) NIL)) (-2337 (((-1073) $) NIL)) (-3886 (((-108)) NIL)) (-1886 (((-108)) NIL)) (-2597 (((-108)) NIL)) (-2663 (((-1037) $) NIL)) (-4062 (((-385 (-886 |#1|)) $ $) 71 (|has| |#1| (-517)))) (-3776 (((-385 (-886 |#1|)) $) 93 (|has| |#1| (-517)))) (-3860 (((-385 (-886 |#1|)) $) 95 (|has| |#1| (-517)))) (-2060 (((-1086 (-385 (-886 |#1|))) $) 88 (|has| |#1| (-517)))) (-3259 (((-385 (-886 |#1|))) 72 (|has| |#1| (-517)))) (-1299 (((-385 (-886 |#1|)) $ $) 64 (|has| |#1| (-517)))) (-3475 (((-385 (-886 |#1|)) $) 92 (|has| |#1| (-517)))) (-2981 (((-385 (-886 |#1|)) $) 94 (|has| |#1| (-517)))) (-3930 (((-1086 (-385 (-886 |#1|))) $) 87 (|has| |#1| (-517)))) (-3142 (((-385 (-886 |#1|))) 68 (|has| |#1| (-517)))) (-4108 (($) 101) (($ (-1090)) 107) (($ (-1172 (-1090))) 106) (($ (-1172 $)) 96) (($ (-1090) (-1172 $)) 105) (($ (-1172 (-1090)) (-1172 $)) 104)) (-2120 (((-108)) NIL)) (-3928 (((-385 (-886 |#1|)) $ (-525)) NIL)) (-4093 (((-1172 (-385 (-886 |#1|))) $ (-1172 $)) 98) (((-632 (-385 (-886 |#1|))) (-1172 $) (-1172 $)) NIL) (((-1172 (-385 (-886 |#1|))) $) 40) (((-632 (-385 (-886 |#1|))) (-1172 $)) NIL)) (-1427 (((-1172 (-385 (-886 |#1|))) $) NIL) (($ (-1172 (-385 (-886 |#1|)))) 37)) (-2274 (((-592 (-886 (-385 (-886 |#1|)))) (-1172 $)) NIL) (((-592 (-886 (-385 (-886 |#1|))))) NIL) (((-592 (-886 |#1|)) (-1172 $)) 99 (|has| |#1| (-517))) (((-592 (-886 |#1|))) 100 (|has| |#1| (-517)))) (-1518 (($ $ $) NIL)) (-1380 (((-108)) NIL)) (-1908 (((-797) $) NIL) (($ (-1172 (-385 (-886 |#1|)))) NIL)) (-2499 (((-1172 $)) 60)) (-1648 (((-592 (-1172 (-385 (-886 |#1|))))) NIL (|has| (-385 (-886 |#1|)) (-517)))) (-2260 (($ $ $ $) NIL)) (-3132 (((-108)) NIL)) (-3088 (($ (-632 (-385 (-886 |#1|))) $) NIL)) (-2331 (($ $ $) NIL)) (-1447 (((-108)) NIL)) (-3432 (((-108)) NIL)) (-2303 (((-108)) NIL)) (-3875 (($) NIL T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) 97)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 56) (($ $ (-385 (-886 |#1|))) NIL) (($ (-385 (-886 |#1|)) $) NIL) (($ (-1057 |#2| (-385 (-886 |#1|))) $) NIL)))
-(((-430 |#1| |#2| |#3| |#4|) (-13 (-395 (-385 (-886 |#1|))) (-594 (-1057 |#2| (-385 (-886 |#1|)))) (-10 -8 (-15 -1908 ($ (-1172 (-385 (-886 |#1|))))) (-15 -4033 ((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed"))) (-15 -2800 ((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed"))) (-15 -4108 ($)) (-15 -4108 ($ (-1090))) (-15 -4108 ($ (-1172 (-1090)))) (-15 -4108 ($ (-1172 $))) (-15 -4108 ($ (-1090) (-1172 $))) (-15 -4108 ($ (-1172 (-1090)) (-1172 $))) (IF (|has| |#1| (-517)) (PROGN (-15 -2568 ((-1086 (-385 (-886 |#1|))))) (-15 -3930 ((-1086 (-385 (-886 |#1|))) $)) (-15 -3475 ((-385 (-886 |#1|)) $)) (-15 -2981 ((-385 (-886 |#1|)) $)) (-15 -1743 ((-1086 (-385 (-886 |#1|))))) (-15 -2060 ((-1086 (-385 (-886 |#1|))) $)) (-15 -3776 ((-385 (-886 |#1|)) $)) (-15 -3860 ((-385 (-886 |#1|)) $)) (-15 -1299 ((-385 (-886 |#1|)) $ $)) (-15 -3142 ((-385 (-886 |#1|)))) (-15 -4062 ((-385 (-886 |#1|)) $ $)) (-15 -3259 ((-385 (-886 |#1|)))) (-15 -2274 ((-592 (-886 |#1|)) (-1172 $))) (-15 -2274 ((-592 (-886 |#1|))))) |%noBranch|))) (-160) (-855) (-592 (-1090)) (-1172 (-632 |#1|))) (T -430))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1172 (-385 (-886 *3)))) (-4 *3 (-160)) (-14 *6 (-1172 (-632 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))))) (-4033 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-430 *3 *4 *5 *6)) (|:| -2499 (-592 (-430 *3 *4 *5 *6))))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-2800 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-430 *3 *4 *5 *6)) (|:| -2499 (-592 (-430 *3 *4 *5 *6))))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-4108 (*1 *1) (-12 (-5 *1 (-430 *2 *3 *4 *5)) (-4 *2 (-160)) (-14 *3 (-855)) (-14 *4 (-592 (-1090))) (-14 *5 (-1172 (-632 *2))))) (-4108 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-4108 (*1 *1 *2) (-12 (-5 *2 (-1172 (-1090))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-4108 (*1 *1 *2) (-12 (-5 *2 (-1172 (-430 *3 *4 *5 *6))) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))) (-5 *1 (-430 *3 *4 *5 *6)))) (-4108 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-430 *4 *5 *6 *7))) (-4 *4 (-160)) (-14 *5 (-855)) (-14 *6 (-592 (-1090))) (-14 *7 (-1172 (-632 *4))) (-5 *1 (-430 *4 *5 *6 *7)))) (-4108 (*1 *1 *2 *3) (-12 (-5 *2 (-1172 (-1090))) (-5 *3 (-1172 (-430 *4 *5 *6 *7))) (-4 *4 (-160)) (-14 *5 (-855)) (-14 *6 (-592 (-1090))) (-14 *7 (-1172 (-632 *4))) (-5 *1 (-430 *4 *5 *6 *7)))) (-2568 (*1 *2) (-12 (-5 *2 (-1086 (-385 (-886 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-1086 (-385 (-886 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-2981 (*1 *2 *1) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-1743 (*1 *2) (-12 (-5 *2 (-1086 (-385 (-886 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-2060 (*1 *2 *1) (-12 (-5 *2 (-1086 (-385 (-886 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-3776 (*1 *2 *1) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-3860 (*1 *2 *1) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-1299 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-3142 (*1 *2) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-4062 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-3259 (*1 *2) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-1172 (-430 *4 *5 *6 *7))) (-4 *4 (-517)) (-4 *4 (-160)) (-14 *5 (-855)) (-14 *6 (-592 (-1090))) (-14 *7 (-1172 (-632 *4))) (-5 *2 (-592 (-886 *4))) (-5 *1 (-430 *4 *5 *6 *7)))) (-2274 (*1 *2) (-12 (-5 *2 (-592 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))))
-(-13 (-395 (-385 (-886 |#1|))) (-594 (-1057 |#2| (-385 (-886 |#1|)))) (-10 -8 (-15 -1908 ($ (-1172 (-385 (-886 |#1|))))) (-15 -4033 ((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed"))) (-15 -2800 ((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed"))) (-15 -4108 ($)) (-15 -4108 ($ (-1090))) (-15 -4108 ($ (-1172 (-1090)))) (-15 -4108 ($ (-1172 $))) (-15 -4108 ($ (-1090) (-1172 $))) (-15 -4108 ($ (-1172 (-1090)) (-1172 $))) (IF (|has| |#1| (-517)) (PROGN (-15 -2568 ((-1086 (-385 (-886 |#1|))))) (-15 -3930 ((-1086 (-385 (-886 |#1|))) $)) (-15 -3475 ((-385 (-886 |#1|)) $)) (-15 -2981 ((-385 (-886 |#1|)) $)) (-15 -1743 ((-1086 (-385 (-886 |#1|))))) (-15 -2060 ((-1086 (-385 (-886 |#1|))) $)) (-15 -3776 ((-385 (-886 |#1|)) $)) (-15 -3860 ((-385 (-886 |#1|)) $)) (-15 -1299 ((-385 (-886 |#1|)) $ $)) (-15 -3142 ((-385 (-886 |#1|)))) (-15 -4062 ((-385 (-886 |#1|)) $ $)) (-15 -3259 ((-385 (-886 |#1|)))) (-15 -2274 ((-592 (-886 |#1|)) (-1172 $))) (-15 -2274 ((-592 (-886 |#1|))))) |%noBranch|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 13)) (-4104 (((-592 (-799 |#1|)) $) 75)) (-3927 (((-1086 $) $ (-799 |#1|)) 46) (((-1086 |#2|) $) 118)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-3635 (($ $) NIL (|has| |#2| (-517)))) (-2950 (((-108) $) NIL (|has| |#2| (-517)))) (-1324 (((-713) $) 21) (((-713) $ (-592 (-799 |#1|))) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-3321 (($ $) NIL (|has| |#2| (-429)))) (-1510 (((-396 $) $) NIL (|has| |#2| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#2| "failed") $) 44) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-799 |#1|) "failed") $) NIL)) (-2831 ((|#2| $) 42) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-967 (-525)))) (((-799 |#1|) $) NIL)) (-2506 (($ $ $ (-799 |#1|)) NIL (|has| |#2| (-160)))) (-2383 (($ $ (-592 (-525))) 80)) (-1247 (($ $) 68)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3811 (($ $) NIL (|has| |#2| (-429))) (($ $ (-799 |#1|)) NIL (|has| |#2| (-429)))) (-1234 (((-592 $) $) NIL)) (-2250 (((-108) $) NIL (|has| |#2| (-843)))) (-2099 (($ $ |#2| |#3| $) NIL)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-799 |#1|) (-820 (-357))) (|has| |#2| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-799 |#1|) (-820 (-525))) (|has| |#2| (-820 (-525)))))) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) 58)) (-4092 (($ (-1086 |#2|) (-799 |#1|)) 123) (($ (-1086 $) (-799 |#1|)) 52)) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) 59)) (-4079 (($ |#2| |#3|) 28) (($ $ (-799 |#1|) (-713)) 30) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ (-799 |#1|)) NIL)) (-3181 ((|#3| $) NIL) (((-713) $ (-799 |#1|)) 50) (((-592 (-713)) $ (-592 (-799 |#1|))) 57)) (-3525 (($ $ $) NIL (|has| |#2| (-789)))) (-3630 (($ $ $) NIL (|has| |#2| (-789)))) (-1331 (($ (-1 |#3| |#3|) $) NIL)) (-1370 (($ (-1 |#2| |#2|) $) NIL)) (-1666 (((-3 (-799 |#1|) "failed") $) 39)) (-1212 (($ $) NIL)) (-1224 ((|#2| $) 41)) (-3216 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2337 (((-1073) $) NIL)) (-3245 (((-3 (-592 $) "failed") $) NIL)) (-3193 (((-3 (-592 $) "failed") $) NIL)) (-3283 (((-3 (-2 (|:| |var| (-799 |#1|)) (|:| -1600 (-713))) "failed") $) NIL)) (-2663 (((-1037) $) NIL)) (-4221 (((-108) $) 40)) (-4232 ((|#2| $) 116)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-429)))) (-3244 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) 128 (|has| |#2| (-429)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-3959 (((-396 $) $) NIL (|has| |#2| (-843)))) (-2338 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-3092 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-799 |#1|) |#2|) 87) (($ $ (-592 (-799 |#1|)) (-592 |#2|)) 90) (($ $ (-799 |#1|) $) 85) (($ $ (-592 (-799 |#1|)) (-592 $)) 106)) (-1400 (($ $ (-799 |#1|)) NIL (|has| |#2| (-160)))) (-3013 (($ $ (-799 |#1|)) 53) (($ $ (-592 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-2513 ((|#3| $) 67) (((-713) $ (-799 |#1|)) 37) (((-592 (-713)) $ (-592 (-799 |#1|))) 56)) (-1427 (((-826 (-357)) $) NIL (-12 (|has| (-799 |#1|) (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-799 |#1|) (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-799 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2751 ((|#2| $) 125 (|has| |#2| (-429))) (($ $ (-799 |#1|)) NIL (|has| |#2| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-843))))) (-1908 (((-797) $) 145) (($ (-525)) NIL) (($ |#2|) 86) (($ (-799 |#1|)) 31) (($ (-385 (-525))) NIL (-3309 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-3600 (((-592 |#2|) $) NIL)) (-1657 ((|#2| $ |#3|) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#2| (-843))) (|has| |#2| (-136))))) (-2093 (((-713)) NIL)) (-4116 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-2262 (((-108) $ $) NIL (|has| |#2| (-517)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 17 T CONST)) (-3882 (($) 25 T CONST)) (-1424 (($ $ (-799 |#1|)) NIL) (($ $ (-592 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-4024 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4082 (($ $ |#2|) 64 (|has| |#2| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) 111)) (** (($ $ (-855)) NIL) (($ $ (-713)) 109)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 29) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-431 |#1| |#2| |#3|) (-13 (-883 |#2| |#3| (-799 |#1|)) (-10 -8 (-15 -2383 ($ $ (-592 (-525)))))) (-592 (-1090)) (-976) (-218 (-4140 |#1|) (-713))) (T -431))
-((-2383 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-14 *3 (-592 (-1090))) (-5 *1 (-431 *3 *4 *5)) (-4 *4 (-976)) (-4 *5 (-218 (-4140 *3) (-713))))))
-(-13 (-883 |#2| |#3| (-799 |#1|)) (-10 -8 (-15 -2383 ($ $ (-592 (-525))))))
-((-3751 (((-108) |#1| (-592 |#2|)) 69)) (-1334 (((-3 (-1172 (-592 |#2|)) "failed") (-713) |#1| (-592 |#2|)) 78)) (-2153 (((-3 (-592 |#2|) "failed") |#2| |#1| (-1172 (-592 |#2|))) 80)) (-3988 ((|#2| |#2| |#1|) 28)) (-1924 (((-713) |#2| (-592 |#2|)) 20)))
-(((-432 |#1| |#2|) (-10 -7 (-15 -3988 (|#2| |#2| |#1|)) (-15 -1924 ((-713) |#2| (-592 |#2|))) (-15 -1334 ((-3 (-1172 (-592 |#2|)) "failed") (-713) |#1| (-592 |#2|))) (-15 -2153 ((-3 (-592 |#2|) "failed") |#2| |#1| (-1172 (-592 |#2|)))) (-15 -3751 ((-108) |#1| (-592 |#2|)))) (-286) (-1148 |#1|)) (T -432))
-((-3751 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *5)) (-4 *5 (-1148 *3)) (-4 *3 (-286)) (-5 *2 (-108)) (-5 *1 (-432 *3 *5)))) (-2153 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1172 (-592 *3))) (-4 *3 (-1148 *4)) (-4 *4 (-286)) (-5 *2 (-592 *3)) (-5 *1 (-432 *4 *3)))) (-1334 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-713)) (-4 *4 (-286)) (-4 *6 (-1148 *4)) (-5 *2 (-1172 (-592 *6))) (-5 *1 (-432 *4 *6)) (-5 *5 (-592 *6)))) (-1924 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-286)) (-5 *2 (-713)) (-5 *1 (-432 *5 *3)))) (-3988 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-5 *1 (-432 *3 *2)) (-4 *2 (-1148 *3)))))
-(-10 -7 (-15 -3988 (|#2| |#2| |#1|)) (-15 -1924 ((-713) |#2| (-592 |#2|))) (-15 -1334 ((-3 (-1172 (-592 |#2|)) "failed") (-713) |#1| (-592 |#2|))) (-15 -2153 ((-3 (-592 |#2|) "failed") |#2| |#1| (-1172 (-592 |#2|)))) (-15 -3751 ((-108) |#1| (-592 |#2|))))
-((-3959 (((-396 |#5|) |#5|) 24)))
-(((-433 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3959 ((-396 |#5|) |#5|))) (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $)) (-15 -1251 ((-3 $ "failed") (-1090))))) (-735) (-517) (-517) (-883 |#4| |#2| |#1|)) (T -433))
-((-3959 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $)) (-15 -1251 ((-3 $ "failed") (-1090)))))) (-4 *5 (-735)) (-4 *7 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-433 *4 *5 *6 *7 *3)) (-4 *6 (-517)) (-4 *3 (-883 *7 *5 *4)))))
-(-10 -7 (-15 -3959 ((-396 |#5|) |#5|)))
-((-2767 ((|#3|) 37)) (-1763 (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 33)))
-(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1763 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -2767 (|#3|))) (-735) (-789) (-843) (-883 |#3| |#1| |#2|)) (T -434))
-((-2767 (*1 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-843)) (-5 *1 (-434 *3 *4 *2 *5)) (-4 *5 (-883 *2 *3 *4)))) (-1763 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-883 *5 *3 *4)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-843)) (-5 *1 (-434 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1763 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -2767 (|#3|)))
-((-3959 (((-396 (-1086 |#1|)) (-1086 |#1|)) 43)))
-(((-435 |#1|) (-10 -7 (-15 -3959 ((-396 (-1086 |#1|)) (-1086 |#1|)))) (-286)) (T -435))
-((-3959 (*1 *2 *3) (-12 (-4 *4 (-286)) (-5 *2 (-396 (-1086 *4))) (-5 *1 (-435 *4)) (-5 *3 (-1086 *4)))))
-(-10 -7 (-15 -3959 ((-396 (-1086 |#1|)) (-1086 |#1|))))
-((-4168 (((-51) |#2| (-1090) (-273 |#2|) (-1139 (-713))) 42) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-713))) 41) (((-51) |#2| (-1090) (-273 |#2|)) 35) (((-51) (-1 |#2| (-525)) (-273 |#2|)) 28)) (-3483 (((-51) |#2| (-1090) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525))) 80) (((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525))) 79) (((-51) |#2| (-1090) (-273 |#2|) (-1139 (-525))) 78) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-525))) 77) (((-51) |#2| (-1090) (-273 |#2|)) 72) (((-51) (-1 |#2| (-525)) (-273 |#2|)) 71)) (-4192 (((-51) |#2| (-1090) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525))) 66) (((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525))) 64)) (-4179 (((-51) |#2| (-1090) (-273 |#2|) (-1139 (-525))) 48) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-525))) 47)))
-(((-436 |#1| |#2|) (-10 -7 (-15 -4168 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -4168 ((-51) |#2| (-1090) (-273 |#2|))) (-15 -4168 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-713)))) (-15 -4168 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-713)))) (-15 -4179 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-525)))) (-15 -4179 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-525)))) (-15 -4192 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525)))) (-15 -4192 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525)))) (-15 -3483 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -3483 ((-51) |#2| (-1090) (-273 |#2|))) (-15 -3483 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-525)))) (-15 -3483 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-525)))) (-15 -3483 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525)))) (-15 -3483 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525))))) (-13 (-517) (-789) (-967 (-525)) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|))) (T -436))
-((-3483 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-385 (-525)))) (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1112) (-408 *8))) (-4 *8 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *8 *3)))) (-3483 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8)) (-5 *5 (-1139 (-385 (-525)))) (-5 *6 (-385 (-525))) (-4 *8 (-13 (-27) (-1112) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *8)))) (-3483 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-525))) (-4 *3 (-13 (-27) (-1112) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1139 (-525))) (-4 *7 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-3483 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *3)))) (-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6)) (-4 *6 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *5 *6)))) (-4192 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-385 (-525)))) (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1112) (-408 *8))) (-4 *8 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *8 *3)))) (-4192 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8)) (-5 *5 (-1139 (-385 (-525)))) (-5 *6 (-385 (-525))) (-4 *8 (-13 (-27) (-1112) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *8)))) (-4179 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-525))) (-4 *3 (-13 (-27) (-1112) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-4179 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1139 (-525))) (-4 *7 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-4168 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-713))) (-4 *3 (-13 (-27) (-1112) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-4168 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1139 (-713))) (-4 *7 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-4168 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *3)))) (-4168 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6)) (-4 *6 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *5 *6)))))
-(-10 -7 (-15 -4168 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -4168 ((-51) |#2| (-1090) (-273 |#2|))) (-15 -4168 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-713)))) (-15 -4168 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-713)))) (-15 -4179 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-525)))) (-15 -4179 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-525)))) (-15 -4192 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525)))) (-15 -4192 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525)))) (-15 -3483 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -3483 ((-51) |#2| (-1090) (-273 |#2|))) (-15 -3483 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1139 (-525)))) (-15 -3483 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-525)))) (-15 -3483 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525)))) (-15 -3483 ((-51) |#2| (-1090) (-273 |#2|) (-1139 (-385 (-525))) (-385 (-525)))))
-((-3988 ((|#2| |#2| |#1|) 15)) (-2042 (((-592 |#2|) |#2| (-592 |#2|) |#1| (-855)) 69)) (-3014 (((-2 (|:| |plist| (-592 |#2|)) (|:| |modulo| |#1|)) |#2| (-592 |#2|) |#1| (-855)) 60)))
-(((-437 |#1| |#2|) (-10 -7 (-15 -3014 ((-2 (|:| |plist| (-592 |#2|)) (|:| |modulo| |#1|)) |#2| (-592 |#2|) |#1| (-855))) (-15 -2042 ((-592 |#2|) |#2| (-592 |#2|) |#1| (-855))) (-15 -3988 (|#2| |#2| |#1|))) (-286) (-1148 |#1|)) (T -437))
-((-3988 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1148 *3)))) (-2042 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-592 *3)) (-5 *5 (-855)) (-4 *3 (-1148 *4)) (-4 *4 (-286)) (-5 *1 (-437 *4 *3)))) (-3014 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-855)) (-4 *5 (-286)) (-4 *3 (-1148 *5)) (-5 *2 (-2 (|:| |plist| (-592 *3)) (|:| |modulo| *5))) (-5 *1 (-437 *5 *3)) (-5 *4 (-592 *3)))))
-(-10 -7 (-15 -3014 ((-2 (|:| |plist| (-592 |#2|)) (|:| |modulo| |#1|)) |#2| (-592 |#2|) |#1| (-855))) (-15 -2042 ((-592 |#2|) |#2| (-592 |#2|) |#1| (-855))) (-15 -3988 (|#2| |#2| |#1|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 28)) (-2516 (($ |#3|) 25)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1247 (($ $) 32)) (-1448 (($ |#2| |#4| $) 33)) (-4079 (($ |#2| (-656 |#3| |#4| |#5|)) 24)) (-1212 (((-656 |#3| |#4| |#5|) $) 15)) (-3912 ((|#3| $) 19)) (-3329 ((|#4| $) 17)) (-1224 ((|#2| $) 29)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-1320 (($ |#2| |#3| |#4|) 26)) (-3875 (($) 36 T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) 34)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-438 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-660 |#6|) (-660 |#2|) (-10 -8 (-15 -1224 (|#2| $)) (-15 -1212 ((-656 |#3| |#4| |#5|) $)) (-15 -3329 (|#4| $)) (-15 -3912 (|#3| $)) (-15 -1247 ($ $)) (-15 -4079 ($ |#2| (-656 |#3| |#4| |#5|))) (-15 -2516 ($ |#3|)) (-15 -1320 ($ |#2| |#3| |#4|)) (-15 -1448 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-592 (-1090)) (-160) (-789) (-218 (-4140 |#1|) (-713)) (-1 (-108) (-2 (|:| -4185 |#3|) (|:| -1600 |#4|)) (-2 (|:| -4185 |#3|) (|:| -1600 |#4|))) (-883 |#2| |#4| (-799 |#1|))) (T -438))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160)) (-4 *6 (-218 (-4140 *3) (-713))) (-14 *7 (-1 (-108) (-2 (|:| -4185 *5) (|:| -1600 *6)) (-2 (|:| -4185 *5) (|:| -1600 *6)))) (-5 *1 (-438 *3 *4 *5 *6 *7 *2)) (-4 *5 (-789)) (-4 *2 (-883 *4 *6 (-799 *3))))) (-1224 (*1 *2 *1) (-12 (-14 *3 (-592 (-1090))) (-4 *5 (-218 (-4140 *3) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -4185 *4) (|:| -1600 *5)) (-2 (|:| -4185 *4) (|:| -1600 *5)))) (-4 *2 (-160)) (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *4 (-789)) (-4 *7 (-883 *2 *5 (-799 *3))))) (-1212 (*1 *2 *1) (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160)) (-4 *6 (-218 (-4140 *3) (-713))) (-14 *7 (-1 (-108) (-2 (|:| -4185 *5) (|:| -1600 *6)) (-2 (|:| -4185 *5) (|:| -1600 *6)))) (-5 *2 (-656 *5 *6 *7)) (-5 *1 (-438 *3 *4 *5 *6 *7 *8)) (-4 *5 (-789)) (-4 *8 (-883 *4 *6 (-799 *3))))) (-3329 (*1 *2 *1) (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160)) (-14 *6 (-1 (-108) (-2 (|:| -4185 *5) (|:| -1600 *2)) (-2 (|:| -4185 *5) (|:| -1600 *2)))) (-4 *2 (-218 (-4140 *3) (-713))) (-5 *1 (-438 *3 *4 *5 *2 *6 *7)) (-4 *5 (-789)) (-4 *7 (-883 *4 *2 (-799 *3))))) (-3912 (*1 *2 *1) (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160)) (-4 *5 (-218 (-4140 *3) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -4185 *2) (|:| -1600 *5)) (-2 (|:| -4185 *2) (|:| -1600 *5)))) (-4 *2 (-789)) (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) (-4 *7 (-883 *4 *5 (-799 *3))))) (-1247 (*1 *1 *1) (-12 (-14 *2 (-592 (-1090))) (-4 *3 (-160)) (-4 *5 (-218 (-4140 *2) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -4185 *4) (|:| -1600 *5)) (-2 (|:| -4185 *4) (|:| -1600 *5)))) (-5 *1 (-438 *2 *3 *4 *5 *6 *7)) (-4 *4 (-789)) (-4 *7 (-883 *3 *5 (-799 *2))))) (-4079 (*1 *1 *2 *3) (-12 (-5 *3 (-656 *5 *6 *7)) (-4 *5 (-789)) (-4 *6 (-218 (-4140 *4) (-713))) (-14 *7 (-1 (-108) (-2 (|:| -4185 *5) (|:| -1600 *6)) (-2 (|:| -4185 *5) (|:| -1600 *6)))) (-14 *4 (-592 (-1090))) (-4 *2 (-160)) (-5 *1 (-438 *4 *2 *5 *6 *7 *8)) (-4 *8 (-883 *2 *6 (-799 *4))))) (-2516 (*1 *1 *2) (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160)) (-4 *5 (-218 (-4140 *3) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -4185 *2) (|:| -1600 *5)) (-2 (|:| -4185 *2) (|:| -1600 *5)))) (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) (-4 *2 (-789)) (-4 *7 (-883 *4 *5 (-799 *3))))) (-1320 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-592 (-1090))) (-4 *2 (-160)) (-4 *4 (-218 (-4140 *5) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -4185 *3) (|:| -1600 *4)) (-2 (|:| -4185 *3) (|:| -1600 *4)))) (-5 *1 (-438 *5 *2 *3 *4 *6 *7)) (-4 *3 (-789)) (-4 *7 (-883 *2 *4 (-799 *5))))) (-1448 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-592 (-1090))) (-4 *2 (-160)) (-4 *3 (-218 (-4140 *4) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -4185 *5) (|:| -1600 *3)) (-2 (|:| -4185 *5) (|:| -1600 *3)))) (-5 *1 (-438 *4 *2 *5 *3 *6 *7)) (-4 *5 (-789)) (-4 *7 (-883 *2 *3 (-799 *4))))))
-(-13 (-660 |#6|) (-660 |#2|) (-10 -8 (-15 -1224 (|#2| $)) (-15 -1212 ((-656 |#3| |#4| |#5|) $)) (-15 -3329 (|#4| $)) (-15 -3912 (|#3| $)) (-15 -1247 ($ $)) (-15 -4079 ($ |#2| (-656 |#3| |#4| |#5|))) (-15 -2516 ($ |#3|)) (-15 -1320 ($ |#2| |#3| |#4|)) (-15 -1448 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-3575 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
-(((-439 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3575 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-735) (-789) (-517) (-883 |#3| |#1| |#2|) (-13 (-967 (-385 (-525))) (-341) (-10 -8 (-15 -1908 ($ |#4|)) (-15 -1303 (|#4| $)) (-15 -1312 (|#4| $))))) (T -439))
-((-3575 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-789)) (-4 *5 (-735)) (-4 *6 (-517)) (-4 *7 (-883 *6 *5 *3)) (-5 *1 (-439 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-967 (-385 (-525))) (-341) (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $)) (-15 -1312 (*7 $))))))))
-(-10 -7 (-15 -3575 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-1893 (((-108) $ $) NIL)) (-4104 (((-592 |#3|) $) 41)) (-3696 (((-108) $) NIL)) (-3810 (((-108) $) NIL (|has| |#1| (-517)))) (-3327 (((-2 (|:| |under| $) (|:| -1720 $) (|:| |upper| $)) $ |#3|) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-2724 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-2637 (((-108) $) NIL (|has| |#1| (-517)))) (-2643 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2494 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3405 (((-108) $) NIL (|has| |#1| (-517)))) (-3937 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-3144 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1264 (((-3 $ "failed") (-592 |#4|)) 47)) (-2831 (($ (-592 |#4|)) NIL)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2273 (($ |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-1632 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-4004 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4254)))) (-2026 (((-592 |#4|) $) 18 (|has| $ (-6 -4254)))) (-1257 ((|#3| $) 45)) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 |#4|) $) 14 (|has| $ (-6 -4254)))) (-4132 (((-108) |#4| $) 26 (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2857 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#4| |#4|) $) 21)) (-1835 (((-592 |#3|) $) NIL)) (-1913 (((-108) |#3| $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL)) (-2809 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2663 (((-1037) $) NIL)) (-4054 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3494 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) 39)) (-3773 (($) 17)) (-2686 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) 16)) (-1427 (((-501) $) NIL (|has| |#4| (-567 (-501)))) (($ (-592 |#4|)) 49)) (-1922 (($ (-592 |#4|)) 13)) (-1861 (($ $ |#3|) NIL)) (-3570 (($ $ |#3|) NIL)) (-1263 (($ $ |#3|) NIL)) (-1908 (((-797) $) 38) (((-592 |#4|) $) 48)) (-2667 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 30)) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-440 |#1| |#2| |#3| |#4|) (-13 (-908 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1427 ($ (-592 |#4|))) (-6 -4254) (-6 -4255))) (-976) (-735) (-789) (-990 |#1| |#2| |#3|)) (T -440))
-((-1427 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-440 *3 *4 *5 *6)))))
-(-13 (-908 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1427 ($ (-592 |#4|))) (-6 -4254) (-6 -4255)))
-((-3875 (($) 11)) (-3882 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-441 |#1| |#2| |#3|) (-10 -8 (-15 -3882 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3875 (|#1|))) (-442 |#2| |#3|) (-160) (-23)) (T -441))
-NIL
-(-10 -8 (-15 -3882 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3875 (|#1|)))
-((-1893 (((-108) $ $) 7)) (-1264 (((-3 |#1| "failed") $) 26)) (-2831 ((|#1| $) 25)) (-3893 (($ $ $) 23)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-2513 ((|#2| $) 19)) (-1908 (((-797) $) 11) (($ |#1|) 27)) (-3875 (($) 18 T CONST)) (-3882 (($) 24 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 15) (($ $ $) 13)) (-4059 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-2794 (*1 *1 *1 *1) (-4 *1 (-429))) (-2794 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429)))) (-2756 (*1 *1 *1 *1) (-4 *1 (-429))) (-2756 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429)))) (-1534 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-429)))))
+(-13 (-517) (-10 -8 (-15 -2794 ($ $ $)) (-15 -2794 ($ (-592 $))) (-15 -2756 ($ $ $)) (-15 -2756 ($ (-592 $))) (-15 -1534 ((-1087 $) (-1087 $) (-1087 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1790 (((-3 $ "failed")) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3019 (((-1173 (-632 (-385 (-887 |#1|)))) (-1173 $)) NIL) (((-1173 (-632 (-385 (-887 |#1|))))) NIL)) (-2138 (((-1173 $)) NIL)) (-2305 (($) NIL T CONST)) (-1316 (((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed")) NIL)) (-2144 (((-3 $ "failed")) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-2306 (((-632 (-385 (-887 |#1|))) (-1173 $)) NIL) (((-632 (-385 (-887 |#1|)))) NIL)) (-2892 (((-385 (-887 |#1|)) $) NIL)) (-3591 (((-632 (-385 (-887 |#1|))) $ (-1173 $)) NIL) (((-632 (-385 (-887 |#1|))) $) NIL)) (-2962 (((-3 $ "failed") $) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-4043 (((-1087 (-887 (-385 (-887 |#1|))))) NIL (|has| (-385 (-887 |#1|)) (-341))) (((-1087 (-385 (-887 |#1|)))) 84 (|has| |#1| (-517)))) (-3627 (($ $ (-856)) NIL)) (-3108 (((-385 (-887 |#1|)) $) NIL)) (-2904 (((-1087 (-385 (-887 |#1|))) $) 82 (|has| (-385 (-887 |#1|)) (-517)))) (-1638 (((-385 (-887 |#1|)) (-1173 $)) NIL) (((-385 (-887 |#1|))) NIL)) (-4159 (((-1087 (-385 (-887 |#1|))) $) NIL)) (-1740 (((-108)) NIL)) (-3612 (($ (-1173 (-385 (-887 |#1|))) (-1173 $)) 103) (($ (-1173 (-385 (-887 |#1|)))) NIL)) (-3762 (((-3 $ "failed") $) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-3318 (((-856)) NIL)) (-3165 (((-108)) NIL)) (-2161 (($ $ (-856)) NIL)) (-1275 (((-108)) NIL)) (-1242 (((-108)) NIL)) (-2394 (((-108)) NIL)) (-4167 (((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed")) NIL)) (-3322 (((-3 $ "failed")) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-1518 (((-632 (-385 (-887 |#1|))) (-1173 $)) NIL) (((-632 (-385 (-887 |#1|)))) NIL)) (-2917 (((-385 (-887 |#1|)) $) NIL)) (-2561 (((-632 (-385 (-887 |#1|))) $ (-1173 $)) NIL) (((-632 (-385 (-887 |#1|))) $) NIL)) (-2665 (((-3 $ "failed") $) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-3935 (((-1087 (-887 (-385 (-887 |#1|))))) NIL (|has| (-385 (-887 |#1|)) (-341))) (((-1087 (-385 (-887 |#1|)))) 83 (|has| |#1| (-517)))) (-1404 (($ $ (-856)) NIL)) (-3908 (((-385 (-887 |#1|)) $) NIL)) (-4073 (((-1087 (-385 (-887 |#1|))) $) 77 (|has| (-385 (-887 |#1|)) (-517)))) (-2021 (((-385 (-887 |#1|)) (-1173 $)) NIL) (((-385 (-887 |#1|))) NIL)) (-1774 (((-1087 (-385 (-887 |#1|))) $) NIL)) (-3171 (((-108)) NIL)) (-3451 (((-1074) $) NIL)) (-2556 (((-108)) NIL)) (-3639 (((-108)) NIL)) (-4211 (((-108)) NIL)) (-2012 (((-1038) $) NIL)) (-3248 (((-385 (-887 |#1|)) $ $) 71 (|has| |#1| (-517)))) (-2737 (((-385 (-887 |#1|)) $) 93 (|has| |#1| (-517)))) (-2299 (((-385 (-887 |#1|)) $) 95 (|has| |#1| (-517)))) (-3837 (((-1087 (-385 (-887 |#1|))) $) 88 (|has| |#1| (-517)))) (-1313 (((-385 (-887 |#1|))) 72 (|has| |#1| (-517)))) (-2495 (((-385 (-887 |#1|)) $ $) 64 (|has| |#1| (-517)))) (-2893 (((-385 (-887 |#1|)) $) 92 (|has| |#1| (-517)))) (-3648 (((-385 (-887 |#1|)) $) 94 (|has| |#1| (-517)))) (-1591 (((-1087 (-385 (-887 |#1|))) $) 87 (|has| |#1| (-517)))) (-1527 (((-385 (-887 |#1|))) 68 (|has| |#1| (-517)))) (-3592 (($) 101) (($ (-1091)) 107) (($ (-1173 (-1091))) 106) (($ (-1173 $)) 96) (($ (-1091) (-1173 $)) 105) (($ (-1173 (-1091)) (-1173 $)) 104)) (-1851 (((-108)) NIL)) (-3410 (((-385 (-887 |#1|)) $ (-525)) NIL)) (-3464 (((-1173 (-385 (-887 |#1|))) $ (-1173 $)) 98) (((-632 (-385 (-887 |#1|))) (-1173 $) (-1173 $)) NIL) (((-1173 (-385 (-887 |#1|))) $) 40) (((-632 (-385 (-887 |#1|))) (-1173 $)) NIL)) (-2749 (((-1173 (-385 (-887 |#1|))) $) NIL) (($ (-1173 (-385 (-887 |#1|)))) 37)) (-4059 (((-592 (-887 (-385 (-887 |#1|)))) (-1173 $)) NIL) (((-592 (-887 (-385 (-887 |#1|))))) NIL) (((-592 (-887 |#1|)) (-1173 $)) 99 (|has| |#1| (-517))) (((-592 (-887 |#1|))) 100 (|has| |#1| (-517)))) (-2222 (($ $ $) NIL)) (-2883 (((-108)) NIL)) (-1270 (((-798) $) NIL) (($ (-1173 (-385 (-887 |#1|)))) NIL)) (-1449 (((-1173 $)) 60)) (-1500 (((-592 (-1173 (-385 (-887 |#1|))))) NIL (|has| (-385 (-887 |#1|)) (-517)))) (-3941 (($ $ $ $) NIL)) (-1440 (((-108)) NIL)) (-4169 (($ (-632 (-385 (-887 |#1|))) $) NIL)) (-3395 (($ $ $) NIL)) (-3665 (((-108)) NIL)) (-3529 (((-108)) NIL)) (-3180 (((-108)) NIL)) (-3355 (($) NIL T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) 97)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 56) (($ $ (-385 (-887 |#1|))) NIL) (($ (-385 (-887 |#1|)) $) NIL) (($ (-1058 |#2| (-385 (-887 |#1|))) $) NIL)))
+(((-430 |#1| |#2| |#3| |#4|) (-13 (-395 (-385 (-887 |#1|))) (-594 (-1058 |#2| (-385 (-887 |#1|)))) (-10 -8 (-15 -1270 ($ (-1173 (-385 (-887 |#1|))))) (-15 -4167 ((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed"))) (-15 -1316 ((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed"))) (-15 -3592 ($)) (-15 -3592 ($ (-1091))) (-15 -3592 ($ (-1173 (-1091)))) (-15 -3592 ($ (-1173 $))) (-15 -3592 ($ (-1091) (-1173 $))) (-15 -3592 ($ (-1173 (-1091)) (-1173 $))) (IF (|has| |#1| (-517)) (PROGN (-15 -3935 ((-1087 (-385 (-887 |#1|))))) (-15 -1591 ((-1087 (-385 (-887 |#1|))) $)) (-15 -2893 ((-385 (-887 |#1|)) $)) (-15 -3648 ((-385 (-887 |#1|)) $)) (-15 -4043 ((-1087 (-385 (-887 |#1|))))) (-15 -3837 ((-1087 (-385 (-887 |#1|))) $)) (-15 -2737 ((-385 (-887 |#1|)) $)) (-15 -2299 ((-385 (-887 |#1|)) $)) (-15 -2495 ((-385 (-887 |#1|)) $ $)) (-15 -1527 ((-385 (-887 |#1|)))) (-15 -3248 ((-385 (-887 |#1|)) $ $)) (-15 -1313 ((-385 (-887 |#1|)))) (-15 -4059 ((-592 (-887 |#1|)) (-1173 $))) (-15 -4059 ((-592 (-887 |#1|))))) |%noBranch|))) (-160) (-856) (-592 (-1091)) (-1173 (-632 |#1|))) (T -430))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1173 (-385 (-887 *3)))) (-4 *3 (-160)) (-14 *6 (-1173 (-632 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))))) (-4167 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-430 *3 *4 *5 *6)) (|:| -1449 (-592 (-430 *3 *4 *5 *6))))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))) (-1316 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-430 *3 *4 *5 *6)) (|:| -1449 (-592 (-430 *3 *4 *5 *6))))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))) (-3592 (*1 *1) (-12 (-5 *1 (-430 *2 *3 *4 *5)) (-4 *2 (-160)) (-14 *3 (-856)) (-14 *4 (-592 (-1091))) (-14 *5 (-1173 (-632 *2))))) (-3592 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))) (-3592 (*1 *1 *2) (-12 (-5 *2 (-1173 (-1091))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))) (-3592 (*1 *1 *2) (-12 (-5 *2 (-1173 (-430 *3 *4 *5 *6))) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))) (-5 *1 (-430 *3 *4 *5 *6)))) (-3592 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-430 *4 *5 *6 *7))) (-4 *4 (-160)) (-14 *5 (-856)) (-14 *6 (-592 (-1091))) (-14 *7 (-1173 (-632 *4))) (-5 *1 (-430 *4 *5 *6 *7)))) (-3592 (*1 *1 *2 *3) (-12 (-5 *2 (-1173 (-1091))) (-5 *3 (-1173 (-430 *4 *5 *6 *7))) (-4 *4 (-160)) (-14 *5 (-856)) (-14 *6 (-592 (-1091))) (-14 *7 (-1173 (-632 *4))) (-5 *1 (-430 *4 *5 *6 *7)))) (-3935 (*1 *2) (-12 (-5 *2 (-1087 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-1087 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))) (-2893 (*1 *2 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))) (-3648 (*1 *2 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))) (-4043 (*1 *2) (-12 (-5 *2 (-1087 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))) (-3837 (*1 *2 *1) (-12 (-5 *2 (-1087 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))) (-2737 (*1 *2 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))) (-2299 (*1 *2 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))) (-2495 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))) (-1527 (*1 *2) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))) (-3248 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))) (-1313 (*1 *2) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-1173 (-430 *4 *5 *6 *7))) (-4 *4 (-517)) (-4 *4 (-160)) (-14 *5 (-856)) (-14 *6 (-592 (-1091))) (-14 *7 (-1173 (-632 *4))) (-5 *2 (-592 (-887 *4))) (-5 *1 (-430 *4 *5 *6 *7)))) (-4059 (*1 *2) (-12 (-5 *2 (-592 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))))
+(-13 (-395 (-385 (-887 |#1|))) (-594 (-1058 |#2| (-385 (-887 |#1|)))) (-10 -8 (-15 -1270 ($ (-1173 (-385 (-887 |#1|))))) (-15 -4167 ((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed"))) (-15 -1316 ((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed"))) (-15 -3592 ($)) (-15 -3592 ($ (-1091))) (-15 -3592 ($ (-1173 (-1091)))) (-15 -3592 ($ (-1173 $))) (-15 -3592 ($ (-1091) (-1173 $))) (-15 -3592 ($ (-1173 (-1091)) (-1173 $))) (IF (|has| |#1| (-517)) (PROGN (-15 -3935 ((-1087 (-385 (-887 |#1|))))) (-15 -1591 ((-1087 (-385 (-887 |#1|))) $)) (-15 -2893 ((-385 (-887 |#1|)) $)) (-15 -3648 ((-385 (-887 |#1|)) $)) (-15 -4043 ((-1087 (-385 (-887 |#1|))))) (-15 -3837 ((-1087 (-385 (-887 |#1|))) $)) (-15 -2737 ((-385 (-887 |#1|)) $)) (-15 -2299 ((-385 (-887 |#1|)) $)) (-15 -2495 ((-385 (-887 |#1|)) $ $)) (-15 -1527 ((-385 (-887 |#1|)))) (-15 -3248 ((-385 (-887 |#1|)) $ $)) (-15 -1313 ((-385 (-887 |#1|)))) (-15 -4059 ((-592 (-887 |#1|)) (-1173 $))) (-15 -4059 ((-592 (-887 |#1|))))) |%noBranch|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 13)) (-2383 (((-592 (-800 |#1|)) $) 75)) (-2146 (((-1087 $) $ (-800 |#1|)) 46) (((-1087 |#2|) $) 118)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-3711 (($ $) NIL (|has| |#2| (-517)))) (-3380 (((-108) $) NIL (|has| |#2| (-517)))) (-3848 (((-713) $) 21) (((-713) $ (-592 (-800 |#1|))) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-3706 (($ $) NIL (|has| |#2| (-429)))) (-2100 (((-396 $) $) NIL (|has| |#2| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#2| "failed") $) 44) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-800 |#1|) "failed") $) NIL)) (-3898 ((|#2| $) 42) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-800 |#1|) $) NIL)) (-1516 (($ $ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-2866 (($ $ (-592 (-525))) 80)) (-2571 (($ $) 68)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3026 (($ $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-2558 (((-592 $) $) NIL)) (-3836 (((-108) $) NIL (|has| |#2| (-844)))) (-2192 (($ $ |#2| |#3| $) NIL)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) 58)) (-2368 (($ (-1087 |#2|) (-800 |#1|)) 123) (($ (-1087 $) (-800 |#1|)) 52)) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) 59)) (-2352 (($ |#2| |#3|) 28) (($ $ (-800 |#1|) (-713)) 30) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ (-800 |#1|)) NIL)) (-3724 ((|#3| $) NIL) (((-713) $ (-800 |#1|)) 50) (((-592 (-713)) $ (-592 (-800 |#1|))) 57)) (-2371 (($ $ $) NIL (|has| |#2| (-789)))) (-2535 (($ $ $) NIL (|has| |#2| (-789)))) (-3922 (($ (-1 |#3| |#3|) $) NIL)) (-2694 (($ (-1 |#2| |#2|) $) NIL)) (-3567 (((-3 (-800 |#1|) "failed") $) 39)) (-2538 (($ $) NIL)) (-2548 ((|#2| $) 41)) (-2756 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3451 (((-1074) $) NIL)) (-4228 (((-3 (-592 $) "failed") $) NIL)) (-3852 (((-3 (-592 $) "failed") $) NIL)) (-1553 (((-3 (-2 (|:| |var| (-800 |#1|)) (|:| -1864 (-713))) "failed") $) NIL)) (-2012 (((-1038) $) NIL)) (-2513 (((-108) $) 40)) (-2525 ((|#2| $) 116)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-429)))) (-2794 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) 128 (|has| |#2| (-429)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-2195 (((-396 $) $) NIL (|has| |#2| (-844)))) (-1680 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2602 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-800 |#1|) |#2|) 87) (($ $ (-592 (-800 |#1|)) (-592 |#2|)) 90) (($ $ (-800 |#1|) $) 85) (($ $ (-592 (-800 |#1|)) (-592 $)) 106)) (-2094 (($ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-2523 (($ $ (-800 |#1|)) 53) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-1587 ((|#3| $) 67) (((-713) $ (-800 |#1|)) 37) (((-592 (-713)) $ (-592 (-800 |#1|))) 56)) (-2749 (((-827 (-357)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-800 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2026 ((|#2| $) 125 (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-1270 (((-798) $) 145) (($ (-525)) NIL) (($ |#2|) 86) (($ (-800 |#1|)) 31) (($ (-385 (-525))) NIL (-3279 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-1562 (((-592 |#2|) $) NIL)) (-3468 ((|#2| $ |#3|) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-2104 (((-713)) NIL)) (-3658 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-3959 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 17 T CONST)) (-3363 (($) 25 T CONST)) (-2093 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-4045 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4100 (($ $ |#2|) 64 (|has| |#2| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) 111)) (** (($ $ (-856)) NIL) (($ $ (-713)) 109)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 29) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-431 |#1| |#2| |#3|) (-13 (-884 |#2| |#3| (-800 |#1|)) (-10 -8 (-15 -2866 ($ $ (-592 (-525)))))) (-592 (-1091)) (-977) (-218 (-3596 |#1|) (-713))) (T -431))
+((-2866 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-14 *3 (-592 (-1091))) (-5 *1 (-431 *3 *4 *5)) (-4 *4 (-977)) (-4 *5 (-218 (-3596 *3) (-713))))))
+(-13 (-884 |#2| |#3| (-800 |#1|)) (-10 -8 (-15 -2866 ($ $ (-592 (-525))))))
+((-3598 (((-108) |#1| (-592 |#2|)) 69)) (-2322 (((-3 (-1173 (-592 |#2|)) "failed") (-713) |#1| (-592 |#2|)) 78)) (-2269 (((-3 (-592 |#2|) "failed") |#2| |#1| (-1173 (-592 |#2|))) 80)) (-3879 ((|#2| |#2| |#1|) 28)) (-3672 (((-713) |#2| (-592 |#2|)) 20)))
+(((-432 |#1| |#2|) (-10 -7 (-15 -3879 (|#2| |#2| |#1|)) (-15 -3672 ((-713) |#2| (-592 |#2|))) (-15 -2322 ((-3 (-1173 (-592 |#2|)) "failed") (-713) |#1| (-592 |#2|))) (-15 -2269 ((-3 (-592 |#2|) "failed") |#2| |#1| (-1173 (-592 |#2|)))) (-15 -3598 ((-108) |#1| (-592 |#2|)))) (-286) (-1149 |#1|)) (T -432))
+((-3598 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *5)) (-4 *5 (-1149 *3)) (-4 *3 (-286)) (-5 *2 (-108)) (-5 *1 (-432 *3 *5)))) (-2269 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1173 (-592 *3))) (-4 *3 (-1149 *4)) (-4 *4 (-286)) (-5 *2 (-592 *3)) (-5 *1 (-432 *4 *3)))) (-2322 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-713)) (-4 *4 (-286)) (-4 *6 (-1149 *4)) (-5 *2 (-1173 (-592 *6))) (-5 *1 (-432 *4 *6)) (-5 *5 (-592 *6)))) (-3672 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-1149 *5)) (-4 *5 (-286)) (-5 *2 (-713)) (-5 *1 (-432 *5 *3)))) (-3879 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-5 *1 (-432 *3 *2)) (-4 *2 (-1149 *3)))))
+(-10 -7 (-15 -3879 (|#2| |#2| |#1|)) (-15 -3672 ((-713) |#2| (-592 |#2|))) (-15 -2322 ((-3 (-1173 (-592 |#2|)) "failed") (-713) |#1| (-592 |#2|))) (-15 -2269 ((-3 (-592 |#2|) "failed") |#2| |#1| (-1173 (-592 |#2|)))) (-15 -3598 ((-108) |#1| (-592 |#2|))))
+((-2195 (((-396 |#5|) |#5|) 24)))
+(((-433 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2195 ((-396 |#5|) |#5|))) (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $)) (-15 -2577 ((-3 $ "failed") (-1091))))) (-735) (-517) (-517) (-884 |#4| |#2| |#1|)) (T -433))
+((-2195 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $)) (-15 -2577 ((-3 $ "failed") (-1091)))))) (-4 *5 (-735)) (-4 *7 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-433 *4 *5 *6 *7 *3)) (-4 *6 (-517)) (-4 *3 (-884 *7 *5 *4)))))
+(-10 -7 (-15 -2195 ((-396 |#5|) |#5|)))
+((-2272 ((|#3|) 37)) (-1534 (((-1087 |#4|) (-1087 |#4|) (-1087 |#4|)) 33)))
+(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1534 ((-1087 |#4|) (-1087 |#4|) (-1087 |#4|))) (-15 -2272 (|#3|))) (-735) (-789) (-844) (-884 |#3| |#1| |#2|)) (T -434))
+((-2272 (*1 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-844)) (-5 *1 (-434 *3 *4 *2 *5)) (-4 *5 (-884 *2 *3 *4)))) (-1534 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-844)) (-5 *1 (-434 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1534 ((-1087 |#4|) (-1087 |#4|) (-1087 |#4|))) (-15 -2272 (|#3|)))
+((-2195 (((-396 (-1087 |#1|)) (-1087 |#1|)) 43)))
+(((-435 |#1|) (-10 -7 (-15 -2195 ((-396 (-1087 |#1|)) (-1087 |#1|)))) (-286)) (T -435))
+((-2195 (*1 *2 *3) (-12 (-4 *4 (-286)) (-5 *2 (-396 (-1087 *4))) (-5 *1 (-435 *4)) (-5 *3 (-1087 *4)))))
+(-10 -7 (-15 -2195 ((-396 (-1087 |#1|)) (-1087 |#1|))))
+((-2451 (((-51) |#2| (-1091) (-273 |#2|) (-1140 (-713))) 42) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1140 (-713))) 41) (((-51) |#2| (-1091) (-273 |#2|)) 35) (((-51) (-1 |#2| (-525)) (-273 |#2|)) 28)) (-2307 (((-51) |#2| (-1091) (-273 |#2|) (-1140 (-385 (-525))) (-385 (-525))) 80) (((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1140 (-385 (-525))) (-385 (-525))) 79) (((-51) |#2| (-1091) (-273 |#2|) (-1140 (-525))) 78) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1140 (-525))) 77) (((-51) |#2| (-1091) (-273 |#2|)) 72) (((-51) (-1 |#2| (-525)) (-273 |#2|)) 71)) (-2477 (((-51) |#2| (-1091) (-273 |#2|) (-1140 (-385 (-525))) (-385 (-525))) 66) (((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1140 (-385 (-525))) (-385 (-525))) 64)) (-2465 (((-51) |#2| (-1091) (-273 |#2|) (-1140 (-525))) 48) (((-51) (-1 |#2| (-525)) (-273 |#2|) (-1140 (-525))) 47)))
+(((-436 |#1| |#2|) (-10 -7 (-15 -2451 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -2451 ((-51) |#2| (-1091) (-273 |#2|))) (-15 -2451 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1140 (-713)))) (-15 -2451 ((-51) |#2| (-1091) (-273 |#2|) (-1140 (-713)))) (-15 -2465 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1140 (-525)))) (-15 -2465 ((-51) |#2| (-1091) (-273 |#2|) (-1140 (-525)))) (-15 -2477 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1140 (-385 (-525))) (-385 (-525)))) (-15 -2477 ((-51) |#2| (-1091) (-273 |#2|) (-1140 (-385 (-525))) (-385 (-525)))) (-15 -2307 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -2307 ((-51) |#2| (-1091) (-273 |#2|))) (-15 -2307 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1140 (-525)))) (-15 -2307 ((-51) |#2| (-1091) (-273 |#2|) (-1140 (-525)))) (-15 -2307 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1140 (-385 (-525))) (-385 (-525)))) (-15 -2307 ((-51) |#2| (-1091) (-273 |#2|) (-1140 (-385 (-525))) (-385 (-525))))) (-13 (-517) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1113) (-408 |#1|))) (T -436))
+((-2307 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1091)) (-5 *5 (-273 *3)) (-5 *6 (-1140 (-385 (-525)))) (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1113) (-408 *8))) (-4 *8 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *8 *3)))) (-2307 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8)) (-5 *5 (-1140 (-385 (-525)))) (-5 *6 (-385 (-525))) (-4 *8 (-13 (-27) (-1113) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *8)))) (-2307 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1091)) (-5 *5 (-273 *3)) (-5 *6 (-1140 (-525))) (-4 *3 (-13 (-27) (-1113) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-2307 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1140 (-525))) (-4 *7 (-13 (-27) (-1113) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-2307 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-273 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *3)))) (-2307 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6)) (-4 *6 (-13 (-27) (-1113) (-408 *5))) (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *5 *6)))) (-2477 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1091)) (-5 *5 (-273 *3)) (-5 *6 (-1140 (-385 (-525)))) (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1113) (-408 *8))) (-4 *8 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *8 *3)))) (-2477 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8)) (-5 *5 (-1140 (-385 (-525)))) (-5 *6 (-385 (-525))) (-4 *8 (-13 (-27) (-1113) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *8)))) (-2465 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1091)) (-5 *5 (-273 *3)) (-5 *6 (-1140 (-525))) (-4 *3 (-13 (-27) (-1113) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-2465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1140 (-525))) (-4 *7 (-13 (-27) (-1113) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-2451 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1091)) (-5 *5 (-273 *3)) (-5 *6 (-1140 (-713))) (-4 *3 (-13 (-27) (-1113) (-408 *7))) (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *7 *3)))) (-2451 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1140 (-713))) (-4 *7 (-13 (-27) (-1113) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *7)))) (-2451 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-273 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *6 *3)))) (-2451 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6)) (-4 *6 (-13 (-27) (-1113) (-408 *5))) (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-51)) (-5 *1 (-436 *5 *6)))))
+(-10 -7 (-15 -2451 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -2451 ((-51) |#2| (-1091) (-273 |#2|))) (-15 -2451 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1140 (-713)))) (-15 -2451 ((-51) |#2| (-1091) (-273 |#2|) (-1140 (-713)))) (-15 -2465 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1140 (-525)))) (-15 -2465 ((-51) |#2| (-1091) (-273 |#2|) (-1140 (-525)))) (-15 -2477 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1140 (-385 (-525))) (-385 (-525)))) (-15 -2477 ((-51) |#2| (-1091) (-273 |#2|) (-1140 (-385 (-525))) (-385 (-525)))) (-15 -2307 ((-51) (-1 |#2| (-525)) (-273 |#2|))) (-15 -2307 ((-51) |#2| (-1091) (-273 |#2|))) (-15 -2307 ((-51) (-1 |#2| (-525)) (-273 |#2|) (-1140 (-525)))) (-15 -2307 ((-51) |#2| (-1091) (-273 |#2|) (-1140 (-525)))) (-15 -2307 ((-51) (-1 |#2| (-385 (-525))) (-273 |#2|) (-1140 (-385 (-525))) (-385 (-525)))) (-15 -2307 ((-51) |#2| (-1091) (-273 |#2|) (-1140 (-385 (-525))) (-385 (-525)))))
+((-3879 ((|#2| |#2| |#1|) 15)) (-2219 (((-592 |#2|) |#2| (-592 |#2|) |#1| (-856)) 69)) (-2929 (((-2 (|:| |plist| (-592 |#2|)) (|:| |modulo| |#1|)) |#2| (-592 |#2|) |#1| (-856)) 60)))
+(((-437 |#1| |#2|) (-10 -7 (-15 -2929 ((-2 (|:| |plist| (-592 |#2|)) (|:| |modulo| |#1|)) |#2| (-592 |#2|) |#1| (-856))) (-15 -2219 ((-592 |#2|) |#2| (-592 |#2|) |#1| (-856))) (-15 -3879 (|#2| |#2| |#1|))) (-286) (-1149 |#1|)) (T -437))
+((-3879 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1149 *3)))) (-2219 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-592 *3)) (-5 *5 (-856)) (-4 *3 (-1149 *4)) (-4 *4 (-286)) (-5 *1 (-437 *4 *3)))) (-2929 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-856)) (-4 *5 (-286)) (-4 *3 (-1149 *5)) (-5 *2 (-2 (|:| |plist| (-592 *3)) (|:| |modulo| *5))) (-5 *1 (-437 *5 *3)) (-5 *4 (-592 *3)))))
+(-10 -7 (-15 -2929 ((-2 (|:| |plist| (-592 |#2|)) (|:| |modulo| |#1|)) |#2| (-592 |#2|) |#1| (-856))) (-15 -2219 ((-592 |#2|) |#2| (-592 |#2|) |#1| (-856))) (-15 -3879 (|#2| |#2| |#1|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 28)) (-1606 (($ |#3|) 25)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2571 (($ $) 32)) (-2117 (($ |#2| |#4| $) 33)) (-2352 (($ |#2| (-656 |#3| |#4| |#5|)) 24)) (-2538 (((-656 |#3| |#4| |#5|) $) 15)) (-1443 ((|#3| $) 19)) (-3782 ((|#4| $) 17)) (-2548 ((|#2| $) 29)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3795 (($ |#2| |#3| |#4|) 26)) (-3355 (($) 36 T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) 34)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-438 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-660 |#6|) (-660 |#2|) (-10 -8 (-15 -2548 (|#2| $)) (-15 -2538 ((-656 |#3| |#4| |#5|) $)) (-15 -3782 (|#4| $)) (-15 -1443 (|#3| $)) (-15 -2571 ($ $)) (-15 -2352 ($ |#2| (-656 |#3| |#4| |#5|))) (-15 -1606 ($ |#3|)) (-15 -3795 ($ |#2| |#3| |#4|)) (-15 -2117 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-592 (-1091)) (-160) (-789) (-218 (-3596 |#1|) (-713)) (-1 (-108) (-2 (|:| -3640 |#3|) (|:| -1864 |#4|)) (-2 (|:| -3640 |#3|) (|:| -1864 |#4|))) (-884 |#2| |#4| (-800 |#1|))) (T -438))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-592 (-1091))) (-4 *4 (-160)) (-4 *6 (-218 (-3596 *3) (-713))) (-14 *7 (-1 (-108) (-2 (|:| -3640 *5) (|:| -1864 *6)) (-2 (|:| -3640 *5) (|:| -1864 *6)))) (-5 *1 (-438 *3 *4 *5 *6 *7 *2)) (-4 *5 (-789)) (-4 *2 (-884 *4 *6 (-800 *3))))) (-2548 (*1 *2 *1) (-12 (-14 *3 (-592 (-1091))) (-4 *5 (-218 (-3596 *3) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3640 *4) (|:| -1864 *5)) (-2 (|:| -3640 *4) (|:| -1864 *5)))) (-4 *2 (-160)) (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *4 (-789)) (-4 *7 (-884 *2 *5 (-800 *3))))) (-2538 (*1 *2 *1) (-12 (-14 *3 (-592 (-1091))) (-4 *4 (-160)) (-4 *6 (-218 (-3596 *3) (-713))) (-14 *7 (-1 (-108) (-2 (|:| -3640 *5) (|:| -1864 *6)) (-2 (|:| -3640 *5) (|:| -1864 *6)))) (-5 *2 (-656 *5 *6 *7)) (-5 *1 (-438 *3 *4 *5 *6 *7 *8)) (-4 *5 (-789)) (-4 *8 (-884 *4 *6 (-800 *3))))) (-3782 (*1 *2 *1) (-12 (-14 *3 (-592 (-1091))) (-4 *4 (-160)) (-14 *6 (-1 (-108) (-2 (|:| -3640 *5) (|:| -1864 *2)) (-2 (|:| -3640 *5) (|:| -1864 *2)))) (-4 *2 (-218 (-3596 *3) (-713))) (-5 *1 (-438 *3 *4 *5 *2 *6 *7)) (-4 *5 (-789)) (-4 *7 (-884 *4 *2 (-800 *3))))) (-1443 (*1 *2 *1) (-12 (-14 *3 (-592 (-1091))) (-4 *4 (-160)) (-4 *5 (-218 (-3596 *3) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3640 *2) (|:| -1864 *5)) (-2 (|:| -3640 *2) (|:| -1864 *5)))) (-4 *2 (-789)) (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) (-4 *7 (-884 *4 *5 (-800 *3))))) (-2571 (*1 *1 *1) (-12 (-14 *2 (-592 (-1091))) (-4 *3 (-160)) (-4 *5 (-218 (-3596 *2) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3640 *4) (|:| -1864 *5)) (-2 (|:| -3640 *4) (|:| -1864 *5)))) (-5 *1 (-438 *2 *3 *4 *5 *6 *7)) (-4 *4 (-789)) (-4 *7 (-884 *3 *5 (-800 *2))))) (-2352 (*1 *1 *2 *3) (-12 (-5 *3 (-656 *5 *6 *7)) (-4 *5 (-789)) (-4 *6 (-218 (-3596 *4) (-713))) (-14 *7 (-1 (-108) (-2 (|:| -3640 *5) (|:| -1864 *6)) (-2 (|:| -3640 *5) (|:| -1864 *6)))) (-14 *4 (-592 (-1091))) (-4 *2 (-160)) (-5 *1 (-438 *4 *2 *5 *6 *7 *8)) (-4 *8 (-884 *2 *6 (-800 *4))))) (-1606 (*1 *1 *2) (-12 (-14 *3 (-592 (-1091))) (-4 *4 (-160)) (-4 *5 (-218 (-3596 *3) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3640 *2) (|:| -1864 *5)) (-2 (|:| -3640 *2) (|:| -1864 *5)))) (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) (-4 *2 (-789)) (-4 *7 (-884 *4 *5 (-800 *3))))) (-3795 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-592 (-1091))) (-4 *2 (-160)) (-4 *4 (-218 (-3596 *5) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3640 *3) (|:| -1864 *4)) (-2 (|:| -3640 *3) (|:| -1864 *4)))) (-5 *1 (-438 *5 *2 *3 *4 *6 *7)) (-4 *3 (-789)) (-4 *7 (-884 *2 *4 (-800 *5))))) (-2117 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-592 (-1091))) (-4 *2 (-160)) (-4 *3 (-218 (-3596 *4) (-713))) (-14 *6 (-1 (-108) (-2 (|:| -3640 *5) (|:| -1864 *3)) (-2 (|:| -3640 *5) (|:| -1864 *3)))) (-5 *1 (-438 *4 *2 *5 *3 *6 *7)) (-4 *5 (-789)) (-4 *7 (-884 *2 *3 (-800 *4))))))
+(-13 (-660 |#6|) (-660 |#2|) (-10 -8 (-15 -2548 (|#2| $)) (-15 -2538 ((-656 |#3| |#4| |#5|) $)) (-15 -3782 (|#4| $)) (-15 -1443 (|#3| $)) (-15 -2571 ($ $)) (-15 -2352 ($ |#2| (-656 |#3| |#4| |#5|))) (-15 -1606 ($ |#3|)) (-15 -3795 ($ |#2| |#3| |#4|)) (-15 -2117 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-1296 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
+(((-439 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1296 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-735) (-789) (-517) (-884 |#3| |#1| |#2|) (-13 (-968 (-385 (-525))) (-341) (-10 -8 (-15 -1270 ($ |#4|)) (-15 -1498 (|#4| $)) (-15 -1512 (|#4| $))))) (T -439))
+((-1296 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-789)) (-4 *5 (-735)) (-4 *6 (-517)) (-4 *7 (-884 *6 *5 *3)) (-5 *1 (-439 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-968 (-385 (-525))) (-341) (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $)) (-15 -1512 (*7 $))))))))
+(-10 -7 (-15 -1296 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-1260 (((-108) $ $) NIL)) (-2383 (((-592 |#3|) $) 41)) (-3163 (((-108) $) NIL)) (-3018 (((-108) $) NIL (|has| |#1| (-517)))) (-2855 (((-2 (|:| |under| $) (|:| -2793 $) (|:| |upper| $)) $ |#3|) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-3826 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-3393 (((-108) $) NIL (|has| |#1| (-517)))) (-3438 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1396 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3291 (((-108) $) NIL (|has| |#1| (-517)))) (-1653 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1551 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-2591 (((-3 $ "failed") (-592 |#4|)) 47)) (-3898 (($ (-592 |#4|)) NIL)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020))))) (-1614 (($ |#4| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-3496 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-3503 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4255))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4255)))) (-3702 (((-592 |#4|) $) 18 (|has| $ (-6 -4255)))) (-1776 ((|#3| $) 45)) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 |#4|) $) 14 (|has| $ (-6 -4255)))) (-2783 (((-108) |#4| $) 26 (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020))))) (-2622 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#4| |#4|) $) 21)) (-2723 (((-592 |#3|) $) NIL)) (-2069 (((-108) |#3| $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL)) (-1410 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2012 (((-1038) $) NIL)) (-3207 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3006 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) 39)) (-2718 (($) 17)) (-2040 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) 16)) (-2749 (((-501) $) NIL (|has| |#4| (-567 (-501)))) (($ (-592 |#4|)) 49)) (-1279 (($ (-592 |#4|)) 13)) (-3422 (($ $ |#3|) NIL)) (-1248 (($ $ |#3|) NIL)) (-1847 (($ $ |#3|) NIL)) (-1270 (((-798) $) 38) (((-592 |#4|) $) 48)) (-3633 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 30)) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-440 |#1| |#2| |#3| |#4|) (-13 (-909 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2749 ($ (-592 |#4|))) (-6 -4255) (-6 -4256))) (-977) (-735) (-789) (-991 |#1| |#2| |#3|)) (T -440))
+((-2749 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-440 *3 *4 *5 *6)))))
+(-13 (-909 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2749 ($ (-592 |#4|))) (-6 -4255) (-6 -4256)))
+((-3355 (($) 11)) (-3363 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-441 |#1| |#2| |#3|) (-10 -8 (-15 -3363 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3355 (|#1|))) (-442 |#2| |#3|) (-160) (-23)) (T -441))
+NIL
+(-10 -8 (-15 -3363 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3355 (|#1|)))
+((-1260 (((-108) $ $) 7)) (-2591 (((-3 |#1| "failed") $) 26)) (-3898 ((|#1| $) 25)) (-1283 (($ $ $) 23)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1587 ((|#2| $) 19)) (-1270 (((-798) $) 11) (($ |#1|) 27)) (-3355 (($) 18 T CONST)) (-3363 (($) 24 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 15) (($ $ $) 13)) (-4080 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-442 |#1| |#2|) (-131) (-160) (-23)) (T -442))
-((-3882 (*1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-3893 (*1 *1 *1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))))
-(-13 (-447 |t#1| |t#2|) (-967 |t#1|) (-10 -8 (-15 (-3882) ($) -3359) (-15 -3893 ($ $ $))))
-(((-97) . T) ((-566 (-797)) . T) ((-447 |#1| |#2|) . T) ((-967 |#1|) . T) ((-1019) . T))
-((-1857 (((-1172 (-1172 (-525))) (-1172 (-1172 (-525))) (-855)) 18)) (-1824 (((-1172 (-1172 (-525))) (-855)) 16)))
-(((-443) (-10 -7 (-15 -1857 ((-1172 (-1172 (-525))) (-1172 (-1172 (-525))) (-855))) (-15 -1824 ((-1172 (-1172 (-525))) (-855))))) (T -443))
-((-1824 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1172 (-1172 (-525)))) (-5 *1 (-443)))) (-1857 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 (-1172 (-525)))) (-5 *3 (-855)) (-5 *1 (-443)))))
-(-10 -7 (-15 -1857 ((-1172 (-1172 (-525))) (-1172 (-1172 (-525))) (-855))) (-15 -1824 ((-1172 (-1172 (-525))) (-855))))
-((-3232 (((-525) (-525)) 30) (((-525)) 22)) (-1955 (((-525) (-525)) 26) (((-525)) 18)) (-1354 (((-525) (-525)) 28) (((-525)) 20)) (-3589 (((-108) (-108)) 12) (((-108)) 10)) (-1696 (((-108) (-108)) 11) (((-108)) 9)) (-3915 (((-108) (-108)) 24) (((-108)) 15)))
-(((-444) (-10 -7 (-15 -1696 ((-108))) (-15 -3589 ((-108))) (-15 -1696 ((-108) (-108))) (-15 -3589 ((-108) (-108))) (-15 -3915 ((-108))) (-15 -1354 ((-525))) (-15 -1955 ((-525))) (-15 -3232 ((-525))) (-15 -3915 ((-108) (-108))) (-15 -1354 ((-525) (-525))) (-15 -1955 ((-525) (-525))) (-15 -3232 ((-525) (-525))))) (T -444))
-((-3232 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-1955 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-1354 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-3232 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-1955 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-1354 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-3915 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-3589 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-1696 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-3589 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-1696 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))))
-(-10 -7 (-15 -1696 ((-108))) (-15 -3589 ((-108))) (-15 -1696 ((-108) (-108))) (-15 -3589 ((-108) (-108))) (-15 -3915 ((-108))) (-15 -1354 ((-525))) (-15 -1955 ((-525))) (-15 -3232 ((-525))) (-15 -3915 ((-108) (-108))) (-15 -1354 ((-525) (-525))) (-15 -1955 ((-525) (-525))) (-15 -3232 ((-525) (-525))))
-((-1893 (((-108) $ $) NIL)) (-2915 (((-592 (-357)) $) 28) (((-592 (-357)) $ (-592 (-357))) 95)) (-4129 (((-592 (-1014 (-357))) $) 16) (((-592 (-1014 (-357))) $ (-592 (-1014 (-357)))) 92)) (-1461 (((-592 (-592 (-877 (-205)))) (-592 (-592 (-877 (-205)))) (-592 (-808))) 44)) (-3872 (((-592 (-592 (-877 (-205)))) $) 88)) (-3451 (((-1177) $ (-877 (-205)) (-808)) 107)) (-2735 (($ $) 87) (($ (-592 (-592 (-877 (-205))))) 98) (($ (-592 (-592 (-877 (-205)))) (-592 (-808)) (-592 (-808)) (-592 (-855))) 97) (($ (-592 (-592 (-877 (-205)))) (-592 (-808)) (-592 (-808)) (-592 (-855)) (-592 (-242))) 99)) (-2337 (((-1073) $) NIL)) (-3946 (((-525) $) 69)) (-2663 (((-1037) $) NIL)) (-3360 (($) 96)) (-1535 (((-592 (-205)) (-592 (-592 (-877 (-205))))) 54)) (-3373 (((-1177) $ (-592 (-877 (-205))) (-808) (-808) (-855)) 101) (((-1177) $ (-877 (-205))) 103) (((-1177) $ (-877 (-205)) (-808) (-808) (-855)) 102)) (-1908 (((-797) $) 113) (($ (-592 (-592 (-877 (-205))))) 108)) (-1978 (((-1177) $ (-877 (-205))) 106)) (-3961 (((-108) $ $) NIL)))
-(((-445) (-13 (-1019) (-10 -8 (-15 -3360 ($)) (-15 -2735 ($ $)) (-15 -2735 ($ (-592 (-592 (-877 (-205)))))) (-15 -2735 ($ (-592 (-592 (-877 (-205)))) (-592 (-808)) (-592 (-808)) (-592 (-855)))) (-15 -2735 ($ (-592 (-592 (-877 (-205)))) (-592 (-808)) (-592 (-808)) (-592 (-855)) (-592 (-242)))) (-15 -3872 ((-592 (-592 (-877 (-205)))) $)) (-15 -3946 ((-525) $)) (-15 -4129 ((-592 (-1014 (-357))) $)) (-15 -4129 ((-592 (-1014 (-357))) $ (-592 (-1014 (-357))))) (-15 -2915 ((-592 (-357)) $)) (-15 -2915 ((-592 (-357)) $ (-592 (-357)))) (-15 -3373 ((-1177) $ (-592 (-877 (-205))) (-808) (-808) (-855))) (-15 -3373 ((-1177) $ (-877 (-205)))) (-15 -3373 ((-1177) $ (-877 (-205)) (-808) (-808) (-855))) (-15 -1978 ((-1177) $ (-877 (-205)))) (-15 -3451 ((-1177) $ (-877 (-205)) (-808))) (-15 -1908 ($ (-592 (-592 (-877 (-205)))))) (-15 -1908 ((-797) $)) (-15 -1461 ((-592 (-592 (-877 (-205)))) (-592 (-592 (-877 (-205)))) (-592 (-808)))) (-15 -1535 ((-592 (-205)) (-592 (-592 (-877 (-205))))))))) (T -445))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-445)))) (-3360 (*1 *1) (-5 *1 (-445))) (-2735 (*1 *1 *1) (-5 *1 (-445))) (-2735 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *1 (-445)))) (-2735 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *3 (-592 (-808))) (-5 *4 (-592 (-855))) (-5 *1 (-445)))) (-2735 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *3 (-592 (-808))) (-5 *4 (-592 (-855))) (-5 *5 (-592 (-242))) (-5 *1 (-445)))) (-3872 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *1 (-445)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-445)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-445)))) (-4129 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-445)))) (-2915 (*1 *2 *1) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445)))) (-2915 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445)))) (-3373 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-592 (-877 (-205)))) (-5 *4 (-808)) (-5 *5 (-855)) (-5 *2 (-1177)) (-5 *1 (-445)))) (-3373 (*1 *2 *1 *3) (-12 (-5 *3 (-877 (-205))) (-5 *2 (-1177)) (-5 *1 (-445)))) (-3373 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-877 (-205))) (-5 *4 (-808)) (-5 *5 (-855)) (-5 *2 (-1177)) (-5 *1 (-445)))) (-1978 (*1 *2 *1 *3) (-12 (-5 *3 (-877 (-205))) (-5 *2 (-1177)) (-5 *1 (-445)))) (-3451 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-877 (-205))) (-5 *4 (-808)) (-5 *2 (-1177)) (-5 *1 (-445)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *1 (-445)))) (-1461 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *3 (-592 (-808))) (-5 *1 (-445)))) (-1535 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *2 (-592 (-205))) (-5 *1 (-445)))))
-(-13 (-1019) (-10 -8 (-15 -3360 ($)) (-15 -2735 ($ $)) (-15 -2735 ($ (-592 (-592 (-877 (-205)))))) (-15 -2735 ($ (-592 (-592 (-877 (-205)))) (-592 (-808)) (-592 (-808)) (-592 (-855)))) (-15 -2735 ($ (-592 (-592 (-877 (-205)))) (-592 (-808)) (-592 (-808)) (-592 (-855)) (-592 (-242)))) (-15 -3872 ((-592 (-592 (-877 (-205)))) $)) (-15 -3946 ((-525) $)) (-15 -4129 ((-592 (-1014 (-357))) $)) (-15 -4129 ((-592 (-1014 (-357))) $ (-592 (-1014 (-357))))) (-15 -2915 ((-592 (-357)) $)) (-15 -2915 ((-592 (-357)) $ (-592 (-357)))) (-15 -3373 ((-1177) $ (-592 (-877 (-205))) (-808) (-808) (-855))) (-15 -3373 ((-1177) $ (-877 (-205)))) (-15 -3373 ((-1177) $ (-877 (-205)) (-808) (-808) (-855))) (-15 -1978 ((-1177) $ (-877 (-205)))) (-15 -3451 ((-1177) $ (-877 (-205)) (-808))) (-15 -1908 ($ (-592 (-592 (-877 (-205)))))) (-15 -1908 ((-797) $)) (-15 -1461 ((-592 (-592 (-877 (-205)))) (-592 (-592 (-877 (-205)))) (-592 (-808)))) (-15 -1535 ((-592 (-205)) (-592 (-592 (-877 (-205))))))))
-((-4070 (($ $) NIL) (($ $ $) 11)))
-(((-446 |#1| |#2| |#3|) (-10 -8 (-15 -4070 (|#1| |#1| |#1|)) (-15 -4070 (|#1| |#1|))) (-447 |#2| |#3|) (-160) (-23)) (T -446))
-NIL
-(-10 -8 (-15 -4070 (|#1| |#1| |#1|)) (-15 -4070 (|#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-2513 ((|#2| $) 19)) (-1908 (((-797) $) 11)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 15) (($ $ $) 13)) (-4059 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-3363 (*1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-1283 (*1 *1 *1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))))
+(-13 (-447 |t#1| |t#2|) (-968 |t#1|) (-10 -8 (-15 (-3363) ($) -1479) (-15 -1283 ($ $ $))))
+(((-97) . T) ((-566 (-798)) . T) ((-447 |#1| |#2|) . T) ((-968 |#1|) . T) ((-1020) . T))
+((-3389 (((-1173 (-1173 (-525))) (-1173 (-1173 (-525))) (-856)) 18)) (-1840 (((-1173 (-1173 (-525))) (-856)) 16)))
+(((-443) (-10 -7 (-15 -3389 ((-1173 (-1173 (-525))) (-1173 (-1173 (-525))) (-856))) (-15 -1840 ((-1173 (-1173 (-525))) (-856))))) (T -443))
+((-1840 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1173 (-1173 (-525)))) (-5 *1 (-443)))) (-3389 (*1 *2 *2 *3) (-12 (-5 *2 (-1173 (-1173 (-525)))) (-5 *3 (-856)) (-5 *1 (-443)))))
+(-10 -7 (-15 -3389 ((-1173 (-1173 (-525))) (-1173 (-1173 (-525))) (-856))) (-15 -1840 ((-1173 (-1173 (-525))) (-856))))
+((-1204 (((-525) (-525)) 30) (((-525)) 22)) (-4055 (((-525) (-525)) 26) (((-525)) 18)) (-2526 (((-525) (-525)) 28) (((-525)) 20)) (-1448 (((-108) (-108)) 12) (((-108)) 10)) (-1489 (((-108) (-108)) 11) (((-108)) 9)) (-1464 (((-108) (-108)) 24) (((-108)) 15)))
+(((-444) (-10 -7 (-15 -1489 ((-108))) (-15 -1448 ((-108))) (-15 -1489 ((-108) (-108))) (-15 -1448 ((-108) (-108))) (-15 -1464 ((-108))) (-15 -2526 ((-525))) (-15 -4055 ((-525))) (-15 -1204 ((-525))) (-15 -1464 ((-108) (-108))) (-15 -2526 ((-525) (-525))) (-15 -4055 ((-525) (-525))) (-15 -1204 ((-525) (-525))))) (T -444))
+((-1204 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-4055 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-2526 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-1464 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-1204 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-4055 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-2526 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444)))) (-1464 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-1448 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-1489 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-1448 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))) (-1489 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))))
+(-10 -7 (-15 -1489 ((-108))) (-15 -1448 ((-108))) (-15 -1489 ((-108) (-108))) (-15 -1448 ((-108) (-108))) (-15 -1464 ((-108))) (-15 -2526 ((-525))) (-15 -4055 ((-525))) (-15 -1204 ((-525))) (-15 -1464 ((-108) (-108))) (-15 -2526 ((-525) (-525))) (-15 -4055 ((-525) (-525))) (-15 -1204 ((-525) (-525))))
+((-1260 (((-108) $ $) NIL)) (-4009 (((-592 (-357)) $) 28) (((-592 (-357)) $ (-592 (-357))) 95)) (-2744 (((-592 (-1015 (-357))) $) 16) (((-592 (-1015 (-357))) $ (-592 (-1015 (-357)))) 92)) (-2338 (((-592 (-592 (-878 (-205)))) (-592 (-592 (-878 (-205)))) (-592 (-809))) 44)) (-2422 (((-592 (-592 (-878 (-205)))) $) 88)) (-2261 (((-1178) $ (-878 (-205)) (-809)) 107)) (-3116 (($ $) 87) (($ (-592 (-592 (-878 (-205))))) 98) (($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856))) 97) (($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856)) (-592 (-242))) 99)) (-3451 (((-1074) $) NIL)) (-3423 (((-525) $) 69)) (-2012 (((-1038) $) NIL)) (-4071 (($) 96)) (-3683 (((-592 (-205)) (-592 (-592 (-878 (-205))))) 54)) (-4198 (((-1178) $ (-592 (-878 (-205))) (-809) (-809) (-856)) 101) (((-1178) $ (-878 (-205))) 103) (((-1178) $ (-878 (-205)) (-809) (-809) (-856)) 102)) (-1270 (((-798) $) 113) (($ (-592 (-592 (-878 (-205))))) 108)) (-2058 (((-1178) $ (-878 (-205))) 106)) (-3994 (((-108) $ $) NIL)))
+(((-445) (-13 (-1020) (-10 -8 (-15 -4071 ($)) (-15 -3116 ($ $)) (-15 -3116 ($ (-592 (-592 (-878 (-205)))))) (-15 -3116 ($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856)))) (-15 -3116 ($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856)) (-592 (-242)))) (-15 -2422 ((-592 (-592 (-878 (-205)))) $)) (-15 -3423 ((-525) $)) (-15 -2744 ((-592 (-1015 (-357))) $)) (-15 -2744 ((-592 (-1015 (-357))) $ (-592 (-1015 (-357))))) (-15 -4009 ((-592 (-357)) $)) (-15 -4009 ((-592 (-357)) $ (-592 (-357)))) (-15 -4198 ((-1178) $ (-592 (-878 (-205))) (-809) (-809) (-856))) (-15 -4198 ((-1178) $ (-878 (-205)))) (-15 -4198 ((-1178) $ (-878 (-205)) (-809) (-809) (-856))) (-15 -2058 ((-1178) $ (-878 (-205)))) (-15 -2261 ((-1178) $ (-878 (-205)) (-809))) (-15 -1270 ($ (-592 (-592 (-878 (-205)))))) (-15 -1270 ((-798) $)) (-15 -2338 ((-592 (-592 (-878 (-205)))) (-592 (-592 (-878 (-205)))) (-592 (-809)))) (-15 -3683 ((-592 (-205)) (-592 (-592 (-878 (-205))))))))) (T -445))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-445)))) (-4071 (*1 *1) (-5 *1 (-445))) (-3116 (*1 *1 *1) (-5 *1 (-445))) (-3116 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445)))) (-3116 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809))) (-5 *4 (-592 (-856))) (-5 *1 (-445)))) (-3116 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809))) (-5 *4 (-592 (-856))) (-5 *5 (-592 (-242))) (-5 *1 (-445)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-445)))) (-2744 (*1 *2 *1) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-445)))) (-2744 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-445)))) (-4009 (*1 *2 *1) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445)))) (-4009 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445)))) (-4198 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *4 (-809)) (-5 *5 (-856)) (-5 *2 (-1178)) (-5 *1 (-445)))) (-4198 (*1 *2 *1 *3) (-12 (-5 *3 (-878 (-205))) (-5 *2 (-1178)) (-5 *1 (-445)))) (-4198 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-878 (-205))) (-5 *4 (-809)) (-5 *5 (-856)) (-5 *2 (-1178)) (-5 *1 (-445)))) (-2058 (*1 *2 *1 *3) (-12 (-5 *3 (-878 (-205))) (-5 *2 (-1178)) (-5 *1 (-445)))) (-2261 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-878 (-205))) (-5 *4 (-809)) (-5 *2 (-1178)) (-5 *1 (-445)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445)))) (-2338 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809))) (-5 *1 (-445)))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *2 (-592 (-205))) (-5 *1 (-445)))))
+(-13 (-1020) (-10 -8 (-15 -4071 ($)) (-15 -3116 ($ $)) (-15 -3116 ($ (-592 (-592 (-878 (-205)))))) (-15 -3116 ($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856)))) (-15 -3116 ($ (-592 (-592 (-878 (-205)))) (-592 (-809)) (-592 (-809)) (-592 (-856)) (-592 (-242)))) (-15 -2422 ((-592 (-592 (-878 (-205)))) $)) (-15 -3423 ((-525) $)) (-15 -2744 ((-592 (-1015 (-357))) $)) (-15 -2744 ((-592 (-1015 (-357))) $ (-592 (-1015 (-357))))) (-15 -4009 ((-592 (-357)) $)) (-15 -4009 ((-592 (-357)) $ (-592 (-357)))) (-15 -4198 ((-1178) $ (-592 (-878 (-205))) (-809) (-809) (-856))) (-15 -4198 ((-1178) $ (-878 (-205)))) (-15 -4198 ((-1178) $ (-878 (-205)) (-809) (-809) (-856))) (-15 -2058 ((-1178) $ (-878 (-205)))) (-15 -2261 ((-1178) $ (-878 (-205)) (-809))) (-15 -1270 ($ (-592 (-592 (-878 (-205)))))) (-15 -1270 ((-798) $)) (-15 -2338 ((-592 (-592 (-878 (-205)))) (-592 (-592 (-878 (-205)))) (-592 (-809)))) (-15 -3683 ((-592 (-205)) (-592 (-592 (-878 (-205))))))))
+((-4090 (($ $) NIL) (($ $ $) 11)))
+(((-446 |#1| |#2| |#3|) (-10 -8 (-15 -4090 (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1|))) (-447 |#2| |#3|) (-160) (-23)) (T -446))
+NIL
+(-10 -8 (-15 -4090 (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1587 ((|#2| $) 19)) (-1270 (((-798) $) 11)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 15) (($ $ $) 13)) (-4080 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-447 |#1| |#2|) (-131) (-160) (-23)) (T -447))
-((-2513 (*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-160)) (-4 *2 (-23)))) (-3875 (*1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-4070 (*1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-4059 (*1 *1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-4070 (*1 *1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))))
-(-13 (-1019) (-10 -8 (-15 -2513 (|t#2| $)) (-15 (-3875) ($) -3359) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4070 ($ $)) (-15 -4059 ($ $ $)) (-15 -4070 ($ $ $))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-3778 (((-3 (-592 (-457 |#1| |#2|)) "failed") (-592 (-457 |#1| |#2|)) (-592 (-799 |#1|))) 93)) (-4174 (((-592 (-592 (-227 |#1| |#2|))) (-592 (-227 |#1| |#2|)) (-592 (-799 |#1|))) 91)) (-1520 (((-2 (|:| |dpolys| (-592 (-227 |#1| |#2|))) (|:| |coords| (-592 (-525)))) (-592 (-227 |#1| |#2|)) (-592 (-799 |#1|))) 61)))
-(((-448 |#1| |#2| |#3|) (-10 -7 (-15 -4174 ((-592 (-592 (-227 |#1| |#2|))) (-592 (-227 |#1| |#2|)) (-592 (-799 |#1|)))) (-15 -3778 ((-3 (-592 (-457 |#1| |#2|)) "failed") (-592 (-457 |#1| |#2|)) (-592 (-799 |#1|)))) (-15 -1520 ((-2 (|:| |dpolys| (-592 (-227 |#1| |#2|))) (|:| |coords| (-592 (-525)))) (-592 (-227 |#1| |#2|)) (-592 (-799 |#1|))))) (-592 (-1090)) (-429) (-429)) (T -448))
-((-1520 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-799 *5))) (-14 *5 (-592 (-1090))) (-4 *6 (-429)) (-5 *2 (-2 (|:| |dpolys| (-592 (-227 *5 *6))) (|:| |coords| (-592 (-525))))) (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429)))) (-3778 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-592 (-799 *4))) (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *1 (-448 *4 *5 *6)) (-4 *6 (-429)))) (-4174 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-799 *5))) (-14 *5 (-592 (-1090))) (-4 *6 (-429)) (-5 *2 (-592 (-592 (-227 *5 *6)))) (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429)))))
-(-10 -7 (-15 -4174 ((-592 (-592 (-227 |#1| |#2|))) (-592 (-227 |#1| |#2|)) (-592 (-799 |#1|)))) (-15 -3778 ((-3 (-592 (-457 |#1| |#2|)) "failed") (-592 (-457 |#1| |#2|)) (-592 (-799 |#1|)))) (-15 -1520 ((-2 (|:| |dpolys| (-592 (-227 |#1| |#2|))) (|:| |coords| (-592 (-525)))) (-592 (-227 |#1| |#2|)) (-592 (-799 |#1|)))))
-((-2866 (((-3 $ "failed") $) 11)) (-3634 (($ $ $) 20)) (-1518 (($ $ $) 21)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 14)) (-4082 (($ $ $) 9)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 19)))
-(((-449 |#1|) (-10 -8 (-15 -1518 (|#1| |#1| |#1|)) (-15 -3634 (|#1| |#1| |#1|)) (-15 -3465 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 -4082 (|#1| |#1| |#1|)) (-15 -2866 ((-3 |#1| "failed") |#1|)) (-15 -3465 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -3465 (|#1| |#1| (-855))) (-15 ** (|#1| |#1| (-855)))) (-450)) (T -449))
-NIL
-(-10 -8 (-15 -1518 (|#1| |#1| |#1|)) (-15 -3634 (|#1| |#1| |#1|)) (-15 -3465 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 -4082 (|#1| |#1| |#1|)) (-15 -2866 ((-3 |#1| "failed") |#1|)) (-15 -3465 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -3465 (|#1| |#1| (-855))) (-15 ** (|#1| |#1| (-855))))
-((-1893 (((-108) $ $) 7)) (-1505 (($) 20 T CONST)) (-2866 (((-3 $ "failed") $) 16)) (-2133 (((-108) $) 19)) (-2337 (((-1073) $) 9)) (-4211 (($ $) 27)) (-2663 (((-1037) $) 10)) (-3634 (($ $ $) 23)) (-1518 (($ $ $) 22)) (-1908 (((-797) $) 11)) (-3465 (($ $ (-855)) 13) (($ $ (-713)) 17) (($ $ (-525)) 24)) (-3882 (($) 21 T CONST)) (-3961 (((-108) $ $) 6)) (-4082 (($ $ $) 26)) (** (($ $ (-855)) 14) (($ $ (-713)) 18) (($ $ (-525)) 25)) (* (($ $ $) 15)))
+((-1587 (*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-160)) (-4 *2 (-23)))) (-3355 (*1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-4090 (*1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-4080 (*1 *1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))) (-4090 (*1 *1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23)))))
+(-13 (-1020) (-10 -8 (-15 -1587 (|t#2| $)) (-15 (-3355) ($) -1479) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4090 ($ $)) (-15 -4080 ($ $ $)) (-15 -4090 ($ $ $))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-2764 (((-3 (-592 (-457 |#1| |#2|)) "failed") (-592 (-457 |#1| |#2|)) (-592 (-800 |#1|))) 93)) (-3052 (((-592 (-592 (-227 |#1| |#2|))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|))) 91)) (-2252 (((-2 (|:| |dpolys| (-592 (-227 |#1| |#2|))) (|:| |coords| (-592 (-525)))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|))) 61)))
+(((-448 |#1| |#2| |#3|) (-10 -7 (-15 -3052 ((-592 (-592 (-227 |#1| |#2|))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|)))) (-15 -2764 ((-3 (-592 (-457 |#1| |#2|)) "failed") (-592 (-457 |#1| |#2|)) (-592 (-800 |#1|)))) (-15 -2252 ((-2 (|:| |dpolys| (-592 (-227 |#1| |#2|))) (|:| |coords| (-592 (-525)))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|))))) (-592 (-1091)) (-429) (-429)) (T -448))
+((-2252 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-800 *5))) (-14 *5 (-592 (-1091))) (-4 *6 (-429)) (-5 *2 (-2 (|:| |dpolys| (-592 (-227 *5 *6))) (|:| |coords| (-592 (-525))))) (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429)))) (-2764 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-592 (-800 *4))) (-14 *4 (-592 (-1091))) (-4 *5 (-429)) (-5 *1 (-448 *4 *5 *6)) (-4 *6 (-429)))) (-3052 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-800 *5))) (-14 *5 (-592 (-1091))) (-4 *6 (-429)) (-5 *2 (-592 (-592 (-227 *5 *6)))) (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429)))))
+(-10 -7 (-15 -3052 ((-592 (-592 (-227 |#1| |#2|))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|)))) (-15 -2764 ((-3 (-592 (-457 |#1| |#2|)) "failed") (-592 (-457 |#1| |#2|)) (-592 (-800 |#1|)))) (-15 -2252 ((-2 (|:| |dpolys| (-592 (-227 |#1| |#2|))) (|:| |coords| (-592 (-525)))) (-592 (-227 |#1| |#2|)) (-592 (-800 |#1|)))))
+((-3762 (((-3 $ "failed") $) 11)) (-3700 (($ $ $) 20)) (-2222 (($ $ $) 21)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 14)) (-4100 (($ $ $) 9)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 19)))
+(((-449 |#1|) (-10 -8 (-15 -2222 (|#1| |#1| |#1|)) (-15 -3700 (|#1| |#1| |#1|)) (-15 -1576 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 -4100 (|#1| |#1| |#1|)) (-15 -3762 ((-3 |#1| "failed") |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856)))) (-450)) (T -449))
+NIL
+(-10 -8 (-15 -2222 (|#1| |#1| |#1|)) (-15 -3700 (|#1| |#1| |#1|)) (-15 -1576 (|#1| |#1| (-525))) (-15 ** (|#1| |#1| (-525))) (-15 -4100 (|#1| |#1| |#1|)) (-15 -3762 ((-3 |#1| "failed") |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -1576 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856))))
+((-1260 (((-108) $ $) 7)) (-2305 (($) 20 T CONST)) (-3762 (((-3 $ "failed") $) 16)) (-1985 (((-108) $) 19)) (-3451 (((-1074) $) 9)) (-2502 (($ $) 27)) (-2012 (((-1038) $) 10)) (-3700 (($ $ $) 23)) (-2222 (($ $ $) 22)) (-1270 (((-798) $) 11)) (-1576 (($ $ (-856)) 13) (($ $ (-713)) 17) (($ $ (-525)) 24)) (-3363 (($) 21 T CONST)) (-3994 (((-108) $ $) 6)) (-4100 (($ $ $) 26)) (** (($ $ (-856)) 14) (($ $ (-713)) 18) (($ $ (-525)) 25)) (* (($ $ $) 15)))
(((-450) (-131)) (T -450))
-((-4211 (*1 *1 *1) (-4 *1 (-450))) (-4082 (*1 *1 *1 *1) (-4 *1 (-450))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525)))) (-3465 (*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525)))) (-3634 (*1 *1 *1 *1) (-4 *1 (-450))) (-1518 (*1 *1 *1 *1) (-4 *1 (-450))))
-(-13 (-669) (-10 -8 (-15 -4211 ($ $)) (-15 -4082 ($ $ $)) (-15 ** ($ $ (-525))) (-15 -3465 ($ $ (-525))) (-6 -4251) (-15 -3634 ($ $ $)) (-15 -1518 ($ $ $))))
-(((-97) . T) ((-566 (-797)) . T) ((-669) . T) ((-1031) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-4104 (((-592 (-1004)) $) NIL)) (-1251 (((-1090) $) 17)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-4114 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-2911 (((-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-4049 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL (|has| |#1| (-341)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3969 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2305 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4026 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3483 (($ (-713) (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-4072 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) NIL T CONST)) (-2373 (($ $ $) NIL (|has| |#1| (-341)))) (-1247 (($ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#1| (-341)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2250 (((-108) $) NIL (|has| |#1| (-341)))) (-4150 (((-108) $) NIL)) (-1335 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1737 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-2133 (((-108) $) NIL)) (-3391 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3817 (($ $ (-855)) NIL) (($ $ (-385 (-525))) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-385 (-525))) NIL) (($ $ (-1004) (-385 (-525))) NIL) (($ $ (-592 (-1004)) (-592 (-385 (-525)))) NIL)) (-1370 (($ (-1 |#1| |#1|) $) 22)) (-2091 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-341)))) (-3766 (($ $) 26 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 33 (-3309 (-12 (|has| |#1| (-15 -3766 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -4104 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112))))) (($ $ (-1168 |#2|)) 27 (|has| |#1| (-37 (-385 (-525)))))) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3959 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-3538 (($ $ (-385 (-525))) NIL)) (-2338 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1982 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3092 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-2183 (((-713) $) NIL (|has| |#1| (-341)))) (-3928 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1031)))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-341)))) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) 25 (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1168 |#2|)) 15)) (-2513 (((-385 (-525)) $) NIL)) (-4084 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1801 (($ $) NIL)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1168 |#2|)) NIL) (($ (-1157 |#1| |#2| |#3|)) 9) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1657 ((|#1| $ (-385 (-525))) NIL)) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) NIL)) (-2563 ((|#1| $) 18)) (-4121 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4096 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2038 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1908 (|#1| (-1090))))))) (-2929 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) 24)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-451 |#1| |#2| |#3|) (-13 (-1153 |#1|) (-10 -8 (-15 -1908 ($ (-1168 |#2|))) (-15 -1908 ($ (-1157 |#1| |#2| |#3|))) (-15 -3013 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3766 ($ $ (-1168 |#2|))) |%noBranch|))) (-976) (-1090) |#1|) (T -451))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-1157 *3 *4 *5)) (-4 *3 (-976)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-451 *3 *4 *5)))) (-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3))))
-(-13 (-1153 |#1|) (-10 -8 (-15 -1908 ($ (-1168 |#2|))) (-15 -1908 ($ (-1157 |#1| |#2| |#3|))) (-15 -3013 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3766 ($ $ (-1168 |#2|))) |%noBranch|)))
-((-1893 (((-108) $ $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4001 (($) NIL) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-1840 (((-1177) $ |#1| |#1|) NIL (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 ((|#2| $ |#1| |#2|) 18)) (-3290 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1446 (((-3 |#2| "failed") |#1| $) 19)) (-1505 (($) NIL T CONST)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-2792 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) 16)) (-2273 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-4004 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2870 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#2| $ |#1|) NIL)) (-2026 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-2009 ((|#1| $) NIL (|has| |#1| (-789)))) (-3168 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-1792 ((|#1| $) NIL (|has| |#1| (-789)))) (-2857 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4005 (((-592 |#1|) $) NIL)) (-1699 (((-108) |#1| $) NIL)) (-2570 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-2573 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3222 (((-592 |#1|) $) NIL)) (-1548 (((-108) |#1| $) NIL)) (-2663 (((-1037) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-3135 ((|#2| $) NIL (|has| |#1| (-789)))) (-4054 (((-3 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL)) (-1911 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3513 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3494 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-3171 (((-592 |#2|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-4006 (($) NIL) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-2686 (((-713) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-567 (-501))))) (-1922 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-1908 (((-797) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-566 (-797))) (|has| |#2| (-566 (-797)))))) (-3612 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-2667 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-452 |#1| |#2| |#3| |#4|) (-1103 |#1| |#2|) (-1019) (-1019) (-1103 |#1| |#2|) |#2|) (T -452))
-NIL
-(-1103 |#1| |#2|)
-((-1893 (((-108) $ $) NIL)) (-2894 (((-592 (-2 (|:| -3286 $) (|:| -2396 (-592 |#4|)))) (-592 |#4|)) NIL)) (-2308 (((-592 $) (-592 |#4|)) NIL)) (-4104 (((-592 |#3|) $) NIL)) (-3696 (((-108) $) NIL)) (-3810 (((-108) $) NIL (|has| |#1| (-517)))) (-1466 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3833 ((|#4| |#4| $) NIL)) (-3327 (((-2 (|:| |under| $) (|:| -1720 $) (|:| |upper| $)) $ |#3|) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-2724 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1505 (($) NIL T CONST)) (-2637 (((-108) $) 26 (|has| |#1| (-517)))) (-2643 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2494 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3405 (((-108) $) NIL (|has| |#1| (-517)))) (-2895 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3937 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-3144 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1264 (((-3 $ "failed") (-592 |#4|)) NIL)) (-2831 (($ (-592 |#4|)) NIL)) (-3145 (((-3 $ "failed") $) 39)) (-3096 ((|#4| |#4| $) NIL)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2273 (($ |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-1632 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-1954 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2295 ((|#4| |#4| $) NIL)) (-4004 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1426 (((-2 (|:| -3286 (-592 |#4|)) (|:| -2396 (-592 |#4|))) $) NIL)) (-2026 (((-592 |#4|) $) 16 (|has| $ (-6 -4254)))) (-2267 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1257 ((|#3| $) 33)) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 |#4|) $) 17 (|has| $ (-6 -4254)))) (-4132 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2857 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#4| |#4|) $) 21)) (-1835 (((-592 |#3|) $) NIL)) (-1913 (((-108) |#3| $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL)) (-2292 (((-3 |#4| "failed") $) 37)) (-2931 (((-592 |#4|) $) NIL)) (-3691 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4189 ((|#4| |#4| $) NIL)) (-2491 (((-108) $ $) NIL)) (-2809 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2469 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2954 ((|#4| |#4| $) NIL)) (-2663 (((-1037) $) NIL)) (-3135 (((-3 |#4| "failed") $) 35)) (-4054 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2662 (((-3 $ "failed") $ |#4|) 47)) (-3538 (($ $ |#4|) NIL)) (-3494 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) 15)) (-3773 (($) 13)) (-2513 (((-713) $) NIL)) (-2686 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) 12)) (-1427 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-1922 (($ (-592 |#4|)) 20)) (-1861 (($ $ |#3|) 42)) (-3570 (($ $ |#3|) 44)) (-2031 (($ $) NIL)) (-1263 (($ $ |#3|) NIL)) (-1908 (((-797) $) 31) (((-592 |#4|) $) 40)) (-3056 (((-713) $) NIL (|has| |#3| (-346)))) (-3480 (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1971 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-2667 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2241 (((-592 |#3|) $) NIL)) (-1252 (((-108) |#3| $) NIL)) (-3961 (((-108) $ $) NIL)) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-453 |#1| |#2| |#3| |#4|) (-1120 |#1| |#2| |#3| |#4|) (-517) (-735) (-789) (-990 |#1| |#2| |#3|)) (T -453))
-NIL
-(-1120 |#1| |#2| |#3| |#4|)
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2305 (((-108) $ $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-2831 (((-525) $) NIL) (((-385 (-525)) $) NIL)) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-1335 (($) 18)) (-2133 (((-108) $) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3959 (((-396 $) $) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-1427 (((-357) $) 22) (((-205) $) 25) (((-385 (-1086 (-525))) $) 19) (((-501) $) 52)) (-1908 (((-797) $) 50) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (((-205) $) 24) (((-357) $) 21)) (-2093 (((-713)) NIL)) (-2262 (((-108) $ $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) 36 T CONST)) (-3882 (($) 11 T CONST)) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
-(((-454) (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))) (-952) (-566 (-205)) (-566 (-357)) (-567 (-385 (-1086 (-525)))) (-567 (-501)) (-10 -8 (-15 -1335 ($))))) (T -454))
-((-1335 (*1 *1) (-5 *1 (-454))))
-(-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))) (-952) (-566 (-205)) (-566 (-357)) (-567 (-385 (-1086 (-525)))) (-567 (-501)) (-10 -8 (-15 -1335 ($))))
-((-1893 (((-108) $ $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4001 (($) NIL) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-1840 (((-1177) $ |#1| |#1|) NIL (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 ((|#2| $ |#1| |#2|) 16)) (-3290 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1446 (((-3 |#2| "failed") |#1| $) 20)) (-1505 (($) NIL T CONST)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-2792 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) 18)) (-2273 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-4004 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2870 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#2| $ |#1|) NIL)) (-2026 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-2009 ((|#1| $) NIL (|has| |#1| (-789)))) (-3168 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-1792 ((|#1| $) NIL (|has| |#1| (-789)))) (-2857 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4005 (((-592 |#1|) $) 13)) (-1699 (((-108) |#1| $) NIL)) (-2570 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-2573 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3222 (((-592 |#1|) $) NIL)) (-1548 (((-108) |#1| $) NIL)) (-2663 (((-1037) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-3135 ((|#2| $) NIL (|has| |#1| (-789)))) (-4054 (((-3 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL)) (-1911 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3513 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3494 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-3171 (((-592 |#2|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) 19)) (-3928 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4006 (($) NIL) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-2686 (((-713) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-567 (-501))))) (-1922 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-1908 (((-797) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-566 (-797))) (|has| |#2| (-566 (-797)))))) (-3612 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-2667 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 11 (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4140 (((-713) $) 15 (|has| $ (-6 -4254)))))
-(((-455 |#1| |#2| |#3|) (-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254))) (-1019) (-1019) (-1073)) (T -455))
-NIL
-(-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254)))
-((-3593 (((-525) (-525) (-525)) 7)) (-4141 (((-108) (-525) (-525) (-525) (-525)) 11)) (-2655 (((-1172 (-592 (-525))) (-713) (-713)) 23)))
-(((-456) (-10 -7 (-15 -3593 ((-525) (-525) (-525))) (-15 -4141 ((-108) (-525) (-525) (-525) (-525))) (-15 -2655 ((-1172 (-592 (-525))) (-713) (-713))))) (T -456))
-((-2655 (*1 *2 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1172 (-592 (-525)))) (-5 *1 (-456)))) (-4141 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-456)))) (-3593 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-456)))))
-(-10 -7 (-15 -3593 ((-525) (-525) (-525))) (-15 -4141 ((-108) (-525) (-525) (-525) (-525))) (-15 -2655 ((-1172 (-592 (-525))) (-713) (-713))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-4104 (((-592 (-799 |#1|)) $) NIL)) (-3927 (((-1086 $) $ (-799 |#1|)) NIL) (((-1086 |#2|) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-3635 (($ $) NIL (|has| |#2| (-517)))) (-2950 (((-108) $) NIL (|has| |#2| (-517)))) (-1324 (((-713) $) NIL) (((-713) $ (-592 (-799 |#1|))) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-3321 (($ $) NIL (|has| |#2| (-429)))) (-1510 (((-396 $) $) NIL (|has| |#2| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-799 |#1|) "failed") $) NIL)) (-2831 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-967 (-525)))) (((-799 |#1|) $) NIL)) (-2506 (($ $ $ (-799 |#1|)) NIL (|has| |#2| (-160)))) (-2383 (($ $ (-592 (-525))) NIL)) (-1247 (($ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3811 (($ $) NIL (|has| |#2| (-429))) (($ $ (-799 |#1|)) NIL (|has| |#2| (-429)))) (-1234 (((-592 $) $) NIL)) (-2250 (((-108) $) NIL (|has| |#2| (-843)))) (-2099 (($ $ |#2| (-458 (-4140 |#1|) (-713)) $) NIL)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-799 |#1|) (-820 (-357))) (|has| |#2| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-799 |#1|) (-820 (-525))) (|has| |#2| (-820 (-525)))))) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) NIL)) (-4092 (($ (-1086 |#2|) (-799 |#1|)) NIL) (($ (-1086 $) (-799 |#1|)) NIL)) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) NIL)) (-4079 (($ |#2| (-458 (-4140 |#1|) (-713))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ (-799 |#1|)) NIL)) (-3181 (((-458 (-4140 |#1|) (-713)) $) NIL) (((-713) $ (-799 |#1|)) NIL) (((-592 (-713)) $ (-592 (-799 |#1|))) NIL)) (-3525 (($ $ $) NIL (|has| |#2| (-789)))) (-3630 (($ $ $) NIL (|has| |#2| (-789)))) (-1331 (($ (-1 (-458 (-4140 |#1|) (-713)) (-458 (-4140 |#1|) (-713))) $) NIL)) (-1370 (($ (-1 |#2| |#2|) $) NIL)) (-1666 (((-3 (-799 |#1|) "failed") $) NIL)) (-1212 (($ $) NIL)) (-1224 ((|#2| $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2337 (((-1073) $) NIL)) (-3245 (((-3 (-592 $) "failed") $) NIL)) (-3193 (((-3 (-592 $) "failed") $) NIL)) (-3283 (((-3 (-2 (|:| |var| (-799 |#1|)) (|:| -1600 (-713))) "failed") $) NIL)) (-2663 (((-1037) $) NIL)) (-4221 (((-108) $) NIL)) (-4232 ((|#2| $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-429)))) (-3244 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-3959 (((-396 $) $) NIL (|has| |#2| (-843)))) (-2338 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-3092 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-799 |#1|) |#2|) NIL) (($ $ (-592 (-799 |#1|)) (-592 |#2|)) NIL) (($ $ (-799 |#1|) $) NIL) (($ $ (-592 (-799 |#1|)) (-592 $)) NIL)) (-1400 (($ $ (-799 |#1|)) NIL (|has| |#2| (-160)))) (-3013 (($ $ (-799 |#1|)) NIL) (($ $ (-592 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-2513 (((-458 (-4140 |#1|) (-713)) $) NIL) (((-713) $ (-799 |#1|)) NIL) (((-592 (-713)) $ (-592 (-799 |#1|))) NIL)) (-1427 (((-826 (-357)) $) NIL (-12 (|has| (-799 |#1|) (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-799 |#1|) (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-799 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2751 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-799 |#1|)) NIL (|has| |#2| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-843))))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-799 |#1|)) NIL) (($ (-385 (-525))) NIL (-3309 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-3600 (((-592 |#2|) $) NIL)) (-1657 ((|#2| $ (-458 (-4140 |#1|) (-713))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#2| (-843))) (|has| |#2| (-136))))) (-2093 (((-713)) NIL)) (-4116 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-2262 (((-108) $ $) NIL (|has| |#2| (-517)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $ (-799 |#1|)) NIL) (($ $ (-592 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-4024 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4082 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-457 |#1| |#2|) (-13 (-883 |#2| (-458 (-4140 |#1|) (-713)) (-799 |#1|)) (-10 -8 (-15 -2383 ($ $ (-592 (-525)))))) (-592 (-1090)) (-976)) (T -457))
-((-2383 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-457 *3 *4)) (-14 *3 (-592 (-1090))) (-4 *4 (-976)))))
-(-13 (-883 |#2| (-458 (-4140 |#1|) (-713)) (-799 |#1|)) (-10 -8 (-15 -2383 ($ $ (-592 (-525))))))
-((-1893 (((-108) $ $) NIL (|has| |#2| (-1019)))) (-1611 (((-108) $) NIL (|has| |#2| (-126)))) (-2516 (($ (-855)) NIL (|has| |#2| (-976)))) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-1487 (($ $ $) NIL (|has| |#2| (-735)))) (-3263 (((-3 $ "failed") $ $) NIL (|has| |#2| (-126)))) (-3410 (((-108) $ (-713)) NIL)) (-3107 (((-713)) NIL (|has| |#2| (-346)))) (-1690 (((-525) $) NIL (|has| |#2| (-787)))) (-2109 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4255)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1019)))) (-2831 (((-525) $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) ((|#2| $) NIL (|has| |#2| (-1019)))) (-1860 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL (|has| |#2| (-976))) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-976)))) (-2866 (((-3 $ "failed") $) NIL (|has| |#2| (-976)))) (-3375 (($) NIL (|has| |#2| (-346)))) (-2870 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#2| $ (-525)) 11)) (-3026 (((-108) $) NIL (|has| |#2| (-787)))) (-2026 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-2133 (((-108) $) NIL (|has| |#2| (-976)))) (-2882 (((-108) $) NIL (|has| |#2| (-787)))) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) NIL (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3168 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2857 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#2| |#2|) $) NIL)) (-1780 (((-855) $) NIL (|has| |#2| (-346)))) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#2| (-1019)))) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-4185 (($ (-855)) NIL (|has| |#2| (-346)))) (-2663 (((-1037) $) NIL (|has| |#2| (-1019)))) (-3135 ((|#2| $) NIL (|has| (-525) (-789)))) (-1911 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-3171 (((-592 |#2|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL)) (-1595 ((|#2| $ $) NIL (|has| |#2| (-976)))) (-4007 (($ (-1172 |#2|)) NIL)) (-3191 (((-128)) NIL (|has| |#2| (-341)))) (-3013 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-976))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-976)))) (-2686 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-2135 (($ $) NIL)) (-1908 (((-1172 |#2|) $) NIL) (($ (-525)) NIL (-3309 (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019))) (|has| |#2| (-976)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) (($ |#2|) NIL (|has| |#2| (-1019))) (((-797) $) NIL (|has| |#2| (-566 (-797))))) (-2093 (((-713)) NIL (|has| |#2| (-976)))) (-2667 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2092 (($ $) NIL (|has| |#2| (-787)))) (-3465 (($ $ (-713)) NIL (|has| |#2| (-976))) (($ $ (-855)) NIL (|has| |#2| (-976)))) (-3875 (($) NIL (|has| |#2| (-126)) CONST)) (-3882 (($) NIL (|has| |#2| (-976)) CONST)) (-1424 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-976))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-976)))) (-4024 (((-108) $ $) NIL (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3995 (((-108) $ $) NIL (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3961 (((-108) $ $) NIL (|has| |#2| (-1019)))) (-4010 (((-108) $ $) NIL (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3983 (((-108) $ $) 15 (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4082 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4070 (($ $ $) NIL (|has| |#2| (-976))) (($ $) NIL (|has| |#2| (-976)))) (-4059 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-713)) NIL (|has| |#2| (-976))) (($ $ (-855)) NIL (|has| |#2| (-976)))) (* (($ $ $) NIL (|has| |#2| (-976))) (($ (-525) $) NIL (|has| |#2| (-976))) (($ $ |#2|) NIL (|has| |#2| (-669))) (($ |#2| $) NIL (|has| |#2| (-669))) (($ (-713) $) NIL (|has| |#2| (-126))) (($ (-855) $) NIL (|has| |#2| (-25)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
+((-2502 (*1 *1 *1) (-4 *1 (-450))) (-4100 (*1 *1 *1 *1) (-4 *1 (-450))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525)))) (-1576 (*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525)))) (-3700 (*1 *1 *1 *1) (-4 *1 (-450))) (-2222 (*1 *1 *1 *1) (-4 *1 (-450))))
+(-13 (-669) (-10 -8 (-15 -2502 ($ $)) (-15 -4100 ($ $ $)) (-15 ** ($ $ (-525))) (-15 -1576 ($ $ (-525))) (-6 -4252) (-15 -3700 ($ $ $)) (-15 -2222 ($ $ $))))
+(((-97) . T) ((-566 (-798)) . T) ((-669) . T) ((-1032) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2383 (((-592 (-1005)) $) NIL)) (-2577 (((-1091) $) 17)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-3642 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-4192 (((-1072 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-2351 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL (|has| |#1| (-341)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3197 (((-108) $ $) NIL (|has| |#1| (-341)))) (-2320 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2307 (($ (-713) (-1072 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-2382 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) NIL T CONST)) (-1726 (($ $ $) NIL (|has| |#1| (-341)))) (-2571 (($ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-1704 (($ $ $) NIL (|has| |#1| (-341)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3836 (((-108) $) NIL (|has| |#1| (-341)))) (-2911 (((-108) $) NIL)) (-1535 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3973 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-1985 (((-108) $) NIL)) (-3220 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3073 (($ $ (-856)) NIL) (($ $ (-385 (-525))) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-385 (-525))) NIL) (($ $ (-1005) (-385 (-525))) NIL) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) NIL)) (-2694 (($ (-1 |#1| |#1|) $) 22)) (-1415 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL (|has| |#1| (-341)))) (-2650 (($ $) 26 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1091)) 33 (-3279 (-12 (|has| |#1| (-15 -2650 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -2383 ((-592 (-1091)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1113))))) (($ $ (-1169 |#2|)) 27 (|has| |#1| (-37 (-385 (-525)))))) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-341)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2195 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-2182 (($ $ (-385 (-525))) NIL)) (-1680 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1250 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2602 (((-1072 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-1290 (((-713) $) NIL (|has| |#1| (-341)))) (-3410 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1032)))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-341)))) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091)) 25 (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1169 |#2|)) 15)) (-1587 (((-385 (-525)) $) NIL)) (-2396 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3577 (($ $) NIL)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1169 |#2|)) NIL) (($ (-1158 |#1| |#2| |#3|)) 9) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-3468 ((|#1| $ (-385 (-525))) NIL)) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) NIL)) (-3144 ((|#1| $) 18)) (-2438 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2410 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1369 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1270 (|#1| (-1091))))))) (-2687 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) 24)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-451 |#1| |#2| |#3|) (-13 (-1154 |#1|) (-10 -8 (-15 -1270 ($ (-1169 |#2|))) (-15 -1270 ($ (-1158 |#1| |#2| |#3|))) (-15 -2523 ($ $ (-1169 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2650 ($ $ (-1169 |#2|))) |%noBranch|))) (-977) (-1091) |#1|) (T -451))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1158 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-451 *3 *4 *5)))) (-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2650 (*1 *1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-451 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
+(-13 (-1154 |#1|) (-10 -8 (-15 -1270 ($ (-1169 |#2|))) (-15 -1270 ($ (-1158 |#1| |#2| |#3|))) (-15 -2523 ($ $ (-1169 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2650 ($ $ (-1169 |#2|))) |%noBranch|)))
+((-1260 (((-108) $ $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3476 (($) NIL) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-2782 (((-1178) $ |#1| |#1|) NIL (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 ((|#2| $ |#1| |#2|) 18)) (-1608 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2772 (((-3 |#2| "failed") |#1| $) 19)) (-2305 (($) NIL T CONST)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-2592 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-3 |#2| "failed") |#1| $) 16)) (-1614 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-3503 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#2| $ |#1|) NIL)) (-3702 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-2710 ((|#1| $) NIL (|has| |#1| (-789)))) (-1749 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-3478 ((|#1| $) NIL (|has| |#1| (-789)))) (-2622 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4256))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-4076 (((-592 |#1|) $) NIL)) (-1522 (((-108) |#1| $) NIL)) (-3955 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-3985 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-4142 (((-592 |#1|) $) NIL)) (-3845 (((-108) |#1| $) NIL)) (-2012 (((-1038) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3110 ((|#2| $) NIL (|has| |#1| (-789)))) (-3207 (((-3 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) "failed") (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL)) (-2042 (($ $ |#2|) NIL (|has| $ (-6 -4256)))) (-1881 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-3006 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1777 (((-592 |#2|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3981 (($) NIL) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-2040 (((-713) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-713) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-567 (-501))))) (-1279 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-1270 (((-798) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-1665 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-3633 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-452 |#1| |#2| |#3| |#4|) (-1104 |#1| |#2|) (-1020) (-1020) (-1104 |#1| |#2|) |#2|) (T -452))
+NIL
+(-1104 |#1| |#2|)
+((-1260 (((-108) $ $) NIL)) (-4022 (((-592 (-2 (|:| -2849 $) (|:| -2409 (-592 |#4|)))) (-592 |#4|)) NIL)) (-3221 (((-592 $) (-592 |#4|)) NIL)) (-2383 (((-592 |#3|) $) NIL)) (-3163 (((-108) $) NIL)) (-3018 (((-108) $) NIL (|has| |#1| (-517)))) (-2220 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1952 ((|#4| |#4| $) NIL)) (-2855 (((-2 (|:| |under| $) (|:| -2793 $) (|:| |upper| $)) $ |#3|) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-3826 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2305 (($) NIL T CONST)) (-3393 (((-108) $) 26 (|has| |#1| (-517)))) (-3438 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1396 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3291 (((-108) $) NIL (|has| |#1| (-517)))) (-4032 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1653 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1551 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-2591 (((-3 $ "failed") (-592 |#4|)) NIL)) (-3898 (($ (-592 |#4|)) NIL)) (-3121 (((-3 $ "failed") $) 39)) (-2457 ((|#4| |#4| $) NIL)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020))))) (-1614 (($ |#4| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-3496 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-4047 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-3129 ((|#4| |#4| $) NIL)) (-3503 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4255))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4255))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2520 (((-2 (|:| -2849 (-592 |#4|)) (|:| -2409 (-592 |#4|))) $) NIL)) (-3702 (((-592 |#4|) $) 16 (|has| $ (-6 -4255)))) (-4008 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1776 ((|#3| $) 33)) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 |#4|) $) 17 (|has| $ (-6 -4255)))) (-2783 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020))))) (-2622 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#4| |#4|) $) 21)) (-2723 (((-592 |#3|) $) NIL)) (-2069 (((-108) |#3| $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL)) (-1636 (((-3 |#4| "failed") $) 37)) (-3231 (((-592 |#4|) $) NIL)) (-3134 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3149 ((|#4| |#4| $) NIL)) (-1363 (((-108) $ $) NIL)) (-1410 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2505 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3417 ((|#4| |#4| $) NIL)) (-2012 (((-1038) $) NIL)) (-3110 (((-3 |#4| "failed") $) 35)) (-3207 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3599 (((-3 $ "failed") $ |#4|) 47)) (-2182 (($ $ |#4|) NIL)) (-3006 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) 15)) (-2718 (($) 13)) (-1587 (((-713) $) NIL)) (-2040 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) 12)) (-2749 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-1279 (($ (-592 |#4|)) 20)) (-3422 (($ $ |#3|) 42)) (-1248 (($ $ |#3|) 44)) (-1963 (($ $) NIL)) (-1847 (($ $ |#3|) NIL)) (-1270 (((-798) $) 31) (((-592 |#4|) $) 40)) (-1970 (((-713) $) NIL (|has| |#3| (-346)))) (-2927 (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4213 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-3633 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-3726 (((-592 |#3|) $) NIL)) (-1728 (((-108) |#3| $) NIL)) (-3994 (((-108) $ $) NIL)) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-453 |#1| |#2| |#3| |#4|) (-1121 |#1| |#2| |#3| |#4|) (-517) (-735) (-789) (-991 |#1| |#2| |#3|)) (T -453))
+NIL
+(-1121 |#1| |#2| |#3| |#4|)
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3197 (((-108) $ $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-3898 (((-525) $) NIL) (((-385 (-525)) $) NIL)) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-1535 (($) 18)) (-1985 (((-108) $) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2195 (((-396 $) $) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2749 (((-357) $) 22) (((-205) $) 25) (((-385 (-1087 (-525))) $) 19) (((-501) $) 52)) (-1270 (((-798) $) 50) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (((-205) $) 24) (((-357) $) 21)) (-2104 (((-713)) NIL)) (-3959 (((-108) $ $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) 36 T CONST)) (-3363 (($) 11 T CONST)) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
+(((-454) (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))) (-953) (-566 (-205)) (-566 (-357)) (-567 (-385 (-1087 (-525)))) (-567 (-501)) (-10 -8 (-15 -1535 ($))))) (T -454))
+((-1535 (*1 *1) (-5 *1 (-454))))
+(-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))) (-953) (-566 (-205)) (-566 (-357)) (-567 (-385 (-1087 (-525)))) (-567 (-501)) (-10 -8 (-15 -1535 ($))))
+((-1260 (((-108) $ $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3476 (($) NIL) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-2782 (((-1178) $ |#1| |#1|) NIL (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 ((|#2| $ |#1| |#2|) 16)) (-1608 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2772 (((-3 |#2| "failed") |#1| $) 20)) (-2305 (($) NIL T CONST)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-2592 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-3 |#2| "failed") |#1| $) 18)) (-1614 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-3503 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#2| $ |#1|) NIL)) (-3702 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-2710 ((|#1| $) NIL (|has| |#1| (-789)))) (-1749 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-3478 ((|#1| $) NIL (|has| |#1| (-789)))) (-2622 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4256))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-4076 (((-592 |#1|) $) 13)) (-1522 (((-108) |#1| $) NIL)) (-3955 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-3985 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-4142 (((-592 |#1|) $) NIL)) (-3845 (((-108) |#1| $) NIL)) (-2012 (((-1038) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3110 ((|#2| $) NIL (|has| |#1| (-789)))) (-3207 (((-3 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) "failed") (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL)) (-2042 (($ $ |#2|) NIL (|has| $ (-6 -4256)))) (-1881 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-3006 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1777 (((-592 |#2|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) 19)) (-3410 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3981 (($) NIL) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-2040 (((-713) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-713) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-567 (-501))))) (-1279 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-1270 (((-798) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-1665 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-3633 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 11 (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3596 (((-713) $) 15 (|has| $ (-6 -4255)))))
+(((-455 |#1| |#2| |#3|) (-13 (-1104 |#1| |#2|) (-10 -7 (-6 -4255))) (-1020) (-1020) (-1074)) (T -455))
+NIL
+(-13 (-1104 |#1| |#2|) (-10 -7 (-6 -4255)))
+((-1490 (((-525) (-525) (-525)) 7)) (-2846 (((-108) (-525) (-525) (-525) (-525)) 11)) (-3752 (((-1173 (-592 (-525))) (-713) (-713)) 23)))
+(((-456) (-10 -7 (-15 -1490 ((-525) (-525) (-525))) (-15 -2846 ((-108) (-525) (-525) (-525) (-525))) (-15 -3752 ((-1173 (-592 (-525))) (-713) (-713))))) (T -456))
+((-3752 (*1 *2 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1173 (-592 (-525)))) (-5 *1 (-456)))) (-2846 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-456)))) (-1490 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-456)))))
+(-10 -7 (-15 -1490 ((-525) (-525) (-525))) (-15 -2846 ((-108) (-525) (-525) (-525) (-525))) (-15 -3752 ((-1173 (-592 (-525))) (-713) (-713))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2383 (((-592 (-800 |#1|)) $) NIL)) (-2146 (((-1087 $) $ (-800 |#1|)) NIL) (((-1087 |#2|) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-3711 (($ $) NIL (|has| |#2| (-517)))) (-3380 (((-108) $) NIL (|has| |#2| (-517)))) (-3848 (((-713) $) NIL) (((-713) $ (-592 (-800 |#1|))) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-3706 (($ $) NIL (|has| |#2| (-429)))) (-2100 (((-396 $) $) NIL (|has| |#2| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-800 |#1|) "failed") $) NIL)) (-3898 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-800 |#1|) $) NIL)) (-1516 (($ $ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-2866 (($ $ (-592 (-525))) NIL)) (-2571 (($ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3026 (($ $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-2558 (((-592 $) $) NIL)) (-3836 (((-108) $) NIL (|has| |#2| (-844)))) (-2192 (($ $ |#2| (-458 (-3596 |#1|) (-713)) $) NIL)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) NIL)) (-2368 (($ (-1087 |#2|) (-800 |#1|)) NIL) (($ (-1087 $) (-800 |#1|)) NIL)) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) NIL)) (-2352 (($ |#2| (-458 (-3596 |#1|) (-713))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ (-800 |#1|)) NIL)) (-3724 (((-458 (-3596 |#1|) (-713)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-2371 (($ $ $) NIL (|has| |#2| (-789)))) (-2535 (($ $ $) NIL (|has| |#2| (-789)))) (-3922 (($ (-1 (-458 (-3596 |#1|) (-713)) (-458 (-3596 |#1|) (-713))) $) NIL)) (-2694 (($ (-1 |#2| |#2|) $) NIL)) (-3567 (((-3 (-800 |#1|) "failed") $) NIL)) (-2538 (($ $) NIL)) (-2548 ((|#2| $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3451 (((-1074) $) NIL)) (-4228 (((-3 (-592 $) "failed") $) NIL)) (-3852 (((-3 (-592 $) "failed") $) NIL)) (-1553 (((-3 (-2 (|:| |var| (-800 |#1|)) (|:| -1864 (-713))) "failed") $) NIL)) (-2012 (((-1038) $) NIL)) (-2513 (((-108) $) NIL)) (-2525 ((|#2| $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-429)))) (-2794 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-2195 (((-396 $) $) NIL (|has| |#2| (-844)))) (-1680 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2602 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-800 |#1|) |#2|) NIL) (($ $ (-592 (-800 |#1|)) (-592 |#2|)) NIL) (($ $ (-800 |#1|) $) NIL) (($ $ (-592 (-800 |#1|)) (-592 $)) NIL)) (-2094 (($ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-2523 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-1587 (((-458 (-3596 |#1|) (-713)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-2749 (((-827 (-357)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-800 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2026 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-800 |#1|)) NIL) (($ (-385 (-525))) NIL (-3279 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-1562 (((-592 |#2|) $) NIL)) (-3468 ((|#2| $ (-458 (-3596 |#1|) (-713))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-2104 (((-713)) NIL)) (-3658 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-3959 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-4045 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4100 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-457 |#1| |#2|) (-13 (-884 |#2| (-458 (-3596 |#1|) (-713)) (-800 |#1|)) (-10 -8 (-15 -2866 ($ $ (-592 (-525)))))) (-592 (-1091)) (-977)) (T -457))
+((-2866 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-457 *3 *4)) (-14 *3 (-592 (-1091))) (-4 *4 (-977)))))
+(-13 (-884 |#2| (-458 (-3596 |#1|) (-713)) (-800 |#1|)) (-10 -8 (-15 -2866 ($ $ (-592 (-525))))))
+((-1260 (((-108) $ $) NIL (|has| |#2| (-1020)))) (-1989 (((-108) $) NIL (|has| |#2| (-126)))) (-1606 (($ (-856)) NIL (|has| |#2| (-977)))) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-2017 (($ $ $) NIL (|has| |#2| (-735)))) (-1342 (((-3 $ "failed") $ $) NIL (|has| |#2| (-126)))) (-3330 (((-108) $ (-713)) NIL)) (-4190 (((-713)) NIL (|has| |#2| (-346)))) (-1436 (((-525) $) NIL (|has| |#2| (-787)))) (-1429 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4256)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1020)))) (-3898 (((-525) $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) ((|#2| $) NIL (|has| |#2| (-1020)))) (-3416 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) NIL (|has| |#2| (-977))) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-977)))) (-3762 (((-3 $ "failed") $) NIL (|has| |#2| (-669)))) (-2899 (($) NIL (|has| |#2| (-346)))) (-2632 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#2| $ (-525)) 11)) (-3017 (((-108) $) NIL (|has| |#2| (-787)))) (-3702 (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-1985 (((-108) $) NIL (|has| |#2| (-669)))) (-3912 (((-108) $) NIL (|has| |#2| (-787)))) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) NIL (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-1749 (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2622 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#2| |#2|) $) NIL)) (-1736 (((-856) $) NIL (|has| |#2| (-346)))) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#2| (-1020)))) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-3640 (($ (-856)) NIL (|has| |#2| (-346)))) (-2012 (((-1038) $) NIL (|has| |#2| (-1020)))) (-3110 ((|#2| $) NIL (|has| (-525) (-789)))) (-2042 (($ $ |#2|) NIL (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1777 (((-592 |#2|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL)) (-1809 ((|#2| $ $) NIL (|has| |#2| (-977)))) (-2256 (($ (-1173 |#2|)) NIL)) (-3831 (((-128)) NIL (|has| |#2| (-341)))) (-2523 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1091)) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-2040 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1451 (($ $) NIL)) (-1270 (((-1173 |#2|) $) NIL) (($ (-525)) NIL (-3279 (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) (|has| |#2| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (($ |#2|) NIL (|has| |#2| (-1020))) (((-798) $) NIL (|has| |#2| (-566 (-798))))) (-2104 (((-713)) NIL (|has| |#2| (-977)))) (-3633 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-2086 (($ $) NIL (|has| |#2| (-787)))) (-1576 (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (-3355 (($) NIL (|has| |#2| (-126)) CONST)) (-3363 (($) NIL (|has| |#2| (-669)) CONST)) (-2093 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1091)) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-4045 (((-108) $ $) NIL (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4026 (((-108) $ $) NIL (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3994 (((-108) $ $) NIL (|has| |#2| (-1020)))) (-4037 (((-108) $ $) NIL (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4017 (((-108) $ $) 15 (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4100 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4090 (($ $ $) NIL (|has| |#2| (-977))) (($ $) NIL (|has| |#2| (-977)))) (-4080 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (* (($ (-525) $) NIL (|has| |#2| (-977))) (($ $ $) NIL (|has| |#2| (-669))) (($ $ |#2|) NIL (|has| |#2| (-669))) (($ |#2| $) NIL (|has| |#2| (-669))) (($ (-713) $) NIL (|has| |#2| (-126))) (($ (-856) $) NIL (|has| |#2| (-25)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
(((-458 |#1| |#2|) (-218 |#1| |#2|) (-713) (-735)) (T -458))
NIL
(-218 |#1| |#2|)
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3410 (((-108) $ (-713)) NIL)) (-1505 (($) NIL T CONST)) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-2749 (($ $ $) 32)) (-1932 (($ $ $) 31)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3630 ((|#1| $) 26)) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2570 ((|#1| $) 27)) (-2573 (($ |#1| $) 10)) (-3622 (($ (-592 |#1|)) 12)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3513 ((|#1| $) 23)) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) 9)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-3612 (($ (-592 |#1|)) 29)) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4140 (((-713) $) 21 (|has| $ (-6 -4254)))))
-(((-459 |#1|) (-13 (-901 |#1|) (-10 -8 (-15 -3622 ($ (-592 |#1|))))) (-789)) (T -459))
-((-3622 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-459 *3)))))
-(-13 (-901 |#1|) (-10 -8 (-15 -3622 ($ (-592 |#1|)))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-4004 (($ $) 69)) (-3654 (((-108) $) NIL)) (-2337 (((-1073) $) NIL)) (-3666 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 44)) (-2663 (((-1037) $) NIL)) (-1669 (((-3 |#4| "failed") $) 107)) (-2577 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-525)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3149 (((-2 (|:| -2281 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-1908 (((-797) $) 102)) (-3875 (($) 33 T CONST)) (-3961 (((-108) $ $) 109)) (-4070 (($ $) 72) (($ $ $) NIL)) (-4059 (($ $ $) 70)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 73)))
-(((-460 |#1| |#2| |#3| |#4|) (-313 |#1| |#2| |#3| |#4|) (-341) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -460))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3330 (((-108) $ (-713)) NIL)) (-2305 (($) NIL T CONST)) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-1999 (($ $ $) 32)) (-3743 (($ $ $) 31)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2535 ((|#1| $) 26)) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-3955 ((|#1| $) 27)) (-3985 (($ |#1| $) 10)) (-1756 (($ (-592 |#1|)) 12)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-1881 ((|#1| $) 23)) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) 9)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-1665 (($ (-592 |#1|)) 29)) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3596 (((-713) $) 21 (|has| $ (-6 -4255)))))
+(((-459 |#1|) (-13 (-902 |#1|) (-10 -8 (-15 -1756 ($ (-592 |#1|))))) (-789)) (T -459))
+((-1756 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-459 *3)))))
+(-13 (-902 |#1|) (-10 -8 (-15 -1756 ($ (-592 |#1|)))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-3503 (($ $) 69)) (-3905 (((-108) $) NIL)) (-3451 (((-1074) $) NIL)) (-4015 (((-391 |#2| (-385 |#2|) |#3| |#4|) $) 44)) (-2012 (((-1038) $) NIL)) (-3523 (((-3 |#4| "failed") $) 107)) (-4014 (($ (-391 |#2| (-385 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-525)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-1588 (((-2 (|:| -3450 (-391 |#2| (-385 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-1270 (((-798) $) 102)) (-3355 (($) 33 T CONST)) (-3994 (((-108) $ $) 109)) (-4090 (($ $) 72) (($ $ $) NIL)) (-4080 (($ $ $) 70)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 73)))
+(((-460 |#1| |#2| |#3| |#4|) (-313 |#1| |#2| |#3| |#4|) (-341) (-1149 |#1|) (-1149 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -460))
NIL
(-313 |#1| |#2| |#3| |#4|)
-((-2826 (((-525) (-592 (-525))) 30)) (-3803 ((|#1| (-592 |#1|)) 56)) (-3631 (((-592 |#1|) (-592 |#1|)) 57)) (-1927 (((-592 |#1|) (-592 |#1|)) 59)) (-3244 ((|#1| (-592 |#1|)) 58)) (-2751 (((-592 (-525)) (-592 |#1|)) 33)))
-(((-461 |#1|) (-10 -7 (-15 -3244 (|#1| (-592 |#1|))) (-15 -3803 (|#1| (-592 |#1|))) (-15 -1927 ((-592 |#1|) (-592 |#1|))) (-15 -3631 ((-592 |#1|) (-592 |#1|))) (-15 -2751 ((-592 (-525)) (-592 |#1|))) (-15 -2826 ((-525) (-592 (-525))))) (-1148 (-525))) (T -461))
-((-2826 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-525)) (-5 *1 (-461 *4)) (-4 *4 (-1148 (-525))))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1148 (-525))) (-5 *2 (-592 (-525))) (-5 *1 (-461 *4)))) (-3631 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1148 (-525))) (-5 *1 (-461 *3)))) (-1927 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1148 (-525))) (-5 *1 (-461 *3)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1148 (-525))))) (-3244 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1148 (-525))))))
-(-10 -7 (-15 -3244 (|#1| (-592 |#1|))) (-15 -3803 (|#1| (-592 |#1|))) (-15 -1927 ((-592 |#1|) (-592 |#1|))) (-15 -3631 ((-592 |#1|) (-592 |#1|))) (-15 -2751 ((-592 (-525)) (-592 |#1|))) (-15 -2826 ((-525) (-592 (-525)))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3115 (((-525) $) NIL (|has| (-525) (-286)))) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-2305 (((-108) $ $) NIL)) (-1690 (((-525) $) NIL (|has| (-525) (-762)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL (|has| (-525) (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-967 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-967 (-525))))) (-2831 (((-525) $) NIL) (((-1090) $) NIL (|has| (-525) (-967 (-1090)))) (((-385 (-525)) $) NIL (|has| (-525) (-967 (-525)))) (((-525) $) NIL (|has| (-525) (-967 (-525))))) (-2373 (($ $ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) NIL (|has| (-525) (-510)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-3026 (((-108) $) NIL (|has| (-525) (-762)))) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| (-525) (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| (-525) (-820 (-357))))) (-2133 (((-108) $) NIL)) (-3830 (($ $) NIL)) (-1303 (((-525) $) NIL)) (-1816 (((-3 $ "failed") $) NIL (|has| (-525) (-1066)))) (-2882 (((-108) $) NIL (|has| (-525) (-762)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3525 (($ $ $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| (-525) (-789)))) (-1370 (($ (-1 (-525) (-525)) $) NIL)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL (|has| (-525) (-1066)) CONST)) (-3685 (($ (-385 (-525))) 9)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2723 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-1720 (((-525) $) NIL (|has| (-525) (-510)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-3959 (((-396 $) $) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3092 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1090)) (-592 (-525))) NIL (|has| (-525) (-486 (-1090) (-525)))) (($ $ (-1090) (-525)) NIL (|has| (-525) (-486 (-1090) (-525))))) (-2183 (((-713) $) NIL)) (-3928 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-3013 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1090)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-1915 (($ $) NIL)) (-1312 (((-525) $) NIL)) (-1427 (((-826 (-525)) $) NIL (|has| (-525) (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| (-525) (-567 (-826 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-952))) (((-205) $) NIL (|has| (-525) (-952)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-843))))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1090)) NIL (|has| (-525) (-967 (-1090)))) (((-385 (-525)) $) NIL) (((-935 16) $) 10)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| (-525) (-843))) (|has| (-525) (-136))))) (-2093 (((-713)) NIL)) (-2498 (((-525) $) NIL (|has| (-525) (-510)))) (-2262 (((-108) $ $) NIL)) (-2092 (($ $) NIL (|has| (-525) (-762)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1090)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4024 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3995 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3983 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4082 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL)))
-(((-462) (-13 (-924 (-525)) (-10 -8 (-15 -1908 ((-385 (-525)) $)) (-15 -1908 ((-935 16) $)) (-15 -2723 ((-385 (-525)) $)) (-15 -3685 ($ (-385 (-525))))))) (T -462))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-935 16)) (-5 *1 (-462)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))) (-3685 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))))
-(-13 (-924 (-525)) (-10 -8 (-15 -1908 ((-385 (-525)) $)) (-15 -1908 ((-935 16) $)) (-15 -2723 ((-385 (-525)) $)) (-15 -3685 ($ (-385 (-525))))))
-((-3168 (((-592 |#2|) $) 23)) (-4132 (((-108) |#2| $) 28)) (-3494 (((-108) (-1 (-108) |#2|) $) 21)) (-3092 (($ $ (-592 (-273 |#2|))) 13) (($ $ (-273 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-592 |#2|) (-592 |#2|)) NIL)) (-2686 (((-713) (-1 (-108) |#2|) $) 22) (((-713) |#2| $) 26)) (-1908 (((-797) $) 37)) (-2667 (((-108) (-1 (-108) |#2|) $) 20)) (-3961 (((-108) $ $) 31)) (-4140 (((-713) $) 17)))
-(((-463 |#1| |#2|) (-10 -8 (-15 -1908 ((-797) |#1|)) (-15 -3961 ((-108) |#1| |#1|)) (-15 -3092 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -3092 (|#1| |#1| |#2| |#2|)) (-15 -3092 (|#1| |#1| (-273 |#2|))) (-15 -3092 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -4132 ((-108) |#2| |#1|)) (-15 -2686 ((-713) |#2| |#1|)) (-15 -3168 ((-592 |#2|) |#1|)) (-15 -2686 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3494 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2667 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -4140 ((-713) |#1|))) (-464 |#2|) (-1126)) (T -463))
-NIL
-(-10 -8 (-15 -1908 ((-797) |#1|)) (-15 -3961 ((-108) |#1| |#1|)) (-15 -3092 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -3092 (|#1| |#1| |#2| |#2|)) (-15 -3092 (|#1| |#1| (-273 |#2|))) (-15 -3092 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -4132 ((-108) |#2| |#1|)) (-15 -2686 ((-713) |#2| |#1|)) (-15 -3168 ((-592 |#2|) |#1|)) (-15 -2686 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3494 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2667 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -4140 ((-713) |#1|)))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3410 (((-108) $ (-713)) 8)) (-1505 (($) 7 T CONST)) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) 9)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-464 |#1|) (-131) (-1126)) (T -464))
-((-1370 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-464 *3)) (-4 *3 (-1126)))) (-2857 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4255)) (-4 *1 (-464 *3)) (-4 *3 (-1126)))) (-2667 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4254)) (-4 *1 (-464 *4)) (-4 *4 (-1126)) (-5 *2 (-108)))) (-3494 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4254)) (-4 *1 (-464 *4)) (-4 *4 (-1126)) (-5 *2 (-108)))) (-2686 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4254)) (-4 *1 (-464 *4)) (-4 *4 (-1126)) (-5 *2 (-713)))) (-2026 (*1 *2 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-464 *3)) (-4 *3 (-1126)) (-5 *2 (-592 *3)))) (-3168 (*1 *2 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-464 *3)) (-4 *3 (-1126)) (-5 *2 (-592 *3)))) (-2686 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-464 *3)) (-4 *3 (-1126)) (-4 *3 (-1019)) (-5 *2 (-713)))) (-4132 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-464 *3)) (-4 *3 (-1126)) (-4 *3 (-1019)) (-5 *2 (-108)))))
-(-13 (-33) (-10 -8 (IF (|has| |t#1| (-566 (-797))) (-6 (-566 (-797))) |%noBranch|) (IF (|has| |t#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |t#1| (-1019)) (IF (|has| |t#1| (-288 |t#1|)) (-6 (-288 |t#1|)) |%noBranch|) |%noBranch|) (-15 -1370 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4255)) (-15 -2857 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4254)) (PROGN (-15 -2667 ((-108) (-1 (-108) |t#1|) $)) (-15 -3494 ((-108) (-1 (-108) |t#1|) $)) (-15 -2686 ((-713) (-1 (-108) |t#1|) $)) (-15 -2026 ((-592 |t#1|) $)) (-15 -3168 ((-592 |t#1|) $)) (IF (|has| |t#1| (-1019)) (PROGN (-15 -2686 ((-713) |t#1| $)) (-15 -4132 ((-108) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T))
-((-4049 (($ $) 15)) (-4026 (($ $) 24)) (-4072 (($ $) 12)) (-4084 (($ $) 10)) (-4061 (($ $) 17)) (-4038 (($ $) 22)))
-(((-465 |#1|) (-10 -8 (-15 -4038 (|#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 -4084 (|#1| |#1|)) (-15 -4072 (|#1| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -4049 (|#1| |#1|))) (-466)) (T -465))
-NIL
-(-10 -8 (-15 -4038 (|#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 -4084 (|#1| |#1|)) (-15 -4072 (|#1| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)))
-((-4049 (($ $) 11)) (-4026 (($ $) 10)) (-4072 (($ $) 9)) (-4084 (($ $) 8)) (-4061 (($ $) 7)) (-4038 (($ $) 6)))
+((-1579 (((-525) (-592 (-525))) 30)) (-2974 ((|#1| (-592 |#1|)) 56)) (-3673 (((-592 |#1|) (-592 |#1|)) 57)) (-3699 (((-592 |#1|) (-592 |#1|)) 59)) (-2794 ((|#1| (-592 |#1|)) 58)) (-2026 (((-592 (-525)) (-592 |#1|)) 33)))
+(((-461 |#1|) (-10 -7 (-15 -2794 (|#1| (-592 |#1|))) (-15 -2974 (|#1| (-592 |#1|))) (-15 -3699 ((-592 |#1|) (-592 |#1|))) (-15 -3673 ((-592 |#1|) (-592 |#1|))) (-15 -2026 ((-592 (-525)) (-592 |#1|))) (-15 -1579 ((-525) (-592 (-525))))) (-1149 (-525))) (T -461))
+((-1579 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-525)) (-5 *1 (-461 *4)) (-4 *4 (-1149 (-525))))) (-2026 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1149 (-525))) (-5 *2 (-592 (-525))) (-5 *1 (-461 *4)))) (-3673 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1149 (-525))) (-5 *1 (-461 *3)))) (-3699 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1149 (-525))) (-5 *1 (-461 *3)))) (-2974 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1149 (-525))))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1149 (-525))))))
+(-10 -7 (-15 -2794 (|#1| (-592 |#1|))) (-15 -2974 (|#1| (-592 |#1|))) (-15 -3699 ((-592 |#1|) (-592 |#1|))) (-15 -3673 ((-592 |#1|) (-592 |#1|))) (-15 -2026 ((-592 (-525)) (-592 |#1|))) (-15 -1579 ((-525) (-592 (-525)))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2628 (((-525) $) NIL (|has| (-525) (-286)))) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-525) (-844)))) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| (-525) (-844)))) (-3197 (((-108) $ $) NIL)) (-1436 (((-525) $) NIL (|has| (-525) (-762)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL) (((-3 (-1091) "failed") $) NIL (|has| (-525) (-968 (-1091)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-525) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-525) (-968 (-525))))) (-3898 (((-525) $) NIL) (((-1091) $) NIL (|has| (-525) (-968 (-1091)))) (((-385 (-525)) $) NIL (|has| (-525) (-968 (-525)))) (((-525) $) NIL (|has| (-525) (-968 (-525))))) (-1726 (($ $ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) NIL (|has| (-525) (-510)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-3017 (((-108) $) NIL (|has| (-525) (-762)))) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-525) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-525) (-821 (-357))))) (-1985 (((-108) $) NIL)) (-1931 (($ $) NIL)) (-1498 (((-525) $) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| (-525) (-1067)))) (-3912 (((-108) $) NIL (|has| (-525) (-762)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2371 (($ $ $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| (-525) (-789)))) (-2694 (($ (-1 (-525) (-525)) $) NIL)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL (|has| (-525) (-1067)) CONST)) (-4195 (($ (-385 (-525))) 9)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3025 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) NIL)) (-2793 (((-525) $) NIL (|has| (-525) (-510)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-525) (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-525) (-844)))) (-2195 (((-396 $) $) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2602 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1091)) (-592 (-525))) NIL (|has| (-525) (-486 (-1091) (-525)))) (($ $ (-1091) (-525)) NIL (|has| (-525) (-486 (-1091) (-525))))) (-1290 (((-713) $) NIL)) (-3410 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2523 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1091)) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-2097 (($ $) NIL)) (-1512 (((-525) $) NIL)) (-2749 (((-827 (-525)) $) NIL (|has| (-525) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-525) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-953))) (((-205) $) NIL (|has| (-525) (-953)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-844))))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 8) (($ (-525)) NIL) (($ (-1091)) NIL (|has| (-525) (-968 (-1091)))) (((-385 (-525)) $) NIL) (((-936 16) $) 10)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| (-525) (-844))) (|has| (-525) (-136))))) (-2104 (((-713)) NIL)) (-1438 (((-525) $) NIL (|has| (-525) (-510)))) (-3959 (((-108) $ $) NIL)) (-2086 (($ $) NIL (|has| (-525) (-762)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1091)) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4045 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4026 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4017 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4100 (($ $ $) NIL) (($ (-525) (-525)) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) NIL) (($ $ (-525)) NIL)))
+(((-462) (-13 (-925 (-525)) (-10 -8 (-15 -1270 ((-385 (-525)) $)) (-15 -1270 ((-936 16) $)) (-15 -3025 ((-385 (-525)) $)) (-15 -4195 ($ (-385 (-525))))))) (T -462))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-936 16)) (-5 *1 (-462)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))) (-4195 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))))
+(-13 (-925 (-525)) (-10 -8 (-15 -1270 ((-385 (-525)) $)) (-15 -1270 ((-936 16) $)) (-15 -3025 ((-385 (-525)) $)) (-15 -4195 ($ (-385 (-525))))))
+((-1749 (((-592 |#2|) $) 23)) (-2783 (((-108) |#2| $) 28)) (-3006 (((-108) (-1 (-108) |#2|) $) 21)) (-2602 (($ $ (-592 (-273 |#2|))) 13) (($ $ (-273 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-592 |#2|) (-592 |#2|)) NIL)) (-2040 (((-713) (-1 (-108) |#2|) $) 22) (((-713) |#2| $) 26)) (-1270 (((-798) $) 37)) (-3633 (((-108) (-1 (-108) |#2|) $) 20)) (-3994 (((-108) $ $) 31)) (-3596 (((-713) $) 17)))
+(((-463 |#1| |#2|) (-10 -8 (-15 -1270 ((-798) |#1|)) (-15 -3994 ((-108) |#1| |#1|)) (-15 -2602 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -2602 (|#1| |#1| |#2| |#2|)) (-15 -2602 (|#1| |#1| (-273 |#2|))) (-15 -2602 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2783 ((-108) |#2| |#1|)) (-15 -2040 ((-713) |#2| |#1|)) (-15 -1749 ((-592 |#2|) |#1|)) (-15 -2040 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3633 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3596 ((-713) |#1|))) (-464 |#2|) (-1127)) (T -463))
+NIL
+(-10 -8 (-15 -1270 ((-798) |#1|)) (-15 -3994 ((-108) |#1| |#1|)) (-15 -2602 (|#1| |#1| (-592 |#2|) (-592 |#2|))) (-15 -2602 (|#1| |#1| |#2| |#2|)) (-15 -2602 (|#1| |#1| (-273 |#2|))) (-15 -2602 (|#1| |#1| (-592 (-273 |#2|)))) (-15 -2783 ((-108) |#2| |#1|)) (-15 -2040 ((-713) |#2| |#1|)) (-15 -1749 ((-592 |#2|) |#1|)) (-15 -2040 ((-713) (-1 (-108) |#2|) |#1|)) (-15 -3006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3633 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3596 ((-713) |#1|)))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3330 (((-108) $ (-713)) 8)) (-2305 (($) 7 T CONST)) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) 9)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-464 |#1|) (-131) (-1127)) (T -464))
+((-2694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-464 *3)) (-4 *3 (-1127)))) (-2622 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4256)) (-4 *1 (-464 *3)) (-4 *3 (-1127)))) (-3633 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4255)) (-4 *1 (-464 *4)) (-4 *4 (-1127)) (-5 *2 (-108)))) (-3006 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4255)) (-4 *1 (-464 *4)) (-4 *4 (-1127)) (-5 *2 (-108)))) (-2040 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4255)) (-4 *1 (-464 *4)) (-4 *4 (-1127)) (-5 *2 (-713)))) (-3702 (*1 *2 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-464 *3)) (-4 *3 (-1127)) (-5 *2 (-592 *3)))) (-1749 (*1 *2 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-464 *3)) (-4 *3 (-1127)) (-5 *2 (-592 *3)))) (-2040 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-464 *3)) (-4 *3 (-1127)) (-4 *3 (-1020)) (-5 *2 (-713)))) (-2783 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-464 *3)) (-4 *3 (-1127)) (-4 *3 (-1020)) (-5 *2 (-108)))))
+(-13 (-33) (-10 -8 (IF (|has| |t#1| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) (IF (|has| |t#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |t#1| (-1020)) (IF (|has| |t#1| (-288 |t#1|)) (-6 (-288 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2694 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4256)) (-15 -2622 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4255)) (PROGN (-15 -3633 ((-108) (-1 (-108) |t#1|) $)) (-15 -3006 ((-108) (-1 (-108) |t#1|) $)) (-15 -2040 ((-713) (-1 (-108) |t#1|) $)) (-15 -3702 ((-592 |t#1|) $)) (-15 -1749 ((-592 |t#1|) $)) (IF (|has| |t#1| (-1020)) (PROGN (-15 -2040 ((-713) |t#1| $)) (-15 -2783 ((-108) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1127) . T))
+((-2351 (($ $) 15)) (-2320 (($ $) 24)) (-2382 (($ $) 12)) (-2396 (($ $) 10)) (-2367 (($ $) 17)) (-2335 (($ $) 22)))
+(((-465 |#1|) (-10 -8 (-15 -2335 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2351 (|#1| |#1|))) (-466)) (T -465))
+NIL
+(-10 -8 (-15 -2335 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2351 (|#1| |#1|)))
+((-2351 (($ $) 11)) (-2320 (($ $) 10)) (-2382 (($ $) 9)) (-2396 (($ $) 8)) (-2367 (($ $) 7)) (-2335 (($ $) 6)))
(((-466) (-131)) (T -466))
-((-4049 (*1 *1 *1) (-4 *1 (-466))) (-4026 (*1 *1 *1) (-4 *1 (-466))) (-4072 (*1 *1 *1) (-4 *1 (-466))) (-4084 (*1 *1 *1) (-4 *1 (-466))) (-4061 (*1 *1 *1) (-4 *1 (-466))) (-4038 (*1 *1 *1) (-4 *1 (-466))))
-(-13 (-10 -8 (-15 -4038 ($ $)) (-15 -4061 ($ $)) (-15 -4084 ($ $)) (-15 -4072 ($ $)) (-15 -4026 ($ $)) (-15 -4049 ($ $))))
-((-3959 (((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|)) 42)))
-(((-467 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 ((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|)))) (-341) (-1148 |#1|) (-13 (-341) (-138) (-667 |#1| |#2|)) (-1148 |#3|)) (T -467))
-((-3959 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) (-4 *7 (-13 (-341) (-138) (-667 *5 *6))) (-5 *2 (-396 *3)) (-5 *1 (-467 *5 *6 *7 *3)) (-4 *3 (-1148 *7)))))
-(-10 -7 (-15 -3959 ((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|))))
-((-1893 (((-108) $ $) NIL)) (-2346 (((-592 $) (-1086 $) (-1090)) NIL) (((-592 $) (-1086 $)) NIL) (((-592 $) (-886 $)) NIL)) (-1694 (($ (-1086 $) (-1090)) NIL) (($ (-1086 $)) NIL) (($ (-886 $)) NIL)) (-1611 (((-108) $) 39)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-1615 (((-108) $ $) 64)) (-3740 (((-592 (-565 $)) $) 48)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1962 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-3969 (($ $) NIL)) (-2305 (((-108) $ $) NIL)) (-1505 (($) NIL T CONST)) (-3884 (((-592 $) (-1086 $) (-1090)) NIL) (((-592 $) (-1086 $)) NIL) (((-592 $) (-886 $)) NIL)) (-4105 (($ (-1086 $) (-1090)) NIL) (($ (-1086 $)) NIL) (($ (-886 $)) NIL)) (-1264 (((-3 (-565 $) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-2831 (((-565 $) $) NIL) (((-525) $) NIL) (((-385 (-525)) $) 50)) (-2373 (($ $ $) NIL)) (-1860 (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3276 (-632 (-385 (-525)))) (|:| |vec| (-1172 (-385 (-525))))) (-632 $) (-1172 $)) NIL) (((-632 (-385 (-525))) (-632 $)) NIL)) (-4004 (($ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-2237 (($ $) NIL) (($ (-592 $)) NIL)) (-2323 (((-592 (-110)) $) NIL)) (-4159 (((-110) (-110)) NIL)) (-2133 (((-108) $) 42)) (-2144 (((-108) $) NIL (|has| $ (-967 (-525))))) (-1303 (((-1042 (-525) (-565 $)) $) 37)) (-3391 (($ $ (-525)) NIL)) (-3477 (((-1086 $) (-1086 $) (-565 $)) 78) (((-1086 $) (-1086 $) (-592 (-565 $))) 55) (($ $ (-565 $)) 67) (($ $ (-592 (-565 $))) 68)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3609 (((-1086 $) (-565 $)) 65 (|has| $ (-976)))) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-1370 (($ (-1 $ $) (-565 $)) NIL)) (-2218 (((-3 (-565 $) "failed") $) NIL)) (-3216 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-3914 (((-592 (-565 $)) $) NIL)) (-1377 (($ (-110) $) NIL) (($ (-110) (-592 $)) NIL)) (-3034 (((-108) $ (-110)) NIL) (((-108) $ (-1090)) NIL)) (-4211 (($ $) NIL)) (-3598 (((-713) $) NIL)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2148 (((-108) $ $) NIL) (((-108) $ (-1090)) NIL)) (-3959 (((-396 $) $) NIL)) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2656 (((-108) $) NIL (|has| $ (-967 (-525))))) (-3092 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1090)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1090) (-1 $ (-592 $))) NIL) (($ $ (-1090) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-2183 (((-713) $) NIL)) (-3928 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-2825 (($ $) NIL) (($ $ $) NIL)) (-3013 (($ $ (-713)) NIL) (($ $) 36)) (-1312 (((-1042 (-525) (-565 $)) $) 20)) (-1654 (($ $) NIL (|has| $ (-976)))) (-1427 (((-357) $) 92) (((-205) $) 100) (((-157 (-357)) $) 108)) (-1908 (((-797) $) NIL) (($ (-565 $)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-1042 (-525) (-565 $))) 21)) (-2093 (((-713)) NIL)) (-1268 (($ $) NIL) (($ (-592 $)) NIL)) (-3824 (((-108) (-110)) 84)) (-2262 (((-108) $ $) NIL)) (-3465 (($ $ (-525)) NIL) (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (-3875 (($) 10 T CONST)) (-3882 (($) 22 T CONST)) (-1424 (($ $ (-713)) NIL) (($ $) NIL)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 24)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4082 (($ $ $) 44)) (-4070 (($ $ $) NIL) (($ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-385 (-525))) NIL) (($ $ (-525)) 46) (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ $ $) 27) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-855) $) NIL)))
-(((-468) (-13 (-281) (-27) (-967 (-525)) (-967 (-385 (-525))) (-588 (-525)) (-952) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -1908 ($ (-1042 (-525) (-565 $)))) (-15 -1303 ((-1042 (-525) (-565 $)) $)) (-15 -1312 ((-1042 (-525) (-565 $)) $)) (-15 -4004 ($ $)) (-15 -1615 ((-108) $ $)) (-15 -3477 ((-1086 $) (-1086 $) (-565 $))) (-15 -3477 ((-1086 $) (-1086 $) (-592 (-565 $)))) (-15 -3477 ($ $ (-565 $))) (-15 -3477 ($ $ (-592 (-565 $))))))) (T -468))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1042 (-525) (-565 (-468)))) (-5 *1 (-468)))) (-1303 (*1 *2 *1) (-12 (-5 *2 (-1042 (-525) (-565 (-468)))) (-5 *1 (-468)))) (-1312 (*1 *2 *1) (-12 (-5 *2 (-1042 (-525) (-565 (-468)))) (-5 *1 (-468)))) (-4004 (*1 *1 *1) (-5 *1 (-468))) (-1615 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-468)))) (-3477 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-468))) (-5 *3 (-565 (-468))) (-5 *1 (-468)))) (-3477 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 (-468))) (-5 *3 (-592 (-565 (-468)))) (-5 *1 (-468)))) (-3477 (*1 *1 *1 *2) (-12 (-5 *2 (-565 (-468))) (-5 *1 (-468)))) (-3477 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-468)))) (-5 *1 (-468)))))
-(-13 (-281) (-27) (-967 (-525)) (-967 (-385 (-525))) (-588 (-525)) (-952) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -1908 ($ (-1042 (-525) (-565 $)))) (-15 -1303 ((-1042 (-525) (-565 $)) $)) (-15 -1312 ((-1042 (-525) (-565 $)) $)) (-15 -4004 ($ $)) (-15 -1615 ((-108) $ $)) (-15 -3477 ((-1086 $) (-1086 $) (-565 $))) (-15 -3477 ((-1086 $) (-1086 $) (-592 (-565 $)))) (-15 -3477 ($ $ (-565 $))) (-15 -3477 ($ $ (-592 (-565 $))))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3072 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-1356 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789))))) (-3327 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 ((|#1| $ (-525) |#1|) 25 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| $ (-6 -4255)))) (-1693 (($ $) NIL)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2273 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2870 ((|#1| $ (-525) |#1|) 22 (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) 21)) (-3763 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019)))) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4018 (($ (-713) |#1|) 14)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) 12 (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-1932 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1792 (((-525) $) 23 (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3167 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3135 ((|#1| $) NIL (|has| (-525) (-789)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1911 (($ $ |#1|) 10 (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) 13)) (-3928 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 24) (($ $ (-1139 (-525))) NIL)) (-3653 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3703 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) NIL)) (-2664 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4140 (((-713) $) 9 (|has| $ (-6 -4254)))))
-(((-469 |#1| |#2|) (-19 |#1|) (-1126) (-525)) (T -469))
+((-2351 (*1 *1 *1) (-4 *1 (-466))) (-2320 (*1 *1 *1) (-4 *1 (-466))) (-2382 (*1 *1 *1) (-4 *1 (-466))) (-2396 (*1 *1 *1) (-4 *1 (-466))) (-2367 (*1 *1 *1) (-4 *1 (-466))) (-2335 (*1 *1 *1) (-4 *1 (-466))))
+(-13 (-10 -8 (-15 -2335 ($ $)) (-15 -2367 ($ $)) (-15 -2396 ($ $)) (-15 -2382 ($ $)) (-15 -2320 ($ $)) (-15 -2351 ($ $))))
+((-2195 (((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|)) 42)))
+(((-467 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2195 ((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|)))) (-341) (-1149 |#1|) (-13 (-341) (-138) (-667 |#1| |#2|)) (-1149 |#3|)) (T -467))
+((-2195 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1149 *5)) (-4 *5 (-341)) (-4 *7 (-13 (-341) (-138) (-667 *5 *6))) (-5 *2 (-396 *3)) (-5 *1 (-467 *5 *6 *7 *3)) (-4 *3 (-1149 *7)))))
+(-10 -7 (-15 -2195 ((-396 |#4|) |#4| (-1 (-396 |#2|) |#2|))))
+((-1260 (((-108) $ $) NIL)) (-3540 (((-592 $) (-1087 $) (-1091)) NIL) (((-592 $) (-1087 $)) NIL) (((-592 $) (-887 $)) NIL)) (-1466 (($ (-1087 $) (-1091)) NIL) (($ (-1087 $)) NIL) (($ (-887 $)) NIL)) (-1989 (((-108) $) 39)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-2041 (((-108) $ $) 64)) (-1895 (((-592 (-565 $)) $) 48)) (-1342 (((-3 $ "failed") $ $) NIL)) (-1224 (($ $ (-273 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-2211 (($ $) NIL)) (-3197 (((-108) $ $) NIL)) (-2305 (($) NIL T CONST)) (-2533 (((-592 $) (-1087 $) (-1091)) NIL) (((-592 $) (-1087 $)) NIL) (((-592 $) (-887 $)) NIL)) (-3572 (($ (-1087 $) (-1091)) NIL) (($ (-1087 $)) NIL) (($ (-887 $)) NIL)) (-2591 (((-3 (-565 $) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL)) (-3898 (((-565 $) $) NIL) (((-525) $) NIL) (((-385 (-525)) $) 50)) (-1726 (($ $ $) NIL)) (-3416 (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL) (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -1484 (-632 (-385 (-525)))) (|:| |vec| (-1173 (-385 (-525))))) (-632 $) (-1173 $)) NIL) (((-632 (-385 (-525))) (-632 $)) NIL)) (-3503 (($ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-3694 (($ $) NIL) (($ (-592 $)) NIL)) (-3321 (((-592 (-110)) $) NIL)) (-2972 (((-110) (-110)) NIL)) (-1985 (((-108) $) 42)) (-2126 (((-108) $) NIL (|has| $ (-968 (-525))))) (-1498 (((-1043 (-525) (-565 $)) $) 37)) (-3220 (($ $ (-525)) NIL)) (-2900 (((-1087 $) (-1087 $) (-565 $)) 78) (((-1087 $) (-1087 $) (-592 (-565 $))) 55) (($ $ (-565 $)) 67) (($ $ (-592 (-565 $))) 68)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1637 (((-1087 $) (-565 $)) 65 (|has| $ (-977)))) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-2694 (($ (-1 $ $) (-565 $)) NIL)) (-1661 (((-3 (-565 $) "failed") $) NIL)) (-2756 (($ (-592 $)) NIL) (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2129 (((-592 (-565 $)) $) NIL)) (-1581 (($ (-110) $) NIL) (($ (-110) (-592 $)) NIL)) (-3069 (((-108) $ (-110)) NIL) (((-108) $ (-1091)) NIL)) (-2502 (($ $) NIL)) (-1751 (((-713) $) NIL)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2186 (((-108) $ $) NIL) (((-108) $ (-1091)) NIL)) (-2195 (((-396 $) $) NIL)) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3545 (((-108) $) NIL (|has| $ (-968 (-525))))) (-2602 (($ $ (-565 $) $) NIL) (($ $ (-592 (-565 $)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-592 (-1091)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-1091)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-1091) (-1 $ (-592 $))) NIL) (($ $ (-1091) (-1 $ $)) NIL) (($ $ (-592 (-110)) (-592 (-1 $ $))) NIL) (($ $ (-592 (-110)) (-592 (-1 $ (-592 $)))) NIL) (($ $ (-110) (-1 $ (-592 $))) NIL) (($ $ (-110) (-1 $ $)) NIL)) (-1290 (((-713) $) NIL)) (-3410 (($ (-110) $) NIL) (($ (-110) $ $) NIL) (($ (-110) $ $ $) NIL) (($ (-110) $ $ $ $) NIL) (($ (-110) (-592 $)) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-1567 (($ $) NIL) (($ $ $) NIL)) (-2523 (($ $ (-713)) NIL) (($ $) 36)) (-1512 (((-1043 (-525) (-565 $)) $) 20)) (-1571 (($ $) NIL (|has| $ (-977)))) (-2749 (((-357) $) 92) (((-205) $) 100) (((-157 (-357)) $) 108)) (-1270 (((-798) $) NIL) (($ (-565 $)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-1043 (-525) (-565 $))) 21)) (-2104 (((-713)) NIL)) (-1604 (($ $) NIL) (($ (-592 $)) NIL)) (-1863 (((-108) (-110)) 84)) (-3959 (((-108) $ $) NIL)) (-1576 (($ $ (-525)) NIL) (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3355 (($) 10 T CONST)) (-3363 (($) 22 T CONST)) (-2093 (($ $ (-713)) NIL) (($ $) NIL)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 24)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) NIL)) (-4100 (($ $ $) 44)) (-4090 (($ $ $) NIL) (($ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-385 (-525))) NIL) (($ $ (-525)) 46) (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ $ $) 27) (($ (-525) $) NIL) (($ (-713) $) NIL) (($ (-856) $) NIL)))
+(((-468) (-13 (-281) (-27) (-968 (-525)) (-968 (-385 (-525))) (-588 (-525)) (-953) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -1270 ($ (-1043 (-525) (-565 $)))) (-15 -1498 ((-1043 (-525) (-565 $)) $)) (-15 -1512 ((-1043 (-525) (-565 $)) $)) (-15 -3503 ($ $)) (-15 -2041 ((-108) $ $)) (-15 -2900 ((-1087 $) (-1087 $) (-565 $))) (-15 -2900 ((-1087 $) (-1087 $) (-592 (-565 $)))) (-15 -2900 ($ $ (-565 $))) (-15 -2900 ($ $ (-592 (-565 $))))))) (T -468))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1043 (-525) (-565 (-468)))) (-5 *1 (-468)))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-1043 (-525) (-565 (-468)))) (-5 *1 (-468)))) (-1512 (*1 *2 *1) (-12 (-5 *2 (-1043 (-525) (-565 (-468)))) (-5 *1 (-468)))) (-3503 (*1 *1 *1) (-5 *1 (-468))) (-2041 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-468)))) (-2900 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 (-468))) (-5 *3 (-565 (-468))) (-5 *1 (-468)))) (-2900 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 (-468))) (-5 *3 (-592 (-565 (-468)))) (-5 *1 (-468)))) (-2900 (*1 *1 *1 *2) (-12 (-5 *2 (-565 (-468))) (-5 *1 (-468)))) (-2900 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-468)))) (-5 *1 (-468)))))
+(-13 (-281) (-27) (-968 (-525)) (-968 (-385 (-525))) (-588 (-525)) (-953) (-588 (-385 (-525))) (-138) (-567 (-157 (-357))) (-213) (-10 -8 (-15 -1270 ($ (-1043 (-525) (-565 $)))) (-15 -1498 ((-1043 (-525) (-565 $)) $)) (-15 -1512 ((-1043 (-525) (-565 $)) $)) (-15 -3503 ($ $)) (-15 -2041 ((-108) $ $)) (-15 -2900 ((-1087 $) (-1087 $) (-565 $))) (-15 -2900 ((-1087 $) (-1087 $) (-592 (-565 $)))) (-15 -2900 ($ $ (-565 $))) (-15 -2900 ($ $ (-592 (-565 $))))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-2151 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2549 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4256))) (($ $) NIL (-12 (|has| $ (-6 -4256)) (|has| |#1| (-789))))) (-2855 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 ((|#1| $ (-525) |#1|) 25 (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) NIL (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-3559 (($ $) NIL (|has| $ (-6 -4256)))) (-3620 (($ $) NIL)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1614 (($ |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2632 ((|#1| $ (-525) |#1|) 22 (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) 21)) (-1916 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-3489 (($ (-713) |#1|) 14)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) 12 (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-3743 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3478 (((-525) $) 23 (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2683 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3110 ((|#1| $) NIL (|has| (-525) (-789)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2042 (($ $ |#1|) 10 (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) 13)) (-3410 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 24) (($ $ (-1140 (-525))) NIL)) (-3157 (($ $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3216 (($ $ $ (-525)) NIL (|has| $ (-6 -4256)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) NIL)) (-2014 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3596 (((-713) $) 9 (|has| $ (-6 -4255)))))
+(((-469 |#1| |#2|) (-19 |#1|) (-1127) (-525)) (T -469))
NIL
(-19 |#1|)
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2244 (($ $ (-525) (-469 |#1| |#3|)) NIL)) (-2040 (($ $ (-525) (-469 |#1| |#2|)) NIL)) (-1505 (($) NIL T CONST)) (-3606 (((-469 |#1| |#3|) $ (-525)) NIL)) (-2870 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2796 ((|#1| $ (-525) (-525)) NIL)) (-2026 (((-592 |#1|) $) NIL)) (-2606 (((-713) $) NIL)) (-4018 (($ (-713) (-713) |#1|) NIL)) (-2618 (((-713) $) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2746 (((-525) $) NIL)) (-2551 (((-525) $) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1906 (((-525) $) NIL)) (-1950 (((-525) $) NIL)) (-2857 (($ (-1 |#1| |#1|) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1911 (($ $ |#1|) NIL)) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) NIL)) (-2543 (((-469 |#1| |#2|) $ (-525)) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-470 |#1| |#2| |#3|) (-55 |#1| (-469 |#1| |#3|) (-469 |#1| |#2|)) (-1126) (-525) (-525)) (T -470))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 ((|#1| $ (-525) (-525) |#1|) NIL)) (-3758 (($ $ (-525) (-469 |#1| |#3|)) NIL)) (-2185 (($ $ (-525) (-469 |#1| |#2|)) NIL)) (-2305 (($) NIL T CONST)) (-1616 (((-469 |#1| |#3|) $ (-525)) NIL)) (-2632 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2570 ((|#1| $ (-525) (-525)) NIL)) (-3702 (((-592 |#1|) $) NIL)) (-1857 (((-713) $) NIL)) (-3489 (($ (-713) (-713) |#1|) NIL)) (-1869 (((-713) $) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-1964 (((-525) $) NIL)) (-3779 (((-525) $) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1987 (((-525) $) NIL)) (-3948 (((-525) $) NIL)) (-2622 (($ (-1 |#1| |#1|) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-2042 (($ $ |#1|) NIL)) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) NIL)) (-3701 (((-469 |#1| |#2|) $ (-525)) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-470 |#1| |#2| |#3|) (-55 |#1| (-469 |#1| |#3|) (-469 |#1| |#2|)) (-1127) (-525) (-525)) (T -470))
NIL
(-55 |#1| (-469 |#1| |#3|) (-469 |#1| |#2|))
-((-4194 (((-592 (-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-713) (-713)) 27)) (-1223 (((-592 (-1086 |#1|)) |#1| (-713) (-713) (-713)) 34)) (-3180 (((-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-592 |#3|) (-592 (-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-713)) 85)))
-(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -1223 ((-592 (-1086 |#1|)) |#1| (-713) (-713) (-713))) (-15 -4194 ((-592 (-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-713) (-713))) (-15 -3180 ((-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-592 |#3|) (-592 (-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-713)))) (-327) (-1148 |#1|) (-1148 |#2|)) (T -471))
-((-3180 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-2 (|:| -2499 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7))))) (-5 *5 (-713)) (-4 *7 (-1148 *6)) (-4 *8 (-1148 *7)) (-4 *6 (-327)) (-5 *2 (-2 (|:| -2499 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7)))) (-5 *1 (-471 *6 *7 *8)))) (-4194 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-713)) (-4 *5 (-327)) (-4 *6 (-1148 *5)) (-5 *2 (-592 (-2 (|:| -2499 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-2 (|:| -2499 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6)))) (-4 *7 (-1148 *6)))) (-1223 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-713)) (-4 *3 (-327)) (-4 *5 (-1148 *3)) (-5 *2 (-592 (-1086 *3))) (-5 *1 (-471 *3 *5 *6)) (-4 *6 (-1148 *5)))))
-(-10 -7 (-15 -1223 ((-592 (-1086 |#1|)) |#1| (-713) (-713) (-713))) (-15 -4194 ((-592 (-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-713) (-713))) (-15 -3180 ((-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-592 |#3|) (-592 (-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-713))))
-((-2528 (((-2 (|:| -2499 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2499 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2499 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))) 62)) (-2545 ((|#1| (-632 |#1|) |#1| (-713)) 25)) (-1813 (((-713) (-713) (-713)) 30)) (-3603 (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 42)) (-2233 (((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|) 50) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 47)) (-3006 ((|#1| (-632 |#1|) (-632 |#1|) |#1| (-525)) 29)) (-1454 ((|#1| (-632 |#1|)) 18)))
-(((-472 |#1| |#2| |#3|) (-10 -7 (-15 -1454 (|#1| (-632 |#1|))) (-15 -2545 (|#1| (-632 |#1|) |#1| (-713))) (-15 -3006 (|#1| (-632 |#1|) (-632 |#1|) |#1| (-525))) (-15 -1813 ((-713) (-713) (-713))) (-15 -2233 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2233 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -3603 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2528 ((-2 (|:| -2499 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2499 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2499 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))))) (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $)))) (-1148 |#1|) (-387 |#1| |#2|)) (T -472))
-((-2528 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2499 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-4 *3 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $))))) (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-3603 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $))))) (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-2233 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $))))) (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-2233 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $))))) (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-1813 (*1 *2 *2 *2) (-12 (-5 *2 (-713)) (-4 *3 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $))))) (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-3006 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-632 *2)) (-5 *4 (-525)) (-4 *2 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $))))) (-4 *5 (-1148 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))) (-2545 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-632 *2)) (-5 *4 (-713)) (-4 *2 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $))))) (-4 *5 (-1148 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-632 *2)) (-4 *4 (-1148 *2)) (-4 *2 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $))))) (-5 *1 (-472 *2 *4 *5)) (-4 *5 (-387 *2 *4)))))
-(-10 -7 (-15 -1454 (|#1| (-632 |#1|))) (-15 -2545 (|#1| (-632 |#1|) |#1| (-713))) (-15 -3006 (|#1| (-632 |#1|) (-632 |#1|) |#1| (-525))) (-15 -1813 ((-713) (-713) (-713))) (-15 -2233 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2233 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -3603 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2528 ((-2 (|:| -2499 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2499 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -2499 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))))))
-((-1893 (((-108) $ $) NIL)) (-2350 (($ $) NIL)) (-3038 (($ $ $) 35)) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3072 (((-108) $) NIL (|has| (-108) (-789))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-1356 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-108) (-789)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4255)))) (-3327 (($ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-2109 (((-108) $ (-1139 (-525)) (-108)) NIL (|has| $ (-6 -4255))) (((-108) $ (-525) (-108)) 36 (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| $ (-6 -4255)))) (-1693 (($ $) NIL)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-2273 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-4004 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-2870 (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4255)))) (-2796 (((-108) $ (-525)) NIL)) (-3763 (((-525) (-108) $ (-525)) NIL (|has| (-108) (-1019))) (((-525) (-108) $) NIL (|has| (-108) (-1019))) (((-525) (-1 (-108) (-108)) $) NIL)) (-2026 (((-592 (-108)) $) NIL (|has| $ (-6 -4254)))) (-1330 (($ $ $) 33)) (-2480 (($ $) NIL)) (-2376 (($ $ $) NIL)) (-4018 (($ (-713) (-108)) 23)) (-2353 (($ $ $) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) 8 (|has| (-525) (-789)))) (-3525 (($ $ $) NIL)) (-1932 (($ $ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-3168 (((-592 (-108)) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL)) (-2857 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-108) (-108) (-108)) $ $) 30) (($ (-1 (-108) (-108)) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL)) (-3167 (($ $ $ (-525)) NIL) (($ (-108) $ (-525)) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-2663 (((-1037) $) NIL)) (-3135 (((-108) $) NIL (|has| (-525) (-789)))) (-4054 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-1911 (($ $ (-108)) NIL (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-108)) (-592 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-273 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019)))) (($ $ (-592 (-273 (-108)))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019))))) (-3171 (((-592 (-108)) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) 24)) (-3928 (($ $ (-1139 (-525))) NIL) (((-108) $ (-525)) 18) (((-108) $ (-525) (-108)) NIL)) (-3653 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-2686 (((-713) (-108) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-108) (-1019)))) (((-713) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254)))) (-3703 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-2135 (($ $) 25)) (-1427 (((-501) $) NIL (|has| (-108) (-567 (-501))))) (-1922 (($ (-592 (-108))) NIL)) (-2664 (($ (-592 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-1908 (((-797) $) 22)) (-2667 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4254)))) (-1341 (($ $ $) 31)) (-3465 (($ $) NIL)) (-3800 (($ $ $) NIL)) (-1417 (($ $ $) 39)) (-1430 (($ $) 37)) (-1406 (($ $ $) 38)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 26)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 27)) (-3791 (($ $ $) NIL)) (-4140 (((-713) $) 10 (|has| $ (-6 -4254)))))
-(((-473 |#1|) (-13 (-119) (-10 -8 (-15 -1430 ($ $)) (-15 -1417 ($ $ $)) (-15 -1406 ($ $ $)))) (-525)) (T -473))
-((-1430 (*1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) (-1417 (*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) (-1406 (*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))))
-(-13 (-119) (-10 -8 (-15 -1430 ($ $)) (-15 -1417 ($ $ $)) (-15 -1406 ($ $ $))))
-((-3614 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1086 |#4|)) 35)) (-4073 (((-1086 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1086 |#4|)) 22)) (-2322 (((-3 (-632 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-632 (-1086 |#4|))) 46)) (-2391 (((-1086 (-1086 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
-(((-474 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4073 (|#2| (-1 |#1| |#4|) (-1086 |#4|))) (-15 -4073 ((-1086 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3614 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1086 |#4|))) (-15 -2322 ((-3 (-632 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-632 (-1086 |#4|)))) (-15 -2391 ((-1086 (-1086 |#4|)) (-1 |#4| |#1|) |#3|))) (-976) (-1148 |#1|) (-1148 |#2|) (-976)) (T -474))
-((-2391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-976)) (-4 *7 (-976)) (-4 *6 (-1148 *5)) (-5 *2 (-1086 (-1086 *7))) (-5 *1 (-474 *5 *6 *4 *7)) (-4 *4 (-1148 *6)))) (-2322 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-632 (-1086 *8))) (-4 *5 (-976)) (-4 *8 (-976)) (-4 *6 (-1148 *5)) (-5 *2 (-632 *6)) (-5 *1 (-474 *5 *6 *7 *8)) (-4 *7 (-1148 *6)))) (-3614 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1086 *7)) (-4 *5 (-976)) (-4 *7 (-976)) (-4 *2 (-1148 *5)) (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1148 *2)))) (-4073 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-976)) (-4 *7 (-976)) (-4 *4 (-1148 *5)) (-5 *2 (-1086 *7)) (-5 *1 (-474 *5 *4 *6 *7)) (-4 *6 (-1148 *4)))) (-4073 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1086 *7)) (-4 *5 (-976)) (-4 *7 (-976)) (-4 *2 (-1148 *5)) (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1148 *2)))))
-(-10 -7 (-15 -4073 (|#2| (-1 |#1| |#4|) (-1086 |#4|))) (-15 -4073 ((-1086 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3614 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1086 |#4|))) (-15 -2322 ((-3 (-632 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-632 (-1086 |#4|)))) (-15 -2391 ((-1086 (-1086 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-1893 (((-108) $ $) NIL)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1558 (((-1177) $) 19)) (-3928 (((-1073) $ (-1090)) 23)) (-3303 (((-1177) $) 15)) (-1908 (((-797) $) 21) (($ (-1073)) 20)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 9)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 8)))
-(((-475) (-13 (-789) (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $)) (-15 -1558 ((-1177) $)) (-15 -1908 ($ (-1073)))))) (T -475))
-((-3928 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1073)) (-5 *1 (-475)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-475)))) (-1558 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-475)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-475)))))
-(-13 (-789) (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $)) (-15 -1558 ((-1177) $)) (-15 -1908 ($ (-1073)))))
-((-1284 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2717 ((|#1| |#4|) 10)) (-2636 ((|#3| |#4|) 17)))
-(((-476 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2717 (|#1| |#4|)) (-15 -2636 (|#3| |#4|)) (-15 -1284 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-517) (-924 |#1|) (-351 |#1|) (-351 |#2|)) (T -476))
-((-1284 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-924 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-476 *4 *5 *6 *3)) (-4 *6 (-351 *4)) (-4 *3 (-351 *5)))) (-2636 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-924 *4)) (-4 *2 (-351 *4)) (-5 *1 (-476 *4 *5 *2 *3)) (-4 *3 (-351 *5)))) (-2717 (*1 *2 *3) (-12 (-4 *4 (-924 *2)) (-4 *2 (-517)) (-5 *1 (-476 *2 *4 *5 *3)) (-4 *5 (-351 *2)) (-4 *3 (-351 *4)))))
-(-10 -7 (-15 -2717 (|#1| |#4|)) (-15 -2636 (|#3| |#4|)) (-15 -1284 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-1893 (((-108) $ $) NIL)) (-1985 (((-108) $ (-592 |#3|)) 104) (((-108) $) 105)) (-1611 (((-108) $) 148)) (-1304 (($ $ |#4|) 96) (($ $ |#4| (-592 |#3|)) 100)) (-1243 (((-1080 (-592 (-886 |#1|)) (-592 (-273 (-886 |#1|)))) (-592 |#4|)) 141 (|has| |#3| (-567 (-1090))))) (-1338 (($ $ $) 90) (($ $ |#4|) 88)) (-2133 (((-108) $) 147)) (-2753 (($ $) 108)) (-2337 (((-1073) $) NIL)) (-3187 (($ $ $) 82) (($ (-592 $)) 84)) (-2963 (((-108) |#4| $) 107)) (-2607 (((-108) $ $) 71)) (-3666 (($ (-592 |#4|)) 89)) (-2663 (((-1037) $) NIL)) (-1285 (($ (-592 |#4|)) 145)) (-1834 (((-108) $) 146)) (-2424 (($ $) 73)) (-2186 (((-592 |#4|) $) 57)) (-2926 (((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-592 |#3|)) NIL)) (-1554 (((-108) |#4| $) 76)) (-3191 (((-525) $ (-592 |#3|)) 109) (((-525) $) 110)) (-1908 (((-797) $) 144) (($ (-592 |#4|)) 85)) (-2199 (($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $))) NIL)) (-3961 (((-108) $ $) 72)) (-4059 (($ $ $) 92)) (** (($ $ (-713)) 95)) (* (($ $ $) 94)))
-(((-477 |#1| |#2| |#3| |#4|) (-13 (-1019) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 -4059 ($ $ $)) (-15 -2133 ((-108) $)) (-15 -1611 ((-108) $)) (-15 -1554 ((-108) |#4| $)) (-15 -2607 ((-108) $ $)) (-15 -2963 ((-108) |#4| $)) (-15 -1985 ((-108) $ (-592 |#3|))) (-15 -1985 ((-108) $)) (-15 -3187 ($ $ $)) (-15 -3187 ($ (-592 $))) (-15 -1338 ($ $ $)) (-15 -1338 ($ $ |#4|)) (-15 -2424 ($ $)) (-15 -2926 ((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-592 |#3|))) (-15 -2199 ($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)))) (-15 -3191 ((-525) $ (-592 |#3|))) (-15 -3191 ((-525) $)) (-15 -2753 ($ $)) (-15 -3666 ($ (-592 |#4|))) (-15 -1285 ($ (-592 |#4|))) (-15 -1834 ((-108) $)) (-15 -2186 ((-592 |#4|) $)) (-15 -1908 ($ (-592 |#4|))) (-15 -1304 ($ $ |#4|)) (-15 -1304 ($ $ |#4| (-592 |#3|))) (IF (|has| |#3| (-567 (-1090))) (-15 -1243 ((-1080 (-592 (-886 |#1|)) (-592 (-273 (-886 |#1|)))) (-592 |#4|))) |%noBranch|))) (-341) (-735) (-789) (-883 |#1| |#2| |#3|)) (T -477))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-4059 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) (-2133 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-1611 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-1554 (*1 *2 *3 *1) (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6)))) (-2607 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-2963 (*1 *2 *3 *1) (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6)))) (-1985 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-883 *4 *5 *6)))) (-1985 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-3187 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) (-3187 (*1 *1 *2) (-12 (-5 *2 (-592 (-477 *3 *4 *5 *6))) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-883 *3 *4 *5)) (-5 *1 (-477 *3 *4 *5 *6)))) (-1338 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) (-1338 (*1 *1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-883 *3 *4 *5)))) (-2424 (*1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) (-2926 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *2 (-2 (|:| |mval| (-632 *4)) (|:| |invmval| (-632 *4)) (|:| |genIdeal| (-477 *4 *5 *6 *7)))) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-883 *4 *5 *6)))) (-2199 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-632 *3)) (|:| |invmval| (-632 *3)) (|:| |genIdeal| (-477 *3 *4 *5 *6)))) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-883 *3 *4 *5)) (-5 *1 (-477 *3 *4 *5 *6)))) (-3191 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *2 (-525)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-883 *4 *5 *6)))) (-3191 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-2753 (*1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) (-3666 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))) (-1285 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))) (-1834 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-2186 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *6)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))) (-1304 (*1 *1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-883 *3 *4 *5)))) (-1304 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *1 (-477 *4 *5 *6 *2)) (-4 *2 (-883 *4 *5 *6)))) (-1243 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *5 *6)) (-4 *6 (-567 (-1090))) (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1080 (-592 (-886 *4)) (-592 (-273 (-886 *4))))) (-5 *1 (-477 *4 *5 *6 *7)))))
-(-13 (-1019) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 -4059 ($ $ $)) (-15 -2133 ((-108) $)) (-15 -1611 ((-108) $)) (-15 -1554 ((-108) |#4| $)) (-15 -2607 ((-108) $ $)) (-15 -2963 ((-108) |#4| $)) (-15 -1985 ((-108) $ (-592 |#3|))) (-15 -1985 ((-108) $)) (-15 -3187 ($ $ $)) (-15 -3187 ($ (-592 $))) (-15 -1338 ($ $ $)) (-15 -1338 ($ $ |#4|)) (-15 -2424 ($ $)) (-15 -2926 ((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-592 |#3|))) (-15 -2199 ($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)))) (-15 -3191 ((-525) $ (-592 |#3|))) (-15 -3191 ((-525) $)) (-15 -2753 ($ $)) (-15 -3666 ($ (-592 |#4|))) (-15 -1285 ($ (-592 |#4|))) (-15 -1834 ((-108) $)) (-15 -2186 ((-592 |#4|) $)) (-15 -1908 ($ (-592 |#4|))) (-15 -1304 ($ $ |#4|)) (-15 -1304 ($ $ |#4| (-592 |#3|))) (IF (|has| |#3| (-567 (-1090))) (-15 -1243 ((-1080 (-592 (-886 |#1|)) (-592 (-273 (-886 |#1|)))) (-592 |#4|))) |%noBranch|)))
-((-4154 (((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525))))) 149)) (-2175 (((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525))))) 150)) (-2652 (((-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525))))) 108)) (-2250 (((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525))))) NIL)) (-1795 (((-592 (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525))))) 152)) (-2302 (((-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-592 (-799 |#1|))) 164)))
-(((-478 |#1| |#2|) (-10 -7 (-15 -4154 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2175 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2250 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2652 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -1795 ((-592 (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2302 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-592 (-799 |#1|))))) (-592 (-1090)) (-713)) (T -478))
-((-2302 (*1 *2 *2 *3) (-12 (-5 *2 (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) (-227 *4 (-385 (-525))))) (-5 *3 (-592 (-799 *4))) (-14 *4 (-592 (-1090))) (-14 *5 (-713)) (-5 *1 (-478 *4 *5)))) (-1795 (*1 *2 *3) (-12 (-14 *4 (-592 (-1090))) (-14 *5 (-713)) (-5 *2 (-592 (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) (-227 *4 (-385 (-525)))))) (-5 *1 (-478 *4 *5)) (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) (-227 *4 (-385 (-525))))))) (-2652 (*1 *2 *2) (-12 (-5 *2 (-477 (-385 (-525)) (-220 *4 (-713)) (-799 *3) (-227 *3 (-385 (-525))))) (-14 *3 (-592 (-1090))) (-14 *4 (-713)) (-5 *1 (-478 *3 *4)))) (-2250 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-592 (-1090))) (-14 *5 (-713)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-592 (-1090))) (-14 *5 (-713)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5)))) (-4154 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-592 (-1090))) (-14 *5 (-713)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5)))))
-(-10 -7 (-15 -4154 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2175 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2250 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2652 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -1795 ((-592 (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -2302 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-799 |#1|) (-227 |#1| (-385 (-525)))) (-592 (-799 |#1|)))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1247 (($ $) NIL)) (-4079 (($ |#1| |#2|) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-1470 ((|#2| $) NIL)) (-1224 ((|#1| $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3875 (($) 12 T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) 11) (($ $ $) 24)) (-4059 (($ $ $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 18)))
+((-1926 (((-592 (-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-713) (-713)) 27)) (-2735 (((-592 (-1087 |#1|)) |#1| (-713) (-713) (-713)) 34)) (-1873 (((-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-592 |#3|) (-592 (-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-713)) 85)))
+(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -2735 ((-592 (-1087 |#1|)) |#1| (-713) (-713) (-713))) (-15 -1926 ((-592 (-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-713) (-713))) (-15 -1873 ((-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-592 |#3|) (-592 (-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-713)))) (-327) (-1149 |#1|) (-1149 |#2|)) (T -471))
+((-1873 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-2 (|:| -1449 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7))))) (-5 *5 (-713)) (-4 *7 (-1149 *6)) (-4 *8 (-1149 *7)) (-4 *6 (-327)) (-5 *2 (-2 (|:| -1449 (-632 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-632 *7)))) (-5 *1 (-471 *6 *7 *8)))) (-1926 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-713)) (-4 *5 (-327)) (-4 *6 (-1149 *5)) (-5 *2 (-592 (-2 (|:| -1449 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-2 (|:| -1449 (-632 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-632 *6)))) (-4 *7 (-1149 *6)))) (-2735 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-713)) (-4 *3 (-327)) (-4 *5 (-1149 *3)) (-5 *2 (-592 (-1087 *3))) (-5 *1 (-471 *3 *5 *6)) (-4 *6 (-1149 *5)))))
+(-10 -7 (-15 -2735 ((-592 (-1087 |#1|)) |#1| (-713) (-713) (-713))) (-15 -1926 ((-592 (-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-713) (-713))) (-15 -1873 ((-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) (-592 |#3|) (-592 (-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) (-713))))
+((-1717 (((-2 (|:| -1449 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -1449 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -1449 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))) 62)) (-3720 ((|#1| (-632 |#1|) |#1| (-713)) 25)) (-1731 (((-713) (-713) (-713)) 30)) (-1585 (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 42)) (-3655 (((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|) 50) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 47)) (-2869 ((|#1| (-632 |#1|) (-632 |#1|) |#1| (-525)) 29)) (-2212 ((|#1| (-632 |#1|)) 18)))
+(((-472 |#1| |#2| |#3|) (-10 -7 (-15 -2212 (|#1| (-632 |#1|))) (-15 -3720 (|#1| (-632 |#1|) |#1| (-713))) (-15 -2869 (|#1| (-632 |#1|) (-632 |#1|) |#1| (-525))) (-15 -1731 ((-713) (-713) (-713))) (-15 -3655 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3655 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -1585 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1717 ((-2 (|:| -1449 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -1449 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -1449 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|)))))) (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $)))) (-1149 |#1|) (-387 |#1| |#2|)) (T -472))
+((-1717 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1449 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-4 *3 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $))))) (-4 *4 (-1149 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-1585 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $))))) (-4 *4 (-1149 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-3655 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $))))) (-4 *4 (-1149 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-3655 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $))))) (-4 *4 (-1149 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-1731 (*1 *2 *2 *2) (-12 (-5 *2 (-713)) (-4 *3 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $))))) (-4 *4 (-1149 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))) (-2869 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-632 *2)) (-5 *4 (-525)) (-4 *2 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $))))) (-4 *5 (-1149 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))) (-3720 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-632 *2)) (-5 *4 (-713)) (-4 *2 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $))))) (-4 *5 (-1149 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-632 *2)) (-4 *4 (-1149 *2)) (-4 *2 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $))))) (-5 *1 (-472 *2 *4 *5)) (-4 *5 (-387 *2 *4)))))
+(-10 -7 (-15 -2212 (|#1| (-632 |#1|))) (-15 -3720 (|#1| (-632 |#1|) |#1| (-713))) (-15 -2869 (|#1| (-632 |#1|) (-632 |#1|) |#1| (-525))) (-15 -1731 ((-713) (-713) (-713))) (-15 -3655 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3655 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -1585 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1717 ((-2 (|:| -1449 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -1449 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))) (-2 (|:| -1449 (-632 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-632 |#1|))))))
+((-1260 (((-108) $ $) NIL)) (-3411 (($ $) NIL)) (-4144 (($ $ $) 35)) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-2151 (((-108) $) NIL (|has| (-108) (-789))) (((-108) (-1 (-108) (-108) (-108)) $) NIL)) (-2549 (($ $) NIL (-12 (|has| $ (-6 -4256)) (|has| (-108) (-789)))) (($ (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4256)))) (-2855 (($ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-1429 (((-108) $ (-1140 (-525)) (-108)) NIL (|has| $ (-6 -4256))) (((-108) $ (-525) (-108)) 36 (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-3559 (($ $) NIL (|has| $ (-6 -4256)))) (-3620 (($ $) NIL)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-108) (-1020))))) (-1614 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4255))) (($ (-108) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-108) (-1020))))) (-3503 (((-108) (-1 (-108) (-108) (-108)) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-108) (-108)) $ (-108)) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-108) (-108)) $ (-108) (-108)) NIL (-12 (|has| $ (-6 -4255)) (|has| (-108) (-1020))))) (-2632 (((-108) $ (-525) (-108)) NIL (|has| $ (-6 -4256)))) (-2570 (((-108) $ (-525)) NIL)) (-1916 (((-525) (-108) $ (-525)) NIL (|has| (-108) (-1020))) (((-525) (-108) $) NIL (|has| (-108) (-1020))) (((-525) (-1 (-108) (-108)) $) NIL)) (-3702 (((-592 (-108)) $) NIL (|has| $ (-6 -4255)))) (-3818 (($ $ $) 33)) (-1825 (($ $) NIL)) (-2789 (($ $ $) NIL)) (-3489 (($ (-713) (-108)) 23)) (-3589 (($ $ $) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) 8 (|has| (-525) (-789)))) (-2371 (($ $ $) NIL)) (-3743 (($ $ $) NIL (|has| (-108) (-789))) (($ (-1 (-108) (-108) (-108)) $ $) NIL)) (-1749 (((-592 (-108)) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-108) (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL)) (-2622 (($ (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-108) (-108) (-108)) $ $) 30) (($ (-1 (-108) (-108)) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL)) (-2683 (($ $ $ (-525)) NIL) (($ (-108) $ (-525)) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-2012 (((-1038) $) NIL)) (-3110 (((-108) $) NIL (|has| (-525) (-789)))) (-3207 (((-3 (-108) "failed") (-1 (-108) (-108)) $) NIL)) (-2042 (($ $ (-108)) NIL (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-108)) (-592 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-108) (-108)) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-273 (-108))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020)))) (($ $ (-592 (-273 (-108)))) NIL (-12 (|has| (-108) (-288 (-108))) (|has| (-108) (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) (-108) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-108) (-1020))))) (-1777 (((-592 (-108)) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) 24)) (-3410 (($ $ (-1140 (-525))) NIL) (((-108) $ (-525)) 18) (((-108) $ (-525) (-108)) NIL)) (-3157 (($ $ (-1140 (-525))) NIL) (($ $ (-525)) NIL)) (-2040 (((-713) (-108) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-108) (-1020)))) (((-713) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4255)))) (-3216 (($ $ $ (-525)) NIL (|has| $ (-6 -4256)))) (-1451 (($ $) 25)) (-2749 (((-501) $) NIL (|has| (-108) (-567 (-501))))) (-1279 (($ (-592 (-108))) NIL)) (-2014 (($ (-592 $)) NIL) (($ $ $) NIL) (($ (-108) $) NIL) (($ $ (-108)) NIL)) (-1270 (((-798) $) 22)) (-3633 (((-108) (-1 (-108) (-108)) $) NIL (|has| $ (-6 -4255)))) (-3830 (($ $ $) 31)) (-1576 (($ $) NIL)) (-3236 (($ $ $) NIL)) (-2739 (($ $ $) 39)) (-2754 (($ $) 37)) (-2729 (($ $ $) 38)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 26)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 27)) (-3227 (($ $ $) NIL)) (-3596 (((-713) $) 10 (|has| $ (-6 -4255)))))
+(((-473 |#1|) (-13 (-119) (-10 -8 (-15 -2754 ($ $)) (-15 -2739 ($ $ $)) (-15 -2729 ($ $ $)))) (-525)) (T -473))
+((-2754 (*1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) (-2739 (*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))) (-2729 (*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525)))))
+(-13 (-119) (-10 -8 (-15 -2754 ($ $)) (-15 -2739 ($ $ $)) (-15 -2729 ($ $ $))))
+((-1682 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1087 |#4|)) 35)) (-3312 (((-1087 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1087 |#4|)) 22)) (-3313 (((-3 (-632 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-632 (-1087 |#4|))) 46)) (-2934 (((-1087 (-1087 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
+(((-474 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3312 (|#2| (-1 |#1| |#4|) (-1087 |#4|))) (-15 -3312 ((-1087 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1682 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1087 |#4|))) (-15 -3313 ((-3 (-632 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-632 (-1087 |#4|)))) (-15 -2934 ((-1087 (-1087 |#4|)) (-1 |#4| |#1|) |#3|))) (-977) (-1149 |#1|) (-1149 |#2|) (-977)) (T -474))
+((-2934 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-977)) (-4 *7 (-977)) (-4 *6 (-1149 *5)) (-5 *2 (-1087 (-1087 *7))) (-5 *1 (-474 *5 *6 *4 *7)) (-4 *4 (-1149 *6)))) (-3313 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-632 (-1087 *8))) (-4 *5 (-977)) (-4 *8 (-977)) (-4 *6 (-1149 *5)) (-5 *2 (-632 *6)) (-5 *1 (-474 *5 *6 *7 *8)) (-4 *7 (-1149 *6)))) (-1682 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1087 *7)) (-4 *5 (-977)) (-4 *7 (-977)) (-4 *2 (-1149 *5)) (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1149 *2)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-977)) (-4 *7 (-977)) (-4 *4 (-1149 *5)) (-5 *2 (-1087 *7)) (-5 *1 (-474 *5 *4 *6 *7)) (-4 *6 (-1149 *4)))) (-3312 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1087 *7)) (-4 *5 (-977)) (-4 *7 (-977)) (-4 *2 (-1149 *5)) (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1149 *2)))))
+(-10 -7 (-15 -3312 (|#2| (-1 |#1| |#4|) (-1087 |#4|))) (-15 -3312 ((-1087 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1682 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1087 |#4|))) (-15 -3313 ((-3 (-632 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-632 (-1087 |#4|)))) (-15 -2934 ((-1087 (-1087 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-1260 (((-108) $ $) NIL)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3065 (((-1178) $) 19)) (-3410 (((-1074) $ (-1091)) 23)) (-2868 (((-1178) $) 15)) (-1270 (((-798) $) 21) (($ (-1074)) 20)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 9)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 8)))
+(((-475) (-13 (-789) (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $)) (-15 -3065 ((-1178) $)) (-15 -1270 ($ (-1074)))))) (T -475))
+((-3410 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1074)) (-5 *1 (-475)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-475)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-475)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-475)))))
+(-13 (-789) (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $)) (-15 -3065 ((-1178) $)) (-15 -1270 ($ (-1074)))))
+((-3722 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2987 ((|#1| |#4|) 10)) (-3384 ((|#3| |#4|) 17)))
+(((-476 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2987 (|#1| |#4|)) (-15 -3384 (|#3| |#4|)) (-15 -3722 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-517) (-925 |#1|) (-351 |#1|) (-351 |#2|)) (T -476))
+((-3722 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-925 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-476 *4 *5 *6 *3)) (-4 *6 (-351 *4)) (-4 *3 (-351 *5)))) (-3384 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-925 *4)) (-4 *2 (-351 *4)) (-5 *1 (-476 *4 *5 *2 *3)) (-4 *3 (-351 *5)))) (-2987 (*1 *2 *3) (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-476 *2 *4 *5 *3)) (-4 *5 (-351 *2)) (-4 *3 (-351 *4)))))
+(-10 -7 (-15 -2987 (|#1| |#4|)) (-15 -3384 (|#3| |#4|)) (-15 -3722 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-1260 (((-108) $ $) NIL)) (-2160 (((-108) $ (-592 |#3|)) 104) (((-108) $) 105)) (-1989 (((-108) $) 148)) (-2543 (($ $ |#4|) 96) (($ $ |#4| (-592 |#3|)) 100)) (-2939 (((-1081 (-592 (-887 |#1|)) (-592 (-273 (-887 |#1|)))) (-592 |#4|)) 141 (|has| |#3| (-567 (-1091))))) (-2370 (($ $ $) 90) (($ $ |#4|) 88)) (-1985 (((-108) $) 147)) (-2052 (($ $) 108)) (-3451 (((-1074) $) NIL)) (-3792 (($ $ $) 82) (($ (-592 $)) 84)) (-3486 (((-108) |#4| $) 107)) (-3179 (((-108) $ $) 71)) (-4015 (($ (-592 |#4|)) 89)) (-2012 (((-1038) $) NIL)) (-3731 (($ (-592 |#4|)) 145)) (-2713 (((-108) $) 146)) (-1933 (($ $) 73)) (-1323 (((-592 |#4|) $) 57)) (-3198 (((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-592 |#3|)) NIL)) (-3909 (((-108) |#4| $) 76)) (-3831 (((-525) $ (-592 |#3|)) 109) (((-525) $) 110)) (-1270 (((-798) $) 144) (($ (-592 |#4|)) 85)) (-1452 (($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $))) NIL)) (-3994 (((-108) $ $) 72)) (-4080 (($ $ $) 92)) (** (($ $ (-713)) 95)) (* (($ $ $) 94)))
+(((-477 |#1| |#2| |#3| |#4|) (-13 (-1020) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 -4080 ($ $ $)) (-15 -1985 ((-108) $)) (-15 -1989 ((-108) $)) (-15 -3909 ((-108) |#4| $)) (-15 -3179 ((-108) $ $)) (-15 -3486 ((-108) |#4| $)) (-15 -2160 ((-108) $ (-592 |#3|))) (-15 -2160 ((-108) $)) (-15 -3792 ($ $ $)) (-15 -3792 ($ (-592 $))) (-15 -2370 ($ $ $)) (-15 -2370 ($ $ |#4|)) (-15 -1933 ($ $)) (-15 -3198 ((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-592 |#3|))) (-15 -1452 ($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)))) (-15 -3831 ((-525) $ (-592 |#3|))) (-15 -3831 ((-525) $)) (-15 -2052 ($ $)) (-15 -4015 ($ (-592 |#4|))) (-15 -3731 ($ (-592 |#4|))) (-15 -2713 ((-108) $)) (-15 -1323 ((-592 |#4|) $)) (-15 -1270 ($ (-592 |#4|))) (-15 -2543 ($ $ |#4|)) (-15 -2543 ($ $ |#4| (-592 |#3|))) (IF (|has| |#3| (-567 (-1091))) (-15 -2939 ((-1081 (-592 (-887 |#1|)) (-592 (-273 (-887 |#1|)))) (-592 |#4|))) |%noBranch|))) (-341) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -477))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-4080 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-1985 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-1989 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-3909 (*1 *2 *3 *1) (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))) (-3179 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-3486 (*1 *2 *3 *1) (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))) (-2160 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))) (-2160 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-3792 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-3792 (*1 *1 *2) (-12 (-5 *2 (-592 (-477 *3 *4 *5 *6))) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-884 *3 *4 *5)) (-5 *1 (-477 *3 *4 *5 *6)))) (-2370 (*1 *1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-2370 (*1 *1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5)))) (-1933 (*1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-3198 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *2 (-2 (|:| |mval| (-632 *4)) (|:| |invmval| (-632 *4)) (|:| |genIdeal| (-477 *4 *5 *6 *7)))) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-632 *3)) (|:| |invmval| (-632 *3)) (|:| |genIdeal| (-477 *3 *4 *5 *6)))) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-884 *3 *4 *5)) (-5 *1 (-477 *3 *4 *5 *6)))) (-3831 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *2 (-525)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))) (-3831 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-2052 (*1 *1 *1) (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789)) (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-4015 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))) (-3731 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))) (-2713 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-1323 (*1 *2 *1) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *6)) (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))) (-2543 (*1 *1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5)))) (-2543 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735)) (-5 *1 (-477 *4 *5 *6 *2)) (-4 *2 (-884 *4 *5 *6)))) (-2939 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *5 *6)) (-4 *6 (-567 (-1091))) (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1081 (-592 (-887 *4)) (-592 (-273 (-887 *4))))) (-5 *1 (-477 *4 *5 *6 *7)))))
+(-13 (-1020) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 -4080 ($ $ $)) (-15 -1985 ((-108) $)) (-15 -1989 ((-108) $)) (-15 -3909 ((-108) |#4| $)) (-15 -3179 ((-108) $ $)) (-15 -3486 ((-108) |#4| $)) (-15 -2160 ((-108) $ (-592 |#3|))) (-15 -2160 ((-108) $)) (-15 -3792 ($ $ $)) (-15 -3792 ($ (-592 $))) (-15 -2370 ($ $ $)) (-15 -2370 ($ $ |#4|)) (-15 -1933 ($ $)) (-15 -3198 ((-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)) $ (-592 |#3|))) (-15 -1452 ($ (-2 (|:| |mval| (-632 |#1|)) (|:| |invmval| (-632 |#1|)) (|:| |genIdeal| $)))) (-15 -3831 ((-525) $ (-592 |#3|))) (-15 -3831 ((-525) $)) (-15 -2052 ($ $)) (-15 -4015 ($ (-592 |#4|))) (-15 -3731 ($ (-592 |#4|))) (-15 -2713 ((-108) $)) (-15 -1323 ((-592 |#4|) $)) (-15 -1270 ($ (-592 |#4|))) (-15 -2543 ($ $ |#4|)) (-15 -2543 ($ $ |#4| (-592 |#3|))) (IF (|has| |#3| (-567 (-1091))) (-15 -2939 ((-1081 (-592 (-887 |#1|)) (-592 (-273 (-887 |#1|)))) (-592 |#4|))) |%noBranch|)))
+((-2937 (((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) 149)) (-1212 (((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) 150)) (-1299 (((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) 108)) (-3836 (((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) NIL)) (-3515 (((-592 (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) 152)) (-3173 (((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-592 (-800 |#1|))) 164)))
+(((-478 |#1| |#2|) (-10 -7 (-15 -2937 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -1212 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3836 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -1299 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3515 ((-592 (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3173 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-592 (-800 |#1|))))) (-592 (-1091)) (-713)) (T -478))
+((-3173 (*1 *2 *2 *3) (-12 (-5 *2 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525))))) (-5 *3 (-592 (-800 *4))) (-14 *4 (-592 (-1091))) (-14 *5 (-713)) (-5 *1 (-478 *4 *5)))) (-3515 (*1 *2 *3) (-12 (-14 *4 (-592 (-1091))) (-14 *5 (-713)) (-5 *2 (-592 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525)))))) (-5 *1 (-478 *4 *5)) (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525))))))) (-1299 (*1 *2 *2) (-12 (-5 *2 (-477 (-385 (-525)) (-220 *4 (-713)) (-800 *3) (-227 *3 (-385 (-525))))) (-14 *3 (-592 (-1091))) (-14 *4 (-713)) (-5 *1 (-478 *3 *4)))) (-3836 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-592 (-1091))) (-14 *5 (-713)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5)))) (-1212 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-592 (-1091))) (-14 *5 (-713)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4) (-227 *4 (-385 (-525))))) (-14 *4 (-592 (-1091))) (-14 *5 (-713)) (-5 *2 (-108)) (-5 *1 (-478 *4 *5)))))
+(-10 -7 (-15 -2937 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -1212 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3836 ((-108) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -1299 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3515 ((-592 (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525))))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))))) (-15 -3173 ((-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-477 (-385 (-525)) (-220 |#2| (-713)) (-800 |#1|) (-227 |#1| (-385 (-525)))) (-592 (-800 |#1|)))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2571 (($ $) NIL)) (-2352 (($ |#1| |#2|) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2282 ((|#2| $) NIL)) (-2548 ((|#1| $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3355 (($) 12 T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) 11) (($ $ $) 24)) (-4080 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 18)))
(((-479 |#1| |#2|) (-13 (-21) (-481 |#1| |#2|)) (-21) (-789)) (T -479))
NIL
(-13 (-21) (-481 |#1| |#2|))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 12)) (-1505 (($) NIL T CONST)) (-1247 (($ $) 28)) (-4079 (($ |#1| |#2|) 25)) (-1370 (($ (-1 |#1| |#1|) $) 27)) (-1470 ((|#2| $) NIL)) (-1224 ((|#1| $) 29)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3875 (($) 10 T CONST)) (-3961 (((-108) $ $) NIL)) (-4059 (($ $ $) 18)) (* (($ (-855) $) NIL) (($ (-713) $) 23)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 12)) (-2305 (($) NIL T CONST)) (-2571 (($ $) 28)) (-2352 (($ |#1| |#2|) 25)) (-2694 (($ (-1 |#1| |#1|) $) 27)) (-2282 ((|#2| $) NIL)) (-2548 ((|#1| $) 29)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3355 (($) 10 T CONST)) (-3994 (((-108) $ $) NIL)) (-4080 (($ $ $) 18)) (* (($ (-856) $) NIL) (($ (-713) $) 23)))
(((-480 |#1| |#2|) (-13 (-23) (-481 |#1| |#2|)) (-23) (-789)) (T -480))
NIL
(-13 (-23) (-481 |#1| |#2|))
-((-1893 (((-108) $ $) 7)) (-1247 (($ $) 13)) (-4079 (($ |#1| |#2|) 16)) (-1370 (($ (-1 |#1| |#1|) $) 17)) (-1470 ((|#2| $) 14)) (-1224 ((|#1| $) 15)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3961 (((-108) $ $) 6)))
-(((-481 |#1| |#2|) (-131) (-1019) (-789)) (T -481))
-((-1370 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-789)))) (-4079 (*1 *1 *2 *3) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-789)))) (-1224 (*1 *2 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1019)))) (-1470 (*1 *2 *1) (-12 (-4 *1 (-481 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-789)))) (-1247 (*1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-789)))))
-(-13 (-1019) (-10 -8 (-15 -1370 ($ (-1 |t#1| |t#1|) $)) (-15 -4079 ($ |t#1| |t#2|)) (-15 -1224 (|t#1| $)) (-15 -1470 (|t#2| $)) (-15 -1247 ($ $))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1505 (($) NIL T CONST)) (-1247 (($ $) NIL)) (-4079 (($ |#1| |#2|) NIL)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-1470 ((|#2| $) NIL)) (-1224 ((|#1| $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3875 (($) NIL T CONST)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 13)) (-4059 (($ $ $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL)))
+((-1260 (((-108) $ $) 7)) (-2571 (($ $) 13)) (-2352 (($ |#1| |#2|) 16)) (-2694 (($ (-1 |#1| |#1|) $) 17)) (-2282 ((|#2| $) 14)) (-2548 ((|#1| $) 15)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3994 (((-108) $ $) 6)))
+(((-481 |#1| |#2|) (-131) (-1020) (-789)) (T -481))
+((-2694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-789)))) (-2352 (*1 *1 *2 *3) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-789)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1020)))) (-2282 (*1 *2 *1) (-12 (-4 *1 (-481 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-789)))) (-2571 (*1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-789)))))
+(-13 (-1020) (-10 -8 (-15 -2694 ($ (-1 |t#1| |t#1|) $)) (-15 -2352 ($ |t#1| |t#2|)) (-15 -2548 (|t#1| $)) (-15 -2282 (|t#2| $)) (-15 -2571 ($ $))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2305 (($) NIL T CONST)) (-2571 (($ $) NIL)) (-2352 (($ |#1| |#2|) NIL)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2282 ((|#2| $) NIL)) (-2548 ((|#1| $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3355 (($) NIL T CONST)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 13)) (-4080 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL)))
(((-482 |#1| |#2|) (-13 (-734) (-481 |#1| |#2|)) (-734) (-789)) (T -482))
NIL
(-13 (-734) (-481 |#1| |#2|))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1487 (($ $ $) 16)) (-3263 (((-3 $ "failed") $ $) 13)) (-1505 (($) NIL T CONST)) (-1247 (($ $) NIL)) (-4079 (($ |#1| |#2|) NIL)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-1470 ((|#2| $) NIL)) (-1224 ((|#1| $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL)) (-3875 (($) NIL T CONST)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2017 (($ $ $) 16)) (-1342 (((-3 $ "failed") $ $) 13)) (-2305 (($) NIL T CONST)) (-2571 (($ $) NIL)) (-2352 (($ |#1| |#2|) NIL)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2282 ((|#2| $) NIL)) (-2548 ((|#1| $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL)) (-3355 (($) NIL T CONST)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) NIL)) (-4080 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL)))
(((-483 |#1| |#2|) (-13 (-735) (-481 |#1| |#2|)) (-735) (-789)) (T -483))
NIL
(-13 (-735) (-481 |#1| |#2|))
-((-1893 (((-108) $ $) NIL)) (-1247 (($ $) 25)) (-4079 (($ |#1| |#2|) 22)) (-1370 (($ (-1 |#1| |#1|) $) 24)) (-1470 ((|#2| $) 27)) (-1224 ((|#1| $) 26)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 21)) (-3961 (((-108) $ $) 14)))
-(((-484 |#1| |#2|) (-481 |#1| |#2|) (-1019) (-789)) (T -484))
+((-1260 (((-108) $ $) NIL)) (-2571 (($ $) 25)) (-2352 (($ |#1| |#2|) 22)) (-2694 (($ (-1 |#1| |#1|) $) 24)) (-2282 ((|#2| $) 27)) (-2548 ((|#1| $) 26)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 21)) (-3994 (((-108) $ $) 14)))
+(((-484 |#1| |#2|) (-481 |#1| |#2|) (-1020) (-789)) (T -484))
NIL
(-481 |#1| |#2|)
-((-3092 (($ $ (-592 |#2|) (-592 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-485 |#1| |#2| |#3|) (-10 -8 (-15 -3092 (|#1| |#1| |#2| |#3|)) (-15 -3092 (|#1| |#1| (-592 |#2|) (-592 |#3|)))) (-486 |#2| |#3|) (-1019) (-1126)) (T -485))
+((-2602 (($ $ (-592 |#2|) (-592 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-485 |#1| |#2| |#3|) (-10 -8 (-15 -2602 (|#1| |#1| |#2| |#3|)) (-15 -2602 (|#1| |#1| (-592 |#2|) (-592 |#3|)))) (-486 |#2| |#3|) (-1020) (-1127)) (T -485))
NIL
-(-10 -8 (-15 -3092 (|#1| |#1| |#2| |#3|)) (-15 -3092 (|#1| |#1| (-592 |#2|) (-592 |#3|))))
-((-3092 (($ $ (-592 |#1|) (-592 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-486 |#1| |#2|) (-131) (-1019) (-1126)) (T -486))
-((-3092 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *5)) (-4 *1 (-486 *4 *5)) (-4 *4 (-1019)) (-4 *5 (-1126)))) (-3092 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1126)))))
-(-13 (-10 -8 (-15 -3092 ($ $ |t#1| |t#2|)) (-15 -3092 ($ $ (-592 |t#1|) (-592 |t#2|)))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 16)) (-2911 (((-592 (-2 (|:| |gen| |#1|) (|:| -1982 |#2|))) $) 18)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3107 (((-713) $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) NIL)) (-2831 ((|#1| $) NIL)) (-2938 ((|#1| $ (-525)) 23)) (-1845 ((|#2| $ (-525)) 21)) (-2463 (($ (-1 |#1| |#1|) $) 46)) (-3698 (($ (-1 |#2| |#2|) $) 43)) (-2337 (((-1073) $) NIL)) (-2924 (($ $ $) 53 (|has| |#2| (-734)))) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 42) (($ |#1|) NIL)) (-1657 ((|#2| |#1| $) 49)) (-3875 (($) 11 T CONST)) (-3961 (((-108) $ $) 29)) (-4059 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-855) $) NIL) (($ (-713) $) 36) (($ |#2| |#1|) 31)))
-(((-487 |#1| |#2| |#3|) (-301 |#1| |#2|) (-1019) (-126) |#2|) (T -487))
+(-10 -8 (-15 -2602 (|#1| |#1| |#2| |#3|)) (-15 -2602 (|#1| |#1| (-592 |#2|) (-592 |#3|))))
+((-2602 (($ $ (-592 |#1|) (-592 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-486 |#1| |#2|) (-131) (-1020) (-1127)) (T -486))
+((-2602 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *5)) (-4 *1 (-486 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1127)))) (-2602 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1127)))))
+(-13 (-10 -8 (-15 -2602 ($ $ |t#1| |t#2|)) (-15 -2602 ($ $ (-592 |t#1|) (-592 |t#2|)))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 16)) (-4192 (((-592 (-2 (|:| |gen| |#1|) (|:| -1250 |#2|))) $) 18)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4190 (((-713) $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) NIL)) (-3898 ((|#1| $) NIL)) (-3285 ((|#1| $ (-525)) 23)) (-2824 ((|#2| $ (-525)) 21)) (-2440 (($ (-1 |#1| |#1|) $) 46)) (-3178 (($ (-1 |#2| |#2|) $) 43)) (-3451 (((-1074) $) NIL)) (-3182 (($ $ $) 53 (|has| |#2| (-734)))) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 42) (($ |#1|) NIL)) (-3468 ((|#2| |#1| $) 49)) (-3355 (($) 11 T CONST)) (-3994 (((-108) $ $) 29)) (-4080 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-856) $) NIL) (($ (-713) $) 36) (($ |#2| |#1|) 31)))
+(((-487 |#1| |#2| |#3|) (-301 |#1| |#2|) (-1020) (-126) |#2|) (T -487))
NIL
(-301 |#1| |#2|)
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3072 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-1356 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789))))) (-3327 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3410 (((-108) $ (-713)) NIL)) (-2407 (((-108) (-108)) 25)) (-2109 ((|#1| $ (-525) |#1|) 28 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255)))) (-3290 (($ (-1 (-108) |#1|) $) 52)) (-2724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| $ (-6 -4255)))) (-1693 (($ $) NIL)) (-3143 (($ $) 56 (|has| |#1| (-1019)))) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2792 (($ |#1| $) NIL (|has| |#1| (-1019))) (($ (-1 (-108) |#1|) $) 44)) (-2273 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2870 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) NIL)) (-3763 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019)))) (-2579 (($ $ (-525)) 13)) (-2808 (((-713) $) 11)) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4018 (($ (-713) |#1|) 23)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) 21 (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-2749 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 35)) (-1932 (($ (-1 (-108) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-789)))) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1792 (((-525) $) 20 (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2573 (($ $ $ (-525)) 51) (($ |#1| $ (-525)) 37)) (-3167 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3435 (($ (-592 |#1|)) 29)) (-3135 ((|#1| $) NIL (|has| (-525) (-789)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1911 (($ $ |#1|) 19 (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 40)) (-3218 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) 16)) (-3928 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 33) (($ $ (-1139 (-525))) NIL)) (-3977 (($ $ (-1139 (-525))) 50) (($ $ (-525)) 45)) (-3653 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3703 (($ $ $ (-525)) 41 (|has| $ (-6 -4255)))) (-2135 (($ $) 32)) (-1427 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) NIL)) (-1497 (($ $ $) 42) (($ $ |#1|) 39)) (-2664 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4140 (((-713) $) 17 (|has| $ (-6 -4254)))))
-(((-488 |#1| |#2|) (-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -3435 ($ (-592 |#1|))) (-15 -2808 ((-713) $)) (-15 -2579 ($ $ (-525))) (-15 -2407 ((-108) (-108))))) (-1126) (-525)) (T -488))
-((-3435 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-488 *3 *4)) (-14 *4 (-525)))) (-2808 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1126)) (-14 *4 (-525)))) (-2579 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1126)) (-14 *4 (-525)))) (-2407 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1126)) (-14 *4 (-525)))))
-(-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -3435 ($ (-592 |#1|))) (-15 -2808 ((-713) $)) (-15 -2579 ($ $ (-525))) (-15 -2407 ((-108) (-108)))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-1831 (((-108) $) NIL)) (-3425 (((-713)) NIL)) (-3512 (((-538 |#1|) $) NIL) (($ $ (-855)) NIL (|has| (-538 |#1|) (-346)))) (-2837 (((-1100 (-855) (-713)) (-525)) NIL (|has| (-538 |#1|) (-346)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2305 (((-108) $ $) NIL)) (-3107 (((-713)) NIL (|has| (-538 |#1|) (-346)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-538 |#1|) "failed") $) NIL)) (-2831 (((-538 |#1|) $) NIL)) (-2229 (($ (-1172 (-538 |#1|))) NIL)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-538 |#1|) (-346)))) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) NIL (|has| (-538 |#1|) (-346)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-3205 (($) NIL (|has| (-538 |#1|) (-346)))) (-3746 (((-108) $) NIL (|has| (-538 |#1|) (-346)))) (-1410 (($ $ (-713)) NIL (-3309 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346)))) (($ $) NIL (-3309 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-2250 (((-108) $) NIL)) (-1737 (((-855) $) NIL (|has| (-538 |#1|) (-346))) (((-775 (-855)) $) NIL (-3309 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-2133 (((-108) $) NIL)) (-2537 (($) NIL (|has| (-538 |#1|) (-346)))) (-4037 (((-108) $) NIL (|has| (-538 |#1|) (-346)))) (-3477 (((-538 |#1|) $) NIL) (($ $ (-855)) NIL (|has| (-538 |#1|) (-346)))) (-1816 (((-3 $ "failed") $) NIL (|has| (-538 |#1|) (-346)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2362 (((-1086 (-538 |#1|)) $) NIL) (((-1086 $) $ (-855)) NIL (|has| (-538 |#1|) (-346)))) (-1780 (((-855) $) NIL (|has| (-538 |#1|) (-346)))) (-3474 (((-1086 (-538 |#1|)) $) NIL (|has| (-538 |#1|) (-346)))) (-2509 (((-1086 (-538 |#1|)) $) NIL (|has| (-538 |#1|) (-346))) (((-3 (-1086 (-538 |#1|)) "failed") $ $) NIL (|has| (-538 |#1|) (-346)))) (-2783 (($ $ (-1086 (-538 |#1|))) NIL (|has| (-538 |#1|) (-346)))) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL (|has| (-538 |#1|) (-346)) CONST)) (-4185 (($ (-855)) NIL (|has| (-538 |#1|) (-346)))) (-2325 (((-108) $) NIL)) (-2663 (((-1037) $) NIL)) (-1669 (($) NIL (|has| (-538 |#1|) (-346)))) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) NIL (|has| (-538 |#1|) (-346)))) (-3959 (((-396 $) $) NIL)) (-2864 (((-775 (-855))) NIL) (((-855)) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-2443 (((-713) $) NIL (|has| (-538 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-3309 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-3191 (((-128)) NIL)) (-3013 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-538 |#1|) (-346)))) (-2513 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-1654 (((-1086 (-538 |#1|))) NIL)) (-3775 (($) NIL (|has| (-538 |#1|) (-346)))) (-3555 (($) NIL (|has| (-538 |#1|) (-346)))) (-4093 (((-1172 (-538 |#1|)) $) NIL) (((-632 (-538 |#1|)) (-1172 $)) NIL)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| (-538 |#1|) (-346)))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-538 |#1|)) NIL)) (-3421 (($ $) NIL (|has| (-538 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3309 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-2093 (((-713)) NIL)) (-2499 (((-1172 $)) NIL) (((-1172 $) (-855)) NIL)) (-2262 (((-108) $ $) NIL)) (-1252 (((-108) $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-3192 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-538 |#1|) (-346)))) (-1424 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-538 |#1|) (-346)))) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ $) NIL) (($ $ (-538 |#1|)) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-538 |#1|)) NIL) (($ (-538 |#1|) $) NIL)))
-(((-489 |#1| |#2|) (-307 (-538 |#1|)) (-855) (-855)) (T -489))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-2151 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2549 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4256))) (($ $) NIL (-12 (|has| $ (-6 -4256)) (|has| |#1| (-789))))) (-2855 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3330 (((-108) $ (-713)) NIL)) (-3042 (((-108) (-108)) 25)) (-1429 ((|#1| $ (-525) |#1|) 28 (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) NIL (|has| $ (-6 -4256)))) (-1608 (($ (-1 (-108) |#1|) $) 52)) (-3826 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-3559 (($ $) NIL (|has| $ (-6 -4256)))) (-3620 (($ $) NIL)) (-1540 (($ $) 56 (|has| |#1| (-1020)))) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2592 (($ |#1| $) NIL (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) 44)) (-1614 (($ |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2632 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) NIL)) (-1916 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-4035 (($ $ (-525)) 13)) (-1400 (((-713) $) 11)) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-3489 (($ (-713) |#1|) 23)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) 21 (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-1999 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 35)) (-3743 (($ (-1 (-108) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-789)))) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3478 (((-525) $) 20 (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-3985 (($ $ $ (-525)) 51) (($ |#1| $ (-525)) 37)) (-2683 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3542 (($ (-592 |#1|)) 29)) (-3110 ((|#1| $) NIL (|has| (-525) (-789)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2042 (($ $ |#1|) 19 (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 40)) (-4101 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) 16)) (-3410 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 33) (($ $ (-1140 (-525))) NIL)) (-3793 (($ $ (-1140 (-525))) 50) (($ $ (-525)) 45)) (-3157 (($ $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3216 (($ $ $ (-525)) 41 (|has| $ (-6 -4256)))) (-1451 (($ $) 32)) (-2749 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) NIL)) (-2162 (($ $ $) 42) (($ $ |#1|) 39)) (-2014 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3596 (((-713) $) 17 (|has| $ (-6 -4255)))))
+(((-488 |#1| |#2|) (-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -3542 ($ (-592 |#1|))) (-15 -1400 ((-713) $)) (-15 -4035 ($ $ (-525))) (-15 -3042 ((-108) (-108))))) (-1127) (-525)) (T -488))
+((-3542 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-5 *1 (-488 *3 *4)) (-14 *4 (-525)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1127)) (-14 *4 (-525)))) (-4035 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1127)) (-14 *4 (-525)))) (-3042 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1127)) (-14 *4 (-525)))))
+(-13 (-19 |#1|) (-261 |#1|) (-10 -8 (-15 -3542 ($ (-592 |#1|))) (-15 -1400 ((-713) $)) (-15 -4035 ($ $ (-525))) (-15 -3042 ((-108) (-108)))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-2679 (((-108) $) NIL)) (-3452 (((-713)) NIL)) (-3029 (((-538 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-538 |#1|) (-346)))) (-1670 (((-1101 (-856) (-713)) (-525)) NIL (|has| (-538 |#1|) (-346)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3197 (((-108) $ $) NIL)) (-4190 (((-713)) NIL (|has| (-538 |#1|) (-346)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-538 |#1|) "failed") $) NIL)) (-3898 (((-538 |#1|) $) NIL)) (-3612 (($ (-1173 (-538 |#1|))) NIL)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-538 |#1|) (-346)))) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) NIL (|has| (-538 |#1|) (-346)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3977 (($) NIL (|has| (-538 |#1|) (-346)))) (-3564 (((-108) $) NIL (|has| (-538 |#1|) (-346)))) (-2327 (($ $ (-713)) NIL (-3279 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346)))) (($ $) NIL (-3279 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-3836 (((-108) $) NIL)) (-3973 (((-856) $) NIL (|has| (-538 |#1|) (-346))) (((-775 (-856)) $) NIL (-3279 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-1985 (((-108) $) NIL)) (-1794 (($) NIL (|has| (-538 |#1|) (-346)))) (-4200 (((-108) $) NIL (|has| (-538 |#1|) (-346)))) (-2900 (((-538 |#1|) $) NIL) (($ $ (-856)) NIL (|has| (-538 |#1|) (-346)))) (-1760 (((-3 $ "failed") $) NIL (|has| (-538 |#1|) (-346)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2640 (((-1087 (-538 |#1|)) $) NIL) (((-1087 $) $ (-856)) NIL (|has| (-538 |#1|) (-346)))) (-1736 (((-856) $) NIL (|has| (-538 |#1|) (-346)))) (-2884 (((-1087 (-538 |#1|)) $) NIL (|has| (-538 |#1|) (-346)))) (-1549 (((-1087 (-538 |#1|)) $) NIL (|has| (-538 |#1|) (-346))) (((-3 (-1087 (-538 |#1|)) "failed") $ $) NIL (|has| (-538 |#1|) (-346)))) (-2499 (($ $ (-1087 (-538 |#1|))) NIL (|has| (-538 |#1|) (-346)))) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL (|has| (-538 |#1|) (-346)) CONST)) (-3640 (($ (-856)) NIL (|has| (-538 |#1|) (-346)))) (-3341 (((-108) $) NIL)) (-2012 (((-1038) $) NIL)) (-3523 (($) NIL (|has| (-538 |#1|) (-346)))) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) NIL (|has| (-538 |#1|) (-346)))) (-2195 (((-396 $) $) NIL)) (-3748 (((-775 (-856))) NIL) (((-856)) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2181 (((-713) $) NIL (|has| (-538 |#1|) (-346))) (((-3 (-713) "failed") $ $) NIL (-3279 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-3831 (((-128)) NIL)) (-2523 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-538 |#1|) (-346)))) (-1587 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-1571 (((-1087 (-538 |#1|))) NIL)) (-2726 (($) NIL (|has| (-538 |#1|) (-346)))) (-2411 (($) NIL (|has| (-538 |#1|) (-346)))) (-3464 (((-1173 (-538 |#1|)) $) NIL) (((-632 (-538 |#1|)) (-1173 $)) NIL)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (|has| (-538 |#1|) (-346)))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-538 |#1|)) NIL)) (-3425 (($ $) NIL (|has| (-538 |#1|) (-346))) (((-3 $ "failed") $) NIL (-3279 (|has| (-538 |#1|) (-136)) (|has| (-538 |#1|) (-346))))) (-2104 (((-713)) NIL)) (-1449 (((-1173 $)) NIL) (((-1173 $) (-856)) NIL)) (-3959 (((-108) $ $) NIL)) (-1728 (((-108) $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-3842 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-538 |#1|) (-346)))) (-2093 (($ $) NIL (|has| (-538 |#1|) (-346))) (($ $ (-713)) NIL (|has| (-538 |#1|) (-346)))) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ $) NIL) (($ $ (-538 |#1|)) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-538 |#1|)) NIL) (($ (-538 |#1|) $) NIL)))
+(((-489 |#1| |#2|) (-307 (-538 |#1|)) (-856) (-856)) (T -489))
NIL
(-307 (-538 |#1|))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 ((|#1| $ (-525) (-525) |#1|) 35)) (-2244 (($ $ (-525) |#4|) NIL)) (-2040 (($ $ (-525) |#5|) NIL)) (-1505 (($) NIL T CONST)) (-3606 ((|#4| $ (-525)) NIL)) (-2870 ((|#1| $ (-525) (-525) |#1|) 34)) (-2796 ((|#1| $ (-525) (-525)) 32)) (-2026 (((-592 |#1|) $) NIL)) (-2606 (((-713) $) 28)) (-4018 (($ (-713) (-713) |#1|) 25)) (-2618 (((-713) $) 30)) (-3100 (((-108) $ (-713)) NIL)) (-2746 (((-525) $) 26)) (-2551 (((-525) $) 27)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1906 (((-525) $) 29)) (-1950 (((-525) $) 31)) (-2857 (($ (-1 |#1| |#1|) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) 38 (|has| |#1| (-1019)))) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1911 (($ $ |#1|) NIL)) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) 14)) (-3773 (($) 16)) (-3928 ((|#1| $ (-525) (-525)) 33) ((|#1| $ (-525) (-525) |#1|) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) NIL)) (-2543 ((|#5| $ (-525)) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-490 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1126) (-525) (-525) (-351 |#1|) (-351 |#1|)) (T -490))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 ((|#1| $ (-525) (-525) |#1|) 35)) (-3758 (($ $ (-525) |#4|) NIL)) (-2185 (($ $ (-525) |#5|) NIL)) (-2305 (($) NIL T CONST)) (-1616 ((|#4| $ (-525)) NIL)) (-2632 ((|#1| $ (-525) (-525) |#1|) 34)) (-2570 ((|#1| $ (-525) (-525)) 32)) (-3702 (((-592 |#1|) $) NIL)) (-1857 (((-713) $) 28)) (-3489 (($ (-713) (-713) |#1|) 25)) (-1869 (((-713) $) 30)) (-2482 (((-108) $ (-713)) NIL)) (-1964 (((-525) $) 26)) (-3779 (((-525) $) 27)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1987 (((-525) $) 29)) (-3948 (((-525) $) 31)) (-2622 (($ (-1 |#1| |#1|) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) 38 (|has| |#1| (-1020)))) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-2042 (($ $ |#1|) NIL)) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) 14)) (-2718 (($) 16)) (-3410 ((|#1| $ (-525) (-525)) 33) ((|#1| $ (-525) (-525) |#1|) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) NIL)) (-3701 ((|#5| $ (-525)) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-490 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1127) (-525) (-525) (-351 |#1|) (-351 |#1|)) (T -490))
NIL
(-55 |#1| |#4| |#5|)
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3871 ((|#1| $) NIL)) (-1899 ((|#1| $) NIL)) (-1614 (($ $) NIL)) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3035 (($ $ (-525)) 59 (|has| $ (-6 -4255)))) (-3072 (((-108) $) NIL (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1356 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789)))) (($ (-1 (-108) |#1| |#1|) $) 57 (|has| $ (-6 -4255)))) (-3327 (($ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-2822 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-3795 (($ $ $) 23 (|has| $ (-6 -4255)))) (-2813 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-1517 ((|#1| $ |#1|) 21 (|has| $ (-6 -4255)))) (-2109 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4255))) (($ $ "rest" $) 24 (|has| $ (-6 -4255))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-3290 (($ (-1 (-108) |#1|) $) NIL)) (-2724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1882 ((|#1| $) NIL)) (-1505 (($) NIL T CONST)) (-4103 (($ $) 28 (|has| $ (-6 -4255)))) (-1693 (($ $) 29)) (-3145 (($ $) 18) (($ $ (-713)) 32)) (-3143 (($ $) 55 (|has| |#1| (-1019)))) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2792 (($ |#1| $) NIL (|has| |#1| (-1019))) (($ (-1 (-108) |#1|) $) NIL)) (-2273 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2870 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) NIL)) (-2495 (((-108) $) NIL)) (-3763 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019))) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) (-1 (-108) |#1|) $) NIL)) (-2026 (((-592 |#1|) $) 27 (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) NIL)) (-3106 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4018 (($ (-713) |#1|) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) 31 (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-2749 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 58)) (-1932 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 53 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3037 (($ |#1|) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-1564 (((-592 |#1|) $) NIL)) (-3723 (((-108) $) NIL)) (-2337 (((-1073) $) 51 (|has| |#1| (-1019)))) (-2292 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-2573 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-3167 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3135 ((|#1| $) 13) (($ $ (-713)) NIL)) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1911 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-2518 (((-108) $) NIL)) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 12)) (-3218 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) NIL)) (-1613 (((-108) $) 17)) (-3773 (($) 16)) (-3928 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1139 (-525))) NIL) ((|#1| $ (-525)) NIL) ((|#1| $ (-525) |#1|) NIL)) (-4068 (((-525) $ $) NIL)) (-3977 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-3653 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-1810 (((-108) $) 34)) (-1350 (($ $) NIL)) (-2027 (($ $) NIL (|has| $ (-6 -4255)))) (-1290 (((-713) $) NIL)) (-3080 (($ $) 36)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3703 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-2135 (($ $) 35)) (-1427 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 26)) (-1497 (($ $ $) 54) (($ $ |#1|) NIL)) (-2664 (($ $ $) NIL) (($ |#1| $) 10) (($ (-592 $)) NIL) (($ $ |#1|) NIL)) (-1908 (((-797) $) 46 (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) NIL)) (-1519 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) 48 (|has| |#1| (-1019)))) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4140 (((-713) $) 9 (|has| $ (-6 -4254)))))
-(((-491 |#1| |#2|) (-612 |#1|) (-1126) (-525)) (T -491))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3352 ((|#1| $) NIL)) (-2029 ((|#1| $) NIL)) (-2941 (($ $) NIL)) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-3078 (($ $ (-525)) 59 (|has| $ (-6 -4256)))) (-2151 (((-108) $) NIL (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2549 (($ $) NIL (-12 (|has| $ (-6 -4256)) (|has| |#1| (-789)))) (($ (-1 (-108) |#1| |#1|) $) 57 (|has| $ (-6 -4256)))) (-2855 (($ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-1545 ((|#1| $ |#1|) NIL (|has| $ (-6 -4256)))) (-2914 (($ $ $) 23 (|has| $ (-6 -4256)))) (-1455 ((|#1| $ |#1|) NIL (|has| $ (-6 -4256)))) (-2207 ((|#1| $ |#1|) 21 (|has| $ (-6 -4256)))) (-1429 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4256))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4256))) (($ $ "rest" $) 24 (|has| $ (-6 -4256))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) NIL (|has| $ (-6 -4256))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) NIL (|has| $ (-6 -4256)))) (-1608 (($ (-1 (-108) |#1|) $) NIL)) (-3826 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2016 ((|#1| $) NIL)) (-2305 (($) NIL T CONST)) (-3559 (($ $) 28 (|has| $ (-6 -4256)))) (-3620 (($ $) 29)) (-3121 (($ $) 18) (($ $ (-713)) 32)) (-1540 (($ $) 55 (|has| |#1| (-1020)))) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2592 (($ |#1| $) NIL (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) NIL)) (-1614 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2632 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) NIL)) (-1406 (((-108) $) NIL)) (-1916 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020))) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) (-1 (-108) |#1|) $) NIL)) (-3702 (((-592 |#1|) $) 27 (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) NIL)) (-2553 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3489 (($ (-713) |#1|) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) 31 (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-1999 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 58)) (-3743 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 53 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4104 (($ |#1|) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-2647 (((-592 |#1|) $) NIL)) (-3365 (((-108) $) NIL)) (-3451 (((-1074) $) 51 (|has| |#1| (-1020)))) (-1636 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-3985 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2683 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3110 ((|#1| $) 13) (($ $ (-713)) NIL)) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2042 (($ $ |#1|) NIL (|has| $ (-6 -4256)))) (-1626 (((-108) $) NIL)) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 12)) (-4101 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) NIL)) (-2013 (((-108) $) 17)) (-2718 (($) 16)) (-3410 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1140 (-525))) NIL) ((|#1| $ (-525)) NIL) ((|#1| $ (-525) |#1|) NIL)) (-3294 (((-525) $ $) NIL)) (-3793 (($ $ (-1140 (-525))) NIL) (($ $ (-525)) NIL)) (-3157 (($ $ (-1140 (-525))) NIL) (($ $ (-525)) NIL)) (-1698 (((-108) $) 34)) (-2491 (($ $) NIL)) (-3385 (($ $) NIL (|has| $ (-6 -4256)))) (-2389 (((-713) $) NIL)) (-2249 (($ $) 36)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3216 (($ $ $ (-525)) NIL (|has| $ (-6 -4256)))) (-1451 (($ $) 35)) (-2749 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 26)) (-2162 (($ $ $) 54) (($ $ |#1|) NIL)) (-2014 (($ $ $) NIL) (($ |#1| $) 10) (($ (-592 $)) NIL) (($ $ |#1|) NIL)) (-1270 (((-798) $) 46 (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) NIL)) (-2240 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) 48 (|has| |#1| (-1020)))) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3596 (((-713) $) 9 (|has| $ (-6 -4255)))))
+(((-491 |#1| |#2|) (-612 |#1|) (-1127) (-525)) (T -491))
NIL
(-612 |#1|)
-((-3262 ((|#4| |#4|) 27)) (-2239 (((-713) |#4|) 32)) (-3177 (((-713) |#4|) 33)) (-2517 (((-592 |#3|) |#4|) 40 (|has| |#3| (-6 -4255)))) (-1386 (((-3 |#4| "failed") |#4|) 51)) (-2750 ((|#4| |#4|) 44)) (-2923 ((|#1| |#4|) 43)))
-(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3262 (|#4| |#4|)) (-15 -2239 ((-713) |#4|)) (-15 -3177 ((-713) |#4|)) (IF (|has| |#3| (-6 -4255)) (-15 -2517 ((-592 |#3|) |#4|)) |%noBranch|) (-15 -2923 (|#1| |#4|)) (-15 -2750 (|#4| |#4|)) (-15 -1386 ((-3 |#4| "failed") |#4|))) (-341) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -492))
-((-1386 (*1 *2 *2) (|partial| -12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-2750 (*1 *2 *2) (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-2923 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-341)) (-5 *1 (-492 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5)))) (-2517 (*1 *2 *3) (-12 (|has| *6 (-6 -4255)) (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3177 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-2239 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3262 (*1 *2 *2) (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
-(-10 -7 (-15 -3262 (|#4| |#4|)) (-15 -2239 ((-713) |#4|)) (-15 -3177 ((-713) |#4|)) (IF (|has| |#3| (-6 -4255)) (-15 -2517 ((-592 |#3|) |#4|)) |%noBranch|) (-15 -2923 (|#1| |#4|)) (-15 -2750 (|#4| |#4|)) (-15 -1386 ((-3 |#4| "failed") |#4|)))
-((-3262 ((|#8| |#4|) 20)) (-2517 (((-592 |#3|) |#4|) 29 (|has| |#7| (-6 -4255)))) (-1386 (((-3 |#8| "failed") |#4|) 23)))
-(((-493 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3262 (|#8| |#4|)) (-15 -1386 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4255)) (-15 -2517 ((-592 |#3|) |#4|)) |%noBranch|)) (-517) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|) (-924 |#1|) (-351 |#5|) (-351 |#5|) (-630 |#5| |#6| |#7|)) (T -493))
-((-2517 (*1 *2 *3) (-12 (|has| *9 (-6 -4255)) (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-924 *4)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7)) (-5 *2 (-592 *6)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-630 *4 *5 *6)) (-4 *10 (-630 *7 *8 *9)))) (-1386 (*1 *2 *3) (|partial| -12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-924 *4)) (-4 *2 (-630 *7 *8 *9)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7)))) (-3262 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-924 *4)) (-4 *2 (-630 *7 *8 *9)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7)))))
-(-10 -7 (-15 -3262 (|#8| |#4|)) (-15 -1386 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4255)) (-15 -2517 ((-592 |#3|) |#4|)) |%noBranch|))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1383 (($ (-713) (-713)) NIL)) (-3754 (($ $ $) NIL)) (-2734 (($ (-556 |#1| |#3|)) NIL) (($ $) NIL)) (-3844 (((-108) $) NIL)) (-3899 (($ $ (-525) (-525)) 12)) (-3624 (($ $ (-525) (-525)) NIL)) (-3708 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-2719 (($ $) NIL)) (-1399 (((-108) $) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-1589 (($ $ (-525) (-525) $) NIL)) (-2109 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) NIL)) (-2244 (($ $ (-525) (-556 |#1| |#3|)) NIL)) (-2040 (($ $ (-525) (-556 |#1| |#2|)) NIL)) (-2715 (($ (-713) |#1|) NIL)) (-1505 (($) NIL T CONST)) (-3262 (($ $) 21 (|has| |#1| (-286)))) (-3606 (((-556 |#1| |#3|) $ (-525)) NIL)) (-2239 (((-713) $) 24 (|has| |#1| (-517)))) (-2870 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2796 ((|#1| $ (-525) (-525)) NIL)) (-2026 (((-592 |#1|) $) NIL)) (-3177 (((-713) $) 26 (|has| |#1| (-517)))) (-2517 (((-592 (-556 |#1| |#2|)) $) 29 (|has| |#1| (-517)))) (-2606 (((-713) $) NIL)) (-4018 (($ (-713) (-713) |#1|) NIL)) (-2618 (((-713) $) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2216 ((|#1| $) 19 (|has| |#1| (-6 (-4256 "*"))))) (-2746 (((-525) $) 10)) (-2551 (((-525) $) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1906 (((-525) $) 11)) (-1950 (((-525) $) NIL)) (-3515 (($ (-592 (-592 |#1|))) NIL)) (-2857 (($ (-1 |#1| |#1|) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3019 (((-592 (-592 |#1|)) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-1386 (((-3 $ "failed") $) 33 (|has| |#1| (-341)))) (-2538 (($ $ $) NIL)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1911 (($ $ |#1|) NIL)) (-2338 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525))) NIL)) (-2540 (($ (-592 |#1|)) NIL) (($ (-592 $)) NIL)) (-1997 (((-108) $) NIL)) (-2923 ((|#1| $) 17 (|has| |#1| (-6 (-4256 "*"))))) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) NIL)) (-2543 (((-556 |#1| |#2|) $ (-525)) NIL)) (-1908 (($ (-556 |#1| |#2|)) NIL) (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3265 (((-108) $) NIL)) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4070 (($ $ $) NIL) (($ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-556 |#1| |#2|) $ (-556 |#1| |#2|)) NIL) (((-556 |#1| |#3|) (-556 |#1| |#3|) $) NIL)) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-494 |#1| |#2| |#3|) (-630 |#1| (-556 |#1| |#3|) (-556 |#1| |#2|)) (-976) (-525) (-525)) (T -494))
+((-1333 ((|#4| |#4|) 27)) (-3318 (((-713) |#4|) 32)) (-1841 (((-713) |#4|) 33)) (-1615 (((-592 |#3|) |#4|) 40 (|has| |#3| (-6 -4256)))) (-2933 (((-3 |#4| "failed") |#4|) 51)) (-2010 ((|#4| |#4|) 44)) (-3176 ((|#1| |#4|) 43)))
+(((-492 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1333 (|#4| |#4|)) (-15 -3318 ((-713) |#4|)) (-15 -1841 ((-713) |#4|)) (IF (|has| |#3| (-6 -4256)) (-15 -1615 ((-592 |#3|) |#4|)) |%noBranch|) (-15 -3176 (|#1| |#4|)) (-15 -2010 (|#4| |#4|)) (-15 -2933 ((-3 |#4| "failed") |#4|))) (-341) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -492))
+((-2933 (*1 *2 *2) (|partial| -12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-2010 (*1 *2 *2) (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-3176 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-341)) (-5 *1 (-492 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5)))) (-1615 (*1 *2 *3) (-12 (|has| *6 (-6 -4256)) (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-1841 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3318 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-1333 (*1 *2 *2) (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
+(-10 -7 (-15 -1333 (|#4| |#4|)) (-15 -3318 ((-713) |#4|)) (-15 -1841 ((-713) |#4|)) (IF (|has| |#3| (-6 -4256)) (-15 -1615 ((-592 |#3|) |#4|)) |%noBranch|) (-15 -3176 (|#1| |#4|)) (-15 -2010 (|#4| |#4|)) (-15 -2933 ((-3 |#4| "failed") |#4|)))
+((-1333 ((|#8| |#4|) 20)) (-1615 (((-592 |#3|) |#4|) 29 (|has| |#7| (-6 -4256)))) (-2933 (((-3 |#8| "failed") |#4|) 23)))
+(((-493 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1333 (|#8| |#4|)) (-15 -2933 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4256)) (-15 -1615 ((-592 |#3|) |#4|)) |%noBranch|)) (-517) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|) (-925 |#1|) (-351 |#5|) (-351 |#5|) (-630 |#5| |#6| |#7|)) (T -493))
+((-1615 (*1 *2 *3) (-12 (|has| *9 (-6 -4256)) (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-925 *4)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7)) (-5 *2 (-592 *6)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-630 *4 *5 *6)) (-4 *10 (-630 *7 *8 *9)))) (-2933 (*1 *2 *3) (|partial| -12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-925 *4)) (-4 *2 (-630 *7 *8 *9)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7)))) (-1333 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-4 *7 (-925 *4)) (-4 *2 (-630 *7 *8 *9)) (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6)) (-4 *8 (-351 *7)) (-4 *9 (-351 *7)))))
+(-10 -7 (-15 -1333 (|#8| |#4|)) (-15 -2933 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4256)) (-15 -1615 ((-592 |#3|) |#4|)) |%noBranch|))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2708 (($ (-713) (-713)) NIL)) (-3623 (($ $ $) NIL)) (-3106 (($ (-556 |#1| |#3|)) NIL) (($ $) NIL)) (-2079 (((-108) $) NIL)) (-1335 (($ $ (-525) (-525)) 12)) (-1775 (($ $ (-525) (-525)) NIL)) (-3250 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-2998 (($ $) NIL)) (-2077 (((-108) $) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-1327 (($ $ (-525) (-525) $) NIL)) (-1429 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) NIL)) (-3758 (($ $ (-525) (-556 |#1| |#3|)) NIL)) (-2185 (($ $ (-525) (-556 |#1| |#2|)) NIL)) (-2975 (($ (-713) |#1|) NIL)) (-2305 (($) NIL T CONST)) (-1333 (($ $) 21 (|has| |#1| (-286)))) (-1616 (((-556 |#1| |#3|) $ (-525)) NIL)) (-3318 (((-713) $) 24 (|has| |#1| (-517)))) (-2632 ((|#1| $ (-525) (-525) |#1|) NIL)) (-2570 ((|#1| $ (-525) (-525)) NIL)) (-3702 (((-592 |#1|) $) NIL)) (-1841 (((-713) $) 26 (|has| |#1| (-517)))) (-1615 (((-592 (-556 |#1| |#2|)) $) 29 (|has| |#1| (-517)))) (-1857 (((-713) $) NIL)) (-3489 (($ (-713) (-713) |#1|) NIL)) (-1869 (((-713) $) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-1641 ((|#1| $) 19 (|has| |#1| (-6 (-4257 "*"))))) (-1964 (((-525) $) 10)) (-3779 (((-525) $) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1987 (((-525) $) 11)) (-3948 (((-525) $) NIL)) (-1660 (($ (-592 (-592 |#1|))) NIL)) (-2622 (($ (-1 |#1| |#1|) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2973 (((-592 (-592 |#1|)) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2933 (((-3 $ "failed") $) 33 (|has| |#1| (-341)))) (-3652 (($ $ $) NIL)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-2042 (($ $ |#1|) NIL)) (-1680 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525))) NIL)) (-3675 (($ (-592 |#1|)) NIL) (($ (-592 $)) NIL)) (-2559 (((-108) $) NIL)) (-3176 ((|#1| $) 17 (|has| |#1| (-6 (-4257 "*"))))) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) NIL)) (-3701 (((-556 |#1| |#2|) $ (-525)) NIL)) (-1270 (($ (-556 |#1| |#2|)) NIL) (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-1366 (((-108) $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4090 (($ $ $) NIL) (($ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-556 |#1| |#2|) $ (-556 |#1| |#2|)) NIL) (((-556 |#1| |#3|) (-556 |#1| |#3|) $) NIL)) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-494 |#1| |#2| |#3|) (-630 |#1| (-556 |#1| |#3|) (-556 |#1| |#2|)) (-977) (-525) (-525)) (T -494))
NIL
(-630 |#1| (-556 |#1| |#3|) (-556 |#1| |#2|))
-((-1491 (((-1086 |#1|) (-713)) 76)) (-3512 (((-1172 |#1|) (-1172 |#1|) (-855)) 69)) (-1502 (((-1177) (-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))) |#1|) 84)) (-1230 (((-1172 |#1|) (-1172 |#1|) (-713)) 36)) (-3375 (((-1172 |#1|) (-855)) 71)) (-1556 (((-1172 |#1|) (-1172 |#1|) (-525)) 24)) (-3966 (((-1086 |#1|) (-1172 |#1|)) 77)) (-2537 (((-1172 |#1|) (-855)) 95)) (-4037 (((-108) (-1172 |#1|)) 80)) (-3477 (((-1172 |#1|) (-1172 |#1|) (-855)) 62)) (-2362 (((-1086 |#1|) (-1172 |#1|)) 89)) (-1780 (((-855) (-1172 |#1|)) 59)) (-4211 (((-1172 |#1|) (-1172 |#1|)) 30)) (-4185 (((-1172 |#1|) (-855) (-855)) 97)) (-2989 (((-1172 |#1|) (-1172 |#1|) (-1037) (-1037)) 23)) (-1944 (((-1172 |#1|) (-1172 |#1|) (-713) (-1037)) 37)) (-2499 (((-1172 (-1172 |#1|)) (-855)) 94)) (-4082 (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 81)) (** (((-1172 |#1|) (-1172 |#1|) (-525)) 45)) (* (((-1172 |#1|) (-1172 |#1|) (-1172 |#1|)) 25)))
-(((-495 |#1|) (-10 -7 (-15 -1502 ((-1177) (-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))) |#1|)) (-15 -3375 ((-1172 |#1|) (-855))) (-15 -4185 ((-1172 |#1|) (-855) (-855))) (-15 -3966 ((-1086 |#1|) (-1172 |#1|))) (-15 -1491 ((-1086 |#1|) (-713))) (-15 -1944 ((-1172 |#1|) (-1172 |#1|) (-713) (-1037))) (-15 -1230 ((-1172 |#1|) (-1172 |#1|) (-713))) (-15 -2989 ((-1172 |#1|) (-1172 |#1|) (-1037) (-1037))) (-15 -1556 ((-1172 |#1|) (-1172 |#1|) (-525))) (-15 ** ((-1172 |#1|) (-1172 |#1|) (-525))) (-15 * ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -4082 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3477 ((-1172 |#1|) (-1172 |#1|) (-855))) (-15 -3512 ((-1172 |#1|) (-1172 |#1|) (-855))) (-15 -4211 ((-1172 |#1|) (-1172 |#1|))) (-15 -1780 ((-855) (-1172 |#1|))) (-15 -4037 ((-108) (-1172 |#1|))) (-15 -2499 ((-1172 (-1172 |#1|)) (-855))) (-15 -2537 ((-1172 |#1|) (-855))) (-15 -2362 ((-1086 |#1|) (-1172 |#1|)))) (-327)) (T -495))
-((-2362 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-327)) (-5 *2 (-1086 *4)) (-5 *1 (-495 *4)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1172 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-2499 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1172 (-1172 *4))) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-495 *4)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-327)) (-5 *2 (-855)) (-5 *1 (-495 *4)))) (-4211 (*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (-3512 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-855)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-3477 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-855)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-4082 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-525)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-1556 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-525)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-2989 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-1037)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-1230 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *4)) (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-1944 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1172 *5)) (-5 *3 (-713)) (-5 *4 (-1037)) (-4 *5 (-327)) (-5 *1 (-495 *5)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1086 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-3966 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-327)) (-5 *2 (-1086 *4)) (-5 *1 (-495 *4)))) (-4185 (*1 *2 *3 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1172 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-3375 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1172 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-1172 (-592 (-2 (|:| -3871 *4) (|:| -4185 (-1037)))))) (-4 *4 (-327)) (-5 *2 (-1177)) (-5 *1 (-495 *4)))))
-(-10 -7 (-15 -1502 ((-1177) (-1172 (-592 (-2 (|:| -3871 |#1|) (|:| -4185 (-1037))))) |#1|)) (-15 -3375 ((-1172 |#1|) (-855))) (-15 -4185 ((-1172 |#1|) (-855) (-855))) (-15 -3966 ((-1086 |#1|) (-1172 |#1|))) (-15 -1491 ((-1086 |#1|) (-713))) (-15 -1944 ((-1172 |#1|) (-1172 |#1|) (-713) (-1037))) (-15 -1230 ((-1172 |#1|) (-1172 |#1|) (-713))) (-15 -2989 ((-1172 |#1|) (-1172 |#1|) (-1037) (-1037))) (-15 -1556 ((-1172 |#1|) (-1172 |#1|) (-525))) (-15 ** ((-1172 |#1|) (-1172 |#1|) (-525))) (-15 * ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -4082 ((-1172 |#1|) (-1172 |#1|) (-1172 |#1|))) (-15 -3477 ((-1172 |#1|) (-1172 |#1|) (-855))) (-15 -3512 ((-1172 |#1|) (-1172 |#1|) (-855))) (-15 -4211 ((-1172 |#1|) (-1172 |#1|))) (-15 -1780 ((-855) (-1172 |#1|))) (-15 -4037 ((-108) (-1172 |#1|))) (-15 -2499 ((-1172 (-1172 |#1|)) (-855))) (-15 -2537 ((-1172 |#1|) (-855))) (-15 -2362 ((-1086 |#1|) (-1172 |#1|))))
-((-2680 (((-1 |#1| |#1|) |#1|) 11)) (-3594 (((-1 |#1| |#1|)) 10)))
-(((-496 |#1|) (-10 -7 (-15 -3594 ((-1 |#1| |#1|))) (-15 -2680 ((-1 |#1| |#1|) |#1|))) (-13 (-669) (-25))) (T -496))
-((-2680 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25))))) (-3594 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25))))))
-(-10 -7 (-15 -3594 ((-1 |#1| |#1|))) (-15 -2680 ((-1 |#1| |#1|) |#1|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1487 (($ $ $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1247 (($ $) NIL)) (-4079 (($ (-713) |#1|) NIL)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-1370 (($ (-1 (-713) (-713)) $) NIL)) (-1470 ((|#1| $) NIL)) (-1224 (((-713) $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 20)) (-3875 (($) NIL T CONST)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL)))
+((-2071 (((-1087 |#1|) (-713)) 76)) (-3029 (((-1173 |#1|) (-1173 |#1|) (-856)) 69)) (-2241 (((-1178) (-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))) |#1|) 84)) (-2809 (((-1173 |#1|) (-1173 |#1|) (-713)) 36)) (-2899 (((-1173 |#1|) (-856)) 71)) (-3049 (((-1173 |#1|) (-1173 |#1|) (-525)) 24)) (-3696 (((-1087 |#1|) (-1173 |#1|)) 77)) (-1794 (((-1173 |#1|) (-856)) 95)) (-4200 (((-108) (-1173 |#1|)) 80)) (-2900 (((-1173 |#1|) (-1173 |#1|) (-856)) 62)) (-2640 (((-1087 |#1|) (-1173 |#1|)) 89)) (-1736 (((-856) (-1173 |#1|)) 59)) (-2502 (((-1173 |#1|) (-1173 |#1|)) 30)) (-3640 (((-1173 |#1|) (-856) (-856)) 97)) (-2689 (((-1173 |#1|) (-1173 |#1|) (-1038) (-1038)) 23)) (-3871 (((-1173 |#1|) (-1173 |#1|) (-713) (-1038)) 37)) (-1449 (((-1173 (-1173 |#1|)) (-856)) 94)) (-4100 (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 81)) (** (((-1173 |#1|) (-1173 |#1|) (-525)) 45)) (* (((-1173 |#1|) (-1173 |#1|) (-1173 |#1|)) 25)))
+(((-495 |#1|) (-10 -7 (-15 -2241 ((-1178) (-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))) |#1|)) (-15 -2899 ((-1173 |#1|) (-856))) (-15 -3640 ((-1173 |#1|) (-856) (-856))) (-15 -3696 ((-1087 |#1|) (-1173 |#1|))) (-15 -2071 ((-1087 |#1|) (-713))) (-15 -3871 ((-1173 |#1|) (-1173 |#1|) (-713) (-1038))) (-15 -2809 ((-1173 |#1|) (-1173 |#1|) (-713))) (-15 -2689 ((-1173 |#1|) (-1173 |#1|) (-1038) (-1038))) (-15 -3049 ((-1173 |#1|) (-1173 |#1|) (-525))) (-15 ** ((-1173 |#1|) (-1173 |#1|) (-525))) (-15 * ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -4100 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2900 ((-1173 |#1|) (-1173 |#1|) (-856))) (-15 -3029 ((-1173 |#1|) (-1173 |#1|) (-856))) (-15 -2502 ((-1173 |#1|) (-1173 |#1|))) (-15 -1736 ((-856) (-1173 |#1|))) (-15 -4200 ((-108) (-1173 |#1|))) (-15 -1449 ((-1173 (-1173 |#1|)) (-856))) (-15 -1794 ((-1173 |#1|) (-856))) (-15 -2640 ((-1087 |#1|) (-1173 |#1|)))) (-327)) (T -495))
+((-2640 (*1 *2 *3) (-12 (-5 *3 (-1173 *4)) (-4 *4 (-327)) (-5 *2 (-1087 *4)) (-5 *1 (-495 *4)))) (-1794 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1173 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-1449 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1173 (-1173 *4))) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-4200 (*1 *2 *3) (-12 (-5 *3 (-1173 *4)) (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-495 *4)))) (-1736 (*1 *2 *3) (-12 (-5 *3 (-1173 *4)) (-4 *4 (-327)) (-5 *2 (-856)) (-5 *1 (-495 *4)))) (-2502 (*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (-3029 (*1 *2 *2 *3) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-856)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-2900 (*1 *2 *2 *3) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-856)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-4100 (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-525)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-3049 (*1 *2 *2 *3) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-525)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-2689 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-1038)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-2809 (*1 *2 *2 *3) (-12 (-5 *2 (-1173 *4)) (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-495 *4)))) (-3871 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1173 *5)) (-5 *3 (-713)) (-5 *4 (-1038)) (-4 *5 (-327)) (-5 *1 (-495 *5)))) (-2071 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1087 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-1173 *4)) (-4 *4 (-327)) (-5 *2 (-1087 *4)) (-5 *1 (-495 *4)))) (-3640 (*1 *2 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1173 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-2899 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1173 *4)) (-5 *1 (-495 *4)) (-4 *4 (-327)))) (-2241 (*1 *2 *3 *4) (-12 (-5 *3 (-1173 (-592 (-2 (|:| -3352 *4) (|:| -3640 (-1038)))))) (-4 *4 (-327)) (-5 *2 (-1178)) (-5 *1 (-495 *4)))))
+(-10 -7 (-15 -2241 ((-1178) (-1173 (-592 (-2 (|:| -3352 |#1|) (|:| -3640 (-1038))))) |#1|)) (-15 -2899 ((-1173 |#1|) (-856))) (-15 -3640 ((-1173 |#1|) (-856) (-856))) (-15 -3696 ((-1087 |#1|) (-1173 |#1|))) (-15 -2071 ((-1087 |#1|) (-713))) (-15 -3871 ((-1173 |#1|) (-1173 |#1|) (-713) (-1038))) (-15 -2809 ((-1173 |#1|) (-1173 |#1|) (-713))) (-15 -2689 ((-1173 |#1|) (-1173 |#1|) (-1038) (-1038))) (-15 -3049 ((-1173 |#1|) (-1173 |#1|) (-525))) (-15 ** ((-1173 |#1|) (-1173 |#1|) (-525))) (-15 * ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -4100 ((-1173 |#1|) (-1173 |#1|) (-1173 |#1|))) (-15 -2900 ((-1173 |#1|) (-1173 |#1|) (-856))) (-15 -3029 ((-1173 |#1|) (-1173 |#1|) (-856))) (-15 -2502 ((-1173 |#1|) (-1173 |#1|))) (-15 -1736 ((-856) (-1173 |#1|))) (-15 -4200 ((-108) (-1173 |#1|))) (-15 -1449 ((-1173 (-1173 |#1|)) (-856))) (-15 -1794 ((-1173 |#1|) (-856))) (-15 -2640 ((-1087 |#1|) (-1173 |#1|))))
+((-3776 (((-1 |#1| |#1|) |#1|) 11)) (-1501 (((-1 |#1| |#1|)) 10)))
+(((-496 |#1|) (-10 -7 (-15 -1501 ((-1 |#1| |#1|))) (-15 -3776 ((-1 |#1| |#1|) |#1|))) (-13 (-669) (-25))) (T -496))
+((-3776 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25))))) (-1501 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25))))))
+(-10 -7 (-15 -1501 ((-1 |#1| |#1|))) (-15 -3776 ((-1 |#1| |#1|) |#1|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2017 (($ $ $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2571 (($ $) NIL)) (-2352 (($ (-713) |#1|) NIL)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-2694 (($ (-1 (-713) (-713)) $) NIL)) (-2282 ((|#1| $) NIL)) (-2548 (((-713) $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 20)) (-3355 (($) NIL T CONST)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) NIL)) (-4080 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL)))
(((-497 |#1|) (-13 (-735) (-481 (-713) |#1|)) (-789)) (T -497))
NIL
(-13 (-735) (-481 (-713) |#1|))
-((-3521 (((-592 |#2|) (-1086 |#1|) |#3|) 83)) (-4142 (((-592 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-396 (-1086 |#1|)) (-1086 |#1|))) 100)) (-2072 (((-1086 |#1|) (-632 |#1|)) 95)))
-(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -2072 ((-1086 |#1|) (-632 |#1|))) (-15 -3521 ((-592 |#2|) (-1086 |#1|) |#3|)) (-15 -4142 ((-592 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-396 (-1086 |#1|)) (-1086 |#1|))))) (-341) (-341) (-13 (-341) (-787))) (T -498))
-((-4142 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *6)) (-5 *5 (-1 (-396 (-1086 *6)) (-1086 *6))) (-4 *6 (-341)) (-5 *2 (-592 (-2 (|:| |outval| *7) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 *7)))))) (-5 *1 (-498 *6 *7 *4)) (-4 *7 (-341)) (-4 *4 (-13 (-341) (-787))))) (-3521 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *5)) (-4 *5 (-341)) (-5 *2 (-592 *6)) (-5 *1 (-498 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-632 *4)) (-4 *4 (-341)) (-5 *2 (-1086 *4)) (-5 *1 (-498 *4 *5 *6)) (-4 *5 (-341)) (-4 *6 (-13 (-341) (-787))))))
-(-10 -7 (-15 -2072 ((-1086 |#1|) (-632 |#1|))) (-15 -3521 ((-592 |#2|) (-1086 |#1|) |#3|)) (-15 -4142 ((-592 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-396 (-1086 |#1|)) (-1086 |#1|)))))
-((-3065 (((-782 (-525))) 12)) (-3074 (((-782 (-525))) 14)) (-1347 (((-775 (-525))) 9)))
-(((-499) (-10 -7 (-15 -1347 ((-775 (-525)))) (-15 -3065 ((-782 (-525)))) (-15 -3074 ((-782 (-525)))))) (T -499))
-((-3074 (*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499)))) (-3065 (*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499)))) (-1347 (*1 *2) (-12 (-5 *2 (-775 (-525))) (-5 *1 (-499)))))
-(-10 -7 (-15 -1347 ((-775 (-525)))) (-15 -3065 ((-782 (-525)))) (-15 -3074 ((-782 (-525)))))
-((-2937 (((-501) (-1090)) 15)) (-3404 ((|#1| (-501)) 20)))
-(((-500 |#1|) (-10 -7 (-15 -2937 ((-501) (-1090))) (-15 -3404 (|#1| (-501)))) (-1126)) (T -500))
-((-3404 (*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-500 *2)) (-4 *2 (-1126)))) (-2937 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-501)) (-5 *1 (-500 *4)) (-4 *4 (-1126)))))
-(-10 -7 (-15 -2937 ((-501) (-1090))) (-15 -3404 (|#1| (-501))))
-((-1893 (((-108) $ $) NIL)) (-1515 (((-1073) $) 48)) (-2589 (((-108) $) 43)) (-1842 (((-1090) $) 44)) (-3258 (((-108) $) 41)) (-3607 (((-1073) $) 42)) (-1682 (((-108) $) NIL)) (-2970 (((-108) $) NIL)) (-1259 (((-108) $) NIL)) (-2337 (((-1073) $) NIL)) (-3681 (($ $ (-592 (-1090))) 20)) (-3404 (((-51) $) 22)) (-2318 (((-108) $) NIL)) (-1870 (((-525) $) NIL)) (-2663 (((-1037) $) NIL)) (-3111 (($ $ (-592 (-1090)) (-1090)) 60)) (-2451 (((-108) $) NIL)) (-3905 (((-205) $) NIL)) (-1317 (($ $) 38)) (-1206 (((-797) $) NIL)) (-1881 (((-108) $ $) NIL)) (-3928 (($ $ (-525)) NIL) (($ $ (-592 (-525))) NIL)) (-4034 (((-592 $) $) 28)) (-2271 (((-1090) (-592 $)) 49)) (-1427 (($ (-592 $)) 53) (($ (-1073)) NIL) (($ (-1090)) 18) (($ (-525)) 8) (($ (-205)) 25) (($ (-797)) NIL) (((-1023) $) 11) (($ (-1023)) 12)) (-2444 (((-1090) (-1090) (-592 $)) 52)) (-1908 (((-797) $) 46)) (-3054 (($ $) 51)) (-3046 (($ $) 50)) (-3549 (($ $ (-592 $)) 57)) (-3822 (((-108) $) 27)) (-3875 (($) 9 T CONST)) (-3882 (($) 10 T CONST)) (-3961 (((-108) $ $) 61)) (-4082 (($ $ $) 66)) (-4059 (($ $ $) 62)) (** (($ $ (-713)) 65) (($ $ (-525)) 64)) (* (($ $ $) 63)) (-4140 (((-525) $) NIL)))
-(((-501) (-13 (-1022 (-1073) (-1090) (-525) (-205) (-797)) (-567 (-1023)) (-10 -8 (-15 -3404 ((-51) $)) (-15 -1427 ($ (-1023))) (-15 -3549 ($ $ (-592 $))) (-15 -3111 ($ $ (-592 (-1090)) (-1090))) (-15 -3681 ($ $ (-592 (-1090)))) (-15 -4059 ($ $ $)) (-15 * ($ $ $)) (-15 -4082 ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ (-525))) (-15 0 ($) -3359) (-15 1 ($) -3359) (-15 -1317 ($ $)) (-15 -1515 ((-1073) $)) (-15 -2271 ((-1090) (-592 $))) (-15 -2444 ((-1090) (-1090) (-592 $)))))) (T -501))
-((-3404 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-501)))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-501)))) (-3549 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-501))) (-5 *1 (-501)))) (-3111 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-1090)) (-5 *1 (-501)))) (-3681 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-501)))) (-4059 (*1 *1 *1 *1) (-5 *1 (-501))) (* (*1 *1 *1 *1) (-5 *1 (-501))) (-4082 (*1 *1 *1 *1) (-5 *1 (-501))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-501)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-501)))) (-3875 (*1 *1) (-5 *1 (-501))) (-3882 (*1 *1) (-5 *1 (-501))) (-1317 (*1 *1 *1) (-5 *1 (-501))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-501)))) (-2271 (*1 *2 *3) (-12 (-5 *3 (-592 (-501))) (-5 *2 (-1090)) (-5 *1 (-501)))) (-2444 (*1 *2 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-501))) (-5 *1 (-501)))))
-(-13 (-1022 (-1073) (-1090) (-525) (-205) (-797)) (-567 (-1023)) (-10 -8 (-15 -3404 ((-51) $)) (-15 -1427 ($ (-1023))) (-15 -3549 ($ $ (-592 $))) (-15 -3111 ($ $ (-592 (-1090)) (-1090))) (-15 -3681 ($ $ (-592 (-1090)))) (-15 -4059 ($ $ $)) (-15 * ($ $ $)) (-15 -4082 ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ (-525))) (-15 (-3875) ($) -3359) (-15 (-3882) ($) -3359) (-15 -1317 ($ $)) (-15 -1515 ((-1073) $)) (-15 -2271 ((-1090) (-592 $))) (-15 -2444 ((-1090) (-1090) (-592 $)))))
-((-2117 ((|#2| |#2|) 17)) (-4071 ((|#2| |#2|) 13)) (-2976 ((|#2| |#2| (-525) (-525)) 20)) (-2448 ((|#2| |#2|) 15)))
-(((-502 |#1| |#2|) (-10 -7 (-15 -4071 (|#2| |#2|)) (-15 -2448 (|#2| |#2|)) (-15 -2117 (|#2| |#2|)) (-15 -2976 (|#2| |#2| (-525) (-525)))) (-13 (-517) (-138)) (-1163 |#1|)) (T -502))
-((-2976 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-502 *4 *2)) (-4 *2 (-1163 *4)))) (-2117 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1163 *3)))) (-2448 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1163 *3)))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1163 *3)))))
-(-10 -7 (-15 -4071 (|#2| |#2|)) (-15 -2448 (|#2| |#2|)) (-15 -2117 (|#2| |#2|)) (-15 -2976 (|#2| |#2| (-525) (-525))))
-((-2858 (((-592 (-273 (-886 |#2|))) (-592 |#2|) (-592 (-1090))) 32)) (-3126 (((-592 |#2|) (-886 |#1|) |#3|) 53) (((-592 |#2|) (-1086 |#1|) |#3|) 52)) (-3042 (((-592 (-592 |#2|)) (-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090)) |#3|) 88)))
-(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -3126 ((-592 |#2|) (-1086 |#1|) |#3|)) (-15 -3126 ((-592 |#2|) (-886 |#1|) |#3|)) (-15 -3042 ((-592 (-592 |#2|)) (-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090)) |#3|)) (-15 -2858 ((-592 (-273 (-886 |#2|))) (-592 |#2|) (-592 (-1090))))) (-429) (-341) (-13 (-341) (-787))) (T -503))
-((-2858 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1090))) (-4 *6 (-341)) (-5 *2 (-592 (-273 (-886 *6)))) (-5 *1 (-503 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-13 (-341) (-787))))) (-3042 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-592 (-886 *6))) (-5 *4 (-592 (-1090))) (-4 *6 (-429)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-503 *6 *7 *5)) (-4 *7 (-341)) (-4 *5 (-13 (-341) (-787))))) (-3126 (*1 *2 *3 *4) (-12 (-5 *3 (-886 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6)) (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))) (-3126 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6)) (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))))
-(-10 -7 (-15 -3126 ((-592 |#2|) (-1086 |#1|) |#3|)) (-15 -3126 ((-592 |#2|) (-886 |#1|) |#3|)) (-15 -3042 ((-592 (-592 |#2|)) (-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090)) |#3|)) (-15 -2858 ((-592 (-273 (-886 |#2|))) (-592 |#2|) (-592 (-1090)))))
-((-3988 ((|#2| |#2| |#1|) 17)) (-2681 ((|#2| (-592 |#2|)) 27)) (-3739 ((|#2| (-592 |#2|)) 46)))
-(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2681 (|#2| (-592 |#2|))) (-15 -3739 (|#2| (-592 |#2|))) (-15 -3988 (|#2| |#2| |#1|))) (-286) (-1148 |#1|) |#1| (-1 |#1| |#1| (-713))) (T -504))
-((-3988 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-713))) (-5 *1 (-504 *3 *2 *4 *5)) (-4 *2 (-1148 *3)))) (-3739 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-504 *4 *2 *5 *6)) (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713))))) (-2681 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-504 *4 *2 *5 *6)) (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713))))))
-(-10 -7 (-15 -2681 (|#2| (-592 |#2|))) (-15 -3739 (|#2| (-592 |#2|))) (-15 -3988 (|#2| |#2| |#1|)))
-((-3959 (((-396 (-1086 |#4|)) (-1086 |#4|) (-1 (-396 (-1086 |#3|)) (-1086 |#3|))) 79) (((-396 |#4|) |#4| (-1 (-396 (-1086 |#3|)) (-1086 |#3|))) 169)))
-(((-505 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 ((-396 |#4|) |#4| (-1 (-396 (-1086 |#3|)) (-1086 |#3|)))) (-15 -3959 ((-396 (-1086 |#4|)) (-1086 |#4|) (-1 (-396 (-1086 |#3|)) (-1086 |#3|))))) (-789) (-735) (-13 (-286) (-138)) (-883 |#3| |#2| |#1|)) (T -505))
-((-3959 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *8 (-883 *7 *6 *5)) (-5 *2 (-396 (-1086 *8))) (-5 *1 (-505 *5 *6 *7 *8)) (-5 *3 (-1086 *8)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 (-1086 *7)) (-1086 *7))) (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735)) (-5 *2 (-396 *3)) (-5 *1 (-505 *5 *6 *7 *3)) (-4 *3 (-883 *7 *6 *5)))))
-(-10 -7 (-15 -3959 ((-396 |#4|) |#4| (-1 (-396 (-1086 |#3|)) (-1086 |#3|)))) (-15 -3959 ((-396 (-1086 |#4|)) (-1086 |#4|) (-1 (-396 (-1086 |#3|)) (-1086 |#3|)))))
-((-2117 ((|#4| |#4|) 74)) (-4071 ((|#4| |#4|) 70)) (-2976 ((|#4| |#4| (-525) (-525)) 76)) (-2448 ((|#4| |#4|) 72)))
-(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4071 (|#4| |#4|)) (-15 -2448 (|#4| |#4|)) (-15 -2117 (|#4| |#4|)) (-15 -2976 (|#4| |#4| (-525) (-525)))) (-13 (-341) (-346) (-567 (-525))) (-1148 |#1|) (-667 |#1| |#2|) (-1163 |#3|)) (T -506))
-((-2976 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 (-525)))) (-4 *5 (-1148 *4)) (-4 *6 (-667 *4 *5)) (-5 *1 (-506 *4 *5 *6 *2)) (-4 *2 (-1163 *6)))) (-2117 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1148 *3)) (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1163 *5)))) (-2448 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1148 *3)) (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1163 *5)))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1148 *3)) (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1163 *5)))))
-(-10 -7 (-15 -4071 (|#4| |#4|)) (-15 -2448 (|#4| |#4|)) (-15 -2117 (|#4| |#4|)) (-15 -2976 (|#4| |#4| (-525) (-525))))
-((-2117 ((|#2| |#2|) 27)) (-4071 ((|#2| |#2|) 23)) (-2976 ((|#2| |#2| (-525) (-525)) 29)) (-2448 ((|#2| |#2|) 25)))
-(((-507 |#1| |#2|) (-10 -7 (-15 -4071 (|#2| |#2|)) (-15 -2448 (|#2| |#2|)) (-15 -2117 (|#2| |#2|)) (-15 -2976 (|#2| |#2| (-525) (-525)))) (-13 (-341) (-346) (-567 (-525))) (-1163 |#1|)) (T -507))
-((-2976 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *4 *2)) (-4 *2 (-1163 *4)))) (-2117 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1163 *3)))) (-2448 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1163 *3)))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1163 *3)))))
-(-10 -7 (-15 -4071 (|#2| |#2|)) (-15 -2448 (|#2| |#2|)) (-15 -2117 (|#2| |#2|)) (-15 -2976 (|#2| |#2| (-525) (-525))))
-((-4195 (((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|)) 14) (((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|)) 13) (((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|)) 26)))
-(((-508 |#1| |#2|) (-10 -7 (-15 -4195 ((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -4195 ((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -4195 ((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|)))) (-976) (-1148 |#1|)) (T -508))
-((-4195 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-976)) (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1148 *4)))) (-4195 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *2 (-525)) (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-976)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1148 *4)))) (-4195 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *2 (-525)) (-5 *4 (-1 (-3 (-525) "failed") *5)) (-4 *5 (-976)) (-5 *1 (-508 *5 *3)) (-4 *3 (-1148 *5)))))
-(-10 -7 (-15 -4195 ((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -4195 ((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -4195 ((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|))))
-((-3280 (($ $ $) 79)) (-1510 (((-396 $) $) 47)) (-1264 (((-3 (-525) "failed") $) 59)) (-2831 (((-525) $) 37)) (-1468 (((-3 (-385 (-525)) "failed") $) 74)) (-3081 (((-108) $) 24)) (-2098 (((-385 (-525)) $) 72)) (-2250 (((-108) $) 50)) (-1948 (($ $ $ $) 86)) (-3026 (((-108) $) 16)) (-3834 (($ $ $) 57)) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 69)) (-1816 (((-3 $ "failed") $) 64)) (-3486 (($ $) 23)) (-1866 (($ $ $) 84)) (-2279 (($) 60)) (-3066 (($ $) 53)) (-3959 (((-396 $) $) 45)) (-2656 (((-108) $) 14)) (-2183 (((-713) $) 28)) (-3013 (($ $ (-713)) NIL) (($ $) 10)) (-2135 (($ $) 17)) (-1427 (((-525) $) NIL) (((-501) $) 36) (((-826 (-525)) $) 40) (((-357) $) 31) (((-205) $) 33)) (-2093 (((-713)) 8)) (-3662 (((-108) $ $) 20)) (-3015 (($ $ $) 55)))
-(((-509 |#1|) (-10 -8 (-15 -1866 (|#1| |#1| |#1|)) (-15 -1948 (|#1| |#1| |#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -2135 (|#1| |#1|)) (-15 -1468 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2098 ((-385 (-525)) |#1|)) (-15 -3081 ((-108) |#1|)) (-15 -3280 (|#1| |#1| |#1|)) (-15 -3662 ((-108) |#1| |#1|)) (-15 -2656 ((-108) |#1|)) (-15 -2279 (|#1|)) (-15 -1816 ((-3 |#1| "failed") |#1|)) (-15 -1427 ((-205) |#1|)) (-15 -1427 ((-357) |#1|)) (-15 -3834 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -3015 (|#1| |#1| |#1|)) (-15 -1524 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|))) (-15 -1427 ((-826 (-525)) |#1|)) (-15 -1427 ((-501) |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -1427 ((-525) |#1|)) (-15 -3013 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -3026 ((-108) |#1|)) (-15 -2183 ((-713) |#1|)) (-15 -3959 ((-396 |#1|) |#1|)) (-15 -1510 ((-396 |#1|) |#1|)) (-15 -2250 ((-108) |#1|)) (-15 -2093 ((-713)))) (-510)) (T -509))
-((-2093 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-509 *3)) (-4 *3 (-510)))))
-(-10 -8 (-15 -1866 (|#1| |#1| |#1|)) (-15 -1948 (|#1| |#1| |#1| |#1|)) (-15 -3486 (|#1| |#1|)) (-15 -2135 (|#1| |#1|)) (-15 -1468 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2098 ((-385 (-525)) |#1|)) (-15 -3081 ((-108) |#1|)) (-15 -3280 (|#1| |#1| |#1|)) (-15 -3662 ((-108) |#1| |#1|)) (-15 -2656 ((-108) |#1|)) (-15 -2279 (|#1|)) (-15 -1816 ((-3 |#1| "failed") |#1|)) (-15 -1427 ((-205) |#1|)) (-15 -1427 ((-357) |#1|)) (-15 -3834 (|#1| |#1| |#1|)) (-15 -3066 (|#1| |#1|)) (-15 -3015 (|#1| |#1| |#1|)) (-15 -1524 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|))) (-15 -1427 ((-826 (-525)) |#1|)) (-15 -1427 ((-501) |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -1427 ((-525) |#1|)) (-15 -3013 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -3026 ((-108) |#1|)) (-15 -2183 ((-713) |#1|)) (-15 -3959 ((-396 |#1|) |#1|)) (-15 -1510 ((-396 |#1|) |#1|)) (-15 -2250 ((-108) |#1|)) (-15 -2093 ((-713))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-3280 (($ $ $) 85)) (-3263 (((-3 $ "failed") $ $) 19)) (-3903 (($ $ $ $) 73)) (-3321 (($ $) 51)) (-1510 (((-396 $) $) 52)) (-2305 (((-108) $ $) 125)) (-1690 (((-525) $) 114)) (-3097 (($ $ $) 88)) (-1505 (($) 17 T CONST)) (-1264 (((-3 (-525) "failed") $) 106)) (-2831 (((-525) $) 105)) (-2373 (($ $ $) 129)) (-1860 (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 104) (((-632 (-525)) (-632 $)) 103)) (-2866 (((-3 $ "failed") $) 34)) (-1468 (((-3 (-385 (-525)) "failed") $) 82)) (-3081 (((-108) $) 84)) (-2098 (((-385 (-525)) $) 83)) (-3375 (($) 81) (($ $) 80)) (-2356 (($ $ $) 128)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 123)) (-2250 (((-108) $) 53)) (-1948 (($ $ $ $) 71)) (-2010 (($ $ $) 86)) (-3026 (((-108) $) 116)) (-3834 (($ $ $) 97)) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 100)) (-2133 (((-108) $) 31)) (-2144 (((-108) $) 92)) (-1816 (((-3 $ "failed") $) 94)) (-2882 (((-108) $) 115)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 132)) (-2615 (($ $ $ $) 72)) (-3525 (($ $ $) 117)) (-3630 (($ $ $) 118)) (-3486 (($ $) 75)) (-1722 (($ $) 89)) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-1866 (($ $ $) 70)) (-2279 (($) 93 T CONST)) (-2969 (($ $) 77)) (-2663 (((-1037) $) 10) (($ $) 79)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-3066 (($ $) 98)) (-3959 (((-396 $) $) 50)) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 130)) (-2338 (((-3 $ "failed") $ $) 42)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 124)) (-2656 (((-108) $) 91)) (-2183 (((-713) $) 126)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 127)) (-3013 (($ $ (-713)) 111) (($ $) 109)) (-2660 (($ $) 76)) (-2135 (($ $) 78)) (-1427 (((-525) $) 108) (((-501) $) 102) (((-826 (-525)) $) 101) (((-357) $) 96) (((-205) $) 95)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 107)) (-2093 (((-713)) 29)) (-3662 (((-108) $ $) 87)) (-3015 (($ $ $) 99)) (-3772 (($) 90)) (-2262 (((-108) $ $) 39)) (-3089 (($ $ $ $) 74)) (-2092 (($ $) 113)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ (-713)) 112) (($ $) 110)) (-4024 (((-108) $ $) 120)) (-3995 (((-108) $ $) 121)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 119)) (-3983 (((-108) $ $) 122)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-1957 (((-592 |#2|) (-1087 |#1|) |#3|) 83)) (-2860 (((-592 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-396 (-1087 |#1|)) (-1087 |#1|))) 100)) (-1880 (((-1087 |#1|) (-632 |#1|)) 95)))
+(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -1880 ((-1087 |#1|) (-632 |#1|))) (-15 -1957 ((-592 |#2|) (-1087 |#1|) |#3|)) (-15 -2860 ((-592 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-396 (-1087 |#1|)) (-1087 |#1|))))) (-341) (-341) (-13 (-341) (-787))) (T -498))
+((-2860 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *6)) (-5 *5 (-1 (-396 (-1087 *6)) (-1087 *6))) (-4 *6 (-341)) (-5 *2 (-592 (-2 (|:| |outval| *7) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 *7)))))) (-5 *1 (-498 *6 *7 *4)) (-4 *7 (-341)) (-4 *4 (-13 (-341) (-787))))) (-1957 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *5)) (-4 *5 (-341)) (-5 *2 (-592 *6)) (-5 *1 (-498 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-632 *4)) (-4 *4 (-341)) (-5 *2 (-1087 *4)) (-5 *1 (-498 *4 *5 *6)) (-4 *5 (-341)) (-4 *6 (-13 (-341) (-787))))))
+(-10 -7 (-15 -1880 ((-1087 |#1|) (-632 |#1|))) (-15 -1957 ((-592 |#2|) (-1087 |#1|) |#3|)) (-15 -2860 ((-592 (-2 (|:| |outval| |#2|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#2|))))) (-632 |#1|) |#3| (-1 (-396 (-1087 |#1|)) (-1087 |#1|)))))
+((-2565 (((-782 (-525))) 12)) (-2580 (((-782 (-525))) 14)) (-1547 (((-775 (-525))) 9)))
+(((-499) (-10 -7 (-15 -1547 ((-775 (-525)))) (-15 -2565 ((-782 (-525)))) (-15 -2580 ((-782 (-525)))))) (T -499))
+((-2580 (*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499)))) (-2565 (*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499)))) (-1547 (*1 *2) (-12 (-5 *2 (-775 (-525))) (-5 *1 (-499)))))
+(-10 -7 (-15 -1547 ((-775 (-525)))) (-15 -2565 ((-782 (-525)))) (-15 -2580 ((-782 (-525)))))
+((-3277 (((-501) (-1091)) 15)) (-1504 ((|#1| (-501)) 20)))
+(((-500 |#1|) (-10 -7 (-15 -3277 ((-501) (-1091))) (-15 -1504 (|#1| (-501)))) (-1127)) (T -500))
+((-1504 (*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-500 *2)) (-4 *2 (-1127)))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-501)) (-5 *1 (-500 *4)) (-4 *4 (-1127)))))
+(-10 -7 (-15 -3277 ((-501) (-1091))) (-15 -1504 (|#1| (-501))))
+((-1260 (((-108) $ $) NIL)) (-2169 (((-1074) $) 48)) (-4129 (((-108) $) 43)) (-3046 (((-1091) $) 44)) (-1301 (((-108) $) 41)) (-3111 (((-1074) $) 42)) (-1348 (((-108) $) NIL)) (-3544 (((-108) $) NIL)) (-1796 (((-108) $) NIL)) (-3451 (((-1074) $) NIL)) (-3118 (($ $ (-592 (-1091))) 20)) (-1504 (((-51) $) 22)) (-3283 (((-108) $) NIL)) (-4217 (((-525) $) NIL)) (-2012 (((-1038) $) NIL)) (-2626 (($ $ (-592 (-1091)) (-1091)) 60)) (-2263 (((-108) $) NIL)) (-2294 (((-205) $) NIL)) (-2681 (($ $) 38)) (-2531 (((-798) $) NIL)) (-4216 (((-108) $ $) NIL)) (-3410 (($ $ (-525)) NIL) (($ $ (-592 (-525))) NIL)) (-2290 (((-592 $) $) 28)) (-3372 (((-1091) (-592 $)) 49)) (-2749 (($ (-592 $)) 53) (($ (-1074)) NIL) (($ (-1091)) 18) (($ (-525)) 8) (($ (-205)) 25) (($ (-798)) NIL) (((-1024) $) 11) (($ (-1024)) 12)) (-2631 (((-1091) (-1091) (-592 $)) 52)) (-1270 (((-798) $) 46)) (-4124 (($ $) 51)) (-4113 (($ $) 50)) (-2340 (($ $ (-592 $)) 57)) (-3117 (((-108) $) 27)) (-3355 (($) 9 T CONST)) (-3363 (($) 10 T CONST)) (-3994 (((-108) $ $) 61)) (-4100 (($ $ $) 66)) (-4080 (($ $ $) 62)) (** (($ $ (-713)) 65) (($ $ (-525)) 64)) (* (($ $ $) 63)) (-3596 (((-525) $) NIL)))
+(((-501) (-13 (-1023 (-1074) (-1091) (-525) (-205) (-798)) (-567 (-1024)) (-10 -8 (-15 -1504 ((-51) $)) (-15 -2749 ($ (-1024))) (-15 -2340 ($ $ (-592 $))) (-15 -2626 ($ $ (-592 (-1091)) (-1091))) (-15 -3118 ($ $ (-592 (-1091)))) (-15 -4080 ($ $ $)) (-15 * ($ $ $)) (-15 -4100 ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ (-525))) (-15 0 ($) -1479) (-15 1 ($) -1479) (-15 -2681 ($ $)) (-15 -2169 ((-1074) $)) (-15 -3372 ((-1091) (-592 $))) (-15 -2631 ((-1091) (-1091) (-592 $)))))) (T -501))
+((-1504 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-501)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-501)))) (-2340 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-501))) (-5 *1 (-501)))) (-2626 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1091))) (-5 *3 (-1091)) (-5 *1 (-501)))) (-3118 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-501)))) (-4080 (*1 *1 *1 *1) (-5 *1 (-501))) (* (*1 *1 *1 *1) (-5 *1 (-501))) (-4100 (*1 *1 *1 *1) (-5 *1 (-501))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-501)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-501)))) (-3355 (*1 *1) (-5 *1 (-501))) (-3363 (*1 *1) (-5 *1 (-501))) (-2681 (*1 *1 *1) (-5 *1 (-501))) (-2169 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-501)))) (-3372 (*1 *2 *3) (-12 (-5 *3 (-592 (-501))) (-5 *2 (-1091)) (-5 *1 (-501)))) (-2631 (*1 *2 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-501))) (-5 *1 (-501)))))
+(-13 (-1023 (-1074) (-1091) (-525) (-205) (-798)) (-567 (-1024)) (-10 -8 (-15 -1504 ((-51) $)) (-15 -2749 ($ (-1024))) (-15 -2340 ($ $ (-592 $))) (-15 -2626 ($ $ (-592 (-1091)) (-1091))) (-15 -3118 ($ $ (-592 (-1091)))) (-15 -4080 ($ $ $)) (-15 * ($ $ $)) (-15 -4100 ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ (-525))) (-15 (-3355) ($) -1479) (-15 (-3363) ($) -1479) (-15 -2681 ($ $)) (-15 -2169 ((-1074) $)) (-15 -3372 ((-1091) (-592 $))) (-15 -2631 ((-1091) (-1091) (-592 $)))))
+((-1819 ((|#2| |#2|) 17)) (-3307 ((|#2| |#2|) 13)) (-3604 ((|#2| |#2| (-525) (-525)) 20)) (-2230 ((|#2| |#2|) 15)))
+(((-502 |#1| |#2|) (-10 -7 (-15 -3307 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -1819 (|#2| |#2|)) (-15 -3604 (|#2| |#2| (-525) (-525)))) (-13 (-517) (-138)) (-1164 |#1|)) (T -502))
+((-3604 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-502 *4 *2)) (-4 *2 (-1164 *4)))) (-1819 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1164 *3)))) (-2230 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1164 *3)))) (-3307 (*1 *2 *2) (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2)) (-4 *2 (-1164 *3)))))
+(-10 -7 (-15 -3307 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -1819 (|#2| |#2|)) (-15 -3604 (|#2| |#2| (-525) (-525))))
+((-3697 (((-592 (-273 (-887 |#2|))) (-592 |#2|) (-592 (-1091))) 32)) (-1397 (((-592 |#2|) (-887 |#1|) |#3|) 53) (((-592 |#2|) (-1087 |#1|) |#3|) 52)) (-3113 (((-592 (-592 |#2|)) (-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1091)) |#3|) 88)))
+(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -1397 ((-592 |#2|) (-1087 |#1|) |#3|)) (-15 -1397 ((-592 |#2|) (-887 |#1|) |#3|)) (-15 -3113 ((-592 (-592 |#2|)) (-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1091)) |#3|)) (-15 -3697 ((-592 (-273 (-887 |#2|))) (-592 |#2|) (-592 (-1091))))) (-429) (-341) (-13 (-341) (-787))) (T -503))
+((-3697 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1091))) (-4 *6 (-341)) (-5 *2 (-592 (-273 (-887 *6)))) (-5 *1 (-503 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-13 (-341) (-787))))) (-3113 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1091))) (-4 *6 (-429)) (-5 *2 (-592 (-592 *7))) (-5 *1 (-503 *6 *7 *5)) (-4 *7 (-341)) (-4 *5 (-13 (-341) (-787))))) (-1397 (*1 *2 *3 *4) (-12 (-5 *3 (-887 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6)) (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))) (-1397 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6)) (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))))
+(-10 -7 (-15 -1397 ((-592 |#2|) (-1087 |#1|) |#3|)) (-15 -1397 ((-592 |#2|) (-887 |#1|) |#3|)) (-15 -3113 ((-592 (-592 |#2|)) (-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1091)) |#3|)) (-15 -3697 ((-592 (-273 (-887 |#2|))) (-592 |#2|) (-592 (-1091)))))
+((-3879 ((|#2| |#2| |#1|) 17)) (-2695 ((|#2| (-592 |#2|)) 27)) (-3501 ((|#2| (-592 |#2|)) 46)))
+(((-504 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2695 (|#2| (-592 |#2|))) (-15 -3501 (|#2| (-592 |#2|))) (-15 -3879 (|#2| |#2| |#1|))) (-286) (-1149 |#1|) |#1| (-1 |#1| |#1| (-713))) (T -504))
+((-3879 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-713))) (-5 *1 (-504 *3 *2 *4 *5)) (-4 *2 (-1149 *3)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-1149 *4)) (-5 *1 (-504 *4 *2 *5 *6)) (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713))))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-1149 *4)) (-5 *1 (-504 *4 *2 *5 *6)) (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713))))))
+(-10 -7 (-15 -2695 (|#2| (-592 |#2|))) (-15 -3501 (|#2| (-592 |#2|))) (-15 -3879 (|#2| |#2| |#1|)))
+((-2195 (((-396 (-1087 |#4|)) (-1087 |#4|) (-1 (-396 (-1087 |#3|)) (-1087 |#3|))) 79) (((-396 |#4|) |#4| (-1 (-396 (-1087 |#3|)) (-1087 |#3|))) 169)))
+(((-505 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2195 ((-396 |#4|) |#4| (-1 (-396 (-1087 |#3|)) (-1087 |#3|)))) (-15 -2195 ((-396 (-1087 |#4|)) (-1087 |#4|) (-1 (-396 (-1087 |#3|)) (-1087 |#3|))))) (-789) (-735) (-13 (-286) (-138)) (-884 |#3| |#2| |#1|)) (T -505))
+((-2195 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 (-1087 *7)) (-1087 *7))) (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *8 (-884 *7 *6 *5)) (-5 *2 (-396 (-1087 *8))) (-5 *1 (-505 *5 *6 *7 *8)) (-5 *3 (-1087 *8)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 (-1087 *7)) (-1087 *7))) (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735)) (-5 *2 (-396 *3)) (-5 *1 (-505 *5 *6 *7 *3)) (-4 *3 (-884 *7 *6 *5)))))
+(-10 -7 (-15 -2195 ((-396 |#4|) |#4| (-1 (-396 (-1087 |#3|)) (-1087 |#3|)))) (-15 -2195 ((-396 (-1087 |#4|)) (-1087 |#4|) (-1 (-396 (-1087 |#3|)) (-1087 |#3|)))))
+((-1819 ((|#4| |#4|) 74)) (-3307 ((|#4| |#4|) 70)) (-3604 ((|#4| |#4| (-525) (-525)) 76)) (-2230 ((|#4| |#4|) 72)))
+(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3307 (|#4| |#4|)) (-15 -2230 (|#4| |#4|)) (-15 -1819 (|#4| |#4|)) (-15 -3604 (|#4| |#4| (-525) (-525)))) (-13 (-341) (-346) (-567 (-525))) (-1149 |#1|) (-667 |#1| |#2|) (-1164 |#3|)) (T -506))
+((-3604 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 (-525)))) (-4 *5 (-1149 *4)) (-4 *6 (-667 *4 *5)) (-5 *1 (-506 *4 *5 *6 *2)) (-4 *2 (-1164 *6)))) (-1819 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1149 *3)) (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1164 *5)))) (-2230 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1149 *3)) (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1164 *5)))) (-3307 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1149 *3)) (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1164 *5)))))
+(-10 -7 (-15 -3307 (|#4| |#4|)) (-15 -2230 (|#4| |#4|)) (-15 -1819 (|#4| |#4|)) (-15 -3604 (|#4| |#4| (-525) (-525))))
+((-1819 ((|#2| |#2|) 27)) (-3307 ((|#2| |#2|) 23)) (-3604 ((|#2| |#2| (-525) (-525)) 29)) (-2230 ((|#2| |#2|) 25)))
+(((-507 |#1| |#2|) (-10 -7 (-15 -3307 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -1819 (|#2| |#2|)) (-15 -3604 (|#2| |#2| (-525) (-525)))) (-13 (-341) (-346) (-567 (-525))) (-1164 |#1|)) (T -507))
+((-3604 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *4 *2)) (-4 *2 (-1164 *4)))) (-1819 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1164 *3)))) (-2230 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1164 *3)))) (-3307 (*1 *2 *2) (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1164 *3)))))
+(-10 -7 (-15 -3307 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -1819 (|#2| |#2|)) (-15 -3604 (|#2| |#2| (-525) (-525))))
+((-1935 (((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|)) 14) (((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|)) 13) (((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|)) 26)))
+(((-508 |#1| |#2|) (-10 -7 (-15 -1935 ((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -1935 ((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -1935 ((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|)))) (-977) (-1149 |#1|)) (T -508))
+((-1935 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1149 *4)))) (-1935 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *2 (-525)) (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-977)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1149 *4)))) (-1935 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *2 (-525)) (-5 *4 (-1 (-3 (-525) "failed") *5)) (-4 *5 (-977)) (-5 *1 (-508 *5 *3)) (-4 *3 (-1149 *5)))))
+(-10 -7 (-15 -1935 ((-3 (-525) "failed") |#2| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -1935 ((-3 (-525) "failed") |#2| |#1| (-525) (-1 (-3 (-525) "failed") |#1|))) (-15 -1935 ((-3 (-525) "failed") |#2| |#1| (-1 (-3 (-525) "failed") |#1|))))
+((-1530 (($ $ $) 79)) (-2100 (((-396 $) $) 47)) (-2591 (((-3 (-525) "failed") $) 59)) (-3898 (((-525) $) 37)) (-2251 (((-3 (-385 (-525)) "failed") $) 74)) (-2265 (((-108) $) 24)) (-2178 (((-385 (-525)) $) 72)) (-3836 (((-108) $) 50)) (-3926 (($ $ $ $) 86)) (-3017 (((-108) $) 16)) (-1962 (($ $ $) 57)) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 69)) (-1760 (((-3 $ "failed") $) 64)) (-1634 (($ $) 23)) (-3461 (($ $ $) 84)) (-3940 (($) 60)) (-2075 (($ $) 53)) (-2195 (((-396 $) $) 45)) (-3545 (((-108) $) 14)) (-1290 (((-713) $) 28)) (-2523 (($ $ (-713)) NIL) (($ $) 10)) (-1451 (($ $) 17)) (-2749 (((-525) $) NIL) (((-501) $) 36) (((-827 (-525)) $) 40) (((-357) $) 31) (((-205) $) 33)) (-2104 (((-713)) 8)) (-3975 (((-108) $ $) 20)) (-2938 (($ $ $) 55)))
+(((-509 |#1|) (-10 -8 (-15 -3461 (|#1| |#1| |#1|)) (-15 -3926 (|#1| |#1| |#1| |#1|)) (-15 -1634 (|#1| |#1|)) (-15 -1451 (|#1| |#1|)) (-15 -2251 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2178 ((-385 (-525)) |#1|)) (-15 -2265 ((-108) |#1|)) (-15 -1530 (|#1| |#1| |#1|)) (-15 -3975 ((-108) |#1| |#1|)) (-15 -3545 ((-108) |#1|)) (-15 -3940 (|#1|)) (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -2749 ((-205) |#1|)) (-15 -2749 ((-357) |#1|)) (-15 -1962 (|#1| |#1| |#1|)) (-15 -2075 (|#1| |#1|)) (-15 -2938 (|#1| |#1| |#1|)) (-15 -2317 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -2749 ((-827 (-525)) |#1|)) (-15 -2749 ((-501) |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -2749 ((-525) |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -3017 ((-108) |#1|)) (-15 -1290 ((-713) |#1|)) (-15 -2195 ((-396 |#1|) |#1|)) (-15 -2100 ((-396 |#1|) |#1|)) (-15 -3836 ((-108) |#1|)) (-15 -2104 ((-713)))) (-510)) (T -509))
+((-2104 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-509 *3)) (-4 *3 (-510)))))
+(-10 -8 (-15 -3461 (|#1| |#1| |#1|)) (-15 -3926 (|#1| |#1| |#1| |#1|)) (-15 -1634 (|#1| |#1|)) (-15 -1451 (|#1| |#1|)) (-15 -2251 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2178 ((-385 (-525)) |#1|)) (-15 -2265 ((-108) |#1|)) (-15 -1530 (|#1| |#1| |#1|)) (-15 -3975 ((-108) |#1| |#1|)) (-15 -3545 ((-108) |#1|)) (-15 -3940 (|#1|)) (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -2749 ((-205) |#1|)) (-15 -2749 ((-357) |#1|)) (-15 -1962 (|#1| |#1| |#1|)) (-15 -2075 (|#1| |#1|)) (-15 -2938 (|#1| |#1| |#1|)) (-15 -2317 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -2749 ((-827 (-525)) |#1|)) (-15 -2749 ((-501) |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -2749 ((-525) |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -3017 ((-108) |#1|)) (-15 -1290 ((-713) |#1|)) (-15 -2195 ((-396 |#1|) |#1|)) (-15 -2100 ((-396 |#1|) |#1|)) (-15 -3836 ((-108) |#1|)) (-15 -2104 ((-713))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-1530 (($ $ $) 85)) (-1342 (((-3 $ "failed") $ $) 19)) (-1381 (($ $ $ $) 73)) (-3706 (($ $) 51)) (-2100 (((-396 $) $) 52)) (-3197 (((-108) $ $) 125)) (-1436 (((-525) $) 114)) (-4177 (($ $ $) 88)) (-2305 (($) 17 T CONST)) (-2591 (((-3 (-525) "failed") $) 106)) (-3898 (((-525) $) 105)) (-1726 (($ $ $) 129)) (-3416 (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 104) (((-632 (-525)) (-632 $)) 103)) (-3762 (((-3 $ "failed") $) 34)) (-2251 (((-3 (-385 (-525)) "failed") $) 82)) (-2265 (((-108) $) 84)) (-2178 (((-385 (-525)) $) 83)) (-2899 (($) 81) (($ $) 80)) (-1704 (($ $ $) 128)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 123)) (-3836 (((-108) $) 53)) (-3926 (($ $ $ $) 71)) (-3963 (($ $ $) 86)) (-3017 (((-108) $) 116)) (-1962 (($ $ $) 97)) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 100)) (-1985 (((-108) $) 31)) (-2126 (((-108) $) 92)) (-1760 (((-3 $ "failed") $) 94)) (-3912 (((-108) $) 115)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 132)) (-3224 (($ $ $ $) 72)) (-2371 (($ $ $) 117)) (-2535 (($ $ $) 118)) (-1634 (($ $) 75)) (-2023 (($ $) 89)) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-3461 (($ $ $) 70)) (-3940 (($) 93 T CONST)) (-4058 (($ $) 77)) (-2012 (((-1038) $) 10) (($ $) 79)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-2075 (($ $) 98)) (-2195 (((-396 $) $) 50)) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 130)) (-1680 (((-3 $ "failed") $ $) 42)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 124)) (-3545 (((-108) $) 91)) (-1290 (((-713) $) 126)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 127)) (-2523 (($ $ (-713)) 111) (($ $) 109)) (-3881 (($ $) 76)) (-1451 (($ $) 78)) (-2749 (((-525) $) 108) (((-501) $) 102) (((-827 (-525)) $) 101) (((-357) $) 96) (((-205) $) 95)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 107)) (-2104 (((-713)) 29)) (-3975 (((-108) $ $) 87)) (-2938 (($ $ $) 99)) (-3200 (($) 90)) (-3959 (((-108) $ $) 39)) (-2372 (($ $ $ $) 74)) (-2086 (($ $) 113)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ (-713)) 112) (($ $) 110)) (-4045 (((-108) $ $) 120)) (-4026 (((-108) $ $) 121)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 119)) (-4017 (((-108) $ $) 122)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-510) (-131)) (T -510))
-((-2144 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-3772 (*1 *1) (-4 *1 (-510))) (-1722 (*1 *1 *1) (-4 *1 (-510))) (-3097 (*1 *1 *1 *1) (-4 *1 (-510))) (-3662 (*1 *2 *1 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-2010 (*1 *1 *1 *1) (-4 *1 (-510))) (-3280 (*1 *1 *1 *1) (-4 *1 (-510))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-385 (-525))))) (-1468 (*1 *2 *1) (|partial| -12 (-4 *1 (-510)) (-5 *2 (-385 (-525))))) (-3375 (*1 *1) (-4 *1 (-510))) (-3375 (*1 *1 *1) (-4 *1 (-510))) (-2663 (*1 *1 *1) (-4 *1 (-510))) (-2135 (*1 *1 *1) (-4 *1 (-510))) (-2969 (*1 *1 *1) (-4 *1 (-510))) (-2660 (*1 *1 *1) (-4 *1 (-510))) (-3486 (*1 *1 *1) (-4 *1 (-510))) (-3089 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-3903 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-2615 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-1948 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-1866 (*1 *1 *1 *1) (-4 *1 (-510))))
-(-13 (-1130) (-286) (-762) (-213) (-567 (-525)) (-967 (-525)) (-588 (-525)) (-567 (-501)) (-567 (-826 (-525))) (-820 (-525)) (-134) (-952) (-138) (-1066) (-10 -8 (-15 -2144 ((-108) $)) (-15 -2656 ((-108) $)) (-6 -4253) (-15 -3772 ($)) (-15 -1722 ($ $)) (-15 -3097 ($ $ $)) (-15 -3662 ((-108) $ $)) (-15 -2010 ($ $ $)) (-15 -3280 ($ $ $)) (-15 -3081 ((-108) $)) (-15 -2098 ((-385 (-525)) $)) (-15 -1468 ((-3 (-385 (-525)) "failed") $)) (-15 -3375 ($)) (-15 -3375 ($ $)) (-15 -2663 ($ $)) (-15 -2135 ($ $)) (-15 -2969 ($ $)) (-15 -2660 ($ $)) (-15 -3486 ($ $)) (-15 -3089 ($ $ $ $)) (-15 -3903 ($ $ $ $)) (-15 -2615 ($ $ $ $)) (-15 -1948 ($ $ $ $)) (-15 -1866 ($ $ $)) (-6 -4252)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-797)) . T) ((-134) . T) ((-160) . T) ((-567 (-205)) . T) ((-567 (-357)) . T) ((-567 (-501)) . T) ((-567 (-525)) . T) ((-567 (-826 (-525))) . T) ((-213) . T) ((-269) . T) ((-286) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-588 (-525)) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-762) . T) ((-787) . T) ((-789) . T) ((-820 (-525)) . T) ((-854) . T) ((-952) . T) ((-967 (-525)) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) . T) ((-1130) . T))
-((-1893 (((-108) $ $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4001 (($) NIL) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-1840 (((-1177) $ |#1| |#1|) NIL (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 ((|#2| $ |#1| |#2|) NIL)) (-3290 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1446 (((-3 |#2| "failed") |#1| $) NIL)) (-1505 (($) NIL T CONST)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-2792 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) NIL)) (-2273 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-4004 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2870 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#2| $ |#1|) NIL)) (-2026 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-2009 ((|#1| $) NIL (|has| |#1| (-789)))) (-3168 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-1792 ((|#1| $) NIL (|has| |#1| (-789)))) (-2857 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4005 (((-592 |#1|) $) NIL)) (-1699 (((-108) |#1| $) NIL)) (-2570 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-2573 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3222 (((-592 |#1|) $) NIL)) (-1548 (((-108) |#1| $) NIL)) (-2663 (((-1037) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-3135 ((|#2| $) NIL (|has| |#1| (-789)))) (-4054 (((-3 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL)) (-1911 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3513 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3494 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-3171 (((-592 |#2|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4006 (($) NIL) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-2686 (((-713) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-567 (-501))))) (-1922 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-1908 (((-797) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-566 (-797))) (|has| |#2| (-566 (-797)))))) (-3612 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-2667 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-511 |#1| |#2| |#3|) (-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254))) (-1019) (-1019) (-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254)))) (T -511))
-NIL
-(-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254)))
-((-4149 (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-1 (-1086 |#2|) (-1086 |#2|))) 51)))
-(((-512 |#1| |#2|) (-10 -7 (-15 -4149 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-1 (-1086 |#2|) (-1086 |#2|))))) (-13 (-789) (-517)) (-13 (-27) (-408 |#1|))) (T -512))
-((-4149 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-565 *3)) (-5 *5 (-1 (-1086 *3) (-1086 *3))) (-4 *3 (-13 (-27) (-408 *6))) (-4 *6 (-13 (-789) (-517))) (-5 *2 (-542 *3)) (-5 *1 (-512 *6 *3)))))
-(-10 -7 (-15 -4149 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-1 (-1086 |#2|) (-1086 |#2|)))))
-((-1966 (((-542 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-3291 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-2433 (((-542 |#5|) |#5| (-1 |#3| |#3|)) 201)))
-(((-513 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2433 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1966 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3291 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-789) (-517) (-967 (-525))) (-13 (-27) (-408 |#1|)) (-1148 |#2|) (-1148 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -513))
-((-3291 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-27) (-408 *4))) (-4 *4 (-13 (-789) (-517) (-967 (-525)))) (-4 *7 (-1148 (-385 *6))) (-5 *1 (-513 *4 *5 *6 *7 *2)) (-4 *2 (-320 *5 *6 *7)))) (-1966 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1148 *6)) (-4 *6 (-13 (-27) (-408 *5))) (-4 *5 (-13 (-789) (-517) (-967 (-525)))) (-4 *8 (-1148 (-385 *7))) (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3)) (-4 *3 (-320 *6 *7 *8)))) (-2433 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1148 *6)) (-4 *6 (-13 (-27) (-408 *5))) (-4 *5 (-13 (-789) (-517) (-967 (-525)))) (-4 *8 (-1148 (-385 *7))) (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3)) (-4 *3 (-320 *6 *7 *8)))))
-(-10 -7 (-15 -2433 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1966 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3291 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-3463 (((-108) (-525) (-525)) 10)) (-3484 (((-525) (-525)) 7)) (-3783 (((-525) (-525) (-525)) 8)))
-(((-514) (-10 -7 (-15 -3484 ((-525) (-525))) (-15 -3783 ((-525) (-525) (-525))) (-15 -3463 ((-108) (-525) (-525))))) (T -514))
-((-3463 (*1 *2 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-514)))) (-3783 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514)))) (-3484 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514)))))
-(-10 -7 (-15 -3484 ((-525) (-525))) (-15 -3783 ((-525) (-525) (-525))) (-15 -3463 ((-108) (-525) (-525))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3243 ((|#1| $) 61)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-4049 (($ $) 91)) (-3911 (($ $) 74)) (-1487 ((|#1| $) 62)) (-3263 (((-3 $ "failed") $ $) 19)) (-3969 (($ $) 73)) (-4026 (($ $) 90)) (-3434 (($ $) 75)) (-4072 (($ $) 89)) (-3931 (($ $) 76)) (-1505 (($) 17 T CONST)) (-1264 (((-3 (-525) "failed") $) 69)) (-2831 (((-525) $) 68)) (-2866 (((-3 $ "failed") $) 34)) (-2690 (($ |#1| |#1|) 66)) (-3026 (((-108) $) 60)) (-1335 (($) 101)) (-2133 (((-108) $) 31)) (-3391 (($ $ (-525)) 72)) (-2882 (((-108) $) 59)) (-3525 (($ $ $) 107)) (-3630 (($ $ $) 106)) (-2091 (($ $) 98)) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-2583 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-385 (-525))) 64)) (-2351 ((|#1| $) 63)) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-2338 (((-3 $ "failed") $ $) 42)) (-1982 (($ $) 99)) (-4084 (($ $) 88)) (-3942 (($ $) 77)) (-4061 (($ $) 87)) (-3919 (($ $) 78)) (-4038 (($ $) 86)) (-3455 (($ $) 79)) (-1385 (((-108) $ |#1|) 58)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 70)) (-2093 (((-713)) 29)) (-4121 (($ $) 97)) (-3974 (($ $) 85)) (-2262 (((-108) $ $) 39)) (-4096 (($ $) 96)) (-3951 (($ $) 84)) (-4147 (($ $) 95)) (-3999 (($ $) 83)) (-2929 (($ $) 94)) (-4013 (($ $) 82)) (-4133 (($ $) 93)) (-3985 (($ $) 81)) (-4110 (($ $) 92)) (-3963 (($ $) 80)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-4024 (((-108) $ $) 104)) (-3995 (((-108) $ $) 103)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 105)) (-3983 (((-108) $ $) 102)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ $) 100) (($ $ (-385 (-525))) 71)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
-(((-515 |#1|) (-131) (-13 (-382) (-1112))) (T -515))
-((-2583 (*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))) (-2690 (*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))) (-2583 (*1 *1 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))) (-2583 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1112))))) (-2351 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))) (-1487 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))) (-3243 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))) (-3026 (*1 *2 *1) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1112))) (-5 *2 (-108)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1112))) (-5 *2 (-108)))) (-1385 (*1 *2 *1 *3) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1112))) (-5 *2 (-108)))))
-(-13 (-429) (-789) (-1112) (-933) (-967 (-525)) (-10 -8 (-6 -2038) (-15 -2583 ($ |t#1| |t#1|)) (-15 -2690 ($ |t#1| |t#1|)) (-15 -2583 ($ |t#1|)) (-15 -2583 ($ (-385 (-525)))) (-15 -2351 (|t#1| $)) (-15 -1487 (|t#1| $)) (-15 -3243 (|t#1| $)) (-15 -3026 ((-108) $)) (-15 -2882 ((-108) $)) (-15 -1385 ((-108) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-263) . T) ((-269) . T) ((-429) . T) ((-466) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-789) . T) ((-933) . T) ((-967 (-525)) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1112) . T) ((-1115) . T))
-((-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 9)) (-3635 (($ $) 11)) (-2950 (((-108) $) 18)) (-2866 (((-3 $ "failed") $) 16)) (-2262 (((-108) $ $) 20)))
-(((-516 |#1|) (-10 -8 (-15 -2950 ((-108) |#1|)) (-15 -2262 ((-108) |#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -1214 ((-2 (|:| -3957 |#1|) (|:| -4241 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2866 ((-3 |#1| "failed") |#1|))) (-517)) (T -516))
-NIL
-(-10 -8 (-15 -2950 ((-108) |#1|)) (-15 -2262 ((-108) |#1| |#1|)) (-15 -3635 (|#1| |#1|)) (-15 -1214 ((-2 (|:| -3957 |#1|) (|:| -4241 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2866 ((-3 |#1| "failed") |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-2338 (((-3 $ "failed") $ $) 42)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43)) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) 39)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-2126 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-3545 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-3200 (*1 *1) (-4 *1 (-510))) (-2023 (*1 *1 *1) (-4 *1 (-510))) (-4177 (*1 *1 *1 *1) (-4 *1 (-510))) (-3975 (*1 *2 *1 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-3963 (*1 *1 *1 *1) (-4 *1 (-510))) (-1530 (*1 *1 *1 *1) (-4 *1 (-510))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-385 (-525))))) (-2251 (*1 *2 *1) (|partial| -12 (-4 *1 (-510)) (-5 *2 (-385 (-525))))) (-2899 (*1 *1) (-4 *1 (-510))) (-2899 (*1 *1 *1) (-4 *1 (-510))) (-2012 (*1 *1 *1) (-4 *1 (-510))) (-1451 (*1 *1 *1) (-4 *1 (-510))) (-4058 (*1 *1 *1) (-4 *1 (-510))) (-3881 (*1 *1 *1) (-4 *1 (-510))) (-1634 (*1 *1 *1) (-4 *1 (-510))) (-2372 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-1381 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-3224 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-3926 (*1 *1 *1 *1 *1) (-4 *1 (-510))) (-3461 (*1 *1 *1 *1) (-4 *1 (-510))))
+(-13 (-1131) (-286) (-762) (-213) (-567 (-525)) (-968 (-525)) (-588 (-525)) (-567 (-501)) (-567 (-827 (-525))) (-821 (-525)) (-134) (-953) (-138) (-1067) (-10 -8 (-15 -2126 ((-108) $)) (-15 -3545 ((-108) $)) (-6 -4254) (-15 -3200 ($)) (-15 -2023 ($ $)) (-15 -4177 ($ $ $)) (-15 -3975 ((-108) $ $)) (-15 -3963 ($ $ $)) (-15 -1530 ($ $ $)) (-15 -2265 ((-108) $)) (-15 -2178 ((-385 (-525)) $)) (-15 -2251 ((-3 (-385 (-525)) "failed") $)) (-15 -2899 ($)) (-15 -2899 ($ $)) (-15 -2012 ($ $)) (-15 -1451 ($ $)) (-15 -4058 ($ $)) (-15 -3881 ($ $)) (-15 -1634 ($ $)) (-15 -2372 ($ $ $ $)) (-15 -1381 ($ $ $ $)) (-15 -3224 ($ $ $ $)) (-15 -3926 ($ $ $ $)) (-15 -3461 ($ $ $)) (-6 -4253)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-798)) . T) ((-134) . T) ((-160) . T) ((-567 (-205)) . T) ((-567 (-357)) . T) ((-567 (-501)) . T) ((-567 (-525)) . T) ((-567 (-827 (-525))) . T) ((-213) . T) ((-269) . T) ((-286) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-588 (-525)) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-762) . T) ((-787) . T) ((-789) . T) ((-821 (-525)) . T) ((-855) . T) ((-953) . T) ((-968 (-525)) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1067) . T) ((-1131) . T))
+((-1260 (((-108) $ $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3476 (($) NIL) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-2782 (((-1178) $ |#1| |#1|) NIL (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 ((|#2| $ |#1| |#2|) NIL)) (-1608 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2772 (((-3 |#2| "failed") |#1| $) NIL)) (-2305 (($) NIL T CONST)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-2592 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-3 |#2| "failed") |#1| $) NIL)) (-1614 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-3503 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#2| $ |#1|) NIL)) (-3702 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-2710 ((|#1| $) NIL (|has| |#1| (-789)))) (-1749 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-3478 ((|#1| $) NIL (|has| |#1| (-789)))) (-2622 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4256))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-4076 (((-592 |#1|) $) NIL)) (-1522 (((-108) |#1| $) NIL)) (-3955 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-3985 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-4142 (((-592 |#1|) $) NIL)) (-3845 (((-108) |#1| $) NIL)) (-2012 (((-1038) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3110 ((|#2| $) NIL (|has| |#1| (-789)))) (-3207 (((-3 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) "failed") (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL)) (-2042 (($ $ |#2|) NIL (|has| $ (-6 -4256)))) (-1881 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-3006 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1777 (((-592 |#2|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3981 (($) NIL) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-2040 (((-713) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-713) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-567 (-501))))) (-1279 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-1270 (((-798) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-1665 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-3633 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-511 |#1| |#2| |#3|) (-13 (-1104 |#1| |#2|) (-10 -7 (-6 -4255))) (-1020) (-1020) (-13 (-1104 |#1| |#2|) (-10 -7 (-6 -4255)))) (T -511))
+NIL
+(-13 (-1104 |#1| |#2|) (-10 -7 (-6 -4255)))
+((-2902 (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-1 (-1087 |#2|) (-1087 |#2|))) 51)))
+(((-512 |#1| |#2|) (-10 -7 (-15 -2902 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-1 (-1087 |#2|) (-1087 |#2|))))) (-13 (-789) (-517)) (-13 (-27) (-408 |#1|))) (T -512))
+((-2902 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-565 *3)) (-5 *5 (-1 (-1087 *3) (-1087 *3))) (-4 *3 (-13 (-27) (-408 *6))) (-4 *6 (-13 (-789) (-517))) (-5 *2 (-542 *3)) (-5 *1 (-512 *6 *3)))))
+(-10 -7 (-15 -2902 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-1 (-1087 |#2|) (-1087 |#2|)))))
+((-4160 (((-542 |#5|) |#5| (-1 |#3| |#3|)) 198)) (-1619 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 194)) (-2047 (((-542 |#5|) |#5| (-1 |#3| |#3|)) 201)))
+(((-513 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2047 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4160 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1619 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-789) (-517) (-968 (-525))) (-13 (-27) (-408 |#1|)) (-1149 |#2|) (-1149 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -513))
+((-1619 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1149 *5)) (-4 *5 (-13 (-27) (-408 *4))) (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-4 *7 (-1149 (-385 *6))) (-5 *1 (-513 *4 *5 *6 *7 *2)) (-4 *2 (-320 *5 *6 *7)))) (-4160 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1149 *6)) (-4 *6 (-13 (-27) (-408 *5))) (-4 *5 (-13 (-789) (-517) (-968 (-525)))) (-4 *8 (-1149 (-385 *7))) (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3)) (-4 *3 (-320 *6 *7 *8)))) (-2047 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1149 *6)) (-4 *6 (-13 (-27) (-408 *5))) (-4 *5 (-13 (-789) (-517) (-968 (-525)))) (-4 *8 (-1149 (-385 *7))) (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3)) (-4 *3 (-320 *6 *7 *8)))))
+(-10 -7 (-15 -2047 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -4160 ((-542 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1619 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-2780 (((-108) (-525) (-525)) 10)) (-2953 (((-525) (-525)) 7)) (-2821 (((-525) (-525) (-525)) 8)))
+(((-514) (-10 -7 (-15 -2953 ((-525) (-525))) (-15 -2821 ((-525) (-525) (-525))) (-15 -2780 ((-108) (-525) (-525))))) (T -514))
+((-2780 (*1 *2 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-514)))) (-2821 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514)))) (-2953 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514)))))
+(-10 -7 (-15 -2953 ((-525) (-525))) (-15 -2821 ((-525) (-525) (-525))) (-15 -2780 ((-108) (-525) (-525))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1311 ((|#1| $) 61)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-2351 (($ $) 91)) (-1603 (($ $) 74)) (-2017 ((|#1| $) 62)) (-1342 (((-3 $ "failed") $ $) 19)) (-2211 (($ $) 73)) (-2320 (($ $) 90)) (-1569 (($ $) 75)) (-2382 (($ $) 89)) (-2193 (($ $) 76)) (-2305 (($) 17 T CONST)) (-2591 (((-3 (-525) "failed") $) 69)) (-3898 (((-525) $) 68)) (-3762 (((-3 $ "failed") $) 34)) (-2787 (($ |#1| |#1|) 66)) (-3017 (((-108) $) 60)) (-1535 (($) 101)) (-1985 (((-108) $) 31)) (-3220 (($ $ (-525)) 72)) (-3912 (((-108) $) 59)) (-2371 (($ $ $) 107)) (-2535 (($ $ $) 106)) (-1415 (($ $) 98)) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-4066 (($ |#1| |#1|) 67) (($ |#1|) 65) (($ (-385 (-525))) 64)) (-3569 ((|#1| $) 63)) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-1680 (((-3 $ "failed") $ $) 42)) (-1250 (($ $) 99)) (-2396 (($ $) 88)) (-2209 (($ $) 77)) (-2367 (($ $) 87)) (-2176 (($ $) 78)) (-2335 (($ $) 86)) (-1584 (($ $) 79)) (-2925 (((-108) $ |#1|) 58)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-525)) 70)) (-2104 (((-713)) 29)) (-2438 (($ $) 97)) (-2257 (($ $) 85)) (-3959 (((-108) $ $) 39)) (-2410 (($ $) 96)) (-2226 (($ $) 84)) (-2464 (($ $) 95)) (-2287 (($ $) 83)) (-2687 (($ $) 94)) (-2303 (($ $) 82)) (-2450 (($ $) 93)) (-2273 (($ $) 81)) (-2424 (($ $) 92)) (-2242 (($ $) 80)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-4045 (((-108) $ $) 104)) (-4026 (((-108) $ $) 103)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 105)) (-4017 (((-108) $ $) 102)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ $) 100) (($ $ (-385 (-525))) 71)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+(((-515 |#1|) (-131) (-13 (-382) (-1113))) (T -515))
+((-4066 (*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1113))))) (-2787 (*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1113))))) (-4066 (*1 *1 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1113))))) (-4066 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1113))))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1113))))) (-2017 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1113))))) (-1311 (*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1113))))) (-3017 (*1 *2 *1) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1113))) (-5 *2 (-108)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1113))) (-5 *2 (-108)))) (-2925 (*1 *2 *1 *3) (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1113))) (-5 *2 (-108)))))
+(-13 (-429) (-789) (-1113) (-934) (-968 (-525)) (-10 -8 (-6 -1369) (-15 -4066 ($ |t#1| |t#1|)) (-15 -2787 ($ |t#1| |t#1|)) (-15 -4066 ($ |t#1|)) (-15 -4066 ($ (-385 (-525)))) (-15 -3569 (|t#1| $)) (-15 -2017 (|t#1| $)) (-15 -1311 (|t#1| $)) (-15 -3017 ((-108) $)) (-15 -3912 ((-108) $)) (-15 -2925 ((-108) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-91) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-263) . T) ((-269) . T) ((-429) . T) ((-466) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-789) . T) ((-934) . T) ((-968 (-525)) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1113) . T) ((-1116) . T))
+((-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 9)) (-3711 (($ $) 11)) (-3380 (((-108) $) 18)) (-3762 (((-3 $ "failed") $) 16)) (-3959 (((-108) $ $) 20)))
+(((-516 |#1|) (-10 -8 (-15 -3380 ((-108) |#1|)) (-15 -3959 ((-108) |#1| |#1|)) (-15 -3711 (|#1| |#1|)) (-15 -2658 ((-2 (|:| -1790 |#1|) (|:| -4242 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3762 ((-3 |#1| "failed") |#1|))) (-517)) (T -516))
+NIL
+(-10 -8 (-15 -3380 ((-108) |#1|)) (-15 -3959 ((-108) |#1| |#1|)) (-15 -3711 (|#1| |#1|)) (-15 -2658 ((-2 (|:| -1790 |#1|) (|:| -4242 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3762 ((-3 |#1| "failed") |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1680 (((-3 $ "failed") $ $) 42)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) 39)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-517) (-131)) (T -517))
-((-2338 (*1 *1 *1 *1) (|partial| -4 *1 (-517))) (-1214 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3957 *1) (|:| -4241 *1) (|:| |associate| *1))) (-4 *1 (-517)))) (-3635 (*1 *1 *1) (-4 *1 (-517))) (-2262 (*1 *2 *1 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))) (-2950 (*1 *2 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))))
-(-13 (-160) (-37 $) (-269) (-10 -8 (-15 -2338 ((-3 $ "failed") $ $)) (-15 -1214 ((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $)) (-15 -3635 ($ $)) (-15 -2262 ((-108) $ $)) (-15 -2950 ((-108) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-2248 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1090) (-592 |#2|)) 37)) (-3623 (((-542 |#2|) |#2| (-1090)) 62)) (-1327 (((-3 |#2| "failed") |#2| (-1090)) 154)) (-2647 (((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1090) (-565 |#2|) (-592 (-565 |#2|))) 157)) (-1422 (((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1090) |#2|) 40)))
-(((-518 |#1| |#2|) (-10 -7 (-15 -1422 ((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1090) |#2|)) (-15 -2248 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1090) (-592 |#2|))) (-15 -1327 ((-3 |#2| "failed") |#2| (-1090))) (-15 -3623 ((-542 |#2|) |#2| (-1090))) (-15 -2647 ((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1090) (-565 |#2|) (-592 (-565 |#2|))))) (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|))) (T -518))
-((-2647 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-565 *3)) (-5 *6 (-592 (-565 *3))) (-4 *3 (-13 (-27) (-1112) (-408 *7))) (-4 *7 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| -2838 *3) (|:| |coeff| *3))) (-5 *1 (-518 *7 *3)))) (-3623 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))) (-1327 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *1 (-518 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))) (-2248 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-592 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-518 *6 *3)))) (-1422 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| -2838 *3) (|:| |coeff| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))))
-(-10 -7 (-15 -1422 ((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1090) |#2|)) (-15 -2248 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1090) (-592 |#2|))) (-15 -1327 ((-3 |#2| "failed") |#2| (-1090))) (-15 -3623 ((-542 |#2|) |#2| (-1090))) (-15 -2647 ((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1090) (-565 |#2|) (-592 (-565 |#2|)))))
-((-1510 (((-396 |#1|) |#1|) 18)) (-3959 (((-396 |#1|) |#1|) 33)) (-2149 (((-3 |#1| "failed") |#1|) 44)) (-2176 (((-396 |#1|) |#1|) 51)))
-(((-519 |#1|) (-10 -7 (-15 -3959 ((-396 |#1|) |#1|)) (-15 -1510 ((-396 |#1|) |#1|)) (-15 -2176 ((-396 |#1|) |#1|)) (-15 -2149 ((-3 |#1| "failed") |#1|))) (-510)) (T -519))
-((-2149 (*1 *2 *2) (|partial| -12 (-5 *1 (-519 *2)) (-4 *2 (-510)))) (-2176 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))) (-1510 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))) (-3959 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))))
-(-10 -7 (-15 -3959 ((-396 |#1|) |#1|)) (-15 -1510 ((-396 |#1|) |#1|)) (-15 -2176 ((-396 |#1|) |#1|)) (-15 -2149 ((-3 |#1| "failed") |#1|)))
-((-1363 (($) 9)) (-2634 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 35)) (-4005 (((-592 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $) 32)) (-2573 (($ (-2 (|:| -3946 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-3487 (($ (-592 (-2 (|:| -3946 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2511 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 39)) (-3171 (((-592 (-2 (|:| -3946 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3712 (((-1177)) 12)))
-(((-520) (-10 -8 (-15 -1363 ($)) (-15 -3712 ((-1177))) (-15 -4005 ((-592 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -3487 ($ (-592 (-2 (|:| -3946 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2573 ($ (-2 (|:| -3946 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2634 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3171 ((-592 (-2 (|:| -3946 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2511 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -520))
-((-2511 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-520)))) (-3171 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -3946 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-520)))) (-2634 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-520)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3946 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-520)))) (-3487 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3946 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-520)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-5 *1 (-520)))) (-3712 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-520)))) (-1363 (*1 *1) (-5 *1 (-520))))
-(-10 -8 (-15 -1363 ($)) (-15 -3712 ((-1177))) (-15 -4005 ((-592 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -3487 ($ (-592 (-2 (|:| -3946 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2573 ($ (-2 (|:| -3946 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -2634 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3171 ((-592 (-2 (|:| -3946 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2511 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1071 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -4162 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
-((-3927 (((-1086 (-385 (-1086 |#2|))) |#2| (-565 |#2|) (-565 |#2|) (-1086 |#2|)) 32)) (-3877 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) |#2| (-1086 |#2|)) 110)) (-2253 (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|))) 80) (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) |#2| (-1086 |#2|)) 52)) (-2061 (((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| (-565 |#2|) |#2| (-385 (-1086 |#2|))) 87) (((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| |#2| (-1086 |#2|)) 109)) (-1457 (((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090)) (-565 |#2|) |#2| (-385 (-1086 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090)) |#2| (-1086 |#2|)) 111)) (-1990 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2499 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|))) 128 (|has| |#3| (-602 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2499 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) |#2| (-1086 |#2|)) 127 (|has| |#3| (-602 |#2|)))) (-4092 ((|#2| (-1086 (-385 (-1086 |#2|))) (-565 |#2|) |#2|) 50)) (-3774 (((-1086 (-385 (-1086 |#2|))) (-1086 |#2|) (-565 |#2|)) 31)))
-(((-521 |#1| |#2| |#3|) (-10 -7 (-15 -2253 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) |#2| (-1086 |#2|))) (-15 -2253 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|)))) (-15 -2061 ((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| |#2| (-1086 |#2|))) (-15 -2061 ((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| (-565 |#2|) |#2| (-385 (-1086 |#2|)))) (-15 -3877 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) |#2| (-1086 |#2|))) (-15 -3877 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|)))) (-15 -1457 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090)) |#2| (-1086 |#2|))) (-15 -1457 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090)) (-565 |#2|) |#2| (-385 (-1086 |#2|)))) (-15 -3927 ((-1086 (-385 (-1086 |#2|))) |#2| (-565 |#2|) (-565 |#2|) (-1086 |#2|))) (-15 -4092 (|#2| (-1086 (-385 (-1086 |#2|))) (-565 |#2|) |#2|)) (-15 -3774 ((-1086 (-385 (-1086 |#2|))) (-1086 |#2|) (-565 |#2|))) (IF (|has| |#3| (-602 |#2|)) (PROGN (-15 -1990 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2499 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) |#2| (-1086 |#2|))) (-15 -1990 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2499 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|))))) |%noBranch|)) (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))) (-13 (-408 |#1|) (-27) (-1112)) (-1019)) (T -521))
-((-1990 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-565 *4)) (-5 *6 (-385 (-1086 *4))) (-4 *4 (-13 (-408 *7) (-27) (-1112))) (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2499 (-592 *4)))) (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1019)))) (-1990 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-565 *4)) (-5 *6 (-1086 *4)) (-4 *4 (-13 (-408 *7) (-27) (-1112))) (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2499 (-592 *4)))) (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1019)))) (-3774 (*1 *2 *3 *4) (-12 (-5 *4 (-565 *6)) (-4 *6 (-13 (-408 *5) (-27) (-1112))) (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-1086 (-385 (-1086 *6)))) (-5 *1 (-521 *5 *6 *7)) (-5 *3 (-1086 *6)) (-4 *7 (-1019)))) (-4092 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1086 (-385 (-1086 *2)))) (-5 *4 (-565 *2)) (-4 *2 (-13 (-408 *5) (-27) (-1112))) (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-521 *5 *2 *6)) (-4 *6 (-1019)))) (-3927 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1112))) (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-1086 (-385 (-1086 *3)))) (-5 *1 (-521 *6 *3 *7)) (-5 *5 (-1086 *3)) (-4 *7 (-1019)))) (-1457 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-565 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1090))) (-5 *5 (-385 (-1086 *2))) (-4 *2 (-13 (-408 *6) (-27) (-1112))) (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1019)))) (-1457 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-565 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1090))) (-5 *5 (-1086 *2)) (-4 *2 (-13 (-408 *6) (-27) (-1112))) (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1019)))) (-3877 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-5 *6 (-385 (-1086 *3))) (-4 *3 (-13 (-408 *7) (-27) (-1112))) (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1019)))) (-3877 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-5 *6 (-1086 *3)) (-4 *3 (-13 (-408 *7) (-27) (-1112))) (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1019)))) (-2061 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1086 *3))) (-4 *3 (-13 (-408 *6) (-27) (-1112))) (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| -2838 *3) (|:| |coeff| *3))) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1019)))) (-2061 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-1086 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1112))) (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| -2838 *3) (|:| |coeff| *3))) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1019)))) (-2253 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1086 *3))) (-4 *3 (-13 (-408 *6) (-27) (-1112))) (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1019)))) (-2253 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-565 *3)) (-5 *5 (-1086 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1112))) (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1019)))))
-(-10 -7 (-15 -2253 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) |#2| (-1086 |#2|))) (-15 -2253 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|)))) (-15 -2061 ((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| |#2| (-1086 |#2|))) (-15 -2061 ((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| (-565 |#2|) |#2| (-385 (-1086 |#2|)))) (-15 -3877 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) |#2| (-1086 |#2|))) (-15 -3877 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|)))) (-15 -1457 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090)) |#2| (-1086 |#2|))) (-15 -1457 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090)) (-565 |#2|) |#2| (-385 (-1086 |#2|)))) (-15 -3927 ((-1086 (-385 (-1086 |#2|))) |#2| (-565 |#2|) (-565 |#2|) (-1086 |#2|))) (-15 -4092 (|#2| (-1086 (-385 (-1086 |#2|))) (-565 |#2|) |#2|)) (-15 -3774 ((-1086 (-385 (-1086 |#2|))) (-1086 |#2|) (-565 |#2|))) (IF (|has| |#3| (-602 |#2|)) (PROGN (-15 -1990 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2499 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) |#2| (-1086 |#2|))) (-15 -1990 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2499 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1086 |#2|))))) |%noBranch|))
-((-2196 (((-525) (-525) (-713)) 66)) (-1573 (((-525) (-525)) 65)) (-2683 (((-525) (-525)) 64)) (-2635 (((-525) (-525)) 69)) (-3296 (((-525) (-525) (-525)) 49)) (-2914 (((-525) (-525) (-525)) 46)) (-2311 (((-385 (-525)) (-525)) 20)) (-1343 (((-525) (-525)) 21)) (-3991 (((-525) (-525)) 58)) (-1642 (((-525) (-525)) 32)) (-2171 (((-592 (-525)) (-525)) 63)) (-3180 (((-525) (-525) (-525) (-525) (-525)) 44)) (-1998 (((-385 (-525)) (-525)) 41)))
-(((-522) (-10 -7 (-15 -1998 ((-385 (-525)) (-525))) (-15 -3180 ((-525) (-525) (-525) (-525) (-525))) (-15 -2171 ((-592 (-525)) (-525))) (-15 -1642 ((-525) (-525))) (-15 -3991 ((-525) (-525))) (-15 -1343 ((-525) (-525))) (-15 -2311 ((-385 (-525)) (-525))) (-15 -2914 ((-525) (-525) (-525))) (-15 -3296 ((-525) (-525) (-525))) (-15 -2635 ((-525) (-525))) (-15 -2683 ((-525) (-525))) (-15 -1573 ((-525) (-525))) (-15 -2196 ((-525) (-525) (-713))))) (T -522))
-((-2196 (*1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-713)) (-5 *1 (-522)))) (-1573 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2683 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2635 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-3296 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2914 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2311 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))) (-1343 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-3991 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-1642 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2171 (*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))) (-3180 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-1998 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))))
-(-10 -7 (-15 -1998 ((-385 (-525)) (-525))) (-15 -3180 ((-525) (-525) (-525) (-525) (-525))) (-15 -2171 ((-592 (-525)) (-525))) (-15 -1642 ((-525) (-525))) (-15 -3991 ((-525) (-525))) (-15 -1343 ((-525) (-525))) (-15 -2311 ((-385 (-525)) (-525))) (-15 -2914 ((-525) (-525) (-525))) (-15 -3296 ((-525) (-525) (-525))) (-15 -2635 ((-525) (-525))) (-15 -2683 ((-525) (-525))) (-15 -1573 ((-525) (-525))) (-15 -2196 ((-525) (-525) (-713))))
-((-3305 (((-2 (|:| |answer| |#4|) (|:| -2745 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-523 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3305 ((-2 (|:| |answer| |#4|) (|:| -2745 |#4|)) |#4| (-1 |#2| |#2|)))) (-341) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -523))
-((-3305 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) (-4 *7 (-1148 (-385 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2745 *3))) (-5 *1 (-523 *5 *6 *7 *3)) (-4 *3 (-320 *5 *6 *7)))))
-(-10 -7 (-15 -3305 ((-2 (|:| |answer| |#4|) (|:| -2745 |#4|)) |#4| (-1 |#2| |#2|))))
-((-3305 (((-2 (|:| |answer| (-385 |#2|)) (|:| -2745 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)) 18)))
-(((-524 |#1| |#2|) (-10 -7 (-15 -3305 ((-2 (|:| |answer| (-385 |#2|)) (|:| -2745 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)))) (-341) (-1148 |#1|)) (T -524))
-((-3305 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |answer| (-385 *6)) (|:| -2745 (-385 *6)) (|:| |specpart| (-385 *6)) (|:| |polypart| *6))) (-5 *1 (-524 *5 *6)) (-5 *3 (-385 *6)))))
-(-10 -7 (-15 -3305 ((-2 (|:| |answer| (-385 |#2|)) (|:| -2745 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 25)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 87)) (-3635 (($ $) 88)) (-2950 (((-108) $) NIL)) (-3280 (($ $ $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3903 (($ $ $ $) 42)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2305 (((-108) $ $) NIL)) (-1690 (((-525) $) NIL)) (-3097 (($ $ $) 81)) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL)) (-2831 (((-525) $) NIL)) (-2373 (($ $ $) 80)) (-1860 (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 61) (((-632 (-525)) (-632 $)) 57)) (-2866 (((-3 $ "failed") $) 84)) (-1468 (((-3 (-385 (-525)) "failed") $) NIL)) (-3081 (((-108) $) NIL)) (-2098 (((-385 (-525)) $) NIL)) (-3375 (($) 63) (($ $) 64)) (-2356 (($ $ $) 79)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-1948 (($ $ $ $) NIL)) (-2010 (($ $ $) 54)) (-3026 (((-108) $) NIL)) (-3834 (($ $ $) NIL)) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL)) (-2133 (((-108) $) 26)) (-2144 (((-108) $) 74)) (-1816 (((-3 $ "failed") $) NIL)) (-2882 (((-108) $) 34)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2615 (($ $ $ $) 43)) (-3525 (($ $ $) 76)) (-3630 (($ $ $) 75)) (-3486 (($ $) NIL)) (-1722 (($ $) 40)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) 53)) (-1866 (($ $ $) NIL)) (-2279 (($) NIL T CONST)) (-2969 (($ $) 31)) (-2663 (((-1037) $) NIL) (($ $) 33)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 118)) (-3244 (($ $ $) 85) (($ (-592 $)) NIL)) (-3066 (($ $) NIL)) (-3959 (((-396 $) $) 104)) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL)) (-2338 (((-3 $ "failed") $ $) 83)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2656 (((-108) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 78)) (-3013 (($ $ (-713)) NIL) (($ $) NIL)) (-2660 (($ $) 32)) (-2135 (($ $) 30)) (-1427 (((-525) $) 39) (((-501) $) 51) (((-826 (-525)) $) NIL) (((-357) $) 46) (((-205) $) 48) (((-1073) $) 52)) (-1908 (((-797) $) 37) (($ (-525)) 38) (($ $) NIL) (($ (-525)) 38)) (-2093 (((-713)) NIL)) (-3662 (((-108) $ $) NIL)) (-3015 (($ $ $) NIL)) (-3772 (($) 29)) (-2262 (((-108) $ $) NIL)) (-3089 (($ $ $ $) 41)) (-2092 (($ $) 62)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 27 T CONST)) (-3882 (($) 28 T CONST)) (-2766 (((-1073) $) 20) (((-1073) $ (-108)) 22) (((-1177) (-764) $) 23) (((-1177) (-764) $ (-108)) 24)) (-1424 (($ $ (-713)) NIL) (($ $) NIL)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 65)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 66)) (-4070 (($ $) 67) (($ $ $) 69)) (-4059 (($ $ $) 68)) (** (($ $ (-855)) NIL) (($ $ (-713)) 73)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 71) (($ $ $) 70)))
-(((-525) (-13 (-510) (-567 (-1073)) (-770) (-10 -8 (-15 -3375 ($ $)) (-6 -4241) (-6 -4246) (-6 -4242) (-6 -4236)))) (T -525))
-((-3375 (*1 *1 *1) (-5 *1 (-525))))
-(-13 (-510) (-567 (-1073)) (-770) (-10 -8 (-15 -3375 ($ $)) (-6 -4241) (-6 -4246) (-6 -4242) (-6 -4236)))
-((-1965 (((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))) (-711) (-988)) 108) (((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))) (-711)) 110)) (-3766 (((-3 (-965) "failed") (-294 (-357)) (-1012 (-782 (-357))) (-1090)) 172) (((-3 (-965) "failed") (-294 (-357)) (-1012 (-782 (-357))) (-1073)) 171) (((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357) (-357) (-988)) 176) (((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357) (-357)) 177) (((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357)) 178) (((-965) (-294 (-357)) (-592 (-1014 (-782 (-357))))) 179) (((-965) (-294 (-357)) (-1014 (-782 (-357)))) 167) (((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357)) 166) (((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357) (-357)) 162) (((-965) (-711)) 155) (((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357) (-357) (-988)) 161)))
-(((-526) (-10 -7 (-15 -3766 ((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357) (-357) (-988))) (-15 -3766 ((-965) (-711))) (-15 -3766 ((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357) (-357))) (-15 -3766 ((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357))) (-15 -3766 ((-965) (-294 (-357)) (-1014 (-782 (-357))))) (-15 -3766 ((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))))) (-15 -3766 ((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357))) (-15 -3766 ((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357) (-357))) (-15 -3766 ((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357) (-357) (-988))) (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))) (-711))) (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))) (-711) (-988))) (-15 -3766 ((-3 (-965) "failed") (-294 (-357)) (-1012 (-782 (-357))) (-1073))) (-15 -3766 ((-3 (-965) "failed") (-294 (-357)) (-1012 (-782 (-357))) (-1090))))) (T -526))
-((-3766 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1012 (-782 (-357)))) (-5 *5 (-1090)) (-5 *2 (-965)) (-5 *1 (-526)))) (-3766 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1012 (-782 (-357)))) (-5 *5 (-1073)) (-5 *2 (-965)) (-5 *1 (-526)))) (-1965 (*1 *2 *3 *4) (-12 (-5 *3 (-711)) (-5 *4 (-988)) (-5 *2 (-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965)))) (-5 *1 (-526)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-711)) (-5 *2 (-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965)))) (-5 *1 (-526)))) (-3766 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1014 (-782 (-357))))) (-5 *5 (-357)) (-5 *6 (-988)) (-5 *2 (-965)) (-5 *1 (-526)))) (-3766 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1014 (-782 (-357))))) (-5 *5 (-357)) (-5 *2 (-965)) (-5 *1 (-526)))) (-3766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1014 (-782 (-357))))) (-5 *5 (-357)) (-5 *2 (-965)) (-5 *1 (-526)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1014 (-782 (-357))))) (-5 *2 (-965)) (-5 *1 (-526)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1014 (-782 (-357)))) (-5 *2 (-965)) (-5 *1 (-526)))) (-3766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1014 (-782 (-357)))) (-5 *5 (-357)) (-5 *2 (-965)) (-5 *1 (-526)))) (-3766 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1014 (-782 (-357)))) (-5 *5 (-357)) (-5 *2 (-965)) (-5 *1 (-526)))) (-3766 (*1 *2 *3) (-12 (-5 *3 (-711)) (-5 *2 (-965)) (-5 *1 (-526)))) (-3766 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1014 (-782 (-357)))) (-5 *5 (-357)) (-5 *6 (-988)) (-5 *2 (-965)) (-5 *1 (-526)))))
-(-10 -7 (-15 -3766 ((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357) (-357) (-988))) (-15 -3766 ((-965) (-711))) (-15 -3766 ((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357) (-357))) (-15 -3766 ((-965) (-294 (-357)) (-1014 (-782 (-357))) (-357))) (-15 -3766 ((-965) (-294 (-357)) (-1014 (-782 (-357))))) (-15 -3766 ((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))))) (-15 -3766 ((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357))) (-15 -3766 ((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357) (-357))) (-15 -3766 ((-965) (-294 (-357)) (-592 (-1014 (-782 (-357)))) (-357) (-357) (-988))) (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))) (-711))) (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))) (-711) (-988))) (-15 -3766 ((-3 (-965) "failed") (-294 (-357)) (-1012 (-782 (-357))) (-1073))) (-15 -3766 ((-3 (-965) "failed") (-294 (-357)) (-1012 (-782 (-357))) (-1090))))
-((-1473 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|)) 183)) (-4009 (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|)) 98)) (-1828 (((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2|) 179)) (-1802 (((-3 |#2| "failed") |#2| |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090))) 188)) (-3581 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2499 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-1090)) 196 (|has| |#3| (-602 |#2|)))))
-(((-527 |#1| |#2| |#3|) (-10 -7 (-15 -4009 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|))) (-15 -1828 ((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2|)) (-15 -1473 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|))) (-15 -1802 ((-3 |#2| "failed") |#2| |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090)))) (IF (|has| |#3| (-602 |#2|)) (-15 -3581 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2499 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-1090))) |%noBranch|)) (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))) (-13 (-408 |#1|) (-27) (-1112)) (-1019)) (T -527))
-((-3581 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-565 *4)) (-5 *6 (-1090)) (-4 *4 (-13 (-408 *7) (-27) (-1112))) (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2499 (-592 *4)))) (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1019)))) (-1802 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-565 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1090))) (-4 *2 (-13 (-408 *5) (-27) (-1112))) (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1019)))) (-1473 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1112))) (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1019)))) (-1828 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1112))) (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| -2838 *3) (|:| |coeff| *3))) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1019)))) (-4009 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1112))) (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1019)))))
-(-10 -7 (-15 -4009 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|))) (-15 -1828 ((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2|)) (-15 -1473 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|))) (-15 -1802 ((-3 |#2| "failed") |#2| |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1090)))) (IF (|has| |#3| (-602 |#2|)) (-15 -3581 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -2499 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-1090))) |%noBranch|))
-((-2633 (((-2 (|:| -3155 |#2|) (|:| |nconst| |#2|)) |#2| (-1090)) 64)) (-2243 (((-3 |#2| "failed") |#2| (-1090) (-782 |#2|) (-782 |#2|)) 164 (-12 (|has| |#2| (-1054)) (|has| |#1| (-567 (-826 (-525)))) (|has| |#1| (-820 (-525))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090)) 147 (-12 (|has| |#2| (-578)) (|has| |#1| (-567 (-826 (-525)))) (|has| |#1| (-820 (-525)))))) (-3627 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090)) 148 (-12 (|has| |#2| (-578)) (|has| |#1| (-567 (-826 (-525)))) (|has| |#1| (-820 (-525)))))))
-(((-528 |#1| |#2|) (-10 -7 (-15 -2633 ((-2 (|:| -3155 |#2|) (|:| |nconst| |#2|)) |#2| (-1090))) (IF (|has| |#1| (-567 (-826 (-525)))) (IF (|has| |#1| (-820 (-525))) (PROGN (IF (|has| |#2| (-578)) (PROGN (-15 -3627 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090))) (-15 -2243 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090)))) |%noBranch|) (IF (|has| |#2| (-1054)) (-15 -2243 ((-3 |#2| "failed") |#2| (-1090) (-782 |#2|) (-782 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-789) (-967 (-525)) (-429) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|))) (T -528))
-((-2243 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1090)) (-5 *4 (-782 *2)) (-4 *2 (-1054)) (-4 *2 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-567 (-826 (-525)))) (-4 *5 (-820 (-525))) (-4 *5 (-13 (-789) (-967 (-525)) (-429) (-588 (-525)))) (-5 *1 (-528 *5 *2)))) (-2243 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-567 (-826 (-525)))) (-4 *5 (-820 (-525))) (-4 *5 (-13 (-789) (-967 (-525)) (-429) (-588 (-525)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-578)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))) (-3627 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-567 (-826 (-525)))) (-4 *5 (-820 (-525))) (-4 *5 (-13 (-789) (-967 (-525)) (-429) (-588 (-525)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-578)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))) (-2633 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-789) (-967 (-525)) (-429) (-588 (-525)))) (-5 *2 (-2 (|:| -3155 *3) (|:| |nconst| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))))
-(-10 -7 (-15 -2633 ((-2 (|:| -3155 |#2|) (|:| |nconst| |#2|)) |#2| (-1090))) (IF (|has| |#1| (-567 (-826 (-525)))) (IF (|has| |#1| (-820 (-525))) (PROGN (IF (|has| |#2| (-578)) (PROGN (-15 -3627 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090))) (-15 -2243 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090)))) |%noBranch|) (IF (|has| |#2| (-1054)) (-15 -2243 ((-3 |#2| "failed") |#2| (-1090) (-782 |#2|) (-782 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-1660 (((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-592 (-385 |#2|))) 41)) (-3766 (((-542 (-385 |#2|)) (-385 |#2|)) 28)) (-1621 (((-3 (-385 |#2|) "failed") (-385 |#2|)) 17)) (-3491 (((-3 (-2 (|:| -2838 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|)) 48)))
-(((-529 |#1| |#2|) (-10 -7 (-15 -3766 ((-542 (-385 |#2|)) (-385 |#2|))) (-15 -1621 ((-3 (-385 |#2|) "failed") (-385 |#2|))) (-15 -3491 ((-3 (-2 (|:| -2838 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|))) (-15 -1660 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-592 (-385 |#2|))))) (-13 (-341) (-138) (-967 (-525))) (-1148 |#1|)) (T -529))
-((-1660 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-592 (-385 *6))) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-341) (-138) (-967 (-525)))) (-5 *2 (-2 (|:| |mainpart| (-385 *6)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 *6)) (|:| |logand| (-385 *6))))))) (-5 *1 (-529 *5 *6)) (-5 *3 (-385 *6)))) (-3491 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-341) (-138) (-967 (-525)))) (-4 *5 (-1148 *4)) (-5 *2 (-2 (|:| -2838 (-385 *5)) (|:| |coeff| (-385 *5)))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5)))) (-1621 (*1 *2 *2) (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-13 (-341) (-138) (-967 (-525)))) (-5 *1 (-529 *3 *4)))) (-3766 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-967 (-525)))) (-4 *5 (-1148 *4)) (-5 *2 (-542 (-385 *5))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5)))))
-(-10 -7 (-15 -3766 ((-542 (-385 |#2|)) (-385 |#2|))) (-15 -1621 ((-3 (-385 |#2|) "failed") (-385 |#2|))) (-15 -3491 ((-3 (-2 (|:| -2838 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|))) (-15 -1660 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-592 (-385 |#2|)))))
-((-2772 (((-3 (-525) "failed") |#1|) 14)) (-2318 (((-108) |#1|) 13)) (-1870 (((-525) |#1|) 9)))
-(((-530 |#1|) (-10 -7 (-15 -1870 ((-525) |#1|)) (-15 -2318 ((-108) |#1|)) (-15 -2772 ((-3 (-525) "failed") |#1|))) (-967 (-525))) (T -530))
-((-2772 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-967 (-525))))) (-2318 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-530 *3)) (-4 *3 (-967 (-525))))) (-1870 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-967 (-525))))))
-(-10 -7 (-15 -1870 ((-525) |#1|)) (-15 -2318 ((-108) |#1|)) (-15 -2772 ((-3 (-525) "failed") |#1|)))
-((-2611 (((-3 (-2 (|:| |mainpart| (-385 (-886 |#1|))) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 (-886 |#1|))) (|:| |logand| (-385 (-886 |#1|))))))) "failed") (-385 (-886 |#1|)) (-1090) (-592 (-385 (-886 |#1|)))) 48)) (-2726 (((-542 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-1090)) 28)) (-2861 (((-3 (-385 (-886 |#1|)) "failed") (-385 (-886 |#1|)) (-1090)) 23)) (-3268 (((-3 (-2 (|:| -2838 (-385 (-886 |#1|))) (|:| |coeff| (-385 (-886 |#1|)))) "failed") (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|))) 35)))
-(((-531 |#1|) (-10 -7 (-15 -2726 ((-542 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-1090))) (-15 -2861 ((-3 (-385 (-886 |#1|)) "failed") (-385 (-886 |#1|)) (-1090))) (-15 -2611 ((-3 (-2 (|:| |mainpart| (-385 (-886 |#1|))) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 (-886 |#1|))) (|:| |logand| (-385 (-886 |#1|))))))) "failed") (-385 (-886 |#1|)) (-1090) (-592 (-385 (-886 |#1|))))) (-15 -3268 ((-3 (-2 (|:| -2838 (-385 (-886 |#1|))) (|:| |coeff| (-385 (-886 |#1|)))) "failed") (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|))))) (-13 (-517) (-967 (-525)) (-138))) (T -531))
-((-3268 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-13 (-517) (-967 (-525)) (-138))) (-5 *2 (-2 (|:| -2838 (-385 (-886 *5))) (|:| |coeff| (-385 (-886 *5))))) (-5 *1 (-531 *5)) (-5 *3 (-385 (-886 *5))))) (-2611 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-592 (-385 (-886 *6)))) (-4 *6 (-13 (-517) (-967 (-525)) (-138))) (-5 *2 (-2 (|:| |mainpart| (-385 (-886 *6))) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 (-886 *6))) (|:| |logand| (-385 (-886 *6)))))))) (-5 *1 (-531 *6)) (-5 *3 (-385 (-886 *6))))) (-2861 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-385 (-886 *4))) (-5 *3 (-1090)) (-4 *4 (-13 (-517) (-967 (-525)) (-138))) (-5 *1 (-531 *4)))) (-2726 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-517) (-967 (-525)) (-138))) (-5 *2 (-542 (-385 (-886 *5)))) (-5 *1 (-531 *5)) (-5 *3 (-385 (-886 *5))))))
-(-10 -7 (-15 -2726 ((-542 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-1090))) (-15 -2861 ((-3 (-385 (-886 |#1|)) "failed") (-385 (-886 |#1|)) (-1090))) (-15 -2611 ((-3 (-2 (|:| |mainpart| (-385 (-886 |#1|))) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 (-886 |#1|))) (|:| |logand| (-385 (-886 |#1|))))))) "failed") (-385 (-886 |#1|)) (-1090) (-592 (-385 (-886 |#1|))))) (-15 -3268 ((-3 (-2 (|:| -2838 (-385 (-886 |#1|))) (|:| |coeff| (-385 (-886 |#1|)))) "failed") (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|)))))
-((-1893 (((-108) $ $) 59)) (-1611 (((-108) $) 36)) (-3243 ((|#1| $) 30)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) 63)) (-4049 (($ $) 123)) (-3911 (($ $) 103)) (-1487 ((|#1| $) 28)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3969 (($ $) NIL)) (-4026 (($ $) 125)) (-3434 (($ $) 99)) (-4072 (($ $) 127)) (-3931 (($ $) 107)) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) 78)) (-2831 (((-525) $) 80)) (-2866 (((-3 $ "failed") $) 62)) (-2690 (($ |#1| |#1|) 26)) (-3026 (((-108) $) 33)) (-1335 (($) 89)) (-2133 (((-108) $) 43)) (-3391 (($ $ (-525)) NIL)) (-2882 (((-108) $) 34)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-2091 (($ $) 91)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-2583 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-385 (-525))) 77)) (-2351 ((|#1| $) 27)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) 65) (($ (-592 $)) NIL)) (-2338 (((-3 $ "failed") $ $) 64)) (-1982 (($ $) 93)) (-4084 (($ $) 131)) (-3942 (($ $) 105)) (-4061 (($ $) 133)) (-3919 (($ $) 109)) (-4038 (($ $) 129)) (-3455 (($ $) 101)) (-1385 (((-108) $ |#1|) 31)) (-1908 (((-797) $) 85) (($ (-525)) 67) (($ $) NIL) (($ (-525)) 67)) (-2093 (((-713)) 87)) (-4121 (($ $) 145)) (-3974 (($ $) 115)) (-2262 (((-108) $ $) NIL)) (-4096 (($ $) 143)) (-3951 (($ $) 111)) (-4147 (($ $) 141)) (-3999 (($ $) 121)) (-2929 (($ $) 139)) (-4013 (($ $) 119)) (-4133 (($ $) 137)) (-3985 (($ $) 117)) (-4110 (($ $) 135)) (-3963 (($ $) 113)) (-3465 (($ $ (-855)) 55) (($ $ (-713)) NIL)) (-3875 (($) 21 T CONST)) (-3882 (($) 10 T CONST)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 37)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 35)) (-4070 (($ $) 41) (($ $ $) 42)) (-4059 (($ $ $) 40)) (** (($ $ (-855)) 54) (($ $ (-713)) NIL) (($ $ $) 95) (($ $ (-385 (-525))) 147)) (* (($ (-855) $) 51) (($ (-713) $) NIL) (($ (-525) $) 50) (($ $ $) 48)))
-(((-532 |#1|) (-515 |#1|) (-13 (-382) (-1112))) (T -532))
+((-1680 (*1 *1 *1 *1) (|partial| -4 *1 (-517))) (-2658 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1790 *1) (|:| -4242 *1) (|:| |associate| *1))) (-4 *1 (-517)))) (-3711 (*1 *1 *1) (-4 *1 (-517))) (-3959 (*1 *2 *1 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))))
+(-13 (-160) (-37 $) (-269) (-10 -8 (-15 -1680 ((-3 $ "failed") $ $)) (-15 -2658 ((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $)) (-15 -3711 ($ $)) (-15 -3959 ((-108) $ $)) (-15 -3380 ((-108) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-3810 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1091) (-592 |#2|)) 37)) (-1767 (((-542 |#2|) |#2| (-1091)) 62)) (-3880 (((-3 |#2| "failed") |#2| (-1091)) 154)) (-3466 (((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1091) (-565 |#2|) (-592 (-565 |#2|))) 157)) (-2483 (((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1091) |#2|) 40)))
+(((-518 |#1| |#2|) (-10 -7 (-15 -2483 ((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1091) |#2|)) (-15 -3810 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1091) (-592 |#2|))) (-15 -3880 ((-3 |#2| "failed") |#2| (-1091))) (-15 -1767 ((-542 |#2|) |#2| (-1091))) (-15 -3466 ((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1091) (-565 |#2|) (-592 (-565 |#2|))))) (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1113) (-408 |#1|))) (T -518))
+((-3466 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-565 *3)) (-5 *6 (-592 (-565 *3))) (-4 *3 (-13 (-27) (-1113) (-408 *7))) (-4 *7 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| -1679 *3) (|:| |coeff| *3))) (-5 *1 (-518 *7 *3)))) (-1767 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *5))))) (-3880 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *1 (-518 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *4))))) (-3810 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-592 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-518 *6 *3)))) (-2483 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| -1679 *3) (|:| |coeff| *3))) (-5 *1 (-518 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *5))))))
+(-10 -7 (-15 -2483 ((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1091) |#2|)) (-15 -3810 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1091) (-592 |#2|))) (-15 -3880 ((-3 |#2| "failed") |#2| (-1091))) (-15 -1767 ((-542 |#2|) |#2| (-1091))) (-15 -3466 ((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1091) (-565 |#2|) (-592 (-565 |#2|)))))
+((-2100 (((-396 |#1|) |#1|) 18)) (-2195 (((-396 |#1|) |#1|) 33)) (-2204 (((-3 |#1| "failed") |#1|) 44)) (-1220 (((-396 |#1|) |#1|) 51)))
+(((-519 |#1|) (-10 -7 (-15 -2195 ((-396 |#1|) |#1|)) (-15 -2100 ((-396 |#1|) |#1|)) (-15 -1220 ((-396 |#1|) |#1|)) (-15 -2204 ((-3 |#1| "failed") |#1|))) (-510)) (T -519))
+((-2204 (*1 *2 *2) (|partial| -12 (-5 *1 (-519 *2)) (-4 *2 (-510)))) (-1220 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))) (-2100 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))) (-2195 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))))
+(-10 -7 (-15 -2195 ((-396 |#1|) |#1|)) (-15 -2100 ((-396 |#1|) |#1|)) (-15 -1220 ((-396 |#1|) |#1|)) (-15 -2204 ((-3 |#1| "failed") |#1|)))
+((-2634 (($) 9)) (-1982 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 35)) (-4076 (((-592 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $) 32)) (-3985 (($ (-2 (|:| -3423 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2969 (($ (-592 (-2 (|:| -3423 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2544 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 39)) (-1777 (((-592 (-2 (|:| -3423 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3272 (((-1178)) 12)))
+(((-520) (-10 -8 (-15 -2634 ($)) (-15 -3272 ((-1178))) (-15 -4076 ((-592 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -2969 ($ (-592 (-2 (|:| -3423 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3985 ($ (-2 (|:| -3423 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1982 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1777 ((-592 (-2 (|:| -3423 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2544 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -520))
+((-2544 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-520)))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -3423 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-520)))) (-1982 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-520)))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3423 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-520)))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3423 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-520)))) (-4076 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-5 *1 (-520)))) (-3272 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-520)))) (-2634 (*1 *1) (-5 *1 (-520))))
+(-10 -8 (-15 -2634 ($)) (-15 -3272 ((-1178))) (-15 -4076 ((-592 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -2969 ($ (-592 (-2 (|:| -3423 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3985 ($ (-2 (|:| -3423 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1982 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1777 ((-592 (-2 (|:| -3423 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2544 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1072 (-205))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2990 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
+((-2146 (((-1087 (-385 (-1087 |#2|))) |#2| (-565 |#2|) (-565 |#2|) (-1087 |#2|)) 32)) (-2462 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) (-565 |#2|) |#2| (-385 (-1087 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) |#2| (-1087 |#2|)) 110)) (-3864 (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1087 |#2|))) 80) (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) |#2| (-1087 |#2|)) 52)) (-1765 (((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| (-565 |#2|) |#2| (-385 (-1087 |#2|))) 87) (((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| |#2| (-1087 |#2|)) 109)) (-2276 (((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1091)) (-565 |#2|) |#2| (-385 (-1087 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1091)) |#2| (-1087 |#2|)) 111)) (-2490 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1449 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1087 |#2|))) 128 (|has| |#3| (-602 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1449 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) |#2| (-1087 |#2|)) 127 (|has| |#3| (-602 |#2|)))) (-2368 ((|#2| (-1087 (-385 (-1087 |#2|))) (-565 |#2|) |#2|) 50)) (-3492 (((-1087 (-385 (-1087 |#2|))) (-1087 |#2|) (-565 |#2|)) 31)))
+(((-521 |#1| |#2| |#3|) (-10 -7 (-15 -3864 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) |#2| (-1087 |#2|))) (-15 -3864 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1087 |#2|)))) (-15 -1765 ((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| |#2| (-1087 |#2|))) (-15 -1765 ((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| (-565 |#2|) |#2| (-385 (-1087 |#2|)))) (-15 -2462 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) |#2| (-1087 |#2|))) (-15 -2462 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) (-565 |#2|) |#2| (-385 (-1087 |#2|)))) (-15 -2276 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1091)) |#2| (-1087 |#2|))) (-15 -2276 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1091)) (-565 |#2|) |#2| (-385 (-1087 |#2|)))) (-15 -2146 ((-1087 (-385 (-1087 |#2|))) |#2| (-565 |#2|) (-565 |#2|) (-1087 |#2|))) (-15 -2368 (|#2| (-1087 (-385 (-1087 |#2|))) (-565 |#2|) |#2|)) (-15 -3492 ((-1087 (-385 (-1087 |#2|))) (-1087 |#2|) (-565 |#2|))) (IF (|has| |#3| (-602 |#2|)) (PROGN (-15 -2490 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1449 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) |#2| (-1087 |#2|))) (-15 -2490 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1449 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1087 |#2|))))) |%noBranch|)) (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))) (-13 (-408 |#1|) (-27) (-1113)) (-1020)) (T -521))
+((-2490 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-565 *4)) (-5 *6 (-385 (-1087 *4))) (-4 *4 (-13 (-408 *7) (-27) (-1113))) (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1449 (-592 *4)))) (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020)))) (-2490 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-565 *4)) (-5 *6 (-1087 *4)) (-4 *4 (-13 (-408 *7) (-27) (-1113))) (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1449 (-592 *4)))) (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020)))) (-3492 (*1 *2 *3 *4) (-12 (-5 *4 (-565 *6)) (-4 *6 (-13 (-408 *5) (-27) (-1113))) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-1087 (-385 (-1087 *6)))) (-5 *1 (-521 *5 *6 *7)) (-5 *3 (-1087 *6)) (-4 *7 (-1020)))) (-2368 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1087 (-385 (-1087 *2)))) (-5 *4 (-565 *2)) (-4 *2 (-13 (-408 *5) (-27) (-1113))) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-521 *5 *2 *6)) (-4 *6 (-1020)))) (-2146 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1113))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-1087 (-385 (-1087 *3)))) (-5 *1 (-521 *6 *3 *7)) (-5 *5 (-1087 *3)) (-4 *7 (-1020)))) (-2276 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-565 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1091))) (-5 *5 (-385 (-1087 *2))) (-4 *2 (-13 (-408 *6) (-27) (-1113))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1020)))) (-2276 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-565 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1091))) (-5 *5 (-1087 *2)) (-4 *2 (-13 (-408 *6) (-27) (-1113))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1020)))) (-2462 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-5 *6 (-385 (-1087 *3))) (-4 *3 (-13 (-408 *7) (-27) (-1113))) (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1020)))) (-2462 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-5 *6 (-1087 *3)) (-4 *3 (-13 (-408 *7) (-27) (-1113))) (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1020)))) (-1765 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1087 *3))) (-4 *3 (-13 (-408 *6) (-27) (-1113))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| -1679 *3) (|:| |coeff| *3))) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))) (-1765 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-1087 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1113))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| -1679 *3) (|:| |coeff| *3))) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))) (-3864 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1087 *3))) (-4 *3 (-13 (-408 *6) (-27) (-1113))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))) (-3864 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-565 *3)) (-5 *5 (-1087 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1113))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))))
+(-10 -7 (-15 -3864 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) |#2| (-1087 |#2|))) (-15 -3864 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1087 |#2|)))) (-15 -1765 ((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| |#2| (-1087 |#2|))) (-15 -1765 ((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2| (-565 |#2|) |#2| (-385 (-1087 |#2|)))) (-15 -2462 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) |#2| (-1087 |#2|))) (-15 -2462 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|) (-565 |#2|) |#2| (-385 (-1087 |#2|)))) (-15 -2276 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1091)) |#2| (-1087 |#2|))) (-15 -2276 ((-3 |#2| "failed") |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1091)) (-565 |#2|) |#2| (-385 (-1087 |#2|)))) (-15 -2146 ((-1087 (-385 (-1087 |#2|))) |#2| (-565 |#2|) (-565 |#2|) (-1087 |#2|))) (-15 -2368 (|#2| (-1087 (-385 (-1087 |#2|))) (-565 |#2|) |#2|)) (-15 -3492 ((-1087 (-385 (-1087 |#2|))) (-1087 |#2|) (-565 |#2|))) (IF (|has| |#3| (-602 |#2|)) (PROGN (-15 -2490 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1449 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) |#2| (-1087 |#2|))) (-15 -2490 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1449 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-565 |#2|) |#2| (-385 (-1087 |#2|))))) |%noBranch|))
+((-1432 (((-525) (-525) (-713)) 66)) (-4193 (((-525) (-525)) 65)) (-2717 (((-525) (-525)) 64)) (-3376 (((-525) (-525)) 69)) (-1668 (((-525) (-525) (-525)) 49)) (-4219 (((-525) (-525) (-525)) 46)) (-3246 (((-385 (-525)) (-525)) 20)) (-2427 (((-525) (-525)) 21)) (-3902 (((-525) (-525)) 58)) (-1425 (((-525) (-525)) 32)) (-2509 (((-592 (-525)) (-525)) 63)) (-1873 (((-525) (-525) (-525) (-525) (-525)) 44)) (-2569 (((-385 (-525)) (-525)) 41)))
+(((-522) (-10 -7 (-15 -2569 ((-385 (-525)) (-525))) (-15 -1873 ((-525) (-525) (-525) (-525) (-525))) (-15 -2509 ((-592 (-525)) (-525))) (-15 -1425 ((-525) (-525))) (-15 -3902 ((-525) (-525))) (-15 -2427 ((-525) (-525))) (-15 -3246 ((-385 (-525)) (-525))) (-15 -4219 ((-525) (-525) (-525))) (-15 -1668 ((-525) (-525) (-525))) (-15 -3376 ((-525) (-525))) (-15 -2717 ((-525) (-525))) (-15 -4193 ((-525) (-525))) (-15 -1432 ((-525) (-525) (-713))))) (T -522))
+((-1432 (*1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-713)) (-5 *1 (-522)))) (-4193 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2717 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-3376 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-1668 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-4219 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-3246 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))) (-2427 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-3902 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-1425 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2509 (*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))) (-1873 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))) (-2569 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))))
+(-10 -7 (-15 -2569 ((-385 (-525)) (-525))) (-15 -1873 ((-525) (-525) (-525) (-525) (-525))) (-15 -2509 ((-592 (-525)) (-525))) (-15 -1425 ((-525) (-525))) (-15 -3902 ((-525) (-525))) (-15 -2427 ((-525) (-525))) (-15 -3246 ((-385 (-525)) (-525))) (-15 -4219 ((-525) (-525) (-525))) (-15 -1668 ((-525) (-525) (-525))) (-15 -3376 ((-525) (-525))) (-15 -2717 ((-525) (-525))) (-15 -4193 ((-525) (-525))) (-15 -1432 ((-525) (-525) (-713))))
+((-1743 (((-2 (|:| |answer| |#4|) (|:| -1949 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-523 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1743 ((-2 (|:| |answer| |#4|) (|:| -1949 |#4|)) |#4| (-1 |#2| |#2|)))) (-341) (-1149 |#1|) (-1149 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -523))
+((-1743 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1149 *5)) (-4 *5 (-341)) (-4 *7 (-1149 (-385 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1949 *3))) (-5 *1 (-523 *5 *6 *7 *3)) (-4 *3 (-320 *5 *6 *7)))))
+(-10 -7 (-15 -1743 ((-2 (|:| |answer| |#4|) (|:| -1949 |#4|)) |#4| (-1 |#2| |#2|))))
+((-1743 (((-2 (|:| |answer| (-385 |#2|)) (|:| -1949 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)) 18)))
+(((-524 |#1| |#2|) (-10 -7 (-15 -1743 ((-2 (|:| |answer| (-385 |#2|)) (|:| -1949 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)))) (-341) (-1149 |#1|)) (T -524))
+((-1743 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1149 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |answer| (-385 *6)) (|:| -1949 (-385 *6)) (|:| |specpart| (-385 *6)) (|:| |polypart| *6))) (-5 *1 (-524 *5 *6)) (-5 *3 (-385 *6)))))
+(-10 -7 (-15 -1743 ((-2 (|:| |answer| (-385 |#2|)) (|:| -1949 (-385 |#2|)) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 25)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 87)) (-3711 (($ $) 88)) (-3380 (((-108) $) NIL)) (-1530 (($ $ $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-1381 (($ $ $ $) 42)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3197 (((-108) $ $) NIL)) (-1436 (((-525) $) NIL)) (-4177 (($ $ $) 81)) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL)) (-3898 (((-525) $) NIL)) (-1726 (($ $ $) 80)) (-3416 (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 61) (((-632 (-525)) (-632 $)) 57)) (-3762 (((-3 $ "failed") $) 84)) (-2251 (((-3 (-385 (-525)) "failed") $) NIL)) (-2265 (((-108) $) NIL)) (-2178 (((-385 (-525)) $) NIL)) (-2899 (($) 63) (($ $) 64)) (-1704 (($ $ $) 79)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-3926 (($ $ $ $) NIL)) (-3963 (($ $ $) 54)) (-3017 (((-108) $) NIL)) (-1962 (($ $ $) NIL)) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL)) (-1985 (((-108) $) 26)) (-2126 (((-108) $) 74)) (-1760 (((-3 $ "failed") $) NIL)) (-3912 (((-108) $) 34)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3224 (($ $ $ $) 43)) (-2371 (($ $ $) 76)) (-2535 (($ $ $) 75)) (-1634 (($ $) NIL)) (-2023 (($ $) 40)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) 53)) (-3461 (($ $ $) NIL)) (-3940 (($) NIL T CONST)) (-4058 (($ $) 31)) (-2012 (((-1038) $) NIL) (($ $) 33)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 118)) (-2794 (($ $ $) 85) (($ (-592 $)) NIL)) (-2075 (($ $) NIL)) (-2195 (((-396 $) $) 104)) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL)) (-1680 (((-3 $ "failed") $ $) 83)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3545 (((-108) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 78)) (-2523 (($ $ (-713)) NIL) (($ $) NIL)) (-3881 (($ $) 32)) (-1451 (($ $) 30)) (-2749 (((-525) $) 39) (((-501) $) 51) (((-827 (-525)) $) NIL) (((-357) $) 46) (((-205) $) 48) (((-1074) $) 52)) (-1270 (((-798) $) 37) (($ (-525)) 38) (($ $) NIL) (($ (-525)) 38)) (-2104 (((-713)) NIL)) (-3975 (((-108) $ $) NIL)) (-2938 (($ $ $) NIL)) (-3200 (($) 29)) (-3959 (((-108) $ $) NIL)) (-2372 (($ $ $ $) 41)) (-2086 (($ $) 62)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 27 T CONST)) (-3363 (($) 28 T CONST)) (-2255 (((-1074) $) 20) (((-1074) $ (-108)) 22) (((-1178) (-764) $) 23) (((-1178) (-764) $ (-108)) 24)) (-2093 (($ $ (-713)) NIL) (($ $) NIL)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 65)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 66)) (-4090 (($ $) 67) (($ $ $) 69)) (-4080 (($ $ $) 68)) (** (($ $ (-856)) NIL) (($ $ (-713)) 73)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 71) (($ $ $) 70)))
+(((-525) (-13 (-510) (-567 (-1074)) (-770) (-10 -8 (-15 -2899 ($ $)) (-6 -4242) (-6 -4247) (-6 -4243) (-6 -4237)))) (T -525))
+((-2899 (*1 *1 *1) (-5 *1 (-525))))
+(-13 (-510) (-567 (-1074)) (-770) (-10 -8 (-15 -2899 ($ $)) (-6 -4242) (-6 -4247) (-6 -4243) (-6 -4237)))
+((-4151 (((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))) (|:| |extra| (-966))) (-711) (-989)) 108) (((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))) (|:| |extra| (-966))) (-711)) 110)) (-2650 (((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1091)) 172) (((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1074)) 171) (((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357) (-989)) 176) (((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357)) 177) (((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357)) 178) (((-966) (-294 (-357)) (-592 (-1015 (-782 (-357))))) 179) (((-966) (-294 (-357)) (-1015 (-782 (-357)))) 167) (((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357)) 166) (((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357)) 162) (((-966) (-711)) 155) (((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357) (-989)) 161)))
+(((-526) (-10 -7 (-15 -2650 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357) (-989))) (-15 -2650 ((-966) (-711))) (-15 -2650 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357))) (-15 -2650 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357))) (-15 -2650 ((-966) (-294 (-357)) (-1015 (-782 (-357))))) (-15 -2650 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))))) (-15 -2650 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357))) (-15 -2650 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357))) (-15 -2650 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357) (-989))) (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))) (|:| |extra| (-966))) (-711))) (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))) (|:| |extra| (-966))) (-711) (-989))) (-15 -2650 ((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1074))) (-15 -2650 ((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1091))))) (T -526))
+((-2650 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-782 (-357)))) (-5 *5 (-1091)) (-5 *2 (-966)) (-5 *1 (-526)))) (-2650 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-782 (-357)))) (-5 *5 (-1074)) (-5 *2 (-966)) (-5 *1 (-526)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-711)) (-5 *4 (-989)) (-5 *2 (-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))) (|:| |extra| (-966)))) (-5 *1 (-526)))) (-4151 (*1 *2 *3) (-12 (-5 *3 (-711)) (-5 *2 (-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))) (|:| |extra| (-966)))) (-5 *1 (-526)))) (-2650 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357))))) (-5 *5 (-357)) (-5 *6 (-989)) (-5 *2 (-966)) (-5 *1 (-526)))) (-2650 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357))))) (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526)))) (-2650 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357))))) (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526)))) (-2650 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357))))) (-5 *2 (-966)) (-5 *1 (-526)))) (-2650 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357)))) (-5 *2 (-966)) (-5 *1 (-526)))) (-2650 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357)))) (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526)))) (-2650 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357)))) (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526)))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-711)) (-5 *2 (-966)) (-5 *1 (-526)))) (-2650 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357)))) (-5 *5 (-357)) (-5 *6 (-989)) (-5 *2 (-966)) (-5 *1 (-526)))))
+(-10 -7 (-15 -2650 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357) (-989))) (-15 -2650 ((-966) (-711))) (-15 -2650 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357) (-357))) (-15 -2650 ((-966) (-294 (-357)) (-1015 (-782 (-357))) (-357))) (-15 -2650 ((-966) (-294 (-357)) (-1015 (-782 (-357))))) (-15 -2650 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))))) (-15 -2650 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357))) (-15 -2650 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357))) (-15 -2650 ((-966) (-294 (-357)) (-592 (-1015 (-782 (-357)))) (-357) (-357) (-989))) (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))) (|:| |extra| (-966))) (-711))) (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))) (|:| |extra| (-966))) (-711) (-989))) (-15 -2650 ((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1074))) (-15 -2650 ((-3 (-966) "failed") (-294 (-357)) (-1013 (-782 (-357))) (-1091))))
+((-2328 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|)) 183)) (-3999 (((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|)) 98)) (-2641 (((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2|) 179)) (-3587 (((-3 |#2| "failed") |#2| |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1091))) 188)) (-1362 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1449 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-1091)) 196 (|has| |#3| (-602 |#2|)))))
+(((-527 |#1| |#2| |#3|) (-10 -7 (-15 -3999 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|))) (-15 -2641 ((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2|)) (-15 -2328 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|))) (-15 -3587 ((-3 |#2| "failed") |#2| |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1091)))) (IF (|has| |#3| (-602 |#2|)) (-15 -1362 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1449 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-1091))) |%noBranch|)) (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))) (-13 (-408 |#1|) (-27) (-1113)) (-1020)) (T -527))
+((-1362 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-565 *4)) (-5 *6 (-1091)) (-4 *4 (-13 (-408 *7) (-27) (-1113))) (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1449 (-592 *4)))) (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020)))) (-3587 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-565 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1091))) (-4 *2 (-13 (-408 *5) (-27) (-1113))) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1020)))) (-2328 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1113))) (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1020)))) (-2641 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1113))) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-2 (|:| -1679 *3) (|:| |coeff| *3))) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1020)))) (-3999 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1113))) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525)))) (-5 *2 (-542 *3)) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1020)))))
+(-10 -7 (-15 -3999 ((-542 |#2|) |#2| (-565 |#2|) (-565 |#2|))) (-15 -2641 ((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-565 |#2|) (-565 |#2|) |#2|)) (-15 -2328 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-565 |#2|) (-565 |#2|) (-592 |#2|))) (-15 -3587 ((-3 |#2| "failed") |#2| |#2| |#2| (-565 |#2|) (-565 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1091)))) (IF (|has| |#3| (-602 |#2|)) (-15 -1362 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1449 (-592 |#2|))) |#3| |#2| (-565 |#2|) (-565 |#2|) (-1091))) |%noBranch|))
+((-3362 (((-2 (|:| -1639 |#2|) (|:| |nconst| |#2|)) |#2| (-1091)) 64)) (-3746 (((-3 |#2| "failed") |#2| (-1091) (-782 |#2|) (-782 |#2|)) 164 (-12 (|has| |#2| (-1055)) (|has| |#1| (-567 (-827 (-525)))) (|has| |#1| (-821 (-525))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091)) 147 (-12 (|has| |#2| (-578)) (|has| |#1| (-567 (-827 (-525)))) (|has| |#1| (-821 (-525)))))) (-1795 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091)) 148 (-12 (|has| |#2| (-578)) (|has| |#1| (-567 (-827 (-525)))) (|has| |#1| (-821 (-525)))))))
+(((-528 |#1| |#2|) (-10 -7 (-15 -3362 ((-2 (|:| -1639 |#2|) (|:| |nconst| |#2|)) |#2| (-1091))) (IF (|has| |#1| (-567 (-827 (-525)))) (IF (|has| |#1| (-821 (-525))) (PROGN (IF (|has| |#2| (-578)) (PROGN (-15 -1795 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091))) (-15 -3746 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091)))) |%noBranch|) (IF (|has| |#2| (-1055)) (-15 -3746 ((-3 |#2| "failed") |#2| (-1091) (-782 |#2|) (-782 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-789) (-968 (-525)) (-429) (-588 (-525))) (-13 (-27) (-1113) (-408 |#1|))) (T -528))
+((-3746 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1091)) (-5 *4 (-782 *2)) (-4 *2 (-1055)) (-4 *2 (-13 (-27) (-1113) (-408 *5))) (-4 *5 (-567 (-827 (-525)))) (-4 *5 (-821 (-525))) (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525)))) (-5 *1 (-528 *5 *2)))) (-3746 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-567 (-827 (-525)))) (-4 *5 (-821 (-525))) (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-578)) (-4 *3 (-13 (-27) (-1113) (-408 *5))))) (-1795 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-567 (-827 (-525)))) (-4 *5 (-821 (-525))) (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-578)) (-4 *3 (-13 (-27) (-1113) (-408 *5))))) (-3362 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525)))) (-5 *2 (-2 (|:| -1639 *3) (|:| |nconst| *3))) (-5 *1 (-528 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *5))))))
+(-10 -7 (-15 -3362 ((-2 (|:| -1639 |#2|) (|:| |nconst| |#2|)) |#2| (-1091))) (IF (|has| |#1| (-567 (-827 (-525)))) (IF (|has| |#1| (-821 (-525))) (PROGN (IF (|has| |#2| (-578)) (PROGN (-15 -1795 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091))) (-15 -3746 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091)))) |%noBranch|) (IF (|has| |#2| (-1055)) (-15 -3746 ((-3 |#2| "failed") |#2| (-1091) (-782 |#2|) (-782 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-3505 (((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-592 (-385 |#2|))) 41)) (-2650 (((-542 (-385 |#2|)) (-385 |#2|)) 28)) (-3124 (((-3 (-385 |#2|) "failed") (-385 |#2|)) 17)) (-2994 (((-3 (-2 (|:| -1679 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|)) 48)))
+(((-529 |#1| |#2|) (-10 -7 (-15 -2650 ((-542 (-385 |#2|)) (-385 |#2|))) (-15 -3124 ((-3 (-385 |#2|) "failed") (-385 |#2|))) (-15 -2994 ((-3 (-2 (|:| -1679 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|))) (-15 -3505 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-592 (-385 |#2|))))) (-13 (-341) (-138) (-968 (-525))) (-1149 |#1|)) (T -529))
+((-3505 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-592 (-385 *6))) (-4 *6 (-1149 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)))) (-5 *2 (-2 (|:| |mainpart| (-385 *6)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 *6)) (|:| |logand| (-385 *6))))))) (-5 *1 (-529 *5 *6)) (-5 *3 (-385 *6)))) (-2994 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1149 *4)) (-5 *2 (-2 (|:| -1679 (-385 *5)) (|:| |coeff| (-385 *5)))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5)))) (-3124 (*1 *2 *2) (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1149 *3)) (-4 *3 (-13 (-341) (-138) (-968 (-525)))) (-5 *1 (-529 *3 *4)))) (-2650 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1149 *4)) (-5 *2 (-542 (-385 *5))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5)))))
+(-10 -7 (-15 -2650 ((-542 (-385 |#2|)) (-385 |#2|))) (-15 -3124 ((-3 (-385 |#2|) "failed") (-385 |#2|))) (-15 -2994 ((-3 (-2 (|:| -1679 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-385 |#2|))) (-15 -3505 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-592 (-385 |#2|)))))
+((-2348 (((-3 (-525) "failed") |#1|) 14)) (-3283 (((-108) |#1|) 13)) (-4217 (((-525) |#1|) 9)))
+(((-530 |#1|) (-10 -7 (-15 -4217 ((-525) |#1|)) (-15 -3283 ((-108) |#1|)) (-15 -2348 ((-3 (-525) "failed") |#1|))) (-968 (-525))) (T -530))
+((-2348 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-968 (-525))))) (-3283 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-530 *3)) (-4 *3 (-968 (-525))))) (-4217 (*1 *2 *3) (-12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-968 (-525))))))
+(-10 -7 (-15 -4217 ((-525) |#1|)) (-15 -3283 ((-108) |#1|)) (-15 -2348 ((-3 (-525) "failed") |#1|)))
+((-3195 (((-3 (-2 (|:| |mainpart| (-385 (-887 |#1|))) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 (-887 |#1|))) (|:| |logand| (-385 (-887 |#1|))))))) "failed") (-385 (-887 |#1|)) (-1091) (-592 (-385 (-887 |#1|)))) 48)) (-3038 (((-542 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-1091)) 28)) (-3718 (((-3 (-385 (-887 |#1|)) "failed") (-385 (-887 |#1|)) (-1091)) 23)) (-1398 (((-3 (-2 (|:| -1679 (-385 (-887 |#1|))) (|:| |coeff| (-385 (-887 |#1|)))) "failed") (-385 (-887 |#1|)) (-1091) (-385 (-887 |#1|))) 35)))
+(((-531 |#1|) (-10 -7 (-15 -3038 ((-542 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-1091))) (-15 -3718 ((-3 (-385 (-887 |#1|)) "failed") (-385 (-887 |#1|)) (-1091))) (-15 -3195 ((-3 (-2 (|:| |mainpart| (-385 (-887 |#1|))) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 (-887 |#1|))) (|:| |logand| (-385 (-887 |#1|))))))) "failed") (-385 (-887 |#1|)) (-1091) (-592 (-385 (-887 |#1|))))) (-15 -1398 ((-3 (-2 (|:| -1679 (-385 (-887 |#1|))) (|:| |coeff| (-385 (-887 |#1|)))) "failed") (-385 (-887 |#1|)) (-1091) (-385 (-887 |#1|))))) (-13 (-517) (-968 (-525)) (-138))) (T -531))
+((-1398 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-13 (-517) (-968 (-525)) (-138))) (-5 *2 (-2 (|:| -1679 (-385 (-887 *5))) (|:| |coeff| (-385 (-887 *5))))) (-5 *1 (-531 *5)) (-5 *3 (-385 (-887 *5))))) (-3195 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-592 (-385 (-887 *6)))) (-4 *6 (-13 (-517) (-968 (-525)) (-138))) (-5 *2 (-2 (|:| |mainpart| (-385 (-887 *6))) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 (-887 *6))) (|:| |logand| (-385 (-887 *6)))))))) (-5 *1 (-531 *6)) (-5 *3 (-385 (-887 *6))))) (-3718 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-385 (-887 *4))) (-5 *3 (-1091)) (-4 *4 (-13 (-517) (-968 (-525)) (-138))) (-5 *1 (-531 *4)))) (-3038 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-517) (-968 (-525)) (-138))) (-5 *2 (-542 (-385 (-887 *5)))) (-5 *1 (-531 *5)) (-5 *3 (-385 (-887 *5))))))
+(-10 -7 (-15 -3038 ((-542 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-1091))) (-15 -3718 ((-3 (-385 (-887 |#1|)) "failed") (-385 (-887 |#1|)) (-1091))) (-15 -3195 ((-3 (-2 (|:| |mainpart| (-385 (-887 |#1|))) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 (-887 |#1|))) (|:| |logand| (-385 (-887 |#1|))))))) "failed") (-385 (-887 |#1|)) (-1091) (-592 (-385 (-887 |#1|))))) (-15 -1398 ((-3 (-2 (|:| -1679 (-385 (-887 |#1|))) (|:| |coeff| (-385 (-887 |#1|)))) "failed") (-385 (-887 |#1|)) (-1091) (-385 (-887 |#1|)))))
+((-1260 (((-108) $ $) 59)) (-1989 (((-108) $) 36)) (-1311 ((|#1| $) 30)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) 63)) (-2351 (($ $) 123)) (-1603 (($ $) 103)) (-2017 ((|#1| $) 28)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2211 (($ $) NIL)) (-2320 (($ $) 125)) (-1569 (($ $) 99)) (-2382 (($ $) 127)) (-2193 (($ $) 107)) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) 78)) (-3898 (((-525) $) 80)) (-3762 (((-3 $ "failed") $) 62)) (-2787 (($ |#1| |#1|) 26)) (-3017 (((-108) $) 33)) (-1535 (($) 89)) (-1985 (((-108) $) 43)) (-3220 (($ $ (-525)) NIL)) (-3912 (((-108) $) 34)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-1415 (($ $) 91)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-4066 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-385 (-525))) 77)) (-3569 ((|#1| $) 27)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) 65) (($ (-592 $)) NIL)) (-1680 (((-3 $ "failed") $ $) 64)) (-1250 (($ $) 93)) (-2396 (($ $) 131)) (-2209 (($ $) 105)) (-2367 (($ $) 133)) (-2176 (($ $) 109)) (-2335 (($ $) 129)) (-1584 (($ $) 101)) (-2925 (((-108) $ |#1|) 31)) (-1270 (((-798) $) 85) (($ (-525)) 67) (($ $) NIL) (($ (-525)) 67)) (-2104 (((-713)) 87)) (-2438 (($ $) 145)) (-2257 (($ $) 115)) (-3959 (((-108) $ $) NIL)) (-2410 (($ $) 143)) (-2226 (($ $) 111)) (-2464 (($ $) 141)) (-2287 (($ $) 121)) (-2687 (($ $) 139)) (-2303 (($ $) 119)) (-2450 (($ $) 137)) (-2273 (($ $) 117)) (-2424 (($ $) 135)) (-2242 (($ $) 113)) (-1576 (($ $ (-856)) 55) (($ $ (-713)) NIL)) (-3355 (($) 21 T CONST)) (-3363 (($) 10 T CONST)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 37)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 35)) (-4090 (($ $) 41) (($ $ $) 42)) (-4080 (($ $ $) 40)) (** (($ $ (-856)) 54) (($ $ (-713)) NIL) (($ $ $) 95) (($ $ (-385 (-525))) 147)) (* (($ (-856) $) 51) (($ (-713) $) NIL) (($ (-525) $) 50) (($ $ $) 48)))
+(((-532 |#1|) (-515 |#1|) (-13 (-382) (-1113))) (T -532))
NIL
(-515 |#1|)
-((-2620 (((-3 (-592 (-1086 (-525))) "failed") (-592 (-1086 (-525))) (-1086 (-525))) 24)))
-(((-533) (-10 -7 (-15 -2620 ((-3 (-592 (-1086 (-525))) "failed") (-592 (-1086 (-525))) (-1086 (-525)))))) (T -533))
-((-2620 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1086 (-525)))) (-5 *3 (-1086 (-525))) (-5 *1 (-533)))))
-(-10 -7 (-15 -2620 ((-3 (-592 (-1086 (-525))) "failed") (-592 (-1086 (-525))) (-1086 (-525)))))
-((-2062 (((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-1090)) 19)) (-1724 (((-592 (-565 |#2|)) (-592 |#2|) (-1090)) 23)) (-3254 (((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-592 (-565 |#2|))) 11)) (-2736 ((|#2| |#2| (-1090)) 54 (|has| |#1| (-517)))) (-4139 ((|#2| |#2| (-1090)) 78 (-12 (|has| |#2| (-263)) (|has| |#1| (-429))))) (-3752 (((-565 |#2|) (-565 |#2|) (-592 (-565 |#2|)) (-1090)) 25)) (-2554 (((-565 |#2|) (-592 (-565 |#2|))) 24)) (-3932 (((-542 |#2|) |#2| (-1090) (-1 (-542 |#2|) |#2| (-1090)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090))) 103 (-12 (|has| |#2| (-263)) (|has| |#2| (-578)) (|has| |#2| (-967 (-1090))) (|has| |#1| (-567 (-826 (-525)))) (|has| |#1| (-429)) (|has| |#1| (-820 (-525)))))))
-(((-534 |#1| |#2|) (-10 -7 (-15 -2062 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-1090))) (-15 -2554 ((-565 |#2|) (-592 (-565 |#2|)))) (-15 -3752 ((-565 |#2|) (-565 |#2|) (-592 (-565 |#2|)) (-1090))) (-15 -3254 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-592 (-565 |#2|)))) (-15 -1724 ((-592 (-565 |#2|)) (-592 |#2|) (-1090))) (IF (|has| |#1| (-517)) (-15 -2736 (|#2| |#2| (-1090))) |%noBranch|) (IF (|has| |#1| (-429)) (IF (|has| |#2| (-263)) (PROGN (-15 -4139 (|#2| |#2| (-1090))) (IF (|has| |#1| (-567 (-826 (-525)))) (IF (|has| |#1| (-820 (-525))) (IF (|has| |#2| (-578)) (IF (|has| |#2| (-967 (-1090))) (-15 -3932 ((-542 |#2|) |#2| (-1090) (-1 (-542 |#2|) |#2| (-1090)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-789) (-408 |#1|)) (T -534))
-((-3932 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1090)) (-5 *5 (-1 (-542 *3) *3 (-1090))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1090))) (-4 *3 (-263)) (-4 *3 (-578)) (-4 *3 (-967 (-1090))) (-4 *3 (-408 *7)) (-4 *7 (-567 (-826 (-525)))) (-4 *7 (-429)) (-4 *7 (-820 (-525))) (-4 *7 (-789)) (-5 *2 (-542 *3)) (-5 *1 (-534 *7 *3)))) (-4139 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-429)) (-4 *4 (-789)) (-5 *1 (-534 *4 *2)) (-4 *2 (-263)) (-4 *2 (-408 *4)))) (-2736 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-517)) (-4 *4 (-789)) (-5 *1 (-534 *4 *2)) (-4 *2 (-408 *4)))) (-1724 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-1090)) (-4 *6 (-408 *5)) (-4 *5 (-789)) (-5 *2 (-592 (-565 *6))) (-5 *1 (-534 *5 *6)))) (-3254 (*1 *2 *2 *2) (-12 (-5 *2 (-592 (-565 *4))) (-4 *4 (-408 *3)) (-4 *3 (-789)) (-5 *1 (-534 *3 *4)))) (-3752 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-565 *6)) (-5 *3 (-592 (-565 *6))) (-5 *4 (-1090)) (-4 *6 (-408 *5)) (-4 *5 (-789)) (-5 *1 (-534 *5 *6)))) (-2554 (*1 *2 *3) (-12 (-5 *3 (-592 (-565 *5))) (-4 *5 (-408 *4)) (-4 *4 (-789)) (-5 *2 (-565 *5)) (-5 *1 (-534 *4 *5)))) (-2062 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-565 *5))) (-5 *3 (-1090)) (-4 *5 (-408 *4)) (-4 *4 (-789)) (-5 *1 (-534 *4 *5)))))
-(-10 -7 (-15 -2062 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-1090))) (-15 -2554 ((-565 |#2|) (-592 (-565 |#2|)))) (-15 -3752 ((-565 |#2|) (-565 |#2|) (-592 (-565 |#2|)) (-1090))) (-15 -3254 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-592 (-565 |#2|)))) (-15 -1724 ((-592 (-565 |#2|)) (-592 |#2|) (-1090))) (IF (|has| |#1| (-517)) (-15 -2736 (|#2| |#2| (-1090))) |%noBranch|) (IF (|has| |#1| (-429)) (IF (|has| |#2| (-263)) (PROGN (-15 -4139 (|#2| |#2| (-1090))) (IF (|has| |#1| (-567 (-826 (-525)))) (IF (|has| |#1| (-820 (-525))) (IF (|has| |#2| (-578)) (IF (|has| |#2| (-967 (-1090))) (-15 -3932 ((-542 |#2|) |#2| (-1090) (-1 (-542 |#2|) |#2| (-1090)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1090)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2127 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-592 |#1|) "failed") (-525) |#1| |#1|)) 172)) (-1571 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2838 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-592 (-385 |#2|))) 148)) (-3137 (((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-592 (-385 |#2|))) 145)) (-3328 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2838 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-1681 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2838 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-2140 (((-3 (-2 (|:| -2838 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|)) 175)) (-1976 (((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2838 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2838 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|)) 178)) (-4020 (((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)) 84)) (-1411 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-1507 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4152 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-592 (-385 |#2|))) 152)) (-3677 (((-3 (-573 |#1| |#2|) "failed") (-573 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4152 |#1|) (|:| |sol?| (-108))) (-525) |#1|)) 137)) (-1957 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4152 |#1|) (|:| |sol?| (-108))) (-525) |#1|)) 162)) (-2465 (((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2838 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4152 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|)) 183)))
-(((-535 |#1| |#2|) (-10 -7 (-15 -1681 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2838 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1957 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4152 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -2127 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-592 |#1|) "failed") (-525) |#1| |#1|))) (-15 -1976 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2838 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2838 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|))) (-15 -2465 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2838 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4152 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|))) (-15 -1571 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2838 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-592 (-385 |#2|)))) (-15 -1507 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4152 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-592 (-385 |#2|)))) (-15 -2140 ((-3 (-2 (|:| -2838 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|))) (-15 -3137 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-592 (-385 |#2|)))) (-15 -3328 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2838 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3677 ((-3 (-573 |#1| |#2|) "failed") (-573 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4152 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -4020 ((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|))) (-15 -1411 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-341) (-1148 |#1|)) (T -535))
-((-1411 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-535 *5 *3)))) (-4020 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |ir| (-542 (-385 *6))) (|:| |specpart| (-385 *6)) (|:| |polypart| *6))) (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))) (-3677 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-573 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4152 *4) (|:| |sol?| (-108))) (-525) *4)) (-4 *4 (-341)) (-4 *5 (-1148 *4)) (-5 *1 (-535 *4 *5)))) (-3328 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2838 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-341)) (-5 *1 (-535 *4 *2)) (-4 *2 (-1148 *4)))) (-3137 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-592 (-385 *7))) (-4 *7 (-1148 *6)) (-4 *6 (-341)) (-5 *2 (-2 (|:| |mainpart| (-385 *7)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 *7)) (|:| |logand| (-385 *7))))))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-2140 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -2838 (-385 *6)) (|:| |coeff| (-385 *6)))) (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))) (-1507 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4152 *7) (|:| |sol?| (-108))) (-525) *7)) (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1148 *7)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 *8)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 *8)) (|:| |logand| (-385 *8))))))) (|:| |a0| *7))) (-5 *1 (-535 *7 *8)) (-5 *3 (-385 *8)))) (-1571 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2838 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1148 *7)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 *8)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 *8)) (|:| |logand| (-385 *8))))))) (|:| |a0| *7))) (-5 *1 (-535 *7 *8)) (-5 *3 (-385 *8)))) (-2465 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4152 *6) (|:| |sol?| (-108))) (-525) *6)) (-4 *6 (-341)) (-4 *7 (-1148 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6)) (-2 (|:| -2838 (-385 *7)) (|:| |coeff| (-385 *7))) "failed")) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-1976 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2838 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-341)) (-4 *7 (-1148 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6)) (-2 (|:| -2838 (-385 *7)) (|:| |coeff| (-385 *7))) "failed")) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-2127 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-592 *6) "failed") (-525) *6 *6)) (-4 *6 (-341)) (-4 *7 (-1148 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-1957 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4152 *6) (|:| |sol?| (-108))) (-525) *6)) (-4 *6 (-341)) (-4 *7 (-1148 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-1681 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2838 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-341)) (-4 *7 (-1148 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
-(-10 -7 (-15 -1681 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2838 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1957 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4152 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -2127 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-592 |#1|) "failed") (-525) |#1| |#1|))) (-15 -1976 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2838 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2838 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|))) (-15 -2465 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2838 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4152 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|))) (-15 -1571 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2838 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-592 (-385 |#2|)))) (-15 -1507 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4152 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-592 (-385 |#2|)))) (-15 -2140 ((-3 (-2 (|:| -2838 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|))) (-15 -3137 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-592 (-385 |#2|)))) (-15 -3328 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2838 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3677 ((-3 (-573 |#1| |#2|) "failed") (-573 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4152 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -4020 ((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|))) (-15 -1411 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-1638 (((-3 |#2| "failed") |#2| (-1090) (-1090)) 10)))
-(((-536 |#1| |#2|) (-10 -7 (-15 -1638 ((-3 |#2| "failed") |#2| (-1090) (-1090)))) (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))) (-13 (-1112) (-892) (-1054) (-29 |#1|))) (T -536))
-((-1638 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *1 (-536 *4 *2)) (-4 *2 (-13 (-1112) (-892) (-1054) (-29 *4))))))
-(-10 -7 (-15 -1638 ((-3 |#2| "failed") |#2| (-1090) (-1090))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3969 (($ $ (-525)) 66)) (-2305 (((-108) $ $) NIL)) (-1505 (($) NIL T CONST)) (-3356 (($ (-1086 (-525)) (-525)) 72)) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) 58)) (-2247 (($ $) 34)) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-1737 (((-713) $) 15)) (-2133 (((-108) $) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2238 (((-525)) 29)) (-1276 (((-525) $) 32)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3538 (($ $ (-525)) 21)) (-2338 (((-3 $ "failed") $ $) 59)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) 16)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 61)) (-4076 (((-1071 (-525)) $) 18)) (-1801 (($ $) 23)) (-1908 (((-797) $) 87) (($ (-525)) 52) (($ $) NIL)) (-2093 (((-713)) 14)) (-2262 (((-108) $ $) NIL)) (-2038 (((-525) $ (-525)) 36)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 35 T CONST)) (-3882 (($) 19 T CONST)) (-3961 (((-108) $ $) 39)) (-4070 (($ $) 51) (($ $ $) 37)) (-4059 (($ $ $) 50)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 54) (($ $ $) 55)))
-(((-537 |#1| |#2|) (-803 |#1|) (-525) (-108)) (T -537))
-NIL
-(-803 |#1|)
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 21)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-1831 (((-108) $) NIL)) (-3425 (((-713)) NIL)) (-3512 (($ $ (-855)) NIL (|has| $ (-346))) (($ $) NIL)) (-2837 (((-1100 (-855) (-713)) (-525)) 47)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2305 (((-108) $ $) NIL)) (-3107 (((-713)) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 $ "failed") $) 75)) (-2831 (($ $) 74)) (-2229 (($ (-1172 $)) 73)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) 32)) (-3375 (($) NIL)) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-3205 (($) 49)) (-3746 (((-108) $) NIL)) (-1410 (($ $) NIL) (($ $ (-713)) NIL)) (-2250 (((-108) $) NIL)) (-1737 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-2133 (((-108) $) NIL)) (-2537 (($) 37 (|has| $ (-346)))) (-4037 (((-108) $) NIL (|has| $ (-346)))) (-3477 (($ $ (-855)) NIL (|has| $ (-346))) (($ $) NIL)) (-1816 (((-3 $ "failed") $) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2362 (((-1086 $) $ (-855)) NIL (|has| $ (-346))) (((-1086 $) $) 83)) (-1780 (((-855) $) 55)) (-3474 (((-1086 $) $) NIL (|has| $ (-346)))) (-2509 (((-3 (-1086 $) "failed") $ $) NIL (|has| $ (-346))) (((-1086 $) $) NIL (|has| $ (-346)))) (-2783 (($ $ (-1086 $)) NIL (|has| $ (-346)))) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL T CONST)) (-4185 (($ (-855)) 48)) (-2325 (((-108) $) 67)) (-2663 (((-1037) $) NIL)) (-1669 (($) 19 (|has| $ (-346)))) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) 42)) (-3959 (((-396 $) $) NIL)) (-2864 (((-855)) 66) (((-775 (-855))) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-2443 (((-3 (-713) "failed") $ $) NIL) (((-713) $) NIL)) (-3191 (((-128)) NIL)) (-3013 (($ $ (-713)) NIL) (($ $) NIL)) (-2513 (((-855) $) 65) (((-775 (-855)) $) NIL)) (-1654 (((-1086 $)) 82)) (-3775 (($) 54)) (-3555 (($) 38 (|has| $ (-346)))) (-4093 (((-632 $) (-1172 $)) NIL) (((-1172 $) $) 71)) (-1427 (((-525) $) 28)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL)) (-1908 (((-797) $) NIL) (($ (-525)) 30) (($ $) NIL) (($ (-385 (-525))) NIL)) (-3421 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2093 (((-713)) 39)) (-2499 (((-1172 $) (-855)) 77) (((-1172 $)) 76)) (-2262 (((-108) $ $) NIL)) (-1252 (((-108) $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) 22 T CONST)) (-3882 (($) 18 T CONST)) (-3192 (($ $ (-713)) NIL (|has| $ (-346))) (($ $) NIL (|has| $ (-346)))) (-1424 (($ $ (-713)) NIL) (($ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 26)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 61) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
-(((-538 |#1|) (-13 (-327) (-307 $) (-567 (-525))) (-855)) (T -538))
+((-3259 (((-3 (-592 (-1087 (-525))) "failed") (-592 (-1087 (-525))) (-1087 (-525))) 24)))
+(((-533) (-10 -7 (-15 -3259 ((-3 (-592 (-1087 (-525))) "failed") (-592 (-1087 (-525))) (-1087 (-525)))))) (T -533))
+((-3259 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1087 (-525)))) (-5 *3 (-1087 (-525))) (-5 *1 (-533)))))
+(-10 -7 (-15 -3259 ((-3 (-592 (-1087 (-525))) "failed") (-592 (-1087 (-525))) (-1087 (-525)))))
+((-1773 (((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-1091)) 19)) (-2825 (((-592 (-565 |#2|)) (-592 |#2|) (-1091)) 23)) (-2805 (((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-592 (-565 |#2|))) 11)) (-1852 ((|#2| |#2| (-1091)) 54 (|has| |#1| (-517)))) (-2837 ((|#2| |#2| (-1091)) 78 (-12 (|has| |#2| (-263)) (|has| |#1| (-429))))) (-3608 (((-565 |#2|) (-565 |#2|) (-592 (-565 |#2|)) (-1091)) 25)) (-3803 (((-565 |#2|) (-592 (-565 |#2|))) 24)) (-1600 (((-542 |#2|) |#2| (-1091) (-1 (-542 |#2|) |#2| (-1091)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091))) 103 (-12 (|has| |#2| (-263)) (|has| |#2| (-578)) (|has| |#2| (-968 (-1091))) (|has| |#1| (-567 (-827 (-525)))) (|has| |#1| (-429)) (|has| |#1| (-821 (-525)))))))
+(((-534 |#1| |#2|) (-10 -7 (-15 -1773 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-1091))) (-15 -3803 ((-565 |#2|) (-592 (-565 |#2|)))) (-15 -3608 ((-565 |#2|) (-565 |#2|) (-592 (-565 |#2|)) (-1091))) (-15 -2805 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-592 (-565 |#2|)))) (-15 -2825 ((-592 (-565 |#2|)) (-592 |#2|) (-1091))) (IF (|has| |#1| (-517)) (-15 -1852 (|#2| |#2| (-1091))) |%noBranch|) (IF (|has| |#1| (-429)) (IF (|has| |#2| (-263)) (PROGN (-15 -2837 (|#2| |#2| (-1091))) (IF (|has| |#1| (-567 (-827 (-525)))) (IF (|has| |#1| (-821 (-525))) (IF (|has| |#2| (-578)) (IF (|has| |#2| (-968 (-1091))) (-15 -1600 ((-542 |#2|) |#2| (-1091) (-1 (-542 |#2|) |#2| (-1091)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-789) (-408 |#1|)) (T -534))
+((-1600 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1091)) (-5 *5 (-1 (-542 *3) *3 (-1091))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1091))) (-4 *3 (-263)) (-4 *3 (-578)) (-4 *3 (-968 (-1091))) (-4 *3 (-408 *7)) (-4 *7 (-567 (-827 (-525)))) (-4 *7 (-429)) (-4 *7 (-821 (-525))) (-4 *7 (-789)) (-5 *2 (-542 *3)) (-5 *1 (-534 *7 *3)))) (-2837 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-429)) (-4 *4 (-789)) (-5 *1 (-534 *4 *2)) (-4 *2 (-263)) (-4 *2 (-408 *4)))) (-1852 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-517)) (-4 *4 (-789)) (-5 *1 (-534 *4 *2)) (-4 *2 (-408 *4)))) (-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-1091)) (-4 *6 (-408 *5)) (-4 *5 (-789)) (-5 *2 (-592 (-565 *6))) (-5 *1 (-534 *5 *6)))) (-2805 (*1 *2 *2 *2) (-12 (-5 *2 (-592 (-565 *4))) (-4 *4 (-408 *3)) (-4 *3 (-789)) (-5 *1 (-534 *3 *4)))) (-3608 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-565 *6)) (-5 *3 (-592 (-565 *6))) (-5 *4 (-1091)) (-4 *6 (-408 *5)) (-4 *5 (-789)) (-5 *1 (-534 *5 *6)))) (-3803 (*1 *2 *3) (-12 (-5 *3 (-592 (-565 *5))) (-4 *5 (-408 *4)) (-4 *4 (-789)) (-5 *2 (-565 *5)) (-5 *1 (-534 *4 *5)))) (-1773 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-565 *5))) (-5 *3 (-1091)) (-4 *5 (-408 *4)) (-4 *4 (-789)) (-5 *1 (-534 *4 *5)))))
+(-10 -7 (-15 -1773 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-1091))) (-15 -3803 ((-565 |#2|) (-592 (-565 |#2|)))) (-15 -3608 ((-565 |#2|) (-565 |#2|) (-592 (-565 |#2|)) (-1091))) (-15 -2805 ((-592 (-565 |#2|)) (-592 (-565 |#2|)) (-592 (-565 |#2|)))) (-15 -2825 ((-592 (-565 |#2|)) (-592 |#2|) (-1091))) (IF (|has| |#1| (-517)) (-15 -1852 (|#2| |#2| (-1091))) |%noBranch|) (IF (|has| |#1| (-429)) (IF (|has| |#2| (-263)) (PROGN (-15 -2837 (|#2| |#2| (-1091))) (IF (|has| |#1| (-567 (-827 (-525)))) (IF (|has| |#1| (-821 (-525))) (IF (|has| |#2| (-578)) (IF (|has| |#2| (-968 (-1091))) (-15 -1600 ((-542 |#2|) |#2| (-1091) (-1 (-542 |#2|) |#2| (-1091)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1091)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-1918 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-592 |#1|) "failed") (-525) |#1| |#1|)) 172)) (-3172 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-592 (-385 |#2|))) 148)) (-1483 (((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-592 (-385 |#2|))) 145)) (-3770 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-1337 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-2066 (((-3 (-2 (|:| -1679 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|)) 175)) (-2030 (((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1679 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|)) 178)) (-4074 (((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|)) 84)) (-2344 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2053 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3602 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-592 (-385 |#2|))) 152)) (-4118 (((-3 (-573 |#1| |#2|) "failed") (-573 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3602 |#1|) (|:| |sol?| (-108))) (-525) |#1|)) 137)) (-4075 (((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3602 |#1|) (|:| |sol?| (-108))) (-525) |#1|)) 162)) (-2468 (((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1679 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3602 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|)) 183)))
+(((-535 |#1| |#2|) (-10 -7 (-15 -1337 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4075 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3602 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -1918 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-592 |#1|) "failed") (-525) |#1| |#1|))) (-15 -2030 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1679 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|))) (-15 -2468 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1679 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3602 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|))) (-15 -3172 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-592 (-385 |#2|)))) (-15 -2053 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3602 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-592 (-385 |#2|)))) (-15 -2066 ((-3 (-2 (|:| -1679 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|))) (-15 -1483 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-592 (-385 |#2|)))) (-15 -3770 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -4118 ((-3 (-573 |#1| |#2|) "failed") (-573 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3602 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -4074 ((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2344 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-341) (-1149 |#1|)) (T -535))
+((-2344 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1149 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-535 *5 *3)))) (-4074 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1149 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |ir| (-542 (-385 *6))) (|:| |specpart| (-385 *6)) (|:| |polypart| *6))) (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))) (-4118 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-573 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3602 *4) (|:| |sol?| (-108))) (-525) *4)) (-4 *4 (-341)) (-4 *5 (-1149 *4)) (-5 *1 (-535 *4 *5)))) (-3770 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -1679 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-341)) (-5 *1 (-535 *4 *2)) (-4 *2 (-1149 *4)))) (-1483 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-592 (-385 *7))) (-4 *7 (-1149 *6)) (-4 *6 (-341)) (-5 *2 (-2 (|:| |mainpart| (-385 *7)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 *7)) (|:| |logand| (-385 *7))))))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-2066 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1149 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -1679 (-385 *6)) (|:| |coeff| (-385 *6)))) (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))) (-2053 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3602 *7) (|:| |sol?| (-108))) (-525) *7)) (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1149 *7)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 *8)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 *8)) (|:| |logand| (-385 *8))))))) (|:| |a0| *7))) (-5 *1 (-535 *7 *8)) (-5 *3 (-385 *8)))) (-3172 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -1679 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1149 *7)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 *8)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 *8)) (|:| |logand| (-385 *8))))))) (|:| |a0| *7))) (-5 *1 (-535 *7 *8)) (-5 *3 (-385 *8)))) (-2468 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3602 *6) (|:| |sol?| (-108))) (-525) *6)) (-4 *6 (-341)) (-4 *7 (-1149 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6)) (-2 (|:| -1679 (-385 *7)) (|:| |coeff| (-385 *7))) "failed")) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-2030 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1679 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-341)) (-4 *7 (-1149 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6)) (-2 (|:| -1679 (-385 *7)) (|:| |coeff| (-385 *7))) "failed")) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-1918 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-592 *6) "failed") (-525) *6 *6)) (-4 *6 (-341)) (-4 *7 (-1149 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-4075 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3602 *6) (|:| |sol?| (-108))) (-525) *6)) (-4 *6 (-341)) (-4 *7 (-1149 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))) (-1337 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -1679 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-341)) (-4 *7 (-1149 *6)) (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6))) (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
+(-10 -7 (-15 -1337 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4075 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3602 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -1918 ((-2 (|:| |answer| (-542 (-385 |#2|))) (|:| |a0| |#1|)) (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-592 |#1|) "failed") (-525) |#1| |#1|))) (-15 -2030 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1679 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-385 |#2|))) (-15 -2468 ((-3 (-2 (|:| |answer| (-385 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -1679 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3602 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-385 |#2|))) (-15 -3172 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -1679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-592 (-385 |#2|)))) (-15 -2053 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|))))))) (|:| |a0| |#1|)) "failed") (-385 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3602 |#1|) (|:| |sol?| (-108))) (-525) |#1|) (-592 (-385 |#2|)))) (-15 -2066 ((-3 (-2 (|:| -1679 (-385 |#2|)) (|:| |coeff| (-385 |#2|))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-385 |#2|))) (-15 -1483 ((-3 (-2 (|:| |mainpart| (-385 |#2|)) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| (-385 |#2|)) (|:| |logand| (-385 |#2|)))))) "failed") (-385 |#2|) (-1 |#2| |#2|) (-592 (-385 |#2|)))) (-15 -3770 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -1679 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -4118 ((-3 (-573 |#1| |#2|) "failed") (-573 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3602 |#1|) (|:| |sol?| (-108))) (-525) |#1|))) (-15 -4074 ((-2 (|:| |ir| (-542 (-385 |#2|))) (|:| |specpart| (-385 |#2|)) (|:| |polypart| |#2|)) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2344 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-1384 (((-3 |#2| "failed") |#2| (-1091) (-1091)) 10)))
+(((-536 |#1| |#2|) (-10 -7 (-15 -1384 ((-3 |#2| "failed") |#2| (-1091) (-1091)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1113) (-893) (-1055) (-29 |#1|))) (T -536))
+((-1384 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *1 (-536 *4 *2)) (-4 *2 (-13 (-1113) (-893) (-1055) (-29 *4))))))
+(-10 -7 (-15 -1384 ((-3 |#2| "failed") |#2| (-1091) (-1091))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2211 (($ $ (-525)) 66)) (-3197 (((-108) $ $) NIL)) (-2305 (($) NIL T CONST)) (-4040 (($ (-1087 (-525)) (-525)) 72)) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) 58)) (-3798 (($ $) 34)) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3973 (((-713) $) 15)) (-1985 (((-108) $) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3703 (((-525)) 29)) (-3643 (((-525) $) 32)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2182 (($ $ (-525)) 21)) (-1680 (((-3 $ "failed") $ $) 59)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) 16)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 61)) (-3342 (((-1072 (-525)) $) 18)) (-3577 (($ $) 23)) (-1270 (((-798) $) 87) (($ (-525)) 52) (($ $) NIL)) (-2104 (((-713)) 14)) (-3959 (((-108) $ $) NIL)) (-1369 (((-525) $ (-525)) 36)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 35 T CONST)) (-3363 (($) 19 T CONST)) (-3994 (((-108) $ $) 39)) (-4090 (($ $) 51) (($ $ $) 37)) (-4080 (($ $ $) 50)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 54) (($ $ $) 55)))
+(((-537 |#1| |#2|) (-804 |#1|) (-525) (-108)) (T -537))
+NIL
+(-804 |#1|)
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 21)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-2679 (((-108) $) NIL)) (-3452 (((-713)) NIL)) (-3029 (($ $ (-856)) NIL (|has| $ (-346))) (($ $) NIL)) (-1670 (((-1101 (-856) (-713)) (-525)) 47)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3197 (((-108) $ $) NIL)) (-4190 (((-713)) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 $ "failed") $) 75)) (-3898 (($ $) 74)) (-3612 (($ (-1173 $)) 73)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) 32)) (-2899 (($) NIL)) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3977 (($) 49)) (-3564 (((-108) $) NIL)) (-2327 (($ $) NIL) (($ $ (-713)) NIL)) (-3836 (((-108) $) NIL)) (-3973 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-1985 (((-108) $) NIL)) (-1794 (($) 37 (|has| $ (-346)))) (-4200 (((-108) $) NIL (|has| $ (-346)))) (-2900 (($ $ (-856)) NIL (|has| $ (-346))) (($ $) NIL)) (-1760 (((-3 $ "failed") $) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2640 (((-1087 $) $ (-856)) NIL (|has| $ (-346))) (((-1087 $) $) 83)) (-1736 (((-856) $) 55)) (-2884 (((-1087 $) $) NIL (|has| $ (-346)))) (-1549 (((-3 (-1087 $) "failed") $ $) NIL (|has| $ (-346))) (((-1087 $) $) NIL (|has| $ (-346)))) (-2499 (($ $ (-1087 $)) NIL (|has| $ (-346)))) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL T CONST)) (-3640 (($ (-856)) 48)) (-3341 (((-108) $) 67)) (-2012 (((-1038) $) NIL)) (-3523 (($) 19 (|has| $ (-346)))) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) 42)) (-2195 (((-396 $) $) NIL)) (-3748 (((-856)) 66) (((-775 (-856))) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2181 (((-3 (-713) "failed") $ $) NIL) (((-713) $) NIL)) (-3831 (((-128)) NIL)) (-2523 (($ $ (-713)) NIL) (($ $) NIL)) (-1587 (((-856) $) 65) (((-775 (-856)) $) NIL)) (-1571 (((-1087 $)) 82)) (-2726 (($) 54)) (-2411 (($) 38 (|has| $ (-346)))) (-3464 (((-632 $) (-1173 $)) NIL) (((-1173 $) $) 71)) (-2749 (((-525) $) 28)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL)) (-1270 (((-798) $) NIL) (($ (-525)) 30) (($ $) NIL) (($ (-385 (-525))) NIL)) (-3425 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2104 (((-713)) 39)) (-1449 (((-1173 $) (-856)) 77) (((-1173 $)) 76)) (-3959 (((-108) $ $) NIL)) (-1728 (((-108) $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) 22 T CONST)) (-3363 (($) 18 T CONST)) (-3842 (($ $ (-713)) NIL (|has| $ (-346))) (($ $) NIL (|has| $ (-346)))) (-2093 (($ $ (-713)) NIL) (($ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 26)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 61) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
+(((-538 |#1|) (-13 (-327) (-307 $) (-567 (-525))) (-856)) (T -538))
NIL
(-13 (-327) (-307 $) (-567 (-525)))
-((-4131 (((-1177) (-1073)) 10)))
-(((-539) (-10 -7 (-15 -4131 ((-1177) (-1073))))) (T -539))
-((-4131 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-539)))))
-(-10 -7 (-15 -4131 ((-1177) (-1073))))
-((-1921 (((-542 |#2|) (-542 |#2|)) 40)) (-2692 (((-592 |#2|) (-542 |#2|)) 42)) (-1560 ((|#2| (-542 |#2|)) 48)))
-(((-540 |#1| |#2|) (-10 -7 (-15 -1921 ((-542 |#2|) (-542 |#2|))) (-15 -2692 ((-592 |#2|) (-542 |#2|))) (-15 -1560 (|#2| (-542 |#2|)))) (-13 (-429) (-967 (-525)) (-789) (-588 (-525))) (-13 (-29 |#1|) (-1112))) (T -540))
-((-1560 (*1 *2 *3) (-12 (-5 *3 (-542 *2)) (-4 *2 (-13 (-29 *4) (-1112))) (-5 *1 (-540 *4 *2)) (-4 *4 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-542 *5)) (-4 *5 (-13 (-29 *4) (-1112))) (-4 *4 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) (-5 *2 (-592 *5)) (-5 *1 (-540 *4 *5)))) (-1921 (*1 *2 *2) (-12 (-5 *2 (-542 *4)) (-4 *4 (-13 (-29 *3) (-1112))) (-4 *3 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) (-5 *1 (-540 *3 *4)))))
-(-10 -7 (-15 -1921 ((-542 |#2|) (-542 |#2|))) (-15 -2692 ((-592 |#2|) (-542 |#2|))) (-15 -1560 (|#2| (-542 |#2|))))
-((-1370 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2838 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|)) 30)))
-(((-541 |#1| |#2|) (-10 -7 (-15 -1370 ((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|))) (-15 -1370 ((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2838 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1370 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1370 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-341) (-341)) (T -541))
-((-1370 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-541 *5 *6)))) (-1370 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-341)) (-4 *2 (-341)) (-5 *1 (-541 *5 *2)))) (-1370 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2838 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-2 (|:| -2838 *6) (|:| |coeff| *6))) (-5 *1 (-541 *5 *6)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-542 *5)) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-542 *6)) (-5 *1 (-541 *5 *6)))))
-(-10 -7 (-15 -1370 ((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|))) (-15 -1370 ((-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2838 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -1370 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -1370 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) 69)) (-2831 ((|#1| $) NIL)) (-2838 ((|#1| $) 26)) (-1987 (((-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2053 (($ |#1| (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) (-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-2745 (((-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) $) 27)) (-2337 (((-1073) $) NIL)) (-3113 (($ |#1| |#1|) 33) (($ |#1| (-1090)) 44 (|has| |#1| (-967 (-1090))))) (-2663 (((-1037) $) NIL)) (-4025 (((-108) $) 30)) (-3013 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1090)) 82 (|has| |#1| (-834 (-1090))))) (-1908 (((-797) $) 96) (($ |#1|) 25)) (-3875 (($) 16 T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) 15) (($ $ $) NIL)) (-4059 (($ $ $) 78)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 14) (($ (-385 (-525)) $) 36) (($ $ (-385 (-525))) NIL)))
-(((-542 |#1|) (-13 (-660 (-385 (-525))) (-967 |#1|) (-10 -8 (-15 -2053 ($ |#1| (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) (-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2838 (|#1| $)) (-15 -2745 ((-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) $)) (-15 -1987 ((-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4025 ((-108) $)) (-15 -3113 ($ |#1| |#1|)) (-15 -3013 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-834 (-1090))) (-15 -3013 (|#1| $ (-1090))) |%noBranch|) (IF (|has| |#1| (-967 (-1090))) (-15 -3113 ($ |#1| (-1090))) |%noBranch|))) (-341)) (T -542))
-((-2053 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 *2)) (|:| |logand| (-1086 *2))))) (-5 *4 (-592 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-341)) (-5 *1 (-542 *2)))) (-2838 (*1 *2 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-2745 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 *3)) (|:| |logand| (-1086 *3))))) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-3113 (*1 *1 *2 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-3013 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-3013 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-4 *2 (-341)) (-4 *2 (-834 (-1090))) (-5 *1 (-542 *2)))) (-3113 (*1 *1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *1 (-542 *2)) (-4 *2 (-967 (-1090))) (-4 *2 (-341)))))
-(-13 (-660 (-385 (-525))) (-967 |#1|) (-10 -8 (-15 -2053 ($ |#1| (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) (-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2838 (|#1| $)) (-15 -2745 ((-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 |#1|)) (|:| |logand| (-1086 |#1|)))) $)) (-15 -1987 ((-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4025 ((-108) $)) (-15 -3113 ($ |#1| |#1|)) (-15 -3013 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-834 (-1090))) (-15 -3013 (|#1| $ (-1090))) |%noBranch|) (IF (|has| |#1| (-967 (-1090))) (-15 -3113 ($ |#1| (-1090))) |%noBranch|)))
-((-2510 (((-108) |#1|) 16)) (-3203 (((-3 |#1| "failed") |#1|) 14)) (-2227 (((-2 (|:| -3772 |#1|) (|:| -1600 (-713))) |#1|) 31) (((-3 |#1| "failed") |#1| (-713)) 18)) (-4043 (((-108) |#1| (-713)) 19)) (-1619 ((|#1| |#1|) 32)) (-2704 ((|#1| |#1| (-713)) 34)))
-(((-543 |#1|) (-10 -7 (-15 -4043 ((-108) |#1| (-713))) (-15 -2227 ((-3 |#1| "failed") |#1| (-713))) (-15 -2227 ((-2 (|:| -3772 |#1|) (|:| -1600 (-713))) |#1|)) (-15 -2704 (|#1| |#1| (-713))) (-15 -2510 ((-108) |#1|)) (-15 -3203 ((-3 |#1| "failed") |#1|)) (-15 -1619 (|#1| |#1|))) (-510)) (T -543))
-((-1619 (*1 *2 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-3203 (*1 *2 *2) (|partial| -12 (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-2510 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))) (-2704 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-2227 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3772 *3) (|:| -1600 (-713)))) (-5 *1 (-543 *3)) (-4 *3 (-510)))) (-2227 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))))
-(-10 -7 (-15 -4043 ((-108) |#1| (-713))) (-15 -2227 ((-3 |#1| "failed") |#1| (-713))) (-15 -2227 ((-2 (|:| -3772 |#1|) (|:| -1600 (-713))) |#1|)) (-15 -2704 (|#1| |#1| (-713))) (-15 -2510 ((-108) |#1|)) (-15 -3203 ((-3 |#1| "failed") |#1|)) (-15 -1619 (|#1| |#1|)))
-((-3209 (((-1086 |#1|) (-855)) 27)))
-(((-544 |#1|) (-10 -7 (-15 -3209 ((-1086 |#1|) (-855)))) (-327)) (T -544))
-((-3209 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-544 *4)) (-4 *4 (-327)))))
-(-10 -7 (-15 -3209 ((-1086 |#1|) (-855))))
-((-1921 (((-542 (-385 (-886 |#1|))) (-542 (-385 (-886 |#1|)))) 27)) (-3766 (((-3 (-294 |#1|) (-592 (-294 |#1|))) (-385 (-886 |#1|)) (-1090)) 34 (|has| |#1| (-138)))) (-2692 (((-592 (-294 |#1|)) (-542 (-385 (-886 |#1|)))) 19)) (-2488 (((-294 |#1|) (-385 (-886 |#1|)) (-1090)) 32 (|has| |#1| (-138)))) (-1560 (((-294 |#1|) (-542 (-385 (-886 |#1|)))) 21)))
-(((-545 |#1|) (-10 -7 (-15 -1921 ((-542 (-385 (-886 |#1|))) (-542 (-385 (-886 |#1|))))) (-15 -2692 ((-592 (-294 |#1|)) (-542 (-385 (-886 |#1|))))) (-15 -1560 ((-294 |#1|) (-542 (-385 (-886 |#1|))))) (IF (|has| |#1| (-138)) (PROGN (-15 -3766 ((-3 (-294 |#1|) (-592 (-294 |#1|))) (-385 (-886 |#1|)) (-1090))) (-15 -2488 ((-294 |#1|) (-385 (-886 |#1|)) (-1090)))) |%noBranch|)) (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) (T -545))
-((-2488 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) (-4 *5 (-138)) (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) (-5 *2 (-294 *5)) (-5 *1 (-545 *5)))) (-3766 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) (-4 *5 (-138)) (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) (-5 *2 (-3 (-294 *5) (-592 (-294 *5)))) (-5 *1 (-545 *5)))) (-1560 (*1 *2 *3) (-12 (-5 *3 (-542 (-385 (-886 *4)))) (-4 *4 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-545 *4)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-542 (-385 (-886 *4)))) (-4 *4 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) (-5 *2 (-592 (-294 *4))) (-5 *1 (-545 *4)))) (-1921 (*1 *2 *2) (-12 (-5 *2 (-542 (-385 (-886 *3)))) (-4 *3 (-13 (-429) (-967 (-525)) (-789) (-588 (-525)))) (-5 *1 (-545 *3)))))
-(-10 -7 (-15 -1921 ((-542 (-385 (-886 |#1|))) (-542 (-385 (-886 |#1|))))) (-15 -2692 ((-592 (-294 |#1|)) (-542 (-385 (-886 |#1|))))) (-15 -1560 ((-294 |#1|) (-542 (-385 (-886 |#1|))))) (IF (|has| |#1| (-138)) (PROGN (-15 -3766 ((-3 (-294 |#1|) (-592 (-294 |#1|))) (-385 (-886 |#1|)) (-1090))) (-15 -2488 ((-294 |#1|) (-385 (-886 |#1|)) (-1090)))) |%noBranch|))
-((-2461 (((-592 (-632 (-525))) (-592 (-525)) (-592 (-839 (-525)))) 46) (((-592 (-632 (-525))) (-592 (-525))) 47) (((-632 (-525)) (-592 (-525)) (-839 (-525))) 42)) (-1512 (((-713) (-592 (-525))) 40)))
-(((-546) (-10 -7 (-15 -1512 ((-713) (-592 (-525)))) (-15 -2461 ((-632 (-525)) (-592 (-525)) (-839 (-525)))) (-15 -2461 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -2461 ((-592 (-632 (-525))) (-592 (-525)) (-592 (-839 (-525))))))) (T -546))
-((-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-525))) (-5 *4 (-592 (-839 (-525)))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-546)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-546)))) (-2461 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-525))) (-5 *4 (-839 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-546)))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-713)) (-5 *1 (-546)))))
-(-10 -7 (-15 -1512 ((-713) (-592 (-525)))) (-15 -2461 ((-632 (-525)) (-592 (-525)) (-839 (-525)))) (-15 -2461 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -2461 ((-592 (-632 (-525))) (-592 (-525)) (-592 (-839 (-525))))))
-((-2624 (((-592 |#5|) |#5| (-108)) 73)) (-3968 (((-108) |#5| (-592 |#5|)) 30)))
-(((-547 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2624 ((-592 |#5|) |#5| (-108))) (-15 -3968 ((-108) |#5| (-592 |#5|)))) (-13 (-286) (-138)) (-735) (-789) (-990 |#1| |#2| |#3|) (-1028 |#1| |#2| |#3| |#4|)) (T -547))
-((-3968 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-1028 *5 *6 *7 *8)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-547 *5 *6 *7 *8 *3)))) (-2624 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-592 *3)) (-5 *1 (-547 *5 *6 *7 *8 *3)) (-4 *3 (-1028 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2624 ((-592 |#5|) |#5| (-108))) (-15 -3968 ((-108) |#5| (-592 |#5|))))
-((-1893 (((-108) $ $) NIL (|has| (-135) (-1019)))) (-3578 (($ $) 34)) (-1289 (($ $) NIL)) (-2645 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3397 (((-108) $ $) 51)) (-3381 (((-108) $ $ (-525)) 46)) (-1921 (((-592 $) $ (-135)) 60) (((-592 $) $ (-132)) 61)) (-3072 (((-108) (-1 (-108) (-135) (-135)) $) NIL) (((-108) $) NIL (|has| (-135) (-789)))) (-1356 (($ (-1 (-108) (-135) (-135)) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-789))))) (-3327 (($ (-1 (-108) (-135) (-135)) $) NIL) (($ $) NIL (|has| (-135) (-789)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 (((-135) $ (-525) (-135)) 45 (|has| $ (-6 -4255))) (((-135) $ (-1139 (-525)) (-135)) NIL (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-1551 (($ $ (-135)) 64) (($ $ (-132)) 65)) (-4103 (($ $) NIL (|has| $ (-6 -4255)))) (-1693 (($ $) NIL)) (-3924 (($ $ (-1139 (-525)) $) 44)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-2273 (($ (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019)))) (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-4004 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4254))) (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4254)))) (-2870 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4255)))) (-2796 (((-135) $ (-525)) NIL)) (-3416 (((-108) $ $) 72)) (-3763 (((-525) (-1 (-108) (-135)) $) NIL) (((-525) (-135) $) NIL (|has| (-135) (-1019))) (((-525) (-135) $ (-525)) 48 (|has| (-135) (-1019))) (((-525) $ $ (-525)) 47) (((-525) (-132) $ (-525)) 50)) (-2026 (((-592 (-135)) $) NIL (|has| $ (-6 -4254)))) (-4018 (($ (-713) (-135)) 9)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) 28 (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (|has| (-135) (-789)))) (-1932 (($ (-1 (-108) (-135) (-135)) $ $) NIL) (($ $ $) NIL (|has| (-135) (-789)))) (-3168 (((-592 (-135)) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-1792 (((-525) $) 42 (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| (-135) (-789)))) (-2945 (((-108) $ $ (-135)) 73)) (-2485 (((-713) $ $ (-135)) 70)) (-2857 (($ (-1 (-135) (-135)) $) 33 (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-135) (-135)) $) NIL) (($ (-1 (-135) (-135) (-135)) $ $) NIL)) (-2773 (($ $) 37)) (-3762 (($ $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-1565 (($ $ (-135)) 62) (($ $ (-132)) 63)) (-2337 (((-1073) $) 38 (|has| (-135) (-1019)))) (-3167 (($ (-135) $ (-525)) NIL) (($ $ $ (-525)) 23)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-2663 (((-525) $) 69) (((-1037) $) NIL (|has| (-135) (-1019)))) (-3135 (((-135) $) NIL (|has| (-525) (-789)))) (-4054 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-1911 (($ $ (-135)) NIL (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-592 (-135)) (-592 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-3171 (((-592 (-135)) $) NIL)) (-1613 (((-108) $) 12)) (-3773 (($) 10)) (-3928 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) 52) (($ $ (-1139 (-525))) 21) (($ $ $) NIL)) (-3653 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2686 (((-713) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254))) (((-713) (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-3703 (($ $ $ (-525)) 66 (|has| $ (-6 -4255)))) (-2135 (($ $) 17)) (-1427 (((-501) $) NIL (|has| (-135) (-567 (-501))))) (-1922 (($ (-592 (-135))) NIL)) (-2664 (($ $ (-135)) NIL) (($ (-135) $) NIL) (($ $ $) 16) (($ (-592 $)) 67)) (-1908 (($ (-135)) NIL) (((-797) $) 27 (|has| (-135) (-566 (-797))))) (-2667 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3995 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3961 (((-108) $ $) 14 (|has| (-135) (-1019)))) (-4010 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3983 (((-108) $ $) 15 (|has| (-135) (-789)))) (-4140 (((-713) $) 13 (|has| $ (-6 -4254)))))
-(((-548 |#1|) (-13 (-1059) (-10 -8 (-15 -2663 ((-525) $)))) (-525)) (T -548))
-((-2663 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-548 *3)) (-14 *3 (-525)))))
-(-13 (-1059) (-10 -8 (-15 -2663 ((-525) $))))
-((-3541 (((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1014 |#4|)) 32)))
-(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3541 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1014 |#4|))) (-15 -3541 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|))) (-735) (-789) (-517) (-883 |#3| |#1| |#2|)) (T -549))
-((-3541 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525)))) (-5 *1 (-549 *5 *4 *6 *3)) (-4 *3 (-883 *6 *5 *4)))) (-3541 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1014 *3)) (-4 *3 (-883 *7 *6 *4)) (-4 *6 (-735)) (-4 *4 (-789)) (-4 *7 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525)))) (-5 *1 (-549 *6 *4 *7 *3)))))
-(-10 -7 (-15 -3541 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1014 |#4|))) (-15 -3541 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 63)) (-4104 (((-592 (-1004)) $) NIL)) (-1251 (((-1090) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-4114 (($ $ (-525)) 54) (($ $ (-525) (-525)) 55)) (-2911 (((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 60)) (-4165 (($ $) 100)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3095 (((-797) (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-956 (-782 (-525))) (-1090) |#1| (-385 (-525))) 224)) (-3483 (($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 34)) (-1505 (($) NIL T CONST)) (-1247 (($ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-4150 (((-108) $) NIL)) (-1737 (((-525) $) 58) (((-525) $ (-525)) 59)) (-2133 (((-108) $) NIL)) (-3817 (($ $ (-855)) 76)) (-3445 (($ (-1 |#1| (-525)) $) 73)) (-1819 (((-108) $) 25)) (-4079 (($ |#1| (-525)) 22) (($ $ (-1004) (-525)) NIL) (($ $ (-592 (-1004)) (-592 (-525))) NIL)) (-1370 (($ (-1 |#1| |#1|) $) 67)) (-3130 (($ (-956 (-782 (-525))) (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 13)) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-2337 (((-1073) $) NIL)) (-3766 (($ $) 150 (|has| |#1| (-37 (-385 (-525)))))) (-1256 (((-3 $ "failed") $ $ (-108)) 99)) (-3550 (($ $ $) 108)) (-2663 (((-1037) $) NIL)) (-2453 (((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 15)) (-1492 (((-956 (-782 (-525))) $) 14)) (-3538 (($ $ (-525)) 45)) (-2338 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3092 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525)))))) (-3928 ((|#1| $ (-525)) 57) (($ $ $) NIL (|has| (-525) (-1031)))) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-2513 (((-525) $) NIL)) (-1801 (($ $) 46)) (-1908 (((-797) $) NIL) (($ (-525)) 28) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 27 (|has| |#1| (-160)))) (-1657 ((|#1| $ (-525)) 56)) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) 37)) (-2563 ((|#1| $) NIL)) (-2569 (($ $) 186 (|has| |#1| (-37 (-385 (-525)))))) (-2943 (($ $) 158 (|has| |#1| (-37 (-385 (-525)))))) (-3272 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-2765 (($ $) 163 (|has| |#1| (-37 (-385 (-525)))))) (-1372 (($ $) 189 (|has| |#1| (-37 (-385 (-525)))))) (-3110 (($ $) 162 (|has| |#1| (-37 (-385 (-525)))))) (-2441 (($ $ (-385 (-525))) 166 (|has| |#1| (-37 (-385 (-525)))))) (-2004 (($ $ |#1|) 146 (|has| |#1| (-37 (-385 (-525)))))) (-4117 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-2978 (($ $) 149 (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) 191 (|has| |#1| (-37 (-385 (-525)))))) (-1770 (($ $) 164 (|has| |#1| (-37 (-385 (-525)))))) (-3055 (($ $) 187 (|has| |#1| (-37 (-385 (-525)))))) (-1811 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-4029 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-1456 (($ $) 161 (|has| |#1| (-37 (-385 (-525)))))) (-2002 (($ $) 197 (|has| |#1| (-37 (-385 (-525)))))) (-3302 (($ $) 173 (|has| |#1| (-37 (-385 (-525)))))) (-2371 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-2065 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-1698 (($ $) 201 (|has| |#1| (-37 (-385 (-525)))))) (-2416 (($ $) 177 (|has| |#1| (-37 (-385 (-525)))))) (-3812 (($ $) 203 (|has| |#1| (-37 (-385 (-525)))))) (-3534 (($ $) 179 (|has| |#1| (-37 (-385 (-525)))))) (-4130 (($ $) 199 (|has| |#1| (-37 (-385 (-525)))))) (-2420 (($ $) 175 (|has| |#1| (-37 (-385 (-525)))))) (-1963 (($ $) 196 (|has| |#1| (-37 (-385 (-525)))))) (-3134 (($ $) 171 (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2038 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1908 (|#1| (-1090))))))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 29 T CONST)) (-3882 (($) 38 T CONST)) (-1424 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-3961 (((-108) $ $) 65)) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4070 (($ $) 84) (($ $ $) 64)) (-4059 (($ $ $) 81)) (** (($ $ (-855)) NIL) (($ $ (-713)) 103)) (* (($ (-855) $) 89) (($ (-713) $) 87) (($ (-525) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-550 |#1|) (-13 (-1150 |#1| (-525)) (-10 -8 (-15 -3130 ($ (-956 (-782 (-525))) (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -1492 ((-956 (-782 (-525))) $)) (-15 -2453 ((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $)) (-15 -3483 ($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -1819 ((-108) $)) (-15 -3445 ($ (-1 |#1| (-525)) $)) (-15 -1256 ((-3 $ "failed") $ $ (-108))) (-15 -4165 ($ $)) (-15 -3550 ($ $ $)) (-15 -3095 ((-797) (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-956 (-782 (-525))) (-1090) |#1| (-385 (-525)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -3766 ($ $)) (-15 -2004 ($ $ |#1|)) (-15 -2441 ($ $ (-385 (-525)))) (-15 -2978 ($ $)) (-15 -4117 ($ $)) (-15 -2765 ($ $)) (-15 -1456 ($ $)) (-15 -2943 ($ $)) (-15 -1811 ($ $)) (-15 -3110 ($ $)) (-15 -1770 ($ $)) (-15 -2065 ($ $)) (-15 -3134 ($ $)) (-15 -3302 ($ $)) (-15 -2420 ($ $)) (-15 -2416 ($ $)) (-15 -3534 ($ $)) (-15 -3272 ($ $)) (-15 -4029 ($ $)) (-15 -2569 ($ $)) (-15 -3055 ($ $)) (-15 -1372 ($ $)) (-15 -2287 ($ $)) (-15 -2371 ($ $)) (-15 -1963 ($ $)) (-15 -2002 ($ $)) (-15 -4130 ($ $)) (-15 -1698 ($ $)) (-15 -3812 ($ $))) |%noBranch|))) (-976)) (T -550))
-((-1819 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-976)))) (-3130 (*1 *1 *2 *3) (-12 (-5 *2 (-956 (-782 (-525)))) (-5 *3 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *4)))) (-4 *4 (-976)) (-5 *1 (-550 *4)))) (-1492 (*1 *2 *1) (-12 (-5 *2 (-956 (-782 (-525)))) (-5 *1 (-550 *3)) (-4 *3 (-976)))) (-2453 (*1 *2 *1) (-12 (-5 *2 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-5 *1 (-550 *3)) (-4 *3 (-976)))) (-3483 (*1 *1 *2) (-12 (-5 *2 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-4 *3 (-976)) (-5 *1 (-550 *3)))) (-3445 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *3 (-976)) (-5 *1 (-550 *3)))) (-1256 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-976)))) (-4165 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-976)))) (-3550 (*1 *1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-976)))) (-3095 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *6)))) (-5 *4 (-956 (-782 (-525)))) (-5 *5 (-1090)) (-5 *7 (-385 (-525))) (-4 *6 (-976)) (-5 *2 (-797)) (-5 *1 (-550 *6)))) (-3766 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2004 (*1 *1 *1 *2) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2441 (*1 *1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-550 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)))) (-2978 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-4117 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2765 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-1456 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2943 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-1811 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-3110 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-1770 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2065 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-3134 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-3302 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2420 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2416 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-3534 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-3272 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-4029 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2569 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-3055 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-1372 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2287 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2371 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-1963 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-2002 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-4130 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-1698 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))) (-3812 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(-13 (-1150 |#1| (-525)) (-10 -8 (-15 -3130 ($ (-956 (-782 (-525))) (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -1492 ((-956 (-782 (-525))) $)) (-15 -2453 ((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $)) (-15 -3483 ($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -1819 ((-108) $)) (-15 -3445 ($ (-1 |#1| (-525)) $)) (-15 -1256 ((-3 $ "failed") $ $ (-108))) (-15 -4165 ($ $)) (-15 -3550 ($ $ $)) (-15 -3095 ((-797) (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-956 (-782 (-525))) (-1090) |#1| (-385 (-525)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -3766 ($ $)) (-15 -2004 ($ $ |#1|)) (-15 -2441 ($ $ (-385 (-525)))) (-15 -2978 ($ $)) (-15 -4117 ($ $)) (-15 -2765 ($ $)) (-15 -1456 ($ $)) (-15 -2943 ($ $)) (-15 -1811 ($ $)) (-15 -3110 ($ $)) (-15 -1770 ($ $)) (-15 -2065 ($ $)) (-15 -3134 ($ $)) (-15 -3302 ($ $)) (-15 -2420 ($ $)) (-15 -2416 ($ $)) (-15 -3534 ($ $)) (-15 -3272 ($ $)) (-15 -4029 ($ $)) (-15 -2569 ($ $)) (-15 -3055 ($ $)) (-15 -1372 ($ $)) (-15 -2287 ($ $)) (-15 -2371 ($ $)) (-15 -1963 ($ $)) (-15 -2002 ($ $)) (-15 -4130 ($ $)) (-15 -1698 ($ $)) (-15 -3812 ($ $))) |%noBranch|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3483 (($ (-1071 |#1|)) 9)) (-1505 (($) NIL T CONST)) (-2866 (((-3 $ "failed") $) 42)) (-4150 (((-108) $) 52)) (-1737 (((-713) $) 55) (((-713) $ (-713)) 54)) (-2133 (((-108) $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2338 (((-3 $ "failed") $ $) 44 (|has| |#1| (-517)))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL (|has| |#1| (-517)))) (-3600 (((-1071 |#1|) $) 23)) (-2093 (((-713)) 51)) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 10 T CONST)) (-3882 (($) 14 T CONST)) (-3961 (((-108) $ $) 22)) (-4070 (($ $) 30) (($ $ $) 16)) (-4059 (($ $ $) 25)) (** (($ $ (-855)) NIL) (($ $ (-713)) 49)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-525)) 36)))
-(((-551 |#1|) (-13 (-976) (-10 -8 (-15 -3600 ((-1071 |#1|) $)) (-15 -3483 ($ (-1071 |#1|))) (-15 -4150 ((-108) $)) (-15 -1737 ((-713) $)) (-15 -1737 ((-713) $ (-713))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-525))) (IF (|has| |#1| (-517)) (-6 (-517)) |%noBranch|))) (-976)) (T -551))
-((-3600 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-551 *3)) (-4 *3 (-976)))) (-3483 (*1 *1 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-551 *3)))) (-4150 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-551 *3)) (-4 *3 (-976)))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-976)))) (-1737 (*1 *2 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-976)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-551 *2)) (-4 *2 (-976)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-551 *2)) (-4 *2 (-976)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-551 *3)) (-4 *3 (-976)))))
-(-13 (-976) (-10 -8 (-15 -3600 ((-1071 |#1|) $)) (-15 -3483 ($ (-1071 |#1|))) (-15 -4150 ((-108) $)) (-15 -1737 ((-713) $)) (-15 -1737 ((-713) $ (-713))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-525))) (IF (|has| |#1| (-517)) (-6 (-517)) |%noBranch|)))
-((-1370 (((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|)) 15)))
-(((-552 |#1| |#2|) (-10 -7 (-15 -1370 ((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|)))) (-1126) (-1126)) (T -552))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-555 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-555 *6)) (-5 *1 (-552 *5 *6)))))
-(-10 -7 (-15 -1370 ((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|))))
-((-1370 (((-1071 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1071 |#2|)) 20) (((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-555 |#2|)) 19) (((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|)) 18)))
-(((-553 |#1| |#2| |#3|) (-10 -7 (-15 -1370 ((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|))) (-15 -1370 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-555 |#2|))) (-15 -1370 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1071 |#2|)))) (-1126) (-1126) (-1126)) (T -553))
-((-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-1071 *7)) (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-1071 *8)) (-5 *1 (-553 *6 *7 *8)))) (-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1071 *6)) (-5 *5 (-555 *7)) (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-1071 *8)) (-5 *1 (-553 *6 *7 *8)))) (-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-555 *7)) (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-555 *8)) (-5 *1 (-553 *6 *7 *8)))))
-(-10 -7 (-15 -1370 ((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|))) (-15 -1370 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-555 |#2|))) (-15 -1370 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1071 |#2|))))
-((-1373 ((|#3| |#3| (-592 (-565 |#3|)) (-592 (-1090))) 55)) (-1248 (((-157 |#2|) |#3|) 117)) (-1598 ((|#3| (-157 |#2|)) 44)) (-3294 ((|#2| |#3|) 19)) (-1210 ((|#3| |#2|) 33)))
-(((-554 |#1| |#2| |#3|) (-10 -7 (-15 -1598 (|#3| (-157 |#2|))) (-15 -3294 (|#2| |#3|)) (-15 -1210 (|#3| |#2|)) (-15 -1248 ((-157 |#2|) |#3|)) (-15 -1373 (|#3| |#3| (-592 (-565 |#3|)) (-592 (-1090))))) (-13 (-517) (-789)) (-13 (-408 |#1|) (-933) (-1112)) (-13 (-408 (-157 |#1|)) (-933) (-1112))) (T -554))
-((-1373 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-592 (-1090))) (-4 *2 (-13 (-408 (-157 *5)) (-933) (-1112))) (-4 *5 (-13 (-517) (-789))) (-5 *1 (-554 *5 *6 *2)) (-4 *6 (-13 (-408 *5) (-933) (-1112))))) (-1248 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789))) (-5 *2 (-157 *5)) (-5 *1 (-554 *4 *5 *3)) (-4 *5 (-13 (-408 *4) (-933) (-1112))) (-4 *3 (-13 (-408 (-157 *4)) (-933) (-1112))))) (-1210 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789))) (-4 *2 (-13 (-408 (-157 *4)) (-933) (-1112))) (-5 *1 (-554 *4 *3 *2)) (-4 *3 (-13 (-408 *4) (-933) (-1112))))) (-3294 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789))) (-4 *2 (-13 (-408 *4) (-933) (-1112))) (-5 *1 (-554 *4 *2 *3)) (-4 *3 (-13 (-408 (-157 *4)) (-933) (-1112))))) (-1598 (*1 *2 *3) (-12 (-5 *3 (-157 *5)) (-4 *5 (-13 (-408 *4) (-933) (-1112))) (-4 *4 (-13 (-517) (-789))) (-4 *2 (-13 (-408 (-157 *4)) (-933) (-1112))) (-5 *1 (-554 *4 *5 *2)))))
-(-10 -7 (-15 -1598 (|#3| (-157 |#2|))) (-15 -3294 (|#2| |#3|)) (-15 -1210 (|#3| |#2|)) (-15 -1248 ((-157 |#2|) |#3|)) (-15 -1373 (|#3| |#3| (-592 (-565 |#3|)) (-592 (-1090)))))
-((-2724 (($ (-1 (-108) |#1|) $) 17)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-2655 (($ (-1 |#1| |#1|) |#1|) 9)) (-2703 (($ (-1 (-108) |#1|) $) 13)) (-2713 (($ (-1 (-108) |#1|) $) 15)) (-1922 (((-1071 |#1|) $) 18)) (-1908 (((-797) $) NIL)))
-(((-555 |#1|) (-13 (-566 (-797)) (-10 -8 (-15 -1370 ($ (-1 |#1| |#1|) $)) (-15 -2703 ($ (-1 (-108) |#1|) $)) (-15 -2713 ($ (-1 (-108) |#1|) $)) (-15 -2724 ($ (-1 (-108) |#1|) $)) (-15 -2655 ($ (-1 |#1| |#1|) |#1|)) (-15 -1922 ((-1071 |#1|) $)))) (-1126)) (T -555))
-((-1370 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3)))) (-2703 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3)))) (-2713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3)))) (-2724 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3)))) (-2655 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-555 *3)) (-4 *3 (-1126)))))
-(-13 (-566 (-797)) (-10 -8 (-15 -1370 ($ (-1 |#1| |#1|) $)) (-15 -2703 ($ (-1 (-108) |#1|) $)) (-15 -2713 ($ (-1 (-108) |#1|) $)) (-15 -2724 ($ (-1 (-108) |#1|) $)) (-15 -2655 ($ (-1 |#1| |#1|) |#1|)) (-15 -1922 ((-1071 |#1|) $))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1383 (($ (-713)) NIL (|has| |#1| (-23)))) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3072 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-1356 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789))))) (-3327 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| $ (-6 -4255)))) (-1693 (($ $) NIL)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2273 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2870 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) NIL)) (-3763 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019)))) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-3307 (((-632 |#1|) $ $) NIL (|has| |#1| (-976)))) (-4018 (($ (-713) |#1|) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) NIL (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-1932 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3898 ((|#1| $) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-976))))) (-3017 (((-108) $ (-713)) NIL)) (-1722 ((|#1| $) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-976))))) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3167 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3135 ((|#1| $) NIL (|has| (-525) (-789)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1911 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-1595 ((|#1| $ $) NIL (|has| |#1| (-976)))) (-3653 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2873 (($ $ $) NIL (|has| |#1| (-976)))) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3703 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) NIL)) (-2664 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4070 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4059 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-669))) (($ $ |#1|) NIL (|has| |#1| (-669)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-556 |#1| |#2|) (-1170 |#1|) (-1126) (-525)) (T -556))
-NIL
-(-1170 |#1|)
-((-1840 (((-1177) $ |#2| |#2|) 36)) (-2009 ((|#2| $) 23)) (-1792 ((|#2| $) 21)) (-2857 (($ (-1 |#3| |#3|) $) 32)) (-1370 (($ (-1 |#3| |#3|) $) 30)) (-3135 ((|#3| $) 26)) (-1911 (($ $ |#3|) 33)) (-3218 (((-108) |#3| $) 17)) (-3171 (((-592 |#3|) $) 15)) (-3928 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-557 |#1| |#2| |#3|) (-10 -8 (-15 -1840 ((-1177) |#1| |#2| |#2|)) (-15 -1911 (|#1| |#1| |#3|)) (-15 -3135 (|#3| |#1|)) (-15 -2009 (|#2| |#1|)) (-15 -1792 (|#2| |#1|)) (-15 -3218 ((-108) |#3| |#1|)) (-15 -3171 ((-592 |#3|) |#1|)) (-15 -3928 (|#3| |#1| |#2|)) (-15 -3928 (|#3| |#1| |#2| |#3|)) (-15 -2857 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1370 (|#1| (-1 |#3| |#3|) |#1|))) (-558 |#2| |#3|) (-1019) (-1126)) (T -557))
-NIL
-(-10 -8 (-15 -1840 ((-1177) |#1| |#2| |#2|)) (-15 -1911 (|#1| |#1| |#3|)) (-15 -3135 (|#3| |#1|)) (-15 -2009 (|#2| |#1|)) (-15 -1792 (|#2| |#1|)) (-15 -3218 ((-108) |#3| |#1|)) (-15 -3171 ((-592 |#3|) |#1|)) (-15 -3928 (|#3| |#1| |#2|)) (-15 -3928 (|#3| |#1| |#2| |#3|)) (-15 -2857 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1370 (|#1| (-1 |#3| |#3|) |#1|)))
-((-1893 (((-108) $ $) 19 (|has| |#2| (-1019)))) (-1840 (((-1177) $ |#1| |#1|) 40 (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) 8)) (-2109 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4255)))) (-1505 (($) 7 T CONST)) (-2870 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4255)))) (-2796 ((|#2| $ |#1|) 51)) (-2026 (((-592 |#2|) $) 30 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) 9)) (-2009 ((|#1| $) 43 (|has| |#1| (-789)))) (-3168 (((-592 |#2|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254))))) (-1792 ((|#1| $) 44 (|has| |#1| (-789)))) (-2857 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#2| |#2|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (|has| |#2| (-1019)))) (-3222 (((-592 |#1|) $) 46)) (-1548 (((-108) |#1| $) 47)) (-2663 (((-1037) $) 21 (|has| |#2| (-1019)))) (-3135 ((|#2| $) 42 (|has| |#1| (-789)))) (-1911 (($ $ |#2|) 41 (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#2|))) 26 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) 25 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) 23 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-2642 (((-108) $ $) 14)) (-3218 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-3171 (((-592 |#2|) $) 48)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2686 (((-713) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4254))) (((-713) |#2| $) 28 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1908 (((-797) $) 18 (|has| |#2| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#2| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-558 |#1| |#2|) (-131) (-1019) (-1126)) (T -558))
-((-3171 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1126)) (-5 *2 (-592 *4)))) (-1548 (*1 *2 *3 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1126)) (-5 *2 (-108)))) (-3222 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1126)) (-5 *2 (-592 *3)))) (-3218 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-558 *4 *3)) (-4 *4 (-1019)) (-4 *3 (-1126)) (-4 *3 (-1019)) (-5 *2 (-108)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1126)) (-4 *2 (-1019)) (-4 *2 (-789)))) (-2009 (*1 *2 *1) (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1126)) (-4 *2 (-1019)) (-4 *2 (-789)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1019)) (-4 *3 (-789)) (-4 *2 (-1126)))) (-1911 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-558 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126)))) (-1840 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-558 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1126)) (-5 *2 (-1177)))))
-(-13 (-464 |t#2|) (-267 |t#1| |t#2|) (-10 -8 (-15 -3171 ((-592 |t#2|) $)) (-15 -1548 ((-108) |t#1| $)) (-15 -3222 ((-592 |t#1|) $)) (IF (|has| |t#2| (-1019)) (IF (|has| $ (-6 -4254)) (-15 -3218 ((-108) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-789)) (PROGN (-15 -1792 (|t#1| $)) (-15 -2009 (|t#1| $)) (-15 -3135 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4255)) (PROGN (-15 -1911 ($ $ |t#2|)) (-15 -1840 ((-1177) $ |t#1| |t#1|))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#2| (-1019)) ((-566 (-797)) -3309 (|has| |#2| (-1019)) (|has| |#2| (-566 (-797)))) ((-265 |#1| |#2|) . T) ((-267 |#1| |#2|) . T) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-464 |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-1019) |has| |#2| (-1019)) ((-1126) . T))
-((-1908 (((-797) $) 19) (((-125) $) 14) (($ (-125)) 13)))
-(((-559) (-13 (-566 (-797)) (-566 (-125)) (-10 -8 (-15 -1908 ($ (-125)))))) (T -559))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-125)) (-5 *1 (-559)))))
-(-13 (-566 (-797)) (-566 (-125)) (-10 -8 (-15 -1908 ($ (-125)))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3957 (((-3 $ "failed")) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3263 (((-3 $ "failed") $ $) NIL)) (-2722 (((-1172 (-632 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-1172 (-632 |#1|)) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1917 (((-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1505 (($) NIL T CONST)) (-2800 (((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed")) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1496 (((-3 $ "failed")) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1460 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2386 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-3440 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1391 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1743 (((-1086 (-886 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-2979 (($ $ (-855)) NIL)) (-3376 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2706 (((-1086 |#1|) $) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2519 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2908 (((-1086 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-1814 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2229 (($ (-1172 |#1|)) NIL (|has| |#2| (-395 |#1|))) (($ (-1172 |#1|) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2866 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2239 (((-855)) NIL (|has| |#2| (-345 |#1|)))) (-2301 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2097 (($ $ (-855)) NIL)) (-2795 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3251 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2775 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-4033 (((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed")) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1850 (((-3 $ "failed")) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2205 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2389 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-1306 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2364 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2568 (((-1086 (-886 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-1640 (($ $ (-855)) NIL)) (-3342 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2900 (((-1086 |#1|) $) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3060 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2535 (((-1086 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-1506 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2337 (((-1073) $) NIL)) (-3886 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1886 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2597 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2663 (((-1037) $) NIL)) (-2120 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3928 ((|#1| $ (-525)) NIL (|has| |#2| (-395 |#1|)))) (-4093 (((-632 |#1|) (-1172 $)) NIL (|has| |#2| (-395 |#1|))) (((-1172 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1172 $) (-1172 $)) NIL (|has| |#2| (-345 |#1|))) (((-1172 |#1|) $ (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1427 (($ (-1172 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-1172 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-2274 (((-592 (-886 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-592 (-886 |#1|)) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1518 (($ $ $) NIL)) (-1380 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1908 (((-797) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-2499 (((-1172 $)) NIL (|has| |#2| (-395 |#1|)))) (-1648 (((-592 (-1172 |#1|))) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2260 (($ $ $ $) NIL)) (-3132 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3088 (($ (-632 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-2331 (($ $ $) NIL)) (-1447 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3432 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2303 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3875 (($) NIL T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) 24)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-560 |#1| |#2|) (-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -1908 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|))) (-160) (-687 |#1|)) (T -560))
-((-1908 (*1 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-560 *3 *2)) (-4 *2 (-687 *3)))))
-(-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -1908 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|)))
-((-1893 (((-108) $ $) NIL)) (-1287 (((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) $ (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) 33)) (-4001 (($ (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) NIL) (($) NIL)) (-1840 (((-1177) $ (-1073) (-1073)) NIL (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 ((|#1| $ (-1073) |#1|) 43)) (-3290 (($ (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-1446 (((-3 |#1| "failed") (-1073) $) 46)) (-1505 (($) NIL T CONST)) (-1332 (($ $ (-1073)) 24)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019))))) (-2792 (((-3 |#1| "failed") (-1073) $) 47) (($ (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254))) (($ (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) $) NIL (|has| $ (-6 -4254)))) (-2273 (($ (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254))) (($ (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019))))) (-4004 (((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $ (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $ (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019))))) (-1300 (((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) $) 32)) (-2870 ((|#1| $ (-1073) |#1|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-1073)) NIL)) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254))) (((-592 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-2705 (($ $) 48)) (-2396 (($ (-366)) 22) (($ (-366) (-1073)) 21)) (-1310 (((-366) $) 34)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-1073) $) NIL (|has| (-1073) (-789)))) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254))) (((-592 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (((-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019))))) (-1792 (((-1073) $) NIL (|has| (-1073) (-789)))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL)) (-4005 (((-592 (-1073)) $) 39)) (-1699 (((-108) (-1073) $) NIL)) (-2388 (((-1073) $) 35)) (-2570 (((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) $) NIL)) (-2573 (($ (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) $) NIL)) (-3222 (((-592 (-1073)) $) NIL)) (-1548 (((-108) (-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3135 ((|#1| $) NIL (|has| (-1073) (-789)))) (-4054 (((-3 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) "failed") (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL)) (-1911 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-3513 (((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) $) NIL)) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) NIL (-12 (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019)))) (($ $ (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) NIL (-12 (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019)))) (($ $ (-273 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) NIL (-12 (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019)))) (($ $ (-592 (-273 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))))) NIL (-12 (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) 37)) (-3928 ((|#1| $ (-1073) |#1|) NIL) ((|#1| $ (-1073)) 42)) (-4006 (($ (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) NIL) (($) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (((-713) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019)))) (((-713) (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-567 (-501))))) (-1922 (($ (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) NIL)) (-1908 (((-797) $) 20)) (-2702 (($ $) 25)) (-3612 (($ (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) NIL)) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 19)) (-4140 (((-713) $) 41 (|has| $ (-6 -4254)))))
-(((-561 |#1|) (-13 (-342 (-366) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) (-1103 (-1073) |#1|) (-10 -8 (-6 -4254) (-15 -2705 ($ $)))) (-1019)) (T -561))
-((-2705 (*1 *1 *1) (-12 (-5 *1 (-561 *2)) (-4 *2 (-1019)))))
-(-13 (-342 (-366) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) (-1103 (-1073) |#1|) (-10 -8 (-6 -4254) (-15 -2705 ($ $))))
-((-4132 (((-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) $) 15)) (-4005 (((-592 |#2|) $) 19)) (-1699 (((-108) |#2| $) 12)))
-(((-562 |#1| |#2| |#3|) (-10 -8 (-15 -4005 ((-592 |#2|) |#1|)) (-15 -1699 ((-108) |#2| |#1|)) (-15 -4132 ((-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) |#1|))) (-563 |#2| |#3|) (-1019) (-1019)) (T -562))
-NIL
-(-10 -8 (-15 -4005 ((-592 |#2|) |#1|)) (-15 -1699 ((-108) |#2| |#1|)) (-15 -4132 ((-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) |#1|)))
-((-1893 (((-108) $ $) 19 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (-3410 (((-108) $ (-713)) 8)) (-3290 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 45 (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 55 (|has| $ (-6 -4254)))) (-1446 (((-3 |#2| "failed") |#1| $) 61)) (-1505 (($) 7 T CONST)) (-3163 (($ $) 58 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254))))) (-2792 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 46 (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) 62)) (-2273 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 54 (|has| $ (-6 -4254)))) (-4004 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 56 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 53 (|has| $ (-6 -4254))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 52 (|has| $ (-6 -4254)))) (-2026 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 30 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) 9)) (-3168 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (-4005 (((-592 |#1|) $) 63)) (-1699 (((-108) |#1| $) 64)) (-2570 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 39)) (-2573 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 40)) (-2663 (((-1037) $) 21 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (-4054 (((-3 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 51)) (-3513 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 41)) (-3494 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))))) 26 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 25 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 24 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 23 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-4006 (($) 49) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 48)) (-2686 (((-713) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 31 (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1427 (((-501) $) 59 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-567 (-501))))) (-1922 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 50)) (-1908 (((-797) $) 18 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-566 (-797))))) (-3612 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 42)) (-2667 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-563 |#1| |#2|) (-131) (-1019) (-1019)) (T -563))
-((-1699 (*1 *2 *3 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-5 *2 (-108)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-5 *2 (-592 *3)))) (-2792 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019)))) (-1446 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019)))))
-(-13 (-209 (-2 (|:| -3946 |t#1|) (|:| -2511 |t#2|))) (-10 -8 (-15 -1699 ((-108) |t#1| $)) (-15 -4005 ((-592 |t#1|) $)) (-15 -2792 ((-3 |t#2| "failed") |t#1| $)) (-15 -1446 ((-3 |t#2| "failed") |t#1| $))))
-(((-33) . T) ((-102 #0=(-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T) ((-97) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) ((-566 (-797)) -3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-566 (-797)))) ((-142 #0#) . T) ((-567 (-501)) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-567 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-288 #0#) -12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))) ((-464 #0#) . T) ((-486 #0# #0#) -12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))) ((-1019) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) ((-1126) . T))
-((-1449 (((-565 |#2|) |#1|) 15)) (-4000 (((-3 |#1| "failed") (-565 |#2|)) 19)))
-(((-564 |#1| |#2|) (-10 -7 (-15 -1449 ((-565 |#2|) |#1|)) (-15 -4000 ((-3 |#1| "failed") (-565 |#2|)))) (-789) (-789)) (T -564))
-((-4000 (*1 *2 *3) (|partial| -12 (-5 *3 (-565 *4)) (-4 *4 (-789)) (-4 *2 (-789)) (-5 *1 (-564 *2 *4)))) (-1449 (*1 *2 *3) (-12 (-5 *2 (-565 *4)) (-5 *1 (-564 *3 *4)) (-4 *3 (-789)) (-4 *4 (-789)))))
-(-10 -7 (-15 -1449 ((-565 |#2|) |#1|)) (-15 -4000 ((-3 |#1| "failed") (-565 |#2|))))
-((-1893 (((-108) $ $) NIL)) (-1302 (((-3 (-1090) "failed") $) 37)) (-2128 (((-1177) $ (-713)) 26)) (-3763 (((-713) $) 25)) (-4159 (((-110) $) 12)) (-1310 (((-1090) $) 20)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-1377 (($ (-110) (-592 |#1|) (-713)) 30) (($ (-1090)) 31)) (-3034 (((-108) $ (-110)) 18) (((-108) $ (-1090)) 16)) (-3598 (((-713) $) 22)) (-2663 (((-1037) $) NIL)) (-1427 (((-826 (-525)) $) 77 (|has| |#1| (-567 (-826 (-525))))) (((-826 (-357)) $) 84 (|has| |#1| (-567 (-826 (-357))))) (((-501) $) 69 (|has| |#1| (-567 (-501))))) (-1908 (((-797) $) 55)) (-1797 (((-592 |#1|) $) 24)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 41)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 42)))
-(((-565 |#1|) (-13 (-127) (-818 |#1|) (-10 -8 (-15 -1310 ((-1090) $)) (-15 -4159 ((-110) $)) (-15 -1797 ((-592 |#1|) $)) (-15 -3598 ((-713) $)) (-15 -1377 ($ (-110) (-592 |#1|) (-713))) (-15 -1377 ($ (-1090))) (-15 -1302 ((-3 (-1090) "failed") $)) (-15 -3034 ((-108) $ (-110))) (-15 -3034 ((-108) $ (-1090))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|))) (-789)) (T -565))
-((-1310 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-4159 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-1797 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-1377 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-110)) (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-789)) (-5 *1 (-565 *5)))) (-1377 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-1302 (*1 *2 *1) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-3034 (*1 *2 *1 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789)))) (-3034 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789)))))
-(-13 (-127) (-818 |#1|) (-10 -8 (-15 -1310 ((-1090) $)) (-15 -4159 ((-110) $)) (-15 -1797 ((-592 |#1|) $)) (-15 -3598 ((-713) $)) (-15 -1377 ($ (-110) (-592 |#1|) (-713))) (-15 -1377 ($ (-1090))) (-15 -1302 ((-3 (-1090) "failed") $)) (-15 -3034 ((-108) $ (-110))) (-15 -3034 ((-108) $ (-1090))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|)))
-((-1908 ((|#1| $) 6)))
-(((-566 |#1|) (-131) (-1126)) (T -566))
-((-1908 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-1126)))))
-(-13 (-10 -8 (-15 -1908 (|t#1| $))))
-((-1427 ((|#1| $) 6)))
-(((-567 |#1|) (-131) (-1126)) (T -567))
-((-1427 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-1126)))))
-(-13 (-10 -8 (-15 -1427 (|t#1| $))))
-((-2477 (((-3 (-1086 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|)) 15) (((-3 (-1086 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)) 16)))
-(((-568 |#1| |#2|) (-10 -7 (-15 -2477 ((-3 (-1086 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|))) (-15 -2477 ((-3 (-1086 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|)))) (-13 (-138) (-27) (-967 (-525)) (-967 (-385 (-525)))) (-1148 |#1|)) (T -568))
-((-2477 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-138) (-27) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-1086 (-385 *6))) (-5 *1 (-568 *5 *6)) (-5 *3 (-385 *6)))) (-2477 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-138) (-27) (-967 (-525)) (-967 (-385 (-525))))) (-4 *5 (-1148 *4)) (-5 *2 (-1086 (-385 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-385 *5)))))
-(-10 -7 (-15 -2477 ((-3 (-1086 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|))) (-15 -2477 ((-3 (-1086 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|))))
-((-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) 10)))
-(((-569 |#1| |#2|) (-10 -8 (-15 -1908 (|#1| |#2|)) (-15 -1908 (|#1| (-525))) (-15 -1908 ((-797) |#1|))) (-570 |#2|) (-976)) (T -569))
-NIL
-(-10 -8 (-15 -1908 (|#1| |#2|)) (-15 -1908 (|#1| (-525))) (-15 -1908 ((-797) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 36)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
-(((-570 |#1|) (-131) (-976)) (T -570))
-((-1908 (*1 *1 *2) (-12 (-4 *1 (-570 *2)) (-4 *2 (-976)))))
-(-13 (-976) (-594 |t#1|) (-10 -8 (-15 -1908 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-669) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1690 (((-525) $) NIL (|has| |#1| (-787)))) (-1505 (($) NIL T CONST)) (-2866 (((-3 $ "failed") $) NIL)) (-3026 (((-108) $) NIL (|has| |#1| (-787)))) (-2133 (((-108) $) NIL)) (-1303 ((|#1| $) 13)) (-2882 (((-108) $) NIL (|has| |#1| (-787)))) (-3525 (($ $ $) NIL (|has| |#1| (-787)))) (-3630 (($ $ $) NIL (|has| |#1| (-787)))) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1312 ((|#3| $) 15)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL)) (-2093 (((-713)) 20)) (-2092 (($ $) NIL (|has| |#1| (-787)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) 12 T CONST)) (-4024 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-787)))) (-4082 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-571 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -4082 ($ $ |#3|)) (-15 -4082 ($ |#1| |#3|)) (-15 -1303 (|#1| $)) (-15 -1312 (|#3| $)))) (-37 |#2|) (-160) (|SubsetCategory| (-669) |#2|)) (T -571))
-((-4082 (*1 *1 *1 *2) (-12 (-4 *4 (-160)) (-5 *1 (-571 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-669) *4)))) (-4082 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-571 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-669) *4)))) (-1303 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-37 *3)) (-5 *1 (-571 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-669) *3)))) (-1312 (*1 *2 *1) (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4)) (-5 *1 (-571 *3 *4 *2)) (-4 *3 (-37 *4)))))
-(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -4082 ($ $ |#3|)) (-15 -4082 ($ |#1| |#3|)) (-15 -1303 (|#1| $)) (-15 -1312 (|#3| $))))
-((-1528 ((|#2| |#2| (-1090) (-1090)) 18)))
-(((-572 |#1| |#2|) (-10 -7 (-15 -1528 (|#2| |#2| (-1090) (-1090)))) (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))) (-13 (-1112) (-892) (-29 |#1|))) (T -572))
-((-1528 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-1112) (-892) (-29 *4))))))
-(-10 -7 (-15 -1528 (|#2| |#2| (-1090) (-1090))))
-((-1893 (((-108) $ $) 56)) (-1611 (((-108) $) 52)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-2252 ((|#1| $) 49)) (-3263 (((-3 $ "failed") $ $) NIL)) (-2305 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3976 (((-2 (|:| -1889 $) (|:| -1407 (-385 |#2|))) (-385 |#2|)) 97 (|has| |#1| (-341)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2831 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-2373 (($ $ $) NIL (|has| |#1| (-341)))) (-1247 (($ $) 24)) (-2866 (((-3 $ "failed") $) 75)) (-2356 (($ $ $) NIL (|has| |#1| (-341)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-1737 (((-525) $) 19)) (-2133 (((-108) $) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1819 (((-108) $) 36)) (-4079 (($ |#1| (-525)) 21)) (-1224 ((|#1| $) 51)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) 87 (|has| |#1| (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-2338 (((-3 $ "failed") $ $) 79)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2183 (((-713) $) 99 (|has| |#1| (-341)))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 98 (|has| |#1| (-341)))) (-3013 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-2513 (((-525) $) 34)) (-1427 (((-385 |#2|) $) 42)) (-1908 (((-797) $) 62) (($ (-525)) 32) (($ $) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) 31) (($ |#2|) 22)) (-1657 ((|#1| $ (-525)) 63)) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 9 T CONST)) (-3882 (($) 12 T CONST)) (-1424 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3961 (((-108) $ $) 17)) (-4070 (($ $) 46) (($ $ $) NIL)) (-4059 (($ $ $) 76)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 26) (($ $ $) 44)))
-(((-573 |#1| |#2|) (-13 (-211 |#2|) (-517) (-567 (-385 |#2|)) (-389 |#1|) (-967 |#2|) (-10 -8 (-15 -1819 ((-108) $)) (-15 -2513 ((-525) $)) (-15 -1737 ((-525) $)) (-15 -1247 ($ $)) (-15 -1224 (|#1| $)) (-15 -2252 (|#1| $)) (-15 -1657 (|#1| $ (-525))) (-15 -4079 ($ |#1| (-525))) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-286)) (-15 -3976 ((-2 (|:| -1889 $) (|:| -1407 (-385 |#2|))) (-385 |#2|)))) |%noBranch|))) (-517) (-1148 |#1|)) (T -573))
-((-1819 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-108)) (-5 *1 (-573 *3 *4)) (-4 *4 (-1148 *3)))) (-2513 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4)) (-4 *4 (-1148 *3)))) (-1737 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4)) (-4 *4 (-1148 *3)))) (-1247 (*1 *1 *1) (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1148 *2)))) (-1224 (*1 *2 *1) (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1148 *2)))) (-2252 (*1 *2 *1) (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1148 *2)))) (-1657 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4)) (-4 *4 (-1148 *2)))) (-4079 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4)) (-4 *4 (-1148 *2)))) (-3976 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *4 (-517)) (-4 *5 (-1148 *4)) (-5 *2 (-2 (|:| -1889 (-573 *4 *5)) (|:| -1407 (-385 *5)))) (-5 *1 (-573 *4 *5)) (-5 *3 (-385 *5)))))
-(-13 (-211 |#2|) (-517) (-567 (-385 |#2|)) (-389 |#1|) (-967 |#2|) (-10 -8 (-15 -1819 ((-108) $)) (-15 -2513 ((-525) $)) (-15 -1737 ((-525) $)) (-15 -1247 ($ $)) (-15 -1224 (|#1| $)) (-15 -2252 (|#1| $)) (-15 -1657 (|#1| $ (-525))) (-15 -4079 ($ |#1| (-525))) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-286)) (-15 -3976 ((-2 (|:| -1889 $) (|:| -1407 (-385 |#2|))) (-385 |#2|)))) |%noBranch|)))
-((-2308 (((-592 |#6|) (-592 |#4|) (-108)) 47)) (-2264 ((|#6| |#6|) 40)))
-(((-574 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2264 (|#6| |#6|)) (-15 -2308 ((-592 |#6|) (-592 |#4|) (-108)))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|) (-995 |#1| |#2| |#3| |#4|) (-1028 |#1| |#2| |#3| |#4|)) (T -574))
-((-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *10)) (-5 *1 (-574 *5 *6 *7 *8 *9 *10)) (-4 *9 (-995 *5 *6 *7 *8)) (-4 *10 (-1028 *5 *6 *7 *8)))) (-2264 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *1 (-574 *3 *4 *5 *6 *7 *2)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *2 (-1028 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2264 (|#6| |#6|)) (-15 -2308 ((-592 |#6|) (-592 |#4|) (-108))))
-((-3743 (((-108) |#3| (-713) (-592 |#3|)) 23)) (-1754 (((-3 (-2 (|:| |polfac| (-592 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-592 (-1086 |#3|)))) "failed") |#3| (-592 (-1086 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2203 (-592 (-2 (|:| |irr| |#4|) (|:| -1591 (-525)))))) (-592 |#3|) (-592 |#1|) (-592 |#3|)) 55)))
-(((-575 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3743 ((-108) |#3| (-713) (-592 |#3|))) (-15 -1754 ((-3 (-2 (|:| |polfac| (-592 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-592 (-1086 |#3|)))) "failed") |#3| (-592 (-1086 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2203 (-592 (-2 (|:| |irr| |#4|) (|:| -1591 (-525)))))) (-592 |#3|) (-592 |#1|) (-592 |#3|)))) (-789) (-735) (-286) (-883 |#3| |#2| |#1|)) (T -575))
-((-1754 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2203 (-592 (-2 (|:| |irr| *10) (|:| -1591 (-525))))))) (-5 *6 (-592 *3)) (-5 *7 (-592 *8)) (-4 *8 (-789)) (-4 *3 (-286)) (-4 *10 (-883 *3 *9 *8)) (-4 *9 (-735)) (-5 *2 (-2 (|:| |polfac| (-592 *10)) (|:| |correct| *3) (|:| |corrfact| (-592 (-1086 *3))))) (-5 *1 (-575 *8 *9 *3 *10)) (-5 *4 (-592 (-1086 *3))))) (-3743 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-713)) (-5 *5 (-592 *3)) (-4 *3 (-286)) (-4 *6 (-789)) (-4 *7 (-735)) (-5 *2 (-108)) (-5 *1 (-575 *6 *7 *3 *8)) (-4 *8 (-883 *3 *7 *6)))))
-(-10 -7 (-15 -3743 ((-108) |#3| (-713) (-592 |#3|))) (-15 -1754 ((-3 (-2 (|:| |polfac| (-592 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-592 (-1086 |#3|)))) "failed") |#3| (-592 (-1086 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2203 (-592 (-2 (|:| |irr| |#4|) (|:| -1591 (-525)))))) (-592 |#3|) (-592 |#1|) (-592 |#3|))))
-((-1893 (((-108) $ $) NIL)) (-3908 (((-592 |#1|) $) NIL)) (-1505 (($) NIL T CONST)) (-2866 (((-3 $ "failed") $) NIL)) (-2133 (((-108) $) NIL)) (-2387 (($ $) 67)) (-2091 (((-610 |#1| |#2|) $) 52)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 70)) (-3699 (((-592 (-273 |#2|)) $ $) 33)) (-2663 (((-1037) $) NIL)) (-1982 (($ (-610 |#1| |#2|)) 48)) (-3634 (($ $ $) NIL)) (-1518 (($ $ $) NIL)) (-1908 (((-797) $) 58) (((-1185 |#1| |#2|) $) NIL) (((-1190 |#1| |#2|) $) 66)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3882 (($) 53 T CONST)) (-3172 (((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $) 31)) (-3850 (((-592 (-610 |#1| |#2|)) (-592 |#1|)) 65)) (-3415 (((-592 (-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|))) $) 37)) (-3961 (((-108) $ $) 54)) (-4082 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 44)))
-(((-576 |#1| |#2| |#3|) (-13 (-450) (-10 -8 (-15 -1982 ($ (-610 |#1| |#2|))) (-15 -2091 ((-610 |#1| |#2|) $)) (-15 -3415 ((-592 (-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|))) $)) (-15 -1908 ((-1185 |#1| |#2|) $)) (-15 -1908 ((-1190 |#1| |#2|) $)) (-15 -2387 ($ $)) (-15 -3908 ((-592 |#1|) $)) (-15 -3850 ((-592 (-610 |#1| |#2|)) (-592 |#1|))) (-15 -3172 ((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $)) (-15 -3699 ((-592 (-273 |#2|)) $ $)))) (-789) (-13 (-160) (-660 (-385 (-525)))) (-855)) (T -576))
-((-1982 (*1 *1 *2) (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-5 *1 (-576 *3 *4 *5)) (-14 *5 (-855)))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-610 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| (-827 *3)) (|:| |c| *4)))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1190 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))) (-2387 (*1 *1 *1) (-12 (-5 *1 (-576 *2 *3 *4)) (-4 *2 (-789)) (-4 *3 (-13 (-160) (-660 (-385 (-525))))) (-14 *4 (-855)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-610 *4 *5))) (-5 *1 (-576 *4 *5 *6)) (-4 *5 (-13 (-160) (-660 (-385 (-525))))) (-14 *6 (-855)))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| (-617 *3)) (|:| |c| *4)))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))) (-3699 (*1 *2 *1 *1) (-12 (-5 *2 (-592 (-273 *4))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))))
-(-13 (-450) (-10 -8 (-15 -1982 ($ (-610 |#1| |#2|))) (-15 -2091 ((-610 |#1| |#2|) $)) (-15 -3415 ((-592 (-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|))) $)) (-15 -1908 ((-1185 |#1| |#2|) $)) (-15 -1908 ((-1190 |#1| |#2|) $)) (-15 -2387 ($ $)) (-15 -3908 ((-592 |#1|) $)) (-15 -3850 ((-592 (-610 |#1| |#2|)) (-592 |#1|))) (-15 -3172 ((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $)) (-15 -3699 ((-592 (-273 |#2|)) $ $))))
-((-2308 (((-592 (-1061 |#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|)))) (-592 (-722 |#1| (-799 |#2|))) (-108)) 72) (((-592 (-973 |#1| |#2|)) (-592 (-722 |#1| (-799 |#2|))) (-108)) 58)) (-1852 (((-108) (-592 (-722 |#1| (-799 |#2|)))) 23)) (-1396 (((-592 (-1061 |#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|)))) (-592 (-722 |#1| (-799 |#2|))) (-108)) 71)) (-3010 (((-592 (-973 |#1| |#2|)) (-592 (-722 |#1| (-799 |#2|))) (-108)) 57)) (-2424 (((-592 (-722 |#1| (-799 |#2|))) (-592 (-722 |#1| (-799 |#2|)))) 27)) (-3385 (((-3 (-592 (-722 |#1| (-799 |#2|))) "failed") (-592 (-722 |#1| (-799 |#2|)))) 26)))
-(((-577 |#1| |#2|) (-10 -7 (-15 -1852 ((-108) (-592 (-722 |#1| (-799 |#2|))))) (-15 -3385 ((-3 (-592 (-722 |#1| (-799 |#2|))) "failed") (-592 (-722 |#1| (-799 |#2|))))) (-15 -2424 ((-592 (-722 |#1| (-799 |#2|))) (-592 (-722 |#1| (-799 |#2|))))) (-15 -3010 ((-592 (-973 |#1| |#2|)) (-592 (-722 |#1| (-799 |#2|))) (-108))) (-15 -1396 ((-592 (-1061 |#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|)))) (-592 (-722 |#1| (-799 |#2|))) (-108))) (-15 -2308 ((-592 (-973 |#1| |#2|)) (-592 (-722 |#1| (-799 |#2|))) (-108))) (-15 -2308 ((-592 (-1061 |#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|)))) (-592 (-722 |#1| (-799 |#2|))) (-108)))) (-429) (-592 (-1090))) (T -577))
-((-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-1061 *5 (-497 (-799 *6)) (-799 *6) (-722 *5 (-799 *6))))) (-5 *1 (-577 *5 *6)))) (-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-973 *5 *6))) (-5 *1 (-577 *5 *6)))) (-1396 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-1061 *5 (-497 (-799 *6)) (-799 *6) (-722 *5 (-799 *6))))) (-5 *1 (-577 *5 *6)))) (-3010 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-973 *5 *6))) (-5 *1 (-577 *5 *6)))) (-2424 (*1 *2 *2) (-12 (-5 *2 (-592 (-722 *3 (-799 *4)))) (-4 *3 (-429)) (-14 *4 (-592 (-1090))) (-5 *1 (-577 *3 *4)))) (-3385 (*1 *2 *2) (|partial| -12 (-5 *2 (-592 (-722 *3 (-799 *4)))) (-4 *3 (-429)) (-14 *4 (-592 (-1090))) (-5 *1 (-577 *3 *4)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-592 (-722 *4 (-799 *5)))) (-4 *4 (-429)) (-14 *5 (-592 (-1090))) (-5 *2 (-108)) (-5 *1 (-577 *4 *5)))))
-(-10 -7 (-15 -1852 ((-108) (-592 (-722 |#1| (-799 |#2|))))) (-15 -3385 ((-3 (-592 (-722 |#1| (-799 |#2|))) "failed") (-592 (-722 |#1| (-799 |#2|))))) (-15 -2424 ((-592 (-722 |#1| (-799 |#2|))) (-592 (-722 |#1| (-799 |#2|))))) (-15 -3010 ((-592 (-973 |#1| |#2|)) (-592 (-722 |#1| (-799 |#2|))) (-108))) (-15 -1396 ((-592 (-1061 |#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|)))) (-592 (-722 |#1| (-799 |#2|))) (-108))) (-15 -2308 ((-592 (-973 |#1| |#2|)) (-592 (-722 |#1| (-799 |#2|))) (-108))) (-15 -2308 ((-592 (-1061 |#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|)))) (-592 (-722 |#1| (-799 |#2|))) (-108))))
-((-4049 (($ $) 38)) (-3911 (($ $) 21)) (-4026 (($ $) 37)) (-3434 (($ $) 22)) (-4072 (($ $) 36)) (-3931 (($ $) 23)) (-1335 (($) 48)) (-2091 (($ $) 45)) (-1836 (($ $) 17)) (-3113 (($ $ (-1012 $)) 7) (($ $ (-1090)) 6)) (-1982 (($ $) 46)) (-3393 (($ $) 15)) (-3422 (($ $) 16)) (-4084 (($ $) 35)) (-3942 (($ $) 24)) (-4061 (($ $) 34)) (-3919 (($ $) 25)) (-4038 (($ $) 33)) (-3455 (($ $) 26)) (-4121 (($ $) 44)) (-3974 (($ $) 32)) (-4096 (($ $) 43)) (-3951 (($ $) 31)) (-4147 (($ $) 42)) (-3999 (($ $) 30)) (-2929 (($ $) 41)) (-4013 (($ $) 29)) (-4133 (($ $) 40)) (-3985 (($ $) 28)) (-4110 (($ $) 39)) (-3963 (($ $) 27)) (-1344 (($ $) 19)) (-1767 (($ $) 20)) (-3655 (($ $) 18)) (** (($ $ $) 47)))
+((-2770 (((-1178) (-1074)) 10)))
+(((-539) (-10 -7 (-15 -2770 ((-1178) (-1074))))) (T -539))
+((-2770 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-539)))))
+(-10 -7 (-15 -2770 ((-1178) (-1074))))
+((-2223 (((-542 |#2|) (-542 |#2|)) 40)) (-3788 (((-592 |#2|) (-542 |#2|)) 42)) (-3081 ((|#2| (-542 |#2|)) 48)))
+(((-540 |#1| |#2|) (-10 -7 (-15 -2223 ((-542 |#2|) (-542 |#2|))) (-15 -3788 ((-592 |#2|) (-542 |#2|))) (-15 -3081 (|#2| (-542 |#2|)))) (-13 (-429) (-968 (-525)) (-789) (-588 (-525))) (-13 (-29 |#1|) (-1113))) (T -540))
+((-3081 (*1 *2 *3) (-12 (-5 *3 (-542 *2)) (-4 *2 (-13 (-29 *4) (-1113))) (-5 *1 (-540 *4 *2)) (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))))) (-3788 (*1 *2 *3) (-12 (-5 *3 (-542 *5)) (-4 *5 (-13 (-29 *4) (-1113))) (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *2 (-592 *5)) (-5 *1 (-540 *4 *5)))) (-2223 (*1 *2 *2) (-12 (-5 *2 (-542 *4)) (-4 *4 (-13 (-29 *3) (-1113))) (-4 *3 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *1 (-540 *3 *4)))))
+(-10 -7 (-15 -2223 ((-542 |#2|) (-542 |#2|))) (-15 -3788 ((-592 |#2|) (-542 |#2|))) (-15 -3081 (|#2| (-542 |#2|))))
+((-2694 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1679 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|)) 30)))
+(((-541 |#1| |#2|) (-10 -7 (-15 -2694 ((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|))) (-15 -2694 ((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1679 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2694 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2694 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-341) (-341)) (T -541))
+((-2694 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-541 *5 *6)))) (-2694 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-341)) (-4 *2 (-341)) (-5 *1 (-541 *5 *2)))) (-2694 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -1679 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-2 (|:| -1679 *6) (|:| |coeff| *6))) (-5 *1 (-541 *5 *6)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-542 *5)) (-4 *5 (-341)) (-4 *6 (-341)) (-5 *2 (-542 *6)) (-5 *1 (-541 *5 *6)))))
+(-10 -7 (-15 -2694 ((-542 |#2|) (-1 |#2| |#1|) (-542 |#1|))) (-15 -2694 ((-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -1679 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2694 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2694 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) 69)) (-3898 ((|#1| $) NIL)) (-1679 ((|#1| $) 26)) (-2194 (((-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-2676 (($ |#1| (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1087 |#1|)) (|:| |logand| (-1087 |#1|)))) (-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-1949 (((-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1087 |#1|)) (|:| |logand| (-1087 |#1|)))) $) 27)) (-3451 (((-1074) $) NIL)) (-2608 (($ |#1| |#1|) 33) (($ |#1| (-1091)) 44 (|has| |#1| (-968 (-1091))))) (-2012 (((-1038) $) NIL)) (-4106 (((-108) $) 30)) (-2523 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1091)) 82 (|has| |#1| (-835 (-1091))))) (-1270 (((-798) $) 96) (($ |#1|) 25)) (-3355 (($) 16 T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) 15) (($ $ $) NIL)) (-4080 (($ $ $) 78)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 14) (($ (-385 (-525)) $) 36) (($ $ (-385 (-525))) NIL)))
+(((-542 |#1|) (-13 (-660 (-385 (-525))) (-968 |#1|) (-10 -8 (-15 -2676 ($ |#1| (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1087 |#1|)) (|:| |logand| (-1087 |#1|)))) (-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1679 (|#1| $)) (-15 -1949 ((-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1087 |#1|)) (|:| |logand| (-1087 |#1|)))) $)) (-15 -2194 ((-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4106 ((-108) $)) (-15 -2608 ($ |#1| |#1|)) (-15 -2523 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-835 (-1091))) (-15 -2523 (|#1| $ (-1091))) |%noBranch|) (IF (|has| |#1| (-968 (-1091))) (-15 -2608 ($ |#1| (-1091))) |%noBranch|))) (-341)) (T -542))
+((-2676 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1087 *2)) (|:| |logand| (-1087 *2))))) (-5 *4 (-592 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-341)) (-5 *1 (-542 *2)))) (-1679 (*1 *2 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-1949 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1087 *3)) (|:| |logand| (-1087 *3))))) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-2194 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-4106 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-542 *3)) (-4 *3 (-341)))) (-2608 (*1 *1 *2 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-2523 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-542 *2)) (-4 *2 (-341)))) (-2523 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-4 *2 (-341)) (-4 *2 (-835 (-1091))) (-5 *1 (-542 *2)))) (-2608 (*1 *1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *1 (-542 *2)) (-4 *2 (-968 (-1091))) (-4 *2 (-341)))))
+(-13 (-660 (-385 (-525))) (-968 |#1|) (-10 -8 (-15 -2676 ($ |#1| (-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1087 |#1|)) (|:| |logand| (-1087 |#1|)))) (-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -1679 (|#1| $)) (-15 -1949 ((-592 (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1087 |#1|)) (|:| |logand| (-1087 |#1|)))) $)) (-15 -2194 ((-592 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4106 ((-108) $)) (-15 -2608 ($ |#1| |#1|)) (-15 -2523 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-835 (-1091))) (-15 -2523 (|#1| $ (-1091))) |%noBranch|) (IF (|has| |#1| (-968 (-1091))) (-15 -2608 ($ |#1| (-1091))) |%noBranch|)))
+((-1561 (((-108) |#1|) 16)) (-3958 (((-3 |#1| "failed") |#1|) 14)) (-1752 (((-2 (|:| -3200 |#1|) (|:| -1864 (-713))) |#1|) 31) (((-3 |#1| "failed") |#1| (-713)) 18)) (-1213 (((-108) |#1| (-713)) 19)) (-3104 ((|#1| |#1|) 32)) (-2890 ((|#1| |#1| (-713)) 34)))
+(((-543 |#1|) (-10 -7 (-15 -1213 ((-108) |#1| (-713))) (-15 -1752 ((-3 |#1| "failed") |#1| (-713))) (-15 -1752 ((-2 (|:| -3200 |#1|) (|:| -1864 (-713))) |#1|)) (-15 -2890 (|#1| |#1| (-713))) (-15 -1561 ((-108) |#1|)) (-15 -3958 ((-3 |#1| "failed") |#1|)) (-15 -3104 (|#1| |#1|))) (-510)) (T -543))
+((-3104 (*1 *2 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-3958 (*1 *2 *2) (|partial| -12 (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-1561 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))) (-2890 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-1752 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3200 *3) (|:| -1864 (-713)))) (-5 *1 (-543 *3)) (-4 *3 (-510)))) (-1752 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510)))) (-1213 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))))
+(-10 -7 (-15 -1213 ((-108) |#1| (-713))) (-15 -1752 ((-3 |#1| "failed") |#1| (-713))) (-15 -1752 ((-2 (|:| -3200 |#1|) (|:| -1864 (-713))) |#1|)) (-15 -2890 (|#1| |#1| (-713))) (-15 -1561 ((-108) |#1|)) (-15 -3958 ((-3 |#1| "failed") |#1|)) (-15 -3104 (|#1| |#1|)))
+((-4018 (((-1087 |#1|) (-856)) 27)))
+(((-544 |#1|) (-10 -7 (-15 -4018 ((-1087 |#1|) (-856)))) (-327)) (T -544))
+((-4018 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1087 *4)) (-5 *1 (-544 *4)) (-4 *4 (-327)))))
+(-10 -7 (-15 -4018 ((-1087 |#1|) (-856))))
+((-2223 (((-542 (-385 (-887 |#1|))) (-542 (-385 (-887 |#1|)))) 27)) (-2650 (((-3 (-294 |#1|) (-592 (-294 |#1|))) (-385 (-887 |#1|)) (-1091)) 34 (|has| |#1| (-138)))) (-3788 (((-592 (-294 |#1|)) (-542 (-385 (-887 |#1|)))) 19)) (-1328 (((-294 |#1|) (-385 (-887 |#1|)) (-1091)) 32 (|has| |#1| (-138)))) (-3081 (((-294 |#1|) (-542 (-385 (-887 |#1|)))) 21)))
+(((-545 |#1|) (-10 -7 (-15 -2223 ((-542 (-385 (-887 |#1|))) (-542 (-385 (-887 |#1|))))) (-15 -3788 ((-592 (-294 |#1|)) (-542 (-385 (-887 |#1|))))) (-15 -3081 ((-294 |#1|) (-542 (-385 (-887 |#1|))))) (IF (|has| |#1| (-138)) (PROGN (-15 -2650 ((-3 (-294 |#1|) (-592 (-294 |#1|))) (-385 (-887 |#1|)) (-1091))) (-15 -1328 ((-294 |#1|) (-385 (-887 |#1|)) (-1091)))) |%noBranch|)) (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (T -545))
+((-1328 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1091)) (-4 *5 (-138)) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *2 (-294 *5)) (-5 *1 (-545 *5)))) (-2650 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1091)) (-4 *5 (-138)) (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *2 (-3 (-294 *5) (-592 (-294 *5)))) (-5 *1 (-545 *5)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-542 (-385 (-887 *4)))) (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *2 (-294 *4)) (-5 *1 (-545 *4)))) (-3788 (*1 *2 *3) (-12 (-5 *3 (-542 (-385 (-887 *4)))) (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *2 (-592 (-294 *4))) (-5 *1 (-545 *4)))) (-2223 (*1 *2 *2) (-12 (-5 *2 (-542 (-385 (-887 *3)))) (-4 *3 (-13 (-429) (-968 (-525)) (-789) (-588 (-525)))) (-5 *1 (-545 *3)))))
+(-10 -7 (-15 -2223 ((-542 (-385 (-887 |#1|))) (-542 (-385 (-887 |#1|))))) (-15 -3788 ((-592 (-294 |#1|)) (-542 (-385 (-887 |#1|))))) (-15 -3081 ((-294 |#1|) (-542 (-385 (-887 |#1|))))) (IF (|has| |#1| (-138)) (PROGN (-15 -2650 ((-3 (-294 |#1|) (-592 (-294 |#1|))) (-385 (-887 |#1|)) (-1091))) (-15 -1328 ((-294 |#1|) (-385 (-887 |#1|)) (-1091)))) |%noBranch|))
+((-2412 (((-592 (-632 (-525))) (-592 (-525)) (-592 (-840 (-525)))) 46) (((-592 (-632 (-525))) (-592 (-525))) 47) (((-632 (-525)) (-592 (-525)) (-840 (-525))) 42)) (-2127 (((-713) (-592 (-525))) 40)))
+(((-546) (-10 -7 (-15 -2127 ((-713) (-592 (-525)))) (-15 -2412 ((-632 (-525)) (-592 (-525)) (-840 (-525)))) (-15 -2412 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -2412 ((-592 (-632 (-525))) (-592 (-525)) (-592 (-840 (-525))))))) (T -546))
+((-2412 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-525))) (-5 *4 (-592 (-840 (-525)))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-546)))) (-2412 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-546)))) (-2412 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-525))) (-5 *4 (-840 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-546)))) (-2127 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-713)) (-5 *1 (-546)))))
+(-10 -7 (-15 -2127 ((-713) (-592 (-525)))) (-15 -2412 ((-632 (-525)) (-592 (-525)) (-840 (-525)))) (-15 -2412 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -2412 ((-592 (-632 (-525))) (-592 (-525)) (-592 (-840 (-525))))))
+((-3290 (((-592 |#5|) |#5| (-108)) 73)) (-3719 (((-108) |#5| (-592 |#5|)) 30)))
+(((-547 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3290 ((-592 |#5|) |#5| (-108))) (-15 -3719 ((-108) |#5| (-592 |#5|)))) (-13 (-286) (-138)) (-735) (-789) (-991 |#1| |#2| |#3|) (-1029 |#1| |#2| |#3| |#4|)) (T -547))
+((-3719 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-1029 *5 *6 *7 *8)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-547 *5 *6 *7 *8 *3)))) (-3290 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-592 *3)) (-5 *1 (-547 *5 *6 *7 *8 *3)) (-4 *3 (-1029 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3290 ((-592 |#5|) |#5| (-108))) (-15 -3719 ((-108) |#5| (-592 |#5|))))
+((-1260 (((-108) $ $) NIL (|has| (-135) (-1020)))) (-1329 (($ $) 34)) (-2374 (($ $) NIL)) (-3446 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-1537 (((-108) $ $) 51)) (-1514 (((-108) $ $ (-525)) 46)) (-2223 (((-592 $) $ (-135)) 60) (((-592 $) $ (-132)) 61)) (-2151 (((-108) (-1 (-108) (-135) (-135)) $) NIL) (((-108) $) NIL (|has| (-135) (-789)))) (-2549 (($ (-1 (-108) (-135) (-135)) $) NIL (|has| $ (-6 -4256))) (($ $) NIL (-12 (|has| $ (-6 -4256)) (|has| (-135) (-789))))) (-2855 (($ (-1 (-108) (-135) (-135)) $) NIL) (($ $) NIL (|has| (-135) (-789)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 (((-135) $ (-525) (-135)) 45 (|has| $ (-6 -4256))) (((-135) $ (-1140 (-525)) (-135)) NIL (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-2871 (($ $ (-135)) 64) (($ $ (-132)) 65)) (-3559 (($ $) NIL (|has| $ (-6 -4256)))) (-3620 (($ $) NIL)) (-3329 (($ $ (-1140 (-525)) $) 44)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020))))) (-1614 (($ (-135) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020)))) (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4255)))) (-3503 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4255))) (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4255)))) (-2632 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4256)))) (-2570 (((-135) $ (-525)) NIL)) (-1559 (((-108) $ $) 72)) (-1916 (((-525) (-1 (-108) (-135)) $) NIL) (((-525) (-135) $) NIL (|has| (-135) (-1020))) (((-525) (-135) $ (-525)) 48 (|has| (-135) (-1020))) (((-525) $ $ (-525)) 47) (((-525) (-132) $ (-525)) 50)) (-3702 (((-592 (-135)) $) NIL (|has| $ (-6 -4255)))) (-3489 (($ (-713) (-135)) 9)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) 28 (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (|has| (-135) (-789)))) (-3743 (($ (-1 (-108) (-135) (-135)) $ $) NIL) (($ $ $) NIL (|has| (-135) (-789)))) (-1749 (((-592 (-135)) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020))))) (-3478 (((-525) $) 42 (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| (-135) (-789)))) (-2393 (((-108) $ $ (-135)) 73)) (-3549 (((-713) $ $ (-135)) 70)) (-2622 (($ (-1 (-135) (-135)) $) 33 (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-135) (-135)) $) NIL) (($ (-1 (-135) (-135) (-135)) $ $) NIL)) (-2365 (($ $) 37)) (-2630 (($ $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-2880 (($ $ (-135)) 62) (($ $ (-132)) 63)) (-3451 (((-1074) $) 38 (|has| (-135) (-1020)))) (-2683 (($ (-135) $ (-525)) NIL) (($ $ $ (-525)) 23)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-2012 (((-525) $) 69) (((-1038) $) NIL (|has| (-135) (-1020)))) (-3110 (((-135) $) NIL (|has| (-525) (-789)))) (-3207 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-2042 (($ $ (-135)) NIL (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-592 (-135)) (-592 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020))))) (-1777 (((-592 (-135)) $) NIL)) (-2013 (((-108) $) 12)) (-2718 (($) 10)) (-3410 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) 52) (($ $ (-1140 (-525))) 21) (($ $ $) NIL)) (-3157 (($ $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-2040 (((-713) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4255))) (((-713) (-135) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020))))) (-3216 (($ $ $ (-525)) 66 (|has| $ (-6 -4256)))) (-1451 (($ $) 17)) (-2749 (((-501) $) NIL (|has| (-135) (-567 (-501))))) (-1279 (($ (-592 (-135))) NIL)) (-2014 (($ $ (-135)) NIL) (($ (-135) $) NIL) (($ $ $) 16) (($ (-592 $)) 67)) (-1270 (($ (-135)) NIL) (((-798) $) 27 (|has| (-135) (-566 (-798))))) (-3633 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) NIL (|has| (-135) (-789)))) (-4026 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3994 (((-108) $ $) 14 (|has| (-135) (-1020)))) (-4037 (((-108) $ $) NIL (|has| (-135) (-789)))) (-4017 (((-108) $ $) 15 (|has| (-135) (-789)))) (-3596 (((-713) $) 13 (|has| $ (-6 -4255)))))
+(((-548 |#1|) (-13 (-1060) (-10 -8 (-15 -2012 ((-525) $)))) (-525)) (T -548))
+((-2012 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-548 *3)) (-14 *3 (-525)))))
+(-13 (-1060) (-10 -8 (-15 -2012 ((-525) $))))
+((-2971 (((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1015 |#4|)) 32)))
+(((-549 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2971 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1015 |#4|))) (-15 -2971 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|))) (-735) (-789) (-517) (-884 |#3| |#1| |#2|)) (T -549))
+((-2971 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525)))) (-5 *1 (-549 *5 *4 *6 *3)) (-4 *3 (-884 *6 *5 *4)))) (-2971 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1015 *3)) (-4 *3 (-884 *7 *6 *4)) (-4 *6 (-735)) (-4 *4 (-789)) (-4 *7 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525)))) (-5 *1 (-549 *6 *4 *7 *3)))))
+(-10 -7 (-15 -2971 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2| (-1015 |#4|))) (-15 -2971 ((-2 (|:| |num| |#4|) (|:| |den| (-525))) |#4| |#2|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 63)) (-2383 (((-592 (-1005)) $) NIL)) (-2577 (((-1091) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-3642 (($ $ (-525)) 54) (($ $ (-525) (-525)) 55)) (-4192 (((-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 60)) (-3008 (($ $) 100)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2443 (((-798) (-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-957 (-782 (-525))) (-1091) |#1| (-385 (-525))) 224)) (-2307 (($ (-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 34)) (-2305 (($) NIL T CONST)) (-2571 (($ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2911 (((-108) $) NIL)) (-3973 (((-525) $) 58) (((-525) $ (-525)) 59)) (-1985 (((-108) $) NIL)) (-3073 (($ $ (-856)) 76)) (-2615 (($ (-1 |#1| (-525)) $) 73)) (-1788 (((-108) $) 25)) (-2352 (($ |#1| (-525)) 22) (($ $ (-1005) (-525)) NIL) (($ $ (-592 (-1005)) (-592 (-525))) NIL)) (-2694 (($ (-1 |#1| |#1|) $) 67)) (-1418 (($ (-957 (-782 (-525))) (-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 13)) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-3451 (((-1074) $) NIL)) (-2650 (($ $) 150 (|has| |#1| (-37 (-385 (-525)))))) (-1768 (((-3 $ "failed") $ $ (-108)) 99)) (-2356 (($ $ $) 108)) (-2012 (((-1038) $) NIL)) (-2293 (((-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 15)) (-2085 (((-957 (-782 (-525))) $) 14)) (-2182 (($ $ (-525)) 45)) (-1680 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2602 (((-1072 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525)))))) (-3410 ((|#1| $ (-525)) 57) (($ $ $) NIL (|has| (-525) (-1032)))) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-1587 (((-525) $) NIL)) (-3577 (($ $) 46)) (-1270 (((-798) $) NIL) (($ (-525)) 28) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 27 (|has| |#1| (-160)))) (-3468 ((|#1| $ (-525)) 56)) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) 37)) (-3144 ((|#1| $) NIL)) (-3947 (($ $) 186 (|has| |#1| (-37 (-385 (-525)))))) (-3324 (($ $) 158 (|has| |#1| (-37 (-385 (-525)))))) (-1441 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-2239 (($ $) 163 (|has| |#1| (-37 (-385 (-525)))))) (-2813 (($ $) 189 (|has| |#1| (-37 (-385 (-525)))))) (-2588 (($ $) 162 (|has| |#1| (-37 (-385 (-525)))))) (-2149 (($ $ (-385 (-525))) 166 (|has| |#1| (-37 (-385 (-525)))))) (-2642 (($ $ |#1|) 146 (|has| |#1| (-37 (-385 (-525)))))) (-3668 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-3616 (($ $) 149 (|has| |#1| (-37 (-385 (-525)))))) (-4176 (($ $) 191 (|has| |#1| (-37 (-385 (-525)))))) (-1613 (($ $) 164 (|has| |#1| (-37 (-385 (-525)))))) (-1959 (($ $) 187 (|has| |#1| (-37 (-385 (-525)))))) (-1709 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-2260 (($ $) 161 (|has| |#1| (-37 (-385 (-525)))))) (-2611 (($ $) 197 (|has| |#1| (-37 (-385 (-525)))))) (-1723 (($ $) 173 (|has| |#1| (-37 (-385 (-525)))))) (-2742 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-1803 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-1509 (($ $) 201 (|has| |#1| (-37 (-385 (-525)))))) (-1845 (($ $) 177 (|has| |#1| (-37 (-385 (-525)))))) (-3033 (($ $) 203 (|has| |#1| (-37 (-385 (-525)))))) (-2119 (($ $) 179 (|has| |#1| (-37 (-385 (-525)))))) (-2759 (($ $) 199 (|has| |#1| (-37 (-385 (-525)))))) (-1890 (($ $) 175 (|has| |#1| (-37 (-385 (-525)))))) (-4127 (($ $) 196 (|has| |#1| (-37 (-385 (-525)))))) (-1461 (($ $) 171 (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1369 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1270 (|#1| (-1091))))))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 29 T CONST)) (-3363 (($) 38 T CONST)) (-2093 (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091)) NIL (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-3994 (((-108) $ $) 65)) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4090 (($ $) 84) (($ $ $) 64)) (-4080 (($ $ $) 81)) (** (($ $ (-856)) NIL) (($ $ (-713)) 103)) (* (($ (-856) $) 89) (($ (-713) $) 87) (($ (-525) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-550 |#1|) (-13 (-1151 |#1| (-525)) (-10 -8 (-15 -1418 ($ (-957 (-782 (-525))) (-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -2085 ((-957 (-782 (-525))) $)) (-15 -2293 ((-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $)) (-15 -2307 ($ (-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -1788 ((-108) $)) (-15 -2615 ($ (-1 |#1| (-525)) $)) (-15 -1768 ((-3 $ "failed") $ $ (-108))) (-15 -3008 ($ $)) (-15 -2356 ($ $ $)) (-15 -2443 ((-798) (-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-957 (-782 (-525))) (-1091) |#1| (-385 (-525)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2650 ($ $)) (-15 -2642 ($ $ |#1|)) (-15 -2149 ($ $ (-385 (-525)))) (-15 -3616 ($ $)) (-15 -3668 ($ $)) (-15 -2239 ($ $)) (-15 -2260 ($ $)) (-15 -3324 ($ $)) (-15 -1709 ($ $)) (-15 -2588 ($ $)) (-15 -1613 ($ $)) (-15 -1803 ($ $)) (-15 -1461 ($ $)) (-15 -1723 ($ $)) (-15 -1890 ($ $)) (-15 -1845 ($ $)) (-15 -2119 ($ $)) (-15 -1441 ($ $)) (-15 -4133 ($ $)) (-15 -3947 ($ $)) (-15 -1959 ($ $)) (-15 -2813 ($ $)) (-15 -4176 ($ $)) (-15 -2742 ($ $)) (-15 -4127 ($ $)) (-15 -2611 ($ $)) (-15 -2759 ($ $)) (-15 -1509 ($ $)) (-15 -3033 ($ $))) |%noBranch|))) (-977)) (T -550))
+((-1788 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-977)))) (-1418 (*1 *1 *2 *3) (-12 (-5 *2 (-957 (-782 (-525)))) (-5 *3 (-1072 (-2 (|:| |k| (-525)) (|:| |c| *4)))) (-4 *4 (-977)) (-5 *1 (-550 *4)))) (-2085 (*1 *2 *1) (-12 (-5 *2 (-957 (-782 (-525)))) (-5 *1 (-550 *3)) (-4 *3 (-977)))) (-2293 (*1 *2 *1) (-12 (-5 *2 (-1072 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-5 *1 (-550 *3)) (-4 *3 (-977)))) (-2307 (*1 *1 *2) (-12 (-5 *2 (-1072 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-4 *3 (-977)) (-5 *1 (-550 *3)))) (-2615 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *3 (-977)) (-5 *1 (-550 *3)))) (-1768 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-977)))) (-3008 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-977)))) (-2356 (*1 *1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-977)))) (-2443 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1072 (-2 (|:| |k| (-525)) (|:| |c| *6)))) (-5 *4 (-957 (-782 (-525)))) (-5 *5 (-1091)) (-5 *7 (-385 (-525))) (-4 *6 (-977)) (-5 *2 (-798)) (-5 *1 (-550 *6)))) (-2650 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2642 (*1 *1 *1 *2) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2149 (*1 *1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-550 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)))) (-3616 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-3668 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2239 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2260 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-3324 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1709 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2588 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1613 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1803 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1461 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1723 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1890 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1845 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2119 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1441 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-4133 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-3947 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1959 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2813 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-4176 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2742 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-4127 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2611 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-2759 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-1509 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))) (-3033 (*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(-13 (-1151 |#1| (-525)) (-10 -8 (-15 -1418 ($ (-957 (-782 (-525))) (-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -2085 ((-957 (-782 (-525))) $)) (-15 -2293 ((-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $)) (-15 -2307 ($ (-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|))))) (-15 -1788 ((-108) $)) (-15 -2615 ($ (-1 |#1| (-525)) $)) (-15 -1768 ((-3 $ "failed") $ $ (-108))) (-15 -3008 ($ $)) (-15 -2356 ($ $ $)) (-15 -2443 ((-798) (-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) (-957 (-782 (-525))) (-1091) |#1| (-385 (-525)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2650 ($ $)) (-15 -2642 ($ $ |#1|)) (-15 -2149 ($ $ (-385 (-525)))) (-15 -3616 ($ $)) (-15 -3668 ($ $)) (-15 -2239 ($ $)) (-15 -2260 ($ $)) (-15 -3324 ($ $)) (-15 -1709 ($ $)) (-15 -2588 ($ $)) (-15 -1613 ($ $)) (-15 -1803 ($ $)) (-15 -1461 ($ $)) (-15 -1723 ($ $)) (-15 -1890 ($ $)) (-15 -1845 ($ $)) (-15 -2119 ($ $)) (-15 -1441 ($ $)) (-15 -4133 ($ $)) (-15 -3947 ($ $)) (-15 -1959 ($ $)) (-15 -2813 ($ $)) (-15 -4176 ($ $)) (-15 -2742 ($ $)) (-15 -4127 ($ $)) (-15 -2611 ($ $)) (-15 -2759 ($ $)) (-15 -1509 ($ $)) (-15 -3033 ($ $))) |%noBranch|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-2307 (($ (-1072 |#1|)) 9)) (-2305 (($) NIL T CONST)) (-3762 (((-3 $ "failed") $) 42)) (-2911 (((-108) $) 52)) (-3973 (((-713) $) 55) (((-713) $ (-713)) 54)) (-1985 (((-108) $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1680 (((-3 $ "failed") $ $) 44 (|has| |#1| (-517)))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL (|has| |#1| (-517)))) (-1562 (((-1072 |#1|) $) 23)) (-2104 (((-713)) 51)) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 10 T CONST)) (-3363 (($) 14 T CONST)) (-3994 (((-108) $ $) 22)) (-4090 (($ $) 30) (($ $ $) 16)) (-4080 (($ $ $) 25)) (** (($ $ (-856)) NIL) (($ $ (-713)) 49)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-525)) 36)))
+(((-551 |#1|) (-13 (-977) (-10 -8 (-15 -1562 ((-1072 |#1|) $)) (-15 -2307 ($ (-1072 |#1|))) (-15 -2911 ((-108) $)) (-15 -3973 ((-713) $)) (-15 -3973 ((-713) $ (-713))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-525))) (IF (|has| |#1| (-517)) (-6 (-517)) |%noBranch|))) (-977)) (T -551))
+((-1562 (*1 *2 *1) (-12 (-5 *2 (-1072 *3)) (-5 *1 (-551 *3)) (-4 *3 (-977)))) (-2307 (*1 *1 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-551 *3)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-551 *3)) (-4 *3 (-977)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-977)))) (-3973 (*1 *2 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-977)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-551 *2)) (-4 *2 (-977)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-551 *2)) (-4 *2 (-977)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-551 *3)) (-4 *3 (-977)))))
+(-13 (-977) (-10 -8 (-15 -1562 ((-1072 |#1|) $)) (-15 -2307 ($ (-1072 |#1|))) (-15 -2911 ((-108) $)) (-15 -3973 ((-713) $)) (-15 -3973 ((-713) $ (-713))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-525))) (IF (|has| |#1| (-517)) (-6 (-517)) |%noBranch|)))
+((-2694 (((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|)) 15)))
+(((-552 |#1| |#2|) (-10 -7 (-15 -2694 ((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|)))) (-1127) (-1127)) (T -552))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-555 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-555 *6)) (-5 *1 (-552 *5 *6)))))
+(-10 -7 (-15 -2694 ((-555 |#2|) (-1 |#2| |#1|) (-555 |#1|))))
+((-2694 (((-1072 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1072 |#2|)) 20) (((-1072 |#3|) (-1 |#3| |#1| |#2|) (-1072 |#1|) (-555 |#2|)) 19) (((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|)) 18)))
+(((-553 |#1| |#2| |#3|) (-10 -7 (-15 -2694 ((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|))) (-15 -2694 ((-1072 |#3|) (-1 |#3| |#1| |#2|) (-1072 |#1|) (-555 |#2|))) (-15 -2694 ((-1072 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1072 |#2|)))) (-1127) (-1127) (-1127)) (T -553))
+((-2694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-1072 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1072 *8)) (-5 *1 (-553 *6 *7 *8)))) (-2694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1072 *6)) (-5 *5 (-555 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1072 *8)) (-5 *1 (-553 *6 *7 *8)))) (-2694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-555 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-555 *8)) (-5 *1 (-553 *6 *7 *8)))))
+(-10 -7 (-15 -2694 ((-555 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-555 |#2|))) (-15 -2694 ((-1072 |#3|) (-1 |#3| |#1| |#2|) (-1072 |#1|) (-555 |#2|))) (-15 -2694 ((-1072 |#3|) (-1 |#3| |#1| |#2|) (-555 |#1|) (-1072 |#2|))))
+((-2823 ((|#3| |#3| (-592 (-565 |#3|)) (-592 (-1091))) 55)) (-1695 (((-157 |#2|) |#3|) 117)) (-1843 ((|#3| (-157 |#2|)) 44)) (-1650 ((|#2| |#3|) 19)) (-2627 ((|#3| |#2|) 33)))
+(((-554 |#1| |#2| |#3|) (-10 -7 (-15 -1843 (|#3| (-157 |#2|))) (-15 -1650 (|#2| |#3|)) (-15 -2627 (|#3| |#2|)) (-15 -1695 ((-157 |#2|) |#3|)) (-15 -2823 (|#3| |#3| (-592 (-565 |#3|)) (-592 (-1091))))) (-13 (-517) (-789)) (-13 (-408 |#1|) (-934) (-1113)) (-13 (-408 (-157 |#1|)) (-934) (-1113))) (T -554))
+((-2823 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-592 (-1091))) (-4 *2 (-13 (-408 (-157 *5)) (-934) (-1113))) (-4 *5 (-13 (-517) (-789))) (-5 *1 (-554 *5 *6 *2)) (-4 *6 (-13 (-408 *5) (-934) (-1113))))) (-1695 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789))) (-5 *2 (-157 *5)) (-5 *1 (-554 *4 *5 *3)) (-4 *5 (-13 (-408 *4) (-934) (-1113))) (-4 *3 (-13 (-408 (-157 *4)) (-934) (-1113))))) (-2627 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789))) (-4 *2 (-13 (-408 (-157 *4)) (-934) (-1113))) (-5 *1 (-554 *4 *3 *2)) (-4 *3 (-13 (-408 *4) (-934) (-1113))))) (-1650 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-789))) (-4 *2 (-13 (-408 *4) (-934) (-1113))) (-5 *1 (-554 *4 *2 *3)) (-4 *3 (-13 (-408 (-157 *4)) (-934) (-1113))))) (-1843 (*1 *2 *3) (-12 (-5 *3 (-157 *5)) (-4 *5 (-13 (-408 *4) (-934) (-1113))) (-4 *4 (-13 (-517) (-789))) (-4 *2 (-13 (-408 (-157 *4)) (-934) (-1113))) (-5 *1 (-554 *4 *5 *2)))))
+(-10 -7 (-15 -1843 (|#3| (-157 |#2|))) (-15 -1650 (|#2| |#3|)) (-15 -2627 (|#3| |#2|)) (-15 -1695 ((-157 |#2|) |#3|)) (-15 -2823 (|#3| |#3| (-592 (-565 |#3|)) (-592 (-1091)))))
+((-3826 (($ (-1 (-108) |#1|) $) 17)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-3752 (($ (-1 |#1| |#1|) |#1|) 9)) (-3801 (($ (-1 (-108) |#1|) $) 13)) (-3813 (($ (-1 (-108) |#1|) $) 15)) (-1279 (((-1072 |#1|) $) 18)) (-1270 (((-798) $) NIL)))
+(((-555 |#1|) (-13 (-566 (-798)) (-10 -8 (-15 -2694 ($ (-1 |#1| |#1|) $)) (-15 -3801 ($ (-1 (-108) |#1|) $)) (-15 -3813 ($ (-1 (-108) |#1|) $)) (-15 -3826 ($ (-1 (-108) |#1|) $)) (-15 -3752 ($ (-1 |#1| |#1|) |#1|)) (-15 -1279 ((-1072 |#1|) $)))) (-1127)) (T -555))
+((-2694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-555 *3)))) (-3801 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1127)) (-5 *1 (-555 *3)))) (-3813 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1127)) (-5 *1 (-555 *3)))) (-3826 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1127)) (-5 *1 (-555 *3)))) (-3752 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-555 *3)))) (-1279 (*1 *2 *1) (-12 (-5 *2 (-1072 *3)) (-5 *1 (-555 *3)) (-4 *3 (-1127)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -2694 ($ (-1 |#1| |#1|) $)) (-15 -3801 ($ (-1 (-108) |#1|) $)) (-15 -3813 ($ (-1 (-108) |#1|) $)) (-15 -3826 ($ (-1 (-108) |#1|) $)) (-15 -3752 ($ (-1 |#1| |#1|) |#1|)) (-15 -1279 ((-1072 |#1|) $))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2708 (($ (-713)) NIL (|has| |#1| (-23)))) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-2151 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2549 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4256))) (($ $) NIL (-12 (|has| $ (-6 -4256)) (|has| |#1| (-789))))) (-2855 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) NIL (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-3559 (($ $) NIL (|has| $ (-6 -4256)))) (-3620 (($ $) NIL)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1614 (($ |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2632 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) NIL)) (-1916 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-1430 (((-632 |#1|) $ $) NIL (|has| |#1| (-977)))) (-3489 (($ (-713) |#1|) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) NIL (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-3743 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1325 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-2957 (((-108) $ (-713)) NIL)) (-2023 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2683 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3110 ((|#1| $) NIL (|has| (-525) (-789)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2042 (($ $ |#1|) NIL (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-1809 ((|#1| $ $) NIL (|has| |#1| (-977)))) (-3157 (($ $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-3838 (($ $ $) NIL (|has| |#1| (-977)))) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3216 (($ $ $ (-525)) NIL (|has| $ (-6 -4256)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) NIL)) (-2014 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4090 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4080 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-669))) (($ $ |#1|) NIL (|has| |#1| (-669)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-556 |#1| |#2|) (-1171 |#1|) (-1127) (-525)) (T -556))
+NIL
+(-1171 |#1|)
+((-2782 (((-1178) $ |#2| |#2|) 36)) (-2710 ((|#2| $) 23)) (-3478 ((|#2| $) 21)) (-2622 (($ (-1 |#3| |#3|) $) 32)) (-2694 (($ (-1 |#3| |#3|) $) 30)) (-3110 ((|#3| $) 26)) (-2042 (($ $ |#3|) 33)) (-4101 (((-108) |#3| $) 17)) (-1777 (((-592 |#3|) $) 15)) (-3410 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-557 |#1| |#2| |#3|) (-10 -8 (-15 -2782 ((-1178) |#1| |#2| |#2|)) (-15 -2042 (|#1| |#1| |#3|)) (-15 -3110 (|#3| |#1|)) (-15 -2710 (|#2| |#1|)) (-15 -3478 (|#2| |#1|)) (-15 -4101 ((-108) |#3| |#1|)) (-15 -1777 ((-592 |#3|) |#1|)) (-15 -3410 (|#3| |#1| |#2|)) (-15 -3410 (|#3| |#1| |#2| |#3|)) (-15 -2622 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2694 (|#1| (-1 |#3| |#3|) |#1|))) (-558 |#2| |#3|) (-1020) (-1127)) (T -557))
+NIL
+(-10 -8 (-15 -2782 ((-1178) |#1| |#2| |#2|)) (-15 -2042 (|#1| |#1| |#3|)) (-15 -3110 (|#3| |#1|)) (-15 -2710 (|#2| |#1|)) (-15 -3478 (|#2| |#1|)) (-15 -4101 ((-108) |#3| |#1|)) (-15 -1777 ((-592 |#3|) |#1|)) (-15 -3410 (|#3| |#1| |#2|)) (-15 -3410 (|#3| |#1| |#2| |#3|)) (-15 -2622 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2694 (|#1| (-1 |#3| |#3|) |#1|)))
+((-1260 (((-108) $ $) 19 (|has| |#2| (-1020)))) (-2782 (((-1178) $ |#1| |#1|) 40 (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) 8)) (-1429 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4256)))) (-2305 (($) 7 T CONST)) (-2632 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4256)))) (-2570 ((|#2| $ |#1|) 51)) (-3702 (((-592 |#2|) $) 30 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) 9)) (-2710 ((|#1| $) 43 (|has| |#1| (-789)))) (-1749 (((-592 |#2|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#2| $) 27 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4255))))) (-3478 ((|#1| $) 44 (|has| |#1| (-789)))) (-2622 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#2| |#2|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (|has| |#2| (-1020)))) (-4142 (((-592 |#1|) $) 46)) (-3845 (((-108) |#1| $) 47)) (-2012 (((-1038) $) 21 (|has| |#2| (-1020)))) (-3110 ((|#2| $) 42 (|has| |#1| (-789)))) (-2042 (($ $ |#2|) 41 (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#2|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#2|))) 26 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) 25 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) 23 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-3428 (((-108) $ $) 14)) (-4101 (((-108) |#2| $) 45 (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1777 (((-592 |#2|) $) 48)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2040 (((-713) (-1 (-108) |#2|) $) 31 (|has| $ (-6 -4255))) (((-713) |#2| $) 28 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-1270 (((-798) $) 18 (|has| |#2| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#2|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#2| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-558 |#1| |#2|) (-131) (-1020) (-1127)) (T -558))
+((-1777 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1127)) (-5 *2 (-592 *4)))) (-3845 (*1 *2 *3 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1127)) (-5 *2 (-108)))) (-4142 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1127)) (-5 *2 (-592 *3)))) (-4101 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-558 *4 *3)) (-4 *4 (-1020)) (-4 *3 (-1127)) (-4 *3 (-1020)) (-5 *2 (-108)))) (-3478 (*1 *2 *1) (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1020)) (-4 *2 (-789)))) (-2710 (*1 *2 *1) (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1020)) (-4 *2 (-789)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1020)) (-4 *3 (-789)) (-4 *2 (-1127)))) (-2042 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-558 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1127)))) (-2782 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1127)) (-5 *2 (-1178)))))
+(-13 (-464 |t#2|) (-267 |t#1| |t#2|) (-10 -8 (-15 -1777 ((-592 |t#2|) $)) (-15 -3845 ((-108) |t#1| $)) (-15 -4142 ((-592 |t#1|) $)) (IF (|has| |t#2| (-1020)) (IF (|has| $ (-6 -4255)) (-15 -4101 ((-108) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-789)) (PROGN (-15 -3478 (|t#1| $)) (-15 -2710 (|t#1| $)) (-15 -3110 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4256)) (PROGN (-15 -2042 ($ $ |t#2|)) (-15 -2782 ((-1178) $ |t#1| |t#1|))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#2| (-1020)) ((-566 (-798)) -3279 (|has| |#2| (-1020)) (|has| |#2| (-566 (-798)))) ((-265 |#1| |#2|) . T) ((-267 |#1| |#2|) . T) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-464 |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-1020) |has| |#2| (-1020)) ((-1127) . T))
+((-1270 (((-798) $) 19) (((-125) $) 14) (($ (-125)) 13)))
+(((-559) (-13 (-566 (-798)) (-566 (-125)) (-10 -8 (-15 -1270 ($ (-125)))))) (T -559))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-125)) (-5 *1 (-559)))))
+(-13 (-566 (-798)) (-566 (-125)) (-10 -8 (-15 -1270 ($ (-125)))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1790 (((-3 $ "failed")) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3019 (((-1173 (-632 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-1173 (-632 |#1|)) (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-2138 (((-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-2305 (($) NIL T CONST)) (-1316 (((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed")) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2144 (((-3 $ "failed")) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2306 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-2892 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-3591 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-2962 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-4043 (((-1087 (-887 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-3627 (($ $ (-856)) NIL)) (-3108 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2904 (((-1087 |#1|) $) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1638 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-4159 (((-1087 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-1740 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3612 (($ (-1173 |#1|)) NIL (|has| |#2| (-395 |#1|))) (($ (-1173 |#1|) (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-3762 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3318 (((-856)) NIL (|has| |#2| (-345 |#1|)))) (-3165 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2161 (($ $ (-856)) NIL)) (-1275 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1242 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2394 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-4167 (((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed")) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3322 (((-3 $ "failed")) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1518 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-2917 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2561 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-2665 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3935 (((-1087 (-887 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-1404 (($ $ (-856)) NIL)) (-3908 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-4073 (((-1087 |#1|) $) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2021 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-1774 (((-1087 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-3171 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3451 (((-1074) $) NIL)) (-2556 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3639 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-4211 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2012 (((-1038) $) NIL)) (-1851 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3410 ((|#1| $ (-525)) NIL (|has| |#2| (-395 |#1|)))) (-3464 (((-632 |#1|) (-1173 $)) NIL (|has| |#2| (-395 |#1|))) (((-1173 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1173 $) (-1173 $)) NIL (|has| |#2| (-345 |#1|))) (((-1173 |#1|) $ (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-2749 (($ (-1173 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-1173 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-4059 (((-592 (-887 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-592 (-887 |#1|)) (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-2222 (($ $ $) NIL)) (-2883 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1270 (((-798) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-1449 (((-1173 $)) NIL (|has| |#2| (-395 |#1|)))) (-1500 (((-592 (-1173 |#1|))) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3941 (($ $ $ $) NIL)) (-1440 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-4169 (($ (-632 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-3395 (($ $ $) NIL)) (-3665 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3529 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3180 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3355 (($) NIL T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) 24)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-560 |#1| |#2|) (-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -1270 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|))) (-160) (-687 |#1|)) (T -560))
+((-1270 (*1 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-560 *3 *2)) (-4 *2 (-687 *3)))))
+(-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -1270 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|)))
+((-1260 (((-108) $ $) NIL)) (-2336 (((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) $ (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) 33)) (-3476 (($ (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) NIL) (($) NIL)) (-2782 (((-1178) $ (-1074) (-1074)) NIL (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 ((|#1| $ (-1074) |#1|) 43)) (-1608 (($ (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255)))) (-2772 (((-3 |#1| "failed") (-1074) $) 46)) (-2305 (($) NIL T CONST)) (-3933 (($ $ (-1074)) 24)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020))))) (-2592 (((-3 |#1| "failed") (-1074) $) 47) (($ (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255))) (($ (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) $) NIL (|has| $ (-6 -4255)))) (-1614 (($ (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255))) (($ (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020))))) (-3503 (((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $ (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $ (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020))))) (-2506 (((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) $) 32)) (-2632 ((|#1| $ (-1074) |#1|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-1074)) NIL)) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255))) (((-592 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255)))) (-2897 (($ $) 48)) (-2409 (($ (-366)) 22) (($ (-366) (-1074)) 21)) (-3800 (((-366) $) 34)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-1074) $) NIL (|has| (-1074) (-789)))) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255))) (((-592 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) (((-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020))))) (-3478 (((-1074) $) NIL (|has| (-1074) (-789)))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256))) (($ (-1 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL)) (-4076 (((-592 (-1074)) $) 39)) (-1522 (((-108) (-1074) $) NIL)) (-2908 (((-1074) $) 35)) (-3955 (((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) $) NIL)) (-3985 (($ (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) $) NIL)) (-4142 (((-592 (-1074)) $) NIL)) (-3845 (((-108) (-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3110 ((|#1| $) NIL (|has| (-1074) (-789)))) (-3207 (((-3 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) "failed") (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL)) (-2042 (($ $ |#1|) NIL (|has| $ (-6 -4256)))) (-1881 (((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) $) NIL)) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) NIL (-12 (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020)))) (($ $ (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) NIL (-12 (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020)))) (($ $ (-273 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) NIL (-12 (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020)))) (($ $ (-592 (-273 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))))) NIL (-12 (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) 37)) (-3410 ((|#1| $ (-1074) |#1|) NIL) ((|#1| $ (-1074)) 42)) (-3981 (($ (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) NIL) (($) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) (((-713) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020)))) (((-713) (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-567 (-501))))) (-1279 (($ (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) NIL)) (-1270 (((-798) $) 20)) (-2881 (($ $) 25)) (-1665 (($ (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) NIL)) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 19)) (-3596 (((-713) $) 41 (|has| $ (-6 -4255)))))
+(((-561 |#1|) (-13 (-342 (-366) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) (-1104 (-1074) |#1|) (-10 -8 (-6 -4255) (-15 -2897 ($ $)))) (-1020)) (T -561))
+((-2897 (*1 *1 *1) (-12 (-5 *1 (-561 *2)) (-4 *2 (-1020)))))
+(-13 (-342 (-366) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) (-1104 (-1074) |#1|) (-10 -8 (-6 -4255) (-15 -2897 ($ $))))
+((-2783 (((-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) $) 15)) (-4076 (((-592 |#2|) $) 19)) (-1522 (((-108) |#2| $) 12)))
+(((-562 |#1| |#2| |#3|) (-10 -8 (-15 -4076 ((-592 |#2|) |#1|)) (-15 -1522 ((-108) |#2| |#1|)) (-15 -2783 ((-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) |#1|))) (-563 |#2| |#3|) (-1020) (-1020)) (T -562))
+NIL
+(-10 -8 (-15 -4076 ((-592 |#2|) |#1|)) (-15 -1522 ((-108) |#2| |#1|)) (-15 -2783 ((-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) |#1|)))
+((-1260 (((-108) $ $) 19 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (-3330 (((-108) $ (-713)) 8)) (-1608 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 45 (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 55 (|has| $ (-6 -4255)))) (-2772 (((-3 |#2| "failed") |#1| $) 61)) (-2305 (($) 7 T CONST)) (-3137 (($ $) 58 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255))))) (-2592 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 47 (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 46 (|has| $ (-6 -4255))) (((-3 |#2| "failed") |#1| $) 62)) (-1614 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 54 (|has| $ (-6 -4255)))) (-3503 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 56 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255)))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 53 (|has| $ (-6 -4255))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 52 (|has| $ (-6 -4255)))) (-3702 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 30 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) 9)) (-1749 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (-4076 (((-592 |#1|) $) 63)) (-1522 (((-108) |#1| $) 64)) (-3955 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 39)) (-3985 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 40)) (-2012 (((-1038) $) 21 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (-3207 (((-3 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) "failed") (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 51)) (-1881 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 41)) (-3006 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))))) 26 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 25 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 24 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 23 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3981 (($) 49) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 48)) (-2040 (((-713) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 31 (|has| $ (-6 -4255))) (((-713) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-2749 (((-501) $) 59 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-567 (-501))))) (-1279 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 50)) (-1270 (((-798) $) 18 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-566 (-798))))) (-1665 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 42)) (-3633 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-563 |#1| |#2|) (-131) (-1020) (-1020)) (T -563))
+((-1522 (*1 *2 *3 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-5 *2 (-108)))) (-4076 (*1 *2 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-5 *2 (-592 *3)))) (-2592 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))) (-2772 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
+(-13 (-209 (-2 (|:| -3423 |t#1|) (|:| -2544 |t#2|))) (-10 -8 (-15 -1522 ((-108) |t#1| $)) (-15 -4076 ((-592 |t#1|) $)) (-15 -2592 ((-3 |t#2| "failed") |t#1| $)) (-15 -2772 ((-3 |t#2| "failed") |t#1| $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T) ((-97) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) ((-566 (-798)) -3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-566 (-798)))) ((-142 #0#) . T) ((-567 (-501)) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-567 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-288 #0#) -12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))) ((-464 #0#) . T) ((-486 #0# #0#) -12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))) ((-1020) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) ((-1127) . T))
+((-2133 (((-565 |#2|) |#1|) 15)) (-3961 (((-3 |#1| "failed") (-565 |#2|)) 19)))
+(((-564 |#1| |#2|) (-10 -7 (-15 -2133 ((-565 |#2|) |#1|)) (-15 -3961 ((-3 |#1| "failed") (-565 |#2|)))) (-789) (-789)) (T -564))
+((-3961 (*1 *2 *3) (|partial| -12 (-5 *3 (-565 *4)) (-4 *4 (-789)) (-4 *2 (-789)) (-5 *1 (-564 *2 *4)))) (-2133 (*1 *2 *3) (-12 (-5 *2 (-565 *4)) (-5 *1 (-564 *3 *4)) (-4 *3 (-789)) (-4 *4 (-789)))))
+(-10 -7 (-15 -2133 ((-565 |#2|) |#1|)) (-15 -3961 ((-3 |#1| "failed") (-565 |#2|))))
+((-1260 (((-108) $ $) NIL)) (-2529 (((-3 (-1091) "failed") $) 37)) (-1928 (((-1178) $ (-713)) 26)) (-1916 (((-713) $) 25)) (-2972 (((-110) $) 12)) (-3800 (((-1091) $) 20)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-1581 (($ (-110) (-592 |#1|) (-713)) 30) (($ (-1091)) 31)) (-3069 (((-108) $ (-110)) 18) (((-108) $ (-1091)) 16)) (-1751 (((-713) $) 22)) (-2012 (((-1038) $) NIL)) (-2749 (((-827 (-525)) $) 77 (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) 84 (|has| |#1| (-567 (-827 (-357))))) (((-501) $) 69 (|has| |#1| (-567 (-501))))) (-1270 (((-798) $) 55)) (-3538 (((-592 |#1|) $) 24)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 41)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 42)))
+(((-565 |#1|) (-13 (-127) (-819 |#1|) (-10 -8 (-15 -3800 ((-1091) $)) (-15 -2972 ((-110) $)) (-15 -3538 ((-592 |#1|) $)) (-15 -1751 ((-713) $)) (-15 -1581 ($ (-110) (-592 |#1|) (-713))) (-15 -1581 ($ (-1091))) (-15 -2529 ((-3 (-1091) "failed") $)) (-15 -3069 ((-108) $ (-110))) (-15 -3069 ((-108) $ (-1091))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|))) (-789)) (T -565))
+((-3800 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-2972 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-1751 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-1581 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-110)) (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-789)) (-5 *1 (-565 *5)))) (-1581 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-2529 (*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-565 *3)) (-4 *3 (-789)))) (-3069 (*1 *2 *1 *3) (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789)))) (-3069 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789)))))
+(-13 (-127) (-819 |#1|) (-10 -8 (-15 -3800 ((-1091) $)) (-15 -2972 ((-110) $)) (-15 -3538 ((-592 |#1|) $)) (-15 -1751 ((-713) $)) (-15 -1581 ($ (-110) (-592 |#1|) (-713))) (-15 -1581 ($ (-1091))) (-15 -2529 ((-3 (-1091) "failed") $)) (-15 -3069 ((-108) $ (-110))) (-15 -3069 ((-108) $ (-1091))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|)))
+((-1270 ((|#1| $) 6)))
+(((-566 |#1|) (-131) (-1127)) (T -566))
+((-1270 (*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-1127)))))
+(-13 (-10 -8 (-15 -1270 (|t#1| $))))
+((-2749 ((|#1| $) 6)))
+(((-567 |#1|) (-131) (-1127)) (T -567))
+((-2749 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-1127)))))
+(-13 (-10 -8 (-15 -2749 (|t#1| $))))
+((-1236 (((-3 (-1087 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|)) 15) (((-3 (-1087 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)) 16)))
+(((-568 |#1| |#2|) (-10 -7 (-15 -1236 ((-3 (-1087 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|))) (-15 -1236 ((-3 (-1087 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|)))) (-13 (-138) (-27) (-968 (-525)) (-968 (-385 (-525)))) (-1149 |#1|)) (T -568))
+((-1236 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1149 *5)) (-4 *5 (-13 (-138) (-27) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-1087 (-385 *6))) (-5 *1 (-568 *5 *6)) (-5 *3 (-385 *6)))) (-1236 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-138) (-27) (-968 (-525)) (-968 (-385 (-525))))) (-4 *5 (-1149 *4)) (-5 *2 (-1087 (-385 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-385 *5)))))
+(-10 -7 (-15 -1236 ((-3 (-1087 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|))) (-15 -1236 ((-3 (-1087 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 (-396 |#2|) |#2|))))
+((-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) 10)))
+(((-569 |#1| |#2|) (-10 -8 (-15 -1270 (|#1| |#2|)) (-15 -1270 (|#1| (-525))) (-15 -1270 ((-798) |#1|))) (-570 |#2|) (-977)) (T -569))
+NIL
+(-10 -8 (-15 -1270 (|#1| |#2|)) (-15 -1270 (|#1| (-525))) (-15 -1270 ((-798) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 36)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#1| $) 37)))
+(((-570 |#1|) (-131) (-977)) (T -570))
+((-1270 (*1 *1 *2) (-12 (-4 *1 (-570 *2)) (-4 *2 (-977)))))
+(-13 (-977) (-594 |t#1|) (-10 -8 (-15 -1270 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-669) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-1436 (((-525) $) NIL (|has| |#1| (-787)))) (-2305 (($) NIL T CONST)) (-3762 (((-3 $ "failed") $) NIL)) (-3017 (((-108) $) NIL (|has| |#1| (-787)))) (-1985 (((-108) $) NIL)) (-1498 ((|#1| $) 13)) (-3912 (((-108) $) NIL (|has| |#1| (-787)))) (-2371 (($ $ $) NIL (|has| |#1| (-787)))) (-2535 (($ $ $) NIL (|has| |#1| (-787)))) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1512 ((|#3| $) 15)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL)) (-2104 (((-713)) 20)) (-2086 (($ $) NIL (|has| |#1| (-787)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) 12 T CONST)) (-4045 (((-108) $ $) NIL (|has| |#1| (-787)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| |#1| (-787)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-787)))) (-4100 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-571 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -4100 ($ $ |#3|)) (-15 -4100 ($ |#1| |#3|)) (-15 -1498 (|#1| $)) (-15 -1512 (|#3| $)))) (-37 |#2|) (-160) (|SubsetCategory| (-669) |#2|)) (T -571))
+((-4100 (*1 *1 *1 *2) (-12 (-4 *4 (-160)) (-5 *1 (-571 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-669) *4)))) (-4100 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-571 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-669) *4)))) (-1498 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-37 *3)) (-5 *1 (-571 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-669) *3)))) (-1512 (*1 *2 *1) (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4)) (-5 *1 (-571 *3 *4 *2)) (-4 *3 (-37 *4)))))
+(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -4100 ($ $ |#3|)) (-15 -4100 ($ |#1| |#3|)) (-15 -1498 (|#1| $)) (-15 -1512 (|#3| $))))
+((-2380 ((|#2| |#2| (-1091) (-1091)) 18)))
+(((-572 |#1| |#2|) (-10 -7 (-15 -2380 (|#2| |#2| (-1091) (-1091)))) (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1113) (-893) (-29 |#1|))) (T -572))
+((-2380 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-1113) (-893) (-29 *4))))))
+(-10 -7 (-15 -2380 (|#2| |#2| (-1091) (-1091))))
+((-1260 (((-108) $ $) 56)) (-1989 (((-108) $) 52)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-3854 ((|#1| $) 49)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3197 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3787 (((-2 (|:| -3659 $) (|:| -2281 (-385 |#2|))) (-385 |#2|)) 97 (|has| |#1| (-341)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-3898 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-1726 (($ $ $) NIL (|has| |#1| (-341)))) (-2571 (($ $) 24)) (-3762 (((-3 $ "failed") $) 75)) (-1704 (($ $ $) NIL (|has| |#1| (-341)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3973 (((-525) $) 19)) (-1985 (((-108) $) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1788 (((-108) $) 36)) (-2352 (($ |#1| (-525)) 21)) (-2548 ((|#1| $) 51)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-341)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) 87 (|has| |#1| (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-1680 (((-3 $ "failed") $ $) 79)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1290 (((-713) $) 99 (|has| |#1| (-341)))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 98 (|has| |#1| (-341)))) (-2523 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1091)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-1587 (((-525) $) 34)) (-2749 (((-385 |#2|) $) 42)) (-1270 (((-798) $) 62) (($ (-525)) 32) (($ $) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) 31) (($ |#2|) 22)) (-3468 ((|#1| $ (-525)) 63)) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 9 T CONST)) (-3363 (($) 12 T CONST)) (-2093 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1091)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3994 (((-108) $ $) 17)) (-4090 (($ $) 46) (($ $ $) NIL)) (-4080 (($ $ $) 76)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 26) (($ $ $) 44)))
+(((-573 |#1| |#2|) (-13 (-211 |#2|) (-517) (-567 (-385 |#2|)) (-389 |#1|) (-968 |#2|) (-10 -8 (-15 -1788 ((-108) $)) (-15 -1587 ((-525) $)) (-15 -3973 ((-525) $)) (-15 -2571 ($ $)) (-15 -2548 (|#1| $)) (-15 -3854 (|#1| $)) (-15 -3468 (|#1| $ (-525))) (-15 -2352 ($ |#1| (-525))) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-286)) (-15 -3787 ((-2 (|:| -3659 $) (|:| -2281 (-385 |#2|))) (-385 |#2|)))) |%noBranch|))) (-517) (-1149 |#1|)) (T -573))
+((-1788 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-108)) (-5 *1 (-573 *3 *4)) (-4 *4 (-1149 *3)))) (-1587 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4)) (-4 *4 (-1149 *3)))) (-3973 (*1 *2 *1) (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4)) (-4 *4 (-1149 *3)))) (-2571 (*1 *1 *1) (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1149 *2)))) (-2548 (*1 *2 *1) (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1149 *2)))) (-3854 (*1 *2 *1) (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1149 *2)))) (-3468 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4)) (-4 *4 (-1149 *2)))) (-2352 (*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4)) (-4 *4 (-1149 *2)))) (-3787 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *4 (-517)) (-4 *5 (-1149 *4)) (-5 *2 (-2 (|:| -3659 (-573 *4 *5)) (|:| -2281 (-385 *5)))) (-5 *1 (-573 *4 *5)) (-5 *3 (-385 *5)))))
+(-13 (-211 |#2|) (-517) (-567 (-385 |#2|)) (-389 |#1|) (-968 |#2|) (-10 -8 (-15 -1788 ((-108) $)) (-15 -1587 ((-525) $)) (-15 -3973 ((-525) $)) (-15 -2571 ($ $)) (-15 -2548 (|#1| $)) (-15 -3854 (|#1| $)) (-15 -3468 (|#1| $ (-525))) (-15 -2352 ($ |#1| (-525))) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-6 (-286)) (-15 -3787 ((-2 (|:| -3659 $) (|:| -2281 (-385 |#2|))) (-385 |#2|)))) |%noBranch|)))
+((-3221 (((-592 |#6|) (-592 |#4|) (-108)) 47)) (-3978 ((|#6| |#6|) 40)))
+(((-574 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3978 (|#6| |#6|)) (-15 -3221 ((-592 |#6|) (-592 |#4|) (-108)))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|) (-1029 |#1| |#2| |#3| |#4|)) (T -574))
+((-3221 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *10)) (-5 *1 (-574 *5 *6 *7 *8 *9 *10)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *10 (-1029 *5 *6 *7 *8)))) (-3978 (*1 *2 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *1 (-574 *3 *4 *5 *6 *7 *2)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *2 (-1029 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3978 (|#6| |#6|)) (-15 -3221 ((-592 |#6|) (-592 |#4|) (-108))))
+((-3536 (((-108) |#3| (-713) (-592 |#3|)) 23)) (-1435 (((-3 (-2 (|:| |polfac| (-592 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-592 (-1087 |#3|)))) "failed") |#3| (-592 (-1087 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1494 (-592 (-2 (|:| |irr| |#4|) (|:| -1623 (-525)))))) (-592 |#3|) (-592 |#1|) (-592 |#3|)) 55)))
+(((-575 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3536 ((-108) |#3| (-713) (-592 |#3|))) (-15 -1435 ((-3 (-2 (|:| |polfac| (-592 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-592 (-1087 |#3|)))) "failed") |#3| (-592 (-1087 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1494 (-592 (-2 (|:| |irr| |#4|) (|:| -1623 (-525)))))) (-592 |#3|) (-592 |#1|) (-592 |#3|)))) (-789) (-735) (-286) (-884 |#3| |#2| |#1|)) (T -575))
+((-1435 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1494 (-592 (-2 (|:| |irr| *10) (|:| -1623 (-525))))))) (-5 *6 (-592 *3)) (-5 *7 (-592 *8)) (-4 *8 (-789)) (-4 *3 (-286)) (-4 *10 (-884 *3 *9 *8)) (-4 *9 (-735)) (-5 *2 (-2 (|:| |polfac| (-592 *10)) (|:| |correct| *3) (|:| |corrfact| (-592 (-1087 *3))))) (-5 *1 (-575 *8 *9 *3 *10)) (-5 *4 (-592 (-1087 *3))))) (-3536 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-713)) (-5 *5 (-592 *3)) (-4 *3 (-286)) (-4 *6 (-789)) (-4 *7 (-735)) (-5 *2 (-108)) (-5 *1 (-575 *6 *7 *3 *8)) (-4 *8 (-884 *3 *7 *6)))))
+(-10 -7 (-15 -3536 ((-108) |#3| (-713) (-592 |#3|))) (-15 -1435 ((-3 (-2 (|:| |polfac| (-592 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-592 (-1087 |#3|)))) "failed") |#3| (-592 (-1087 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1494 (-592 (-2 (|:| |irr| |#4|) (|:| -1623 (-525)))))) (-592 |#3|) (-592 |#1|) (-592 |#3|))))
+((-1260 (((-108) $ $) NIL)) (-4143 (((-592 |#1|) $) NIL)) (-2305 (($) NIL T CONST)) (-3762 (((-3 $ "failed") $) NIL)) (-1985 (((-108) $) NIL)) (-2901 (($ $) 67)) (-1415 (((-610 |#1| |#2|) $) 52)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 70)) (-3185 (((-592 (-273 |#2|)) $ $) 33)) (-2012 (((-1038) $) NIL)) (-1250 (($ (-610 |#1| |#2|)) 48)) (-3700 (($ $ $) NIL)) (-2222 (($ $ $) NIL)) (-1270 (((-798) $) 58) (((-1186 |#1| |#2|) $) NIL) (((-1191 |#1| |#2|) $) 66)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3363 (($) 53 T CONST)) (-1787 (((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $) 31)) (-2170 (((-592 (-610 |#1| |#2|)) (-592 |#1|)) 65)) (-3379 (((-592 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $) 37)) (-3994 (((-108) $ $) 54)) (-4100 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 44)))
+(((-576 |#1| |#2| |#3|) (-13 (-450) (-10 -8 (-15 -1250 ($ (-610 |#1| |#2|))) (-15 -1415 ((-610 |#1| |#2|) $)) (-15 -3379 ((-592 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $)) (-15 -1270 ((-1186 |#1| |#2|) $)) (-15 -1270 ((-1191 |#1| |#2|) $)) (-15 -2901 ($ $)) (-15 -4143 ((-592 |#1|) $)) (-15 -2170 ((-592 (-610 |#1| |#2|)) (-592 |#1|))) (-15 -1787 ((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $)) (-15 -3185 ((-592 (-273 |#2|)) $ $)))) (-789) (-13 (-160) (-660 (-385 (-525)))) (-856)) (T -576))
+((-1250 (*1 *1 *2) (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-5 *1 (-576 *3 *4 *5)) (-14 *5 (-856)))) (-1415 (*1 *2 *1) (-12 (-5 *2 (-610 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| (-828 *3)) (|:| |c| *4)))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-1191 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-2901 (*1 *1 *1) (-12 (-5 *1 (-576 *2 *3 *4)) (-4 *2 (-789)) (-4 *3 (-13 (-160) (-660 (-385 (-525))))) (-14 *4 (-856)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-610 *4 *5))) (-5 *1 (-576 *4 *5 *6)) (-4 *5 (-13 (-160) (-660 (-385 (-525))))) (-14 *6 (-856)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| (-617 *3)) (|:| |c| *4)))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))) (-3185 (*1 *2 *1 *1) (-12 (-5 *2 (-592 (-273 *4))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))))
+(-13 (-450) (-10 -8 (-15 -1250 ($ (-610 |#1| |#2|))) (-15 -1415 ((-610 |#1| |#2|) $)) (-15 -3379 ((-592 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $)) (-15 -1270 ((-1186 |#1| |#2|) $)) (-15 -1270 ((-1191 |#1| |#2|) $)) (-15 -2901 ($ $)) (-15 -4143 ((-592 |#1|) $)) (-15 -2170 ((-592 (-610 |#1| |#2|)) (-592 |#1|))) (-15 -1787 ((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $)) (-15 -3185 ((-592 (-273 |#2|)) $ $))))
+((-3221 (((-592 (-1062 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108)) 72) (((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108)) 58)) (-3339 (((-108) (-592 (-722 |#1| (-800 |#2|)))) 23)) (-2037 (((-592 (-1062 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108)) 71)) (-2903 (((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108)) 57)) (-1933 (((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|)))) 27)) (-3174 (((-3 (-592 (-722 |#1| (-800 |#2|))) "failed") (-592 (-722 |#1| (-800 |#2|)))) 26)))
+(((-577 |#1| |#2|) (-10 -7 (-15 -3339 ((-108) (-592 (-722 |#1| (-800 |#2|))))) (-15 -3174 ((-3 (-592 (-722 |#1| (-800 |#2|))) "failed") (-592 (-722 |#1| (-800 |#2|))))) (-15 -1933 ((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|))))) (-15 -2903 ((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -2037 ((-592 (-1062 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -3221 ((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -3221 ((-592 (-1062 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108)))) (-429) (-592 (-1091))) (T -577))
+((-3221 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1091))) (-5 *2 (-592 (-1062 *5 (-497 (-800 *6)) (-800 *6) (-722 *5 (-800 *6))))) (-5 *1 (-577 *5 *6)))) (-3221 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1091))) (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-577 *5 *6)))) (-2037 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1091))) (-5 *2 (-592 (-1062 *5 (-497 (-800 *6)) (-800 *6) (-722 *5 (-800 *6))))) (-5 *1 (-577 *5 *6)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1091))) (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-577 *5 *6)))) (-1933 (*1 *2 *2) (-12 (-5 *2 (-592 (-722 *3 (-800 *4)))) (-4 *3 (-429)) (-14 *4 (-592 (-1091))) (-5 *1 (-577 *3 *4)))) (-3174 (*1 *2 *2) (|partial| -12 (-5 *2 (-592 (-722 *3 (-800 *4)))) (-4 *3 (-429)) (-14 *4 (-592 (-1091))) (-5 *1 (-577 *3 *4)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-592 (-722 *4 (-800 *5)))) (-4 *4 (-429)) (-14 *5 (-592 (-1091))) (-5 *2 (-108)) (-5 *1 (-577 *4 *5)))))
+(-10 -7 (-15 -3339 ((-108) (-592 (-722 |#1| (-800 |#2|))))) (-15 -3174 ((-3 (-592 (-722 |#1| (-800 |#2|))) "failed") (-592 (-722 |#1| (-800 |#2|))))) (-15 -1933 ((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|))))) (-15 -2903 ((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -2037 ((-592 (-1062 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -3221 ((-592 (-974 |#1| |#2|)) (-592 (-722 |#1| (-800 |#2|))) (-108))) (-15 -3221 ((-592 (-1062 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|)))) (-592 (-722 |#1| (-800 |#2|))) (-108))))
+((-2351 (($ $) 38)) (-1603 (($ $) 21)) (-2320 (($ $) 37)) (-1569 (($ $) 22)) (-2382 (($ $) 36)) (-2193 (($ $) 23)) (-1535 (($) 48)) (-1415 (($ $) 45)) (-3071 (($ $) 17)) (-2608 (($ $ (-1013 $)) 7) (($ $ (-1091)) 6)) (-1250 (($ $) 46)) (-1511 (($ $) 15)) (-1555 (($ $) 16)) (-2396 (($ $) 35)) (-2209 (($ $) 24)) (-2367 (($ $) 34)) (-2176 (($ $) 25)) (-2335 (($ $) 33)) (-1584 (($ $) 26)) (-2438 (($ $) 44)) (-2257 (($ $) 32)) (-2410 (($ $) 43)) (-2226 (($ $) 31)) (-2464 (($ $) 42)) (-2287 (($ $) 30)) (-2687 (($ $) 41)) (-2303 (($ $) 29)) (-2450 (($ $) 40)) (-2273 (($ $) 28)) (-2424 (($ $) 39)) (-2242 (($ $) 27)) (-2439 (($ $) 19)) (-1582 (($ $) 20)) (-3917 (($ $) 18)) (** (($ $ $) 47)))
(((-578) (-131)) (T -578))
-((-1767 (*1 *1 *1) (-4 *1 (-578))) (-1344 (*1 *1 *1) (-4 *1 (-578))) (-3655 (*1 *1 *1) (-4 *1 (-578))) (-1836 (*1 *1 *1) (-4 *1 (-578))) (-3422 (*1 *1 *1) (-4 *1 (-578))) (-3393 (*1 *1 *1) (-4 *1 (-578))))
-(-13 (-892) (-1112) (-10 -8 (-15 -1767 ($ $)) (-15 -1344 ($ $)) (-15 -3655 ($ $)) (-15 -1836 ($ $)) (-15 -3422 ($ $)) (-15 -3393 ($ $))))
-(((-34) . T) ((-91) . T) ((-263) . T) ((-466) . T) ((-892) . T) ((-1112) . T) ((-1115) . T))
-((-4159 (((-110) (-110)) 83)) (-1836 ((|#2| |#2|) 30)) (-3113 ((|#2| |#2| (-1012 |#2|)) 79) ((|#2| |#2| (-1090)) 52)) (-3393 ((|#2| |#2|) 29)) (-3422 ((|#2| |#2|) 31)) (-3824 (((-108) (-110)) 34)) (-1344 ((|#2| |#2|) 26)) (-1767 ((|#2| |#2|) 28)) (-3655 ((|#2| |#2|) 27)))
-(((-579 |#1| |#2|) (-10 -7 (-15 -3824 ((-108) (-110))) (-15 -4159 ((-110) (-110))) (-15 -1767 (|#2| |#2|)) (-15 -1344 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -1836 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -3422 (|#2| |#2|)) (-15 -3113 (|#2| |#2| (-1090))) (-15 -3113 (|#2| |#2| (-1012 |#2|)))) (-13 (-789) (-517)) (-13 (-408 |#1|) (-933) (-1112))) (T -579))
-((-3113 (*1 *2 *2 *3) (-12 (-5 *3 (-1012 *2)) (-4 *2 (-13 (-408 *4) (-933) (-1112))) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2)))) (-3113 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2)) (-4 *2 (-13 (-408 *4) (-933) (-1112))))) (-3422 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-933) (-1112))))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-933) (-1112))))) (-1836 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-933) (-1112))))) (-3655 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-933) (-1112))))) (-1344 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-933) (-1112))))) (-1767 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-933) (-1112))))) (-4159 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *4)) (-4 *4 (-13 (-408 *3) (-933) (-1112))))) (-3824 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-579 *4 *5)) (-4 *5 (-13 (-408 *4) (-933) (-1112))))))
-(-10 -7 (-15 -3824 ((-108) (-110))) (-15 -4159 ((-110) (-110))) (-15 -1767 (|#2| |#2|)) (-15 -1344 (|#2| |#2|)) (-15 -3655 (|#2| |#2|)) (-15 -1836 (|#2| |#2|)) (-15 -3393 (|#2| |#2|)) (-15 -3422 (|#2| |#2|)) (-15 -3113 (|#2| |#2| (-1090))) (-15 -3113 (|#2| |#2| (-1012 |#2|))))
-((-2818 (((-457 |#1| |#2|) (-227 |#1| |#2|)) 53)) (-3469 (((-592 (-227 |#1| |#2|)) (-592 (-457 |#1| |#2|))) 68)) (-1709 (((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-799 |#1|)) 70) (((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)) (-799 |#1|)) 69)) (-3885 (((-2 (|:| |gblist| (-592 (-227 |#1| |#2|))) (|:| |gvlist| (-592 (-525)))) (-592 (-457 |#1| |#2|))) 108)) (-2466 (((-592 (-457 |#1| |#2|)) (-799 |#1|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|))) 83)) (-3650 (((-2 (|:| |glbase| (-592 (-227 |#1| |#2|))) (|:| |glval| (-592 (-525)))) (-592 (-227 |#1| |#2|))) 118)) (-3936 (((-1172 |#2|) (-457 |#1| |#2|) (-592 (-457 |#1| |#2|))) 58)) (-3562 (((-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|))) 41)) (-2995 (((-227 |#1| |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|))) 50)) (-2684 (((-227 |#1| |#2|) (-592 |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|))) 91)))
-(((-580 |#1| |#2|) (-10 -7 (-15 -3885 ((-2 (|:| |gblist| (-592 (-227 |#1| |#2|))) (|:| |gvlist| (-592 (-525)))) (-592 (-457 |#1| |#2|)))) (-15 -3650 ((-2 (|:| |glbase| (-592 (-227 |#1| |#2|))) (|:| |glval| (-592 (-525)))) (-592 (-227 |#1| |#2|)))) (-15 -3469 ((-592 (-227 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -1709 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)) (-799 |#1|))) (-15 -1709 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-799 |#1|))) (-15 -3562 ((-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -3936 ((-1172 |#2|) (-457 |#1| |#2|) (-592 (-457 |#1| |#2|)))) (-15 -2684 ((-227 |#1| |#2|) (-592 |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -2466 ((-592 (-457 |#1| |#2|)) (-799 |#1|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -2995 ((-227 |#1| |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -2818 ((-457 |#1| |#2|) (-227 |#1| |#2|)))) (-592 (-1090)) (-429)) (T -580))
-((-2818 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *2 (-457 *4 *5)) (-5 *1 (-580 *4 *5)))) (-2995 (*1 *2 *2 *3) (-12 (-5 *2 (-227 *4 *5)) (-5 *3 (-592 (-227 *4 *5))) (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))) (-2466 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-799 *4)) (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))) (-2684 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-227 *5 *6)) (-5 *3 (-592 *6)) (-5 *4 (-592 (-227 *5 *6))) (-14 *5 (-592 (-1090))) (-4 *6 (-429)) (-5 *1 (-580 *5 *6)))) (-3936 (*1 *2 *3 *4) (-12 (-5 *3 (-457 *5 *6)) (-5 *4 (-592 (-457 *5 *6))) (-14 *5 (-592 (-1090))) (-4 *6 (-429)) (-5 *2 (-1172 *6)) (-5 *1 (-580 *5 *6)))) (-3562 (*1 *2 *2) (-12 (-5 *2 (-592 (-457 *3 *4))) (-14 *3 (-592 (-1090))) (-4 *4 (-429)) (-5 *1 (-580 *3 *4)))) (-1709 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-799 *5)) (-14 *5 (-592 (-1090))) (-4 *6 (-429)) (-5 *2 (-457 *5 *6)) (-5 *1 (-580 *5 *6)))) (-1709 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-799 *5)) (-14 *5 (-592 (-1090))) (-4 *6 (-429)) (-5 *2 (-457 *5 *6)) (-5 *1 (-580 *5 *6)))) (-3469 (*1 *2 *3) (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *2 (-592 (-227 *4 *5))) (-5 *1 (-580 *4 *5)))) (-3650 (*1 *2 *3) (-12 (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *2 (-2 (|:| |glbase| (-592 (-227 *4 *5))) (|:| |glval| (-592 (-525))))) (-5 *1 (-580 *4 *5)) (-5 *3 (-592 (-227 *4 *5))))) (-3885 (*1 *2 *3) (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *2 (-2 (|:| |gblist| (-592 (-227 *4 *5))) (|:| |gvlist| (-592 (-525))))) (-5 *1 (-580 *4 *5)))))
-(-10 -7 (-15 -3885 ((-2 (|:| |gblist| (-592 (-227 |#1| |#2|))) (|:| |gvlist| (-592 (-525)))) (-592 (-457 |#1| |#2|)))) (-15 -3650 ((-2 (|:| |glbase| (-592 (-227 |#1| |#2|))) (|:| |glval| (-592 (-525)))) (-592 (-227 |#1| |#2|)))) (-15 -3469 ((-592 (-227 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -1709 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)) (-799 |#1|))) (-15 -1709 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-799 |#1|))) (-15 -3562 ((-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -3936 ((-1172 |#2|) (-457 |#1| |#2|) (-592 (-457 |#1| |#2|)))) (-15 -2684 ((-227 |#1| |#2|) (-592 |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -2466 ((-592 (-457 |#1| |#2|)) (-799 |#1|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -2995 ((-227 |#1| |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -2818 ((-457 |#1| |#2|) (-227 |#1| |#2|))))
-((-1893 (((-108) $ $) NIL (-3309 (|has| (-51) (-1019)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-1019))))) (-4001 (($) NIL) (($ (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))))) NIL)) (-1840 (((-1177) $ (-1073) (-1073)) NIL (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 (((-51) $ (-1073) (-51)) 16) (((-51) $ (-1090) (-51)) 17)) (-3290 (($ (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-1446 (((-3 (-51) "failed") (-1073) $) NIL)) (-1505 (($) NIL T CONST)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-1019))))) (-2792 (($ (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-3 (-51) "failed") (-1073) $) NIL)) (-2273 (($ (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-1019)))) (($ (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-4004 (((-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-1 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) $ (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-1019)))) (((-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-1 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) $ (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-1 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-2870 (((-51) $ (-1073) (-51)) NIL (|has| $ (-6 -4255)))) (-2796 (((-51) $ (-1073)) NIL)) (-2026 (((-592 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-592 (-51)) $) NIL (|has| $ (-6 -4254)))) (-2705 (($ $) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-1073) $) NIL (|has| (-1073) (-789)))) (-3168 (((-592 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-592 (-51)) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-1019)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019))))) (-1792 (((-1073) $) NIL (|has| (-1073) (-789)))) (-2857 (($ (-1 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3363 (($ (-366)) 9)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (-3309 (|has| (-51) (-1019)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-1019))))) (-4005 (((-592 (-1073)) $) NIL)) (-1699 (((-108) (-1073) $) NIL)) (-2570 (((-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) $) NIL)) (-2573 (($ (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) $) NIL)) (-3222 (((-592 (-1073)) $) NIL)) (-1548 (((-108) (-1073) $) NIL)) (-2663 (((-1037) $) NIL (-3309 (|has| (-51) (-1019)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-1019))))) (-3135 (((-51) $) NIL (|has| (-1073) (-789)))) (-4054 (((-3 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) "failed") (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) $) NIL)) (-1911 (($ $ (-51)) NIL (|has| $ (-6 -4255)))) (-3513 (((-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) $) NIL)) (-3494 (((-108) (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))))) NIL (-12 (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))))) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-1019)))) (($ $ (-273 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))))) NIL (-12 (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))))) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-1019)))) (($ $ (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) NIL (-12 (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))))) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-1019)))) (($ $ (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))))) NIL (-12 (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))))) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-1019)))) (($ $ (-592 (-51)) (-592 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-592 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019))))) (-3171 (((-592 (-51)) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 (((-51) $ (-1073)) 14) (((-51) $ (-1073) (-51)) NIL) (((-51) $ (-1090)) 15)) (-4006 (($) NIL) (($ (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))))) NIL)) (-2686 (((-713) (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-1019)))) (((-713) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019)))) (((-713) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-567 (-501))))) (-1922 (($ (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))))) NIL)) (-1908 (((-797) $) NIL (-3309 (|has| (-51) (-566 (-797))) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-566 (-797)))))) (-3612 (($ (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))))) NIL)) (-2667 (((-108) (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (-3309 (|has| (-51) (-1019)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 (-51))) (-1019))))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-581) (-13 (-1103 (-1073) (-51)) (-10 -8 (-15 -3363 ($ (-366))) (-15 -2705 ($ $)) (-15 -3928 ((-51) $ (-1090))) (-15 -2109 ((-51) $ (-1090) (-51)))))) (T -581))
-((-3363 (*1 *1 *2) (-12 (-5 *2 (-366)) (-5 *1 (-581)))) (-2705 (*1 *1 *1) (-5 *1 (-581))) (-3928 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-51)) (-5 *1 (-581)))) (-2109 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1090)) (-5 *1 (-581)))))
-(-13 (-1103 (-1073) (-51)) (-10 -8 (-15 -3363 ($ (-366))) (-15 -2705 ($ $)) (-15 -3928 ((-51) $ (-1090))) (-15 -2109 ((-51) $ (-1090) (-51)))))
-((-4082 (($ $ |#2|) 10)))
-(((-582 |#1| |#2|) (-10 -8 (-15 -4082 (|#1| |#1| |#2|))) (-583 |#2|) (-160)) (T -582))
-NIL
-(-10 -8 (-15 -4082 (|#1| |#1| |#2|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1922 (($ $ $) 29)) (-1908 (((-797) $) 11)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4082 (($ $ |#1|) 28 (|has| |#1| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+((-1582 (*1 *1 *1) (-4 *1 (-578))) (-2439 (*1 *1 *1) (-4 *1 (-578))) (-3917 (*1 *1 *1) (-4 *1 (-578))) (-3071 (*1 *1 *1) (-4 *1 (-578))) (-1555 (*1 *1 *1) (-4 *1 (-578))) (-1511 (*1 *1 *1) (-4 *1 (-578))))
+(-13 (-893) (-1113) (-10 -8 (-15 -1582 ($ $)) (-15 -2439 ($ $)) (-15 -3917 ($ $)) (-15 -3071 ($ $)) (-15 -1555 ($ $)) (-15 -1511 ($ $))))
+(((-34) . T) ((-91) . T) ((-263) . T) ((-466) . T) ((-893) . T) ((-1113) . T) ((-1116) . T))
+((-2972 (((-110) (-110)) 83)) (-3071 ((|#2| |#2|) 30)) (-2608 ((|#2| |#2| (-1013 |#2|)) 79) ((|#2| |#2| (-1091)) 52)) (-1511 ((|#2| |#2|) 29)) (-1555 ((|#2| |#2|) 31)) (-1863 (((-108) (-110)) 34)) (-2439 ((|#2| |#2|) 26)) (-1582 ((|#2| |#2|) 28)) (-3917 ((|#2| |#2|) 27)))
+(((-579 |#1| |#2|) (-10 -7 (-15 -1863 ((-108) (-110))) (-15 -2972 ((-110) (-110))) (-15 -1582 (|#2| |#2|)) (-15 -2439 (|#2| |#2|)) (-15 -3917 (|#2| |#2|)) (-15 -3071 (|#2| |#2|)) (-15 -1511 (|#2| |#2|)) (-15 -1555 (|#2| |#2|)) (-15 -2608 (|#2| |#2| (-1091))) (-15 -2608 (|#2| |#2| (-1013 |#2|)))) (-13 (-789) (-517)) (-13 (-408 |#1|) (-934) (-1113))) (T -579))
+((-2608 (*1 *2 *2 *3) (-12 (-5 *3 (-1013 *2)) (-4 *2 (-13 (-408 *4) (-934) (-1113))) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2)))) (-2608 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2)) (-4 *2 (-13 (-408 *4) (-934) (-1113))))) (-1555 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1113))))) (-1511 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1113))))) (-3071 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1113))))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1113))))) (-2439 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1113))))) (-1582 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2)) (-4 *2 (-13 (-408 *3) (-934) (-1113))))) (-2972 (*1 *2 *2) (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *4)) (-4 *4 (-13 (-408 *3) (-934) (-1113))))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-579 *4 *5)) (-4 *5 (-13 (-408 *4) (-934) (-1113))))))
+(-10 -7 (-15 -1863 ((-108) (-110))) (-15 -2972 ((-110) (-110))) (-15 -1582 (|#2| |#2|)) (-15 -2439 (|#2| |#2|)) (-15 -3917 (|#2| |#2|)) (-15 -3071 (|#2| |#2|)) (-15 -1511 (|#2| |#2|)) (-15 -1555 (|#2| |#2|)) (-15 -2608 (|#2| |#2| (-1091))) (-15 -2608 (|#2| |#2| (-1013 |#2|))))
+((-1510 (((-457 |#1| |#2|) (-227 |#1| |#2|)) 53)) (-2835 (((-592 (-227 |#1| |#2|)) (-592 (-457 |#1| |#2|))) 68)) (-4036 (((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-800 |#1|)) 70) (((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)) (-800 |#1|)) 69)) (-2546 (((-2 (|:| |gblist| (-592 (-227 |#1| |#2|))) (|:| |gvlist| (-592 (-525)))) (-592 (-457 |#1| |#2|))) 108)) (-2479 (((-592 (-457 |#1| |#2|)) (-800 |#1|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|))) 83)) (-3872 (((-2 (|:| |glbase| (-592 (-227 |#1| |#2|))) (|:| |glval| (-592 (-525)))) (-592 (-227 |#1| |#2|))) 118)) (-1643 (((-1173 |#2|) (-457 |#1| |#2|) (-592 (-457 |#1| |#2|))) 58)) (-2504 (((-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|))) 41)) (-2760 (((-227 |#1| |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|))) 50)) (-2727 (((-227 |#1| |#2|) (-592 |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|))) 91)))
+(((-580 |#1| |#2|) (-10 -7 (-15 -2546 ((-2 (|:| |gblist| (-592 (-227 |#1| |#2|))) (|:| |gvlist| (-592 (-525)))) (-592 (-457 |#1| |#2|)))) (-15 -3872 ((-2 (|:| |glbase| (-592 (-227 |#1| |#2|))) (|:| |glval| (-592 (-525)))) (-592 (-227 |#1| |#2|)))) (-15 -2835 ((-592 (-227 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -4036 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)) (-800 |#1|))) (-15 -4036 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-800 |#1|))) (-15 -2504 ((-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -1643 ((-1173 |#2|) (-457 |#1| |#2|) (-592 (-457 |#1| |#2|)))) (-15 -2727 ((-227 |#1| |#2|) (-592 |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -2479 ((-592 (-457 |#1| |#2|)) (-800 |#1|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -2760 ((-227 |#1| |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -1510 ((-457 |#1| |#2|) (-227 |#1| |#2|)))) (-592 (-1091)) (-429)) (T -580))
+((-1510 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1091))) (-4 *5 (-429)) (-5 *2 (-457 *4 *5)) (-5 *1 (-580 *4 *5)))) (-2760 (*1 *2 *2 *3) (-12 (-5 *2 (-227 *4 *5)) (-5 *3 (-592 (-227 *4 *5))) (-14 *4 (-592 (-1091))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))) (-2479 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-800 *4)) (-14 *4 (-592 (-1091))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))) (-2727 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-227 *5 *6)) (-5 *3 (-592 *6)) (-5 *4 (-592 (-227 *5 *6))) (-14 *5 (-592 (-1091))) (-4 *6 (-429)) (-5 *1 (-580 *5 *6)))) (-1643 (*1 *2 *3 *4) (-12 (-5 *3 (-457 *5 *6)) (-5 *4 (-592 (-457 *5 *6))) (-14 *5 (-592 (-1091))) (-4 *6 (-429)) (-5 *2 (-1173 *6)) (-5 *1 (-580 *5 *6)))) (-2504 (*1 *2 *2) (-12 (-5 *2 (-592 (-457 *3 *4))) (-14 *3 (-592 (-1091))) (-4 *4 (-429)) (-5 *1 (-580 *3 *4)))) (-4036 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-800 *5)) (-14 *5 (-592 (-1091))) (-4 *6 (-429)) (-5 *2 (-457 *5 *6)) (-5 *1 (-580 *5 *6)))) (-4036 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-800 *5)) (-14 *5 (-592 (-1091))) (-4 *6 (-429)) (-5 *2 (-457 *5 *6)) (-5 *1 (-580 *5 *6)))) (-2835 (*1 *2 *3) (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1091))) (-4 *5 (-429)) (-5 *2 (-592 (-227 *4 *5))) (-5 *1 (-580 *4 *5)))) (-3872 (*1 *2 *3) (-12 (-14 *4 (-592 (-1091))) (-4 *5 (-429)) (-5 *2 (-2 (|:| |glbase| (-592 (-227 *4 *5))) (|:| |glval| (-592 (-525))))) (-5 *1 (-580 *4 *5)) (-5 *3 (-592 (-227 *4 *5))))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1091))) (-4 *5 (-429)) (-5 *2 (-2 (|:| |gblist| (-592 (-227 *4 *5))) (|:| |gvlist| (-592 (-525))))) (-5 *1 (-580 *4 *5)))))
+(-10 -7 (-15 -2546 ((-2 (|:| |gblist| (-592 (-227 |#1| |#2|))) (|:| |gvlist| (-592 (-525)))) (-592 (-457 |#1| |#2|)))) (-15 -3872 ((-2 (|:| |glbase| (-592 (-227 |#1| |#2|))) (|:| |glval| (-592 (-525)))) (-592 (-227 |#1| |#2|)))) (-15 -2835 ((-592 (-227 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -4036 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)) (-800 |#1|))) (-15 -4036 ((-457 |#1| |#2|) (-592 (-457 |#1| |#2|)) (-800 |#1|))) (-15 -2504 ((-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -1643 ((-1173 |#2|) (-457 |#1| |#2|) (-592 (-457 |#1| |#2|)))) (-15 -2727 ((-227 |#1| |#2|) (-592 |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -2479 ((-592 (-457 |#1| |#2|)) (-800 |#1|) (-592 (-457 |#1| |#2|)) (-592 (-457 |#1| |#2|)))) (-15 -2760 ((-227 |#1| |#2|) (-227 |#1| |#2|) (-592 (-227 |#1| |#2|)))) (-15 -1510 ((-457 |#1| |#2|) (-227 |#1| |#2|))))
+((-1260 (((-108) $ $) NIL (-3279 (|has| (-51) (-1020)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-1020))))) (-3476 (($) NIL) (($ (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))))) NIL)) (-2782 (((-1178) $ (-1074) (-1074)) NIL (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 (((-51) $ (-1074) (-51)) 16) (((-51) $ (-1091) (-51)) 17)) (-1608 (($ (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255)))) (-2772 (((-3 (-51) "failed") (-1074) $) NIL)) (-2305 (($) NIL T CONST)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-1020))))) (-2592 (($ (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255))) (((-3 (-51) "failed") (-1074) $) NIL)) (-1614 (($ (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-1020)))) (($ (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255)))) (-3503 (((-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-1 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) $ (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-1020)))) (((-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-1 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) $ (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-1 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255)))) (-2632 (((-51) $ (-1074) (-51)) NIL (|has| $ (-6 -4256)))) (-2570 (((-51) $ (-1074)) NIL)) (-3702 (((-592 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255))) (((-592 (-51)) $) NIL (|has| $ (-6 -4255)))) (-2897 (($ $) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-1074) $) NIL (|has| (-1074) (-789)))) (-1749 (((-592 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255))) (((-592 (-51)) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-1020)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-51) (-1020))))) (-3478 (((-1074) $) NIL (|has| (-1074) (-789)))) (-2622 (($ (-1 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4256))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2918 (($ (-366)) 9)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (-3279 (|has| (-51) (-1020)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-1020))))) (-4076 (((-592 (-1074)) $) NIL)) (-1522 (((-108) (-1074) $) NIL)) (-3955 (((-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) $) NIL)) (-3985 (($ (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) $) NIL)) (-4142 (((-592 (-1074)) $) NIL)) (-3845 (((-108) (-1074) $) NIL)) (-2012 (((-1038) $) NIL (-3279 (|has| (-51) (-1020)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-1020))))) (-3110 (((-51) $) NIL (|has| (-1074) (-789)))) (-3207 (((-3 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) "failed") (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) $) NIL)) (-2042 (($ $ (-51)) NIL (|has| $ (-6 -4256)))) (-1881 (((-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) $) NIL)) (-3006 (((-108) (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))))) NIL (-12 (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))))) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-1020)))) (($ $ (-273 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))))) NIL (-12 (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))))) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-1020)))) (($ $ (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) NIL (-12 (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))))) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-1020)))) (($ $ (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))))) NIL (-12 (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))))) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-1020)))) (($ $ (-592 (-51)) (-592 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-592 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-51) (-1020))))) (-1777 (((-592 (-51)) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 (((-51) $ (-1074)) 14) (((-51) $ (-1074) (-51)) NIL) (((-51) $ (-1091)) 15)) (-3981 (($) NIL) (($ (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))))) NIL)) (-2040 (((-713) (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255))) (((-713) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-1020)))) (((-713) (-51) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-51) (-1020)))) (((-713) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-567 (-501))))) (-1279 (($ (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))))) NIL)) (-1270 (((-798) $) NIL (-3279 (|has| (-51) (-566 (-798))) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-566 (-798)))))) (-1665 (($ (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))))) NIL)) (-3633 (((-108) (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (-3279 (|has| (-51) (-1020)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 (-51))) (-1020))))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-581) (-13 (-1104 (-1074) (-51)) (-10 -8 (-15 -2918 ($ (-366))) (-15 -2897 ($ $)) (-15 -3410 ((-51) $ (-1091))) (-15 -1429 ((-51) $ (-1091) (-51)))))) (T -581))
+((-2918 (*1 *1 *2) (-12 (-5 *2 (-366)) (-5 *1 (-581)))) (-2897 (*1 *1 *1) (-5 *1 (-581))) (-3410 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-51)) (-5 *1 (-581)))) (-1429 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1091)) (-5 *1 (-581)))))
+(-13 (-1104 (-1074) (-51)) (-10 -8 (-15 -2918 ($ (-366))) (-15 -2897 ($ $)) (-15 -3410 ((-51) $ (-1091))) (-15 -1429 ((-51) $ (-1091) (-51)))))
+((-4100 (($ $ |#2|) 10)))
+(((-582 |#1| |#2|) (-10 -8 (-15 -4100 (|#1| |#1| |#2|))) (-583 |#2|) (-160)) (T -582))
+NIL
+(-10 -8 (-15 -4100 (|#1| |#1| |#2|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1279 (($ $ $) 29)) (-1270 (((-798) $) 11)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4100 (($ $ |#1|) 28 (|has| |#1| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-583 |#1|) (-131) (-160)) (T -583))
-((-1922 (*1 *1 *1 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-160)))) (-4082 (*1 *1 *1 *2) (-12 (-4 *1 (-583 *2)) (-4 *2 (-160)) (-4 *2 (-341)))))
-(-13 (-660 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -1922 ($ $ $)) (IF (|has| |t#1| (-341)) (-15 -4082 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-982 |#1|) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3957 (((-3 $ "failed")) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3263 (((-3 $ "failed") $ $) NIL)) (-2722 (((-1172 (-632 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-1172 (-632 |#1|)) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1917 (((-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1505 (($) NIL T CONST)) (-2800 (((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed")) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1496 (((-3 $ "failed")) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1460 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2386 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-3440 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1391 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1743 (((-1086 (-886 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-2979 (($ $ (-855)) NIL)) (-3376 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2706 (((-1086 |#1|) $) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2519 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2908 (((-1086 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-1814 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2229 (($ (-1172 |#1|)) NIL (|has| |#2| (-395 |#1|))) (($ (-1172 |#1|) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2866 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2239 (((-855)) NIL (|has| |#2| (-345 |#1|)))) (-2301 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2097 (($ $ (-855)) NIL)) (-2795 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3251 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2775 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-4033 (((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed")) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1850 (((-3 $ "failed")) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2205 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2389 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-1306 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2364 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2568 (((-1086 (-886 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-1640 (($ $ (-855)) NIL)) (-3342 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2900 (((-1086 |#1|) $) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3060 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-2535 (((-1086 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-1506 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2337 (((-1073) $) NIL)) (-3886 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1886 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2597 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2663 (((-1037) $) NIL)) (-2120 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3928 ((|#1| $ (-525)) NIL (|has| |#2| (-395 |#1|)))) (-4093 (((-632 |#1|) (-1172 $)) NIL (|has| |#2| (-395 |#1|))) (((-1172 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1172 $) (-1172 $)) NIL (|has| |#2| (-345 |#1|))) (((-1172 |#1|) $ (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1427 (($ (-1172 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-1172 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-2274 (((-592 (-886 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-592 (-886 |#1|)) (-1172 $)) NIL (|has| |#2| (-345 |#1|)))) (-1518 (($ $ $) NIL)) (-1380 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1908 (((-797) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-2499 (((-1172 $)) NIL (|has| |#2| (-395 |#1|)))) (-1648 (((-592 (-1172 |#1|))) NIL (-3309 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2260 (($ $ $ $) NIL)) (-3132 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3088 (($ (-632 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-2331 (($ $ $) NIL)) (-1447 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3432 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2303 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3875 (($) 15 T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) 17)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-584 |#1| |#2|) (-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -1908 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|))) (-160) (-687 |#1|)) (T -584))
-((-1908 (*1 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-584 *3 *2)) (-4 *2 (-687 *3)))))
-(-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -1908 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|)))
-((-1329 (((-3 (-782 |#2|) "failed") |#2| (-273 |#2|) (-1073)) 82) (((-3 (-782 |#2|) (-2 (|:| |leftHandLimit| (-3 (-782 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-782 |#2|) "failed"))) "failed") |#2| (-273 (-782 |#2|))) 104)) (-3894 (((-3 (-775 |#2|) "failed") |#2| (-273 (-775 |#2|))) 109)))
-(((-585 |#1| |#2|) (-10 -7 (-15 -1329 ((-3 (-782 |#2|) (-2 (|:| |leftHandLimit| (-3 (-782 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-782 |#2|) "failed"))) "failed") |#2| (-273 (-782 |#2|)))) (-15 -3894 ((-3 (-775 |#2|) "failed") |#2| (-273 (-775 |#2|)))) (-15 -1329 ((-3 (-782 |#2|) "failed") |#2| (-273 |#2|) (-1073)))) (-13 (-429) (-789) (-967 (-525)) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|))) (T -585))
-((-1329 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-273 *3)) (-5 *5 (-1073)) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-782 *3)) (-5 *1 (-585 *6 *3)))) (-3894 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-273 (-775 *3))) (-4 *3 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-775 *3)) (-5 *1 (-585 *5 *3)))) (-1329 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-782 *3))) (-4 *3 (-13 (-27) (-1112) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-3 (-782 *3) (-2 (|:| |leftHandLimit| (-3 (-782 *3) "failed")) (|:| |rightHandLimit| (-3 (-782 *3) "failed"))) "failed")) (-5 *1 (-585 *5 *3)))))
-(-10 -7 (-15 -1329 ((-3 (-782 |#2|) (-2 (|:| |leftHandLimit| (-3 (-782 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-782 |#2|) "failed"))) "failed") |#2| (-273 (-782 |#2|)))) (-15 -3894 ((-3 (-775 |#2|) "failed") |#2| (-273 (-775 |#2|)))) (-15 -1329 ((-3 (-782 |#2|) "failed") |#2| (-273 |#2|) (-1073))))
-((-1329 (((-3 (-782 (-385 (-886 |#1|))) "failed") (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))) (-1073)) 80) (((-3 (-782 (-385 (-886 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed"))) "failed") (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|)))) 20) (((-3 (-782 (-385 (-886 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed"))) "failed") (-385 (-886 |#1|)) (-273 (-782 (-886 |#1|)))) 35)) (-3894 (((-775 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|)))) 23) (((-775 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-273 (-775 (-886 |#1|)))) 43)))
-(((-586 |#1|) (-10 -7 (-15 -1329 ((-3 (-782 (-385 (-886 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed"))) "failed") (-385 (-886 |#1|)) (-273 (-782 (-886 |#1|))))) (-15 -1329 ((-3 (-782 (-385 (-886 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed"))) "failed") (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))))) (-15 -3894 ((-775 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-273 (-775 (-886 |#1|))))) (-15 -3894 ((-775 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))))) (-15 -1329 ((-3 (-782 (-385 (-886 |#1|))) "failed") (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))) (-1073)))) (-429)) (T -586))
-((-1329 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-273 (-385 (-886 *6)))) (-5 *5 (-1073)) (-4 *6 (-429)) (-5 *2 (-782 (-385 (-886 *6)))) (-5 *1 (-586 *6)) (-5 *3 (-385 (-886 *6))))) (-3894 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-385 (-886 *5)))) (-4 *5 (-429)) (-5 *2 (-775 (-385 (-886 *5)))) (-5 *1 (-586 *5)) (-5 *3 (-385 (-886 *5))))) (-3894 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-775 (-886 *5)))) (-4 *5 (-429)) (-5 *2 (-775 (-385 (-886 *5)))) (-5 *1 (-586 *5)) (-5 *3 (-385 (-886 *5))))) (-1329 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-385 (-886 *5)))) (-4 *5 (-429)) (-5 *2 (-3 (-782 (-385 (-886 *5))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 *5))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-886 *5))) "failed"))) "failed")) (-5 *1 (-586 *5)) (-5 *3 (-385 (-886 *5))))) (-1329 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-782 (-886 *5)))) (-4 *5 (-429)) (-5 *2 (-3 (-782 (-385 (-886 *5))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 *5))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-886 *5))) "failed"))) "failed")) (-5 *1 (-586 *5)) (-5 *3 (-385 (-886 *5))))))
-(-10 -7 (-15 -1329 ((-3 (-782 (-385 (-886 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed"))) "failed") (-385 (-886 |#1|)) (-273 (-782 (-886 |#1|))))) (-15 -1329 ((-3 (-782 (-385 (-886 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-886 |#1|))) "failed"))) "failed") (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))))) (-15 -3894 ((-775 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-273 (-775 (-886 |#1|))))) (-15 -3894 ((-775 (-385 (-886 |#1|))) (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))))) (-15 -1329 ((-3 (-782 (-385 (-886 |#1|))) "failed") (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))) (-1073))))
-((-4228 (((-3 (-1172 (-385 |#1|)) "failed") (-1172 |#2|) |#2|) 57 (-2480 (|has| |#1| (-341)))) (((-3 (-1172 |#1|) "failed") (-1172 |#2|) |#2|) 42 (|has| |#1| (-341)))) (-3737 (((-108) (-1172 |#2|)) 30)) (-2400 (((-3 (-1172 |#1|) "failed") (-1172 |#2|)) 33)))
-(((-587 |#1| |#2|) (-10 -7 (-15 -3737 ((-108) (-1172 |#2|))) (-15 -2400 ((-3 (-1172 |#1|) "failed") (-1172 |#2|))) (IF (|has| |#1| (-341)) (-15 -4228 ((-3 (-1172 |#1|) "failed") (-1172 |#2|) |#2|)) (-15 -4228 ((-3 (-1172 (-385 |#1|)) "failed") (-1172 |#2|) |#2|)))) (-517) (-588 |#1|)) (T -587))
-((-4228 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1172 *4)) (-4 *4 (-588 *5)) (-2480 (-4 *5 (-341))) (-4 *5 (-517)) (-5 *2 (-1172 (-385 *5))) (-5 *1 (-587 *5 *4)))) (-4228 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1172 *4)) (-4 *4 (-588 *5)) (-4 *5 (-341)) (-4 *5 (-517)) (-5 *2 (-1172 *5)) (-5 *1 (-587 *5 *4)))) (-2400 (*1 *2 *3) (|partial| -12 (-5 *3 (-1172 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517)) (-5 *2 (-1172 *4)) (-5 *1 (-587 *4 *5)))) (-3737 (*1 *2 *3) (-12 (-5 *3 (-1172 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517)) (-5 *2 (-108)) (-5 *1 (-587 *4 *5)))))
-(-10 -7 (-15 -3737 ((-108) (-1172 |#2|))) (-15 -2400 ((-3 (-1172 |#1|) "failed") (-1172 |#2|))) (IF (|has| |#1| (-341)) (-15 -4228 ((-3 (-1172 |#1|) "failed") (-1172 |#2|) |#2|)) (-15 -4228 ((-3 (-1172 (-385 |#1|)) "failed") (-1172 |#2|) |#2|))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-1860 (((-632 |#1|) (-632 $)) 36) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 35)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11) (($ (-525)) 28)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
-(((-588 |#1|) (-131) (-976)) (T -588))
-((-1860 (*1 *2 *3) (-12 (-5 *3 (-632 *1)) (-4 *1 (-588 *4)) (-4 *4 (-976)) (-5 *2 (-632 *4)))) (-1860 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *1)) (-5 *4 (-1172 *1)) (-4 *1 (-588 *5)) (-4 *5 (-976)) (-5 *2 (-2 (|:| -3276 (-632 *5)) (|:| |vec| (-1172 *5)))))))
-(-13 (-976) (-10 -8 (-15 -1860 ((-632 |t#1|) (-632 $))) (-15 -1860 ((-2 (|:| -3276 (-632 |t#1|)) (|:| |vec| (-1172 |t#1|))) (-632 $) (-1172 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-2485 ((|#2| (-592 |#1|) (-592 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-592 |#1|) (-592 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) |#2|) 17) ((|#2| (-592 |#1|) (-592 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|)) 12)))
-(((-589 |#1| |#2|) (-10 -7 (-15 -2485 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|))) (-15 -2485 (|#2| (-592 |#1|) (-592 |#2|) |#1|)) (-15 -2485 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) |#2|)) (-15 -2485 (|#2| (-592 |#1|) (-592 |#2|) |#1| |#2|)) (-15 -2485 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) (-1 |#2| |#1|))) (-15 -2485 (|#2| (-592 |#1|) (-592 |#2|) |#1| (-1 |#2| |#1|)))) (-1019) (-1126)) (T -589))
-((-2485 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1019)) (-4 *2 (-1126)) (-5 *1 (-589 *5 *2)))) (-2485 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-592 *5)) (-5 *4 (-592 *6)) (-4 *5 (-1019)) (-4 *6 (-1126)) (-5 *1 (-589 *5 *6)))) (-2485 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1019)) (-4 *2 (-1126)) (-5 *1 (-589 *5 *2)))) (-2485 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 *5)) (-4 *6 (-1019)) (-4 *5 (-1126)) (-5 *2 (-1 *5 *6)) (-5 *1 (-589 *6 *5)))) (-2485 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1019)) (-4 *2 (-1126)) (-5 *1 (-589 *5 *2)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *6)) (-4 *5 (-1019)) (-4 *6 (-1126)) (-5 *2 (-1 *6 *5)) (-5 *1 (-589 *5 *6)))))
-(-10 -7 (-15 -2485 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|))) (-15 -2485 (|#2| (-592 |#1|) (-592 |#2|) |#1|)) (-15 -2485 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) |#2|)) (-15 -2485 (|#2| (-592 |#1|) (-592 |#2|) |#1| |#2|)) (-15 -2485 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) (-1 |#2| |#1|))) (-15 -2485 (|#2| (-592 |#1|) (-592 |#2|) |#1| (-1 |#2| |#1|))))
-((-4186 (((-592 |#2|) (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|) 16)) (-4004 ((|#2| (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|) 18)) (-1370 (((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|)) 13)))
-(((-590 |#1| |#2|) (-10 -7 (-15 -4186 ((-592 |#2|) (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -4004 (|#2| (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -1370 ((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|)))) (-1126) (-1126)) (T -590))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-592 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-592 *6)) (-5 *1 (-590 *5 *6)))) (-4004 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-592 *5)) (-4 *5 (-1126)) (-4 *2 (-1126)) (-5 *1 (-590 *5 *2)))) (-4186 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-592 *6)) (-4 *6 (-1126)) (-4 *5 (-1126)) (-5 *2 (-592 *5)) (-5 *1 (-590 *6 *5)))))
-(-10 -7 (-15 -4186 ((-592 |#2|) (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -4004 (|#2| (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -1370 ((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|))))
-((-1370 (((-592 |#3|) (-1 |#3| |#1| |#2|) (-592 |#1|) (-592 |#2|)) 13)))
-(((-591 |#1| |#2| |#3|) (-10 -7 (-15 -1370 ((-592 |#3|) (-1 |#3| |#1| |#2|) (-592 |#1|) (-592 |#2|)))) (-1126) (-1126) (-1126)) (T -591))
-((-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-592 *6)) (-5 *5 (-592 *7)) (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-592 *8)) (-5 *1 (-591 *6 *7 *8)))))
-(-10 -7 (-15 -1370 ((-592 |#3|) (-1 |#3| |#1| |#2|) (-592 |#1|) (-592 |#2|))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3871 ((|#1| $) NIL)) (-1899 ((|#1| $) NIL)) (-1614 (($ $) NIL)) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3035 (($ $ (-525)) NIL (|has| $ (-6 -4255)))) (-3072 (((-108) $) NIL (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-1356 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-3327 (($ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-2822 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-3795 (($ $ $) NIL (|has| $ (-6 -4255)))) (-2813 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-1517 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-2109 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4255))) (($ $ "rest" $) NIL (|has| $ (-6 -4255))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-3079 (($ $ $) 32 (|has| |#1| (-1019)))) (-3070 (($ $ $) 34 (|has| |#1| (-1019)))) (-3061 (($ $ $) 37 (|has| |#1| (-1019)))) (-3290 (($ (-1 (-108) |#1|) $) NIL)) (-2724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1882 ((|#1| $) NIL)) (-1505 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| $ (-6 -4255)))) (-1693 (($ $) NIL)) (-3145 (($ $) NIL) (($ $ (-713)) NIL)) (-3143 (($ $) NIL (|has| |#1| (-1019)))) (-3163 (($ $) 31 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2792 (($ |#1| $) NIL (|has| |#1| (-1019))) (($ (-1 (-108) |#1|) $) NIL)) (-2273 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2870 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) NIL)) (-2495 (((-108) $) NIL)) (-3763 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019))) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) (-1 (-108) |#1|) $) NIL)) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-3851 (((-108) $) 9)) (-4125 (((-592 $) $) NIL)) (-3106 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1996 (($) 7)) (-4018 (($ (-713) |#1|) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) NIL (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-2749 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1932 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 33 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3037 (($ |#1|) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-1564 (((-592 |#1|) $) NIL)) (-3723 (((-108) $) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2292 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-2573 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-3167 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3135 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1911 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-2518 (((-108) $) NIL)) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1139 (-525))) NIL) ((|#1| $ (-525)) 36) ((|#1| $ (-525) |#1|) NIL)) (-4068 (((-525) $ $) NIL)) (-3977 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-3653 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-1810 (((-108) $) NIL)) (-1350 (($ $) NIL)) (-2027 (($ $) NIL (|has| $ (-6 -4255)))) (-1290 (((-713) $) NIL)) (-3080 (($ $) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3703 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) 45 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) NIL)) (-3707 (($ |#1| $) 10)) (-1497 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2664 (($ $ $) 30) (($ |#1| $) NIL) (($ (-592 $)) NIL) (($ $ |#1|) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) NIL)) (-1519 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1296 (($ $ $) 11)) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2766 (((-1073) $) 26 (|has| |#1| (-770))) (((-1073) $ (-108)) 27 (|has| |#1| (-770))) (((-1177) (-764) $) 28 (|has| |#1| (-770))) (((-1177) (-764) $ (-108)) 29 (|has| |#1| (-770)))) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-592 |#1|) (-13 (-612 |#1|) (-10 -8 (-15 -1996 ($)) (-15 -3851 ((-108) $)) (-15 -3707 ($ |#1| $)) (-15 -1296 ($ $ $)) (IF (|has| |#1| (-1019)) (PROGN (-15 -3079 ($ $ $)) (-15 -3070 ($ $ $)) (-15 -3061 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|))) (-1126)) (T -592))
-((-1996 (*1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1126)))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-592 *3)) (-4 *3 (-1126)))) (-3707 (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1126)))) (-1296 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1126)))) (-3079 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1019)) (-4 *2 (-1126)))) (-3070 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1019)) (-4 *2 (-1126)))) (-3061 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1019)) (-4 *2 (-1126)))))
-(-13 (-612 |#1|) (-10 -8 (-15 -1996 ($)) (-15 -3851 ((-108) $)) (-15 -3707 ($ |#1| $)) (-15 -1296 ($ $ $)) (IF (|has| |#1| (-1019)) (PROGN (-15 -3079 ($ $ $)) (-15 -3070 ($ $ $)) (-15 -3061 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|)))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3154 (($ |#1| |#1| $) 43)) (-3410 (((-108) $ (-713)) NIL)) (-3290 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-3143 (($ $) 45)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2792 (($ |#1| $) 52 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4254)))) (-2273 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2026 (((-592 |#1|) $) 9 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2857 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 37)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2570 ((|#1| $) 46)) (-2573 (($ |#1| $) 26) (($ |#1| $ (-713)) 42)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3513 ((|#1| $) 48)) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) 21)) (-3773 (($) 25)) (-4064 (((-108) $) 50)) (-3553 (((-592 (-2 (|:| -2511 |#1|) (|:| -2686 (-713)))) $) 59)) (-4006 (($) 23) (($ (-592 |#1|)) 18)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) 56 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) 19)) (-1427 (((-501) $) 34 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) NIL)) (-1908 (((-797) $) 14 (|has| |#1| (-566 (-797))))) (-3612 (($ (-592 |#1|)) 22)) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 61 (|has| |#1| (-1019)))) (-4140 (((-713) $) 16 (|has| $ (-6 -4254)))))
-(((-593 |#1|) (-13 (-637 |#1|) (-10 -8 (-6 -4254) (-15 -4064 ((-108) $)) (-15 -3154 ($ |#1| |#1| $)))) (-1019)) (T -593))
-((-4064 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-593 *3)) (-4 *3 (-1019)))) (-3154 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1019)))))
-(-13 (-637 |#1|) (-10 -8 (-6 -4254) (-15 -4064 ((-108) $)) (-15 -3154 ($ |#1| |#1| $))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23)))
-(((-594 |#1|) (-131) (-983)) (T -594))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-983)))))
+((-1279 (*1 *1 *1 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-160)))) (-4100 (*1 *1 *1 *2) (-12 (-4 *1 (-583 *2)) (-4 *2 (-160)) (-4 *2 (-341)))))
+(-13 (-660 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -1279 ($ $ $)) (IF (|has| |t#1| (-341)) (-15 -4100 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-983 |#1|) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1790 (((-3 $ "failed")) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3019 (((-1173 (-632 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-1173 (-632 |#1|)) (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-2138 (((-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-2305 (($) NIL T CONST)) (-1316 (((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed")) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2144 (((-3 $ "failed")) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2306 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-2892 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-3591 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-2962 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-4043 (((-1087 (-887 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-3627 (($ $ (-856)) NIL)) (-3108 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2904 (((-1087 |#1|) $) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1638 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-4159 (((-1087 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-1740 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3612 (($ (-1173 |#1|)) NIL (|has| |#2| (-395 |#1|))) (($ (-1173 |#1|) (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-3762 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3318 (((-856)) NIL (|has| |#2| (-345 |#1|)))) (-3165 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2161 (($ $ (-856)) NIL)) (-1275 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1242 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2394 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-4167 (((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed")) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3322 (((-3 $ "failed")) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-1518 (((-632 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-2917 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-2561 (((-632 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) $ (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-2665 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3935 (((-1087 (-887 |#1|))) NIL (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-341))))) (-1404 (($ $ (-856)) NIL)) (-3908 ((|#1| $) NIL (|has| |#2| (-345 |#1|)))) (-4073 (((-1087 |#1|) $) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-2021 ((|#1|) NIL (|has| |#2| (-395 |#1|))) ((|#1| (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-1774 (((-1087 |#1|) $) NIL (|has| |#2| (-345 |#1|)))) (-3171 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3451 (((-1074) $) NIL)) (-2556 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3639 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-4211 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-2012 (((-1038) $) NIL)) (-1851 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3410 ((|#1| $ (-525)) NIL (|has| |#2| (-395 |#1|)))) (-3464 (((-632 |#1|) (-1173 $)) NIL (|has| |#2| (-395 |#1|))) (((-1173 |#1|) $) NIL (|has| |#2| (-395 |#1|))) (((-632 |#1|) (-1173 $) (-1173 $)) NIL (|has| |#2| (-345 |#1|))) (((-1173 |#1|) $ (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-2749 (($ (-1173 |#1|)) NIL (|has| |#2| (-395 |#1|))) (((-1173 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-4059 (((-592 (-887 |#1|))) NIL (|has| |#2| (-395 |#1|))) (((-592 (-887 |#1|)) (-1173 $)) NIL (|has| |#2| (-345 |#1|)))) (-2222 (($ $ $) NIL)) (-2883 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-1270 (((-798) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-1449 (((-1173 $)) NIL (|has| |#2| (-395 |#1|)))) (-1500 (((-592 (-1173 |#1|))) NIL (-3279 (-12 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))))) (-3941 (($ $ $ $) NIL)) (-1440 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-4169 (($ (-632 |#1|) $) NIL (|has| |#2| (-395 |#1|)))) (-3395 (($ $ $) NIL)) (-3665 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3529 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3180 (((-108)) NIL (|has| |#2| (-345 |#1|)))) (-3355 (($) 15 T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) 17)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-584 |#1| |#2|) (-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -1270 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|))) (-160) (-687 |#1|)) (T -584))
+((-1270 (*1 *1 *2) (-12 (-4 *3 (-160)) (-5 *1 (-584 *3 *2)) (-4 *2 (-687 *3)))))
+(-13 (-687 |#1|) (-566 |#2|) (-10 -8 (-15 -1270 ($ |#2|)) (IF (|has| |#2| (-395 |#1|)) (-6 (-395 |#1|)) |%noBranch|) (IF (|has| |#2| (-345 |#1|)) (-6 (-345 |#1|)) |%noBranch|)))
+((-3910 (((-3 (-782 |#2|) "failed") |#2| (-273 |#2|) (-1074)) 82) (((-3 (-782 |#2|) (-2 (|:| |leftHandLimit| (-3 (-782 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-782 |#2|) "failed"))) "failed") |#2| (-273 (-782 |#2|))) 104)) (-1292 (((-3 (-775 |#2|) "failed") |#2| (-273 (-775 |#2|))) 109)))
+(((-585 |#1| |#2|) (-10 -7 (-15 -3910 ((-3 (-782 |#2|) (-2 (|:| |leftHandLimit| (-3 (-782 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-782 |#2|) "failed"))) "failed") |#2| (-273 (-782 |#2|)))) (-15 -1292 ((-3 (-775 |#2|) "failed") |#2| (-273 (-775 |#2|)))) (-15 -3910 ((-3 (-782 |#2|) "failed") |#2| (-273 |#2|) (-1074)))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1113) (-408 |#1|))) (T -585))
+((-3910 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-273 *3)) (-5 *5 (-1074)) (-4 *3 (-13 (-27) (-1113) (-408 *6))) (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-782 *3)) (-5 *1 (-585 *6 *3)))) (-1292 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-273 (-775 *3))) (-4 *3 (-13 (-27) (-1113) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-775 *3)) (-5 *1 (-585 *5 *3)))) (-3910 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-782 *3))) (-4 *3 (-13 (-27) (-1113) (-408 *5))) (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-3 (-782 *3) (-2 (|:| |leftHandLimit| (-3 (-782 *3) "failed")) (|:| |rightHandLimit| (-3 (-782 *3) "failed"))) "failed")) (-5 *1 (-585 *5 *3)))))
+(-10 -7 (-15 -3910 ((-3 (-782 |#2|) (-2 (|:| |leftHandLimit| (-3 (-782 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-782 |#2|) "failed"))) "failed") |#2| (-273 (-782 |#2|)))) (-15 -1292 ((-3 (-775 |#2|) "failed") |#2| (-273 (-775 |#2|)))) (-15 -3910 ((-3 (-782 |#2|) "failed") |#2| (-273 |#2|) (-1074))))
+((-3910 (((-3 (-782 (-385 (-887 |#1|))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))) (-1074)) 80) (((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|)))) 20) (((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-782 (-887 |#1|)))) 35)) (-1292 (((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|)))) 23) (((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-775 (-887 |#1|)))) 43)))
+(((-586 |#1|) (-10 -7 (-15 -3910 ((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-782 (-887 |#1|))))) (-15 -3910 ((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -1292 ((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-775 (-887 |#1|))))) (-15 -1292 ((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -3910 ((-3 (-782 (-385 (-887 |#1|))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))) (-1074)))) (-429)) (T -586))
+((-3910 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-273 (-385 (-887 *6)))) (-5 *5 (-1074)) (-4 *6 (-429)) (-5 *2 (-782 (-385 (-887 *6)))) (-5 *1 (-586 *6)) (-5 *3 (-385 (-887 *6))))) (-1292 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-385 (-887 *5)))) (-4 *5 (-429)) (-5 *2 (-775 (-385 (-887 *5)))) (-5 *1 (-586 *5)) (-5 *3 (-385 (-887 *5))))) (-1292 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-775 (-887 *5)))) (-4 *5 (-429)) (-5 *2 (-775 (-385 (-887 *5)))) (-5 *1 (-586 *5)) (-5 *3 (-385 (-887 *5))))) (-3910 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-385 (-887 *5)))) (-4 *5 (-429)) (-5 *2 (-3 (-782 (-385 (-887 *5))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 *5))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 *5))) "failed"))) "failed")) (-5 *1 (-586 *5)) (-5 *3 (-385 (-887 *5))))) (-3910 (*1 *2 *3 *4) (-12 (-5 *4 (-273 (-782 (-887 *5)))) (-4 *5 (-429)) (-5 *2 (-3 (-782 (-385 (-887 *5))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 *5))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 *5))) "failed"))) "failed")) (-5 *1 (-586 *5)) (-5 *3 (-385 (-887 *5))))))
+(-10 -7 (-15 -3910 ((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-782 (-887 |#1|))))) (-15 -3910 ((-3 (-782 (-385 (-887 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-782 (-385 (-887 |#1|))) "failed"))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -1292 ((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-775 (-887 |#1|))))) (-15 -1292 ((-775 (-385 (-887 |#1|))) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -3910 ((-3 (-782 (-385 (-887 |#1|))) "failed") (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))) (-1074))))
+((-2357 (((-3 (-1173 (-385 |#1|)) "failed") (-1173 |#2|) |#2|) 57 (-1825 (|has| |#1| (-341)))) (((-3 (-1173 |#1|) "failed") (-1173 |#2|) |#2|) 42 (|has| |#1| (-341)))) (-3491 (((-108) (-1173 |#2|)) 30)) (-2995 (((-3 (-1173 |#1|) "failed") (-1173 |#2|)) 33)))
+(((-587 |#1| |#2|) (-10 -7 (-15 -3491 ((-108) (-1173 |#2|))) (-15 -2995 ((-3 (-1173 |#1|) "failed") (-1173 |#2|))) (IF (|has| |#1| (-341)) (-15 -2357 ((-3 (-1173 |#1|) "failed") (-1173 |#2|) |#2|)) (-15 -2357 ((-3 (-1173 (-385 |#1|)) "failed") (-1173 |#2|) |#2|)))) (-517) (-588 |#1|)) (T -587))
+((-2357 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1173 *4)) (-4 *4 (-588 *5)) (-1825 (-4 *5 (-341))) (-4 *5 (-517)) (-5 *2 (-1173 (-385 *5))) (-5 *1 (-587 *5 *4)))) (-2357 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1173 *4)) (-4 *4 (-588 *5)) (-4 *5 (-341)) (-4 *5 (-517)) (-5 *2 (-1173 *5)) (-5 *1 (-587 *5 *4)))) (-2995 (*1 *2 *3) (|partial| -12 (-5 *3 (-1173 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517)) (-5 *2 (-1173 *4)) (-5 *1 (-587 *4 *5)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-1173 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517)) (-5 *2 (-108)) (-5 *1 (-587 *4 *5)))))
+(-10 -7 (-15 -3491 ((-108) (-1173 |#2|))) (-15 -2995 ((-3 (-1173 |#1|) "failed") (-1173 |#2|))) (IF (|has| |#1| (-341)) (-15 -2357 ((-3 (-1173 |#1|) "failed") (-1173 |#2|) |#2|)) (-15 -2357 ((-3 (-1173 (-385 |#1|)) "failed") (-1173 |#2|) |#2|))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3416 (((-632 |#1|) (-632 $)) 36) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) 35)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11) (($ (-525)) 28)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+(((-588 |#1|) (-131) (-977)) (T -588))
+((-3416 (*1 *2 *3) (-12 (-5 *3 (-632 *1)) (-4 *1 (-588 *4)) (-4 *4 (-977)) (-5 *2 (-632 *4)))) (-3416 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *1)) (-5 *4 (-1173 *1)) (-4 *1 (-588 *5)) (-4 *5 (-977)) (-5 *2 (-2 (|:| -1484 (-632 *5)) (|:| |vec| (-1173 *5)))))))
+(-13 (-977) (-10 -8 (-15 -3416 ((-632 |t#1|) (-632 $))) (-15 -3416 ((-2 (|:| -1484 (-632 |t#1|)) (|:| |vec| (-1173 |t#1|))) (-632 $) (-1173 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-3549 ((|#2| (-592 |#1|) (-592 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-592 |#1|) (-592 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) |#2|) 17) ((|#2| (-592 |#1|) (-592 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|)) 12)))
+(((-589 |#1| |#2|) (-10 -7 (-15 -3549 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|))) (-15 -3549 (|#2| (-592 |#1|) (-592 |#2|) |#1|)) (-15 -3549 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) |#2|)) (-15 -3549 (|#2| (-592 |#1|) (-592 |#2|) |#1| |#2|)) (-15 -3549 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) (-1 |#2| |#1|))) (-15 -3549 (|#2| (-592 |#1|) (-592 |#2|) |#1| (-1 |#2| |#1|)))) (-1020) (-1127)) (T -589))
+((-3549 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1020)) (-4 *2 (-1127)) (-5 *1 (-589 *5 *2)))) (-3549 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-592 *5)) (-5 *4 (-592 *6)) (-4 *5 (-1020)) (-4 *6 (-1127)) (-5 *1 (-589 *5 *6)))) (-3549 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1020)) (-4 *2 (-1127)) (-5 *1 (-589 *5 *2)))) (-3549 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 *5)) (-4 *6 (-1020)) (-4 *5 (-1127)) (-5 *2 (-1 *5 *6)) (-5 *1 (-589 *6 *5)))) (-3549 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1020)) (-4 *2 (-1127)) (-5 *1 (-589 *5 *2)))) (-3549 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *6)) (-4 *5 (-1020)) (-4 *6 (-1127)) (-5 *2 (-1 *6 *5)) (-5 *1 (-589 *5 *6)))))
+(-10 -7 (-15 -3549 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|))) (-15 -3549 (|#2| (-592 |#1|) (-592 |#2|) |#1|)) (-15 -3549 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) |#2|)) (-15 -3549 (|#2| (-592 |#1|) (-592 |#2|) |#1| |#2|)) (-15 -3549 ((-1 |#2| |#1|) (-592 |#1|) (-592 |#2|) (-1 |#2| |#1|))) (-15 -3549 (|#2| (-592 |#1|) (-592 |#2|) |#1| (-1 |#2| |#1|))))
+((-3123 (((-592 |#2|) (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|) 16)) (-3503 ((|#2| (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|) 18)) (-2694 (((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|)) 13)))
+(((-590 |#1| |#2|) (-10 -7 (-15 -3123 ((-592 |#2|) (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -3503 (|#2| (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -2694 ((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|)))) (-1127) (-1127)) (T -590))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-592 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-592 *6)) (-5 *1 (-590 *5 *6)))) (-3503 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-592 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-590 *5 *2)))) (-3123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-592 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-5 *2 (-592 *5)) (-5 *1 (-590 *6 *5)))))
+(-10 -7 (-15 -3123 ((-592 |#2|) (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -3503 (|#2| (-1 |#2| |#1| |#2|) (-592 |#1|) |#2|)) (-15 -2694 ((-592 |#2|) (-1 |#2| |#1|) (-592 |#1|))))
+((-2694 (((-592 |#3|) (-1 |#3| |#1| |#2|) (-592 |#1|) (-592 |#2|)) 13)))
+(((-591 |#1| |#2| |#3|) (-10 -7 (-15 -2694 ((-592 |#3|) (-1 |#3| |#1| |#2|) (-592 |#1|) (-592 |#2|)))) (-1127) (-1127) (-1127)) (T -591))
+((-2694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-592 *6)) (-5 *5 (-592 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-592 *8)) (-5 *1 (-591 *6 *7 *8)))))
+(-10 -7 (-15 -2694 ((-592 |#3|) (-1 |#3| |#1| |#2|) (-592 |#1|) (-592 |#2|))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3352 ((|#1| $) NIL)) (-2029 ((|#1| $) NIL)) (-2941 (($ $) NIL)) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-3078 (($ $ (-525)) NIL (|has| $ (-6 -4256)))) (-2151 (((-108) $) NIL (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) NIL)) (-2549 (($ $) NIL (-12 (|has| $ (-6 -4256)) (|has| |#1| (-789)))) (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2855 (($ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-1545 ((|#1| $ |#1|) NIL (|has| $ (-6 -4256)))) (-2914 (($ $ $) NIL (|has| $ (-6 -4256)))) (-1455 ((|#1| $ |#1|) NIL (|has| $ (-6 -4256)))) (-2207 ((|#1| $ |#1|) NIL (|has| $ (-6 -4256)))) (-1429 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4256))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4256))) (($ $ "rest" $) NIL (|has| $ (-6 -4256))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) NIL (|has| $ (-6 -4256))) ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) NIL (|has| $ (-6 -4256)))) (-4155 (($ $ $) 32 (|has| |#1| (-1020)))) (-4145 (($ $ $) 34 (|has| |#1| (-1020)))) (-4134 (($ $ $) 37 (|has| |#1| (-1020)))) (-1608 (($ (-1 (-108) |#1|) $) NIL)) (-3826 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2016 ((|#1| $) NIL)) (-2305 (($) NIL T CONST)) (-3559 (($ $) NIL (|has| $ (-6 -4256)))) (-3620 (($ $) NIL)) (-3121 (($ $) NIL) (($ $ (-713)) NIL)) (-1540 (($ $) NIL (|has| |#1| (-1020)))) (-3137 (($ $) 31 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2592 (($ |#1| $) NIL (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) NIL)) (-1614 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2632 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) NIL)) (-1406 (((-108) $) NIL)) (-1916 (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020))) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) (-1 (-108) |#1|) $) NIL)) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-3336 (((-108) $) 9)) (-2714 (((-592 $) $) NIL)) (-2553 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-1332 (($) 7)) (-3489 (($ (-713) |#1|) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) NIL (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-1999 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-3743 (($ $ $) NIL (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 33 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-4104 (($ |#1|) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-2647 (((-592 |#1|) $) NIL)) (-3365 (((-108) $) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-1636 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-3985 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-2683 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3110 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2042 (($ $ |#1|) NIL (|has| $ (-6 -4256)))) (-1626 (((-108) $) NIL)) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1140 (-525))) NIL) ((|#1| $ (-525)) 36) ((|#1| $ (-525) |#1|) NIL)) (-3294 (((-525) $ $) NIL)) (-3793 (($ $ (-1140 (-525))) NIL) (($ $ (-525)) NIL)) (-3157 (($ $ (-1140 (-525))) NIL) (($ $ (-525)) NIL)) (-1698 (((-108) $) NIL)) (-2491 (($ $) NIL)) (-3385 (($ $) NIL (|has| $ (-6 -4256)))) (-2389 (((-713) $) NIL)) (-2249 (($ $) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3216 (($ $ $ (-525)) NIL (|has| $ (-6 -4256)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) 45 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) NIL)) (-3211 (($ |#1| $) 10)) (-2162 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2014 (($ $ $) 30) (($ |#1| $) NIL) (($ (-592 $)) NIL) (($ $ |#1|) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) NIL)) (-2240 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2746 (($ $ $) 11)) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2255 (((-1074) $) 26 (|has| |#1| (-770))) (((-1074) $ (-108)) 27 (|has| |#1| (-770))) (((-1178) (-764) $) 28 (|has| |#1| (-770))) (((-1178) (-764) $ (-108)) 29 (|has| |#1| (-770)))) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-592 |#1|) (-13 (-612 |#1|) (-10 -8 (-15 -1332 ($)) (-15 -3336 ((-108) $)) (-15 -3211 ($ |#1| $)) (-15 -2746 ($ $ $)) (IF (|has| |#1| (-1020)) (PROGN (-15 -4155 ($ $ $)) (-15 -4145 ($ $ $)) (-15 -4134 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|))) (-1127)) (T -592))
+((-1332 (*1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1127)))) (-3336 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-592 *3)) (-4 *3 (-1127)))) (-3211 (*1 *1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1127)))) (-2746 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1127)))) (-4155 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-1127)))) (-4145 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-1127)))) (-4134 (*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-1127)))))
+(-13 (-612 |#1|) (-10 -8 (-15 -1332 ($)) (-15 -3336 ((-108) $)) (-15 -3211 ($ |#1| $)) (-15 -2746 ($ $ $)) (IF (|has| |#1| (-1020)) (PROGN (-15 -4155 ($ $ $)) (-15 -4145 ($ $ $)) (-15 -4134 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-770)) (-6 (-770)) |%noBranch|)))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3126 (($ |#1| |#1| $) 43)) (-3330 (((-108) $ (-713)) NIL)) (-1608 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-1540 (($ $) 45)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2592 (($ |#1| $) 52 (|has| $ (-6 -4255))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4255)))) (-1614 (($ |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-3702 (((-592 |#1|) $) 9 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2622 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 37)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-3955 ((|#1| $) 46)) (-3985 (($ |#1| $) 26) (($ |#1| $ (-713)) 42)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1881 ((|#1| $) 48)) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) 21)) (-2718 (($) 25)) (-3262 (((-108) $) 50)) (-2386 (((-592 (-2 (|:| -2544 |#1|) (|:| -2040 (-713)))) $) 59)) (-3981 (($) 23) (($ (-592 |#1|)) 18)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) 56 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) 19)) (-2749 (((-501) $) 34 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) NIL)) (-1270 (((-798) $) 14 (|has| |#1| (-566 (-798))))) (-1665 (($ (-592 |#1|)) 22)) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 61 (|has| |#1| (-1020)))) (-3596 (((-713) $) 16 (|has| $ (-6 -4255)))))
+(((-593 |#1|) (-13 (-637 |#1|) (-10 -8 (-6 -4255) (-15 -3262 ((-108) $)) (-15 -3126 ($ |#1| |#1| $)))) (-1020)) (T -593))
+((-3262 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-593 *3)) (-4 *3 (-1020)))) (-3126 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1020)))))
+(-13 (-637 |#1|) (-10 -8 (-6 -4255) (-15 -3262 ((-108) $)) (-15 -3126 ($ |#1| |#1| $))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23)))
+(((-594 |#1|) (-131) (-984)) (T -594))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-984)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-3107 (((-713) $) 15)) (-1716 (($ $ |#1|) 56)) (-4103 (($ $) 32)) (-1693 (($ $) 31)) (-1264 (((-3 |#1| "failed") $) 48)) (-2831 ((|#1| $) NIL)) (-4055 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3697 (((-797) $ (-1 (-797) (-797) (-797)) (-1 (-797) (-797) (-797)) (-525)) 46)) (-2938 ((|#1| $ (-525)) 30)) (-3084 ((|#2| $ (-525)) 29)) (-2463 (($ (-1 |#1| |#1|) $) 34)) (-3358 (($ (-1 |#2| |#2|) $) 38)) (-3217 (($) 10)) (-3151 (($ |#1| |#2|) 22)) (-1423 (($ (-592 (-2 (|:| |gen| |#1|) (|:| -1982 |#2|)))) 23)) (-4119 (((-592 (-2 (|:| |gen| |#1|) (|:| -1982 |#2|))) $) 13)) (-2880 (($ |#1| $) 57)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3374 (((-108) $ $) 60)) (-1908 (((-797) $) 19) (($ |#1|) 16)) (-3961 (((-108) $ $) 25)))
-(((-595 |#1| |#2| |#3|) (-13 (-1019) (-967 |#1|) (-10 -8 (-15 -3697 ((-797) $ (-1 (-797) (-797) (-797)) (-1 (-797) (-797) (-797)) (-525))) (-15 -4119 ((-592 (-2 (|:| |gen| |#1|) (|:| -1982 |#2|))) $)) (-15 -3151 ($ |#1| |#2|)) (-15 -1423 ($ (-592 (-2 (|:| |gen| |#1|) (|:| -1982 |#2|))))) (-15 -3084 (|#2| $ (-525))) (-15 -2938 (|#1| $ (-525))) (-15 -1693 ($ $)) (-15 -4103 ($ $)) (-15 -3107 ((-713) $)) (-15 -3217 ($)) (-15 -1716 ($ $ |#1|)) (-15 -2880 ($ |#1| $)) (-15 -4055 ($ |#1| |#2| $)) (-15 -4055 ($ $ $)) (-15 -3374 ((-108) $ $)) (-15 -3358 ($ (-1 |#2| |#2|) $)) (-15 -2463 ($ (-1 |#1| |#1|) $)))) (-1019) (-23) |#2|) (T -595))
-((-3697 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-797) (-797) (-797))) (-5 *4 (-525)) (-5 *2 (-797)) (-5 *1 (-595 *5 *6 *7)) (-4 *5 (-1019)) (-4 *6 (-23)) (-14 *7 *6))) (-4119 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1982 *4)))) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1019)) (-4 *4 (-23)) (-14 *5 *4))) (-3151 (*1 *1 *2 *3) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) (-14 *4 *3))) (-1423 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1982 *4)))) (-4 *3 (-1019)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5)))) (-3084 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-23)) (-5 *1 (-595 *4 *2 *5)) (-4 *4 (-1019)) (-14 *5 *2))) (-2938 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-1019)) (-5 *1 (-595 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1693 (*1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) (-14 *4 *3))) (-4103 (*1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) (-14 *4 *3))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1019)) (-4 *4 (-23)) (-14 *5 *4))) (-3217 (*1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) (-14 *4 *3))) (-1716 (*1 *1 *1 *2) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) (-14 *4 *3))) (-2880 (*1 *1 *2 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) (-14 *4 *3))) (-4055 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) (-14 *4 *3))) (-4055 (*1 *1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23)) (-14 *4 *3))) (-3374 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1019)) (-4 *4 (-23)) (-14 *5 *4))) (-3358 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1019)))) (-2463 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1019)) (-5 *1 (-595 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1019) (-967 |#1|) (-10 -8 (-15 -3697 ((-797) $ (-1 (-797) (-797) (-797)) (-1 (-797) (-797) (-797)) (-525))) (-15 -4119 ((-592 (-2 (|:| |gen| |#1|) (|:| -1982 |#2|))) $)) (-15 -3151 ($ |#1| |#2|)) (-15 -1423 ($ (-592 (-2 (|:| |gen| |#1|) (|:| -1982 |#2|))))) (-15 -3084 (|#2| $ (-525))) (-15 -2938 (|#1| $ (-525))) (-15 -1693 ($ $)) (-15 -4103 ($ $)) (-15 -3107 ((-713) $)) (-15 -3217 ($)) (-15 -1716 ($ $ |#1|)) (-15 -2880 ($ |#1| $)) (-15 -4055 ($ |#1| |#2| $)) (-15 -4055 ($ $ $)) (-15 -3374 ((-108) $ $)) (-15 -3358 ($ (-1 |#2| |#2|) $)) (-15 -2463 ($ (-1 |#1| |#1|) $))))
-((-1792 (((-525) $) 24)) (-3167 (($ |#2| $ (-525)) 22) (($ $ $ (-525)) NIL)) (-3222 (((-592 (-525)) $) 12)) (-1548 (((-108) (-525) $) 15)) (-2664 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-592 $)) NIL)))
-(((-596 |#1| |#2|) (-10 -8 (-15 -3167 (|#1| |#1| |#1| (-525))) (-15 -3167 (|#1| |#2| |#1| (-525))) (-15 -2664 (|#1| (-592 |#1|))) (-15 -2664 (|#1| |#1| |#1|)) (-15 -2664 (|#1| |#2| |#1|)) (-15 -2664 (|#1| |#1| |#2|)) (-15 -1792 ((-525) |#1|)) (-15 -3222 ((-592 (-525)) |#1|)) (-15 -1548 ((-108) (-525) |#1|))) (-597 |#2|) (-1126)) (T -596))
-NIL
-(-10 -8 (-15 -3167 (|#1| |#1| |#1| (-525))) (-15 -3167 (|#1| |#2| |#1| (-525))) (-15 -2664 (|#1| (-592 |#1|))) (-15 -2664 (|#1| |#1| |#1|)) (-15 -2664 (|#1| |#2| |#1|)) (-15 -2664 (|#1| |#1| |#2|)) (-15 -1792 ((-525) |#1|)) (-15 -3222 ((-592 (-525)) |#1|)) (-15 -1548 ((-108) (-525) |#1|)))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-1840 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) 8)) (-2109 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 58 (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4254)))) (-1505 (($) 7 T CONST)) (-3163 (($ $) 78 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ |#1| $) 77 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4254)))) (-2870 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) 51)) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-4018 (($ (-713) |#1|) 69)) (-3100 (((-108) $ (-713)) 9)) (-2009 (((-525) $) 43 (|has| (-525) (-789)))) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1792 (((-525) $) 44 (|has| (-525) (-789)))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-3167 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3222 (((-592 (-525)) $) 46)) (-1548 (((-108) (-525) $) 47)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3135 ((|#1| $) 42 (|has| (-525) (-789)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1911 (($ $ |#1|) 41 (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-3218 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) 48)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1139 (-525))) 63)) (-3653 (($ $ (-525)) 62) (($ $ (-1139 (-525))) 61)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1427 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 70)) (-2664 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-597 |#1|) (-131) (-1126)) (T -597))
-((-4018 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) (-2664 (*1 *1 *1 *2) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1126)))) (-2664 (*1 *1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1126)))) (-2664 (*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1126)))) (-2664 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) (-1370 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) (-3928 (*1 *1 *1 *2) (-12 (-5 *2 (-1139 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) (-3653 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) (-3653 (*1 *1 *1 *2) (-12 (-5 *2 (-1139 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) (-3167 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-597 *2)) (-4 *2 (-1126)))) (-3167 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1126)))) (-2109 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1139 (-525))) (|has| *1 (-6 -4255)) (-4 *1 (-597 *2)) (-4 *2 (-1126)))))
-(-13 (-558 (-525) |t#1|) (-142 |t#1|) (-10 -8 (-15 -4018 ($ (-713) |t#1|)) (-15 -2664 ($ $ |t#1|)) (-15 -2664 ($ |t#1| $)) (-15 -2664 ($ $ $)) (-15 -2664 ($ (-592 $))) (-15 -1370 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3928 ($ $ (-1139 (-525)))) (-15 -3653 ($ $ (-525))) (-15 -3653 ($ $ (-1139 (-525)))) (-15 -3167 ($ |t#1| $ (-525))) (-15 -3167 ($ $ $ (-525))) (IF (|has| $ (-6 -4255)) (-15 -2109 (|t#1| $ (-1139 (-525)) |t#1|)) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T))
-((-2925 (((-3 |#2| "failed") |#3| |#2| (-1090) |#2| (-592 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -2499 (-592 |#2|))) "failed") |#3| |#2| (-1090)) 44)))
-(((-598 |#1| |#2| |#3|) (-10 -7 (-15 -2925 ((-3 (-2 (|:| |particular| |#2|) (|:| -2499 (-592 |#2|))) "failed") |#3| |#2| (-1090))) (-15 -2925 ((-3 |#2| "failed") |#3| |#2| (-1090) |#2| (-592 |#2|)))) (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1112) (-892)) (-602 |#2|)) (T -598))
-((-2925 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-592 *2)) (-4 *2 (-13 (-29 *6) (-1112) (-892))) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *1 (-598 *6 *2 *3)) (-4 *3 (-602 *2)))) (-2925 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1090)) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-4 *4 (-13 (-29 *6) (-1112) (-892))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2499 (-592 *4)))) (-5 *1 (-598 *6 *4 *3)) (-4 *3 (-602 *4)))))
-(-10 -7 (-15 -2925 ((-3 (-2 (|:| |particular| |#2|) (|:| -2499 (-592 |#2|))) "failed") |#3| |#2| (-1090))) (-15 -2925 ((-3 |#2| "failed") |#3| |#2| (-1090) |#2| (-592 |#2|))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1355 (($ $) NIL (|has| |#1| (-341)))) (-1798 (($ $ $) NIL (|has| |#1| (-341)))) (-1582 (($ $ (-713)) NIL (|has| |#1| (-341)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1521 (($ $ $) NIL (|has| |#1| (-341)))) (-1735 (($ $ $) NIL (|has| |#1| (-341)))) (-3510 (($ $ $) NIL (|has| |#1| (-341)))) (-2801 (($ $ $) NIL (|has| |#1| (-341)))) (-3457 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-1574 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2473 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-341)))) (-1264 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-2831 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-1247 (($ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3811 (($ $) NIL (|has| |#1| (-429)))) (-2133 (((-108) $) NIL)) (-4079 (($ |#1| (-713)) NIL)) (-3169 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-517)))) (-3047 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-517)))) (-3181 (((-713) $) NIL)) (-2555 (($ $ $) NIL (|has| |#1| (-341)))) (-2470 (($ $ $) NIL (|has| |#1| (-341)))) (-3344 (($ $ $) NIL (|has| |#1| (-341)))) (-3069 (($ $ $) NIL (|has| |#1| (-341)))) (-1702 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-1566 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3273 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-341)))) (-1224 ((|#1| $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2338 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3928 ((|#1| $ |#1|) NIL)) (-1272 (($ $ $) NIL (|has| |#1| (-341)))) (-2513 (((-713) $) NIL)) (-2751 ((|#1| $) NIL (|has| |#1| (-429)))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) NIL)) (-3600 (((-592 |#1|) $) NIL)) (-1657 ((|#1| $ (-713)) NIL)) (-2093 (((-713)) NIL)) (-3088 ((|#1| $ |#1| |#1|) NIL)) (-1672 (($ $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($) NIL)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-4190 (((-713) $) 15)) (-2743 (($ $ |#1|) 56)) (-3559 (($ $) 32)) (-3620 (($ $) 31)) (-2591 (((-3 |#1| "failed") $) 48)) (-3898 ((|#1| $) NIL)) (-1240 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-3169 (((-798) $ (-1 (-798) (-798) (-798)) (-1 (-798) (-798) (-798)) (-525)) 46)) (-3285 ((|#1| $ (-525)) 30)) (-2311 ((|#2| $ (-525)) 29)) (-2440 (($ (-1 |#1| |#1|) $) 34)) (-4060 (($ (-1 |#2| |#2|) $) 38)) (-4091 (($) 10)) (-1607 (($ |#1| |#2|) 22)) (-2496 (($ (-592 (-2 (|:| |gen| |#1|) (|:| -1250 |#2|)))) 23)) (-2651 (((-592 (-2 (|:| |gen| |#1|) (|:| -1250 |#2|))) $) 13)) (-3888 (($ |#1| $) 57)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3099 (((-108) $ $) 60)) (-1270 (((-798) $) 19) (($ |#1|) 16)) (-3994 (((-108) $ $) 25)))
+(((-595 |#1| |#2| |#3|) (-13 (-1020) (-968 |#1|) (-10 -8 (-15 -3169 ((-798) $ (-1 (-798) (-798) (-798)) (-1 (-798) (-798) (-798)) (-525))) (-15 -2651 ((-592 (-2 (|:| |gen| |#1|) (|:| -1250 |#2|))) $)) (-15 -1607 ($ |#1| |#2|)) (-15 -2496 ($ (-592 (-2 (|:| |gen| |#1|) (|:| -1250 |#2|))))) (-15 -2311 (|#2| $ (-525))) (-15 -3285 (|#1| $ (-525))) (-15 -3620 ($ $)) (-15 -3559 ($ $)) (-15 -4190 ((-713) $)) (-15 -4091 ($)) (-15 -2743 ($ $ |#1|)) (-15 -3888 ($ |#1| $)) (-15 -1240 ($ |#1| |#2| $)) (-15 -1240 ($ $ $)) (-15 -3099 ((-108) $ $)) (-15 -4060 ($ (-1 |#2| |#2|) $)) (-15 -2440 ($ (-1 |#1| |#1|) $)))) (-1020) (-23) |#2|) (T -595))
+((-3169 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-798) (-798) (-798))) (-5 *4 (-525)) (-5 *2 (-798)) (-5 *1 (-595 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-23)) (-14 *7 *6))) (-2651 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1250 *4)))) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4))) (-1607 (*1 *1 *2 *3) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-2496 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1250 *4)))) (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5)))) (-2311 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-23)) (-5 *1 (-595 *4 *2 *5)) (-4 *4 (-1020)) (-14 *5 *2))) (-3285 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *2 (-1020)) (-5 *1 (-595 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-3620 (*1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-3559 (*1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4))) (-4091 (*1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-2743 (*1 *1 *1 *2) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-3888 (*1 *1 *2 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-1240 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-1240 (*1 *1 *1 *1) (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23)) (-14 *4 *3))) (-3099 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4))) (-4060 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)))) (-2440 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-595 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1020) (-968 |#1|) (-10 -8 (-15 -3169 ((-798) $ (-1 (-798) (-798) (-798)) (-1 (-798) (-798) (-798)) (-525))) (-15 -2651 ((-592 (-2 (|:| |gen| |#1|) (|:| -1250 |#2|))) $)) (-15 -1607 ($ |#1| |#2|)) (-15 -2496 ($ (-592 (-2 (|:| |gen| |#1|) (|:| -1250 |#2|))))) (-15 -2311 (|#2| $ (-525))) (-15 -3285 (|#1| $ (-525))) (-15 -3620 ($ $)) (-15 -3559 ($ $)) (-15 -4190 ((-713) $)) (-15 -4091 ($)) (-15 -2743 ($ $ |#1|)) (-15 -3888 ($ |#1| $)) (-15 -1240 ($ |#1| |#2| $)) (-15 -1240 ($ $ $)) (-15 -3099 ((-108) $ $)) (-15 -4060 ($ (-1 |#2| |#2|) $)) (-15 -2440 ($ (-1 |#1| |#1|) $))))
+((-3478 (((-525) $) 24)) (-2683 (($ |#2| $ (-525)) 22) (($ $ $ (-525)) NIL)) (-4142 (((-592 (-525)) $) 12)) (-3845 (((-108) (-525) $) 15)) (-2014 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-592 $)) NIL)))
+(((-596 |#1| |#2|) (-10 -8 (-15 -2683 (|#1| |#1| |#1| (-525))) (-15 -2683 (|#1| |#2| |#1| (-525))) (-15 -2014 (|#1| (-592 |#1|))) (-15 -2014 (|#1| |#1| |#1|)) (-15 -2014 (|#1| |#2| |#1|)) (-15 -2014 (|#1| |#1| |#2|)) (-15 -3478 ((-525) |#1|)) (-15 -4142 ((-592 (-525)) |#1|)) (-15 -3845 ((-108) (-525) |#1|))) (-597 |#2|) (-1127)) (T -596))
+NIL
+(-10 -8 (-15 -2683 (|#1| |#1| |#1| (-525))) (-15 -2683 (|#1| |#2| |#1| (-525))) (-15 -2014 (|#1| (-592 |#1|))) (-15 -2014 (|#1| |#1| |#1|)) (-15 -2014 (|#1| |#2| |#1|)) (-15 -2014 (|#1| |#1| |#2|)) (-15 -3478 ((-525) |#1|)) (-15 -4142 ((-592 (-525)) |#1|)) (-15 -3845 ((-108) (-525) |#1|)))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2782 (((-1178) $ (-525) (-525)) 40 (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) 8)) (-1429 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) 58 (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4255)))) (-2305 (($) 7 T CONST)) (-3137 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4255)))) (-2632 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) 51)) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-3489 (($ (-713) |#1|) 69)) (-2482 (((-108) $ (-713)) 9)) (-2710 (((-525) $) 43 (|has| (-525) (-789)))) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3478 (((-525) $) 44 (|has| (-525) (-789)))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-2683 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-4142 (((-592 (-525)) $) 46)) (-3845 (((-108) (-525) $) 47)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3110 ((|#1| $) 42 (|has| (-525) (-789)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2042 (($ $ |#1|) 41 (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-4101 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) 48)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1140 (-525))) 63)) (-3157 (($ $ (-525)) 62) (($ $ (-1140 (-525))) 61)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-2749 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 70)) (-2014 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-597 |#1|) (-131) (-1127)) (T -597))
+((-3489 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-4 *1 (-597 *3)) (-4 *3 (-1127)))) (-2014 (*1 *1 *1 *2) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1127)))) (-2014 (*1 *1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1127)))) (-2014 (*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1127)))) (-2014 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-597 *3)) (-4 *3 (-1127)))) (-2694 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-597 *3)) (-4 *3 (-1127)))) (-3410 (*1 *1 *1 *2) (-12 (-5 *2 (-1140 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1127)))) (-3157 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1127)))) (-3157 (*1 *1 *1 *2) (-12 (-5 *2 (-1140 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1127)))) (-2683 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-597 *2)) (-4 *2 (-1127)))) (-2683 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1127)))) (-1429 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1140 (-525))) (|has| *1 (-6 -4256)) (-4 *1 (-597 *2)) (-4 *2 (-1127)))))
+(-13 (-558 (-525) |t#1|) (-142 |t#1|) (-10 -8 (-15 -3489 ($ (-713) |t#1|)) (-15 -2014 ($ $ |t#1|)) (-15 -2014 ($ |t#1| $)) (-15 -2014 ($ $ $)) (-15 -2014 ($ (-592 $))) (-15 -2694 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3410 ($ $ (-1140 (-525)))) (-15 -3157 ($ $ (-525))) (-15 -3157 ($ $ (-1140 (-525)))) (-15 -2683 ($ |t#1| $ (-525))) (-15 -2683 ($ $ $ (-525))) (IF (|has| $ (-6 -4256)) (-15 -1429 (|t#1| $ (-1140 (-525)) |t#1|)) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1127) . T))
+((-3193 (((-3 |#2| "failed") |#3| |#2| (-1091) |#2| (-592 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -1449 (-592 |#2|))) "failed") |#3| |#2| (-1091)) 44)))
+(((-598 |#1| |#2| |#3|) (-10 -7 (-15 -3193 ((-3 (-2 (|:| |particular| |#2|) (|:| -1449 (-592 |#2|))) "failed") |#3| |#2| (-1091))) (-15 -3193 ((-3 |#2| "failed") |#3| |#2| (-1091) |#2| (-592 |#2|)))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1113) (-893)) (-602 |#2|)) (T -598))
+((-3193 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-592 *2)) (-4 *2 (-13 (-29 *6) (-1113) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *1 (-598 *6 *2 *3)) (-4 *3 (-602 *2)))) (-3193 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1091)) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-4 *4 (-13 (-29 *6) (-1113) (-893))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1449 (-592 *4)))) (-5 *1 (-598 *6 *4 *3)) (-4 *3 (-602 *4)))))
+(-10 -7 (-15 -3193 ((-3 (-2 (|:| |particular| |#2|) (|:| -1449 (-592 |#2|))) "failed") |#3| |#2| (-1091))) (-15 -3193 ((-3 |#2| "failed") |#3| |#2| (-1091) |#2| (-592 |#2|))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2539 (($ $) NIL (|has| |#1| (-341)))) (-3548 (($ $ $) NIL (|has| |#1| (-341)))) (-1246 (($ $ (-713)) NIL (|has| |#1| (-341)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2271 (($ $ $) NIL (|has| |#1| (-341)))) (-3954 (($ $ $) NIL (|has| |#1| (-341)))) (-1859 (($ $ $) NIL (|has| |#1| (-341)))) (-1324 (($ $ $) NIL (|has| |#1| (-341)))) (-2711 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-4202 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2541 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-341)))) (-2591 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-3898 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-2571 (($ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3026 (($ $) NIL (|has| |#1| (-429)))) (-1985 (((-108) $) NIL)) (-2352 (($ |#1| (-713)) NIL)) (-1759 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-517)))) (-3148 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-517)))) (-3724 (((-713) $) NIL)) (-3815 (($ $ $) NIL (|has| |#1| (-341)))) (-2516 (($ $ $) NIL (|has| |#1| (-341)))) (-3930 (($ $ $) NIL (|has| |#1| (-341)))) (-2121 (($ $ $) NIL (|has| |#1| (-341)))) (-1557 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-3127 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-1453 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-341)))) (-2548 ((|#1| $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1680 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3410 ((|#1| $ |#1|) NIL)) (-3607 (($ $ $) NIL (|has| |#1| (-341)))) (-1587 (((-713) $) NIL)) (-2026 ((|#1| $) NIL (|has| |#1| (-429)))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) NIL)) (-1562 (((-592 |#1|) $) NIL)) (-3468 ((|#1| $ (-713)) NIL)) (-2104 (((-713)) NIL)) (-4169 ((|#1| $ |#1| |#1|) NIL)) (-1244 (($ $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($) NIL)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
(((-599 |#1|) (-602 |#1|) (-213)) (T -599))
NIL
(-602 |#1|)
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1355 (($ $) NIL (|has| |#1| (-341)))) (-1798 (($ $ $) NIL (|has| |#1| (-341)))) (-1582 (($ $ (-713)) NIL (|has| |#1| (-341)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1521 (($ $ $) NIL (|has| |#1| (-341)))) (-1735 (($ $ $) NIL (|has| |#1| (-341)))) (-3510 (($ $ $) NIL (|has| |#1| (-341)))) (-2801 (($ $ $) NIL (|has| |#1| (-341)))) (-3457 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-1574 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2473 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-341)))) (-1264 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-2831 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-1247 (($ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3811 (($ $) NIL (|has| |#1| (-429)))) (-2133 (((-108) $) NIL)) (-4079 (($ |#1| (-713)) NIL)) (-3169 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-517)))) (-3047 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-517)))) (-3181 (((-713) $) NIL)) (-2555 (($ $ $) NIL (|has| |#1| (-341)))) (-2470 (($ $ $) NIL (|has| |#1| (-341)))) (-3344 (($ $ $) NIL (|has| |#1| (-341)))) (-3069 (($ $ $) NIL (|has| |#1| (-341)))) (-1702 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-1566 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3273 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-341)))) (-1224 ((|#1| $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2338 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3928 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1272 (($ $ $) NIL (|has| |#1| (-341)))) (-2513 (((-713) $) NIL)) (-2751 ((|#1| $) NIL (|has| |#1| (-429)))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) NIL)) (-3600 (((-592 |#1|) $) NIL)) (-1657 ((|#1| $ (-713)) NIL)) (-2093 (((-713)) NIL)) (-3088 ((|#1| $ |#1| |#1|) NIL)) (-1672 (($ $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($) NIL)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-600 |#1| |#2|) (-13 (-602 |#1|) (-265 |#2| |#2|)) (-213) (-13 (-594 |#1|) (-10 -8 (-15 -3013 ($ $))))) (T -600))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2539 (($ $) NIL (|has| |#1| (-341)))) (-3548 (($ $ $) NIL (|has| |#1| (-341)))) (-1246 (($ $ (-713)) NIL (|has| |#1| (-341)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2271 (($ $ $) NIL (|has| |#1| (-341)))) (-3954 (($ $ $) NIL (|has| |#1| (-341)))) (-1859 (($ $ $) NIL (|has| |#1| (-341)))) (-1324 (($ $ $) NIL (|has| |#1| (-341)))) (-2711 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-4202 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2541 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-341)))) (-2591 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-3898 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-2571 (($ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3026 (($ $) NIL (|has| |#1| (-429)))) (-1985 (((-108) $) NIL)) (-2352 (($ |#1| (-713)) NIL)) (-1759 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-517)))) (-3148 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-517)))) (-3724 (((-713) $) NIL)) (-3815 (($ $ $) NIL (|has| |#1| (-341)))) (-2516 (($ $ $) NIL (|has| |#1| (-341)))) (-3930 (($ $ $) NIL (|has| |#1| (-341)))) (-2121 (($ $ $) NIL (|has| |#1| (-341)))) (-1557 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-3127 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-1453 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-341)))) (-2548 ((|#1| $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1680 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3410 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-3607 (($ $ $) NIL (|has| |#1| (-341)))) (-1587 (((-713) $) NIL)) (-2026 ((|#1| $) NIL (|has| |#1| (-429)))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) NIL)) (-1562 (((-592 |#1|) $) NIL)) (-3468 ((|#1| $ (-713)) NIL)) (-2104 (((-713)) NIL)) (-4169 ((|#1| $ |#1| |#1|) NIL)) (-1244 (($ $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($) NIL)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-600 |#1| |#2|) (-13 (-602 |#1|) (-265 |#2| |#2|)) (-213) (-13 (-594 |#1|) (-10 -8 (-15 -2523 ($ $))))) (T -600))
NIL
(-13 (-602 |#1|) (-265 |#2| |#2|))
-((-1355 (($ $) 26)) (-1672 (($ $) 24)) (-1424 (($) 12)))
-(((-601 |#1| |#2|) (-10 -8 (-15 -1355 (|#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 -1424 (|#1|))) (-602 |#2|) (-976)) (T -601))
-NIL
-(-10 -8 (-15 -1355 (|#1| |#1|)) (-15 -1672 (|#1| |#1|)) (-15 -1424 (|#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1355 (($ $) 82 (|has| |#1| (-341)))) (-1798 (($ $ $) 84 (|has| |#1| (-341)))) (-1582 (($ $ (-713)) 83 (|has| |#1| (-341)))) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-1521 (($ $ $) 45 (|has| |#1| (-341)))) (-1735 (($ $ $) 46 (|has| |#1| (-341)))) (-3510 (($ $ $) 48 (|has| |#1| (-341)))) (-2801 (($ $ $) 43 (|has| |#1| (-341)))) (-3457 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 42 (|has| |#1| (-341)))) (-1574 (((-3 $ "failed") $ $) 44 (|has| |#1| (-341)))) (-2473 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 47 (|has| |#1| (-341)))) (-1264 (((-3 (-525) "failed") $) 74 (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 72 (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 69)) (-2831 (((-525) $) 75 (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) 73 (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 68)) (-1247 (($ $) 64)) (-2866 (((-3 $ "failed") $) 34)) (-3811 (($ $) 55 (|has| |#1| (-429)))) (-2133 (((-108) $) 31)) (-4079 (($ |#1| (-713)) 62)) (-3169 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 57 (|has| |#1| (-517)))) (-3047 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 58 (|has| |#1| (-517)))) (-3181 (((-713) $) 66)) (-2555 (($ $ $) 52 (|has| |#1| (-341)))) (-2470 (($ $ $) 53 (|has| |#1| (-341)))) (-3344 (($ $ $) 41 (|has| |#1| (-341)))) (-3069 (($ $ $) 50 (|has| |#1| (-341)))) (-1702 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 49 (|has| |#1| (-341)))) (-1566 (((-3 $ "failed") $ $) 51 (|has| |#1| (-341)))) (-3273 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 54 (|has| |#1| (-341)))) (-1224 ((|#1| $) 65)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-2338 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-517)))) (-3928 ((|#1| $ |#1|) 87)) (-1272 (($ $ $) 81 (|has| |#1| (-341)))) (-2513 (((-713) $) 67)) (-2751 ((|#1| $) 56 (|has| |#1| (-429)))) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 71 (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) 70)) (-3600 (((-592 |#1|) $) 61)) (-1657 ((|#1| $ (-713)) 63)) (-2093 (((-713)) 29)) (-3088 ((|#1| $ |#1| |#1|) 60)) (-1672 (($ $) 85)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($) 86)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
-(((-602 |#1|) (-131) (-976)) (T -602))
-((-1424 (*1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)))) (-1672 (*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)))) (-1798 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-1582 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-602 *3)) (-4 *3 (-976)) (-4 *3 (-341)))) (-1355 (*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-1272 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)) (-4 *2 (-341)))))
-(-13 (-791 |t#1|) (-265 |t#1| |t#1|) (-10 -8 (-15 -1424 ($)) (-15 -1672 ($ $)) (IF (|has| |t#1| (-341)) (PROGN (-15 -1798 ($ $ $)) (-15 -1582 ($ $ (-713))) (-15 -1355 ($ $)) (-15 -1272 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-265 |#1| |#1|) . T) ((-389 |#1|) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) |has| |#1| (-160)) ((-669) . T) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-982 |#1|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-791 |#1|) . T))
-((-1742 (((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))) 74 (|has| |#1| (-27)))) (-3959 (((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))) 73 (|has| |#1| (-27))) (((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 17)))
-(((-603 |#1| |#2|) (-10 -7 (-15 -3959 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3959 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)))) (-15 -1742 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))))) |%noBranch|)) (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))) (-1148 |#1|)) (T -603))
-((-1742 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *5 (-1148 *4)) (-5 *2 (-592 (-599 (-385 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5))))) (-3959 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *5 (-1148 *4)) (-5 *2 (-592 (-599 (-385 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5))))) (-3959 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) (-5 *2 (-592 (-599 (-385 *6)))) (-5 *1 (-603 *5 *6)) (-5 *3 (-599 (-385 *6))))))
-(-10 -7 (-15 -3959 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3959 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)))) (-15 -1742 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))))) |%noBranch|))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1355 (($ $) NIL (|has| |#1| (-341)))) (-1798 (($ $ $) 28 (|has| |#1| (-341)))) (-1582 (($ $ (-713)) 31 (|has| |#1| (-341)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1521 (($ $ $) NIL (|has| |#1| (-341)))) (-1735 (($ $ $) NIL (|has| |#1| (-341)))) (-3510 (($ $ $) NIL (|has| |#1| (-341)))) (-2801 (($ $ $) NIL (|has| |#1| (-341)))) (-3457 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-1574 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2473 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-341)))) (-1264 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-2831 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-1247 (($ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3811 (($ $) NIL (|has| |#1| (-429)))) (-2133 (((-108) $) NIL)) (-4079 (($ |#1| (-713)) NIL)) (-3169 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-517)))) (-3047 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-517)))) (-3181 (((-713) $) NIL)) (-2555 (($ $ $) NIL (|has| |#1| (-341)))) (-2470 (($ $ $) NIL (|has| |#1| (-341)))) (-3344 (($ $ $) NIL (|has| |#1| (-341)))) (-3069 (($ $ $) NIL (|has| |#1| (-341)))) (-1702 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-1566 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3273 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-341)))) (-1224 ((|#1| $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2338 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3928 ((|#1| $ |#1|) 24)) (-1272 (($ $ $) 33 (|has| |#1| (-341)))) (-2513 (((-713) $) NIL)) (-2751 ((|#1| $) NIL (|has| |#1| (-429)))) (-1908 (((-797) $) 20) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) NIL)) (-3600 (((-592 |#1|) $) NIL)) (-1657 ((|#1| $ (-713)) NIL)) (-2093 (((-713)) NIL)) (-3088 ((|#1| $ |#1| |#1|) 23)) (-1672 (($ $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 21 T CONST)) (-3882 (($) 8 T CONST)) (-1424 (($) NIL)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-604 |#1| |#2|) (-602 |#1|) (-976) (-1 |#1| |#1|)) (T -604))
+((-2539 (($ $) 26)) (-1244 (($ $) 24)) (-2093 (($) 12)))
+(((-601 |#1| |#2|) (-10 -8 (-15 -2539 (|#1| |#1|)) (-15 -1244 (|#1| |#1|)) (-15 -2093 (|#1|))) (-602 |#2|) (-977)) (T -601))
+NIL
+(-10 -8 (-15 -2539 (|#1| |#1|)) (-15 -1244 (|#1| |#1|)) (-15 -2093 (|#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2539 (($ $) 82 (|has| |#1| (-341)))) (-3548 (($ $ $) 84 (|has| |#1| (-341)))) (-1246 (($ $ (-713)) 83 (|has| |#1| (-341)))) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-2271 (($ $ $) 45 (|has| |#1| (-341)))) (-3954 (($ $ $) 46 (|has| |#1| (-341)))) (-1859 (($ $ $) 48 (|has| |#1| (-341)))) (-1324 (($ $ $) 43 (|has| |#1| (-341)))) (-2711 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 42 (|has| |#1| (-341)))) (-4202 (((-3 $ "failed") $ $) 44 (|has| |#1| (-341)))) (-2541 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 47 (|has| |#1| (-341)))) (-2591 (((-3 (-525) "failed") $) 74 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 72 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 69)) (-3898 (((-525) $) 75 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 73 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 68)) (-2571 (($ $) 64)) (-3762 (((-3 $ "failed") $) 34)) (-3026 (($ $) 55 (|has| |#1| (-429)))) (-1985 (((-108) $) 31)) (-2352 (($ |#1| (-713)) 62)) (-1759 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 57 (|has| |#1| (-517)))) (-3148 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 58 (|has| |#1| (-517)))) (-3724 (((-713) $) 66)) (-3815 (($ $ $) 52 (|has| |#1| (-341)))) (-2516 (($ $ $) 53 (|has| |#1| (-341)))) (-3930 (($ $ $) 41 (|has| |#1| (-341)))) (-2121 (($ $ $) 50 (|has| |#1| (-341)))) (-1557 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 49 (|has| |#1| (-341)))) (-3127 (((-3 $ "failed") $ $) 51 (|has| |#1| (-341)))) (-1453 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 54 (|has| |#1| (-341)))) (-2548 ((|#1| $) 65)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1680 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-517)))) (-3410 ((|#1| $ |#1|) 87)) (-3607 (($ $ $) 81 (|has| |#1| (-341)))) (-1587 (((-713) $) 67)) (-2026 ((|#1| $) 56 (|has| |#1| (-429)))) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 71 (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) 70)) (-1562 (((-592 |#1|) $) 61)) (-3468 ((|#1| $ (-713)) 63)) (-2104 (((-713)) 29)) (-4169 ((|#1| $ |#1| |#1|) 60)) (-1244 (($ $) 85)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($) 86)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(((-602 |#1|) (-131) (-977)) (T -602))
+((-2093 (*1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)))) (-1244 (*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)))) (-3548 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-1246 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-602 *3)) (-4 *3 (-977)) (-4 *3 (-341)))) (-2539 (*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-3607 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(-13 (-791 |t#1|) (-265 |t#1| |t#1|) (-10 -8 (-15 -2093 ($)) (-15 -1244 ($ $)) (IF (|has| |t#1| (-341)) (PROGN (-15 -3548 ($ $ $)) (-15 -1246 ($ $ (-713))) (-15 -2539 ($ $)) (-15 -3607 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-265 |#1| |#1|) . T) ((-389 |#1|) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) |has| |#1| (-160)) ((-669) . T) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 |#1|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-791 |#1|) . T))
+((-4033 (((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))) 74 (|has| |#1| (-27)))) (-2195 (((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))) 73 (|has| |#1| (-27))) (((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 17)))
+(((-603 |#1| |#2|) (-10 -7 (-15 -2195 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2195 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)))) (-15 -4033 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))))) |%noBranch|)) (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))) (-1149 |#1|)) (T -603))
+((-4033 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *5 (-1149 *4)) (-5 *2 (-592 (-599 (-385 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5))))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *5 (-1149 *4)) (-5 *2 (-592 (-599 (-385 *5)))) (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5))))) (-2195 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *6 (-1149 *5)) (-5 *2 (-592 (-599 (-385 *6)))) (-5 *1 (-603 *5 *6)) (-5 *3 (-599 (-385 *6))))))
+(-10 -7 (-15 -2195 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2195 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|)))) (-15 -4033 ((-592 (-599 (-385 |#2|))) (-599 (-385 |#2|))))) |%noBranch|))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2539 (($ $) NIL (|has| |#1| (-341)))) (-3548 (($ $ $) 28 (|has| |#1| (-341)))) (-1246 (($ $ (-713)) 31 (|has| |#1| (-341)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2271 (($ $ $) NIL (|has| |#1| (-341)))) (-3954 (($ $ $) NIL (|has| |#1| (-341)))) (-1859 (($ $ $) NIL (|has| |#1| (-341)))) (-1324 (($ $ $) NIL (|has| |#1| (-341)))) (-2711 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-4202 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2541 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-341)))) (-2591 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-3898 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-2571 (($ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3026 (($ $) NIL (|has| |#1| (-429)))) (-1985 (((-108) $) NIL)) (-2352 (($ |#1| (-713)) NIL)) (-1759 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-517)))) (-3148 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-517)))) (-3724 (((-713) $) NIL)) (-3815 (($ $ $) NIL (|has| |#1| (-341)))) (-2516 (($ $ $) NIL (|has| |#1| (-341)))) (-3930 (($ $ $) NIL (|has| |#1| (-341)))) (-2121 (($ $ $) NIL (|has| |#1| (-341)))) (-1557 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-3127 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-1453 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-341)))) (-2548 ((|#1| $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1680 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3410 ((|#1| $ |#1|) 24)) (-3607 (($ $ $) 33 (|has| |#1| (-341)))) (-1587 (((-713) $) NIL)) (-2026 ((|#1| $) NIL (|has| |#1| (-429)))) (-1270 (((-798) $) 20) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) NIL)) (-1562 (((-592 |#1|) $) NIL)) (-3468 ((|#1| $ (-713)) NIL)) (-2104 (((-713)) NIL)) (-4169 ((|#1| $ |#1| |#1|) 23)) (-1244 (($ $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 21 T CONST)) (-3363 (($) 8 T CONST)) (-2093 (($) NIL)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-604 |#1| |#2|) (-602 |#1|) (-977) (-1 |#1| |#1|)) (T -604))
NIL
(-602 |#1|)
-((-1798 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-1582 ((|#2| |#2| (-713) (-1 |#1| |#1|)) 40)) (-1272 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
-(((-605 |#1| |#2|) (-10 -7 (-15 -1798 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1582 (|#2| |#2| (-713) (-1 |#1| |#1|))) (-15 -1272 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-341) (-602 |#1|)) (T -605))
-((-1272 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2)) (-4 *2 (-602 *4)))) (-1582 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-5 *1 (-605 *5 *2)) (-4 *2 (-602 *5)))) (-1798 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2)) (-4 *2 (-602 *4)))))
-(-10 -7 (-15 -1798 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1582 (|#2| |#2| (-713) (-1 |#1| |#1|))) (-15 -1272 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-3800 (($ $ $) 9)))
-(((-606 |#1|) (-10 -8 (-15 -3800 (|#1| |#1| |#1|))) (-607)) (T -606))
-NIL
-(-10 -8 (-15 -3800 (|#1| |#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-2350 (($ $) 10)) (-3800 (($ $ $) 8)) (-3961 (((-108) $ $) 6)) (-3791 (($ $ $) 9)))
+((-3548 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-1246 ((|#2| |#2| (-713) (-1 |#1| |#1|)) 40)) (-3607 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
+(((-605 |#1| |#2|) (-10 -7 (-15 -3548 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1246 (|#2| |#2| (-713) (-1 |#1| |#1|))) (-15 -3607 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-341) (-602 |#1|)) (T -605))
+((-3607 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2)) (-4 *2 (-602 *4)))) (-1246 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-5 *1 (-605 *5 *2)) (-4 *2 (-602 *5)))) (-3548 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2)) (-4 *2 (-602 *4)))))
+(-10 -7 (-15 -3548 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1246 (|#2| |#2| (-713) (-1 |#1| |#1|))) (-15 -3607 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-3236 (($ $ $) 9)))
+(((-606 |#1|) (-10 -8 (-15 -3236 (|#1| |#1| |#1|))) (-607)) (T -606))
+NIL
+(-10 -8 (-15 -3236 (|#1| |#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-3411 (($ $) 10)) (-3236 (($ $ $) 8)) (-3994 (((-108) $ $) 6)) (-3227 (($ $ $) 9)))
(((-607) (-131)) (T -607))
-((-2350 (*1 *1 *1) (-4 *1 (-607))) (-3791 (*1 *1 *1 *1) (-4 *1 (-607))) (-3800 (*1 *1 *1 *1) (-4 *1 (-607))))
-(-13 (-97) (-10 -8 (-15 -2350 ($ $)) (-15 -3791 ($ $ $)) (-15 -3800 ($ $ $))))
+((-3411 (*1 *1 *1) (-4 *1 (-607))) (-3227 (*1 *1 *1 *1) (-4 *1 (-607))) (-3236 (*1 *1 *1 *1) (-4 *1 (-607))))
+(-13 (-97) (-10 -8 (-15 -3411 ($ $)) (-15 -3227 ($ $ $)) (-15 -3236 ($ $ $))))
(((-97) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 15)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1303 ((|#1| $) 21)) (-3525 (($ $ $) NIL (|has| |#1| (-733)))) (-3630 (($ $ $) NIL (|has| |#1| (-733)))) (-2337 (((-1073) $) 46)) (-2663 (((-1037) $) NIL)) (-1312 ((|#3| $) 22)) (-1908 (((-797) $) 42)) (-3875 (($) 10 T CONST)) (-4024 (((-108) $ $) NIL (|has| |#1| (-733)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-733)))) (-3961 (((-108) $ $) 20)) (-4010 (((-108) $ $) NIL (|has| |#1| (-733)))) (-3983 (((-108) $ $) 24 (|has| |#1| (-733)))) (-4082 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4070 (($ $) 17) (($ $ $) NIL)) (-4059 (($ $ $) 27)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-608 |#1| |#2| |#3|) (-13 (-660 |#2|) (-10 -8 (IF (|has| |#1| (-733)) (-6 (-733)) |%noBranch|) (-15 -4082 ($ $ |#3|)) (-15 -4082 ($ |#1| |#3|)) (-15 -1303 (|#1| $)) (-15 -1312 (|#3| $)))) (-660 |#2|) (-160) (|SubsetCategory| (-669) |#2|)) (T -608))
-((-4082 (*1 *1 *1 *2) (-12 (-4 *4 (-160)) (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-660 *4)) (-4 *2 (|SubsetCategory| (-669) *4)))) (-4082 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-608 *2 *4 *3)) (-4 *2 (-660 *4)) (-4 *3 (|SubsetCategory| (-669) *4)))) (-1303 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-660 *3)) (-5 *1 (-608 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-669) *3)))) (-1312 (*1 *2 *1) (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4)) (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-660 *4)))))
-(-13 (-660 |#2|) (-10 -8 (IF (|has| |#1| (-733)) (-6 (-733)) |%noBranch|) (-15 -4082 ($ $ |#3|)) (-15 -4082 ($ |#1| |#3|)) (-15 -1303 (|#1| $)) (-15 -1312 (|#3| $))))
-((-3031 (((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|)) 33)))
-(((-609 |#1|) (-10 -7 (-15 -3031 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|)))) (-843)) (T -609))
-((-3031 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1086 *4))) (-5 *3 (-1086 *4)) (-4 *4 (-843)) (-5 *1 (-609 *4)))))
-(-10 -7 (-15 -3031 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3908 (((-592 |#1|) $) 82)) (-2005 (($ $ (-713)) 90)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1225 (((-1194 |#1| |#2|) (-1194 |#1| |#2|) $) 48)) (-1264 (((-3 (-617 |#1|) "failed") $) NIL)) (-2831 (((-617 |#1|) $) NIL)) (-1247 (($ $) 89)) (-3610 (((-713) $) NIL)) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) NIL)) (-4157 (($ (-617 |#1|) |#2|) 68)) (-2387 (($ $) 86)) (-1370 (($ (-1 |#2| |#2|) $) NIL)) (-1475 (((-1194 |#1| |#2|) (-1194 |#1| |#2|) $) 47)) (-2614 (((-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1212 (((-617 |#1|) $) NIL)) (-1224 ((|#2| $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3092 (($ $ |#1| $) 30) (($ $ (-592 |#1|) (-592 $)) 32)) (-2513 (((-713) $) 88)) (-1922 (($ $ $) 20) (($ (-617 |#1|) (-617 |#1|)) 77) (($ (-617 |#1|) $) 75) (($ $ (-617 |#1|)) 76)) (-1908 (((-797) $) NIL) (($ |#1|) 74) (((-1185 |#1| |#2|) $) 58) (((-1194 |#1| |#2|) $) 41) (($ (-617 |#1|)) 25)) (-3600 (((-592 |#2|) $) NIL)) (-1657 ((|#2| $ (-617 |#1|)) NIL)) (-1459 ((|#2| (-1194 |#1| |#2|) $) 43)) (-3875 (($) 23 T CONST)) (-3415 (((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2605 (((-3 $ "failed") (-1185 |#1| |#2|)) 60)) (-3202 (($ (-617 |#1|)) 14)) (-3961 (((-108) $ $) 44)) (-4082 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4070 (($ $) 66) (($ $ $) NIL)) (-4059 (($ $ $) 29)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-617 |#1|)) NIL)))
-(((-610 |#1| |#2|) (-13 (-352 |#1| |#2|) (-360 |#2| (-617 |#1|)) (-10 -8 (-15 -2605 ((-3 $ "failed") (-1185 |#1| |#2|))) (-15 -1922 ($ (-617 |#1|) (-617 |#1|))) (-15 -1922 ($ (-617 |#1|) $)) (-15 -1922 ($ $ (-617 |#1|))))) (-789) (-160)) (T -610))
-((-2605 (*1 *1 *2) (|partial| -12 (-5 *2 (-1185 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *1 (-610 *3 *4)))) (-1922 (*1 *1 *2 *2) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) (-4 *4 (-160)))) (-1922 (*1 *1 *2 *1) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) (-4 *4 (-160)))) (-1922 (*1 *1 *1 *2) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) (-4 *4 (-160)))))
-(-13 (-352 |#1| |#2|) (-360 |#2| (-617 |#1|)) (-10 -8 (-15 -2605 ((-3 $ "failed") (-1185 |#1| |#2|))) (-15 -1922 ($ (-617 |#1|) (-617 |#1|))) (-15 -1922 ($ (-617 |#1|) $)) (-15 -1922 ($ $ (-617 |#1|)))))
-((-3072 (((-108) $) NIL) (((-108) (-1 (-108) |#2| |#2|) $) 50)) (-1356 (($ $) NIL) (($ (-1 (-108) |#2| |#2|) $) 12)) (-3290 (($ (-1 (-108) |#2|) $) 28)) (-4103 (($ $) 56)) (-3143 (($ $) 64)) (-2792 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 37)) (-4004 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-3763 (((-525) |#2| $ (-525)) 61) (((-525) |#2| $) NIL) (((-525) (-1 (-108) |#2|) $) 47)) (-4018 (($ (-713) |#2|) 54)) (-2749 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 30)) (-1932 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 24)) (-1370 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-3037 (($ |#2|) 15)) (-2573 (($ $ $ (-525)) 36) (($ |#2| $ (-525)) 34)) (-4054 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 46)) (-3977 (($ $ (-1139 (-525))) 44) (($ $ (-525)) 38)) (-3703 (($ $ $ (-525)) 60)) (-2135 (($ $) 58)) (-3983 (((-108) $ $) 66)))
-(((-611 |#1| |#2|) (-10 -8 (-15 -3037 (|#1| |#2|)) (-15 -3977 (|#1| |#1| (-525))) (-15 -3977 (|#1| |#1| (-1139 (-525)))) (-15 -2792 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2573 (|#1| |#2| |#1| (-525))) (-15 -2573 (|#1| |#1| |#1| (-525))) (-15 -2749 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3290 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2792 (|#1| |#2| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -2749 (|#1| |#1| |#1|)) (-15 -1932 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3072 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3763 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -3763 ((-525) |#2| |#1|)) (-15 -3763 ((-525) |#2| |#1| (-525))) (-15 -1932 (|#1| |#1| |#1|)) (-15 -3072 ((-108) |#1|)) (-15 -3703 (|#1| |#1| |#1| (-525))) (-15 -4103 (|#1| |#1|)) (-15 -1356 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1356 (|#1| |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4054 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4018 (|#1| (-713) |#2|)) (-15 -1370 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1370 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2135 (|#1| |#1|))) (-612 |#2|) (-1126)) (T -611))
-NIL
-(-10 -8 (-15 -3037 (|#1| |#2|)) (-15 -3977 (|#1| |#1| (-525))) (-15 -3977 (|#1| |#1| (-1139 (-525)))) (-15 -2792 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2573 (|#1| |#2| |#1| (-525))) (-15 -2573 (|#1| |#1| |#1| (-525))) (-15 -2749 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3290 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2792 (|#1| |#2| |#1|)) (-15 -3143 (|#1| |#1|)) (-15 -2749 (|#1| |#1| |#1|)) (-15 -1932 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -3072 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -3763 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -3763 ((-525) |#2| |#1|)) (-15 -3763 ((-525) |#2| |#1| (-525))) (-15 -1932 (|#1| |#1| |#1|)) (-15 -3072 ((-108) |#1|)) (-15 -3703 (|#1| |#1| |#1| (-525))) (-15 -4103 (|#1| |#1|)) (-15 -1356 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -1356 (|#1| |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4004 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4054 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -4018 (|#1| (-713) |#2|)) (-15 -1370 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1370 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2135 (|#1| |#1|)))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3871 ((|#1| $) 48)) (-1899 ((|#1| $) 65)) (-1614 (($ $) 67)) (-1840 (((-1177) $ (-525) (-525)) 97 (|has| $ (-6 -4255)))) (-3035 (($ $ (-525)) 52 (|has| $ (-6 -4255)))) (-3072 (((-108) $) 142 (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) 136)) (-1356 (($ $) 146 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#1| |#1|) $) 145 (|has| $ (-6 -4255)))) (-3327 (($ $) 141 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) 135)) (-3410 (((-108) $ (-713)) 8)) (-2822 ((|#1| $ |#1|) 39 (|has| $ (-6 -4255)))) (-3795 (($ $ $) 56 (|has| $ (-6 -4255)))) (-2813 ((|#1| $ |#1|) 54 (|has| $ (-6 -4255)))) (-1517 ((|#1| $ |#1|) 58 (|has| $ (-6 -4255)))) (-2109 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4255))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4255))) (($ $ "rest" $) 55 (|has| $ (-6 -4255))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 117 (|has| $ (-6 -4255))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-3290 (($ (-1 (-108) |#1|) $) 129)) (-2724 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4254)))) (-1882 ((|#1| $) 66)) (-1505 (($) 7 T CONST)) (-4103 (($ $) 144 (|has| $ (-6 -4255)))) (-1693 (($ $) 134)) (-3145 (($ $) 73) (($ $ (-713)) 71)) (-3143 (($ $) 131 (|has| |#1| (-1019)))) (-3163 (($ $) 99 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2792 (($ |#1| $) 130 (|has| |#1| (-1019))) (($ (-1 (-108) |#1|) $) 125)) (-2273 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4254))) (($ |#1| $) 100 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2870 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) 87)) (-2495 (((-108) $) 83)) (-3763 (((-525) |#1| $ (-525)) 139 (|has| |#1| (-1019))) (((-525) |#1| $) 138 (|has| |#1| (-1019))) (((-525) (-1 (-108) |#1|) $) 137)) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) 50)) (-3106 (((-108) $ $) 42 (|has| |#1| (-1019)))) (-4018 (($ (-713) |#1|) 108)) (-3100 (((-108) $ (-713)) 9)) (-2009 (((-525) $) 95 (|has| (-525) (-789)))) (-3525 (($ $ $) 147 (|has| |#1| (-789)))) (-2749 (($ $ $) 132 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 128)) (-1932 (($ $ $) 140 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 133)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1792 (((-525) $) 94 (|has| (-525) (-789)))) (-3630 (($ $ $) 148 (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3037 (($ |#1|) 122)) (-3017 (((-108) $ (-713)) 10)) (-1564 (((-592 |#1|) $) 45)) (-3723 (((-108) $) 49)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2292 ((|#1| $) 70) (($ $ (-713)) 68)) (-2573 (($ $ $ (-525)) 127) (($ |#1| $ (-525)) 126)) (-3167 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-3222 (((-592 (-525)) $) 92)) (-1548 (((-108) (-525) $) 91)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3135 ((|#1| $) 76) (($ $ (-713)) 74)) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-1911 (($ $ |#1|) 96 (|has| $ (-6 -4255)))) (-2518 (((-108) $) 84)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-3218 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) 90)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1139 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-4068 (((-525) $ $) 44)) (-3977 (($ $ (-1139 (-525))) 124) (($ $ (-525)) 123)) (-3653 (($ $ (-1139 (-525))) 114) (($ $ (-525)) 113)) (-1810 (((-108) $) 46)) (-1350 (($ $) 62)) (-2027 (($ $) 59 (|has| $ (-6 -4255)))) (-1290 (((-713) $) 63)) (-3080 (($ $) 64)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-3703 (($ $ $ (-525)) 143 (|has| $ (-6 -4255)))) (-2135 (($ $) 13)) (-1427 (((-501) $) 98 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 107)) (-1497 (($ $ $) 61) (($ $ |#1|) 60)) (-2664 (($ $ $) 78) (($ |#1| $) 77) (($ (-592 $)) 110) (($ $ |#1|) 109)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) 51)) (-1519 (((-108) $ $) 43 (|has| |#1| (-1019)))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) 150 (|has| |#1| (-789)))) (-3995 (((-108) $ $) 151 (|has| |#1| (-789)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4010 (((-108) $ $) 149 (|has| |#1| (-789)))) (-3983 (((-108) $ $) 152 (|has| |#1| (-789)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-612 |#1|) (-131) (-1126)) (T -612))
-((-3037 (*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1126)))))
-(-13 (-1064 |t#1|) (-351 |t#1|) (-261 |t#1|) (-10 -8 (-15 -3037 ($ |t#1|))))
-(((-33) . T) ((-97) -3309 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-789)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-261 |#1|) . T) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-597 |#1|) . T) ((-789) |has| |#1| (-789)) ((-941 |#1|) . T) ((-1019) -3309 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-1064 |#1|) . T) ((-1126) . T) ((-1160 |#1|) . T))
-((-2925 (((-592 (-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2499 (-592 (-1172 |#1|))))) (-592 (-592 |#1|)) (-592 (-1172 |#1|))) 22) (((-592 (-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2499 (-592 (-1172 |#1|))))) (-632 |#1|) (-592 (-1172 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2499 (-592 (-1172 |#1|)))) (-592 (-592 |#1|)) (-1172 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2499 (-592 (-1172 |#1|)))) (-632 |#1|) (-1172 |#1|)) 14)) (-2239 (((-713) (-632 |#1|) (-1172 |#1|)) 30)) (-2285 (((-3 (-1172 |#1|) "failed") (-632 |#1|) (-1172 |#1|)) 24)) (-4023 (((-108) (-632 |#1|) (-1172 |#1|)) 27)))
-(((-613 |#1|) (-10 -7 (-15 -2925 ((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2499 (-592 (-1172 |#1|)))) (-632 |#1|) (-1172 |#1|))) (-15 -2925 ((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2499 (-592 (-1172 |#1|)))) (-592 (-592 |#1|)) (-1172 |#1|))) (-15 -2925 ((-592 (-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2499 (-592 (-1172 |#1|))))) (-632 |#1|) (-592 (-1172 |#1|)))) (-15 -2925 ((-592 (-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2499 (-592 (-1172 |#1|))))) (-592 (-592 |#1|)) (-592 (-1172 |#1|)))) (-15 -2285 ((-3 (-1172 |#1|) "failed") (-632 |#1|) (-1172 |#1|))) (-15 -4023 ((-108) (-632 |#1|) (-1172 |#1|))) (-15 -2239 ((-713) (-632 |#1|) (-1172 |#1|)))) (-341)) (T -613))
-((-2239 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-341)) (-5 *2 (-713)) (-5 *1 (-613 *5)))) (-4023 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-341)) (-5 *2 (-108)) (-5 *1 (-613 *5)))) (-2285 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1172 *4)) (-5 *3 (-632 *4)) (-4 *4 (-341)) (-5 *1 (-613 *4)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341)) (-5 *2 (-592 (-2 (|:| |particular| (-3 (-1172 *5) "failed")) (|:| -2499 (-592 (-1172 *5)))))) (-5 *1 (-613 *5)) (-5 *4 (-592 (-1172 *5))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-4 *5 (-341)) (-5 *2 (-592 (-2 (|:| |particular| (-3 (-1172 *5) "failed")) (|:| -2499 (-592 (-1172 *5)))))) (-5 *1 (-613 *5)) (-5 *4 (-592 (-1172 *5))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341)) (-5 *2 (-2 (|:| |particular| (-3 (-1172 *5) "failed")) (|:| -2499 (-592 (-1172 *5))))) (-5 *1 (-613 *5)) (-5 *4 (-1172 *5)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |particular| (-3 (-1172 *5) "failed")) (|:| -2499 (-592 (-1172 *5))))) (-5 *1 (-613 *5)) (-5 *4 (-1172 *5)))))
-(-10 -7 (-15 -2925 ((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2499 (-592 (-1172 |#1|)))) (-632 |#1|) (-1172 |#1|))) (-15 -2925 ((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2499 (-592 (-1172 |#1|)))) (-592 (-592 |#1|)) (-1172 |#1|))) (-15 -2925 ((-592 (-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2499 (-592 (-1172 |#1|))))) (-632 |#1|) (-592 (-1172 |#1|)))) (-15 -2925 ((-592 (-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2499 (-592 (-1172 |#1|))))) (-592 (-592 |#1|)) (-592 (-1172 |#1|)))) (-15 -2285 ((-3 (-1172 |#1|) "failed") (-632 |#1|) (-1172 |#1|))) (-15 -4023 ((-108) (-632 |#1|) (-1172 |#1|))) (-15 -2239 ((-713) (-632 |#1|) (-1172 |#1|))))
-((-2925 (((-592 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2499 (-592 |#3|)))) |#4| (-592 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2499 (-592 |#3|))) |#4| |#3|) 45)) (-2239 (((-713) |#4| |#3|) 17)) (-2285 (((-3 |#3| "failed") |#4| |#3|) 20)) (-4023 (((-108) |#4| |#3|) 13)))
-(((-614 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2925 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2499 (-592 |#3|))) |#4| |#3|)) (-15 -2925 ((-592 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2499 (-592 |#3|)))) |#4| (-592 |#3|))) (-15 -2285 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4023 ((-108) |#4| |#3|)) (-15 -2239 ((-713) |#4| |#3|))) (-341) (-13 (-351 |#1|) (-10 -7 (-6 -4255))) (-13 (-351 |#1|) (-10 -7 (-6 -4255))) (-630 |#1| |#2| |#3|)) (T -614))
-((-2239 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-5 *2 (-713)) (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))) (-4023 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-5 *2 (-108)) (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))) (-2285 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-341)) (-4 *5 (-13 (-351 *4) (-10 -7 (-6 -4255)))) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4255)))) (-5 *1 (-614 *4 *5 *2 *3)) (-4 *3 (-630 *4 *5 *2)))) (-2925 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-4 *7 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-5 *2 (-592 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2499 (-592 *7))))) (-5 *1 (-614 *5 *6 *7 *3)) (-5 *4 (-592 *7)) (-4 *3 (-630 *5 *6 *7)))) (-2925 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2499 (-592 *4)))) (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))))
-(-10 -7 (-15 -2925 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2499 (-592 |#3|))) |#4| |#3|)) (-15 -2925 ((-592 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2499 (-592 |#3|)))) |#4| (-592 |#3|))) (-15 -2285 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4023 ((-108) |#4| |#3|)) (-15 -2239 ((-713) |#4| |#3|)))
-((-4202 (((-2 (|:| |particular| (-3 (-1172 (-385 |#4|)) "failed")) (|:| -2499 (-592 (-1172 (-385 |#4|))))) (-592 |#4|) (-592 |#3|)) 45)))
-(((-615 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4202 ((-2 (|:| |particular| (-3 (-1172 (-385 |#4|)) "failed")) (|:| -2499 (-592 (-1172 (-385 |#4|))))) (-592 |#4|) (-592 |#3|)))) (-517) (-735) (-789) (-883 |#1| |#2| |#3|)) (T -615))
-((-4202 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *7)) (-4 *7 (-789)) (-4 *8 (-883 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-5 *2 (-2 (|:| |particular| (-3 (-1172 (-385 *8)) "failed")) (|:| -2499 (-592 (-1172 (-385 *8)))))) (-5 *1 (-615 *5 *6 *7 *8)))))
-(-10 -7 (-15 -4202 ((-2 (|:| |particular| (-3 (-1172 (-385 |#4|)) "failed")) (|:| -2499 (-592 (-1172 (-385 |#4|))))) (-592 |#4|) (-592 |#3|))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3957 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-3512 ((|#2| $) NIL)) (-3844 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-2722 (((-1172 (-632 |#2|))) NIL) (((-1172 (-632 |#2|)) (-1172 $)) NIL)) (-1399 (((-108) $) NIL)) (-1917 (((-1172 $)) 37)) (-3410 (((-108) $ (-713)) NIL)) (-2715 (($ |#2|) NIL)) (-1505 (($) NIL T CONST)) (-3262 (($ $) NIL (|has| |#2| (-286)))) (-3606 (((-220 |#1| |#2|) $ (-525)) NIL)) (-2800 (((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed")) NIL (|has| |#2| (-517)))) (-1496 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-1460 (((-632 |#2|)) NIL) (((-632 |#2|) (-1172 $)) NIL)) (-2386 ((|#2| $) NIL)) (-3440 (((-632 |#2|) $) NIL) (((-632 |#2|) $ (-1172 $)) NIL)) (-1391 (((-3 $ "failed") $) NIL (|has| |#2| (-517)))) (-1743 (((-1086 (-886 |#2|))) NIL (|has| |#2| (-341)))) (-2979 (($ $ (-855)) NIL)) (-3376 ((|#2| $) NIL)) (-2706 (((-1086 |#2|) $) NIL (|has| |#2| (-517)))) (-2519 ((|#2|) NIL) ((|#2| (-1172 $)) NIL)) (-2908 (((-1086 |#2|) $) NIL)) (-1814 (((-108)) NIL)) (-1264 (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-2831 (((-525) $) NIL (|has| |#2| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-385 (-525))))) ((|#2| $) NIL)) (-2229 (($ (-1172 |#2|)) NIL) (($ (-1172 |#2|) (-1172 $)) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-2239 (((-713) $) NIL (|has| |#2| (-517))) (((-855)) 38)) (-2796 ((|#2| $ (-525) (-525)) NIL)) (-2301 (((-108)) NIL)) (-2097 (($ $ (-855)) NIL)) (-2026 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-2133 (((-108) $) NIL)) (-3177 (((-713) $) NIL (|has| |#2| (-517)))) (-2517 (((-592 (-220 |#1| |#2|)) $) NIL (|has| |#2| (-517)))) (-2606 (((-713) $) NIL)) (-2795 (((-108)) NIL)) (-2618 (((-713) $) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2216 ((|#2| $) NIL (|has| |#2| (-6 (-4256 "*"))))) (-2746 (((-525) $) NIL)) (-2551 (((-525) $) NIL)) (-3168 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-1906 (((-525) $) NIL)) (-1950 (((-525) $) NIL)) (-3515 (($ (-592 (-592 |#2|))) NIL)) (-2857 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3019 (((-592 (-592 |#2|)) $) NIL)) (-3251 (((-108)) NIL)) (-2775 (((-108)) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-4033 (((-3 (-2 (|:| |particular| $) (|:| -2499 (-592 $))) "failed")) NIL (|has| |#2| (-517)))) (-1850 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-2205 (((-632 |#2|)) NIL) (((-632 |#2|) (-1172 $)) NIL)) (-2389 ((|#2| $) NIL)) (-1306 (((-632 |#2|) $) NIL) (((-632 |#2|) $ (-1172 $)) NIL)) (-2364 (((-3 $ "failed") $) NIL (|has| |#2| (-517)))) (-2568 (((-1086 (-886 |#2|))) NIL (|has| |#2| (-341)))) (-1640 (($ $ (-855)) NIL)) (-3342 ((|#2| $) NIL)) (-2900 (((-1086 |#2|) $) NIL (|has| |#2| (-517)))) (-3060 ((|#2|) NIL) ((|#2| (-1172 $)) NIL)) (-2535 (((-1086 |#2|) $) NIL)) (-1506 (((-108)) NIL)) (-2337 (((-1073) $) NIL)) (-3886 (((-108)) NIL)) (-1886 (((-108)) NIL)) (-2597 (((-108)) NIL)) (-1386 (((-3 $ "failed") $) NIL (|has| |#2| (-341)))) (-2663 (((-1037) $) NIL)) (-2120 (((-108)) NIL)) (-2338 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-3494 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#2| $ (-525) (-525) |#2|) NIL) ((|#2| $ (-525) (-525)) 22) ((|#2| $ (-525)) NIL)) (-3013 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-1454 ((|#2| $) NIL)) (-2540 (($ (-592 |#2|)) NIL)) (-1997 (((-108) $) NIL)) (-2812 (((-220 |#1| |#2|) $) NIL)) (-2923 ((|#2| $) NIL (|has| |#2| (-6 (-4256 "*"))))) (-2686 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-2135 (($ $) NIL)) (-4093 (((-632 |#2|) (-1172 $)) NIL) (((-1172 |#2|) $) NIL) (((-632 |#2|) (-1172 $) (-1172 $)) NIL) (((-1172 |#2|) $ (-1172 $)) 25)) (-1427 (($ (-1172 |#2|)) NIL) (((-1172 |#2|) $) NIL)) (-2274 (((-592 (-886 |#2|))) NIL) (((-592 (-886 |#2|)) (-1172 $)) NIL)) (-1518 (($ $ $) NIL)) (-1380 (((-108)) NIL)) (-2543 (((-220 |#1| |#2|) $ (-525)) NIL)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-967 (-385 (-525))))) (($ |#2|) NIL) (((-632 |#2|) $) NIL)) (-2093 (((-713)) NIL)) (-2499 (((-1172 $)) 36)) (-1648 (((-592 (-1172 |#2|))) NIL (|has| |#2| (-517)))) (-2260 (($ $ $ $) NIL)) (-3132 (((-108)) NIL)) (-3088 (($ (-632 |#2|) $) NIL)) (-2667 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3265 (((-108) $) NIL)) (-2331 (($ $ $) NIL)) (-1447 (((-108)) NIL)) (-3432 (((-108)) NIL)) (-2303 (((-108)) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#2| (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-220 |#1| |#2|) $ (-220 |#1| |#2|)) NIL) (((-220 |#1| |#2|) (-220 |#1| |#2|) $) NIL)) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-616 |#1| |#2|) (-13 (-1040 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-395 |#2|)) (-855) (-160)) (T -616))
-NIL
-(-13 (-1040 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-395 |#2|))
-((-1893 (((-108) $ $) NIL)) (-3908 (((-592 |#1|) $) NIL)) (-4152 (($ $) 52)) (-3825 (((-108) $) NIL)) (-1264 (((-3 |#1| "failed") $) NIL)) (-2831 ((|#1| $) NIL)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-2129 (((-3 $ "failed") (-761 |#1|)) 23)) (-2017 (((-108) (-761 |#1|)) 15)) (-2316 (($ (-761 |#1|)) 24)) (-4213 (((-108) $ $) 30)) (-1722 (((-855) $) 37)) (-4138 (($ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3959 (((-592 $) (-761 |#1|)) 17)) (-1908 (((-797) $) 43) (($ |#1|) 34) (((-761 |#1|) $) 39) (((-621 |#1|) $) 44)) (-3821 (((-57 (-592 $)) (-592 |#1|) (-855)) 57)) (-1245 (((-592 $) (-592 |#1|) (-855)) 60)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 53)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 38)))
-(((-617 |#1|) (-13 (-789) (-967 |#1|) (-10 -8 (-15 -3825 ((-108) $)) (-15 -4138 ($ $)) (-15 -4152 ($ $)) (-15 -1722 ((-855) $)) (-15 -4213 ((-108) $ $)) (-15 -1908 ((-761 |#1|) $)) (-15 -1908 ((-621 |#1|) $)) (-15 -3959 ((-592 $) (-761 |#1|))) (-15 -2017 ((-108) (-761 |#1|))) (-15 -2316 ($ (-761 |#1|))) (-15 -2129 ((-3 $ "failed") (-761 |#1|))) (-15 -3908 ((-592 |#1|) $)) (-15 -3821 ((-57 (-592 $)) (-592 |#1|) (-855))) (-15 -1245 ((-592 $) (-592 |#1|) (-855))))) (-789)) (T -617))
-((-3825 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-4138 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789)))) (-4152 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-855)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-4213 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-617 *4))) (-5 *1 (-617 *4)))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-108)) (-5 *1 (-617 *4)))) (-2316 (*1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))) (-2129 (*1 *1 *2) (|partial| -12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-3821 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-855)) (-4 *5 (-789)) (-5 *2 (-57 (-592 (-617 *5)))) (-5 *1 (-617 *5)))) (-1245 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-855)) (-4 *5 (-789)) (-5 *2 (-592 (-617 *5))) (-5 *1 (-617 *5)))))
-(-13 (-789) (-967 |#1|) (-10 -8 (-15 -3825 ((-108) $)) (-15 -4138 ($ $)) (-15 -4152 ($ $)) (-15 -1722 ((-855) $)) (-15 -4213 ((-108) $ $)) (-15 -1908 ((-761 |#1|) $)) (-15 -1908 ((-621 |#1|) $)) (-15 -3959 ((-592 $) (-761 |#1|))) (-15 -2017 ((-108) (-761 |#1|))) (-15 -2316 ($ (-761 |#1|))) (-15 -2129 ((-3 $ "failed") (-761 |#1|))) (-15 -3908 ((-592 |#1|) $)) (-15 -3821 ((-57 (-592 $)) (-592 |#1|) (-855))) (-15 -1245 ((-592 $) (-592 |#1|) (-855)))))
-((-3871 ((|#2| $) 76)) (-1614 (($ $) 96)) (-3410 (((-108) $ (-713)) 26)) (-3145 (($ $) 85) (($ $ (-713)) 88)) (-2495 (((-108) $) 97)) (-4125 (((-592 $) $) 72)) (-3106 (((-108) $ $) 71)) (-3100 (((-108) $ (-713)) 24)) (-2009 (((-525) $) 46)) (-1792 (((-525) $) 45)) (-3017 (((-108) $ (-713)) 22)) (-3723 (((-108) $) 74)) (-2292 ((|#2| $) 89) (($ $ (-713)) 92)) (-3167 (($ $ $ (-525)) 62) (($ |#2| $ (-525)) 61)) (-3222 (((-592 (-525)) $) 44)) (-1548 (((-108) (-525) $) 42)) (-3135 ((|#2| $) NIL) (($ $ (-713)) 84)) (-3538 (($ $ (-525)) 100)) (-2518 (((-108) $) 99)) (-3494 (((-108) (-1 (-108) |#2|) $) 32)) (-3171 (((-592 |#2|) $) 33)) (-3928 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1139 (-525))) 58) ((|#2| $ (-525)) 40) ((|#2| $ (-525) |#2|) 41)) (-4068 (((-525) $ $) 70)) (-3653 (($ $ (-1139 (-525))) 57) (($ $ (-525)) 51)) (-1810 (((-108) $) 66)) (-1350 (($ $) 81)) (-1290 (((-713) $) 80)) (-3080 (($ $) 79)) (-1922 (($ (-592 |#2|)) 37)) (-1801 (($ $) 101)) (-2021 (((-592 $) $) 69)) (-1519 (((-108) $ $) 68)) (-2667 (((-108) (-1 (-108) |#2|) $) 31)) (-3961 (((-108) $ $) 18)) (-4140 (((-713) $) 29)))
-(((-618 |#1| |#2|) (-10 -8 (-15 -1801 (|#1| |#1|)) (-15 -3538 (|#1| |#1| (-525))) (-15 -2495 ((-108) |#1|)) (-15 -2518 ((-108) |#1|)) (-15 -3928 (|#2| |#1| (-525) |#2|)) (-15 -3928 (|#2| |#1| (-525))) (-15 -3171 ((-592 |#2|) |#1|)) (-15 -1548 ((-108) (-525) |#1|)) (-15 -3222 ((-592 (-525)) |#1|)) (-15 -1792 ((-525) |#1|)) (-15 -2009 ((-525) |#1|)) (-15 -1922 (|#1| (-592 |#2|))) (-15 -3928 (|#1| |#1| (-1139 (-525)))) (-15 -3653 (|#1| |#1| (-525))) (-15 -3653 (|#1| |#1| (-1139 (-525)))) (-15 -3167 (|#1| |#2| |#1| (-525))) (-15 -3167 (|#1| |#1| |#1| (-525))) (-15 -1350 (|#1| |#1|)) (-15 -1290 ((-713) |#1|)) (-15 -3080 (|#1| |#1|)) (-15 -1614 (|#1| |#1|)) (-15 -2292 (|#1| |#1| (-713))) (-15 -3928 (|#2| |#1| "last")) (-15 -2292 (|#2| |#1|)) (-15 -3145 (|#1| |#1| (-713))) (-15 -3928 (|#1| |#1| "rest")) (-15 -3145 (|#1| |#1|)) (-15 -3135 (|#1| |#1| (-713))) (-15 -3928 (|#2| |#1| "first")) (-15 -3135 (|#2| |#1|)) (-15 -3106 ((-108) |#1| |#1|)) (-15 -1519 ((-108) |#1| |#1|)) (-15 -4068 ((-525) |#1| |#1|)) (-15 -1810 ((-108) |#1|)) (-15 -3928 (|#2| |#1| "value")) (-15 -3871 (|#2| |#1|)) (-15 -3723 ((-108) |#1|)) (-15 -4125 ((-592 |#1|) |#1|)) (-15 -2021 ((-592 |#1|) |#1|)) (-15 -3961 ((-108) |#1| |#1|)) (-15 -3494 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2667 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -4140 ((-713) |#1|)) (-15 -3410 ((-108) |#1| (-713))) (-15 -3100 ((-108) |#1| (-713))) (-15 -3017 ((-108) |#1| (-713)))) (-619 |#2|) (-1126)) (T -618))
-NIL
-(-10 -8 (-15 -1801 (|#1| |#1|)) (-15 -3538 (|#1| |#1| (-525))) (-15 -2495 ((-108) |#1|)) (-15 -2518 ((-108) |#1|)) (-15 -3928 (|#2| |#1| (-525) |#2|)) (-15 -3928 (|#2| |#1| (-525))) (-15 -3171 ((-592 |#2|) |#1|)) (-15 -1548 ((-108) (-525) |#1|)) (-15 -3222 ((-592 (-525)) |#1|)) (-15 -1792 ((-525) |#1|)) (-15 -2009 ((-525) |#1|)) (-15 -1922 (|#1| (-592 |#2|))) (-15 -3928 (|#1| |#1| (-1139 (-525)))) (-15 -3653 (|#1| |#1| (-525))) (-15 -3653 (|#1| |#1| (-1139 (-525)))) (-15 -3167 (|#1| |#2| |#1| (-525))) (-15 -3167 (|#1| |#1| |#1| (-525))) (-15 -1350 (|#1| |#1|)) (-15 -1290 ((-713) |#1|)) (-15 -3080 (|#1| |#1|)) (-15 -1614 (|#1| |#1|)) (-15 -2292 (|#1| |#1| (-713))) (-15 -3928 (|#2| |#1| "last")) (-15 -2292 (|#2| |#1|)) (-15 -3145 (|#1| |#1| (-713))) (-15 -3928 (|#1| |#1| "rest")) (-15 -3145 (|#1| |#1|)) (-15 -3135 (|#1| |#1| (-713))) (-15 -3928 (|#2| |#1| "first")) (-15 -3135 (|#2| |#1|)) (-15 -3106 ((-108) |#1| |#1|)) (-15 -1519 ((-108) |#1| |#1|)) (-15 -4068 ((-525) |#1| |#1|)) (-15 -1810 ((-108) |#1|)) (-15 -3928 (|#2| |#1| "value")) (-15 -3871 (|#2| |#1|)) (-15 -3723 ((-108) |#1|)) (-15 -4125 ((-592 |#1|) |#1|)) (-15 -2021 ((-592 |#1|) |#1|)) (-15 -3961 ((-108) |#1| |#1|)) (-15 -3494 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -2667 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -4140 ((-713) |#1|)) (-15 -3410 ((-108) |#1| (-713))) (-15 -3100 ((-108) |#1| (-713))) (-15 -3017 ((-108) |#1| (-713))))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3871 ((|#1| $) 48)) (-1899 ((|#1| $) 65)) (-1614 (($ $) 67)) (-1840 (((-1177) $ (-525) (-525)) 97 (|has| $ (-6 -4255)))) (-3035 (($ $ (-525)) 52 (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) 8)) (-2822 ((|#1| $ |#1|) 39 (|has| $ (-6 -4255)))) (-3795 (($ $ $) 56 (|has| $ (-6 -4255)))) (-2813 ((|#1| $ |#1|) 54 (|has| $ (-6 -4255)))) (-1517 ((|#1| $ |#1|) 58 (|has| $ (-6 -4255)))) (-2109 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4255))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4255))) (($ $ "rest" $) 55 (|has| $ (-6 -4255))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 117 (|has| $ (-6 -4255))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) |#1|) $) 102)) (-1882 ((|#1| $) 66)) (-1505 (($) 7 T CONST)) (-1540 (($ $) 124)) (-3145 (($ $) 73) (($ $ (-713)) 71)) (-3163 (($ $) 99 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ |#1| $) 100 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 103)) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2870 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) 87)) (-2495 (((-108) $) 83)) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-2408 (((-713) $) 123)) (-4125 (((-592 $) $) 50)) (-3106 (((-108) $ $) 42 (|has| |#1| (-1019)))) (-4018 (($ (-713) |#1|) 108)) (-3100 (((-108) $ (-713)) 9)) (-2009 (((-525) $) 95 (|has| (-525) (-789)))) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1792 (((-525) $) 94 (|has| (-525) (-789)))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3017 (((-108) $ (-713)) 10)) (-1564 (((-592 |#1|) $) 45)) (-3723 (((-108) $) 49)) (-1896 (($ $) 126)) (-2296 (((-108) $) 127)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2292 ((|#1| $) 70) (($ $ (-713)) 68)) (-3167 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-3222 (((-592 (-525)) $) 92)) (-1548 (((-108) (-525) $) 91)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3547 ((|#1| $) 125)) (-3135 ((|#1| $) 76) (($ $ (-713)) 74)) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-1911 (($ $ |#1|) 96 (|has| $ (-6 -4255)))) (-3538 (($ $ (-525)) 122)) (-2518 (((-108) $) 84)) (-1255 (((-108) $) 128)) (-1867 (((-108) $) 129)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-3218 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) 90)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1139 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-4068 (((-525) $ $) 44)) (-3653 (($ $ (-1139 (-525))) 114) (($ $ (-525)) 113)) (-1810 (((-108) $) 46)) (-1350 (($ $) 62)) (-2027 (($ $) 59 (|has| $ (-6 -4255)))) (-1290 (((-713) $) 63)) (-3080 (($ $) 64)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1427 (((-501) $) 98 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 107)) (-1497 (($ $ $) 61 (|has| $ (-6 -4255))) (($ $ |#1|) 60 (|has| $ (-6 -4255)))) (-2664 (($ $ $) 78) (($ |#1| $) 77) (($ (-592 $)) 110) (($ $ |#1|) 109)) (-1801 (($ $) 121)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) 51)) (-1519 (((-108) $ $) 43 (|has| |#1| (-1019)))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-619 |#1|) (-131) (-1126)) (T -619))
-((-2273 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1126)))) (-2724 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1126)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))) (-1255 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))) (-2296 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))) (-1896 (*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1126)))) (-3547 (*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1126)))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1126)))) (-2408 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1126)) (-5 *2 (-713)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-619 *3)) (-4 *3 (-1126)))) (-1801 (*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1126)))))
-(-13 (-1064 |t#1|) (-10 -8 (-15 -2273 ($ (-1 (-108) |t#1|) $)) (-15 -2724 ($ (-1 (-108) |t#1|) $)) (-15 -1867 ((-108) $)) (-15 -1255 ((-108) $)) (-15 -2296 ((-108) $)) (-15 -1896 ($ $)) (-15 -3547 (|t#1| $)) (-15 -1540 ($ $)) (-15 -2408 ((-713) $)) (-15 -3538 ($ $ (-525))) (-15 -1801 ($ $))))
-(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-597 |#1|) . T) ((-941 |#1|) . T) ((-1019) |has| |#1| (-1019)) ((-1064 |#1|) . T) ((-1126) . T) ((-1160 |#1|) . T))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3767 (($ (-713) (-713) (-713)) 35 (|has| |#1| (-976)))) (-3410 (((-108) $ (-713)) NIL)) (-3566 ((|#1| $ (-713) (-713) (-713) |#1|) 29)) (-1505 (($) NIL T CONST)) (-4055 (($ $ $) 39 (|has| |#1| (-976)))) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2377 (((-1172 (-713)) $) 11)) (-1499 (($ (-1090) $ $) 24)) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-1730 (($ (-713)) 37 (|has| |#1| (-976)))) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#1| $ (-713) (-713) (-713)) 27)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) NIL)) (-1922 (($ (-592 (-592 (-592 |#1|)))) 46)) (-1908 (($ (-891 (-891 (-891 |#1|)))) 17) (((-891 (-891 (-891 |#1|))) $) 14) (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-620 |#1|) (-13 (-464 |#1|) (-10 -8 (IF (|has| |#1| (-976)) (PROGN (-15 -3767 ($ (-713) (-713) (-713))) (-15 -1730 ($ (-713))) (-15 -4055 ($ $ $))) |%noBranch|) (-15 -1922 ($ (-592 (-592 (-592 |#1|))))) (-15 -3928 (|#1| $ (-713) (-713) (-713))) (-15 -3566 (|#1| $ (-713) (-713) (-713) |#1|)) (-15 -1908 ($ (-891 (-891 (-891 |#1|))))) (-15 -1908 ((-891 (-891 (-891 |#1|))) $)) (-15 -1499 ($ (-1090) $ $)) (-15 -2377 ((-1172 (-713)) $)))) (-1019)) (T -620))
-((-3767 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-976)) (-4 *3 (-1019)))) (-1730 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-976)) (-4 *3 (-1019)))) (-4055 (*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-976)) (-4 *2 (-1019)))) (-1922 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-592 *3)))) (-4 *3 (-1019)) (-5 *1 (-620 *3)))) (-3928 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1019)))) (-3566 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1019)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-891 (-891 (-891 *3)))) (-4 *3 (-1019)) (-5 *1 (-620 *3)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-891 (-891 (-891 *3)))) (-5 *1 (-620 *3)) (-4 *3 (-1019)))) (-1499 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-620 *3)) (-4 *3 (-1019)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-1172 (-713))) (-5 *1 (-620 *3)) (-4 *3 (-1019)))))
-(-13 (-464 |#1|) (-10 -8 (IF (|has| |#1| (-976)) (PROGN (-15 -3767 ($ (-713) (-713) (-713))) (-15 -1730 ($ (-713))) (-15 -4055 ($ $ $))) |%noBranch|) (-15 -1922 ($ (-592 (-592 (-592 |#1|))))) (-15 -3928 (|#1| $ (-713) (-713) (-713))) (-15 -3566 (|#1| $ (-713) (-713) (-713) |#1|)) (-15 -1908 ($ (-891 (-891 (-891 |#1|))))) (-15 -1908 ((-891 (-891 (-891 |#1|))) $)) (-15 -1499 ($ (-1090) $ $)) (-15 -2377 ((-1172 (-713)) $))))
-((-1893 (((-108) $ $) NIL)) (-3908 (((-592 |#1|) $) 14)) (-4152 (($ $) 18)) (-3825 (((-108) $) 19)) (-1264 (((-3 |#1| "failed") $) 22)) (-2831 ((|#1| $) 20)) (-3145 (($ $) 36)) (-2387 (($ $) 24)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-4213 (((-108) $ $) 42)) (-1722 (((-855) $) 38)) (-4138 (($ $) 17)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3135 ((|#1| $) 35)) (-1908 (((-797) $) 31) (($ |#1|) 23) (((-761 |#1|) $) 27)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 12)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 40)) (* (($ $ $) 34)))
-(((-621 |#1|) (-13 (-789) (-967 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1908 ((-761 |#1|) $)) (-15 -3135 (|#1| $)) (-15 -4138 ($ $)) (-15 -1722 ((-855) $)) (-15 -4213 ((-108) $ $)) (-15 -2387 ($ $)) (-15 -3145 ($ $)) (-15 -3825 ((-108) $)) (-15 -4152 ($ $)) (-15 -3908 ((-592 |#1|) $)))) (-789)) (T -621))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-3135 (*1 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-4138 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-855)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-4213 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-2387 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-3145 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-4152 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789)))))
-(-13 (-789) (-967 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1908 ((-761 |#1|) $)) (-15 -3135 (|#1| $)) (-15 -4138 ($ $)) (-15 -1722 ((-855) $)) (-15 -4213 ((-108) $ $)) (-15 -2387 ($ $)) (-15 -3145 ($ $)) (-15 -3825 ((-108) $)) (-15 -4152 ($ $)) (-15 -3908 ((-592 |#1|) $))))
-((-2862 ((|#1| (-1 |#1| (-713) |#1|) (-713) |#1|) 11)) (-1897 ((|#1| (-1 |#1| |#1|) (-713) |#1|) 9)))
-(((-622 |#1|) (-10 -7 (-15 -1897 (|#1| (-1 |#1| |#1|) (-713) |#1|)) (-15 -2862 (|#1| (-1 |#1| (-713) |#1|) (-713) |#1|))) (-1019)) (T -622))
-((-2862 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-713) *2)) (-5 *4 (-713)) (-4 *2 (-1019)) (-5 *1 (-622 *2)))) (-1897 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-713)) (-4 *2 (-1019)) (-5 *1 (-622 *2)))))
-(-10 -7 (-15 -1897 (|#1| (-1 |#1| |#1|) (-713) |#1|)) (-15 -2862 (|#1| (-1 |#1| (-713) |#1|) (-713) |#1|)))
-((-2449 ((|#2| |#1| |#2|) 9)) (-2437 ((|#1| |#1| |#2|) 8)))
-(((-623 |#1| |#2|) (-10 -7 (-15 -2437 (|#1| |#1| |#2|)) (-15 -2449 (|#2| |#1| |#2|))) (-1019) (-1019)) (T -623))
-((-2449 (*1 *2 *3 *2) (-12 (-5 *1 (-623 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019)))) (-2437 (*1 *2 *2 *3) (-12 (-5 *1 (-623 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))))
-(-10 -7 (-15 -2437 (|#1| |#1| |#2|)) (-15 -2449 (|#2| |#1| |#2|)))
-((-3036 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-624 |#1| |#2| |#3|) (-10 -7 (-15 -3036 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1019) (-1019) (-1019)) (T -624))
-((-3036 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)) (-5 *1 (-624 *5 *6 *2)))))
-(-10 -7 (-15 -3036 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-2862 (((-1 |#1| (-713) |#1|) (-1 |#1| (-713) |#1|)) 23)) (-1493 (((-1 |#1|) |#1|) 8)) (-2281 ((|#1| |#1|) 16)) (-2885 (((-592 |#1|) (-1 (-592 |#1|) (-592 |#1|)) (-525)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-1908 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-713)) 20)))
-(((-625 |#1|) (-10 -7 (-15 -1493 ((-1 |#1|) |#1|)) (-15 -1908 ((-1 |#1|) |#1|)) (-15 -2885 (|#1| (-1 |#1| |#1|))) (-15 -2885 ((-592 |#1|) (-1 (-592 |#1|) (-592 |#1|)) (-525))) (-15 -2281 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-713))) (-15 -2862 ((-1 |#1| (-713) |#1|) (-1 |#1| (-713) |#1|)))) (-1019)) (T -625))
-((-2862 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-713) *3)) (-4 *3 (-1019)) (-5 *1 (-625 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *4 (-1019)) (-5 *1 (-625 *4)))) (-2281 (*1 *2 *2) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1019)))) (-2885 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-592 *5) (-592 *5))) (-5 *4 (-525)) (-4 *5 (-1019)) (-5 *2 (-592 *5)) (-5 *1 (-625 *5)))) (-2885 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-625 *2)) (-4 *2 (-1019)))) (-1908 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1019)))) (-1493 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1019)))))
-(-10 -7 (-15 -1493 ((-1 |#1|) |#1|)) (-15 -1908 ((-1 |#1|) |#1|)) (-15 -2885 (|#1| (-1 |#1| |#1|))) (-15 -2885 ((-592 |#1|) (-1 (-592 |#1|) (-592 |#1|)) (-525))) (-15 -2281 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-713))) (-15 -2862 ((-1 |#1| (-713) |#1|) (-1 |#1| (-713) |#1|))))
-((-1826 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3411 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-3359 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3155 (((-1 |#2| |#1|) |#2|) 11)))
-(((-626 |#1| |#2|) (-10 -7 (-15 -3155 ((-1 |#2| |#1|) |#2|)) (-15 -3411 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3359 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1826 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1019) (-1019)) (T -626))
-((-1826 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1019)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)) (-4 *4 (-1019)))) (-3411 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-5 *2 (-1 *5)) (-5 *1 (-626 *4 *5)))) (-3155 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-626 *4 *3)) (-4 *4 (-1019)) (-4 *3 (-1019)))))
-(-10 -7 (-15 -3155 ((-1 |#2| |#1|) |#2|)) (-15 -3411 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3359 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1826 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-1731 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3076 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3674 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2892 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1721 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-627 |#1| |#2| |#3|) (-10 -7 (-15 -3076 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3674 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2892 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1721 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1731 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1019) (-1019) (-1019)) (T -627))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-1 *7 *5)) (-5 *1 (-627 *5 *6 *7)))) (-1731 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-627 *4 *5 *6)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *4 (-1019)))) (-2892 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1019)) (-4 *6 (-1019)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-1019)))) (-3674 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *4 *5 *6)))) (-3076 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1019)) (-4 *4 (-1019)) (-4 *6 (-1019)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *4 *6)))))
-(-10 -7 (-15 -3076 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3674 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2892 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1721 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1731 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-4004 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-1370 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-628 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1370 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1370 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4004 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-976) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|) (-976) (-351 |#5|) (-351 |#5|) (-630 |#5| |#6| |#7|)) (T -628))
-((-4004 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-976)) (-4 *2 (-976)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *8 (-351 *2)) (-4 *9 (-351 *2)) (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-630 *5 *6 *7)) (-4 *10 (-630 *2 *8 *9)))) (-1370 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-976)) (-4 *8 (-976)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *2 (-630 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-630 *5 *6 *7)) (-4 *9 (-351 *8)) (-4 *10 (-351 *8)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-976)) (-4 *8 (-976)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *2 (-630 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-630 *5 *6 *7)) (-4 *9 (-351 *8)) (-4 *10 (-351 *8)))))
-(-10 -7 (-15 -1370 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -1370 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4004 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-1383 (($ (-713) (-713)) 33)) (-3754 (($ $ $) 56)) (-2734 (($ |#3|) 52) (($ $) 53)) (-3844 (((-108) $) 28)) (-3899 (($ $ (-525) (-525)) 58)) (-3624 (($ $ (-525) (-525)) 59)) (-3708 (($ $ (-525) (-525) (-525) (-525)) 63)) (-2719 (($ $) 54)) (-1399 (((-108) $) 14)) (-1589 (($ $ (-525) (-525) $) 64)) (-2109 ((|#2| $ (-525) (-525) |#2|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) 62)) (-2715 (($ (-713) |#2|) 39)) (-3515 (($ (-592 (-592 |#2|))) 37)) (-3019 (((-592 (-592 |#2|)) $) 57)) (-2538 (($ $ $) 55)) (-2338 (((-3 $ "failed") $ |#2|) 91)) (-3928 ((|#2| $ (-525) (-525)) NIL) ((|#2| $ (-525) (-525) |#2|) NIL) (($ $ (-592 (-525)) (-592 (-525))) 61)) (-2540 (($ (-592 |#2|)) 40) (($ (-592 $)) 42)) (-1997 (((-108) $) 24)) (-1908 (($ |#4|) 47) (((-797) $) NIL)) (-3265 (((-108) $) 30)) (-4082 (($ $ |#2|) 93)) (-4070 (($ $ $) 68) (($ $) 71)) (-4059 (($ $ $) 66)) (** (($ $ (-713)) 80) (($ $ (-525)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-525) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
-(((-629 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1908 ((-797) |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -4082 (|#1| |#1| |#2|)) (-15 -2338 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-713))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4070 (|#1| |#1| |#1|)) (-15 -4059 (|#1| |#1| |#1|)) (-15 -1589 (|#1| |#1| (-525) (-525) |#1|)) (-15 -3708 (|#1| |#1| (-525) (-525) (-525) (-525))) (-15 -3624 (|#1| |#1| (-525) (-525))) (-15 -3899 (|#1| |#1| (-525) (-525))) (-15 -2109 (|#1| |#1| (-592 (-525)) (-592 (-525)) |#1|)) (-15 -3928 (|#1| |#1| (-592 (-525)) (-592 (-525)))) (-15 -3019 ((-592 (-592 |#2|)) |#1|)) (-15 -3754 (|#1| |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -2719 (|#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -2734 (|#1| |#3|)) (-15 -1908 (|#1| |#4|)) (-15 -2540 (|#1| (-592 |#1|))) (-15 -2540 (|#1| (-592 |#2|))) (-15 -2715 (|#1| (-713) |#2|)) (-15 -3515 (|#1| (-592 (-592 |#2|)))) (-15 -1383 (|#1| (-713) (-713))) (-15 -3265 ((-108) |#1|)) (-15 -3844 ((-108) |#1|)) (-15 -1997 ((-108) |#1|)) (-15 -1399 ((-108) |#1|)) (-15 -2109 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3928 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3928 (|#2| |#1| (-525) (-525)))) (-630 |#2| |#3| |#4|) (-976) (-351 |#2|) (-351 |#2|)) (T -629))
-NIL
-(-10 -8 (-15 -1908 ((-797) |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -4082 (|#1| |#1| |#2|)) (-15 -2338 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-713))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -4070 (|#1| |#1| |#1|)) (-15 -4059 (|#1| |#1| |#1|)) (-15 -1589 (|#1| |#1| (-525) (-525) |#1|)) (-15 -3708 (|#1| |#1| (-525) (-525) (-525) (-525))) (-15 -3624 (|#1| |#1| (-525) (-525))) (-15 -3899 (|#1| |#1| (-525) (-525))) (-15 -2109 (|#1| |#1| (-592 (-525)) (-592 (-525)) |#1|)) (-15 -3928 (|#1| |#1| (-592 (-525)) (-592 (-525)))) (-15 -3019 ((-592 (-592 |#2|)) |#1|)) (-15 -3754 (|#1| |#1| |#1|)) (-15 -2538 (|#1| |#1| |#1|)) (-15 -2719 (|#1| |#1|)) (-15 -2734 (|#1| |#1|)) (-15 -2734 (|#1| |#3|)) (-15 -1908 (|#1| |#4|)) (-15 -2540 (|#1| (-592 |#1|))) (-15 -2540 (|#1| (-592 |#2|))) (-15 -2715 (|#1| (-713) |#2|)) (-15 -3515 (|#1| (-592 (-592 |#2|)))) (-15 -1383 (|#1| (-713) (-713))) (-15 -3265 ((-108) |#1|)) (-15 -3844 ((-108) |#1|)) (-15 -1997 ((-108) |#1|)) (-15 -1399 ((-108) |#1|)) (-15 -2109 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3928 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3928 (|#2| |#1| (-525) (-525))))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-1383 (($ (-713) (-713)) 97)) (-3754 (($ $ $) 87)) (-2734 (($ |#2|) 91) (($ $) 90)) (-3844 (((-108) $) 99)) (-3899 (($ $ (-525) (-525)) 83)) (-3624 (($ $ (-525) (-525)) 82)) (-3708 (($ $ (-525) (-525) (-525) (-525)) 81)) (-2719 (($ $) 89)) (-1399 (((-108) $) 101)) (-3410 (((-108) $ (-713)) 8)) (-1589 (($ $ (-525) (-525) $) 80)) (-2109 ((|#1| $ (-525) (-525) |#1|) 44) (($ $ (-592 (-525)) (-592 (-525)) $) 84)) (-2244 (($ $ (-525) |#2|) 42)) (-2040 (($ $ (-525) |#3|) 41)) (-2715 (($ (-713) |#1|) 95)) (-1505 (($) 7 T CONST)) (-3262 (($ $) 67 (|has| |#1| (-286)))) (-3606 ((|#2| $ (-525)) 46)) (-2239 (((-713) $) 66 (|has| |#1| (-517)))) (-2870 ((|#1| $ (-525) (-525) |#1|) 43)) (-2796 ((|#1| $ (-525) (-525)) 48)) (-2026 (((-592 |#1|) $) 30)) (-3177 (((-713) $) 65 (|has| |#1| (-517)))) (-2517 (((-592 |#3|) $) 64 (|has| |#1| (-517)))) (-2606 (((-713) $) 51)) (-4018 (($ (-713) (-713) |#1|) 57)) (-2618 (((-713) $) 50)) (-3100 (((-108) $ (-713)) 9)) (-2216 ((|#1| $) 62 (|has| |#1| (-6 (-4256 "*"))))) (-2746 (((-525) $) 55)) (-2551 (((-525) $) 53)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1906 (((-525) $) 54)) (-1950 (((-525) $) 52)) (-3515 (($ (-592 (-592 |#1|))) 96)) (-2857 (($ (-1 |#1| |#1|) $) 34)) (-1370 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3019 (((-592 (-592 |#1|)) $) 86)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-1386 (((-3 $ "failed") $) 61 (|has| |#1| (-341)))) (-2538 (($ $ $) 88)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-1911 (($ $ |#1|) 56)) (-2338 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-517)))) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#1| $ (-525) (-525)) 49) ((|#1| $ (-525) (-525) |#1|) 47) (($ $ (-592 (-525)) (-592 (-525))) 85)) (-2540 (($ (-592 |#1|)) 94) (($ (-592 $)) 93)) (-1997 (((-108) $) 100)) (-2923 ((|#1| $) 63 (|has| |#1| (-6 (-4256 "*"))))) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-2543 ((|#3| $ (-525)) 45)) (-1908 (($ |#3|) 92) (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3265 (((-108) $) 98)) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4082 (($ $ |#1|) 68 (|has| |#1| (-341)))) (-4070 (($ $ $) 78) (($ $) 77)) (-4059 (($ $ $) 79)) (** (($ $ (-713)) 70) (($ $ (-525)) 60 (|has| |#1| (-341)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-525) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-630 |#1| |#2| |#3|) (-131) (-976) (-351 |t#1|) (-351 |t#1|)) (T -630))
-((-1399 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-3844 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-1383 (*1 *1 *2 *2) (-12 (-5 *2 (-713)) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2715 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2540 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2540 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1908 (*1 *1 *2) (-12 (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *2)) (-4 *4 (-351 *3)) (-4 *2 (-351 *3)))) (-2734 (*1 *1 *2) (-12 (-4 *3 (-976)) (-4 *1 (-630 *3 *2 *4)) (-4 *2 (-351 *3)) (-4 *4 (-351 *3)))) (-2734 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-2719 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-2538 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-3754 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-592 (-592 *3))))) (-3928 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2109 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3899 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3624 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3708 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1589 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-4059 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-4070 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-4070 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-630 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *2 (-351 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-630 *3 *2 *4)) (-4 *3 (-976)) (-4 *2 (-351 *3)) (-4 *4 (-351 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2338 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-517)))) (-4082 (*1 *1 *1 *2) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341)))) (-3262 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-286)))) (-2239 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-592 *5)))) (-2923 (*1 *2 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (|has| *2 (-6 (-4256 "*"))) (-4 *2 (-976)))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (|has| *2 (-6 (-4256 "*"))) (-4 *2 (-976)))) (-1386 (*1 *1 *1) (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-341)))))
-(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4255) (-6 -4254) (-15 -1399 ((-108) $)) (-15 -1997 ((-108) $)) (-15 -3844 ((-108) $)) (-15 -3265 ((-108) $)) (-15 -1383 ($ (-713) (-713))) (-15 -3515 ($ (-592 (-592 |t#1|)))) (-15 -2715 ($ (-713) |t#1|)) (-15 -2540 ($ (-592 |t#1|))) (-15 -2540 ($ (-592 $))) (-15 -1908 ($ |t#3|)) (-15 -2734 ($ |t#2|)) (-15 -2734 ($ $)) (-15 -2719 ($ $)) (-15 -2538 ($ $ $)) (-15 -3754 ($ $ $)) (-15 -3019 ((-592 (-592 |t#1|)) $)) (-15 -3928 ($ $ (-592 (-525)) (-592 (-525)))) (-15 -2109 ($ $ (-592 (-525)) (-592 (-525)) $)) (-15 -3899 ($ $ (-525) (-525))) (-15 -3624 ($ $ (-525) (-525))) (-15 -3708 ($ $ (-525) (-525) (-525) (-525))) (-15 -1589 ($ $ (-525) (-525) $)) (-15 -4059 ($ $ $)) (-15 -4070 ($ $ $)) (-15 -4070 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-525) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-713))) (IF (|has| |t#1| (-517)) (-15 -2338 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-341)) (-15 -4082 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-286)) (-15 -3262 ($ $)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -2239 ((-713) $)) (-15 -3177 ((-713) $)) (-15 -2517 ((-592 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4256 "*"))) (PROGN (-15 -2923 (|t#1| $)) (-15 -2216 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-15 -1386 ((-3 $ "failed") $)) (-15 ** ($ $ (-525)))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-55 |#1| |#2| |#3|) . T) ((-1126) . T))
-((-3262 ((|#4| |#4|) 72 (|has| |#1| (-286)))) (-2239 (((-713) |#4|) 99 (|has| |#1| (-517)))) (-3177 (((-713) |#4|) 76 (|has| |#1| (-517)))) (-2517 (((-592 |#3|) |#4|) 83 (|has| |#1| (-517)))) (-3299 (((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|) 111 (|has| |#1| (-286)))) (-2216 ((|#1| |#4|) 35)) (-1525 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-517)))) (-1386 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-341)))) (-1902 ((|#4| |#4|) 68 (|has| |#1| (-517)))) (-1680 ((|#4| |#4| |#1| (-525) (-525)) 43)) (-3219 ((|#4| |#4| (-525) (-525)) 38)) (-1378 ((|#4| |#4| |#1| (-525) (-525)) 48)) (-2923 ((|#1| |#4|) 78)) (-1672 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-517)))))
-(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2923 (|#1| |#4|)) (-15 -2216 (|#1| |#4|)) (-15 -3219 (|#4| |#4| (-525) (-525))) (-15 -1680 (|#4| |#4| |#1| (-525) (-525))) (-15 -1378 (|#4| |#4| |#1| (-525) (-525))) (IF (|has| |#1| (-517)) (PROGN (-15 -2239 ((-713) |#4|)) (-15 -3177 ((-713) |#4|)) (-15 -2517 ((-592 |#3|) |#4|)) (-15 -1902 (|#4| |#4|)) (-15 -1525 ((-3 |#4| "failed") |#4|)) (-15 -1672 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-286)) (PROGN (-15 -3262 (|#4| |#4|)) (-15 -3299 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -1386 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-160) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -631))
-((-1386 (*1 *2 *2) (|partial| -12 (-4 *3 (-341)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-3299 (*1 *2 *3 *3) (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3))) (-5 *1 (-631 *3 *4 *5 *6)) (-4 *6 (-630 *3 *4 *5)))) (-3262 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-1672 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-1525 (*1 *2 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-1902 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-2517 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3177 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-2239 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-1378 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3)) (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-630 *3 *5 *6)))) (-1680 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3)) (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-630 *3 *5 *6)))) (-3219 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *1 (-631 *4 *5 *6 *2)) (-4 *2 (-630 *4 *5 *6)))) (-2216 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160)) (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5)))) (-2923 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160)) (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5)))))
-(-10 -7 (-15 -2923 (|#1| |#4|)) (-15 -2216 (|#1| |#4|)) (-15 -3219 (|#4| |#4| (-525) (-525))) (-15 -1680 (|#4| |#4| |#1| (-525) (-525))) (-15 -1378 (|#4| |#4| |#1| (-525) (-525))) (IF (|has| |#1| (-517)) (PROGN (-15 -2239 ((-713) |#4|)) (-15 -3177 ((-713) |#4|)) (-15 -2517 ((-592 |#3|) |#4|)) (-15 -1902 (|#4| |#4|)) (-15 -1525 ((-3 |#4| "failed") |#4|)) (-15 -1672 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-286)) (PROGN (-15 -3262 (|#4| |#4|)) (-15 -3299 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -1386 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1383 (($ (-713) (-713)) 47)) (-3754 (($ $ $) NIL)) (-2734 (($ (-1172 |#1|)) NIL) (($ $) NIL)) (-3844 (((-108) $) NIL)) (-3899 (($ $ (-525) (-525)) 12)) (-3624 (($ $ (-525) (-525)) NIL)) (-3708 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-2719 (($ $) NIL)) (-1399 (((-108) $) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-1589 (($ $ (-525) (-525) $) NIL)) (-2109 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) NIL)) (-2244 (($ $ (-525) (-1172 |#1|)) NIL)) (-2040 (($ $ (-525) (-1172 |#1|)) NIL)) (-2715 (($ (-713) |#1|) 22)) (-1505 (($) NIL T CONST)) (-3262 (($ $) 31 (|has| |#1| (-286)))) (-3606 (((-1172 |#1|) $ (-525)) NIL)) (-2239 (((-713) $) 33 (|has| |#1| (-517)))) (-2870 ((|#1| $ (-525) (-525) |#1|) 51)) (-2796 ((|#1| $ (-525) (-525)) NIL)) (-2026 (((-592 |#1|) $) NIL)) (-3177 (((-713) $) 35 (|has| |#1| (-517)))) (-2517 (((-592 (-1172 |#1|)) $) 38 (|has| |#1| (-517)))) (-2606 (((-713) $) 20)) (-4018 (($ (-713) (-713) |#1|) 16)) (-2618 (((-713) $) 21)) (-3100 (((-108) $ (-713)) NIL)) (-2216 ((|#1| $) 29 (|has| |#1| (-6 (-4256 "*"))))) (-2746 (((-525) $) 9)) (-2551 (((-525) $) 10)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1906 (((-525) $) 11)) (-1950 (((-525) $) 48)) (-3515 (($ (-592 (-592 |#1|))) NIL)) (-2857 (($ (-1 |#1| |#1|) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3019 (((-592 (-592 |#1|)) $) 60)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-1386 (((-3 $ "failed") $) 45 (|has| |#1| (-341)))) (-2538 (($ $ $) NIL)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1911 (($ $ |#1|) NIL)) (-2338 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525))) NIL)) (-2540 (($ (-592 |#1|)) NIL) (($ (-592 $)) NIL) (($ (-1172 |#1|)) 52)) (-1997 (((-108) $) NIL)) (-2923 ((|#1| $) 27 (|has| |#1| (-6 (-4256 "*"))))) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) NIL)) (-1427 (((-501) $) 64 (|has| |#1| (-567 (-501))))) (-2543 (((-1172 |#1|) $ (-525)) NIL)) (-1908 (($ (-1172 |#1|)) NIL) (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3265 (((-108) $) NIL)) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4070 (($ $ $) NIL) (($ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-713)) 23) (($ $ (-525)) 46 (|has| |#1| (-341)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-1172 |#1|) $ (-1172 |#1|)) NIL) (((-1172 |#1|) (-1172 |#1|) $) NIL)) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-632 |#1|) (-13 (-630 |#1| (-1172 |#1|) (-1172 |#1|)) (-10 -8 (-15 -2540 ($ (-1172 |#1|))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -1386 ((-3 $ "failed") $)) |%noBranch|))) (-976)) (T -632))
-((-1386 (*1 *1 *1) (|partial| -12 (-5 *1 (-632 *2)) (-4 *2 (-341)) (-4 *2 (-976)))) (-2540 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-976)) (-5 *1 (-632 *3)))))
-(-13 (-630 |#1| (-1172 |#1|) (-1172 |#1|)) (-10 -8 (-15 -2540 ($ (-1172 |#1|))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -1386 ((-3 $ "failed") $)) |%noBranch|)))
-((-4196 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 25)) (-1733 (((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|) 21)) (-1294 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-713)) 26)) (-1786 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 14)) (-2587 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 18) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 16)) (-2887 (((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|)) 20)) (-1319 (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 12)) (** (((-632 |#1|) (-632 |#1|) (-713)) 30)))
-(((-633 |#1|) (-10 -7 (-15 -1319 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1786 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2587 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2587 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2887 ((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|))) (-15 -1733 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -4196 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1294 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-713))) (-15 ** ((-632 |#1|) (-632 |#1|) (-713)))) (-976)) (T -633))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-976)) (-5 *1 (-633 *4)))) (-1294 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-976)) (-5 *1 (-633 *4)))) (-4196 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))) (-1733 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))) (-2887 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))) (-2587 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))) (-2587 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))) (-1786 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))) (-1319 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))))
-(-10 -7 (-15 -1319 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1786 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2587 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2587 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2887 ((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|))) (-15 -1733 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -4196 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1294 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-713))) (-15 ** ((-632 |#1|) (-632 |#1|) (-713))))
-((-1288 ((|#2| |#2| |#4|) 25)) (-3590 (((-632 |#2|) |#3| |#4|) 31)) (-4207 (((-632 |#2|) |#2| |#4|) 30)) (-3852 (((-1172 |#2|) |#2| |#4|) 16)) (-1873 ((|#2| |#3| |#4|) 24)) (-1238 (((-632 |#2|) |#3| |#4| (-713) (-713)) 38)) (-1695 (((-632 |#2|) |#2| |#4| (-713)) 37)))
-(((-634 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3852 ((-1172 |#2|) |#2| |#4|)) (-15 -1873 (|#2| |#3| |#4|)) (-15 -1288 (|#2| |#2| |#4|)) (-15 -4207 ((-632 |#2|) |#2| |#4|)) (-15 -1695 ((-632 |#2|) |#2| |#4| (-713))) (-15 -3590 ((-632 |#2|) |#3| |#4|)) (-15 -1238 ((-632 |#2|) |#3| |#4| (-713) (-713)))) (-1019) (-834 |#1|) (-351 |#2|) (-13 (-351 |#1|) (-10 -7 (-6 -4254)))) (T -634))
-((-1238 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-713)) (-4 *6 (-1019)) (-4 *7 (-834 *6)) (-5 *2 (-632 *7)) (-5 *1 (-634 *6 *7 *3 *4)) (-4 *3 (-351 *7)) (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4254)))))) (-3590 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-4 *6 (-834 *5)) (-5 *2 (-632 *6)) (-5 *1 (-634 *5 *6 *3 *4)) (-4 *3 (-351 *6)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4254)))))) (-1695 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-1019)) (-4 *3 (-834 *6)) (-5 *2 (-632 *3)) (-5 *1 (-634 *6 *3 *7 *4)) (-4 *7 (-351 *3)) (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4254)))))) (-4207 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-4 *3 (-834 *5)) (-5 *2 (-632 *3)) (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4254)))))) (-1288 (*1 *2 *2 *3) (-12 (-4 *4 (-1019)) (-4 *2 (-834 *4)) (-5 *1 (-634 *4 *2 *5 *3)) (-4 *5 (-351 *2)) (-4 *3 (-13 (-351 *4) (-10 -7 (-6 -4254)))))) (-1873 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-4 *2 (-834 *5)) (-5 *1 (-634 *5 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4254)))))) (-3852 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-4 *3 (-834 *5)) (-5 *2 (-1172 *3)) (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4254)))))))
-(-10 -7 (-15 -3852 ((-1172 |#2|) |#2| |#4|)) (-15 -1873 (|#2| |#3| |#4|)) (-15 -1288 (|#2| |#2| |#4|)) (-15 -4207 ((-632 |#2|) |#2| |#4|)) (-15 -1695 ((-632 |#2|) |#2| |#4| (-713))) (-15 -3590 ((-632 |#2|) |#3| |#4|)) (-15 -1238 ((-632 |#2|) |#3| |#4| (-713) (-713))))
-((-1284 (((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|)) 20)) (-2717 ((|#1| (-632 |#2|)) 9)) (-2636 (((-632 |#1|) (-632 |#2|)) 18)))
-(((-635 |#1| |#2|) (-10 -7 (-15 -2717 (|#1| (-632 |#2|))) (-15 -2636 ((-632 |#1|) (-632 |#2|))) (-15 -1284 ((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|)))) (-517) (-924 |#1|)) (T -635))
-((-1284 (*1 *2 *3) (-12 (-5 *3 (-632 *5)) (-4 *5 (-924 *4)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |num| (-632 *4)) (|:| |den| *4))) (-5 *1 (-635 *4 *5)))) (-2636 (*1 *2 *3) (-12 (-5 *3 (-632 *5)) (-4 *5 (-924 *4)) (-4 *4 (-517)) (-5 *2 (-632 *4)) (-5 *1 (-635 *4 *5)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-632 *4)) (-4 *4 (-924 *2)) (-4 *2 (-517)) (-5 *1 (-635 *2 *4)))))
-(-10 -7 (-15 -2717 (|#1| (-632 |#2|))) (-15 -2636 ((-632 |#1|) (-632 |#2|))) (-15 -1284 ((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-2794 (((-632 (-641))) NIL) (((-632 (-641)) (-1172 $)) NIL)) (-3512 (((-641) $) NIL)) (-4049 (($ $) NIL (|has| (-641) (-1112)))) (-3911 (($ $) NIL (|has| (-641) (-1112)))) (-2837 (((-1100 (-855) (-713)) (-525)) NIL (|has| (-641) (-327)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-843))))) (-3321 (($ $) NIL (-3309 (-12 (|has| (-641) (-286)) (|has| (-641) (-843))) (|has| (-641) (-341))))) (-1510 (((-396 $) $) NIL (-3309 (-12 (|has| (-641) (-286)) (|has| (-641) (-843))) (|has| (-641) (-341))))) (-3969 (($ $) NIL (-12 (|has| (-641) (-933)) (|has| (-641) (-1112))))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-843))))) (-2305 (((-108) $ $) NIL (|has| (-641) (-286)))) (-3107 (((-713)) NIL (|has| (-641) (-346)))) (-4026 (($ $) NIL (|has| (-641) (-1112)))) (-3434 (($ $) NIL (|has| (-641) (-1112)))) (-4072 (($ $) NIL (|has| (-641) (-1112)))) (-3931 (($ $) NIL (|has| (-641) (-1112)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL) (((-3 (-641) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-641) (-967 (-385 (-525)))))) (-2831 (((-525) $) NIL) (((-641) $) NIL) (((-385 (-525)) $) NIL (|has| (-641) (-967 (-385 (-525)))))) (-2229 (($ (-1172 (-641))) NIL) (($ (-1172 (-641)) (-1172 $)) NIL)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-641) (-327)))) (-2373 (($ $ $) NIL (|has| (-641) (-286)))) (-1409 (((-632 (-641)) $) NIL) (((-632 (-641)) $ (-1172 $)) NIL)) (-1860 (((-632 (-641)) (-632 $)) NIL) (((-2 (|:| -3276 (-632 (-641))) (|:| |vec| (-1172 (-641)))) (-632 $) (-1172 $)) NIL) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-641) (-588 (-525)))) (((-632 (-525)) (-632 $)) NIL (|has| (-641) (-588 (-525))))) (-4004 (((-3 $ "failed") (-385 (-1086 (-641)))) NIL (|has| (-641) (-341))) (($ (-1086 (-641))) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3981 (((-641) $) 29)) (-1468 (((-3 (-385 (-525)) "failed") $) NIL (|has| (-641) (-510)))) (-3081 (((-108) $) NIL (|has| (-641) (-510)))) (-2098 (((-385 (-525)) $) NIL (|has| (-641) (-510)))) (-2239 (((-855)) NIL)) (-3375 (($) NIL (|has| (-641) (-346)))) (-2356 (($ $ $) NIL (|has| (-641) (-286)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| (-641) (-286)))) (-3205 (($) NIL (|has| (-641) (-327)))) (-3746 (((-108) $) NIL (|has| (-641) (-327)))) (-1410 (($ $) NIL (|has| (-641) (-327))) (($ $ (-713)) NIL (|has| (-641) (-327)))) (-2250 (((-108) $) NIL (-3309 (-12 (|has| (-641) (-286)) (|has| (-641) (-843))) (|has| (-641) (-341))))) (-2544 (((-2 (|:| |r| (-641)) (|:| |phi| (-641))) $) NIL (-12 (|has| (-641) (-985)) (|has| (-641) (-1112))))) (-1335 (($) NIL (|has| (-641) (-1112)))) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| (-641) (-820 (-357)))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| (-641) (-820 (-525))))) (-1737 (((-775 (-855)) $) NIL (|has| (-641) (-327))) (((-855) $) NIL (|has| (-641) (-327)))) (-2133 (((-108) $) NIL)) (-3391 (($ $ (-525)) NIL (-12 (|has| (-641) (-933)) (|has| (-641) (-1112))))) (-3477 (((-641) $) NIL)) (-1816 (((-3 $ "failed") $) NIL (|has| (-641) (-327)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-641) (-286)))) (-2362 (((-1086 (-641)) $) NIL (|has| (-641) (-341)))) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-1370 (($ (-1 (-641) (-641)) $) NIL)) (-1780 (((-855) $) NIL (|has| (-641) (-346)))) (-2091 (($ $) NIL (|has| (-641) (-1112)))) (-3774 (((-1086 (-641)) $) NIL)) (-3216 (($ (-592 $)) NIL (|has| (-641) (-286))) (($ $ $) NIL (|has| (-641) (-286)))) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL (|has| (-641) (-341)))) (-2279 (($) NIL (|has| (-641) (-327)) CONST)) (-4185 (($ (-855)) NIL (|has| (-641) (-346)))) (-2310 (($) NIL)) (-3993 (((-641) $) 31)) (-2663 (((-1037) $) NIL)) (-1669 (($) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| (-641) (-286)))) (-3244 (($ (-592 $)) NIL (|has| (-641) (-286))) (($ $ $) NIL (|has| (-641) (-286)))) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) NIL (|has| (-641) (-327)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-843))))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-843))))) (-3959 (((-396 $) $) NIL (-3309 (-12 (|has| (-641) (-286)) (|has| (-641) (-843))) (|has| (-641) (-341))))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-641) (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| (-641) (-286)))) (-2338 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-641)) NIL (|has| (-641) (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-641) (-286)))) (-1982 (($ $) NIL (|has| (-641) (-1112)))) (-3092 (($ $ (-1090) (-641)) NIL (|has| (-641) (-486 (-1090) (-641)))) (($ $ (-592 (-1090)) (-592 (-641))) NIL (|has| (-641) (-486 (-1090) (-641)))) (($ $ (-592 (-273 (-641)))) NIL (|has| (-641) (-288 (-641)))) (($ $ (-273 (-641))) NIL (|has| (-641) (-288 (-641)))) (($ $ (-641) (-641)) NIL (|has| (-641) (-288 (-641)))) (($ $ (-592 (-641)) (-592 (-641))) NIL (|has| (-641) (-288 (-641))))) (-2183 (((-713) $) NIL (|has| (-641) (-286)))) (-3928 (($ $ (-641)) NIL (|has| (-641) (-265 (-641) (-641))))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| (-641) (-286)))) (-1400 (((-641)) NIL) (((-641) (-1172 $)) NIL)) (-2443 (((-3 (-713) "failed") $ $) NIL (|has| (-641) (-327))) (((-713) $) NIL (|has| (-641) (-327)))) (-3013 (($ $ (-1 (-641) (-641))) NIL) (($ $ (-1 (-641) (-641)) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-641) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-641) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-641) (-834 (-1090)))) (($ $ (-1090)) NIL (|has| (-641) (-834 (-1090)))) (($ $ (-713)) NIL (|has| (-641) (-213))) (($ $) NIL (|has| (-641) (-213)))) (-2160 (((-632 (-641)) (-1172 $) (-1 (-641) (-641))) NIL (|has| (-641) (-341)))) (-1654 (((-1086 (-641))) NIL)) (-4084 (($ $) NIL (|has| (-641) (-1112)))) (-3942 (($ $) NIL (|has| (-641) (-1112)))) (-3775 (($) NIL (|has| (-641) (-327)))) (-4061 (($ $) NIL (|has| (-641) (-1112)))) (-3919 (($ $) NIL (|has| (-641) (-1112)))) (-4038 (($ $) NIL (|has| (-641) (-1112)))) (-3455 (($ $) NIL (|has| (-641) (-1112)))) (-4093 (((-632 (-641)) (-1172 $)) NIL) (((-1172 (-641)) $) NIL) (((-632 (-641)) (-1172 $) (-1172 $)) NIL) (((-1172 (-641)) $ (-1172 $)) NIL)) (-1427 (((-501) $) NIL (|has| (-641) (-567 (-501)))) (((-157 (-205)) $) NIL (|has| (-641) (-952))) (((-157 (-357)) $) NIL (|has| (-641) (-952))) (((-826 (-357)) $) NIL (|has| (-641) (-567 (-826 (-357))))) (((-826 (-525)) $) NIL (|has| (-641) (-567 (-826 (-525))))) (($ (-1086 (-641))) NIL) (((-1086 (-641)) $) NIL) (($ (-1172 (-641))) NIL) (((-1172 (-641)) $) NIL)) (-3634 (($ $) NIL)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-3309 (-12 (|has| (-641) (-286)) (|has| $ (-136)) (|has| (-641) (-843))) (|has| (-641) (-327))))) (-2047 (($ (-641) (-641)) 12)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-641)) NIL) (($ (-157 (-357))) 13) (($ (-157 (-525))) 19) (($ (-157 (-641))) 28) (($ (-157 (-643))) 25) (((-157 (-357)) $) 33) (($ (-385 (-525))) NIL (-3309 (|has| (-641) (-967 (-385 (-525)))) (|has| (-641) (-341))))) (-3421 (($ $) NIL (|has| (-641) (-327))) (((-3 $ "failed") $) NIL (-3309 (-12 (|has| (-641) (-286)) (|has| $ (-136)) (|has| (-641) (-843))) (|has| (-641) (-136))))) (-1260 (((-1086 (-641)) $) NIL)) (-2093 (((-713)) NIL)) (-2499 (((-1172 $)) NIL)) (-4121 (($ $) NIL (|has| (-641) (-1112)))) (-3974 (($ $) NIL (|has| (-641) (-1112)))) (-2262 (((-108) $ $) NIL)) (-4096 (($ $) NIL (|has| (-641) (-1112)))) (-3951 (($ $) NIL (|has| (-641) (-1112)))) (-4147 (($ $) NIL (|has| (-641) (-1112)))) (-3999 (($ $) NIL (|has| (-641) (-1112)))) (-1797 (((-641) $) NIL (|has| (-641) (-1112)))) (-2929 (($ $) NIL (|has| (-641) (-1112)))) (-4013 (($ $) NIL (|has| (-641) (-1112)))) (-4133 (($ $) NIL (|has| (-641) (-1112)))) (-3985 (($ $) NIL (|has| (-641) (-1112)))) (-4110 (($ $) NIL (|has| (-641) (-1112)))) (-3963 (($ $) NIL (|has| (-641) (-1112)))) (-2092 (($ $) NIL (|has| (-641) (-985)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-641) (-341)))) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $ (-1 (-641) (-641))) NIL) (($ $ (-1 (-641) (-641)) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-641) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-641) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-641) (-834 (-1090)))) (($ $ (-1090)) NIL (|has| (-641) (-834 (-1090)))) (($ $ (-713)) NIL (|has| (-641) (-213))) (($ $) NIL (|has| (-641) (-213)))) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4082 (($ $ $) NIL (|has| (-641) (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ $) NIL (|has| (-641) (-1112))) (($ $ (-385 (-525))) NIL (-12 (|has| (-641) (-933)) (|has| (-641) (-1112)))) (($ $ (-525)) NIL (|has| (-641) (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ (-641) $) NIL) (($ $ (-641)) NIL) (($ (-385 (-525)) $) NIL (|has| (-641) (-341))) (($ $ (-385 (-525))) NIL (|has| (-641) (-341)))))
-(((-636) (-13 (-365) (-154 (-641)) (-10 -8 (-15 -1908 ($ (-157 (-357)))) (-15 -1908 ($ (-157 (-525)))) (-15 -1908 ($ (-157 (-641)))) (-15 -1908 ($ (-157 (-643)))) (-15 -1908 ((-157 (-357)) $))))) (T -636))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-636)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-157 (-525))) (-5 *1 (-636)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-157 (-641))) (-5 *1 (-636)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-157 (-643))) (-5 *1 (-636)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-636)))))
-(-13 (-365) (-154 (-641)) (-10 -8 (-15 -1908 ($ (-157 (-357)))) (-15 -1908 ($ (-157 (-525)))) (-15 -1908 ($ (-157 (-641)))) (-15 -1908 ($ (-157 (-643)))) (-15 -1908 ((-157 (-357)) $))))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3410 (((-108) $ (-713)) 8)) (-3290 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4254)))) (-1505 (($) 7 T CONST)) (-3143 (($ $) 62)) (-3163 (($ $) 58 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2792 (($ |#1| $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4254)))) (-2273 (($ |#1| $) 57 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4254)))) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) 9)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2570 ((|#1| $) 39)) (-2573 (($ |#1| $) 40) (($ |#1| $ (-713)) 63)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3513 ((|#1| $) 41)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3553 (((-592 (-2 (|:| -2511 |#1|) (|:| -2686 (-713)))) $) 61)) (-4006 (($) 49) (($ (-592 |#1|)) 48)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1427 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 50)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-3612 (($ (-592 |#1|)) 42)) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-637 |#1|) (-131) (-1019)) (T -637))
-((-2573 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-637 *2)) (-4 *2 (-1019)))) (-3143 (*1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1019)))) (-3553 (*1 *2 *1) (-12 (-4 *1 (-637 *3)) (-4 *3 (-1019)) (-5 *2 (-592 (-2 (|:| -2511 *3) (|:| -2686 (-713))))))))
-(-13 (-215 |t#1|) (-10 -8 (-15 -2573 ($ |t#1| $ (-713))) (-15 -3143 ($ $)) (-15 -3553 ((-592 (-2 (|:| -2511 |t#1|) (|:| -2686 (-713)))) $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T))
-((-1919 (((-592 |#1|) (-592 (-2 (|:| -3959 |#1|) (|:| -2513 (-525)))) (-525)) 47)) (-1787 ((|#1| |#1| (-525)) 46)) (-3244 ((|#1| |#1| |#1| (-525)) 36)) (-3959 (((-592 |#1|) |#1| (-525)) 39)) (-2930 ((|#1| |#1| (-525) |#1| (-525)) 32)) (-2952 (((-592 (-2 (|:| -3959 |#1|) (|:| -2513 (-525)))) |#1| (-525)) 45)))
-(((-638 |#1|) (-10 -7 (-15 -3244 (|#1| |#1| |#1| (-525))) (-15 -1787 (|#1| |#1| (-525))) (-15 -3959 ((-592 |#1|) |#1| (-525))) (-15 -2952 ((-592 (-2 (|:| -3959 |#1|) (|:| -2513 (-525)))) |#1| (-525))) (-15 -1919 ((-592 |#1|) (-592 (-2 (|:| -3959 |#1|) (|:| -2513 (-525)))) (-525))) (-15 -2930 (|#1| |#1| (-525) |#1| (-525)))) (-1148 (-525))) (T -638))
-((-2930 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1148 (-525))))) (-1919 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| -3959 *5) (|:| -2513 (-525))))) (-5 *4 (-525)) (-4 *5 (-1148 (-525))) (-5 *2 (-592 *5)) (-5 *1 (-638 *5)))) (-2952 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -3959 *3) (|:| -2513 (-525))))) (-5 *1 (-638 *3)) (-4 *3 (-1148 (-525))) (-5 *4 (-525)))) (-3959 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-5 *2 (-592 *3)) (-5 *1 (-638 *3)) (-4 *3 (-1148 (-525))))) (-1787 (*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1148 (-525))))) (-3244 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1148 (-525))))))
-(-10 -7 (-15 -3244 (|#1| |#1| |#1| (-525))) (-15 -1787 (|#1| |#1| (-525))) (-15 -3959 ((-592 |#1|) |#1| (-525))) (-15 -2952 ((-592 (-2 (|:| -3959 |#1|) (|:| -2513 (-525)))) |#1| (-525))) (-15 -1919 ((-592 |#1|) (-592 (-2 (|:| -3959 |#1|) (|:| -2513 (-525)))) (-525))) (-15 -2930 (|#1| |#1| (-525) |#1| (-525))))
-((-1585 (((-1 (-877 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205))) 17)) (-2105 (((-1050 (-205)) (-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-592 (-242))) 40) (((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-592 (-242))) 42) (((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1014 (-205)) (-1014 (-205)) (-592 (-242))) 44)) (-1817 (((-1050 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-592 (-242))) NIL)) (-2220 (((-1050 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1014 (-205)) (-1014 (-205)) (-592 (-242))) 45)))
-(((-639) (-10 -7 (-15 -2105 ((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1014 (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -2105 ((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -2105 ((-1050 (-205)) (-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -2220 ((-1050 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1014 (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -1817 ((-1050 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -1585 ((-1 (-877 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))) (T -639))
-((-1585 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1 (-205) (-205) (-205) (-205))) (-5 *2 (-1 (-877 (-205)) (-205) (-205))) (-5 *1 (-639)))) (-1817 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1014 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-639)))) (-2220 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined")) (-5 *5 (-1014 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-639)))) (-2105 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1050 (-205))) (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-205))) (-5 *5 (-592 (-242))) (-5 *1 (-639)))) (-2105 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-205))) (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-639)))) (-2105 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined")) (-5 *5 (-1014 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-639)))))
-(-10 -7 (-15 -2105 ((-1050 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1014 (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -2105 ((-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -2105 ((-1050 (-205)) (-1050 (-205)) (-1 (-877 (-205)) (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -2220 ((-1050 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1014 (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -1817 ((-1050 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1014 (-205)) (-592 (-242)))) (-15 -1585 ((-1 (-877 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))
-((-3959 (((-396 (-1086 |#4|)) (-1086 |#4|)) 73) (((-396 |#4|) |#4|) 222)))
-(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 ((-396 |#4|) |#4|)) (-15 -3959 ((-396 (-1086 |#4|)) (-1086 |#4|)))) (-789) (-735) (-327) (-883 |#3| |#2| |#1|)) (T -640))
-((-3959 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327)) (-4 *7 (-883 *6 *5 *4)) (-5 *2 (-396 (-1086 *7))) (-5 *1 (-640 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3959 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-640 *4 *5 *6 *3)) (-4 *3 (-883 *6 *5 *4)))))
-(-10 -7 (-15 -3959 ((-396 |#4|) |#4|)) (-15 -3959 ((-396 (-1086 |#4|)) (-1086 |#4|))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 84)) (-3115 (((-525) $) 30)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-4114 (($ $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-3969 (($ $) NIL)) (-2305 (((-108) $ $) NIL)) (-1690 (((-525) $) NIL)) (-1505 (($) NIL T CONST)) (-3608 (($ $) NIL)) (-1264 (((-3 (-525) "failed") $) 73) (((-3 (-385 (-525)) "failed") $) 26) (((-3 (-357) "failed") $) 70)) (-2831 (((-525) $) 75) (((-385 (-525)) $) 67) (((-357) $) 68)) (-2373 (($ $ $) 96)) (-2866 (((-3 $ "failed") $) 87)) (-2356 (($ $ $) 95)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-1352 (((-855)) 77) (((-855) (-855)) 76)) (-3026 (((-108) $) NIL)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL)) (-1737 (((-525) $) NIL)) (-2133 (((-108) $) NIL)) (-3391 (($ $ (-525)) NIL)) (-3477 (($ $) NIL)) (-2882 (((-108) $) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3856 (((-525) (-525)) 81) (((-525)) 82)) (-3525 (($ $ $) NIL) (($) NIL (-12 (-2480 (|has| $ (-6 -4237))) (-2480 (|has| $ (-6 -4245)))))) (-1511 (((-525) (-525)) 79) (((-525)) 80)) (-3630 (($ $ $) NIL) (($) NIL (-12 (-2480 (|has| $ (-6 -4237))) (-2480 (|has| $ (-6 -4245)))))) (-3689 (((-525) $) 16)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 91)) (-1398 (((-855) (-525)) NIL (|has| $ (-6 -4245)))) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2723 (($ $) NIL)) (-1720 (($ $) NIL)) (-3905 (($ (-525) (-525)) NIL) (($ (-525) (-525) (-855)) NIL)) (-3959 (((-396 $) $) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) 92)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1600 (((-525) $) 22)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 94)) (-4076 (((-855)) NIL) (((-855) (-855)) NIL (|has| $ (-6 -4245)))) (-2462 (((-855) (-525)) NIL (|has| $ (-6 -4245)))) (-1427 (((-357) $) NIL) (((-205) $) NIL) (((-826 (-357)) $) NIL)) (-1908 (((-797) $) 52) (($ (-525)) 63) (($ $) NIL) (($ (-385 (-525))) 66) (($ (-525)) 63) (($ (-385 (-525))) 66) (($ (-357)) 60) (((-357) $) 50) (($ (-643)) 55)) (-2093 (((-713)) 103)) (-3466 (($ (-525) (-525) (-855)) 44)) (-2498 (($ $) NIL)) (-2848 (((-855)) NIL) (((-855) (-855)) NIL (|has| $ (-6 -4245)))) (-3772 (((-855)) 35) (((-855) (-855)) 78)) (-2262 (((-108) $ $) NIL)) (-2092 (($ $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) 32 T CONST)) (-3882 (($) 17 T CONST)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 83)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 101)) (-4082 (($ $ $) 65)) (-4070 (($ $) 99) (($ $ $) 100)) (-4059 (($ $ $) 98)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) 90)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 97) (($ $ $) 88) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
-(((-641) (-13 (-382) (-365) (-341) (-967 (-357)) (-967 (-385 (-525))) (-138) (-10 -8 (-15 -1352 ((-855) (-855))) (-15 -1352 ((-855))) (-15 -3772 ((-855) (-855))) (-15 -3772 ((-855))) (-15 -1511 ((-525) (-525))) (-15 -1511 ((-525))) (-15 -3856 ((-525) (-525))) (-15 -3856 ((-525))) (-15 -1908 ((-357) $)) (-15 -1908 ($ (-643))) (-15 -3689 ((-525) $)) (-15 -1600 ((-525) $)) (-15 -3466 ($ (-525) (-525) (-855)))))) (T -641))
-((-3772 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-641)))) (-1600 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-1352 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-641)))) (-1352 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-641)))) (-3772 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-641)))) (-1511 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-1511 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-3856 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-3856 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-357)) (-5 *1 (-641)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-643)) (-5 *1 (-641)))) (-3466 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-855)) (-5 *1 (-641)))))
-(-13 (-382) (-365) (-341) (-967 (-357)) (-967 (-385 (-525))) (-138) (-10 -8 (-15 -1352 ((-855) (-855))) (-15 -1352 ((-855))) (-15 -3772 ((-855) (-855))) (-15 -3772 ((-855))) (-15 -1511 ((-525) (-525))) (-15 -1511 ((-525))) (-15 -3856 ((-525) (-525))) (-15 -3856 ((-525))) (-15 -1908 ((-357) $)) (-15 -1908 ($ (-643))) (-15 -3689 ((-525) $)) (-15 -1600 ((-525) $)) (-15 -3466 ($ (-525) (-525) (-855)))))
-((-2983 (((-632 |#1|) (-632 |#1|) |#1| |#1|) 65)) (-3262 (((-632 |#1|) (-632 |#1|) |#1|) 48)) (-2402 (((-632 |#1|) (-632 |#1|) |#1|) 66)) (-2468 (((-632 |#1|) (-632 |#1|)) 49)) (-3299 (((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|) 64)))
-(((-642 |#1|) (-10 -7 (-15 -2468 ((-632 |#1|) (-632 |#1|))) (-15 -3262 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -2402 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -2983 ((-632 |#1|) (-632 |#1|) |#1| |#1|)) (-15 -3299 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|))) (-286)) (T -642))
-((-3299 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3))) (-5 *1 (-642 *3)) (-4 *3 (-286)))) (-2983 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))) (-2402 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))) (-3262 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))) (-2468 (*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))))
-(-10 -7 (-15 -2468 ((-632 |#1|) (-632 |#1|))) (-15 -3262 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -2402 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -2983 ((-632 |#1|) (-632 |#1|) |#1| |#1|)) (-15 -3299 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3280 (($ $ $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3903 (($ $ $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2305 (((-108) $ $) NIL)) (-1690 (((-525) $) NIL)) (-3097 (($ $ $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) 27)) (-2831 (((-525) $) 25)) (-2373 (($ $ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-1468 (((-3 (-385 (-525)) "failed") $) NIL)) (-3081 (((-108) $) NIL)) (-2098 (((-385 (-525)) $) NIL)) (-3375 (($ $) NIL) (($) NIL)) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-1948 (($ $ $ $) NIL)) (-2010 (($ $ $) NIL)) (-3026 (((-108) $) NIL)) (-3834 (($ $ $) NIL)) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL)) (-2133 (((-108) $) NIL)) (-2144 (((-108) $) NIL)) (-1816 (((-3 $ "failed") $) NIL)) (-2882 (((-108) $) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2615 (($ $ $ $) NIL)) (-3525 (($ $ $) NIL)) (-3032 (((-855) (-855)) 10) (((-855)) 9)) (-3630 (($ $ $) NIL)) (-3486 (($ $) NIL)) (-1722 (($ $) NIL)) (-3216 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-1866 (($ $ $) NIL)) (-2279 (($) NIL T CONST)) (-2969 (($ $) NIL)) (-2663 (((-1037) $) NIL) (($ $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ (-592 $)) NIL) (($ $ $) NIL)) (-3066 (($ $) NIL)) (-3959 (((-396 $) $) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2656 (((-108) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-3013 (($ $) NIL) (($ $ (-713)) NIL)) (-2660 (($ $) NIL)) (-2135 (($ $) NIL)) (-1427 (((-205) $) NIL) (((-357) $) NIL) (((-826 (-525)) $) NIL) (((-501) $) NIL) (((-525) $) NIL)) (-1908 (((-797) $) NIL) (($ (-525)) 24) (($ $) NIL) (($ (-525)) 24) (((-294 $) (-294 (-525))) 18)) (-2093 (((-713)) NIL)) (-3662 (((-108) $ $) NIL)) (-3015 (($ $ $) NIL)) (-3772 (($) NIL)) (-2262 (((-108) $ $) NIL)) (-3089 (($ $ $ $) NIL)) (-2092 (($ $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $) NIL) (($ $ (-713)) NIL)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL)))
-(((-643) (-13 (-365) (-510) (-10 -8 (-15 -3032 ((-855) (-855))) (-15 -3032 ((-855))) (-15 -1908 ((-294 $) (-294 (-525))))))) (T -643))
-((-3032 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-643)))) (-3032 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-643)))) (-1908 (*1 *2 *3) (-12 (-5 *3 (-294 (-525))) (-5 *2 (-294 (-643))) (-5 *1 (-643)))))
-(-13 (-365) (-510) (-10 -8 (-15 -3032 ((-855) (-855))) (-15 -3032 ((-855))) (-15 -1908 ((-294 $) (-294 (-525))))))
-((-1501 (((-1 |#4| |#2| |#3|) |#1| (-1090) (-1090)) 19)) (-2622 (((-1 |#4| |#2| |#3|) (-1090)) 12)))
-(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2622 ((-1 |#4| |#2| |#3|) (-1090))) (-15 -1501 ((-1 |#4| |#2| |#3|) |#1| (-1090) (-1090)))) (-567 (-501)) (-1126) (-1126) (-1126)) (T -644))
-((-1501 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *3 *5 *6 *7)) (-4 *3 (-567 (-501))) (-4 *5 (-1126)) (-4 *6 (-1126)) (-4 *7 (-1126)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *4 *5 *6 *7)) (-4 *4 (-567 (-501))) (-4 *5 (-1126)) (-4 *6 (-1126)) (-4 *7 (-1126)))))
-(-10 -7 (-15 -2622 ((-1 |#4| |#2| |#3|) (-1090))) (-15 -1501 ((-1 |#4| |#2| |#3|) |#1| (-1090) (-1090))))
-((-1893 (((-108) $ $) NIL)) (-2128 (((-1177) $ (-713)) 14)) (-3763 (((-713) $) 12)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 25)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 24)))
-(((-645 |#1|) (-13 (-127) (-566 |#1|) (-10 -8 (-15 -1908 ($ |#1|)))) (-1019)) (T -645))
-((-1908 (*1 *1 *2) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1019)))))
-(-13 (-127) (-566 |#1|) (-10 -8 (-15 -1908 ($ |#1|))))
-((-3796 (((-1 (-205) (-205) (-205)) |#1| (-1090) (-1090)) 34) (((-1 (-205) (-205)) |#1| (-1090)) 39)))
-(((-646 |#1|) (-10 -7 (-15 -3796 ((-1 (-205) (-205)) |#1| (-1090))) (-15 -3796 ((-1 (-205) (-205) (-205)) |#1| (-1090) (-1090)))) (-567 (-501))) (T -646))
-((-3796 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-646 *3)) (-4 *3 (-567 (-501))))) (-3796 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-205) (-205))) (-5 *1 (-646 *3)) (-4 *3 (-567 (-501))))))
-(-10 -7 (-15 -3796 ((-1 (-205) (-205)) |#1| (-1090))) (-15 -3796 ((-1 (-205) (-205) (-205)) |#1| (-1090) (-1090))))
-((-3111 (((-1090) |#1| (-1090) (-592 (-1090))) 9) (((-1090) |#1| (-1090) (-1090) (-1090)) 12) (((-1090) |#1| (-1090) (-1090)) 11) (((-1090) |#1| (-1090)) 10)))
-(((-647 |#1|) (-10 -7 (-15 -3111 ((-1090) |#1| (-1090))) (-15 -3111 ((-1090) |#1| (-1090) (-1090))) (-15 -3111 ((-1090) |#1| (-1090) (-1090) (-1090))) (-15 -3111 ((-1090) |#1| (-1090) (-592 (-1090))))) (-567 (-501))) (T -647))
-((-3111 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1090)) (-5 *4 (-592 (-1090))) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) (-3111 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) (-3111 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) (-3111 (*1 *2 *3 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))))
-(-10 -7 (-15 -3111 ((-1090) |#1| (-1090))) (-15 -3111 ((-1090) |#1| (-1090) (-1090))) (-15 -3111 ((-1090) |#1| (-1090) (-1090) (-1090))) (-15 -3111 ((-1090) |#1| (-1090) (-592 (-1090)))))
-((-2786 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-648 |#1| |#2|) (-10 -7 (-15 -2786 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1126) (-1126)) (T -648))
-((-2786 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-648 *3 *4)) (-4 *3 (-1126)) (-4 *4 (-1126)))))
-(-10 -7 (-15 -2786 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-2523 (((-1 |#3| |#2|) (-1090)) 11)) (-1501 (((-1 |#3| |#2|) |#1| (-1090)) 21)))
-(((-649 |#1| |#2| |#3|) (-10 -7 (-15 -2523 ((-1 |#3| |#2|) (-1090))) (-15 -1501 ((-1 |#3| |#2|) |#1| (-1090)))) (-567 (-501)) (-1126) (-1126)) (T -649))
-((-1501 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *3 *5 *6)) (-4 *3 (-567 (-501))) (-4 *5 (-1126)) (-4 *6 (-1126)))) (-2523 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *4 *5 *6)) (-4 *4 (-567 (-501))) (-4 *5 (-1126)) (-4 *6 (-1126)))))
-(-10 -7 (-15 -2523 ((-1 |#3| |#2|) (-1090))) (-15 -1501 ((-1 |#3| |#2|) |#1| (-1090))))
-((-2617 (((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 (-1086 |#4|)) (-592 |#3|) (-592 |#4|) (-592 (-592 (-2 (|:| -3264 (-713)) (|:| |pcoef| |#4|)))) (-592 (-713)) (-1172 (-592 (-1086 |#3|))) |#3|) 62)) (-2817 (((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 (-1086 |#3|)) (-592 |#3|) (-592 |#4|) (-592 (-713)) |#3|) 75)) (-4210 (((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 |#3|) (-592 (-713)) (-592 (-1086 |#4|)) (-1172 (-592 (-1086 |#3|))) |#3|) 34)))
-(((-650 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4210 ((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 |#3|) (-592 (-713)) (-592 (-1086 |#4|)) (-1172 (-592 (-1086 |#3|))) |#3|)) (-15 -2817 ((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 (-1086 |#3|)) (-592 |#3|) (-592 |#4|) (-592 (-713)) |#3|)) (-15 -2617 ((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 (-1086 |#4|)) (-592 |#3|) (-592 |#4|) (-592 (-592 (-2 (|:| -3264 (-713)) (|:| |pcoef| |#4|)))) (-592 (-713)) (-1172 (-592 (-1086 |#3|))) |#3|))) (-735) (-789) (-286) (-883 |#3| |#1| |#2|)) (T -650))
-((-2617 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-592 (-1086 *13))) (-5 *3 (-1086 *13)) (-5 *4 (-592 *12)) (-5 *5 (-592 *10)) (-5 *6 (-592 *13)) (-5 *7 (-592 (-592 (-2 (|:| -3264 (-713)) (|:| |pcoef| *13))))) (-5 *8 (-592 (-713))) (-5 *9 (-1172 (-592 (-1086 *10)))) (-4 *12 (-789)) (-4 *10 (-286)) (-4 *13 (-883 *10 *11 *12)) (-4 *11 (-735)) (-5 *1 (-650 *11 *12 *10 *13)))) (-2817 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-592 *11)) (-5 *5 (-592 (-1086 *9))) (-5 *6 (-592 *9)) (-5 *7 (-592 *12)) (-5 *8 (-592 (-713))) (-4 *11 (-789)) (-4 *9 (-286)) (-4 *12 (-883 *9 *10 *11)) (-4 *10 (-735)) (-5 *2 (-592 (-1086 *12))) (-5 *1 (-650 *10 *11 *9 *12)) (-5 *3 (-1086 *12)))) (-4210 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-592 (-1086 *11))) (-5 *3 (-1086 *11)) (-5 *4 (-592 *10)) (-5 *5 (-592 *8)) (-5 *6 (-592 (-713))) (-5 *7 (-1172 (-592 (-1086 *8)))) (-4 *10 (-789)) (-4 *8 (-286)) (-4 *11 (-883 *8 *9 *10)) (-4 *9 (-735)) (-5 *1 (-650 *9 *10 *8 *11)))))
-(-10 -7 (-15 -4210 ((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 |#3|) (-592 (-713)) (-592 (-1086 |#4|)) (-1172 (-592 (-1086 |#3|))) |#3|)) (-15 -2817 ((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 (-1086 |#3|)) (-592 |#3|) (-592 |#4|) (-592 (-713)) |#3|)) (-15 -2617 ((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-592 |#2|) (-592 (-1086 |#4|)) (-592 |#3|) (-592 |#4|) (-592 (-592 (-2 (|:| -3264 (-713)) (|:| |pcoef| |#4|)))) (-592 (-713)) (-1172 (-592 (-1086 |#3|))) |#3|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-1247 (($ $) 41)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-4079 (($ |#1| (-713)) 39)) (-3181 (((-713) $) 43)) (-1224 ((|#1| $) 42)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-2513 (((-713) $) 44)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 38 (|has| |#1| (-160)))) (-1657 ((|#1| $ (-713)) 40)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
-(((-651 |#1|) (-131) (-976)) (T -651))
-((-2513 (*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-976)) (-5 *2 (-713)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-976)) (-5 *2 (-713)))) (-1224 (*1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-976)))) (-1247 (*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-976)))) (-1657 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-976)))) (-4079 (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-976)))))
-(-13 (-976) (-107 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -2513 ((-713) $)) (-15 -3181 ((-713) $)) (-15 -1224 (|t#1| $)) (-15 -1247 ($ $)) (-15 -1657 (|t#1| $ (-713))) (-15 -4079 ($ |t#1| (-713)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) |has| |#1| (-160)) ((-669) . T) ((-982 |#1|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1370 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-652 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1370 (|#6| (-1 |#4| |#1|) |#3|))) (-517) (-1148 |#1|) (-1148 (-385 |#2|)) (-517) (-1148 |#4|) (-1148 (-385 |#5|))) (T -652))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-517)) (-4 *7 (-517)) (-4 *6 (-1148 *5)) (-4 *2 (-1148 (-385 *8))) (-5 *1 (-652 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1148 (-385 *6))) (-4 *8 (-1148 *7)))))
-(-10 -7 (-15 -1370 (|#6| (-1 |#4| |#1|) |#3|)))
-((-1893 (((-108) $ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2106 (((-1073) (-797)) 31)) (-3303 (((-1177) (-1073)) 28)) (-3423 (((-1073) (-797)) 24)) (-3437 (((-1073) (-797)) 25)) (-1908 (((-797) $) NIL) (((-1073) (-797)) 23)) (-3961 (((-108) $ $) NIL)))
-(((-653) (-13 (-1019) (-10 -7 (-15 -1908 ((-1073) (-797))) (-15 -3423 ((-1073) (-797))) (-15 -3437 ((-1073) (-797))) (-15 -2106 ((-1073) (-797))) (-15 -3303 ((-1177) (-1073)))))) (T -653))
-((-1908 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1073)) (-5 *1 (-653)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1073)) (-5 *1 (-653)))) (-3437 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1073)) (-5 *1 (-653)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1073)) (-5 *1 (-653)))) (-3303 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-653)))))
-(-13 (-1019) (-10 -7 (-15 -1908 ((-1073) (-797))) (-15 -3423 ((-1073) (-797))) (-15 -3437 ((-1073) (-797))) (-15 -2106 ((-1073) (-797))) (-15 -3303 ((-1177) (-1073)))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2305 (((-108) $ $) NIL)) (-1505 (($) NIL T CONST)) (-2373 (($ $ $) NIL)) (-4004 (($ |#1| |#2|) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-2133 (((-108) $) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2238 ((|#2| $) NIL)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3959 (((-396 $) $) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1732 (((-3 $ "failed") $ $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) ((|#1| $) NIL)) (-2093 (((-713)) NIL)) (-2262 (((-108) $ $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
-(((-654 |#1| |#2| |#3| |#4| |#5|) (-13 (-341) (-10 -8 (-15 -2238 (|#2| $)) (-15 -1908 (|#1| $)) (-15 -4004 ($ |#1| |#2|)) (-15 -1732 ((-3 $ "failed") $ $)))) (-160) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -654))
-((-2238 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-654 *3 *2 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1908 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4004 (*1 *1 *2 *3) (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1732 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-341) (-10 -8 (-15 -2238 (|#2| $)) (-15 -1908 (|#1| $)) (-15 -4004 ($ |#1| |#2|)) (-15 -1732 ((-3 $ "failed") $ $))))
-((-1893 (((-108) $ $) 78)) (-1611 (((-108) $) 30)) (-1401 (((-1172 |#1|) $ (-713)) NIL)) (-4104 (((-592 (-1004)) $) NIL)) (-1361 (($ (-1086 |#1|)) NIL)) (-3927 (((-1086 $) $ (-1004)) NIL) (((-1086 |#1|) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-1324 (((-713) $) NIL) (((-713) $ (-592 (-1004))) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1820 (($ $ $) NIL (|has| |#1| (-517)))) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3321 (($ $) NIL (|has| |#1| (-429)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2305 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3107 (((-713)) 47 (|has| |#1| (-346)))) (-3311 (($ $ (-713)) NIL)) (-1821 (($ $ (-713)) NIL)) (-2693 ((|#2| |#2|) 44)) (-3976 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-1004) "failed") $) NIL)) (-2831 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-1004) $) NIL)) (-2506 (($ $ $ (-1004)) NIL (|has| |#1| (-160))) ((|#1| $ $) NIL (|has| |#1| (-160)))) (-2373 (($ $ $) NIL (|has| |#1| (-341)))) (-1247 (($ $) 34)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-4004 (($ |#2|) 42)) (-2866 (((-3 $ "failed") $) 86)) (-3375 (($) 51 (|has| |#1| (-346)))) (-2356 (($ $ $) NIL (|has| |#1| (-341)))) (-1766 (($ $ $) NIL)) (-3744 (($ $ $) NIL (|has| |#1| (-517)))) (-3196 (((-2 (|:| -1459 |#1|) (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-517)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3811 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1004)) NIL (|has| |#1| (-429)))) (-1234 (((-592 $) $) NIL)) (-2250 (((-108) $) NIL (|has| |#1| (-843)))) (-1591 (((-891 $)) 80)) (-2099 (($ $ |#1| (-713) $) NIL)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-1004) (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-1004) (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-1737 (((-713) $ $) NIL (|has| |#1| (-517)))) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) NIL)) (-1816 (((-3 $ "failed") $) NIL (|has| |#1| (-1066)))) (-4092 (($ (-1086 |#1|) (-1004)) NIL) (($ (-1086 $) (-1004)) NIL)) (-3817 (($ $ (-713)) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-713)) 77) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ (-1004)) NIL) (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-2238 ((|#2|) 45)) (-3181 (((-713) $) NIL) (((-713) $ (-1004)) NIL) (((-592 (-713)) $ (-592 (-1004))) NIL)) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-1331 (($ (-1 (-713) (-713)) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (((-1086 |#1|) $) NIL)) (-1666 (((-3 (-1004) "failed") $) NIL)) (-1780 (((-855) $) NIL (|has| |#1| (-346)))) (-3774 ((|#2| $) 41)) (-1212 (($ $) NIL)) (-1224 ((|#1| $) 28)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2337 (((-1073) $) NIL)) (-3781 (((-2 (|:| -1338 $) (|:| -1632 $)) $ (-713)) NIL)) (-3245 (((-3 (-592 $) "failed") $) NIL)) (-3193 (((-3 (-592 $) "failed") $) NIL)) (-3283 (((-3 (-2 (|:| |var| (-1004)) (|:| -1600 (-713))) "failed") $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2279 (($) NIL (|has| |#1| (-1066)) CONST)) (-4185 (($ (-855)) NIL (|has| |#1| (-346)))) (-2663 (((-1037) $) NIL)) (-4221 (((-108) $) NIL)) (-4232 ((|#1| $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-429)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2529 (($ $) 79 (|has| |#1| (-327)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3959 (((-396 $) $) NIL (|has| |#1| (-843)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-2338 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-3092 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1004) |#1|) NIL) (($ $ (-592 (-1004)) (-592 |#1|)) NIL) (($ $ (-1004) $) NIL) (($ $ (-592 (-1004)) (-592 $)) NIL)) (-2183 (((-713) $) NIL (|has| |#1| (-341)))) (-3928 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-2063 (((-3 $ "failed") $ (-713)) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 87 (|has| |#1| (-341)))) (-1400 (($ $ (-1004)) NIL (|has| |#1| (-160))) ((|#1| $) NIL (|has| |#1| (-160)))) (-3013 (($ $ (-1004)) NIL) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2513 (((-713) $) 32) (((-713) $ (-1004)) NIL) (((-592 (-713)) $ (-592 (-1004))) NIL)) (-1427 (((-826 (-357)) $) NIL (-12 (|has| (-1004) (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-1004) (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-1004) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2751 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1004)) NIL (|has| |#1| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-1700 (((-891 $)) 36)) (-1925 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-1908 (((-797) $) 61) (($ (-525)) NIL) (($ |#1|) 58) (($ (-1004)) NIL) (($ |#2|) 68) (($ (-385 (-525))) NIL (-3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3600 (((-592 |#1|) $) NIL)) (-1657 ((|#1| $ (-713)) 63) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2093 (((-713)) NIL)) (-4116 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 20 T CONST)) (-3819 (((-1172 |#1|) $) 75)) (-3962 (($ (-1172 |#1|)) 50)) (-3882 (($) 8 T CONST)) (-1424 (($ $ (-1004)) NIL) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3225 (((-1172 |#1|) $) NIL)) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) 69)) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4070 (($ $) 72) (($ $ $) NIL)) (-4059 (($ $ $) 33)) (** (($ $ (-855)) NIL) (($ $ (-713)) 81)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 57) (($ $ $) 74) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
-(((-655 |#1| |#2|) (-13 (-1148 |#1|) (-10 -8 (-15 -2693 (|#2| |#2|)) (-15 -2238 (|#2|)) (-15 -4004 ($ |#2|)) (-15 -3774 (|#2| $)) (-15 -1908 ($ |#2|)) (-15 -3819 ((-1172 |#1|) $)) (-15 -3962 ($ (-1172 |#1|))) (-15 -3225 ((-1172 |#1|) $)) (-15 -1591 ((-891 $))) (-15 -1700 ((-891 $))) (IF (|has| |#1| (-327)) (-15 -2529 ($ $)) |%noBranch|) (IF (|has| |#1| (-346)) (-6 (-346)) |%noBranch|))) (-976) (-1148 |#1|)) (T -655))
-((-2693 (*1 *2 *2) (-12 (-4 *3 (-976)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1148 *3)))) (-2238 (*1 *2) (-12 (-4 *2 (-1148 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-976)))) (-4004 (*1 *1 *2) (-12 (-4 *3 (-976)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1148 *3)))) (-3774 (*1 *2 *1) (-12 (-4 *2 (-1148 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-976)))) (-1908 (*1 *1 *2) (-12 (-4 *3 (-976)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1148 *3)))) (-3819 (*1 *2 *1) (-12 (-4 *3 (-976)) (-5 *2 (-1172 *3)) (-5 *1 (-655 *3 *4)) (-4 *4 (-1148 *3)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-976)) (-5 *1 (-655 *3 *4)) (-4 *4 (-1148 *3)))) (-3225 (*1 *2 *1) (-12 (-4 *3 (-976)) (-5 *2 (-1172 *3)) (-5 *1 (-655 *3 *4)) (-4 *4 (-1148 *3)))) (-1591 (*1 *2) (-12 (-4 *3 (-976)) (-5 *2 (-891 (-655 *3 *4))) (-5 *1 (-655 *3 *4)) (-4 *4 (-1148 *3)))) (-1700 (*1 *2) (-12 (-4 *3 (-976)) (-5 *2 (-891 (-655 *3 *4))) (-5 *1 (-655 *3 *4)) (-4 *4 (-1148 *3)))) (-2529 (*1 *1 *1) (-12 (-4 *2 (-327)) (-4 *2 (-976)) (-5 *1 (-655 *2 *3)) (-4 *3 (-1148 *2)))))
-(-13 (-1148 |#1|) (-10 -8 (-15 -2693 (|#2| |#2|)) (-15 -2238 (|#2|)) (-15 -4004 ($ |#2|)) (-15 -3774 (|#2| $)) (-15 -1908 ($ |#2|)) (-15 -3819 ((-1172 |#1|) $)) (-15 -3962 ($ (-1172 |#1|))) (-15 -3225 ((-1172 |#1|) $)) (-15 -1591 ((-891 $))) (-15 -1700 ((-891 $))) (IF (|has| |#1| (-327)) (-15 -2529 ($ $)) |%noBranch|) (IF (|has| |#1| (-346)) (-6 (-346)) |%noBranch|)))
-((-1893 (((-108) $ $) NIL)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-4185 ((|#1| $) 13)) (-2663 (((-1037) $) NIL)) (-1600 ((|#2| $) 12)) (-1922 (($ |#1| |#2|) 16)) (-1908 (((-797) $) NIL) (($ (-2 (|:| -4185 |#1|) (|:| -1600 |#2|))) 15) (((-2 (|:| -4185 |#1|) (|:| -1600 |#2|)) $) 14)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 11)))
-(((-656 |#1| |#2| |#3|) (-13 (-789) (-10 -8 (-15 -1600 (|#2| $)) (-15 -4185 (|#1| $)) (-15 -1908 ($ (-2 (|:| -4185 |#1|) (|:| -1600 |#2|)))) (-15 -1908 ((-2 (|:| -4185 |#1|) (|:| -1600 |#2|)) $)) (-15 -1922 ($ |#1| |#2|)))) (-789) (-1019) (-1 (-108) (-2 (|:| -4185 |#1|) (|:| -1600 |#2|)) (-2 (|:| -4185 |#1|) (|:| -1600 |#2|)))) (T -656))
-((-1600 (*1 *2 *1) (-12 (-4 *2 (-1019)) (-5 *1 (-656 *3 *2 *4)) (-4 *3 (-789)) (-14 *4 (-1 (-108) (-2 (|:| -4185 *3) (|:| -1600 *2)) (-2 (|:| -4185 *3) (|:| -1600 *2)))))) (-4185 (*1 *2 *1) (-12 (-4 *2 (-789)) (-5 *1 (-656 *2 *3 *4)) (-4 *3 (-1019)) (-14 *4 (-1 (-108) (-2 (|:| -4185 *2) (|:| -1600 *3)) (-2 (|:| -4185 *2) (|:| -1600 *3)))))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4185 *3) (|:| -1600 *4))) (-4 *3 (-789)) (-4 *4 (-1019)) (-14 *5 (-1 (-108) (-2 (|:| -4185 *3) (|:| -1600 *4)) (-2 (|:| -4185 *3) (|:| -1600 *4)))) (-5 *1 (-656 *3 *4 *5)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4185 *3) (|:| -1600 *4))) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-1019)) (-14 *5 (-1 (-108) (-2 (|:| -4185 *3) (|:| -1600 *4)) (-2 (|:| -4185 *3) (|:| -1600 *4)))))) (-1922 (*1 *1 *2 *3) (-12 (-5 *1 (-656 *2 *3 *4)) (-4 *2 (-789)) (-4 *3 (-1019)) (-14 *4 (-1 (-108) (-2 (|:| -4185 *2) (|:| -1600 *3)) (-2 (|:| -4185 *2) (|:| -1600 *3)))))))
-(-13 (-789) (-10 -8 (-15 -1600 (|#2| $)) (-15 -4185 (|#1| $)) (-15 -1908 ($ (-2 (|:| -4185 |#1|) (|:| -1600 |#2|)))) (-15 -1908 ((-2 (|:| -4185 |#1|) (|:| -1600 |#2|)) $)) (-15 -1922 ($ |#1| |#2|))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 59)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) 89) (((-3 (-110) "failed") $) 95)) (-2831 ((|#1| $) NIL) (((-110) $) 39)) (-2866 (((-3 $ "failed") $) 90)) (-2236 ((|#2| (-110) |#2|) 82)) (-2133 (((-108) $) NIL)) (-3716 (($ |#1| (-339 (-110))) 14)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1365 (($ $ (-1 |#2| |#2|)) 58)) (-1960 (($ $ (-1 |#2| |#2|)) 44)) (-3928 ((|#2| $ |#2|) 33)) (-2561 ((|#1| |#1|) 105 (|has| |#1| (-160)))) (-1908 (((-797) $) 66) (($ (-525)) 18) (($ |#1|) 17) (($ (-110)) 23)) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) 37)) (-1672 (($ $) 99 (|has| |#1| (-160))) (($ $ $) 103 (|has| |#1| (-160)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 21 T CONST)) (-3882 (($) 9 T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) 48) (($ $ $) NIL)) (-4059 (($ $ $) 73)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ (-110) (-525)) NIL) (($ $ (-525)) 57)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-160))) (($ $ |#1|) 97 (|has| |#1| (-160)))))
-(((-657 |#1| |#2|) (-13 (-976) (-967 |#1|) (-967 (-110)) (-265 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -1672 ($ $)) (-15 -1672 ($ $ $)) (-15 -2561 (|#1| |#1|))) |%noBranch|) (-15 -1960 ($ $ (-1 |#2| |#2|))) (-15 -1365 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -2236 (|#2| (-110) |#2|)) (-15 -3716 ($ |#1| (-339 (-110)))))) (-976) (-594 |#1|)) (T -657))
-((-1672 (*1 *1 *1) (-12 (-4 *2 (-160)) (-4 *2 (-976)) (-5 *1 (-657 *2 *3)) (-4 *3 (-594 *2)))) (-1672 (*1 *1 *1 *1) (-12 (-4 *2 (-160)) (-4 *2 (-976)) (-5 *1 (-657 *2 *3)) (-4 *3 (-594 *2)))) (-2561 (*1 *2 *2) (-12 (-4 *2 (-160)) (-4 *2 (-976)) (-5 *1 (-657 *2 *3)) (-4 *3 (-594 *2)))) (-1960 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-976)) (-5 *1 (-657 *3 *4)))) (-1365 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-976)) (-5 *1 (-657 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-4 *4 (-976)) (-5 *1 (-657 *4 *5)) (-4 *5 (-594 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *3 (-976)) (-5 *1 (-657 *3 *4)) (-4 *4 (-594 *3)))) (-2236 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-4 *4 (-976)) (-5 *1 (-657 *4 *2)) (-4 *2 (-594 *4)))) (-3716 (*1 *1 *2 *3) (-12 (-5 *3 (-339 (-110))) (-4 *2 (-976)) (-5 *1 (-657 *2 *4)) (-4 *4 (-594 *2)))))
-(-13 (-976) (-967 |#1|) (-967 (-110)) (-265 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -1672 ($ $)) (-15 -1672 ($ $ $)) (-15 -2561 (|#1| |#1|))) |%noBranch|) (-15 -1960 ($ $ (-1 |#2| |#2|))) (-15 -1365 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -2236 (|#2| (-110) |#2|)) (-15 -3716 ($ |#1| (-339 (-110))))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 33)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-4004 (($ |#1| |#2|) 25)) (-2866 (((-3 $ "failed") $) 48)) (-2133 (((-108) $) 35)) (-2238 ((|#2| $) 12)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 49)) (-2663 (((-1037) $) NIL)) (-1732 (((-3 $ "failed") $ $) 47)) (-1908 (((-797) $) 24) (($ (-525)) 19) ((|#1| $) 13)) (-2093 (((-713)) 28)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 16 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 38)) (-4070 (($ $) 43) (($ $ $) 37)) (-4059 (($ $ $) 40)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 21) (($ $ $) 20)))
-(((-658 |#1| |#2| |#3| |#4| |#5|) (-13 (-976) (-10 -8 (-15 -2238 (|#2| $)) (-15 -1908 (|#1| $)) (-15 -4004 ($ |#1| |#2|)) (-15 -1732 ((-3 $ "failed") $ $)) (-15 -2866 ((-3 $ "failed") $)) (-15 -4211 ($ $)))) (-160) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -658))
-((-2866 (*1 *1 *1) (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2238 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-658 *3 *2 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1908 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4004 (*1 *1 *2 *3) (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1732 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4211 (*1 *1 *1) (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-976) (-10 -8 (-15 -2238 (|#2| $)) (-15 -1908 (|#1| $)) (-15 -4004 ($ |#1| |#2|)) (-15 -1732 ((-3 $ "failed") $ $)) (-15 -2866 ((-3 $ "failed") $)) (-15 -4211 ($ $))))
-((* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-659 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|))) (-660 |#2|) (-160)) (T -659))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 15)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-1498 ((|#1| $) 21)) (-2371 (($ $ $) NIL (|has| |#1| (-733)))) (-2535 (($ $ $) NIL (|has| |#1| (-733)))) (-3451 (((-1074) $) 46)) (-2012 (((-1038) $) NIL)) (-1512 ((|#3| $) 22)) (-1270 (((-798) $) 42)) (-3355 (($) 10 T CONST)) (-4045 (((-108) $ $) NIL (|has| |#1| (-733)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-733)))) (-3994 (((-108) $ $) 20)) (-4037 (((-108) $ $) NIL (|has| |#1| (-733)))) (-4017 (((-108) $ $) 24 (|has| |#1| (-733)))) (-4100 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-4090 (($ $) 17) (($ $ $) NIL)) (-4080 (($ $ $) 27)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-608 |#1| |#2| |#3|) (-13 (-660 |#2|) (-10 -8 (IF (|has| |#1| (-733)) (-6 (-733)) |%noBranch|) (-15 -4100 ($ $ |#3|)) (-15 -4100 ($ |#1| |#3|)) (-15 -1498 (|#1| $)) (-15 -1512 (|#3| $)))) (-660 |#2|) (-160) (|SubsetCategory| (-669) |#2|)) (T -608))
+((-4100 (*1 *1 *1 *2) (-12 (-4 *4 (-160)) (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-660 *4)) (-4 *2 (|SubsetCategory| (-669) *4)))) (-4100 (*1 *1 *2 *3) (-12 (-4 *4 (-160)) (-5 *1 (-608 *2 *4 *3)) (-4 *2 (-660 *4)) (-4 *3 (|SubsetCategory| (-669) *4)))) (-1498 (*1 *2 *1) (-12 (-4 *3 (-160)) (-4 *2 (-660 *3)) (-5 *1 (-608 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-669) *3)))) (-1512 (*1 *2 *1) (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4)) (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-660 *4)))))
+(-13 (-660 |#2|) (-10 -8 (IF (|has| |#1| (-733)) (-6 (-733)) |%noBranch|) (-15 -4100 ($ $ |#3|)) (-15 -4100 ($ |#1| |#3|)) (-15 -1498 (|#1| $)) (-15 -1512 (|#3| $))))
+((-3044 (((-3 (-592 (-1087 |#1|)) "failed") (-592 (-1087 |#1|)) (-1087 |#1|)) 33)))
+(((-609 |#1|) (-10 -7 (-15 -3044 ((-3 (-592 (-1087 |#1|)) "failed") (-592 (-1087 |#1|)) (-1087 |#1|)))) (-844)) (T -609))
+((-3044 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1087 *4))) (-5 *3 (-1087 *4)) (-4 *4 (-844)) (-5 *1 (-609 *4)))))
+(-10 -7 (-15 -3044 ((-3 (-592 (-1087 |#1|)) "failed") (-592 (-1087 |#1|)) (-1087 |#1|))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-4143 (((-592 |#1|) $) 82)) (-2653 (($ $ (-713)) 90)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2747 (((-1195 |#1| |#2|) (-1195 |#1| |#2|) $) 48)) (-2591 (((-3 (-617 |#1|) "failed") $) NIL)) (-3898 (((-617 |#1|) $) NIL)) (-2571 (($ $) 89)) (-1647 (((-713) $) NIL)) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) NIL)) (-3219 (($ (-617 |#1|) |#2|) 68)) (-2901 (($ $) 86)) (-2694 (($ (-1 |#2| |#2|) $) NIL)) (-2377 (((-1195 |#1| |#2|) (-1195 |#1| |#2|) $) 47)) (-3217 (((-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2538 (((-617 |#1|) $) NIL)) (-2548 ((|#2| $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2602 (($ $ |#1| $) 30) (($ $ (-592 |#1|) (-592 $)) 32)) (-1587 (((-713) $) 88)) (-1279 (($ $ $) 20) (($ (-617 |#1|) (-617 |#1|)) 77) (($ (-617 |#1|) $) 75) (($ $ (-617 |#1|)) 76)) (-1270 (((-798) $) NIL) (($ |#1|) 74) (((-1186 |#1| |#2|) $) 58) (((-1195 |#1| |#2|) $) 41) (($ (-617 |#1|)) 25)) (-1562 (((-592 |#2|) $) NIL)) (-3468 ((|#2| $ (-617 |#1|)) NIL)) (-1655 ((|#2| (-1195 |#1| |#2|) $) 43)) (-3355 (($) 23 T CONST)) (-3379 (((-592 (-2 (|:| |k| (-617 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3170 (((-3 $ "failed") (-1186 |#1| |#2|)) 60)) (-3949 (($ (-617 |#1|)) 14)) (-3994 (((-108) $ $) 44)) (-4100 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4090 (($ $) 66) (($ $ $) NIL)) (-4080 (($ $ $) 29)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-617 |#1|)) NIL)))
+(((-610 |#1| |#2|) (-13 (-352 |#1| |#2|) (-360 |#2| (-617 |#1|)) (-10 -8 (-15 -3170 ((-3 $ "failed") (-1186 |#1| |#2|))) (-15 -1279 ($ (-617 |#1|) (-617 |#1|))) (-15 -1279 ($ (-617 |#1|) $)) (-15 -1279 ($ $ (-617 |#1|))))) (-789) (-160)) (T -610))
+((-3170 (*1 *1 *2) (|partial| -12 (-5 *2 (-1186 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *1 (-610 *3 *4)))) (-1279 (*1 *1 *2 *2) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) (-4 *4 (-160)))) (-1279 (*1 *1 *2 *1) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) (-4 *4 (-160)))) (-1279 (*1 *1 *1 *2) (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4)) (-4 *4 (-160)))))
+(-13 (-352 |#1| |#2|) (-360 |#2| (-617 |#1|)) (-10 -8 (-15 -3170 ((-3 $ "failed") (-1186 |#1| |#2|))) (-15 -1279 ($ (-617 |#1|) (-617 |#1|))) (-15 -1279 ($ (-617 |#1|) $)) (-15 -1279 ($ $ (-617 |#1|)))))
+((-2151 (((-108) $) NIL) (((-108) (-1 (-108) |#2| |#2|) $) 50)) (-2549 (($ $) NIL) (($ (-1 (-108) |#2| |#2|) $) 12)) (-1608 (($ (-1 (-108) |#2|) $) 28)) (-3559 (($ $) 56)) (-1540 (($ $) 64)) (-2592 (($ |#2| $) NIL) (($ (-1 (-108) |#2|) $) 37)) (-3503 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-1916 (((-525) |#2| $ (-525)) 61) (((-525) |#2| $) NIL) (((-525) (-1 (-108) |#2|) $) 47)) (-3489 (($ (-713) |#2|) 54)) (-1999 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 30)) (-3743 (($ $ $) NIL) (($ (-1 (-108) |#2| |#2|) $ $) 24)) (-2694 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-4104 (($ |#2|) 15)) (-3985 (($ $ $ (-525)) 36) (($ |#2| $ (-525)) 34)) (-3207 (((-3 |#2| "failed") (-1 (-108) |#2|) $) 46)) (-3793 (($ $ (-1140 (-525))) 44) (($ $ (-525)) 38)) (-3216 (($ $ $ (-525)) 60)) (-1451 (($ $) 58)) (-4017 (((-108) $ $) 66)))
+(((-611 |#1| |#2|) (-10 -8 (-15 -4104 (|#1| |#2|)) (-15 -3793 (|#1| |#1| (-525))) (-15 -3793 (|#1| |#1| (-1140 (-525)))) (-15 -2592 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3985 (|#1| |#2| |#1| (-525))) (-15 -3985 (|#1| |#1| |#1| (-525))) (-15 -1999 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1608 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2592 (|#1| |#2| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -1999 (|#1| |#1| |#1|)) (-15 -3743 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2151 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1916 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -1916 ((-525) |#2| |#1|)) (-15 -1916 ((-525) |#2| |#1| (-525))) (-15 -3743 (|#1| |#1| |#1|)) (-15 -2151 ((-108) |#1|)) (-15 -3216 (|#1| |#1| |#1| (-525))) (-15 -3559 (|#1| |#1|)) (-15 -2549 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2549 (|#1| |#1|)) (-15 -4017 ((-108) |#1| |#1|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3207 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3489 (|#1| (-713) |#2|)) (-15 -2694 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2694 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1451 (|#1| |#1|))) (-612 |#2|) (-1127)) (T -611))
+NIL
+(-10 -8 (-15 -4104 (|#1| |#2|)) (-15 -3793 (|#1| |#1| (-525))) (-15 -3793 (|#1| |#1| (-1140 (-525)))) (-15 -2592 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -3985 (|#1| |#2| |#1| (-525))) (-15 -3985 (|#1| |#1| |#1| (-525))) (-15 -1999 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -1608 (|#1| (-1 (-108) |#2|) |#1|)) (-15 -2592 (|#1| |#2| |#1|)) (-15 -1540 (|#1| |#1|)) (-15 -1999 (|#1| |#1| |#1|)) (-15 -3743 (|#1| (-1 (-108) |#2| |#2|) |#1| |#1|)) (-15 -2151 ((-108) (-1 (-108) |#2| |#2|) |#1|)) (-15 -1916 ((-525) (-1 (-108) |#2|) |#1|)) (-15 -1916 ((-525) |#2| |#1|)) (-15 -1916 ((-525) |#2| |#1| (-525))) (-15 -3743 (|#1| |#1| |#1|)) (-15 -2151 ((-108) |#1|)) (-15 -3216 (|#1| |#1| |#1| (-525))) (-15 -3559 (|#1| |#1|)) (-15 -2549 (|#1| (-1 (-108) |#2| |#2|) |#1|)) (-15 -2549 (|#1| |#1|)) (-15 -4017 ((-108) |#1| |#1|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3503 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3207 ((-3 |#2| "failed") (-1 (-108) |#2|) |#1|)) (-15 -3489 (|#1| (-713) |#2|)) (-15 -2694 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2694 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1451 (|#1| |#1|)))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3352 ((|#1| $) 48)) (-2029 ((|#1| $) 65)) (-2941 (($ $) 67)) (-2782 (((-1178) $ (-525) (-525)) 97 (|has| $ (-6 -4256)))) (-3078 (($ $ (-525)) 52 (|has| $ (-6 -4256)))) (-2151 (((-108) $) 142 (|has| |#1| (-789))) (((-108) (-1 (-108) |#1| |#1|) $) 136)) (-2549 (($ $) 146 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4256)))) (($ (-1 (-108) |#1| |#1|) $) 145 (|has| $ (-6 -4256)))) (-2855 (($ $) 141 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $) 135)) (-3330 (((-108) $ (-713)) 8)) (-1545 ((|#1| $ |#1|) 39 (|has| $ (-6 -4256)))) (-2914 (($ $ $) 56 (|has| $ (-6 -4256)))) (-1455 ((|#1| $ |#1|) 54 (|has| $ (-6 -4256)))) (-2207 ((|#1| $ |#1|) 58 (|has| $ (-6 -4256)))) (-1429 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4256))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4256))) (($ $ "rest" $) 55 (|has| $ (-6 -4256))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) 117 (|has| $ (-6 -4256))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) 41 (|has| $ (-6 -4256)))) (-1608 (($ (-1 (-108) |#1|) $) 129)) (-3826 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4255)))) (-2016 ((|#1| $) 66)) (-2305 (($) 7 T CONST)) (-3559 (($ $) 144 (|has| $ (-6 -4256)))) (-3620 (($ $) 134)) (-3121 (($ $) 73) (($ $ (-713)) 71)) (-1540 (($ $) 131 (|has| |#1| (-1020)))) (-3137 (($ $) 99 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2592 (($ |#1| $) 130 (|has| |#1| (-1020))) (($ (-1 (-108) |#1|) $) 125)) (-1614 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4255))) (($ |#1| $) 100 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2632 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) 87)) (-1406 (((-108) $) 83)) (-1916 (((-525) |#1| $ (-525)) 139 (|has| |#1| (-1020))) (((-525) |#1| $) 138 (|has| |#1| (-1020))) (((-525) (-1 (-108) |#1|) $) 137)) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) 50)) (-2553 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-3489 (($ (-713) |#1|) 108)) (-2482 (((-108) $ (-713)) 9)) (-2710 (((-525) $) 95 (|has| (-525) (-789)))) (-2371 (($ $ $) 147 (|has| |#1| (-789)))) (-1999 (($ $ $) 132 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 128)) (-3743 (($ $ $) 140 (|has| |#1| (-789))) (($ (-1 (-108) |#1| |#1|) $ $) 133)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3478 (((-525) $) 94 (|has| (-525) (-789)))) (-2535 (($ $ $) 148 (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-4104 (($ |#1|) 122)) (-2957 (((-108) $ (-713)) 10)) (-2647 (((-592 |#1|) $) 45)) (-3365 (((-108) $) 49)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-1636 ((|#1| $) 70) (($ $ (-713)) 68)) (-3985 (($ $ $ (-525)) 127) (($ |#1| $ (-525)) 126)) (-2683 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-4142 (((-592 (-525)) $) 92)) (-3845 (((-108) (-525) $) 91)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3110 ((|#1| $) 76) (($ $ (-713)) 74)) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-2042 (($ $ |#1|) 96 (|has| $ (-6 -4256)))) (-1626 (((-108) $) 84)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-4101 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) 90)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1140 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-3294 (((-525) $ $) 44)) (-3793 (($ $ (-1140 (-525))) 124) (($ $ (-525)) 123)) (-3157 (($ $ (-1140 (-525))) 114) (($ $ (-525)) 113)) (-1698 (((-108) $) 46)) (-2491 (($ $) 62)) (-3385 (($ $) 59 (|has| $ (-6 -4256)))) (-2389 (((-713) $) 63)) (-2249 (($ $) 64)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3216 (($ $ $ (-525)) 143 (|has| $ (-6 -4256)))) (-1451 (($ $) 13)) (-2749 (((-501) $) 98 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 107)) (-2162 (($ $ $) 61) (($ $ |#1|) 60)) (-2014 (($ $ $) 78) (($ |#1| $) 77) (($ (-592 $)) 110) (($ $ |#1|) 109)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) 51)) (-2240 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) 150 (|has| |#1| (-789)))) (-4026 (((-108) $ $) 151 (|has| |#1| (-789)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-4037 (((-108) $ $) 149 (|has| |#1| (-789)))) (-4017 (((-108) $ $) 152 (|has| |#1| (-789)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-612 |#1|) (-131) (-1127)) (T -612))
+((-4104 (*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1127)))))
+(-13 (-1065 |t#1|) (-351 |t#1|) (-261 |t#1|) (-10 -8 (-15 -4104 ($ |t#1|))))
+(((-33) . T) ((-97) -3279 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-789)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-261 |#1|) . T) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-789) |has| |#1| (-789)) ((-942 |#1|) . T) ((-1020) -3279 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-1065 |#1|) . T) ((-1127) . T) ((-1161 |#1|) . T))
+((-3193 (((-592 (-2 (|:| |particular| (-3 (-1173 |#1|) "failed")) (|:| -1449 (-592 (-1173 |#1|))))) (-592 (-592 |#1|)) (-592 (-1173 |#1|))) 22) (((-592 (-2 (|:| |particular| (-3 (-1173 |#1|) "failed")) (|:| -1449 (-592 (-1173 |#1|))))) (-632 |#1|) (-592 (-1173 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1173 |#1|) "failed")) (|:| -1449 (-592 (-1173 |#1|)))) (-592 (-592 |#1|)) (-1173 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1173 |#1|) "failed")) (|:| -1449 (-592 (-1173 |#1|)))) (-632 |#1|) (-1173 |#1|)) 14)) (-3318 (((-713) (-632 |#1|) (-1173 |#1|)) 30)) (-4156 (((-3 (-1173 |#1|) "failed") (-632 |#1|) (-1173 |#1|)) 24)) (-4095 (((-108) (-632 |#1|) (-1173 |#1|)) 27)))
+(((-613 |#1|) (-10 -7 (-15 -3193 ((-2 (|:| |particular| (-3 (-1173 |#1|) "failed")) (|:| -1449 (-592 (-1173 |#1|)))) (-632 |#1|) (-1173 |#1|))) (-15 -3193 ((-2 (|:| |particular| (-3 (-1173 |#1|) "failed")) (|:| -1449 (-592 (-1173 |#1|)))) (-592 (-592 |#1|)) (-1173 |#1|))) (-15 -3193 ((-592 (-2 (|:| |particular| (-3 (-1173 |#1|) "failed")) (|:| -1449 (-592 (-1173 |#1|))))) (-632 |#1|) (-592 (-1173 |#1|)))) (-15 -3193 ((-592 (-2 (|:| |particular| (-3 (-1173 |#1|) "failed")) (|:| -1449 (-592 (-1173 |#1|))))) (-592 (-592 |#1|)) (-592 (-1173 |#1|)))) (-15 -4156 ((-3 (-1173 |#1|) "failed") (-632 |#1|) (-1173 |#1|))) (-15 -4095 ((-108) (-632 |#1|) (-1173 |#1|))) (-15 -3318 ((-713) (-632 |#1|) (-1173 |#1|)))) (-341)) (T -613))
+((-3318 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-1173 *5)) (-4 *5 (-341)) (-5 *2 (-713)) (-5 *1 (-613 *5)))) (-4095 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-1173 *5)) (-4 *5 (-341)) (-5 *2 (-108)) (-5 *1 (-613 *5)))) (-4156 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1173 *4)) (-5 *3 (-632 *4)) (-4 *4 (-341)) (-5 *1 (-613 *4)))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341)) (-5 *2 (-592 (-2 (|:| |particular| (-3 (-1173 *5) "failed")) (|:| -1449 (-592 (-1173 *5)))))) (-5 *1 (-613 *5)) (-5 *4 (-592 (-1173 *5))))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-4 *5 (-341)) (-5 *2 (-592 (-2 (|:| |particular| (-3 (-1173 *5) "failed")) (|:| -1449 (-592 (-1173 *5)))))) (-5 *1 (-613 *5)) (-5 *4 (-592 (-1173 *5))))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341)) (-5 *2 (-2 (|:| |particular| (-3 (-1173 *5) "failed")) (|:| -1449 (-592 (-1173 *5))))) (-5 *1 (-613 *5)) (-5 *4 (-1173 *5)))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |particular| (-3 (-1173 *5) "failed")) (|:| -1449 (-592 (-1173 *5))))) (-5 *1 (-613 *5)) (-5 *4 (-1173 *5)))))
+(-10 -7 (-15 -3193 ((-2 (|:| |particular| (-3 (-1173 |#1|) "failed")) (|:| -1449 (-592 (-1173 |#1|)))) (-632 |#1|) (-1173 |#1|))) (-15 -3193 ((-2 (|:| |particular| (-3 (-1173 |#1|) "failed")) (|:| -1449 (-592 (-1173 |#1|)))) (-592 (-592 |#1|)) (-1173 |#1|))) (-15 -3193 ((-592 (-2 (|:| |particular| (-3 (-1173 |#1|) "failed")) (|:| -1449 (-592 (-1173 |#1|))))) (-632 |#1|) (-592 (-1173 |#1|)))) (-15 -3193 ((-592 (-2 (|:| |particular| (-3 (-1173 |#1|) "failed")) (|:| -1449 (-592 (-1173 |#1|))))) (-592 (-592 |#1|)) (-592 (-1173 |#1|)))) (-15 -4156 ((-3 (-1173 |#1|) "failed") (-632 |#1|) (-1173 |#1|))) (-15 -4095 ((-108) (-632 |#1|) (-1173 |#1|))) (-15 -3318 ((-713) (-632 |#1|) (-1173 |#1|))))
+((-3193 (((-592 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1449 (-592 |#3|)))) |#4| (-592 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1449 (-592 |#3|))) |#4| |#3|) 45)) (-3318 (((-713) |#4| |#3|) 17)) (-4156 (((-3 |#3| "failed") |#4| |#3|) 20)) (-4095 (((-108) |#4| |#3|) 13)))
+(((-614 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3193 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1449 (-592 |#3|))) |#4| |#3|)) (-15 -3193 ((-592 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1449 (-592 |#3|)))) |#4| (-592 |#3|))) (-15 -4156 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4095 ((-108) |#4| |#3|)) (-15 -3318 ((-713) |#4| |#3|))) (-341) (-13 (-351 |#1|) (-10 -7 (-6 -4256))) (-13 (-351 |#1|) (-10 -7 (-6 -4256))) (-630 |#1| |#2| |#3|)) (T -614))
+((-3318 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4256)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4256)))) (-5 *2 (-713)) (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))) (-4095 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4256)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4256)))) (-5 *2 (-108)) (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))) (-4156 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-341)) (-4 *5 (-13 (-351 *4) (-10 -7 (-6 -4256)))) (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4256)))) (-5 *1 (-614 *4 *5 *2 *3)) (-4 *3 (-630 *4 *5 *2)))) (-3193 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4256)))) (-4 *7 (-13 (-351 *5) (-10 -7 (-6 -4256)))) (-5 *2 (-592 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1449 (-592 *7))))) (-5 *1 (-614 *5 *6 *7 *3)) (-5 *4 (-592 *7)) (-4 *3 (-630 *5 *6 *7)))) (-3193 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4256)))) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4256)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1449 (-592 *4)))) (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))))
+(-10 -7 (-15 -3193 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1449 (-592 |#3|))) |#4| |#3|)) (-15 -3193 ((-592 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1449 (-592 |#3|)))) |#4| (-592 |#3|))) (-15 -4156 ((-3 |#3| "failed") |#4| |#3|)) (-15 -4095 ((-108) |#4| |#3|)) (-15 -3318 ((-713) |#4| |#3|)))
+((-2022 (((-2 (|:| |particular| (-3 (-1173 (-385 |#4|)) "failed")) (|:| -1449 (-592 (-1173 (-385 |#4|))))) (-592 |#4|) (-592 |#3|)) 45)))
+(((-615 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2022 ((-2 (|:| |particular| (-3 (-1173 (-385 |#4|)) "failed")) (|:| -1449 (-592 (-1173 (-385 |#4|))))) (-592 |#4|) (-592 |#3|)))) (-517) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -615))
+((-2022 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *7)) (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-5 *2 (-2 (|:| |particular| (-3 (-1173 (-385 *8)) "failed")) (|:| -1449 (-592 (-1173 (-385 *8)))))) (-5 *1 (-615 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2022 ((-2 (|:| |particular| (-3 (-1173 (-385 |#4|)) "failed")) (|:| -1449 (-592 (-1173 (-385 |#4|))))) (-592 |#4|) (-592 |#3|))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1790 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-3029 ((|#2| $) NIL)) (-2079 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3019 (((-1173 (-632 |#2|))) NIL) (((-1173 (-632 |#2|)) (-1173 $)) NIL)) (-2077 (((-108) $) NIL)) (-2138 (((-1173 $)) 37)) (-3330 (((-108) $ (-713)) NIL)) (-2975 (($ |#2|) NIL)) (-2305 (($) NIL T CONST)) (-1333 (($ $) NIL (|has| |#2| (-286)))) (-1616 (((-220 |#1| |#2|) $ (-525)) NIL)) (-1316 (((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed")) NIL (|has| |#2| (-517)))) (-2144 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-2306 (((-632 |#2|)) NIL) (((-632 |#2|) (-1173 $)) NIL)) (-2892 ((|#2| $) NIL)) (-3591 (((-632 |#2|) $) NIL) (((-632 |#2|) $ (-1173 $)) NIL)) (-2962 (((-3 $ "failed") $) NIL (|has| |#2| (-517)))) (-4043 (((-1087 (-887 |#2|))) NIL (|has| |#2| (-341)))) (-3627 (($ $ (-856)) NIL)) (-3108 ((|#2| $) NIL)) (-2904 (((-1087 |#2|) $) NIL (|has| |#2| (-517)))) (-1638 ((|#2|) NIL) ((|#2| (-1173 $)) NIL)) (-4159 (((-1087 |#2|) $) NIL)) (-1740 (((-108)) NIL)) (-2591 (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-3898 (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) ((|#2| $) NIL)) (-3612 (($ (-1173 |#2|)) NIL) (($ (-1173 |#2|) (-1173 $)) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3318 (((-713) $) NIL (|has| |#2| (-517))) (((-856)) 38)) (-2570 ((|#2| $ (-525) (-525)) NIL)) (-3165 (((-108)) NIL)) (-2161 (($ $ (-856)) NIL)) (-3702 (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-1985 (((-108) $) NIL)) (-1841 (((-713) $) NIL (|has| |#2| (-517)))) (-1615 (((-592 (-220 |#1| |#2|)) $) NIL (|has| |#2| (-517)))) (-1857 (((-713) $) NIL)) (-1275 (((-108)) NIL)) (-1869 (((-713) $) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-1641 ((|#2| $) NIL (|has| |#2| (-6 (-4257 "*"))))) (-1964 (((-525) $) NIL)) (-3779 (((-525) $) NIL)) (-1749 (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1987 (((-525) $) NIL)) (-3948 (((-525) $) NIL)) (-1660 (($ (-592 (-592 |#2|))) NIL)) (-2622 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2973 (((-592 (-592 |#2|)) $) NIL)) (-1242 (((-108)) NIL)) (-2394 (((-108)) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-4167 (((-3 (-2 (|:| |particular| $) (|:| -1449 (-592 $))) "failed")) NIL (|has| |#2| (-517)))) (-3322 (((-3 $ "failed")) NIL (|has| |#2| (-517)))) (-1518 (((-632 |#2|)) NIL) (((-632 |#2|) (-1173 $)) NIL)) (-2917 ((|#2| $) NIL)) (-2561 (((-632 |#2|) $) NIL) (((-632 |#2|) $ (-1173 $)) NIL)) (-2665 (((-3 $ "failed") $) NIL (|has| |#2| (-517)))) (-3935 (((-1087 (-887 |#2|))) NIL (|has| |#2| (-341)))) (-1404 (($ $ (-856)) NIL)) (-3908 ((|#2| $) NIL)) (-4073 (((-1087 |#2|) $) NIL (|has| |#2| (-517)))) (-2021 ((|#2|) NIL) ((|#2| (-1173 $)) NIL)) (-1774 (((-1087 |#2|) $) NIL)) (-3171 (((-108)) NIL)) (-3451 (((-1074) $) NIL)) (-2556 (((-108)) NIL)) (-3639 (((-108)) NIL)) (-4211 (((-108)) NIL)) (-2933 (((-3 $ "failed") $) NIL (|has| |#2| (-341)))) (-2012 (((-1038) $) NIL)) (-1851 (((-108)) NIL)) (-1680 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-3006 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#2| $ (-525) (-525) |#2|) NIL) ((|#2| $ (-525) (-525)) 22) ((|#2| $ (-525)) NIL)) (-2523 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1091)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-2212 ((|#2| $) NIL)) (-3675 (($ (-592 |#2|)) NIL)) (-2559 (((-108) $) NIL)) (-1444 (((-220 |#1| |#2|) $) NIL)) (-3176 ((|#2| $) NIL (|has| |#2| (-6 (-4257 "*"))))) (-2040 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1451 (($ $) NIL)) (-3464 (((-632 |#2|) (-1173 $)) NIL) (((-1173 |#2|) $) NIL) (((-632 |#2|) (-1173 $) (-1173 $)) NIL) (((-1173 |#2|) $ (-1173 $)) 25)) (-2749 (($ (-1173 |#2|)) NIL) (((-1173 |#2|) $) NIL)) (-4059 (((-592 (-887 |#2|))) NIL) (((-592 (-887 |#2|)) (-1173 $)) NIL)) (-2222 (($ $ $) NIL)) (-2883 (((-108)) NIL)) (-3701 (((-220 |#1| |#2|) $ (-525)) NIL)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-968 (-385 (-525))))) (($ |#2|) NIL) (((-632 |#2|) $) NIL)) (-2104 (((-713)) NIL)) (-1449 (((-1173 $)) 36)) (-1500 (((-592 (-1173 |#2|))) NIL (|has| |#2| (-517)))) (-3941 (($ $ $ $) NIL)) (-1440 (((-108)) NIL)) (-4169 (($ (-632 |#2|) $) NIL)) (-3633 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-1366 (((-108) $) NIL)) (-3395 (($ $ $) NIL)) (-3665 (((-108)) NIL)) (-3529 (((-108)) NIL)) (-3180 (((-108)) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1091)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#2| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-220 |#1| |#2|) $ (-220 |#1| |#2|)) NIL) (((-220 |#1| |#2|) (-220 |#1| |#2|) $) NIL)) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-616 |#1| |#2|) (-13 (-1041 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-395 |#2|)) (-856) (-160)) (T -616))
+NIL
+(-13 (-1041 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-395 |#2|))
+((-1260 (((-108) $ $) NIL)) (-4143 (((-592 |#1|) $) NIL)) (-3602 (($ $) 52)) (-1875 (((-108) $) NIL)) (-2591 (((-3 |#1| "failed") $) NIL)) (-3898 ((|#1| $) NIL)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-1939 (((-3 $ "failed") (-761 |#1|)) 23)) (-2861 (((-108) (-761 |#1|)) 15)) (-3274 (($ (-761 |#1|)) 24)) (-2166 (((-108) $ $) 30)) (-2023 (((-856) $) 37)) (-3593 (($ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2195 (((-592 $) (-761 |#1|)) 17)) (-1270 (((-798) $) 43) (($ |#1|) 34) (((-761 |#1|) $) 39) (((-621 |#1|) $) 44)) (-3105 (((-57 (-592 $)) (-592 |#1|) (-856)) 57)) (-2958 (((-592 $) (-592 |#1|) (-856)) 60)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 53)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 38)))
+(((-617 |#1|) (-13 (-789) (-968 |#1|) (-10 -8 (-15 -1875 ((-108) $)) (-15 -3593 ($ $)) (-15 -3602 ($ $)) (-15 -2023 ((-856) $)) (-15 -2166 ((-108) $ $)) (-15 -1270 ((-761 |#1|) $)) (-15 -1270 ((-621 |#1|) $)) (-15 -2195 ((-592 $) (-761 |#1|))) (-15 -2861 ((-108) (-761 |#1|))) (-15 -3274 ($ (-761 |#1|))) (-15 -1939 ((-3 $ "failed") (-761 |#1|))) (-15 -4143 ((-592 |#1|) $)) (-15 -3105 ((-57 (-592 $)) (-592 |#1|) (-856))) (-15 -2958 ((-592 $) (-592 |#1|) (-856))))) (-789)) (T -617))
+((-1875 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-3593 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789)))) (-3602 (*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-2166 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-2195 (*1 *2 *3) (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-617 *4))) (-5 *1 (-617 *4)))) (-2861 (*1 *2 *3) (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-108)) (-5 *1 (-617 *4)))) (-3274 (*1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))) (-1939 (*1 *1 *2) (|partial| -12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789)))) (-3105 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-856)) (-4 *5 (-789)) (-5 *2 (-57 (-592 (-617 *5)))) (-5 *1 (-617 *5)))) (-2958 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-856)) (-4 *5 (-789)) (-5 *2 (-592 (-617 *5))) (-5 *1 (-617 *5)))))
+(-13 (-789) (-968 |#1|) (-10 -8 (-15 -1875 ((-108) $)) (-15 -3593 ($ $)) (-15 -3602 ($ $)) (-15 -2023 ((-856) $)) (-15 -2166 ((-108) $ $)) (-15 -1270 ((-761 |#1|) $)) (-15 -1270 ((-621 |#1|) $)) (-15 -2195 ((-592 $) (-761 |#1|))) (-15 -2861 ((-108) (-761 |#1|))) (-15 -3274 ($ (-761 |#1|))) (-15 -1939 ((-3 $ "failed") (-761 |#1|))) (-15 -4143 ((-592 |#1|) $)) (-15 -3105 ((-57 (-592 $)) (-592 |#1|) (-856))) (-15 -2958 ((-592 $) (-592 |#1|) (-856)))))
+((-3352 ((|#2| $) 76)) (-2941 (($ $) 96)) (-3330 (((-108) $ (-713)) 26)) (-3121 (($ $) 85) (($ $ (-713)) 88)) (-1406 (((-108) $) 97)) (-2714 (((-592 $) $) 72)) (-2553 (((-108) $ $) 71)) (-2482 (((-108) $ (-713)) 24)) (-2710 (((-525) $) 46)) (-3478 (((-525) $) 45)) (-2957 (((-108) $ (-713)) 22)) (-3365 (((-108) $) 74)) (-1636 ((|#2| $) 89) (($ $ (-713)) 92)) (-2683 (($ $ $ (-525)) 62) (($ |#2| $ (-525)) 61)) (-4142 (((-592 (-525)) $) 44)) (-3845 (((-108) (-525) $) 42)) (-3110 ((|#2| $) NIL) (($ $ (-713)) 84)) (-2182 (($ $ (-525)) 100)) (-1626 (((-108) $) 99)) (-3006 (((-108) (-1 (-108) |#2|) $) 32)) (-1777 (((-592 |#2|) $) 33)) (-3410 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1140 (-525))) 58) ((|#2| $ (-525)) 40) ((|#2| $ (-525) |#2|) 41)) (-3294 (((-525) $ $) 70)) (-3157 (($ $ (-1140 (-525))) 57) (($ $ (-525)) 51)) (-1698 (((-108) $) 66)) (-2491 (($ $) 81)) (-2389 (((-713) $) 80)) (-2249 (($ $) 79)) (-1279 (($ (-592 |#2|)) 37)) (-3577 (($ $) 101)) (-3320 (((-592 $) $) 69)) (-2240 (((-108) $ $) 68)) (-3633 (((-108) (-1 (-108) |#2|) $) 31)) (-3994 (((-108) $ $) 18)) (-3596 (((-713) $) 29)))
+(((-618 |#1| |#2|) (-10 -8 (-15 -3577 (|#1| |#1|)) (-15 -2182 (|#1| |#1| (-525))) (-15 -1406 ((-108) |#1|)) (-15 -1626 ((-108) |#1|)) (-15 -3410 (|#2| |#1| (-525) |#2|)) (-15 -3410 (|#2| |#1| (-525))) (-15 -1777 ((-592 |#2|) |#1|)) (-15 -3845 ((-108) (-525) |#1|)) (-15 -4142 ((-592 (-525)) |#1|)) (-15 -3478 ((-525) |#1|)) (-15 -2710 ((-525) |#1|)) (-15 -1279 (|#1| (-592 |#2|))) (-15 -3410 (|#1| |#1| (-1140 (-525)))) (-15 -3157 (|#1| |#1| (-525))) (-15 -3157 (|#1| |#1| (-1140 (-525)))) (-15 -2683 (|#1| |#2| |#1| (-525))) (-15 -2683 (|#1| |#1| |#1| (-525))) (-15 -2491 (|#1| |#1|)) (-15 -2389 ((-713) |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -2941 (|#1| |#1|)) (-15 -1636 (|#1| |#1| (-713))) (-15 -3410 (|#2| |#1| "last")) (-15 -1636 (|#2| |#1|)) (-15 -3121 (|#1| |#1| (-713))) (-15 -3410 (|#1| |#1| "rest")) (-15 -3121 (|#1| |#1|)) (-15 -3110 (|#1| |#1| (-713))) (-15 -3410 (|#2| |#1| "first")) (-15 -3110 (|#2| |#1|)) (-15 -2553 ((-108) |#1| |#1|)) (-15 -2240 ((-108) |#1| |#1|)) (-15 -3294 ((-525) |#1| |#1|)) (-15 -1698 ((-108) |#1|)) (-15 -3410 (|#2| |#1| "value")) (-15 -3352 (|#2| |#1|)) (-15 -3365 ((-108) |#1|)) (-15 -2714 ((-592 |#1|) |#1|)) (-15 -3320 ((-592 |#1|) |#1|)) (-15 -3994 ((-108) |#1| |#1|)) (-15 -3006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3633 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3596 ((-713) |#1|)) (-15 -3330 ((-108) |#1| (-713))) (-15 -2482 ((-108) |#1| (-713))) (-15 -2957 ((-108) |#1| (-713)))) (-619 |#2|) (-1127)) (T -618))
+NIL
+(-10 -8 (-15 -3577 (|#1| |#1|)) (-15 -2182 (|#1| |#1| (-525))) (-15 -1406 ((-108) |#1|)) (-15 -1626 ((-108) |#1|)) (-15 -3410 (|#2| |#1| (-525) |#2|)) (-15 -3410 (|#2| |#1| (-525))) (-15 -1777 ((-592 |#2|) |#1|)) (-15 -3845 ((-108) (-525) |#1|)) (-15 -4142 ((-592 (-525)) |#1|)) (-15 -3478 ((-525) |#1|)) (-15 -2710 ((-525) |#1|)) (-15 -1279 (|#1| (-592 |#2|))) (-15 -3410 (|#1| |#1| (-1140 (-525)))) (-15 -3157 (|#1| |#1| (-525))) (-15 -3157 (|#1| |#1| (-1140 (-525)))) (-15 -2683 (|#1| |#2| |#1| (-525))) (-15 -2683 (|#1| |#1| |#1| (-525))) (-15 -2491 (|#1| |#1|)) (-15 -2389 ((-713) |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -2941 (|#1| |#1|)) (-15 -1636 (|#1| |#1| (-713))) (-15 -3410 (|#2| |#1| "last")) (-15 -1636 (|#2| |#1|)) (-15 -3121 (|#1| |#1| (-713))) (-15 -3410 (|#1| |#1| "rest")) (-15 -3121 (|#1| |#1|)) (-15 -3110 (|#1| |#1| (-713))) (-15 -3410 (|#2| |#1| "first")) (-15 -3110 (|#2| |#1|)) (-15 -2553 ((-108) |#1| |#1|)) (-15 -2240 ((-108) |#1| |#1|)) (-15 -3294 ((-525) |#1| |#1|)) (-15 -1698 ((-108) |#1|)) (-15 -3410 (|#2| |#1| "value")) (-15 -3352 (|#2| |#1|)) (-15 -3365 ((-108) |#1|)) (-15 -2714 ((-592 |#1|) |#1|)) (-15 -3320 ((-592 |#1|) |#1|)) (-15 -3994 ((-108) |#1| |#1|)) (-15 -3006 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3633 ((-108) (-1 (-108) |#2|) |#1|)) (-15 -3596 ((-713) |#1|)) (-15 -3330 ((-108) |#1| (-713))) (-15 -2482 ((-108) |#1| (-713))) (-15 -2957 ((-108) |#1| (-713))))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3352 ((|#1| $) 48)) (-2029 ((|#1| $) 65)) (-2941 (($ $) 67)) (-2782 (((-1178) $ (-525) (-525)) 97 (|has| $ (-6 -4256)))) (-3078 (($ $ (-525)) 52 (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) 8)) (-1545 ((|#1| $ |#1|) 39 (|has| $ (-6 -4256)))) (-2914 (($ $ $) 56 (|has| $ (-6 -4256)))) (-1455 ((|#1| $ |#1|) 54 (|has| $ (-6 -4256)))) (-2207 ((|#1| $ |#1|) 58 (|has| $ (-6 -4256)))) (-1429 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4256))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4256))) (($ $ "rest" $) 55 (|has| $ (-6 -4256))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) 117 (|has| $ (-6 -4256))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) 41 (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) |#1|) $) 102)) (-2016 ((|#1| $) 66)) (-2305 (($) 7 T CONST)) (-3736 (($ $) 124)) (-3121 (($ $) 73) (($ $ (-713)) 71)) (-3137 (($ $) 99 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ |#1| $) 100 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#1|) $) 103)) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2632 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) 87)) (-1406 (((-108) $) 83)) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-3050 (((-713) $) 123)) (-2714 (((-592 $) $) 50)) (-2553 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-3489 (($ (-713) |#1|) 108)) (-2482 (((-108) $ (-713)) 9)) (-2710 (((-525) $) 95 (|has| (-525) (-789)))) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3478 (((-525) $) 94 (|has| (-525) (-789)))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2957 (((-108) $ (-713)) 10)) (-2647 (((-592 |#1|) $) 45)) (-3365 (((-108) $) 49)) (-1899 (($ $) 126)) (-3138 (((-108) $) 127)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-1636 ((|#1| $) 70) (($ $ (-713)) 68)) (-2683 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-4142 (((-592 (-525)) $) 92)) (-3845 (((-108) (-525) $) 91)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-2308 ((|#1| $) 125)) (-3110 ((|#1| $) 76) (($ $ (-713)) 74)) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-2042 (($ $ |#1|) 96 (|has| $ (-6 -4256)))) (-2182 (($ $ (-525)) 122)) (-1626 (((-108) $) 84)) (-1757 (((-108) $) 128)) (-3471 (((-108) $) 129)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-4101 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) 90)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1140 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-3294 (((-525) $ $) 44)) (-3157 (($ $ (-1140 (-525))) 114) (($ $ (-525)) 113)) (-1698 (((-108) $) 46)) (-2491 (($ $) 62)) (-3385 (($ $) 59 (|has| $ (-6 -4256)))) (-2389 (((-713) $) 63)) (-2249 (($ $) 64)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-2749 (((-501) $) 98 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 107)) (-2162 (($ $ $) 61 (|has| $ (-6 -4256))) (($ $ |#1|) 60 (|has| $ (-6 -4256)))) (-2014 (($ $ $) 78) (($ |#1| $) 77) (($ (-592 $)) 110) (($ $ |#1|) 109)) (-3577 (($ $) 121)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) 51)) (-2240 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-619 |#1|) (-131) (-1127)) (T -619))
+((-1614 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1127)))) (-3826 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1127)))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1127)) (-5 *2 (-108)))) (-1757 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1127)) (-5 *2 (-108)))) (-3138 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1127)) (-5 *2 (-108)))) (-1899 (*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1127)))) (-2308 (*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1127)))) (-3736 (*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1127)))) (-3050 (*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1127)) (-5 *2 (-713)))) (-2182 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-619 *3)) (-4 *3 (-1127)))) (-3577 (*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1127)))))
+(-13 (-1065 |t#1|) (-10 -8 (-15 -1614 ($ (-1 (-108) |t#1|) $)) (-15 -3826 ($ (-1 (-108) |t#1|) $)) (-15 -3471 ((-108) $)) (-15 -1757 ((-108) $)) (-15 -3138 ((-108) $)) (-15 -1899 ($ $)) (-15 -2308 (|t#1| $)) (-15 -3736 ($ $)) (-15 -3050 ((-713) $)) (-15 -2182 ($ $ (-525))) (-15 -3577 ($ $))))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1065 |#1|) . T) ((-1127) . T) ((-1161 |#1|) . T))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2661 (($ (-713) (-713) (-713)) 35 (|has| |#1| (-977)))) (-3330 (((-108) $ (-713)) NIL)) (-2550 ((|#1| $ (-713) (-713) (-713) |#1|) 29)) (-2305 (($) NIL T CONST)) (-1240 (($ $ $) 39 (|has| |#1| (-977)))) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2801 (((-1173 (-713)) $) 11)) (-2175 (($ (-1091) $ $) 24)) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-3914 (($ (-713)) 37 (|has| |#1| (-977)))) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#1| $ (-713) (-713) (-713)) 27)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) NIL)) (-1279 (($ (-592 (-592 (-592 |#1|)))) 46)) (-1270 (($ (-892 (-892 (-892 |#1|)))) 17) (((-892 (-892 (-892 |#1|))) $) 14) (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-620 |#1|) (-13 (-464 |#1|) (-10 -8 (IF (|has| |#1| (-977)) (PROGN (-15 -2661 ($ (-713) (-713) (-713))) (-15 -3914 ($ (-713))) (-15 -1240 ($ $ $))) |%noBranch|) (-15 -1279 ($ (-592 (-592 (-592 |#1|))))) (-15 -3410 (|#1| $ (-713) (-713) (-713))) (-15 -2550 (|#1| $ (-713) (-713) (-713) |#1|)) (-15 -1270 ($ (-892 (-892 (-892 |#1|))))) (-15 -1270 ((-892 (-892 (-892 |#1|))) $)) (-15 -2175 ($ (-1091) $ $)) (-15 -2801 ((-1173 (-713)) $)))) (-1020)) (T -620))
+((-2661 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-977)) (-4 *3 (-1020)))) (-3914 (*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-977)) (-4 *3 (-1020)))) (-1240 (*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-977)) (-4 *2 (-1020)))) (-1279 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-592 *3)))) (-4 *3 (-1020)) (-5 *1 (-620 *3)))) (-3410 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1020)))) (-2550 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1020)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-892 (-892 (-892 *3)))) (-4 *3 (-1020)) (-5 *1 (-620 *3)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-892 (-892 (-892 *3)))) (-5 *1 (-620 *3)) (-4 *3 (-1020)))) (-2175 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-620 *3)) (-4 *3 (-1020)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-1173 (-713))) (-5 *1 (-620 *3)) (-4 *3 (-1020)))))
+(-13 (-464 |#1|) (-10 -8 (IF (|has| |#1| (-977)) (PROGN (-15 -2661 ($ (-713) (-713) (-713))) (-15 -3914 ($ (-713))) (-15 -1240 ($ $ $))) |%noBranch|) (-15 -1279 ($ (-592 (-592 (-592 |#1|))))) (-15 -3410 (|#1| $ (-713) (-713) (-713))) (-15 -2550 (|#1| $ (-713) (-713) (-713) |#1|)) (-15 -1270 ($ (-892 (-892 (-892 |#1|))))) (-15 -1270 ((-892 (-892 (-892 |#1|))) $)) (-15 -2175 ($ (-1091) $ $)) (-15 -2801 ((-1173 (-713)) $))))
+((-1260 (((-108) $ $) NIL)) (-4143 (((-592 |#1|) $) 14)) (-3602 (($ $) 18)) (-1875 (((-108) $) 19)) (-2591 (((-3 |#1| "failed") $) 22)) (-3898 ((|#1| $) 20)) (-3121 (($ $) 36)) (-2901 (($ $) 24)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-2166 (((-108) $ $) 42)) (-2023 (((-856) $) 38)) (-3593 (($ $) 17)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3110 ((|#1| $) 35)) (-1270 (((-798) $) 31) (($ |#1|) 23) (((-761 |#1|) $) 27)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 12)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 40)) (* (($ $ $) 34)))
+(((-621 |#1|) (-13 (-789) (-968 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1270 ((-761 |#1|) $)) (-15 -3110 (|#1| $)) (-15 -3593 ($ $)) (-15 -2023 ((-856) $)) (-15 -2166 ((-108) $ $)) (-15 -2901 ($ $)) (-15 -3121 ($ $)) (-15 -1875 ((-108) $)) (-15 -3602 ($ $)) (-15 -4143 ((-592 |#1|) $)))) (-789)) (T -621))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-3110 (*1 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-3593 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-2166 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-2901 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-3121 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789)))) (-3602 (*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789)))))
+(-13 (-789) (-968 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1270 ((-761 |#1|) $)) (-15 -3110 (|#1| $)) (-15 -3593 ($ $)) (-15 -2023 ((-856) $)) (-15 -2166 ((-108) $ $)) (-15 -2901 ($ $)) (-15 -3121 ($ $)) (-15 -1875 ((-108) $)) (-15 -3602 ($ $)) (-15 -4143 ((-592 |#1|) $))))
+((-3728 ((|#1| (-1 |#1| (-713) |#1|) (-713) |#1|) 11)) (-4227 ((|#1| (-1 |#1| |#1|) (-713) |#1|) 9)))
+(((-622 |#1|) (-10 -7 (-15 -4227 (|#1| (-1 |#1| |#1|) (-713) |#1|)) (-15 -3728 (|#1| (-1 |#1| (-713) |#1|) (-713) |#1|))) (-1020)) (T -622))
+((-3728 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-713) *2)) (-5 *4 (-713)) (-4 *2 (-1020)) (-5 *1 (-622 *2)))) (-4227 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-713)) (-4 *2 (-1020)) (-5 *1 (-622 *2)))))
+(-10 -7 (-15 -4227 (|#1| (-1 |#1| |#1|) (-713) |#1|)) (-15 -3728 (|#1| (-1 |#1| (-713) |#1|) (-713) |#1|)))
+((-3516 ((|#2| |#1| |#2|) 9)) (-3506 ((|#1| |#1| |#2|) 8)))
+(((-623 |#1| |#2|) (-10 -7 (-15 -3506 (|#1| |#1| |#2|)) (-15 -3516 (|#2| |#1| |#2|))) (-1020) (-1020)) (T -623))
+((-3516 (*1 *2 *3 *2) (-12 (-5 *1 (-623 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))) (-3506 (*1 *2 *2 *3) (-12 (-5 *1 (-623 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
+(-10 -7 (-15 -3506 (|#1| |#1| |#2|)) (-15 -3516 (|#2| |#1| |#2|)))
+((-2555 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-624 |#1| |#2| |#3|) (-10 -7 (-15 -2555 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1020) (-1020) (-1020)) (T -624))
+((-2555 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)) (-5 *1 (-624 *5 *6 *2)))))
+(-10 -7 (-15 -2555 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-3728 (((-1 |#1| (-713) |#1|) (-1 |#1| (-713) |#1|)) 23)) (-2102 (((-1 |#1|) |#1|) 8)) (-3450 ((|#1| |#1|) 16)) (-3943 (((-592 |#1|) (-1 (-592 |#1|) (-592 |#1|)) (-525)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-1270 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-713)) 20)))
+(((-625 |#1|) (-10 -7 (-15 -2102 ((-1 |#1|) |#1|)) (-15 -1270 ((-1 |#1|) |#1|)) (-15 -3943 (|#1| (-1 |#1| |#1|))) (-15 -3943 ((-592 |#1|) (-1 (-592 |#1|) (-592 |#1|)) (-525))) (-15 -3450 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-713))) (-15 -3728 ((-1 |#1| (-713) |#1|) (-1 |#1| (-713) |#1|)))) (-1020)) (T -625))
+((-3728 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-713) *3)) (-4 *3 (-1020)) (-5 *1 (-625 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *4 (-1020)) (-5 *1 (-625 *4)))) (-3450 (*1 *2 *2) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1020)))) (-3943 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-592 *5) (-592 *5))) (-5 *4 (-525)) (-4 *5 (-1020)) (-5 *2 (-592 *5)) (-5 *1 (-625 *5)))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-625 *2)) (-4 *2 (-1020)))) (-1270 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1020)))) (-2102 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1020)))))
+(-10 -7 (-15 -2102 ((-1 |#1|) |#1|)) (-15 -1270 ((-1 |#1|) |#1|)) (-15 -3943 (|#1| (-1 |#1| |#1|))) (-15 -3943 ((-592 |#1|) (-1 (-592 |#1|) (-592 |#1|)) (-525))) (-15 -3450 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-713))) (-15 -3728 ((-1 |#1| (-713) |#1|) (-1 |#1| (-713) |#1|))))
+((-1861 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3340 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-1479 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-1639 (((-1 |#2| |#1|) |#2|) 11)))
+(((-626 |#1| |#2|) (-10 -7 (-15 -1639 ((-1 |#2| |#1|) |#2|)) (-15 -3340 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1479 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1861 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1020) (-1020)) (T -626))
+((-1861 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1020)) (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)) (-4 *4 (-1020)))) (-3340 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-5 *2 (-1 *5)) (-5 *1 (-626 *4 *5)))) (-1639 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-626 *4 *3)) (-4 *4 (-1020)) (-4 *3 (-1020)))))
+(-10 -7 (-15 -1639 ((-1 |#2| |#1|) |#2|)) (-15 -3340 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -1479 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1861 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-3924 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2197 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-4088 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-4000 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2803 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-627 |#1| |#2| |#3|) (-10 -7 (-15 -2197 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4088 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4000 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2803 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3924 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1020) (-1020) (-1020)) (T -627))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-1 *7 *5)) (-5 *1 (-627 *5 *6 *7)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-627 *4 *5 *6)))) (-2803 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *4 (-1020)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1020)) (-4 *6 (-1020)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-1020)))) (-4088 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *4 *5 *6)))) (-2197 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1020)) (-4 *4 (-1020)) (-4 *6 (-1020)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *4 *6)))))
+(-10 -7 (-15 -2197 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4088 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -4000 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2803 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3924 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-3503 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2694 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-628 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2694 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2694 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3503 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-977) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|) (-977) (-351 |#5|) (-351 |#5|) (-630 |#5| |#6| |#7|)) (T -628))
+((-3503 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-977)) (-4 *2 (-977)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *8 (-351 *2)) (-4 *9 (-351 *2)) (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-630 *5 *6 *7)) (-4 *10 (-630 *2 *8 *9)))) (-2694 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-977)) (-4 *8 (-977)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *2 (-630 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-630 *5 *6 *7)) (-4 *9 (-351 *8)) (-4 *10 (-351 *8)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-977)) (-4 *8 (-977)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *2 (-630 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-630 *5 *6 *7)) (-4 *9 (-351 *8)) (-4 *10 (-351 *8)))))
+(-10 -7 (-15 -2694 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2694 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -3503 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-2708 (($ (-713) (-713)) 33)) (-3623 (($ $ $) 56)) (-3106 (($ |#3|) 52) (($ $) 53)) (-2079 (((-108) $) 28)) (-1335 (($ $ (-525) (-525)) 58)) (-1775 (($ $ (-525) (-525)) 59)) (-3250 (($ $ (-525) (-525) (-525) (-525)) 63)) (-2998 (($ $) 54)) (-2077 (((-108) $) 14)) (-1327 (($ $ (-525) (-525) $) 64)) (-1429 ((|#2| $ (-525) (-525) |#2|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) 62)) (-2975 (($ (-713) |#2|) 39)) (-1660 (($ (-592 (-592 |#2|))) 37)) (-2973 (((-592 (-592 |#2|)) $) 57)) (-3652 (($ $ $) 55)) (-1680 (((-3 $ "failed") $ |#2|) 91)) (-3410 ((|#2| $ (-525) (-525)) NIL) ((|#2| $ (-525) (-525) |#2|) NIL) (($ $ (-592 (-525)) (-592 (-525))) 61)) (-3675 (($ (-592 |#2|)) 40) (($ (-592 $)) 42)) (-2559 (((-108) $) 24)) (-1270 (($ |#4|) 47) (((-798) $) NIL)) (-1366 (((-108) $) 30)) (-4100 (($ $ |#2|) 93)) (-4090 (($ $ $) 68) (($ $) 71)) (-4080 (($ $ $) 66)) (** (($ $ (-713)) 80) (($ $ (-525)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-525) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
+(((-629 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1270 ((-798) |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -4100 (|#1| |#1| |#2|)) (-15 -1680 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-713))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -1327 (|#1| |#1| (-525) (-525) |#1|)) (-15 -3250 (|#1| |#1| (-525) (-525) (-525) (-525))) (-15 -1775 (|#1| |#1| (-525) (-525))) (-15 -1335 (|#1| |#1| (-525) (-525))) (-15 -1429 (|#1| |#1| (-592 (-525)) (-592 (-525)) |#1|)) (-15 -3410 (|#1| |#1| (-592 (-525)) (-592 (-525)))) (-15 -2973 ((-592 (-592 |#2|)) |#1|)) (-15 -3623 (|#1| |#1| |#1|)) (-15 -3652 (|#1| |#1| |#1|)) (-15 -2998 (|#1| |#1|)) (-15 -3106 (|#1| |#1|)) (-15 -3106 (|#1| |#3|)) (-15 -1270 (|#1| |#4|)) (-15 -3675 (|#1| (-592 |#1|))) (-15 -3675 (|#1| (-592 |#2|))) (-15 -2975 (|#1| (-713) |#2|)) (-15 -1660 (|#1| (-592 (-592 |#2|)))) (-15 -2708 (|#1| (-713) (-713))) (-15 -1366 ((-108) |#1|)) (-15 -2079 ((-108) |#1|)) (-15 -2559 ((-108) |#1|)) (-15 -2077 ((-108) |#1|)) (-15 -1429 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3410 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3410 (|#2| |#1| (-525) (-525)))) (-630 |#2| |#3| |#4|) (-977) (-351 |#2|) (-351 |#2|)) (T -629))
+NIL
+(-10 -8 (-15 -1270 ((-798) |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -4100 (|#1| |#1| |#2|)) (-15 -1680 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-713))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -1327 (|#1| |#1| (-525) (-525) |#1|)) (-15 -3250 (|#1| |#1| (-525) (-525) (-525) (-525))) (-15 -1775 (|#1| |#1| (-525) (-525))) (-15 -1335 (|#1| |#1| (-525) (-525))) (-15 -1429 (|#1| |#1| (-592 (-525)) (-592 (-525)) |#1|)) (-15 -3410 (|#1| |#1| (-592 (-525)) (-592 (-525)))) (-15 -2973 ((-592 (-592 |#2|)) |#1|)) (-15 -3623 (|#1| |#1| |#1|)) (-15 -3652 (|#1| |#1| |#1|)) (-15 -2998 (|#1| |#1|)) (-15 -3106 (|#1| |#1|)) (-15 -3106 (|#1| |#3|)) (-15 -1270 (|#1| |#4|)) (-15 -3675 (|#1| (-592 |#1|))) (-15 -3675 (|#1| (-592 |#2|))) (-15 -2975 (|#1| (-713) |#2|)) (-15 -1660 (|#1| (-592 (-592 |#2|)))) (-15 -2708 (|#1| (-713) (-713))) (-15 -1366 ((-108) |#1|)) (-15 -2079 ((-108) |#1|)) (-15 -2559 ((-108) |#1|)) (-15 -2077 ((-108) |#1|)) (-15 -1429 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3410 (|#2| |#1| (-525) (-525) |#2|)) (-15 -3410 (|#2| |#1| (-525) (-525))))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2708 (($ (-713) (-713)) 97)) (-3623 (($ $ $) 87)) (-3106 (($ |#2|) 91) (($ $) 90)) (-2079 (((-108) $) 99)) (-1335 (($ $ (-525) (-525)) 83)) (-1775 (($ $ (-525) (-525)) 82)) (-3250 (($ $ (-525) (-525) (-525) (-525)) 81)) (-2998 (($ $) 89)) (-2077 (((-108) $) 101)) (-3330 (((-108) $ (-713)) 8)) (-1327 (($ $ (-525) (-525) $) 80)) (-1429 ((|#1| $ (-525) (-525) |#1|) 44) (($ $ (-592 (-525)) (-592 (-525)) $) 84)) (-3758 (($ $ (-525) |#2|) 42)) (-2185 (($ $ (-525) |#3|) 41)) (-2975 (($ (-713) |#1|) 95)) (-2305 (($) 7 T CONST)) (-1333 (($ $) 67 (|has| |#1| (-286)))) (-1616 ((|#2| $ (-525)) 46)) (-3318 (((-713) $) 66 (|has| |#1| (-517)))) (-2632 ((|#1| $ (-525) (-525) |#1|) 43)) (-2570 ((|#1| $ (-525) (-525)) 48)) (-3702 (((-592 |#1|) $) 30)) (-1841 (((-713) $) 65 (|has| |#1| (-517)))) (-1615 (((-592 |#3|) $) 64 (|has| |#1| (-517)))) (-1857 (((-713) $) 51)) (-3489 (($ (-713) (-713) |#1|) 57)) (-1869 (((-713) $) 50)) (-2482 (((-108) $ (-713)) 9)) (-1641 ((|#1| $) 62 (|has| |#1| (-6 (-4257 "*"))))) (-1964 (((-525) $) 55)) (-3779 (((-525) $) 53)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1987 (((-525) $) 54)) (-3948 (((-525) $) 52)) (-1660 (($ (-592 (-592 |#1|))) 96)) (-2622 (($ (-1 |#1| |#1|) $) 34)) (-2694 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2973 (((-592 (-592 |#1|)) $) 86)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-2933 (((-3 $ "failed") $) 61 (|has| |#1| (-341)))) (-3652 (($ $ $) 88)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-2042 (($ $ |#1|) 56)) (-1680 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-517)))) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#1| $ (-525) (-525)) 49) ((|#1| $ (-525) (-525) |#1|) 47) (($ $ (-592 (-525)) (-592 (-525))) 85)) (-3675 (($ (-592 |#1|)) 94) (($ (-592 $)) 93)) (-2559 (((-108) $) 100)) (-3176 ((|#1| $) 63 (|has| |#1| (-6 (-4257 "*"))))) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-3701 ((|#3| $ (-525)) 45)) (-1270 (($ |#3|) 92) (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-1366 (((-108) $) 98)) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-4100 (($ $ |#1|) 68 (|has| |#1| (-341)))) (-4090 (($ $ $) 78) (($ $) 77)) (-4080 (($ $ $) 79)) (** (($ $ (-713)) 70) (($ $ (-525)) 60 (|has| |#1| (-341)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-525) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-630 |#1| |#2| |#3|) (-131) (-977) (-351 |t#1|) (-351 |t#1|)) (T -630))
+((-2077 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-2559 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-2079 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-1366 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-108)))) (-2708 (*1 *1 *2 *2) (-12 (-5 *2 (-713)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1660 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-2975 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3675 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3675 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1270 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *2)) (-4 *4 (-351 *3)) (-4 *2 (-351 *3)))) (-3106 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *1 (-630 *3 *2 *4)) (-4 *2 (-351 *3)) (-4 *4 (-351 *3)))) (-3106 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-2998 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-3652 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-3623 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-2973 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-592 (-592 *3))))) (-3410 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1429 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1335 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1775 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-3250 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1327 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-4080 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-4090 (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (-4090 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-630 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *2 (-351 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-630 *3 *2 *4)) (-4 *3 (-977)) (-4 *2 (-351 *3)) (-4 *4 (-351 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))) (-1680 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-517)))) (-4100 (*1 *1 *1 *2) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341)))) (-1333 (*1 *1 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-286)))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713)))) (-1841 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713)))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-592 *5)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (|has| *2 (-6 (-4257 "*"))) (-4 *2 (-977)))) (-1641 (*1 *2 *1) (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (|has| *2 (-6 (-4257 "*"))) (-4 *2 (-977)))) (-2933 (*1 *1 *1) (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-341)))))
+(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4256) (-6 -4255) (-15 -2077 ((-108) $)) (-15 -2559 ((-108) $)) (-15 -2079 ((-108) $)) (-15 -1366 ((-108) $)) (-15 -2708 ($ (-713) (-713))) (-15 -1660 ($ (-592 (-592 |t#1|)))) (-15 -2975 ($ (-713) |t#1|)) (-15 -3675 ($ (-592 |t#1|))) (-15 -3675 ($ (-592 $))) (-15 -1270 ($ |t#3|)) (-15 -3106 ($ |t#2|)) (-15 -3106 ($ $)) (-15 -2998 ($ $)) (-15 -3652 ($ $ $)) (-15 -3623 ($ $ $)) (-15 -2973 ((-592 (-592 |t#1|)) $)) (-15 -3410 ($ $ (-592 (-525)) (-592 (-525)))) (-15 -1429 ($ $ (-592 (-525)) (-592 (-525)) $)) (-15 -1335 ($ $ (-525) (-525))) (-15 -1775 ($ $ (-525) (-525))) (-15 -3250 ($ $ (-525) (-525) (-525) (-525))) (-15 -1327 ($ $ (-525) (-525) $)) (-15 -4080 ($ $ $)) (-15 -4090 ($ $ $)) (-15 -4090 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-525) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-713))) (IF (|has| |t#1| (-517)) (-15 -1680 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-341)) (-15 -4100 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-286)) (-15 -1333 ($ $)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -3318 ((-713) $)) (-15 -1841 ((-713) $)) (-15 -1615 ((-592 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4257 "*"))) (PROGN (-15 -3176 (|t#1| $)) (-15 -1641 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-15 -2933 ((-3 $ "failed") $)) (-15 ** ($ $ (-525)))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-55 |#1| |#2| |#3|) . T) ((-1127) . T))
+((-1333 ((|#4| |#4|) 72 (|has| |#1| (-286)))) (-3318 (((-713) |#4|) 99 (|has| |#1| (-517)))) (-1841 (((-713) |#4|) 76 (|has| |#1| (-517)))) (-1615 (((-592 |#3|) |#4|) 83 (|has| |#1| (-517)))) (-1688 (((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|) 111 (|has| |#1| (-286)))) (-1641 ((|#1| |#4|) 35)) (-2329 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-517)))) (-2933 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-341)))) (-1941 ((|#4| |#4|) 68 (|has| |#1| (-517)))) (-1326 ((|#4| |#4| |#1| (-525) (-525)) 43)) (-4111 ((|#4| |#4| (-525) (-525)) 38)) (-2865 ((|#4| |#4| |#1| (-525) (-525)) 48)) (-3176 ((|#1| |#4|) 78)) (-1244 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-517)))))
+(((-631 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3176 (|#1| |#4|)) (-15 -1641 (|#1| |#4|)) (-15 -4111 (|#4| |#4| (-525) (-525))) (-15 -1326 (|#4| |#4| |#1| (-525) (-525))) (-15 -2865 (|#4| |#4| |#1| (-525) (-525))) (IF (|has| |#1| (-517)) (PROGN (-15 -3318 ((-713) |#4|)) (-15 -1841 ((-713) |#4|)) (-15 -1615 ((-592 |#3|) |#4|)) (-15 -1941 (|#4| |#4|)) (-15 -2329 ((-3 |#4| "failed") |#4|)) (-15 -1244 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-286)) (PROGN (-15 -1333 (|#4| |#4|)) (-15 -1688 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -2933 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-160) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -631))
+((-2933 (*1 *2 *2) (|partial| -12 (-4 *3 (-341)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-1688 (*1 *2 *3 *3) (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3))) (-5 *1 (-631 *3 *4 *5 *6)) (-4 *6 (-630 *3 *4 *5)))) (-1333 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-1244 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-2329 (*1 *2 *2) (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-1941 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-1615 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-1841 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3318 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-2865 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3)) (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-630 *3 *5 *6)))) (-1326 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3)) (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2)) (-4 *2 (-630 *3 *5 *6)))) (-4111 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-525)) (-4 *4 (-160)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *1 (-631 *4 *5 *6 *2)) (-4 *2 (-630 *4 *5 *6)))) (-1641 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160)) (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5)))) (-3176 (*1 *2 *3) (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160)) (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5)))))
+(-10 -7 (-15 -3176 (|#1| |#4|)) (-15 -1641 (|#1| |#4|)) (-15 -4111 (|#4| |#4| (-525) (-525))) (-15 -1326 (|#4| |#4| |#1| (-525) (-525))) (-15 -2865 (|#4| |#4| |#1| (-525) (-525))) (IF (|has| |#1| (-517)) (PROGN (-15 -3318 ((-713) |#4|)) (-15 -1841 ((-713) |#4|)) (-15 -1615 ((-592 |#3|) |#4|)) (-15 -1941 (|#4| |#4|)) (-15 -2329 ((-3 |#4| "failed") |#4|)) (-15 -1244 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-286)) (PROGN (-15 -1333 (|#4| |#4|)) (-15 -1688 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -2933 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2708 (($ (-713) (-713)) 47)) (-3623 (($ $ $) NIL)) (-3106 (($ (-1173 |#1|)) NIL) (($ $) NIL)) (-2079 (((-108) $) NIL)) (-1335 (($ $ (-525) (-525)) 12)) (-1775 (($ $ (-525) (-525)) NIL)) (-3250 (($ $ (-525) (-525) (-525) (-525)) NIL)) (-2998 (($ $) NIL)) (-2077 (((-108) $) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-1327 (($ $ (-525) (-525) $) NIL)) (-1429 ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525)) $) NIL)) (-3758 (($ $ (-525) (-1173 |#1|)) NIL)) (-2185 (($ $ (-525) (-1173 |#1|)) NIL)) (-2975 (($ (-713) |#1|) 22)) (-2305 (($) NIL T CONST)) (-1333 (($ $) 31 (|has| |#1| (-286)))) (-1616 (((-1173 |#1|) $ (-525)) NIL)) (-3318 (((-713) $) 33 (|has| |#1| (-517)))) (-2632 ((|#1| $ (-525) (-525) |#1|) 51)) (-2570 ((|#1| $ (-525) (-525)) NIL)) (-3702 (((-592 |#1|) $) NIL)) (-1841 (((-713) $) 35 (|has| |#1| (-517)))) (-1615 (((-592 (-1173 |#1|)) $) 38 (|has| |#1| (-517)))) (-1857 (((-713) $) 20)) (-3489 (($ (-713) (-713) |#1|) 16)) (-1869 (((-713) $) 21)) (-2482 (((-108) $ (-713)) NIL)) (-1641 ((|#1| $) 29 (|has| |#1| (-6 (-4257 "*"))))) (-1964 (((-525) $) 9)) (-3779 (((-525) $) 10)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1987 (((-525) $) 11)) (-3948 (((-525) $) 48)) (-1660 (($ (-592 (-592 |#1|))) NIL)) (-2622 (($ (-1 |#1| |#1|) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2973 (((-592 (-592 |#1|)) $) 60)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2933 (((-3 $ "failed") $) 45 (|has| |#1| (-341)))) (-3652 (($ $ $) NIL)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-2042 (($ $ |#1|) NIL)) (-1680 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#1| $ (-525) (-525)) NIL) ((|#1| $ (-525) (-525) |#1|) NIL) (($ $ (-592 (-525)) (-592 (-525))) NIL)) (-3675 (($ (-592 |#1|)) NIL) (($ (-592 $)) NIL) (($ (-1173 |#1|)) 52)) (-2559 (((-108) $) NIL)) (-3176 ((|#1| $) 27 (|has| |#1| (-6 (-4257 "*"))))) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) NIL)) (-2749 (((-501) $) 64 (|has| |#1| (-567 (-501))))) (-3701 (((-1173 |#1|) $ (-525)) NIL)) (-1270 (($ (-1173 |#1|)) NIL) (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-1366 (((-108) $) NIL)) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4090 (($ $ $) NIL) (($ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-713)) 23) (($ $ (-525)) 46 (|has| |#1| (-341)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-525) $) NIL) (((-1173 |#1|) $ (-1173 |#1|)) NIL) (((-1173 |#1|) (-1173 |#1|) $) NIL)) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-632 |#1|) (-13 (-630 |#1| (-1173 |#1|) (-1173 |#1|)) (-10 -8 (-15 -3675 ($ (-1173 |#1|))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -2933 ((-3 $ "failed") $)) |%noBranch|))) (-977)) (T -632))
+((-2933 (*1 *1 *1) (|partial| -12 (-5 *1 (-632 *2)) (-4 *2 (-341)) (-4 *2 (-977)))) (-3675 (*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-977)) (-5 *1 (-632 *3)))))
+(-13 (-630 |#1| (-1173 |#1|) (-1173 |#1|)) (-10 -8 (-15 -3675 ($ (-1173 |#1|))) (IF (|has| |#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |#1| (-341)) (-15 -2933 ((-3 $ "failed") $)) |%noBranch|)))
+((-1946 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 25)) (-3945 (((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|) 21)) (-2444 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-713)) 26)) (-3235 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 14)) (-4107 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|)) 18) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 16)) (-3962 (((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|)) 20)) (-3783 (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 12)) (** (((-632 |#1|) (-632 |#1|) (-713)) 30)))
+(((-633 |#1|) (-10 -7 (-15 -3783 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3235 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -4107 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -4107 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3962 ((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|))) (-15 -3945 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -1946 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2444 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-713))) (-15 ** ((-632 |#1|) (-632 |#1|) (-713)))) (-977)) (T -633))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-977)) (-5 *1 (-633 *4)))) (-2444 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-977)) (-5 *1 (-633 *4)))) (-1946 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-3945 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-3962 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-4107 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-4107 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-3235 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))) (-3783 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
+(-10 -7 (-15 -3783 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3235 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -4107 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -4107 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3962 ((-632 |#1|) (-632 |#1|) |#1| (-632 |#1|))) (-15 -3945 ((-632 |#1|) (-632 |#1|) (-632 |#1|) |#1|)) (-15 -1946 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -2444 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-632 |#1|) (-713))) (-15 ** ((-632 |#1|) (-632 |#1|) (-713))))
+((-2358 ((|#2| |#2| |#4|) 25)) (-1459 (((-632 |#2|) |#3| |#4|) 31)) (-2091 (((-632 |#2|) |#2| |#4|) 30)) (-2188 (((-1173 |#2|) |#2| |#4|) 16)) (-3521 ((|#2| |#3| |#4|) 24)) (-2888 (((-632 |#2|) |#3| |#4| (-713) (-713)) 38)) (-1473 (((-632 |#2|) |#2| |#4| (-713)) 37)))
+(((-634 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2188 ((-1173 |#2|) |#2| |#4|)) (-15 -3521 (|#2| |#3| |#4|)) (-15 -2358 (|#2| |#2| |#4|)) (-15 -2091 ((-632 |#2|) |#2| |#4|)) (-15 -1473 ((-632 |#2|) |#2| |#4| (-713))) (-15 -1459 ((-632 |#2|) |#3| |#4|)) (-15 -2888 ((-632 |#2|) |#3| |#4| (-713) (-713)))) (-1020) (-835 |#1|) (-351 |#2|) (-13 (-351 |#1|) (-10 -7 (-6 -4255)))) (T -634))
+((-2888 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-713)) (-4 *6 (-1020)) (-4 *7 (-835 *6)) (-5 *2 (-632 *7)) (-5 *1 (-634 *6 *7 *3 *4)) (-4 *3 (-351 *7)) (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4255)))))) (-1459 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-4 *6 (-835 *5)) (-5 *2 (-632 *6)) (-5 *1 (-634 *5 *6 *3 *4)) (-4 *3 (-351 *6)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))))) (-1473 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-1020)) (-4 *3 (-835 *6)) (-5 *2 (-632 *3)) (-5 *1 (-634 *6 *3 *7 *4)) (-4 *7 (-351 *3)) (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4255)))))) (-2091 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-4 *3 (-835 *5)) (-5 *2 (-632 *3)) (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))))) (-2358 (*1 *2 *2 *3) (-12 (-4 *4 (-1020)) (-4 *2 (-835 *4)) (-5 *1 (-634 *4 *2 *5 *3)) (-4 *5 (-351 *2)) (-4 *3 (-13 (-351 *4) (-10 -7 (-6 -4255)))))) (-3521 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-4 *2 (-835 *5)) (-5 *1 (-634 *5 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))))) (-2188 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-4 *3 (-835 *5)) (-5 *2 (-1173 *3)) (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))))))
+(-10 -7 (-15 -2188 ((-1173 |#2|) |#2| |#4|)) (-15 -3521 (|#2| |#3| |#4|)) (-15 -2358 (|#2| |#2| |#4|)) (-15 -2091 ((-632 |#2|) |#2| |#4|)) (-15 -1473 ((-632 |#2|) |#2| |#4| (-713))) (-15 -1459 ((-632 |#2|) |#3| |#4|)) (-15 -2888 ((-632 |#2|) |#3| |#4| (-713) (-713))))
+((-3722 (((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|)) 20)) (-2987 ((|#1| (-632 |#2|)) 9)) (-3384 (((-632 |#1|) (-632 |#2|)) 18)))
+(((-635 |#1| |#2|) (-10 -7 (-15 -2987 (|#1| (-632 |#2|))) (-15 -3384 ((-632 |#1|) (-632 |#2|))) (-15 -3722 ((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|)))) (-517) (-925 |#1|)) (T -635))
+((-3722 (*1 *2 *3) (-12 (-5 *3 (-632 *5)) (-4 *5 (-925 *4)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |num| (-632 *4)) (|:| |den| *4))) (-5 *1 (-635 *4 *5)))) (-3384 (*1 *2 *3) (-12 (-5 *3 (-632 *5)) (-4 *5 (-925 *4)) (-4 *4 (-517)) (-5 *2 (-632 *4)) (-5 *1 (-635 *4 *5)))) (-2987 (*1 *2 *3) (-12 (-5 *3 (-632 *4)) (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-635 *2 *4)))))
+(-10 -7 (-15 -2987 (|#1| (-632 |#2|))) (-15 -3384 ((-632 |#1|) (-632 |#2|))) (-15 -3722 ((-2 (|:| |num| (-632 |#1|)) (|:| |den| |#1|)) (-632 |#2|))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1264 (((-632 (-641))) NIL) (((-632 (-641)) (-1173 $)) NIL)) (-3029 (((-641) $) NIL)) (-2351 (($ $) NIL (|has| (-641) (-1113)))) (-1603 (($ $) NIL (|has| (-641) (-1113)))) (-1670 (((-1101 (-856) (-713)) (-525)) NIL (|has| (-641) (-327)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-844))))) (-3706 (($ $) NIL (-3279 (-12 (|has| (-641) (-286)) (|has| (-641) (-844))) (|has| (-641) (-341))))) (-2100 (((-396 $) $) NIL (-3279 (-12 (|has| (-641) (-286)) (|has| (-641) (-844))) (|has| (-641) (-341))))) (-2211 (($ $) NIL (-12 (|has| (-641) (-934)) (|has| (-641) (-1113))))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-844))))) (-3197 (((-108) $ $) NIL (|has| (-641) (-286)))) (-4190 (((-713)) NIL (|has| (-641) (-346)))) (-2320 (($ $) NIL (|has| (-641) (-1113)))) (-1569 (($ $) NIL (|has| (-641) (-1113)))) (-2382 (($ $) NIL (|has| (-641) (-1113)))) (-2193 (($ $) NIL (|has| (-641) (-1113)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL) (((-3 (-641) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-641) (-968 (-385 (-525)))))) (-3898 (((-525) $) NIL) (((-641) $) NIL) (((-385 (-525)) $) NIL (|has| (-641) (-968 (-385 (-525)))))) (-3612 (($ (-1173 (-641))) NIL) (($ (-1173 (-641)) (-1173 $)) NIL)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-641) (-327)))) (-1726 (($ $ $) NIL (|has| (-641) (-286)))) (-2312 (((-632 (-641)) $) NIL) (((-632 (-641)) $ (-1173 $)) NIL)) (-3416 (((-632 (-641)) (-632 $)) NIL) (((-2 (|:| -1484 (-632 (-641))) (|:| |vec| (-1173 (-641)))) (-632 $) (-1173 $)) NIL) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| (-641) (-588 (-525)))) (((-632 (-525)) (-632 $)) NIL (|has| (-641) (-588 (-525))))) (-3503 (((-3 $ "failed") (-385 (-1087 (-641)))) NIL (|has| (-641) (-341))) (($ (-1087 (-641))) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2227 (((-641) $) 29)) (-2251 (((-3 (-385 (-525)) "failed") $) NIL (|has| (-641) (-510)))) (-2265 (((-108) $) NIL (|has| (-641) (-510)))) (-2178 (((-385 (-525)) $) NIL (|has| (-641) (-510)))) (-3318 (((-856)) NIL)) (-2899 (($) NIL (|has| (-641) (-346)))) (-1704 (($ $ $) NIL (|has| (-641) (-286)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| (-641) (-286)))) (-3977 (($) NIL (|has| (-641) (-327)))) (-3564 (((-108) $) NIL (|has| (-641) (-327)))) (-2327 (($ $) NIL (|has| (-641) (-327))) (($ $ (-713)) NIL (|has| (-641) (-327)))) (-3836 (((-108) $) NIL (-3279 (-12 (|has| (-641) (-286)) (|has| (-641) (-844))) (|has| (-641) (-341))))) (-3709 (((-2 (|:| |r| (-641)) (|:| |phi| (-641))) $) NIL (-12 (|has| (-641) (-986)) (|has| (-641) (-1113))))) (-1535 (($) NIL (|has| (-641) (-1113)))) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-641) (-821 (-357)))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-641) (-821 (-525))))) (-3973 (((-775 (-856)) $) NIL (|has| (-641) (-327))) (((-856) $) NIL (|has| (-641) (-327)))) (-1985 (((-108) $) NIL)) (-3220 (($ $ (-525)) NIL (-12 (|has| (-641) (-934)) (|has| (-641) (-1113))))) (-2900 (((-641) $) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| (-641) (-327)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-641) (-286)))) (-2640 (((-1087 (-641)) $) NIL (|has| (-641) (-341)))) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-2694 (($ (-1 (-641) (-641)) $) NIL)) (-1736 (((-856) $) NIL (|has| (-641) (-346)))) (-1415 (($ $) NIL (|has| (-641) (-1113)))) (-3492 (((-1087 (-641)) $) NIL)) (-2756 (($ (-592 $)) NIL (|has| (-641) (-286))) (($ $ $) NIL (|has| (-641) (-286)))) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL (|has| (-641) (-341)))) (-3940 (($) NIL (|has| (-641) (-327)) CONST)) (-3640 (($ (-856)) NIL (|has| (-641) (-346)))) (-3237 (($) NIL)) (-2243 (((-641) $) 31)) (-2012 (((-1038) $) NIL)) (-3523 (($) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| (-641) (-286)))) (-2794 (($ (-592 $)) NIL (|has| (-641) (-286))) (($ $ $) NIL (|has| (-641) (-286)))) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) NIL (|has| (-641) (-327)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-844))))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-641) (-286)) (|has| (-641) (-844))))) (-2195 (((-396 $) $) NIL (-3279 (-12 (|has| (-641) (-286)) (|has| (-641) (-844))) (|has| (-641) (-341))))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-641) (-286))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| (-641) (-286)))) (-1680 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-641)) NIL (|has| (-641) (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-641) (-286)))) (-1250 (($ $) NIL (|has| (-641) (-1113)))) (-2602 (($ $ (-1091) (-641)) NIL (|has| (-641) (-486 (-1091) (-641)))) (($ $ (-592 (-1091)) (-592 (-641))) NIL (|has| (-641) (-486 (-1091) (-641)))) (($ $ (-592 (-273 (-641)))) NIL (|has| (-641) (-288 (-641)))) (($ $ (-273 (-641))) NIL (|has| (-641) (-288 (-641)))) (($ $ (-641) (-641)) NIL (|has| (-641) (-288 (-641)))) (($ $ (-592 (-641)) (-592 (-641))) NIL (|has| (-641) (-288 (-641))))) (-1290 (((-713) $) NIL (|has| (-641) (-286)))) (-3410 (($ $ (-641)) NIL (|has| (-641) (-265 (-641) (-641))))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| (-641) (-286)))) (-2094 (((-641)) NIL) (((-641) (-1173 $)) NIL)) (-2181 (((-3 (-713) "failed") $ $) NIL (|has| (-641) (-327))) (((-713) $) NIL (|has| (-641) (-327)))) (-2523 (($ $ (-1 (-641) (-641))) NIL) (($ $ (-1 (-641) (-641)) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| (-641) (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| (-641) (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| (-641) (-835 (-1091)))) (($ $ (-1091)) NIL (|has| (-641) (-835 (-1091)))) (($ $ (-713)) NIL (|has| (-641) (-213))) (($ $) NIL (|has| (-641) (-213)))) (-2361 (((-632 (-641)) (-1173 $) (-1 (-641) (-641))) NIL (|has| (-641) (-341)))) (-1571 (((-1087 (-641))) NIL)) (-2396 (($ $) NIL (|has| (-641) (-1113)))) (-2209 (($ $) NIL (|has| (-641) (-1113)))) (-2726 (($) NIL (|has| (-641) (-327)))) (-2367 (($ $) NIL (|has| (-641) (-1113)))) (-2176 (($ $) NIL (|has| (-641) (-1113)))) (-2335 (($ $) NIL (|has| (-641) (-1113)))) (-1584 (($ $) NIL (|has| (-641) (-1113)))) (-3464 (((-632 (-641)) (-1173 $)) NIL) (((-1173 (-641)) $) NIL) (((-632 (-641)) (-1173 $) (-1173 $)) NIL) (((-1173 (-641)) $ (-1173 $)) NIL)) (-2749 (((-501) $) NIL (|has| (-641) (-567 (-501)))) (((-157 (-205)) $) NIL (|has| (-641) (-953))) (((-157 (-357)) $) NIL (|has| (-641) (-953))) (((-827 (-357)) $) NIL (|has| (-641) (-567 (-827 (-357))))) (((-827 (-525)) $) NIL (|has| (-641) (-567 (-827 (-525))))) (($ (-1087 (-641))) NIL) (((-1087 (-641)) $) NIL) (($ (-1173 (-641))) NIL) (((-1173 (-641)) $) NIL)) (-3700 (($ $) NIL)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-3279 (-12 (|has| (-641) (-286)) (|has| $ (-136)) (|has| (-641) (-844))) (|has| (-641) (-327))))) (-1377 (($ (-641) (-641)) 12)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-525)) NIL) (($ (-641)) NIL) (($ (-157 (-357))) 13) (($ (-157 (-525))) 19) (($ (-157 (-641))) 28) (($ (-157 (-643))) 25) (((-157 (-357)) $) 33) (($ (-385 (-525))) NIL (-3279 (|has| (-641) (-968 (-385 (-525)))) (|has| (-641) (-341))))) (-3425 (($ $) NIL (|has| (-641) (-327))) (((-3 $ "failed") $) NIL (-3279 (-12 (|has| (-641) (-286)) (|has| $ (-136)) (|has| (-641) (-844))) (|has| (-641) (-136))))) (-1805 (((-1087 (-641)) $) NIL)) (-2104 (((-713)) NIL)) (-1449 (((-1173 $)) NIL)) (-2438 (($ $) NIL (|has| (-641) (-1113)))) (-2257 (($ $) NIL (|has| (-641) (-1113)))) (-3959 (((-108) $ $) NIL)) (-2410 (($ $) NIL (|has| (-641) (-1113)))) (-2226 (($ $) NIL (|has| (-641) (-1113)))) (-2464 (($ $) NIL (|has| (-641) (-1113)))) (-2287 (($ $) NIL (|has| (-641) (-1113)))) (-3538 (((-641) $) NIL (|has| (-641) (-1113)))) (-2687 (($ $) NIL (|has| (-641) (-1113)))) (-2303 (($ $) NIL (|has| (-641) (-1113)))) (-2450 (($ $) NIL (|has| (-641) (-1113)))) (-2273 (($ $) NIL (|has| (-641) (-1113)))) (-2424 (($ $) NIL (|has| (-641) (-1113)))) (-2242 (($ $) NIL (|has| (-641) (-1113)))) (-2086 (($ $) NIL (|has| (-641) (-986)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-641) (-341)))) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $ (-1 (-641) (-641))) NIL) (($ $ (-1 (-641) (-641)) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| (-641) (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| (-641) (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| (-641) (-835 (-1091)))) (($ $ (-1091)) NIL (|has| (-641) (-835 (-1091)))) (($ $ (-713)) NIL (|has| (-641) (-213))) (($ $) NIL (|has| (-641) (-213)))) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) NIL)) (-4100 (($ $ $) NIL (|has| (-641) (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ $) NIL (|has| (-641) (-1113))) (($ $ (-385 (-525))) NIL (-12 (|has| (-641) (-934)) (|has| (-641) (-1113)))) (($ $ (-525)) NIL (|has| (-641) (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ (-641) $) NIL) (($ $ (-641)) NIL) (($ (-385 (-525)) $) NIL (|has| (-641) (-341))) (($ $ (-385 (-525))) NIL (|has| (-641) (-341)))))
+(((-636) (-13 (-365) (-154 (-641)) (-10 -8 (-15 -1270 ($ (-157 (-357)))) (-15 -1270 ($ (-157 (-525)))) (-15 -1270 ($ (-157 (-641)))) (-15 -1270 ($ (-157 (-643)))) (-15 -1270 ((-157 (-357)) $))))) (T -636))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-636)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-157 (-525))) (-5 *1 (-636)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-157 (-641))) (-5 *1 (-636)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-157 (-643))) (-5 *1 (-636)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-636)))))
+(-13 (-365) (-154 (-641)) (-10 -8 (-15 -1270 ($ (-157 (-357)))) (-15 -1270 ($ (-157 (-525)))) (-15 -1270 ($ (-157 (-641)))) (-15 -1270 ($ (-157 (-643)))) (-15 -1270 ((-157 (-357)) $))))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3330 (((-108) $ (-713)) 8)) (-1608 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4255)))) (-2305 (($) 7 T CONST)) (-1540 (($ $) 62)) (-3137 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2592 (($ |#1| $) 47 (|has| $ (-6 -4255))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4255)))) (-1614 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4255)))) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) 9)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-3955 ((|#1| $) 39)) (-3985 (($ |#1| $) 40) (($ |#1| $ (-713)) 63)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-1881 ((|#1| $) 41)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-2386 (((-592 (-2 (|:| -2544 |#1|) (|:| -2040 (-713)))) $) 61)) (-3981 (($) 49) (($ (-592 |#1|)) 48)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-2749 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 50)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-1665 (($ (-592 |#1|)) 42)) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-637 |#1|) (-131) (-1020)) (T -637))
+((-3985 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-637 *2)) (-4 *2 (-1020)))) (-1540 (*1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1020)))) (-2386 (*1 *2 *1) (-12 (-4 *1 (-637 *3)) (-4 *3 (-1020)) (-5 *2 (-592 (-2 (|:| -2544 *3) (|:| -2040 (-713))))))))
+(-13 (-215 |t#1|) (-10 -8 (-15 -3985 ($ |t#1| $ (-713))) (-15 -1540 ($ $)) (-15 -2386 ((-592 (-2 (|:| -2544 |t#1|) (|:| -2040 (-713)))) $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1127) . T))
+((-2173 (((-592 |#1|) (-592 (-2 (|:| -2195 |#1|) (|:| -1587 (-525)))) (-525)) 47)) (-3245 ((|#1| |#1| (-525)) 46)) (-2794 ((|#1| |#1| |#1| (-525)) 36)) (-2195 (((-592 |#1|) |#1| (-525)) 39)) (-3222 ((|#1| |#1| (-525) |#1| (-525)) 32)) (-3397 (((-592 (-2 (|:| -2195 |#1|) (|:| -1587 (-525)))) |#1| (-525)) 45)))
+(((-638 |#1|) (-10 -7 (-15 -2794 (|#1| |#1| |#1| (-525))) (-15 -3245 (|#1| |#1| (-525))) (-15 -2195 ((-592 |#1|) |#1| (-525))) (-15 -3397 ((-592 (-2 (|:| -2195 |#1|) (|:| -1587 (-525)))) |#1| (-525))) (-15 -2173 ((-592 |#1|) (-592 (-2 (|:| -2195 |#1|) (|:| -1587 (-525)))) (-525))) (-15 -3222 (|#1| |#1| (-525) |#1| (-525)))) (-1149 (-525))) (T -638))
+((-3222 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1149 (-525))))) (-2173 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| -2195 *5) (|:| -1587 (-525))))) (-5 *4 (-525)) (-4 *5 (-1149 (-525))) (-5 *2 (-592 *5)) (-5 *1 (-638 *5)))) (-3397 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -2195 *3) (|:| -1587 (-525))))) (-5 *1 (-638 *3)) (-4 *3 (-1149 (-525))) (-5 *4 (-525)))) (-2195 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-5 *2 (-592 *3)) (-5 *1 (-638 *3)) (-4 *3 (-1149 (-525))))) (-3245 (*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1149 (-525))))) (-2794 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1149 (-525))))))
+(-10 -7 (-15 -2794 (|#1| |#1| |#1| (-525))) (-15 -3245 (|#1| |#1| (-525))) (-15 -2195 ((-592 |#1|) |#1| (-525))) (-15 -3397 ((-592 (-2 (|:| -2195 |#1|) (|:| -1587 (-525)))) |#1| (-525))) (-15 -2173 ((-592 |#1|) (-592 (-2 (|:| -2195 |#1|) (|:| -1587 (-525)))) (-525))) (-15 -3222 (|#1| |#1| (-525) |#1| (-525))))
+((-1285 (((-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205))) 17)) (-2289 (((-1051 (-205)) (-1051 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242))) 40) (((-1051 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242))) 42) (((-1051 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242))) 44)) (-1769 (((-1051 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-592 (-242))) NIL)) (-1676 (((-1051 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242))) 45)))
+(((-639) (-10 -7 (-15 -2289 ((-1051 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -2289 ((-1051 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -2289 ((-1051 (-205)) (-1051 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -1676 ((-1051 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -1769 ((-1051 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -1285 ((-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))) (T -639))
+((-1285 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1 (-205) (-205) (-205) (-205))) (-5 *2 (-1 (-878 (-205)) (-205) (-205))) (-5 *1 (-639)))) (-1769 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205))) (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-639)))) (-1676 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined")) (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-639)))) (-2289 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1051 (-205))) (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-205))) (-5 *5 (-592 (-242))) (-5 *1 (-639)))) (-2289 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-205))) (-5 *5 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-639)))) (-2289 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined")) (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-639)))))
+(-10 -7 (-15 -2289 ((-1051 (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -2289 ((-1051 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -2289 ((-1051 (-205)) (-1051 (-205)) (-1 (-878 (-205)) (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -1676 ((-1051 (-205)) (-1 (-205) (-205) (-205)) (-3 (-1 (-205) (-205) (-205) (-205)) "undefined") (-1015 (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -1769 ((-1051 (-205)) (-294 (-525)) (-294 (-525)) (-294 (-525)) (-1 (-205) (-205)) (-1015 (-205)) (-592 (-242)))) (-15 -1285 ((-1 (-878 (-205)) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205)) (-1 (-205) (-205) (-205) (-205)))))
+((-2195 (((-396 (-1087 |#4|)) (-1087 |#4|)) 73) (((-396 |#4|) |#4|) 222)))
+(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2195 ((-396 |#4|) |#4|)) (-15 -2195 ((-396 (-1087 |#4|)) (-1087 |#4|)))) (-789) (-735) (-327) (-884 |#3| |#2| |#1|)) (T -640))
+((-2195 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327)) (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-396 (-1087 *7))) (-5 *1 (-640 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-640 *4 *5 *6 *3)) (-4 *3 (-884 *6 *5 *4)))))
+(-10 -7 (-15 -2195 ((-396 |#4|) |#4|)) (-15 -2195 ((-396 (-1087 |#4|)) (-1087 |#4|))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 84)) (-2628 (((-525) $) 30)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-3642 (($ $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-2211 (($ $) NIL)) (-3197 (((-108) $ $) NIL)) (-1436 (((-525) $) NIL)) (-2305 (($) NIL T CONST)) (-1625 (($ $) NIL)) (-2591 (((-3 (-525) "failed") $) 73) (((-3 (-385 (-525)) "failed") $) 26) (((-3 (-357) "failed") $) 70)) (-3898 (((-525) $) 75) (((-385 (-525)) $) 67) (((-357) $) 68)) (-1726 (($ $ $) 96)) (-3762 (((-3 $ "failed") $) 87)) (-1704 (($ $ $) 95)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-1683 (((-856)) 77) (((-856) (-856)) 76)) (-3017 (((-108) $) NIL)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL)) (-3973 (((-525) $) NIL)) (-1985 (((-108) $) NIL)) (-3220 (($ $ (-525)) NIL)) (-2900 (($ $) NIL)) (-3912 (((-108) $) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2254 (((-525) (-525)) 81) (((-525)) 82)) (-2371 (($ $ $) NIL) (($) NIL (-12 (-1825 (|has| $ (-6 -4238))) (-1825 (|has| $ (-6 -4246)))))) (-2111 (((-525) (-525)) 79) (((-525)) 80)) (-2535 (($ $ $) NIL) (($) NIL (-12 (-1825 (|has| $ (-6 -4238))) (-1825 (|has| $ (-6 -4246)))))) (-1820 (((-525) $) 16)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 91)) (-2064 (((-856) (-525)) NIL (|has| $ (-6 -4246)))) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3025 (($ $) NIL)) (-2793 (($ $) NIL)) (-2294 (($ (-525) (-525)) NIL) (($ (-525) (-525) (-856)) NIL)) (-2195 (((-396 $) $) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) 92)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1864 (((-525) $) 22)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 94)) (-3342 (((-856)) NIL) (((-856) (-856)) NIL (|has| $ (-6 -4246)))) (-2425 (((-856) (-525)) NIL (|has| $ (-6 -4246)))) (-2749 (((-357) $) NIL) (((-205) $) NIL) (((-827 (-357)) $) NIL)) (-1270 (((-798) $) 52) (($ (-525)) 63) (($ $) NIL) (($ (-385 (-525))) 66) (($ (-525)) 63) (($ (-385 (-525))) 66) (($ (-357)) 60) (((-357) $) 50) (($ (-643)) 55)) (-2104 (((-713)) 103)) (-2804 (($ (-525) (-525) (-856)) 44)) (-1438 (($ $) NIL)) (-1764 (((-856)) NIL) (((-856) (-856)) NIL (|has| $ (-6 -4246)))) (-3200 (((-856)) 35) (((-856) (-856)) 78)) (-3959 (((-108) $ $) NIL)) (-2086 (($ $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) 32 T CONST)) (-3363 (($) 17 T CONST)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 83)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 101)) (-4100 (($ $ $) 65)) (-4090 (($ $) 99) (($ $ $) 100)) (-4080 (($ $ $) 98)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) 90)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 97) (($ $ $) 88) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
+(((-641) (-13 (-382) (-365) (-341) (-968 (-357)) (-968 (-385 (-525))) (-138) (-10 -8 (-15 -1683 ((-856) (-856))) (-15 -1683 ((-856))) (-15 -3200 ((-856) (-856))) (-15 -3200 ((-856))) (-15 -2111 ((-525) (-525))) (-15 -2111 ((-525))) (-15 -2254 ((-525) (-525))) (-15 -2254 ((-525))) (-15 -1270 ((-357) $)) (-15 -1270 ($ (-643))) (-15 -1820 ((-525) $)) (-15 -1864 ((-525) $)) (-15 -2804 ($ (-525) (-525) (-856)))))) (T -641))
+((-3200 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-1820 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-1683 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641)))) (-3200 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641)))) (-2111 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-2111 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-2254 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-2254 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-357)) (-5 *1 (-641)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-643)) (-5 *1 (-641)))) (-2804 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-856)) (-5 *1 (-641)))))
+(-13 (-382) (-365) (-341) (-968 (-357)) (-968 (-385 (-525))) (-138) (-10 -8 (-15 -1683 ((-856) (-856))) (-15 -1683 ((-856))) (-15 -3200 ((-856) (-856))) (-15 -3200 ((-856))) (-15 -2111 ((-525) (-525))) (-15 -2111 ((-525))) (-15 -2254 ((-525) (-525))) (-15 -2254 ((-525))) (-15 -1270 ((-357) $)) (-15 -1270 ($ (-643))) (-15 -1820 ((-525) $)) (-15 -1864 ((-525) $)) (-15 -2804 ($ (-525) (-525) (-856)))))
+((-3670 (((-632 |#1|) (-632 |#1|) |#1| |#1|) 65)) (-1333 (((-632 |#1|) (-632 |#1|) |#1|) 48)) (-3007 (((-632 |#1|) (-632 |#1|) |#1|) 66)) (-2492 (((-632 |#1|) (-632 |#1|)) 49)) (-1688 (((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|) 64)))
+(((-642 |#1|) (-10 -7 (-15 -2492 ((-632 |#1|) (-632 |#1|))) (-15 -1333 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -3007 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -3670 ((-632 |#1|) (-632 |#1|) |#1| |#1|)) (-15 -1688 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|))) (-286)) (T -642))
+((-1688 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3))) (-5 *1 (-642 *3)) (-4 *3 (-286)))) (-3670 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))) (-3007 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))) (-1333 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))) (-2492 (*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))))
+(-10 -7 (-15 -2492 ((-632 |#1|) (-632 |#1|))) (-15 -1333 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -3007 ((-632 |#1|) (-632 |#1|) |#1|)) (-15 -3670 ((-632 |#1|) (-632 |#1|) |#1| |#1|)) (-15 -1688 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1530 (($ $ $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-1381 (($ $ $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3197 (((-108) $ $) NIL)) (-1436 (((-525) $) NIL)) (-4177 (($ $ $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) 27)) (-3898 (((-525) $) 25)) (-1726 (($ $ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2251 (((-3 (-385 (-525)) "failed") $) NIL)) (-2265 (((-108) $) NIL)) (-2178 (((-385 (-525)) $) NIL)) (-2899 (($ $) NIL) (($) NIL)) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-3926 (($ $ $ $) NIL)) (-3963 (($ $ $) NIL)) (-3017 (((-108) $) NIL)) (-1962 (($ $ $) NIL)) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL)) (-1985 (((-108) $) NIL)) (-2126 (((-108) $) NIL)) (-1760 (((-3 $ "failed") $) NIL)) (-3912 (((-108) $) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3224 (($ $ $ $) NIL)) (-2371 (($ $ $) NIL)) (-3053 (((-856) (-856)) 10) (((-856)) 9)) (-2535 (($ $ $) NIL)) (-1634 (($ $) NIL)) (-2023 (($ $) NIL)) (-2756 (($ (-592 $)) NIL) (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-3461 (($ $ $) NIL)) (-3940 (($) NIL T CONST)) (-4058 (($ $) NIL)) (-2012 (((-1038) $) NIL) (($ $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2075 (($ $) NIL)) (-2195 (((-396 $) $) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3545 (((-108) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2523 (($ $) NIL) (($ $ (-713)) NIL)) (-3881 (($ $) NIL)) (-1451 (($ $) NIL)) (-2749 (((-205) $) NIL) (((-357) $) NIL) (((-827 (-525)) $) NIL) (((-501) $) NIL) (((-525) $) NIL)) (-1270 (((-798) $) NIL) (($ (-525)) 24) (($ $) NIL) (($ (-525)) 24) (((-294 $) (-294 (-525))) 18)) (-2104 (((-713)) NIL)) (-3975 (((-108) $ $) NIL)) (-2938 (($ $ $) NIL)) (-3200 (($) NIL)) (-3959 (((-108) $ $) NIL)) (-2372 (($ $ $ $) NIL)) (-2086 (($ $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $) NIL) (($ $ (-713)) NIL)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL)))
+(((-643) (-13 (-365) (-510) (-10 -8 (-15 -3053 ((-856) (-856))) (-15 -3053 ((-856))) (-15 -1270 ((-294 $) (-294 (-525))))))) (T -643))
+((-3053 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-643)))) (-3053 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-643)))) (-1270 (*1 *2 *3) (-12 (-5 *3 (-294 (-525))) (-5 *2 (-294 (-643))) (-5 *1 (-643)))))
+(-13 (-365) (-510) (-10 -8 (-15 -3053 ((-856) (-856))) (-15 -3053 ((-856))) (-15 -1270 ((-294 $) (-294 (-525))))))
+((-2221 (((-1 |#4| |#2| |#3|) |#1| (-1091) (-1091)) 19)) (-3273 (((-1 |#4| |#2| |#3|) (-1091)) 12)))
+(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3273 ((-1 |#4| |#2| |#3|) (-1091))) (-15 -2221 ((-1 |#4| |#2| |#3|) |#1| (-1091) (-1091)))) (-567 (-501)) (-1127) (-1127) (-1127)) (T -644))
+((-2221 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *3 *5 *6 *7)) (-4 *3 (-567 (-501))) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *7 (-1127)))) (-3273 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *4 *5 *6 *7)) (-4 *4 (-567 (-501))) (-4 *5 (-1127)) (-4 *6 (-1127)) (-4 *7 (-1127)))))
+(-10 -7 (-15 -3273 ((-1 |#4| |#2| |#3|) (-1091))) (-15 -2221 ((-1 |#4| |#2| |#3|) |#1| (-1091) (-1091))))
+((-1260 (((-108) $ $) NIL)) (-1928 (((-1178) $ (-713)) 14)) (-1916 (((-713) $) 12)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 25)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 24)))
+(((-645 |#1|) (-13 (-127) (-566 |#1|) (-10 -8 (-15 -1270 ($ |#1|)))) (-1020)) (T -645))
+((-1270 (*1 *1 *2) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1020)))))
+(-13 (-127) (-566 |#1|) (-10 -8 (-15 -1270 ($ |#1|))))
+((-2923 (((-1 (-205) (-205) (-205)) |#1| (-1091) (-1091)) 34) (((-1 (-205) (-205)) |#1| (-1091)) 39)))
+(((-646 |#1|) (-10 -7 (-15 -2923 ((-1 (-205) (-205)) |#1| (-1091))) (-15 -2923 ((-1 (-205) (-205) (-205)) |#1| (-1091) (-1091)))) (-567 (-501))) (T -646))
+((-2923 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-646 *3)) (-4 *3 (-567 (-501))))) (-2923 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-205) (-205))) (-5 *1 (-646 *3)) (-4 *3 (-567 (-501))))))
+(-10 -7 (-15 -2923 ((-1 (-205) (-205)) |#1| (-1091))) (-15 -2923 ((-1 (-205) (-205) (-205)) |#1| (-1091) (-1091))))
+((-2626 (((-1091) |#1| (-1091) (-592 (-1091))) 9) (((-1091) |#1| (-1091) (-1091) (-1091)) 12) (((-1091) |#1| (-1091) (-1091)) 11) (((-1091) |#1| (-1091)) 10)))
+(((-647 |#1|) (-10 -7 (-15 -2626 ((-1091) |#1| (-1091))) (-15 -2626 ((-1091) |#1| (-1091) (-1091))) (-15 -2626 ((-1091) |#1| (-1091) (-1091) (-1091))) (-15 -2626 ((-1091) |#1| (-1091) (-592 (-1091))))) (-567 (-501))) (T -647))
+((-2626 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1091)) (-5 *4 (-592 (-1091))) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) (-2626 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) (-2626 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))) (-2626 (*1 *2 *3 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501))))))
+(-10 -7 (-15 -2626 ((-1091) |#1| (-1091))) (-15 -2626 ((-1091) |#1| (-1091) (-1091))) (-15 -2626 ((-1091) |#1| (-1091) (-1091) (-1091))) (-15 -2626 ((-1091) |#1| (-1091) (-592 (-1091)))))
+((-3893 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-648 |#1| |#2|) (-10 -7 (-15 -3893 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1127) (-1127)) (T -648))
+((-3893 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-648 *3 *4)) (-4 *3 (-1127)) (-4 *4 (-1127)))))
+(-10 -7 (-15 -3893 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-1674 (((-1 |#3| |#2|) (-1091)) 11)) (-2221 (((-1 |#3| |#2|) |#1| (-1091)) 21)))
+(((-649 |#1| |#2| |#3|) (-10 -7 (-15 -1674 ((-1 |#3| |#2|) (-1091))) (-15 -2221 ((-1 |#3| |#2|) |#1| (-1091)))) (-567 (-501)) (-1127) (-1127)) (T -649))
+((-2221 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *3 *5 *6)) (-4 *3 (-567 (-501))) (-4 *5 (-1127)) (-4 *6 (-1127)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *4 *5 *6)) (-4 *4 (-567 (-501))) (-4 *5 (-1127)) (-4 *6 (-1127)))))
+(-10 -7 (-15 -1674 ((-1 |#3| |#2|) (-1091))) (-15 -2221 ((-1 |#3| |#2|) |#1| (-1091))))
+((-3243 (((-3 (-592 (-1087 |#4|)) "failed") (-1087 |#4|) (-592 |#2|) (-592 (-1087 |#4|)) (-592 |#3|) (-592 |#4|) (-592 (-592 (-2 (|:| -1356 (-713)) (|:| |pcoef| |#4|)))) (-592 (-713)) (-1173 (-592 (-1087 |#3|))) |#3|) 62)) (-1493 (((-3 (-592 (-1087 |#4|)) "failed") (-1087 |#4|) (-592 |#2|) (-592 (-1087 |#3|)) (-592 |#3|) (-592 |#4|) (-592 (-713)) |#3|) 75)) (-2136 (((-3 (-592 (-1087 |#4|)) "failed") (-1087 |#4|) (-592 |#2|) (-592 |#3|) (-592 (-713)) (-592 (-1087 |#4|)) (-1173 (-592 (-1087 |#3|))) |#3|) 34)))
+(((-650 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2136 ((-3 (-592 (-1087 |#4|)) "failed") (-1087 |#4|) (-592 |#2|) (-592 |#3|) (-592 (-713)) (-592 (-1087 |#4|)) (-1173 (-592 (-1087 |#3|))) |#3|)) (-15 -1493 ((-3 (-592 (-1087 |#4|)) "failed") (-1087 |#4|) (-592 |#2|) (-592 (-1087 |#3|)) (-592 |#3|) (-592 |#4|) (-592 (-713)) |#3|)) (-15 -3243 ((-3 (-592 (-1087 |#4|)) "failed") (-1087 |#4|) (-592 |#2|) (-592 (-1087 |#4|)) (-592 |#3|) (-592 |#4|) (-592 (-592 (-2 (|:| -1356 (-713)) (|:| |pcoef| |#4|)))) (-592 (-713)) (-1173 (-592 (-1087 |#3|))) |#3|))) (-735) (-789) (-286) (-884 |#3| |#1| |#2|)) (T -650))
+((-3243 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-592 (-1087 *13))) (-5 *3 (-1087 *13)) (-5 *4 (-592 *12)) (-5 *5 (-592 *10)) (-5 *6 (-592 *13)) (-5 *7 (-592 (-592 (-2 (|:| -1356 (-713)) (|:| |pcoef| *13))))) (-5 *8 (-592 (-713))) (-5 *9 (-1173 (-592 (-1087 *10)))) (-4 *12 (-789)) (-4 *10 (-286)) (-4 *13 (-884 *10 *11 *12)) (-4 *11 (-735)) (-5 *1 (-650 *11 *12 *10 *13)))) (-1493 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-592 *11)) (-5 *5 (-592 (-1087 *9))) (-5 *6 (-592 *9)) (-5 *7 (-592 *12)) (-5 *8 (-592 (-713))) (-4 *11 (-789)) (-4 *9 (-286)) (-4 *12 (-884 *9 *10 *11)) (-4 *10 (-735)) (-5 *2 (-592 (-1087 *12))) (-5 *1 (-650 *10 *11 *9 *12)) (-5 *3 (-1087 *12)))) (-2136 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-592 (-1087 *11))) (-5 *3 (-1087 *11)) (-5 *4 (-592 *10)) (-5 *5 (-592 *8)) (-5 *6 (-592 (-713))) (-5 *7 (-1173 (-592 (-1087 *8)))) (-4 *10 (-789)) (-4 *8 (-286)) (-4 *11 (-884 *8 *9 *10)) (-4 *9 (-735)) (-5 *1 (-650 *9 *10 *8 *11)))))
+(-10 -7 (-15 -2136 ((-3 (-592 (-1087 |#4|)) "failed") (-1087 |#4|) (-592 |#2|) (-592 |#3|) (-592 (-713)) (-592 (-1087 |#4|)) (-1173 (-592 (-1087 |#3|))) |#3|)) (-15 -1493 ((-3 (-592 (-1087 |#4|)) "failed") (-1087 |#4|) (-592 |#2|) (-592 (-1087 |#3|)) (-592 |#3|) (-592 |#4|) (-592 (-713)) |#3|)) (-15 -3243 ((-3 (-592 (-1087 |#4|)) "failed") (-1087 |#4|) (-592 |#2|) (-592 (-1087 |#4|)) (-592 |#3|) (-592 |#4|) (-592 (-592 (-2 (|:| -1356 (-713)) (|:| |pcoef| |#4|)))) (-592 (-713)) (-1173 (-592 (-1087 |#3|))) |#3|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-2571 (($ $) 41)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-2352 (($ |#1| (-713)) 39)) (-3724 (((-713) $) 43)) (-2548 ((|#1| $) 42)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1587 (((-713) $) 44)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 38 (|has| |#1| (-160)))) (-3468 ((|#1| $ (-713)) 40)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 46) (($ |#1| $) 45)))
+(((-651 |#1|) (-131) (-977)) (T -651))
+((-1587 (*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-977)))) (-2571 (*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-977)))) (-3468 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-977)))) (-2352 (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-977)))))
+(-13 (-977) (-107 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -1587 ((-713) $)) (-15 -3724 ((-713) $)) (-15 -2548 (|t#1| $)) (-15 -2571 ($ $)) (-15 -3468 (|t#1| $ (-713))) (-15 -2352 ($ |t#1| (-713)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) |has| |#1| (-160)) ((-669) . T) ((-983 |#1|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-2694 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-652 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2694 (|#6| (-1 |#4| |#1|) |#3|))) (-517) (-1149 |#1|) (-1149 (-385 |#2|)) (-517) (-1149 |#4|) (-1149 (-385 |#5|))) (T -652))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-517)) (-4 *7 (-517)) (-4 *6 (-1149 *5)) (-4 *2 (-1149 (-385 *8))) (-5 *1 (-652 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1149 (-385 *6))) (-4 *8 (-1149 *7)))))
+(-10 -7 (-15 -2694 (|#6| (-1 |#4| |#1|) |#3|)))
+((-1260 (((-108) $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2304 (((-1074) (-798)) 31)) (-2868 (((-1178) (-1074)) 28)) (-3431 (((-1074) (-798)) 24)) (-3560 (((-1074) (-798)) 25)) (-1270 (((-798) $) NIL) (((-1074) (-798)) 23)) (-3994 (((-108) $ $) NIL)))
+(((-653) (-13 (-1020) (-10 -7 (-15 -1270 ((-1074) (-798))) (-15 -3431 ((-1074) (-798))) (-15 -3560 ((-1074) (-798))) (-15 -2304 ((-1074) (-798))) (-15 -2868 ((-1178) (-1074)))))) (T -653))
+((-1270 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1074)) (-5 *1 (-653)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1074)) (-5 *1 (-653)))) (-3560 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1074)) (-5 *1 (-653)))) (-2304 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1074)) (-5 *1 (-653)))) (-2868 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-653)))))
+(-13 (-1020) (-10 -7 (-15 -1270 ((-1074) (-798))) (-15 -3431 ((-1074) (-798))) (-15 -3560 ((-1074) (-798))) (-15 -2304 ((-1074) (-798))) (-15 -2868 ((-1178) (-1074)))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3197 (((-108) $ $) NIL)) (-2305 (($) NIL T CONST)) (-1726 (($ $ $) NIL)) (-3503 (($ |#1| |#2|) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-1985 (((-108) $) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3703 ((|#2| $) NIL)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2195 (((-396 $) $) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3934 (((-3 $ "failed") $ $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) ((|#1| $) NIL)) (-2104 (((-713)) NIL)) (-3959 (((-108) $ $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
+(((-654 |#1| |#2| |#3| |#4| |#5|) (-13 (-341) (-10 -8 (-15 -3703 (|#2| $)) (-15 -1270 (|#1| $)) (-15 -3503 ($ |#1| |#2|)) (-15 -3934 ((-3 $ "failed") $ $)))) (-160) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -654))
+((-3703 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-654 *3 *2 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1270 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3503 (*1 *1 *2 *3) (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3934 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-341) (-10 -8 (-15 -3703 (|#2| $)) (-15 -1270 (|#1| $)) (-15 -3503 ($ |#1| |#2|)) (-15 -3934 ((-3 $ "failed") $ $))))
+((-1260 (((-108) $ $) 78)) (-1989 (((-108) $) 30)) (-2122 (((-1173 |#1|) $ (-713)) NIL)) (-2383 (((-592 (-1005)) $) NIL)) (-2612 (($ (-1087 |#1|)) NIL)) (-2146 (((-1087 $) $ (-1005)) NIL) (((-1087 |#1|) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-3848 (((-713) $) NIL) (((-713) $ (-592 (-1005))) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $ $) NIL (|has| |#1| (-517)))) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-3706 (($ $) NIL (|has| |#1| (-429)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-3197 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4190 (((-713)) 47 (|has| |#1| (-346)))) (-3626 (($ $ (-713)) NIL)) (-1807 (($ $ (-713)) NIL)) (-2810 ((|#2| |#2|) 44)) (-3787 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-1005) "failed") $) NIL)) (-3898 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-1005) $) NIL)) (-1516 (($ $ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $ $) NIL (|has| |#1| (-160)))) (-1726 (($ $ $) NIL (|has| |#1| (-341)))) (-2571 (($ $) 34)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3503 (($ |#2|) 42)) (-3762 (((-3 $ "failed") $) 86)) (-2899 (($) 51 (|has| |#1| (-346)))) (-1704 (($ $ $) NIL (|has| |#1| (-341)))) (-1570 (($ $ $) NIL)) (-3546 (($ $ $) NIL (|has| |#1| (-517)))) (-3886 (((-2 (|:| -1655 |#1|) (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-517)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3026 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-2558 (((-592 $) $) NIL)) (-3836 (((-108) $) NIL (|has| |#1| (-844)))) (-1623 (((-892 $)) 80)) (-2192 (($ $ |#1| (-713) $) NIL)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1005) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1005) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-3973 (((-713) $ $) NIL (|has| |#1| (-517)))) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-1067)))) (-2368 (($ (-1087 |#1|) (-1005)) NIL) (($ (-1087 $) (-1005)) NIL)) (-3073 (($ $ (-713)) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-713)) 77) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ (-1005)) NIL) (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-3703 ((|#2|) 45)) (-3724 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-3922 (($ (-1 (-713) (-713)) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-1263 (((-1087 |#1|) $) NIL)) (-3567 (((-3 (-1005) "failed") $) NIL)) (-1736 (((-856) $) NIL (|has| |#1| (-346)))) (-3492 ((|#2| $) 41)) (-2538 (($ $) NIL)) (-2548 ((|#1| $) 28)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3451 (((-1074) $) NIL)) (-2799 (((-2 (|:| -2370 $) (|:| -3496 $)) $ (-713)) NIL)) (-4228 (((-3 (-592 $) "failed") $) NIL)) (-3852 (((-3 (-592 $) "failed") $) NIL)) (-1553 (((-3 (-2 (|:| |var| (-1005)) (|:| -1864 (-713))) "failed") $) NIL)) (-2650 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3940 (($) NIL (|has| |#1| (-1067)) CONST)) (-3640 (($ (-856)) NIL (|has| |#1| (-346)))) (-2012 (((-1038) $) NIL)) (-2513 (((-108) $) NIL)) (-2525 ((|#1| $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-429)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1727 (($ $) 79 (|has| |#1| (-327)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2195 (((-396 $) $) NIL (|has| |#1| (-844)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-1680 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2602 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1005) |#1|) NIL) (($ $ (-592 (-1005)) (-592 |#1|)) NIL) (($ $ (-1005) $) NIL) (($ $ (-592 (-1005)) (-592 $)) NIL)) (-1290 (((-713) $) NIL (|has| |#1| (-341)))) (-3410 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-1782 (((-3 $ "failed") $ (-713)) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 87 (|has| |#1| (-341)))) (-2094 (($ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $) NIL (|has| |#1| (-160)))) (-2523 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1587 (((-713) $) 32) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-2749 (((-827 (-357)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1005) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2026 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1533 (((-892 $)) 36)) (-3682 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-1270 (((-798) $) 61) (($ (-525)) NIL) (($ |#1|) 58) (($ (-1005)) NIL) (($ |#2|) 68) (($ (-385 (-525))) NIL (-3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-1562 (((-592 |#1|) $) NIL)) (-3468 ((|#1| $ (-713)) 63) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2104 (((-713)) NIL)) (-3658 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 20 T CONST)) (-3089 (((-1173 |#1|) $) 75)) (-1822 (($ (-1173 |#1|)) 50)) (-3363 (($) 8 T CONST)) (-2093 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4175 (((-1173 |#1|) $) NIL)) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) 69)) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4090 (($ $) 72) (($ $ $) NIL)) (-4080 (($ $ $) 33)) (** (($ $ (-856)) NIL) (($ $ (-713)) 81)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 57) (($ $ $) 74) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
+(((-655 |#1| |#2|) (-13 (-1149 |#1|) (-10 -8 (-15 -2810 (|#2| |#2|)) (-15 -3703 (|#2|)) (-15 -3503 ($ |#2|)) (-15 -3492 (|#2| $)) (-15 -1270 ($ |#2|)) (-15 -3089 ((-1173 |#1|) $)) (-15 -1822 ($ (-1173 |#1|))) (-15 -4175 ((-1173 |#1|) $)) (-15 -1623 ((-892 $))) (-15 -1533 ((-892 $))) (IF (|has| |#1| (-327)) (-15 -1727 ($ $)) |%noBranch|) (IF (|has| |#1| (-346)) (-6 (-346)) |%noBranch|))) (-977) (-1149 |#1|)) (T -655))
+((-2810 (*1 *2 *2) (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1149 *3)))) (-3703 (*1 *2) (-12 (-4 *2 (-1149 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-977)))) (-3503 (*1 *1 *2) (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1149 *3)))) (-3492 (*1 *2 *1) (-12 (-4 *2 (-1149 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-977)))) (-1270 (*1 *1 *2) (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1149 *3)))) (-3089 (*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-1173 *3)) (-5 *1 (-655 *3 *4)) (-4 *4 (-1149 *3)))) (-1822 (*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-977)) (-5 *1 (-655 *3 *4)) (-4 *4 (-1149 *3)))) (-4175 (*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-1173 *3)) (-5 *1 (-655 *3 *4)) (-4 *4 (-1149 *3)))) (-1623 (*1 *2) (-12 (-4 *3 (-977)) (-5 *2 (-892 (-655 *3 *4))) (-5 *1 (-655 *3 *4)) (-4 *4 (-1149 *3)))) (-1533 (*1 *2) (-12 (-4 *3 (-977)) (-5 *2 (-892 (-655 *3 *4))) (-5 *1 (-655 *3 *4)) (-4 *4 (-1149 *3)))) (-1727 (*1 *1 *1) (-12 (-4 *2 (-327)) (-4 *2 (-977)) (-5 *1 (-655 *2 *3)) (-4 *3 (-1149 *2)))))
+(-13 (-1149 |#1|) (-10 -8 (-15 -2810 (|#2| |#2|)) (-15 -3703 (|#2|)) (-15 -3503 ($ |#2|)) (-15 -3492 (|#2| $)) (-15 -1270 ($ |#2|)) (-15 -3089 ((-1173 |#1|) $)) (-15 -1822 ($ (-1173 |#1|))) (-15 -4175 ((-1173 |#1|) $)) (-15 -1623 ((-892 $))) (-15 -1533 ((-892 $))) (IF (|has| |#1| (-327)) (-15 -1727 ($ $)) |%noBranch|) (IF (|has| |#1| (-346)) (-6 (-346)) |%noBranch|)))
+((-1260 (((-108) $ $) NIL)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-3640 ((|#1| $) 13)) (-2012 (((-1038) $) NIL)) (-1864 ((|#2| $) 12)) (-1279 (($ |#1| |#2|) 16)) (-1270 (((-798) $) NIL) (($ (-2 (|:| -3640 |#1|) (|:| -1864 |#2|))) 15) (((-2 (|:| -3640 |#1|) (|:| -1864 |#2|)) $) 14)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 11)))
+(((-656 |#1| |#2| |#3|) (-13 (-789) (-10 -8 (-15 -1864 (|#2| $)) (-15 -3640 (|#1| $)) (-15 -1270 ($ (-2 (|:| -3640 |#1|) (|:| -1864 |#2|)))) (-15 -1270 ((-2 (|:| -3640 |#1|) (|:| -1864 |#2|)) $)) (-15 -1279 ($ |#1| |#2|)))) (-789) (-1020) (-1 (-108) (-2 (|:| -3640 |#1|) (|:| -1864 |#2|)) (-2 (|:| -3640 |#1|) (|:| -1864 |#2|)))) (T -656))
+((-1864 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-656 *3 *2 *4)) (-4 *3 (-789)) (-14 *4 (-1 (-108) (-2 (|:| -3640 *3) (|:| -1864 *2)) (-2 (|:| -3640 *3) (|:| -1864 *2)))))) (-3640 (*1 *2 *1) (-12 (-4 *2 (-789)) (-5 *1 (-656 *2 *3 *4)) (-4 *3 (-1020)) (-14 *4 (-1 (-108) (-2 (|:| -3640 *2) (|:| -1864 *3)) (-2 (|:| -3640 *2) (|:| -1864 *3)))))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3640 *3) (|:| -1864 *4))) (-4 *3 (-789)) (-4 *4 (-1020)) (-14 *5 (-1 (-108) (-2 (|:| -3640 *3) (|:| -1864 *4)) (-2 (|:| -3640 *3) (|:| -1864 *4)))) (-5 *1 (-656 *3 *4 *5)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3640 *3) (|:| -1864 *4))) (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-1020)) (-14 *5 (-1 (-108) (-2 (|:| -3640 *3) (|:| -1864 *4)) (-2 (|:| -3640 *3) (|:| -1864 *4)))))) (-1279 (*1 *1 *2 *3) (-12 (-5 *1 (-656 *2 *3 *4)) (-4 *2 (-789)) (-4 *3 (-1020)) (-14 *4 (-1 (-108) (-2 (|:| -3640 *2) (|:| -1864 *3)) (-2 (|:| -3640 *2) (|:| -1864 *3)))))))
+(-13 (-789) (-10 -8 (-15 -1864 (|#2| $)) (-15 -3640 (|#1| $)) (-15 -1270 ($ (-2 (|:| -3640 |#1|) (|:| -1864 |#2|)))) (-15 -1270 ((-2 (|:| -3640 |#1|) (|:| -1864 |#2|)) $)) (-15 -1279 ($ |#1| |#2|))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 59)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) 89) (((-3 (-110) "failed") $) 95)) (-3898 ((|#1| $) NIL) (((-110) $) 39)) (-3762 (((-3 $ "failed") $) 90)) (-3685 ((|#2| (-110) |#2|) 82)) (-1985 (((-108) $) NIL)) (-3303 (($ |#1| (-339 (-110))) 14)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2652 (($ $ (-1 |#2| |#2|)) 58)) (-4109 (($ $ (-1 |#2| |#2|)) 44)) (-3410 ((|#2| $ |#2|) 33)) (-3885 ((|#1| |#1|) 105 (|has| |#1| (-160)))) (-1270 (((-798) $) 66) (($ (-525)) 18) (($ |#1|) 17) (($ (-110)) 23)) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) 37)) (-1244 (($ $) 99 (|has| |#1| (-160))) (($ $ $) 103 (|has| |#1| (-160)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 21 T CONST)) (-3363 (($) 9 T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) 48) (($ $ $) NIL)) (-4080 (($ $ $) 73)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ (-110) (-525)) NIL) (($ $ (-525)) 57)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-160))) (($ $ |#1|) 97 (|has| |#1| (-160)))))
+(((-657 |#1| |#2|) (-13 (-977) (-968 |#1|) (-968 (-110)) (-265 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -1244 ($ $)) (-15 -1244 ($ $ $)) (-15 -3885 (|#1| |#1|))) |%noBranch|) (-15 -4109 ($ $ (-1 |#2| |#2|))) (-15 -2652 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -3685 (|#2| (-110) |#2|)) (-15 -3303 ($ |#1| (-339 (-110)))))) (-977) (-594 |#1|)) (T -657))
+((-1244 (*1 *1 *1) (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3)) (-4 *3 (-594 *2)))) (-1244 (*1 *1 *1 *1) (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3)) (-4 *3 (-594 *2)))) (-3885 (*1 *2 *2) (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3)) (-4 *3 (-594 *2)))) (-4109 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-977)) (-5 *1 (-657 *3 *4)))) (-2652 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-977)) (-5 *1 (-657 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-4 *4 (-977)) (-5 *1 (-657 *4 *5)) (-4 *5 (-594 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *3 (-977)) (-5 *1 (-657 *3 *4)) (-4 *4 (-594 *3)))) (-3685 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-4 *4 (-977)) (-5 *1 (-657 *4 *2)) (-4 *2 (-594 *4)))) (-3303 (*1 *1 *2 *3) (-12 (-5 *3 (-339 (-110))) (-4 *2 (-977)) (-5 *1 (-657 *2 *4)) (-4 *4 (-594 *2)))))
+(-13 (-977) (-968 |#1|) (-968 (-110)) (-265 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -1244 ($ $)) (-15 -1244 ($ $ $)) (-15 -3885 (|#1| |#1|))) |%noBranch|) (-15 -4109 ($ $ (-1 |#2| |#2|))) (-15 -2652 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -3685 (|#2| (-110) |#2|)) (-15 -3303 ($ |#1| (-339 (-110))))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 33)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-3503 (($ |#1| |#2|) 25)) (-3762 (((-3 $ "failed") $) 48)) (-1985 (((-108) $) 35)) (-3703 ((|#2| $) 12)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 49)) (-2012 (((-1038) $) NIL)) (-3934 (((-3 $ "failed") $ $) 47)) (-1270 (((-798) $) 24) (($ (-525)) 19) ((|#1| $) 13)) (-2104 (((-713)) 28)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 16 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 38)) (-4090 (($ $) 43) (($ $ $) 37)) (-4080 (($ $ $) 40)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 21) (($ $ $) 20)))
+(((-658 |#1| |#2| |#3| |#4| |#5|) (-13 (-977) (-10 -8 (-15 -3703 (|#2| $)) (-15 -1270 (|#1| $)) (-15 -3503 ($ |#1| |#2|)) (-15 -3934 ((-3 $ "failed") $ $)) (-15 -3762 ((-3 $ "failed") $)) (-15 -2502 ($ $)))) (-160) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -658))
+((-3762 (*1 *1 *1) (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3703 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-658 *3 *2 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1270 (*1 *2 *1) (-12 (-4 *2 (-160)) (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3503 (*1 *1 *2 *3) (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3934 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2502 (*1 *1 *1) (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-977) (-10 -8 (-15 -3703 (|#2| $)) (-15 -1270 (|#1| $)) (-15 -3503 ($ |#1| |#2|)) (-15 -3934 ((-3 $ "failed") $ $)) (-15 -3762 ((-3 $ "failed") $)) (-15 -2502 ($ $))))
+((* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-659 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|))) (-660 |#2|) (-160)) (T -659))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
(((-660 |#1|) (-131) (-160)) (T -660))
NIL
(-13 (-107 |t#1| |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-982 |#1|) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-3097 (($ |#1|) 17) (($ $ |#1|) 20)) (-2349 (($ |#1|) 18) (($ $ |#1|) 21)) (-1505 (($) NIL T CONST)) (-2866 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2133 (((-108) $) NIL)) (-1967 (($ |#1| |#1| |#1| |#1|) 8)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 16)) (-2663 (((-1037) $) NIL)) (-3092 ((|#1| $ |#1|) 24) (((-775 |#1|) $ (-775 |#1|)) 32)) (-3634 (($ $ $) NIL)) (-1518 (($ $ $) NIL)) (-1908 (((-797) $) 39)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3882 (($) 9 T CONST)) (-3961 (((-108) $ $) 44)) (-4082 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 14)))
-(((-661 |#1|) (-13 (-450) (-10 -8 (-15 -1967 ($ |#1| |#1| |#1| |#1|)) (-15 -3097 ($ |#1|)) (-15 -2349 ($ |#1|)) (-15 -2866 ($)) (-15 -3097 ($ $ |#1|)) (-15 -2349 ($ $ |#1|)) (-15 -2866 ($ $)) (-15 -3092 (|#1| $ |#1|)) (-15 -3092 ((-775 |#1|) $ (-775 |#1|))))) (-341)) (T -661))
-((-1967 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-3097 (*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2349 (*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2866 (*1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-3097 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2349 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2866 (*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-3092 (*1 *2 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-3092 (*1 *2 *1 *2) (-12 (-5 *2 (-775 *3)) (-4 *3 (-341)) (-5 *1 (-661 *3)))))
-(-13 (-450) (-10 -8 (-15 -1967 ($ |#1| |#1| |#1| |#1|)) (-15 -3097 ($ |#1|)) (-15 -2349 ($ |#1|)) (-15 -2866 ($)) (-15 -3097 ($ $ |#1|)) (-15 -2349 ($ $ |#1|)) (-15 -2866 ($ $)) (-15 -3092 (|#1| $ |#1|)) (-15 -3092 ((-775 |#1|) $ (-775 |#1|)))))
-((-2979 (($ $ (-855)) 12)) (-1640 (($ $ (-855)) 13)) (** (($ $ (-855)) 10)))
-(((-662 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-855))) (-15 -1640 (|#1| |#1| (-855))) (-15 -2979 (|#1| |#1| (-855)))) (-663)) (T -662))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-855))) (-15 -1640 (|#1| |#1| (-855))) (-15 -2979 (|#1| |#1| (-855))))
-((-1893 (((-108) $ $) 7)) (-2979 (($ $ (-855)) 15)) (-1640 (($ $ (-855)) 14)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3961 (((-108) $ $) 6)) (** (($ $ (-855)) 13)) (* (($ $ $) 16)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-983 |#1|) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-4177 (($ |#1|) 17) (($ $ |#1|) 20)) (-3561 (($ |#1|) 18) (($ $ |#1|) 21)) (-2305 (($) NIL T CONST)) (-3762 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-1985 (((-108) $) NIL)) (-4173 (($ |#1| |#1| |#1| |#1|) 8)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 16)) (-2012 (((-1038) $) NIL)) (-2602 ((|#1| $ |#1|) 24) (((-775 |#1|) $ (-775 |#1|)) 32)) (-3700 (($ $ $) NIL)) (-2222 (($ $ $) NIL)) (-1270 (((-798) $) 39)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3363 (($) 9 T CONST)) (-3994 (((-108) $ $) 44)) (-4100 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 14)))
+(((-661 |#1|) (-13 (-450) (-10 -8 (-15 -4173 ($ |#1| |#1| |#1| |#1|)) (-15 -4177 ($ |#1|)) (-15 -3561 ($ |#1|)) (-15 -3762 ($)) (-15 -4177 ($ $ |#1|)) (-15 -3561 ($ $ |#1|)) (-15 -3762 ($ $)) (-15 -2602 (|#1| $ |#1|)) (-15 -2602 ((-775 |#1|) $ (-775 |#1|))))) (-341)) (T -661))
+((-4173 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-4177 (*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-3561 (*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-3762 (*1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-4177 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-3762 (*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2602 (*1 *2 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))) (-2602 (*1 *2 *1 *2) (-12 (-5 *2 (-775 *3)) (-4 *3 (-341)) (-5 *1 (-661 *3)))))
+(-13 (-450) (-10 -8 (-15 -4173 ($ |#1| |#1| |#1| |#1|)) (-15 -4177 ($ |#1|)) (-15 -3561 ($ |#1|)) (-15 -3762 ($)) (-15 -4177 ($ $ |#1|)) (-15 -3561 ($ $ |#1|)) (-15 -3762 ($ $)) (-15 -2602 (|#1| $ |#1|)) (-15 -2602 ((-775 |#1|) $ (-775 |#1|)))))
+((-3627 (($ $ (-856)) 12)) (-1404 (($ $ (-856)) 13)) (** (($ $ (-856)) 10)))
+(((-662 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-856))) (-15 -1404 (|#1| |#1| (-856))) (-15 -3627 (|#1| |#1| (-856)))) (-663)) (T -662))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-856))) (-15 -1404 (|#1| |#1| (-856))) (-15 -3627 (|#1| |#1| (-856))))
+((-1260 (((-108) $ $) 7)) (-3627 (($ $ (-856)) 15)) (-1404 (($ $ (-856)) 14)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3994 (((-108) $ $) 6)) (** (($ $ (-856)) 13)) (* (($ $ $) 16)))
(((-663) (-131)) (T -663))
-((* (*1 *1 *1 *1) (-4 *1 (-663))) (-2979 (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-855)))) (-1640 (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-855)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-855)))))
-(-13 (-1019) (-10 -8 (-15 * ($ $ $)) (-15 -2979 ($ $ (-855))) (-15 -1640 ($ $ (-855))) (-15 ** ($ $ (-855)))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-2979 (($ $ (-855)) NIL) (($ $ (-713)) 17)) (-2133 (((-108) $) 10)) (-1640 (($ $ (-855)) NIL) (($ $ (-713)) 18)) (** (($ $ (-855)) NIL) (($ $ (-713)) 15)))
-(((-664 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-713))) (-15 -1640 (|#1| |#1| (-713))) (-15 -2979 (|#1| |#1| (-713))) (-15 -2133 ((-108) |#1|)) (-15 ** (|#1| |#1| (-855))) (-15 -1640 (|#1| |#1| (-855))) (-15 -2979 (|#1| |#1| (-855)))) (-665)) (T -664))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-713))) (-15 -1640 (|#1| |#1| (-713))) (-15 -2979 (|#1| |#1| (-713))) (-15 -2133 ((-108) |#1|)) (-15 ** (|#1| |#1| (-855))) (-15 -1640 (|#1| |#1| (-855))) (-15 -2979 (|#1| |#1| (-855))))
-((-1893 (((-108) $ $) 7)) (-1391 (((-3 $ "failed") $) 17)) (-2979 (($ $ (-855)) 15) (($ $ (-713)) 22)) (-2866 (((-3 $ "failed") $) 19)) (-2133 (((-108) $) 23)) (-2364 (((-3 $ "failed") $) 18)) (-1640 (($ $ (-855)) 14) (($ $ (-713)) 21)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3882 (($) 24 T CONST)) (-3961 (((-108) $ $) 6)) (** (($ $ (-855)) 13) (($ $ (-713)) 20)) (* (($ $ $) 16)))
+((* (*1 *1 *1 *1) (-4 *1 (-663))) (-3627 (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856)))) (-1404 (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856)))))
+(-13 (-1020) (-10 -8 (-15 * ($ $ $)) (-15 -3627 ($ $ (-856))) (-15 -1404 ($ $ (-856))) (-15 ** ($ $ (-856)))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-3627 (($ $ (-856)) NIL) (($ $ (-713)) 17)) (-1985 (((-108) $) 10)) (-1404 (($ $ (-856)) NIL) (($ $ (-713)) 18)) (** (($ $ (-856)) NIL) (($ $ (-713)) 15)))
+(((-664 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-713))) (-15 -1404 (|#1| |#1| (-713))) (-15 -3627 (|#1| |#1| (-713))) (-15 -1985 ((-108) |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 -1404 (|#1| |#1| (-856))) (-15 -3627 (|#1| |#1| (-856)))) (-665)) (T -664))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-713))) (-15 -1404 (|#1| |#1| (-713))) (-15 -3627 (|#1| |#1| (-713))) (-15 -1985 ((-108) |#1|)) (-15 ** (|#1| |#1| (-856))) (-15 -1404 (|#1| |#1| (-856))) (-15 -3627 (|#1| |#1| (-856))))
+((-1260 (((-108) $ $) 7)) (-2962 (((-3 $ "failed") $) 17)) (-3627 (($ $ (-856)) 15) (($ $ (-713)) 22)) (-3762 (((-3 $ "failed") $) 19)) (-1985 (((-108) $) 23)) (-2665 (((-3 $ "failed") $) 18)) (-1404 (($ $ (-856)) 14) (($ $ (-713)) 21)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3363 (($) 24 T CONST)) (-3994 (((-108) $ $) 6)) (** (($ $ (-856)) 13) (($ $ (-713)) 20)) (* (($ $ $) 16)))
(((-665) (-131)) (T -665))
-((-3882 (*1 *1) (-4 *1 (-665))) (-2133 (*1 *2 *1) (-12 (-4 *1 (-665)) (-5 *2 (-108)))) (-2979 (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))) (-1640 (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))) (-2866 (*1 *1 *1) (|partial| -4 *1 (-665))) (-2364 (*1 *1 *1) (|partial| -4 *1 (-665))) (-1391 (*1 *1 *1) (|partial| -4 *1 (-665))))
-(-13 (-663) (-10 -8 (-15 (-3882) ($) -3359) (-15 -2133 ((-108) $)) (-15 -2979 ($ $ (-713))) (-15 -1640 ($ $ (-713))) (-15 ** ($ $ (-713))) (-15 -2866 ((-3 $ "failed") $)) (-15 -2364 ((-3 $ "failed") $)) (-15 -1391 ((-3 $ "failed") $))))
-(((-97) . T) ((-566 (-797)) . T) ((-663) . T) ((-1019) . T))
-((-3107 (((-713)) 35)) (-1264 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2831 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 22)) (-4004 (($ |#3|) NIL) (((-3 $ "failed") (-385 |#3|)) 45)) (-2866 (((-3 $ "failed") $) 65)) (-3375 (($) 39)) (-3477 ((|#2| $) 20)) (-1669 (($) 17)) (-3013 (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-2160 (((-632 |#2|) (-1172 $) (-1 |#2| |#2|)) 60)) (-1427 (((-1172 |#2|) $) NIL) (($ (-1172 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1260 ((|#3| $) 32)) (-2499 (((-1172 $)) 29)))
-(((-666 |#1| |#2| |#3|) (-10 -8 (-15 -3013 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -3375 (|#1|)) (-15 -3107 ((-713))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2160 ((-632 |#2|) (-1172 |#1|) (-1 |#2| |#2|))) (-15 -4004 ((-3 |#1| "failed") (-385 |#3|))) (-15 -1427 (|#1| |#3|)) (-15 -4004 (|#1| |#3|)) (-15 -1669 (|#1|)) (-15 -2831 (|#2| |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -1427 (|#3| |#1|)) (-15 -1427 (|#1| (-1172 |#2|))) (-15 -1427 ((-1172 |#2|) |#1|)) (-15 -2499 ((-1172 |#1|))) (-15 -1260 (|#3| |#1|)) (-15 -3477 (|#2| |#1|)) (-15 -2866 ((-3 |#1| "failed") |#1|))) (-667 |#2| |#3|) (-160) (-1148 |#2|)) (T -666))
-((-3107 (*1 *2) (-12 (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-713)) (-5 *1 (-666 *3 *4 *5)) (-4 *3 (-667 *4 *5)))))
-(-10 -8 (-15 -3013 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -3375 (|#1|)) (-15 -3107 ((-713))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2160 ((-632 |#2|) (-1172 |#1|) (-1 |#2| |#2|))) (-15 -4004 ((-3 |#1| "failed") (-385 |#3|))) (-15 -1427 (|#1| |#3|)) (-15 -4004 (|#1| |#3|)) (-15 -1669 (|#1|)) (-15 -2831 (|#2| |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -1427 (|#3| |#1|)) (-15 -1427 (|#1| (-1172 |#2|))) (-15 -1427 ((-1172 |#2|) |#1|)) (-15 -2499 ((-1172 |#1|))) (-15 -1260 (|#3| |#1|)) (-15 -3477 (|#2| |#1|)) (-15 -2866 ((-3 |#1| "failed") |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 93 (|has| |#1| (-341)))) (-3635 (($ $) 94 (|has| |#1| (-341)))) (-2950 (((-108) $) 96 (|has| |#1| (-341)))) (-2794 (((-632 |#1|) (-1172 $)) 46) (((-632 |#1|)) 61)) (-3512 ((|#1| $) 52)) (-2837 (((-1100 (-855) (-713)) (-525)) 147 (|has| |#1| (-327)))) (-3263 (((-3 $ "failed") $ $) 19)) (-3321 (($ $) 113 (|has| |#1| (-341)))) (-1510 (((-396 $) $) 114 (|has| |#1| (-341)))) (-2305 (((-108) $ $) 104 (|has| |#1| (-341)))) (-3107 (((-713)) 87 (|has| |#1| (-346)))) (-1505 (($) 17 T CONST)) (-1264 (((-3 (-525) "failed") $) 169 (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 166)) (-2831 (((-525) $) 170 (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) 168 (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 165)) (-2229 (($ (-1172 |#1|) (-1172 $)) 48) (($ (-1172 |#1|)) 64)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-327)))) (-2373 (($ $ $) 108 (|has| |#1| (-341)))) (-1409 (((-632 |#1|) $ (-1172 $)) 53) (((-632 |#1|) $) 59)) (-1860 (((-632 (-525)) (-632 $)) 164 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 163 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 162) (((-632 |#1|) (-632 $)) 161)) (-4004 (($ |#2|) 158) (((-3 $ "failed") (-385 |#2|)) 155 (|has| |#1| (-341)))) (-2866 (((-3 $ "failed") $) 34)) (-2239 (((-855)) 54)) (-3375 (($) 90 (|has| |#1| (-346)))) (-2356 (($ $ $) 107 (|has| |#1| (-341)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 102 (|has| |#1| (-341)))) (-3205 (($) 149 (|has| |#1| (-327)))) (-3746 (((-108) $) 150 (|has| |#1| (-327)))) (-1410 (($ $ (-713)) 141 (|has| |#1| (-327))) (($ $) 140 (|has| |#1| (-327)))) (-2250 (((-108) $) 115 (|has| |#1| (-341)))) (-1737 (((-855) $) 152 (|has| |#1| (-327))) (((-775 (-855)) $) 138 (|has| |#1| (-327)))) (-2133 (((-108) $) 31)) (-3477 ((|#1| $) 51)) (-1816 (((-3 $ "failed") $) 142 (|has| |#1| (-327)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 111 (|has| |#1| (-341)))) (-2362 ((|#2| $) 44 (|has| |#1| (-341)))) (-1780 (((-855) $) 89 (|has| |#1| (-346)))) (-3774 ((|#2| $) 156)) (-3216 (($ (-592 $)) 100 (|has| |#1| (-341))) (($ $ $) 99 (|has| |#1| (-341)))) (-2337 (((-1073) $) 9)) (-4211 (($ $) 116 (|has| |#1| (-341)))) (-2279 (($) 143 (|has| |#1| (-327)) CONST)) (-4185 (($ (-855)) 88 (|has| |#1| (-346)))) (-2663 (((-1037) $) 10)) (-1669 (($) 160)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 101 (|has| |#1| (-341)))) (-3244 (($ (-592 $)) 98 (|has| |#1| (-341))) (($ $ $) 97 (|has| |#1| (-341)))) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) 146 (|has| |#1| (-327)))) (-3959 (((-396 $) $) 112 (|has| |#1| (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 109 (|has| |#1| (-341)))) (-2338 (((-3 $ "failed") $ $) 92 (|has| |#1| (-341)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 103 (|has| |#1| (-341)))) (-2183 (((-713) $) 105 (|has| |#1| (-341)))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 106 (|has| |#1| (-341)))) (-1400 ((|#1| (-1172 $)) 47) ((|#1|) 60)) (-2443 (((-713) $) 151 (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) 139 (|has| |#1| (-327)))) (-3013 (($ $) 137 (-3309 (-1341 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) 135 (-3309 (-1341 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1090)) 133 (-1341 (|has| |#1| (-834 (-1090))) (|has| |#1| (-341)))) (($ $ (-592 (-1090))) 132 (-1341 (|has| |#1| (-834 (-1090))) (|has| |#1| (-341)))) (($ $ (-1090) (-713)) 131 (-1341 (|has| |#1| (-834 (-1090))) (|has| |#1| (-341)))) (($ $ (-592 (-1090)) (-592 (-713))) 130 (-1341 (|has| |#1| (-834 (-1090))) (|has| |#1| (-341)))) (($ $ (-1 |#1| |#1|) (-713)) 123 (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-341)))) (-2160 (((-632 |#1|) (-1172 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-341)))) (-1654 ((|#2|) 159)) (-3775 (($) 148 (|has| |#1| (-327)))) (-4093 (((-1172 |#1|) $ (-1172 $)) 50) (((-632 |#1|) (-1172 $) (-1172 $)) 49) (((-1172 |#1|) $) 66) (((-632 |#1|) (-1172 $)) 65)) (-1427 (((-1172 |#1|) $) 63) (($ (-1172 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) 145 (|has| |#1| (-327)))) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-341))) (($ (-385 (-525))) 86 (-3309 (|has| |#1| (-341)) (|has| |#1| (-967 (-385 (-525))))))) (-3421 (($ $) 144 (|has| |#1| (-327))) (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-1260 ((|#2| $) 45)) (-2093 (((-713)) 29)) (-2499 (((-1172 $)) 67)) (-2262 (((-108) $ $) 95 (|has| |#1| (-341)))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 117 (|has| |#1| (-341)))) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $) 136 (-3309 (-1341 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) 134 (-3309 (-1341 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1090)) 129 (-1341 (|has| |#1| (-834 (-1090))) (|has| |#1| (-341)))) (($ $ (-592 (-1090))) 128 (-1341 (|has| |#1| (-834 (-1090))) (|has| |#1| (-341)))) (($ $ (-1090) (-713)) 127 (-1341 (|has| |#1| (-834 (-1090))) (|has| |#1| (-341)))) (($ $ (-592 (-1090)) (-592 (-713))) 126 (-1341 (|has| |#1| (-834 (-1090))) (|has| |#1| (-341)))) (($ $ (-1 |#1| |#1|) (-713)) 125 (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-341)))) (-3961 (((-108) $ $) 6)) (-4082 (($ $ $) 121 (|has| |#1| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 118 (|has| |#1| (-341)))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-385 (-525)) $) 120 (|has| |#1| (-341))) (($ $ (-385 (-525))) 119 (|has| |#1| (-341)))))
-(((-667 |#1| |#2|) (-131) (-160) (-1148 |t#1|)) (T -667))
-((-1669 (*1 *1) (-12 (-4 *2 (-160)) (-4 *1 (-667 *2 *3)) (-4 *3 (-1148 *2)))) (-1654 (*1 *2) (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1148 *3)))) (-4004 (*1 *1 *2) (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1148 *3)))) (-1427 (*1 *1 *2) (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1148 *3)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1148 *3)))) (-4004 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-341)) (-4 *3 (-160)) (-4 *1 (-667 *3 *4)))) (-2160 (*1 *2 *3 *4) (-12 (-5 *3 (-1172 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-4 *1 (-667 *5 *6)) (-4 *5 (-160)) (-4 *6 (-1148 *5)) (-5 *2 (-632 *5)))))
-(-13 (-387 |t#1| |t#2|) (-160) (-567 |t#2|) (-389 |t#1|) (-355 |t#1|) (-10 -8 (-15 -1669 ($)) (-15 -1654 (|t#2|)) (-15 -4004 ($ |t#2|)) (-15 -1427 ($ |t#2|)) (-15 -3774 (|t#2| $)) (IF (|has| |t#1| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-6 (-341)) (-6 (-211 |t#1|)) (-15 -4004 ((-3 $ "failed") (-385 |t#2|))) (-15 -2160 ((-632 |t#1|) (-1172 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-327)) (-6 (-327)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-37 |#1|) . T) ((-37 $) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-97) . T) ((-107 #0# #0#) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3309 (|has| |#1| (-327)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) . T) ((-567 |#2|) . T) ((-211 |#1|) |has| |#1| (-341)) ((-213) -3309 (|has| |#1| (-327)) (-12 (|has| |#1| (-213)) (|has| |#1| (-341)))) ((-223) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-269) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-286) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-341) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-380) |has| |#1| (-327)) ((-346) -3309 (|has| |#1| (-346)) (|has| |#1| (-327))) ((-327) |has| |#1| (-327)) ((-348 |#1| |#2|) . T) ((-387 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-517) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-594 #0#) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-660 |#1|) . T) ((-660 $) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-669) . T) ((-834 (-1090)) -12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090)))) ((-854) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-982 #0#) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-982 |#1|) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) |has| |#1| (-327)) ((-1130) -3309 (|has| |#1| (-327)) (|has| |#1| (-341))))
-((-1505 (($) 14)) (-2866 (((-3 $ "failed") $) 16)) (-2133 (((-108) $) 13)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) 9)) (** (($ $ (-855)) NIL) (($ $ (-713)) 20)))
-(((-668 |#1|) (-10 -8 (-15 -2866 ((-3 |#1| "failed") |#1|)) (-15 -3465 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -2133 ((-108) |#1|)) (-15 -1505 (|#1|)) (-15 -3465 (|#1| |#1| (-855))) (-15 ** (|#1| |#1| (-855)))) (-669)) (T -668))
-NIL
-(-10 -8 (-15 -2866 ((-3 |#1| "failed") |#1|)) (-15 -3465 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -2133 ((-108) |#1|)) (-15 -1505 (|#1|)) (-15 -3465 (|#1| |#1| (-855))) (-15 ** (|#1| |#1| (-855))))
-((-1893 (((-108) $ $) 7)) (-1505 (($) 20 T CONST)) (-2866 (((-3 $ "failed") $) 16)) (-2133 (((-108) $) 19)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3465 (($ $ (-855)) 13) (($ $ (-713)) 17)) (-3882 (($) 21 T CONST)) (-3961 (((-108) $ $) 6)) (** (($ $ (-855)) 14) (($ $ (-713)) 18)) (* (($ $ $) 15)))
+((-3363 (*1 *1) (-4 *1 (-665))) (-1985 (*1 *2 *1) (-12 (-4 *1 (-665)) (-5 *2 (-108)))) (-3627 (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))) (-1404 (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))) (-3762 (*1 *1 *1) (|partial| -4 *1 (-665))) (-2665 (*1 *1 *1) (|partial| -4 *1 (-665))) (-2962 (*1 *1 *1) (|partial| -4 *1 (-665))))
+(-13 (-663) (-10 -8 (-15 (-3363) ($) -1479) (-15 -1985 ((-108) $)) (-15 -3627 ($ $ (-713))) (-15 -1404 ($ $ (-713))) (-15 ** ($ $ (-713))) (-15 -3762 ((-3 $ "failed") $)) (-15 -2665 ((-3 $ "failed") $)) (-15 -2962 ((-3 $ "failed") $))))
+(((-97) . T) ((-566 (-798)) . T) ((-663) . T) ((-1020) . T))
+((-4190 (((-713)) 35)) (-2591 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3898 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 22)) (-3503 (($ |#3|) NIL) (((-3 $ "failed") (-385 |#3|)) 45)) (-3762 (((-3 $ "failed") $) 65)) (-2899 (($) 39)) (-2900 ((|#2| $) 20)) (-3523 (($) 17)) (-2523 (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 53) (($ $ (-592 (-1091)) (-592 (-713))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-2361 (((-632 |#2|) (-1173 $) (-1 |#2| |#2|)) 60)) (-2749 (((-1173 |#2|) $) NIL) (($ (-1173 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1805 ((|#3| $) 32)) (-1449 (((-1173 $)) 29)))
+(((-666 |#1| |#2| |#3|) (-10 -8 (-15 -2523 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -2899 (|#1|)) (-15 -4190 ((-713))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2361 ((-632 |#2|) (-1173 |#1|) (-1 |#2| |#2|))) (-15 -3503 ((-3 |#1| "failed") (-385 |#3|))) (-15 -2749 (|#1| |#3|)) (-15 -3503 (|#1| |#3|)) (-15 -3523 (|#1|)) (-15 -3898 (|#2| |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -2749 (|#3| |#1|)) (-15 -2749 (|#1| (-1173 |#2|))) (-15 -2749 ((-1173 |#2|) |#1|)) (-15 -1449 ((-1173 |#1|))) (-15 -1805 (|#3| |#1|)) (-15 -2900 (|#2| |#1|)) (-15 -3762 ((-3 |#1| "failed") |#1|))) (-667 |#2| |#3|) (-160) (-1149 |#2|)) (T -666))
+((-4190 (*1 *2) (-12 (-4 *4 (-160)) (-4 *5 (-1149 *4)) (-5 *2 (-713)) (-5 *1 (-666 *3 *4 *5)) (-4 *3 (-667 *4 *5)))))
+(-10 -8 (-15 -2523 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -2899 (|#1|)) (-15 -4190 ((-713))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2361 ((-632 |#2|) (-1173 |#1|) (-1 |#2| |#2|))) (-15 -3503 ((-3 |#1| "failed") (-385 |#3|))) (-15 -2749 (|#1| |#3|)) (-15 -3503 (|#1| |#3|)) (-15 -3523 (|#1|)) (-15 -3898 (|#2| |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -2749 (|#3| |#1|)) (-15 -2749 (|#1| (-1173 |#2|))) (-15 -2749 ((-1173 |#2|) |#1|)) (-15 -1449 ((-1173 |#1|))) (-15 -1805 (|#3| |#1|)) (-15 -2900 (|#2| |#1|)) (-15 -3762 ((-3 |#1| "failed") |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 93 (|has| |#1| (-341)))) (-3711 (($ $) 94 (|has| |#1| (-341)))) (-3380 (((-108) $) 96 (|has| |#1| (-341)))) (-1264 (((-632 |#1|) (-1173 $)) 46) (((-632 |#1|)) 61)) (-3029 ((|#1| $) 52)) (-1670 (((-1101 (-856) (-713)) (-525)) 147 (|has| |#1| (-327)))) (-1342 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 113 (|has| |#1| (-341)))) (-2100 (((-396 $) $) 114 (|has| |#1| (-341)))) (-3197 (((-108) $ $) 104 (|has| |#1| (-341)))) (-4190 (((-713)) 87 (|has| |#1| (-346)))) (-2305 (($) 17 T CONST)) (-2591 (((-3 (-525) "failed") $) 169 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 167 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 166)) (-3898 (((-525) $) 170 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 168 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 165)) (-3612 (($ (-1173 |#1|) (-1173 $)) 48) (($ (-1173 |#1|)) 64)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) 153 (|has| |#1| (-327)))) (-1726 (($ $ $) 108 (|has| |#1| (-341)))) (-2312 (((-632 |#1|) $ (-1173 $)) 53) (((-632 |#1|) $) 59)) (-3416 (((-632 (-525)) (-632 $)) 164 (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 163 (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) 162) (((-632 |#1|) (-632 $)) 161)) (-3503 (($ |#2|) 158) (((-3 $ "failed") (-385 |#2|)) 155 (|has| |#1| (-341)))) (-3762 (((-3 $ "failed") $) 34)) (-3318 (((-856)) 54)) (-2899 (($) 90 (|has| |#1| (-346)))) (-1704 (($ $ $) 107 (|has| |#1| (-341)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 102 (|has| |#1| (-341)))) (-3977 (($) 149 (|has| |#1| (-327)))) (-3564 (((-108) $) 150 (|has| |#1| (-327)))) (-2327 (($ $ (-713)) 141 (|has| |#1| (-327))) (($ $) 140 (|has| |#1| (-327)))) (-3836 (((-108) $) 115 (|has| |#1| (-341)))) (-3973 (((-856) $) 152 (|has| |#1| (-327))) (((-775 (-856)) $) 138 (|has| |#1| (-327)))) (-1985 (((-108) $) 31)) (-2900 ((|#1| $) 51)) (-1760 (((-3 $ "failed") $) 142 (|has| |#1| (-327)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 111 (|has| |#1| (-341)))) (-2640 ((|#2| $) 44 (|has| |#1| (-341)))) (-1736 (((-856) $) 89 (|has| |#1| (-346)))) (-3492 ((|#2| $) 156)) (-2756 (($ (-592 $)) 100 (|has| |#1| (-341))) (($ $ $) 99 (|has| |#1| (-341)))) (-3451 (((-1074) $) 9)) (-2502 (($ $) 116 (|has| |#1| (-341)))) (-3940 (($) 143 (|has| |#1| (-327)) CONST)) (-3640 (($ (-856)) 88 (|has| |#1| (-346)))) (-2012 (((-1038) $) 10)) (-3523 (($) 160)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 101 (|has| |#1| (-341)))) (-2794 (($ (-592 $)) 98 (|has| |#1| (-341))) (($ $ $) 97 (|has| |#1| (-341)))) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) 146 (|has| |#1| (-327)))) (-2195 (((-396 $) $) 112 (|has| |#1| (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 109 (|has| |#1| (-341)))) (-1680 (((-3 $ "failed") $ $) 92 (|has| |#1| (-341)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 103 (|has| |#1| (-341)))) (-1290 (((-713) $) 105 (|has| |#1| (-341)))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 106 (|has| |#1| (-341)))) (-2094 ((|#1| (-1173 $)) 47) ((|#1|) 60)) (-2181 (((-713) $) 151 (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) 139 (|has| |#1| (-327)))) (-2523 (($ $) 137 (-3279 (-3830 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) 135 (-3279 (-3830 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1091)) 133 (-3830 (|has| |#1| (-835 (-1091))) (|has| |#1| (-341)))) (($ $ (-592 (-1091))) 132 (-3830 (|has| |#1| (-835 (-1091))) (|has| |#1| (-341)))) (($ $ (-1091) (-713)) 131 (-3830 (|has| |#1| (-835 (-1091))) (|has| |#1| (-341)))) (($ $ (-592 (-1091)) (-592 (-713))) 130 (-3830 (|has| |#1| (-835 (-1091))) (|has| |#1| (-341)))) (($ $ (-1 |#1| |#1|) (-713)) 123 (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) 122 (|has| |#1| (-341)))) (-2361 (((-632 |#1|) (-1173 $) (-1 |#1| |#1|)) 154 (|has| |#1| (-341)))) (-1571 ((|#2|) 159)) (-2726 (($) 148 (|has| |#1| (-327)))) (-3464 (((-1173 |#1|) $ (-1173 $)) 50) (((-632 |#1|) (-1173 $) (-1173 $)) 49) (((-1173 |#1|) $) 66) (((-632 |#1|) (-1173 $)) 65)) (-2749 (((-1173 |#1|) $) 63) (($ (-1173 |#1|)) 62) ((|#2| $) 171) (($ |#2|) 157)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) 145 (|has| |#1| (-327)))) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ $) 91 (|has| |#1| (-341))) (($ (-385 (-525))) 86 (-3279 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525))))))) (-3425 (($ $) 144 (|has| |#1| (-327))) (((-3 $ "failed") $) 43 (|has| |#1| (-136)))) (-1805 ((|#2| $) 45)) (-2104 (((-713)) 29)) (-1449 (((-1173 $)) 67)) (-3959 (((-108) $ $) 95 (|has| |#1| (-341)))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 117 (|has| |#1| (-341)))) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $) 136 (-3279 (-3830 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) 134 (-3279 (-3830 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1091)) 129 (-3830 (|has| |#1| (-835 (-1091))) (|has| |#1| (-341)))) (($ $ (-592 (-1091))) 128 (-3830 (|has| |#1| (-835 (-1091))) (|has| |#1| (-341)))) (($ $ (-1091) (-713)) 127 (-3830 (|has| |#1| (-835 (-1091))) (|has| |#1| (-341)))) (($ $ (-592 (-1091)) (-592 (-713))) 126 (-3830 (|has| |#1| (-835 (-1091))) (|has| |#1| (-341)))) (($ $ (-1 |#1| |#1|) (-713)) 125 (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) 124 (|has| |#1| (-341)))) (-3994 (((-108) $ $) 6)) (-4100 (($ $ $) 121 (|has| |#1| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 118 (|has| |#1| (-341)))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ (-385 (-525)) $) 120 (|has| |#1| (-341))) (($ $ (-385 (-525))) 119 (|has| |#1| (-341)))))
+(((-667 |#1| |#2|) (-131) (-160) (-1149 |t#1|)) (T -667))
+((-3523 (*1 *1) (-12 (-4 *2 (-160)) (-4 *1 (-667 *2 *3)) (-4 *3 (-1149 *2)))) (-1571 (*1 *2) (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1149 *3)))) (-3503 (*1 *1 *2) (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1149 *3)))) (-2749 (*1 *1 *2) (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1149 *3)))) (-3492 (*1 *2 *1) (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1149 *3)))) (-3503 (*1 *1 *2) (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1149 *3)) (-4 *3 (-341)) (-4 *3 (-160)) (-4 *1 (-667 *3 *4)))) (-2361 (*1 *2 *3 *4) (-12 (-5 *3 (-1173 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-4 *1 (-667 *5 *6)) (-4 *5 (-160)) (-4 *6 (-1149 *5)) (-5 *2 (-632 *5)))))
+(-13 (-387 |t#1| |t#2|) (-160) (-567 |t#2|) (-389 |t#1|) (-355 |t#1|) (-10 -8 (-15 -3523 ($)) (-15 -1571 (|t#2|)) (-15 -3503 ($ |t#2|)) (-15 -2749 ($ |t#2|)) (-15 -3492 (|t#2| $)) (IF (|has| |t#1| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-6 (-341)) (-6 (-211 |t#1|)) (-15 -3503 ((-3 $ "failed") (-385 |t#2|))) (-15 -2361 ((-632 |t#1|) (-1173 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-327)) (-6 (-327)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-37 |#1|) . T) ((-37 $) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-97) . T) ((-107 #0# #0#) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3279 (|has| |#1| (-327)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-567 |#2|) . T) ((-211 |#1|) |has| |#1| (-341)) ((-213) -3279 (|has| |#1| (-327)) (-12 (|has| |#1| (-213)) (|has| |#1| (-341)))) ((-223) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-269) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-286) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-341) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-380) |has| |#1| (-327)) ((-346) -3279 (|has| |#1| (-346)) (|has| |#1| (-327))) ((-327) |has| |#1| (-327)) ((-348 |#1| |#2|) . T) ((-387 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-517) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-594 #0#) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-660 |#1|) . T) ((-660 $) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-669) . T) ((-835 (-1091)) -12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1091)))) ((-855) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 #0#) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))) ((-983 |#1|) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1067) |has| |#1| (-327)) ((-1131) -3279 (|has| |#1| (-327)) (|has| |#1| (-341))))
+((-2305 (($) 14)) (-3762 (((-3 $ "failed") $) 16)) (-1985 (((-108) $) 13)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) 9)) (** (($ $ (-856)) NIL) (($ $ (-713)) 20)))
+(((-668 |#1|) (-10 -8 (-15 -3762 ((-3 |#1| "failed") |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -1985 ((-108) |#1|)) (-15 -2305 (|#1|)) (-15 -1576 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856)))) (-669)) (T -668))
+NIL
+(-10 -8 (-15 -3762 ((-3 |#1| "failed") |#1|)) (-15 -1576 (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-713))) (-15 -1985 ((-108) |#1|)) (-15 -2305 (|#1|)) (-15 -1576 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856))))
+((-1260 (((-108) $ $) 7)) (-2305 (($) 20 T CONST)) (-3762 (((-3 $ "failed") $) 16)) (-1985 (((-108) $) 19)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-1576 (($ $ (-856)) 13) (($ $ (-713)) 17)) (-3363 (($) 21 T CONST)) (-3994 (((-108) $ $) 6)) (** (($ $ (-856)) 14) (($ $ (-713)) 18)) (* (($ $ $) 15)))
(((-669) (-131)) (T -669))
-((-3882 (*1 *1) (-4 *1 (-669))) (-1505 (*1 *1) (-4 *1 (-669))) (-2133 (*1 *2 *1) (-12 (-4 *1 (-669)) (-5 *2 (-108)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713)))) (-3465 (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713)))) (-2866 (*1 *1 *1) (|partial| -4 *1 (-669))))
-(-13 (-1031) (-10 -8 (-15 (-3882) ($) -3359) (-15 -1505 ($) -3359) (-15 -2133 ((-108) $)) (-15 ** ($ $ (-713))) (-15 -3465 ($ $ (-713))) (-15 -2866 ((-3 $ "failed") $))))
-(((-97) . T) ((-566 (-797)) . T) ((-1031) . T) ((-1019) . T))
-((-3861 (((-2 (|:| -3837 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1921 (((-2 (|:| -3837 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2935 ((|#2| (-385 |#2|) (-1 |#2| |#2|)) 13)) (-3149 (((-2 (|:| |poly| |#2|) (|:| -3837 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|)) 47)))
-(((-670 |#1| |#2|) (-10 -7 (-15 -1921 ((-2 (|:| -3837 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3861 ((-2 (|:| -3837 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2935 (|#2| (-385 |#2|) (-1 |#2| |#2|))) (-15 -3149 ((-2 (|:| |poly| |#2|) (|:| -3837 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|)))) (-341) (-1148 |#1|)) (T -670))
-((-3149 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3837 (-385 *6)) (|:| |special| (-385 *6)))) (-5 *1 (-670 *5 *6)) (-5 *3 (-385 *6)))) (-2935 (*1 *2 *3 *4) (-12 (-5 *3 (-385 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1148 *5)) (-5 *1 (-670 *5 *2)) (-4 *5 (-341)))) (-3861 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -3837 (-396 *3)) (|:| |special| (-396 *3)))) (-5 *1 (-670 *5 *3)))) (-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -3837 *3) (|:| |special| *3))) (-5 *1 (-670 *5 *3)))))
-(-10 -7 (-15 -1921 ((-2 (|:| -3837 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3861 ((-2 (|:| -3837 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2935 (|#2| (-385 |#2|) (-1 |#2| |#2|))) (-15 -3149 ((-2 (|:| |poly| |#2|) (|:| -3837 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|))))
-((-3669 ((|#7| (-592 |#5|) |#6|) NIL)) (-1370 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-671 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1370 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3669 (|#7| (-592 |#5|) |#6|))) (-789) (-735) (-735) (-976) (-976) (-883 |#4| |#2| |#1|) (-883 |#5| |#3| |#1|)) (T -671))
-((-3669 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *9)) (-4 *9 (-976)) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *8 (-976)) (-4 *2 (-883 *9 *7 *5)) (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735)) (-4 *4 (-883 *8 *6 *5)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-976)) (-4 *9 (-976)) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *2 (-883 *9 *7 *5)) (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735)) (-4 *4 (-883 *8 *6 *5)))))
-(-10 -7 (-15 -1370 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3669 (|#7| (-592 |#5|) |#6|)))
-((-1370 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-672 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -1370 (|#7| (-1 |#2| |#1|) |#6|))) (-789) (-789) (-735) (-735) (-976) (-883 |#5| |#3| |#1|) (-883 |#5| |#4| |#2|)) (T -672))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-789)) (-4 *6 (-789)) (-4 *7 (-735)) (-4 *9 (-976)) (-4 *2 (-883 *9 *8 *6)) (-5 *1 (-672 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-735)) (-4 *4 (-883 *9 *7 *5)))))
-(-10 -7 (-15 -1370 (|#7| (-1 |#2| |#1|) |#6|)))
-((-3959 (((-396 |#4|) |#4|) 41)))
-(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 ((-396 |#4|) |#4|))) (-735) (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $)) (-15 -1251 ((-3 $ "failed") (-1090))))) (-286) (-883 (-886 |#3|) |#1| |#2|)) (T -673))
-((-3959 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $)) (-15 -1251 ((-3 $ "failed") (-1090)))))) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-883 (-886 *6) *4 *5)))))
-(-10 -7 (-15 -3959 ((-396 |#4|) |#4|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-4104 (((-592 (-799 |#1|)) $) NIL)) (-3927 (((-1086 $) $ (-799 |#1|)) NIL) (((-1086 |#2|) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-3635 (($ $) NIL (|has| |#2| (-517)))) (-2950 (((-108) $) NIL (|has| |#2| (-517)))) (-1324 (((-713) $) NIL) (((-713) $ (-592 (-799 |#1|))) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-3321 (($ $) NIL (|has| |#2| (-429)))) (-1510 (((-396 $) $) NIL (|has| |#2| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-799 |#1|) "failed") $) NIL)) (-2831 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-967 (-525)))) (((-799 |#1|) $) NIL)) (-2506 (($ $ $ (-799 |#1|)) NIL (|has| |#2| (-160)))) (-1247 (($ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3811 (($ $) NIL (|has| |#2| (-429))) (($ $ (-799 |#1|)) NIL (|has| |#2| (-429)))) (-1234 (((-592 $) $) NIL)) (-2250 (((-108) $) NIL (|has| |#2| (-843)))) (-2099 (($ $ |#2| (-497 (-799 |#1|)) $) NIL)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-799 |#1|) (-820 (-357))) (|has| |#2| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-799 |#1|) (-820 (-525))) (|has| |#2| (-820 (-525)))))) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) NIL)) (-4092 (($ (-1086 |#2|) (-799 |#1|)) NIL) (($ (-1086 $) (-799 |#1|)) NIL)) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) NIL)) (-4079 (($ |#2| (-497 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ (-799 |#1|)) NIL)) (-3181 (((-497 (-799 |#1|)) $) NIL) (((-713) $ (-799 |#1|)) NIL) (((-592 (-713)) $ (-592 (-799 |#1|))) NIL)) (-3525 (($ $ $) NIL (|has| |#2| (-789)))) (-3630 (($ $ $) NIL (|has| |#2| (-789)))) (-1331 (($ (-1 (-497 (-799 |#1|)) (-497 (-799 |#1|))) $) NIL)) (-1370 (($ (-1 |#2| |#2|) $) NIL)) (-1666 (((-3 (-799 |#1|) "failed") $) NIL)) (-1212 (($ $) NIL)) (-1224 ((|#2| $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2337 (((-1073) $) NIL)) (-3245 (((-3 (-592 $) "failed") $) NIL)) (-3193 (((-3 (-592 $) "failed") $) NIL)) (-3283 (((-3 (-2 (|:| |var| (-799 |#1|)) (|:| -1600 (-713))) "failed") $) NIL)) (-2663 (((-1037) $) NIL)) (-4221 (((-108) $) NIL)) (-4232 ((|#2| $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-429)))) (-3244 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-3959 (((-396 $) $) NIL (|has| |#2| (-843)))) (-2338 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-3092 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-799 |#1|) |#2|) NIL) (($ $ (-592 (-799 |#1|)) (-592 |#2|)) NIL) (($ $ (-799 |#1|) $) NIL) (($ $ (-592 (-799 |#1|)) (-592 $)) NIL)) (-1400 (($ $ (-799 |#1|)) NIL (|has| |#2| (-160)))) (-3013 (($ $ (-799 |#1|)) NIL) (($ $ (-592 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-2513 (((-497 (-799 |#1|)) $) NIL) (((-713) $ (-799 |#1|)) NIL) (((-592 (-713)) $ (-592 (-799 |#1|))) NIL)) (-1427 (((-826 (-357)) $) NIL (-12 (|has| (-799 |#1|) (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-799 |#1|) (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-799 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2751 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-799 |#1|)) NIL (|has| |#2| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-843))))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-799 |#1|)) NIL) (($ $) NIL (|has| |#2| (-517))) (($ (-385 (-525))) NIL (-3309 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-967 (-385 (-525))))))) (-3600 (((-592 |#2|) $) NIL)) (-1657 ((|#2| $ (-497 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#2| (-843))) (|has| |#2| (-136))))) (-2093 (((-713)) NIL)) (-4116 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-2262 (((-108) $ $) NIL (|has| |#2| (-517)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $ (-799 |#1|)) NIL) (($ $ (-592 (-799 |#1|))) NIL) (($ $ (-799 |#1|) (-713)) NIL) (($ $ (-592 (-799 |#1|)) (-592 (-713))) NIL)) (-4024 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4082 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-674 |#1| |#2|) (-883 |#2| (-497 (-799 |#1|)) (-799 |#1|)) (-592 (-1090)) (-976)) (T -674))
-NIL
-(-883 |#2| (-497 (-799 |#1|)) (-799 |#1|))
-((-2201 (((-2 (|:| -1487 (-886 |#3|)) (|:| -2351 (-886 |#3|))) |#4|) 14)) (-3473 ((|#4| |#4| |#2|) 33)) (-2791 ((|#4| (-385 (-886 |#3|)) |#2|) 64)) (-2179 ((|#4| (-1086 (-886 |#3|)) |#2|) 77)) (-3241 ((|#4| (-1086 |#4|) |#2|) 51)) (-2731 ((|#4| |#4| |#2|) 54)) (-3959 (((-396 |#4|) |#4|) 40)))
-(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2201 ((-2 (|:| -1487 (-886 |#3|)) (|:| -2351 (-886 |#3|))) |#4|)) (-15 -2731 (|#4| |#4| |#2|)) (-15 -3241 (|#4| (-1086 |#4|) |#2|)) (-15 -3473 (|#4| |#4| |#2|)) (-15 -2179 (|#4| (-1086 (-886 |#3|)) |#2|)) (-15 -2791 (|#4| (-385 (-886 |#3|)) |#2|)) (-15 -3959 ((-396 |#4|) |#4|))) (-735) (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $)))) (-517) (-883 (-385 (-886 |#3|)) |#1| |#2|)) (T -675))
-((-3959 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $))))) (-4 *6 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-883 (-385 (-886 *6)) *4 *5)))) (-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *6))) (-4 *6 (-517)) (-4 *2 (-883 (-385 (-886 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-735)) (-4 *4 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $))))))) (-2179 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 (-886 *6))) (-4 *6 (-517)) (-4 *2 (-883 (-385 (-886 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-735)) (-4 *4 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $))))))) (-3473 (*1 *2 *2 *3) (-12 (-4 *4 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $))))) (-4 *5 (-517)) (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-883 (-385 (-886 *5)) *4 *3)))) (-3241 (*1 *2 *3 *4) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-883 (-385 (-886 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-735)) (-4 *4 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $))))) (-4 *6 (-517)))) (-2731 (*1 *2 *2 *3) (-12 (-4 *4 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $))))) (-4 *5 (-517)) (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-883 (-385 (-886 *5)) *4 *3)))) (-2201 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $))))) (-4 *6 (-517)) (-5 *2 (-2 (|:| -1487 (-886 *6)) (|:| -2351 (-886 *6)))) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-883 (-385 (-886 *6)) *4 *5)))))
-(-10 -7 (-15 -2201 ((-2 (|:| -1487 (-886 |#3|)) (|:| -2351 (-886 |#3|))) |#4|)) (-15 -2731 (|#4| |#4| |#2|)) (-15 -3241 (|#4| (-1086 |#4|) |#2|)) (-15 -3473 (|#4| |#4| |#2|)) (-15 -2179 (|#4| (-1086 (-886 |#3|)) |#2|)) (-15 -2791 (|#4| (-385 (-886 |#3|)) |#2|)) (-15 -3959 ((-396 |#4|) |#4|)))
-((-3959 (((-396 |#4|) |#4|) 52)))
-(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 ((-396 |#4|) |#4|))) (-735) (-789) (-13 (-286) (-138)) (-883 (-385 |#3|) |#1| |#2|)) (T -676))
-((-3959 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-883 (-385 *6) *4 *5)))))
-(-10 -7 (-15 -3959 ((-396 |#4|) |#4|)))
-((-1370 (((-678 |#2| |#3|) (-1 |#2| |#1|) (-678 |#1| |#3|)) 18)))
-(((-677 |#1| |#2| |#3|) (-10 -7 (-15 -1370 ((-678 |#2| |#3|) (-1 |#2| |#1|) (-678 |#1| |#3|)))) (-976) (-976) (-669)) (T -677))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-678 *5 *7)) (-4 *5 (-976)) (-4 *6 (-976)) (-4 *7 (-669)) (-5 *2 (-678 *6 *7)) (-5 *1 (-677 *5 *6 *7)))))
-(-10 -7 (-15 -1370 ((-678 |#2| |#3|) (-1 |#2| |#1|) (-678 |#1| |#3|))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 28)) (-2911 (((-592 (-2 (|:| -1459 |#1|) (|:| -4157 |#2|))) $) 29)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3107 (((-713)) 20 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2831 ((|#2| $) NIL) ((|#1| $) NIL)) (-1247 (($ $) 79 (|has| |#2| (-789)))) (-2866 (((-3 $ "failed") $) 65)) (-3375 (($) 35 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) 55)) (-1986 (((-592 $) $) 39)) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| |#2|) 16)) (-1370 (($ (-1 |#1| |#1|) $) 54)) (-1780 (((-855) $) 32 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-1212 ((|#2| $) 78 (|has| |#2| (-789)))) (-1224 ((|#1| $) 77 (|has| |#2| (-789)))) (-2337 (((-1073) $) NIL)) (-4185 (($ (-855)) 27 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 76) (($ (-525)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-592 (-2 (|:| -1459 |#1|) (|:| -4157 |#2|)))) 11)) (-3600 (((-592 |#1|) $) 41)) (-1657 ((|#1| $ |#2|) 88)) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 12 T CONST)) (-3882 (($) 33 T CONST)) (-3961 (((-108) $ $) 80)) (-4070 (($ $) 47) (($ $ $) NIL)) (-4059 (($ $ $) 26)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160)))))
-(((-678 |#1| |#2|) (-13 (-976) (-967 |#2|) (-967 |#1|) (-10 -8 (-15 -4079 ($ |#1| |#2|)) (-15 -1657 (|#1| $ |#2|)) (-15 -1908 ($ (-592 (-2 (|:| -1459 |#1|) (|:| -4157 |#2|))))) (-15 -2911 ((-592 (-2 (|:| -1459 |#1|) (|:| -4157 |#2|))) $)) (-15 -1370 ($ (-1 |#1| |#1|) $)) (-15 -1819 ((-108) $)) (-15 -3600 ((-592 |#1|) $)) (-15 -1986 ((-592 $) $)) (-15 -3610 ((-713) $)) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-789)) (PROGN (-15 -1212 (|#2| $)) (-15 -1224 (|#1| $)) (-15 -1247 ($ $))) |%noBranch|))) (-976) (-669)) (T -678))
-((-4079 (*1 *1 *2 *3) (-12 (-5 *1 (-678 *2 *3)) (-4 *2 (-976)) (-4 *3 (-669)))) (-1657 (*1 *2 *1 *3) (-12 (-4 *2 (-976)) (-5 *1 (-678 *2 *3)) (-4 *3 (-669)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -1459 *3) (|:| -4157 *4)))) (-4 *3 (-976)) (-4 *4 (-669)) (-5 *1 (-678 *3 *4)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -1459 *3) (|:| -4157 *4)))) (-5 *1 (-678 *3 *4)) (-4 *3 (-976)) (-4 *4 (-669)))) (-1370 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-678 *3 *4)) (-4 *4 (-669)))) (-1819 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-678 *3 *4)) (-4 *3 (-976)) (-4 *4 (-669)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-678 *3 *4)) (-4 *3 (-976)) (-4 *4 (-669)))) (-1986 (*1 *2 *1) (-12 (-5 *2 (-592 (-678 *3 *4))) (-5 *1 (-678 *3 *4)) (-4 *3 (-976)) (-4 *4 (-669)))) (-3610 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-678 *3 *4)) (-4 *3 (-976)) (-4 *4 (-669)))) (-1212 (*1 *2 *1) (-12 (-4 *2 (-669)) (-4 *2 (-789)) (-5 *1 (-678 *3 *2)) (-4 *3 (-976)))) (-1224 (*1 *2 *1) (-12 (-4 *2 (-976)) (-5 *1 (-678 *2 *3)) (-4 *3 (-789)) (-4 *3 (-669)))) (-1247 (*1 *1 *1) (-12 (-5 *1 (-678 *2 *3)) (-4 *3 (-789)) (-4 *2 (-976)) (-4 *3 (-669)))))
-(-13 (-976) (-967 |#2|) (-967 |#1|) (-10 -8 (-15 -4079 ($ |#1| |#2|)) (-15 -1657 (|#1| $ |#2|)) (-15 -1908 ($ (-592 (-2 (|:| -1459 |#1|) (|:| -4157 |#2|))))) (-15 -2911 ((-592 (-2 (|:| -1459 |#1|) (|:| -4157 |#2|))) $)) (-15 -1370 ($ (-1 |#1| |#1|) $)) (-15 -1819 ((-108) $)) (-15 -3600 ((-592 |#1|) $)) (-15 -1986 ((-592 $) $)) (-15 -3610 ((-713) $)) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-789)) (PROGN (-15 -1212 (|#2| $)) (-15 -1224 (|#1| $)) (-15 -1247 ($ $))) |%noBranch|)))
-((-1893 (((-108) $ $) 19)) (-3254 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1914 (($ $ $) 72)) (-2258 (((-108) $ $) 73)) (-3410 (((-108) $ (-713)) 8)) (-3399 (($ (-592 |#1|)) 68) (($) 67)) (-3290 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4254)))) (-1505 (($) 7 T CONST)) (-3143 (($ $) 62)) (-3163 (($ $) 58 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2792 (($ |#1| $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4254)))) (-2273 (($ |#1| $) 57 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4254)))) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) 9)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22)) (-3187 (($ $ $) 69)) (-2570 ((|#1| $) 39)) (-2573 (($ |#1| $) 40) (($ |#1| $ (-713)) 63)) (-2663 (((-1037) $) 21)) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3513 ((|#1| $) 41)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3553 (((-592 (-2 (|:| -2511 |#1|) (|:| -2686 (-713)))) $) 61)) (-1706 (($ $ |#1|) 71) (($ $ $) 70)) (-4006 (($) 49) (($ (-592 |#1|)) 48)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1427 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 50)) (-1908 (((-797) $) 18)) (-3832 (($ (-592 |#1|)) 66) (($) 65)) (-3612 (($ (-592 |#1|)) 42)) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20)) (-3983 (((-108) $ $) 64)) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-679 |#1|) (-131) (-1019)) (T -679))
-NIL
-(-13 (-637 |t#1|) (-1017 |t#1|))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-566 (-797)) . T) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-637 |#1|) . T) ((-1017 |#1|) . T) ((-1019) . T) ((-1126) . T))
-((-1893 (((-108) $ $) NIL)) (-3254 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-1914 (($ $ $) 79)) (-2258 (((-108) $ $) 83)) (-3410 (((-108) $ (-713)) NIL)) (-3399 (($ (-592 |#1|)) 24) (($) 16)) (-3290 (($ (-1 (-108) |#1|) $) 70 (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-3143 (($ $) 71)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2792 (($ |#1| $) 61 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) 64 (|has| $ (-6 -4254))) (($ |#1| $ (-525)) 62) (($ (-1 (-108) |#1|) $ (-525)) 65)) (-2273 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (($ |#1| $ (-525)) 67) (($ (-1 (-108) |#1|) $ (-525)) 68)) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2026 (((-592 |#1|) $) 32 (|has| $ (-6 -4254)))) (-2944 (($) 14) (($ |#1|) 26) (($ (-592 |#1|)) 21)) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 |#1|) $) 38)) (-4132 (((-108) |#1| $) 58 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2857 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 75)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL)) (-3187 (($ $ $) 77)) (-2570 ((|#1| $) 55)) (-2573 (($ |#1| $) 56) (($ |#1| $ (-713)) 72)) (-2663 (((-1037) $) NIL)) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3513 ((|#1| $) 54)) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) 50)) (-3773 (($) 13)) (-3553 (((-592 (-2 (|:| -2511 |#1|) (|:| -2686 (-713)))) $) 48)) (-1706 (($ $ |#1|) NIL) (($ $ $) 78)) (-4006 (($) 15) (($ (-592 |#1|)) 23)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) 60 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) 66)) (-1427 (((-501) $) 36 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 20)) (-1908 (((-797) $) 44)) (-3832 (($ (-592 |#1|)) 25) (($) 17)) (-3612 (($ (-592 |#1|)) 22)) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 81)) (-3983 (((-108) $ $) 82)) (-4140 (((-713) $) 59 (|has| $ (-6 -4254)))))
-(((-680 |#1|) (-13 (-679 |#1|) (-10 -8 (-6 -4254) (-6 -4255) (-15 -2944 ($)) (-15 -2944 ($ |#1|)) (-15 -2944 ($ (-592 |#1|))) (-15 -3168 ((-592 |#1|) $)) (-15 -2273 ($ |#1| $ (-525))) (-15 -2273 ($ (-1 (-108) |#1|) $ (-525))) (-15 -2792 ($ |#1| $ (-525))) (-15 -2792 ($ (-1 (-108) |#1|) $ (-525))))) (-1019)) (T -680))
-((-2944 (*1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1019)))) (-2944 (*1 *1 *2) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1019)))) (-2944 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-680 *3)))) (-3168 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1019)))) (-2273 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1019)))) (-2273 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1019)) (-5 *1 (-680 *4)))) (-2792 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1019)))) (-2792 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1019)) (-5 *1 (-680 *4)))))
-(-13 (-679 |#1|) (-10 -8 (-6 -4254) (-6 -4255) (-15 -2944 ($)) (-15 -2944 ($ |#1|)) (-15 -2944 ($ (-592 |#1|))) (-15 -3168 ((-592 |#1|) $)) (-15 -2273 ($ |#1| $ (-525))) (-15 -2273 ($ (-1 (-108) |#1|) $ (-525))) (-15 -2792 ($ |#1| $ (-525))) (-15 -2792 ($ (-1 (-108) |#1|) $ (-525)))))
-((-3693 (((-1177) (-1073)) 8)))
-(((-681) (-10 -7 (-15 -3693 ((-1177) (-1073))))) (T -681))
-((-3693 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-681)))))
-(-10 -7 (-15 -3693 ((-1177) (-1073))))
-((-2037 (((-592 |#1|) (-592 |#1|) (-592 |#1|)) 10)))
-(((-682 |#1|) (-10 -7 (-15 -2037 ((-592 |#1|) (-592 |#1|) (-592 |#1|)))) (-789)) (T -682))
-((-2037 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-682 *3)))))
-(-10 -7 (-15 -2037 ((-592 |#1|) (-592 |#1|) (-592 |#1|))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-4104 (((-592 |#2|) $) 136)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 129 (|has| |#1| (-517)))) (-3635 (($ $) 128 (|has| |#1| (-517)))) (-2950 (((-108) $) 126 (|has| |#1| (-517)))) (-4049 (($ $) 85 (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) 68 (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) 19)) (-3969 (($ $) 67 (|has| |#1| (-37 (-385 (-525)))))) (-4026 (($ $) 84 (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) 69 (|has| |#1| (-37 (-385 (-525)))))) (-4072 (($ $) 83 (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) 70 (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) 17 T CONST)) (-1247 (($ $) 120)) (-2866 (((-3 $ "failed") $) 34)) (-2467 (((-886 |#1|) $ (-713)) 98) (((-886 |#1|) $ (-713) (-713)) 97)) (-4150 (((-108) $) 137)) (-1335 (($) 95 (|has| |#1| (-37 (-385 (-525)))))) (-1737 (((-713) $ |#2|) 100) (((-713) $ |#2| (-713)) 99)) (-2133 (((-108) $) 31)) (-3391 (($ $ (-525)) 66 (|has| |#1| (-37 (-385 (-525)))))) (-1819 (((-108) $) 118)) (-4079 (($ $ (-592 |#2|) (-592 (-497 |#2|))) 135) (($ $ |#2| (-497 |#2|)) 134) (($ |#1| (-497 |#2|)) 119) (($ $ |#2| (-713)) 102) (($ $ (-592 |#2|) (-592 (-713))) 101)) (-1370 (($ (-1 |#1| |#1|) $) 117)) (-2091 (($ $) 92 (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) 115)) (-1224 ((|#1| $) 114)) (-2337 (((-1073) $) 9)) (-3766 (($ $ |#2|) 96 (|has| |#1| (-37 (-385 (-525)))))) (-2663 (((-1037) $) 10)) (-3538 (($ $ (-713)) 103)) (-2338 (((-3 $ "failed") $ $) 130 (|has| |#1| (-517)))) (-1982 (($ $) 93 (|has| |#1| (-37 (-385 (-525)))))) (-3092 (($ $ |#2| $) 111) (($ $ (-592 |#2|) (-592 $)) 110) (($ $ (-592 (-273 $))) 109) (($ $ (-273 $)) 108) (($ $ $ $) 107) (($ $ (-592 $) (-592 $)) 106)) (-3013 (($ $ |#2|) 42) (($ $ (-592 |#2|)) 41) (($ $ |#2| (-713)) 40) (($ $ (-592 |#2|) (-592 (-713))) 39)) (-2513 (((-497 |#2|) $) 116)) (-4084 (($ $) 82 (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) 71 (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) 81 (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) 72 (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) 80 (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) 73 (|has| |#1| (-37 (-385 (-525)))))) (-1801 (($ $) 138)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 133 (|has| |#1| (-160))) (($ $) 131 (|has| |#1| (-517))) (($ (-385 (-525))) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1657 ((|#1| $ (-497 |#2|)) 121) (($ $ |#2| (-713)) 105) (($ $ (-592 |#2|) (-592 (-713))) 104)) (-3421 (((-3 $ "failed") $) 132 (|has| |#1| (-136)))) (-2093 (((-713)) 29)) (-4121 (($ $) 91 (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) 79 (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) 127 (|has| |#1| (-517)))) (-4096 (($ $) 90 (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) 78 (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) 89 (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) 77 (|has| |#1| (-37 (-385 (-525)))))) (-2929 (($ $) 88 (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) 76 (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) 87 (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) 75 (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) 86 (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) 74 (|has| |#1| (-37 (-385 (-525)))))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ |#2|) 38) (($ $ (-592 |#2|)) 37) (($ $ |#2| (-713)) 36) (($ $ (-592 |#2|) (-592 (-713))) 35)) (-3961 (((-108) $ $) 6)) (-4082 (($ $ |#1|) 122 (|has| |#1| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ $) 94 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 65 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 125 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 124 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
-(((-683 |#1| |#2|) (-131) (-976) (-789)) (T -683))
-((-1657 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-976)) (-4 *2 (-789)))) (-1657 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5)) (-4 *4 (-976)) (-4 *5 (-789)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-683 *3 *4)) (-4 *3 (-976)) (-4 *4 (-789)))) (-4079 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-976)) (-4 *2 (-789)))) (-4079 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5)) (-4 *4 (-976)) (-4 *5 (-789)))) (-1737 (*1 *2 *1 *3) (-12 (-4 *1 (-683 *4 *3)) (-4 *4 (-976)) (-4 *3 (-789)) (-5 *2 (-713)))) (-1737 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-713)) (-4 *1 (-683 *4 *3)) (-4 *4 (-976)) (-4 *3 (-789)))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-976)) (-4 *5 (-789)) (-5 *2 (-886 *4)))) (-2467 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-976)) (-4 *5 (-789)) (-5 *2 (-886 *4)))) (-3766 (*1 *1 *1 *2) (-12 (-4 *1 (-683 *3 *2)) (-4 *3 (-976)) (-4 *2 (-789)) (-4 *3 (-37 (-385 (-525)))))))
-(-13 (-834 |t#2|) (-905 |t#1| (-497 |t#2|) |t#2|) (-486 |t#2| $) (-288 $) (-10 -8 (-15 -1657 ($ $ |t#2| (-713))) (-15 -1657 ($ $ (-592 |t#2|) (-592 (-713)))) (-15 -3538 ($ $ (-713))) (-15 -4079 ($ $ |t#2| (-713))) (-15 -4079 ($ $ (-592 |t#2|) (-592 (-713)))) (-15 -1737 ((-713) $ |t#2|)) (-15 -1737 ((-713) $ |t#2| (-713))) (-15 -2467 ((-886 |t#1|) $ (-713))) (-15 -2467 ((-886 |t#1|) $ (-713) (-713))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -3766 ($ $ |t#2|)) (-6 (-933)) (-6 (-1112))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-497 |#2|)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-269) |has| |#1| (-517)) ((-288 $) . T) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-486 |#2| $) . T) ((-486 $ $) . T) ((-517) |has| |#1| (-517)) ((-594 #1#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-834 |#2|) . T) ((-905 |#1| #0# |#2|) . T) ((-933) |has| |#1| (-37 (-385 (-525)))) ((-982 #1#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1112) |has| |#1| (-37 (-385 (-525)))) ((-1115) |has| |#1| (-37 (-385 (-525)))))
-((-3959 (((-396 (-1086 |#4|)) (-1086 |#4|)) 30) (((-396 |#4|) |#4|) 26)))
-(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 ((-396 |#4|) |#4|)) (-15 -3959 ((-396 (-1086 |#4|)) (-1086 |#4|)))) (-789) (-735) (-13 (-286) (-138)) (-883 |#3| |#2| |#1|)) (T -684))
-((-3959 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-883 *6 *5 *4)) (-5 *2 (-396 (-1086 *7))) (-5 *1 (-684 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-3959 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-883 *6 *5 *4)))))
-(-10 -7 (-15 -3959 ((-396 |#4|) |#4|)) (-15 -3959 ((-396 (-1086 |#4|)) (-1086 |#4|))))
-((-2455 (((-396 |#4|) |#4| |#2|) 118)) (-3651 (((-396 |#4|) |#4|) NIL)) (-1510 (((-396 (-1086 |#4|)) (-1086 |#4|)) 109) (((-396 |#4|) |#4|) 40)) (-2893 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-592 (-2 (|:| -3959 (-1086 |#4|)) (|:| -1600 (-525)))))) (-1086 |#4|) (-592 |#2|) (-592 (-592 |#3|))) 68)) (-2100 (((-1086 |#3|) (-1086 |#3|) (-525)) 136)) (-2901 (((-592 (-713)) (-1086 |#4|) (-592 |#2|) (-713)) 60)) (-3774 (((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-1086 |#3|) (-1086 |#3|) |#4| (-592 |#2|) (-592 (-713)) (-592 |#3|)) 64)) (-3586 (((-2 (|:| |upol| (-1086 |#3|)) (|:| |Lval| (-592 |#3|)) (|:| |Lfact| (-592 (-2 (|:| -3959 (-1086 |#3|)) (|:| -1600 (-525))))) (|:| |ctpol| |#3|)) (-1086 |#4|) (-592 |#2|) (-592 (-592 |#3|))) 25)) (-2871 (((-2 (|:| -3966 (-1086 |#4|)) (|:| |polval| (-1086 |#3|))) (-1086 |#4|) (-1086 |#3|) (-525)) 56)) (-3567 (((-525) (-592 (-2 (|:| -3959 (-1086 |#3|)) (|:| -1600 (-525))))) 133)) (-3370 ((|#4| (-525) (-396 |#4|)) 57)) (-3470 (((-108) (-592 (-2 (|:| -3959 (-1086 |#3|)) (|:| -1600 (-525)))) (-592 (-2 (|:| -3959 (-1086 |#3|)) (|:| -1600 (-525))))) NIL)))
-(((-685 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1510 ((-396 |#4|) |#4|)) (-15 -1510 ((-396 (-1086 |#4|)) (-1086 |#4|))) (-15 -3651 ((-396 |#4|) |#4|)) (-15 -3567 ((-525) (-592 (-2 (|:| -3959 (-1086 |#3|)) (|:| -1600 (-525)))))) (-15 -2455 ((-396 |#4|) |#4| |#2|)) (-15 -2871 ((-2 (|:| -3966 (-1086 |#4|)) (|:| |polval| (-1086 |#3|))) (-1086 |#4|) (-1086 |#3|) (-525))) (-15 -2893 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-592 (-2 (|:| -3959 (-1086 |#4|)) (|:| -1600 (-525)))))) (-1086 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -3586 ((-2 (|:| |upol| (-1086 |#3|)) (|:| |Lval| (-592 |#3|)) (|:| |Lfact| (-592 (-2 (|:| -3959 (-1086 |#3|)) (|:| -1600 (-525))))) (|:| |ctpol| |#3|)) (-1086 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -3370 (|#4| (-525) (-396 |#4|))) (-15 -3470 ((-108) (-592 (-2 (|:| -3959 (-1086 |#3|)) (|:| -1600 (-525)))) (-592 (-2 (|:| -3959 (-1086 |#3|)) (|:| -1600 (-525)))))) (-15 -3774 ((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-1086 |#3|) (-1086 |#3|) |#4| (-592 |#2|) (-592 (-713)) (-592 |#3|))) (-15 -2901 ((-592 (-713)) (-1086 |#4|) (-592 |#2|) (-713))) (-15 -2100 ((-1086 |#3|) (-1086 |#3|) (-525)))) (-735) (-789) (-286) (-883 |#3| |#1| |#2|)) (T -685))
-((-2100 (*1 *2 *2 *3) (-12 (-5 *2 (-1086 *6)) (-5 *3 (-525)) (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-883 *6 *4 *5)))) (-2901 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-592 *7)) (-4 *7 (-789)) (-4 *9 (-883 *8 *6 *7)) (-4 *6 (-735)) (-4 *8 (-286)) (-5 *2 (-592 (-713))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *5 (-713)))) (-3774 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1086 *11)) (-5 *6 (-592 *10)) (-5 *7 (-592 (-713))) (-5 *8 (-592 *11)) (-4 *10 (-789)) (-4 *11 (-286)) (-4 *9 (-735)) (-4 *5 (-883 *11 *9 *10)) (-5 *2 (-592 (-1086 *5))) (-5 *1 (-685 *9 *10 *11 *5)) (-5 *3 (-1086 *5)))) (-3470 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-2 (|:| -3959 (-1086 *6)) (|:| -1600 (-525))))) (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-883 *6 *4 *5)))) (-3370 (*1 *2 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-396 *2)) (-4 *2 (-883 *7 *5 *6)) (-5 *1 (-685 *5 *6 *7 *2)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-286)))) (-3586 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1086 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8))) (-4 *7 (-789)) (-4 *8 (-286)) (-4 *9 (-883 *8 *6 *7)) (-4 *6 (-735)) (-5 *2 (-2 (|:| |upol| (-1086 *8)) (|:| |Lval| (-592 *8)) (|:| |Lfact| (-592 (-2 (|:| -3959 (-1086 *8)) (|:| -1600 (-525))))) (|:| |ctpol| *8))) (-5 *1 (-685 *6 *7 *8 *9)))) (-2893 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8))) (-4 *7 (-789)) (-4 *8 (-286)) (-4 *6 (-735)) (-4 *9 (-883 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-592 (-2 (|:| -3959 (-1086 *9)) (|:| -1600 (-525))))))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1086 *9)))) (-2871 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-525)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-286)) (-4 *9 (-883 *8 *6 *7)) (-5 *2 (-2 (|:| -3966 (-1086 *9)) (|:| |polval| (-1086 *8)))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1086 *9)) (-5 *4 (-1086 *8)))) (-2455 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-685 *5 *4 *6 *3)) (-4 *3 (-883 *6 *5 *4)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3959 (-1086 *6)) (|:| -1600 (-525))))) (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-883 *6 *4 *5)))) (-3651 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-883 *6 *4 *5)))) (-1510 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-396 (-1086 *7))) (-5 *1 (-685 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-1510 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-883 *6 *4 *5)))))
-(-10 -7 (-15 -1510 ((-396 |#4|) |#4|)) (-15 -1510 ((-396 (-1086 |#4|)) (-1086 |#4|))) (-15 -3651 ((-396 |#4|) |#4|)) (-15 -3567 ((-525) (-592 (-2 (|:| -3959 (-1086 |#3|)) (|:| -1600 (-525)))))) (-15 -2455 ((-396 |#4|) |#4| |#2|)) (-15 -2871 ((-2 (|:| -3966 (-1086 |#4|)) (|:| |polval| (-1086 |#3|))) (-1086 |#4|) (-1086 |#3|) (-525))) (-15 -2893 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-592 (-2 (|:| -3959 (-1086 |#4|)) (|:| -1600 (-525)))))) (-1086 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -3586 ((-2 (|:| |upol| (-1086 |#3|)) (|:| |Lval| (-592 |#3|)) (|:| |Lfact| (-592 (-2 (|:| -3959 (-1086 |#3|)) (|:| -1600 (-525))))) (|:| |ctpol| |#3|)) (-1086 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -3370 (|#4| (-525) (-396 |#4|))) (-15 -3470 ((-108) (-592 (-2 (|:| -3959 (-1086 |#3|)) (|:| -1600 (-525)))) (-592 (-2 (|:| -3959 (-1086 |#3|)) (|:| -1600 (-525)))))) (-15 -3774 ((-3 (-592 (-1086 |#4|)) "failed") (-1086 |#4|) (-1086 |#3|) (-1086 |#3|) |#4| (-592 |#2|) (-592 (-713)) (-592 |#3|))) (-15 -2901 ((-592 (-713)) (-1086 |#4|) (-592 |#2|) (-713))) (-15 -2100 ((-1086 |#3|) (-1086 |#3|) (-525))))
-((-2097 (($ $ (-855)) 12)))
-(((-686 |#1| |#2|) (-10 -8 (-15 -2097 (|#1| |#1| (-855)))) (-687 |#2|) (-160)) (T -686))
-NIL
-(-10 -8 (-15 -2097 (|#1| |#1| (-855))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2979 (($ $ (-855)) 28)) (-2097 (($ $ (-855)) 33)) (-1640 (($ $ (-855)) 29)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1518 (($ $ $) 25)) (-1908 (((-797) $) 11)) (-2260 (($ $ $ $) 26)) (-2331 (($ $ $) 24)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 30)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-3363 (*1 *1) (-4 *1 (-669))) (-2305 (*1 *1) (-4 *1 (-669))) (-1985 (*1 *2 *1) (-12 (-4 *1 (-669)) (-5 *2 (-108)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713)))) (-1576 (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713)))) (-3762 (*1 *1 *1) (|partial| -4 *1 (-669))))
+(-13 (-1032) (-10 -8 (-15 (-3363) ($) -1479) (-15 -2305 ($) -1479) (-15 -1985 ((-108) $)) (-15 ** ($ $ (-713))) (-15 -1576 ($ $ (-713))) (-15 -3762 ((-3 $ "failed") $))))
+(((-97) . T) ((-566 (-798)) . T) ((-1032) . T) ((-1020) . T))
+((-2315 (((-2 (|:| -2003 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2223 (((-2 (|:| -2003 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-3263 ((|#2| (-385 |#2|) (-1 |#2| |#2|)) 13)) (-1588 (((-2 (|:| |poly| |#2|) (|:| -2003 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|)) 47)))
+(((-670 |#1| |#2|) (-10 -7 (-15 -2223 ((-2 (|:| -2003 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2315 ((-2 (|:| -2003 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3263 (|#2| (-385 |#2|) (-1 |#2| |#2|))) (-15 -1588 ((-2 (|:| |poly| |#2|) (|:| -2003 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|)))) (-341) (-1149 |#1|)) (T -670))
+((-1588 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1149 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2003 (-385 *6)) (|:| |special| (-385 *6)))) (-5 *1 (-670 *5 *6)) (-5 *3 (-385 *6)))) (-3263 (*1 *2 *3 *4) (-12 (-5 *3 (-385 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1149 *5)) (-5 *1 (-670 *5 *2)) (-4 *5 (-341)))) (-2315 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1149 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -2003 (-396 *3)) (|:| |special| (-396 *3)))) (-5 *1 (-670 *5 *3)))) (-2223 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1149 *5)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -2003 *3) (|:| |special| *3))) (-5 *1 (-670 *5 *3)))))
+(-10 -7 (-15 -2223 ((-2 (|:| -2003 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2315 ((-2 (|:| -2003 (-396 |#2|)) (|:| |special| (-396 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3263 (|#2| (-385 |#2|) (-1 |#2| |#2|))) (-15 -1588 ((-2 (|:| |poly| |#2|) (|:| -2003 (-385 |#2|)) (|:| |special| (-385 |#2|))) (-385 |#2|) (-1 |#2| |#2|))))
+((-1797 ((|#7| (-592 |#5|) |#6|) NIL)) (-2694 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-671 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2694 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1797 (|#7| (-592 |#5|) |#6|))) (-789) (-735) (-735) (-977) (-977) (-884 |#4| |#2| |#1|) (-884 |#5| |#3| |#1|)) (T -671))
+((-1797 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *9)) (-4 *9 (-977)) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *8 (-977)) (-4 *2 (-884 *9 *7 *5)) (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735)) (-4 *4 (-884 *8 *6 *5)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-977)) (-4 *9 (-977)) (-4 *5 (-789)) (-4 *6 (-735)) (-4 *2 (-884 *9 *7 *5)) (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735)) (-4 *4 (-884 *8 *6 *5)))))
+(-10 -7 (-15 -2694 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1797 (|#7| (-592 |#5|) |#6|)))
+((-2694 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-672 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2694 (|#7| (-1 |#2| |#1|) |#6|))) (-789) (-789) (-735) (-735) (-977) (-884 |#5| |#3| |#1|) (-884 |#5| |#4| |#2|)) (T -672))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-789)) (-4 *6 (-789)) (-4 *7 (-735)) (-4 *9 (-977)) (-4 *2 (-884 *9 *8 *6)) (-5 *1 (-672 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-735)) (-4 *4 (-884 *9 *7 *5)))))
+(-10 -7 (-15 -2694 (|#7| (-1 |#2| |#1|) |#6|)))
+((-2195 (((-396 |#4|) |#4|) 41)))
+(((-673 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2195 ((-396 |#4|) |#4|))) (-735) (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $)) (-15 -2577 ((-3 $ "failed") (-1091))))) (-286) (-884 (-887 |#3|) |#1| |#2|)) (T -673))
+((-2195 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $)) (-15 -2577 ((-3 $ "failed") (-1091)))))) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-673 *4 *5 *6 *3)) (-4 *3 (-884 (-887 *6) *4 *5)))))
+(-10 -7 (-15 -2195 ((-396 |#4|) |#4|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2383 (((-592 (-800 |#1|)) $) NIL)) (-2146 (((-1087 $) $ (-800 |#1|)) NIL) (((-1087 |#2|) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-3711 (($ $) NIL (|has| |#2| (-517)))) (-3380 (((-108) $) NIL (|has| |#2| (-517)))) (-3848 (((-713) $) NIL) (((-713) $ (-592 (-800 |#1|))) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-3706 (($ $) NIL (|has| |#2| (-429)))) (-2100 (((-396 $) $) NIL (|has| |#2| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-800 |#1|) "failed") $) NIL)) (-3898 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-800 |#1|) $) NIL)) (-1516 (($ $ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-2571 (($ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3026 (($ $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-2558 (((-592 $) $) NIL)) (-3836 (((-108) $) NIL (|has| |#2| (-844)))) (-2192 (($ $ |#2| (-497 (-800 |#1|)) $) NIL)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-800 |#1|) (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) NIL)) (-2368 (($ (-1087 |#2|) (-800 |#1|)) NIL) (($ (-1087 $) (-800 |#1|)) NIL)) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) NIL)) (-2352 (($ |#2| (-497 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ (-800 |#1|)) NIL)) (-3724 (((-497 (-800 |#1|)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-2371 (($ $ $) NIL (|has| |#2| (-789)))) (-2535 (($ $ $) NIL (|has| |#2| (-789)))) (-3922 (($ (-1 (-497 (-800 |#1|)) (-497 (-800 |#1|))) $) NIL)) (-2694 (($ (-1 |#2| |#2|) $) NIL)) (-3567 (((-3 (-800 |#1|) "failed") $) NIL)) (-2538 (($ $) NIL)) (-2548 ((|#2| $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3451 (((-1074) $) NIL)) (-4228 (((-3 (-592 $) "failed") $) NIL)) (-3852 (((-3 (-592 $) "failed") $) NIL)) (-1553 (((-3 (-2 (|:| |var| (-800 |#1|)) (|:| -1864 (-713))) "failed") $) NIL)) (-2012 (((-1038) $) NIL)) (-2513 (((-108) $) NIL)) (-2525 ((|#2| $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-429)))) (-2794 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-2195 (((-396 $) $) NIL (|has| |#2| (-844)))) (-1680 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-2602 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-800 |#1|) |#2|) NIL) (($ $ (-592 (-800 |#1|)) (-592 |#2|)) NIL) (($ $ (-800 |#1|) $) NIL) (($ $ (-592 (-800 |#1|)) (-592 $)) NIL)) (-2094 (($ $ (-800 |#1|)) NIL (|has| |#2| (-160)))) (-2523 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-1587 (((-497 (-800 |#1|)) $) NIL) (((-713) $ (-800 |#1|)) NIL) (((-592 (-713)) $ (-592 (-800 |#1|))) NIL)) (-2749 (((-827 (-357)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-800 |#1|) (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-800 |#1|) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2026 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-800 |#1|)) NIL (|has| |#2| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-800 |#1|)) NIL) (($ $) NIL (|has| |#2| (-517))) (($ (-385 (-525))) NIL (-3279 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-968 (-385 (-525))))))) (-1562 (((-592 |#2|) $) NIL)) (-3468 ((|#2| $ (-497 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-2104 (((-713)) NIL)) (-3658 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-3959 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $ (-800 |#1|)) NIL) (($ $ (-592 (-800 |#1|))) NIL) (($ $ (-800 |#1|) (-713)) NIL) (($ $ (-592 (-800 |#1|)) (-592 (-713))) NIL)) (-4045 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4100 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-674 |#1| |#2|) (-884 |#2| (-497 (-800 |#1|)) (-800 |#1|)) (-592 (-1091)) (-977)) (T -674))
+NIL
+(-884 |#2| (-497 (-800 |#1|)) (-800 |#1|))
+((-1474 (((-2 (|:| -2017 (-887 |#3|)) (|:| -3569 (-887 |#3|))) |#4|) 14)) (-2877 ((|#4| |#4| |#2|) 33)) (-2579 ((|#4| (-385 (-887 |#3|)) |#2|) 64)) (-1252 ((|#4| (-1087 (-887 |#3|)) |#2|) 77)) (-1271 ((|#4| (-1087 |#4|) |#2|) 51)) (-3080 ((|#4| |#4| |#2|) 54)) (-2195 (((-396 |#4|) |#4|) 40)))
+(((-675 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1474 ((-2 (|:| -2017 (-887 |#3|)) (|:| -3569 (-887 |#3|))) |#4|)) (-15 -3080 (|#4| |#4| |#2|)) (-15 -1271 (|#4| (-1087 |#4|) |#2|)) (-15 -2877 (|#4| |#4| |#2|)) (-15 -1252 (|#4| (-1087 (-887 |#3|)) |#2|)) (-15 -2579 (|#4| (-385 (-887 |#3|)) |#2|)) (-15 -2195 ((-396 |#4|) |#4|))) (-735) (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $)))) (-517) (-884 (-385 (-887 |#3|)) |#1| |#2|)) (T -675))
+((-2195 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $))))) (-4 *6 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-884 (-385 (-887 *6)) *4 *5)))) (-2579 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *6))) (-4 *6 (-517)) (-4 *2 (-884 (-385 (-887 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-735)) (-4 *4 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $))))))) (-1252 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 (-887 *6))) (-4 *6 (-517)) (-4 *2 (-884 (-385 (-887 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-735)) (-4 *4 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $))))))) (-2877 (*1 *2 *2 *3) (-12 (-4 *4 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $))))) (-4 *5 (-517)) (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-884 (-385 (-887 *5)) *4 *3)))) (-1271 (*1 *2 *3 *4) (-12 (-5 *3 (-1087 *2)) (-4 *2 (-884 (-385 (-887 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-735)) (-4 *4 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $))))) (-4 *6 (-517)))) (-3080 (*1 *2 *2 *3) (-12 (-4 *4 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $))))) (-4 *5 (-517)) (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-884 (-385 (-887 *5)) *4 *3)))) (-1474 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $))))) (-4 *6 (-517)) (-5 *2 (-2 (|:| -2017 (-887 *6)) (|:| -3569 (-887 *6)))) (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-884 (-385 (-887 *6)) *4 *5)))))
+(-10 -7 (-15 -1474 ((-2 (|:| -2017 (-887 |#3|)) (|:| -3569 (-887 |#3|))) |#4|)) (-15 -3080 (|#4| |#4| |#2|)) (-15 -1271 (|#4| (-1087 |#4|) |#2|)) (-15 -2877 (|#4| |#4| |#2|)) (-15 -1252 (|#4| (-1087 (-887 |#3|)) |#2|)) (-15 -2579 (|#4| (-385 (-887 |#3|)) |#2|)) (-15 -2195 ((-396 |#4|) |#4|)))
+((-2195 (((-396 |#4|) |#4|) 52)))
+(((-676 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2195 ((-396 |#4|) |#4|))) (-735) (-789) (-13 (-286) (-138)) (-884 (-385 |#3|) |#1| |#2|)) (T -676))
+((-2195 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-676 *4 *5 *6 *3)) (-4 *3 (-884 (-385 *6) *4 *5)))))
+(-10 -7 (-15 -2195 ((-396 |#4|) |#4|)))
+((-2694 (((-678 |#2| |#3|) (-1 |#2| |#1|) (-678 |#1| |#3|)) 18)))
+(((-677 |#1| |#2| |#3|) (-10 -7 (-15 -2694 ((-678 |#2| |#3|) (-1 |#2| |#1|) (-678 |#1| |#3|)))) (-977) (-977) (-669)) (T -677))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-678 *5 *7)) (-4 *5 (-977)) (-4 *6 (-977)) (-4 *7 (-669)) (-5 *2 (-678 *6 *7)) (-5 *1 (-677 *5 *6 *7)))))
+(-10 -7 (-15 -2694 ((-678 |#2| |#3|) (-1 |#2| |#1|) (-678 |#1| |#3|))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 28)) (-4192 (((-592 (-2 (|:| -1655 |#1|) (|:| -3219 |#2|))) $) 29)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4190 (((-713)) 20 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-3898 ((|#2| $) NIL) ((|#1| $) NIL)) (-2571 (($ $) 79 (|has| |#2| (-789)))) (-3762 (((-3 $ "failed") $) 65)) (-2899 (($) 35 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) 55)) (-2177 (((-592 $) $) 39)) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| |#2|) 16)) (-2694 (($ (-1 |#1| |#1|) $) 54)) (-1736 (((-856) $) 32 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-2538 ((|#2| $) 78 (|has| |#2| (-789)))) (-2548 ((|#1| $) 77 (|has| |#2| (-789)))) (-3451 (((-1074) $) NIL)) (-3640 (($ (-856)) 27 (-12 (|has| |#2| (-346)) (|has| |#1| (-346))))) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 76) (($ (-525)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-592 (-2 (|:| -1655 |#1|) (|:| -3219 |#2|)))) 11)) (-1562 (((-592 |#1|) $) 41)) (-3468 ((|#1| $ |#2|) 88)) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 12 T CONST)) (-3363 (($) 33 T CONST)) (-3994 (((-108) $ $) 80)) (-4090 (($ $) 47) (($ $ $) NIL)) (-4080 (($ $ $) 26)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160)))))
+(((-678 |#1| |#2|) (-13 (-977) (-968 |#2|) (-968 |#1|) (-10 -8 (-15 -2352 ($ |#1| |#2|)) (-15 -3468 (|#1| $ |#2|)) (-15 -1270 ($ (-592 (-2 (|:| -1655 |#1|) (|:| -3219 |#2|))))) (-15 -4192 ((-592 (-2 (|:| -1655 |#1|) (|:| -3219 |#2|))) $)) (-15 -2694 ($ (-1 |#1| |#1|) $)) (-15 -1788 ((-108) $)) (-15 -1562 ((-592 |#1|) $)) (-15 -2177 ((-592 $) $)) (-15 -1647 ((-713) $)) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-789)) (PROGN (-15 -2538 (|#2| $)) (-15 -2548 (|#1| $)) (-15 -2571 ($ $))) |%noBranch|))) (-977) (-669)) (T -678))
+((-2352 (*1 *1 *2 *3) (-12 (-5 *1 (-678 *2 *3)) (-4 *2 (-977)) (-4 *3 (-669)))) (-3468 (*1 *2 *1 *3) (-12 (-4 *2 (-977)) (-5 *1 (-678 *2 *3)) (-4 *3 (-669)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -1655 *3) (|:| -3219 *4)))) (-4 *3 (-977)) (-4 *4 (-669)) (-5 *1 (-678 *3 *4)))) (-4192 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -1655 *3) (|:| -3219 *4)))) (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669)))) (-2694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-678 *3 *4)) (-4 *4 (-669)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669)))) (-1562 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669)))) (-2177 (*1 *2 *1) (-12 (-5 *2 (-592 (-678 *3 *4))) (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669)))) (-1647 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669)))) (-2538 (*1 *2 *1) (-12 (-4 *2 (-669)) (-4 *2 (-789)) (-5 *1 (-678 *3 *2)) (-4 *3 (-977)))) (-2548 (*1 *2 *1) (-12 (-4 *2 (-977)) (-5 *1 (-678 *2 *3)) (-4 *3 (-789)) (-4 *3 (-669)))) (-2571 (*1 *1 *1) (-12 (-5 *1 (-678 *2 *3)) (-4 *3 (-789)) (-4 *2 (-977)) (-4 *3 (-669)))))
+(-13 (-977) (-968 |#2|) (-968 |#1|) (-10 -8 (-15 -2352 ($ |#1| |#2|)) (-15 -3468 (|#1| $ |#2|)) (-15 -1270 ($ (-592 (-2 (|:| -1655 |#1|) (|:| -3219 |#2|))))) (-15 -4192 ((-592 (-2 (|:| -1655 |#1|) (|:| -3219 |#2|))) $)) (-15 -2694 ($ (-1 |#1| |#1|) $)) (-15 -1788 ((-108) $)) (-15 -1562 ((-592 |#1|) $)) (-15 -2177 ((-592 $) $)) (-15 -1647 ((-713) $)) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-789)) (PROGN (-15 -2538 (|#2| $)) (-15 -2548 (|#1| $)) (-15 -2571 ($ $))) |%noBranch|)))
+((-1260 (((-108) $ $) 19)) (-2805 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2083 (($ $ $) 72)) (-3921 (((-108) $ $) 73)) (-3330 (((-108) $ (-713)) 8)) (-2955 (($ (-592 |#1|)) 68) (($) 67)) (-1608 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4255)))) (-2305 (($) 7 T CONST)) (-1540 (($ $) 62)) (-3137 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2592 (($ |#1| $) 47 (|has| $ (-6 -4255))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4255)))) (-1614 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4255)))) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) 9)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22)) (-3792 (($ $ $) 69)) (-3955 ((|#1| $) 39)) (-3985 (($ |#1| $) 40) (($ |#1| $ (-713)) 63)) (-2012 (((-1038) $) 21)) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-1881 ((|#1| $) 41)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-2386 (((-592 (-2 (|:| -2544 |#1|) (|:| -2040 (-713)))) $) 61)) (-4004 (($ $ |#1|) 71) (($ $ $) 70)) (-3981 (($) 49) (($ (-592 |#1|)) 48)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-2749 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 50)) (-1270 (((-798) $) 18)) (-3316 (($ (-592 |#1|)) 66) (($) 65)) (-1665 (($ (-592 |#1|)) 42)) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20)) (-4017 (((-108) $ $) 64)) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-679 |#1|) (-131) (-1020)) (T -679))
+NIL
+(-13 (-637 |t#1|) (-1018 |t#1|))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-566 (-798)) . T) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-637 |#1|) . T) ((-1018 |#1|) . T) ((-1020) . T) ((-1127) . T))
+((-1260 (((-108) $ $) NIL)) (-2805 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-2083 (($ $ $) 79)) (-3921 (((-108) $ $) 83)) (-3330 (((-108) $ (-713)) NIL)) (-2955 (($ (-592 |#1|)) 24) (($) 16)) (-1608 (($ (-1 (-108) |#1|) $) 70 (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-1540 (($ $) 71)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2592 (($ |#1| $) 61 (|has| $ (-6 -4255))) (($ (-1 (-108) |#1|) $) 64 (|has| $ (-6 -4255))) (($ |#1| $ (-525)) 62) (($ (-1 (-108) |#1|) $ (-525)) 65)) (-1614 (($ |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (($ |#1| $ (-525)) 67) (($ (-1 (-108) |#1|) $ (-525)) 68)) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-3702 (((-592 |#1|) $) 32 (|has| $ (-6 -4255)))) (-3334 (($) 14) (($ |#1|) 26) (($ (-592 |#1|)) 21)) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 |#1|) $) 38)) (-2783 (((-108) |#1| $) 58 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2622 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 75)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL)) (-3792 (($ $ $) 77)) (-3955 ((|#1| $) 55)) (-3985 (($ |#1| $) 56) (($ |#1| $ (-713)) 72)) (-2012 (((-1038) $) NIL)) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1881 ((|#1| $) 54)) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) 50)) (-2718 (($) 13)) (-2386 (((-592 (-2 (|:| -2544 |#1|) (|:| -2040 (-713)))) $) 48)) (-4004 (($ $ |#1|) NIL) (($ $ $) 78)) (-3981 (($) 15) (($ (-592 |#1|)) 23)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) 60 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) 66)) (-2749 (((-501) $) 36 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 20)) (-1270 (((-798) $) 44)) (-3316 (($ (-592 |#1|)) 25) (($) 17)) (-1665 (($ (-592 |#1|)) 22)) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 81)) (-4017 (((-108) $ $) 82)) (-3596 (((-713) $) 59 (|has| $ (-6 -4255)))))
+(((-680 |#1|) (-13 (-679 |#1|) (-10 -8 (-6 -4255) (-6 -4256) (-15 -3334 ($)) (-15 -3334 ($ |#1|)) (-15 -3334 ($ (-592 |#1|))) (-15 -1749 ((-592 |#1|) $)) (-15 -1614 ($ |#1| $ (-525))) (-15 -1614 ($ (-1 (-108) |#1|) $ (-525))) (-15 -2592 ($ |#1| $ (-525))) (-15 -2592 ($ (-1 (-108) |#1|) $ (-525))))) (-1020)) (T -680))
+((-3334 (*1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1020)))) (-3334 (*1 *1 *2) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1020)))) (-3334 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-680 *3)))) (-1749 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1020)))) (-1614 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1020)))) (-1614 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1020)) (-5 *1 (-680 *4)))) (-2592 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1020)))) (-2592 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1020)) (-5 *1 (-680 *4)))))
+(-13 (-679 |#1|) (-10 -8 (-6 -4255) (-6 -4256) (-15 -3334 ($)) (-15 -3334 ($ |#1|)) (-15 -3334 ($ (-592 |#1|))) (-15 -1749 ((-592 |#1|) $)) (-15 -1614 ($ |#1| $ (-525))) (-15 -1614 ($ (-1 (-108) |#1|) $ (-525))) (-15 -2592 ($ |#1| $ (-525))) (-15 -2592 ($ (-1 (-108) |#1|) $ (-525)))))
+((-3712 (((-1178) (-1074)) 8)))
+(((-681) (-10 -7 (-15 -3712 ((-1178) (-1074))))) (T -681))
+((-3712 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-681)))))
+(-10 -7 (-15 -3712 ((-1178) (-1074))))
+((-2155 (((-592 |#1|) (-592 |#1|) (-592 |#1|)) 10)))
+(((-682 |#1|) (-10 -7 (-15 -2155 ((-592 |#1|) (-592 |#1|) (-592 |#1|)))) (-789)) (T -682))
+((-2155 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-682 *3)))))
+(-10 -7 (-15 -2155 ((-592 |#1|) (-592 |#1|) (-592 |#1|))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2383 (((-592 |#2|) $) 136)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 129 (|has| |#1| (-517)))) (-3711 (($ $) 128 (|has| |#1| (-517)))) (-3380 (((-108) $) 126 (|has| |#1| (-517)))) (-2351 (($ $) 85 (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) 68 (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) 19)) (-2211 (($ $) 67 (|has| |#1| (-37 (-385 (-525)))))) (-2320 (($ $) 84 (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) 69 (|has| |#1| (-37 (-385 (-525)))))) (-2382 (($ $) 83 (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) 70 (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) 17 T CONST)) (-2571 (($ $) 120)) (-3762 (((-3 $ "failed") $) 34)) (-4161 (((-887 |#1|) $ (-713)) 98) (((-887 |#1|) $ (-713) (-713)) 97)) (-2911 (((-108) $) 137)) (-1535 (($) 95 (|has| |#1| (-37 (-385 (-525)))))) (-3973 (((-713) $ |#2|) 100) (((-713) $ |#2| (-713)) 99)) (-1985 (((-108) $) 31)) (-3220 (($ $ (-525)) 66 (|has| |#1| (-37 (-385 (-525)))))) (-1788 (((-108) $) 118)) (-2352 (($ $ (-592 |#2|) (-592 (-497 |#2|))) 135) (($ $ |#2| (-497 |#2|)) 134) (($ |#1| (-497 |#2|)) 119) (($ $ |#2| (-713)) 102) (($ $ (-592 |#2|) (-592 (-713))) 101)) (-2694 (($ (-1 |#1| |#1|) $) 117)) (-1415 (($ $) 92 (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) 115)) (-2548 ((|#1| $) 114)) (-3451 (((-1074) $) 9)) (-2650 (($ $ |#2|) 96 (|has| |#1| (-37 (-385 (-525)))))) (-2012 (((-1038) $) 10)) (-2182 (($ $ (-713)) 103)) (-1680 (((-3 $ "failed") $ $) 130 (|has| |#1| (-517)))) (-1250 (($ $) 93 (|has| |#1| (-37 (-385 (-525)))))) (-2602 (($ $ |#2| $) 111) (($ $ (-592 |#2|) (-592 $)) 110) (($ $ (-592 (-273 $))) 109) (($ $ (-273 $)) 108) (($ $ $ $) 107) (($ $ (-592 $) (-592 $)) 106)) (-2523 (($ $ |#2|) 42) (($ $ (-592 |#2|)) 41) (($ $ |#2| (-713)) 40) (($ $ (-592 |#2|) (-592 (-713))) 39)) (-1587 (((-497 |#2|) $) 116)) (-2396 (($ $) 82 (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) 71 (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) 81 (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) 72 (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) 80 (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) 73 (|has| |#1| (-37 (-385 (-525)))))) (-3577 (($ $) 138)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 133 (|has| |#1| (-160))) (($ $) 131 (|has| |#1| (-517))) (($ (-385 (-525))) 123 (|has| |#1| (-37 (-385 (-525)))))) (-3468 ((|#1| $ (-497 |#2|)) 121) (($ $ |#2| (-713)) 105) (($ $ (-592 |#2|) (-592 (-713))) 104)) (-3425 (((-3 $ "failed") $) 132 (|has| |#1| (-136)))) (-2104 (((-713)) 29)) (-2438 (($ $) 91 (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) 79 (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) 127 (|has| |#1| (-517)))) (-2410 (($ $) 90 (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) 78 (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) 89 (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) 77 (|has| |#1| (-37 (-385 (-525)))))) (-2687 (($ $) 88 (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) 76 (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) 87 (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) 75 (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) 86 (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) 74 (|has| |#1| (-37 (-385 (-525)))))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ |#2|) 38) (($ $ (-592 |#2|)) 37) (($ $ |#2| (-713)) 36) (($ $ (-592 |#2|) (-592 (-713))) 35)) (-3994 (((-108) $ $) 6)) (-4100 (($ $ |#1|) 122 (|has| |#1| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ $) 94 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 65 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 125 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 124 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 113) (($ $ |#1|) 112)))
+(((-683 |#1| |#2|) (-131) (-977) (-789)) (T -683))
+((-3468 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-977)) (-4 *2 (-789)))) (-3468 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5)) (-4 *4 (-977)) (-4 *5 (-789)))) (-2182 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-683 *3 *4)) (-4 *3 (-977)) (-4 *4 (-789)))) (-2352 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-977)) (-4 *2 (-789)))) (-2352 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5)) (-4 *4 (-977)) (-4 *5 (-789)))) (-3973 (*1 *2 *1 *3) (-12 (-4 *1 (-683 *4 *3)) (-4 *4 (-977)) (-4 *3 (-789)) (-5 *2 (-713)))) (-3973 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-713)) (-4 *1 (-683 *4 *3)) (-4 *4 (-977)) (-4 *3 (-789)))) (-4161 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-977)) (-4 *5 (-789)) (-5 *2 (-887 *4)))) (-4161 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-977)) (-4 *5 (-789)) (-5 *2 (-887 *4)))) (-2650 (*1 *1 *1 *2) (-12 (-4 *1 (-683 *3 *2)) (-4 *3 (-977)) (-4 *2 (-789)) (-4 *3 (-37 (-385 (-525)))))))
+(-13 (-835 |t#2|) (-906 |t#1| (-497 |t#2|) |t#2|) (-486 |t#2| $) (-288 $) (-10 -8 (-15 -3468 ($ $ |t#2| (-713))) (-15 -3468 ($ $ (-592 |t#2|) (-592 (-713)))) (-15 -2182 ($ $ (-713))) (-15 -2352 ($ $ |t#2| (-713))) (-15 -2352 ($ $ (-592 |t#2|) (-592 (-713)))) (-15 -3973 ((-713) $ |t#2|)) (-15 -3973 ((-713) $ |t#2| (-713))) (-15 -4161 ((-887 |t#1|) $ (-713))) (-15 -4161 ((-887 |t#1|) $ (-713) (-713))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2650 ($ $ |t#2|)) (-6 (-934)) (-6 (-1113))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-497 |#2|)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-269) |has| |#1| (-517)) ((-288 $) . T) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-486 |#2| $) . T) ((-486 $ $) . T) ((-517) |has| |#1| (-517)) ((-594 #1#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-835 |#2|) . T) ((-906 |#1| #0# |#2|) . T) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-983 #1#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1113) |has| |#1| (-37 (-385 (-525)))) ((-1116) |has| |#1| (-37 (-385 (-525)))))
+((-2195 (((-396 (-1087 |#4|)) (-1087 |#4|)) 30) (((-396 |#4|) |#4|) 26)))
+(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2195 ((-396 |#4|) |#4|)) (-15 -2195 ((-396 (-1087 |#4|)) (-1087 |#4|)))) (-789) (-735) (-13 (-286) (-138)) (-884 |#3| |#2| |#1|)) (T -684))
+((-2195 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-396 (-1087 *7))) (-5 *1 (-684 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-396 *3)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-884 *6 *5 *4)))))
+(-10 -7 (-15 -2195 ((-396 |#4|) |#4|)) (-15 -2195 ((-396 (-1087 |#4|)) (-1087 |#4|))))
+((-2323 (((-396 |#4|) |#4| |#2|) 118)) (-3884 (((-396 |#4|) |#4|) NIL)) (-2100 (((-396 (-1087 |#4|)) (-1087 |#4|)) 109) (((-396 |#4|) |#4|) 40)) (-4010 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-592 (-2 (|:| -2195 (-1087 |#4|)) (|:| -1864 (-525)))))) (-1087 |#4|) (-592 |#2|) (-592 (-592 |#3|))) 68)) (-2210 (((-1087 |#3|) (-1087 |#3|) (-525)) 136)) (-4084 (((-592 (-713)) (-1087 |#4|) (-592 |#2|) (-713)) 60)) (-3492 (((-3 (-592 (-1087 |#4|)) "failed") (-1087 |#4|) (-1087 |#3|) (-1087 |#3|) |#4| (-592 |#2|) (-592 (-713)) (-592 |#3|)) 64)) (-1416 (((-2 (|:| |upol| (-1087 |#3|)) (|:| |Lval| (-592 |#3|)) (|:| |Lfact| (-592 (-2 (|:| -2195 (-1087 |#3|)) (|:| -1864 (-525))))) (|:| |ctpol| |#3|)) (-1087 |#4|) (-592 |#2|) (-592 (-592 |#3|))) 25)) (-3811 (((-2 (|:| -3696 (-1087 |#4|)) (|:| |polval| (-1087 |#3|))) (-1087 |#4|) (-1087 |#3|) (-525)) 56)) (-1218 (((-525) (-592 (-2 (|:| -2195 (-1087 |#3|)) (|:| -1864 (-525))))) 133)) (-4168 ((|#4| (-525) (-396 |#4|)) 57)) (-2848 (((-108) (-592 (-2 (|:| -2195 (-1087 |#3|)) (|:| -1864 (-525)))) (-592 (-2 (|:| -2195 (-1087 |#3|)) (|:| -1864 (-525))))) NIL)))
+(((-685 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2100 ((-396 |#4|) |#4|)) (-15 -2100 ((-396 (-1087 |#4|)) (-1087 |#4|))) (-15 -3884 ((-396 |#4|) |#4|)) (-15 -1218 ((-525) (-592 (-2 (|:| -2195 (-1087 |#3|)) (|:| -1864 (-525)))))) (-15 -2323 ((-396 |#4|) |#4| |#2|)) (-15 -3811 ((-2 (|:| -3696 (-1087 |#4|)) (|:| |polval| (-1087 |#3|))) (-1087 |#4|) (-1087 |#3|) (-525))) (-15 -4010 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-592 (-2 (|:| -2195 (-1087 |#4|)) (|:| -1864 (-525)))))) (-1087 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -1416 ((-2 (|:| |upol| (-1087 |#3|)) (|:| |Lval| (-592 |#3|)) (|:| |Lfact| (-592 (-2 (|:| -2195 (-1087 |#3|)) (|:| -1864 (-525))))) (|:| |ctpol| |#3|)) (-1087 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -4168 (|#4| (-525) (-396 |#4|))) (-15 -2848 ((-108) (-592 (-2 (|:| -2195 (-1087 |#3|)) (|:| -1864 (-525)))) (-592 (-2 (|:| -2195 (-1087 |#3|)) (|:| -1864 (-525)))))) (-15 -3492 ((-3 (-592 (-1087 |#4|)) "failed") (-1087 |#4|) (-1087 |#3|) (-1087 |#3|) |#4| (-592 |#2|) (-592 (-713)) (-592 |#3|))) (-15 -4084 ((-592 (-713)) (-1087 |#4|) (-592 |#2|) (-713))) (-15 -2210 ((-1087 |#3|) (-1087 |#3|) (-525)))) (-735) (-789) (-286) (-884 |#3| |#1| |#2|)) (T -685))
+((-2210 (*1 *2 *2 *3) (-12 (-5 *2 (-1087 *6)) (-5 *3 (-525)) (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))) (-4084 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1087 *9)) (-5 *4 (-592 *7)) (-4 *7 (-789)) (-4 *9 (-884 *8 *6 *7)) (-4 *6 (-735)) (-4 *8 (-286)) (-5 *2 (-592 (-713))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *5 (-713)))) (-3492 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1087 *11)) (-5 *6 (-592 *10)) (-5 *7 (-592 (-713))) (-5 *8 (-592 *11)) (-4 *10 (-789)) (-4 *11 (-286)) (-4 *9 (-735)) (-4 *5 (-884 *11 *9 *10)) (-5 *2 (-592 (-1087 *5))) (-5 *1 (-685 *9 *10 *11 *5)) (-5 *3 (-1087 *5)))) (-2848 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-2 (|:| -2195 (-1087 *6)) (|:| -1864 (-525))))) (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))) (-4168 (*1 *2 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-396 *2)) (-4 *2 (-884 *7 *5 *6)) (-5 *1 (-685 *5 *6 *7 *2)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-286)))) (-1416 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1087 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8))) (-4 *7 (-789)) (-4 *8 (-286)) (-4 *9 (-884 *8 *6 *7)) (-4 *6 (-735)) (-5 *2 (-2 (|:| |upol| (-1087 *8)) (|:| |Lval| (-592 *8)) (|:| |Lfact| (-592 (-2 (|:| -2195 (-1087 *8)) (|:| -1864 (-525))))) (|:| |ctpol| *8))) (-5 *1 (-685 *6 *7 *8 *9)))) (-4010 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8))) (-4 *7 (-789)) (-4 *8 (-286)) (-4 *6 (-735)) (-4 *9 (-884 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-592 (-2 (|:| -2195 (-1087 *9)) (|:| -1864 (-525))))))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1087 *9)))) (-3811 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-525)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-286)) (-4 *9 (-884 *8 *6 *7)) (-5 *2 (-2 (|:| -3696 (-1087 *9)) (|:| |polval| (-1087 *8)))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1087 *9)) (-5 *4 (-1087 *8)))) (-2323 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-685 *5 *4 *6 *3)) (-4 *3 (-884 *6 *5 *4)))) (-1218 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -2195 (-1087 *6)) (|:| -1864 (-525))))) (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))) (-3884 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-884 *6 *4 *5)))) (-2100 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1087 *7))) (-5 *1 (-685 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-2100 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-884 *6 *4 *5)))))
+(-10 -7 (-15 -2100 ((-396 |#4|) |#4|)) (-15 -2100 ((-396 (-1087 |#4|)) (-1087 |#4|))) (-15 -3884 ((-396 |#4|) |#4|)) (-15 -1218 ((-525) (-592 (-2 (|:| -2195 (-1087 |#3|)) (|:| -1864 (-525)))))) (-15 -2323 ((-396 |#4|) |#4| |#2|)) (-15 -3811 ((-2 (|:| -3696 (-1087 |#4|)) (|:| |polval| (-1087 |#3|))) (-1087 |#4|) (-1087 |#3|) (-525))) (-15 -4010 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-592 (-2 (|:| -2195 (-1087 |#4|)) (|:| -1864 (-525)))))) (-1087 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -1416 ((-2 (|:| |upol| (-1087 |#3|)) (|:| |Lval| (-592 |#3|)) (|:| |Lfact| (-592 (-2 (|:| -2195 (-1087 |#3|)) (|:| -1864 (-525))))) (|:| |ctpol| |#3|)) (-1087 |#4|) (-592 |#2|) (-592 (-592 |#3|)))) (-15 -4168 (|#4| (-525) (-396 |#4|))) (-15 -2848 ((-108) (-592 (-2 (|:| -2195 (-1087 |#3|)) (|:| -1864 (-525)))) (-592 (-2 (|:| -2195 (-1087 |#3|)) (|:| -1864 (-525)))))) (-15 -3492 ((-3 (-592 (-1087 |#4|)) "failed") (-1087 |#4|) (-1087 |#3|) (-1087 |#3|) |#4| (-592 |#2|) (-592 (-713)) (-592 |#3|))) (-15 -4084 ((-592 (-713)) (-1087 |#4|) (-592 |#2|) (-713))) (-15 -2210 ((-1087 |#3|) (-1087 |#3|) (-525))))
+((-2161 (($ $ (-856)) 12)))
+(((-686 |#1| |#2|) (-10 -8 (-15 -2161 (|#1| |#1| (-856)))) (-687 |#2|) (-160)) (T -686))
+NIL
+(-10 -8 (-15 -2161 (|#1| |#1| (-856))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3627 (($ $ (-856)) 28)) (-2161 (($ $ (-856)) 33)) (-1404 (($ $ (-856)) 29)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-2222 (($ $ $) 25)) (-1270 (((-798) $) 11)) (-3941 (($ $ $ $) 26)) (-3395 (($ $ $) 24)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 30)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-687 |#1|) (-131) (-160)) (T -687))
-((-2097 (*1 *1 *1 *2) (-12 (-5 *2 (-855)) (-4 *1 (-687 *3)) (-4 *3 (-160)))))
-(-13 (-704) (-660 |t#1|) (-10 -8 (-15 -2097 ($ $ (-855)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-663) . T) ((-704) . T) ((-982 |#1|) . T) ((-1019) . T))
-((-2888 (((-965) (-632 (-205)) (-525) (-108) (-525)) 25)) (-2445 (((-965) (-632 (-205)) (-525) (-108) (-525)) 24)))
-(((-688) (-10 -7 (-15 -2445 ((-965) (-632 (-205)) (-525) (-108) (-525))) (-15 -2888 ((-965) (-632 (-205)) (-525) (-108) (-525))))) (T -688))
-((-2888 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108)) (-5 *2 (-965)) (-5 *1 (-688)))) (-2445 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108)) (-5 *2 (-965)) (-5 *1 (-688)))))
-(-10 -7 (-15 -2445 ((-965) (-632 (-205)) (-525) (-108) (-525))) (-15 -2888 ((-965) (-632 (-205)) (-525) (-108) (-525))))
-((-2546 (((-965) (-525) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) 43)) (-3087 (((-965) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) 39)) (-2083 (((-965) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346)))) 32)))
-(((-689) (-10 -7 (-15 -2083 ((-965) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346))))) (-15 -3087 ((-965) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN))))) (-15 -2546 ((-965) (-525) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN))))))) (T -689))
-((-2546 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) (-5 *2 (-965)) (-5 *1 (-689)))) (-3087 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) (-5 *2 (-965)) (-5 *1 (-689)))) (-2083 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346)))) (-5 *2 (-965)) (-5 *1 (-689)))))
-(-10 -7 (-15 -2083 ((-965) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346))))) (-15 -3087 ((-965) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN))))) (-15 -2546 ((-965) (-525) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN))))))
-((-1516 (((-965) (-525) (-525) (-632 (-205)) (-525)) 34)) (-2372 (((-965) (-525) (-525) (-632 (-205)) (-525)) 33)) (-3281 (((-965) (-525) (-632 (-205)) (-525)) 32)) (-1900 (((-965) (-525) (-632 (-205)) (-525)) 31)) (-2107 (((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 30)) (-1228 (((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 29)) (-2748 (((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-525)) 28)) (-3449 (((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-525)) 27)) (-1829 (((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 24)) (-2849 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-525)) 23)) (-2532 (((-965) (-525) (-632 (-205)) (-525)) 22)) (-2088 (((-965) (-525) (-632 (-205)) (-525)) 21)))
-(((-690) (-10 -7 (-15 -2088 ((-965) (-525) (-632 (-205)) (-525))) (-15 -2532 ((-965) (-525) (-632 (-205)) (-525))) (-15 -2849 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1829 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3449 ((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2748 ((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1228 ((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2107 ((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1900 ((-965) (-525) (-632 (-205)) (-525))) (-15 -3281 ((-965) (-525) (-632 (-205)) (-525))) (-15 -2372 ((-965) (-525) (-525) (-632 (-205)) (-525))) (-15 -1516 ((-965) (-525) (-525) (-632 (-205)) (-525))))) (T -690))
-((-1516 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-2372 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-3281 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-1900 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-2107 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-1228 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-2748 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-3449 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-1829 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-2849 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-2532 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))) (-2088 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-690)))))
-(-10 -7 (-15 -2088 ((-965) (-525) (-632 (-205)) (-525))) (-15 -2532 ((-965) (-525) (-632 (-205)) (-525))) (-15 -2849 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1829 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3449 ((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2748 ((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1228 ((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2107 ((-965) (-525) (-525) (-1073) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1900 ((-965) (-525) (-632 (-205)) (-525))) (-15 -3281 ((-965) (-525) (-632 (-205)) (-525))) (-15 -2372 ((-965) (-525) (-525) (-632 (-205)) (-525))) (-15 -1516 ((-965) (-525) (-525) (-632 (-205)) (-525))))
-((-2181 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) 52)) (-2582 (((-965) (-632 (-205)) (-632 (-205)) (-525) (-525)) 51)) (-4047 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) 50)) (-3659 (((-965) (-205) (-205) (-525) (-525) (-525) (-525)) 46)) (-3413 (((-965) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 45)) (-2695 (((-965) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 44)) (-3102 (((-965) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 43)) (-2134 (((-965) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 42)) (-3343 (((-965) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346)))) 38)) (-1569 (((-965) (-205) (-205) (-525) (-632 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346)))) 37)) (-2985 (((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346)))) 33)) (-3568 (((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346)))) 32)))
-(((-691) (-10 -7 (-15 -3568 ((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346))))) (-15 -2985 ((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346))))) (-15 -1569 ((-965) (-205) (-205) (-525) (-632 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346))))) (-15 -3343 ((-965) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346))))) (-15 -2134 ((-965) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3102 ((-965) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -2695 ((-965) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3413 ((-965) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3659 ((-965) (-205) (-205) (-525) (-525) (-525) (-525))) (-15 -4047 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))) (-15 -2582 ((-965) (-632 (-205)) (-632 (-205)) (-525) (-525))) (-15 -2181 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))))) (T -691))
-((-2181 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-965)) (-5 *1 (-691)))) (-2582 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-691)))) (-4047 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-965)) (-5 *1 (-691)))) (-3659 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-691)))) (-3413 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-965)) (-5 *1 (-691)))) (-2695 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-965)) (-5 *1 (-691)))) (-3102 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-965)) (-5 *1 (-691)))) (-2134 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-965)) (-5 *1 (-691)))) (-3343 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346)))) (-5 *2 (-965)) (-5 *1 (-691)))) (-1569 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346)))) (-5 *2 (-965)) (-5 *1 (-691)))) (-2985 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346)))) (-5 *2 (-965)) (-5 *1 (-691)))) (-3568 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346)))) (-5 *2 (-965)) (-5 *1 (-691)))))
-(-10 -7 (-15 -3568 ((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346))))) (-15 -2985 ((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346))))) (-15 -1569 ((-965) (-205) (-205) (-525) (-632 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346))))) (-15 -3343 ((-965) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346))))) (-15 -2134 ((-965) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3102 ((-965) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -2695 ((-965) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3413 ((-965) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3659 ((-965) (-205) (-205) (-525) (-525) (-525) (-525))) (-15 -4047 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))) (-15 -2582 ((-965) (-632 (-205)) (-632 (-205)) (-525) (-525))) (-15 -2181 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))))
-((-2272 (((-965) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-4204 (((-965) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366)) 69) (((-965) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) 68)) (-2608 (((-965) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) 57)) (-2066 (((-965) (-632 (-205)) (-632 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) 50)) (-4176 (((-965) (-205) (-525) (-525) (-1073) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 49)) (-3814 (((-965) (-205) (-525) (-525) (-205) (-1073) (-205) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 45)) (-2378 (((-965) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) 42)) (-2275 (((-965) (-205) (-525) (-525) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 38)))
-(((-692) (-10 -7 (-15 -2275 ((-965) (-205) (-525) (-525) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -2378 ((-965) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -3814 ((-965) (-205) (-525) (-525) (-205) (-1073) (-205) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -4176 ((-965) (-205) (-525) (-525) (-1073) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -2066 ((-965) (-632 (-205)) (-632 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -2608 ((-965) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG))))) (-15 -4204 ((-965) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))) (-15 -4204 ((-965) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366))) (-15 -2272 ((-965) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -692))
-((-2272 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *2 (-965)) (-5 *1 (-692)))) (-4204 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-366)) (-5 *2 (-965)) (-5 *1 (-692)))) (-4204 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-965)) (-5 *1 (-692)))) (-2608 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) (-5 *2 (-965)) (-5 *1 (-692)))) (-2066 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *2 (-965)) (-5 *1 (-692)))) (-4176 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1073)) (-5 *6 (-632 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *2 (-965)) (-5 *1 (-692)))) (-3814 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1073)) (-5 *6 (-632 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *2 (-965)) (-5 *1 (-692)))) (-2378 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *2 (-965)) (-5 *1 (-692)))) (-2275 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *2 (-965)) (-5 *1 (-692)))))
-(-10 -7 (-15 -2275 ((-965) (-205) (-525) (-525) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -2378 ((-965) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -3814 ((-965) (-205) (-525) (-525) (-205) (-1073) (-205) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -4176 ((-965) (-205) (-525) (-525) (-1073) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -2066 ((-965) (-632 (-205)) (-632 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -2608 ((-965) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG))))) (-15 -4204 ((-965) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))) (-15 -4204 ((-965) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366))) (-15 -2272 ((-965) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP))))))
-((-2547 (((-965) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-620 (-205)) (-525)) 45)) (-1639 (((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1073) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) 41)) (-2075 (((-965) (-525) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 23)))
-(((-693) (-10 -7 (-15 -2075 ((-965) (-525) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1639 ((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1073) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY))))) (-15 -2547 ((-965) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-620 (-205)) (-525))))) (T -693))
-((-2547 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-620 (-205))) (-5 *2 (-965)) (-5 *1 (-693)))) (-1639 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1073)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-965)) (-5 *1 (-693)))) (-2075 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-693)))))
-(-10 -7 (-15 -2075 ((-965) (-525) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1639 ((-965) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1073) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY))))) (-15 -2547 ((-965) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-620 (-205)) (-525))))
-((-3556 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-632 (-205)) (-205) (-205) (-525)) 35)) (-1775 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-205) (-205) (-525)) 34)) (-2121 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-632 (-205)) (-205) (-205) (-525)) 33)) (-3257 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 29)) (-3390 (((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 28)) (-3584 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525)) 27)) (-2425 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525)) 24)) (-2151 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525)) 23)) (-1977 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-525)) 22)) (-3380 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525)) 21)))
-(((-694) (-10 -7 (-15 -3380 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -1977 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2151 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -2425 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -3584 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525))) (-15 -3390 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3257 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2121 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-632 (-205)) (-205) (-205) (-525))) (-15 -1775 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-205) (-205) (-525))) (-15 -3556 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-632 (-205)) (-205) (-205) (-525))))) (T -694))
-((-3556 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-965)) (-5 *1 (-694)))) (-1775 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-965)) (-5 *1 (-694)))) (-2121 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *6 (-205)) (-5 *2 (-965)) (-5 *1 (-694)))) (-3257 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-694)))) (-3390 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-694)))) (-3584 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-965)) (-5 *1 (-694)))) (-2425 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-694)))) (-2151 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-694)))) (-1977 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-694)))) (-3380 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-694)))))
-(-10 -7 (-15 -3380 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -1977 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2151 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -2425 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -3584 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525))) (-15 -3390 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3257 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2121 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-632 (-205)) (-205) (-205) (-525))) (-15 -1775 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-205) (-205) (-525))) (-15 -3556 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-632 (-205)) (-205) (-205) (-525))))
-((-2412 (((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525)) 45)) (-1746 (((-965) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-525)) 44)) (-1762 (((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525)) 43)) (-3522 (((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 42)) (-1656 (((-965) (-1073) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525)) 41)) (-1912 (((-965) (-1073) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525)) 40)) (-3049 (((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525) (-525) (-525) (-205) (-632 (-205)) (-525)) 39)) (-1353 (((-965) (-1073) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525))) 38)) (-2268 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-525)) 35)) (-3352 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525)) 34)) (-2020 (((-965) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525)) 33)) (-1929 (((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 32)) (-1227 (((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525)) 31)) (-1684 (((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-525)) 30)) (-3726 (((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-525) (-525) (-525)) 29)) (-1336 (((-965) (-525) (-525) (-525) (-205) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-525)) (-525) (-525) (-525)) 28)) (-2940 (((-965) (-525) (-632 (-205)) (-205) (-525)) 24)) (-3943 (((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 21)))
-(((-695) (-10 -7 (-15 -3943 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2940 ((-965) (-525) (-632 (-205)) (-205) (-525))) (-15 -1336 ((-965) (-525) (-525) (-525) (-205) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-525)) (-525) (-525) (-525))) (-15 -3726 ((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -1684 ((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-525))) (-15 -1227 ((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525))) (-15 -1929 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2020 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525))) (-15 -3352 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525))) (-15 -2268 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1353 ((-965) (-1073) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)))) (-15 -3049 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525) (-525) (-525) (-205) (-632 (-205)) (-525))) (-15 -1912 ((-965) (-1073) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -1656 ((-965) (-1073) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3522 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1762 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -1746 ((-965) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2412 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))))) (T -695))
-((-2412 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-695)))) (-1746 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-695)))) (-1762 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-695)))) (-3522 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-695)))) (-1656 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-205)) (-5 *2 (-965)) (-5 *1 (-695)))) (-1912 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *2 (-965)) (-5 *1 (-695)))) (-3049 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *6 (-205)) (-5 *2 (-965)) (-5 *1 (-695)))) (-1353 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *2 (-965)) (-5 *1 (-695)))) (-2268 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-695)))) (-3352 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-965)) (-5 *1 (-695)))) (-2020 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-965)) (-5 *1 (-695)))) (-1929 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-695)))) (-1227 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-695)))) (-1684 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-695)))) (-3726 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-695)))) (-1336 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *2 (-965)) (-5 *1 (-695)))) (-2940 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-965)) (-5 *1 (-695)))) (-3943 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-695)))))
-(-10 -7 (-15 -3943 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2940 ((-965) (-525) (-632 (-205)) (-205) (-525))) (-15 -1336 ((-965) (-525) (-525) (-525) (-205) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-525)) (-525) (-525) (-525))) (-15 -3726 ((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -1684 ((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-525))) (-15 -1227 ((-965) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525))) (-15 -1929 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2020 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525))) (-15 -3352 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525))) (-15 -2268 ((-965) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1353 ((-965) (-1073) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)))) (-15 -3049 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525) (-525) (-525) (-205) (-632 (-205)) (-525))) (-15 -1912 ((-965) (-1073) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -1656 ((-965) (-1073) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3522 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1762 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -1746 ((-965) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2412 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))))
-((-3806 (((-965) (-525) (-525) (-525) (-205) (-632 (-205)) (-525) (-632 (-205)) (-525)) 63)) (-2345 (((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) 62)) (-3274 (((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-108) (-108) (-525) (-525) (-632 (-205)) (-632 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS)))) 58)) (-2868 (((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-525) (-525) (-632 (-205)) (-525)) 51)) (-3997 (((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1)))) 50)) (-1871 (((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2)))) 46)) (-2984 (((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1)))) 42)) (-2650 (((-965) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) 38)))
-(((-696) (-10 -7 (-15 -2650 ((-965) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -2984 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1))))) (-15 -1871 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2))))) (-15 -3997 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1))))) (-15 -2868 ((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-525) (-525) (-632 (-205)) (-525))) (-15 -3274 ((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-108) (-108) (-525) (-525) (-632 (-205)) (-632 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS))))) (-15 -2345 ((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -3806 ((-965) (-525) (-525) (-525) (-205) (-632 (-205)) (-525) (-632 (-205)) (-525))))) (T -696))
-((-3806 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-696)))) (-2345 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) (-5 *2 (-965)) (-5 *1 (-696)))) (-3274 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *6 (-108)) (-5 *7 (-632 (-525))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS)))) (-5 *2 (-965)) (-5 *1 (-696)))) (-2868 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *2 (-965)) (-5 *1 (-696)))) (-3997 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-965)) (-5 *1 (-696)))) (-1871 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-965)) (-5 *1 (-696)))) (-2984 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-965)) (-5 *1 (-696)))) (-2650 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108)) (-5 *6 (-632 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) (-5 *2 (-965)) (-5 *1 (-696)))))
-(-10 -7 (-15 -2650 ((-965) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -2984 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1))))) (-15 -1871 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2))))) (-15 -3997 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1))))) (-15 -2868 ((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-525) (-525) (-632 (-205)) (-525))) (-15 -3274 ((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-108) (-108) (-525) (-525) (-632 (-205)) (-632 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS))))) (-15 -2345 ((-965) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -3806 ((-965) (-525) (-525) (-525) (-205) (-632 (-205)) (-525) (-632 (-205)) (-525))))
-((-3573 (((-965) (-1073) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525)) 47)) (-2520 (((-965) (-1073) (-1073) (-525) (-525) (-632 (-157 (-205))) (-525) (-632 (-157 (-205))) (-525) (-525) (-632 (-157 (-205))) (-525)) 46)) (-3242 (((-965) (-525) (-525) (-525) (-632 (-157 (-205))) (-525)) 45)) (-2841 (((-965) (-1073) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 40)) (-3926 (((-965) (-1073) (-1073) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)) (-525)) 39)) (-2211 (((-965) (-525) (-525) (-525) (-632 (-205)) (-525)) 36)) (-1250 (((-965) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525)) 35)) (-4230 (((-965) (-525) (-525) (-525) (-525) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-205) (-205) (-525)) 34)) (-1658 (((-965) (-525) (-525) (-525) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-108) (-205) (-108) (-632 (-525)) (-632 (-205)) (-525)) 33)) (-1711 (((-965) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-525)) 32)))
-(((-697) (-10 -7 (-15 -1711 ((-965) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-525))) (-15 -1658 ((-965) (-525) (-525) (-525) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-108) (-205) (-108) (-632 (-525)) (-632 (-205)) (-525))) (-15 -4230 ((-965) (-525) (-525) (-525) (-525) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-205) (-205) (-525))) (-15 -1250 ((-965) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525))) (-15 -2211 ((-965) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -3926 ((-965) (-1073) (-1073) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)) (-525))) (-15 -2841 ((-965) (-1073) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3242 ((-965) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -2520 ((-965) (-1073) (-1073) (-525) (-525) (-632 (-157 (-205))) (-525) (-632 (-157 (-205))) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -3573 ((-965) (-1073) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))) (T -697))
-((-3573 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205)))) (-5 *2 (-965)) (-5 *1 (-697)))) (-2520 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205)))) (-5 *2 (-965)) (-5 *1 (-697)))) (-3242 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-965)) (-5 *1 (-697)))) (-2841 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-697)))) (-3926 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-697)))) (-2211 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-697)))) (-1250 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *2 (-965)) (-5 *1 (-697)))) (-4230 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *3 (-525)) (-5 *4 (-592 (-108))) (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *7 (-205)) (-5 *2 (-965)) (-5 *1 (-697)))) (-1658 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-525))) (-5 *5 (-108)) (-5 *6 (-205)) (-5 *7 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-697)))) (-1711 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108)) (-5 *6 (-592 (-108))) (-5 *7 (-632 (-205))) (-5 *8 (-632 (-525))) (-5 *2 (-965)) (-5 *1 (-697)))))
-(-10 -7 (-15 -1711 ((-965) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-525))) (-15 -1658 ((-965) (-525) (-525) (-525) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-108) (-205) (-108) (-632 (-525)) (-632 (-205)) (-525))) (-15 -4230 ((-965) (-525) (-525) (-525) (-525) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-205) (-205) (-525))) (-15 -1250 ((-965) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525))) (-15 -2211 ((-965) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -3926 ((-965) (-1073) (-1073) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)) (-525))) (-15 -2841 ((-965) (-1073) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3242 ((-965) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -2520 ((-965) (-1073) (-1073) (-525) (-525) (-632 (-157 (-205))) (-525) (-632 (-157 (-205))) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -3573 ((-965) (-1073) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))
-((-2737 (((-965) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525)) 65)) (-1606 (((-965) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525)) 60)) (-3068 (((-965) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366)) 56) (((-965) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) 55)) (-2853 (((-965) (-525) (-525) (-525) (-205) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525)) 37)) (-1339 (((-965) (-525) (-525) (-205) (-205) (-525) (-525) (-632 (-205)) (-525)) 33)) (-2154 (((-965) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525) (-525)) 30)) (-4030 (((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 29)) (-1531 (((-965) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 28)) (-2213 (((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 27)) (-3934 (((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525)) 26)) (-2832 (((-965) (-525) (-525) (-632 (-205)) (-525)) 25)) (-1951 (((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 24)) (-3175 (((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 23)) (-1442 (((-965) (-632 (-205)) (-525) (-525) (-525) (-525)) 22)) (-2206 (((-965) (-525) (-525) (-632 (-205)) (-525)) 21)))
-(((-698) (-10 -7 (-15 -2206 ((-965) (-525) (-525) (-632 (-205)) (-525))) (-15 -1442 ((-965) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -3175 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1951 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2832 ((-965) (-525) (-525) (-632 (-205)) (-525))) (-15 -3934 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -2213 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1531 ((-965) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -4030 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2154 ((-965) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -1339 ((-965) (-525) (-525) (-205) (-205) (-525) (-525) (-632 (-205)) (-525))) (-15 -2853 ((-965) (-525) (-525) (-525) (-205) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3068 ((-965) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))))) (-15 -3068 ((-965) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366))) (-15 -1606 ((-965) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2737 ((-965) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))) (T -698))
-((-2737 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-157 (-205)))) (-5 *2 (-965)) (-5 *1 (-698)))) (-1606 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-3068 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-366)) (-5 *2 (-965)) (-5 *1 (-698)))) (-3068 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *2 (-965)) (-5 *1 (-698)))) (-2853 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108)) (-5 *6 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-1339 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-2154 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-698)))) (-4030 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-1531 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-2213 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-3934 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-2832 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-1951 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-3175 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))) (-1442 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-698)))) (-2206 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))))
-(-10 -7 (-15 -2206 ((-965) (-525) (-525) (-632 (-205)) (-525))) (-15 -1442 ((-965) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -3175 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1951 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2832 ((-965) (-525) (-525) (-632 (-205)) (-525))) (-15 -3934 ((-965) (-525) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -2213 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1531 ((-965) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -4030 ((-965) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2154 ((-965) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -1339 ((-965) (-525) (-525) (-205) (-205) (-525) (-525) (-632 (-205)) (-525))) (-15 -2853 ((-965) (-525) (-525) (-525) (-205) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3068 ((-965) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))))) (-15 -3068 ((-965) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366))) (-15 -1606 ((-965) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2737 ((-965) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))
-((-3067 (((-965) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) 61)) (-2651 (((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525)) 57)) (-3306 (((-965) (-525) (-632 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE)))) 56)) (-3789 (((-965) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525)) 37)) (-2447 (((-965) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-525)) 36)) (-2626 (((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 33)) (-3597 (((-965) (-525) (-632 (-205)) (-525) (-632 (-525)) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205))) 32)) (-1590 (((-965) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525)) 28)) (-1617 (((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525)) 27)) (-2881 (((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525)) 26)) (-3436 (((-965) (-525) (-632 (-157 (-205))) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-525)) 22)))
-(((-699) (-10 -7 (-15 -3436 ((-965) (-525) (-632 (-157 (-205))) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -2881 ((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1617 ((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1590 ((-965) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525))) (-15 -3597 ((-965) (-525) (-632 (-205)) (-525) (-632 (-525)) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)))) (-15 -2626 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2447 ((-965) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3789 ((-965) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -3306 ((-965) (-525) (-632 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE))))) (-15 -2651 ((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -3067 ((-965) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD))))))) (T -699))
-((-3067 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) (-5 *2 (-965)) (-5 *1 (-699)))) (-2651 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *2 (-965)) (-5 *1 (-699)))) (-3306 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *6 (-205)) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-965)) (-5 *1 (-699)))) (-3789 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *2 (-965)) (-5 *1 (-699)))) (-2447 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-699)))) (-2626 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-699)))) (-3597 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *2 (-965)) (-5 *1 (-699)))) (-1590 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-699)))) (-1617 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-699)))) (-2881 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-699)))) (-3436 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-965)) (-5 *1 (-699)))))
-(-10 -7 (-15 -3436 ((-965) (-525) (-632 (-157 (-205))) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -2881 ((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1617 ((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1590 ((-965) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525))) (-15 -3597 ((-965) (-525) (-632 (-205)) (-525) (-632 (-525)) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)))) (-15 -2626 ((-965) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2447 ((-965) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3789 ((-965) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -3306 ((-965) (-525) (-632 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE))))) (-15 -2651 ((-965) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -3067 ((-965) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD))))))
-((-3895 (((-965) (-1073) (-525) (-525) (-632 (-205)) (-525) (-525) (-632 (-205))) 29)) (-3933 (((-965) (-1073) (-525) (-525) (-632 (-205))) 28)) (-3713 (((-965) (-1073) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-205))) 27)) (-3388 (((-965) (-525) (-525) (-525) (-632 (-205))) 21)))
-(((-700) (-10 -7 (-15 -3388 ((-965) (-525) (-525) (-525) (-632 (-205)))) (-15 -3713 ((-965) (-1073) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-205)))) (-15 -3933 ((-965) (-1073) (-525) (-525) (-632 (-205)))) (-15 -3895 ((-965) (-1073) (-525) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)))))) (T -700))
-((-3895 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-700)))) (-3933 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-700)))) (-3713 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *2 (-965)) (-5 *1 (-700)))) (-3388 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-700)))))
-(-10 -7 (-15 -3388 ((-965) (-525) (-525) (-525) (-632 (-205)))) (-15 -3713 ((-965) (-1073) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-205)))) (-15 -3933 ((-965) (-1073) (-525) (-525) (-632 (-205)))) (-15 -3895 ((-965) (-1073) (-525) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)))))
-((-3802 (((-965) (-205) (-205) (-205) (-205) (-525)) 62)) (-3330 (((-965) (-205) (-205) (-205) (-525)) 61)) (-3498 (((-965) (-205) (-205) (-205) (-525)) 60)) (-1549 (((-965) (-205) (-205) (-525)) 59)) (-3488 (((-965) (-205) (-525)) 58)) (-1773 (((-965) (-205) (-525)) 57)) (-1827 (((-965) (-205) (-525)) 56)) (-2994 (((-965) (-205) (-525)) 55)) (-3687 (((-965) (-205) (-525)) 54)) (-3684 (((-965) (-205) (-525)) 53)) (-2033 (((-965) (-205) (-157 (-205)) (-525) (-1073) (-525)) 52)) (-1701 (((-965) (-205) (-157 (-205)) (-525) (-1073) (-525)) 51)) (-3611 (((-965) (-205) (-525)) 50)) (-1583 (((-965) (-205) (-525)) 49)) (-3386 (((-965) (-205) (-525)) 48)) (-2781 (((-965) (-205) (-525)) 47)) (-4027 (((-965) (-525) (-205) (-157 (-205)) (-525) (-1073) (-525)) 46)) (-1991 (((-965) (-1073) (-157 (-205)) (-1073) (-525)) 45)) (-1653 (((-965) (-1073) (-157 (-205)) (-1073) (-525)) 44)) (-3188 (((-965) (-205) (-157 (-205)) (-525) (-1073) (-525)) 43)) (-1267 (((-965) (-205) (-157 (-205)) (-525) (-1073) (-525)) 42)) (-3199 (((-965) (-205) (-525)) 39)) (-3960 (((-965) (-205) (-525)) 38)) (-1438 (((-965) (-205) (-525)) 37)) (-2619 (((-965) (-205) (-525)) 36)) (-1918 (((-965) (-205) (-525)) 35)) (-2015 (((-965) (-205) (-525)) 34)) (-2076 (((-965) (-205) (-525)) 33)) (-1979 (((-965) (-205) (-525)) 32)) (-1901 (((-965) (-205) (-525)) 31)) (-1771 (((-965) (-205) (-525)) 30)) (-2054 (((-965) (-205) (-205) (-205) (-525)) 29)) (-2912 (((-965) (-205) (-525)) 28)) (-1675 (((-965) (-205) (-525)) 27)) (-1266 (((-965) (-205) (-525)) 26)) (-2049 (((-965) (-205) (-525)) 25)) (-3394 (((-965) (-205) (-525)) 24)) (-1337 (((-965) (-157 (-205)) (-525)) 21)))
-(((-701) (-10 -7 (-15 -1337 ((-965) (-157 (-205)) (-525))) (-15 -3394 ((-965) (-205) (-525))) (-15 -2049 ((-965) (-205) (-525))) (-15 -1266 ((-965) (-205) (-525))) (-15 -1675 ((-965) (-205) (-525))) (-15 -2912 ((-965) (-205) (-525))) (-15 -2054 ((-965) (-205) (-205) (-205) (-525))) (-15 -1771 ((-965) (-205) (-525))) (-15 -1901 ((-965) (-205) (-525))) (-15 -1979 ((-965) (-205) (-525))) (-15 -2076 ((-965) (-205) (-525))) (-15 -2015 ((-965) (-205) (-525))) (-15 -1918 ((-965) (-205) (-525))) (-15 -2619 ((-965) (-205) (-525))) (-15 -1438 ((-965) (-205) (-525))) (-15 -3960 ((-965) (-205) (-525))) (-15 -3199 ((-965) (-205) (-525))) (-15 -1267 ((-965) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -3188 ((-965) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -1653 ((-965) (-1073) (-157 (-205)) (-1073) (-525))) (-15 -1991 ((-965) (-1073) (-157 (-205)) (-1073) (-525))) (-15 -4027 ((-965) (-525) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -2781 ((-965) (-205) (-525))) (-15 -3386 ((-965) (-205) (-525))) (-15 -1583 ((-965) (-205) (-525))) (-15 -3611 ((-965) (-205) (-525))) (-15 -1701 ((-965) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -2033 ((-965) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -3684 ((-965) (-205) (-525))) (-15 -3687 ((-965) (-205) (-525))) (-15 -2994 ((-965) (-205) (-525))) (-15 -1827 ((-965) (-205) (-525))) (-15 -1773 ((-965) (-205) (-525))) (-15 -3488 ((-965) (-205) (-525))) (-15 -1549 ((-965) (-205) (-205) (-525))) (-15 -3498 ((-965) (-205) (-205) (-205) (-525))) (-15 -3330 ((-965) (-205) (-205) (-205) (-525))) (-15 -3802 ((-965) (-205) (-205) (-205) (-205) (-525))))) (T -701))
-((-3802 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3330 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3498 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1549 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3488 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1773 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1827 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2994 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3687 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3684 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2033 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *3 (-205)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1073)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1701 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *3 (-205)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1073)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1583 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3386 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-4027 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-157 (-205))) (-5 *6 (-1073)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1991 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1073)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1653 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1073)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3188 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *3 (-205)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1073)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1267 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *3 (-205)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1073)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3199 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1918 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2015 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2076 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1979 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1901 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1771 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2054 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2912 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1675 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1266 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-2049 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-3394 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))) (-1337 (*1 *2 *3 *4) (-12 (-5 *3 (-157 (-205))) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(-10 -7 (-15 -1337 ((-965) (-157 (-205)) (-525))) (-15 -3394 ((-965) (-205) (-525))) (-15 -2049 ((-965) (-205) (-525))) (-15 -1266 ((-965) (-205) (-525))) (-15 -1675 ((-965) (-205) (-525))) (-15 -2912 ((-965) (-205) (-525))) (-15 -2054 ((-965) (-205) (-205) (-205) (-525))) (-15 -1771 ((-965) (-205) (-525))) (-15 -1901 ((-965) (-205) (-525))) (-15 -1979 ((-965) (-205) (-525))) (-15 -2076 ((-965) (-205) (-525))) (-15 -2015 ((-965) (-205) (-525))) (-15 -1918 ((-965) (-205) (-525))) (-15 -2619 ((-965) (-205) (-525))) (-15 -1438 ((-965) (-205) (-525))) (-15 -3960 ((-965) (-205) (-525))) (-15 -3199 ((-965) (-205) (-525))) (-15 -1267 ((-965) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -3188 ((-965) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -1653 ((-965) (-1073) (-157 (-205)) (-1073) (-525))) (-15 -1991 ((-965) (-1073) (-157 (-205)) (-1073) (-525))) (-15 -4027 ((-965) (-525) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -2781 ((-965) (-205) (-525))) (-15 -3386 ((-965) (-205) (-525))) (-15 -1583 ((-965) (-205) (-525))) (-15 -3611 ((-965) (-205) (-525))) (-15 -1701 ((-965) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -2033 ((-965) (-205) (-157 (-205)) (-525) (-1073) (-525))) (-15 -3684 ((-965) (-205) (-525))) (-15 -3687 ((-965) (-205) (-525))) (-15 -2994 ((-965) (-205) (-525))) (-15 -1827 ((-965) (-205) (-525))) (-15 -1773 ((-965) (-205) (-525))) (-15 -3488 ((-965) (-205) (-525))) (-15 -1549 ((-965) (-205) (-205) (-525))) (-15 -3498 ((-965) (-205) (-205) (-205) (-525))) (-15 -3330 ((-965) (-205) (-205) (-205) (-525))) (-15 -3802 ((-965) (-205) (-205) (-205) (-205) (-525))))
-((-1484 (((-1177)) 18)) (-3336 (((-1073)) 22)) (-3269 (((-1073)) 21)) (-4222 (((-1023) (-1090) (-632 (-525))) 37) (((-1023) (-1090) (-632 (-205))) 32)) (-3862 (((-108)) 16)) (-2961 (((-1073) (-1073)) 25)))
-(((-702) (-10 -7 (-15 -3269 ((-1073))) (-15 -3336 ((-1073))) (-15 -2961 ((-1073) (-1073))) (-15 -4222 ((-1023) (-1090) (-632 (-205)))) (-15 -4222 ((-1023) (-1090) (-632 (-525)))) (-15 -3862 ((-108))) (-15 -1484 ((-1177))))) (T -702))
-((-1484 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-702)))) (-3862 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-702)))) (-4222 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-632 (-525))) (-5 *2 (-1023)) (-5 *1 (-702)))) (-4222 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-632 (-205))) (-5 *2 (-1023)) (-5 *1 (-702)))) (-2961 (*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-702)))) (-3336 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-702)))) (-3269 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-702)))))
-(-10 -7 (-15 -3269 ((-1073))) (-15 -3336 ((-1073))) (-15 -2961 ((-1073) (-1073))) (-15 -4222 ((-1023) (-1090) (-632 (-205)))) (-15 -4222 ((-1023) (-1090) (-632 (-525)))) (-15 -3862 ((-108))) (-15 -1484 ((-1177))))
-((-1518 (($ $ $) 10)) (-2260 (($ $ $ $) 9)) (-2331 (($ $ $) 12)))
-(((-703 |#1|) (-10 -8 (-15 -2331 (|#1| |#1| |#1|)) (-15 -1518 (|#1| |#1| |#1|)) (-15 -2260 (|#1| |#1| |#1| |#1|))) (-704)) (T -703))
-NIL
-(-10 -8 (-15 -2331 (|#1| |#1| |#1|)) (-15 -1518 (|#1| |#1| |#1|)) (-15 -2260 (|#1| |#1| |#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2979 (($ $ (-855)) 28)) (-1640 (($ $ (-855)) 29)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1518 (($ $ $) 25)) (-1908 (((-797) $) 11)) (-2260 (($ $ $ $) 26)) (-2331 (($ $ $) 24)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 30)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27)))
+((-2161 (*1 *1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-687 *3)) (-4 *3 (-160)))))
+(-13 (-704) (-660 |t#1|) (-10 -8 (-15 -2161 ($ $ (-856)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-663) . T) ((-704) . T) ((-983 |#1|) . T) ((-1020) . T))
+((-3970 (((-966) (-632 (-205)) (-525) (-108) (-525)) 25)) (-2198 (((-966) (-632 (-205)) (-525) (-108) (-525)) 24)))
+(((-688) (-10 -7 (-15 -2198 ((-966) (-632 (-205)) (-525) (-108) (-525))) (-15 -3970 ((-966) (-632 (-205)) (-525) (-108) (-525))))) (T -688))
+((-3970 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108)) (-5 *2 (-966)) (-5 *1 (-688)))) (-2198 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108)) (-5 *2 (-966)) (-5 *1 (-688)))))
+(-10 -7 (-15 -2198 ((-966) (-632 (-205)) (-525) (-108) (-525))) (-15 -3970 ((-966) (-632 (-205)) (-525) (-108) (-525))))
+((-3732 (((-966) (-525) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) 43)) (-2359 (((-966) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) 39)) (-1977 (((-966) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834)))) 32)))
+(((-689) (-10 -7 (-15 -1977 ((-966) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834))))) (-15 -2359 ((-966) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN))))) (-15 -3732 ((-966) (-525) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN))))))) (T -689))
+((-3732 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) (-5 *2 (-966)) (-5 *1 (-689)))) (-2359 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) (-5 *2 (-966)) (-5 *1 (-689)))) (-1977 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834)))) (-5 *2 (-966)) (-5 *1 (-689)))))
+(-10 -7 (-15 -1977 ((-966) (-205) (-205) (-205) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834))))) (-15 -2359 ((-966) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN))))) (-15 -3732 ((-966) (-525) (-525) (-525) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN))))))
+((-2189 (((-966) (-525) (-525) (-632 (-205)) (-525)) 34)) (-2757 (((-966) (-525) (-525) (-632 (-205)) (-525)) 33)) (-1542 (((-966) (-525) (-632 (-205)) (-525)) 32)) (-1919 (((-966) (-525) (-632 (-205)) (-525)) 31)) (-2321 (((-966) (-525) (-525) (-1074) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 30)) (-2784 (((-966) (-525) (-525) (-1074) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 29)) (-1986 (((-966) (-525) (-525) (-1074) (-632 (-205)) (-632 (-205)) (-525)) 28)) (-2643 (((-966) (-525) (-525) (-1074) (-632 (-205)) (-632 (-205)) (-525)) 27)) (-2656 (((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 24)) (-1772 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525)) 23)) (-1747 (((-966) (-525) (-632 (-205)) (-525)) 22)) (-2044 (((-966) (-525) (-632 (-205)) (-525)) 21)))
+(((-690) (-10 -7 (-15 -2044 ((-966) (-525) (-632 (-205)) (-525))) (-15 -1747 ((-966) (-525) (-632 (-205)) (-525))) (-15 -1772 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2656 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2643 ((-966) (-525) (-525) (-1074) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1986 ((-966) (-525) (-525) (-1074) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2784 ((-966) (-525) (-525) (-1074) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2321 ((-966) (-525) (-525) (-1074) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1919 ((-966) (-525) (-632 (-205)) (-525))) (-15 -1542 ((-966) (-525) (-632 (-205)) (-525))) (-15 -2757 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -2189 ((-966) (-525) (-525) (-632 (-205)) (-525))))) (T -690))
+((-2189 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-2757 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-1542 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-1919 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-2321 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1074)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-2784 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1074)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-1986 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1074)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-2643 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-1074)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-2656 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-1772 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-1747 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))) (-2044 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-690)))))
+(-10 -7 (-15 -2044 ((-966) (-525) (-632 (-205)) (-525))) (-15 -1747 ((-966) (-525) (-632 (-205)) (-525))) (-15 -1772 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2656 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2643 ((-966) (-525) (-525) (-1074) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1986 ((-966) (-525) (-525) (-1074) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2784 ((-966) (-525) (-525) (-1074) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2321 ((-966) (-525) (-525) (-1074) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1919 ((-966) (-525) (-632 (-205)) (-525))) (-15 -1542 ((-966) (-525) (-632 (-205)) (-525))) (-15 -2757 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -2189 ((-966) (-525) (-525) (-632 (-205)) (-525))))
+((-1272 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) 52)) (-4054 (((-966) (-632 (-205)) (-632 (-205)) (-525) (-525)) 51)) (-3167 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) 50)) (-3956 (((-966) (-205) (-205) (-525) (-525) (-525) (-525)) 46)) (-3357 (((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 45)) (-2822 (((-966) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 44)) (-2507 (((-966) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 43)) (-1997 (((-966) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) 42)) (-3920 (((-966) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834)))) 38)) (-3152 (((-966) (-205) (-205) (-525) (-632 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834)))) 37)) (-2657 (((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834)))) 33)) (-1228 (((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834)))) 32)))
+(((-691) (-10 -7 (-15 -1228 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834))))) (-15 -2657 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834))))) (-15 -3152 ((-966) (-205) (-205) (-525) (-632 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834))))) (-15 -3920 ((-966) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834))))) (-15 -1997 ((-966) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -2507 ((-966) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -2822 ((-966) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3357 ((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3956 ((-966) (-205) (-205) (-525) (-525) (-525) (-525))) (-15 -3167 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))) (-15 -4054 ((-966) (-632 (-205)) (-632 (-205)) (-525) (-525))) (-15 -1272 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))))) (T -691))
+((-1272 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-4054 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-691)))) (-3167 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-3956 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-691)))) (-3357 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-2822 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-2507 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-1997 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-3920 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-3152 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-2657 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834)))) (-5 *2 (-966)) (-5 *1 (-691)))) (-1228 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834)))) (-5 *2 (-966)) (-5 *1 (-691)))))
+(-10 -7 (-15 -1228 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834))))) (-15 -2657 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834))))) (-15 -3152 ((-966) (-205) (-205) (-525) (-632 (-205)) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834))))) (-15 -3920 ((-966) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834))))) (-15 -1997 ((-966) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -2507 ((-966) (-205) (-205) (-205) (-205) (-525) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -2822 ((-966) (-205) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3357 ((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G))))) (-15 -3956 ((-966) (-205) (-205) (-525) (-525) (-525) (-525))) (-15 -3167 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))) (-15 -4054 ((-966) (-632 (-205)) (-632 (-205)) (-525) (-525))) (-15 -1272 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-205) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))))
+((-4049 (((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-2049 (((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366)) 69) (((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) 68)) (-3186 (((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) 57)) (-1813 (((-966) (-632 (-205)) (-632 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) 50)) (-3068 (((-966) (-205) (-525) (-525) (-1074) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 49)) (-3047 (((-966) (-205) (-525) (-525) (-205) (-1074) (-205) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 45)) (-2815 (((-966) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) 42)) (-4072 (((-966) (-205) (-525) (-525) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) 38)))
+(((-692) (-10 -7 (-15 -4072 ((-966) (-205) (-525) (-525) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -2815 ((-966) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -3047 ((-966) (-205) (-525) (-525) (-205) (-1074) (-205) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -3068 ((-966) (-205) (-525) (-525) (-1074) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -1813 ((-966) (-632 (-205)) (-632 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -3186 ((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG))))) (-15 -2049 ((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))) (-15 -2049 ((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366))) (-15 -4049 ((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -692))
+((-4049 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *2 (-966)) (-5 *1 (-692)))) (-2049 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-366)) (-5 *2 (-966)) (-5 *1 (-692)))) (-2049 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-966)) (-5 *1 (-692)))) (-3186 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) (-5 *2 (-966)) (-5 *1 (-692)))) (-1813 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *2 (-966)) (-5 *1 (-692)))) (-3068 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1074)) (-5 *6 (-632 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *2 (-966)) (-5 *1 (-692)))) (-3047 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1074)) (-5 *6 (-632 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *2 (-966)) (-5 *1 (-692)))) (-2815 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *2 (-966)) (-5 *1 (-692)))) (-4072 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT)))) (-5 *2 (-966)) (-5 *1 (-692)))))
+(-10 -7 (-15 -4072 ((-966) (-205) (-525) (-525) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -2815 ((-966) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -3047 ((-966) (-205) (-525) (-525) (-205) (-1074) (-205) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -3068 ((-966) (-205) (-525) (-525) (-1074) (-525) (-205) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))) (-15 -1813 ((-966) (-632 (-205)) (-632 (-205)) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))) (-15 -3186 ((-966) (-205) (-205) (-525) (-205) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG))))) (-15 -2049 ((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))) (-15 -2049 ((-966) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))) (-366) (-366))) (-15 -4049 ((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP))))))
+((-3741 (((-966) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-620 (-205)) (-525)) 45)) (-1394 (((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1074) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) 41)) (-1901 (((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 23)))
+(((-693) (-10 -7 (-15 -1901 ((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1394 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1074) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY))))) (-15 -3741 ((-966) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-620 (-205)) (-525))))) (T -693))
+((-3741 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-620 (-205))) (-5 *2 (-966)) (-5 *1 (-693)))) (-1394 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1074)) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-966)) (-5 *1 (-693)))) (-1901 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-693)))))
+(-10 -7 (-15 -1901 ((-966) (-525) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1394 ((-966) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-1074) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY))))) (-15 -3741 ((-966) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-620 (-205)) (-525))))
+((-2428 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-632 (-205)) (-205) (-205) (-525)) 35)) (-1672 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-205) (-205) (-525)) 34)) (-1865 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-632 (-205)) (-205) (-205) (-525)) 33)) (-1291 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 29)) (-3213 (((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 28)) (-1395 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525)) 27)) (-1944 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525)) 24)) (-2238 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525)) 23)) (-2045 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525)) 22)) (-3146 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525)) 21)))
+(((-694) (-10 -7 (-15 -3146 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -2045 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2238 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1944 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1395 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525))) (-15 -3213 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1291 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1865 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-632 (-205)) (-205) (-205) (-525))) (-15 -1672 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-205) (-205) (-525))) (-15 -2428 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-632 (-205)) (-205) (-205) (-525))))) (T -694))
+((-2428 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-694)))) (-1672 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-694)))) (-1865 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *6 (-205)) (-5 *2 (-966)) (-5 *1 (-694)))) (-1291 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))) (-3213 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))) (-1395 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-694)))) (-1944 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))) (-2238 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))) (-2045 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))) (-3146 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-694)))))
+(-10 -7 (-15 -3146 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -2045 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2238 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1944 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1395 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-205) (-525))) (-15 -3213 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1291 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1865 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-632 (-205)) (-205) (-205) (-525))) (-15 -1672 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-205) (-205) (-525))) (-15 -2428 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-632 (-205)) (-205) (-205) (-525))))
+((-3083 (((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525)) 45)) (-1344 (((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-525)) 44)) (-1523 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525)) 43)) (-1968 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 42)) (-3457 (((-966) (-1074) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525)) 41)) (-2055 (((-966) (-1074) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525)) 40)) (-1904 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525) (-525) (-525) (-205) (-632 (-205)) (-525)) 39)) (-2515 (((-966) (-1074) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525))) 38)) (-4019 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-525)) 35)) (-4007 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525)) 34)) (-3114 (((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525)) 33)) (-3721 (((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 32)) (-2773 (((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525)) 31)) (-1371 (((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-525)) 30)) (-3392 (((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-525) (-525) (-525)) 29)) (-2339 (((-966) (-525) (-525) (-525) (-205) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-525)) (-525) (-525) (-525)) 28)) (-3297 (((-966) (-525) (-632 (-205)) (-205) (-525)) 24)) (-1690 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 21)))
+(((-695) (-10 -7 (-15 -1690 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3297 ((-966) (-525) (-632 (-205)) (-205) (-525))) (-15 -2339 ((-966) (-525) (-525) (-525) (-205) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-525)) (-525) (-525) (-525))) (-15 -3392 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -1371 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-525))) (-15 -2773 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525))) (-15 -3721 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3114 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525))) (-15 -4007 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525))) (-15 -4019 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2515 ((-966) (-1074) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)))) (-15 -1904 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525) (-525) (-525) (-205) (-632 (-205)) (-525))) (-15 -2055 ((-966) (-1074) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -3457 ((-966) (-1074) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1968 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1523 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -1344 ((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3083 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))))) (T -695))
+((-3083 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-1344 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-1523 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-1968 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-3457 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-2055 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *2 (-966)) (-5 *1 (-695)))) (-1904 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *6 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-2515 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *2 (-966)) (-5 *1 (-695)))) (-4019 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-4007 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-3114 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-3721 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-2773 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-1371 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-3392 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))) (-2339 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *2 (-966)) (-5 *1 (-695)))) (-3297 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))) (-1690 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-695)))))
+(-10 -7 (-15 -1690 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3297 ((-966) (-525) (-632 (-205)) (-205) (-525))) (-15 -2339 ((-966) (-525) (-525) (-525) (-205) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-525)) (-525) (-525) (-525))) (-15 -3392 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -1371 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525) (-525) (-525))) (-15 -2773 ((-966) (-525) (-205) (-205) (-632 (-205)) (-525) (-525) (-205) (-525))) (-15 -3721 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3114 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525))) (-15 -4007 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525))) (-15 -4019 ((-966) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2515 ((-966) (-1074) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)))) (-15 -1904 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525) (-525) (-525) (-205) (-632 (-205)) (-525))) (-15 -2055 ((-966) (-1074) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -3457 ((-966) (-1074) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1968 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1523 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))) (-15 -1344 ((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3083 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525) (-632 (-205)) (-632 (-205)) (-525) (-525) (-525))))
+((-2992 (((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-525) (-632 (-205)) (-525)) 63)) (-3530 (((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) 62)) (-1462 (((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-108) (-108) (-525) (-525) (-632 (-205)) (-632 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS)))) 58)) (-3786 (((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-525) (-525) (-632 (-205)) (-525)) 51)) (-3944 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1)))) 50)) (-3499 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2)))) 46)) (-2644 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1)))) 42)) (-3502 (((-966) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) 38)))
+(((-696) (-10 -7 (-15 -3502 ((-966) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -2644 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1))))) (-15 -3499 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2))))) (-15 -3944 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1))))) (-15 -3786 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-525) (-525) (-632 (-205)) (-525))) (-15 -1462 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-108) (-108) (-525) (-525) (-632 (-205)) (-632 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS))))) (-15 -3530 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -2992 ((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-525) (-632 (-205)) (-525))))) (T -696))
+((-2992 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-696)))) (-3530 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) (-5 *2 (-966)) (-5 *1 (-696)))) (-1462 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *6 (-108)) (-5 *7 (-632 (-525))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS)))) (-5 *2 (-966)) (-5 *1 (-696)))) (-3786 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *2 (-966)) (-5 *1 (-696)))) (-3944 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-966)) (-5 *1 (-696)))) (-3499 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-966)) (-5 *1 (-696)))) (-2644 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-966)) (-5 *1 (-696)))) (-3502 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108)) (-5 *6 (-632 (-205))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN)))) (-5 *2 (-966)) (-5 *1 (-696)))))
+(-10 -7 (-15 -3502 ((-966) (-525) (-205) (-205) (-525) (-205) (-108) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -2644 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1))))) (-15 -3499 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2))))) (-15 -3944 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1))))) (-15 -3786 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-525) (-525) (-632 (-205)) (-525))) (-15 -1462 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-205) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-108) (-108) (-108) (-525) (-525) (-632 (-205)) (-632 (-525)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS))))) (-15 -3530 ((-966) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-525) (-108) (-205) (-525) (-205) (-205) (-108) (-205) (-205) (-205) (-205) (-108) (-525) (-525) (-525) (-525) (-525) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-525) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))) (-15 -2992 ((-966) (-525) (-525) (-525) (-205) (-632 (-205)) (-525) (-632 (-205)) (-525))))
+((-1277 (((-966) (-1074) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525)) 47)) (-1648 (((-966) (-1074) (-1074) (-525) (-525) (-632 (-157 (-205))) (-525) (-632 (-157 (-205))) (-525) (-525) (-632 (-157 (-205))) (-525)) 46)) (-4215 (((-966) (-525) (-525) (-525) (-632 (-157 (-205))) (-525)) 45)) (-1702 (((-966) (-1074) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 40)) (-1568 (((-966) (-1074) (-1074) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)) (-525)) 39)) (-1590 (((-966) (-525) (-525) (-525) (-632 (-205)) (-525)) 36)) (-1718 (((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525)) 35)) (-2388 (((-966) (-525) (-525) (-525) (-525) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-205) (-205) (-525)) 34)) (-3480 (((-966) (-525) (-525) (-525) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-108) (-205) (-108) (-632 (-525)) (-632 (-205)) (-525)) 33)) (-4067 (((-966) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-525)) 32)))
+(((-697) (-10 -7 (-15 -4067 ((-966) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-525))) (-15 -3480 ((-966) (-525) (-525) (-525) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-108) (-205) (-108) (-632 (-525)) (-632 (-205)) (-525))) (-15 -2388 ((-966) (-525) (-525) (-525) (-525) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-205) (-205) (-525))) (-15 -1718 ((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525))) (-15 -1590 ((-966) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -1568 ((-966) (-1074) (-1074) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)) (-525))) (-15 -1702 ((-966) (-1074) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -4215 ((-966) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -1648 ((-966) (-1074) (-1074) (-525) (-525) (-632 (-157 (-205))) (-525) (-632 (-157 (-205))) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -1277 ((-966) (-1074) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))) (T -697))
+((-1277 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205)))) (-5 *2 (-966)) (-5 *1 (-697)))) (-1648 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205)))) (-5 *2 (-966)) (-5 *1 (-697)))) (-4215 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-966)) (-5 *1 (-697)))) (-1702 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-697)))) (-1568 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-697)))) (-1590 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-697)))) (-1718 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *2 (-966)) (-5 *1 (-697)))) (-2388 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *3 (-525)) (-5 *4 (-592 (-108))) (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *7 (-205)) (-5 *2 (-966)) (-5 *1 (-697)))) (-3480 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-525))) (-5 *5 (-108)) (-5 *6 (-205)) (-5 *7 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-697)))) (-4067 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108)) (-5 *6 (-592 (-108))) (-5 *7 (-632 (-205))) (-5 *8 (-632 (-525))) (-5 *2 (-966)) (-5 *1 (-697)))))
+(-10 -7 (-15 -4067 ((-966) (-525) (-525) (-525) (-525) (-205) (-108) (-108) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-525))) (-15 -3480 ((-966) (-525) (-525) (-525) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-632 (-525)) (-108) (-205) (-108) (-632 (-525)) (-632 (-205)) (-525))) (-15 -2388 ((-966) (-525) (-525) (-525) (-525) (-592 (-108)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-205) (-205) (-525))) (-15 -1718 ((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525))) (-15 -1590 ((-966) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -1568 ((-966) (-1074) (-1074) (-525) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)) (-525))) (-15 -1702 ((-966) (-1074) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -4215 ((-966) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -1648 ((-966) (-1074) (-1074) (-525) (-525) (-632 (-157 (-205))) (-525) (-632 (-157 (-205))) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -1277 ((-966) (-1074) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))
+((-1866 (((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525)) 65)) (-1929 (((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525)) 60)) (-2108 (((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366)) 56) (((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) 55)) (-1810 (((-966) (-525) (-525) (-525) (-205) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525)) 37)) (-2385 (((-966) (-525) (-525) (-205) (-205) (-525) (-525) (-632 (-205)) (-525)) 33)) (-2284 (((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525) (-525)) 30)) (-4146 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 29)) (-2435 (((-966) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 28)) (-1609 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 27)) (-1620 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525)) 26)) (-1630 (((-966) (-525) (-525) (-632 (-205)) (-525)) 25)) (-3957 (((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 24)) (-1818 (((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525)) 23)) (-3628 (((-966) (-632 (-205)) (-525) (-525) (-525) (-525)) 22)) (-1531 (((-966) (-525) (-525) (-632 (-205)) (-525)) 21)))
+(((-698) (-10 -7 (-15 -1531 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -3628 ((-966) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -1818 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3957 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1630 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -1620 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -1609 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2435 ((-966) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -4146 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2284 ((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -2385 ((-966) (-525) (-525) (-205) (-205) (-525) (-525) (-632 (-205)) (-525))) (-15 -1810 ((-966) (-525) (-525) (-525) (-205) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2108 ((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))))) (-15 -2108 ((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366))) (-15 -1929 ((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1866 ((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))) (T -698))
+((-1866 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-157 (-205)))) (-5 *2 (-966)) (-5 *1 (-698)))) (-1929 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-2108 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-366)) (-5 *2 (-966)) (-5 *1 (-698)))) (-2108 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *2 (-966)) (-5 *1 (-698)))) (-1810 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108)) (-5 *6 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-2385 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-2284 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-698)))) (-4146 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-2435 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-1609 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-1620 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-1630 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-3957 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-1818 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))) (-3628 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-698)))) (-1531 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))))
+(-10 -7 (-15 -1531 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -3628 ((-966) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -1818 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -3957 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1630 ((-966) (-525) (-525) (-632 (-205)) (-525))) (-15 -1620 ((-966) (-525) (-525) (-525) (-525) (-632 (-205)) (-525))) (-15 -1609 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2435 ((-966) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -4146 ((-966) (-525) (-525) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2284 ((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525) (-525))) (-15 -2385 ((-966) (-525) (-525) (-205) (-205) (-525) (-525) (-632 (-205)) (-525))) (-15 -1810 ((-966) (-525) (-525) (-525) (-205) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2108 ((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))))) (-15 -2108 ((-966) (-525) (-525) (-205) (-525) (-525) (-525) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE))) (-366))) (-15 -1929 ((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -1866 ((-966) (-525) (-525) (-525) (-525) (-525) (-108) (-525) (-108) (-525) (-632 (-157 (-205))) (-632 (-157 (-205))) (-525))))
+((-2092 (((-966) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) 61)) (-3514 (((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525)) 57)) (-1753 (((-966) (-525) (-632 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE)))) 56)) (-2873 (((-966) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525)) 37)) (-2213 (((-966) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-525)) 36)) (-3302 (((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525)) 33)) (-1538 (((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205))) 32)) (-1349 (((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525)) 28)) (-3087 (((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525)) 27)) (-3903 (((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525)) 26)) (-3550 (((-966) (-525) (-632 (-157 (-205))) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-525)) 22)))
+(((-699) (-10 -7 (-15 -3550 ((-966) (-525) (-632 (-157 (-205))) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -3903 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -3087 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1349 ((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525))) (-15 -1538 ((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)))) (-15 -3302 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2213 ((-966) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2873 ((-966) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -1753 ((-966) (-525) (-632 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE))))) (-15 -3514 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -2092 ((-966) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD))))))) (T -699))
+((-2092 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) (-5 *2 (-966)) (-5 *1 (-699)))) (-3514 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *2 (-966)) (-5 *1 (-699)))) (-1753 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108)) (-5 *6 (-205)) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-966)) (-5 *1 (-699)))) (-2873 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *2 (-966)) (-5 *1 (-699)))) (-2213 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-699)))) (-3302 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-699)))) (-1538 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525))) (-5 *2 (-966)) (-5 *1 (-699)))) (-1349 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-699)))) (-3087 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-699)))) (-3903 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-699)))) (-3550 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-966)) (-5 *1 (-699)))))
+(-10 -7 (-15 -3550 ((-966) (-525) (-632 (-157 (-205))) (-525) (-525) (-525) (-525) (-632 (-157 (-205))) (-525))) (-15 -3903 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -3087 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-525))) (-15 -1349 ((-966) (-632 (-205)) (-525) (-632 (-205)) (-525) (-525) (-525))) (-15 -1538 ((-966) (-525) (-632 (-205)) (-525) (-632 (-525)) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)))) (-15 -3302 ((-966) (-525) (-525) (-632 (-205)) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2213 ((-966) (-525) (-525) (-525) (-205) (-525) (-632 (-205)) (-632 (-205)) (-525))) (-15 -2873 ((-966) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-525)) (-632 (-205)) (-632 (-525)) (-632 (-525)) (-632 (-205)) (-632 (-205)) (-632 (-525)) (-525))) (-15 -1753 ((-966) (-525) (-632 (-205)) (-108) (-205) (-525) (-525) (-525) (-525) (-205) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE))))) (-15 -3514 ((-966) (-525) (-632 (-205)) (-525) (-632 (-205)) (-632 (-525)) (-525) (-632 (-205)) (-525) (-525) (-525) (-525))) (-15 -2092 ((-966) (-525) (-525) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-632 (-205)) (-525) (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD))))))
+((-1304 (((-966) (-1074) (-525) (-525) (-632 (-205)) (-525) (-525) (-632 (-205))) 29)) (-1610 (((-966) (-1074) (-525) (-525) (-632 (-205))) 28)) (-3280 (((-966) (-1074) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-205))) 27)) (-3199 (((-966) (-525) (-525) (-525) (-632 (-205))) 21)))
+(((-700) (-10 -7 (-15 -3199 ((-966) (-525) (-525) (-525) (-632 (-205)))) (-15 -3280 ((-966) (-1074) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-205)))) (-15 -1610 ((-966) (-1074) (-525) (-525) (-632 (-205)))) (-15 -1304 ((-966) (-1074) (-525) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)))))) (T -700))
+((-1304 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-700)))) (-1610 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-700)))) (-3280 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-205))) (-5 *6 (-632 (-525))) (-5 *2 (-966)) (-5 *1 (-700)))) (-3199 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-700)))))
+(-10 -7 (-15 -3199 ((-966) (-525) (-525) (-525) (-632 (-205)))) (-15 -3280 ((-966) (-1074) (-525) (-525) (-632 (-205)) (-525) (-632 (-525)) (-525) (-632 (-205)))) (-15 -1610 ((-966) (-1074) (-525) (-525) (-632 (-205)))) (-15 -1304 ((-966) (-1074) (-525) (-525) (-632 (-205)) (-525) (-525) (-632 (-205)))))
+((-2967 (((-966) (-205) (-205) (-205) (-205) (-525)) 62)) (-3796 (((-966) (-205) (-205) (-205) (-525)) 61)) (-3035 (((-966) (-205) (-205) (-205) (-525)) 60)) (-3855 (((-966) (-205) (-205) (-525)) 59)) (-2976 (((-966) (-205) (-525)) 58)) (-1644 (((-966) (-205) (-525)) 57)) (-1874 (((-966) (-205) (-525)) 56)) (-2745 (((-966) (-205) (-525)) 55)) (-4212 (((-966) (-205) (-525)) 54)) (-4183 (((-966) (-205) (-525)) 53)) (-2095 (((-966) (-205) (-157 (-205)) (-525) (-1074) (-525)) 52)) (-1544 (((-966) (-205) (-157 (-205)) (-525) (-1074) (-525)) 51)) (-1657 (((-966) (-205) (-525)) 50)) (-1256 (((-966) (-205) (-525)) 49)) (-3181 (((-966) (-205) (-525)) 48)) (-2475 (((-966) (-205) (-525)) 47)) (-4115 (((-966) (-525) (-205) (-157 (-205)) (-525) (-1074) (-525)) 46)) (-2501 (((-966) (-1074) (-157 (-205)) (-1074) (-525)) 45)) (-1548 (((-966) (-1074) (-157 (-205)) (-1074) (-525)) 44)) (-3805 (((-966) (-205) (-157 (-205)) (-525) (-1074) (-525)) 43)) (-1891 (((-966) (-205) (-157 (-205)) (-525) (-1074) (-525)) 42)) (-3918 (((-966) (-205) (-525)) 39)) (-1811 (((-966) (-205) (-525)) 38)) (-3583 (((-966) (-205) (-525)) 37)) (-3251 (((-966) (-205) (-525)) 36)) (-2156 (((-966) (-205) (-525)) 35)) (-2831 (((-966) (-205) (-525)) 34)) (-1911 (((-966) (-205) (-525)) 33)) (-2072 (((-966) (-205) (-525)) 32)) (-1930 (((-966) (-205) (-525)) 31)) (-1622 (((-966) (-205) (-525)) 30)) (-2700 (((-966) (-205) (-205) (-205) (-525)) 29)) (-4201 (((-966) (-205) (-525)) 28)) (-1276 (((-966) (-205) (-525)) 27)) (-1872 (((-966) (-205) (-525)) 26)) (-3040 (((-966) (-205) (-525)) 25)) (-3238 (((-966) (-205) (-525)) 24)) (-2355 (((-966) (-157 (-205)) (-525)) 21)))
+(((-701) (-10 -7 (-15 -2355 ((-966) (-157 (-205)) (-525))) (-15 -3238 ((-966) (-205) (-525))) (-15 -3040 ((-966) (-205) (-525))) (-15 -1872 ((-966) (-205) (-525))) (-15 -1276 ((-966) (-205) (-525))) (-15 -4201 ((-966) (-205) (-525))) (-15 -2700 ((-966) (-205) (-205) (-205) (-525))) (-15 -1622 ((-966) (-205) (-525))) (-15 -1930 ((-966) (-205) (-525))) (-15 -2072 ((-966) (-205) (-525))) (-15 -1911 ((-966) (-205) (-525))) (-15 -2831 ((-966) (-205) (-525))) (-15 -2156 ((-966) (-205) (-525))) (-15 -3251 ((-966) (-205) (-525))) (-15 -3583 ((-966) (-205) (-525))) (-15 -1811 ((-966) (-205) (-525))) (-15 -3918 ((-966) (-205) (-525))) (-15 -1891 ((-966) (-205) (-157 (-205)) (-525) (-1074) (-525))) (-15 -3805 ((-966) (-205) (-157 (-205)) (-525) (-1074) (-525))) (-15 -1548 ((-966) (-1074) (-157 (-205)) (-1074) (-525))) (-15 -2501 ((-966) (-1074) (-157 (-205)) (-1074) (-525))) (-15 -4115 ((-966) (-525) (-205) (-157 (-205)) (-525) (-1074) (-525))) (-15 -2475 ((-966) (-205) (-525))) (-15 -3181 ((-966) (-205) (-525))) (-15 -1256 ((-966) (-205) (-525))) (-15 -1657 ((-966) (-205) (-525))) (-15 -1544 ((-966) (-205) (-157 (-205)) (-525) (-1074) (-525))) (-15 -2095 ((-966) (-205) (-157 (-205)) (-525) (-1074) (-525))) (-15 -4183 ((-966) (-205) (-525))) (-15 -4212 ((-966) (-205) (-525))) (-15 -2745 ((-966) (-205) (-525))) (-15 -1874 ((-966) (-205) (-525))) (-15 -1644 ((-966) (-205) (-525))) (-15 -2976 ((-966) (-205) (-525))) (-15 -3855 ((-966) (-205) (-205) (-525))) (-15 -3035 ((-966) (-205) (-205) (-205) (-525))) (-15 -3796 ((-966) (-205) (-205) (-205) (-525))) (-15 -2967 ((-966) (-205) (-205) (-205) (-205) (-525))))) (T -701))
+((-2967 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3796 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3035 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3855 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2976 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1644 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1874 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2745 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-4212 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-4183 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2095 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *3 (-205)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1074)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1544 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *3 (-205)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1074)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1657 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1256 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3181 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2475 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-4115 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-157 (-205))) (-5 *6 (-1074)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2501 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1074)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1548 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1074)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3805 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *3 (-205)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1074)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1891 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *3 (-205)) (-5 *4 (-157 (-205))) (-5 *5 (-525)) (-5 *6 (-1074)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3918 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1811 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3583 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3251 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2156 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2831 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1911 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2072 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1930 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1622 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2700 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-4201 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1276 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-1872 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3040 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-3238 (*1 *2 *3 *4) (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))) (-2355 (*1 *2 *3 *4) (-12 (-5 *3 (-157 (-205))) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(-10 -7 (-15 -2355 ((-966) (-157 (-205)) (-525))) (-15 -3238 ((-966) (-205) (-525))) (-15 -3040 ((-966) (-205) (-525))) (-15 -1872 ((-966) (-205) (-525))) (-15 -1276 ((-966) (-205) (-525))) (-15 -4201 ((-966) (-205) (-525))) (-15 -2700 ((-966) (-205) (-205) (-205) (-525))) (-15 -1622 ((-966) (-205) (-525))) (-15 -1930 ((-966) (-205) (-525))) (-15 -2072 ((-966) (-205) (-525))) (-15 -1911 ((-966) (-205) (-525))) (-15 -2831 ((-966) (-205) (-525))) (-15 -2156 ((-966) (-205) (-525))) (-15 -3251 ((-966) (-205) (-525))) (-15 -3583 ((-966) (-205) (-525))) (-15 -1811 ((-966) (-205) (-525))) (-15 -3918 ((-966) (-205) (-525))) (-15 -1891 ((-966) (-205) (-157 (-205)) (-525) (-1074) (-525))) (-15 -3805 ((-966) (-205) (-157 (-205)) (-525) (-1074) (-525))) (-15 -1548 ((-966) (-1074) (-157 (-205)) (-1074) (-525))) (-15 -2501 ((-966) (-1074) (-157 (-205)) (-1074) (-525))) (-15 -4115 ((-966) (-525) (-205) (-157 (-205)) (-525) (-1074) (-525))) (-15 -2475 ((-966) (-205) (-525))) (-15 -3181 ((-966) (-205) (-525))) (-15 -1256 ((-966) (-205) (-525))) (-15 -1657 ((-966) (-205) (-525))) (-15 -1544 ((-966) (-205) (-157 (-205)) (-525) (-1074) (-525))) (-15 -2095 ((-966) (-205) (-157 (-205)) (-525) (-1074) (-525))) (-15 -4183 ((-966) (-205) (-525))) (-15 -4212 ((-966) (-205) (-525))) (-15 -2745 ((-966) (-205) (-525))) (-15 -1874 ((-966) (-205) (-525))) (-15 -1644 ((-966) (-205) (-525))) (-15 -2976 ((-966) (-205) (-525))) (-15 -3855 ((-966) (-205) (-205) (-525))) (-15 -3035 ((-966) (-205) (-205) (-205) (-525))) (-15 -3796 ((-966) (-205) (-205) (-205) (-525))) (-15 -2967 ((-966) (-205) (-205) (-205) (-205) (-525))))
+((-2762 (((-1178)) 18)) (-3856 (((-1074)) 22)) (-1409 (((-1074)) 21)) (-2264 (((-1024) (-1091) (-632 (-525))) 37) (((-1024) (-1091) (-632 (-205))) 32)) (-2096 (((-108)) 16)) (-3463 (((-1074) (-1074)) 25)))
+(((-702) (-10 -7 (-15 -1409 ((-1074))) (-15 -3856 ((-1074))) (-15 -3463 ((-1074) (-1074))) (-15 -2264 ((-1024) (-1091) (-632 (-205)))) (-15 -2264 ((-1024) (-1091) (-632 (-525)))) (-15 -2096 ((-108))) (-15 -2762 ((-1178))))) (T -702))
+((-2762 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-702)))) (-2096 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-702)))) (-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-632 (-525))) (-5 *2 (-1024)) (-5 *1 (-702)))) (-2264 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-632 (-205))) (-5 *2 (-1024)) (-5 *1 (-702)))) (-3463 (*1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-702)))) (-3856 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-702)))) (-1409 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-702)))))
+(-10 -7 (-15 -1409 ((-1074))) (-15 -3856 ((-1074))) (-15 -3463 ((-1074) (-1074))) (-15 -2264 ((-1024) (-1091) (-632 (-205)))) (-15 -2264 ((-1024) (-1091) (-632 (-525)))) (-15 -2096 ((-108))) (-15 -2762 ((-1178))))
+((-2222 (($ $ $) 10)) (-3941 (($ $ $ $) 9)) (-3395 (($ $ $) 12)))
+(((-703 |#1|) (-10 -8 (-15 -3395 (|#1| |#1| |#1|)) (-15 -2222 (|#1| |#1| |#1|)) (-15 -3941 (|#1| |#1| |#1| |#1|))) (-704)) (T -703))
+NIL
+(-10 -8 (-15 -3395 (|#1| |#1| |#1|)) (-15 -2222 (|#1| |#1| |#1|)) (-15 -3941 (|#1| |#1| |#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3627 (($ $ (-856)) 28)) (-1404 (($ $ (-856)) 29)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-2222 (($ $ $) 25)) (-1270 (((-798) $) 11)) (-3941 (($ $ $ $) 26)) (-3395 (($ $ $) 24)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 30)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27)))
(((-704) (-131)) (T -704))
-((-2260 (*1 *1 *1 *1 *1) (-4 *1 (-704))) (-1518 (*1 *1 *1 *1) (-4 *1 (-704))) (-2331 (*1 *1 *1 *1) (-4 *1 (-704))))
-(-13 (-21) (-663) (-10 -8 (-15 -2260 ($ $ $ $)) (-15 -1518 ($ $ $)) (-15 -2331 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-663) . T) ((-1019) . T))
-((-1908 (((-797) $) NIL) (($ (-525)) 10)))
-(((-705 |#1|) (-10 -8 (-15 -1908 (|#1| (-525))) (-15 -1908 ((-797) |#1|))) (-706)) (T -705))
-NIL
-(-10 -8 (-15 -1908 (|#1| (-525))) (-15 -1908 ((-797) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-1391 (((-3 $ "failed") $) 40)) (-2979 (($ $ (-855)) 28) (($ $ (-713)) 35)) (-2866 (((-3 $ "failed") $) 38)) (-2133 (((-108) $) 34)) (-2364 (((-3 $ "failed") $) 39)) (-1640 (($ $ (-855)) 29) (($ $ (-713)) 36)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1518 (($ $ $) 25)) (-1908 (((-797) $) 11) (($ (-525)) 31)) (-2093 (((-713)) 32)) (-2260 (($ $ $ $) 26)) (-2331 (($ $ $) 24)) (-3875 (($) 18 T CONST)) (-3882 (($) 33 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 30) (($ $ (-713)) 37)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27)))
+((-3941 (*1 *1 *1 *1 *1) (-4 *1 (-704))) (-2222 (*1 *1 *1 *1) (-4 *1 (-704))) (-3395 (*1 *1 *1 *1) (-4 *1 (-704))))
+(-13 (-21) (-663) (-10 -8 (-15 -3941 ($ $ $ $)) (-15 -2222 ($ $ $)) (-15 -3395 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-663) . T) ((-1020) . T))
+((-1270 (((-798) $) NIL) (($ (-525)) 10)))
+(((-705 |#1|) (-10 -8 (-15 -1270 (|#1| (-525))) (-15 -1270 ((-798) |#1|))) (-706)) (T -705))
+NIL
+(-10 -8 (-15 -1270 (|#1| (-525))) (-15 -1270 ((-798) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-2962 (((-3 $ "failed") $) 40)) (-3627 (($ $ (-856)) 28) (($ $ (-713)) 35)) (-3762 (((-3 $ "failed") $) 38)) (-1985 (((-108) $) 34)) (-2665 (((-3 $ "failed") $) 39)) (-1404 (($ $ (-856)) 29) (($ $ (-713)) 36)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-2222 (($ $ $) 25)) (-1270 (((-798) $) 11) (($ (-525)) 31)) (-2104 (((-713)) 32)) (-3941 (($ $ $ $) 26)) (-3395 (($ $ $) 24)) (-3355 (($) 18 T CONST)) (-3363 (($) 33 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 30) (($ $ (-713)) 37)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 27)))
(((-706) (-131)) (T -706))
-((-2093 (*1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-713)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-706)))))
-(-13 (-704) (-665) (-10 -8 (-15 -2093 ((-713))) (-15 -1908 ($ (-525)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-663) . T) ((-665) . T) ((-704) . T) ((-1019) . T))
-((-4078 (((-592 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 |#1|)))))) (-632 (-157 (-385 (-525)))) |#1|) 33)) (-3086 (((-592 (-157 |#1|)) (-632 (-157 (-385 (-525)))) |#1|) 23)) (-1260 (((-886 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))) (-1090)) 20) (((-886 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525))))) 19)))
-(((-707 |#1|) (-10 -7 (-15 -1260 ((-886 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))))) (-15 -1260 ((-886 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))) (-1090))) (-15 -3086 ((-592 (-157 |#1|)) (-632 (-157 (-385 (-525)))) |#1|)) (-15 -4078 ((-592 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 |#1|)))))) (-632 (-157 (-385 (-525)))) |#1|))) (-13 (-341) (-787))) (T -707))
-((-4078 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-592 (-2 (|:| |outval| (-157 *4)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 *4))))))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))) (-3086 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))) (-1260 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *4 (-1090)) (-5 *2 (-886 (-157 (-385 (-525))))) (-5 *1 (-707 *5)) (-4 *5 (-13 (-341) (-787))))) (-1260 (*1 *2 *3) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-886 (-157 (-385 (-525))))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))))
-(-10 -7 (-15 -1260 ((-886 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))))) (-15 -1260 ((-886 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))) (-1090))) (-15 -3086 ((-592 (-157 |#1|)) (-632 (-157 (-385 (-525)))) |#1|)) (-15 -4078 ((-592 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 |#1|)))))) (-632 (-157 (-385 (-525)))) |#1|)))
-((-3077 (((-161 (-525)) |#1|) 25)))
-(((-708 |#1|) (-10 -7 (-15 -3077 ((-161 (-525)) |#1|))) (-382)) (T -708))
-((-3077 (*1 *2 *3) (-12 (-5 *2 (-161 (-525))) (-5 *1 (-708 *3)) (-4 *3 (-382)))))
-(-10 -7 (-15 -3077 ((-161 (-525)) |#1|)))
-((-2555 ((|#1| |#1| |#1|) 24)) (-2470 ((|#1| |#1| |#1|) 23)) (-3344 ((|#1| |#1| |#1|) 32)) (-3069 ((|#1| |#1| |#1|) 28)) (-1566 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3273 (((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|) 22)))
-(((-709 |#1| |#2|) (-10 -7 (-15 -3273 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 -1566 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3069 (|#1| |#1| |#1|)) (-15 -3344 (|#1| |#1| |#1|))) (-651 |#2|) (-341)) (T -709))
-((-3344 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-3069 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-1566 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-2555 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-2470 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-3273 (*1 *2 *3 *3) (-12 (-4 *4 (-341)) (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3))) (-5 *1 (-709 *3 *4)) (-4 *3 (-651 *4)))))
-(-10 -7 (-15 -3273 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 -1566 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3069 (|#1| |#1| |#1|)) (-15 -3344 (|#1| |#1| |#1|)))
-((-1776 (((-2 (|:| -2499 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))) (-525)) 59)) (-2780 (((-2 (|:| -2499 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525))))) 57)) (-1400 (((-525)) 70)))
-(((-710 |#1| |#2|) (-10 -7 (-15 -1400 ((-525))) (-15 -2780 ((-2 (|:| -2499 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))))) (-15 -1776 ((-2 (|:| -2499 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))) (-525)))) (-1148 (-525)) (-387 (-525) |#1|)) (T -710))
-((-1776 (*1 *2 *3) (-12 (-4 *4 (-1148 (-525))) (-5 *2 (-2 (|:| -2499 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525))))) (-5 *1 (-710 *4 *5)) (-5 *3 (-525)) (-4 *5 (-387 (-525) *4)))) (-2780 (*1 *2) (-12 (-4 *3 (-1148 (-525))) (-5 *2 (-2 (|:| -2499 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525))))) (-5 *1 (-710 *3 *4)) (-4 *4 (-387 (-525) *3)))) (-1400 (*1 *2) (-12 (-4 *3 (-1148 (-525))) (-5 *2 (-525)) (-5 *1 (-710 *3 *4)) (-4 *4 (-387 (-525) *3)))))
-(-10 -7 (-15 -1400 ((-525))) (-15 -2780 ((-2 (|:| -2499 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))))) (-15 -1776 ((-2 (|:| -2499 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))) (-525))))
-((-1893 (((-108) $ $) NIL)) (-2831 (((-3 (|:| |nia| (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $) 21)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 20) (($ (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 13) (($ (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) 18)) (-3961 (((-108) $ $) NIL)))
-(((-711) (-13 (-1019) (-10 -8 (-15 -1908 ($ (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1908 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1908 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (-15 -1908 ((-797) $)) (-15 -2831 ((-3 (|:| |nia| (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $))))) (T -711))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-711)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-711)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-711)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-5 *1 (-711)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-5 *1 (-711)))))
-(-13 (-1019) (-10 -8 (-15 -1908 ($ (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1908 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1908 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (-15 -1908 ((-797) $)) (-15 -2831 ((-3 (|:| |nia| (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $))))
-((-3921 (((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|))) 18) (((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|)) (-592 (-1090))) 17)) (-2925 (((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|))) 20) (((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|)) (-592 (-1090))) 19)))
-(((-712 |#1|) (-10 -7 (-15 -3921 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|)) (-592 (-1090)))) (-15 -3921 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|)))) (-15 -2925 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|)) (-592 (-1090)))) (-15 -2925 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|))))) (-517)) (T -712))
-((-2925 (*1 *2 *3) (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *4)))))) (-5 *1 (-712 *4)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-592 (-1090))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *5)))))) (-5 *1 (-712 *5)))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *4)))))) (-5 *1 (-712 *4)))) (-3921 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-592 (-1090))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *5)))))) (-5 *1 (-712 *5)))))
-(-10 -7 (-15 -3921 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|)) (-592 (-1090)))) (-15 -3921 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|)))) (-15 -2925 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|)) (-592 (-1090)))) (-15 -2925 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-886 |#1|)))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1487 (($ $ $) 8)) (-3263 (((-3 $ "failed") $ $) 11)) (-3097 (($ $ (-525)) 9)) (-1505 (($) NIL T CONST)) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($ $) NIL)) (-2356 (($ $ $) NIL)) (-2133 (((-108) $) NIL)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3244 (($ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-1908 (((-797) $) NIL)) (-3465 (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ $ $) NIL)))
-(((-713) (-13 (-735) (-669) (-10 -8 (-15 -2356 ($ $ $)) (-15 -2373 ($ $ $)) (-15 -3244 ($ $ $)) (-15 -1760 ((-2 (|:| -1338 $) (|:| -1632 $)) $ $)) (-15 -2338 ((-3 $ "failed") $ $)) (-15 -3097 ($ $ (-525))) (-15 -3375 ($ $)) (-6 (-4256 "*"))))) (T -713))
-((-2356 (*1 *1 *1 *1) (-5 *1 (-713))) (-2373 (*1 *1 *1 *1) (-5 *1 (-713))) (-3244 (*1 *1 *1 *1) (-5 *1 (-713))) (-1760 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1338 (-713)) (|:| -1632 (-713)))) (-5 *1 (-713)))) (-2338 (*1 *1 *1 *1) (|partial| -5 *1 (-713))) (-3097 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-713)))) (-3375 (*1 *1 *1) (-5 *1 (-713))))
-(-13 (-735) (-669) (-10 -8 (-15 -2356 ($ $ $)) (-15 -2373 ($ $ $)) (-15 -3244 ($ $ $)) (-15 -1760 ((-2 (|:| -1338 $) (|:| -1632 $)) $ $)) (-15 -2338 ((-3 $ "failed") $ $)) (-15 -3097 ($ $ (-525))) (-15 -3375 ($ $)) (-6 (-4256 "*"))))
-((-2925 (((-3 |#2| "failed") |#2| |#2| (-110) (-1090)) 35)))
-(((-714 |#1| |#2|) (-10 -7 (-15 -2925 ((-3 |#2| "failed") |#2| |#2| (-110) (-1090)))) (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1112) (-892))) (T -714))
-((-2925 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1090)) (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *1 (-714 *5 *2)) (-4 *2 (-13 (-29 *5) (-1112) (-892))))))
-(-10 -7 (-15 -2925 ((-3 |#2| "failed") |#2| |#2| (-110) (-1090))))
-((-1908 (((-716) |#1|) 8)))
-(((-715 |#1|) (-10 -7 (-15 -1908 ((-716) |#1|))) (-1126)) (T -715))
-((-1908 (*1 *2 *3) (-12 (-5 *2 (-716)) (-5 *1 (-715 *3)) (-4 *3 (-1126)))))
-(-10 -7 (-15 -1908 ((-716) |#1|)))
-((-1893 (((-108) $ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 7)) (-3961 (((-108) $ $) 9)))
-(((-716) (-1019)) (T -716))
-NIL
-(-1019)
-((-3477 ((|#2| |#4|) 35)))
-(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3477 (|#2| |#4|))) (-429) (-1148 |#1|) (-667 |#1| |#2|) (-1148 |#3|)) (T -717))
-((-3477 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-667 *4 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-717 *4 *2 *5 *3)) (-4 *3 (-1148 *5)))))
-(-10 -7 (-15 -3477 (|#2| |#4|)))
-((-2866 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-1687 (((-1177) (-1073) (-1073) |#4| |#5|) 33)) (-2515 ((|#4| |#4| |#5|) 73)) (-4216 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#5|) 77)) (-3377 (((-592 (-2 (|:| |val| (-108)) (|:| -3740 |#5|))) |#4| |#5|) 16)))
-(((-718 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2866 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2515 (|#4| |#4| |#5|)) (-15 -4216 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#5|)) (-15 -1687 ((-1177) (-1073) (-1073) |#4| |#5|)) (-15 -3377 ((-592 (-2 (|:| |val| (-108)) (|:| -3740 |#5|))) |#4| |#5|))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|) (-995 |#1| |#2| |#3| |#4|)) (T -718))
-((-3377 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -3740 *4)))) (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-1687 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1073)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *4 (-990 *6 *7 *8)) (-5 *2 (-1177)) (-5 *1 (-718 *6 *7 *8 *4 *5)) (-4 *5 (-995 *6 *7 *8 *4)))) (-4216 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4)))) (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2515 (*1 *2 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *2 (-990 *4 *5 *6)) (-5 *1 (-718 *4 *5 *6 *2 *3)) (-4 *3 (-995 *4 *5 *6 *2)))) (-2866 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
-(-10 -7 (-15 -2866 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2515 (|#4| |#4| |#5|)) (-15 -4216 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#5|)) (-15 -1687 ((-1177) (-1073) (-1073) |#4| |#5|)) (-15 -3377 ((-592 (-2 (|:| |val| (-108)) (|:| -3740 |#5|))) |#4| |#5|)))
-((-1264 (((-3 (-1086 (-1086 |#1|)) "failed") |#4|) 43)) (-3500 (((-592 |#4|) |#4|) 15)) (-3192 ((|#4| |#4|) 11)))
-(((-719 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3500 ((-592 |#4|) |#4|)) (-15 -1264 ((-3 (-1086 (-1086 |#1|)) "failed") |#4|)) (-15 -3192 (|#4| |#4|))) (-327) (-307 |#1|) (-1148 |#2|) (-1148 |#3|) (-855)) (T -719))
-((-3192 (*1 *2 *2) (-12 (-4 *3 (-327)) (-4 *4 (-307 *3)) (-4 *5 (-1148 *4)) (-5 *1 (-719 *3 *4 *5 *2 *6)) (-4 *2 (-1148 *5)) (-14 *6 (-855)))) (-1264 (*1 *2 *3) (|partial| -12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1148 *5)) (-5 *2 (-1086 (-1086 *4))) (-5 *1 (-719 *4 *5 *6 *3 *7)) (-4 *3 (-1148 *6)) (-14 *7 (-855)))) (-3500 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1148 *5)) (-5 *2 (-592 *3)) (-5 *1 (-719 *4 *5 *6 *3 *7)) (-4 *3 (-1148 *6)) (-14 *7 (-855)))))
-(-10 -7 (-15 -3500 ((-592 |#4|) |#4|)) (-15 -1264 ((-3 (-1086 (-1086 |#1|)) "failed") |#4|)) (-15 -3192 (|#4| |#4|)))
-((-2889 (((-2 (|:| |deter| (-592 (-1086 |#5|))) (|:| |dterm| (-592 (-592 (-2 (|:| -3264 (-713)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-592 |#1|)) (|:| |nlead| (-592 |#5|))) (-1086 |#5|) (-592 |#1|) (-592 |#5|)) 54)) (-2289 (((-592 (-713)) |#1|) 13)))
-(((-720 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2889 ((-2 (|:| |deter| (-592 (-1086 |#5|))) (|:| |dterm| (-592 (-592 (-2 (|:| -3264 (-713)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-592 |#1|)) (|:| |nlead| (-592 |#5|))) (-1086 |#5|) (-592 |#1|) (-592 |#5|))) (-15 -2289 ((-592 (-713)) |#1|))) (-1148 |#4|) (-735) (-789) (-286) (-883 |#4| |#2| |#3|)) (T -720))
-((-2289 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-592 (-713))) (-5 *1 (-720 *3 *4 *5 *6 *7)) (-4 *3 (-1148 *6)) (-4 *7 (-883 *6 *4 *5)))) (-2889 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1148 *9)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-286)) (-4 *10 (-883 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-592 (-1086 *10))) (|:| |dterm| (-592 (-592 (-2 (|:| -3264 (-713)) (|:| |pcoef| *10))))) (|:| |nfacts| (-592 *6)) (|:| |nlead| (-592 *10)))) (-5 *1 (-720 *6 *7 *8 *9 *10)) (-5 *3 (-1086 *10)) (-5 *4 (-592 *6)) (-5 *5 (-592 *10)))))
-(-10 -7 (-15 -2889 ((-2 (|:| |deter| (-592 (-1086 |#5|))) (|:| |dterm| (-592 (-592 (-2 (|:| -3264 (-713)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-592 |#1|)) (|:| |nlead| (-592 |#5|))) (-1086 |#5|) (-592 |#1|) (-592 |#5|))) (-15 -2289 ((-592 (-713)) |#1|)))
-((-3112 (((-592 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#1|))))) (-632 (-385 (-525))) |#1|) 31)) (-2990 (((-592 |#1|) (-632 (-385 (-525))) |#1|) 21)) (-1260 (((-886 (-385 (-525))) (-632 (-385 (-525))) (-1090)) 18) (((-886 (-385 (-525))) (-632 (-385 (-525)))) 17)))
-(((-721 |#1|) (-10 -7 (-15 -1260 ((-886 (-385 (-525))) (-632 (-385 (-525))))) (-15 -1260 ((-886 (-385 (-525))) (-632 (-385 (-525))) (-1090))) (-15 -2990 ((-592 |#1|) (-632 (-385 (-525))) |#1|)) (-15 -3112 ((-592 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#1|))))) (-632 (-385 (-525))) |#1|))) (-13 (-341) (-787))) (T -721))
-((-3112 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-592 (-2 (|:| |outval| *4) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 *4)))))) (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))) (-2990 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))) (-1260 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *4 (-1090)) (-5 *2 (-886 (-385 (-525)))) (-5 *1 (-721 *5)) (-4 *5 (-13 (-341) (-787))))) (-1260 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-886 (-385 (-525)))) (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))))
-(-10 -7 (-15 -1260 ((-886 (-385 (-525))) (-632 (-385 (-525))))) (-15 -1260 ((-886 (-385 (-525))) (-632 (-385 (-525))) (-1090))) (-15 -2990 ((-592 |#1|) (-632 (-385 (-525))) |#1|)) (-15 -3112 ((-592 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#1|))))) (-632 (-385 (-525))) |#1|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 34)) (-4104 (((-592 |#2|) $) NIL)) (-3927 (((-1086 $) $ |#2|) NIL) (((-1086 |#1|) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-1324 (((-713) $) NIL) (((-713) $ (-592 |#2|)) NIL)) (-1614 (($ $) 28)) (-2584 (((-108) $ $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1820 (($ $ $) 93 (|has| |#1| (-517)))) (-2459 (((-592 $) $ $) 106 (|has| |#1| (-517)))) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3321 (($ $) NIL (|has| |#1| (-429)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-886 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1090))))) (((-3 $ "failed") (-886 (-525))) NIL (-3309 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1090))) (-2480 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1090)))))) (((-3 $ "failed") (-886 |#1|)) NIL (-3309 (-12 (|has| |#2| (-567 (-1090))) (-2480 (|has| |#1| (-37 (-385 (-525))))) (-2480 (|has| |#1| (-37 (-525))))) (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1090))) (-2480 (|has| |#1| (-37 (-385 (-525))))) (-2480 (|has| |#1| (-510)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1090))) (-2480 (|has| |#1| (-924 (-525))))))) (((-3 (-1042 |#1| |#2|) "failed") $) 18)) (-2831 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) ((|#2| $) NIL) (($ (-886 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1090))))) (($ (-886 (-525))) NIL (-3309 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1090))) (-2480 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1090)))))) (($ (-886 |#1|)) NIL (-3309 (-12 (|has| |#2| (-567 (-1090))) (-2480 (|has| |#1| (-37 (-385 (-525))))) (-2480 (|has| |#1| (-37 (-525))))) (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1090))) (-2480 (|has| |#1| (-37 (-385 (-525))))) (-2480 (|has| |#1| (-510)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1090))) (-2480 (|has| |#1| (-924 (-525))))))) (((-1042 |#1| |#2|) $) NIL)) (-2506 (($ $ $ |#2|) NIL (|has| |#1| (-160))) (($ $ $) 104 (|has| |#1| (-517)))) (-1247 (($ $) NIL) (($ $ |#2|) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-1954 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-2368 (((-108) $) NIL)) (-3196 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 70)) (-1532 (($ $) 119 (|has| |#1| (-429)))) (-3811 (($ $) NIL (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-1234 (((-592 $) $) NIL)) (-2250 (((-108) $) NIL (|has| |#1| (-843)))) (-2673 (($ $) NIL (|has| |#1| (-517)))) (-1961 (($ $) NIL (|has| |#1| (-517)))) (-3797 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-1559 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-2099 (($ $ |#1| (-497 |#2|) $) NIL)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| |#1| (-820 (-357))) (|has| |#2| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| |#1| (-820 (-525))) (|has| |#2| (-820 (-525)))))) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) NIL)) (-2267 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-1581 (($ $ $ $ $) 90 (|has| |#1| (-517)))) (-1257 ((|#2| $) 19)) (-4092 (($ (-1086 |#1|) |#2|) NIL) (($ (-1086 $) |#2|) NIL)) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-497 |#2|)) NIL) (($ $ |#2| (-713)) 36) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-2173 (($ $ $) 60)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ |#2|) NIL)) (-2125 (((-108) $) NIL)) (-3181 (((-497 |#2|) $) NIL) (((-713) $ |#2|) NIL) (((-592 (-713)) $ (-592 |#2|)) NIL)) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-4219 (((-713) $) 20)) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-1331 (($ (-1 (-497 |#2|) (-497 |#2|)) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-1666 (((-3 |#2| "failed") $) NIL)) (-1604 (($ $) NIL (|has| |#1| (-429)))) (-2533 (($ $) NIL (|has| |#1| (-429)))) (-3401 (((-592 $) $) NIL)) (-1236 (($ $) 37)) (-3989 (($ $) NIL (|has| |#1| (-429)))) (-2174 (((-592 $) $) 41)) (-3133 (($ $) 39)) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL) (($ $ |#2|) 45)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-4156 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4011 (-713))) $ $) 82)) (-2972 (((-2 (|:| -1459 $) (|:| |gap| (-713)) (|:| -1338 $) (|:| -1632 $)) $ $) 67) (((-2 (|:| -1459 $) (|:| |gap| (-713)) (|:| -1338 $) (|:| -1632 $)) $ $ |#2|) NIL)) (-1258 (((-2 (|:| -1459 $) (|:| |gap| (-713)) (|:| -1632 $)) $ $) NIL) (((-2 (|:| -1459 $) (|:| |gap| (-713)) (|:| -1632 $)) $ $ |#2|) NIL)) (-3984 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-2968 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-2337 (((-1073) $) NIL)) (-1868 (($ $ $) 108 (|has| |#1| (-517)))) (-1863 (((-592 $) $) 30)) (-3245 (((-3 (-592 $) "failed") $) NIL)) (-3193 (((-3 (-592 $) "failed") $) NIL)) (-3283 (((-3 (-2 (|:| |var| |#2|) (|:| -1600 (-713))) "failed") $) NIL)) (-3691 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-4189 (($ $ $) NIL)) (-2279 (($ $) 21)) (-2491 (((-108) $ $) NIL)) (-2469 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-2954 (($ $ $) NIL)) (-3888 (($ $) 23)) (-2663 (((-1037) $) NIL)) (-1622 (((-2 (|:| -3244 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-517)))) (-1534 (((-2 (|:| -3244 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-517)))) (-4221 (((-108) $) 52)) (-4232 ((|#1| $) 55)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-429)))) (-3244 ((|#1| |#1| $) 116 (|has| |#1| (-429))) (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3959 (((-396 $) $) NIL (|has| |#1| (-843)))) (-1279 (((-2 (|:| -3244 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-517)))) (-2338 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-517)))) (-1305 (($ $ |#1|) 112 (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-1445 (($ $ |#1|) 111 (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-3092 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-592 |#2|) (-592 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-592 |#2|) (-592 $)) NIL)) (-1400 (($ $ |#2|) NIL (|has| |#1| (-160)))) (-3013 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-2513 (((-497 |#2|) $) NIL) (((-713) $ |#2|) 43) (((-592 (-713)) $ (-592 |#2|)) NIL)) (-2101 (($ $) NIL)) (-2410 (($ $) 33)) (-1427 (((-826 (-357)) $) NIL (-12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-567 (-501))) (|has| |#2| (-567 (-501))))) (($ (-886 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1090))))) (($ (-886 (-525))) NIL (-3309 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1090))) (-2480 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1090)))))) (($ (-886 |#1|)) NIL (|has| |#2| (-567 (-1090)))) (((-1073) $) NIL (-12 (|has| |#1| (-967 (-525))) (|has| |#2| (-567 (-1090))))) (((-886 |#1|) $) NIL (|has| |#2| (-567 (-1090))))) (-2751 ((|#1| $) 115 (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-886 |#1|) $) NIL (|has| |#2| (-567 (-1090)))) (((-1042 |#1| |#2|) $) 15) (($ (-1042 |#1| |#2|)) 16) (($ (-385 (-525))) NIL (-3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3600 (((-592 |#1|) $) NIL)) (-1657 ((|#1| $ (-497 |#2|)) NIL) (($ $ |#2| (-713)) 44) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2093 (((-713)) NIL)) (-4116 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 13 T CONST)) (-2429 (((-3 (-108) "failed") $ $) NIL)) (-3882 (($) 35 T CONST)) (-3756 (($ $ $ $ (-713)) 88 (|has| |#1| (-517)))) (-2339 (($ $ $ (-713)) 87 (|has| |#1| (-517)))) (-1424 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) 54)) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) 64)) (-4059 (($ $ $) 74)) (** (($ $ (-855)) NIL) (($ $ (-713)) 61)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 59) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
-(((-722 |#1| |#2|) (-13 (-990 |#1| (-497 |#2|) |#2|) (-566 (-1042 |#1| |#2|)) (-967 (-1042 |#1| |#2|))) (-976) (-789)) (T -722))
-NIL
-(-13 (-990 |#1| (-497 |#2|) |#2|) (-566 (-1042 |#1| |#2|)) (-967 (-1042 |#1| |#2|)))
-((-1370 (((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|)) 13)))
-(((-723 |#1| |#2|) (-10 -7 (-15 -1370 ((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|)))) (-976) (-976)) (T -723))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-724 *5)) (-4 *5 (-976)) (-4 *6 (-976)) (-5 *2 (-724 *6)) (-5 *1 (-723 *5 *6)))))
-(-10 -7 (-15 -1370 ((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 12)) (-1401 (((-1172 |#1|) $ (-713)) NIL)) (-4104 (((-592 (-1004)) $) NIL)) (-1361 (($ (-1086 |#1|)) NIL)) (-3927 (((-1086 $) $ (-1004)) NIL) (((-1086 |#1|) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-1324 (((-713) $) NIL) (((-713) $ (-592 (-1004))) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1995 (((-592 $) $ $) 39 (|has| |#1| (-517)))) (-1820 (($ $ $) 35 (|has| |#1| (-517)))) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3321 (($ $) NIL (|has| |#1| (-429)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-2305 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3311 (($ $ (-713)) NIL)) (-1821 (($ $ (-713)) NIL)) (-3976 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-1004) "failed") $) NIL) (((-3 (-1086 |#1|) "failed") $) 10)) (-2831 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-1004) $) NIL) (((-1086 |#1|) $) NIL)) (-2506 (($ $ $ (-1004)) NIL (|has| |#1| (-160))) ((|#1| $ $) 43 (|has| |#1| (-160)))) (-2373 (($ $ $) NIL (|has| |#1| (-341)))) (-1247 (($ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#1| (-341)))) (-1766 (($ $ $) NIL)) (-3744 (($ $ $) 71 (|has| |#1| (-517)))) (-3196 (((-2 (|:| -1459 |#1|) (|:| -1338 $) (|:| -1632 $)) $ $) 70 (|has| |#1| (-517)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3811 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1004)) NIL (|has| |#1| (-429)))) (-1234 (((-592 $) $) NIL)) (-2250 (((-108) $) NIL (|has| |#1| (-843)))) (-2099 (($ $ |#1| (-713) $) NIL)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-1004) (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-1004) (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-1737 (((-713) $ $) NIL (|has| |#1| (-517)))) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) NIL)) (-1816 (((-3 $ "failed") $) NIL (|has| |#1| (-1066)))) (-4092 (($ (-1086 |#1|) (-1004)) NIL) (($ (-1086 $) (-1004)) NIL)) (-3817 (($ $ (-713)) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-713)) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-2173 (($ $ $) 20)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ (-1004)) NIL) (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-3181 (((-713) $) NIL) (((-713) $ (-1004)) NIL) (((-592 (-713)) $ (-592 (-1004))) NIL)) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-1331 (($ (-1 (-713) (-713)) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (((-1086 |#1|) $) NIL)) (-1666 (((-3 (-1004) "failed") $) NIL)) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-4156 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4011 (-713))) $ $) 26)) (-3904 (($ $ $) 29)) (-2486 (($ $ $) 32)) (-2972 (((-2 (|:| -1459 |#1|) (|:| |gap| (-713)) (|:| -1338 $) (|:| -1632 $)) $ $) 31)) (-2337 (((-1073) $) NIL)) (-1868 (($ $ $) 41 (|has| |#1| (-517)))) (-3781 (((-2 (|:| -1338 $) (|:| -1632 $)) $ (-713)) NIL)) (-3245 (((-3 (-592 $) "failed") $) NIL)) (-3193 (((-3 (-592 $) "failed") $) NIL)) (-3283 (((-3 (-2 (|:| |var| (-1004)) (|:| -1600 (-713))) "failed") $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2279 (($) NIL (|has| |#1| (-1066)) CONST)) (-2663 (((-1037) $) NIL)) (-1622 (((-2 (|:| -3244 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-517)))) (-1534 (((-2 (|:| -3244 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-517)))) (-1650 (((-2 (|:| -2506 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-517)))) (-3548 (((-2 (|:| -2506 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-517)))) (-4221 (((-108) $) 13)) (-4232 ((|#1| $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-429)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1631 (($ $ (-713) |#1| $) 19)) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3959 (((-396 $) $) NIL (|has| |#1| (-843)))) (-1279 (((-2 (|:| -3244 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-517)))) (-1419 (((-2 (|:| -2506 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-517)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-2338 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-3092 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1004) |#1|) NIL) (($ $ (-592 (-1004)) (-592 |#1|)) NIL) (($ $ (-1004) $) NIL) (($ $ (-592 (-1004)) (-592 $)) NIL)) (-2183 (((-713) $) NIL (|has| |#1| (-341)))) (-3928 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-2063 (((-3 $ "failed") $ (-713)) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-341)))) (-1400 (($ $ (-1004)) NIL (|has| |#1| (-160))) ((|#1| $) NIL (|has| |#1| (-160)))) (-3013 (($ $ (-1004)) NIL) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2513 (((-713) $) NIL) (((-713) $ (-1004)) NIL) (((-592 (-713)) $ (-592 (-1004))) NIL)) (-1427 (((-826 (-357)) $) NIL (-12 (|has| (-1004) (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-1004) (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-1004) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2751 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1004)) NIL (|has| |#1| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-1925 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1004)) NIL) (((-1086 |#1|) $) 7) (($ (-1086 |#1|)) 8) (($ (-385 (-525))) NIL (-3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3600 (((-592 |#1|) $) NIL)) (-1657 ((|#1| $ (-713)) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2093 (((-713)) NIL)) (-4116 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 21 T CONST)) (-3882 (($) 24 T CONST)) (-1424 (($ $ (-1004)) NIL) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4070 (($ $) 28) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
-(((-724 |#1|) (-13 (-1148 |#1|) (-566 (-1086 |#1|)) (-967 (-1086 |#1|)) (-10 -8 (-15 -1631 ($ $ (-713) |#1| $)) (-15 -2173 ($ $ $)) (-15 -4156 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4011 (-713))) $ $)) (-15 -3904 ($ $ $)) (-15 -2972 ((-2 (|:| -1459 |#1|) (|:| |gap| (-713)) (|:| -1338 $) (|:| -1632 $)) $ $)) (-15 -2486 ($ $ $)) (IF (|has| |#1| (-517)) (PROGN (-15 -1995 ((-592 $) $ $)) (-15 -1868 ($ $ $)) (-15 -1279 ((-2 (|:| -3244 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1534 ((-2 (|:| -3244 $) (|:| |coef1| $)) $ $)) (-15 -1622 ((-2 (|:| -3244 $) (|:| |coef2| $)) $ $)) (-15 -1419 ((-2 (|:| -2506 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3548 ((-2 (|:| -2506 |#1|) (|:| |coef1| $)) $ $)) (-15 -1650 ((-2 (|:| -2506 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-976)) (T -724))
-((-1631 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-713)) (-5 *1 (-724 *3)) (-4 *3 (-976)))) (-2173 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-976)))) (-4156 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-724 *3)) (|:| |polden| *3) (|:| -4011 (-713)))) (-5 *1 (-724 *3)) (-4 *3 (-976)))) (-3904 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-976)))) (-2972 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1459 *3) (|:| |gap| (-713)) (|:| -1338 (-724 *3)) (|:| -1632 (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-976)))) (-2486 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-976)))) (-1995 (*1 *2 *1 *1) (-12 (-5 *2 (-592 (-724 *3))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))) (-1868 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-517)) (-4 *2 (-976)))) (-1279 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3244 (-724 *3)) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))) (-1534 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3244 (-724 *3)) (|:| |coef1| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))) (-1622 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3244 (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))) (-1419 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2506 *3) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))) (-3548 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2506 *3) (|:| |coef1| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))) (-1650 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2506 *3) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))))
-(-13 (-1148 |#1|) (-566 (-1086 |#1|)) (-967 (-1086 |#1|)) (-10 -8 (-15 -1631 ($ $ (-713) |#1| $)) (-15 -2173 ($ $ $)) (-15 -4156 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4011 (-713))) $ $)) (-15 -3904 ($ $ $)) (-15 -2972 ((-2 (|:| -1459 |#1|) (|:| |gap| (-713)) (|:| -1338 $) (|:| -1632 $)) $ $)) (-15 -2486 ($ $ $)) (IF (|has| |#1| (-517)) (PROGN (-15 -1995 ((-592 $) $ $)) (-15 -1868 ($ $ $)) (-15 -1279 ((-2 (|:| -3244 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1534 ((-2 (|:| -3244 $) (|:| |coef1| $)) $ $)) (-15 -1622 ((-2 (|:| -3244 $) (|:| |coef2| $)) $ $)) (-15 -1419 ((-2 (|:| -2506 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3548 ((-2 (|:| -2506 |#1|) (|:| |coef1| $)) $ $)) (-15 -1650 ((-2 (|:| -2506 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-1832 ((|#1| (-713) |#1|) 32 (|has| |#1| (-37 (-385 (-525)))))) (-2071 ((|#1| (-713) |#1|) 22)) (-3147 ((|#1| (-713) |#1|) 34 (|has| |#1| (-37 (-385 (-525)))))))
-(((-725 |#1|) (-10 -7 (-15 -2071 (|#1| (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -3147 (|#1| (-713) |#1|)) (-15 -1832 (|#1| (-713) |#1|))) |%noBranch|)) (-160)) (T -725))
-((-1832 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-3147 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-2071 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-160)))))
-(-10 -7 (-15 -2071 (|#1| (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -3147 (|#1| (-713) |#1|)) (-15 -1832 (|#1| (-713) |#1|))) |%noBranch|))
-((-1893 (((-108) $ $) 7)) (-2894 (((-592 (-2 (|:| -3286 $) (|:| -2396 (-592 |#4|)))) (-592 |#4|)) 85)) (-2308 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-4104 (((-592 |#3|) $) 33)) (-3696 (((-108) $) 26)) (-3810 (((-108) $) 17 (|has| |#1| (-517)))) (-1466 (((-108) |#4| $) 101) (((-108) $) 97)) (-3833 ((|#4| |#4| $) 92)) (-3321 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 $))) |#4| $) 126)) (-3327 (((-2 (|:| |under| $) (|:| -1720 $) (|:| |upper| $)) $ |#3|) 27)) (-3410 (((-108) $ (-713)) 44)) (-2724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) 79)) (-1505 (($) 45 T CONST)) (-2637 (((-108) $) 22 (|has| |#1| (-517)))) (-2643 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2494 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3405 (((-108) $) 25 (|has| |#1| (-517)))) (-2895 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3937 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-3144 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-1264 (((-3 $ "failed") (-592 |#4|)) 36)) (-2831 (($ (-592 |#4|)) 35)) (-3145 (((-3 $ "failed") $) 82)) (-3096 ((|#4| |#4| $) 89)) (-3163 (($ $) 68 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ |#4| $) 67 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4254)))) (-1632 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-1954 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2295 ((|#4| |#4| $) 87)) (-4004 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1426 (((-2 (|:| -3286 (-592 |#4|)) (|:| -2396 (-592 |#4|))) $) 105)) (-1725 (((-108) |#4| $) 136)) (-2678 (((-108) |#4| $) 133)) (-1503 (((-108) |#4| $) 137) (((-108) $) 134)) (-2026 (((-592 |#4|) $) 52 (|has| $ (-6 -4254)))) (-2267 (((-108) |#4| $) 104) (((-108) $) 103)) (-1257 ((|#3| $) 34)) (-3100 (((-108) $ (-713)) 43)) (-3168 (((-592 |#4|) $) 53 (|has| $ (-6 -4254)))) (-4132 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#4| |#4|) $) 47)) (-1835 (((-592 |#3|) $) 32)) (-1913 (((-108) |#3| $) 31)) (-3017 (((-108) $ (-713)) 42)) (-2337 (((-1073) $) 9)) (-3211 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-1868 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 $))) |#4| |#4| $) 127)) (-2292 (((-3 |#4| "failed") $) 83)) (-2505 (((-592 $) |#4| $) 129)) (-2269 (((-3 (-108) (-592 $)) |#4| $) 132)) (-2819 (((-592 (-2 (|:| |val| (-108)) (|:| -3740 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-3187 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-2394 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-2931 (((-592 |#4|) $) 107)) (-3691 (((-108) |#4| $) 99) (((-108) $) 95)) (-4189 ((|#4| |#4| $) 90)) (-2491 (((-108) $ $) 110)) (-2809 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2469 (((-108) |#4| $) 100) (((-108) $) 96)) (-2954 ((|#4| |#4| $) 91)) (-2663 (((-1037) $) 10)) (-3135 (((-3 |#4| "failed") $) 84)) (-4054 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2662 (((-3 $ "failed") $ |#4|) 78)) (-3538 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-3494 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-2642 (((-108) $ $) 38)) (-1613 (((-108) $) 41)) (-3773 (($) 40)) (-2513 (((-713) $) 106)) (-2686 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4254)))) (-2135 (($ $) 39)) (-1427 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1922 (($ (-592 |#4|)) 60)) (-1861 (($ $ |#3|) 28)) (-3570 (($ $ |#3|) 30)) (-2031 (($ $) 88)) (-1263 (($ $ |#3|) 29)) (-1908 (((-797) $) 11) (((-592 |#4|) $) 37)) (-3056 (((-713) $) 76 (|has| |#3| (-346)))) (-3480 (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-1971 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-2348 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-2667 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4254)))) (-2241 (((-592 |#3|) $) 81)) (-3673 (((-108) |#4| $) 135)) (-1252 (((-108) |#3| $) 80)) (-3961 (((-108) $ $) 6)) (-4140 (((-713) $) 46 (|has| $ (-6 -4254)))))
-(((-726 |#1| |#2| |#3| |#4|) (-131) (-429) (-735) (-789) (-990 |t#1| |t#2| |t#3|)) (T -726))
-NIL
-(-13 (-995 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-797)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-908 |#1| |#2| |#3| |#4|) . T) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1019) . T) ((-1120 |#1| |#2| |#3| |#4|) . T) ((-1126) . T))
-((-3663 (((-3 (-357) "failed") (-294 |#1|) (-855)) 62 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-357) "failed") (-294 |#1|)) 54 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-357) "failed") (-385 (-886 |#1|)) (-855)) 41 (|has| |#1| (-517))) (((-3 (-357) "failed") (-385 (-886 |#1|))) 40 (|has| |#1| (-517))) (((-3 (-357) "failed") (-886 |#1|) (-855)) 31 (|has| |#1| (-976))) (((-3 (-357) "failed") (-886 |#1|)) 30 (|has| |#1| (-976)))) (-2641 (((-357) (-294 |#1|) (-855)) 99 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-357) (-294 |#1|)) 94 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-357) (-385 (-886 |#1|)) (-855)) 91 (|has| |#1| (-517))) (((-357) (-385 (-886 |#1|))) 90 (|has| |#1| (-517))) (((-357) (-886 |#1|) (-855)) 86 (|has| |#1| (-976))) (((-357) (-886 |#1|)) 85 (|has| |#1| (-976))) (((-357) |#1| (-855)) 76) (((-357) |#1|) 22)) (-1596 (((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-855)) 71 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-294 (-157 |#1|))) 70 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-294 |#1|) (-855)) 63 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-294 |#1|)) 61 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-385 (-886 (-157 |#1|))) (-855)) 46 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-886 (-157 |#1|)))) 45 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-886 |#1|)) (-855)) 39 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-886 |#1|))) 38 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-886 |#1|) (-855)) 28 (|has| |#1| (-976))) (((-3 (-157 (-357)) "failed") (-886 |#1|)) 26 (|has| |#1| (-976))) (((-3 (-157 (-357)) "failed") (-886 (-157 |#1|)) (-855)) 18 (|has| |#1| (-160))) (((-3 (-157 (-357)) "failed") (-886 (-157 |#1|))) 15 (|has| |#1| (-160)))) (-3897 (((-157 (-357)) (-294 (-157 |#1|)) (-855)) 102 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-294 (-157 |#1|))) 101 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-294 |#1|) (-855)) 100 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-294 |#1|)) 98 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-385 (-886 (-157 |#1|))) (-855)) 93 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-886 (-157 |#1|)))) 92 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-886 |#1|)) (-855)) 89 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-886 |#1|))) 88 (|has| |#1| (-517))) (((-157 (-357)) (-886 |#1|) (-855)) 84 (|has| |#1| (-976))) (((-157 (-357)) (-886 |#1|)) 83 (|has| |#1| (-976))) (((-157 (-357)) (-886 (-157 |#1|)) (-855)) 78 (|has| |#1| (-160))) (((-157 (-357)) (-886 (-157 |#1|))) 77 (|has| |#1| (-160))) (((-157 (-357)) (-157 |#1|) (-855)) 80 (|has| |#1| (-160))) (((-157 (-357)) (-157 |#1|)) 79 (|has| |#1| (-160))) (((-157 (-357)) |#1| (-855)) 27) (((-157 (-357)) |#1|) 25)))
-(((-727 |#1|) (-10 -7 (-15 -2641 ((-357) |#1|)) (-15 -2641 ((-357) |#1| (-855))) (-15 -3897 ((-157 (-357)) |#1|)) (-15 -3897 ((-157 (-357)) |#1| (-855))) (IF (|has| |#1| (-160)) (PROGN (-15 -3897 ((-157 (-357)) (-157 |#1|))) (-15 -3897 ((-157 (-357)) (-157 |#1|) (-855))) (-15 -3897 ((-157 (-357)) (-886 (-157 |#1|)))) (-15 -3897 ((-157 (-357)) (-886 (-157 |#1|)) (-855)))) |%noBranch|) (IF (|has| |#1| (-976)) (PROGN (-15 -2641 ((-357) (-886 |#1|))) (-15 -2641 ((-357) (-886 |#1|) (-855))) (-15 -3897 ((-157 (-357)) (-886 |#1|))) (-15 -3897 ((-157 (-357)) (-886 |#1|) (-855)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -2641 ((-357) (-385 (-886 |#1|)))) (-15 -2641 ((-357) (-385 (-886 |#1|)) (-855))) (-15 -3897 ((-157 (-357)) (-385 (-886 |#1|)))) (-15 -3897 ((-157 (-357)) (-385 (-886 |#1|)) (-855))) (-15 -3897 ((-157 (-357)) (-385 (-886 (-157 |#1|))))) (-15 -3897 ((-157 (-357)) (-385 (-886 (-157 |#1|))) (-855))) (IF (|has| |#1| (-789)) (PROGN (-15 -2641 ((-357) (-294 |#1|))) (-15 -2641 ((-357) (-294 |#1|) (-855))) (-15 -3897 ((-157 (-357)) (-294 |#1|))) (-15 -3897 ((-157 (-357)) (-294 |#1|) (-855))) (-15 -3897 ((-157 (-357)) (-294 (-157 |#1|)))) (-15 -3897 ((-157 (-357)) (-294 (-157 |#1|)) (-855)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-15 -1596 ((-3 (-157 (-357)) "failed") (-886 (-157 |#1|)))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-886 (-157 |#1|)) (-855)))) |%noBranch|) (IF (|has| |#1| (-976)) (PROGN (-15 -3663 ((-3 (-357) "failed") (-886 |#1|))) (-15 -3663 ((-3 (-357) "failed") (-886 |#1|) (-855))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-886 |#1|))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-886 |#1|) (-855)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -3663 ((-3 (-357) "failed") (-385 (-886 |#1|)))) (-15 -3663 ((-3 (-357) "failed") (-385 (-886 |#1|)) (-855))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-385 (-886 |#1|)))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-385 (-886 |#1|)) (-855))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-385 (-886 (-157 |#1|))))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-385 (-886 (-157 |#1|))) (-855))) (IF (|has| |#1| (-789)) (PROGN (-15 -3663 ((-3 (-357) "failed") (-294 |#1|))) (-15 -3663 ((-3 (-357) "failed") (-294 |#1|) (-855))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-294 |#1|))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-294 |#1|) (-855))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-855)))) |%noBranch|)) |%noBranch|)) (-567 (-357))) (T -727))
-((-1596 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1596 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-1596 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1596 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3663 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3663 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-1596 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-886 (-157 *5)))) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1596 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-886 (-157 *4)))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-1596 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1596 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3663 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3663 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-1596 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-886 *5)) (-5 *4 (-855)) (-4 *5 (-976)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1596 (*1 *2 *3) (|partial| -12 (-5 *3 (-886 *4)) (-4 *4 (-976)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3663 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-886 *5)) (-5 *4 (-855)) (-4 *5 (-976)) (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3663 (*1 *2 *3) (|partial| -12 (-5 *3 (-886 *4)) (-4 *4 (-976)) (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-1596 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-886 (-157 *5))) (-5 *4 (-855)) (-4 *5 (-160)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1596 (*1 *2 *3) (|partial| -12 (-5 *3 (-886 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-2641 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-2641 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 (-157 *5)))) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-385 (-886 (-157 *4)))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-2641 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-2641 (*1 *2 *3) (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-886 *5)) (-5 *4 (-855)) (-4 *5 (-976)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-886 *4)) (-4 *4 (-976)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-2641 (*1 *2 *3 *4) (-12 (-5 *3 (-886 *5)) (-5 *4 (-855)) (-4 *5 (-976)) (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-2641 (*1 *2 *3) (-12 (-5 *3 (-886 *4)) (-4 *4 (-976)) (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-886 (-157 *5))) (-5 *4 (-855)) (-4 *5 (-160)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-886 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *3 (-157 *5)) (-5 *4 (-855)) (-4 *5 (-160)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-157 *4)) (-4 *4 (-160)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3897 (*1 *2 *3 *4) (-12 (-5 *4 (-855)) (-5 *2 (-157 (-357))) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357))))) (-3897 (*1 *2 *3) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357))))) (-2641 (*1 *2 *3 *4) (-12 (-5 *4 (-855)) (-5 *2 (-357)) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357))))) (-2641 (*1 *2 *3) (-12 (-5 *2 (-357)) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357))))))
-(-10 -7 (-15 -2641 ((-357) |#1|)) (-15 -2641 ((-357) |#1| (-855))) (-15 -3897 ((-157 (-357)) |#1|)) (-15 -3897 ((-157 (-357)) |#1| (-855))) (IF (|has| |#1| (-160)) (PROGN (-15 -3897 ((-157 (-357)) (-157 |#1|))) (-15 -3897 ((-157 (-357)) (-157 |#1|) (-855))) (-15 -3897 ((-157 (-357)) (-886 (-157 |#1|)))) (-15 -3897 ((-157 (-357)) (-886 (-157 |#1|)) (-855)))) |%noBranch|) (IF (|has| |#1| (-976)) (PROGN (-15 -2641 ((-357) (-886 |#1|))) (-15 -2641 ((-357) (-886 |#1|) (-855))) (-15 -3897 ((-157 (-357)) (-886 |#1|))) (-15 -3897 ((-157 (-357)) (-886 |#1|) (-855)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -2641 ((-357) (-385 (-886 |#1|)))) (-15 -2641 ((-357) (-385 (-886 |#1|)) (-855))) (-15 -3897 ((-157 (-357)) (-385 (-886 |#1|)))) (-15 -3897 ((-157 (-357)) (-385 (-886 |#1|)) (-855))) (-15 -3897 ((-157 (-357)) (-385 (-886 (-157 |#1|))))) (-15 -3897 ((-157 (-357)) (-385 (-886 (-157 |#1|))) (-855))) (IF (|has| |#1| (-789)) (PROGN (-15 -2641 ((-357) (-294 |#1|))) (-15 -2641 ((-357) (-294 |#1|) (-855))) (-15 -3897 ((-157 (-357)) (-294 |#1|))) (-15 -3897 ((-157 (-357)) (-294 |#1|) (-855))) (-15 -3897 ((-157 (-357)) (-294 (-157 |#1|)))) (-15 -3897 ((-157 (-357)) (-294 (-157 |#1|)) (-855)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-15 -1596 ((-3 (-157 (-357)) "failed") (-886 (-157 |#1|)))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-886 (-157 |#1|)) (-855)))) |%noBranch|) (IF (|has| |#1| (-976)) (PROGN (-15 -3663 ((-3 (-357) "failed") (-886 |#1|))) (-15 -3663 ((-3 (-357) "failed") (-886 |#1|) (-855))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-886 |#1|))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-886 |#1|) (-855)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -3663 ((-3 (-357) "failed") (-385 (-886 |#1|)))) (-15 -3663 ((-3 (-357) "failed") (-385 (-886 |#1|)) (-855))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-385 (-886 |#1|)))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-385 (-886 |#1|)) (-855))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-385 (-886 (-157 |#1|))))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-385 (-886 (-157 |#1|))) (-855))) (IF (|has| |#1| (-789)) (PROGN (-15 -3663 ((-3 (-357) "failed") (-294 |#1|))) (-15 -3663 ((-3 (-357) "failed") (-294 |#1|) (-855))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-294 |#1|))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-294 |#1|) (-855))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)))) (-15 -1596 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-855)))) |%noBranch|)) |%noBranch|))
-((-3587 (((-855) (-1073)) 65)) (-1209 (((-3 (-357) "failed") (-1073)) 33)) (-1489 (((-357) (-1073)) 31)) (-3873 (((-855) (-1073)) 54)) (-1601 (((-1073) (-855)) 55)) (-2691 (((-1073) (-855)) 53)))
-(((-728) (-10 -7 (-15 -2691 ((-1073) (-855))) (-15 -3873 ((-855) (-1073))) (-15 -1601 ((-1073) (-855))) (-15 -3587 ((-855) (-1073))) (-15 -1489 ((-357) (-1073))) (-15 -1209 ((-3 (-357) "failed") (-1073))))) (T -728))
-((-1209 (*1 *2 *3) (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-728)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-728)))) (-3587 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-855)) (-5 *1 (-728)))) (-1601 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1073)) (-5 *1 (-728)))) (-3873 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-855)) (-5 *1 (-728)))) (-2691 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1073)) (-5 *1 (-728)))))
-(-10 -7 (-15 -2691 ((-1073) (-855))) (-15 -3873 ((-855) (-1073))) (-15 -1601 ((-1073) (-855))) (-15 -3587 ((-855) (-1073))) (-15 -1489 ((-357) (-1073))) (-15 -1209 ((-3 (-357) "failed") (-1073))))
-((-1893 (((-108) $ $) 7)) (-1504 (((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 15) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)) 13)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 16) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 14)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3961 (((-108) $ $) 6)))
+((-2104 (*1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-713)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-706)))))
+(-13 (-704) (-665) (-10 -8 (-15 -2104 ((-713))) (-15 -1270 ($ (-525)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-663) . T) ((-665) . T) ((-704) . T) ((-1020) . T))
+((-3358 (((-592 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 |#1|)))))) (-632 (-157 (-385 (-525)))) |#1|) 33)) (-2342 (((-592 (-157 |#1|)) (-632 (-157 (-385 (-525)))) |#1|) 23)) (-1805 (((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))) (-1091)) 20) (((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525))))) 19)))
+(((-707 |#1|) (-10 -7 (-15 -1805 ((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))))) (-15 -1805 ((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))) (-1091))) (-15 -2342 ((-592 (-157 |#1|)) (-632 (-157 (-385 (-525)))) |#1|)) (-15 -3358 ((-592 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 |#1|)))))) (-632 (-157 (-385 (-525)))) |#1|))) (-13 (-341) (-787))) (T -707))
+((-3358 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-592 (-2 (|:| |outval| (-157 *4)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 *4))))))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))) (-2342 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-592 (-157 *4))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))) (-1805 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *4 (-1091)) (-5 *2 (-887 (-157 (-385 (-525))))) (-5 *1 (-707 *5)) (-4 *5 (-13 (-341) (-787))))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-887 (-157 (-385 (-525))))) (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))))
+(-10 -7 (-15 -1805 ((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))))) (-15 -1805 ((-887 (-157 (-385 (-525)))) (-632 (-157 (-385 (-525)))) (-1091))) (-15 -2342 ((-592 (-157 |#1|)) (-632 (-157 (-385 (-525)))) |#1|)) (-15 -3358 ((-592 (-2 (|:| |outval| (-157 |#1|)) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 (-157 |#1|)))))) (-632 (-157 (-385 (-525)))) |#1|)))
+((-2215 (((-161 (-525)) |#1|) 25)))
+(((-708 |#1|) (-10 -7 (-15 -2215 ((-161 (-525)) |#1|))) (-382)) (T -708))
+((-2215 (*1 *2 *3) (-12 (-5 *2 (-161 (-525))) (-5 *1 (-708 *3)) (-4 *3 (-382)))))
+(-10 -7 (-15 -2215 ((-161 (-525)) |#1|)))
+((-3815 ((|#1| |#1| |#1|) 24)) (-2516 ((|#1| |#1| |#1|) 23)) (-3930 ((|#1| |#1| |#1|) 32)) (-2121 ((|#1| |#1| |#1|) 28)) (-3127 (((-3 |#1| "failed") |#1| |#1|) 27)) (-1453 (((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|) 22)))
+(((-709 |#1| |#2|) (-10 -7 (-15 -1453 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|)) (-15 -2516 (|#1| |#1| |#1|)) (-15 -3815 (|#1| |#1| |#1|)) (-15 -3127 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2121 (|#1| |#1| |#1|)) (-15 -3930 (|#1| |#1| |#1|))) (-651 |#2|) (-341)) (T -709))
+((-3930 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-2121 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-3127 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-3815 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-2516 (*1 *2 *2 *2) (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3)))) (-1453 (*1 *2 *3 *3) (-12 (-4 *4 (-341)) (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3))) (-5 *1 (-709 *3 *4)) (-4 *3 (-651 *4)))))
+(-10 -7 (-15 -1453 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|)) (-15 -2516 (|#1| |#1| |#1|)) (-15 -3815 (|#1| |#1| |#1|)) (-15 -3127 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2121 (|#1| |#1| |#1|)) (-15 -3930 (|#1| |#1| |#1|)))
+((-1681 (((-2 (|:| -1449 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))) (-525)) 59)) (-2463 (((-2 (|:| -1449 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525))))) 57)) (-2094 (((-525)) 70)))
+(((-710 |#1| |#2|) (-10 -7 (-15 -2094 ((-525))) (-15 -2463 ((-2 (|:| -1449 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))))) (-15 -1681 ((-2 (|:| -1449 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))) (-525)))) (-1149 (-525)) (-387 (-525) |#1|)) (T -710))
+((-1681 (*1 *2 *3) (-12 (-4 *4 (-1149 (-525))) (-5 *2 (-2 (|:| -1449 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525))))) (-5 *1 (-710 *4 *5)) (-5 *3 (-525)) (-4 *5 (-387 (-525) *4)))) (-2463 (*1 *2) (-12 (-4 *3 (-1149 (-525))) (-5 *2 (-2 (|:| -1449 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525))))) (-5 *1 (-710 *3 *4)) (-4 *4 (-387 (-525) *3)))) (-2094 (*1 *2) (-12 (-4 *3 (-1149 (-525))) (-5 *2 (-525)) (-5 *1 (-710 *3 *4)) (-4 *4 (-387 (-525) *3)))))
+(-10 -7 (-15 -2094 ((-525))) (-15 -2463 ((-2 (|:| -1449 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))))) (-15 -1681 ((-2 (|:| -1449 (-632 (-525))) (|:| |basisDen| (-525)) (|:| |basisInv| (-632 (-525)))) (-525))))
+((-1260 (((-108) $ $) NIL)) (-3898 (((-3 (|:| |nia| (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $) 21)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 20) (($ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 13) (($ (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) 18)) (-3994 (((-108) $ $) NIL)))
+(((-711) (-13 (-1020) (-10 -8 (-15 -1270 ($ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1270 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1270 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (-15 -1270 ((-798) $)) (-15 -3898 ((-3 (|:| |nia| (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $))))) (T -711))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-711)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-711)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-711)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-5 *1 (-711)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-5 *1 (-711)))))
+(-13 (-1020) (-10 -8 (-15 -1270 ($ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1270 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1270 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (-15 -1270 ((-798) $)) (-15 -3898 ((-3 (|:| |nia| (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| |mdnia| (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) $))))
+((-1520 (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|))) 18) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1091))) 17)) (-3193 (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|))) 20) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1091))) 19)))
+(((-712 |#1|) (-10 -7 (-15 -1520 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1091)))) (-15 -1520 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -3193 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1091)))) (-15 -3193 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|))))) (-517)) (T -712))
+((-3193 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *4)))))) (-5 *1 (-712 *4)))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-592 (-1091))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *5)))))) (-5 *1 (-712 *5)))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *4)))))) (-5 *1 (-712 *4)))) (-1520 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-592 (-1091))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *5)))))) (-5 *1 (-712 *5)))))
+(-10 -7 (-15 -1520 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1091)))) (-15 -1520 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -3193 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)) (-592 (-1091)))) (-15 -3193 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-887 |#1|)))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2017 (($ $ $) 8)) (-1342 (((-3 $ "failed") $ $) 11)) (-4177 (($ $ (-525)) 9)) (-2305 (($) NIL T CONST)) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($ $) NIL)) (-1704 (($ $ $) NIL)) (-1985 (((-108) $) NIL)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2794 (($ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-1270 (((-798) $) NIL)) (-1576 (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ $ $) NIL)))
+(((-713) (-13 (-735) (-669) (-10 -8 (-15 -1704 ($ $ $)) (-15 -1726 ($ $ $)) (-15 -2794 ($ $ $)) (-15 -1496 ((-2 (|:| -2370 $) (|:| -3496 $)) $ $)) (-15 -1680 ((-3 $ "failed") $ $)) (-15 -4177 ($ $ (-525))) (-15 -2899 ($ $)) (-6 (-4257 "*"))))) (T -713))
+((-1704 (*1 *1 *1 *1) (-5 *1 (-713))) (-1726 (*1 *1 *1 *1) (-5 *1 (-713))) (-2794 (*1 *1 *1 *1) (-5 *1 (-713))) (-1496 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2370 (-713)) (|:| -3496 (-713)))) (-5 *1 (-713)))) (-1680 (*1 *1 *1 *1) (|partial| -5 *1 (-713))) (-4177 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-713)))) (-2899 (*1 *1 *1) (-5 *1 (-713))))
+(-13 (-735) (-669) (-10 -8 (-15 -1704 ($ $ $)) (-15 -1726 ($ $ $)) (-15 -2794 ($ $ $)) (-15 -1496 ((-2 (|:| -2370 $) (|:| -3496 $)) $ $)) (-15 -1680 ((-3 $ "failed") $ $)) (-15 -4177 ($ $ (-525))) (-15 -2899 ($ $)) (-6 (-4257 "*"))))
+((-3193 (((-3 |#2| "failed") |#2| |#2| (-110) (-1091)) 35)))
+(((-714 |#1| |#2|) (-10 -7 (-15 -3193 ((-3 |#2| "failed") |#2| |#2| (-110) (-1091)))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1113) (-893))) (T -714))
+((-3193 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1091)) (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *1 (-714 *5 *2)) (-4 *2 (-13 (-29 *5) (-1113) (-893))))))
+(-10 -7 (-15 -3193 ((-3 |#2| "failed") |#2| |#2| (-110) (-1091))))
+((-1270 (((-716) |#1|) 8)))
+(((-715 |#1|) (-10 -7 (-15 -1270 ((-716) |#1|))) (-1127)) (T -715))
+((-1270 (*1 *2 *3) (-12 (-5 *2 (-716)) (-5 *1 (-715 *3)) (-4 *3 (-1127)))))
+(-10 -7 (-15 -1270 ((-716) |#1|)))
+((-1260 (((-108) $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 7)) (-3994 (((-108) $ $) 9)))
+(((-716) (-1020)) (T -716))
+NIL
+(-1020)
+((-2900 ((|#2| |#4|) 35)))
+(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2900 (|#2| |#4|))) (-429) (-1149 |#1|) (-667 |#1| |#2|) (-1149 |#3|)) (T -717))
+((-2900 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-667 *4 *2)) (-4 *2 (-1149 *4)) (-5 *1 (-717 *4 *2 *5 *3)) (-4 *3 (-1149 *5)))))
+(-10 -7 (-15 -2900 (|#2| |#4|)))
+((-3762 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-1402 (((-1178) (-1074) (-1074) |#4| |#5|) 33)) (-1595 ((|#4| |#4| |#5|) 73)) (-2200 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#5|) 77)) (-3119 (((-592 (-2 (|:| |val| (-108)) (|:| -1895 |#5|))) |#4| |#5|) 16)))
+(((-718 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3762 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1595 (|#4| |#4| |#5|)) (-15 -2200 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#5|)) (-15 -1402 ((-1178) (-1074) (-1074) |#4| |#5|)) (-15 -3119 ((-592 (-2 (|:| |val| (-108)) (|:| -1895 |#5|))) |#4| |#5|))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -718))
+((-3119 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1895 *4)))) (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1402 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1074)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *4 (-991 *6 *7 *8)) (-5 *2 (-1178)) (-5 *1 (-718 *6 *7 *8 *4 *5)) (-4 *5 (-996 *6 *7 *8 *4)))) (-2200 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4)))) (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1595 (*1 *2 *2 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *2 (-991 *4 *5 *6)) (-5 *1 (-718 *4 *5 *6 *2 *3)) (-4 *3 (-996 *4 *5 *6 *2)))) (-3762 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(-10 -7 (-15 -3762 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1595 (|#4| |#4| |#5|)) (-15 -2200 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#5|)) (-15 -1402 ((-1178) (-1074) (-1074) |#4| |#5|)) (-15 -3119 ((-592 (-2 (|:| |val| (-108)) (|:| -1895 |#5|))) |#4| |#5|)))
+((-2591 (((-3 (-1087 (-1087 |#1|)) "failed") |#4|) 43)) (-3051 (((-592 |#4|) |#4|) 15)) (-3842 ((|#4| |#4|) 11)))
+(((-719 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3051 ((-592 |#4|) |#4|)) (-15 -2591 ((-3 (-1087 (-1087 |#1|)) "failed") |#4|)) (-15 -3842 (|#4| |#4|))) (-327) (-307 |#1|) (-1149 |#2|) (-1149 |#3|) (-856)) (T -719))
+((-3842 (*1 *2 *2) (-12 (-4 *3 (-327)) (-4 *4 (-307 *3)) (-4 *5 (-1149 *4)) (-5 *1 (-719 *3 *4 *5 *2 *6)) (-4 *2 (-1149 *5)) (-14 *6 (-856)))) (-2591 (*1 *2 *3) (|partial| -12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1149 *5)) (-5 *2 (-1087 (-1087 *4))) (-5 *1 (-719 *4 *5 *6 *3 *7)) (-4 *3 (-1149 *6)) (-14 *7 (-856)))) (-3051 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1149 *5)) (-5 *2 (-592 *3)) (-5 *1 (-719 *4 *5 *6 *3 *7)) (-4 *3 (-1149 *6)) (-14 *7 (-856)))))
+(-10 -7 (-15 -3051 ((-592 |#4|) |#4|)) (-15 -2591 ((-3 (-1087 (-1087 |#1|)) "failed") |#4|)) (-15 -3842 (|#4| |#4|)))
+((-3982 (((-2 (|:| |deter| (-592 (-1087 |#5|))) (|:| |dterm| (-592 (-592 (-2 (|:| -1356 (-713)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-592 |#1|)) (|:| |nlead| (-592 |#5|))) (-1087 |#5|) (-592 |#1|) (-592 |#5|)) 54)) (-4199 (((-592 (-713)) |#1|) 13)))
+(((-720 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3982 ((-2 (|:| |deter| (-592 (-1087 |#5|))) (|:| |dterm| (-592 (-592 (-2 (|:| -1356 (-713)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-592 |#1|)) (|:| |nlead| (-592 |#5|))) (-1087 |#5|) (-592 |#1|) (-592 |#5|))) (-15 -4199 ((-592 (-713)) |#1|))) (-1149 |#4|) (-735) (-789) (-286) (-884 |#4| |#2| |#3|)) (T -720))
+((-4199 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-592 (-713))) (-5 *1 (-720 *3 *4 *5 *6 *7)) (-4 *3 (-1149 *6)) (-4 *7 (-884 *6 *4 *5)))) (-3982 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1149 *9)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-286)) (-4 *10 (-884 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-592 (-1087 *10))) (|:| |dterm| (-592 (-592 (-2 (|:| -1356 (-713)) (|:| |pcoef| *10))))) (|:| |nfacts| (-592 *6)) (|:| |nlead| (-592 *10)))) (-5 *1 (-720 *6 *7 *8 *9 *10)) (-5 *3 (-1087 *10)) (-5 *4 (-592 *6)) (-5 *5 (-592 *10)))))
+(-10 -7 (-15 -3982 ((-2 (|:| |deter| (-592 (-1087 |#5|))) (|:| |dterm| (-592 (-592 (-2 (|:| -1356 (-713)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-592 |#1|)) (|:| |nlead| (-592 |#5|))) (-1087 |#5|) (-592 |#1|) (-592 |#5|))) (-15 -4199 ((-592 (-713)) |#1|)))
+((-2600 (((-592 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#1|))))) (-632 (-385 (-525))) |#1|) 31)) (-2702 (((-592 |#1|) (-632 (-385 (-525))) |#1|) 21)) (-1805 (((-887 (-385 (-525))) (-632 (-385 (-525))) (-1091)) 18) (((-887 (-385 (-525))) (-632 (-385 (-525)))) 17)))
+(((-721 |#1|) (-10 -7 (-15 -1805 ((-887 (-385 (-525))) (-632 (-385 (-525))))) (-15 -1805 ((-887 (-385 (-525))) (-632 (-385 (-525))) (-1091))) (-15 -2702 ((-592 |#1|) (-632 (-385 (-525))) |#1|)) (-15 -2600 ((-592 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#1|))))) (-632 (-385 (-525))) |#1|))) (-13 (-341) (-787))) (T -721))
+((-2600 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-592 (-2 (|:| |outval| *4) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 *4)))))) (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))) (-2702 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))) (-1805 (*1 *2 *3 *4) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *4 (-1091)) (-5 *2 (-887 (-385 (-525)))) (-5 *1 (-721 *5)) (-4 *5 (-13 (-341) (-787))))) (-1805 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-887 (-385 (-525)))) (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))))
+(-10 -7 (-15 -1805 ((-887 (-385 (-525))) (-632 (-385 (-525))))) (-15 -1805 ((-887 (-385 (-525))) (-632 (-385 (-525))) (-1091))) (-15 -2702 ((-592 |#1|) (-632 (-385 (-525))) |#1|)) (-15 -2600 ((-592 (-2 (|:| |outval| |#1|) (|:| |outmult| (-525)) (|:| |outvect| (-592 (-632 |#1|))))) (-632 (-385 (-525))) |#1|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 34)) (-2383 (((-592 |#2|) $) NIL)) (-2146 (((-1087 $) $ |#2|) NIL) (((-1087 |#1|) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-3848 (((-713) $) NIL) (((-713) $ (-592 |#2|)) NIL)) (-2941 (($ $) 28)) (-4078 (((-108) $ $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $ $) 93 (|has| |#1| (-517)))) (-2387 (((-592 $) $ $) 106 (|has| |#1| (-517)))) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-3706 (($ $) NIL (|has| |#1| (-429)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-887 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1091))))) (((-3 $ "failed") (-887 (-525))) NIL (-3279 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1091))) (-1825 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1091)))))) (((-3 $ "failed") (-887 |#1|)) NIL (-3279 (-12 (|has| |#2| (-567 (-1091))) (-1825 (|has| |#1| (-37 (-385 (-525))))) (-1825 (|has| |#1| (-37 (-525))))) (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1091))) (-1825 (|has| |#1| (-37 (-385 (-525))))) (-1825 (|has| |#1| (-510)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1091))) (-1825 (|has| |#1| (-925 (-525))))))) (((-3 (-1043 |#1| |#2|) "failed") $) 18)) (-3898 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) ((|#2| $) NIL) (($ (-887 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1091))))) (($ (-887 (-525))) NIL (-3279 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1091))) (-1825 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1091)))))) (($ (-887 |#1|)) NIL (-3279 (-12 (|has| |#2| (-567 (-1091))) (-1825 (|has| |#1| (-37 (-385 (-525))))) (-1825 (|has| |#1| (-37 (-525))))) (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1091))) (-1825 (|has| |#1| (-37 (-385 (-525))))) (-1825 (|has| |#1| (-510)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1091))) (-1825 (|has| |#1| (-925 (-525))))))) (((-1043 |#1| |#2|) $) NIL)) (-1516 (($ $ $ |#2|) NIL (|has| |#1| (-160))) (($ $ $) 104 (|has| |#1| (-517)))) (-2571 (($ $) NIL) (($ $ |#2|) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-4047 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2712 (((-108) $) NIL)) (-3886 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 70)) (-2449 (($ $) 119 (|has| |#1| (-429)))) (-3026 (($ $) NIL (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-2558 (((-592 $) $) NIL)) (-3836 (((-108) $) NIL (|has| |#1| (-844)))) (-2638 (($ $) NIL (|has| |#1| (-517)))) (-4120 (($ $) NIL (|has| |#1| (-517)))) (-2932 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3074 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-2192 (($ $ |#1| (-497 |#2|) $) NIL)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| |#1| (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| |#1| (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) NIL)) (-4008 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-1235 (($ $ $ $ $) 90 (|has| |#1| (-517)))) (-1776 ((|#2| $) 19)) (-2368 (($ (-1087 |#1|) |#2|) NIL) (($ (-1087 $) |#2|) NIL)) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-497 |#2|)) NIL) (($ $ |#2| (-713)) 36) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-4229 (($ $ $) 60)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ |#2|) NIL)) (-1898 (((-108) $) NIL)) (-3724 (((-497 |#2|) $) NIL) (((-713) $ |#2|) NIL) (((-592 (-713)) $ (-592 |#2|)) NIL)) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-2232 (((-713) $) 20)) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-3922 (($ (-1 (-497 |#2|) (-497 |#2|)) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-3567 (((-3 |#2| "failed") $) NIL)) (-1910 (($ $) NIL (|has| |#1| (-429)))) (-1758 (($ $) NIL (|has| |#1| (-429)))) (-3275 (((-592 $) $) NIL)) (-2852 (($ $) 37)) (-3891 (($ $) NIL (|has| |#1| (-429)))) (-1205 (((-592 $) $) 41)) (-1450 (($ $) 39)) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2956 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4011 (-713))) $ $) 82)) (-3563 (((-2 (|:| -1655 $) (|:| |gap| (-713)) (|:| -2370 $) (|:| -3496 $)) $ $) 67) (((-2 (|:| -1655 $) (|:| |gap| (-713)) (|:| -2370 $) (|:| -3496 $)) $ $ |#2|) NIL)) (-1784 (((-2 (|:| -1655 $) (|:| |gap| (-713)) (|:| -3496 $)) $ $) NIL) (((-2 (|:| -1655 $) (|:| |gap| (-713)) (|:| -3496 $)) $ $ |#2|) NIL)) (-3847 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3531 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-3451 (((-1074) $) NIL)) (-3488 (($ $ $) 108 (|has| |#1| (-517)))) (-3436 (((-592 $) $) 30)) (-4228 (((-3 (-592 $) "failed") $) NIL)) (-3852 (((-3 (-592 $) "failed") $) NIL)) (-1553 (((-3 (-2 (|:| |var| |#2|) (|:| -1864 (-713))) "failed") $) NIL)) (-3134 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-3149 (($ $ $) NIL)) (-3940 (($ $) 21)) (-1363 (((-108) $ $) NIL)) (-2505 (((-108) $ $) NIL) (((-108) $ (-592 $)) NIL)) (-3417 (($ $ $) NIL)) (-2581 (($ $) 23)) (-2012 (((-1038) $) NIL)) (-3141 (((-2 (|:| -2794 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-517)))) (-2485 (((-2 (|:| -2794 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-517)))) (-2513 (((-108) $) 52)) (-2525 ((|#1| $) 55)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-429)))) (-2794 ((|#1| |#1| $) 116 (|has| |#1| (-429))) (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2195 (((-396 $) $) NIL (|has| |#1| (-844)))) (-3674 (((-2 (|:| -2794 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-517)))) (-1680 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-517)))) (-2552 (($ $ |#1|) 112 (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-3660 (($ $ |#1|) 111 (|has| |#1| (-517))) (($ $ $) NIL (|has| |#1| (-517)))) (-2602 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-592 |#2|) (-592 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-592 |#2|) (-592 $)) NIL)) (-2094 (($ $ |#2|) NIL (|has| |#1| (-160)))) (-2523 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-1587 (((-497 |#2|) $) NIL) (((-713) $ |#2|) 43) (((-592 (-713)) $ (-592 |#2|)) NIL)) (-2228 (($ $) NIL)) (-3067 (($ $) 33)) (-2749 (((-827 (-357)) $) NIL (-12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-567 (-501))) (|has| |#2| (-567 (-501))))) (($ (-887 (-385 (-525)))) NIL (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1091))))) (($ (-887 (-525))) NIL (-3279 (-12 (|has| |#1| (-37 (-525))) (|has| |#2| (-567 (-1091))) (-1825 (|has| |#1| (-37 (-385 (-525)))))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#2| (-567 (-1091)))))) (($ (-887 |#1|)) NIL (|has| |#2| (-567 (-1091)))) (((-1074) $) NIL (-12 (|has| |#1| (-968 (-525))) (|has| |#2| (-567 (-1091))))) (((-887 |#1|) $) NIL (|has| |#2| (-567 (-1091))))) (-2026 ((|#1| $) 115 (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-887 |#1|) $) NIL (|has| |#2| (-567 (-1091)))) (((-1043 |#1| |#2|) $) 15) (($ (-1043 |#1| |#2|)) 16) (($ (-385 (-525))) NIL (-3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-1562 (((-592 |#1|) $) NIL)) (-3468 ((|#1| $ (-497 |#2|)) NIL) (($ $ |#2| (-713)) 44) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2104 (((-713)) NIL)) (-3658 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 13 T CONST)) (-1992 (((-3 (-108) "failed") $ $) NIL)) (-3363 (($) 35 T CONST)) (-3634 (($ $ $ $ (-713)) 88 (|has| |#1| (-517)))) (-3462 (($ $ $ (-713)) 87 (|has| |#1| (-517)))) (-2093 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) 54)) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) 64)) (-4080 (($ $ $) 74)) (** (($ $ (-856)) NIL) (($ $ (-713)) 61)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 59) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
+(((-722 |#1| |#2|) (-13 (-991 |#1| (-497 |#2|) |#2|) (-566 (-1043 |#1| |#2|)) (-968 (-1043 |#1| |#2|))) (-977) (-789)) (T -722))
+NIL
+(-13 (-991 |#1| (-497 |#2|) |#2|) (-566 (-1043 |#1| |#2|)) (-968 (-1043 |#1| |#2|)))
+((-2694 (((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|)) 13)))
+(((-723 |#1| |#2|) (-10 -7 (-15 -2694 ((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|)))) (-977) (-977)) (T -723))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-724 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-5 *2 (-724 *6)) (-5 *1 (-723 *5 *6)))))
+(-10 -7 (-15 -2694 ((-724 |#2|) (-1 |#2| |#1|) (-724 |#1|))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 12)) (-2122 (((-1173 |#1|) $ (-713)) NIL)) (-2383 (((-592 (-1005)) $) NIL)) (-2612 (($ (-1087 |#1|)) NIL)) (-2146 (((-1087 $) $ (-1005)) NIL) (((-1087 |#1|) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-3848 (((-713) $) NIL) (((-713) $ (-592 (-1005))) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2547 (((-592 $) $ $) 39 (|has| |#1| (-517)))) (-1798 (($ $ $) 35 (|has| |#1| (-517)))) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-3706 (($ $) NIL (|has| |#1| (-429)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-3197 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3626 (($ $ (-713)) NIL)) (-1807 (($ $ (-713)) NIL)) (-3787 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-1005) "failed") $) NIL) (((-3 (-1087 |#1|) "failed") $) 10)) (-3898 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-1005) $) NIL) (((-1087 |#1|) $) NIL)) (-1516 (($ $ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $ $) 43 (|has| |#1| (-160)))) (-1726 (($ $ $) NIL (|has| |#1| (-341)))) (-2571 (($ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-1704 (($ $ $) NIL (|has| |#1| (-341)))) (-1570 (($ $ $) NIL)) (-3546 (($ $ $) 71 (|has| |#1| (-517)))) (-3886 (((-2 (|:| -1655 |#1|) (|:| -2370 $) (|:| -3496 $)) $ $) 70 (|has| |#1| (-517)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3026 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-2558 (((-592 $) $) NIL)) (-3836 (((-108) $) NIL (|has| |#1| (-844)))) (-2192 (($ $ |#1| (-713) $) NIL)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1005) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1005) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-3973 (((-713) $ $) NIL (|has| |#1| (-517)))) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-1067)))) (-2368 (($ (-1087 |#1|) (-1005)) NIL) (($ (-1087 $) (-1005)) NIL)) (-3073 (($ $ (-713)) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-713)) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-4229 (($ $ $) 20)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ (-1005)) NIL) (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-3724 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-3922 (($ (-1 (-713) (-713)) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-1263 (((-1087 |#1|) $) NIL)) (-3567 (((-3 (-1005) "failed") $) NIL)) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2956 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4011 (-713))) $ $) 26)) (-1390 (($ $ $) 29)) (-1308 (($ $ $) 32)) (-3563 (((-2 (|:| -1655 |#1|) (|:| |gap| (-713)) (|:| -2370 $) (|:| -3496 $)) $ $) 31)) (-3451 (((-1074) $) NIL)) (-3488 (($ $ $) 41 (|has| |#1| (-517)))) (-2799 (((-2 (|:| -2370 $) (|:| -3496 $)) $ (-713)) NIL)) (-4228 (((-3 (-592 $) "failed") $) NIL)) (-3852 (((-3 (-592 $) "failed") $) NIL)) (-1553 (((-3 (-2 (|:| |var| (-1005)) (|:| -1864 (-713))) "failed") $) NIL)) (-2650 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3940 (($) NIL (|has| |#1| (-1067)) CONST)) (-2012 (((-1038) $) NIL)) (-3141 (((-2 (|:| -2794 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-517)))) (-2485 (((-2 (|:| -2794 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-517)))) (-1513 (((-2 (|:| -1516 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-517)))) (-2324 (((-2 (|:| -1516 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-517)))) (-2513 (((-108) $) 13)) (-2525 ((|#1| $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-429)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3485 (($ $ (-713) |#1| $) 19)) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2195 (((-396 $) $) NIL (|has| |#1| (-844)))) (-3674 (((-2 (|:| -2794 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-517)))) (-2445 (((-2 (|:| -1516 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-517)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-1680 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2602 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1005) |#1|) NIL) (($ $ (-592 (-1005)) (-592 |#1|)) NIL) (($ $ (-1005) $) NIL) (($ $ (-592 (-1005)) (-592 $)) NIL)) (-1290 (((-713) $) NIL (|has| |#1| (-341)))) (-3410 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-1782 (((-3 $ "failed") $ (-713)) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-341)))) (-2094 (($ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $) NIL (|has| |#1| (-160)))) (-2523 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1587 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-2749 (((-827 (-357)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1005) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2026 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-3682 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1005)) NIL) (((-1087 |#1|) $) 7) (($ (-1087 |#1|)) 8) (($ (-385 (-525))) NIL (-3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-1562 (((-592 |#1|) $) NIL)) (-3468 ((|#1| $ (-713)) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2104 (((-713)) NIL)) (-3658 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 21 T CONST)) (-3363 (($) 24 T CONST)) (-2093 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4090 (($ $) 28) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
+(((-724 |#1|) (-13 (-1149 |#1|) (-566 (-1087 |#1|)) (-968 (-1087 |#1|)) (-10 -8 (-15 -3485 ($ $ (-713) |#1| $)) (-15 -4229 ($ $ $)) (-15 -2956 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4011 (-713))) $ $)) (-15 -1390 ($ $ $)) (-15 -3563 ((-2 (|:| -1655 |#1|) (|:| |gap| (-713)) (|:| -2370 $) (|:| -3496 $)) $ $)) (-15 -1308 ($ $ $)) (IF (|has| |#1| (-517)) (PROGN (-15 -2547 ((-592 $) $ $)) (-15 -3488 ($ $ $)) (-15 -3674 ((-2 (|:| -2794 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2485 ((-2 (|:| -2794 $) (|:| |coef1| $)) $ $)) (-15 -3141 ((-2 (|:| -2794 $) (|:| |coef2| $)) $ $)) (-15 -2445 ((-2 (|:| -1516 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2324 ((-2 (|:| -1516 |#1|) (|:| |coef1| $)) $ $)) (-15 -1513 ((-2 (|:| -1516 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-977)) (T -724))
+((-3485 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-713)) (-5 *1 (-724 *3)) (-4 *3 (-977)))) (-4229 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977)))) (-2956 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-724 *3)) (|:| |polden| *3) (|:| -4011 (-713)))) (-5 *1 (-724 *3)) (-4 *3 (-977)))) (-1390 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977)))) (-3563 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1655 *3) (|:| |gap| (-713)) (|:| -2370 (-724 *3)) (|:| -3496 (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-977)))) (-1308 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977)))) (-2547 (*1 *2 *1 *1) (-12 (-5 *2 (-592 (-724 *3))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-3488 (*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-517)) (-4 *2 (-977)))) (-3674 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2794 (-724 *3)) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-2485 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2794 (-724 *3)) (|:| |coef1| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-3141 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2794 (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-2445 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1516 *3) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-2324 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1516 *3) (|:| |coef1| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))) (-1513 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1516 *3) (|:| |coef2| (-724 *3)))) (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))))
+(-13 (-1149 |#1|) (-566 (-1087 |#1|)) (-968 (-1087 |#1|)) (-10 -8 (-15 -3485 ($ $ (-713) |#1| $)) (-15 -4229 ($ $ $)) (-15 -2956 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4011 (-713))) $ $)) (-15 -1390 ($ $ $)) (-15 -3563 ((-2 (|:| -1655 |#1|) (|:| |gap| (-713)) (|:| -2370 $) (|:| -3496 $)) $ $)) (-15 -1308 ($ $ $)) (IF (|has| |#1| (-517)) (PROGN (-15 -2547 ((-592 $) $ $)) (-15 -3488 ($ $ $)) (-15 -3674 ((-2 (|:| -2794 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2485 ((-2 (|:| -2794 $) (|:| |coef1| $)) $ $)) (-15 -3141 ((-2 (|:| -2794 $) (|:| |coef2| $)) $ $)) (-15 -2445 ((-2 (|:| -1516 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2324 ((-2 (|:| -1516 |#1|) (|:| |coef1| $)) $ $)) (-15 -1513 ((-2 (|:| -1516 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-2691 ((|#1| (-713) |#1|) 32 (|has| |#1| (-37 (-385 (-525)))))) (-1868 ((|#1| (-713) |#1|) 22)) (-1563 ((|#1| (-713) |#1|) 34 (|has| |#1| (-37 (-385 (-525)))))))
+(((-725 |#1|) (-10 -7 (-15 -1868 (|#1| (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -1563 (|#1| (-713) |#1|)) (-15 -2691 (|#1| (-713) |#1|))) |%noBranch|)) (-160)) (T -725))
+((-2691 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-1563 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-1868 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-160)))))
+(-10 -7 (-15 -1868 (|#1| (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -1563 (|#1| (-713) |#1|)) (-15 -2691 (|#1| (-713) |#1|))) |%noBranch|))
+((-1260 (((-108) $ $) 7)) (-4022 (((-592 (-2 (|:| -2849 $) (|:| -2409 (-592 |#4|)))) (-592 |#4|)) 85)) (-3221 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-2383 (((-592 |#3|) $) 33)) (-3163 (((-108) $) 26)) (-3018 (((-108) $) 17 (|has| |#1| (-517)))) (-2220 (((-108) |#4| $) 101) (((-108) $) 97)) (-1952 ((|#4| |#4| $) 92)) (-3706 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 $))) |#4| $) 126)) (-2855 (((-2 (|:| |under| $) (|:| -2793 $) (|:| |upper| $)) $ |#3|) 27)) (-3330 (((-108) $ (-713)) 44)) (-3826 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4255))) (((-3 |#4| "failed") $ |#3|) 79)) (-2305 (($) 45 T CONST)) (-3393 (((-108) $) 22 (|has| |#1| (-517)))) (-3438 (((-108) $ $) 24 (|has| |#1| (-517)))) (-1396 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3291 (((-108) $) 25 (|has| |#1| (-517)))) (-4032 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1653 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1551 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-2591 (((-3 $ "failed") (-592 |#4|)) 36)) (-3898 (($ (-592 |#4|)) 35)) (-3121 (((-3 $ "failed") $) 82)) (-2457 ((|#4| |#4| $) 89)) (-3137 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4255)))) (-3496 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-4047 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-3129 ((|#4| |#4| $) 87)) (-3503 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4255))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4255))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2520 (((-2 (|:| -2849 (-592 |#4|)) (|:| -2409 (-592 |#4|))) $) 105)) (-3859 (((-108) |#4| $) 136)) (-2671 (((-108) |#4| $) 133)) (-2259 (((-108) |#4| $) 137) (((-108) $) 134)) (-3702 (((-592 |#4|) $) 52 (|has| $ (-6 -4255)))) (-4008 (((-108) |#4| $) 104) (((-108) $) 103)) (-1776 ((|#3| $) 34)) (-2482 (((-108) $ (-713)) 43)) (-1749 (((-592 |#4|) $) 53 (|has| $ (-6 -4255)))) (-2783 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#4| |#4|) $) 47)) (-2723 (((-592 |#3|) $) 32)) (-2069 (((-108) |#3| $) 31)) (-2957 (((-108) $ (-713)) 42)) (-3451 (((-1074) $) 9)) (-4038 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-3488 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 $))) |#4| |#4| $) 127)) (-1636 (((-3 |#4| "failed") $) 83)) (-1502 (((-592 $) |#4| $) 129)) (-4030 (((-3 (-108) (-592 $)) |#4| $) 132)) (-1521 (((-592 (-2 (|:| |val| (-108)) (|:| -1895 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-3792 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-2964 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-3231 (((-592 |#4|) $) 107)) (-3134 (((-108) |#4| $) 99) (((-108) $) 95)) (-3149 ((|#4| |#4| $) 90)) (-1363 (((-108) $ $) 110)) (-1410 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2505 (((-108) |#4| $) 100) (((-108) $) 96)) (-3417 ((|#4| |#4| $) 91)) (-2012 (((-1038) $) 10)) (-3110 (((-3 |#4| "failed") $) 84)) (-3207 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3599 (((-3 $ "failed") $ |#4|) 78)) (-2182 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-3006 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-3428 (((-108) $ $) 38)) (-2013 (((-108) $) 41)) (-2718 (($) 40)) (-1587 (((-713) $) 106)) (-2040 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4255)))) (-1451 (($ $) 39)) (-2749 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1279 (($ (-592 |#4|)) 60)) (-3422 (($ $ |#3|) 28)) (-1248 (($ $ |#3|) 30)) (-1963 (($ $) 88)) (-1847 (($ $ |#3|) 29)) (-1270 (((-798) $) 11) (((-592 |#4|) $) 37)) (-1970 (((-713) $) 76 (|has| |#3| (-346)))) (-2927 (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4213 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-3552 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-3633 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4255)))) (-3726 (((-592 |#3|) $) 81)) (-4079 (((-108) |#4| $) 135)) (-1728 (((-108) |#3| $) 80)) (-3994 (((-108) $ $) 6)) (-3596 (((-713) $) 46 (|has| $ (-6 -4255)))))
+(((-726 |#1| |#2| |#3| |#4|) (-131) (-429) (-735) (-789) (-991 |t#1| |t#2| |t#3|)) (T -726))
+NIL
+(-13 (-996 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-798)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-909 |#1| |#2| |#3| |#4|) . T) ((-996 |#1| |#2| |#3| |#4|) . T) ((-1020) . T) ((-1121 |#1| |#2| |#3| |#4|) . T) ((-1127) . T))
+((-3984 (((-3 (-357) "failed") (-294 |#1|) (-856)) 62 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-357) "failed") (-294 |#1|)) 54 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-357) "failed") (-385 (-887 |#1|)) (-856)) 41 (|has| |#1| (-517))) (((-3 (-357) "failed") (-385 (-887 |#1|))) 40 (|has| |#1| (-517))) (((-3 (-357) "failed") (-887 |#1|) (-856)) 31 (|has| |#1| (-977))) (((-3 (-357) "failed") (-887 |#1|)) 30 (|has| |#1| (-977)))) (-1289 (((-357) (-294 |#1|) (-856)) 99 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-357) (-294 |#1|)) 94 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-357) (-385 (-887 |#1|)) (-856)) 91 (|has| |#1| (-517))) (((-357) (-385 (-887 |#1|))) 90 (|has| |#1| (-517))) (((-357) (-887 |#1|) (-856)) 86 (|has| |#1| (-977))) (((-357) (-887 |#1|)) 85 (|has| |#1| (-977))) (((-357) |#1| (-856)) 76) (((-357) |#1|) 22)) (-1821 (((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-856)) 71 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-294 (-157 |#1|))) 70 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-294 |#1|) (-856)) 63 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-294 |#1|)) 61 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|))) (-856)) 46 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|)))) 45 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-887 |#1|)) (-856)) 39 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-385 (-887 |#1|))) 38 (|has| |#1| (-517))) (((-3 (-157 (-357)) "failed") (-887 |#1|) (-856)) 28 (|has| |#1| (-977))) (((-3 (-157 (-357)) "failed") (-887 |#1|)) 26 (|has| |#1| (-977))) (((-3 (-157 (-357)) "failed") (-887 (-157 |#1|)) (-856)) 18 (|has| |#1| (-160))) (((-3 (-157 (-357)) "failed") (-887 (-157 |#1|))) 15 (|has| |#1| (-160)))) (-2103 (((-157 (-357)) (-294 (-157 |#1|)) (-856)) 102 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-294 (-157 |#1|))) 101 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-294 |#1|) (-856)) 100 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-294 |#1|)) 98 (-12 (|has| |#1| (-517)) (|has| |#1| (-789)))) (((-157 (-357)) (-385 (-887 (-157 |#1|))) (-856)) 93 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-887 (-157 |#1|)))) 92 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-887 |#1|)) (-856)) 89 (|has| |#1| (-517))) (((-157 (-357)) (-385 (-887 |#1|))) 88 (|has| |#1| (-517))) (((-157 (-357)) (-887 |#1|) (-856)) 84 (|has| |#1| (-977))) (((-157 (-357)) (-887 |#1|)) 83 (|has| |#1| (-977))) (((-157 (-357)) (-887 (-157 |#1|)) (-856)) 78 (|has| |#1| (-160))) (((-157 (-357)) (-887 (-157 |#1|))) 77 (|has| |#1| (-160))) (((-157 (-357)) (-157 |#1|) (-856)) 80 (|has| |#1| (-160))) (((-157 (-357)) (-157 |#1|)) 79 (|has| |#1| (-160))) (((-157 (-357)) |#1| (-856)) 27) (((-157 (-357)) |#1|) 25)))
+(((-727 |#1|) (-10 -7 (-15 -1289 ((-357) |#1|)) (-15 -1289 ((-357) |#1| (-856))) (-15 -2103 ((-157 (-357)) |#1|)) (-15 -2103 ((-157 (-357)) |#1| (-856))) (IF (|has| |#1| (-160)) (PROGN (-15 -2103 ((-157 (-357)) (-157 |#1|))) (-15 -2103 ((-157 (-357)) (-157 |#1|) (-856))) (-15 -2103 ((-157 (-357)) (-887 (-157 |#1|)))) (-15 -2103 ((-157 (-357)) (-887 (-157 |#1|)) (-856)))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-15 -1289 ((-357) (-887 |#1|))) (-15 -1289 ((-357) (-887 |#1|) (-856))) (-15 -2103 ((-157 (-357)) (-887 |#1|))) (-15 -2103 ((-157 (-357)) (-887 |#1|) (-856)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -1289 ((-357) (-385 (-887 |#1|)))) (-15 -1289 ((-357) (-385 (-887 |#1|)) (-856))) (-15 -2103 ((-157 (-357)) (-385 (-887 |#1|)))) (-15 -2103 ((-157 (-357)) (-385 (-887 |#1|)) (-856))) (-15 -2103 ((-157 (-357)) (-385 (-887 (-157 |#1|))))) (-15 -2103 ((-157 (-357)) (-385 (-887 (-157 |#1|))) (-856))) (IF (|has| |#1| (-789)) (PROGN (-15 -1289 ((-357) (-294 |#1|))) (-15 -1289 ((-357) (-294 |#1|) (-856))) (-15 -2103 ((-157 (-357)) (-294 |#1|))) (-15 -2103 ((-157 (-357)) (-294 |#1|) (-856))) (-15 -2103 ((-157 (-357)) (-294 (-157 |#1|)))) (-15 -2103 ((-157 (-357)) (-294 (-157 |#1|)) (-856)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-15 -1821 ((-3 (-157 (-357)) "failed") (-887 (-157 |#1|)))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-887 (-157 |#1|)) (-856)))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-15 -3984 ((-3 (-357) "failed") (-887 |#1|))) (-15 -3984 ((-3 (-357) "failed") (-887 |#1|) (-856))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-887 |#1|))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-887 |#1|) (-856)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -3984 ((-3 (-357) "failed") (-385 (-887 |#1|)))) (-15 -3984 ((-3 (-357) "failed") (-385 (-887 |#1|)) (-856))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-385 (-887 |#1|)))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-385 (-887 |#1|)) (-856))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|))))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|))) (-856))) (IF (|has| |#1| (-789)) (PROGN (-15 -3984 ((-3 (-357) "failed") (-294 |#1|))) (-15 -3984 ((-3 (-357) "failed") (-294 |#1|) (-856))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-294 |#1|))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-294 |#1|) (-856))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-856)))) |%noBranch|)) |%noBranch|)) (-567 (-357))) (T -727))
+((-1821 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1821 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-1821 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1821 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3984 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3984 (*1 *2 *3) (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-1821 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-887 (-157 *5)))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1821 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-887 (-157 *4)))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-1821 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1821 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3984 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3984 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-1821 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1821 (*1 *2 *3) (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-3984 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977)) (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-3984 (*1 *2 *3) (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-1821 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-887 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-160)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-1821 (*1 *2 *3) (|partial| -12 (-5 *3 (-887 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-1289 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-1289 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789)) (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 (-157 *5)))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 (-157 *4)))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-1289 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-1289 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-1289 (*1 *2 *3 *4) (-12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977)) (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5)))) (-1289 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-887 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-160)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-887 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *3 (-157 *5)) (-5 *4 (-856)) (-4 *5 (-160)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-157 *4)) (-4 *4 (-160)) (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4)))) (-2103 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-5 *2 (-157 (-357))) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357))))) (-2103 (*1 *2 *3) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357))))) (-1289 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-5 *2 (-357)) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357))))) (-1289 (*1 *2 *3) (-12 (-5 *2 (-357)) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357))))))
+(-10 -7 (-15 -1289 ((-357) |#1|)) (-15 -1289 ((-357) |#1| (-856))) (-15 -2103 ((-157 (-357)) |#1|)) (-15 -2103 ((-157 (-357)) |#1| (-856))) (IF (|has| |#1| (-160)) (PROGN (-15 -2103 ((-157 (-357)) (-157 |#1|))) (-15 -2103 ((-157 (-357)) (-157 |#1|) (-856))) (-15 -2103 ((-157 (-357)) (-887 (-157 |#1|)))) (-15 -2103 ((-157 (-357)) (-887 (-157 |#1|)) (-856)))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-15 -1289 ((-357) (-887 |#1|))) (-15 -1289 ((-357) (-887 |#1|) (-856))) (-15 -2103 ((-157 (-357)) (-887 |#1|))) (-15 -2103 ((-157 (-357)) (-887 |#1|) (-856)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -1289 ((-357) (-385 (-887 |#1|)))) (-15 -1289 ((-357) (-385 (-887 |#1|)) (-856))) (-15 -2103 ((-157 (-357)) (-385 (-887 |#1|)))) (-15 -2103 ((-157 (-357)) (-385 (-887 |#1|)) (-856))) (-15 -2103 ((-157 (-357)) (-385 (-887 (-157 |#1|))))) (-15 -2103 ((-157 (-357)) (-385 (-887 (-157 |#1|))) (-856))) (IF (|has| |#1| (-789)) (PROGN (-15 -1289 ((-357) (-294 |#1|))) (-15 -1289 ((-357) (-294 |#1|) (-856))) (-15 -2103 ((-157 (-357)) (-294 |#1|))) (-15 -2103 ((-157 (-357)) (-294 |#1|) (-856))) (-15 -2103 ((-157 (-357)) (-294 (-157 |#1|)))) (-15 -2103 ((-157 (-357)) (-294 (-157 |#1|)) (-856)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-15 -1821 ((-3 (-157 (-357)) "failed") (-887 (-157 |#1|)))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-887 (-157 |#1|)) (-856)))) |%noBranch|) (IF (|has| |#1| (-977)) (PROGN (-15 -3984 ((-3 (-357) "failed") (-887 |#1|))) (-15 -3984 ((-3 (-357) "failed") (-887 |#1|) (-856))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-887 |#1|))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-887 |#1|) (-856)))) |%noBranch|) (IF (|has| |#1| (-517)) (PROGN (-15 -3984 ((-3 (-357) "failed") (-385 (-887 |#1|)))) (-15 -3984 ((-3 (-357) "failed") (-385 (-887 |#1|)) (-856))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-385 (-887 |#1|)))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-385 (-887 |#1|)) (-856))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|))))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-385 (-887 (-157 |#1|))) (-856))) (IF (|has| |#1| (-789)) (PROGN (-15 -3984 ((-3 (-357) "failed") (-294 |#1|))) (-15 -3984 ((-3 (-357) "failed") (-294 |#1|) (-856))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-294 |#1|))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-294 |#1|) (-856))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)))) (-15 -1821 ((-3 (-157 (-357)) "failed") (-294 (-157 |#1|)) (-856)))) |%noBranch|)) |%noBranch|))
+((-1426 (((-856) (-1074)) 65)) (-2616 (((-3 (-357) "failed") (-1074)) 33)) (-2046 (((-357) (-1074)) 31)) (-2436 (((-856) (-1074)) 54)) (-1879 (((-1074) (-856)) 55)) (-2798 (((-1074) (-856)) 53)))
+(((-728) (-10 -7 (-15 -2798 ((-1074) (-856))) (-15 -2436 ((-856) (-1074))) (-15 -1879 ((-1074) (-856))) (-15 -1426 ((-856) (-1074))) (-15 -2046 ((-357) (-1074))) (-15 -2616 ((-3 (-357) "failed") (-1074))))) (T -728))
+((-2616 (*1 *2 *3) (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-357)) (-5 *1 (-728)))) (-2046 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-357)) (-5 *1 (-728)))) (-1426 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-856)) (-5 *1 (-728)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1074)) (-5 *1 (-728)))) (-2436 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-856)) (-5 *1 (-728)))) (-2798 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1074)) (-5 *1 (-728)))))
+(-10 -7 (-15 -2798 ((-1074) (-856))) (-15 -2436 ((-856) (-1074))) (-15 -1879 ((-1074) (-856))) (-15 -1426 ((-856) (-1074))) (-15 -2046 ((-357) (-1074))) (-15 -2616 ((-3 (-357) "failed") (-1074))))
+((-1260 (((-108) $ $) 7)) (-2275 (((-966) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 15) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)) 13)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 16) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 14)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3994 (((-108) $ $) 6)))
(((-729) (-131)) (T -729))
-((-1965 (*1 *2 *3 *4) (-12 (-4 *1 (-729)) (-5 *3 (-988)) (-5 *4 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965)))))) (-1504 (*1 *2 *3 *2) (-12 (-4 *1 (-729)) (-5 *2 (-965)) (-5 *3 (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-1965 (*1 *2 *3 *4) (-12 (-4 *1 (-729)) (-5 *3 (-988)) (-5 *4 (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965)))))) (-1504 (*1 *2 *3 *2) (-12 (-4 *1 (-729)) (-5 *2 (-965)) (-5 *3 (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))))
-(-13 (-1019) (-10 -7 (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1504 ((-965) (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205))) (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965))) (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)) (|:| |extra| (-965))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1504 ((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-965)))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-2785 (((-1177) (-1172 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -4146 (-357))) (-357) (-1172 (-357)) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357))) 44) (((-1177) (-1172 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -4146 (-357))) (-357) (-1172 (-357)) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357))) 43)) (-2334 (((-1177) (-1172 (-357)) (-525) (-357) (-357) (-525) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357))) 50)) (-2158 (((-1177) (-1172 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357))) 41)) (-1431 (((-1177) (-1172 (-357)) (-525) (-357) (-357) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357))) 52) (((-1177) (-1172 (-357)) (-525) (-357) (-357) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357))) 51)))
-(((-730) (-10 -7 (-15 -1431 ((-1177) (-1172 (-357)) (-525) (-357) (-357) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))) (-15 -1431 ((-1177) (-1172 (-357)) (-525) (-357) (-357) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)))) (-15 -2158 ((-1177) (-1172 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))) (-15 -2785 ((-1177) (-1172 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -4146 (-357))) (-357) (-1172 (-357)) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))) (-15 -2785 ((-1177) (-1172 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -4146 (-357))) (-357) (-1172 (-357)) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)))) (-15 -2334 ((-1177) (-1172 (-357)) (-525) (-357) (-357) (-525) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))))) (T -730))
-((-2334 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *3 (-1172 (-357))) (-5 *4 (-525)) (-5 *5 (-357)) (-5 *6 (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357))) (-5 *2 (-1177)) (-5 *1 (-730)))) (-2785 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *3 (-1172 (-357))) (-5 *4 (-525)) (-5 *5 (-357)) (-5 *6 (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -4146 (-357)))) (-5 *7 (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357))) (-5 *2 (-1177)) (-5 *1 (-730)))) (-2785 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *3 (-1172 (-357))) (-5 *4 (-525)) (-5 *5 (-357)) (-5 *6 (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -4146 (-357)))) (-5 *7 (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357))) (-5 *2 (-1177)) (-5 *1 (-730)))) (-2158 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *3 (-1172 (-357))) (-5 *4 (-525)) (-5 *5 (-357)) (-5 *6 (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357))) (-5 *2 (-1177)) (-5 *1 (-730)))) (-1431 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *3 (-1172 (-357))) (-5 *4 (-525)) (-5 *5 (-357)) (-5 *6 (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357))) (-5 *2 (-1177)) (-5 *1 (-730)))) (-1431 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1172 (-357))) (-5 *4 (-525)) (-5 *5 (-357)) (-5 *6 (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357))) (-5 *2 (-1177)) (-5 *1 (-730)))))
-(-10 -7 (-15 -1431 ((-1177) (-1172 (-357)) (-525) (-357) (-357) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))) (-15 -1431 ((-1177) (-1172 (-357)) (-525) (-357) (-357) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)))) (-15 -2158 ((-1177) (-1172 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))) (-15 -2785 ((-1177) (-1172 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -4146 (-357))) (-357) (-1172 (-357)) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))) (-15 -2785 ((-1177) (-1172 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -4146 (-357))) (-357) (-1172 (-357)) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)) (-1172 (-357)))) (-15 -2334 ((-1177) (-1172 (-357)) (-525) (-357) (-357) (-525) (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))))
-((-2672 (((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 53)) (-1281 (((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 31)) (-2022 (((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 52)) (-2152 (((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 29)) (-3519 (((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 51)) (-1964 (((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 19)) (-3580 (((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 32)) (-1553 (((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 30)) (-3395 (((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 28)))
-(((-731) (-10 -7 (-15 -3395 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -1553 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -3580 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -1964 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2152 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1281 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3519 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2022 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2672 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))))) (T -731))
-((-2672 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-2022 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-3519 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-1281 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-2152 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-1964 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-3580 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-1553 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-3395 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))))
-(-10 -7 (-15 -3395 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -1553 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -3580 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -1964 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2152 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1281 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3519 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2022 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2672 ((-2 (|:| -3871 (-357)) (|:| -1869 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))))
-((-1359 (((-1122 |#1|) |#1| (-205) (-525)) 46)))
-(((-732 |#1|) (-10 -7 (-15 -1359 ((-1122 |#1|) |#1| (-205) (-525)))) (-906)) (T -732))
-((-1359 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-205)) (-5 *5 (-525)) (-5 *2 (-1122 *3)) (-5 *1 (-732 *3)) (-4 *3 (-906)))))
-(-10 -7 (-15 -1359 ((-1122 |#1|) |#1| (-205) (-525))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 24)) (-3263 (((-3 $ "failed") $ $) 26)) (-1505 (($) 23 T CONST)) (-3525 (($ $ $) 13)) (-3630 (($ $ $) 14)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3875 (($) 22 T CONST)) (-4024 (((-108) $ $) 16)) (-3995 (((-108) $ $) 17)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 15)) (-3983 (((-108) $ $) 18)) (-4070 (($ $ $) 28) (($ $) 27)) (-4059 (($ $ $) 20)) (* (($ (-855) $) 21) (($ (-713) $) 25) (($ (-525) $) 29)))
+((-4151 (*1 *2 *3 *4) (-12 (-4 *1 (-729)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966)))))) (-2275 (*1 *2 *3 *2) (-12 (-4 *1 (-729)) (-5 *2 (-966)) (-5 *3 (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))) (-4151 (*1 *2 *3 *4) (-12 (-4 *1 (-729)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966)))))) (-2275 (*1 *2 *3 *2) (-12 (-4 *1 (-729)) (-5 *2 (-966)) (-5 *3 (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))))
+(-13 (-1020) (-10 -7 (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2275 ((-966) (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205))) (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966))) (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)) (|:| |extra| (-966))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -2275 ((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) (-966)))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-2521 (((-1178) (-1173 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2489 (-357))) (-357) (-1173 (-357)) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357))) 44) (((-1178) (-1173 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2489 (-357))) (-357) (-1173 (-357)) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357))) 43)) (-3424 (((-1178) (-1173 (-357)) (-525) (-357) (-357) (-525) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357))) 50)) (-2347 (((-1178) (-1173 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357))) 41)) (-2563 (((-1178) (-1173 (-357)) (-525) (-357) (-357) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357))) 52) (((-1178) (-1173 (-357)) (-525) (-357) (-357) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357))) 51)))
+(((-730) (-10 -7 (-15 -2563 ((-1178) (-1173 (-357)) (-525) (-357) (-357) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)))) (-15 -2563 ((-1178) (-1173 (-357)) (-525) (-357) (-357) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)))) (-15 -2347 ((-1178) (-1173 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)))) (-15 -2521 ((-1178) (-1173 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2489 (-357))) (-357) (-1173 (-357)) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)))) (-15 -2521 ((-1178) (-1173 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2489 (-357))) (-357) (-1173 (-357)) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)))) (-15 -3424 ((-1178) (-1173 (-357)) (-525) (-357) (-357) (-525) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)))))) (T -730))
+((-3424 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *3 (-1173 (-357))) (-5 *4 (-525)) (-5 *5 (-357)) (-5 *6 (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357))) (-5 *2 (-1178)) (-5 *1 (-730)))) (-2521 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *3 (-1173 (-357))) (-5 *4 (-525)) (-5 *5 (-357)) (-5 *6 (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2489 (-357)))) (-5 *7 (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357))) (-5 *2 (-1178)) (-5 *1 (-730)))) (-2521 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *3 (-1173 (-357))) (-5 *4 (-525)) (-5 *5 (-357)) (-5 *6 (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2489 (-357)))) (-5 *7 (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357))) (-5 *2 (-1178)) (-5 *1 (-730)))) (-2347 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *3 (-1173 (-357))) (-5 *4 (-525)) (-5 *5 (-357)) (-5 *6 (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357))) (-5 *2 (-1178)) (-5 *1 (-730)))) (-2563 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *3 (-1173 (-357))) (-5 *4 (-525)) (-5 *5 (-357)) (-5 *6 (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357))) (-5 *2 (-1178)) (-5 *1 (-730)))) (-2563 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1173 (-357))) (-5 *4 (-525)) (-5 *5 (-357)) (-5 *6 (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357))) (-5 *2 (-1178)) (-5 *1 (-730)))))
+(-10 -7 (-15 -2563 ((-1178) (-1173 (-357)) (-525) (-357) (-357) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)))) (-15 -2563 ((-1178) (-1173 (-357)) (-525) (-357) (-357) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)))) (-15 -2347 ((-1178) (-1173 (-357)) (-525) (-357) (-357) (-357) (-357) (-525) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)))) (-15 -2521 ((-1178) (-1173 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2489 (-357))) (-357) (-1173 (-357)) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)))) (-15 -2521 ((-1178) (-1173 (-357)) (-525) (-357) (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2489 (-357))) (-357) (-1173 (-357)) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)) (-1173 (-357)))) (-15 -3424 ((-1178) (-1173 (-357)) (-525) (-357) (-357) (-525) (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)))))
+((-2629 (((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 53)) (-3690 (((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 31)) (-3337 (((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 52)) (-2253 (((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 29)) (-1934 (((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 51)) (-4141 (((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525)) 19)) (-1352 (((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 32)) (-3889 (((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 30)) (-3247 (((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525)) 28)))
+(((-731) (-10 -7 (-15 -3247 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -3889 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -1352 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -4141 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2253 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3690 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1934 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3337 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2629 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))))) (T -731))
+((-2629 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-3337 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-1934 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-3690 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-2253 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-4141 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-1352 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-3889 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))) (-3247 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357)) (-5 *2 (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525)) (|:| |success| (-108)))) (-5 *1 (-731)) (-5 *5 (-525)))))
+(-10 -7 (-15 -3247 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -3889 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -1352 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525) (-525))) (-15 -4141 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2253 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3690 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -1934 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -3337 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))) (-15 -2629 ((-2 (|:| -3352 (-357)) (|:| -1245 (-357)) (|:| |totalpts| (-525)) (|:| |success| (-108))) (-1 (-357) (-357)) (-357) (-357) (-357) (-357) (-525) (-525))))
+((-2584 (((-1123 |#1|) |#1| (-205) (-525)) 46)))
+(((-732 |#1|) (-10 -7 (-15 -2584 ((-1123 |#1|) |#1| (-205) (-525)))) (-907)) (T -732))
+((-2584 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-205)) (-5 *5 (-525)) (-5 *2 (-1123 *3)) (-5 *1 (-732 *3)) (-4 *3 (-907)))))
+(-10 -7 (-15 -2584 ((-1123 |#1|) |#1| (-205) (-525))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 24)) (-1342 (((-3 $ "failed") $ $) 26)) (-2305 (($) 23 T CONST)) (-2371 (($ $ $) 13)) (-2535 (($ $ $) 14)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3355 (($) 22 T CONST)) (-4045 (((-108) $ $) 16)) (-4026 (((-108) $ $) 17)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 15)) (-4017 (((-108) $ $) 18)) (-4090 (($ $ $) 28) (($ $) 27)) (-4080 (($ $ $) 20)) (* (($ (-856) $) 21) (($ (-713) $) 25) (($ (-525) $) 29)))
(((-733) (-131)) (T -733))
NIL
(-13 (-737) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-789) . T) ((-1019) . T))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 24)) (-1505 (($) 23 T CONST)) (-3525 (($ $ $) 13)) (-3630 (($ $ $) 14)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3875 (($) 22 T CONST)) (-4024 (((-108) $ $) 16)) (-3995 (((-108) $ $) 17)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 15)) (-3983 (((-108) $ $) 18)) (-4059 (($ $ $) 20)) (* (($ (-855) $) 21) (($ (-713) $) 25)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-789) . T) ((-1020) . T))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 24)) (-2305 (($) 23 T CONST)) (-2371 (($ $ $) 13)) (-2535 (($ $ $) 14)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3355 (($) 22 T CONST)) (-4045 (((-108) $ $) 16)) (-4026 (((-108) $ $) 17)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 15)) (-4017 (((-108) $ $) 18)) (-4080 (($ $ $) 20)) (* (($ (-856) $) 21) (($ (-713) $) 25)))
(((-734) (-131)) (T -734))
NIL
(-13 (-736) (-23))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-566 (-797)) . T) ((-736) . T) ((-789) . T) ((-1019) . T))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 24)) (-1487 (($ $ $) 27)) (-3263 (((-3 $ "failed") $ $) 26)) (-1505 (($) 23 T CONST)) (-3525 (($ $ $) 13)) (-3630 (($ $ $) 14)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3875 (($) 22 T CONST)) (-4024 (((-108) $ $) 16)) (-3995 (((-108) $ $) 17)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 15)) (-3983 (((-108) $ $) 18)) (-4059 (($ $ $) 20)) (* (($ (-855) $) 21) (($ (-713) $) 25)))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-566 (-798)) . T) ((-736) . T) ((-789) . T) ((-1020) . T))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 24)) (-2017 (($ $ $) 27)) (-1342 (((-3 $ "failed") $ $) 26)) (-2305 (($) 23 T CONST)) (-2371 (($ $ $) 13)) (-2535 (($ $ $) 14)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3355 (($) 22 T CONST)) (-4045 (((-108) $ $) 16)) (-4026 (((-108) $ $) 17)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 15)) (-4017 (((-108) $ $) 18)) (-4080 (($ $ $) 20)) (* (($ (-856) $) 21) (($ (-713) $) 25)))
(((-735) (-131)) (T -735))
-((-1487 (*1 *1 *1 *1) (-4 *1 (-735))))
-(-13 (-737) (-10 -8 (-15 -1487 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-789) . T) ((-1019) . T))
-((-1893 (((-108) $ $) 7)) (-3525 (($ $ $) 13)) (-3630 (($ $ $) 14)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-4024 (((-108) $ $) 16)) (-3995 (((-108) $ $) 17)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 15)) (-3983 (((-108) $ $) 18)) (-4059 (($ $ $) 20)) (* (($ (-855) $) 21)))
+((-2017 (*1 *1 *1 *1) (-4 *1 (-735))))
+(-13 (-737) (-10 -8 (-15 -2017 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-789) . T) ((-1020) . T))
+((-1260 (((-108) $ $) 7)) (-2371 (($ $ $) 13)) (-2535 (($ $ $) 14)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-4045 (((-108) $ $) 16)) (-4026 (((-108) $ $) 17)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 15)) (-4017 (((-108) $ $) 18)) (-4080 (($ $ $) 20)) (* (($ (-856) $) 21)))
(((-736) (-131)) (T -736))
NIL
(-13 (-789) (-25))
-(((-25) . T) ((-97) . T) ((-566 (-797)) . T) ((-789) . T) ((-1019) . T))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 24)) (-3263 (((-3 $ "failed") $ $) 26)) (-1505 (($) 23 T CONST)) (-3525 (($ $ $) 13)) (-3630 (($ $ $) 14)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3875 (($) 22 T CONST)) (-4024 (((-108) $ $) 16)) (-3995 (((-108) $ $) 17)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 15)) (-3983 (((-108) $ $) 18)) (-4059 (($ $ $) 20)) (* (($ (-855) $) 21) (($ (-713) $) 25)))
+(((-25) . T) ((-97) . T) ((-566 (-798)) . T) ((-789) . T) ((-1020) . T))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 24)) (-1342 (((-3 $ "failed") $ $) 26)) (-2305 (($) 23 T CONST)) (-2371 (($ $ $) 13)) (-2535 (($ $ $) 14)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3355 (($) 22 T CONST)) (-4045 (((-108) $ $) 16)) (-4026 (((-108) $ $) 17)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 15)) (-4017 (((-108) $ $) 18)) (-4080 (($ $ $) 20)) (* (($ (-856) $) 21) (($ (-713) $) 25)))
(((-737) (-131)) (T -737))
NIL
(-13 (-734) (-126))
-(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-734) . T) ((-736) . T) ((-789) . T) ((-1019) . T))
-((-1611 (((-108) $) 41)) (-1264 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2831 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 42)) (-1468 (((-3 (-385 (-525)) "failed") $) 78)) (-3081 (((-108) $) 72)) (-2098 (((-385 (-525)) $) 76)) (-3477 ((|#2| $) 26)) (-1370 (($ (-1 |#2| |#2|) $) 23)) (-4211 (($ $) 61)) (-1427 (((-501) $) 67)) (-3634 (($ $) 21)) (-1908 (((-797) $) 56) (($ (-525)) 39) (($ |#2|) 37) (($ (-385 (-525))) NIL)) (-2093 (((-713)) 10)) (-2092 ((|#2| $) 71)) (-3961 (((-108) $ $) 29)) (-3983 (((-108) $ $) 69)) (-4070 (($ $) 31) (($ $ $) NIL)) (-4059 (($ $ $) 30)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-738 |#1| |#2|) (-10 -8 (-15 -3983 ((-108) |#1| |#1|)) (-15 -1427 ((-501) |#1|)) (-15 -4211 (|#1| |#1|)) (-15 -1468 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2098 ((-385 (-525)) |#1|)) (-15 -3081 ((-108) |#1|)) (-15 -2092 (|#2| |#1|)) (-15 -3477 (|#2| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -1370 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2831 (|#2| |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -1908 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1908 (|#1| (-525))) (-15 -2093 ((-713))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4070 (|#1| |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -1611 ((-108) |#1|)) (-15 * (|#1| (-855) |#1|)) (-15 -4059 (|#1| |#1| |#1|)) (-15 -1908 ((-797) |#1|)) (-15 -3961 ((-108) |#1| |#1|))) (-739 |#2|) (-160)) (T -738))
-((-2093 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-738 *3 *4)) (-4 *3 (-739 *4)))))
-(-10 -8 (-15 -3983 ((-108) |#1| |#1|)) (-15 -1427 ((-501) |#1|)) (-15 -4211 (|#1| |#1|)) (-15 -1468 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2098 ((-385 (-525)) |#1|)) (-15 -3081 ((-108) |#1|)) (-15 -2092 (|#2| |#1|)) (-15 -3477 (|#2| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -1370 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2831 (|#2| |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -1908 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1908 (|#1| (-525))) (-15 -2093 ((-713))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4070 (|#1| |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -1611 ((-108) |#1|)) (-15 * (|#1| (-855) |#1|)) (-15 -4059 (|#1| |#1| |#1|)) (-15 -1908 ((-797) |#1|)) (-15 -3961 ((-108) |#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-3107 (((-713)) 53 (|has| |#1| (-346)))) (-1505 (($) 17 T CONST)) (-1264 (((-3 (-525) "failed") $) 94 (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 92 (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 90)) (-2831 (((-525) $) 95 (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) 93 (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 89)) (-2866 (((-3 $ "failed") $) 34)) (-3981 ((|#1| $) 79)) (-1468 (((-3 (-385 (-525)) "failed") $) 66 (|has| |#1| (-510)))) (-3081 (((-108) $) 68 (|has| |#1| (-510)))) (-2098 (((-385 (-525)) $) 67 (|has| |#1| (-510)))) (-3375 (($) 56 (|has| |#1| (-346)))) (-2133 (((-108) $) 31)) (-2829 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-3477 ((|#1| $) 71)) (-3525 (($ $ $) 62 (|has| |#1| (-789)))) (-3630 (($ $ $) 61 (|has| |#1| (-789)))) (-1370 (($ (-1 |#1| |#1|) $) 81)) (-1780 (((-855) $) 55 (|has| |#1| (-346)))) (-2337 (((-1073) $) 9)) (-4211 (($ $) 65 (|has| |#1| (-341)))) (-4185 (($ (-855)) 54 (|has| |#1| (-346)))) (-3030 ((|#1| $) 76)) (-4170 ((|#1| $) 77)) (-2761 ((|#1| $) 78)) (-3123 ((|#1| $) 72)) (-2231 ((|#1| $) 73)) (-3714 ((|#1| $) 74)) (-1931 ((|#1| $) 75)) (-2663 (((-1037) $) 10)) (-3092 (($ $ (-592 |#1|) (-592 |#1|)) 87 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 85 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 84 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) 83 (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) 82 (|has| |#1| (-486 (-1090) |#1|)))) (-3928 (($ $ |#1|) 88 (|has| |#1| (-265 |#1| |#1|)))) (-1427 (((-501) $) 63 (|has| |#1| (-567 (-501))))) (-3634 (($ $) 80)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 91 (|has| |#1| (-967 (-385 (-525)))))) (-3421 (((-3 $ "failed") $) 64 (|has| |#1| (-136)))) (-2093 (((-713)) 29)) (-2092 ((|#1| $) 69 (|has| |#1| (-985)))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-4024 (((-108) $ $) 59 (|has| |#1| (-789)))) (-3995 (((-108) $ $) 58 (|has| |#1| (-789)))) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 60 (|has| |#1| (-789)))) (-3983 (((-108) $ $) 57 (|has| |#1| (-789)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
+(((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-734) . T) ((-736) . T) ((-789) . T) ((-1020) . T))
+((-1989 (((-108) $) 41)) (-2591 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-3898 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 42)) (-2251 (((-3 (-385 (-525)) "failed") $) 78)) (-2265 (((-108) $) 72)) (-2178 (((-385 (-525)) $) 76)) (-2900 ((|#2| $) 26)) (-2694 (($ (-1 |#2| |#2|) $) 23)) (-2502 (($ $) 61)) (-2749 (((-501) $) 67)) (-3700 (($ $) 21)) (-1270 (((-798) $) 56) (($ (-525)) 39) (($ |#2|) 37) (($ (-385 (-525))) NIL)) (-2104 (((-713)) 10)) (-2086 ((|#2| $) 71)) (-3994 (((-108) $ $) 29)) (-4017 (((-108) $ $) 69)) (-4090 (($ $) 31) (($ $ $) NIL)) (-4080 (($ $ $) 30)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-738 |#1| |#2|) (-10 -8 (-15 -4017 ((-108) |#1| |#1|)) (-15 -2749 ((-501) |#1|)) (-15 -2502 (|#1| |#1|)) (-15 -2251 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2178 ((-385 (-525)) |#1|)) (-15 -2265 ((-108) |#1|)) (-15 -2086 (|#2| |#1|)) (-15 -2900 (|#2| |#1|)) (-15 -3700 (|#1| |#1|)) (-15 -2694 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3898 (|#2| |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -1270 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1270 (|#1| (-525))) (-15 -2104 ((-713))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -1989 ((-108) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -1270 ((-798) |#1|)) (-15 -3994 ((-108) |#1| |#1|))) (-739 |#2|) (-160)) (T -738))
+((-2104 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-738 *3 *4)) (-4 *3 (-739 *4)))))
+(-10 -8 (-15 -4017 ((-108) |#1| |#1|)) (-15 -2749 ((-501) |#1|)) (-15 -2502 (|#1| |#1|)) (-15 -2251 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2178 ((-385 (-525)) |#1|)) (-15 -2265 ((-108) |#1|)) (-15 -2086 (|#2| |#1|)) (-15 -2900 (|#2| |#1|)) (-15 -3700 (|#1| |#1|)) (-15 -2694 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3898 (|#2| |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -1270 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1270 (|#1| (-525))) (-15 -2104 ((-713))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -1989 ((-108) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -1270 ((-798) |#1|)) (-15 -3994 ((-108) |#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-4190 (((-713)) 53 (|has| |#1| (-346)))) (-2305 (($) 17 T CONST)) (-2591 (((-3 (-525) "failed") $) 94 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 92 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 90)) (-3898 (((-525) $) 95 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 93 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 89)) (-3762 (((-3 $ "failed") $) 34)) (-2227 ((|#1| $) 79)) (-2251 (((-3 (-385 (-525)) "failed") $) 66 (|has| |#1| (-510)))) (-2265 (((-108) $) 68 (|has| |#1| (-510)))) (-2178 (((-385 (-525)) $) 67 (|has| |#1| (-510)))) (-2899 (($) 56 (|has| |#1| (-346)))) (-1985 (((-108) $) 31)) (-1611 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 70)) (-2900 ((|#1| $) 71)) (-2371 (($ $ $) 62 (|has| |#1| (-789)))) (-2535 (($ $ $) 61 (|has| |#1| (-789)))) (-2694 (($ (-1 |#1| |#1|) $) 81)) (-1736 (((-856) $) 55 (|has| |#1| (-346)))) (-3451 (((-1074) $) 9)) (-2502 (($ $) 65 (|has| |#1| (-341)))) (-3640 (($ (-856)) 54 (|has| |#1| (-346)))) (-3037 ((|#1| $) 76)) (-3031 ((|#1| $) 77)) (-2174 ((|#1| $) 78)) (-1364 ((|#1| $) 72)) (-3638 ((|#1| $) 73)) (-3289 ((|#1| $) 74)) (-3733 ((|#1| $) 75)) (-2012 (((-1038) $) 10)) (-2602 (($ $ (-592 |#1|) (-592 |#1|)) 87 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 86 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 85 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 84 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1091)) (-592 |#1|)) 83 (|has| |#1| (-486 (-1091) |#1|))) (($ $ (-1091) |#1|) 82 (|has| |#1| (-486 (-1091) |#1|)))) (-3410 (($ $ |#1|) 88 (|has| |#1| (-265 |#1| |#1|)))) (-2749 (((-501) $) 63 (|has| |#1| (-567 (-501))))) (-3700 (($ $) 80)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 91 (|has| |#1| (-968 (-385 (-525)))))) (-3425 (((-3 $ "failed") $) 64 (|has| |#1| (-136)))) (-2104 (((-713)) 29)) (-2086 ((|#1| $) 69 (|has| |#1| (-986)))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-4045 (((-108) $ $) 59 (|has| |#1| (-789)))) (-4026 (((-108) $ $) 58 (|has| |#1| (-789)))) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 60 (|has| |#1| (-789)))) (-4017 (((-108) $ $) 57 (|has| |#1| (-789)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38)))
(((-739 |#1|) (-131) (-160)) (T -739))
-((-3634 (*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3981 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2761 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-4170 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3030 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-1931 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2231 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3477 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2829 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-985)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-1468 (*1 *2 *1) (|partial| -12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-4211 (*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-341)))))
-(-13 (-37 |t#1|) (-389 |t#1|) (-316 |t#1|) (-10 -8 (-15 -3634 ($ $)) (-15 -3981 (|t#1| $)) (-15 -2761 (|t#1| $)) (-15 -4170 (|t#1| $)) (-15 -3030 (|t#1| $)) (-15 -1931 (|t#1| $)) (-15 -3714 (|t#1| $)) (-15 -2231 (|t#1| $)) (-15 -3123 (|t#1| $)) (-15 -3477 (|t#1| $)) (-15 -2829 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-985)) (-15 -2092 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -3081 ((-108) $)) (-15 -2098 ((-385 (-525)) $)) (-15 -1468 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-341)) (-15 -4211 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-346) |has| |#1| (-346)) ((-316 |#1|) . T) ((-389 |#1|) . T) ((-486 (-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) . T) ((-669) . T) ((-789) |has| |#1| (-789)) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-982 |#1|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1370 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-740 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1370 (|#3| (-1 |#4| |#2|) |#1|))) (-739 |#2|) (-160) (-739 |#4|) (-160)) (T -740))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-739 *6)) (-5 *1 (-740 *4 *5 *2 *6)) (-4 *4 (-739 *5)))))
-(-10 -7 (-15 -1370 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3107 (((-713)) NIL (|has| |#1| (-346)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) NIL) (((-3 (-930 |#1|) "failed") $) 35) (((-3 (-525) "failed") $) NIL (-3309 (|has| (-930 |#1|) (-967 (-525))) (|has| |#1| (-967 (-525))))) (((-3 (-385 (-525)) "failed") $) NIL (-3309 (|has| (-930 |#1|) (-967 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525))))))) (-2831 ((|#1| $) NIL) (((-930 |#1|) $) 33) (((-525) $) NIL (-3309 (|has| (-930 |#1|) (-967 (-525))) (|has| |#1| (-967 (-525))))) (((-385 (-525)) $) NIL (-3309 (|has| (-930 |#1|) (-967 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525))))))) (-2866 (((-3 $ "failed") $) NIL)) (-3981 ((|#1| $) 16)) (-1468 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-3081 (((-108) $) NIL (|has| |#1| (-510)))) (-2098 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-3375 (($) NIL (|has| |#1| (-346)))) (-2133 (((-108) $) NIL)) (-2829 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-930 |#1|) (-930 |#1|)) 29)) (-3477 ((|#1| $) NIL)) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-1780 (((-855) $) NIL (|has| |#1| (-346)))) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-341)))) (-4185 (($ (-855)) NIL (|has| |#1| (-346)))) (-3030 ((|#1| $) 22)) (-4170 ((|#1| $) 20)) (-2761 ((|#1| $) 18)) (-3123 ((|#1| $) 26)) (-2231 ((|#1| $) 25)) (-3714 ((|#1| $) 24)) (-1931 ((|#1| $) 23)) (-2663 (((-1037) $) NIL)) (-3092 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) NIL (|has| |#1| (-486 (-1090) |#1|)))) (-3928 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-1427 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-3634 (($ $) NIL)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-930 |#1|)) 30) (($ (-385 (-525))) NIL (-3309 (|has| (-930 |#1|) (-967 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525))))))) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) NIL)) (-2092 ((|#1| $) NIL (|has| |#1| (-985)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 8 T CONST)) (-3882 (($) 12 T CONST)) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-741 |#1|) (-13 (-739 |#1|) (-389 (-930 |#1|)) (-10 -8 (-15 -2829 ($ (-930 |#1|) (-930 |#1|))))) (-160)) (T -741))
-((-2829 (*1 *1 *2 *2) (-12 (-5 *2 (-930 *3)) (-4 *3 (-160)) (-5 *1 (-741 *3)))))
-(-13 (-739 |#1|) (-389 (-930 |#1|)) (-10 -8 (-15 -2829 ($ (-930 |#1|) (-930 |#1|)))))
-((-1893 (((-108) $ $) 7)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 14)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-1626 (((-965) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 13)) (-3961 (((-108) $ $) 6)))
+((-3700 (*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2227 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2174 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3031 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3037 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3733 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3289 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-3638 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-1611 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))) (-2086 (*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-986)))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-2251 (*1 *2 *1) (|partial| -12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-2502 (*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-341)))))
+(-13 (-37 |t#1|) (-389 |t#1|) (-316 |t#1|) (-10 -8 (-15 -3700 ($ $)) (-15 -2227 (|t#1| $)) (-15 -2174 (|t#1| $)) (-15 -3031 (|t#1| $)) (-15 -3037 (|t#1| $)) (-15 -3733 (|t#1| $)) (-15 -3289 (|t#1| $)) (-15 -3638 (|t#1| $)) (-15 -1364 (|t#1| $)) (-15 -2900 (|t#1| $)) (-15 -1611 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-346)) (-6 (-346)) |%noBranch|) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-986)) (-15 -2086 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -2265 ((-108) $)) (-15 -2178 ((-385 (-525)) $)) (-15 -2251 ((-3 (-385 (-525)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-341)) (-15 -2502 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-346) |has| |#1| (-346)) ((-316 |#1|) . T) ((-389 |#1|) . T) ((-486 (-1091) |#1|) |has| |#1| (-486 (-1091) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) . T) ((-669) . T) ((-789) |has| |#1| (-789)) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 |#1|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-2694 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-740 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2694 (|#3| (-1 |#4| |#2|) |#1|))) (-739 |#2|) (-160) (-739 |#4|) (-160)) (T -740))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-739 *6)) (-5 *1 (-740 *4 *5 *2 *6)) (-4 *4 (-739 *5)))))
+(-10 -7 (-15 -2694 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4190 (((-713)) NIL (|has| |#1| (-346)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) NIL) (((-3 (-931 |#1|) "failed") $) 35) (((-3 (-525) "failed") $) NIL (-3279 (|has| (-931 |#1|) (-968 (-525))) (|has| |#1| (-968 (-525))))) (((-3 (-385 (-525)) "failed") $) NIL (-3279 (|has| (-931 |#1|) (-968 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-3898 ((|#1| $) NIL) (((-931 |#1|) $) 33) (((-525) $) NIL (-3279 (|has| (-931 |#1|) (-968 (-525))) (|has| |#1| (-968 (-525))))) (((-385 (-525)) $) NIL (-3279 (|has| (-931 |#1|) (-968 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-3762 (((-3 $ "failed") $) NIL)) (-2227 ((|#1| $) 16)) (-2251 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-2265 (((-108) $) NIL (|has| |#1| (-510)))) (-2178 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-2899 (($) NIL (|has| |#1| (-346)))) (-1985 (((-108) $) NIL)) (-1611 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-931 |#1|) (-931 |#1|)) 29)) (-2900 ((|#1| $) NIL)) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-1736 (((-856) $) NIL (|has| |#1| (-346)))) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL (|has| |#1| (-341)))) (-3640 (($ (-856)) NIL (|has| |#1| (-346)))) (-3037 ((|#1| $) 22)) (-3031 ((|#1| $) 20)) (-2174 ((|#1| $) 18)) (-1364 ((|#1| $) 26)) (-3638 ((|#1| $) 25)) (-3289 ((|#1| $) 24)) (-3733 ((|#1| $) 23)) (-2012 (((-1038) $) NIL)) (-2602 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1091)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1091) |#1|))) (($ $ (-1091) |#1|) NIL (|has| |#1| (-486 (-1091) |#1|)))) (-3410 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-2749 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-3700 (($ $) NIL)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-931 |#1|)) 30) (($ (-385 (-525))) NIL (-3279 (|has| (-931 |#1|) (-968 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) NIL)) (-2086 ((|#1| $) NIL (|has| |#1| (-986)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 8 T CONST)) (-3363 (($) 12 T CONST)) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-741 |#1|) (-13 (-739 |#1|) (-389 (-931 |#1|)) (-10 -8 (-15 -1611 ($ (-931 |#1|) (-931 |#1|))))) (-160)) (T -741))
+((-1611 (*1 *1 *2 *2) (-12 (-5 *2 (-931 *3)) (-4 *3 (-160)) (-5 *1 (-741 *3)))))
+(-13 (-739 |#1|) (-389 (-931 |#1|)) (-10 -8 (-15 -1611 ($ (-931 |#1|) (-931 |#1|)))))
+((-1260 (((-108) $ $) 7)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 14)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3432 (((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 13)) (-3994 (((-108) $ $) 6)))
(((-742) (-131)) (T -742))
-((-1965 (*1 *2 *3 *4) (-12 (-4 *1 (-742)) (-5 *3 (-988)) (-5 *4 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)))))) (-1626 (*1 *2 *3) (-12 (-4 *1 (-742)) (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-965)))))
-(-13 (-1019) (-10 -7 (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1626 ((-965) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-2161 (((-2 (|:| |particular| |#2|) (|:| -2499 (-592 |#2|))) |#3| |#2| (-1090)) 19)))
-(((-743 |#1| |#2| |#3|) (-10 -7 (-15 -2161 ((-2 (|:| |particular| |#2|) (|:| -2499 (-592 |#2|))) |#3| |#2| (-1090)))) (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1112) (-892)) (-602 |#2|)) (T -743))
-((-2161 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1090)) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-4 *4 (-13 (-29 *6) (-1112) (-892))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2499 (-592 *4)))) (-5 *1 (-743 *6 *4 *3)) (-4 *3 (-602 *4)))))
-(-10 -7 (-15 -2161 ((-2 (|:| |particular| |#2|) (|:| -2499 (-592 |#2|))) |#3| |#2| (-1090))))
-((-2925 (((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-592 |#2|)) 28) (((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -2499 (-592 |#2|))) |#2| "failed") |#2| (-110) (-1090)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -2499 (-592 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1090)) 18) (((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2499 (-592 (-1172 |#2|)))) "failed") (-592 |#2|) (-592 (-110)) (-1090)) 24) (((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2499 (-592 (-1172 |#2|)))) "failed") (-592 (-273 |#2|)) (-592 (-110)) (-1090)) 26) (((-3 (-592 (-1172 |#2|)) "failed") (-632 |#2|) (-1090)) 37) (((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2499 (-592 (-1172 |#2|)))) "failed") (-632 |#2|) (-1172 |#2|) (-1090)) 35)))
-(((-744 |#1| |#2|) (-10 -7 (-15 -2925 ((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2499 (-592 (-1172 |#2|)))) "failed") (-632 |#2|) (-1172 |#2|) (-1090))) (-15 -2925 ((-3 (-592 (-1172 |#2|)) "failed") (-632 |#2|) (-1090))) (-15 -2925 ((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2499 (-592 (-1172 |#2|)))) "failed") (-592 (-273 |#2|)) (-592 (-110)) (-1090))) (-15 -2925 ((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2499 (-592 (-1172 |#2|)))) "failed") (-592 |#2|) (-592 (-110)) (-1090))) (-15 -2925 ((-3 (-2 (|:| |particular| |#2|) (|:| -2499 (-592 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1090))) (-15 -2925 ((-3 (-2 (|:| |particular| |#2|) (|:| -2499 (-592 |#2|))) |#2| "failed") |#2| (-110) (-1090))) (-15 -2925 ((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -2925 ((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-592 |#2|)))) (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1112) (-892))) (T -744))
-((-2925 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-273 *2)) (-5 *5 (-592 *2)) (-4 *2 (-13 (-29 *6) (-1112) (-892))) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *1 (-744 *6 *2)))) (-2925 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-273 *2)) (-5 *4 (-110)) (-5 *5 (-592 *2)) (-4 *2 (-13 (-29 *6) (-1112) (-892))) (-5 *1 (-744 *6 *2)) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))))) (-2925 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-5 *5 (-1090)) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2499 (-592 *3))) *3 "failed")) (-5 *1 (-744 *6 *3)) (-4 *3 (-13 (-29 *6) (-1112) (-892))))) (-2925 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1112) (-892))) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2499 (-592 *7))) *7 "failed")) (-5 *1 (-744 *6 *7)))) (-2925 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110))) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1112) (-892))) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1172 *7)) (|:| -2499 (-592 (-1172 *7))))) (-5 *1 (-744 *6 *7)))) (-2925 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110))) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1112) (-892))) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1172 *7)) (|:| -2499 (-592 (-1172 *7))))) (-5 *1 (-744 *6 *7)))) (-2925 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-632 *6)) (-5 *4 (-1090)) (-4 *6 (-13 (-29 *5) (-1112) (-892))) (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-1172 *6))) (-5 *1 (-744 *5 *6)))) (-2925 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-632 *7)) (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1112) (-892))) (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1172 *7)) (|:| -2499 (-592 (-1172 *7))))) (-5 *1 (-744 *6 *7)) (-5 *4 (-1172 *7)))))
-(-10 -7 (-15 -2925 ((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2499 (-592 (-1172 |#2|)))) "failed") (-632 |#2|) (-1172 |#2|) (-1090))) (-15 -2925 ((-3 (-592 (-1172 |#2|)) "failed") (-632 |#2|) (-1090))) (-15 -2925 ((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2499 (-592 (-1172 |#2|)))) "failed") (-592 (-273 |#2|)) (-592 (-110)) (-1090))) (-15 -2925 ((-3 (-2 (|:| |particular| (-1172 |#2|)) (|:| -2499 (-592 (-1172 |#2|)))) "failed") (-592 |#2|) (-592 (-110)) (-1090))) (-15 -2925 ((-3 (-2 (|:| |particular| |#2|) (|:| -2499 (-592 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1090))) (-15 -2925 ((-3 (-2 (|:| |particular| |#2|) (|:| -2499 (-592 |#2|))) |#2| "failed") |#2| (-110) (-1090))) (-15 -2925 ((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -2925 ((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-592 |#2|))))
-((-1926 (($) 9)) (-4039 (((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 31)) (-4005 (((-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $) 28)) (-2573 (($ (-2 (|:| -3946 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))) 25)) (-1397 (($ (-592 (-2 (|:| -3946 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) 23)) (-2492 (((-1177)) 12)))
-(((-745) (-10 -8 (-15 -1926 ($)) (-15 -2492 ((-1177))) (-15 -4005 ((-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -1397 ($ (-592 (-2 (|:| -3946 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))))) (-15 -2573 ($ (-2 (|:| -3946 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-15 -4039 ((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -745))
-((-4039 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) (-5 *1 (-745)))) (-2573 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3946 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))) (-5 *1 (-745)))) (-1397 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3946 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-5 *1 (-745)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-5 *1 (-745)))) (-2492 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-745)))) (-1926 (*1 *1) (-5 *1 (-745))))
-(-10 -8 (-15 -1926 ($)) (-15 -2492 ((-1177))) (-15 -4005 ((-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -1397 ($ (-592 (-2 (|:| -3946 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))))) (-15 -2573 ($ (-2 (|:| -3946 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2511 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-15 -4039 ((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
-((-2409 ((|#2| |#2| (-1090)) 16)) (-3198 ((|#2| |#2| (-1090)) 51)) (-1254 (((-1 |#2| |#2|) (-1090)) 11)))
-(((-746 |#1| |#2|) (-10 -7 (-15 -2409 (|#2| |#2| (-1090))) (-15 -3198 (|#2| |#2| (-1090))) (-15 -1254 ((-1 |#2| |#2|) (-1090)))) (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1112) (-892))) (T -746))
-((-1254 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-1 *5 *5)) (-5 *1 (-746 *4 *5)) (-4 *5 (-13 (-29 *4) (-1112) (-892))))) (-3198 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1112) (-892))))) (-2409 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1112) (-892))))))
-(-10 -7 (-15 -2409 (|#2| |#2| (-1090))) (-15 -3198 (|#2| |#2| (-1090))) (-15 -1254 ((-1 |#2| |#2|) (-1090))))
-((-2925 (((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357) (-357)) 116) (((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357)) 117) (((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-592 (-357)) (-357)) 119) (((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-357)) 120) (((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-357)) 121) (((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357))) 122) (((-965) (-750) (-988)) 108) (((-965) (-750)) 109)) (-1965 (((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-750) (-988)) 75) (((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-750)) 77)))
-(((-747) (-10 -7 (-15 -2925 ((-965) (-750))) (-15 -2925 ((-965) (-750) (-988))) (-15 -2925 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)))) (-15 -2925 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-357))) (-15 -2925 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-357))) (-15 -2925 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-592 (-357)) (-357))) (-15 -2925 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357))) (-15 -2925 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357) (-357))) (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-750))) (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-750) (-988))))) (T -747))
-((-1965 (*1 *2 *3 *4) (-12 (-5 *3 (-750)) (-5 *4 (-988)) (-5 *2 (-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))))) (-5 *1 (-747)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-750)) (-5 *2 (-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))))) (-5 *1 (-747)))) (-2925 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *2 (-965)) (-5 *1 (-747)))) (-2925 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *2 (-965)) (-5 *1 (-747)))) (-2925 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 (-357))) (-5 *2 (-965)) (-5 *1 (-747)))) (-2925 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *2 (-965)) (-5 *1 (-747)))) (-2925 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 (-357))) (-5 *2 (-965)) (-5 *1 (-747)))) (-2925 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 (-357))) (-5 *2 (-965)) (-5 *1 (-747)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-750)) (-5 *4 (-988)) (-5 *2 (-965)) (-5 *1 (-747)))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-750)) (-5 *2 (-965)) (-5 *1 (-747)))))
-(-10 -7 (-15 -2925 ((-965) (-750))) (-15 -2925 ((-965) (-750) (-988))) (-15 -2925 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)))) (-15 -2925 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-357))) (-15 -2925 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-357))) (-15 -2925 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-592 (-357)) (-357))) (-15 -2925 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357))) (-15 -2925 ((-965) (-1172 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357) (-357))) (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-750))) (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-750) (-988))))
-((-3540 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2499 (-592 |#4|))) (-599 |#4|) |#4|) 35)))
-(((-748 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3540 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2499 (-592 |#4|))) (-599 |#4|) |#4|))) (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -748))
-((-3540 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *4)) (-4 *4 (-320 *5 *6 *7)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2499 (-592 *4)))) (-5 *1 (-748 *5 *6 *7 *4)))))
-(-10 -7 (-15 -3540 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2499 (-592 |#4|))) (-599 |#4|) |#4|)))
-((-1284 (((-2 (|:| -1881 |#3|) (|:| |rh| (-592 (-385 |#2|)))) |#4| (-592 (-385 |#2|))) 52)) (-2207 (((-592 (-2 (|:| -2563 |#2|) (|:| -3755 |#2|))) |#4| |#2|) 60) (((-592 (-2 (|:| -2563 |#2|) (|:| -3755 |#2|))) |#4|) 59) (((-592 (-2 (|:| -2563 |#2|) (|:| -3755 |#2|))) |#3| |#2|) 20) (((-592 (-2 (|:| -2563 |#2|) (|:| -3755 |#2|))) |#3|) 21)) (-1751 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-1544 ((|#2| |#3| (-592 (-385 |#2|))) 93) (((-3 |#2| "failed") |#3| (-385 |#2|)) 90)))
-(((-749 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1544 ((-3 |#2| "failed") |#3| (-385 |#2|))) (-15 -1544 (|#2| |#3| (-592 (-385 |#2|)))) (-15 -2207 ((-592 (-2 (|:| -2563 |#2|) (|:| -3755 |#2|))) |#3|)) (-15 -2207 ((-592 (-2 (|:| -2563 |#2|) (|:| -3755 |#2|))) |#3| |#2|)) (-15 -1751 (|#2| |#3| |#1|)) (-15 -2207 ((-592 (-2 (|:| -2563 |#2|) (|:| -3755 |#2|))) |#4|)) (-15 -2207 ((-592 (-2 (|:| -2563 |#2|) (|:| -3755 |#2|))) |#4| |#2|)) (-15 -1751 (|#2| |#4| |#1|)) (-15 -1284 ((-2 (|:| -1881 |#3|) (|:| |rh| (-592 (-385 |#2|)))) |#4| (-592 (-385 |#2|))))) (-13 (-341) (-138) (-967 (-385 (-525)))) (-1148 |#1|) (-602 |#2|) (-602 (-385 |#2|))) (T -749))
-((-1284 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) (-5 *2 (-2 (|:| -1881 *7) (|:| |rh| (-592 (-385 *6))))) (-5 *1 (-749 *5 *6 *7 *3)) (-5 *4 (-592 (-385 *6))) (-4 *7 (-602 *6)) (-4 *3 (-602 (-385 *6))))) (-1751 (*1 *2 *3 *4) (-12 (-4 *2 (-1148 *4)) (-5 *1 (-749 *4 *2 *5 *3)) (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *5 (-602 *2)) (-4 *3 (-602 (-385 *2))))) (-2207 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *4 (-1148 *5)) (-5 *2 (-592 (-2 (|:| -2563 *4) (|:| -3755 *4)))) (-5 *1 (-749 *5 *4 *6 *3)) (-4 *6 (-602 *4)) (-4 *3 (-602 (-385 *4))))) (-2207 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *5 (-1148 *4)) (-5 *2 (-592 (-2 (|:| -2563 *5) (|:| -3755 *5)))) (-5 *1 (-749 *4 *5 *6 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 (-385 *5))))) (-1751 (*1 *2 *3 *4) (-12 (-4 *2 (-1148 *4)) (-5 *1 (-749 *4 *2 *3 *5)) (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *5 (-602 (-385 *2))))) (-2207 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *4 (-1148 *5)) (-5 *2 (-592 (-2 (|:| -2563 *4) (|:| -3755 *4)))) (-5 *1 (-749 *5 *4 *3 *6)) (-4 *3 (-602 *4)) (-4 *6 (-602 (-385 *4))))) (-2207 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *5 (-1148 *4)) (-5 *2 (-592 (-2 (|:| -2563 *5) (|:| -3755 *5)))) (-5 *1 (-749 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-385 *5))))) (-1544 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-385 *2))) (-4 *2 (-1148 *5)) (-5 *1 (-749 *5 *2 *3 *6)) (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *6 (-602 (-385 *2))))) (-1544 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-385 *2)) (-4 *2 (-1148 *5)) (-5 *1 (-749 *5 *2 *3 *6)) (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *6 (-602 (-385 *2))))))
-(-10 -7 (-15 -1544 ((-3 |#2| "failed") |#3| (-385 |#2|))) (-15 -1544 (|#2| |#3| (-592 (-385 |#2|)))) (-15 -2207 ((-592 (-2 (|:| -2563 |#2|) (|:| -3755 |#2|))) |#3|)) (-15 -2207 ((-592 (-2 (|:| -2563 |#2|) (|:| -3755 |#2|))) |#3| |#2|)) (-15 -1751 (|#2| |#3| |#1|)) (-15 -2207 ((-592 (-2 (|:| -2563 |#2|) (|:| -3755 |#2|))) |#4|)) (-15 -2207 ((-592 (-2 (|:| -2563 |#2|) (|:| -3755 |#2|))) |#4| |#2|)) (-15 -1751 (|#2| |#4| |#1|)) (-15 -1284 ((-2 (|:| -1881 |#3|) (|:| |rh| (-592 (-385 |#2|)))) |#4| (-592 (-385 |#2|)))))
-((-1893 (((-108) $ $) NIL)) (-2831 (((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $) 13)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 15) (($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 12)) (-3961 (((-108) $ $) NIL)))
-(((-750) (-13 (-1019) (-10 -8 (-15 -1908 ($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1908 ((-797) $)) (-15 -2831 ((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $))))) (T -750))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-750)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-750)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-750)))))
-(-13 (-1019) (-10 -8 (-15 -1908 ($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1908 ((-797) $)) (-15 -2831 ((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $))))
-((-1358 (((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -1881 |#3|))) |#3| (-1 (-592 |#2|) |#2| (-1086 |#2|)) (-1 (-396 |#2|) |#2|)) 118)) (-3341 (((-592 (-2 (|:| |poly| |#2|) (|:| -1881 |#3|))) |#3| (-1 (-592 |#1|) |#2|)) 46)) (-2374 (((-592 (-2 (|:| |deg| (-713)) (|:| -1881 |#2|))) |#3|) 95)) (-1768 ((|#2| |#3|) 37)) (-1568 (((-592 (-2 (|:| -3359 |#1|) (|:| -1881 |#3|))) |#3| (-1 (-592 |#1|) |#2|)) 82)) (-4091 ((|#3| |#3| (-385 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
-(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1768 (|#2| |#3|)) (-15 -2374 ((-592 (-2 (|:| |deg| (-713)) (|:| -1881 |#2|))) |#3|)) (-15 -1568 ((-592 (-2 (|:| -3359 |#1|) (|:| -1881 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -3341 ((-592 (-2 (|:| |poly| |#2|) (|:| -1881 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -1358 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -1881 |#3|))) |#3| (-1 (-592 |#2|) |#2| (-1086 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -4091 (|#3| |#3| |#2|)) (-15 -4091 (|#3| |#3| (-385 |#2|)))) (-13 (-341) (-138) (-967 (-385 (-525)))) (-1148 |#1|) (-602 |#2|) (-602 (-385 |#2|))) (T -751))
-((-4091 (*1 *2 *2 *3) (-12 (-5 *3 (-385 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-5 *1 (-751 *4 *5 *2 *6)) (-4 *2 (-602 *5)) (-4 *6 (-602 (-385 *5))))) (-4091 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *3 (-1148 *4)) (-5 *1 (-751 *4 *3 *2 *5)) (-4 *2 (-602 *3)) (-4 *5 (-602 (-385 *3))))) (-1358 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-592 *7) *7 (-1086 *7))) (-5 *5 (-1 (-396 *7) *7)) (-4 *7 (-1148 *6)) (-4 *6 (-13 (-341) (-138) (-967 (-385 (-525))))) (-5 *2 (-592 (-2 (|:| |frac| (-385 *7)) (|:| -1881 *3)))) (-5 *1 (-751 *6 *7 *3 *8)) (-4 *3 (-602 *7)) (-4 *8 (-602 (-385 *7))))) (-3341 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -1881 *3)))) (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-385 *6))))) (-1568 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) (-5 *2 (-592 (-2 (|:| -3359 *5) (|:| -1881 *3)))) (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-385 *6))))) (-2374 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *5 (-1148 *4)) (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -1881 *5)))) (-5 *1 (-751 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-385 *5))))) (-1768 (*1 *2 *3) (-12 (-4 *2 (-1148 *4)) (-5 *1 (-751 *4 *2 *3 *5)) (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *5 (-602 (-385 *2))))))
-(-10 -7 (-15 -1768 (|#2| |#3|)) (-15 -2374 ((-592 (-2 (|:| |deg| (-713)) (|:| -1881 |#2|))) |#3|)) (-15 -1568 ((-592 (-2 (|:| -3359 |#1|) (|:| -1881 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -3341 ((-592 (-2 (|:| |poly| |#2|) (|:| -1881 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -1358 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -1881 |#3|))) |#3| (-1 (-592 |#2|) |#2| (-1086 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -4091 (|#3| |#3| |#2|)) (-15 -4091 (|#3| |#3| (-385 |#2|))))
-((-2502 (((-2 (|:| -2499 (-592 (-385 |#2|))) (|:| -3276 (-632 |#1|))) (-600 |#2| (-385 |#2|)) (-592 (-385 |#2|))) 121) (((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2499 (-592 (-385 |#2|)))) (-600 |#2| (-385 |#2|)) (-385 |#2|)) 120) (((-2 (|:| -2499 (-592 (-385 |#2|))) (|:| -3276 (-632 |#1|))) (-599 (-385 |#2|)) (-592 (-385 |#2|))) 115) (((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2499 (-592 (-385 |#2|)))) (-599 (-385 |#2|)) (-385 |#2|)) 113)) (-2964 ((|#2| (-600 |#2| (-385 |#2|))) 80) ((|#2| (-599 (-385 |#2|))) 83)))
-(((-752 |#1| |#2|) (-10 -7 (-15 -2502 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2499 (-592 (-385 |#2|)))) (-599 (-385 |#2|)) (-385 |#2|))) (-15 -2502 ((-2 (|:| -2499 (-592 (-385 |#2|))) (|:| -3276 (-632 |#1|))) (-599 (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -2502 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2499 (-592 (-385 |#2|)))) (-600 |#2| (-385 |#2|)) (-385 |#2|))) (-15 -2502 ((-2 (|:| -2499 (-592 (-385 |#2|))) (|:| -3276 (-632 |#1|))) (-600 |#2| (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -2964 (|#2| (-599 (-385 |#2|)))) (-15 -2964 (|#2| (-600 |#2| (-385 |#2|))))) (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))) (-1148 |#1|)) (T -752))
-((-2964 (*1 *2 *3) (-12 (-5 *3 (-600 *2 (-385 *2))) (-4 *2 (-1148 *4)) (-5 *1 (-752 *4 *2)) (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))))) (-2964 (*1 *2 *3) (-12 (-5 *3 (-599 (-385 *2))) (-4 *2 (-1148 *4)) (-5 *1 (-752 *4 *2)) (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-2 (|:| -2499 (-592 (-385 *6))) (|:| -3276 (-632 *5)))) (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2499 (-592 *4)))) (-5 *1 (-752 *5 *6)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-2 (|:| -2499 (-592 (-385 *6))) (|:| -3276 (-632 *5)))) (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6))))) (-2502 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2499 (-592 *4)))) (-5 *1 (-752 *5 *6)))))
-(-10 -7 (-15 -2502 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2499 (-592 (-385 |#2|)))) (-599 (-385 |#2|)) (-385 |#2|))) (-15 -2502 ((-2 (|:| -2499 (-592 (-385 |#2|))) (|:| -3276 (-632 |#1|))) (-599 (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -2502 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -2499 (-592 (-385 |#2|)))) (-600 |#2| (-385 |#2|)) (-385 |#2|))) (-15 -2502 ((-2 (|:| -2499 (-592 (-385 |#2|))) (|:| -3276 (-632 |#1|))) (-600 |#2| (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -2964 (|#2| (-599 (-385 |#2|)))) (-15 -2964 (|#2| (-600 |#2| (-385 |#2|)))))
-((-4155 (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#1|))) |#5| |#4|) 48)))
-(((-753 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4155 ((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#1|))) |#5| |#4|))) (-341) (-602 |#1|) (-1148 |#1|) (-667 |#1| |#3|) (-602 |#4|)) (T -753))
-((-4155 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *7 (-1148 *5)) (-4 *4 (-667 *5 *7)) (-5 *2 (-2 (|:| -3276 (-632 *6)) (|:| |vec| (-1172 *5)))) (-5 *1 (-753 *5 *6 *7 *4 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 *4)))))
-(-10 -7 (-15 -4155 ((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#1|))) |#5| |#4|)))
-((-1358 (((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -1881 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 47)) (-1750 (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|))) 138 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-599 (-385 |#2|))) 140 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|)) 38) (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 39) (((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|)) 36) (((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 37)) (-3341 (((-592 (-2 (|:| |poly| |#2|) (|:| -1881 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 83)))
-(((-754 |#1| |#2|) (-10 -7 (-15 -1750 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -1750 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -1750 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -1750 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -1358 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -1881 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -3341 ((-592 (-2 (|:| |poly| |#2|) (|:| -1881 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1750 ((-592 (-385 |#2|)) (-599 (-385 |#2|)))) (-15 -1750 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -1750 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)))) (-15 -1750 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)))) |%noBranch|)) (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))) (-1148 |#1|)) (T -754))
-((-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1148 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-600 *5 (-385 *5))) (-4 *5 (-1148 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5)))) (-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1148 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-599 (-385 *5))) (-4 *5 (-1148 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5)))) (-3341 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -1881 (-600 *6 (-385 *6)))))) (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))) (-1358 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-5 *2 (-592 (-2 (|:| |frac| (-385 *6)) (|:| -1881 (-600 *6 (-385 *6)))))) (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))) (-1750 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-600 *7 (-385 *7))) (-5 *4 (-1 (-592 *6) *7)) (-5 *5 (-1 (-396 *7) *7)) (-4 *6 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *7 (-1148 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7)))) (-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) (-1750 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-385 *7))) (-5 *4 (-1 (-592 *6) *7)) (-5 *5 (-1 (-396 *7) *7)) (-4 *6 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *7 (-1148 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7)))) (-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))) (-4 *6 (-1148 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))))
-(-10 -7 (-15 -1750 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -1750 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -1750 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -1750 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -1358 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -1881 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -3341 ((-592 (-2 (|:| |poly| |#2|) (|:| -1881 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1750 ((-592 (-385 |#2|)) (-599 (-385 |#2|)))) (-15 -1750 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -1750 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)))) (-15 -1750 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)))) |%noBranch|))
-((-3261 (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#1|))) (-632 |#2|) (-1172 |#1|)) 85) (((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1172 |#1|)) (|:| -1881 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1172 |#1|)) 15)) (-3921 (((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2499 (-592 (-1172 |#1|)))) (-632 |#2|) (-1172 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2499 (-592 |#1|))) |#2| |#1|)) 92)) (-2925 (((-3 (-2 (|:| |particular| (-1172 |#1|)) (|:| -2499 (-632 |#1|))) "failed") (-632 |#1|) (-1172 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2499 (-592 |#1|))) "failed") |#2| |#1|)) 43)))
-(((-755 |#1| |#2|) (-10 -7 (-15 -3261 ((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1172 |#1|)) (|:| -1881 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1172 |#1|))) (-15 -3261 ((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#1|))) (-632 |#2|) (-1172 |#1|))) (-15 -2925 ((-3 (-2 (|:| |particular| (-1172 |#1|)) (|:| -2499 (-632 |#1|))) "failed") (-632 |#1|) (-1172 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2499 (-592 |#1|))) "failed") |#2| |#1|))) (-15 -3921 ((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2499 (-592 (-1172 |#1|)))) (-632 |#2|) (-1172 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2499 (-592 |#1|))) |#2| |#1|)))) (-341) (-602 |#1|)) (T -755))
-((-3921 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2499 (-592 *6))) *7 *6)) (-4 *6 (-341)) (-4 *7 (-602 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1172 *6) "failed")) (|:| -2499 (-592 (-1172 *6))))) (-5 *1 (-755 *6 *7)) (-5 *4 (-1172 *6)))) (-2925 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2499 (-592 *6))) "failed") *7 *6)) (-4 *6 (-341)) (-4 *7 (-602 *6)) (-5 *2 (-2 (|:| |particular| (-1172 *6)) (|:| -2499 (-632 *6)))) (-5 *1 (-755 *6 *7)) (-5 *3 (-632 *6)) (-5 *4 (-1172 *6)))) (-3261 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-602 *5)) (-5 *2 (-2 (|:| -3276 (-632 *6)) (|:| |vec| (-1172 *5)))) (-5 *1 (-755 *5 *6)) (-5 *3 (-632 *6)) (-5 *4 (-1172 *5)))) (-3261 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| A (-632 *5)) (|:| |eqs| (-592 (-2 (|:| C (-632 *5)) (|:| |g| (-1172 *5)) (|:| -1881 *6) (|:| |rh| *5)))))) (-5 *1 (-755 *5 *6)) (-5 *3 (-632 *5)) (-5 *4 (-1172 *5)) (-4 *6 (-602 *5)))))
-(-10 -7 (-15 -3261 ((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1172 |#1|)) (|:| -1881 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1172 |#1|))) (-15 -3261 ((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#1|))) (-632 |#2|) (-1172 |#1|))) (-15 -2925 ((-3 (-2 (|:| |particular| (-1172 |#1|)) (|:| -2499 (-632 |#1|))) "failed") (-632 |#1|) (-1172 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2499 (-592 |#1|))) "failed") |#2| |#1|))) (-15 -3921 ((-2 (|:| |particular| (-3 (-1172 |#1|) "failed")) (|:| -2499 (-592 (-1172 |#1|)))) (-632 |#2|) (-1172 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -2499 (-592 |#1|))) |#2| |#1|))))
-((-2922 (((-632 |#1|) (-592 |#1|) (-713)) 13) (((-632 |#1|) (-592 |#1|)) 14)) (-2145 (((-3 (-1172 |#1|) "failed") |#2| |#1| (-592 |#1|)) 34)) (-2285 (((-3 |#1| "failed") |#2| |#1| (-592 |#1|) (-1 |#1| |#1|)) 42)))
-(((-756 |#1| |#2|) (-10 -7 (-15 -2922 ((-632 |#1|) (-592 |#1|))) (-15 -2922 ((-632 |#1|) (-592 |#1|) (-713))) (-15 -2145 ((-3 (-1172 |#1|) "failed") |#2| |#1| (-592 |#1|))) (-15 -2285 ((-3 |#1| "failed") |#2| |#1| (-592 |#1|) (-1 |#1| |#1|)))) (-341) (-602 |#1|)) (T -756))
-((-2285 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-592 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-341)) (-5 *1 (-756 *2 *3)) (-4 *3 (-602 *2)))) (-2145 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-1172 *4)) (-5 *1 (-756 *4 *3)) (-4 *3 (-602 *4)))) (-2922 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-341)) (-5 *2 (-632 *5)) (-5 *1 (-756 *5 *6)) (-4 *6 (-602 *5)))) (-2922 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-632 *4)) (-5 *1 (-756 *4 *5)) (-4 *5 (-602 *4)))))
-(-10 -7 (-15 -2922 ((-632 |#1|) (-592 |#1|))) (-15 -2922 ((-632 |#1|) (-592 |#1|) (-713))) (-15 -2145 ((-3 (-1172 |#1|) "failed") |#2| |#1| (-592 |#1|))) (-15 -2285 ((-3 |#1| "failed") |#2| |#1| (-592 |#1|) (-1 |#1| |#1|))))
-((-1893 (((-108) $ $) NIL (|has| |#2| (-1019)))) (-1611 (((-108) $) NIL (|has| |#2| (-126)))) (-2516 (($ (-855)) NIL (|has| |#2| (-976)))) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-1487 (($ $ $) NIL (|has| |#2| (-735)))) (-3263 (((-3 $ "failed") $ $) NIL (|has| |#2| (-126)))) (-3410 (((-108) $ (-713)) NIL)) (-3107 (((-713)) NIL (|has| |#2| (-346)))) (-1690 (((-525) $) NIL (|has| |#2| (-787)))) (-2109 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4255)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1019)))) (-2831 (((-525) $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) ((|#2| $) NIL (|has| |#2| (-1019)))) (-1860 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-976)))) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL (|has| |#2| (-976))) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-976)))) (-2866 (((-3 $ "failed") $) NIL (|has| |#2| (-976)))) (-3375 (($) NIL (|has| |#2| (-346)))) (-2870 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#2| $ (-525)) NIL)) (-3026 (((-108) $) NIL (|has| |#2| (-787)))) (-2026 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-2133 (((-108) $) NIL (|has| |#2| (-976)))) (-2882 (((-108) $) NIL (|has| |#2| (-787)))) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) NIL (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3168 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2857 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#2| |#2|) $) NIL)) (-1780 (((-855) $) NIL (|has| |#2| (-346)))) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#2| (-1019)))) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-4185 (($ (-855)) NIL (|has| |#2| (-346)))) (-2663 (((-1037) $) NIL (|has| |#2| (-1019)))) (-3135 ((|#2| $) NIL (|has| (-525) (-789)))) (-1911 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-3171 (((-592 |#2|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL)) (-1595 ((|#2| $ $) NIL (|has| |#2| (-976)))) (-4007 (($ (-1172 |#2|)) NIL)) (-3191 (((-128)) NIL (|has| |#2| (-341)))) (-3013 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-976))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-976)))) (-2686 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-2135 (($ $) NIL)) (-1908 (((-1172 |#2|) $) NIL) (($ (-525)) NIL (-3309 (-12 (|has| |#2| (-967 (-525))) (|has| |#2| (-1019))) (|has| |#2| (-976)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-967 (-385 (-525)))) (|has| |#2| (-1019)))) (($ |#2|) NIL (|has| |#2| (-1019))) (((-797) $) NIL (|has| |#2| (-566 (-797))))) (-2093 (((-713)) NIL (|has| |#2| (-976)))) (-2667 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2092 (($ $) NIL (|has| |#2| (-787)))) (-3465 (($ $ (-713)) NIL (|has| |#2| (-976))) (($ $ (-855)) NIL (|has| |#2| (-976)))) (-3875 (($) NIL (|has| |#2| (-126)) CONST)) (-3882 (($) NIL (|has| |#2| (-976)) CONST)) (-1424 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#2| (-834 (-1090))) (|has| |#2| (-976)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-976))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-976)))) (-4024 (((-108) $ $) NIL (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3995 (((-108) $ $) NIL (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3961 (((-108) $ $) NIL (|has| |#2| (-1019)))) (-4010 (((-108) $ $) NIL (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3983 (((-108) $ $) 11 (-3309 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4082 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4070 (($ $ $) NIL (|has| |#2| (-976))) (($ $) NIL (|has| |#2| (-976)))) (-4059 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-713)) NIL (|has| |#2| (-976))) (($ $ (-855)) NIL (|has| |#2| (-976)))) (* (($ $ $) NIL (|has| |#2| (-976))) (($ (-525) $) NIL (|has| |#2| (-976))) (($ $ |#2|) NIL (|has| |#2| (-669))) (($ |#2| $) NIL (|has| |#2| (-669))) (($ (-713) $) NIL (|has| |#2| (-126))) (($ (-855) $) NIL (|has| |#2| (-25)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-757 |#1| |#2| |#3|) (-218 |#1| |#2|) (-713) (-735) (-1 (-108) (-1172 |#2|) (-1172 |#2|))) (T -757))
+((-4151 (*1 *2 *3 *4) (-12 (-4 *1 (-742)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)))))) (-3432 (*1 *2 *3) (-12 (-4 *1 (-742)) (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-966)))))
+(-13 (-1020) (-10 -7 (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -3432 ((-966) (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-2379 (((-2 (|:| |particular| |#2|) (|:| -1449 (-592 |#2|))) |#3| |#2| (-1091)) 19)))
+(((-743 |#1| |#2| |#3|) (-10 -7 (-15 -2379 ((-2 (|:| |particular| |#2|) (|:| -1449 (-592 |#2|))) |#3| |#2| (-1091)))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1113) (-893)) (-602 |#2|)) (T -743))
+((-2379 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1091)) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-4 *4 (-13 (-29 *6) (-1113) (-893))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1449 (-592 *4)))) (-5 *1 (-743 *6 *4 *3)) (-4 *3 (-602 *4)))))
+(-10 -7 (-15 -2379 ((-2 (|:| |particular| |#2|) (|:| -1449 (-592 |#2|))) |#3| |#2| (-1091))))
+((-3193 (((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-592 |#2|)) 28) (((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -1449 (-592 |#2|))) |#2| "failed") |#2| (-110) (-1091)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -1449 (-592 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1091)) 18) (((-3 (-2 (|:| |particular| (-1173 |#2|)) (|:| -1449 (-592 (-1173 |#2|)))) "failed") (-592 |#2|) (-592 (-110)) (-1091)) 24) (((-3 (-2 (|:| |particular| (-1173 |#2|)) (|:| -1449 (-592 (-1173 |#2|)))) "failed") (-592 (-273 |#2|)) (-592 (-110)) (-1091)) 26) (((-3 (-592 (-1173 |#2|)) "failed") (-632 |#2|) (-1091)) 37) (((-3 (-2 (|:| |particular| (-1173 |#2|)) (|:| -1449 (-592 (-1173 |#2|)))) "failed") (-632 |#2|) (-1173 |#2|) (-1091)) 35)))
+(((-744 |#1| |#2|) (-10 -7 (-15 -3193 ((-3 (-2 (|:| |particular| (-1173 |#2|)) (|:| -1449 (-592 (-1173 |#2|)))) "failed") (-632 |#2|) (-1173 |#2|) (-1091))) (-15 -3193 ((-3 (-592 (-1173 |#2|)) "failed") (-632 |#2|) (-1091))) (-15 -3193 ((-3 (-2 (|:| |particular| (-1173 |#2|)) (|:| -1449 (-592 (-1173 |#2|)))) "failed") (-592 (-273 |#2|)) (-592 (-110)) (-1091))) (-15 -3193 ((-3 (-2 (|:| |particular| (-1173 |#2|)) (|:| -1449 (-592 (-1173 |#2|)))) "failed") (-592 |#2|) (-592 (-110)) (-1091))) (-15 -3193 ((-3 (-2 (|:| |particular| |#2|) (|:| -1449 (-592 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1091))) (-15 -3193 ((-3 (-2 (|:| |particular| |#2|) (|:| -1449 (-592 |#2|))) |#2| "failed") |#2| (-110) (-1091))) (-15 -3193 ((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -3193 ((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-592 |#2|)))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1113) (-893))) (T -744))
+((-3193 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-110)) (-5 *4 (-273 *2)) (-5 *5 (-592 *2)) (-4 *2 (-13 (-29 *6) (-1113) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *1 (-744 *6 *2)))) (-3193 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-273 *2)) (-5 *4 (-110)) (-5 *5 (-592 *2)) (-4 *2 (-13 (-29 *6) (-1113) (-893))) (-5 *1 (-744 *6 *2)) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))))) (-3193 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-5 *5 (-1091)) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1449 (-592 *3))) *3 "failed")) (-5 *1 (-744 *6 *3)) (-4 *3 (-13 (-29 *6) (-1113) (-893))))) (-3193 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1113) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1449 (-592 *7))) *7 "failed")) (-5 *1 (-744 *6 *7)))) (-3193 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110))) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1113) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1173 *7)) (|:| -1449 (-592 (-1173 *7))))) (-5 *1 (-744 *6 *7)))) (-3193 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110))) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1113) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1173 *7)) (|:| -1449 (-592 (-1173 *7))))) (-5 *1 (-744 *6 *7)))) (-3193 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-632 *6)) (-5 *4 (-1091)) (-4 *6 (-13 (-29 *5) (-1113) (-893))) (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-1173 *6))) (-5 *1 (-744 *5 *6)))) (-3193 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-632 *7)) (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1113) (-893))) (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-2 (|:| |particular| (-1173 *7)) (|:| -1449 (-592 (-1173 *7))))) (-5 *1 (-744 *6 *7)) (-5 *4 (-1173 *7)))))
+(-10 -7 (-15 -3193 ((-3 (-2 (|:| |particular| (-1173 |#2|)) (|:| -1449 (-592 (-1173 |#2|)))) "failed") (-632 |#2|) (-1173 |#2|) (-1091))) (-15 -3193 ((-3 (-592 (-1173 |#2|)) "failed") (-632 |#2|) (-1091))) (-15 -3193 ((-3 (-2 (|:| |particular| (-1173 |#2|)) (|:| -1449 (-592 (-1173 |#2|)))) "failed") (-592 (-273 |#2|)) (-592 (-110)) (-1091))) (-15 -3193 ((-3 (-2 (|:| |particular| (-1173 |#2|)) (|:| -1449 (-592 (-1173 |#2|)))) "failed") (-592 |#2|) (-592 (-110)) (-1091))) (-15 -3193 ((-3 (-2 (|:| |particular| |#2|) (|:| -1449 (-592 |#2|))) |#2| "failed") (-273 |#2|) (-110) (-1091))) (-15 -3193 ((-3 (-2 (|:| |particular| |#2|) (|:| -1449 (-592 |#2|))) |#2| "failed") |#2| (-110) (-1091))) (-15 -3193 ((-3 |#2| "failed") (-273 |#2|) (-110) (-273 |#2|) (-592 |#2|))) (-15 -3193 ((-3 |#2| "failed") |#2| (-110) (-273 |#2|) (-592 |#2|))))
+((-3691 (($) 9)) (-4207 (((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 31)) (-4076 (((-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $) 28)) (-3985 (($ (-2 (|:| -3423 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))) 25)) (-2051 (($ (-592 (-2 (|:| -3423 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) 23)) (-1374 (((-1178)) 12)))
+(((-745) (-10 -8 (-15 -3691 ($)) (-15 -1374 ((-1178))) (-15 -4076 ((-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -2051 ($ (-592 (-2 (|:| -3423 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))))) (-15 -3985 ($ (-2 (|:| -3423 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-15 -4207 ((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))) (T -745))
+((-4207 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *2 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))) (-5 *1 (-745)))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3423 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))) (-5 *1 (-745)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3423 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-5 *1 (-745)))) (-4076 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-5 *1 (-745)))) (-1374 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-745)))) (-3691 (*1 *1) (-5 *1 (-745))))
+(-10 -8 (-15 -3691 ($)) (-15 -1374 ((-1178))) (-15 -4076 ((-592 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) $)) (-15 -2051 ($ (-592 (-2 (|:| -3423 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357)))))))) (-15 -3985 ($ (-2 (|:| -3423 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (|:| -2544 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))))))) (-15 -4207 ((-3 (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357)) (|:| |expense| (-357)) (|:| |accuracy| (-357)) (|:| |intermediateResults| (-357))) "failed") (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
+((-3060 ((|#2| |#2| (-1091)) 16)) (-3907 ((|#2| |#2| (-1091)) 51)) (-1748 (((-1 |#2| |#2|) (-1091)) 11)))
+(((-746 |#1| |#2|) (-10 -7 (-15 -3060 (|#2| |#2| (-1091))) (-15 -3907 (|#2| |#2| (-1091))) (-15 -1748 ((-1 |#2| |#2|) (-1091)))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)) (-13 (-29 |#1|) (-1113) (-893))) (T -746))
+((-1748 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-1 *5 *5)) (-5 *1 (-746 *4 *5)) (-4 *5 (-13 (-29 *4) (-1113) (-893))))) (-3907 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1113) (-893))))) (-3060 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1113) (-893))))))
+(-10 -7 (-15 -3060 (|#2| |#2| (-1091))) (-15 -3907 (|#2| |#2| (-1091))) (-15 -1748 ((-1 |#2| |#2|) (-1091))))
+((-3193 (((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357) (-357)) 116) (((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357)) 117) (((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357)) (-592 (-357)) (-357)) 119) (((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-357)) 120) (((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357)) (-357)) 121) (((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357))) 122) (((-966) (-750) (-989)) 108) (((-966) (-750)) 109)) (-4151 (((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-750) (-989)) 75) (((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-750)) 77)))
+(((-747) (-10 -7 (-15 -3193 ((-966) (-750))) (-15 -3193 ((-966) (-750) (-989))) (-15 -3193 ((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357)))) (-15 -3193 ((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357)) (-357))) (-15 -3193 ((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-357))) (-15 -3193 ((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357)) (-592 (-357)) (-357))) (-15 -3193 ((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357))) (-15 -3193 ((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357) (-357))) (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-750))) (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-750) (-989))))) (T -747))
+((-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-750)) (-5 *4 (-989)) (-5 *2 (-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))))) (-5 *1 (-747)))) (-4151 (*1 *2 *3) (-12 (-5 *3 (-750)) (-5 *2 (-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))))) (-5 *1 (-747)))) (-3193 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1173 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *2 (-966)) (-5 *1 (-747)))) (-3193 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1173 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *2 (-966)) (-5 *1 (-747)))) (-3193 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1173 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 (-357))) (-5 *2 (-966)) (-5 *1 (-747)))) (-3193 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1173 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *2 (-966)) (-5 *1 (-747)))) (-3193 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1173 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 (-357))) (-5 *2 (-966)) (-5 *1 (-747)))) (-3193 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1173 (-294 (-357)))) (-5 *4 (-357)) (-5 *5 (-592 (-357))) (-5 *2 (-966)) (-5 *1 (-747)))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-750)) (-5 *4 (-989)) (-5 *2 (-966)) (-5 *1 (-747)))) (-3193 (*1 *2 *3) (-12 (-5 *3 (-750)) (-5 *2 (-966)) (-5 *1 (-747)))))
+(-10 -7 (-15 -3193 ((-966) (-750))) (-15 -3193 ((-966) (-750) (-989))) (-15 -3193 ((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357)))) (-15 -3193 ((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357)) (-357))) (-15 -3193 ((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-357))) (-15 -3193 ((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357)) (-592 (-357)) (-357))) (-15 -3193 ((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357))) (-15 -3193 ((-966) (-1173 (-294 (-357))) (-357) (-357) (-592 (-357)) (-294 (-357)) (-592 (-357)) (-357) (-357))) (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-750))) (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-750) (-989))))
+((-2214 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1449 (-592 |#4|))) (-599 |#4|) |#4|) 35)))
+(((-748 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2214 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1449 (-592 |#4|))) (-599 |#4|) |#4|))) (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))) (-1149 |#1|) (-1149 (-385 |#2|)) (-320 |#1| |#2| |#3|)) (T -748))
+((-2214 (*1 *2 *3 *4) (-12 (-5 *3 (-599 *4)) (-4 *4 (-320 *5 *6 *7)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *6 (-1149 *5)) (-4 *7 (-1149 (-385 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1449 (-592 *4)))) (-5 *1 (-748 *5 *6 *7 *4)))))
+(-10 -7 (-15 -2214 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1449 (-592 |#4|))) (-599 |#4|) |#4|)))
+((-3722 (((-2 (|:| -4216 |#3|) (|:| |rh| (-592 (-385 |#2|)))) |#4| (-592 (-385 |#2|))) 52)) (-1543 (((-592 (-2 (|:| -3144 |#2|) (|:| -1799 |#2|))) |#4| |#2|) 60) (((-592 (-2 (|:| -3144 |#2|) (|:| -1799 |#2|))) |#4|) 59) (((-592 (-2 (|:| -3144 |#2|) (|:| -1799 |#2|))) |#3| |#2|) 20) (((-592 (-2 (|:| -3144 |#2|) (|:| -1799 |#2|))) |#3|) 21)) (-1403 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3784 ((|#2| |#3| (-592 (-385 |#2|))) 93) (((-3 |#2| "failed") |#3| (-385 |#2|)) 90)))
+(((-749 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3784 ((-3 |#2| "failed") |#3| (-385 |#2|))) (-15 -3784 (|#2| |#3| (-592 (-385 |#2|)))) (-15 -1543 ((-592 (-2 (|:| -3144 |#2|) (|:| -1799 |#2|))) |#3|)) (-15 -1543 ((-592 (-2 (|:| -3144 |#2|) (|:| -1799 |#2|))) |#3| |#2|)) (-15 -1403 (|#2| |#3| |#1|)) (-15 -1543 ((-592 (-2 (|:| -3144 |#2|) (|:| -1799 |#2|))) |#4|)) (-15 -1543 ((-592 (-2 (|:| -3144 |#2|) (|:| -1799 |#2|))) |#4| |#2|)) (-15 -1403 (|#2| |#4| |#1|)) (-15 -3722 ((-2 (|:| -4216 |#3|) (|:| |rh| (-592 (-385 |#2|)))) |#4| (-592 (-385 |#2|))))) (-13 (-341) (-138) (-968 (-385 (-525)))) (-1149 |#1|) (-602 |#2|) (-602 (-385 |#2|))) (T -749))
+((-3722 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *6 (-1149 *5)) (-5 *2 (-2 (|:| -4216 *7) (|:| |rh| (-592 (-385 *6))))) (-5 *1 (-749 *5 *6 *7 *3)) (-5 *4 (-592 (-385 *6))) (-4 *7 (-602 *6)) (-4 *3 (-602 (-385 *6))))) (-1403 (*1 *2 *3 *4) (-12 (-4 *2 (-1149 *4)) (-5 *1 (-749 *4 *2 *5 *3)) (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-602 *2)) (-4 *3 (-602 (-385 *2))))) (-1543 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *4 (-1149 *5)) (-5 *2 (-592 (-2 (|:| -3144 *4) (|:| -1799 *4)))) (-5 *1 (-749 *5 *4 *6 *3)) (-4 *6 (-602 *4)) (-4 *3 (-602 (-385 *4))))) (-1543 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-1149 *4)) (-5 *2 (-592 (-2 (|:| -3144 *5) (|:| -1799 *5)))) (-5 *1 (-749 *4 *5 *6 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 (-385 *5))))) (-1403 (*1 *2 *3 *4) (-12 (-4 *2 (-1149 *4)) (-5 *1 (-749 *4 *2 *3 *5)) (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *5 (-602 (-385 *2))))) (-1543 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *4 (-1149 *5)) (-5 *2 (-592 (-2 (|:| -3144 *4) (|:| -1799 *4)))) (-5 *1 (-749 *5 *4 *3 *6)) (-4 *3 (-602 *4)) (-4 *6 (-602 (-385 *4))))) (-1543 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-1149 *4)) (-5 *2 (-592 (-2 (|:| -3144 *5) (|:| -1799 *5)))) (-5 *1 (-749 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-385 *5))))) (-3784 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-385 *2))) (-4 *2 (-1149 *5)) (-5 *1 (-749 *5 *2 *3 *6)) (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *6 (-602 (-385 *2))))) (-3784 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-385 *2)) (-4 *2 (-1149 *5)) (-5 *1 (-749 *5 *2 *3 *6)) (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *6 (-602 (-385 *2))))))
+(-10 -7 (-15 -3784 ((-3 |#2| "failed") |#3| (-385 |#2|))) (-15 -3784 (|#2| |#3| (-592 (-385 |#2|)))) (-15 -1543 ((-592 (-2 (|:| -3144 |#2|) (|:| -1799 |#2|))) |#3|)) (-15 -1543 ((-592 (-2 (|:| -3144 |#2|) (|:| -1799 |#2|))) |#3| |#2|)) (-15 -1403 (|#2| |#3| |#1|)) (-15 -1543 ((-592 (-2 (|:| -3144 |#2|) (|:| -1799 |#2|))) |#4|)) (-15 -1543 ((-592 (-2 (|:| -3144 |#2|) (|:| -1799 |#2|))) |#4| |#2|)) (-15 -1403 (|#2| |#4| |#1|)) (-15 -3722 ((-2 (|:| -4216 |#3|) (|:| |rh| (-592 (-385 |#2|)))) |#4| (-592 (-385 |#2|)))))
+((-1260 (((-108) $ $) NIL)) (-3898 (((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $) 13)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 15) (($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) 12)) (-3994 (((-108) $ $) NIL)))
+(((-750) (-13 (-1020) (-10 -8 (-15 -1270 ($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1270 ((-798) $)) (-15 -3898 ((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $))))) (T -750))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-750)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-750)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205)))) (-5 *1 (-750)))))
+(-13 (-1020) (-10 -8 (-15 -1270 ($ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))))) (-15 -1270 ((-798) $)) (-15 -3898 ((-2 (|:| |xinit| (-205)) (|:| |xend| (-205)) (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205))) (|:| |abserr| (-205)) (|:| |relerr| (-205))) $))))
+((-2572 (((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -4216 |#3|))) |#3| (-1 (-592 |#2|) |#2| (-1087 |#2|)) (-1 (-396 |#2|) |#2|)) 118)) (-3900 (((-592 (-2 (|:| |poly| |#2|) (|:| -4216 |#3|))) |#3| (-1 (-592 |#1|) |#2|)) 46)) (-2768 (((-592 (-2 (|:| |deg| (-713)) (|:| -4216 |#2|))) |#3|) 95)) (-1594 ((|#2| |#3|) 37)) (-3145 (((-592 (-2 (|:| -1479 |#1|) (|:| -4216 |#3|))) |#3| (-1 (-592 |#1|) |#2|)) 82)) (-3453 ((|#3| |#3| (-385 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
+(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1594 (|#2| |#3|)) (-15 -2768 ((-592 (-2 (|:| |deg| (-713)) (|:| -4216 |#2|))) |#3|)) (-15 -3145 ((-592 (-2 (|:| -1479 |#1|) (|:| -4216 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -3900 ((-592 (-2 (|:| |poly| |#2|) (|:| -4216 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -2572 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -4216 |#3|))) |#3| (-1 (-592 |#2|) |#2| (-1087 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -3453 (|#3| |#3| |#2|)) (-15 -3453 (|#3| |#3| (-385 |#2|)))) (-13 (-341) (-138) (-968 (-385 (-525)))) (-1149 |#1|) (-602 |#2|) (-602 (-385 |#2|))) (T -751))
+((-3453 (*1 *2 *2 *3) (-12 (-5 *3 (-385 *5)) (-4 *5 (-1149 *4)) (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-5 *1 (-751 *4 *5 *2 *6)) (-4 *2 (-602 *5)) (-4 *6 (-602 (-385 *5))))) (-3453 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-1149 *4)) (-5 *1 (-751 *4 *3 *2 *5)) (-4 *2 (-602 *3)) (-4 *5 (-602 (-385 *3))))) (-2572 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-592 *7) *7 (-1087 *7))) (-5 *5 (-1 (-396 *7) *7)) (-4 *7 (-1149 *6)) (-4 *6 (-13 (-341) (-138) (-968 (-385 (-525))))) (-5 *2 (-592 (-2 (|:| |frac| (-385 *7)) (|:| -4216 *3)))) (-5 *1 (-751 *6 *7 *3 *8)) (-4 *3 (-602 *7)) (-4 *8 (-602 (-385 *7))))) (-3900 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *6 (-1149 *5)) (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -4216 *3)))) (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-385 *6))))) (-3145 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *6 (-1149 *5)) (-5 *2 (-592 (-2 (|:| -1479 *5) (|:| -4216 *3)))) (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6)) (-4 *7 (-602 (-385 *6))))) (-2768 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-1149 *4)) (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -4216 *5)))) (-5 *1 (-751 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-602 (-385 *5))))) (-1594 (*1 *2 *3) (-12 (-4 *2 (-1149 *4)) (-5 *1 (-751 *4 *2 *3 *5)) (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2)) (-4 *5 (-602 (-385 *2))))))
+(-10 -7 (-15 -1594 (|#2| |#3|)) (-15 -2768 ((-592 (-2 (|:| |deg| (-713)) (|:| -4216 |#2|))) |#3|)) (-15 -3145 ((-592 (-2 (|:| -1479 |#1|) (|:| -4216 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -3900 ((-592 (-2 (|:| |poly| |#2|) (|:| -4216 |#3|))) |#3| (-1 (-592 |#1|) |#2|))) (-15 -2572 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -4216 |#3|))) |#3| (-1 (-592 |#2|) |#2| (-1087 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -3453 (|#3| |#3| |#2|)) (-15 -3453 (|#3| |#3| (-385 |#2|))))
+((-1482 (((-2 (|:| -1449 (-592 (-385 |#2|))) (|:| -1484 (-632 |#1|))) (-600 |#2| (-385 |#2|)) (-592 (-385 |#2|))) 121) (((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -1449 (-592 (-385 |#2|)))) (-600 |#2| (-385 |#2|)) (-385 |#2|)) 120) (((-2 (|:| -1449 (-592 (-385 |#2|))) (|:| -1484 (-632 |#1|))) (-599 (-385 |#2|)) (-592 (-385 |#2|))) 115) (((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -1449 (-592 (-385 |#2|)))) (-599 (-385 |#2|)) (-385 |#2|)) 113)) (-3500 ((|#2| (-600 |#2| (-385 |#2|))) 80) ((|#2| (-599 (-385 |#2|))) 83)))
+(((-752 |#1| |#2|) (-10 -7 (-15 -1482 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -1449 (-592 (-385 |#2|)))) (-599 (-385 |#2|)) (-385 |#2|))) (-15 -1482 ((-2 (|:| -1449 (-592 (-385 |#2|))) (|:| -1484 (-632 |#1|))) (-599 (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -1482 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -1449 (-592 (-385 |#2|)))) (-600 |#2| (-385 |#2|)) (-385 |#2|))) (-15 -1482 ((-2 (|:| -1449 (-592 (-385 |#2|))) (|:| -1484 (-632 |#1|))) (-600 |#2| (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -3500 (|#2| (-599 (-385 |#2|)))) (-15 -3500 (|#2| (-600 |#2| (-385 |#2|))))) (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))) (-1149 |#1|)) (T -752))
+((-3500 (*1 *2 *3) (-12 (-5 *3 (-600 *2 (-385 *2))) (-4 *2 (-1149 *4)) (-5 *1 (-752 *4 *2)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))))) (-3500 (*1 *2 *3) (-12 (-5 *3 (-599 (-385 *2))) (-4 *2 (-1149 *4)) (-5 *1 (-752 *4 *2)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-4 *6 (-1149 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-2 (|:| -1449 (-592 (-385 *6))) (|:| -1484 (-632 *5)))) (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6))))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1149 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1449 (-592 *4)))) (-5 *1 (-752 *5 *6)))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-4 *6 (-1149 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-2 (|:| -1449 (-592 (-385 *6))) (|:| -1484 (-632 *5)))) (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6))))) (-1482 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1149 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1449 (-592 *4)))) (-5 *1 (-752 *5 *6)))))
+(-10 -7 (-15 -1482 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -1449 (-592 (-385 |#2|)))) (-599 (-385 |#2|)) (-385 |#2|))) (-15 -1482 ((-2 (|:| -1449 (-592 (-385 |#2|))) (|:| -1484 (-632 |#1|))) (-599 (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -1482 ((-2 (|:| |particular| (-3 (-385 |#2|) "failed")) (|:| -1449 (-592 (-385 |#2|)))) (-600 |#2| (-385 |#2|)) (-385 |#2|))) (-15 -1482 ((-2 (|:| -1449 (-592 (-385 |#2|))) (|:| -1484 (-632 |#1|))) (-600 |#2| (-385 |#2|)) (-592 (-385 |#2|)))) (-15 -3500 (|#2| (-599 (-385 |#2|)))) (-15 -3500 (|#2| (-600 |#2| (-385 |#2|)))))
+((-2949 (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#1|))) |#5| |#4|) 48)))
+(((-753 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2949 ((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#1|))) |#5| |#4|))) (-341) (-602 |#1|) (-1149 |#1|) (-667 |#1| |#3|) (-602 |#4|)) (T -753))
+((-2949 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *7 (-1149 *5)) (-4 *4 (-667 *5 *7)) (-5 *2 (-2 (|:| -1484 (-632 *6)) (|:| |vec| (-1173 *5)))) (-5 *1 (-753 *5 *6 *7 *4 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 *4)))))
+(-10 -7 (-15 -2949 ((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#1|))) |#5| |#4|)))
+((-2572 (((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -4216 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 47)) (-1393 (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|))) 138 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-396 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-599 (-385 |#2|))) 140 (|has| |#1| (-27))) (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|)) 38) (((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 39) (((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|)) 36) (((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 37)) (-3900 (((-592 (-2 (|:| |poly| |#2|) (|:| -4216 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|)) 83)))
+(((-754 |#1| |#2|) (-10 -7 (-15 -1393 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -1393 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -1393 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -1393 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -2572 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -4216 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -3900 ((-592 (-2 (|:| |poly| |#2|) (|:| -4216 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1393 ((-592 (-385 |#2|)) (-599 (-385 |#2|)))) (-15 -1393 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -1393 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)))) (-15 -1393 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)))) |%noBranch|)) (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))) (-1149 |#1|)) (T -754))
+((-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1149 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) (-1393 (*1 *2 *3) (-12 (-5 *3 (-600 *5 (-385 *5))) (-4 *5 (-1149 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1149 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) (-1393 (*1 *2 *3) (-12 (-5 *3 (-599 (-385 *5))) (-4 *5 (-1149 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5)))) (-3900 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *6 (-1149 *5)) (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -4216 (-600 *6 (-385 *6)))))) (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))) (-2572 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1149 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-5 *2 (-592 (-2 (|:| |frac| (-385 *6)) (|:| -4216 (-600 *6 (-385 *6)))))) (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))) (-1393 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-600 *7 (-385 *7))) (-5 *4 (-1 (-592 *6) *7)) (-5 *5 (-1 (-396 *7) *7)) (-4 *6 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *7 (-1149 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *6 (-1149 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))) (-1393 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-599 (-385 *7))) (-5 *4 (-1 (-592 *6) *7)) (-5 *5 (-1 (-396 *7) *7)) (-4 *6 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *7 (-1149 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7)))) (-1393 (*1 *2 *3 *4) (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-592 *5) *6)) (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))) (-4 *6 (-1149 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))))
+(-10 -7 (-15 -1393 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -1393 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -1393 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (-15 -1393 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|) (-1 (-396 |#2|) |#2|))) (-15 -2572 ((-592 (-2 (|:| |frac| (-385 |#2|)) (|:| -4216 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -3900 ((-592 (-2 (|:| |poly| |#2|) (|:| -4216 (-600 |#2| (-385 |#2|))))) (-600 |#2| (-385 |#2|)) (-1 (-592 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -1393 ((-592 (-385 |#2|)) (-599 (-385 |#2|)))) (-15 -1393 ((-592 (-385 |#2|)) (-599 (-385 |#2|)) (-1 (-396 |#2|) |#2|))) (-15 -1393 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)))) (-15 -1393 ((-592 (-385 |#2|)) (-600 |#2| (-385 |#2|)) (-1 (-396 |#2|) |#2|)))) |%noBranch|))
+((-1322 (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#1|))) (-632 |#2|) (-1173 |#1|)) 85) (((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1173 |#1|)) (|:| -4216 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1173 |#1|)) 15)) (-1520 (((-2 (|:| |particular| (-3 (-1173 |#1|) "failed")) (|:| -1449 (-592 (-1173 |#1|)))) (-632 |#2|) (-1173 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1449 (-592 |#1|))) |#2| |#1|)) 92)) (-3193 (((-3 (-2 (|:| |particular| (-1173 |#1|)) (|:| -1449 (-632 |#1|))) "failed") (-632 |#1|) (-1173 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1449 (-592 |#1|))) "failed") |#2| |#1|)) 43)))
+(((-755 |#1| |#2|) (-10 -7 (-15 -1322 ((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1173 |#1|)) (|:| -4216 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1173 |#1|))) (-15 -1322 ((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#1|))) (-632 |#2|) (-1173 |#1|))) (-15 -3193 ((-3 (-2 (|:| |particular| (-1173 |#1|)) (|:| -1449 (-632 |#1|))) "failed") (-632 |#1|) (-1173 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1449 (-592 |#1|))) "failed") |#2| |#1|))) (-15 -1520 ((-2 (|:| |particular| (-3 (-1173 |#1|) "failed")) (|:| -1449 (-592 (-1173 |#1|)))) (-632 |#2|) (-1173 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1449 (-592 |#1|))) |#2| |#1|)))) (-341) (-602 |#1|)) (T -755))
+((-1520 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1449 (-592 *6))) *7 *6)) (-4 *6 (-341)) (-4 *7 (-602 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1173 *6) "failed")) (|:| -1449 (-592 (-1173 *6))))) (-5 *1 (-755 *6 *7)) (-5 *4 (-1173 *6)))) (-3193 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1449 (-592 *6))) "failed") *7 *6)) (-4 *6 (-341)) (-4 *7 (-602 *6)) (-5 *2 (-2 (|:| |particular| (-1173 *6)) (|:| -1449 (-632 *6)))) (-5 *1 (-755 *6 *7)) (-5 *3 (-632 *6)) (-5 *4 (-1173 *6)))) (-1322 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-4 *6 (-602 *5)) (-5 *2 (-2 (|:| -1484 (-632 *6)) (|:| |vec| (-1173 *5)))) (-5 *1 (-755 *5 *6)) (-5 *3 (-632 *6)) (-5 *4 (-1173 *5)))) (-1322 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| A (-632 *5)) (|:| |eqs| (-592 (-2 (|:| C (-632 *5)) (|:| |g| (-1173 *5)) (|:| -4216 *6) (|:| |rh| *5)))))) (-5 *1 (-755 *5 *6)) (-5 *3 (-632 *5)) (-5 *4 (-1173 *5)) (-4 *6 (-602 *5)))))
+(-10 -7 (-15 -1322 ((-2 (|:| A (-632 |#1|)) (|:| |eqs| (-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1173 |#1|)) (|:| -4216 |#2|) (|:| |rh| |#1|))))) (-632 |#1|) (-1173 |#1|))) (-15 -1322 ((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#1|))) (-632 |#2|) (-1173 |#1|))) (-15 -3193 ((-3 (-2 (|:| |particular| (-1173 |#1|)) (|:| -1449 (-632 |#1|))) "failed") (-632 |#1|) (-1173 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1449 (-592 |#1|))) "failed") |#2| |#1|))) (-15 -1520 ((-2 (|:| |particular| (-3 (-1173 |#1|) "failed")) (|:| -1449 (-592 (-1173 |#1|)))) (-632 |#2|) (-1173 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1449 (-592 |#1|))) |#2| |#1|))))
+((-3168 (((-632 |#1|) (-592 |#1|) (-713)) 13) (((-632 |#1|) (-592 |#1|)) 14)) (-2141 (((-3 (-1173 |#1|) "failed") |#2| |#1| (-592 |#1|)) 34)) (-4156 (((-3 |#1| "failed") |#2| |#1| (-592 |#1|) (-1 |#1| |#1|)) 42)))
+(((-756 |#1| |#2|) (-10 -7 (-15 -3168 ((-632 |#1|) (-592 |#1|))) (-15 -3168 ((-632 |#1|) (-592 |#1|) (-713))) (-15 -2141 ((-3 (-1173 |#1|) "failed") |#2| |#1| (-592 |#1|))) (-15 -4156 ((-3 |#1| "failed") |#2| |#1| (-592 |#1|) (-1 |#1| |#1|)))) (-341) (-602 |#1|)) (T -756))
+((-4156 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-592 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-341)) (-5 *1 (-756 *2 *3)) (-4 *3 (-602 *2)))) (-2141 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-1173 *4)) (-5 *1 (-756 *4 *3)) (-4 *3 (-602 *4)))) (-3168 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-341)) (-5 *2 (-632 *5)) (-5 *1 (-756 *5 *6)) (-4 *6 (-602 *5)))) (-3168 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-632 *4)) (-5 *1 (-756 *4 *5)) (-4 *5 (-602 *4)))))
+(-10 -7 (-15 -3168 ((-632 |#1|) (-592 |#1|))) (-15 -3168 ((-632 |#1|) (-592 |#1|) (-713))) (-15 -2141 ((-3 (-1173 |#1|) "failed") |#2| |#1| (-592 |#1|))) (-15 -4156 ((-3 |#1| "failed") |#2| |#1| (-592 |#1|) (-1 |#1| |#1|))))
+((-1260 (((-108) $ $) NIL (|has| |#2| (-1020)))) (-1989 (((-108) $) NIL (|has| |#2| (-126)))) (-1606 (($ (-856)) NIL (|has| |#2| (-977)))) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-2017 (($ $ $) NIL (|has| |#2| (-735)))) (-1342 (((-3 $ "failed") $ $) NIL (|has| |#2| (-126)))) (-3330 (((-108) $ (-713)) NIL)) (-4190 (((-713)) NIL (|has| |#2| (-346)))) (-1436 (((-525) $) NIL (|has| |#2| (-787)))) (-1429 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4256)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1020)))) (-3898 (((-525) $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) ((|#2| $) NIL (|has| |#2| (-1020)))) (-3416 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#2| (-977)))) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) NIL (|has| |#2| (-977))) (((-632 |#2|) (-632 $)) NIL (|has| |#2| (-977)))) (-3762 (((-3 $ "failed") $) NIL (|has| |#2| (-669)))) (-2899 (($) NIL (|has| |#2| (-346)))) (-2632 ((|#2| $ (-525) |#2|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#2| $ (-525)) NIL)) (-3017 (((-108) $) NIL (|has| |#2| (-787)))) (-3702 (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-1985 (((-108) $) NIL (|has| |#2| (-669)))) (-3912 (((-108) $) NIL (|has| |#2| (-787)))) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) NIL (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-1749 (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-2622 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#2| |#2|) $) NIL)) (-1736 (((-856) $) NIL (|has| |#2| (-346)))) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#2| (-1020)))) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-3640 (($ (-856)) NIL (|has| |#2| (-346)))) (-2012 (((-1038) $) NIL (|has| |#2| (-1020)))) (-3110 ((|#2| $) NIL (|has| (-525) (-789)))) (-2042 (($ $ |#2|) NIL (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1777 (((-592 |#2|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#2| $ (-525) |#2|) NIL) ((|#2| $ (-525)) NIL)) (-1809 ((|#2| $ $) NIL (|has| |#2| (-977)))) (-2256 (($ (-1173 |#2|)) NIL)) (-3831 (((-128)) NIL (|has| |#2| (-341)))) (-2523 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1091)) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-2040 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1451 (($ $) NIL)) (-1270 (((-1173 |#2|) $) NIL) (($ (-525)) NIL (-3279 (-12 (|has| |#2| (-968 (-525))) (|has| |#2| (-1020))) (|has| |#2| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#2| (-968 (-385 (-525)))) (|has| |#2| (-1020)))) (($ |#2|) NIL (|has| |#2| (-1020))) (((-798) $) NIL (|has| |#2| (-566 (-798))))) (-2104 (((-713)) NIL (|has| |#2| (-977)))) (-3633 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-2086 (($ $) NIL (|has| |#2| (-787)))) (-1576 (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (-3355 (($) NIL (|has| |#2| (-126)) CONST)) (-3363 (($) NIL (|has| |#2| (-669)) CONST)) (-2093 (($ $) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#2| (-213)) (|has| |#2| (-977)))) (($ $ (-1091)) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#2| (-835 (-1091))) (|has| |#2| (-977)))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#2| (-977))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-977)))) (-4045 (((-108) $ $) NIL (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4026 (((-108) $ $) NIL (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-3994 (((-108) $ $) NIL (|has| |#2| (-1020)))) (-4037 (((-108) $ $) NIL (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4017 (((-108) $ $) 11 (-3279 (|has| |#2| (-735)) (|has| |#2| (-787))))) (-4100 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4090 (($ $ $) NIL (|has| |#2| (-977))) (($ $) NIL (|has| |#2| (-977)))) (-4080 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-713)) NIL (|has| |#2| (-669))) (($ $ (-856)) NIL (|has| |#2| (-669)))) (* (($ (-525) $) NIL (|has| |#2| (-977))) (($ $ $) NIL (|has| |#2| (-669))) (($ $ |#2|) NIL (|has| |#2| (-669))) (($ |#2| $) NIL (|has| |#2| (-669))) (($ (-713) $) NIL (|has| |#2| (-126))) (($ (-856) $) NIL (|has| |#2| (-25)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-757 |#1| |#2| |#3|) (-218 |#1| |#2|) (-713) (-735) (-1 (-108) (-1173 |#2|) (-1173 |#2|))) (T -757))
NIL
(-218 |#1| |#2|)
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3140 (((-592 (-713)) $) NIL) (((-592 (-713)) $ (-1090)) NIL)) (-1628 (((-713) $) NIL) (((-713) $ (-1090)) NIL)) (-4104 (((-592 (-760 (-1090))) $) NIL)) (-3927 (((-1086 $) $ (-760 (-1090))) NIL) (((-1086 |#1|) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-1324 (((-713) $) NIL) (((-713) $ (-592 (-760 (-1090)))) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3321 (($ $) NIL (|has| |#1| (-429)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3847 (($ $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-760 (-1090)) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL) (((-3 (-1042 |#1| (-1090)) "failed") $) NIL)) (-2831 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-760 (-1090)) $) NIL) (((-1090) $) NIL) (((-1042 |#1| (-1090)) $) NIL)) (-2506 (($ $ $ (-760 (-1090))) NIL (|has| |#1| (-160)))) (-1247 (($ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3811 (($ $) NIL (|has| |#1| (-429))) (($ $ (-760 (-1090))) NIL (|has| |#1| (-429)))) (-1234 (((-592 $) $) NIL)) (-2250 (((-108) $) NIL (|has| |#1| (-843)))) (-2099 (($ $ |#1| (-497 (-760 (-1090))) $) NIL)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-760 (-1090)) (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-760 (-1090)) (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-1737 (((-713) $ (-1090)) NIL) (((-713) $) NIL)) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) NIL)) (-4092 (($ (-1086 |#1|) (-760 (-1090))) NIL) (($ (-1086 $) (-760 (-1090))) NIL)) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-497 (-760 (-1090)))) NIL) (($ $ (-760 (-1090)) (-713)) NIL) (($ $ (-592 (-760 (-1090))) (-592 (-713))) NIL)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ (-760 (-1090))) NIL)) (-3181 (((-497 (-760 (-1090))) $) NIL) (((-713) $ (-760 (-1090))) NIL) (((-592 (-713)) $ (-592 (-760 (-1090)))) NIL)) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-1331 (($ (-1 (-497 (-760 (-1090))) (-497 (-760 (-1090)))) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-2282 (((-1 $ (-713)) (-1090)) NIL) (((-1 $ (-713)) $) NIL (|has| |#1| (-213)))) (-1666 (((-3 (-760 (-1090)) "failed") $) NIL)) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-2576 (((-760 (-1090)) $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2337 (((-1073) $) NIL)) (-1946 (((-108) $) NIL)) (-3245 (((-3 (-592 $) "failed") $) NIL)) (-3193 (((-3 (-592 $) "failed") $) NIL)) (-3283 (((-3 (-2 (|:| |var| (-760 (-1090))) (|:| -1600 (-713))) "failed") $) NIL)) (-3448 (($ $) NIL)) (-2663 (((-1037) $) NIL)) (-4221 (((-108) $) NIL)) (-4232 ((|#1| $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-429)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3959 (((-396 $) $) NIL (|has| |#1| (-843)))) (-2338 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3092 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-760 (-1090)) |#1|) NIL) (($ $ (-592 (-760 (-1090))) (-592 |#1|)) NIL) (($ $ (-760 (-1090)) $) NIL) (($ $ (-592 (-760 (-1090))) (-592 $)) NIL) (($ $ (-1090) $) NIL (|has| |#1| (-213))) (($ $ (-592 (-1090)) (-592 $)) NIL (|has| |#1| (-213))) (($ $ (-1090) |#1|) NIL (|has| |#1| (-213))) (($ $ (-592 (-1090)) (-592 |#1|)) NIL (|has| |#1| (-213)))) (-1400 (($ $ (-760 (-1090))) NIL (|has| |#1| (-160)))) (-3013 (($ $ (-760 (-1090))) NIL) (($ $ (-592 (-760 (-1090)))) NIL) (($ $ (-760 (-1090)) (-713)) NIL) (($ $ (-592 (-760 (-1090))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3780 (((-592 (-1090)) $) NIL)) (-2513 (((-497 (-760 (-1090))) $) NIL) (((-713) $ (-760 (-1090))) NIL) (((-592 (-713)) $ (-592 (-760 (-1090)))) NIL) (((-713) $ (-1090)) NIL)) (-1427 (((-826 (-357)) $) NIL (-12 (|has| (-760 (-1090)) (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-760 (-1090)) (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-760 (-1090)) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2751 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-760 (-1090))) NIL (|has| |#1| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-760 (-1090))) NIL) (($ (-1090)) NIL) (($ (-1042 |#1| (-1090))) NIL) (($ (-385 (-525))) NIL (-3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3600 (((-592 |#1|) $) NIL)) (-1657 ((|#1| $ (-497 (-760 (-1090)))) NIL) (($ $ (-760 (-1090)) (-713)) NIL) (($ $ (-592 (-760 (-1090))) (-592 (-713))) NIL)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2093 (((-713)) NIL)) (-4116 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $ (-760 (-1090))) NIL) (($ $ (-592 (-760 (-1090)))) NIL) (($ $ (-760 (-1090)) (-713)) NIL) (($ $ (-592 (-760 (-1090))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-758 |#1|) (-13 (-232 |#1| (-1090) (-760 (-1090)) (-497 (-760 (-1090)))) (-967 (-1042 |#1| (-1090)))) (-976)) (T -758))
-NIL
-(-13 (-232 |#1| (-1090) (-760 (-1090)) (-497 (-760 (-1090)))) (-967 (-1042 |#1| (-1090))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#2| (-341)))) (-3635 (($ $) NIL (|has| |#2| (-341)))) (-2950 (((-108) $) NIL (|has| |#2| (-341)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL (|has| |#2| (-341)))) (-1510 (((-396 $) $) NIL (|has| |#2| (-341)))) (-2305 (((-108) $ $) NIL (|has| |#2| (-341)))) (-1505 (($) NIL T CONST)) (-2373 (($ $ $) NIL (|has| |#2| (-341)))) (-2866 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#2| (-341)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| |#2| (-341)))) (-2250 (((-108) $) NIL (|has| |#2| (-341)))) (-2133 (((-108) $) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-3216 (($ (-592 $)) NIL (|has| |#2| (-341))) (($ $ $) NIL (|has| |#2| (-341)))) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 20 (|has| |#2| (-341)))) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-341)))) (-3244 (($ (-592 $)) NIL (|has| |#2| (-341))) (($ $ $) NIL (|has| |#2| (-341)))) (-3959 (((-396 $) $) NIL (|has| |#2| (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#2| (-341)))) (-2338 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-2183 (((-713) $) NIL (|has| |#2| (-341)))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#2| (-341)))) (-3013 (($ $ (-713)) NIL) (($ $) 13)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-385 (-525))) NIL (|has| |#2| (-341))) (($ $) NIL (|has| |#2| (-341)))) (-2093 (((-713)) NIL)) (-2262 (((-108) $ $) NIL (|has| |#2| (-341)))) (-3465 (($ $ (-713)) NIL) (($ $ (-855)) NIL) (($ $ (-525)) NIL (|has| |#2| (-341)))) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $ (-713)) NIL) (($ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ $) 15 (|has| |#2| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-855)) NIL) (($ $ (-525)) 18 (|has| |#2| (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-385 (-525)) $) NIL (|has| |#2| (-341))) (($ $ (-385 (-525))) NIL (|has| |#2| (-341)))))
-(((-759 |#1| |#2| |#3|) (-13 (-107 $ $) (-213) (-10 -8 (IF (|has| |#2| (-341)) (-6 (-341)) |%noBranch|) (-15 -1908 ($ |#2|)) (-15 -1908 (|#2| $)))) (-1019) (-834 |#1|) |#1|) (T -759))
-((-1908 (*1 *1 *2) (-12 (-4 *3 (-1019)) (-14 *4 *3) (-5 *1 (-759 *3 *2 *4)) (-4 *2 (-834 *3)))) (-1908 (*1 *2 *1) (-12 (-4 *2 (-834 *3)) (-5 *1 (-759 *3 *2 *4)) (-4 *3 (-1019)) (-14 *4 *3))))
-(-13 (-107 $ $) (-213) (-10 -8 (IF (|has| |#2| (-341)) (-6 (-341)) |%noBranch|) (-15 -1908 ($ |#2|)) (-15 -1908 (|#2| $))))
-((-1893 (((-108) $ $) NIL)) (-1628 (((-713) $) NIL)) (-1251 ((|#1| $) 10)) (-1264 (((-3 |#1| "failed") $) NIL)) (-2831 ((|#1| $) NIL)) (-1737 (((-713) $) 11)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-2282 (($ |#1| (-713)) 9)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3013 (($ $) NIL) (($ $ (-713)) NIL)) (-1908 (((-797) $) NIL) (($ |#1|) NIL)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1503 (((-592 (-713)) $) NIL) (((-592 (-713)) $ (-1091)) NIL)) (-3448 (((-713) $) NIL) (((-713) $ (-1091)) NIL)) (-2383 (((-592 (-760 (-1091))) $) NIL)) (-2146 (((-1087 $) $ (-760 (-1091))) NIL) (((-1087 |#1|) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-3848 (((-713) $) NIL) (((-713) $ (-592 (-760 (-1091)))) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-3706 (($ $) NIL (|has| |#1| (-429)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2123 (($ $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-760 (-1091)) "failed") $) NIL) (((-3 (-1091) "failed") $) NIL) (((-3 (-1043 |#1| (-1091)) "failed") $) NIL)) (-3898 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-760 (-1091)) $) NIL) (((-1091) $) NIL) (((-1043 |#1| (-1091)) $) NIL)) (-1516 (($ $ $ (-760 (-1091))) NIL (|has| |#1| (-160)))) (-2571 (($ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3026 (($ $) NIL (|has| |#1| (-429))) (($ $ (-760 (-1091))) NIL (|has| |#1| (-429)))) (-2558 (((-592 $) $) NIL)) (-3836 (((-108) $) NIL (|has| |#1| (-844)))) (-2192 (($ $ |#1| (-497 (-760 (-1091))) $) NIL)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-760 (-1091)) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-760 (-1091)) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-3973 (((-713) $ (-1091)) NIL) (((-713) $) NIL)) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) NIL)) (-2368 (($ (-1087 |#1|) (-760 (-1091))) NIL) (($ (-1087 $) (-760 (-1091))) NIL)) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-497 (-760 (-1091)))) NIL) (($ $ (-760 (-1091)) (-713)) NIL) (($ $ (-592 (-760 (-1091))) (-592 (-713))) NIL)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ (-760 (-1091))) NIL)) (-3724 (((-497 (-760 (-1091))) $) NIL) (((-713) $ (-760 (-1091))) NIL) (((-592 (-713)) $ (-592 (-760 (-1091)))) NIL)) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-3922 (($ (-1 (-497 (-760 (-1091))) (-497 (-760 (-1091)))) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-1 $ (-713)) (-1091)) NIL) (((-1 $ (-713)) $) NIL (|has| |#1| (-213)))) (-3567 (((-3 (-760 (-1091)) "failed") $) NIL)) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-1241 (((-760 (-1091)) $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3451 (((-1074) $) NIL)) (-3896 (((-108) $) NIL)) (-4228 (((-3 (-592 $) "failed") $) NIL)) (-3852 (((-3 (-592 $) "failed") $) NIL)) (-1553 (((-3 (-2 (|:| |var| (-760 (-1091))) (|:| -1864 (-713))) "failed") $) NIL)) (-3600 (($ $) NIL)) (-2012 (((-1038) $) NIL)) (-2513 (((-108) $) NIL)) (-2525 ((|#1| $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-429)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2195 (((-396 $) $) NIL (|has| |#1| (-844)))) (-1680 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2602 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-760 (-1091)) |#1|) NIL) (($ $ (-592 (-760 (-1091))) (-592 |#1|)) NIL) (($ $ (-760 (-1091)) $) NIL) (($ $ (-592 (-760 (-1091))) (-592 $)) NIL) (($ $ (-1091) $) NIL (|has| |#1| (-213))) (($ $ (-592 (-1091)) (-592 $)) NIL (|has| |#1| (-213))) (($ $ (-1091) |#1|) NIL (|has| |#1| (-213))) (($ $ (-592 (-1091)) (-592 |#1|)) NIL (|has| |#1| (-213)))) (-2094 (($ $ (-760 (-1091))) NIL (|has| |#1| (-160)))) (-2523 (($ $ (-760 (-1091))) NIL) (($ $ (-592 (-760 (-1091)))) NIL) (($ $ (-760 (-1091)) (-713)) NIL) (($ $ (-592 (-760 (-1091))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2786 (((-592 (-1091)) $) NIL)) (-1587 (((-497 (-760 (-1091))) $) NIL) (((-713) $ (-760 (-1091))) NIL) (((-592 (-713)) $ (-592 (-760 (-1091)))) NIL) (((-713) $ (-1091)) NIL)) (-2749 (((-827 (-357)) $) NIL (-12 (|has| (-760 (-1091)) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-760 (-1091)) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-760 (-1091)) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2026 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-760 (-1091))) NIL (|has| |#1| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-760 (-1091))) NIL) (($ (-1091)) NIL) (($ (-1043 |#1| (-1091))) NIL) (($ (-385 (-525))) NIL (-3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-1562 (((-592 |#1|) $) NIL)) (-3468 ((|#1| $ (-497 (-760 (-1091)))) NIL) (($ $ (-760 (-1091)) (-713)) NIL) (($ $ (-592 (-760 (-1091))) (-592 (-713))) NIL)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2104 (((-713)) NIL)) (-3658 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $ (-760 (-1091))) NIL) (($ $ (-592 (-760 (-1091)))) NIL) (($ $ (-760 (-1091)) (-713)) NIL) (($ $ (-592 (-760 (-1091))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-758 |#1|) (-13 (-232 |#1| (-1091) (-760 (-1091)) (-497 (-760 (-1091)))) (-968 (-1043 |#1| (-1091)))) (-977)) (T -758))
+NIL
+(-13 (-232 |#1| (-1091) (-760 (-1091)) (-497 (-760 (-1091)))) (-968 (-1043 |#1| (-1091))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#2| (-341)))) (-3711 (($ $) NIL (|has| |#2| (-341)))) (-3380 (((-108) $) NIL (|has| |#2| (-341)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL (|has| |#2| (-341)))) (-2100 (((-396 $) $) NIL (|has| |#2| (-341)))) (-3197 (((-108) $ $) NIL (|has| |#2| (-341)))) (-2305 (($) NIL T CONST)) (-1726 (($ $ $) NIL (|has| |#2| (-341)))) (-3762 (((-3 $ "failed") $) NIL)) (-1704 (($ $ $) NIL (|has| |#2| (-341)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| |#2| (-341)))) (-3836 (((-108) $) NIL (|has| |#2| (-341)))) (-1985 (((-108) $) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-2756 (($ (-592 $)) NIL (|has| |#2| (-341))) (($ $ $) NIL (|has| |#2| (-341)))) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 20 (|has| |#2| (-341)))) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-341)))) (-2794 (($ (-592 $)) NIL (|has| |#2| (-341))) (($ $ $) NIL (|has| |#2| (-341)))) (-2195 (((-396 $) $) NIL (|has| |#2| (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#2| (-341)))) (-1680 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-1290 (((-713) $) NIL (|has| |#2| (-341)))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#2| (-341)))) (-2523 (($ $ (-713)) NIL) (($ $) 13)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-385 (-525))) NIL (|has| |#2| (-341))) (($ $) NIL (|has| |#2| (-341)))) (-2104 (((-713)) NIL)) (-3959 (((-108) $ $) NIL (|has| |#2| (-341)))) (-1576 (($ $ (-713)) NIL) (($ $ (-856)) NIL) (($ $ (-525)) NIL (|has| |#2| (-341)))) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $ (-713)) NIL) (($ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ $) 15 (|has| |#2| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL) (($ $ (-525)) 18 (|has| |#2| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-385 (-525)) $) NIL (|has| |#2| (-341))) (($ $ (-385 (-525))) NIL (|has| |#2| (-341)))))
+(((-759 |#1| |#2| |#3|) (-13 (-107 $ $) (-213) (-10 -8 (IF (|has| |#2| (-341)) (-6 (-341)) |%noBranch|) (-15 -1270 ($ |#2|)) (-15 -1270 (|#2| $)))) (-1020) (-835 |#1|) |#1|) (T -759))
+((-1270 (*1 *1 *2) (-12 (-4 *3 (-1020)) (-14 *4 *3) (-5 *1 (-759 *3 *2 *4)) (-4 *2 (-835 *3)))) (-1270 (*1 *2 *1) (-12 (-4 *2 (-835 *3)) (-5 *1 (-759 *3 *2 *4)) (-4 *3 (-1020)) (-14 *4 *3))))
+(-13 (-107 $ $) (-213) (-10 -8 (IF (|has| |#2| (-341)) (-6 (-341)) |%noBranch|) (-15 -1270 ($ |#2|)) (-15 -1270 (|#2| $))))
+((-1260 (((-108) $ $) NIL)) (-3448 (((-713) $) NIL)) (-2577 ((|#1| $) 10)) (-2591 (((-3 |#1| "failed") $) NIL)) (-3898 ((|#1| $) NIL)) (-3973 (((-713) $) 11)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-4123 (($ |#1| (-713)) 9)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2523 (($ $) NIL) (($ $ (-713)) NIL)) (-1270 (((-798) $) NIL) (($ |#1|) NIL)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) NIL)))
(((-760 |#1|) (-245 |#1|) (-789)) (T -760))
NIL
(-245 |#1|)
-((-1893 (((-108) $ $) NIL)) (-3908 (((-592 |#1|) $) 29)) (-3107 (((-713) $) NIL)) (-1505 (($) NIL T CONST)) (-1225 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-1264 (((-3 |#1| "failed") $) NIL)) (-2831 ((|#1| $) NIL)) (-3145 (($ $) 31)) (-2866 (((-3 $ "failed") $) NIL)) (-1381 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2133 (((-108) $) NIL)) (-2938 ((|#1| $ (-525)) NIL)) (-3084 (((-713) $ (-525)) NIL)) (-2387 (($ $) 36)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-1475 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-4213 (((-108) $ $) 34)) (-1722 (((-713) $) 25)) (-2337 (((-1073) $) NIL)) (-1578 (($ $ $) NIL)) (-3770 (($ $ $) NIL)) (-2663 (((-1037) $) NIL)) (-3135 ((|#1| $) 30)) (-2203 (((-592 (-2 (|:| |gen| |#1|) (|:| -1982 (-713)))) $) NIL)) (-2347 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-1908 (((-797) $) NIL) (($ |#1|) NIL)) (-3465 (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (-3882 (($) 15 T CONST)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 35)) (** (($ $ (-713)) NIL) (($ $ (-855)) NIL) (($ |#1| (-713)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-761 |#1|) (-13 (-785) (-967 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -3135 (|#1| $)) (-15 -3145 ($ $)) (-15 -2387 ($ $)) (-15 -4213 ((-108) $ $)) (-15 -3770 ($ $ $)) (-15 -1578 ($ $ $)) (-15 -1475 ((-3 $ "failed") $ $)) (-15 -1225 ((-3 $ "failed") $ $)) (-15 -1475 ((-3 $ "failed") $ |#1|)) (-15 -1225 ((-3 $ "failed") $ |#1|)) (-15 -2347 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1381 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3107 ((-713) $)) (-15 -3084 ((-713) $ (-525))) (-15 -2938 (|#1| $ (-525))) (-15 -2203 ((-592 (-2 (|:| |gen| |#1|) (|:| -1982 (-713)))) $)) (-15 -1722 ((-713) $)) (-15 -3908 ((-592 |#1|) $)))) (-789)) (T -761))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-3135 (*1 *2 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-3145 (*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-2387 (*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-4213 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-3770 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1578 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1475 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1225 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1475 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1225 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-2347 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-761 *3)) (|:| |rm| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-1381 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-761 *3)) (|:| |mm| (-761 *3)) (|:| |rm| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-3084 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-761 *4)) (-4 *4 (-789)))) (-2938 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1982 (-713))))) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-761 *3)) (-4 *3 (-789)))))
-(-13 (-785) (-967 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -3135 (|#1| $)) (-15 -3145 ($ $)) (-15 -2387 ($ $)) (-15 -4213 ((-108) $ $)) (-15 -3770 ($ $ $)) (-15 -1578 ($ $ $)) (-15 -1475 ((-3 $ "failed") $ $)) (-15 -1225 ((-3 $ "failed") $ $)) (-15 -1475 ((-3 $ "failed") $ |#1|)) (-15 -1225 ((-3 $ "failed") $ |#1|)) (-15 -2347 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1381 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3107 ((-713) $)) (-15 -3084 ((-713) $ (-525))) (-15 -2938 (|#1| $ (-525))) (-15 -2203 ((-592 (-2 (|:| |gen| |#1|) (|:| -1982 (-713)))) $)) (-15 -1722 ((-713) $)) (-15 -3908 ((-592 |#1|) $))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-3263 (((-3 $ "failed") $ $) 19)) (-1690 (((-525) $) 53)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-3026 (((-108) $) 51)) (-2133 (((-108) $) 31)) (-2882 (((-108) $) 52)) (-3525 (($ $ $) 50)) (-3630 (($ $ $) 49)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-2338 (((-3 $ "failed") $ $) 42)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43)) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) 39)) (-2092 (($ $) 54)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-4024 (((-108) $ $) 47)) (-3995 (((-108) $ $) 46)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 48)) (-3983 (((-108) $ $) 45)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+((-1260 (((-108) $ $) NIL)) (-4143 (((-592 |#1|) $) 29)) (-4190 (((-713) $) NIL)) (-2305 (($) NIL T CONST)) (-2747 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-2591 (((-3 |#1| "failed") $) NIL)) (-3898 ((|#1| $) NIL)) (-3121 (($ $) 31)) (-3762 (((-3 $ "failed") $) NIL)) (-2891 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-1985 (((-108) $) NIL)) (-3285 ((|#1| $ (-525)) NIL)) (-2311 (((-713) $ (-525)) NIL)) (-2901 (($ $) 36)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-2377 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-2166 (((-108) $ $) 34)) (-2023 (((-713) $) 25)) (-3451 (((-1074) $) NIL)) (-1209 (($ $ $) NIL)) (-2696 (($ $ $) NIL)) (-2012 (((-1038) $) NIL)) (-3110 ((|#1| $) 30)) (-1494 (((-592 (-2 (|:| |gen| |#1|) (|:| -1250 (-713)))) $) NIL)) (-1692 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-1270 (((-798) $) NIL) (($ |#1|) NIL)) (-1576 (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3363 (($) 15 T CONST)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 35)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL) (($ |#1| (-713)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-761 |#1|) (-13 (-785) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -3110 (|#1| $)) (-15 -3121 ($ $)) (-15 -2901 ($ $)) (-15 -2166 ((-108) $ $)) (-15 -2696 ($ $ $)) (-15 -1209 ($ $ $)) (-15 -2377 ((-3 $ "failed") $ $)) (-15 -2747 ((-3 $ "failed") $ $)) (-15 -2377 ((-3 $ "failed") $ |#1|)) (-15 -2747 ((-3 $ "failed") $ |#1|)) (-15 -1692 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2891 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -4190 ((-713) $)) (-15 -2311 ((-713) $ (-525))) (-15 -3285 (|#1| $ (-525))) (-15 -1494 ((-592 (-2 (|:| |gen| |#1|) (|:| -1250 (-713)))) $)) (-15 -2023 ((-713) $)) (-15 -4143 ((-592 |#1|) $)))) (-789)) (T -761))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-3110 (*1 *2 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-3121 (*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-2901 (*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-2166 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-2696 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1209 (*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-2377 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-2747 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-2377 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-2747 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1692 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-761 *3)) (|:| |rm| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-2891 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-761 *3)) (|:| |mm| (-761 *3)) (|:| |rm| (-761 *3)))) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-4190 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-2311 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-761 *4)) (-4 *4 (-789)))) (-3285 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-761 *2)) (-4 *2 (-789)))) (-1494 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1250 (-713))))) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-761 *3)) (-4 *3 (-789)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-761 *3)) (-4 *3 (-789)))))
+(-13 (-785) (-968 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-713))) (-15 -3110 (|#1| $)) (-15 -3121 ($ $)) (-15 -2901 ($ $)) (-15 -2166 ((-108) $ $)) (-15 -2696 ($ $ $)) (-15 -1209 ($ $ $)) (-15 -2377 ((-3 $ "failed") $ $)) (-15 -2747 ((-3 $ "failed") $ $)) (-15 -2377 ((-3 $ "failed") $ |#1|)) (-15 -2747 ((-3 $ "failed") $ |#1|)) (-15 -1692 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2891 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -4190 ((-713) $)) (-15 -2311 ((-713) $ (-525))) (-15 -3285 (|#1| $ (-525))) (-15 -1494 ((-592 (-2 (|:| |gen| |#1|) (|:| -1250 (-713)))) $)) (-15 -2023 ((-713) $)) (-15 -4143 ((-592 |#1|) $))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-1342 (((-3 $ "failed") $ $) 19)) (-1436 (((-525) $) 53)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-3017 (((-108) $) 51)) (-1985 (((-108) $) 31)) (-3912 (((-108) $) 52)) (-2371 (($ $ $) 50)) (-2535 (($ $ $) 49)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1680 (((-3 $ "failed") $ $) 42)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) 39)) (-2086 (($ $) 54)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-4045 (((-108) $ $) 47)) (-4026 (((-108) $ $) 46)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 48)) (-4017 (((-108) $ $) 45)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
(((-762) (-131)) (T -762))
NIL
(-13 (-517) (-787))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-787) . T) ((-789) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-2623 (($ (-1037)) 7)) (-2799 (((-108) $ (-1073) (-1037)) 15)) (-2869 (((-764) $) 12)) (-2899 (((-764) $) 11)) (-1841 (((-1177) $) 9)) (-2948 (((-108) $ (-1037)) 16)))
-(((-763) (-10 -8 (-15 -2623 ($ (-1037))) (-15 -1841 ((-1177) $)) (-15 -2899 ((-764) $)) (-15 -2869 ((-764) $)) (-15 -2799 ((-108) $ (-1073) (-1037))) (-15 -2948 ((-108) $ (-1037))))) (T -763))
-((-2948 (*1 *2 *1 *3) (-12 (-5 *3 (-1037)) (-5 *2 (-108)) (-5 *1 (-763)))) (-2799 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-1037)) (-5 *2 (-108)) (-5 *1 (-763)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))) (-1841 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-763)))) (-2623 (*1 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-763)))))
-(-10 -8 (-15 -2623 ($ (-1037))) (-15 -1841 ((-1177) $)) (-15 -2899 ((-764) $)) (-15 -2869 ((-764) $)) (-15 -2799 ((-108) $ (-1073) (-1037))) (-15 -2948 ((-108) $ (-1037))))
-((-1408 (((-1177) $ (-765)) 12)) (-2558 (((-1177) $ (-1090)) 32)) (-3200 (((-1177) $ (-1073) (-1073)) 34)) (-1846 (((-1177) $ (-1073)) 33)) (-4102 (((-1177) $) 19)) (-1575 (((-1177) $ (-525)) 28)) (-2393 (((-1177) $ (-205)) 30)) (-1875 (((-1177) $) 18)) (-3253 (((-1177) $) 26)) (-3131 (((-1177) $) 25)) (-3333 (((-1177) $) 23)) (-2261 (((-1177) $) 24)) (-3576 (((-1177) $) 22)) (-1508 (((-1177) $) 21)) (-1764 (((-1177) $) 20)) (-3695 (((-1177) $) 16)) (-1697 (((-1177) $) 17)) (-3345 (((-1177) $) 15)) (-2178 (((-1177) $) 14)) (-3940 (((-1177) $) 13)) (-1707 (($ (-1073) (-765)) 9)) (-4014 (($ (-1073) (-1073) (-765)) 8)) (-3725 (((-1090) $) 51)) (-2859 (((-1090) $) 55)) (-1891 (((-2 (|:| |cd| (-1073)) (|:| -1310 (-1073))) $) 54)) (-2124 (((-1073) $) 52)) (-1342 (((-1177) $) 41)) (-1740 (((-525) $) 49)) (-4067 (((-205) $) 50)) (-1744 (((-1177) $) 40)) (-3967 (((-1177) $) 48)) (-2375 (((-1177) $) 47)) (-1455 (((-1177) $) 45)) (-1807 (((-1177) $) 46)) (-2789 (((-1177) $) 44)) (-1579 (((-1177) $) 43)) (-3317 (((-1177) $) 42)) (-3462 (((-1177) $) 38)) (-3349 (((-1177) $) 39)) (-3793 (((-1177) $) 37)) (-3337 (((-1177) $) 36)) (-1292 (((-1177) $) 35)) (-2757 (((-1177) $) 11)))
-(((-764) (-10 -8 (-15 -4014 ($ (-1073) (-1073) (-765))) (-15 -1707 ($ (-1073) (-765))) (-15 -2757 ((-1177) $)) (-15 -1408 ((-1177) $ (-765))) (-15 -3940 ((-1177) $)) (-15 -2178 ((-1177) $)) (-15 -3345 ((-1177) $)) (-15 -3695 ((-1177) $)) (-15 -1697 ((-1177) $)) (-15 -1875 ((-1177) $)) (-15 -4102 ((-1177) $)) (-15 -1764 ((-1177) $)) (-15 -1508 ((-1177) $)) (-15 -3576 ((-1177) $)) (-15 -3333 ((-1177) $)) (-15 -2261 ((-1177) $)) (-15 -3131 ((-1177) $)) (-15 -3253 ((-1177) $)) (-15 -1575 ((-1177) $ (-525))) (-15 -2393 ((-1177) $ (-205))) (-15 -2558 ((-1177) $ (-1090))) (-15 -1846 ((-1177) $ (-1073))) (-15 -3200 ((-1177) $ (-1073) (-1073))) (-15 -1292 ((-1177) $)) (-15 -3337 ((-1177) $)) (-15 -3793 ((-1177) $)) (-15 -3462 ((-1177) $)) (-15 -3349 ((-1177) $)) (-15 -1744 ((-1177) $)) (-15 -1342 ((-1177) $)) (-15 -3317 ((-1177) $)) (-15 -1579 ((-1177) $)) (-15 -2789 ((-1177) $)) (-15 -1455 ((-1177) $)) (-15 -1807 ((-1177) $)) (-15 -2375 ((-1177) $)) (-15 -3967 ((-1177) $)) (-15 -1740 ((-525) $)) (-15 -4067 ((-205) $)) (-15 -3725 ((-1090) $)) (-15 -2124 ((-1073) $)) (-15 -1891 ((-2 (|:| |cd| (-1073)) (|:| -1310 (-1073))) $)) (-15 -2859 ((-1090) $)))) (T -764))
-((-2859 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-764)))) (-1891 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1073)) (|:| -1310 (-1073)))) (-5 *1 (-764)))) (-2124 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-764)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-764)))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-764)))) (-1740 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-764)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-2375 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-2789 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-3317 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1342 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-3349 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-3462 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-3793 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-3337 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-3200 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-764)))) (-1846 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-764)))) (-2558 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-764)))) (-2393 (*1 *2 *1 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1177)) (-5 *1 (-764)))) (-1575 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-764)))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-3131 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-3333 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-3576 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1508 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1764 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-4102 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1697 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-3695 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-2178 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1408 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1177)) (-5 *1 (-764)))) (-2757 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))) (-1707 (*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-765)) (-5 *1 (-764)))) (-4014 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-765)) (-5 *1 (-764)))))
-(-10 -8 (-15 -4014 ($ (-1073) (-1073) (-765))) (-15 -1707 ($ (-1073) (-765))) (-15 -2757 ((-1177) $)) (-15 -1408 ((-1177) $ (-765))) (-15 -3940 ((-1177) $)) (-15 -2178 ((-1177) $)) (-15 -3345 ((-1177) $)) (-15 -3695 ((-1177) $)) (-15 -1697 ((-1177) $)) (-15 -1875 ((-1177) $)) (-15 -4102 ((-1177) $)) (-15 -1764 ((-1177) $)) (-15 -1508 ((-1177) $)) (-15 -3576 ((-1177) $)) (-15 -3333 ((-1177) $)) (-15 -2261 ((-1177) $)) (-15 -3131 ((-1177) $)) (-15 -3253 ((-1177) $)) (-15 -1575 ((-1177) $ (-525))) (-15 -2393 ((-1177) $ (-205))) (-15 -2558 ((-1177) $ (-1090))) (-15 -1846 ((-1177) $ (-1073))) (-15 -3200 ((-1177) $ (-1073) (-1073))) (-15 -1292 ((-1177) $)) (-15 -3337 ((-1177) $)) (-15 -3793 ((-1177) $)) (-15 -3462 ((-1177) $)) (-15 -3349 ((-1177) $)) (-15 -1744 ((-1177) $)) (-15 -1342 ((-1177) $)) (-15 -3317 ((-1177) $)) (-15 -1579 ((-1177) $)) (-15 -2789 ((-1177) $)) (-15 -1455 ((-1177) $)) (-15 -1807 ((-1177) $)) (-15 -2375 ((-1177) $)) (-15 -3967 ((-1177) $)) (-15 -1740 ((-525) $)) (-15 -4067 ((-205) $)) (-15 -3725 ((-1090) $)) (-15 -2124 ((-1073) $)) (-15 -1891 ((-2 (|:| |cd| (-1073)) (|:| -1310 (-1073))) $)) (-15 -2859 ((-1090) $)))
-((-1893 (((-108) $ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 12)) (-2012 (($) 15)) (-3295 (($) 13)) (-2483 (($) 16)) (-1345 (($) 14)) (-3961 (((-108) $ $) 8)))
-(((-765) (-13 (-1019) (-10 -8 (-15 -3295 ($)) (-15 -2012 ($)) (-15 -2483 ($)) (-15 -1345 ($))))) (T -765))
-((-3295 (*1 *1) (-5 *1 (-765))) (-2012 (*1 *1) (-5 *1 (-765))) (-2483 (*1 *1) (-5 *1 (-765))) (-1345 (*1 *1) (-5 *1 (-765))))
-(-13 (-1019) (-10 -8 (-15 -3295 ($)) (-15 -2012 ($)) (-15 -2483 ($)) (-15 -1345 ($))))
-((-1893 (((-108) $ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 21) (($ (-1090)) 17)) (-3249 (((-108) $) 10)) (-3676 (((-108) $) 9)) (-2079 (((-108) $) 11)) (-3361 (((-108) $) 8)) (-3961 (((-108) $ $) 19)))
-(((-766) (-13 (-1019) (-10 -8 (-15 -1908 ($ (-1090))) (-15 -3361 ((-108) $)) (-15 -3676 ((-108) $)) (-15 -3249 ((-108) $)) (-15 -2079 ((-108) $))))) (T -766))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-766)))) (-3361 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))) (-2079 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
-(-13 (-1019) (-10 -8 (-15 -1908 ($ (-1090))) (-15 -3361 ((-108) $)) (-15 -3676 ((-108) $)) (-15 -3249 ((-108) $)) (-15 -2079 ((-108) $))))
-((-1893 (((-108) $ $) NIL)) (-3514 (($ (-766) (-592 (-1090))) 24)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3001 (((-766) $) 25)) (-4041 (((-592 (-1090)) $) 26)) (-1908 (((-797) $) 23)) (-3961 (((-108) $ $) NIL)))
-(((-767) (-13 (-1019) (-10 -8 (-15 -3001 ((-766) $)) (-15 -4041 ((-592 (-1090)) $)) (-15 -3514 ($ (-766) (-592 (-1090))))))) (T -767))
-((-3001 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-767)))) (-4041 (*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-767)))) (-3514 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *3 (-592 (-1090))) (-5 *1 (-767)))))
-(-13 (-1019) (-10 -8 (-15 -3001 ((-766) $)) (-15 -4041 ((-592 (-1090)) $)) (-15 -3514 ($ (-766) (-592 (-1090))))))
-((-2766 (((-1177) (-764) (-294 |#1|) (-108)) 23) (((-1177) (-764) (-294 |#1|)) 79) (((-1073) (-294 |#1|) (-108)) 78) (((-1073) (-294 |#1|)) 77)))
-(((-768 |#1|) (-10 -7 (-15 -2766 ((-1073) (-294 |#1|))) (-15 -2766 ((-1073) (-294 |#1|) (-108))) (-15 -2766 ((-1177) (-764) (-294 |#1|))) (-15 -2766 ((-1177) (-764) (-294 |#1|) (-108)))) (-13 (-770) (-789) (-976))) (T -768))
-((-2766 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-764)) (-5 *4 (-294 *6)) (-5 *5 (-108)) (-4 *6 (-13 (-770) (-789) (-976))) (-5 *2 (-1177)) (-5 *1 (-768 *6)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-764)) (-5 *4 (-294 *5)) (-4 *5 (-13 (-770) (-789) (-976))) (-5 *2 (-1177)) (-5 *1 (-768 *5)))) (-2766 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-108)) (-4 *5 (-13 (-770) (-789) (-976))) (-5 *2 (-1073)) (-5 *1 (-768 *5)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-13 (-770) (-789) (-976))) (-5 *2 (-1073)) (-5 *1 (-768 *4)))))
-(-10 -7 (-15 -2766 ((-1073) (-294 |#1|))) (-15 -2766 ((-1073) (-294 |#1|) (-108))) (-15 -2766 ((-1177) (-764) (-294 |#1|))) (-15 -2766 ((-1177) (-764) (-294 |#1|) (-108))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1247 (($ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3430 ((|#1| $) 10)) (-1862 (($ |#1|) 9)) (-2133 (((-108) $) NIL)) (-4079 (($ |#2| (-713)) NIL)) (-3181 (((-713) $) NIL)) (-1224 ((|#2| $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3013 (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-2513 (((-713) $) NIL)) (-1908 (((-797) $) 17) (($ (-525)) NIL) (($ |#2|) NIL (|has| |#2| (-160)))) (-1657 ((|#2| $ (-713)) NIL)) (-2093 (((-713)) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-769 |#1| |#2|) (-13 (-651 |#2|) (-10 -8 (IF (|has| |#1| (-213)) (-6 (-213)) |%noBranch|) (-15 -1862 ($ |#1|)) (-15 -3430 (|#1| $)))) (-651 |#2|) (-976)) (T -769))
-((-1862 (*1 *1 *2) (-12 (-4 *3 (-976)) (-5 *1 (-769 *2 *3)) (-4 *2 (-651 *3)))) (-3430 (*1 *2 *1) (-12 (-4 *2 (-651 *3)) (-5 *1 (-769 *2 *3)) (-4 *3 (-976)))))
-(-13 (-651 |#2|) (-10 -8 (IF (|has| |#1| (-213)) (-6 (-213)) |%noBranch|) (-15 -1862 ($ |#1|)) (-15 -3430 (|#1| $))))
-((-2766 (((-1177) (-764) $ (-108)) 9) (((-1177) (-764) $) 8) (((-1073) $ (-108)) 7) (((-1073) $) 6)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-787) . T) ((-789) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-3281 (($ (-1038)) 7)) (-1305 (((-108) $ (-1074) (-1038)) 15)) (-3797 (((-764) $) 12)) (-4062 (((-764) $) 11)) (-2795 (((-1178) $) 9)) (-3360 (((-108) $ (-1038)) 16)))
+(((-763) (-10 -8 (-15 -3281 ($ (-1038))) (-15 -2795 ((-1178) $)) (-15 -4062 ((-764) $)) (-15 -3797 ((-764) $)) (-15 -1305 ((-108) $ (-1074) (-1038))) (-15 -3360 ((-108) $ (-1038))))) (T -763))
+((-3360 (*1 *2 *1 *3) (-12 (-5 *3 (-1038)) (-5 *2 (-108)) (-5 *1 (-763)))) (-1305 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-1038)) (-5 *2 (-108)) (-5 *1 (-763)))) (-3797 (*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))) (-2795 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-763)))) (-3281 (*1 *1 *2) (-12 (-5 *2 (-1038)) (-5 *1 (-763)))))
+(-10 -8 (-15 -3281 ($ (-1038))) (-15 -2795 ((-1178) $)) (-15 -4062 ((-764) $)) (-15 -3797 ((-764) $)) (-15 -1305 ((-108) $ (-1074) (-1038))) (-15 -3360 ((-108) $ (-1038))))
+((-2297 (((-1178) $ (-765)) 12)) (-3850 (((-1178) $ (-1091)) 32)) (-3928 (((-1178) $ (-1074) (-1074)) 34)) (-2850 (((-1178) $ (-1074)) 33)) (-3551 (((-1178) $) 19)) (-4209 (((-1178) $ (-525)) 28)) (-2954 (((-1178) $ (-205)) 30)) (-3543 (((-1178) $) 18)) (-1262 (((-1178) $) 26)) (-1428 (((-1178) $) 25)) (-3821 (((-1178) $) 23)) (-3950 (((-1178) $) 24)) (-1309 (((-1178) $) 22)) (-2067 (((-1178) $) 21)) (-1546 (((-1178) $) 20)) (-3155 (((-1178) $) 16)) (-1499 (((-1178) $) 17)) (-3942 (((-1178) $) 15)) (-1243 (((-1178) $) 14)) (-1671 (((-1178) $) 13)) (-4016 (($ (-1074) (-765)) 9)) (-4031 (($ (-1074) (-1074) (-765)) 8)) (-3383 (((-1091) $) 51)) (-3708 (((-1091) $) 55)) (-1853 (((-2 (|:| |cd| (-1074)) (|:| -3800 (-1074))) $) 54)) (-1885 (((-1074) $) 52)) (-2413 (((-1178) $) 41)) (-4013 (((-525) $) 49)) (-3286 (((-205) $) 50)) (-4063 (((-1178) $) 40)) (-3707 (((-1178) $) 48)) (-2781 (((-1178) $) 47)) (-2245 (((-1178) $) 45)) (-3654 (((-1178) $) 46)) (-2557 (((-1178) $) 44)) (-1216 (((-1178) $) 43)) (-3678 (((-1178) $) 42)) (-2769 (((-1178) $) 38)) (-3979 (((-1178) $) 39)) (-2898 (((-1178) $) 37)) (-3866 (((-1178) $) 36)) (-2414 (((-1178) $) 35)) (-2113 (((-1178) $) 11)))
+(((-764) (-10 -8 (-15 -4031 ($ (-1074) (-1074) (-765))) (-15 -4016 ($ (-1074) (-765))) (-15 -2113 ((-1178) $)) (-15 -2297 ((-1178) $ (-765))) (-15 -1671 ((-1178) $)) (-15 -1243 ((-1178) $)) (-15 -3942 ((-1178) $)) (-15 -3155 ((-1178) $)) (-15 -1499 ((-1178) $)) (-15 -3543 ((-1178) $)) (-15 -3551 ((-1178) $)) (-15 -1546 ((-1178) $)) (-15 -2067 ((-1178) $)) (-15 -1309 ((-1178) $)) (-15 -3821 ((-1178) $)) (-15 -3950 ((-1178) $)) (-15 -1428 ((-1178) $)) (-15 -1262 ((-1178) $)) (-15 -4209 ((-1178) $ (-525))) (-15 -2954 ((-1178) $ (-205))) (-15 -3850 ((-1178) $ (-1091))) (-15 -2850 ((-1178) $ (-1074))) (-15 -3928 ((-1178) $ (-1074) (-1074))) (-15 -2414 ((-1178) $)) (-15 -3866 ((-1178) $)) (-15 -2898 ((-1178) $)) (-15 -2769 ((-1178) $)) (-15 -3979 ((-1178) $)) (-15 -4063 ((-1178) $)) (-15 -2413 ((-1178) $)) (-15 -3678 ((-1178) $)) (-15 -1216 ((-1178) $)) (-15 -2557 ((-1178) $)) (-15 -2245 ((-1178) $)) (-15 -3654 ((-1178) $)) (-15 -2781 ((-1178) $)) (-15 -3707 ((-1178) $)) (-15 -4013 ((-525) $)) (-15 -3286 ((-205) $)) (-15 -3383 ((-1091) $)) (-15 -1885 ((-1074) $)) (-15 -1853 ((-2 (|:| |cd| (-1074)) (|:| -3800 (-1074))) $)) (-15 -3708 ((-1091) $)))) (T -764))
+((-3708 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-764)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1074)) (|:| -3800 (-1074)))) (-5 *1 (-764)))) (-1885 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-764)))) (-3383 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-764)))) (-3286 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-764)))) (-4013 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-764)))) (-3707 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-2781 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-3654 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-2245 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-2557 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-1216 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-2413 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-3979 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-2898 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-2414 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-3928 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-764)))) (-2850 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-764)))) (-3850 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1178)) (-5 *1 (-764)))) (-2954 (*1 *2 *1 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1178)) (-5 *1 (-764)))) (-4209 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1178)) (-5 *1 (-764)))) (-1262 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-1428 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-1309 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-2067 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-1546 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-3551 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-3155 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-1243 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-2297 (*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1178)) (-5 *1 (-764)))) (-2113 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))) (-4016 (*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-765)) (-5 *1 (-764)))) (-4031 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-765)) (-5 *1 (-764)))))
+(-10 -8 (-15 -4031 ($ (-1074) (-1074) (-765))) (-15 -4016 ($ (-1074) (-765))) (-15 -2113 ((-1178) $)) (-15 -2297 ((-1178) $ (-765))) (-15 -1671 ((-1178) $)) (-15 -1243 ((-1178) $)) (-15 -3942 ((-1178) $)) (-15 -3155 ((-1178) $)) (-15 -1499 ((-1178) $)) (-15 -3543 ((-1178) $)) (-15 -3551 ((-1178) $)) (-15 -1546 ((-1178) $)) (-15 -2067 ((-1178) $)) (-15 -1309 ((-1178) $)) (-15 -3821 ((-1178) $)) (-15 -3950 ((-1178) $)) (-15 -1428 ((-1178) $)) (-15 -1262 ((-1178) $)) (-15 -4209 ((-1178) $ (-525))) (-15 -2954 ((-1178) $ (-205))) (-15 -3850 ((-1178) $ (-1091))) (-15 -2850 ((-1178) $ (-1074))) (-15 -3928 ((-1178) $ (-1074) (-1074))) (-15 -2414 ((-1178) $)) (-15 -3866 ((-1178) $)) (-15 -2898 ((-1178) $)) (-15 -2769 ((-1178) $)) (-15 -3979 ((-1178) $)) (-15 -4063 ((-1178) $)) (-15 -2413 ((-1178) $)) (-15 -3678 ((-1178) $)) (-15 -1216 ((-1178) $)) (-15 -2557 ((-1178) $)) (-15 -2245 ((-1178) $)) (-15 -3654 ((-1178) $)) (-15 -2781 ((-1178) $)) (-15 -3707 ((-1178) $)) (-15 -4013 ((-525) $)) (-15 -3286 ((-205) $)) (-15 -3383 ((-1091) $)) (-15 -1885 ((-1074) $)) (-15 -1853 ((-2 (|:| |cd| (-1074)) (|:| -3800 (-1074))) $)) (-15 -3708 ((-1091) $)))
+((-1260 (((-108) $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 12)) (-3991 (($) 15)) (-1662 (($) 13)) (-1286 (($) 16)) (-2453 (($) 14)) (-3994 (((-108) $ $) 8)))
+(((-765) (-13 (-1020) (-10 -8 (-15 -1662 ($)) (-15 -3991 ($)) (-15 -1286 ($)) (-15 -2453 ($))))) (T -765))
+((-1662 (*1 *1) (-5 *1 (-765))) (-3991 (*1 *1) (-5 *1 (-765))) (-1286 (*1 *1) (-5 *1 (-765))) (-2453 (*1 *1) (-5 *1 (-765))))
+(-13 (-1020) (-10 -8 (-15 -1662 ($)) (-15 -3991 ($)) (-15 -1286 ($)) (-15 -2453 ($))))
+((-1260 (((-108) $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 21) (($ (-1091)) 17)) (-1221 (((-108) $) 10)) (-4108 (((-108) $) 9)) (-1932 (((-108) $) 11)) (-4083 (((-108) $) 8)) (-3994 (((-108) $ $) 19)))
+(((-766) (-13 (-1020) (-10 -8 (-15 -1270 ($ (-1091))) (-15 -4083 ((-108) $)) (-15 -4108 ((-108) $)) (-15 -1221 ((-108) $)) (-15 -1932 ((-108) $))))) (T -766))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-766)))) (-4083 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))) (-1221 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))) (-1932 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
+(-13 (-1020) (-10 -8 (-15 -1270 ($ (-1091))) (-15 -4083 ((-108) $)) (-15 -4108 ((-108) $)) (-15 -1221 ((-108) $)) (-15 -1932 ((-108) $))))
+((-1260 (((-108) $ $) NIL)) (-1892 (($ (-766) (-592 (-1091))) 24)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2828 (((-766) $) 25)) (-4231 (((-592 (-1091)) $) 26)) (-1270 (((-798) $) 23)) (-3994 (((-108) $ $) NIL)))
+(((-767) (-13 (-1020) (-10 -8 (-15 -2828 ((-766) $)) (-15 -4231 ((-592 (-1091)) $)) (-15 -1892 ($ (-766) (-592 (-1091))))))) (T -767))
+((-2828 (*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-767)))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-767)))) (-1892 (*1 *1 *2 *3) (-12 (-5 *2 (-766)) (-5 *3 (-592 (-1091))) (-5 *1 (-767)))))
+(-13 (-1020) (-10 -8 (-15 -2828 ((-766) $)) (-15 -4231 ((-592 (-1091)) $)) (-15 -1892 ($ (-766) (-592 (-1091))))))
+((-2255 (((-1178) (-764) (-294 |#1|) (-108)) 23) (((-1178) (-764) (-294 |#1|)) 79) (((-1074) (-294 |#1|) (-108)) 78) (((-1074) (-294 |#1|)) 77)))
+(((-768 |#1|) (-10 -7 (-15 -2255 ((-1074) (-294 |#1|))) (-15 -2255 ((-1074) (-294 |#1|) (-108))) (-15 -2255 ((-1178) (-764) (-294 |#1|))) (-15 -2255 ((-1178) (-764) (-294 |#1|) (-108)))) (-13 (-770) (-789) (-977))) (T -768))
+((-2255 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-764)) (-5 *4 (-294 *6)) (-5 *5 (-108)) (-4 *6 (-13 (-770) (-789) (-977))) (-5 *2 (-1178)) (-5 *1 (-768 *6)))) (-2255 (*1 *2 *3 *4) (-12 (-5 *3 (-764)) (-5 *4 (-294 *5)) (-4 *5 (-13 (-770) (-789) (-977))) (-5 *2 (-1178)) (-5 *1 (-768 *5)))) (-2255 (*1 *2 *3 *4) (-12 (-5 *3 (-294 *5)) (-5 *4 (-108)) (-4 *5 (-13 (-770) (-789) (-977))) (-5 *2 (-1074)) (-5 *1 (-768 *5)))) (-2255 (*1 *2 *3) (-12 (-5 *3 (-294 *4)) (-4 *4 (-13 (-770) (-789) (-977))) (-5 *2 (-1074)) (-5 *1 (-768 *4)))))
+(-10 -7 (-15 -2255 ((-1074) (-294 |#1|))) (-15 -2255 ((-1074) (-294 |#1|) (-108))) (-15 -2255 ((-1178) (-764) (-294 |#1|))) (-15 -2255 ((-1178) (-764) (-294 |#1|) (-108))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2571 (($ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3509 ((|#1| $) 10)) (-1238 (($ |#1|) 9)) (-1985 (((-108) $) NIL)) (-2352 (($ |#2| (-713)) NIL)) (-3724 (((-713) $) NIL)) (-2548 ((|#2| $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2523 (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-1587 (((-713) $) NIL)) (-1270 (((-798) $) 17) (($ (-525)) NIL) (($ |#2|) NIL (|has| |#2| (-160)))) (-3468 ((|#2| $ (-713)) NIL)) (-2104 (((-713)) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $) NIL (|has| |#1| (-213)))) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-769 |#1| |#2|) (-13 (-651 |#2|) (-10 -8 (IF (|has| |#1| (-213)) (-6 (-213)) |%noBranch|) (-15 -1238 ($ |#1|)) (-15 -3509 (|#1| $)))) (-651 |#2|) (-977)) (T -769))
+((-1238 (*1 *1 *2) (-12 (-4 *3 (-977)) (-5 *1 (-769 *2 *3)) (-4 *2 (-651 *3)))) (-3509 (*1 *2 *1) (-12 (-4 *2 (-651 *3)) (-5 *1 (-769 *2 *3)) (-4 *3 (-977)))))
+(-13 (-651 |#2|) (-10 -8 (IF (|has| |#1| (-213)) (-6 (-213)) |%noBranch|) (-15 -1238 ($ |#1|)) (-15 -3509 (|#1| $))))
+((-2255 (((-1178) (-764) $ (-108)) 9) (((-1178) (-764) $) 8) (((-1074) $ (-108)) 7) (((-1074) $) 6)))
(((-770) (-131)) (T -770))
-((-2766 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *4 (-108)) (-5 *2 (-1177)))) (-2766 (*1 *2 *3 *1) (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *2 (-1177)))) (-2766 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-108)) (-5 *2 (-1073)))) (-2766 (*1 *2 *1) (-12 (-4 *1 (-770)) (-5 *2 (-1073)))))
-(-13 (-10 -8 (-15 -2766 ((-1073) $)) (-15 -2766 ((-1073) $ (-108))) (-15 -2766 ((-1177) (-764) $)) (-15 -2766 ((-1177) (-764) $ (-108)))))
-((-1909 (((-290) (-1073) (-1073)) 12)) (-3223 (((-108) (-1073) (-1073)) 34)) (-2814 (((-108) (-1073)) 33)) (-2141 (((-51) (-1073)) 25)) (-3945 (((-51) (-1073)) 23)) (-2934 (((-51) (-764)) 17)) (-4191 (((-592 (-1073)) (-1073)) 28)) (-1689 (((-592 (-1073))) 27)))
-(((-771) (-10 -7 (-15 -2934 ((-51) (-764))) (-15 -3945 ((-51) (-1073))) (-15 -2141 ((-51) (-1073))) (-15 -1689 ((-592 (-1073)))) (-15 -4191 ((-592 (-1073)) (-1073))) (-15 -2814 ((-108) (-1073))) (-15 -3223 ((-108) (-1073) (-1073))) (-15 -1909 ((-290) (-1073) (-1073))))) (T -771))
-((-1909 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-290)) (-5 *1 (-771)))) (-3223 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-108)) (-5 *1 (-771)))) (-2814 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-108)) (-5 *1 (-771)))) (-4191 (*1 *2 *3) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-771)) (-5 *3 (-1073)))) (-1689 (*1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-771)))) (-2141 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-771)))) (-3945 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-771)))) (-2934 (*1 *2 *3) (-12 (-5 *3 (-764)) (-5 *2 (-51)) (-5 *1 (-771)))))
-(-10 -7 (-15 -2934 ((-51) (-764))) (-15 -3945 ((-51) (-1073))) (-15 -2141 ((-51) (-1073))) (-15 -1689 ((-592 (-1073)))) (-15 -4191 ((-592 (-1073)) (-1073))) (-15 -2814 ((-108) (-1073))) (-15 -3223 ((-108) (-1073) (-1073))) (-15 -1909 ((-290) (-1073) (-1073))))
-((-1893 (((-108) $ $) 19)) (-3254 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1914 (($ $ $) 72)) (-2258 (((-108) $ $) 73)) (-3410 (((-108) $ (-713)) 8)) (-3399 (($ (-592 |#1|)) 68) (($) 67)) (-3290 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4254)))) (-1505 (($) 7 T CONST)) (-3143 (($ $) 62)) (-3163 (($ $) 58 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2792 (($ |#1| $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4254)))) (-2273 (($ |#1| $) 57 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4254)))) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) 9)) (-3525 ((|#1| $) 78)) (-2749 (($ $ $) 81)) (-1932 (($ $ $) 80)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-3630 ((|#1| $) 79)) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22)) (-3187 (($ $ $) 69)) (-2570 ((|#1| $) 39)) (-2573 (($ |#1| $) 40) (($ |#1| $ (-713)) 63)) (-2663 (((-1037) $) 21)) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-3513 ((|#1| $) 41)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3553 (((-592 (-2 (|:| -2511 |#1|) (|:| -2686 (-713)))) $) 61)) (-1706 (($ $ |#1|) 71) (($ $ $) 70)) (-4006 (($) 49) (($ (-592 |#1|)) 48)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1427 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 50)) (-1908 (((-797) $) 18)) (-3832 (($ (-592 |#1|)) 66) (($) 65)) (-3612 (($ (-592 |#1|)) 42)) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20)) (-3983 (((-108) $ $) 64)) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
+((-2255 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *4 (-108)) (-5 *2 (-1178)))) (-2255 (*1 *2 *3 *1) (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *2 (-1178)))) (-2255 (*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-108)) (-5 *2 (-1074)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-770)) (-5 *2 (-1074)))))
+(-13 (-10 -8 (-15 -2255 ((-1074) $)) (-15 -2255 ((-1074) $ (-108))) (-15 -2255 ((-1178) (-764) $)) (-15 -2255 ((-1178) (-764) $ (-108)))))
+((-2011 (((-290) (-1074) (-1074)) 12)) (-4154 (((-108) (-1074) (-1074)) 34)) (-1465 (((-108) (-1074)) 33)) (-2080 (((-51) (-1074)) 25)) (-1713 (((-51) (-1074)) 23)) (-3256 (((-51) (-764)) 17)) (-1905 (((-592 (-1074)) (-1074)) 28)) (-1424 (((-592 (-1074))) 27)))
+(((-771) (-10 -7 (-15 -3256 ((-51) (-764))) (-15 -1713 ((-51) (-1074))) (-15 -2080 ((-51) (-1074))) (-15 -1424 ((-592 (-1074)))) (-15 -1905 ((-592 (-1074)) (-1074))) (-15 -1465 ((-108) (-1074))) (-15 -4154 ((-108) (-1074) (-1074))) (-15 -2011 ((-290) (-1074) (-1074))))) (T -771))
+((-2011 (*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-290)) (-5 *1 (-771)))) (-4154 (*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-108)) (-5 *1 (-771)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-108)) (-5 *1 (-771)))) (-1905 (*1 *2 *3) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-771)) (-5 *3 (-1074)))) (-1424 (*1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-771)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-51)) (-5 *1 (-771)))) (-1713 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-51)) (-5 *1 (-771)))) (-3256 (*1 *2 *3) (-12 (-5 *3 (-764)) (-5 *2 (-51)) (-5 *1 (-771)))))
+(-10 -7 (-15 -3256 ((-51) (-764))) (-15 -1713 ((-51) (-1074))) (-15 -2080 ((-51) (-1074))) (-15 -1424 ((-592 (-1074)))) (-15 -1905 ((-592 (-1074)) (-1074))) (-15 -1465 ((-108) (-1074))) (-15 -4154 ((-108) (-1074) (-1074))) (-15 -2011 ((-290) (-1074) (-1074))))
+((-1260 (((-108) $ $) 19)) (-2805 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2083 (($ $ $) 72)) (-3921 (((-108) $ $) 73)) (-3330 (((-108) $ (-713)) 8)) (-2955 (($ (-592 |#1|)) 68) (($) 67)) (-1608 (($ (-1 (-108) |#1|) $) 45 (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4255)))) (-2305 (($) 7 T CONST)) (-1540 (($ $) 62)) (-3137 (($ $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2592 (($ |#1| $) 47 (|has| $ (-6 -4255))) (($ (-1 (-108) |#1|) $) 46 (|has| $ (-6 -4255)))) (-1614 (($ |#1| $) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#1|) $) 54 (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4255)))) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) 9)) (-2371 ((|#1| $) 78)) (-1999 (($ $ $) 81)) (-3743 (($ $ $) 80)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2535 ((|#1| $) 79)) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22)) (-3792 (($ $ $) 69)) (-3955 ((|#1| $) 39)) (-3985 (($ |#1| $) 40) (($ |#1| $ (-713)) 63)) (-2012 (((-1038) $) 21)) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 51)) (-1881 ((|#1| $) 41)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-2386 (((-592 (-2 (|:| -2544 |#1|) (|:| -2040 (-713)))) $) 61)) (-4004 (($ $ |#1|) 71) (($ $ $) 70)) (-3981 (($) 49) (($ (-592 |#1|)) 48)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-2749 (((-501) $) 59 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 50)) (-1270 (((-798) $) 18)) (-3316 (($ (-592 |#1|)) 66) (($) 65)) (-1665 (($ (-592 |#1|)) 42)) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20)) (-4017 (((-108) $ $) 64)) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
(((-772 |#1|) (-131) (-789)) (T -772))
-((-3525 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-789)))))
-(-13 (-679 |t#1|) (-901 |t#1|) (-10 -8 (-15 -3525 (|t#1| $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-566 (-797)) . T) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-637 |#1|) . T) ((-679 |#1|) . T) ((-901 |#1|) . T) ((-1017 |#1|) . T) ((-1019) . T) ((-1126) . T))
-((-1969 (((-1177) (-1037) (-1037)) 47)) (-2965 (((-1177) (-763) (-51)) 44)) (-2458 (((-51) (-763)) 16)))
-(((-773) (-10 -7 (-15 -2458 ((-51) (-763))) (-15 -2965 ((-1177) (-763) (-51))) (-15 -1969 ((-1177) (-1037) (-1037))))) (T -773))
-((-1969 (*1 *2 *3 *3) (-12 (-5 *3 (-1037)) (-5 *2 (-1177)) (-5 *1 (-773)))) (-2965 (*1 *2 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-51)) (-5 *2 (-1177)) (-5 *1 (-773)))) (-2458 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-51)) (-5 *1 (-773)))))
-(-10 -7 (-15 -2458 ((-51) (-763))) (-15 -2965 ((-1177) (-763) (-51))) (-15 -1969 ((-1177) (-1037) (-1037))))
-((-1370 (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|)) 12) (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|)) 13)))
-(((-774 |#1| |#2|) (-10 -7 (-15 -1370 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|))) (-15 -1370 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|)))) (-1019) (-1019)) (T -774))
-((-1370 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-775 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *1 (-774 *5 *6)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *2 (-775 *6)) (-5 *1 (-774 *5 *6)))))
-(-10 -7 (-15 -1370 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|))) (-15 -1370 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL (|has| |#1| (-21)))) (-3263 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1690 (((-525) $) NIL (|has| |#1| (-787)))) (-1505 (($) NIL (|has| |#1| (-21)) CONST)) (-1264 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 15)) (-2831 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 9)) (-2866 (((-3 $ "failed") $) 40 (|has| |#1| (-787)))) (-1468 (((-3 (-385 (-525)) "failed") $) 49 (|has| |#1| (-510)))) (-3081 (((-108) $) 43 (|has| |#1| (-510)))) (-2098 (((-385 (-525)) $) 46 (|has| |#1| (-510)))) (-3026 (((-108) $) NIL (|has| |#1| (-787)))) (-2133 (((-108) $) NIL (|has| |#1| (-787)))) (-2882 (((-108) $) NIL (|has| |#1| (-787)))) (-3525 (($ $ $) NIL (|has| |#1| (-787)))) (-3630 (($ $ $) NIL (|has| |#1| (-787)))) (-2337 (((-1073) $) NIL)) (-1347 (($) 13)) (-4135 (((-108) $) 12)) (-2663 (((-1037) $) NIL)) (-3058 (((-108) $) 11)) (-1908 (((-797) $) 18) (($ (-385 (-525))) NIL (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) 8) (($ (-525)) NIL (-3309 (|has| |#1| (-787)) (|has| |#1| (-967 (-525)))))) (-2093 (((-713)) 34 (|has| |#1| (-787)))) (-2092 (($ $) NIL (|has| |#1| (-787)))) (-3465 (($ $ (-855)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (-3875 (($) 22 (|has| |#1| (-21)) CONST)) (-3882 (($) 31 (|has| |#1| (-787)) CONST)) (-4024 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3961 (((-108) $ $) 20)) (-4010 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3983 (((-108) $ $) 42 (|has| |#1| (-787)))) (-4070 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4059 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-855)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (* (($ $ $) 37 (|has| |#1| (-787))) (($ (-525) $) 25 (|has| |#1| (-21))) (($ (-713) $) NIL (|has| |#1| (-21))) (($ (-855) $) NIL (|has| |#1| (-21)))))
-(((-775 |#1|) (-13 (-1019) (-389 |#1|) (-10 -8 (-15 -1347 ($)) (-15 -3058 ((-108) $)) (-15 -4135 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3081 ((-108) $)) (-15 -2098 ((-385 (-525)) $)) (-15 -1468 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) (-1019)) (T -775))
-((-1347 (*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1019)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1019)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1019)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1019)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1019)))) (-1468 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1019)))))
-(-13 (-1019) (-389 |#1|) (-10 -8 (-15 -1347 ($)) (-15 -3058 ((-108) $)) (-15 -4135 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3081 ((-108) $)) (-15 -2098 ((-385 (-525)) $)) (-15 -1468 ((-3 (-385 (-525)) "failed") $))) |%noBranch|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) NIL) (((-3 (-110) "failed") $) NIL)) (-2831 ((|#1| $) NIL) (((-110) $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-2236 ((|#1| (-110) |#1|) NIL)) (-2133 (((-108) $) NIL)) (-3716 (($ |#1| (-339 (-110))) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1365 (($ $ (-1 |#1| |#1|)) NIL)) (-1960 (($ $ (-1 |#1| |#1|)) NIL)) (-3928 ((|#1| $ |#1|) NIL)) (-2561 ((|#1| |#1|) NIL (|has| |#1| (-160)))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-110)) NIL)) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) NIL)) (-1672 (($ $) NIL (|has| |#1| (-160))) (($ $ $) NIL (|has| |#1| (-160)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ (-110) (-525)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160)))))
-(((-776 |#1|) (-13 (-976) (-967 |#1|) (-967 (-110)) (-265 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -1672 ($ $)) (-15 -1672 ($ $ $)) (-15 -2561 (|#1| |#1|))) |%noBranch|) (-15 -1960 ($ $ (-1 |#1| |#1|))) (-15 -1365 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -2236 (|#1| (-110) |#1|)) (-15 -3716 ($ |#1| (-339 (-110)))))) (-976)) (T -776))
-((-1672 (*1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-976)))) (-1672 (*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-976)))) (-2561 (*1 *2 *2) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-976)))) (-1960 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-776 *3)))) (-1365 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-776 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-5 *1 (-776 *4)) (-4 *4 (-976)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-776 *3)) (-4 *3 (-976)))) (-2236 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-776 *2)) (-4 *2 (-976)))) (-3716 (*1 *1 *2 *3) (-12 (-5 *3 (-339 (-110))) (-5 *1 (-776 *2)) (-4 *2 (-976)))))
-(-13 (-976) (-967 |#1|) (-967 (-110)) (-265 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -1672 ($ $)) (-15 -1672 ($ $ $)) (-15 -2561 (|#1| |#1|))) |%noBranch|) (-15 -1960 ($ $ (-1 |#1| |#1|))) (-15 -1365 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -2236 (|#1| (-110) |#1|)) (-15 -3716 ($ |#1| (-339 (-110))))))
-((-2797 (((-195 (-475)) (-1073)) 9)))
-(((-777) (-10 -7 (-15 -2797 ((-195 (-475)) (-1073))))) (T -777))
-((-2797 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-195 (-475))) (-5 *1 (-777)))))
-(-10 -7 (-15 -2797 ((-195 (-475)) (-1073))))
-((-1893 (((-108) $ $) 7)) (-2327 (((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) 14) (((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 13)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 16) (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) 15)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3961 (((-108) $ $) 6)))
+((-2371 (*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-789)))))
+(-13 (-679 |t#1|) (-902 |t#1|) (-10 -8 (-15 -2371 (|t#1| $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) . T) ((-566 (-798)) . T) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-215 |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-637 |#1|) . T) ((-679 |#1|) . T) ((-902 |#1|) . T) ((-1018 |#1|) . T) ((-1020) . T) ((-1127) . T))
+((-4196 (((-1178) (-1038) (-1038)) 47)) (-3507 (((-1178) (-763) (-51)) 44)) (-2373 (((-51) (-763)) 16)))
+(((-773) (-10 -7 (-15 -2373 ((-51) (-763))) (-15 -3507 ((-1178) (-763) (-51))) (-15 -4196 ((-1178) (-1038) (-1038))))) (T -773))
+((-4196 (*1 *2 *3 *3) (-12 (-5 *3 (-1038)) (-5 *2 (-1178)) (-5 *1 (-773)))) (-3507 (*1 *2 *3 *4) (-12 (-5 *3 (-763)) (-5 *4 (-51)) (-5 *2 (-1178)) (-5 *1 (-773)))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-51)) (-5 *1 (-773)))))
+(-10 -7 (-15 -2373 ((-51) (-763))) (-15 -3507 ((-1178) (-763) (-51))) (-15 -4196 ((-1178) (-1038) (-1038))))
+((-2694 (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|)) 12) (((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|)) 13)))
+(((-774 |#1| |#2|) (-10 -7 (-15 -2694 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|))) (-15 -2694 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|)))) (-1020) (-1020)) (T -774))
+((-2694 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-775 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *1 (-774 *5 *6)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-775 *6)) (-5 *1 (-774 *5 *6)))))
+(-10 -7 (-15 -2694 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|))) (-15 -2694 ((-775 |#2|) (-1 |#2| |#1|) (-775 |#1|) (-775 |#2|))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL (|has| |#1| (-21)))) (-1342 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1436 (((-525) $) NIL (|has| |#1| (-787)))) (-2305 (($) NIL (|has| |#1| (-21)) CONST)) (-2591 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 15)) (-3898 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 9)) (-3762 (((-3 $ "failed") $) 40 (|has| |#1| (-787)))) (-2251 (((-3 (-385 (-525)) "failed") $) 49 (|has| |#1| (-510)))) (-2265 (((-108) $) 43 (|has| |#1| (-510)))) (-2178 (((-385 (-525)) $) 46 (|has| |#1| (-510)))) (-3017 (((-108) $) NIL (|has| |#1| (-787)))) (-1985 (((-108) $) NIL (|has| |#1| (-787)))) (-3912 (((-108) $) NIL (|has| |#1| (-787)))) (-2371 (($ $ $) NIL (|has| |#1| (-787)))) (-2535 (($ $ $) NIL (|has| |#1| (-787)))) (-3451 (((-1074) $) NIL)) (-1547 (($) 13)) (-2806 (((-108) $) 12)) (-2012 (((-1038) $) NIL)) (-1993 (((-108) $) 11)) (-1270 (((-798) $) 18) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) 8) (($ (-525)) NIL (-3279 (|has| |#1| (-787)) (|has| |#1| (-968 (-525)))))) (-2104 (((-713)) 34 (|has| |#1| (-787)))) (-2086 (($ $) NIL (|has| |#1| (-787)))) (-1576 (($ $ (-856)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (-3355 (($) 22 (|has| |#1| (-21)) CONST)) (-3363 (($) 31 (|has| |#1| (-787)) CONST)) (-4045 (((-108) $ $) NIL (|has| |#1| (-787)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3994 (((-108) $ $) 20)) (-4037 (((-108) $ $) NIL (|has| |#1| (-787)))) (-4017 (((-108) $ $) 42 (|has| |#1| (-787)))) (-4090 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-4080 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-856)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (* (($ $ $) 37 (|has| |#1| (-787))) (($ (-525) $) 25 (|has| |#1| (-21))) (($ (-713) $) NIL (|has| |#1| (-21))) (($ (-856) $) NIL (|has| |#1| (-21)))))
+(((-775 |#1|) (-13 (-1020) (-389 |#1|) (-10 -8 (-15 -1547 ($)) (-15 -1993 ((-108) $)) (-15 -2806 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -2265 ((-108) $)) (-15 -2178 ((-385 (-525)) $)) (-15 -2251 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) (-1020)) (T -775))
+((-1547 (*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1020)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1020)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1020)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))) (-2178 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))) (-2251 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))))
+(-13 (-1020) (-389 |#1|) (-10 -8 (-15 -1547 ($)) (-15 -1993 ((-108) $)) (-15 -2806 ((-108) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -2265 ((-108) $)) (-15 -2178 ((-385 (-525)) $)) (-15 -2251 ((-3 (-385 (-525)) "failed") $))) |%noBranch|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) NIL) (((-3 (-110) "failed") $) NIL)) (-3898 ((|#1| $) NIL) (((-110) $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3685 ((|#1| (-110) |#1|) NIL)) (-1985 (((-108) $) NIL)) (-3303 (($ |#1| (-339 (-110))) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2652 (($ $ (-1 |#1| |#1|)) NIL)) (-4109 (($ $ (-1 |#1| |#1|)) NIL)) (-3410 ((|#1| $ |#1|) NIL)) (-3885 ((|#1| |#1|) NIL (|has| |#1| (-160)))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-110)) NIL)) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) NIL)) (-1244 (($ $) NIL (|has| |#1| (-160))) (($ $ $) NIL (|has| |#1| (-160)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ (-110) (-525)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160)))))
+(((-776 |#1|) (-13 (-977) (-968 |#1|) (-968 (-110)) (-265 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -1244 ($ $)) (-15 -1244 ($ $ $)) (-15 -3885 (|#1| |#1|))) |%noBranch|) (-15 -4109 ($ $ (-1 |#1| |#1|))) (-15 -2652 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -3685 (|#1| (-110) |#1|)) (-15 -3303 ($ |#1| (-339 (-110)))))) (-977)) (T -776))
+((-1244 (*1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977)))) (-1244 (*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977)))) (-3885 (*1 *2 *2) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977)))) (-4109 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-776 *3)))) (-2652 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-776 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-5 *1 (-776 *4)) (-4 *4 (-977)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-776 *3)) (-4 *3 (-977)))) (-3685 (*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-776 *2)) (-4 *2 (-977)))) (-3303 (*1 *1 *2 *3) (-12 (-5 *3 (-339 (-110))) (-5 *1 (-776 *2)) (-4 *2 (-977)))))
+(-13 (-977) (-968 |#1|) (-968 (-110)) (-265 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |#1| (-160)) (PROGN (-6 (-37 |#1|)) (-15 -1244 ($ $)) (-15 -1244 ($ $ $)) (-15 -3885 (|#1| |#1|))) |%noBranch|) (-15 -4109 ($ $ (-1 |#1| |#1|))) (-15 -2652 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-110) (-525))) (-15 ** ($ $ (-525))) (-15 -3685 (|#1| (-110) |#1|)) (-15 -3303 ($ |#1| (-339 (-110))))))
+((-1282 (((-195 (-475)) (-1074)) 9)))
+(((-777) (-10 -7 (-15 -1282 ((-195 (-475)) (-1074))))) (T -777))
+((-1282 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-195 (-475))) (-5 *1 (-777)))))
+(-10 -7 (-15 -1282 ((-195 (-475)) (-1074))))
+((-1260 (((-108) $ $) 7)) (-3359 (((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) 14) (((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 13)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 16) (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) 15)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3994 (((-108) $ $) 6)))
(((-778) (-131)) (T -778))
-((-1965 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-988)) (-5 *4 (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *2 (-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)))))) (-1965 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-988)) (-5 *4 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) (-5 *2 (-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)))))) (-2327 (*1 *2 *3) (-12 (-4 *1 (-778)) (-5 *3 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) (-5 *2 (-965)))) (-2327 (*1 *2 *3) (-12 (-4 *1 (-778)) (-5 *3 (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *2 (-965)))))
-(-13 (-1019) (-10 -7 (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))) (-15 -2327 ((-965) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))) (-15 -2327 ((-965) (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-3230 (((-965) (-592 (-294 (-357))) (-592 (-357))) 147) (((-965) (-294 (-357)) (-592 (-357))) 145) (((-965) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-782 (-357)))) 144) (((-965) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-294 (-357))) (-592 (-782 (-357)))) 143) (((-965) (-780)) 117) (((-965) (-780) (-988)) 116)) (-1965 (((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-780) (-988)) 82) (((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-780)) 84)) (-2863 (((-965) (-592 (-294 (-357))) (-592 (-357))) 148) (((-965) (-780)) 133)))
-(((-779) (-10 -7 (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-780))) (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-780) (-988))) (-15 -3230 ((-965) (-780) (-988))) (-15 -3230 ((-965) (-780))) (-15 -2863 ((-965) (-780))) (-15 -3230 ((-965) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-294 (-357))) (-592 (-782 (-357))))) (-15 -3230 ((-965) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-782 (-357))))) (-15 -3230 ((-965) (-294 (-357)) (-592 (-357)))) (-15 -3230 ((-965) (-592 (-294 (-357))) (-592 (-357)))) (-15 -2863 ((-965) (-592 (-294 (-357))) (-592 (-357)))))) (T -779))
-((-2863 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357))) (-5 *2 (-965)) (-5 *1 (-779)))) (-3230 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357))) (-5 *2 (-965)) (-5 *1 (-779)))) (-3230 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) (-5 *2 (-965)) (-5 *1 (-779)))) (-3230 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) (-5 *5 (-592 (-782 (-357)))) (-5 *2 (-965)) (-5 *1 (-779)))) (-3230 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) (-5 *5 (-592 (-782 (-357)))) (-5 *6 (-592 (-294 (-357)))) (-5 *2 (-965)) (-5 *1 (-779)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-965)) (-5 *1 (-779)))) (-3230 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-965)) (-5 *1 (-779)))) (-3230 (*1 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-988)) (-5 *2 (-965)) (-5 *1 (-779)))) (-1965 (*1 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-988)) (-5 *2 (-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))))) (-5 *1 (-779)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))))) (-5 *1 (-779)))))
-(-10 -7 (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-780))) (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-780) (-988))) (-15 -3230 ((-965) (-780) (-988))) (-15 -3230 ((-965) (-780))) (-15 -2863 ((-965) (-780))) (-15 -3230 ((-965) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-294 (-357))) (-592 (-782 (-357))))) (-15 -3230 ((-965) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-782 (-357))))) (-15 -3230 ((-965) (-294 (-357)) (-592 (-357)))) (-15 -3230 ((-965) (-592 (-294 (-357))) (-592 (-357)))) (-15 -2863 ((-965) (-592 (-294 (-357))) (-592 (-357)))))
-((-1893 (((-108) $ $) NIL)) (-2831 (((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))) $) 21)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 20) (($ (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 14) (($ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))))) 18)) (-3961 (((-108) $ $) NIL)))
-(((-780) (-13 (-1019) (-10 -8 (-15 -1908 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -1908 ($ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))) (-15 -1908 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))))) (-15 -1908 ((-797) $)) (-15 -2831 ((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))) $))))) (T -780))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-780)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *1 (-780)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))) (-5 *1 (-780)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))))) (-5 *1 (-780)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205))))))) (-5 *1 (-780)))))
-(-13 (-1019) (-10 -8 (-15 -1908 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -1908 ($ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))) (-15 -1908 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))))) (-15 -1908 ((-797) $)) (-15 -2831 ((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))) $))))
-((-1370 (((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|) (-782 |#2|) (-782 |#2|)) 13) (((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)) 14)))
-(((-781 |#1| |#2|) (-10 -7 (-15 -1370 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|))) (-15 -1370 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|) (-782 |#2|) (-782 |#2|)))) (-1019) (-1019)) (T -781))
-((-1370 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-782 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *1 (-781 *5 *6)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6)))))
-(-10 -7 (-15 -1370 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|))) (-15 -1370 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|) (-782 |#2|) (-782 |#2|))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL (|has| |#1| (-21)))) (-3987 (((-1037) $) 24)) (-3263 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1690 (((-525) $) NIL (|has| |#1| (-787)))) (-1505 (($) NIL (|has| |#1| (-21)) CONST)) (-1264 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 16)) (-2831 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 9)) (-2866 (((-3 $ "failed") $) 47 (|has| |#1| (-787)))) (-1468 (((-3 (-385 (-525)) "failed") $) 54 (|has| |#1| (-510)))) (-3081 (((-108) $) 49 (|has| |#1| (-510)))) (-2098 (((-385 (-525)) $) 52 (|has| |#1| (-510)))) (-3026 (((-108) $) NIL (|has| |#1| (-787)))) (-3065 (($) 13)) (-2133 (((-108) $) NIL (|has| |#1| (-787)))) (-2882 (((-108) $) NIL (|has| |#1| (-787)))) (-3074 (($) 14)) (-3525 (($ $ $) NIL (|has| |#1| (-787)))) (-3630 (($ $ $) NIL (|has| |#1| (-787)))) (-2337 (((-1073) $) NIL)) (-4135 (((-108) $) 12)) (-2663 (((-1037) $) NIL)) (-3058 (((-108) $) 11)) (-1908 (((-797) $) 22) (($ (-385 (-525))) NIL (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) 8) (($ (-525)) NIL (-3309 (|has| |#1| (-787)) (|has| |#1| (-967 (-525)))))) (-2093 (((-713)) 41 (|has| |#1| (-787)))) (-2092 (($ $) NIL (|has| |#1| (-787)))) (-3465 (($ $ (-855)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (-3875 (($) 29 (|has| |#1| (-21)) CONST)) (-3882 (($) 38 (|has| |#1| (-787)) CONST)) (-4024 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3961 (((-108) $ $) 27)) (-4010 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3983 (((-108) $ $) 48 (|has| |#1| (-787)))) (-4070 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4059 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-855)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (* (($ $ $) 44 (|has| |#1| (-787))) (($ (-525) $) 32 (|has| |#1| (-21))) (($ (-713) $) NIL (|has| |#1| (-21))) (($ (-855) $) NIL (|has| |#1| (-21)))))
-(((-782 |#1|) (-13 (-1019) (-389 |#1|) (-10 -8 (-15 -3065 ($)) (-15 -3074 ($)) (-15 -3058 ((-108) $)) (-15 -4135 ((-108) $)) (-15 -3987 ((-1037) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3081 ((-108) $)) (-15 -2098 ((-385 (-525)) $)) (-15 -1468 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) (-1019)) (T -782))
-((-3065 (*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1019)))) (-3074 (*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1019)))) (-3058 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1019)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1019)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-1037)) (-5 *1 (-782 *3)) (-4 *3 (-1019)))) (-3081 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1019)))) (-2098 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1019)))) (-1468 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1019)))))
-(-13 (-1019) (-389 |#1|) (-10 -8 (-15 -3065 ($)) (-15 -3074 ($)) (-15 -3058 ((-108) $)) (-15 -4135 ((-108) $)) (-15 -3987 ((-1037) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -3081 ((-108) $)) (-15 -2098 ((-385 (-525)) $)) (-15 -1468 ((-3 (-385 (-525)) "failed") $))) |%noBranch|)))
-((-1893 (((-108) $ $) 7)) (-3107 (((-713)) 20)) (-3375 (($) 23)) (-3525 (($ $ $) 13)) (-3630 (($ $ $) 14)) (-1780 (((-855) $) 22)) (-2337 (((-1073) $) 9)) (-4185 (($ (-855)) 21)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-4024 (((-108) $ $) 16)) (-3995 (((-108) $ $) 17)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 15)) (-3983 (((-108) $ $) 18)))
+((-4151 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *2 (-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)))))) (-4151 (*1 *2 *3 *4) (-12 (-4 *1 (-778)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) (-5 *2 (-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)))))) (-3359 (*1 *2 *3) (-12 (-4 *1 (-778)) (-5 *3 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) (-5 *2 (-966)))) (-3359 (*1 *2 *3) (-12 (-4 *1 (-778)) (-5 *3 (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *2 (-966)))))
+(-13 (-1020) (-10 -7 (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))) (-15 -3359 ((-966) (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))) (-15 -3359 ((-966) (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-1297 (((-966) (-592 (-294 (-357))) (-592 (-357))) 147) (((-966) (-294 (-357)) (-592 (-357))) 145) (((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-782 (-357)))) 144) (((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-294 (-357))) (-592 (-782 (-357)))) 143) (((-966) (-780)) 117) (((-966) (-780) (-989)) 116)) (-4151 (((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-780) (-989)) 82) (((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-780)) 84)) (-3740 (((-966) (-592 (-294 (-357))) (-592 (-357))) 148) (((-966) (-780)) 133)))
+(((-779) (-10 -7 (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-780))) (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-780) (-989))) (-15 -1297 ((-966) (-780) (-989))) (-15 -1297 ((-966) (-780))) (-15 -3740 ((-966) (-780))) (-15 -1297 ((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-294 (-357))) (-592 (-782 (-357))))) (-15 -1297 ((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-782 (-357))))) (-15 -1297 ((-966) (-294 (-357)) (-592 (-357)))) (-15 -1297 ((-966) (-592 (-294 (-357))) (-592 (-357)))) (-15 -3740 ((-966) (-592 (-294 (-357))) (-592 (-357)))))) (T -779))
+((-3740 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357))) (-5 *2 (-966)) (-5 *1 (-779)))) (-1297 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357))) (-5 *2 (-966)) (-5 *1 (-779)))) (-1297 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) (-5 *2 (-966)) (-5 *1 (-779)))) (-1297 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) (-5 *5 (-592 (-782 (-357)))) (-5 *2 (-966)) (-5 *1 (-779)))) (-1297 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) (-5 *5 (-592 (-782 (-357)))) (-5 *6 (-592 (-294 (-357)))) (-5 *2 (-966)) (-5 *1 (-779)))) (-3740 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-966)) (-5 *1 (-779)))) (-1297 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-966)) (-5 *1 (-779)))) (-1297 (*1 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-989)) (-5 *2 (-966)) (-5 *1 (-779)))) (-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-780)) (-5 *4 (-989)) (-5 *2 (-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))))) (-5 *1 (-779)))) (-4151 (*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))))) (-5 *1 (-779)))))
+(-10 -7 (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-780))) (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-780) (-989))) (-15 -1297 ((-966) (-780) (-989))) (-15 -1297 ((-966) (-780))) (-15 -3740 ((-966) (-780))) (-15 -1297 ((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-294 (-357))) (-592 (-782 (-357))))) (-15 -1297 ((-966) (-294 (-357)) (-592 (-357)) (-592 (-782 (-357))) (-592 (-782 (-357))))) (-15 -1297 ((-966) (-294 (-357)) (-592 (-357)))) (-15 -1297 ((-966) (-592 (-294 (-357))) (-592 (-357)))) (-15 -3740 ((-966) (-592 (-294 (-357))) (-592 (-357)))))
+((-1260 (((-108) $ $) NIL)) (-3898 (((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))) $) 21)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 20) (($ (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) 14) (($ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))))) 18)) (-3994 (((-108) $ $) NIL)))
+(((-780) (-13 (-1020) (-10 -8 (-15 -1270 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -1270 ($ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))) (-15 -1270 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))))) (-15 -1270 ((-798) $)) (-15 -3898 ((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))) $))))) (T -780))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-780)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (-5 *1 (-780)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))) (-5 *1 (-780)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))))) (-5 *1 (-780)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205))))))) (-5 *1 (-780)))))
+(-13 (-1020) (-10 -8 (-15 -1270 ($ (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205))))))) (-15 -1270 ($ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))) (-15 -1270 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))))) (-15 -1270 ((-798) $)) (-15 -3898 ((-3 (|:| |noa| (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205))) (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205)))) (|:| |ub| (-592 (-782 (-205)))))) (|:| |lsa| (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))) $))))
+((-2694 (((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|) (-782 |#2|) (-782 |#2|)) 13) (((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|)) 14)))
+(((-781 |#1| |#2|) (-10 -7 (-15 -2694 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|))) (-15 -2694 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|) (-782 |#2|) (-782 |#2|)))) (-1020) (-1020)) (T -781))
+((-2694 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-782 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *1 (-781 *5 *6)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6)))))
+(-10 -7 (-15 -2694 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|))) (-15 -2694 ((-782 |#2|) (-1 |#2| |#1|) (-782 |#1|) (-782 |#2|) (-782 |#2|))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL (|has| |#1| (-21)))) (-3865 (((-1038) $) 24)) (-1342 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1436 (((-525) $) NIL (|has| |#1| (-787)))) (-2305 (($) NIL (|has| |#1| (-21)) CONST)) (-2591 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 16)) (-3898 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 9)) (-3762 (((-3 $ "failed") $) 47 (|has| |#1| (-787)))) (-2251 (((-3 (-385 (-525)) "failed") $) 54 (|has| |#1| (-510)))) (-2265 (((-108) $) 49 (|has| |#1| (-510)))) (-2178 (((-385 (-525)) $) 52 (|has| |#1| (-510)))) (-3017 (((-108) $) NIL (|has| |#1| (-787)))) (-2565 (($) 13)) (-1985 (((-108) $) NIL (|has| |#1| (-787)))) (-3912 (((-108) $) NIL (|has| |#1| (-787)))) (-2580 (($) 14)) (-2371 (($ $ $) NIL (|has| |#1| (-787)))) (-2535 (($ $ $) NIL (|has| |#1| (-787)))) (-3451 (((-1074) $) NIL)) (-2806 (((-108) $) 12)) (-2012 (((-1038) $) NIL)) (-1993 (((-108) $) 11)) (-1270 (((-798) $) 22) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) 8) (($ (-525)) NIL (-3279 (|has| |#1| (-787)) (|has| |#1| (-968 (-525)))))) (-2104 (((-713)) 41 (|has| |#1| (-787)))) (-2086 (($ $) NIL (|has| |#1| (-787)))) (-1576 (($ $ (-856)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (-3355 (($) 29 (|has| |#1| (-21)) CONST)) (-3363 (($) 38 (|has| |#1| (-787)) CONST)) (-4045 (((-108) $ $) NIL (|has| |#1| (-787)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-787)))) (-3994 (((-108) $ $) 27)) (-4037 (((-108) $ $) NIL (|has| |#1| (-787)))) (-4017 (((-108) $ $) 48 (|has| |#1| (-787)))) (-4090 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-4080 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-856)) NIL (|has| |#1| (-787))) (($ $ (-713)) NIL (|has| |#1| (-787)))) (* (($ $ $) 44 (|has| |#1| (-787))) (($ (-525) $) 32 (|has| |#1| (-21))) (($ (-713) $) NIL (|has| |#1| (-21))) (($ (-856) $) NIL (|has| |#1| (-21)))))
+(((-782 |#1|) (-13 (-1020) (-389 |#1|) (-10 -8 (-15 -2565 ($)) (-15 -2580 ($)) (-15 -1993 ((-108) $)) (-15 -2806 ((-108) $)) (-15 -3865 ((-1038) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -2265 ((-108) $)) (-15 -2178 ((-385 (-525)) $)) (-15 -2251 ((-3 (-385 (-525)) "failed") $))) |%noBranch|))) (-1020)) (T -782))
+((-2565 (*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1020)))) (-2580 (*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1020)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))) (-2806 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))) (-2178 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))) (-2251 (*1 *2 *1) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1020)))))
+(-13 (-1020) (-389 |#1|) (-10 -8 (-15 -2565 ($)) (-15 -2580 ($)) (-15 -1993 ((-108) $)) (-15 -2806 ((-108) $)) (-15 -3865 ((-1038) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (IF (|has| |#1| (-510)) (PROGN (-15 -2265 ((-108) $)) (-15 -2178 ((-385 (-525)) $)) (-15 -2251 ((-3 (-385 (-525)) "failed") $))) |%noBranch|)))
+((-1260 (((-108) $ $) 7)) (-4190 (((-713)) 20)) (-2899 (($) 23)) (-2371 (($ $ $) 13)) (-2535 (($ $ $) 14)) (-1736 (((-856) $) 22)) (-3451 (((-1074) $) 9)) (-3640 (($ (-856)) 21)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-4045 (((-108) $ $) 16)) (-4026 (((-108) $ $) 17)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 15)) (-4017 (((-108) $ $) 18)))
(((-783) (-131)) (T -783))
NIL
(-13 (-789) (-346))
-(((-97) . T) ((-566 (-797)) . T) ((-346) . T) ((-789) . T) ((-1019) . T))
-((-3033 (((-108) (-1172 |#2|) (-1172 |#2|)) 17)) (-2170 (((-108) (-1172 |#2|) (-1172 |#2|)) 18)) (-2850 (((-108) (-1172 |#2|) (-1172 |#2|)) 14)))
-(((-784 |#1| |#2|) (-10 -7 (-15 -2850 ((-108) (-1172 |#2|) (-1172 |#2|))) (-15 -3033 ((-108) (-1172 |#2|) (-1172 |#2|))) (-15 -2170 ((-108) (-1172 |#2|) (-1172 |#2|)))) (-713) (-734)) (T -784))
-((-2170 (*1 *2 *3 *3) (-12 (-5 *3 (-1172 *5)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))) (-3033 (*1 *2 *3 *3) (-12 (-5 *3 (-1172 *5)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))) (-2850 (*1 *2 *3 *3) (-12 (-5 *3 (-1172 *5)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))))
-(-10 -7 (-15 -2850 ((-108) (-1172 |#2|) (-1172 |#2|))) (-15 -3033 ((-108) (-1172 |#2|) (-1172 |#2|))) (-15 -2170 ((-108) (-1172 |#2|) (-1172 |#2|))))
-((-1893 (((-108) $ $) 7)) (-1505 (($) 24 T CONST)) (-2866 (((-3 $ "failed") $) 28)) (-2133 (((-108) $) 25)) (-3525 (($ $ $) 13)) (-3630 (($ $ $) 14)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3465 (($ $ (-713)) 27) (($ $ (-855)) 22)) (-3882 (($) 23 T CONST)) (-4024 (((-108) $ $) 16)) (-3995 (((-108) $ $) 17)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 15)) (-3983 (((-108) $ $) 18)) (** (($ $ (-713)) 26) (($ $ (-855)) 21)) (* (($ $ $) 20)))
+(((-97) . T) ((-566 (-798)) . T) ((-346) . T) ((-789) . T) ((-1020) . T))
+((-3061 (((-108) (-1173 |#2|) (-1173 |#2|)) 17)) (-2497 (((-108) (-1173 |#2|) (-1173 |#2|)) 18)) (-1780 (((-108) (-1173 |#2|) (-1173 |#2|)) 14)))
+(((-784 |#1| |#2|) (-10 -7 (-15 -1780 ((-108) (-1173 |#2|) (-1173 |#2|))) (-15 -3061 ((-108) (-1173 |#2|) (-1173 |#2|))) (-15 -2497 ((-108) (-1173 |#2|) (-1173 |#2|)))) (-713) (-734)) (T -784))
+((-2497 (*1 *2 *3 *3) (-12 (-5 *3 (-1173 *5)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))) (-3061 (*1 *2 *3 *3) (-12 (-5 *3 (-1173 *5)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))) (-1780 (*1 *2 *3 *3) (-12 (-5 *3 (-1173 *5)) (-4 *5 (-734)) (-5 *2 (-108)) (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))))
+(-10 -7 (-15 -1780 ((-108) (-1173 |#2|) (-1173 |#2|))) (-15 -3061 ((-108) (-1173 |#2|) (-1173 |#2|))) (-15 -2497 ((-108) (-1173 |#2|) (-1173 |#2|))))
+((-1260 (((-108) $ $) 7)) (-2305 (($) 24 T CONST)) (-3762 (((-3 $ "failed") $) 28)) (-1985 (((-108) $) 25)) (-2371 (($ $ $) 13)) (-2535 (($ $ $) 14)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-1576 (($ $ (-713)) 27) (($ $ (-856)) 22)) (-3363 (($) 23 T CONST)) (-4045 (((-108) $ $) 16)) (-4026 (((-108) $ $) 17)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 15)) (-4017 (((-108) $ $) 18)) (** (($ $ (-713)) 26) (($ $ (-856)) 21)) (* (($ $ $) 20)))
(((-785) (-131)) (T -785))
NIL
(-13 (-789) (-669))
-(((-97) . T) ((-566 (-797)) . T) ((-669) . T) ((-789) . T) ((-1031) . T) ((-1019) . T))
-((-1690 (((-525) $) 17)) (-3026 (((-108) $) 10)) (-2882 (((-108) $) 11)) (-2092 (($ $) 19)))
-(((-786 |#1|) (-10 -8 (-15 -2092 (|#1| |#1|)) (-15 -1690 ((-525) |#1|)) (-15 -2882 ((-108) |#1|)) (-15 -3026 ((-108) |#1|))) (-787)) (T -786))
+(((-97) . T) ((-566 (-798)) . T) ((-669) . T) ((-789) . T) ((-1032) . T) ((-1020) . T))
+((-1436 (((-525) $) 17)) (-3017 (((-108) $) 10)) (-3912 (((-108) $) 11)) (-2086 (($ $) 19)))
+(((-786 |#1|) (-10 -8 (-15 -2086 (|#1| |#1|)) (-15 -1436 ((-525) |#1|)) (-15 -3912 ((-108) |#1|)) (-15 -3017 ((-108) |#1|))) (-787)) (T -786))
NIL
-(-10 -8 (-15 -2092 (|#1| |#1|)) (-15 -1690 ((-525) |#1|)) (-15 -2882 ((-108) |#1|)) (-15 -3026 ((-108) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 24)) (-3263 (((-3 $ "failed") $ $) 26)) (-1690 (((-525) $) 33)) (-1505 (($) 23 T CONST)) (-2866 (((-3 $ "failed") $) 39)) (-3026 (((-108) $) 35)) (-2133 (((-108) $) 42)) (-2882 (((-108) $) 34)) (-3525 (($ $ $) 13)) (-3630 (($ $ $) 14)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11) (($ (-525)) 45)) (-2093 (((-713)) 44)) (-2092 (($ $) 32)) (-3465 (($ $ (-713)) 40) (($ $ (-855)) 36)) (-3875 (($) 22 T CONST)) (-3882 (($) 43 T CONST)) (-4024 (((-108) $ $) 16)) (-3995 (((-108) $ $) 17)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 15)) (-3983 (((-108) $ $) 18)) (-4070 (($ $ $) 28) (($ $) 27)) (-4059 (($ $ $) 20)) (** (($ $ (-713)) 41) (($ $ (-855)) 37)) (* (($ (-855) $) 21) (($ (-713) $) 25) (($ (-525) $) 29) (($ $ $) 38)))
+(-10 -8 (-15 -2086 (|#1| |#1|)) (-15 -1436 ((-525) |#1|)) (-15 -3912 ((-108) |#1|)) (-15 -3017 ((-108) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 24)) (-1342 (((-3 $ "failed") $ $) 26)) (-1436 (((-525) $) 33)) (-2305 (($) 23 T CONST)) (-3762 (((-3 $ "failed") $) 39)) (-3017 (((-108) $) 35)) (-1985 (((-108) $) 42)) (-3912 (((-108) $) 34)) (-2371 (($ $ $) 13)) (-2535 (($ $ $) 14)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11) (($ (-525)) 45)) (-2104 (((-713)) 44)) (-2086 (($ $) 32)) (-1576 (($ $ (-713)) 40) (($ $ (-856)) 36)) (-3355 (($) 22 T CONST)) (-3363 (($) 43 T CONST)) (-4045 (((-108) $ $) 16)) (-4026 (((-108) $ $) 17)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 15)) (-4017 (((-108) $ $) 18)) (-4090 (($ $ $) 28) (($ $) 27)) (-4080 (($ $ $) 20)) (** (($ $ (-713)) 41) (($ $ (-856)) 37)) (* (($ (-856) $) 21) (($ (-713) $) 25) (($ (-525) $) 29) (($ $ $) 38)))
(((-787) (-131)) (T -787))
-((-3026 (*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108)))) (-2882 (*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108)))) (-1690 (*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-525)))) (-2092 (*1 *1 *1) (-4 *1 (-787))))
-(-13 (-733) (-976) (-669) (-10 -8 (-15 -3026 ((-108) $)) (-15 -2882 ((-108) $)) (-15 -1690 ((-525) $)) (-15 -2092 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-789) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-3525 (($ $ $) 10)) (-3630 (($ $ $) 9)) (-4024 (((-108) $ $) 13)) (-3995 (((-108) $ $) 11)) (-4010 (((-108) $ $) 14)))
-(((-788 |#1|) (-10 -8 (-15 -3525 (|#1| |#1| |#1|)) (-15 -3630 (|#1| |#1| |#1|)) (-15 -4010 ((-108) |#1| |#1|)) (-15 -4024 ((-108) |#1| |#1|)) (-15 -3995 ((-108) |#1| |#1|))) (-789)) (T -788))
-NIL
-(-10 -8 (-15 -3525 (|#1| |#1| |#1|)) (-15 -3630 (|#1| |#1| |#1|)) (-15 -4010 ((-108) |#1| |#1|)) (-15 -4024 ((-108) |#1| |#1|)) (-15 -3995 ((-108) |#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-3525 (($ $ $) 13)) (-3630 (($ $ $) 14)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-4024 (((-108) $ $) 16)) (-3995 (((-108) $ $) 17)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 15)) (-3983 (((-108) $ $) 18)))
+((-3017 (*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108)))) (-3912 (*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108)))) (-1436 (*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-525)))) (-2086 (*1 *1 *1) (-4 *1 (-787))))
+(-13 (-733) (-977) (-669) (-10 -8 (-15 -3017 ((-108) $)) (-15 -3912 ((-108) $)) (-15 -1436 ((-525) $)) (-15 -2086 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-789) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-2371 (($ $ $) 10)) (-2535 (($ $ $) 9)) (-4045 (((-108) $ $) 13)) (-4026 (((-108) $ $) 11)) (-4037 (((-108) $ $) 14)))
+(((-788 |#1|) (-10 -8 (-15 -2371 (|#1| |#1| |#1|)) (-15 -2535 (|#1| |#1| |#1|)) (-15 -4037 ((-108) |#1| |#1|)) (-15 -4045 ((-108) |#1| |#1|)) (-15 -4026 ((-108) |#1| |#1|))) (-789)) (T -788))
+NIL
+(-10 -8 (-15 -2371 (|#1| |#1| |#1|)) (-15 -2535 (|#1| |#1| |#1|)) (-15 -4037 ((-108) |#1| |#1|)) (-15 -4045 ((-108) |#1| |#1|)) (-15 -4026 ((-108) |#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-2371 (($ $ $) 13)) (-2535 (($ $ $) 14)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-4045 (((-108) $ $) 16)) (-4026 (((-108) $ $) 17)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 15)) (-4017 (((-108) $ $) 18)))
(((-789) (-131)) (T -789))
-((-3983 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-3995 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-4024 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-4010 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-3630 (*1 *1 *1 *1) (-4 *1 (-789))) (-3525 (*1 *1 *1 *1) (-4 *1 (-789))))
-(-13 (-1019) (-10 -8 (-15 -3983 ((-108) $ $)) (-15 -3995 ((-108) $ $)) (-15 -4024 ((-108) $ $)) (-15 -4010 ((-108) $ $)) (-15 -3630 ($ $ $)) (-15 -3525 ($ $ $))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-1521 (($ $ $) 45)) (-1735 (($ $ $) 44)) (-3510 (($ $ $) 42)) (-2801 (($ $ $) 51)) (-3457 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 46)) (-1574 (((-3 $ "failed") $ $) 49)) (-1264 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3811 (($ $) 35)) (-2555 (($ $ $) 39)) (-2470 (($ $ $) 38)) (-3344 (($ $ $) 47)) (-3069 (($ $ $) 53)) (-1702 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 41)) (-1566 (((-3 $ "failed") $ $) 48)) (-2338 (((-3 $ "failed") $ |#2|) 28)) (-2751 ((|#2| $) 32)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#2|) 12)) (-3600 (((-592 |#2|) $) 18)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
-(((-790 |#1| |#2|) (-10 -8 (-15 -3344 (|#1| |#1| |#1|)) (-15 -3457 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1669 |#1|)) |#1| |#1|)) (-15 -2801 (|#1| |#1| |#1|)) (-15 -1574 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1521 (|#1| |#1| |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -3510 (|#1| |#1| |#1|)) (-15 -1702 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1669 |#1|)) |#1| |#1|)) (-15 -3069 (|#1| |#1| |#1|)) (-15 -1566 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -2751 (|#2| |#1|)) (-15 -2338 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3600 ((-592 |#2|) |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -1908 (|#1| |#2|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1908 (|#1| (-525))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|)) (-15 -1908 ((-797) |#1|))) (-791 |#2|) (-976)) (T -790))
-NIL
-(-10 -8 (-15 -3344 (|#1| |#1| |#1|)) (-15 -3457 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1669 |#1|)) |#1| |#1|)) (-15 -2801 (|#1| |#1| |#1|)) (-15 -1574 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1521 (|#1| |#1| |#1|)) (-15 -1735 (|#1| |#1| |#1|)) (-15 -3510 (|#1| |#1| |#1|)) (-15 -1702 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1669 |#1|)) |#1| |#1|)) (-15 -3069 (|#1| |#1| |#1|)) (-15 -1566 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 -2470 (|#1| |#1| |#1|)) (-15 -3811 (|#1| |#1|)) (-15 -2751 (|#2| |#1|)) (-15 -2338 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3600 ((-592 |#2|) |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -1908 (|#1| |#2|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1908 (|#1| (-525))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|)) (-15 -1908 ((-797) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-1521 (($ $ $) 45 (|has| |#1| (-341)))) (-1735 (($ $ $) 46 (|has| |#1| (-341)))) (-3510 (($ $ $) 48 (|has| |#1| (-341)))) (-2801 (($ $ $) 43 (|has| |#1| (-341)))) (-3457 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 42 (|has| |#1| (-341)))) (-1574 (((-3 $ "failed") $ $) 44 (|has| |#1| (-341)))) (-2473 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 47 (|has| |#1| (-341)))) (-1264 (((-3 (-525) "failed") $) 74 (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 72 (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 69)) (-2831 (((-525) $) 75 (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) 73 (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 68)) (-1247 (($ $) 64)) (-2866 (((-3 $ "failed") $) 34)) (-3811 (($ $) 55 (|has| |#1| (-429)))) (-2133 (((-108) $) 31)) (-4079 (($ |#1| (-713)) 62)) (-3169 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 57 (|has| |#1| (-517)))) (-3047 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 58 (|has| |#1| (-517)))) (-3181 (((-713) $) 66)) (-2555 (($ $ $) 52 (|has| |#1| (-341)))) (-2470 (($ $ $) 53 (|has| |#1| (-341)))) (-3344 (($ $ $) 41 (|has| |#1| (-341)))) (-3069 (($ $ $) 50 (|has| |#1| (-341)))) (-1702 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 49 (|has| |#1| (-341)))) (-1566 (((-3 $ "failed") $ $) 51 (|has| |#1| (-341)))) (-3273 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 54 (|has| |#1| (-341)))) (-1224 ((|#1| $) 65)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-2338 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-517)))) (-2513 (((-713) $) 67)) (-2751 ((|#1| $) 56 (|has| |#1| (-429)))) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 71 (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) 70)) (-3600 (((-592 |#1|) $) 61)) (-1657 ((|#1| $ (-713)) 63)) (-2093 (((-713)) 29)) (-3088 ((|#1| $ |#1| |#1|) 60)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
-(((-791 |#1|) (-131) (-976)) (T -791))
-((-2513 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-976)) (-5 *2 (-713)))) (-3181 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-976)) (-5 *2 (-713)))) (-1224 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)))) (-1247 (*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)))) (-1657 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-976)))) (-4079 (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-976)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-976)) (-5 *2 (-592 *3)))) (-3088 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)))) (-2338 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-517)))) (-3047 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-791 *3)))) (-3169 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-791 *3)))) (-2751 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-429)))) (-3811 (*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-429)))) (-3273 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-976)) (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-791 *3)))) (-2470 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-2555 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-1566 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-3069 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-1702 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-976)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1669 *1))) (-4 *1 (-791 *3)))) (-3510 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-2473 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-976)) (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-791 *3)))) (-1735 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-1521 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-1574 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-2801 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-3457 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-976)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1669 *1))) (-4 *1 (-791 *3)))) (-3344 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))))
-(-13 (-976) (-107 |t#1| |t#1|) (-389 |t#1|) (-10 -8 (-15 -2513 ((-713) $)) (-15 -3181 ((-713) $)) (-15 -1224 (|t#1| $)) (-15 -1247 ($ $)) (-15 -1657 (|t#1| $ (-713))) (-15 -4079 ($ |t#1| (-713))) (-15 -3600 ((-592 |t#1|) $)) (-15 -3088 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -2338 ((-3 $ "failed") $ |t#1|)) (-15 -3047 ((-2 (|:| -1338 $) (|:| -1632 $)) $ $)) (-15 -3169 ((-2 (|:| -1338 $) (|:| -1632 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -2751 (|t#1| $)) (-15 -3811 ($ $))) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-15 -3273 ((-2 (|:| -1338 $) (|:| -1632 $)) $ $)) (-15 -2470 ($ $ $)) (-15 -2555 ($ $ $)) (-15 -1566 ((-3 $ "failed") $ $)) (-15 -3069 ($ $ $)) (-15 -1702 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $)) (-15 -3510 ($ $ $)) (-15 -2473 ((-2 (|:| -1338 $) (|:| -1632 $)) $ $)) (-15 -1735 ($ $ $)) (-15 -1521 ($ $ $)) (-15 -1574 ((-3 $ "failed") $ $)) (-15 -2801 ($ $ $)) (-15 -3457 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $)) (-15 -3344 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-389 |#1|) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) |has| |#1| (-160)) ((-669) . T) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-982 |#1|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-4106 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 20)) (-2473 (((-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-341)))) (-3169 (((-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-517)))) (-3047 (((-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2| (-94 |#1|)) 39 (|has| |#1| (-517)))) (-3273 (((-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2| (-94 |#1|)) 42 (|has| |#1| (-341)))) (-3088 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 31)))
-(((-792 |#1| |#2|) (-10 -7 (-15 -4106 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -3088 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-517)) (PROGN (-15 -3047 ((-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3169 ((-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3273 ((-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2473 ((-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-976) (-791 |#1|)) (T -792))
-((-2473 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-976)) (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-3273 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-976)) (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-3169 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-976)) (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-3047 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-976)) (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-3088 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-976)) (-5 *1 (-792 *2 *3)) (-4 *3 (-791 *2)))) (-4106 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-976)) (-5 *1 (-792 *5 *2)) (-4 *2 (-791 *5)))))
-(-10 -7 (-15 -4106 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -3088 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-517)) (PROGN (-15 -3047 ((-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -3169 ((-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3273 ((-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2473 ((-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1521 (($ $ $) NIL (|has| |#1| (-341)))) (-1735 (($ $ $) NIL (|has| |#1| (-341)))) (-3510 (($ $ $) NIL (|has| |#1| (-341)))) (-2801 (($ $ $) NIL (|has| |#1| (-341)))) (-3457 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-1574 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2473 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 25 (|has| |#1| (-341)))) (-1264 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-2831 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-1247 (($ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3811 (($ $) NIL (|has| |#1| (-429)))) (-3697 (((-797) $ (-797)) NIL)) (-2133 (((-108) $) NIL)) (-4079 (($ |#1| (-713)) NIL)) (-3169 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 21 (|has| |#1| (-517)))) (-3047 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 19 (|has| |#1| (-517)))) (-3181 (((-713) $) NIL)) (-2555 (($ $ $) NIL (|has| |#1| (-341)))) (-2470 (($ $ $) NIL (|has| |#1| (-341)))) (-3344 (($ $ $) NIL (|has| |#1| (-341)))) (-3069 (($ $ $) NIL (|has| |#1| (-341)))) (-1702 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-1566 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3273 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 23 (|has| |#1| (-341)))) (-1224 ((|#1| $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2338 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-2513 (((-713) $) NIL)) (-2751 ((|#1| $) NIL (|has| |#1| (-429)))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-967 (-385 (-525))))) (($ |#1|) NIL)) (-3600 (((-592 |#1|) $) NIL)) (-1657 ((|#1| $ (-713)) NIL)) (-2093 (((-713)) NIL)) (-3088 ((|#1| $ |#1| |#1|) 15)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-793 |#1| |#2| |#3|) (-13 (-791 |#1|) (-10 -8 (-15 -3697 ((-797) $ (-797))))) (-976) (-94 |#1|) (-1 |#1| |#1|)) (T -793))
-((-3697 (*1 *2 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-793 *3 *4 *5)) (-4 *3 (-976)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-791 |#1|) (-10 -8 (-15 -3697 ((-797) $ (-797)))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1521 (($ $ $) NIL (|has| |#2| (-341)))) (-1735 (($ $ $) NIL (|has| |#2| (-341)))) (-3510 (($ $ $) NIL (|has| |#2| (-341)))) (-2801 (($ $ $) NIL (|has| |#2| (-341)))) (-3457 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#2| (-341)))) (-1574 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-2473 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#2| (-341)))) (-1264 (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-2831 (((-525) $) NIL (|has| |#2| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-385 (-525))))) ((|#2| $) NIL)) (-1247 (($ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3811 (($ $) NIL (|has| |#2| (-429)))) (-2133 (((-108) $) NIL)) (-4079 (($ |#2| (-713)) 16)) (-3169 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#2| (-517)))) (-3047 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#2| (-517)))) (-3181 (((-713) $) NIL)) (-2555 (($ $ $) NIL (|has| |#2| (-341)))) (-2470 (($ $ $) NIL (|has| |#2| (-341)))) (-3344 (($ $ $) NIL (|has| |#2| (-341)))) (-3069 (($ $ $) NIL (|has| |#2| (-341)))) (-1702 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#2| (-341)))) (-1566 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-3273 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#2| (-341)))) (-1224 ((|#2| $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2338 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-2513 (((-713) $) NIL)) (-2751 ((|#2| $) NIL (|has| |#2| (-429)))) (-1908 (((-797) $) 23) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-967 (-385 (-525))))) (($ |#2|) NIL) (($ (-1168 |#1|)) 18)) (-3600 (((-592 |#2|) $) NIL)) (-1657 ((|#2| $ (-713)) NIL)) (-2093 (((-713)) NIL)) (-3088 ((|#2| $ |#2| |#2|) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) 13 T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-794 |#1| |#2| |#3| |#4|) (-13 (-791 |#2|) (-10 -8 (-15 -1908 ($ (-1168 |#1|))))) (-1090) (-976) (-94 |#2|) (-1 |#2| |#2|)) (T -794))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-14 *3 (-1090)) (-5 *1 (-794 *3 *4 *5 *6)) (-4 *4 (-976)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))))
-(-13 (-791 |#2|) (-10 -8 (-15 -1908 ($ (-1168 |#1|)))))
-((-1923 ((|#1| (-713) |#1|) 35 (|has| |#1| (-37 (-385 (-525)))))) (-1618 ((|#1| (-713) (-713) |#1|) 27) ((|#1| (-713) |#1|) 20)) (-3011 ((|#1| (-713) |#1|) 31)) (-2073 ((|#1| (-713) |#1|) 29)) (-2245 ((|#1| (-713) |#1|) 28)))
-(((-795 |#1|) (-10 -7 (-15 -2245 (|#1| (-713) |#1|)) (-15 -2073 (|#1| (-713) |#1|)) (-15 -3011 (|#1| (-713) |#1|)) (-15 -1618 (|#1| (-713) |#1|)) (-15 -1618 (|#1| (-713) (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1923 (|#1| (-713) |#1|)) |%noBranch|)) (-160)) (T -795))
-((-1923 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-1618 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-1618 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-3011 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-2073 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-2245 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))))
-(-10 -7 (-15 -2245 (|#1| (-713) |#1|)) (-15 -2073 (|#1| (-713) |#1|)) (-15 -3011 (|#1| (-713) |#1|)) (-15 -1618 (|#1| (-713) |#1|)) (-15 -1618 (|#1| (-713) (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -1923 (|#1| (-713) |#1|)) |%noBranch|))
-((-1893 (((-108) $ $) NIL)) (-3871 (((-525) $) 12)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 18) (($ (-525)) 11)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 8)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 9)))
-(((-796) (-13 (-789) (-10 -8 (-15 -1908 ($ (-525))) (-15 -3871 ((-525) $))))) (T -796))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-796)))))
-(-13 (-789) (-10 -8 (-15 -1908 ($ (-525))) (-15 -3871 ((-525) $))))
-((-1893 (((-108) $ $) NIL) (($ $ $) 77)) (-3441 (($ $ $) 115)) (-3243 (((-525) $) 30) (((-525)) 35)) (-3633 (($ (-525)) 44)) (-3853 (($ $ $) 45) (($ (-592 $)) 76)) (-2034 (($ $ (-592 $)) 74)) (-2413 (((-525) $) 33)) (-2058 (($ $ $) 63)) (-3541 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-1375 (((-525) $) 32)) (-2714 (($ $ $) 62)) (-3607 (($ $) 105)) (-3782 (($ $ $) 119)) (-2835 (($ (-592 $)) 52)) (-1734 (($ $ (-592 $)) 69)) (-1935 (($ (-525) (-525)) 46)) (-3356 (($ $) 116) (($ $ $) 117)) (-4152 (($ $ (-525)) 40) (($ $) 43)) (-2373 (($ $ $) 89)) (-1636 (($ $ $) 122)) (-2352 (($ $) 106)) (-2356 (($ $ $) 90)) (-1218 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-2670 (((-1177) $) 8)) (-1440 (($ $) 109) (($ $ (-713)) 112)) (-2384 (($ $ $) 65)) (-2807 (($ $ $) 64)) (-3759 (($ $ (-592 $)) 100)) (-4085 (($ $ $) 104)) (-4144 (($ (-592 $)) 50)) (-2237 (($ $) 60) (($ (-592 $)) 61)) (-2527 (($ $ $) 113)) (-2661 (($ $) 107)) (-2048 (($ $ $) 118)) (-3697 (($ (-525)) 20) (($ (-1090)) 22) (($ (-1073)) 29) (($ (-205)) 24)) (-1330 (($ $ $) 93)) (-2480 (($ $) 94)) (-2297 (((-1177) (-1073)) 14)) (-1275 (($ (-1073)) 13)) (-3515 (($ (-592 (-592 $))) 49)) (-4138 (($ $ (-525)) 39) (($ $) 42)) (-2337 (((-1073) $) NIL)) (-2550 (($ $ $) 121)) (-2409 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-3476 (((-108) $) 98)) (-2959 (($ $ (-592 $)) 102) (($ $ $ $) 103)) (-2163 (($ (-525)) 36)) (-3598 (((-525) $) 31) (((-525)) 34)) (-3625 (($ $ $) 37) (($ (-592 $)) 75)) (-2663 (((-1037) $) NIL)) (-2338 (($ $ $) 91)) (-3773 (($) 12)) (-3928 (($ $ (-592 $)) 99)) (-1595 (($ $) 108) (($ $ (-713)) 111)) (-2347 (($ $ $) 88)) (-3013 (($ $ (-713)) 127)) (-2326 (($ (-592 $)) 51)) (-1908 (((-797) $) 18)) (-2563 (($ $ (-525)) 38) (($ $) 41)) (-1513 (($ $) 58) (($ (-592 $)) 59)) (-3832 (($ $) 56) (($ (-592 $)) 57)) (-1268 (($ $) 114)) (-3529 (($ (-592 $)) 55)) (-3015 (($ $ $) 97)) (-1785 (($ $ $) 120)) (-1341 (($ $ $) 92)) (-1404 (($ $ $) 95) (($ $) 96)) (-4024 (($ $ $) 81)) (-3995 (($ $ $) 79)) (-3961 (((-108) $ $) 15) (($ $ $) 16)) (-4010 (($ $ $) 80)) (-3983 (($ $ $) 78)) (-4082 (($ $ $) 86)) (-4070 (($ $ $) 83) (($ $) 84)) (-4059 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-797) (-13 (-1019) (-10 -8 (-15 -2670 ((-1177) $)) (-15 -1275 ($ (-1073))) (-15 -2297 ((-1177) (-1073))) (-15 -3697 ($ (-525))) (-15 -3697 ($ (-1090))) (-15 -3697 ($ (-1073))) (-15 -3697 ($ (-205))) (-15 -3773 ($)) (-15 -3243 ((-525) $)) (-15 -3598 ((-525) $)) (-15 -3243 ((-525))) (-15 -3598 ((-525))) (-15 -1375 ((-525) $)) (-15 -2413 ((-525) $)) (-15 -2163 ($ (-525))) (-15 -3633 ($ (-525))) (-15 -1935 ($ (-525) (-525))) (-15 -4138 ($ $ (-525))) (-15 -4152 ($ $ (-525))) (-15 -2563 ($ $ (-525))) (-15 -4138 ($ $)) (-15 -4152 ($ $)) (-15 -2563 ($ $)) (-15 -3625 ($ $ $)) (-15 -3853 ($ $ $)) (-15 -3625 ($ (-592 $))) (-15 -3853 ($ (-592 $))) (-15 -3759 ($ $ (-592 $))) (-15 -2959 ($ $ (-592 $))) (-15 -2959 ($ $ $ $)) (-15 -4085 ($ $ $)) (-15 -3476 ((-108) $)) (-15 -3928 ($ $ (-592 $))) (-15 -3607 ($ $)) (-15 -2550 ($ $ $)) (-15 -1268 ($ $)) (-15 -3515 ($ (-592 (-592 $)))) (-15 -3441 ($ $ $)) (-15 -3356 ($ $)) (-15 -3356 ($ $ $)) (-15 -2048 ($ $ $)) (-15 -3782 ($ $ $)) (-15 -1785 ($ $ $)) (-15 -1636 ($ $ $)) (-15 -3013 ($ $ (-713))) (-15 -3015 ($ $ $)) (-15 -2714 ($ $ $)) (-15 -2058 ($ $ $)) (-15 -2807 ($ $ $)) (-15 -2384 ($ $ $)) (-15 -1734 ($ $ (-592 $))) (-15 -2034 ($ $ (-592 $))) (-15 -2352 ($ $)) (-15 -1595 ($ $)) (-15 -1595 ($ $ (-713))) (-15 -1440 ($ $)) (-15 -1440 ($ $ (-713))) (-15 -2661 ($ $)) (-15 -2527 ($ $ $)) (-15 -3541 ($ $)) (-15 -3541 ($ $ $)) (-15 -3541 ($ $ $ $)) (-15 -1218 ($ $)) (-15 -1218 ($ $ $)) (-15 -1218 ($ $ $ $)) (-15 -2409 ($ $)) (-15 -2409 ($ $ $)) (-15 -2409 ($ $ $ $)) (-15 -3832 ($ $)) (-15 -3832 ($ (-592 $))) (-15 -1513 ($ $)) (-15 -1513 ($ (-592 $))) (-15 -2237 ($ $)) (-15 -2237 ($ (-592 $))) (-15 -4144 ($ (-592 $))) (-15 -2326 ($ (-592 $))) (-15 -2835 ($ (-592 $))) (-15 -3529 ($ (-592 $))) (-15 -3961 ($ $ $)) (-15 -1893 ($ $ $)) (-15 -3983 ($ $ $)) (-15 -3995 ($ $ $)) (-15 -4010 ($ $ $)) (-15 -4024 ($ $ $)) (-15 -4059 ($ $ $)) (-15 -4070 ($ $ $)) (-15 -4070 ($ $)) (-15 * ($ $ $)) (-15 -4082 ($ $ $)) (-15 ** ($ $ $)) (-15 -2347 ($ $ $)) (-15 -2373 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -2338 ($ $ $)) (-15 -1341 ($ $ $)) (-15 -1330 ($ $ $)) (-15 -2480 ($ $)) (-15 -1404 ($ $ $)) (-15 -1404 ($ $))))) (T -797))
-((-2670 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-797)))) (-1275 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-797)))) (-2297 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-797)))) (-3697 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-3697 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-797)))) (-3697 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-797)))) (-3697 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-797)))) (-3773 (*1 *1) (-5 *1 (-797))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-3598 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-3243 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-3598 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-1375 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-2413 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-2163 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-3633 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-1935 (*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-4138 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-4152 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-2563 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-4138 (*1 *1 *1) (-5 *1 (-797))) (-4152 (*1 *1 *1) (-5 *1 (-797))) (-2563 (*1 *1 *1) (-5 *1 (-797))) (-3625 (*1 *1 *1 *1) (-5 *1 (-797))) (-3853 (*1 *1 *1 *1) (-5 *1 (-797))) (-3625 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-3853 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-3759 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-2959 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-2959 (*1 *1 *1 *1 *1) (-5 *1 (-797))) (-4085 (*1 *1 *1 *1) (-5 *1 (-797))) (-3476 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-797)))) (-3928 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-3607 (*1 *1 *1) (-5 *1 (-797))) (-2550 (*1 *1 *1 *1) (-5 *1 (-797))) (-1268 (*1 *1 *1) (-5 *1 (-797))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-797)))) (-5 *1 (-797)))) (-3441 (*1 *1 *1 *1) (-5 *1 (-797))) (-3356 (*1 *1 *1) (-5 *1 (-797))) (-3356 (*1 *1 *1 *1) (-5 *1 (-797))) (-2048 (*1 *1 *1 *1) (-5 *1 (-797))) (-3782 (*1 *1 *1 *1) (-5 *1 (-797))) (-1785 (*1 *1 *1 *1) (-5 *1 (-797))) (-1636 (*1 *1 *1 *1) (-5 *1 (-797))) (-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-797)))) (-3015 (*1 *1 *1 *1) (-5 *1 (-797))) (-2714 (*1 *1 *1 *1) (-5 *1 (-797))) (-2058 (*1 *1 *1 *1) (-5 *1 (-797))) (-2807 (*1 *1 *1 *1) (-5 *1 (-797))) (-2384 (*1 *1 *1 *1) (-5 *1 (-797))) (-1734 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-2034 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-2352 (*1 *1 *1) (-5 *1 (-797))) (-1595 (*1 *1 *1) (-5 *1 (-797))) (-1595 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-797)))) (-1440 (*1 *1 *1) (-5 *1 (-797))) (-1440 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-797)))) (-2661 (*1 *1 *1) (-5 *1 (-797))) (-2527 (*1 *1 *1 *1) (-5 *1 (-797))) (-3541 (*1 *1 *1) (-5 *1 (-797))) (-3541 (*1 *1 *1 *1) (-5 *1 (-797))) (-3541 (*1 *1 *1 *1 *1) (-5 *1 (-797))) (-1218 (*1 *1 *1) (-5 *1 (-797))) (-1218 (*1 *1 *1 *1) (-5 *1 (-797))) (-1218 (*1 *1 *1 *1 *1) (-5 *1 (-797))) (-2409 (*1 *1 *1) (-5 *1 (-797))) (-2409 (*1 *1 *1 *1) (-5 *1 (-797))) (-2409 (*1 *1 *1 *1 *1) (-5 *1 (-797))) (-3832 (*1 *1 *1) (-5 *1 (-797))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-1513 (*1 *1 *1) (-5 *1 (-797))) (-1513 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-2237 (*1 *1 *1) (-5 *1 (-797))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-4144 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-2326 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-2835 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-3529 (*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))) (-3961 (*1 *1 *1 *1) (-5 *1 (-797))) (-1893 (*1 *1 *1 *1) (-5 *1 (-797))) (-3983 (*1 *1 *1 *1) (-5 *1 (-797))) (-3995 (*1 *1 *1 *1) (-5 *1 (-797))) (-4010 (*1 *1 *1 *1) (-5 *1 (-797))) (-4024 (*1 *1 *1 *1) (-5 *1 (-797))) (-4059 (*1 *1 *1 *1) (-5 *1 (-797))) (-4070 (*1 *1 *1 *1) (-5 *1 (-797))) (-4070 (*1 *1 *1) (-5 *1 (-797))) (* (*1 *1 *1 *1) (-5 *1 (-797))) (-4082 (*1 *1 *1 *1) (-5 *1 (-797))) (** (*1 *1 *1 *1) (-5 *1 (-797))) (-2347 (*1 *1 *1 *1) (-5 *1 (-797))) (-2373 (*1 *1 *1 *1) (-5 *1 (-797))) (-2356 (*1 *1 *1 *1) (-5 *1 (-797))) (-2338 (*1 *1 *1 *1) (-5 *1 (-797))) (-1341 (*1 *1 *1 *1) (-5 *1 (-797))) (-1330 (*1 *1 *1 *1) (-5 *1 (-797))) (-2480 (*1 *1 *1) (-5 *1 (-797))) (-1404 (*1 *1 *1 *1) (-5 *1 (-797))) (-1404 (*1 *1 *1) (-5 *1 (-797))))
-(-13 (-1019) (-10 -8 (-15 -2670 ((-1177) $)) (-15 -1275 ($ (-1073))) (-15 -2297 ((-1177) (-1073))) (-15 -3697 ($ (-525))) (-15 -3697 ($ (-1090))) (-15 -3697 ($ (-1073))) (-15 -3697 ($ (-205))) (-15 -3773 ($)) (-15 -3243 ((-525) $)) (-15 -3598 ((-525) $)) (-15 -3243 ((-525))) (-15 -3598 ((-525))) (-15 -1375 ((-525) $)) (-15 -2413 ((-525) $)) (-15 -2163 ($ (-525))) (-15 -3633 ($ (-525))) (-15 -1935 ($ (-525) (-525))) (-15 -4138 ($ $ (-525))) (-15 -4152 ($ $ (-525))) (-15 -2563 ($ $ (-525))) (-15 -4138 ($ $)) (-15 -4152 ($ $)) (-15 -2563 ($ $)) (-15 -3625 ($ $ $)) (-15 -3853 ($ $ $)) (-15 -3625 ($ (-592 $))) (-15 -3853 ($ (-592 $))) (-15 -3759 ($ $ (-592 $))) (-15 -2959 ($ $ (-592 $))) (-15 -2959 ($ $ $ $)) (-15 -4085 ($ $ $)) (-15 -3476 ((-108) $)) (-15 -3928 ($ $ (-592 $))) (-15 -3607 ($ $)) (-15 -2550 ($ $ $)) (-15 -1268 ($ $)) (-15 -3515 ($ (-592 (-592 $)))) (-15 -3441 ($ $ $)) (-15 -3356 ($ $)) (-15 -3356 ($ $ $)) (-15 -2048 ($ $ $)) (-15 -3782 ($ $ $)) (-15 -1785 ($ $ $)) (-15 -1636 ($ $ $)) (-15 -3013 ($ $ (-713))) (-15 -3015 ($ $ $)) (-15 -2714 ($ $ $)) (-15 -2058 ($ $ $)) (-15 -2807 ($ $ $)) (-15 -2384 ($ $ $)) (-15 -1734 ($ $ (-592 $))) (-15 -2034 ($ $ (-592 $))) (-15 -2352 ($ $)) (-15 -1595 ($ $)) (-15 -1595 ($ $ (-713))) (-15 -1440 ($ $)) (-15 -1440 ($ $ (-713))) (-15 -2661 ($ $)) (-15 -2527 ($ $ $)) (-15 -3541 ($ $)) (-15 -3541 ($ $ $)) (-15 -3541 ($ $ $ $)) (-15 -1218 ($ $)) (-15 -1218 ($ $ $)) (-15 -1218 ($ $ $ $)) (-15 -2409 ($ $)) (-15 -2409 ($ $ $)) (-15 -2409 ($ $ $ $)) (-15 -3832 ($ $)) (-15 -3832 ($ (-592 $))) (-15 -1513 ($ $)) (-15 -1513 ($ (-592 $))) (-15 -2237 ($ $)) (-15 -2237 ($ (-592 $))) (-15 -4144 ($ (-592 $))) (-15 -2326 ($ (-592 $))) (-15 -2835 ($ (-592 $))) (-15 -3529 ($ (-592 $))) (-15 -3961 ($ $ $)) (-15 -1893 ($ $ $)) (-15 -3983 ($ $ $)) (-15 -3995 ($ $ $)) (-15 -4010 ($ $ $)) (-15 -4024 ($ $ $)) (-15 -4059 ($ $ $)) (-15 -4070 ($ $ $)) (-15 -4070 ($ $)) (-15 * ($ $ $)) (-15 -4082 ($ $ $)) (-15 ** ($ $ $)) (-15 -2347 ($ $ $)) (-15 -2373 ($ $ $)) (-15 -2356 ($ $ $)) (-15 -2338 ($ $ $)) (-15 -1341 ($ $ $)) (-15 -1330 ($ $ $)) (-15 -2480 ($ $)) (-15 -1404 ($ $ $)) (-15 -1404 ($ $))))
-((-3647 (((-1177) (-592 (-51))) 24)) (-1610 (((-1177) (-1073) (-797)) 14) (((-1177) (-797)) 9) (((-1177) (-1073)) 11)))
-(((-798) (-10 -7 (-15 -1610 ((-1177) (-1073))) (-15 -1610 ((-1177) (-797))) (-15 -1610 ((-1177) (-1073) (-797))) (-15 -3647 ((-1177) (-592 (-51)))))) (T -798))
-((-3647 (*1 *2 *3) (-12 (-5 *3 (-592 (-51))) (-5 *2 (-1177)) (-5 *1 (-798)))) (-1610 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-797)) (-5 *2 (-1177)) (-5 *1 (-798)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-798)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-798)))))
-(-10 -7 (-15 -1610 ((-1177) (-1073))) (-15 -1610 ((-1177) (-797))) (-15 -1610 ((-1177) (-1073) (-797))) (-15 -3647 ((-1177) (-592 (-51)))))
-((-1893 (((-108) $ $) NIL)) (-1251 (((-3 $ "failed") (-1090)) 33)) (-3107 (((-713)) 31)) (-3375 (($) NIL)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-1780 (((-855) $) 29)) (-2337 (((-1073) $) 39)) (-4185 (($ (-855)) 28)) (-2663 (((-1037) $) NIL)) (-1427 (((-1090) $) 13) (((-501) $) 19) (((-826 (-357)) $) 26) (((-826 (-525)) $) 22)) (-1908 (((-797) $) 16)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 36)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 35)))
-(((-799 |#1|) (-13 (-783) (-567 (-1090)) (-567 (-501)) (-567 (-826 (-357))) (-567 (-826 (-525))) (-10 -8 (-15 -1251 ((-3 $ "failed") (-1090))))) (-592 (-1090))) (T -799))
-((-1251 (*1 *1 *2) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-799 *3)) (-14 *3 (-592 (-1090))))))
-(-13 (-783) (-567 (-1090)) (-567 (-501)) (-567 (-826 (-357))) (-567 (-826 (-525))) (-10 -8 (-15 -1251 ((-3 $ "failed") (-1090)))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-2866 (((-3 $ "failed") $) NIL)) (-2133 (((-108) $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (((-886 |#1|) $) NIL) (($ (-886 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-160)))) (-2093 (((-713)) NIL)) (-3965 (((-1177) (-713)) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-3961 (((-108) $ $) NIL)) (-4082 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160)))))
-(((-800 |#1| |#2| |#3| |#4|) (-13 (-976) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1908 ((-886 |#1|) $)) (-15 -1908 ($ (-886 |#1|))) (IF (|has| |#1| (-341)) (-15 -4082 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3965 ((-1177) (-713))))) (-976) (-592 (-1090)) (-592 (-713)) (-713)) (T -800))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-886 *3)) (-5 *1 (-800 *3 *4 *5 *6)) (-4 *3 (-976)) (-14 *4 (-592 (-1090))) (-14 *5 (-592 (-713))) (-14 *6 (-713)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-976)) (-5 *1 (-800 *3 *4 *5 *6)) (-14 *4 (-592 (-1090))) (-14 *5 (-592 (-713))) (-14 *6 (-713)))) (-4082 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-800 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *2 (-976)) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-713))) (-14 *5 (-713)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-800 *4 *5 *6 *7)) (-4 *4 (-976)) (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-713))) (-14 *7 (-713)))))
-(-13 (-976) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1908 ((-886 |#1|) $)) (-15 -1908 ($ (-886 |#1|))) (IF (|has| |#1| (-341)) (-15 -4082 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3965 ((-1177) (-713)))))
-((-3869 (((-3 (-161 |#3|) "failed") (-713) (-713) |#2| |#2|) 31)) (-1885 (((-3 (-385 |#3|) "failed") (-713) (-713) |#2| |#2|) 24)))
-(((-801 |#1| |#2| |#3|) (-10 -7 (-15 -1885 ((-3 (-385 |#3|) "failed") (-713) (-713) |#2| |#2|)) (-15 -3869 ((-3 (-161 |#3|) "failed") (-713) (-713) |#2| |#2|))) (-341) (-1163 |#1|) (-1148 |#1|)) (T -801))
-((-3869 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-161 *6)) (-5 *1 (-801 *5 *4 *6)) (-4 *4 (-1163 *5)) (-4 *6 (-1148 *5)))) (-1885 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-385 *6)) (-5 *1 (-801 *5 *4 *6)) (-4 *4 (-1163 *5)) (-4 *6 (-1148 *5)))))
-(-10 -7 (-15 -1885 ((-3 (-385 |#3|) "failed") (-713) (-713) |#2| |#2|)) (-15 -3869 ((-3 (-161 |#3|) "failed") (-713) (-713) |#2| |#2|)))
-((-1885 (((-3 (-385 (-1145 |#2| |#1|)) "failed") (-713) (-713) (-1164 |#1| |#2| |#3|)) 28) (((-3 (-385 (-1145 |#2| |#1|)) "failed") (-713) (-713) (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) 26)))
-(((-802 |#1| |#2| |#3|) (-10 -7 (-15 -1885 ((-3 (-385 (-1145 |#2| |#1|)) "failed") (-713) (-713) (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) (-15 -1885 ((-3 (-385 (-1145 |#2| |#1|)) "failed") (-713) (-713) (-1164 |#1| |#2| |#3|)))) (-341) (-1090) |#1|) (T -802))
-((-1885 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1164 *5 *6 *7)) (-4 *5 (-341)) (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-385 (-1145 *6 *5))) (-5 *1 (-802 *5 *6 *7)))) (-1885 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1164 *5 *6 *7)) (-4 *5 (-341)) (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-385 (-1145 *6 *5))) (-5 *1 (-802 *5 *6 *7)))))
-(-10 -7 (-15 -1885 ((-3 (-385 (-1145 |#2| |#1|)) "failed") (-713) (-713) (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) (-15 -1885 ((-3 (-385 (-1145 |#2| |#1|)) "failed") (-713) (-713) (-1164 |#1| |#2| |#3|))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-3263 (((-3 $ "failed") $ $) 19)) (-3969 (($ $ (-525)) 62)) (-2305 (((-108) $ $) 59)) (-1505 (($) 17 T CONST)) (-3356 (($ (-1086 (-525)) (-525)) 61)) (-2373 (($ $ $) 55)) (-2866 (((-3 $ "failed") $) 34)) (-2247 (($ $) 64)) (-2356 (($ $ $) 56)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 51)) (-1737 (((-713) $) 69)) (-2133 (((-108) $) 31)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2238 (((-525)) 66)) (-1276 (((-525) $) 65)) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-3538 (($ $ (-525)) 68)) (-2338 (((-3 $ "failed") $ $) 42)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2183 (((-713) $) 58)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 57)) (-4076 (((-1071 (-525)) $) 70)) (-1801 (($ $) 67)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43)) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) 39)) (-2038 (((-525) $ (-525)) 63)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
-(((-803 |#1|) (-131) (-525)) (T -803))
-((-4076 (*1 *2 *1) (-12 (-4 *1 (-803 *3)) (-5 *2 (-1071 (-525))))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-803 *3)) (-5 *2 (-713)))) (-3538 (*1 *1 *1 *2) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525)))) (-1801 (*1 *1 *1) (-4 *1 (-803 *2))) (-2238 (*1 *2) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525)))) (-1276 (*1 *2 *1) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525)))) (-2247 (*1 *1 *1) (-4 *1 (-803 *2))) (-2038 (*1 *2 *1 *2) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525)))) (-3969 (*1 *1 *1 *2) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525)))) (-3356 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 (-525))) (-5 *3 (-525)) (-4 *1 (-803 *4)))))
-(-13 (-286) (-138) (-10 -8 (-15 -4076 ((-1071 (-525)) $)) (-15 -1737 ((-713) $)) (-15 -3538 ($ $ (-525))) (-15 -1801 ($ $)) (-15 -2238 ((-525))) (-15 -1276 ((-525) $)) (-15 -2247 ($ $)) (-15 -2038 ((-525) $ (-525))) (-15 -3969 ($ $ (-525))) (-15 -3356 ($ (-1086 (-525)) (-525)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-286) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-854) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3969 (($ $ (-525)) NIL)) (-2305 (((-108) $ $) NIL)) (-1505 (($) NIL T CONST)) (-3356 (($ (-1086 (-525)) (-525)) NIL)) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-2247 (($ $) NIL)) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-1737 (((-713) $) NIL)) (-2133 (((-108) $) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2238 (((-525)) NIL)) (-1276 (((-525) $) NIL)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3538 (($ $ (-525)) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-4076 (((-1071 (-525)) $) NIL)) (-1801 (($ $) NIL)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL)) (-2093 (((-713)) NIL)) (-2262 (((-108) $ $) NIL)) (-2038 (((-525) $ (-525)) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL)))
-(((-804 |#1|) (-803 |#1|) (-525)) (T -804))
-NIL
-(-803 |#1|)
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3115 (((-804 |#1|) $) NIL (|has| (-804 |#1|) (-286)))) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-804 |#1|) (-843)))) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| (-804 |#1|) (-843)))) (-2305 (((-108) $ $) NIL)) (-1690 (((-525) $) NIL (|has| (-804 |#1|) (-762)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-804 |#1|) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL (|has| (-804 |#1|) (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-804 |#1|) (-967 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-804 |#1|) (-967 (-525))))) (-2831 (((-804 |#1|) $) NIL) (((-1090) $) NIL (|has| (-804 |#1|) (-967 (-1090)))) (((-385 (-525)) $) NIL (|has| (-804 |#1|) (-967 (-525)))) (((-525) $) NIL (|has| (-804 |#1|) (-967 (-525))))) (-2536 (($ $) NIL) (($ (-525) $) NIL)) (-2373 (($ $ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| (-804 |#1|) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-804 |#1|) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-804 |#1|))) (|:| |vec| (-1172 (-804 |#1|)))) (-632 $) (-1172 $)) NIL) (((-632 (-804 |#1|)) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) NIL (|has| (-804 |#1|) (-510)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-3026 (((-108) $) NIL (|has| (-804 |#1|) (-762)))) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| (-804 |#1|) (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| (-804 |#1|) (-820 (-357))))) (-2133 (((-108) $) NIL)) (-3830 (($ $) NIL)) (-1303 (((-804 |#1|) $) NIL)) (-1816 (((-3 $ "failed") $) NIL (|has| (-804 |#1|) (-1066)))) (-2882 (((-108) $) NIL (|has| (-804 |#1|) (-762)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3525 (($ $ $) NIL (|has| (-804 |#1|) (-789)))) (-3630 (($ $ $) NIL (|has| (-804 |#1|) (-789)))) (-1370 (($ (-1 (-804 |#1|) (-804 |#1|)) $) NIL)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL (|has| (-804 |#1|) (-1066)) CONST)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2723 (($ $) NIL (|has| (-804 |#1|) (-286)))) (-1720 (((-804 |#1|) $) NIL (|has| (-804 |#1|) (-510)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-804 |#1|) (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-804 |#1|) (-843)))) (-3959 (((-396 $) $) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3092 (($ $ (-592 (-804 |#1|)) (-592 (-804 |#1|))) NIL (|has| (-804 |#1|) (-288 (-804 |#1|)))) (($ $ (-804 |#1|) (-804 |#1|)) NIL (|has| (-804 |#1|) (-288 (-804 |#1|)))) (($ $ (-273 (-804 |#1|))) NIL (|has| (-804 |#1|) (-288 (-804 |#1|)))) (($ $ (-592 (-273 (-804 |#1|)))) NIL (|has| (-804 |#1|) (-288 (-804 |#1|)))) (($ $ (-592 (-1090)) (-592 (-804 |#1|))) NIL (|has| (-804 |#1|) (-486 (-1090) (-804 |#1|)))) (($ $ (-1090) (-804 |#1|)) NIL (|has| (-804 |#1|) (-486 (-1090) (-804 |#1|))))) (-2183 (((-713) $) NIL)) (-3928 (($ $ (-804 |#1|)) NIL (|has| (-804 |#1|) (-265 (-804 |#1|) (-804 |#1|))))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-3013 (($ $) NIL (|has| (-804 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-804 |#1|) (-213))) (($ $ (-1090)) NIL (|has| (-804 |#1|) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-804 |#1|) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-804 |#1|) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-804 |#1|) (-834 (-1090)))) (($ $ (-1 (-804 |#1|) (-804 |#1|)) (-713)) NIL) (($ $ (-1 (-804 |#1|) (-804 |#1|))) NIL)) (-1915 (($ $) NIL)) (-1312 (((-804 |#1|) $) NIL)) (-1427 (((-826 (-525)) $) NIL (|has| (-804 |#1|) (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| (-804 |#1|) (-567 (-826 (-357))))) (((-501) $) NIL (|has| (-804 |#1|) (-567 (-501)))) (((-357) $) NIL (|has| (-804 |#1|) (-952))) (((-205) $) NIL (|has| (-804 |#1|) (-952)))) (-3077 (((-161 (-385 (-525))) $) NIL)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-804 |#1|) (-843))))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-804 |#1|)) NIL) (($ (-1090)) NIL (|has| (-804 |#1|) (-967 (-1090))))) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| (-804 |#1|) (-843))) (|has| (-804 |#1|) (-136))))) (-2093 (((-713)) NIL)) (-2498 (((-804 |#1|) $) NIL (|has| (-804 |#1|) (-510)))) (-2262 (((-108) $ $) NIL)) (-2038 (((-385 (-525)) $ (-525)) NIL)) (-2092 (($ $) NIL (|has| (-804 |#1|) (-762)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $) NIL (|has| (-804 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-804 |#1|) (-213))) (($ $ (-1090)) NIL (|has| (-804 |#1|) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-804 |#1|) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-804 |#1|) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-804 |#1|) (-834 (-1090)))) (($ $ (-1 (-804 |#1|) (-804 |#1|)) (-713)) NIL) (($ $ (-1 (-804 |#1|) (-804 |#1|))) NIL)) (-4024 (((-108) $ $) NIL (|has| (-804 |#1|) (-789)))) (-3995 (((-108) $ $) NIL (|has| (-804 |#1|) (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| (-804 |#1|) (-789)))) (-3983 (((-108) $ $) NIL (|has| (-804 |#1|) (-789)))) (-4082 (($ $ $) NIL) (($ (-804 |#1|) (-804 |#1|)) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-804 |#1|) $) NIL) (($ $ (-804 |#1|)) NIL)))
-(((-805 |#1|) (-13 (-924 (-804 |#1|)) (-10 -8 (-15 -2038 ((-385 (-525)) $ (-525))) (-15 -3077 ((-161 (-385 (-525))) $)) (-15 -2536 ($ $)) (-15 -2536 ($ (-525) $)))) (-525)) (T -805))
-((-2038 (*1 *2 *1 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-805 *4)) (-14 *4 (-525)) (-5 *3 (-525)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-805 *3)) (-14 *3 (-525)))) (-2536 (*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-14 *2 (-525)))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-805 *3)) (-14 *3 (-525)))))
-(-13 (-924 (-804 |#1|)) (-10 -8 (-15 -2038 ((-385 (-525)) $ (-525))) (-15 -3077 ((-161 (-385 (-525))) $)) (-15 -2536 ($ $)) (-15 -2536 ($ (-525) $))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3115 ((|#2| $) NIL (|has| |#2| (-286)))) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-2305 (((-108) $ $) NIL)) (-1690 (((-525) $) NIL (|has| |#2| (-762)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#2| "failed") $) NIL) (((-3 (-1090) "failed") $) NIL (|has| |#2| (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525))))) (-2831 ((|#2| $) NIL) (((-1090) $) NIL (|has| |#2| (-967 (-1090)))) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-525)))) (((-525) $) NIL (|has| |#2| (-967 (-525))))) (-2536 (($ $) 31) (($ (-525) $) 32)) (-2373 (($ $ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) 53)) (-3375 (($) NIL (|has| |#2| (-510)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-3026 (((-108) $) NIL (|has| |#2| (-762)))) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| |#2| (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| |#2| (-820 (-357))))) (-2133 (((-108) $) NIL)) (-3830 (($ $) NIL)) (-1303 ((|#2| $) NIL)) (-1816 (((-3 $ "failed") $) NIL (|has| |#2| (-1066)))) (-2882 (((-108) $) NIL (|has| |#2| (-762)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3525 (($ $ $) NIL (|has| |#2| (-789)))) (-3630 (($ $ $) NIL (|has| |#2| (-789)))) (-1370 (($ (-1 |#2| |#2|) $) NIL)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 49)) (-2279 (($) NIL (|has| |#2| (-1066)) CONST)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2723 (($ $) NIL (|has| |#2| (-286)))) (-1720 ((|#2| $) NIL (|has| |#2| (-510)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-3959 (((-396 $) $) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3092 (($ $ (-592 |#2|) (-592 |#2|)) NIL (|has| |#2| (-288 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-288 |#2|))) (($ $ (-273 |#2|)) NIL (|has| |#2| (-288 |#2|))) (($ $ (-592 (-273 |#2|))) NIL (|has| |#2| (-288 |#2|))) (($ $ (-592 (-1090)) (-592 |#2|)) NIL (|has| |#2| (-486 (-1090) |#2|))) (($ $ (-1090) |#2|) NIL (|has| |#2| (-486 (-1090) |#2|)))) (-2183 (((-713) $) NIL)) (-3928 (($ $ |#2|) NIL (|has| |#2| (-265 |#2| |#2|)))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-3013 (($ $) NIL (|has| |#2| (-213))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1915 (($ $) NIL)) (-1312 ((|#2| $) NIL)) (-1427 (((-826 (-525)) $) NIL (|has| |#2| (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| |#2| (-567 (-826 (-357))))) (((-501) $) NIL (|has| |#2| (-567 (-501)))) (((-357) $) NIL (|has| |#2| (-952))) (((-205) $) NIL (|has| |#2| (-952)))) (-3077 (((-161 (-385 (-525))) $) 68)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-843))))) (-1908 (((-797) $) 87) (($ (-525)) 19) (($ $) NIL) (($ (-385 (-525))) 24) (($ |#2|) 18) (($ (-1090)) NIL (|has| |#2| (-967 (-1090))))) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#2| (-843))) (|has| |#2| (-136))))) (-2093 (((-713)) NIL)) (-2498 ((|#2| $) NIL (|has| |#2| (-510)))) (-2262 (((-108) $ $) NIL)) (-2038 (((-385 (-525)) $ (-525)) 60)) (-2092 (($ $) NIL (|has| |#2| (-762)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) 14 T CONST)) (-3882 (($) 16 T CONST)) (-1424 (($ $) NIL (|has| |#2| (-213))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4024 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3961 (((-108) $ $) 35)) (-4010 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4082 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4070 (($ $) 39) (($ $ $) 41)) (-4059 (($ $ $) 37)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 50)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 42) (($ $ $) 44) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-806 |#1| |#2|) (-13 (-924 |#2|) (-10 -8 (-15 -2038 ((-385 (-525)) $ (-525))) (-15 -3077 ((-161 (-385 (-525))) $)) (-15 -2536 ($ $)) (-15 -2536 ($ (-525) $)))) (-525) (-803 |#1|)) (T -806))
-((-2038 (*1 *2 *1 *3) (-12 (-14 *4 (-525)) (-5 *2 (-385 (-525))) (-5 *1 (-806 *4 *5)) (-5 *3 (-525)) (-4 *5 (-803 *4)))) (-3077 (*1 *2 *1) (-12 (-14 *3 (-525)) (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-806 *3 *4)) (-4 *4 (-803 *3)))) (-2536 (*1 *1 *1) (-12 (-14 *2 (-525)) (-5 *1 (-806 *2 *3)) (-4 *3 (-803 *2)))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-14 *3 (-525)) (-5 *1 (-806 *3 *4)) (-4 *4 (-803 *3)))))
-(-13 (-924 |#2|) (-10 -8 (-15 -2038 ((-385 (-525)) $ (-525))) (-15 -3077 ((-161 (-385 (-525))) $)) (-15 -2536 ($ $)) (-15 -2536 ($ (-525) $))))
-((-1893 (((-108) $ $) NIL (-12 (|has| |#1| (-1019)) (|has| |#2| (-1019))))) (-1882 ((|#2| $) 12)) (-4218 (($ |#1| |#2|) 9)) (-2337 (((-1073) $) NIL (-12 (|has| |#1| (-1019)) (|has| |#2| (-1019))))) (-2663 (((-1037) $) NIL (-12 (|has| |#1| (-1019)) (|has| |#2| (-1019))))) (-3135 ((|#1| $) 11)) (-1922 (($ |#1| |#2|) 10)) (-1908 (((-797) $) 18 (-3309 (-12 (|has| |#1| (-566 (-797))) (|has| |#2| (-566 (-797)))) (-12 (|has| |#1| (-1019)) (|has| |#2| (-1019)))))) (-3961 (((-108) $ $) 22 (-12 (|has| |#1| (-1019)) (|has| |#2| (-1019))))))
-(((-807 |#1| |#2|) (-13 (-1126) (-10 -8 (IF (|has| |#1| (-566 (-797))) (IF (|has| |#2| (-566 (-797))) (-6 (-566 (-797))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1019)) (IF (|has| |#2| (-1019)) (-6 (-1019)) |%noBranch|) |%noBranch|) (-15 -4218 ($ |#1| |#2|)) (-15 -1922 ($ |#1| |#2|)) (-15 -3135 (|#1| $)) (-15 -1882 (|#2| $)))) (-1126) (-1126)) (T -807))
-((-4218 (*1 *1 *2 *3) (-12 (-5 *1 (-807 *2 *3)) (-4 *2 (-1126)) (-4 *3 (-1126)))) (-1922 (*1 *1 *2 *3) (-12 (-5 *1 (-807 *2 *3)) (-4 *2 (-1126)) (-4 *3 (-1126)))) (-3135 (*1 *2 *1) (-12 (-4 *2 (-1126)) (-5 *1 (-807 *2 *3)) (-4 *3 (-1126)))) (-1882 (*1 *2 *1) (-12 (-4 *2 (-1126)) (-5 *1 (-807 *3 *2)) (-4 *3 (-1126)))))
-(-13 (-1126) (-10 -8 (IF (|has| |#1| (-566 (-797))) (IF (|has| |#2| (-566 (-797))) (-6 (-566 (-797))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1019)) (IF (|has| |#2| (-1019)) (-6 (-1019)) |%noBranch|) |%noBranch|) (-15 -4218 ($ |#1| |#2|)) (-15 -1922 ($ |#1| |#2|)) (-15 -3135 (|#1| $)) (-15 -1882 (|#2| $))))
-((-1893 (((-108) $ $) NIL)) (-1758 (((-525) $) 15)) (-2639 (($ (-146)) 11)) (-3414 (($ (-146)) 12)) (-2337 (((-1073) $) NIL)) (-3881 (((-146) $) 13)) (-2663 (((-1037) $) NIL)) (-3339 (($ (-146)) 9)) (-4200 (($ (-146)) 8)) (-1908 (((-797) $) 23) (($ (-146)) 16)) (-3620 (($ (-146)) 10)) (-3961 (((-108) $ $) NIL)))
-(((-808) (-13 (-1019) (-10 -8 (-15 -4200 ($ (-146))) (-15 -3339 ($ (-146))) (-15 -3620 ($ (-146))) (-15 -2639 ($ (-146))) (-15 -3414 ($ (-146))) (-15 -3881 ((-146) $)) (-15 -1758 ((-525) $)) (-15 -1908 ($ (-146)))))) (T -808))
-((-4200 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808)))) (-3339 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808)))) (-3620 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808)))) (-2639 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808)))) (-3414 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808)))) (-3881 (*1 *2 *1) (-12 (-5 *2 (-146)) (-5 *1 (-808)))) (-1758 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-808)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808)))))
-(-13 (-1019) (-10 -8 (-15 -4200 ($ (-146))) (-15 -3339 ($ (-146))) (-15 -3620 ($ (-146))) (-15 -2639 ($ (-146))) (-15 -3414 ($ (-146))) (-15 -3881 ((-146) $)) (-15 -1758 ((-525) $)) (-15 -1908 ($ (-146)))))
-((-1908 (((-294 (-525)) (-385 (-886 (-47)))) 23) (((-294 (-525)) (-886 (-47))) 18)))
-(((-809) (-10 -7 (-15 -1908 ((-294 (-525)) (-886 (-47)))) (-15 -1908 ((-294 (-525)) (-385 (-886 (-47))))))) (T -809))
-((-1908 (*1 *2 *3) (-12 (-5 *3 (-385 (-886 (-47)))) (-5 *2 (-294 (-525))) (-5 *1 (-809)))) (-1908 (*1 *2 *3) (-12 (-5 *3 (-886 (-47))) (-5 *2 (-294 (-525))) (-5 *1 (-809)))))
-(-10 -7 (-15 -1908 ((-294 (-525)) (-886 (-47)))) (-15 -1908 ((-294 (-525)) (-385 (-886 (-47))))))
-((-1370 (((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|)) 14)))
-(((-810 |#1| |#2|) (-10 -7 (-15 -1370 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|)))) (-1126) (-1126)) (T -810))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-811 *6)) (-5 *1 (-810 *5 *6)))))
-(-10 -7 (-15 -1370 ((-811 |#2|) (-1 |#2| |#1|) (-811 |#1|))))
-((-1539 (($ |#1| |#1|) 8)) (-4178 ((|#1| $ (-713)) 10)))
-(((-811 |#1|) (-10 -8 (-15 -1539 ($ |#1| |#1|)) (-15 -4178 (|#1| $ (-713)))) (-1126)) (T -811))
-((-4178 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-811 *2)) (-4 *2 (-1126)))) (-1539 (*1 *1 *2 *2) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1126)))))
-(-10 -8 (-15 -1539 ($ |#1| |#1|)) (-15 -4178 (|#1| $ (-713))))
-((-1370 (((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|)) 14)))
-(((-812 |#1| |#2|) (-10 -7 (-15 -1370 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|)))) (-1126) (-1126)) (T -812))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-813 *6)) (-5 *1 (-812 *5 *6)))))
-(-10 -7 (-15 -1370 ((-813 |#2|) (-1 |#2| |#1|) (-813 |#1|))))
-((-1539 (($ |#1| |#1| |#1|) 8)) (-4178 ((|#1| $ (-713)) 10)))
-(((-813 |#1|) (-10 -8 (-15 -1539 ($ |#1| |#1| |#1|)) (-15 -4178 (|#1| $ (-713)))) (-1126)) (T -813))
-((-4178 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-813 *2)) (-4 *2 (-1126)))) (-1539 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1126)))))
-(-10 -8 (-15 -1539 ($ |#1| |#1| |#1|)) (-15 -4178 (|#1| $ (-713))))
-((-1325 (((-592 (-1095)) (-1073)) 9)))
-(((-814) (-10 -7 (-15 -1325 ((-592 (-1095)) (-1073))))) (T -814))
-((-1325 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-592 (-1095))) (-5 *1 (-814)))))
-(-10 -7 (-15 -1325 ((-592 (-1095)) (-1073))))
-((-1370 (((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|)) 14)))
-(((-815 |#1| |#2|) (-10 -7 (-15 -1370 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|)))) (-1126) (-1126)) (T -815))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6)))))
-(-10 -7 (-15 -1370 ((-816 |#2|) (-1 |#2| |#1|) (-816 |#1|))))
-((-3599 (($ |#1| |#1| |#1|) 8)) (-4178 ((|#1| $ (-713)) 10)))
-(((-816 |#1|) (-10 -8 (-15 -3599 ($ |#1| |#1| |#1|)) (-15 -4178 (|#1| $ (-713)))) (-1126)) (T -816))
-((-4178 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-816 *2)) (-4 *2 (-1126)))) (-3599 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1126)))))
-(-10 -8 (-15 -3599 ($ |#1| |#1| |#1|)) (-15 -4178 (|#1| $ (-713))))
-((-2971 (((-1071 (-592 (-525))) (-592 (-525)) (-1071 (-592 (-525)))) 32)) (-2787 (((-1071 (-592 (-525))) (-592 (-525)) (-592 (-525))) 28)) (-3368 (((-1071 (-592 (-525))) (-592 (-525))) 41) (((-1071 (-592 (-525))) (-592 (-525)) (-592 (-525))) 40)) (-1953 (((-1071 (-592 (-525))) (-525)) 42)) (-1237 (((-1071 (-592 (-525))) (-525) (-525)) 22) (((-1071 (-592 (-525))) (-525)) 16) (((-1071 (-592 (-525))) (-525) (-525) (-525)) 12)) (-2306 (((-1071 (-592 (-525))) (-1071 (-592 (-525)))) 26)) (-3634 (((-592 (-525)) (-592 (-525))) 25)))
-(((-817) (-10 -7 (-15 -1237 ((-1071 (-592 (-525))) (-525) (-525) (-525))) (-15 -1237 ((-1071 (-592 (-525))) (-525))) (-15 -1237 ((-1071 (-592 (-525))) (-525) (-525))) (-15 -3634 ((-592 (-525)) (-592 (-525)))) (-15 -2306 ((-1071 (-592 (-525))) (-1071 (-592 (-525))))) (-15 -2787 ((-1071 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -2971 ((-1071 (-592 (-525))) (-592 (-525)) (-1071 (-592 (-525))))) (-15 -3368 ((-1071 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -3368 ((-1071 (-592 (-525))) (-592 (-525)))) (-15 -1953 ((-1071 (-592 (-525))) (-525))))) (T -817))
-((-1953 (*1 *2 *3) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-525)))) (-3368 (*1 *2 *3) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-592 (-525))))) (-3368 (*1 *2 *3 *3) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-592 (-525))))) (-2971 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *3 (-592 (-525))) (-5 *1 (-817)))) (-2787 (*1 *2 *3 *3) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-592 (-525))))) (-2306 (*1 *2 *2) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)))) (-3634 (*1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-817)))) (-1237 (*1 *2 *3 *3) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-525)))) (-1237 (*1 *2 *3) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-525)))) (-1237 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-525)))))
-(-10 -7 (-15 -1237 ((-1071 (-592 (-525))) (-525) (-525) (-525))) (-15 -1237 ((-1071 (-592 (-525))) (-525))) (-15 -1237 ((-1071 (-592 (-525))) (-525) (-525))) (-15 -3634 ((-592 (-525)) (-592 (-525)))) (-15 -2306 ((-1071 (-592 (-525))) (-1071 (-592 (-525))))) (-15 -2787 ((-1071 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -2971 ((-1071 (-592 (-525))) (-592 (-525)) (-1071 (-592 (-525))))) (-15 -3368 ((-1071 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -3368 ((-1071 (-592 (-525))) (-592 (-525)))) (-15 -1953 ((-1071 (-592 (-525))) (-525))))
-((-1427 (((-826 (-357)) $) 9 (|has| |#1| (-567 (-826 (-357))))) (((-826 (-525)) $) 8 (|has| |#1| (-567 (-826 (-525)))))))
-(((-818 |#1|) (-131) (-1126)) (T -818))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-567 (-826 (-525)))) (-6 (-567 (-826 (-525)))) |%noBranch|) (IF (|has| |t#1| (-567 (-826 (-357)))) (-6 (-567 (-826 (-357)))) |%noBranch|)))
-(((-567 (-826 (-357))) |has| |#1| (-567 (-826 (-357)))) ((-567 (-826 (-525))) |has| |#1| (-567 (-826 (-525)))))
-((-1893 (((-108) $ $) NIL)) (-4018 (($) 14)) (-2414 (($ (-823 |#1| |#2|) (-823 |#1| |#3|)) 27)) (-2290 (((-823 |#1| |#3|) $) 16)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3504 (((-108) $) 22)) (-4126 (($) 19)) (-1908 (((-797) $) 30)) (-3520 (((-823 |#1| |#2|) $) 15)) (-3961 (((-108) $ $) 25)))
-(((-819 |#1| |#2| |#3|) (-13 (-1019) (-10 -8 (-15 -3504 ((-108) $)) (-15 -4126 ($)) (-15 -4018 ($)) (-15 -2414 ($ (-823 |#1| |#2|) (-823 |#1| |#3|))) (-15 -3520 ((-823 |#1| |#2|) $)) (-15 -2290 ((-823 |#1| |#3|) $)))) (-1019) (-1019) (-612 |#2|)) (T -819))
-((-3504 (*1 *2 *1) (-12 (-4 *4 (-1019)) (-5 *2 (-108)) (-5 *1 (-819 *3 *4 *5)) (-4 *3 (-1019)) (-4 *5 (-612 *4)))) (-4126 (*1 *1) (-12 (-4 *3 (-1019)) (-5 *1 (-819 *2 *3 *4)) (-4 *2 (-1019)) (-4 *4 (-612 *3)))) (-4018 (*1 *1) (-12 (-4 *3 (-1019)) (-5 *1 (-819 *2 *3 *4)) (-4 *2 (-1019)) (-4 *4 (-612 *3)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-823 *4 *5)) (-5 *3 (-823 *4 *6)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-612 *5)) (-5 *1 (-819 *4 *5 *6)))) (-3520 (*1 *2 *1) (-12 (-4 *4 (-1019)) (-5 *2 (-823 *3 *4)) (-5 *1 (-819 *3 *4 *5)) (-4 *3 (-1019)) (-4 *5 (-612 *4)))) (-2290 (*1 *2 *1) (-12 (-4 *4 (-1019)) (-5 *2 (-823 *3 *5)) (-5 *1 (-819 *3 *4 *5)) (-4 *3 (-1019)) (-4 *5 (-612 *4)))))
-(-13 (-1019) (-10 -8 (-15 -3504 ((-108) $)) (-15 -4126 ($)) (-15 -4018 ($)) (-15 -2414 ($ (-823 |#1| |#2|) (-823 |#1| |#3|))) (-15 -3520 ((-823 |#1| |#2|) $)) (-15 -2290 ((-823 |#1| |#3|) $))))
-((-1893 (((-108) $ $) 7)) (-1524 (((-823 |#1| $) $ (-826 |#1|) (-823 |#1| $)) 13)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3961 (((-108) $ $) 6)))
-(((-820 |#1|) (-131) (-1019)) (T -820))
-((-1524 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-823 *4 *1)) (-5 *3 (-826 *4)) (-4 *1 (-820 *4)) (-4 *4 (-1019)))))
-(-13 (-1019) (-10 -8 (-15 -1524 ((-823 |t#1| $) $ (-826 |t#1|) (-823 |t#1| $)))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-3034 (((-108) (-592 |#2|) |#3|) 23) (((-108) |#2| |#3|) 18)) (-2266 (((-823 |#1| |#2|) |#2| |#3|) 43 (-12 (-2480 (|has| |#2| (-967 (-1090)))) (-2480 (|has| |#2| (-976))))) (((-592 (-273 (-886 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-976)) (-2480 (|has| |#2| (-967 (-1090)))))) (((-592 (-273 |#2|)) |#2| |#3|) 35 (|has| |#2| (-967 (-1090)))) (((-819 |#1| |#2| (-592 |#2|)) (-592 |#2|) |#3|) 21)))
-(((-821 |#1| |#2| |#3|) (-10 -7 (-15 -3034 ((-108) |#2| |#3|)) (-15 -3034 ((-108) (-592 |#2|) |#3|)) (-15 -2266 ((-819 |#1| |#2| (-592 |#2|)) (-592 |#2|) |#3|)) (IF (|has| |#2| (-967 (-1090))) (-15 -2266 ((-592 (-273 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-976)) (-15 -2266 ((-592 (-273 (-886 |#2|))) |#2| |#3|)) (-15 -2266 ((-823 |#1| |#2|) |#2| |#3|))))) (-1019) (-820 |#1|) (-567 (-826 |#1|))) (T -821))
-((-2266 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-5 *2 (-823 *5 *3)) (-5 *1 (-821 *5 *3 *4)) (-2480 (-4 *3 (-967 (-1090)))) (-2480 (-4 *3 (-976))) (-4 *3 (-820 *5)) (-4 *4 (-567 (-826 *5))))) (-2266 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-5 *2 (-592 (-273 (-886 *3)))) (-5 *1 (-821 *5 *3 *4)) (-4 *3 (-976)) (-2480 (-4 *3 (-967 (-1090)))) (-4 *3 (-820 *5)) (-4 *4 (-567 (-826 *5))))) (-2266 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-5 *2 (-592 (-273 *3))) (-5 *1 (-821 *5 *3 *4)) (-4 *3 (-967 (-1090))) (-4 *3 (-820 *5)) (-4 *4 (-567 (-826 *5))))) (-2266 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-4 *6 (-820 *5)) (-5 *2 (-819 *5 *6 (-592 *6))) (-5 *1 (-821 *5 *6 *4)) (-5 *3 (-592 *6)) (-4 *4 (-567 (-826 *5))))) (-3034 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-4 *6 (-820 *5)) (-4 *5 (-1019)) (-5 *2 (-108)) (-5 *1 (-821 *5 *6 *4)) (-4 *4 (-567 (-826 *5))))) (-3034 (*1 *2 *3 *4) (-12 (-4 *5 (-1019)) (-5 *2 (-108)) (-5 *1 (-821 *5 *3 *4)) (-4 *3 (-820 *5)) (-4 *4 (-567 (-826 *5))))))
-(-10 -7 (-15 -3034 ((-108) |#2| |#3|)) (-15 -3034 ((-108) (-592 |#2|) |#3|)) (-15 -2266 ((-819 |#1| |#2| (-592 |#2|)) (-592 |#2|) |#3|)) (IF (|has| |#2| (-967 (-1090))) (-15 -2266 ((-592 (-273 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-976)) (-15 -2266 ((-592 (-273 (-886 |#2|))) |#2| |#3|)) (-15 -2266 ((-823 |#1| |#2|) |#2| |#3|)))))
-((-1370 (((-823 |#1| |#3|) (-1 |#3| |#2|) (-823 |#1| |#2|)) 22)))
-(((-822 |#1| |#2| |#3|) (-10 -7 (-15 -1370 ((-823 |#1| |#3|) (-1 |#3| |#2|) (-823 |#1| |#2|)))) (-1019) (-1019) (-1019)) (T -822))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-823 *5 *6)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-823 *5 *7)) (-5 *1 (-822 *5 *6 *7)))))
-(-10 -7 (-15 -1370 ((-823 |#1| |#3|) (-1 |#3| |#2|) (-823 |#1| |#2|))))
-((-1893 (((-108) $ $) NIL)) (-3254 (($ $ $) 39)) (-2147 (((-3 (-108) "failed") $ (-826 |#1|)) 36)) (-4018 (($) 12)) (-2337 (((-1073) $) NIL)) (-3511 (($ (-826 |#1|) |#2| $) 20)) (-2663 (((-1037) $) NIL)) (-1229 (((-3 |#2| "failed") (-826 |#1|) $) 50)) (-3504 (((-108) $) 15)) (-4126 (($) 13)) (-4034 (((-592 (-2 (|:| -3946 (-1090)) (|:| -2511 |#2|))) $) 25)) (-1922 (($ (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 |#2|)))) 23)) (-1908 (((-797) $) 44)) (-2478 (($ (-826 |#1|) |#2| $ |#2|) 48)) (-3039 (($ (-826 |#1|) |#2| $) 47)) (-3961 (((-108) $ $) 41)))
-(((-823 |#1| |#2|) (-13 (-1019) (-10 -8 (-15 -3504 ((-108) $)) (-15 -4126 ($)) (-15 -4018 ($)) (-15 -3254 ($ $ $)) (-15 -1229 ((-3 |#2| "failed") (-826 |#1|) $)) (-15 -3039 ($ (-826 |#1|) |#2| $)) (-15 -3511 ($ (-826 |#1|) |#2| $)) (-15 -2478 ($ (-826 |#1|) |#2| $ |#2|)) (-15 -4034 ((-592 (-2 (|:| -3946 (-1090)) (|:| -2511 |#2|))) $)) (-15 -1922 ($ (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 |#2|))))) (-15 -2147 ((-3 (-108) "failed") $ (-826 |#1|))))) (-1019) (-1019)) (T -823))
-((-3504 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-823 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-4126 (*1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) (-4018 (*1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) (-3254 (*1 *1 *1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) (-1229 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-826 *4)) (-4 *4 (-1019)) (-4 *2 (-1019)) (-5 *1 (-823 *4 *2)))) (-3039 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-826 *4)) (-4 *4 (-1019)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1019)))) (-3511 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-826 *4)) (-4 *4 (-1019)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1019)))) (-2478 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-826 *4)) (-4 *4 (-1019)) (-5 *1 (-823 *4 *3)) (-4 *3 (-1019)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 *4)))) (-5 *1 (-823 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-1922 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 *4)))) (-4 *4 (-1019)) (-5 *1 (-823 *3 *4)) (-4 *3 (-1019)))) (-2147 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-826 *4)) (-4 *4 (-1019)) (-5 *2 (-108)) (-5 *1 (-823 *4 *5)) (-4 *5 (-1019)))))
-(-13 (-1019) (-10 -8 (-15 -3504 ((-108) $)) (-15 -4126 ($)) (-15 -4018 ($)) (-15 -3254 ($ $ $)) (-15 -1229 ((-3 |#2| "failed") (-826 |#1|) $)) (-15 -3039 ($ (-826 |#1|) |#2| $)) (-15 -3511 ($ (-826 |#1|) |#2| $)) (-15 -2478 ($ (-826 |#1|) |#2| $ |#2|)) (-15 -4034 ((-592 (-2 (|:| -3946 (-1090)) (|:| -2511 |#2|))) $)) (-15 -1922 ($ (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 |#2|))))) (-15 -2147 ((-3 (-108) "failed") $ (-826 |#1|)))))
-((-1215 (((-826 |#1|) (-826 |#1|) (-592 (-1090)) (-1 (-108) (-592 |#2|))) 32) (((-826 |#1|) (-826 |#1|) (-592 (-1 (-108) |#2|))) 43) (((-826 |#1|) (-826 |#1|) (-1 (-108) |#2|)) 35)) (-2147 (((-108) (-592 |#2|) (-826 |#1|)) 40) (((-108) |#2| (-826 |#1|)) 36)) (-4048 (((-1 (-108) |#2|) (-826 |#1|)) 16)) (-2039 (((-592 |#2|) (-826 |#1|)) 24)) (-1514 (((-826 |#1|) (-826 |#1|) |#2|) 20)))
-(((-824 |#1| |#2|) (-10 -7 (-15 -1215 ((-826 |#1|) (-826 |#1|) (-1 (-108) |#2|))) (-15 -1215 ((-826 |#1|) (-826 |#1|) (-592 (-1 (-108) |#2|)))) (-15 -1215 ((-826 |#1|) (-826 |#1|) (-592 (-1090)) (-1 (-108) (-592 |#2|)))) (-15 -4048 ((-1 (-108) |#2|) (-826 |#1|))) (-15 -2147 ((-108) |#2| (-826 |#1|))) (-15 -2147 ((-108) (-592 |#2|) (-826 |#1|))) (-15 -1514 ((-826 |#1|) (-826 |#1|) |#2|)) (-15 -2039 ((-592 |#2|) (-826 |#1|)))) (-1019) (-1126)) (T -824))
-((-2039 (*1 *2 *3) (-12 (-5 *3 (-826 *4)) (-4 *4 (-1019)) (-5 *2 (-592 *5)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1126)))) (-1514 (*1 *2 *2 *3) (-12 (-5 *2 (-826 *4)) (-4 *4 (-1019)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1126)))) (-2147 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-4 *6 (-1126)) (-5 *2 (-108)) (-5 *1 (-824 *5 *6)))) (-2147 (*1 *2 *3 *4) (-12 (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-5 *2 (-108)) (-5 *1 (-824 *5 *3)) (-4 *3 (-1126)))) (-4048 (*1 *2 *3) (-12 (-5 *3 (-826 *4)) (-4 *4 (-1019)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1126)))) (-1215 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-826 *5)) (-5 *3 (-592 (-1090))) (-5 *4 (-1 (-108) (-592 *6))) (-4 *5 (-1019)) (-4 *6 (-1126)) (-5 *1 (-824 *5 *6)))) (-1215 (*1 *2 *2 *3) (-12 (-5 *2 (-826 *4)) (-5 *3 (-592 (-1 (-108) *5))) (-4 *4 (-1019)) (-4 *5 (-1126)) (-5 *1 (-824 *4 *5)))) (-1215 (*1 *2 *2 *3) (-12 (-5 *2 (-826 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1019)) (-4 *5 (-1126)) (-5 *1 (-824 *4 *5)))))
-(-10 -7 (-15 -1215 ((-826 |#1|) (-826 |#1|) (-1 (-108) |#2|))) (-15 -1215 ((-826 |#1|) (-826 |#1|) (-592 (-1 (-108) |#2|)))) (-15 -1215 ((-826 |#1|) (-826 |#1|) (-592 (-1090)) (-1 (-108) (-592 |#2|)))) (-15 -4048 ((-1 (-108) |#2|) (-826 |#1|))) (-15 -2147 ((-108) |#2| (-826 |#1|))) (-15 -2147 ((-108) (-592 |#2|) (-826 |#1|))) (-15 -1514 ((-826 |#1|) (-826 |#1|) |#2|)) (-15 -2039 ((-592 |#2|) (-826 |#1|))))
-((-1370 (((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|)) 19)))
-(((-825 |#1| |#2|) (-10 -7 (-15 -1370 ((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|)))) (-1019) (-1019)) (T -825))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *2 (-826 *6)) (-5 *1 (-825 *5 *6)))))
-(-10 -7 (-15 -1370 ((-826 |#2|) (-1 |#2| |#1|) (-826 |#1|))))
-((-1893 (((-108) $ $) NIL)) (-3297 (($ $ (-592 (-51))) 64)) (-4104 (((-592 $) $) 118)) (-2380 (((-2 (|:| |var| (-592 (-1090))) (|:| |pred| (-51))) $) 24)) (-2589 (((-108) $) 30)) (-4227 (($ $ (-592 (-1090)) (-51)) 25)) (-3443 (($ $ (-592 (-51))) 63)) (-1264 (((-3 |#1| "failed") $) 61) (((-3 (-1090) "failed") $) 140)) (-2831 ((|#1| $) 58) (((-1090) $) NIL)) (-2524 (($ $) 108)) (-2089 (((-108) $) 47)) (-2255 (((-592 (-51)) $) 45)) (-3287 (($ (-1090) (-108) (-108) (-108)) 65)) (-2763 (((-3 (-592 $) "failed") (-592 $)) 72)) (-3208 (((-108) $) 50)) (-4143 (((-108) $) 49)) (-2337 (((-1073) $) NIL)) (-3245 (((-3 (-592 $) "failed") $) 36)) (-3551 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-3152 (((-3 (-2 (|:| |val| $) (|:| -1600 $)) "failed") $) 83)) (-3193 (((-3 (-592 $) "failed") $) 33)) (-2815 (((-3 (-592 $) "failed") $ (-110)) 107) (((-3 (-2 (|:| -1862 (-110)) (|:| |arg| (-592 $))) "failed") $) 95)) (-2798 (((-3 (-592 $) "failed") $) 37)) (-3283 (((-3 (-2 (|:| |val| $) (|:| -1600 (-713))) "failed") $) 40)) (-1676 (((-108) $) 29)) (-2663 (((-1037) $) NIL)) (-2754 (((-108) $) 21)) (-2003 (((-108) $) 46)) (-3849 (((-592 (-51)) $) 111)) (-3444 (((-108) $) 48)) (-3928 (($ (-110) (-592 $)) 92)) (-1434 (((-713) $) 28)) (-2135 (($ $) 62)) (-1427 (($ (-592 $)) 59)) (-2802 (((-108) $) 26)) (-1908 (((-797) $) 53) (($ |#1|) 18) (($ (-1090)) 66)) (-1514 (($ $ (-51)) 110)) (-3875 (($) 91 T CONST)) (-3882 (($) 73 T CONST)) (-3961 (((-108) $ $) 79)) (-4082 (($ $ $) 100)) (-4059 (($ $ $) 104)) (** (($ $ (-713)) 99) (($ $ $) 54)) (* (($ $ $) 105)))
-(((-826 |#1|) (-13 (-1019) (-967 |#1|) (-967 (-1090)) (-10 -8 (-15 0 ($) -3359) (-15 1 ($) -3359) (-15 -3193 ((-3 (-592 $) "failed") $)) (-15 -3245 ((-3 (-592 $) "failed") $)) (-15 -2815 ((-3 (-592 $) "failed") $ (-110))) (-15 -2815 ((-3 (-2 (|:| -1862 (-110)) (|:| |arg| (-592 $))) "failed") $)) (-15 -3283 ((-3 (-2 (|:| |val| $) (|:| -1600 (-713))) "failed") $)) (-15 -3551 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2798 ((-3 (-592 $) "failed") $)) (-15 -3152 ((-3 (-2 (|:| |val| $) (|:| -1600 $)) "failed") $)) (-15 -3928 ($ (-110) (-592 $))) (-15 -4059 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ $)) (-15 -4082 ($ $ $)) (-15 -1434 ((-713) $)) (-15 -1427 ($ (-592 $))) (-15 -2135 ($ $)) (-15 -1676 ((-108) $)) (-15 -2089 ((-108) $)) (-15 -2589 ((-108) $)) (-15 -2802 ((-108) $)) (-15 -3444 ((-108) $)) (-15 -4143 ((-108) $)) (-15 -3208 ((-108) $)) (-15 -2003 ((-108) $)) (-15 -2255 ((-592 (-51)) $)) (-15 -3443 ($ $ (-592 (-51)))) (-15 -3297 ($ $ (-592 (-51)))) (-15 -3287 ($ (-1090) (-108) (-108) (-108))) (-15 -4227 ($ $ (-592 (-1090)) (-51))) (-15 -2380 ((-2 (|:| |var| (-592 (-1090))) (|:| |pred| (-51))) $)) (-15 -2754 ((-108) $)) (-15 -2524 ($ $)) (-15 -1514 ($ $ (-51))) (-15 -3849 ((-592 (-51)) $)) (-15 -4104 ((-592 $) $)) (-15 -2763 ((-3 (-592 $) "failed") (-592 $))))) (-1019)) (T -826))
-((-3875 (*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) (-3882 (*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) (-3193 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3245 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-2815 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-826 *4))) (-5 *1 (-826 *4)) (-4 *4 (-1019)))) (-2815 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1862 (-110)) (|:| |arg| (-592 (-826 *3))))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3283 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-826 *3)) (|:| -1600 (-713)))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3551 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-826 *3)) (|:| |den| (-826 *3)))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-2798 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3152 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-826 *3)) (|:| -1600 (-826 *3)))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3928 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 (-826 *4))) (-4 *4 (-1019)) (-5 *1 (-826 *4)))) (-4059 (*1 *1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) (-4082 (*1 *1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) (-1434 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-592 (-826 *3))) (-4 *3 (-1019)) (-5 *1 (-826 *3)))) (-2135 (*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) (-1676 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-2802 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3444 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3208 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-2255 (*1 *2 *1) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3443 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3297 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3287 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-108)) (-5 *1 (-826 *4)) (-4 *4 (-1019)))) (-4227 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-51)) (-5 *1 (-826 *4)) (-4 *4 (-1019)))) (-2380 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-592 (-1090))) (|:| |pred| (-51)))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-2754 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-2524 (*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))) (-1514 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-3849 (*1 *2 *1) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))) (-2763 (*1 *2 *2) (|partial| -12 (-5 *2 (-592 (-826 *3))) (-4 *3 (-1019)) (-5 *1 (-826 *3)))))
-(-13 (-1019) (-967 |#1|) (-967 (-1090)) (-10 -8 (-15 (-3875) ($) -3359) (-15 (-3882) ($) -3359) (-15 -3193 ((-3 (-592 $) "failed") $)) (-15 -3245 ((-3 (-592 $) "failed") $)) (-15 -2815 ((-3 (-592 $) "failed") $ (-110))) (-15 -2815 ((-3 (-2 (|:| -1862 (-110)) (|:| |arg| (-592 $))) "failed") $)) (-15 -3283 ((-3 (-2 (|:| |val| $) (|:| -1600 (-713))) "failed") $)) (-15 -3551 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2798 ((-3 (-592 $) "failed") $)) (-15 -3152 ((-3 (-2 (|:| |val| $) (|:| -1600 $)) "failed") $)) (-15 -3928 ($ (-110) (-592 $))) (-15 -4059 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ $)) (-15 -4082 ($ $ $)) (-15 -1434 ((-713) $)) (-15 -1427 ($ (-592 $))) (-15 -2135 ($ $)) (-15 -1676 ((-108) $)) (-15 -2089 ((-108) $)) (-15 -2589 ((-108) $)) (-15 -2802 ((-108) $)) (-15 -3444 ((-108) $)) (-15 -4143 ((-108) $)) (-15 -3208 ((-108) $)) (-15 -2003 ((-108) $)) (-15 -2255 ((-592 (-51)) $)) (-15 -3443 ($ $ (-592 (-51)))) (-15 -3297 ($ $ (-592 (-51)))) (-15 -3287 ($ (-1090) (-108) (-108) (-108))) (-15 -4227 ($ $ (-592 (-1090)) (-51))) (-15 -2380 ((-2 (|:| |var| (-592 (-1090))) (|:| |pred| (-51))) $)) (-15 -2754 ((-108) $)) (-15 -2524 ($ $)) (-15 -1514 ($ $ (-51))) (-15 -3849 ((-592 (-51)) $)) (-15 -4104 ((-592 $) $)) (-15 -2763 ((-3 (-592 $) "failed") (-592 $)))))
-((-1893 (((-108) $ $) NIL)) (-3908 (((-592 |#1|) $) 16)) (-3825 (((-108) $) 38)) (-1264 (((-3 (-617 |#1|) "failed") $) 43)) (-2831 (((-617 |#1|) $) 41)) (-3145 (($ $) 18)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-1722 (((-713) $) 46)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3135 (((-617 |#1|) $) 17)) (-1908 (((-797) $) 37) (($ (-617 |#1|)) 21) (((-761 |#1|) $) 27) (($ |#1|) 20)) (-3882 (($) 8 T CONST)) (-3415 (((-592 (-617 |#1|)) $) 23)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 11)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 49)))
-(((-827 |#1|) (-13 (-789) (-967 (-617 |#1|)) (-10 -8 (-15 1 ($) -3359) (-15 -1908 ((-761 |#1|) $)) (-15 -1908 ($ |#1|)) (-15 -3135 ((-617 |#1|) $)) (-15 -1722 ((-713) $)) (-15 -3415 ((-592 (-617 |#1|)) $)) (-15 -3145 ($ $)) (-15 -3825 ((-108) $)) (-15 -3908 ((-592 |#1|) $)))) (-789)) (T -827))
-((-3882 (*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-789)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-827 *3)) (-4 *3 (-789)))) (-1908 (*1 *1 *2) (-12 (-5 *1 (-827 *2)) (-4 *2 (-789)))) (-3135 (*1 *2 *1) (-12 (-5 *2 (-617 *3)) (-5 *1 (-827 *3)) (-4 *3 (-789)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-827 *3)) (-4 *3 (-789)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-592 (-617 *3))) (-5 *1 (-827 *3)) (-4 *3 (-789)))) (-3145 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-789)))) (-3825 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-789)))) (-3908 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-827 *3)) (-4 *3 (-789)))))
-(-13 (-789) (-967 (-617 |#1|)) (-10 -8 (-15 (-3882) ($) -3359) (-15 -1908 ((-761 |#1|) $)) (-15 -1908 ($ |#1|)) (-15 -3135 ((-617 |#1|) $)) (-15 -1722 ((-713) $)) (-15 -3415 ((-592 (-617 |#1|)) $)) (-15 -3145 ($ $)) (-15 -3825 ((-108) $)) (-15 -3908 ((-592 |#1|) $))))
-((-4100 ((|#1| |#1| |#1|) 19)))
-(((-828 |#1| |#2|) (-10 -7 (-15 -4100 (|#1| |#1| |#1|))) (-1148 |#2|) (-976)) (T -828))
-((-4100 (*1 *2 *2 *2) (-12 (-4 *3 (-976)) (-5 *1 (-828 *2 *3)) (-4 *2 (-1148 *3)))))
-(-10 -7 (-15 -4100 (|#1| |#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-1965 (((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) 14)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-2942 (((-965) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) 13)) (-3961 (((-108) $ $) 6)))
-(((-829) (-131)) (T -829))
-((-1965 (*1 *2 *3 *4) (-12 (-4 *1 (-829)) (-5 *3 (-988)) (-5 *4 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) (-5 *2 (-2 (|:| -1965 (-357)) (|:| |explanations| (-1073)))))) (-2942 (*1 *2 *3) (-12 (-4 *1 (-829)) (-5 *3 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) (-5 *2 (-965)))))
-(-13 (-1019) (-10 -7 (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))) (-988) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205))))) (-15 -2942 ((-965) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-2685 ((|#1| |#1| (-713)) 24)) (-1605 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3149 (((-3 (-2 (|:| -4138 |#1|) (|:| -4152 |#1|)) "failed") |#1| (-713) (-713)) 27) (((-592 |#1|) |#1|) 29)))
-(((-830 |#1| |#2|) (-10 -7 (-15 -3149 ((-592 |#1|) |#1|)) (-15 -3149 ((-3 (-2 (|:| -4138 |#1|) (|:| -4152 |#1|)) "failed") |#1| (-713) (-713))) (-15 -1605 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2685 (|#1| |#1| (-713)))) (-1148 |#2|) (-341)) (T -830))
-((-2685 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-5 *1 (-830 *2 *4)) (-4 *2 (-1148 *4)))) (-1605 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-341)) (-5 *1 (-830 *2 *3)) (-4 *2 (-1148 *3)))) (-3149 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-713)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -4138 *3) (|:| -4152 *3))) (-5 *1 (-830 *3 *5)) (-4 *3 (-1148 *5)))) (-3149 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-830 *3 *4)) (-4 *3 (-1148 *4)))))
-(-10 -7 (-15 -3149 ((-592 |#1|) |#1|)) (-15 -3149 ((-3 (-2 (|:| -4138 |#1|) (|:| -4152 |#1|)) "failed") |#1| (-713) (-713))) (-15 -1605 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2685 (|#1| |#1| (-713))))
-((-2925 (((-965) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1073)) 96) (((-965) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1073) (-205)) 91) (((-965) (-832) (-988)) 83) (((-965) (-832)) 84)) (-1965 (((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-832) (-988)) 59) (((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-832)) 61)))
-(((-831) (-10 -7 (-15 -2925 ((-965) (-832))) (-15 -2925 ((-965) (-832) (-988))) (-15 -2925 ((-965) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1073) (-205))) (-15 -2925 ((-965) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1073))) (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-832))) (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-832) (-988))))) (T -831))
-((-1965 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-988)) (-5 *2 (-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))))) (-5 *1 (-831)))) (-1965 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073))))) (-5 *1 (-831)))) (-2925 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *3 (-357)) (-5 *4 (-713)) (-5 *5 (-592 (-294 (-357)))) (-5 *6 (-592 (-592 (-294 (-357))))) (-5 *7 (-1073)) (-5 *2 (-965)) (-5 *1 (-831)))) (-2925 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *3 (-357)) (-5 *4 (-713)) (-5 *5 (-592 (-294 (-357)))) (-5 *6 (-592 (-592 (-294 (-357))))) (-5 *7 (-1073)) (-5 *8 (-205)) (-5 *2 (-965)) (-5 *1 (-831)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-832)) (-5 *4 (-988)) (-5 *2 (-965)) (-5 *1 (-831)))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-965)) (-5 *1 (-831)))))
-(-10 -7 (-15 -2925 ((-965) (-832))) (-15 -2925 ((-965) (-832) (-988))) (-15 -2925 ((-965) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1073) (-205))) (-15 -2925 ((-965) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1073))) (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-832))) (-15 -1965 ((-2 (|:| -1965 (-357)) (|:| -1310 (-1073)) (|:| |explanations| (-592 (-1073)))) (-832) (-988))))
-((-1893 (((-108) $ $) NIL)) (-2831 (((-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205))) $) 19)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 21) (($ (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) 18)) (-3961 (((-108) $ $) NIL)))
-(((-832) (-13 (-1019) (-10 -8 (-15 -1908 ($ (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205))))) (-15 -1908 ((-797) $)) (-15 -2831 ((-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205))) $))))) (T -832))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-832)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) (-5 *1 (-832)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205)))) (-5 *1 (-832)))))
-(-13 (-1019) (-10 -8 (-15 -1908 ($ (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205))))) (-15 -1908 ((-797) $)) (-15 -2831 ((-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073)) (|:| |tol| (-205))) $))))
-((-3013 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) 10) (($ $ |#2| (-713)) 12) (($ $ (-592 |#2|) (-592 (-713))) 15)) (-1424 (($ $ |#2|) 16) (($ $ (-592 |#2|)) 18) (($ $ |#2| (-713)) 19) (($ $ (-592 |#2|) (-592 (-713))) 21)))
-(((-833 |#1| |#2|) (-10 -8 (-15 -1424 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -1424 (|#1| |#1| |#2| (-713))) (-15 -1424 (|#1| |#1| (-592 |#2|))) (-15 -1424 (|#1| |#1| |#2|)) (-15 -3013 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -3013 (|#1| |#1| |#2| (-713))) (-15 -3013 (|#1| |#1| (-592 |#2|))) (-15 -3013 (|#1| |#1| |#2|))) (-834 |#2|) (-1019)) (T -833))
-NIL
-(-10 -8 (-15 -1424 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -1424 (|#1| |#1| |#2| (-713))) (-15 -1424 (|#1| |#1| (-592 |#2|))) (-15 -1424 (|#1| |#1| |#2|)) (-15 -3013 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -3013 (|#1| |#1| |#2| (-713))) (-15 -3013 (|#1| |#1| (-592 |#2|))) (-15 -3013 (|#1| |#1| |#2|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-3013 (($ $ |#1|) 42) (($ $ (-592 |#1|)) 41) (($ $ |#1| (-713)) 40) (($ $ (-592 |#1|) (-592 (-713))) 39)) (-1908 (((-797) $) 11) (($ (-525)) 28)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ |#1|) 38) (($ $ (-592 |#1|)) 37) (($ $ |#1| (-713)) 36) (($ $ (-592 |#1|) (-592 (-713))) 35)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
-(((-834 |#1|) (-131) (-1019)) (T -834))
-((-3013 (*1 *1 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1019)))) (-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-834 *3)) (-4 *3 (-1019)))) (-3013 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-834 *2)) (-4 *2 (-1019)))) (-3013 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-834 *4)) (-4 *4 (-1019)))) (-1424 (*1 *1 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1019)))) (-1424 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-834 *3)) (-4 *3 (-1019)))) (-1424 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-834 *2)) (-4 *2 (-1019)))) (-1424 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-834 *4)) (-4 *4 (-1019)))))
-(-13 (-976) (-10 -8 (-15 -3013 ($ $ |t#1|)) (-15 -3013 ($ $ (-592 |t#1|))) (-15 -3013 ($ $ |t#1| (-713))) (-15 -3013 ($ $ (-592 |t#1|) (-592 (-713)))) (-15 -1424 ($ $ |t#1|)) (-15 -1424 ($ $ (-592 |t#1|))) (-15 -1424 ($ $ |t#1| (-713))) (-15 -1424 ($ $ (-592 |t#1|) (-592 (-713))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3871 ((|#1| $) 26)) (-3410 (((-108) $ (-713)) NIL)) (-2822 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-3173 (($ $ $) NIL (|has| $ (-6 -4255)))) (-3213 (($ $ $) NIL (|has| $ (-6 -4255)))) (-2109 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) (($ $ "left" $) NIL (|has| $ (-6 -4255))) (($ $ "right" $) NIL (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-1505 (($) NIL T CONST)) (-4152 (($ $) 25)) (-1388 (($ |#1|) 12) (($ $ $) 17)) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) NIL)) (-3106 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-4138 (($ $) 23)) (-1564 (((-592 |#1|) $) NIL)) (-3723 (((-108) $) 20)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4068 (((-525) $ $) NIL)) (-1810 (((-108) $) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) NIL)) (-1908 (((-1113 |#1|) $) 9) (((-797) $) 29 (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) NIL)) (-1519 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 21 (|has| |#1| (-1019)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-835 |#1|) (-13 (-115 |#1|) (-10 -8 (-15 -1388 ($ |#1|)) (-15 -1388 ($ $ $)) (-15 -1908 ((-1113 |#1|) $)))) (-1019)) (T -835))
-((-1388 (*1 *1 *2) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1019)))) (-1388 (*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1019)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1113 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1019)))))
-(-13 (-115 |#1|) (-10 -8 (-15 -1388 ($ |#1|)) (-15 -1388 ($ $ $)) (-15 -1908 ((-1113 |#1|) $))))
-((-3315 ((|#2| (-1057 |#1| |#2|)) 41)))
-(((-836 |#1| |#2|) (-10 -7 (-15 -3315 (|#2| (-1057 |#1| |#2|)))) (-855) (-13 (-976) (-10 -7 (-6 (-4256 "*"))))) (T -836))
-((-3315 (*1 *2 *3) (-12 (-5 *3 (-1057 *4 *2)) (-14 *4 (-855)) (-4 *2 (-13 (-976) (-10 -7 (-6 (-4256 "*"))))) (-5 *1 (-836 *4 *2)))))
-(-10 -7 (-15 -3315 (|#2| (-1057 |#1| |#2|))))
-((-1893 (((-108) $ $) 7)) (-1505 (($) 20 T CONST)) (-2866 (((-3 $ "failed") $) 16)) (-1804 (((-1021 |#1|) $ |#1|) 35)) (-2133 (((-108) $) 19)) (-3525 (($ $ $) 33 (-3309 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-3630 (($ $ $) 32 (-3309 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-2337 (((-1073) $) 9)) (-4211 (($ $) 27)) (-2663 (((-1037) $) 10)) (-3092 ((|#1| $ |#1|) 37)) (-3928 ((|#1| $ |#1|) 36)) (-2418 (($ (-592 (-592 |#1|))) 38)) (-4187 (($ (-592 |#1|)) 39)) (-3634 (($ $ $) 23)) (-1518 (($ $ $) 22)) (-1908 (((-797) $) 11)) (-3465 (($ $ (-855)) 13) (($ $ (-713)) 17) (($ $ (-525)) 24)) (-3882 (($) 21 T CONST)) (-4024 (((-108) $ $) 30 (-3309 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-3995 (((-108) $ $) 29 (-3309 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 31 (-3309 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-3983 (((-108) $ $) 34)) (-4082 (($ $ $) 26)) (** (($ $ (-855)) 14) (($ $ (-713)) 18) (($ $ (-525)) 25)) (* (($ $ $) 15)))
-(((-837 |#1|) (-131) (-1019)) (T -837))
-((-4187 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-4 *1 (-837 *3)))) (-2418 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-4 *1 (-837 *3)))) (-3092 (*1 *2 *1 *2) (-12 (-4 *1 (-837 *2)) (-4 *2 (-1019)))) (-3928 (*1 *2 *1 *2) (-12 (-4 *1 (-837 *2)) (-4 *2 (-1019)))) (-1804 (*1 *2 *1 *3) (-12 (-4 *1 (-837 *3)) (-4 *3 (-1019)) (-5 *2 (-1021 *3)))) (-3983 (*1 *2 *1 *1) (-12 (-4 *1 (-837 *3)) (-4 *3 (-1019)) (-5 *2 (-108)))))
-(-13 (-450) (-10 -8 (-15 -4187 ($ (-592 |t#1|))) (-15 -2418 ($ (-592 (-592 |t#1|)))) (-15 -3092 (|t#1| $ |t#1|)) (-15 -3928 (|t#1| $ |t#1|)) (-15 -1804 ((-1021 |t#1|) $ |t#1|)) (-15 -3983 ((-108) $ $)) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-346)) (-6 (-789)) |%noBranch|)))
-(((-97) . T) ((-566 (-797)) . T) ((-450) . T) ((-669) . T) ((-789) -3309 (|has| |#1| (-789)) (|has| |#1| (-346))) ((-1031) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-2182 (((-592 (-592 (-713))) $) 109)) (-3536 (((-592 (-713)) (-839 |#1|) $) 131)) (-1542 (((-592 (-713)) (-839 |#1|) $) 132)) (-3364 (((-592 (-839 |#1|)) $) 99)) (-3375 (((-839 |#1|) $ (-525)) 104) (((-839 |#1|) $) 105)) (-1313 (($ (-592 (-839 |#1|))) 111)) (-1737 (((-713) $) 106)) (-3848 (((-1021 (-1021 |#1|)) $) 129)) (-1804 (((-1021 |#1|) $ |#1|) 122) (((-1021 (-1021 |#1|)) $ (-1021 |#1|)) 140) (((-1021 (-592 |#1|)) $ (-592 |#1|)) 143)) (-2168 (((-1021 |#1|) $) 102)) (-4132 (((-108) (-839 |#1|) $) 93)) (-2337 (((-1073) $) NIL)) (-1239 (((-1177) $) 96) (((-1177) $ (-525) (-525)) 144)) (-2663 (((-1037) $) NIL)) (-2186 (((-592 (-839 |#1|)) $) 97)) (-3928 (((-839 |#1|) $ (-713)) 100)) (-2513 (((-713) $) 107)) (-1908 (((-797) $) 120) (((-592 (-839 |#1|)) $) 23) (($ (-592 (-839 |#1|))) 110)) (-3772 (((-592 |#1|) $) 108)) (-3961 (((-108) $ $) 137)) (-4010 (((-108) $ $) 135)) (-3983 (((-108) $ $) 134)))
-(((-838 |#1|) (-13 (-1019) (-10 -8 (-15 -1908 ((-592 (-839 |#1|)) $)) (-15 -2186 ((-592 (-839 |#1|)) $)) (-15 -3928 ((-839 |#1|) $ (-713))) (-15 -3375 ((-839 |#1|) $ (-525))) (-15 -3375 ((-839 |#1|) $)) (-15 -1737 ((-713) $)) (-15 -2513 ((-713) $)) (-15 -3772 ((-592 |#1|) $)) (-15 -3364 ((-592 (-839 |#1|)) $)) (-15 -2182 ((-592 (-592 (-713))) $)) (-15 -1908 ($ (-592 (-839 |#1|)))) (-15 -1313 ($ (-592 (-839 |#1|)))) (-15 -1804 ((-1021 |#1|) $ |#1|)) (-15 -3848 ((-1021 (-1021 |#1|)) $)) (-15 -1804 ((-1021 (-1021 |#1|)) $ (-1021 |#1|))) (-15 -1804 ((-1021 (-592 |#1|)) $ (-592 |#1|))) (-15 -4132 ((-108) (-839 |#1|) $)) (-15 -3536 ((-592 (-713)) (-839 |#1|) $)) (-15 -1542 ((-592 (-713)) (-839 |#1|) $)) (-15 -2168 ((-1021 |#1|) $)) (-15 -3983 ((-108) $ $)) (-15 -4010 ((-108) $ $)) (-15 -1239 ((-1177) $)) (-15 -1239 ((-1177) $ (-525) (-525))))) (-1019)) (T -838))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-592 (-839 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-592 (-839 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-3928 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-839 *4)) (-5 *1 (-838 *4)) (-4 *4 (-1019)))) (-3375 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-839 *4)) (-5 *1 (-838 *4)) (-4 *4 (-1019)))) (-3375 (*1 *2 *1) (-12 (-5 *2 (-839 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-3772 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-592 (-839 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-713)))) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-592 (-839 *3))) (-4 *3 (-1019)) (-5 *1 (-838 *3)))) (-1313 (*1 *1 *2) (-12 (-5 *2 (-592 (-839 *3))) (-4 *3 (-1019)) (-5 *1 (-838 *3)))) (-1804 (*1 *2 *1 *3) (-12 (-5 *2 (-1021 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-3848 (*1 *2 *1) (-12 (-5 *2 (-1021 (-1021 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-1804 (*1 *2 *1 *3) (-12 (-4 *4 (-1019)) (-5 *2 (-1021 (-1021 *4))) (-5 *1 (-838 *4)) (-5 *3 (-1021 *4)))) (-1804 (*1 *2 *1 *3) (-12 (-4 *4 (-1019)) (-5 *2 (-1021 (-592 *4))) (-5 *1 (-838 *4)) (-5 *3 (-592 *4)))) (-4132 (*1 *2 *3 *1) (-12 (-5 *3 (-839 *4)) (-4 *4 (-1019)) (-5 *2 (-108)) (-5 *1 (-838 *4)))) (-3536 (*1 *2 *3 *1) (-12 (-5 *3 (-839 *4)) (-4 *4 (-1019)) (-5 *2 (-592 (-713))) (-5 *1 (-838 *4)))) (-1542 (*1 *2 *3 *1) (-12 (-5 *3 (-839 *4)) (-4 *4 (-1019)) (-5 *2 (-592 (-713))) (-5 *1 (-838 *4)))) (-2168 (*1 *2 *1) (-12 (-5 *2 (-1021 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-3983 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-4010 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-1239 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))) (-1239 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-838 *4)) (-4 *4 (-1019)))))
-(-13 (-1019) (-10 -8 (-15 -1908 ((-592 (-839 |#1|)) $)) (-15 -2186 ((-592 (-839 |#1|)) $)) (-15 -3928 ((-839 |#1|) $ (-713))) (-15 -3375 ((-839 |#1|) $ (-525))) (-15 -3375 ((-839 |#1|) $)) (-15 -1737 ((-713) $)) (-15 -2513 ((-713) $)) (-15 -3772 ((-592 |#1|) $)) (-15 -3364 ((-592 (-839 |#1|)) $)) (-15 -2182 ((-592 (-592 (-713))) $)) (-15 -1908 ($ (-592 (-839 |#1|)))) (-15 -1313 ($ (-592 (-839 |#1|)))) (-15 -1804 ((-1021 |#1|) $ |#1|)) (-15 -3848 ((-1021 (-1021 |#1|)) $)) (-15 -1804 ((-1021 (-1021 |#1|)) $ (-1021 |#1|))) (-15 -1804 ((-1021 (-592 |#1|)) $ (-592 |#1|))) (-15 -4132 ((-108) (-839 |#1|) $)) (-15 -3536 ((-592 (-713)) (-839 |#1|) $)) (-15 -1542 ((-592 (-713)) (-839 |#1|) $)) (-15 -2168 ((-1021 |#1|) $)) (-15 -3983 ((-108) $ $)) (-15 -4010 ((-108) $ $)) (-15 -1239 ((-1177) $)) (-15 -1239 ((-1177) $ (-525) (-525)))))
-((-1893 (((-108) $ $) NIL)) (-3327 (((-592 $) (-592 $)) 77)) (-1690 (((-525) $) 60)) (-1505 (($) NIL T CONST)) (-2866 (((-3 $ "failed") $) NIL)) (-1737 (((-713) $) 58)) (-1804 (((-1021 |#1|) $ |#1|) 49)) (-2133 (((-108) $) NIL)) (-2144 (((-108) $) 63)) (-4205 (((-713) $) 61)) (-2168 (((-1021 |#1|) $) 42)) (-3525 (($ $ $) NIL (-3309 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-3630 (($ $ $) NIL (-3309 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-3012 (((-2 (|:| |preimage| (-592 |#1|)) (|:| |image| (-592 |#1|))) $) 37)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 93)) (-2663 (((-1037) $) NIL)) (-2720 (((-1021 |#1|) $) 100 (|has| |#1| (-346)))) (-2656 (((-108) $) 59)) (-3092 ((|#1| $ |#1|) 47)) (-3928 ((|#1| $ |#1|) 94)) (-2513 (((-713) $) 44)) (-2418 (($ (-592 (-592 |#1|))) 85)) (-1584 (((-903) $) 53)) (-4187 (($ (-592 |#1|)) 21)) (-3634 (($ $ $) NIL)) (-1518 (($ $ $) NIL)) (-1392 (($ (-592 (-592 |#1|))) 39)) (-2481 (($ (-592 (-592 |#1|))) 88)) (-4002 (($ (-592 |#1|)) 96)) (-1908 (((-797) $) 84) (($ (-592 (-592 |#1|))) 66) (($ (-592 |#1|)) 67)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3882 (($) 16 T CONST)) (-4024 (((-108) $ $) NIL (-3309 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-3995 (((-108) $ $) NIL (-3309 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-3961 (((-108) $ $) 45)) (-4010 (((-108) $ $) NIL (-3309 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-3983 (((-108) $ $) 65)) (-4082 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 22)))
-(((-839 |#1|) (-13 (-837 |#1|) (-10 -8 (-15 -3012 ((-2 (|:| |preimage| (-592 |#1|)) (|:| |image| (-592 |#1|))) $)) (-15 -1392 ($ (-592 (-592 |#1|)))) (-15 -1908 ($ (-592 (-592 |#1|)))) (-15 -1908 ($ (-592 |#1|))) (-15 -2481 ($ (-592 (-592 |#1|)))) (-15 -2513 ((-713) $)) (-15 -2168 ((-1021 |#1|) $)) (-15 -1584 ((-903) $)) (-15 -1737 ((-713) $)) (-15 -4205 ((-713) $)) (-15 -1690 ((-525) $)) (-15 -2656 ((-108) $)) (-15 -2144 ((-108) $)) (-15 -3327 ((-592 $) (-592 $))) (IF (|has| |#1| (-346)) (-15 -2720 ((-1021 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-510)) (-15 -4002 ($ (-592 |#1|))) (IF (|has| |#1| (-346)) (-15 -4002 ($ (-592 |#1|))) |%noBranch|)))) (-1019)) (T -839))
-((-3012 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-592 *3)) (|:| |image| (-592 *3)))) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-1392 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-5 *1 (-839 *3)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-5 *1 (-839 *3)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-839 *3)))) (-2481 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-5 *1 (-839 *3)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-2168 (*1 *2 *1) (-12 (-5 *2 (-1021 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-1584 (*1 *2 *1) (-12 (-5 *2 (-903)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-4205 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-1690 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-2144 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))) (-3327 (*1 *2 *2) (-12 (-5 *2 (-592 (-839 *3))) (-4 *3 (-1019)) (-5 *1 (-839 *3)))) (-2720 (*1 *2 *1) (-12 (-5 *2 (-1021 *3)) (-5 *1 (-839 *3)) (-4 *3 (-346)) (-4 *3 (-1019)))) (-4002 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-839 *3)))))
-(-13 (-837 |#1|) (-10 -8 (-15 -3012 ((-2 (|:| |preimage| (-592 |#1|)) (|:| |image| (-592 |#1|))) $)) (-15 -1392 ($ (-592 (-592 |#1|)))) (-15 -1908 ($ (-592 (-592 |#1|)))) (-15 -1908 ($ (-592 |#1|))) (-15 -2481 ($ (-592 (-592 |#1|)))) (-15 -2513 ((-713) $)) (-15 -2168 ((-1021 |#1|) $)) (-15 -1584 ((-903) $)) (-15 -1737 ((-713) $)) (-15 -4205 ((-713) $)) (-15 -1690 ((-525) $)) (-15 -2656 ((-108) $)) (-15 -2144 ((-108) $)) (-15 -3327 ((-592 $) (-592 $))) (IF (|has| |#1| (-346)) (-15 -2720 ((-1021 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-510)) (-15 -4002 ($ (-592 |#1|))) (IF (|has| |#1| (-346)) (-15 -4002 ($ (-592 |#1|))) |%noBranch|))))
-((-4136 (((-3 (-592 (-1086 |#4|)) "failed") (-592 (-1086 |#4|)) (-1086 |#4|)) 128)) (-2767 ((|#1|) 77)) (-3233 (((-396 (-1086 |#4|)) (-1086 |#4|)) 137)) (-1403 (((-396 (-1086 |#4|)) (-592 |#3|) (-1086 |#4|)) 69)) (-2392 (((-396 (-1086 |#4|)) (-1086 |#4|)) 147)) (-2975 (((-3 (-592 (-1086 |#4|)) "failed") (-592 (-1086 |#4|)) (-1086 |#4|) |#3|) 92)))
-(((-840 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4136 ((-3 (-592 (-1086 |#4|)) "failed") (-592 (-1086 |#4|)) (-1086 |#4|))) (-15 -2392 ((-396 (-1086 |#4|)) (-1086 |#4|))) (-15 -3233 ((-396 (-1086 |#4|)) (-1086 |#4|))) (-15 -2767 (|#1|)) (-15 -2975 ((-3 (-592 (-1086 |#4|)) "failed") (-592 (-1086 |#4|)) (-1086 |#4|) |#3|)) (-15 -1403 ((-396 (-1086 |#4|)) (-592 |#3|) (-1086 |#4|)))) (-843) (-735) (-789) (-883 |#1| |#2| |#3|)) (T -840))
-((-1403 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *7)) (-4 *7 (-789)) (-4 *5 (-843)) (-4 *6 (-735)) (-4 *8 (-883 *5 *6 *7)) (-5 *2 (-396 (-1086 *8))) (-5 *1 (-840 *5 *6 *7 *8)) (-5 *4 (-1086 *8)))) (-2975 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-592 (-1086 *7))) (-5 *3 (-1086 *7)) (-4 *7 (-883 *5 *6 *4)) (-4 *5 (-843)) (-4 *6 (-735)) (-4 *4 (-789)) (-5 *1 (-840 *5 *6 *4 *7)))) (-2767 (*1 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-843)) (-5 *1 (-840 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))) (-3233 (*1 *2 *3) (-12 (-4 *4 (-843)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-396 (-1086 *7))) (-5 *1 (-840 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-2392 (*1 *2 *3) (-12 (-4 *4 (-843)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-396 (-1086 *7))) (-5 *1 (-840 *4 *5 *6 *7)) (-5 *3 (-1086 *7)))) (-4136 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1086 *7))) (-5 *3 (-1086 *7)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-843)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-840 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4136 ((-3 (-592 (-1086 |#4|)) "failed") (-592 (-1086 |#4|)) (-1086 |#4|))) (-15 -2392 ((-396 (-1086 |#4|)) (-1086 |#4|))) (-15 -3233 ((-396 (-1086 |#4|)) (-1086 |#4|))) (-15 -2767 (|#1|)) (-15 -2975 ((-3 (-592 (-1086 |#4|)) "failed") (-592 (-1086 |#4|)) (-1086 |#4|) |#3|)) (-15 -1403 ((-396 (-1086 |#4|)) (-592 |#3|) (-1086 |#4|))))
-((-4136 (((-3 (-592 (-1086 |#2|)) "failed") (-592 (-1086 |#2|)) (-1086 |#2|)) 36)) (-2767 ((|#1|) 54)) (-3233 (((-396 (-1086 |#2|)) (-1086 |#2|)) 102)) (-1403 (((-396 (-1086 |#2|)) (-1086 |#2|)) 90)) (-2392 (((-396 (-1086 |#2|)) (-1086 |#2|)) 113)))
-(((-841 |#1| |#2|) (-10 -7 (-15 -4136 ((-3 (-592 (-1086 |#2|)) "failed") (-592 (-1086 |#2|)) (-1086 |#2|))) (-15 -2392 ((-396 (-1086 |#2|)) (-1086 |#2|))) (-15 -3233 ((-396 (-1086 |#2|)) (-1086 |#2|))) (-15 -2767 (|#1|)) (-15 -1403 ((-396 (-1086 |#2|)) (-1086 |#2|)))) (-843) (-1148 |#1|)) (T -841))
-((-1403 (*1 *2 *3) (-12 (-4 *4 (-843)) (-4 *5 (-1148 *4)) (-5 *2 (-396 (-1086 *5))) (-5 *1 (-841 *4 *5)) (-5 *3 (-1086 *5)))) (-2767 (*1 *2) (-12 (-4 *2 (-843)) (-5 *1 (-841 *2 *3)) (-4 *3 (-1148 *2)))) (-3233 (*1 *2 *3) (-12 (-4 *4 (-843)) (-4 *5 (-1148 *4)) (-5 *2 (-396 (-1086 *5))) (-5 *1 (-841 *4 *5)) (-5 *3 (-1086 *5)))) (-2392 (*1 *2 *3) (-12 (-4 *4 (-843)) (-4 *5 (-1148 *4)) (-5 *2 (-396 (-1086 *5))) (-5 *1 (-841 *4 *5)) (-5 *3 (-1086 *5)))) (-4136 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1086 *5))) (-5 *3 (-1086 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-843)) (-5 *1 (-841 *4 *5)))))
-(-10 -7 (-15 -4136 ((-3 (-592 (-1086 |#2|)) "failed") (-592 (-1086 |#2|)) (-1086 |#2|))) (-15 -2392 ((-396 (-1086 |#2|)) (-1086 |#2|))) (-15 -3233 ((-396 (-1086 |#2|)) (-1086 |#2|))) (-15 -2767 (|#1|)) (-15 -1403 ((-396 (-1086 |#2|)) (-1086 |#2|))))
-((-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 41)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 18)) (-3421 (((-3 $ "failed") $) 35)))
-(((-842 |#1|) (-10 -8 (-15 -3421 ((-3 |#1| "failed") |#1|)) (-15 -2620 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|))) (-15 -1763 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|)))) (-843)) (T -842))
-NIL
-(-10 -8 (-15 -3421 ((-3 |#1| "failed") |#1|)) (-15 -2620 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|))) (-15 -1763 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-3263 (((-3 $ "failed") $ $) 19)) (-3357 (((-396 (-1086 $)) (-1086 $)) 60)) (-3321 (($ $) 51)) (-1510 (((-396 $) $) 52)) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 57)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-2250 (((-108) $) 53)) (-2133 (((-108) $) 31)) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-2918 (((-396 (-1086 $)) (-1086 $)) 58)) (-1371 (((-396 (-1086 $)) (-1086 $)) 59)) (-3959 (((-396 $) $) 50)) (-2338 (((-3 $ "failed") $ $) 42)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) 56 (|has| $ (-136)))) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43)) (-3421 (((-3 $ "failed") $) 55 (|has| $ (-136)))) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) 39)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
-(((-843) (-131)) (T -843))
-((-1763 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-843)))) (-3357 (*1 *2 *3) (-12 (-4 *1 (-843)) (-5 *2 (-396 (-1086 *1))) (-5 *3 (-1086 *1)))) (-1371 (*1 *2 *3) (-12 (-4 *1 (-843)) (-5 *2 (-396 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2918 (*1 *2 *3) (-12 (-4 *1 (-843)) (-5 *2 (-396 (-1086 *1))) (-5 *3 (-1086 *1)))) (-2620 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1086 *1))) (-5 *3 (-1086 *1)) (-4 *1 (-843)))) (-2438 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-136)) (-4 *1 (-843)) (-5 *2 (-1172 *1)))) (-3421 (*1 *1 *1) (|partial| -12 (-4 *1 (-136)) (-4 *1 (-843)))))
-(-13 (-1130) (-10 -8 (-15 -3357 ((-396 (-1086 $)) (-1086 $))) (-15 -1371 ((-396 (-1086 $)) (-1086 $))) (-15 -2918 ((-396 (-1086 $)) (-1086 $))) (-15 -1763 ((-1086 $) (-1086 $) (-1086 $))) (-15 -2620 ((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $))) (IF (|has| $ (-136)) (PROGN (-15 -2438 ((-3 (-1172 $) "failed") (-632 $))) (-15 -3421 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-1831 (((-108) $) NIL)) (-3425 (((-713)) NIL)) (-3512 (($ $ (-855)) NIL (|has| $ (-346))) (($ $) NIL)) (-2837 (((-1100 (-855) (-713)) (-525)) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2305 (((-108) $ $) NIL)) (-3107 (((-713)) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 $ "failed") $) NIL)) (-2831 (($ $) NIL)) (-2229 (($ (-1172 $)) NIL)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) NIL)) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-3205 (($) NIL)) (-3746 (((-108) $) NIL)) (-1410 (($ $) NIL) (($ $ (-713)) NIL)) (-2250 (((-108) $) NIL)) (-1737 (((-775 (-855)) $) NIL) (((-855) $) NIL)) (-2133 (((-108) $) NIL)) (-2537 (($) NIL (|has| $ (-346)))) (-4037 (((-108) $) NIL (|has| $ (-346)))) (-3477 (($ $ (-855)) NIL (|has| $ (-346))) (($ $) NIL)) (-1816 (((-3 $ "failed") $) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2362 (((-1086 $) $ (-855)) NIL (|has| $ (-346))) (((-1086 $) $) NIL)) (-1780 (((-855) $) NIL)) (-3474 (((-1086 $) $) NIL (|has| $ (-346)))) (-2509 (((-3 (-1086 $) "failed") $ $) NIL (|has| $ (-346))) (((-1086 $) $) NIL (|has| $ (-346)))) (-2783 (($ $ (-1086 $)) NIL (|has| $ (-346)))) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL T CONST)) (-4185 (($ (-855)) NIL)) (-2325 (((-108) $) NIL)) (-2663 (((-1037) $) NIL)) (-1669 (($) NIL (|has| $ (-346)))) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) NIL)) (-3959 (((-396 $) $) NIL)) (-2864 (((-855)) NIL) (((-775 (-855))) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-2443 (((-3 (-713) "failed") $ $) NIL) (((-713) $) NIL)) (-3191 (((-128)) NIL)) (-3013 (($ $ (-713)) NIL) (($ $) NIL)) (-2513 (((-855) $) NIL) (((-775 (-855)) $) NIL)) (-1654 (((-1086 $)) NIL)) (-3775 (($) NIL)) (-3555 (($) NIL (|has| $ (-346)))) (-4093 (((-632 $) (-1172 $)) NIL) (((-1172 $) $) NIL)) (-1427 (((-525) $) NIL)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL)) (-3421 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2093 (((-713)) NIL)) (-2499 (((-1172 $) (-855)) NIL) (((-1172 $)) NIL)) (-2262 (((-108) $ $) NIL)) (-1252 (((-108) $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-3192 (($ $ (-713)) NIL (|has| $ (-346))) (($ $) NIL (|has| $ (-346)))) (-1424 (($ $ (-713)) NIL) (($ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
-(((-844 |#1|) (-13 (-327) (-307 $) (-567 (-525))) (-855)) (T -844))
+((-4017 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-4026 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-4045 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-4037 (*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108)))) (-2535 (*1 *1 *1 *1) (-4 *1 (-789))) (-2371 (*1 *1 *1 *1) (-4 *1 (-789))))
+(-13 (-1020) (-10 -8 (-15 -4017 ((-108) $ $)) (-15 -4026 ((-108) $ $)) (-15 -4045 ((-108) $ $)) (-15 -4037 ((-108) $ $)) (-15 -2535 ($ $ $)) (-15 -2371 ($ $ $))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-2271 (($ $ $) 45)) (-3954 (($ $ $) 44)) (-1859 (($ $ $) 42)) (-1324 (($ $ $) 51)) (-2711 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 46)) (-4202 (((-3 $ "failed") $ $) 49)) (-2591 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-3026 (($ $) 35)) (-3815 (($ $ $) 39)) (-2516 (($ $ $) 38)) (-3930 (($ $ $) 47)) (-2121 (($ $ $) 53)) (-1557 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 41)) (-3127 (((-3 $ "failed") $ $) 48)) (-1680 (((-3 $ "failed") $ |#2|) 28)) (-2026 ((|#2| $) 32)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#2|) 12)) (-1562 (((-592 |#2|) $) 18)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
+(((-790 |#1| |#2|) (-10 -8 (-15 -3930 (|#1| |#1| |#1|)) (-15 -2711 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3523 |#1|)) |#1| |#1|)) (-15 -1324 (|#1| |#1| |#1|)) (-15 -4202 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2271 (|#1| |#1| |#1|)) (-15 -3954 (|#1| |#1| |#1|)) (-15 -1859 (|#1| |#1| |#1|)) (-15 -1557 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3523 |#1|)) |#1| |#1|)) (-15 -2121 (|#1| |#1| |#1|)) (-15 -3127 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3815 (|#1| |#1| |#1|)) (-15 -2516 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -2026 (|#2| |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1562 ((-592 |#2|) |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -1270 (|#1| |#2|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1270 (|#1| (-525))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -1270 ((-798) |#1|))) (-791 |#2|) (-977)) (T -790))
+NIL
+(-10 -8 (-15 -3930 (|#1| |#1| |#1|)) (-15 -2711 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3523 |#1|)) |#1| |#1|)) (-15 -1324 (|#1| |#1| |#1|)) (-15 -4202 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2271 (|#1| |#1| |#1|)) (-15 -3954 (|#1| |#1| |#1|)) (-15 -1859 (|#1| |#1| |#1|)) (-15 -1557 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3523 |#1|)) |#1| |#1|)) (-15 -2121 (|#1| |#1| |#1|)) (-15 -3127 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3815 (|#1| |#1| |#1|)) (-15 -2516 (|#1| |#1| |#1|)) (-15 -3026 (|#1| |#1|)) (-15 -2026 (|#2| |#1|)) (-15 -1680 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1562 ((-592 |#2|) |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -1270 (|#1| |#2|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1270 (|#1| (-525))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -1270 ((-798) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-2271 (($ $ $) 45 (|has| |#1| (-341)))) (-3954 (($ $ $) 46 (|has| |#1| (-341)))) (-1859 (($ $ $) 48 (|has| |#1| (-341)))) (-1324 (($ $ $) 43 (|has| |#1| (-341)))) (-2711 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 42 (|has| |#1| (-341)))) (-4202 (((-3 $ "failed") $ $) 44 (|has| |#1| (-341)))) (-2541 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 47 (|has| |#1| (-341)))) (-2591 (((-3 (-525) "failed") $) 74 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 72 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 69)) (-3898 (((-525) $) 75 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 73 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 68)) (-2571 (($ $) 64)) (-3762 (((-3 $ "failed") $) 34)) (-3026 (($ $) 55 (|has| |#1| (-429)))) (-1985 (((-108) $) 31)) (-2352 (($ |#1| (-713)) 62)) (-1759 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 57 (|has| |#1| (-517)))) (-3148 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 58 (|has| |#1| (-517)))) (-3724 (((-713) $) 66)) (-3815 (($ $ $) 52 (|has| |#1| (-341)))) (-2516 (($ $ $) 53 (|has| |#1| (-341)))) (-3930 (($ $ $) 41 (|has| |#1| (-341)))) (-2121 (($ $ $) 50 (|has| |#1| (-341)))) (-1557 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 49 (|has| |#1| (-341)))) (-3127 (((-3 $ "failed") $ $) 51 (|has| |#1| (-341)))) (-1453 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 54 (|has| |#1| (-341)))) (-2548 ((|#1| $) 65)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1680 (((-3 $ "failed") $ |#1|) 59 (|has| |#1| (-517)))) (-1587 (((-713) $) 67)) (-2026 ((|#1| $) 56 (|has| |#1| (-429)))) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 71 (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) 70)) (-1562 (((-592 |#1|) $) 61)) (-3468 ((|#1| $ (-713)) 63)) (-2104 (((-713)) 29)) (-4169 ((|#1| $ |#1| |#1|) 60)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 77) (($ |#1| $) 76)))
+(((-791 |#1|) (-131) (-977)) (T -791))
+((-1587 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-2548 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)))) (-2571 (*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)))) (-3468 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-977)))) (-2352 (*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-977)))) (-1562 (*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-592 *3)))) (-4169 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)))) (-1680 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-517)))) (-3148 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-791 *3)))) (-1759 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-791 *3)))) (-2026 (*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-429)))) (-3026 (*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-429)))) (-1453 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-791 *3)))) (-2516 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-3815 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-3127 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-2121 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-1557 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-977)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3523 *1))) (-4 *1 (-791 *3)))) (-1859 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-2541 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-791 *3)))) (-3954 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-2271 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-4202 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-1324 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-2711 (*1 *2 *1 *1) (-12 (-4 *3 (-341)) (-4 *3 (-977)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3523 *1))) (-4 *1 (-791 *3)))) (-3930 (*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(-13 (-977) (-107 |t#1| |t#1|) (-389 |t#1|) (-10 -8 (-15 -1587 ((-713) $)) (-15 -3724 ((-713) $)) (-15 -2548 (|t#1| $)) (-15 -2571 ($ $)) (-15 -3468 (|t#1| $ (-713))) (-15 -2352 ($ |t#1| (-713))) (-15 -1562 ((-592 |t#1|) $)) (-15 -4169 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -1680 ((-3 $ "failed") $ |t#1|)) (-15 -3148 ((-2 (|:| -2370 $) (|:| -3496 $)) $ $)) (-15 -1759 ((-2 (|:| -2370 $) (|:| -3496 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -2026 (|t#1| $)) (-15 -3026 ($ $))) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-15 -1453 ((-2 (|:| -2370 $) (|:| -3496 $)) $ $)) (-15 -2516 ($ $ $)) (-15 -3815 ($ $ $)) (-15 -3127 ((-3 $ "failed") $ $)) (-15 -2121 ($ $ $)) (-15 -1557 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $)) (-15 -1859 ($ $ $)) (-15 -2541 ((-2 (|:| -2370 $) (|:| -3496 $)) $ $)) (-15 -3954 ($ $ $)) (-15 -2271 ($ $ $)) (-15 -4202 ((-3 $ "failed") $ $)) (-15 -1324 ($ $ $)) (-15 -2711 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $)) (-15 -3930 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-389 |#1|) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) |has| |#1| (-160)) ((-669) . T) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 |#1|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-3188 ((|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|)) 20)) (-2541 (((-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2| (-94 |#1|)) 43 (|has| |#1| (-341)))) (-1759 (((-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2| (-94 |#1|)) 40 (|has| |#1| (-517)))) (-3148 (((-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2| (-94 |#1|)) 39 (|has| |#1| (-517)))) (-1453 (((-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2| (-94 |#1|)) 42 (|has| |#1| (-341)))) (-4169 ((|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|)) 31)))
+(((-792 |#1| |#2|) (-10 -7 (-15 -3188 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -4169 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-517)) (PROGN (-15 -3148 ((-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1759 ((-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -1453 ((-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2541 ((-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|)) (-977) (-791 |#1|)) (T -792))
+((-2541 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-977)) (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-1453 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-977)) (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-1759 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-977)) (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-3148 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-977)) (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3))) (-5 *1 (-792 *5 *3)) (-4 *3 (-791 *5)))) (-4169 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-977)) (-5 *1 (-792 *2 *3)) (-4 *3 (-791 *2)))) (-3188 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-977)) (-5 *1 (-792 *5 *2)) (-4 *2 (-791 *5)))))
+(-10 -7 (-15 -3188 (|#2| |#2| |#2| (-94 |#1|) (-1 |#1| |#1|))) (-15 -4169 (|#1| |#2| |#1| |#1| (-94 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-517)) (PROGN (-15 -3148 ((-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -1759 ((-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -1453 ((-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2| (-94 |#1|))) (-15 -2541 ((-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2| (-94 |#1|)))) |%noBranch|))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2271 (($ $ $) NIL (|has| |#1| (-341)))) (-3954 (($ $ $) NIL (|has| |#1| (-341)))) (-1859 (($ $ $) NIL (|has| |#1| (-341)))) (-1324 (($ $ $) NIL (|has| |#1| (-341)))) (-2711 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-4202 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-2541 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 25 (|has| |#1| (-341)))) (-2591 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-3898 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-2571 (($ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3026 (($ $) NIL (|has| |#1| (-429)))) (-3169 (((-798) $ (-798)) NIL)) (-1985 (((-108) $) NIL)) (-2352 (($ |#1| (-713)) NIL)) (-1759 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 21 (|has| |#1| (-517)))) (-3148 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 19 (|has| |#1| (-517)))) (-3724 (((-713) $) NIL)) (-3815 (($ $ $) NIL (|has| |#1| (-341)))) (-2516 (($ $ $) NIL (|has| |#1| (-341)))) (-3930 (($ $ $) NIL (|has| |#1| (-341)))) (-2121 (($ $ $) NIL (|has| |#1| (-341)))) (-1557 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-3127 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-1453 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 23 (|has| |#1| (-341)))) (-2548 ((|#1| $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1680 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-1587 (((-713) $) NIL)) (-2026 ((|#1| $) NIL (|has| |#1| (-429)))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-968 (-385 (-525))))) (($ |#1|) NIL)) (-1562 (((-592 |#1|) $) NIL)) (-3468 ((|#1| $ (-713)) NIL)) (-2104 (((-713)) NIL)) (-4169 ((|#1| $ |#1| |#1|) 15)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-793 |#1| |#2| |#3|) (-13 (-791 |#1|) (-10 -8 (-15 -3169 ((-798) $ (-798))))) (-977) (-94 |#1|) (-1 |#1| |#1|)) (T -793))
+((-3169 (*1 *2 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-793 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-791 |#1|) (-10 -8 (-15 -3169 ((-798) $ (-798)))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2271 (($ $ $) NIL (|has| |#2| (-341)))) (-3954 (($ $ $) NIL (|has| |#2| (-341)))) (-1859 (($ $ $) NIL (|has| |#2| (-341)))) (-1324 (($ $ $) NIL (|has| |#2| (-341)))) (-2711 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#2| (-341)))) (-4202 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-2541 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#2| (-341)))) (-2591 (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-3898 (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) ((|#2| $) NIL)) (-2571 (($ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3026 (($ $) NIL (|has| |#2| (-429)))) (-1985 (((-108) $) NIL)) (-2352 (($ |#2| (-713)) 16)) (-1759 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#2| (-517)))) (-3148 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#2| (-517)))) (-3724 (((-713) $) NIL)) (-3815 (($ $ $) NIL (|has| |#2| (-341)))) (-2516 (($ $ $) NIL (|has| |#2| (-341)))) (-3930 (($ $ $) NIL (|has| |#2| (-341)))) (-2121 (($ $ $) NIL (|has| |#2| (-341)))) (-1557 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#2| (-341)))) (-3127 (((-3 $ "failed") $ $) NIL (|has| |#2| (-341)))) (-1453 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#2| (-341)))) (-2548 ((|#2| $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1680 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-1587 (((-713) $) NIL)) (-2026 ((|#2| $) NIL (|has| |#2| (-429)))) (-1270 (((-798) $) 23) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-968 (-385 (-525))))) (($ |#2|) NIL) (($ (-1169 |#1|)) 18)) (-1562 (((-592 |#2|) $) NIL)) (-3468 ((|#2| $ (-713)) NIL)) (-2104 (((-713)) NIL)) (-4169 ((|#2| $ |#2| |#2|) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) 13 T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-794 |#1| |#2| |#3| |#4|) (-13 (-791 |#2|) (-10 -8 (-15 -1270 ($ (-1169 |#1|))))) (-1091) (-977) (-94 |#2|) (-1 |#2| |#2|)) (T -794))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-14 *3 (-1091)) (-5 *1 (-794 *3 *4 *5 *6)) (-4 *4 (-977)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4)))))
+(-13 (-791 |#2|) (-10 -8 (-15 -1270 ($ (-1169 |#1|)))))
+((-3663 ((|#1| (-713) |#1|) 35 (|has| |#1| (-37 (-385 (-525)))))) (-3094 ((|#1| (-713) (-713) |#1|) 27) ((|#1| (-713) |#1|) 20)) (-2910 ((|#1| (-713) |#1|) 31)) (-1888 ((|#1| (-713) |#1|) 29)) (-3773 ((|#1| (-713) |#1|) 28)))
+(((-795 |#1|) (-10 -7 (-15 -3773 (|#1| (-713) |#1|)) (-15 -1888 (|#1| (-713) |#1|)) (-15 -2910 (|#1| (-713) |#1|)) (-15 -3094 (|#1| (-713) |#1|)) (-15 -3094 (|#1| (-713) (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3663 (|#1| (-713) |#1|)) |%noBranch|)) (-160)) (T -795))
+((-3663 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-160)))) (-3094 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-3094 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-2910 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-1888 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))) (-3773 (*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))))
+(-10 -7 (-15 -3773 (|#1| (-713) |#1|)) (-15 -1888 (|#1| (-713) |#1|)) (-15 -2910 (|#1| (-713) |#1|)) (-15 -3094 (|#1| (-713) |#1|)) (-15 -3094 (|#1| (-713) (-713) |#1|)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3663 (|#1| (-713) |#1|)) |%noBranch|))
+((-1260 (((-108) $ $) 7)) (-2371 (($ $ $) 13)) (-2535 (($ $ $) 14)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-1576 (($ $ (-856)) 22)) (-4045 (((-108) $ $) 16)) (-4026 (((-108) $ $) 17)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 15)) (-4017 (((-108) $ $) 18)) (** (($ $ (-856)) 21)) (* (($ $ $) 20)))
+(((-796) (-131)) (T -796))
+NIL
+(-13 (-789) (-1032))
+(((-97) . T) ((-566 (-798)) . T) ((-789) . T) ((-1032) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-3352 (((-525) $) 12)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 18) (($ (-525)) 11)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 8)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 9)))
+(((-797) (-13 (-789) (-10 -8 (-15 -1270 ($ (-525))) (-15 -3352 ((-525) $))))) (T -797))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797)))))
+(-13 (-789) (-10 -8 (-15 -1270 ($ (-525))) (-15 -3352 ((-525) $))))
+((-1260 (((-108) $ $) NIL) (($ $ $) 77)) (-2573 (($ $ $) 115)) (-1311 (((-525) $) 30) (((-525)) 35)) (-3692 (($ (-525)) 44)) (-2205 (($ $ $) 45) (($ (-592 $)) 76)) (-2112 (($ $ (-592 $)) 74)) (-1815 (((-525) $) 33)) (-3820 (($ $ $) 63)) (-2971 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2845 (((-525) $) 32)) (-2968 (($ $ $) 62)) (-3111 (($ $) 105)) (-2811 (($ $ $) 119)) (-1652 (($ (-592 $)) 52)) (-2036 (($ $ (-592 $)) 69)) (-3778 (($ (-525) (-525)) 46)) (-4040 (($ $) 116) (($ $ $) 117)) (-3602 (($ $ (-525)) 40) (($ $) 43)) (-1726 (($ $ $) 89)) (-1361 (($ $ $) 122)) (-3581 (($ $) 106)) (-1704 (($ $ $) 90)) (-2693 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-3785 (((-1178) $) 8)) (-3603 (($ $) 109) (($ $ (-713)) 112)) (-2876 (($ $ $) 65)) (-1391 (($ $ $) 64)) (-1950 (($ $ (-592 $)) 100)) (-3398 (($ $ $) 104)) (-2878 (($ (-592 $)) 50)) (-3694 (($ $) 60) (($ (-592 $)) 61)) (-1707 (($ $ $) 113)) (-3586 (($ $) 107)) (-2362 (($ $ $) 118)) (-3169 (($ (-525)) 20) (($ (-1091)) 22) (($ (-1074)) 29) (($ (-205)) 24)) (-3818 (($ $ $) 93)) (-1825 (($ $) 94)) (-3147 (((-1178) (-1074)) 14)) (-3750 (($ (-1074)) 13)) (-1660 (($ (-592 (-592 $))) 49)) (-3593 (($ $ (-525)) 39) (($ $) 42)) (-3451 (((-1074) $) NIL)) (-1894 (($ $ $) 121)) (-3060 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-1624 (((-108) $) 98)) (-3444 (($ $ (-592 $)) 102) (($ $ $ $) 103)) (-2406 (($ (-525)) 36)) (-1751 (((-525) $) 31) (((-525)) 34)) (-1785 (($ $ $) 37) (($ (-592 $)) 75)) (-2012 (((-1038) $) NIL)) (-1680 (($ $ $) 91)) (-2718 (($) 12)) (-3410 (($ $ (-592 $)) 99)) (-1809 (($ $) 108) (($ $ (-713)) 111)) (-1692 (($ $ $) 88)) (-2523 (($ $ (-713)) 127)) (-3348 (($ (-592 $)) 51)) (-1270 (((-798) $) 18)) (-3144 (($ $ (-525)) 38) (($ $) 41)) (-2140 (($ $) 58) (($ (-592 $)) 59)) (-3316 (($ $) 56) (($ (-592 $)) 57)) (-1604 (($ $) 114)) (-2048 (($ (-592 $)) 55)) (-2938 (($ $ $) 97)) (-3226 (($ $ $) 120)) (-3830 (($ $ $) 92)) (-2728 (($ $ $) 95) (($ $) 96)) (-4045 (($ $ $) 81)) (-4026 (($ $ $) 79)) (-3994 (((-108) $ $) 15) (($ $ $) 16)) (-4037 (($ $ $) 80)) (-4017 (($ $ $) 78)) (-4100 (($ $ $) 86)) (-4090 (($ $ $) 83) (($ $) 84)) (-4080 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-798) (-13 (-1020) (-10 -8 (-15 -3785 ((-1178) $)) (-15 -3750 ($ (-1074))) (-15 -3147 ((-1178) (-1074))) (-15 -3169 ($ (-525))) (-15 -3169 ($ (-1091))) (-15 -3169 ($ (-1074))) (-15 -3169 ($ (-205))) (-15 -2718 ($)) (-15 -1311 ((-525) $)) (-15 -1751 ((-525) $)) (-15 -1311 ((-525))) (-15 -1751 ((-525))) (-15 -2845 ((-525) $)) (-15 -1815 ((-525) $)) (-15 -2406 ($ (-525))) (-15 -3692 ($ (-525))) (-15 -3778 ($ (-525) (-525))) (-15 -3593 ($ $ (-525))) (-15 -3602 ($ $ (-525))) (-15 -3144 ($ $ (-525))) (-15 -3593 ($ $)) (-15 -3602 ($ $)) (-15 -3144 ($ $)) (-15 -1785 ($ $ $)) (-15 -2205 ($ $ $)) (-15 -1785 ($ (-592 $))) (-15 -2205 ($ (-592 $))) (-15 -1950 ($ $ (-592 $))) (-15 -3444 ($ $ (-592 $))) (-15 -3444 ($ $ $ $)) (-15 -3398 ($ $ $)) (-15 -1624 ((-108) $)) (-15 -3410 ($ $ (-592 $))) (-15 -3111 ($ $)) (-15 -1894 ($ $ $)) (-15 -1604 ($ $)) (-15 -1660 ($ (-592 (-592 $)))) (-15 -2573 ($ $ $)) (-15 -4040 ($ $)) (-15 -4040 ($ $ $)) (-15 -2362 ($ $ $)) (-15 -2811 ($ $ $)) (-15 -3226 ($ $ $)) (-15 -1361 ($ $ $)) (-15 -2523 ($ $ (-713))) (-15 -2938 ($ $ $)) (-15 -2968 ($ $ $)) (-15 -3820 ($ $ $)) (-15 -1391 ($ $ $)) (-15 -2876 ($ $ $)) (-15 -2036 ($ $ (-592 $))) (-15 -2112 ($ $ (-592 $))) (-15 -3581 ($ $)) (-15 -1809 ($ $)) (-15 -1809 ($ $ (-713))) (-15 -3603 ($ $)) (-15 -3603 ($ $ (-713))) (-15 -3586 ($ $)) (-15 -1707 ($ $ $)) (-15 -2971 ($ $)) (-15 -2971 ($ $ $)) (-15 -2971 ($ $ $ $)) (-15 -2693 ($ $)) (-15 -2693 ($ $ $)) (-15 -2693 ($ $ $ $)) (-15 -3060 ($ $)) (-15 -3060 ($ $ $)) (-15 -3060 ($ $ $ $)) (-15 -3316 ($ $)) (-15 -3316 ($ (-592 $))) (-15 -2140 ($ $)) (-15 -2140 ($ (-592 $))) (-15 -3694 ($ $)) (-15 -3694 ($ (-592 $))) (-15 -2878 ($ (-592 $))) (-15 -3348 ($ (-592 $))) (-15 -1652 ($ (-592 $))) (-15 -2048 ($ (-592 $))) (-15 -3994 ($ $ $)) (-15 -1260 ($ $ $)) (-15 -4017 ($ $ $)) (-15 -4026 ($ $ $)) (-15 -4037 ($ $ $)) (-15 -4045 ($ $ $)) (-15 -4080 ($ $ $)) (-15 -4090 ($ $ $)) (-15 -4090 ($ $)) (-15 * ($ $ $)) (-15 -4100 ($ $ $)) (-15 ** ($ $ $)) (-15 -1692 ($ $ $)) (-15 -1726 ($ $ $)) (-15 -1704 ($ $ $)) (-15 -1680 ($ $ $)) (-15 -3830 ($ $ $)) (-15 -3818 ($ $ $)) (-15 -1825 ($ $)) (-15 -2728 ($ $ $)) (-15 -2728 ($ $))))) (T -798))
+((-3785 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-798)))) (-3750 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-798)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-798)))) (-3169 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3169 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-798)))) (-3169 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-798)))) (-3169 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-798)))) (-2718 (*1 *1) (-5 *1 (-798))) (-1311 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-1751 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-1311 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-1751 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-2406 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3692 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3778 (*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3593 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3602 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3144 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))) (-3593 (*1 *1 *1) (-5 *1 (-798))) (-3602 (*1 *1 *1) (-5 *1 (-798))) (-3144 (*1 *1 *1) (-5 *1 (-798))) (-1785 (*1 *1 *1 *1) (-5 *1 (-798))) (-2205 (*1 *1 *1 *1) (-5 *1 (-798))) (-1785 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-2205 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-1950 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3444 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3444 (*1 *1 *1 *1 *1) (-5 *1 (-798))) (-3398 (*1 *1 *1 *1) (-5 *1 (-798))) (-1624 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-798)))) (-3410 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3111 (*1 *1 *1) (-5 *1 (-798))) (-1894 (*1 *1 *1 *1) (-5 *1 (-798))) (-1604 (*1 *1 *1) (-5 *1 (-798))) (-1660 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-798)))) (-5 *1 (-798)))) (-2573 (*1 *1 *1 *1) (-5 *1 (-798))) (-4040 (*1 *1 *1) (-5 *1 (-798))) (-4040 (*1 *1 *1 *1) (-5 *1 (-798))) (-2362 (*1 *1 *1 *1) (-5 *1 (-798))) (-2811 (*1 *1 *1 *1) (-5 *1 (-798))) (-3226 (*1 *1 *1 *1) (-5 *1 (-798))) (-1361 (*1 *1 *1 *1) (-5 *1 (-798))) (-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798)))) (-2938 (*1 *1 *1 *1) (-5 *1 (-798))) (-2968 (*1 *1 *1 *1) (-5 *1 (-798))) (-3820 (*1 *1 *1 *1) (-5 *1 (-798))) (-1391 (*1 *1 *1 *1) (-5 *1 (-798))) (-2876 (*1 *1 *1 *1) (-5 *1 (-798))) (-2036 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-2112 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3581 (*1 *1 *1) (-5 *1 (-798))) (-1809 (*1 *1 *1) (-5 *1 (-798))) (-1809 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798)))) (-3603 (*1 *1 *1) (-5 *1 (-798))) (-3603 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798)))) (-3586 (*1 *1 *1) (-5 *1 (-798))) (-1707 (*1 *1 *1 *1) (-5 *1 (-798))) (-2971 (*1 *1 *1) (-5 *1 (-798))) (-2971 (*1 *1 *1 *1) (-5 *1 (-798))) (-2971 (*1 *1 *1 *1 *1) (-5 *1 (-798))) (-2693 (*1 *1 *1) (-5 *1 (-798))) (-2693 (*1 *1 *1 *1) (-5 *1 (-798))) (-2693 (*1 *1 *1 *1 *1) (-5 *1 (-798))) (-3060 (*1 *1 *1) (-5 *1 (-798))) (-3060 (*1 *1 *1 *1) (-5 *1 (-798))) (-3060 (*1 *1 *1 *1 *1) (-5 *1 (-798))) (-3316 (*1 *1 *1) (-5 *1 (-798))) (-3316 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-2140 (*1 *1 *1) (-5 *1 (-798))) (-2140 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3694 (*1 *1 *1) (-5 *1 (-798))) (-3694 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-2878 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3348 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-1652 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-2048 (*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))) (-3994 (*1 *1 *1 *1) (-5 *1 (-798))) (-1260 (*1 *1 *1 *1) (-5 *1 (-798))) (-4017 (*1 *1 *1 *1) (-5 *1 (-798))) (-4026 (*1 *1 *1 *1) (-5 *1 (-798))) (-4037 (*1 *1 *1 *1) (-5 *1 (-798))) (-4045 (*1 *1 *1 *1) (-5 *1 (-798))) (-4080 (*1 *1 *1 *1) (-5 *1 (-798))) (-4090 (*1 *1 *1 *1) (-5 *1 (-798))) (-4090 (*1 *1 *1) (-5 *1 (-798))) (* (*1 *1 *1 *1) (-5 *1 (-798))) (-4100 (*1 *1 *1 *1) (-5 *1 (-798))) (** (*1 *1 *1 *1) (-5 *1 (-798))) (-1692 (*1 *1 *1 *1) (-5 *1 (-798))) (-1726 (*1 *1 *1 *1) (-5 *1 (-798))) (-1704 (*1 *1 *1 *1) (-5 *1 (-798))) (-1680 (*1 *1 *1 *1) (-5 *1 (-798))) (-3830 (*1 *1 *1 *1) (-5 *1 (-798))) (-3818 (*1 *1 *1 *1) (-5 *1 (-798))) (-1825 (*1 *1 *1) (-5 *1 (-798))) (-2728 (*1 *1 *1 *1) (-5 *1 (-798))) (-2728 (*1 *1 *1) (-5 *1 (-798))))
+(-13 (-1020) (-10 -8 (-15 -3785 ((-1178) $)) (-15 -3750 ($ (-1074))) (-15 -3147 ((-1178) (-1074))) (-15 -3169 ($ (-525))) (-15 -3169 ($ (-1091))) (-15 -3169 ($ (-1074))) (-15 -3169 ($ (-205))) (-15 -2718 ($)) (-15 -1311 ((-525) $)) (-15 -1751 ((-525) $)) (-15 -1311 ((-525))) (-15 -1751 ((-525))) (-15 -2845 ((-525) $)) (-15 -1815 ((-525) $)) (-15 -2406 ($ (-525))) (-15 -3692 ($ (-525))) (-15 -3778 ($ (-525) (-525))) (-15 -3593 ($ $ (-525))) (-15 -3602 ($ $ (-525))) (-15 -3144 ($ $ (-525))) (-15 -3593 ($ $)) (-15 -3602 ($ $)) (-15 -3144 ($ $)) (-15 -1785 ($ $ $)) (-15 -2205 ($ $ $)) (-15 -1785 ($ (-592 $))) (-15 -2205 ($ (-592 $))) (-15 -1950 ($ $ (-592 $))) (-15 -3444 ($ $ (-592 $))) (-15 -3444 ($ $ $ $)) (-15 -3398 ($ $ $)) (-15 -1624 ((-108) $)) (-15 -3410 ($ $ (-592 $))) (-15 -3111 ($ $)) (-15 -1894 ($ $ $)) (-15 -1604 ($ $)) (-15 -1660 ($ (-592 (-592 $)))) (-15 -2573 ($ $ $)) (-15 -4040 ($ $)) (-15 -4040 ($ $ $)) (-15 -2362 ($ $ $)) (-15 -2811 ($ $ $)) (-15 -3226 ($ $ $)) (-15 -1361 ($ $ $)) (-15 -2523 ($ $ (-713))) (-15 -2938 ($ $ $)) (-15 -2968 ($ $ $)) (-15 -3820 ($ $ $)) (-15 -1391 ($ $ $)) (-15 -2876 ($ $ $)) (-15 -2036 ($ $ (-592 $))) (-15 -2112 ($ $ (-592 $))) (-15 -3581 ($ $)) (-15 -1809 ($ $)) (-15 -1809 ($ $ (-713))) (-15 -3603 ($ $)) (-15 -3603 ($ $ (-713))) (-15 -3586 ($ $)) (-15 -1707 ($ $ $)) (-15 -2971 ($ $)) (-15 -2971 ($ $ $)) (-15 -2971 ($ $ $ $)) (-15 -2693 ($ $)) (-15 -2693 ($ $ $)) (-15 -2693 ($ $ $ $)) (-15 -3060 ($ $)) (-15 -3060 ($ $ $)) (-15 -3060 ($ $ $ $)) (-15 -3316 ($ $)) (-15 -3316 ($ (-592 $))) (-15 -2140 ($ $)) (-15 -2140 ($ (-592 $))) (-15 -3694 ($ $)) (-15 -3694 ($ (-592 $))) (-15 -2878 ($ (-592 $))) (-15 -3348 ($ (-592 $))) (-15 -1652 ($ (-592 $))) (-15 -2048 ($ (-592 $))) (-15 -3994 ($ $ $)) (-15 -1260 ($ $ $)) (-15 -4017 ($ $ $)) (-15 -4026 ($ $ $)) (-15 -4037 ($ $ $)) (-15 -4045 ($ $ $)) (-15 -4080 ($ $ $)) (-15 -4090 ($ $ $)) (-15 -4090 ($ $)) (-15 * ($ $ $)) (-15 -4100 ($ $ $)) (-15 ** ($ $ $)) (-15 -1692 ($ $ $)) (-15 -1726 ($ $ $)) (-15 -1704 ($ $ $)) (-15 -1680 ($ $ $)) (-15 -3830 ($ $ $)) (-15 -3818 ($ $ $)) (-15 -1825 ($ $)) (-15 -2728 ($ $ $)) (-15 -2728 ($ $))))
+((-1804 (((-1178) (-592 (-51))) 24)) (-2940 (((-1178) (-1074) (-798)) 14) (((-1178) (-798)) 9) (((-1178) (-1074)) 11)))
+(((-799) (-10 -7 (-15 -2940 ((-1178) (-1074))) (-15 -2940 ((-1178) (-798))) (-15 -2940 ((-1178) (-1074) (-798))) (-15 -1804 ((-1178) (-592 (-51)))))) (T -799))
+((-1804 (*1 *2 *3) (-12 (-5 *3 (-592 (-51))) (-5 *2 (-1178)) (-5 *1 (-799)))) (-2940 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-798)) (-5 *2 (-1178)) (-5 *1 (-799)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1178)) (-5 *1 (-799)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-799)))))
+(-10 -7 (-15 -2940 ((-1178) (-1074))) (-15 -2940 ((-1178) (-798))) (-15 -2940 ((-1178) (-1074) (-798))) (-15 -1804 ((-1178) (-592 (-51)))))
+((-1260 (((-108) $ $) NIL)) (-2577 (((-3 $ "failed") (-1091)) 33)) (-4190 (((-713)) 31)) (-2899 (($) NIL)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-1736 (((-856) $) 29)) (-3451 (((-1074) $) 39)) (-3640 (($ (-856)) 28)) (-2012 (((-1038) $) NIL)) (-2749 (((-1091) $) 13) (((-501) $) 19) (((-827 (-357)) $) 26) (((-827 (-525)) $) 22)) (-1270 (((-798) $) 16)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 36)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 35)))
+(((-800 |#1|) (-13 (-783) (-567 (-1091)) (-567 (-501)) (-567 (-827 (-357))) (-567 (-827 (-525))) (-10 -8 (-15 -2577 ((-3 $ "failed") (-1091))))) (-592 (-1091))) (T -800))
+((-2577 (*1 *1 *2) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-800 *3)) (-14 *3 (-592 (-1091))))))
+(-13 (-783) (-567 (-1091)) (-567 (-501)) (-567 (-827 (-357))) (-567 (-827 (-525))) (-10 -8 (-15 -2577 ((-3 $ "failed") (-1091)))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-3762 (((-3 $ "failed") $) NIL)) (-1985 (((-108) $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (((-887 |#1|) $) NIL) (($ (-887 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-160)))) (-2104 (((-713)) NIL)) (-3688 (((-1178) (-713)) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-3994 (((-108) $ $) NIL)) (-4100 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160)))))
+(((-801 |#1| |#2| |#3| |#4|) (-13 (-977) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1270 ((-887 |#1|) $)) (-15 -1270 ($ (-887 |#1|))) (IF (|has| |#1| (-341)) (-15 -4100 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3688 ((-1178) (-713))))) (-977) (-592 (-1091)) (-592 (-713)) (-713)) (T -801))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-887 *3)) (-5 *1 (-801 *3 *4 *5 *6)) (-4 *3 (-977)) (-14 *4 (-592 (-1091))) (-14 *5 (-592 (-713))) (-14 *6 (-713)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-887 *3)) (-4 *3 (-977)) (-5 *1 (-801 *3 *4 *5 *6)) (-14 *4 (-592 (-1091))) (-14 *5 (-592 (-713))) (-14 *6 (-713)))) (-4100 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-801 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *2 (-977)) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-713))) (-14 *5 (-713)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1178)) (-5 *1 (-801 *4 *5 *6 *7)) (-4 *4 (-977)) (-14 *5 (-592 (-1091))) (-14 *6 (-592 (-713))) (-14 *7 (-713)))))
+(-13 (-977) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1270 ((-887 |#1|) $)) (-15 -1270 ($ (-887 |#1|))) (IF (|has| |#1| (-341)) (-15 -4100 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3688 ((-1178) (-713)))))
+((-2395 (((-3 (-161 |#3|) "failed") (-713) (-713) |#2| |#2|) 31)) (-3629 (((-3 (-385 |#3|) "failed") (-713) (-713) |#2| |#2|) 24)))
+(((-802 |#1| |#2| |#3|) (-10 -7 (-15 -3629 ((-3 (-385 |#3|) "failed") (-713) (-713) |#2| |#2|)) (-15 -2395 ((-3 (-161 |#3|) "failed") (-713) (-713) |#2| |#2|))) (-341) (-1164 |#1|) (-1149 |#1|)) (T -802))
+((-2395 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-161 *6)) (-5 *1 (-802 *5 *4 *6)) (-4 *4 (-1164 *5)) (-4 *6 (-1149 *5)))) (-3629 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-385 *6)) (-5 *1 (-802 *5 *4 *6)) (-4 *4 (-1164 *5)) (-4 *6 (-1149 *5)))))
+(-10 -7 (-15 -3629 ((-3 (-385 |#3|) "failed") (-713) (-713) |#2| |#2|)) (-15 -2395 ((-3 (-161 |#3|) "failed") (-713) (-713) |#2| |#2|)))
+((-3629 (((-3 (-385 (-1146 |#2| |#1|)) "failed") (-713) (-713) (-1165 |#1| |#2| |#3|)) 28) (((-3 (-385 (-1146 |#2| |#1|)) "failed") (-713) (-713) (-1165 |#1| |#2| |#3|) (-1165 |#1| |#2| |#3|)) 26)))
+(((-803 |#1| |#2| |#3|) (-10 -7 (-15 -3629 ((-3 (-385 (-1146 |#2| |#1|)) "failed") (-713) (-713) (-1165 |#1| |#2| |#3|) (-1165 |#1| |#2| |#3|))) (-15 -3629 ((-3 (-385 (-1146 |#2| |#1|)) "failed") (-713) (-713) (-1165 |#1| |#2| |#3|)))) (-341) (-1091) |#1|) (T -803))
+((-3629 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1165 *5 *6 *7)) (-4 *5 (-341)) (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-385 (-1146 *6 *5))) (-5 *1 (-803 *5 *6 *7)))) (-3629 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1165 *5 *6 *7)) (-4 *5 (-341)) (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-385 (-1146 *6 *5))) (-5 *1 (-803 *5 *6 *7)))))
+(-10 -7 (-15 -3629 ((-3 (-385 (-1146 |#2| |#1|)) "failed") (-713) (-713) (-1165 |#1| |#2| |#3|) (-1165 |#1| |#2| |#3|))) (-15 -3629 ((-3 (-385 (-1146 |#2| |#1|)) "failed") (-713) (-713) (-1165 |#1| |#2| |#3|))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-1342 (((-3 $ "failed") $ $) 19)) (-2211 (($ $ (-525)) 62)) (-3197 (((-108) $ $) 59)) (-2305 (($) 17 T CONST)) (-4040 (($ (-1087 (-525)) (-525)) 61)) (-1726 (($ $ $) 55)) (-3762 (((-3 $ "failed") $) 34)) (-3798 (($ $) 64)) (-1704 (($ $ $) 56)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 51)) (-3973 (((-713) $) 69)) (-1985 (((-108) $) 31)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-3703 (((-525)) 66)) (-3643 (((-525) $) 65)) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2182 (($ $ (-525)) 68)) (-1680 (((-3 $ "failed") $ $) 42)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1290 (((-713) $) 58)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 57)) (-3342 (((-1072 (-525)) $) 70)) (-3577 (($ $) 67)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) 39)) (-1369 (((-525) $ (-525)) 63)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+(((-804 |#1|) (-131) (-525)) (T -804))
+((-3342 (*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-1072 (-525))))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-713)))) (-2182 (*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))) (-3577 (*1 *1 *1) (-4 *1 (-804 *2))) (-3703 (*1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))) (-3798 (*1 *1 *1) (-4 *1 (-804 *2))) (-1369 (*1 *2 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))) (-2211 (*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))) (-4040 (*1 *1 *2 *3) (-12 (-5 *2 (-1087 (-525))) (-5 *3 (-525)) (-4 *1 (-804 *4)))))
+(-13 (-286) (-138) (-10 -8 (-15 -3342 ((-1072 (-525)) $)) (-15 -3973 ((-713) $)) (-15 -2182 ($ $ (-525))) (-15 -3577 ($ $)) (-15 -3703 ((-525))) (-15 -3643 ((-525) $)) (-15 -3798 ($ $)) (-15 -1369 ((-525) $ (-525))) (-15 -2211 ($ $ (-525))) (-15 -4040 ($ (-1087 (-525)) (-525)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-286) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2211 (($ $ (-525)) NIL)) (-3197 (((-108) $ $) NIL)) (-2305 (($) NIL T CONST)) (-4040 (($ (-1087 (-525)) (-525)) NIL)) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3798 (($ $) NIL)) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3973 (((-713) $) NIL)) (-1985 (((-108) $) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3703 (((-525)) NIL)) (-3643 (((-525) $) NIL)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2182 (($ $ (-525)) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-3342 (((-1072 (-525)) $) NIL)) (-3577 (($ $) NIL)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL)) (-2104 (((-713)) NIL)) (-3959 (((-108) $ $) NIL)) (-1369 (((-525) $ (-525)) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL)))
+(((-805 |#1|) (-804 |#1|) (-525)) (T -805))
+NIL
+(-804 |#1|)
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2628 (((-805 |#1|) $) NIL (|has| (-805 |#1|) (-286)))) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-805 |#1|) (-844)))) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| (-805 |#1|) (-844)))) (-3197 (((-108) $ $) NIL)) (-1436 (((-525) $) NIL (|has| (-805 |#1|) (-762)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-805 |#1|) "failed") $) NIL) (((-3 (-1091) "failed") $) NIL (|has| (-805 |#1|) (-968 (-1091)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-805 |#1|) (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| (-805 |#1|) (-968 (-525))))) (-3898 (((-805 |#1|) $) NIL) (((-1091) $) NIL (|has| (-805 |#1|) (-968 (-1091)))) (((-385 (-525)) $) NIL (|has| (-805 |#1|) (-968 (-525)))) (((-525) $) NIL (|has| (-805 |#1|) (-968 (-525))))) (-1786 (($ $) NIL) (($ (-525) $) NIL)) (-1726 (($ $ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| (-805 |#1|) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| (-805 |#1|) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-805 |#1|))) (|:| |vec| (-1173 (-805 |#1|)))) (-632 $) (-1173 $)) NIL) (((-632 (-805 |#1|)) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) NIL (|has| (-805 |#1|) (-510)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-3017 (((-108) $) NIL (|has| (-805 |#1|) (-762)))) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-805 |#1|) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-805 |#1|) (-821 (-357))))) (-1985 (((-108) $) NIL)) (-1931 (($ $) NIL)) (-1498 (((-805 |#1|) $) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| (-805 |#1|) (-1067)))) (-3912 (((-108) $) NIL (|has| (-805 |#1|) (-762)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2371 (($ $ $) NIL (|has| (-805 |#1|) (-789)))) (-2535 (($ $ $) NIL (|has| (-805 |#1|) (-789)))) (-2694 (($ (-1 (-805 |#1|) (-805 |#1|)) $) NIL)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL (|has| (-805 |#1|) (-1067)) CONST)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3025 (($ $) NIL (|has| (-805 |#1|) (-286)))) (-2793 (((-805 |#1|) $) NIL (|has| (-805 |#1|) (-510)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-805 |#1|) (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-805 |#1|) (-844)))) (-2195 (((-396 $) $) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2602 (($ $ (-592 (-805 |#1|)) (-592 (-805 |#1|))) NIL (|has| (-805 |#1|) (-288 (-805 |#1|)))) (($ $ (-805 |#1|) (-805 |#1|)) NIL (|has| (-805 |#1|) (-288 (-805 |#1|)))) (($ $ (-273 (-805 |#1|))) NIL (|has| (-805 |#1|) (-288 (-805 |#1|)))) (($ $ (-592 (-273 (-805 |#1|)))) NIL (|has| (-805 |#1|) (-288 (-805 |#1|)))) (($ $ (-592 (-1091)) (-592 (-805 |#1|))) NIL (|has| (-805 |#1|) (-486 (-1091) (-805 |#1|)))) (($ $ (-1091) (-805 |#1|)) NIL (|has| (-805 |#1|) (-486 (-1091) (-805 |#1|))))) (-1290 (((-713) $) NIL)) (-3410 (($ $ (-805 |#1|)) NIL (|has| (-805 |#1|) (-265 (-805 |#1|) (-805 |#1|))))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2523 (($ $) NIL (|has| (-805 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-805 |#1|) (-213))) (($ $ (-1091)) NIL (|has| (-805 |#1|) (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| (-805 |#1|) (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| (-805 |#1|) (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| (-805 |#1|) (-835 (-1091)))) (($ $ (-1 (-805 |#1|) (-805 |#1|)) (-713)) NIL) (($ $ (-1 (-805 |#1|) (-805 |#1|))) NIL)) (-2097 (($ $) NIL)) (-1512 (((-805 |#1|) $) NIL)) (-2749 (((-827 (-525)) $) NIL (|has| (-805 |#1|) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-805 |#1|) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-805 |#1|) (-567 (-501)))) (((-357) $) NIL (|has| (-805 |#1|) (-953))) (((-205) $) NIL (|has| (-805 |#1|) (-953)))) (-2215 (((-161 (-385 (-525))) $) NIL)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-805 |#1|) (-844))))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL) (($ (-805 |#1|)) NIL) (($ (-1091)) NIL (|has| (-805 |#1|) (-968 (-1091))))) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| (-805 |#1|) (-844))) (|has| (-805 |#1|) (-136))))) (-2104 (((-713)) NIL)) (-1438 (((-805 |#1|) $) NIL (|has| (-805 |#1|) (-510)))) (-3959 (((-108) $ $) NIL)) (-1369 (((-385 (-525)) $ (-525)) NIL)) (-2086 (($ $) NIL (|has| (-805 |#1|) (-762)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $) NIL (|has| (-805 |#1|) (-213))) (($ $ (-713)) NIL (|has| (-805 |#1|) (-213))) (($ $ (-1091)) NIL (|has| (-805 |#1|) (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| (-805 |#1|) (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| (-805 |#1|) (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| (-805 |#1|) (-835 (-1091)))) (($ $ (-1 (-805 |#1|) (-805 |#1|)) (-713)) NIL) (($ $ (-1 (-805 |#1|) (-805 |#1|))) NIL)) (-4045 (((-108) $ $) NIL (|has| (-805 |#1|) (-789)))) (-4026 (((-108) $ $) NIL (|has| (-805 |#1|) (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| (-805 |#1|) (-789)))) (-4017 (((-108) $ $) NIL (|has| (-805 |#1|) (-789)))) (-4100 (($ $ $) NIL) (($ (-805 |#1|) (-805 |#1|)) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-805 |#1|) $) NIL) (($ $ (-805 |#1|)) NIL)))
+(((-806 |#1|) (-13 (-925 (-805 |#1|)) (-10 -8 (-15 -1369 ((-385 (-525)) $ (-525))) (-15 -2215 ((-161 (-385 (-525))) $)) (-15 -1786 ($ $)) (-15 -1786 ($ (-525) $)))) (-525)) (T -806))
+((-1369 (*1 *2 *1 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-806 *4)) (-14 *4 (-525)) (-5 *3 (-525)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-806 *3)) (-14 *3 (-525)))) (-1786 (*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-14 *2 (-525)))) (-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-806 *3)) (-14 *3 (-525)))))
+(-13 (-925 (-805 |#1|)) (-10 -8 (-15 -1369 ((-385 (-525)) $ (-525))) (-15 -2215 ((-161 (-385 (-525))) $)) (-15 -1786 ($ $)) (-15 -1786 ($ (-525) $))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2628 ((|#2| $) NIL (|has| |#2| (-286)))) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-3197 (((-108) $ $) NIL)) (-1436 (((-525) $) NIL (|has| |#2| (-762)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#2| "failed") $) NIL) (((-3 (-1091) "failed") $) NIL (|has| |#2| (-968 (-1091)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525))))) (-3898 ((|#2| $) NIL) (((-1091) $) NIL (|has| |#2| (-968 (-1091)))) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-525)))) (((-525) $) NIL (|has| |#2| (-968 (-525))))) (-1786 (($ $) 31) (($ (-525) $) 32)) (-1726 (($ $ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) 53)) (-2899 (($) NIL (|has| |#2| (-510)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-3017 (((-108) $) NIL (|has| |#2| (-762)))) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| |#2| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| |#2| (-821 (-357))))) (-1985 (((-108) $) NIL)) (-1931 (($ $) NIL)) (-1498 ((|#2| $) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| |#2| (-1067)))) (-3912 (((-108) $) NIL (|has| |#2| (-762)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2371 (($ $ $) NIL (|has| |#2| (-789)))) (-2535 (($ $ $) NIL (|has| |#2| (-789)))) (-2694 (($ (-1 |#2| |#2|) $) NIL)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 49)) (-3940 (($) NIL (|has| |#2| (-1067)) CONST)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3025 (($ $) NIL (|has| |#2| (-286)))) (-2793 ((|#2| $) NIL (|has| |#2| (-510)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-2195 (((-396 $) $) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2602 (($ $ (-592 |#2|) (-592 |#2|)) NIL (|has| |#2| (-288 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-288 |#2|))) (($ $ (-273 |#2|)) NIL (|has| |#2| (-288 |#2|))) (($ $ (-592 (-273 |#2|))) NIL (|has| |#2| (-288 |#2|))) (($ $ (-592 (-1091)) (-592 |#2|)) NIL (|has| |#2| (-486 (-1091) |#2|))) (($ $ (-1091) |#2|) NIL (|has| |#2| (-486 (-1091) |#2|)))) (-1290 (((-713) $) NIL)) (-3410 (($ $ |#2|) NIL (|has| |#2| (-265 |#2| |#2|)))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2523 (($ $) NIL (|has| |#2| (-213))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $ (-1091)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2097 (($ $) NIL)) (-1512 ((|#2| $) NIL)) (-2749 (((-827 (-525)) $) NIL (|has| |#2| (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| |#2| (-567 (-827 (-357))))) (((-501) $) NIL (|has| |#2| (-567 (-501)))) (((-357) $) NIL (|has| |#2| (-953))) (((-205) $) NIL (|has| |#2| (-953)))) (-2215 (((-161 (-385 (-525))) $) 68)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-1270 (((-798) $) 87) (($ (-525)) 19) (($ $) NIL) (($ (-385 (-525))) 24) (($ |#2|) 18) (($ (-1091)) NIL (|has| |#2| (-968 (-1091))))) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-2104 (((-713)) NIL)) (-1438 ((|#2| $) NIL (|has| |#2| (-510)))) (-3959 (((-108) $ $) NIL)) (-1369 (((-385 (-525)) $ (-525)) 60)) (-2086 (($ $) NIL (|has| |#2| (-762)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) 14 T CONST)) (-3363 (($) 16 T CONST)) (-2093 (($ $) NIL (|has| |#2| (-213))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $ (-1091)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4045 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3994 (((-108) $ $) 35)) (-4037 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4100 (($ $ $) 23) (($ |#2| |#2|) 54)) (-4090 (($ $) 39) (($ $ $) 41)) (-4080 (($ $ $) 37)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) 50)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 42) (($ $ $) 44) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-807 |#1| |#2|) (-13 (-925 |#2|) (-10 -8 (-15 -1369 ((-385 (-525)) $ (-525))) (-15 -2215 ((-161 (-385 (-525))) $)) (-15 -1786 ($ $)) (-15 -1786 ($ (-525) $)))) (-525) (-804 |#1|)) (T -807))
+((-1369 (*1 *2 *1 *3) (-12 (-14 *4 (-525)) (-5 *2 (-385 (-525))) (-5 *1 (-807 *4 *5)) (-5 *3 (-525)) (-4 *5 (-804 *4)))) (-2215 (*1 *2 *1) (-12 (-14 *3 (-525)) (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-807 *3 *4)) (-4 *4 (-804 *3)))) (-1786 (*1 *1 *1) (-12 (-14 *2 (-525)) (-5 *1 (-807 *2 *3)) (-4 *3 (-804 *2)))) (-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-14 *3 (-525)) (-5 *1 (-807 *3 *4)) (-4 *4 (-804 *3)))))
+(-13 (-925 |#2|) (-10 -8 (-15 -1369 ((-385 (-525)) $ (-525))) (-15 -2215 ((-161 (-385 (-525))) $)) (-15 -1786 ($ $)) (-15 -1786 ($ (-525) $))))
+((-1260 (((-108) $ $) NIL (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020))))) (-2016 ((|#2| $) 12)) (-3669 (($ |#1| |#2|) 9)) (-3451 (((-1074) $) NIL (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020))))) (-2012 (((-1038) $) NIL (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020))))) (-3110 ((|#1| $) 11)) (-1279 (($ |#1| |#2|) 10)) (-1270 (((-798) $) 18 (-3279 (-12 (|has| |#1| (-566 (-798))) (|has| |#2| (-566 (-798)))) (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020)))))) (-3994 (((-108) $ $) 22 (-12 (|has| |#1| (-1020)) (|has| |#2| (-1020))))))
+(((-808 |#1| |#2|) (-13 (-1127) (-10 -8 (IF (|has| |#1| (-566 (-798))) (IF (|has| |#2| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1020)) (IF (|has| |#2| (-1020)) (-6 (-1020)) |%noBranch|) |%noBranch|) (-15 -3669 ($ |#1| |#2|)) (-15 -1279 ($ |#1| |#2|)) (-15 -3110 (|#1| $)) (-15 -2016 (|#2| $)))) (-1127) (-1127)) (T -808))
+((-3669 (*1 *1 *2 *3) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1127)) (-4 *3 (-1127)))) (-1279 (*1 *1 *2 *3) (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1127)) (-4 *3 (-1127)))) (-3110 (*1 *2 *1) (-12 (-4 *2 (-1127)) (-5 *1 (-808 *2 *3)) (-4 *3 (-1127)))) (-2016 (*1 *2 *1) (-12 (-4 *2 (-1127)) (-5 *1 (-808 *3 *2)) (-4 *3 (-1127)))))
+(-13 (-1127) (-10 -8 (IF (|has| |#1| (-566 (-798))) (IF (|has| |#2| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1020)) (IF (|has| |#2| (-1020)) (-6 (-1020)) |%noBranch|) |%noBranch|) (-15 -3669 ($ |#1| |#2|)) (-15 -1279 ($ |#1| |#2|)) (-15 -3110 (|#1| $)) (-15 -2016 (|#2| $))))
+((-1260 (((-108) $ $) NIL)) (-1478 (((-525) $) 15)) (-3409 (($ (-146)) 11)) (-3368 (($ (-146)) 12)) (-3451 (((-1074) $) NIL)) (-2510 (((-146) $) 13)) (-2012 (((-1038) $) NIL)) (-3481 (($ (-146)) 9)) (-1994 (($ (-146)) 8)) (-1270 (((-798) $) 23) (($ (-146)) 16)) (-3125 (($ (-146)) 10)) (-3994 (((-108) $ $) NIL)))
+(((-809) (-13 (-1020) (-10 -8 (-15 -1994 ($ (-146))) (-15 -3481 ($ (-146))) (-15 -3125 ($ (-146))) (-15 -3409 ($ (-146))) (-15 -3368 ($ (-146))) (-15 -2510 ((-146) $)) (-15 -1478 ((-525) $)) (-15 -1270 ($ (-146)))))) (T -809))
+((-1994 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-3481 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-3125 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-3409 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-3368 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-2510 (*1 *2 *1) (-12 (-5 *2 (-146)) (-5 *1 (-809)))) (-1478 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-809)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
+(-13 (-1020) (-10 -8 (-15 -1994 ($ (-146))) (-15 -3481 ($ (-146))) (-15 -3125 ($ (-146))) (-15 -3409 ($ (-146))) (-15 -3368 ($ (-146))) (-15 -2510 ((-146) $)) (-15 -1478 ((-525) $)) (-15 -1270 ($ (-146)))))
+((-1270 (((-294 (-525)) (-385 (-887 (-47)))) 23) (((-294 (-525)) (-887 (-47))) 18)))
+(((-810) (-10 -7 (-15 -1270 ((-294 (-525)) (-887 (-47)))) (-15 -1270 ((-294 (-525)) (-385 (-887 (-47))))))) (T -810))
+((-1270 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 (-47)))) (-5 *2 (-294 (-525))) (-5 *1 (-810)))) (-1270 (*1 *2 *3) (-12 (-5 *3 (-887 (-47))) (-5 *2 (-294 (-525))) (-5 *1 (-810)))))
+(-10 -7 (-15 -1270 ((-294 (-525)) (-887 (-47)))) (-15 -1270 ((-294 (-525)) (-385 (-887 (-47))))))
+((-2694 (((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|)) 14)))
+(((-811 |#1| |#2|) (-10 -7 (-15 -2694 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|)))) (-1127) (-1127)) (T -811))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-812 *6)) (-5 *1 (-811 *5 *6)))))
+(-10 -7 (-15 -2694 ((-812 |#2|) (-1 |#2| |#1|) (-812 |#1|))))
+((-3725 (($ |#1| |#1|) 8)) (-3084 ((|#1| $ (-713)) 10)))
+(((-812 |#1|) (-10 -8 (-15 -3725 ($ |#1| |#1|)) (-15 -3084 (|#1| $ (-713)))) (-1127)) (T -812))
+((-3084 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-812 *2)) (-4 *2 (-1127)))) (-3725 (*1 *1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1127)))))
+(-10 -8 (-15 -3725 ($ |#1| |#1|)) (-15 -3084 (|#1| $ (-713))))
+((-2694 (((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)) 14)))
+(((-813 |#1| |#2|) (-10 -7 (-15 -2694 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|)))) (-1127) (-1127)) (T -813))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6)))))
+(-10 -7 (-15 -2694 ((-814 |#2|) (-1 |#2| |#1|) (-814 |#1|))))
+((-3725 (($ |#1| |#1| |#1|) 8)) (-3084 ((|#1| $ (-713)) 10)))
+(((-814 |#1|) (-10 -8 (-15 -3725 ($ |#1| |#1| |#1|)) (-15 -3084 (|#1| $ (-713)))) (-1127)) (T -814))
+((-3084 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-814 *2)) (-4 *2 (-1127)))) (-3725 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1127)))))
+(-10 -8 (-15 -3725 ($ |#1| |#1| |#1|)) (-15 -3084 (|#1| $ (-713))))
+((-3858 (((-592 (-1096)) (-1074)) 9)))
+(((-815) (-10 -7 (-15 -3858 ((-592 (-1096)) (-1074))))) (T -815))
+((-3858 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-592 (-1096))) (-5 *1 (-815)))))
+(-10 -7 (-15 -3858 ((-592 (-1096)) (-1074))))
+((-2694 (((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|)) 14)))
+(((-816 |#1| |#2|) (-10 -7 (-15 -2694 ((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|)))) (-1127) (-1127)) (T -816))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-817 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-817 *6)) (-5 *1 (-816 *5 *6)))))
+(-10 -7 (-15 -2694 ((-817 |#2|) (-1 |#2| |#1|) (-817 |#1|))))
+((-1550 (($ |#1| |#1| |#1|) 8)) (-3084 ((|#1| $ (-713)) 10)))
+(((-817 |#1|) (-10 -8 (-15 -1550 ($ |#1| |#1| |#1|)) (-15 -3084 (|#1| $ (-713)))) (-1127)) (T -817))
+((-3084 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-817 *2)) (-4 *2 (-1127)))) (-1550 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1127)))))
+(-10 -8 (-15 -1550 ($ |#1| |#1| |#1|)) (-15 -3084 (|#1| $ (-713))))
+((-3553 (((-1072 (-592 (-525))) (-592 (-525)) (-1072 (-592 (-525)))) 32)) (-2534 (((-1072 (-592 (-525))) (-592 (-525)) (-592 (-525))) 28)) (-4147 (((-1072 (-592 (-525))) (-592 (-525))) 41) (((-1072 (-592 (-525))) (-592 (-525)) (-592 (-525))) 40)) (-3976 (((-1072 (-592 (-525))) (-525)) 42)) (-2862 (((-1072 (-592 (-525))) (-525) (-525)) 22) (((-1072 (-592 (-525))) (-525)) 16) (((-1072 (-592 (-525))) (-525) (-525) (-525)) 12)) (-3205 (((-1072 (-592 (-525))) (-1072 (-592 (-525)))) 26)) (-3700 (((-592 (-525)) (-592 (-525))) 25)))
+(((-818) (-10 -7 (-15 -2862 ((-1072 (-592 (-525))) (-525) (-525) (-525))) (-15 -2862 ((-1072 (-592 (-525))) (-525))) (-15 -2862 ((-1072 (-592 (-525))) (-525) (-525))) (-15 -3700 ((-592 (-525)) (-592 (-525)))) (-15 -3205 ((-1072 (-592 (-525))) (-1072 (-592 (-525))))) (-15 -2534 ((-1072 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -3553 ((-1072 (-592 (-525))) (-592 (-525)) (-1072 (-592 (-525))))) (-15 -4147 ((-1072 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -4147 ((-1072 (-592 (-525))) (-592 (-525)))) (-15 -3976 ((-1072 (-592 (-525))) (-525))))) (T -818))
+((-3976 (*1 *2 *3) (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))) (-4147 (*1 *2 *3) (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-592 (-525))))) (-4147 (*1 *2 *3 *3) (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-592 (-525))))) (-3553 (*1 *2 *3 *2) (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *3 (-592 (-525))) (-5 *1 (-818)))) (-2534 (*1 *2 *3 *3) (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-592 (-525))))) (-3205 (*1 *2 *2) (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *1 (-818)))) (-3700 (*1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-818)))) (-2862 (*1 *2 *3 *3) (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))) (-2862 (*1 *2 *3) (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))) (-2862 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))))
+(-10 -7 (-15 -2862 ((-1072 (-592 (-525))) (-525) (-525) (-525))) (-15 -2862 ((-1072 (-592 (-525))) (-525))) (-15 -2862 ((-1072 (-592 (-525))) (-525) (-525))) (-15 -3700 ((-592 (-525)) (-592 (-525)))) (-15 -3205 ((-1072 (-592 (-525))) (-1072 (-592 (-525))))) (-15 -2534 ((-1072 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -3553 ((-1072 (-592 (-525))) (-592 (-525)) (-1072 (-592 (-525))))) (-15 -4147 ((-1072 (-592 (-525))) (-592 (-525)) (-592 (-525)))) (-15 -4147 ((-1072 (-592 (-525))) (-592 (-525)))) (-15 -3976 ((-1072 (-592 (-525))) (-525))))
+((-2749 (((-827 (-357)) $) 9 (|has| |#1| (-567 (-827 (-357))))) (((-827 (-525)) $) 8 (|has| |#1| (-567 (-827 (-525)))))))
+(((-819 |#1|) (-131) (-1127)) (T -819))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-567 (-827 (-525)))) (-6 (-567 (-827 (-525)))) |%noBranch|) (IF (|has| |t#1| (-567 (-827 (-357)))) (-6 (-567 (-827 (-357)))) |%noBranch|)))
+(((-567 (-827 (-357))) |has| |#1| (-567 (-827 (-357)))) ((-567 (-827 (-525))) |has| |#1| (-567 (-827 (-525)))))
+((-1260 (((-108) $ $) NIL)) (-3489 (($) 14)) (-1827 (($ (-824 |#1| |#2|) (-824 |#1| |#3|)) 27)) (-3374 (((-824 |#1| |#3|) $) 16)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3076 (((-108) $) 22)) (-4149 (($) 19)) (-1270 (((-798) $) 30)) (-1945 (((-824 |#1| |#2|) $) 15)) (-3994 (((-108) $ $) 25)))
+(((-820 |#1| |#2| |#3|) (-13 (-1020) (-10 -8 (-15 -3076 ((-108) $)) (-15 -4149 ($)) (-15 -3489 ($)) (-15 -1827 ($ (-824 |#1| |#2|) (-824 |#1| |#3|))) (-15 -1945 ((-824 |#1| |#2|) $)) (-15 -3374 ((-824 |#1| |#3|) $)))) (-1020) (-1020) (-612 |#2|)) (T -820))
+((-3076 (*1 *2 *1) (-12 (-4 *4 (-1020)) (-5 *2 (-108)) (-5 *1 (-820 *3 *4 *5)) (-4 *3 (-1020)) (-4 *5 (-612 *4)))) (-4149 (*1 *1) (-12 (-4 *3 (-1020)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1020)) (-4 *4 (-612 *3)))) (-3489 (*1 *1) (-12 (-4 *3 (-1020)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1020)) (-4 *4 (-612 *3)))) (-1827 (*1 *1 *2 *3) (-12 (-5 *2 (-824 *4 *5)) (-5 *3 (-824 *4 *6)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-612 *5)) (-5 *1 (-820 *4 *5 *6)))) (-1945 (*1 *2 *1) (-12 (-4 *4 (-1020)) (-5 *2 (-824 *3 *4)) (-5 *1 (-820 *3 *4 *5)) (-4 *3 (-1020)) (-4 *5 (-612 *4)))) (-3374 (*1 *2 *1) (-12 (-4 *4 (-1020)) (-5 *2 (-824 *3 *5)) (-5 *1 (-820 *3 *4 *5)) (-4 *3 (-1020)) (-4 *5 (-612 *4)))))
+(-13 (-1020) (-10 -8 (-15 -3076 ((-108) $)) (-15 -4149 ($)) (-15 -3489 ($)) (-15 -1827 ($ (-824 |#1| |#2|) (-824 |#1| |#3|))) (-15 -1945 ((-824 |#1| |#2|) $)) (-15 -3374 ((-824 |#1| |#3|) $))))
+((-1260 (((-108) $ $) 7)) (-2317 (((-824 |#1| $) $ (-827 |#1|) (-824 |#1| $)) 13)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3994 (((-108) $ $) 6)))
+(((-821 |#1|) (-131) (-1020)) (T -821))
+((-2317 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-824 *4 *1)) (-5 *3 (-827 *4)) (-4 *1 (-821 *4)) (-4 *4 (-1020)))))
+(-13 (-1020) (-10 -8 (-15 -2317 ((-824 |t#1| $) $ (-827 |t#1|) (-824 |t#1| $)))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-3069 (((-108) (-592 |#2|) |#3|) 23) (((-108) |#2| |#3|) 18)) (-3997 (((-824 |#1| |#2|) |#2| |#3|) 43 (-12 (-1825 (|has| |#2| (-968 (-1091)))) (-1825 (|has| |#2| (-977))))) (((-592 (-273 (-887 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-977)) (-1825 (|has| |#2| (-968 (-1091)))))) (((-592 (-273 |#2|)) |#2| |#3|) 35 (|has| |#2| (-968 (-1091)))) (((-820 |#1| |#2| (-592 |#2|)) (-592 |#2|) |#3|) 21)))
+(((-822 |#1| |#2| |#3|) (-10 -7 (-15 -3069 ((-108) |#2| |#3|)) (-15 -3069 ((-108) (-592 |#2|) |#3|)) (-15 -3997 ((-820 |#1| |#2| (-592 |#2|)) (-592 |#2|) |#3|)) (IF (|has| |#2| (-968 (-1091))) (-15 -3997 ((-592 (-273 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-977)) (-15 -3997 ((-592 (-273 (-887 |#2|))) |#2| |#3|)) (-15 -3997 ((-824 |#1| |#2|) |#2| |#3|))))) (-1020) (-821 |#1|) (-567 (-827 |#1|))) (T -822))
+((-3997 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-5 *2 (-824 *5 *3)) (-5 *1 (-822 *5 *3 *4)) (-1825 (-4 *3 (-968 (-1091)))) (-1825 (-4 *3 (-977))) (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5))))) (-3997 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-5 *2 (-592 (-273 (-887 *3)))) (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-977)) (-1825 (-4 *3 (-968 (-1091)))) (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5))))) (-3997 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-5 *2 (-592 (-273 *3))) (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-968 (-1091))) (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5))))) (-3997 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-4 *6 (-821 *5)) (-5 *2 (-820 *5 *6 (-592 *6))) (-5 *1 (-822 *5 *6 *4)) (-5 *3 (-592 *6)) (-4 *4 (-567 (-827 *5))))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-4 *6 (-821 *5)) (-4 *5 (-1020)) (-5 *2 (-108)) (-5 *1 (-822 *5 *6 *4)) (-4 *4 (-567 (-827 *5))))) (-3069 (*1 *2 *3 *4) (-12 (-4 *5 (-1020)) (-5 *2 (-108)) (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5))))))
+(-10 -7 (-15 -3069 ((-108) |#2| |#3|)) (-15 -3069 ((-108) (-592 |#2|) |#3|)) (-15 -3997 ((-820 |#1| |#2| (-592 |#2|)) (-592 |#2|) |#3|)) (IF (|has| |#2| (-968 (-1091))) (-15 -3997 ((-592 (-273 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-977)) (-15 -3997 ((-592 (-273 (-887 |#2|))) |#2| |#3|)) (-15 -3997 ((-824 |#1| |#2|) |#2| |#3|)))))
+((-2694 (((-824 |#1| |#3|) (-1 |#3| |#2|) (-824 |#1| |#2|)) 22)))
+(((-823 |#1| |#2| |#3|) (-10 -7 (-15 -2694 ((-824 |#1| |#3|) (-1 |#3| |#2|) (-824 |#1| |#2|)))) (-1020) (-1020) (-1020)) (T -823))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-824 *5 *6)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-824 *5 *7)) (-5 *1 (-823 *5 *6 *7)))))
+(-10 -7 (-15 -2694 ((-824 |#1| |#3|) (-1 |#3| |#2|) (-824 |#1| |#2|))))
+((-1260 (((-108) $ $) NIL)) (-2805 (($ $ $) 39)) (-2171 (((-3 (-108) "failed") $ (-827 |#1|)) 36)) (-3489 (($) 12)) (-3451 (((-1074) $) NIL)) (-1870 (($ (-827 |#1|) |#2| $) 20)) (-2012 (((-1038) $) NIL)) (-2797 (((-3 |#2| "failed") (-827 |#1|) $) 50)) (-3076 (((-108) $) 15)) (-4149 (($) 13)) (-2290 (((-592 (-2 (|:| -3423 (-1091)) (|:| -2544 |#2|))) $) 25)) (-1279 (($ (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 |#2|)))) 23)) (-1270 (((-798) $) 44)) (-1247 (($ (-827 |#1|) |#2| $ |#2|) 48)) (-3085 (($ (-827 |#1|) |#2| $) 47)) (-3994 (((-108) $ $) 41)))
+(((-824 |#1| |#2|) (-13 (-1020) (-10 -8 (-15 -3076 ((-108) $)) (-15 -4149 ($)) (-15 -3489 ($)) (-15 -2805 ($ $ $)) (-15 -2797 ((-3 |#2| "failed") (-827 |#1|) $)) (-15 -3085 ($ (-827 |#1|) |#2| $)) (-15 -1870 ($ (-827 |#1|) |#2| $)) (-15 -1247 ($ (-827 |#1|) |#2| $ |#2|)) (-15 -2290 ((-592 (-2 (|:| -3423 (-1091)) (|:| -2544 |#2|))) $)) (-15 -1279 ($ (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 |#2|))))) (-15 -2171 ((-3 (-108) "failed") $ (-827 |#1|))))) (-1020) (-1020)) (T -824))
+((-3076 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-824 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-4149 (*1 *1) (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-3489 (*1 *1) (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-2805 (*1 *1 *1 *1) (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-2797 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-4 *2 (-1020)) (-5 *1 (-824 *4 *2)))) (-3085 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1020)))) (-1870 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1020)))) (-1247 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3)) (-4 *3 (-1020)))) (-2290 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 *4)))) (-5 *1 (-824 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-1279 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 *4)))) (-4 *4 (-1020)) (-5 *1 (-824 *3 *4)) (-4 *3 (-1020)))) (-2171 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-108)) (-5 *1 (-824 *4 *5)) (-4 *5 (-1020)))))
+(-13 (-1020) (-10 -8 (-15 -3076 ((-108) $)) (-15 -4149 ($)) (-15 -3489 ($)) (-15 -2805 ($ $ $)) (-15 -2797 ((-3 |#2| "failed") (-827 |#1|) $)) (-15 -3085 ($ (-827 |#1|) |#2| $)) (-15 -1870 ($ (-827 |#1|) |#2| $)) (-15 -1247 ($ (-827 |#1|) |#2| $ |#2|)) (-15 -2290 ((-592 (-2 (|:| -3423 (-1091)) (|:| -2544 |#2|))) $)) (-15 -1279 ($ (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 |#2|))))) (-15 -2171 ((-3 (-108) "failed") $ (-827 |#1|)))))
+((-2568 (((-827 |#1|) (-827 |#1|) (-592 (-1091)) (-1 (-108) (-592 |#2|))) 32) (((-827 |#1|) (-827 |#1|) (-592 (-1 (-108) |#2|))) 43) (((-827 |#1|) (-827 |#1|) (-1 (-108) |#2|)) 35)) (-2171 (((-108) (-592 |#2|) (-827 |#1|)) 40) (((-108) |#2| (-827 |#1|)) 36)) (-3534 (((-1 (-108) |#2|) (-827 |#1|)) 16)) (-2172 (((-592 |#2|) (-827 |#1|)) 24)) (-2158 (((-827 |#1|) (-827 |#1|) |#2|) 20)))
+(((-825 |#1| |#2|) (-10 -7 (-15 -2568 ((-827 |#1|) (-827 |#1|) (-1 (-108) |#2|))) (-15 -2568 ((-827 |#1|) (-827 |#1|) (-592 (-1 (-108) |#2|)))) (-15 -2568 ((-827 |#1|) (-827 |#1|) (-592 (-1091)) (-1 (-108) (-592 |#2|)))) (-15 -3534 ((-1 (-108) |#2|) (-827 |#1|))) (-15 -2171 ((-108) |#2| (-827 |#1|))) (-15 -2171 ((-108) (-592 |#2|) (-827 |#1|))) (-15 -2158 ((-827 |#1|) (-827 |#1|) |#2|)) (-15 -2172 ((-592 |#2|) (-827 |#1|)))) (-1020) (-1127)) (T -825))
+((-2172 (*1 *2 *3) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-592 *5)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1127)))) (-2158 (*1 *2 *2 *3) (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-825 *4 *3)) (-4 *3 (-1127)))) (-2171 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *6 (-1127)) (-5 *2 (-108)) (-5 *1 (-825 *5 *6)))) (-2171 (*1 *2 *3 *4) (-12 (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-5 *2 (-108)) (-5 *1 (-825 *5 *3)) (-4 *3 (-1127)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-825 *4 *5)) (-4 *5 (-1127)))) (-2568 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-827 *5)) (-5 *3 (-592 (-1091))) (-5 *4 (-1 (-108) (-592 *6))) (-4 *5 (-1020)) (-4 *6 (-1127)) (-5 *1 (-825 *5 *6)))) (-2568 (*1 *2 *2 *3) (-12 (-5 *2 (-827 *4)) (-5 *3 (-592 (-1 (-108) *5))) (-4 *4 (-1020)) (-4 *5 (-1127)) (-5 *1 (-825 *4 *5)))) (-2568 (*1 *2 *2 *3) (-12 (-5 *2 (-827 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1020)) (-4 *5 (-1127)) (-5 *1 (-825 *4 *5)))))
+(-10 -7 (-15 -2568 ((-827 |#1|) (-827 |#1|) (-1 (-108) |#2|))) (-15 -2568 ((-827 |#1|) (-827 |#1|) (-592 (-1 (-108) |#2|)))) (-15 -2568 ((-827 |#1|) (-827 |#1|) (-592 (-1091)) (-1 (-108) (-592 |#2|)))) (-15 -3534 ((-1 (-108) |#2|) (-827 |#1|))) (-15 -2171 ((-108) |#2| (-827 |#1|))) (-15 -2171 ((-108) (-592 |#2|) (-827 |#1|))) (-15 -2158 ((-827 |#1|) (-827 |#1|) |#2|)) (-15 -2172 ((-592 |#2|) (-827 |#1|))))
+((-2694 (((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|)) 19)))
+(((-826 |#1| |#2|) (-10 -7 (-15 -2694 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|)))) (-1020) (-1020)) (T -826))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *2 (-827 *6)) (-5 *1 (-826 *5 *6)))))
+(-10 -7 (-15 -2694 ((-827 |#2|) (-1 |#2| |#1|) (-827 |#1|))))
+((-1260 (((-108) $ $) NIL)) (-1677 (($ $ (-592 (-51))) 64)) (-2383 (((-592 $) $) 118)) (-2836 (((-2 (|:| |var| (-592 (-1091))) (|:| |pred| (-51))) $) 24)) (-4129 (((-108) $) 30)) (-2343 (($ $ (-592 (-1091)) (-51)) 25)) (-2598 (($ $ (-592 (-51))) 63)) (-2591 (((-3 |#1| "failed") $) 61) (((-3 (-1091) "failed") $) 140)) (-3898 ((|#1| $) 58) (((-1091) $) NIL)) (-1685 (($ $) 108)) (-2059 (((-108) $) 47)) (-3890 (((-592 (-51)) $) 45)) (-1580 (($ (-1091) (-108) (-108) (-108)) 65)) (-2206 (((-3 (-592 $) "failed") (-592 $)) 72)) (-4006 (((-108) $) 50)) (-2870 (((-108) $) 49)) (-3451 (((-1074) $) NIL)) (-4228 (((-3 (-592 $) "failed") $) 36)) (-1699 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-1617 (((-3 (-2 (|:| |val| $) (|:| -1864 $)) "failed") $) 83)) (-3852 (((-3 (-592 $) "failed") $) 33)) (-1476 (((-3 (-592 $) "failed") $ (-110)) 107) (((-3 (-2 (|:| -1238 (-110)) (|:| |arg| (-592 $))) "failed") $) 95)) (-1293 (((-3 (-592 $) "failed") $) 37)) (-1553 (((-3 (-2 (|:| |val| $) (|:| -1864 (-713))) "failed") $) 40)) (-1284 (((-108) $) 29)) (-2012 (((-1038) $) NIL)) (-2068 (((-108) $) 21)) (-2623 (((-108) $) 46)) (-2157 (((-592 (-51)) $) 111)) (-2606 (((-108) $) 48)) (-3410 (($ (-110) (-592 $)) 92)) (-4064 (((-713) $) 28)) (-1451 (($ $) 62)) (-2749 (($ (-592 $)) 59)) (-1336 (((-108) $) 26)) (-1270 (((-798) $) 53) (($ |#1|) 18) (($ (-1091)) 66)) (-2158 (($ $ (-51)) 110)) (-3355 (($) 91 T CONST)) (-3363 (($) 73 T CONST)) (-3994 (((-108) $ $) 79)) (-4100 (($ $ $) 100)) (-4080 (($ $ $) 104)) (** (($ $ (-713)) 99) (($ $ $) 54)) (* (($ $ $) 105)))
+(((-827 |#1|) (-13 (-1020) (-968 |#1|) (-968 (-1091)) (-10 -8 (-15 0 ($) -1479) (-15 1 ($) -1479) (-15 -3852 ((-3 (-592 $) "failed") $)) (-15 -4228 ((-3 (-592 $) "failed") $)) (-15 -1476 ((-3 (-592 $) "failed") $ (-110))) (-15 -1476 ((-3 (-2 (|:| -1238 (-110)) (|:| |arg| (-592 $))) "failed") $)) (-15 -1553 ((-3 (-2 (|:| |val| $) (|:| -1864 (-713))) "failed") $)) (-15 -1699 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1293 ((-3 (-592 $) "failed") $)) (-15 -1617 ((-3 (-2 (|:| |val| $) (|:| -1864 $)) "failed") $)) (-15 -3410 ($ (-110) (-592 $))) (-15 -4080 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ $)) (-15 -4100 ($ $ $)) (-15 -4064 ((-713) $)) (-15 -2749 ($ (-592 $))) (-15 -1451 ($ $)) (-15 -1284 ((-108) $)) (-15 -2059 ((-108) $)) (-15 -4129 ((-108) $)) (-15 -1336 ((-108) $)) (-15 -2606 ((-108) $)) (-15 -2870 ((-108) $)) (-15 -4006 ((-108) $)) (-15 -2623 ((-108) $)) (-15 -3890 ((-592 (-51)) $)) (-15 -2598 ($ $ (-592 (-51)))) (-15 -1677 ($ $ (-592 (-51)))) (-15 -1580 ($ (-1091) (-108) (-108) (-108))) (-15 -2343 ($ $ (-592 (-1091)) (-51))) (-15 -2836 ((-2 (|:| |var| (-592 (-1091))) (|:| |pred| (-51))) $)) (-15 -2068 ((-108) $)) (-15 -1685 ($ $)) (-15 -2158 ($ $ (-51))) (-15 -2157 ((-592 (-51)) $)) (-15 -2383 ((-592 $) $)) (-15 -2206 ((-3 (-592 $) "failed") (-592 $))))) (-1020)) (T -827))
+((-3355 (*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-3363 (*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-3852 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-4228 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1476 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-827 *4))) (-5 *1 (-827 *4)) (-4 *4 (-1020)))) (-1476 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -1238 (-110)) (|:| |arg| (-592 (-827 *3))))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1553 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-827 *3)) (|:| -1864 (-713)))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1699 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-827 *3)) (|:| |den| (-827 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1293 (*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1617 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-827 *3)) (|:| -1864 (-827 *3)))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-3410 (*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 (-827 *4))) (-4 *4 (-1020)) (-5 *1 (-827 *4)))) (-4080 (*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-4100 (*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-592 (-827 *3))) (-4 *3 (-1020)) (-5 *1 (-827 *3)))) (-1451 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-1284 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2870 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-4006 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2623 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-3890 (*1 *2 *1) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2598 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1677 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1580 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-108)) (-5 *1 (-827 *4)) (-4 *4 (-1020)))) (-2343 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1091))) (-5 *3 (-51)) (-5 *1 (-827 *4)) (-4 *4 (-1020)))) (-2836 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-592 (-1091))) (|:| |pred| (-51)))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2068 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-1685 (*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))) (-2158 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2157 (*1 *2 *1) (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2383 (*1 *2 *1) (-12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))) (-2206 (*1 *2 *2) (|partial| -12 (-5 *2 (-592 (-827 *3))) (-4 *3 (-1020)) (-5 *1 (-827 *3)))))
+(-13 (-1020) (-968 |#1|) (-968 (-1091)) (-10 -8 (-15 (-3355) ($) -1479) (-15 (-3363) ($) -1479) (-15 -3852 ((-3 (-592 $) "failed") $)) (-15 -4228 ((-3 (-592 $) "failed") $)) (-15 -1476 ((-3 (-592 $) "failed") $ (-110))) (-15 -1476 ((-3 (-2 (|:| -1238 (-110)) (|:| |arg| (-592 $))) "failed") $)) (-15 -1553 ((-3 (-2 (|:| |val| $) (|:| -1864 (-713))) "failed") $)) (-15 -1699 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1293 ((-3 (-592 $) "failed") $)) (-15 -1617 ((-3 (-2 (|:| |val| $) (|:| -1864 $)) "failed") $)) (-15 -3410 ($ (-110) (-592 $))) (-15 -4080 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713))) (-15 ** ($ $ $)) (-15 -4100 ($ $ $)) (-15 -4064 ((-713) $)) (-15 -2749 ($ (-592 $))) (-15 -1451 ($ $)) (-15 -1284 ((-108) $)) (-15 -2059 ((-108) $)) (-15 -4129 ((-108) $)) (-15 -1336 ((-108) $)) (-15 -2606 ((-108) $)) (-15 -2870 ((-108) $)) (-15 -4006 ((-108) $)) (-15 -2623 ((-108) $)) (-15 -3890 ((-592 (-51)) $)) (-15 -2598 ($ $ (-592 (-51)))) (-15 -1677 ($ $ (-592 (-51)))) (-15 -1580 ($ (-1091) (-108) (-108) (-108))) (-15 -2343 ($ $ (-592 (-1091)) (-51))) (-15 -2836 ((-2 (|:| |var| (-592 (-1091))) (|:| |pred| (-51))) $)) (-15 -2068 ((-108) $)) (-15 -1685 ($ $)) (-15 -2158 ($ $ (-51))) (-15 -2157 ((-592 (-51)) $)) (-15 -2383 ((-592 $) $)) (-15 -2206 ((-3 (-592 $) "failed") (-592 $)))))
+((-1260 (((-108) $ $) NIL)) (-4143 (((-592 |#1|) $) 16)) (-1875 (((-108) $) 38)) (-2591 (((-3 (-617 |#1|) "failed") $) 43)) (-3898 (((-617 |#1|) $) 41)) (-3121 (($ $) 18)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-2023 (((-713) $) 46)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3110 (((-617 |#1|) $) 17)) (-1270 (((-798) $) 37) (($ (-617 |#1|)) 21) (((-761 |#1|) $) 27) (($ |#1|) 20)) (-3363 (($) 8 T CONST)) (-3379 (((-592 (-617 |#1|)) $) 23)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 11)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 49)))
+(((-828 |#1|) (-13 (-789) (-968 (-617 |#1|)) (-10 -8 (-15 1 ($) -1479) (-15 -1270 ((-761 |#1|) $)) (-15 -1270 ($ |#1|)) (-15 -3110 ((-617 |#1|) $)) (-15 -2023 ((-713) $)) (-15 -3379 ((-592 (-617 |#1|)) $)) (-15 -3121 ($ $)) (-15 -1875 ((-108) $)) (-15 -4143 ((-592 |#1|) $)))) (-789)) (T -828))
+((-3363 (*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-789)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-828 *3)) (-4 *3 (-789)))) (-1270 (*1 *1 *2) (-12 (-5 *1 (-828 *2)) (-4 *2 (-789)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-617 *3)) (-5 *1 (-828 *3)) (-4 *3 (-789)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-828 *3)) (-4 *3 (-789)))) (-3379 (*1 *2 *1) (-12 (-5 *2 (-592 (-617 *3))) (-5 *1 (-828 *3)) (-4 *3 (-789)))) (-3121 (*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-789)))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-828 *3)) (-4 *3 (-789)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-828 *3)) (-4 *3 (-789)))))
+(-13 (-789) (-968 (-617 |#1|)) (-10 -8 (-15 (-3363) ($) -1479) (-15 -1270 ((-761 |#1|) $)) (-15 -1270 ($ |#1|)) (-15 -3110 ((-617 |#1|) $)) (-15 -2023 ((-713) $)) (-15 -3379 ((-592 (-617 |#1|)) $)) (-15 -3121 ($ $)) (-15 -1875 ((-108) $)) (-15 -4143 ((-592 |#1|) $))))
+((-3532 ((|#1| |#1| |#1|) 19)))
+(((-829 |#1| |#2|) (-10 -7 (-15 -3532 (|#1| |#1| |#1|))) (-1149 |#2|) (-977)) (T -829))
+((-3532 (*1 *2 *2 *2) (-12 (-4 *3 (-977)) (-5 *1 (-829 *2 *3)) (-4 *2 (-1149 *3)))))
+(-10 -7 (-15 -3532 (|#1| |#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-4151 (((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205)))) 14)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3314 (((-966) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205)))) 13)) (-3994 (((-108) $ $) 6)))
+(((-830) (-131)) (T -830))
+((-4151 (*1 *2 *3 *4) (-12 (-4 *1 (-830)) (-5 *3 (-989)) (-5 *4 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205)))) (-5 *2 (-2 (|:| -4151 (-357)) (|:| |explanations| (-1074)))))) (-3314 (*1 *2 *3) (-12 (-4 *1 (-830)) (-5 *3 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205)))) (-5 *2 (-966)))))
+(-13 (-1020) (-10 -7 (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))) (-989) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205))))) (-15 -3314 ((-966) (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205)))))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-2738 ((|#1| |#1| (-713)) 24)) (-1921 (((-3 |#1| "failed") |#1| |#1|) 22)) (-1588 (((-3 (-2 (|:| -3593 |#1|) (|:| -3602 |#1|)) "failed") |#1| (-713) (-713)) 27) (((-592 |#1|) |#1|) 29)))
+(((-831 |#1| |#2|) (-10 -7 (-15 -1588 ((-592 |#1|) |#1|)) (-15 -1588 ((-3 (-2 (|:| -3593 |#1|) (|:| -3602 |#1|)) "failed") |#1| (-713) (-713))) (-15 -1921 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2738 (|#1| |#1| (-713)))) (-1149 |#2|) (-341)) (T -831))
+((-2738 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-5 *1 (-831 *2 *4)) (-4 *2 (-1149 *4)))) (-1921 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-341)) (-5 *1 (-831 *2 *3)) (-4 *2 (-1149 *3)))) (-1588 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-713)) (-4 *5 (-341)) (-5 *2 (-2 (|:| -3593 *3) (|:| -3602 *3))) (-5 *1 (-831 *3 *5)) (-4 *3 (-1149 *5)))) (-1588 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-831 *3 *4)) (-4 *3 (-1149 *4)))))
+(-10 -7 (-15 -1588 ((-592 |#1|) |#1|)) (-15 -1588 ((-3 (-2 (|:| -3593 |#1|) (|:| -3602 |#1|)) "failed") |#1| (-713) (-713))) (-15 -1921 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2738 (|#1| |#1| (-713))))
+((-3193 (((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1074)) 96) (((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1074) (-205)) 91) (((-966) (-833) (-989)) 83) (((-966) (-833)) 84)) (-4151 (((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-833) (-989)) 59) (((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-833)) 61)))
+(((-832) (-10 -7 (-15 -3193 ((-966) (-833))) (-15 -3193 ((-966) (-833) (-989))) (-15 -3193 ((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1074) (-205))) (-15 -3193 ((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1074))) (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-833))) (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-833) (-989))))) (T -832))
+((-4151 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-989)) (-5 *2 (-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))))) (-5 *1 (-832)))) (-4151 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074))))) (-5 *1 (-832)))) (-3193 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *3 (-357)) (-5 *4 (-713)) (-5 *5 (-592 (-294 (-357)))) (-5 *6 (-592 (-592 (-294 (-357))))) (-5 *7 (-1074)) (-5 *2 (-966)) (-5 *1 (-832)))) (-3193 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *3 (-357)) (-5 *4 (-713)) (-5 *5 (-592 (-294 (-357)))) (-5 *6 (-592 (-592 (-294 (-357))))) (-5 *7 (-1074)) (-5 *8 (-205)) (-5 *2 (-966)) (-5 *1 (-832)))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-833)) (-5 *4 (-989)) (-5 *2 (-966)) (-5 *1 (-832)))) (-3193 (*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-966)) (-5 *1 (-832)))))
+(-10 -7 (-15 -3193 ((-966) (-833))) (-15 -3193 ((-966) (-833) (-989))) (-15 -3193 ((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1074) (-205))) (-15 -3193 ((-966) (-357) (-357) (-357) (-357) (-713) (-713) (-592 (-294 (-357))) (-592 (-592 (-294 (-357)))) (-1074))) (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-833))) (-15 -4151 ((-2 (|:| -4151 (-357)) (|:| -3800 (-1074)) (|:| |explanations| (-592 (-1074)))) (-833) (-989))))
+((-1260 (((-108) $ $) NIL)) (-3898 (((-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205))) $) 19)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 21) (($ (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205)))) 18)) (-3994 (((-108) $ $) NIL)))
+(((-833) (-13 (-1020) (-10 -8 (-15 -1270 ($ (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205))))) (-15 -1270 ((-798) $)) (-15 -3898 ((-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205))) $))))) (T -833))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-833)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205)))) (-5 *1 (-833)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205)))) (-5 *1 (-833)))))
+(-13 (-1020) (-10 -8 (-15 -1270 ($ (-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205))))) (-15 -1270 ((-798) $)) (-15 -3898 ((-2 (|:| |pde| (-592 (-294 (-205)))) (|:| |constraints| (-592 (-2 (|:| |start| (-205)) (|:| |finish| (-205)) (|:| |grid| (-713)) (|:| |boundaryType| (-525)) (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205)))))) (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074)) (|:| |tol| (-205))) $))))
+((-2523 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) 10) (($ $ |#2| (-713)) 12) (($ $ (-592 |#2|) (-592 (-713))) 15)) (-2093 (($ $ |#2|) 16) (($ $ (-592 |#2|)) 18) (($ $ |#2| (-713)) 19) (($ $ (-592 |#2|) (-592 (-713))) 21)))
+(((-834 |#1| |#2|) (-10 -8 (-15 -2093 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -2093 (|#1| |#1| |#2| (-713))) (-15 -2093 (|#1| |#1| (-592 |#2|))) (-15 -2093 (|#1| |#1| |#2|)) (-15 -2523 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -2523 (|#1| |#1| |#2| (-713))) (-15 -2523 (|#1| |#1| (-592 |#2|))) (-15 -2523 (|#1| |#1| |#2|))) (-835 |#2|) (-1020)) (T -834))
+NIL
+(-10 -8 (-15 -2093 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -2093 (|#1| |#1| |#2| (-713))) (-15 -2093 (|#1| |#1| (-592 |#2|))) (-15 -2093 (|#1| |#1| |#2|)) (-15 -2523 (|#1| |#1| (-592 |#2|) (-592 (-713)))) (-15 -2523 (|#1| |#1| |#2| (-713))) (-15 -2523 (|#1| |#1| (-592 |#2|))) (-15 -2523 (|#1| |#1| |#2|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-2523 (($ $ |#1|) 42) (($ $ (-592 |#1|)) 41) (($ $ |#1| (-713)) 40) (($ $ (-592 |#1|) (-592 (-713))) 39)) (-1270 (((-798) $) 11) (($ (-525)) 28)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ |#1|) 38) (($ $ (-592 |#1|)) 37) (($ $ |#1| (-713)) 36) (($ $ (-592 |#1|) (-592 (-713))) 35)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+(((-835 |#1|) (-131) (-1020)) (T -835))
+((-2523 (*1 *1 *1 *2) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1020)))) (-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-835 *3)) (-4 *3 (-1020)))) (-2523 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-835 *2)) (-4 *2 (-1020)))) (-2523 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-835 *4)) (-4 *4 (-1020)))) (-2093 (*1 *1 *1 *2) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1020)))) (-2093 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-835 *3)) (-4 *3 (-1020)))) (-2093 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-835 *2)) (-4 *2 (-1020)))) (-2093 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-835 *4)) (-4 *4 (-1020)))))
+(-13 (-977) (-10 -8 (-15 -2523 ($ $ |t#1|)) (-15 -2523 ($ $ (-592 |t#1|))) (-15 -2523 ($ $ |t#1| (-713))) (-15 -2523 ($ $ (-592 |t#1|) (-592 (-713)))) (-15 -2093 ($ $ |t#1|)) (-15 -2093 ($ $ (-592 |t#1|))) (-15 -2093 ($ $ |t#1| (-713))) (-15 -2093 ($ $ (-592 |t#1|) (-592 (-713))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3352 ((|#1| $) 26)) (-3330 (((-108) $ (-713)) NIL)) (-1545 ((|#1| $ |#1|) NIL (|has| $ (-6 -4256)))) (-1793 (($ $ $) NIL (|has| $ (-6 -4256)))) (-4057 (($ $ $) NIL (|has| $ (-6 -4256)))) (-1429 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4256))) (($ $ "left" $) NIL (|has| $ (-6 -4256))) (($ $ "right" $) NIL (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) NIL (|has| $ (-6 -4256)))) (-2305 (($) NIL T CONST)) (-3602 (($ $) 25)) (-2752 (($ |#1|) 12) (($ $ $) 17)) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) NIL)) (-2553 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3593 (($ $) 23)) (-2647 (((-592 |#1|) $) NIL)) (-3365 (((-108) $) 20)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3294 (((-525) $ $) NIL)) (-1698 (((-108) $) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) NIL)) (-1270 (((-1114 |#1|) $) 9) (((-798) $) 29 (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) NIL)) (-2240 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 21 (|has| |#1| (-1020)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-836 |#1|) (-13 (-115 |#1|) (-10 -8 (-15 -2752 ($ |#1|)) (-15 -2752 ($ $ $)) (-15 -1270 ((-1114 |#1|) $)))) (-1020)) (T -836))
+((-2752 (*1 *1 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1020)))) (-2752 (*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1020)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-1114 *3)) (-5 *1 (-836 *3)) (-4 *3 (-1020)))))
+(-13 (-115 |#1|) (-10 -8 (-15 -2752 ($ |#1|)) (-15 -2752 ($ $ $)) (-15 -1270 ((-1114 |#1|) $))))
+((-3656 ((|#2| (-1058 |#1| |#2|)) 41)))
+(((-837 |#1| |#2|) (-10 -7 (-15 -3656 (|#2| (-1058 |#1| |#2|)))) (-856) (-13 (-977) (-10 -7 (-6 (-4257 "*"))))) (T -837))
+((-3656 (*1 *2 *3) (-12 (-5 *3 (-1058 *4 *2)) (-14 *4 (-856)) (-4 *2 (-13 (-977) (-10 -7 (-6 (-4257 "*"))))) (-5 *1 (-837 *4 *2)))))
+(-10 -7 (-15 -3656 (|#2| (-1058 |#1| |#2|))))
+((-1260 (((-108) $ $) 7)) (-2305 (($) 20 T CONST)) (-3762 (((-3 $ "failed") $) 16)) (-3624 (((-1022 |#1|) $ |#1|) 35)) (-1985 (((-108) $) 19)) (-2371 (($ $ $) 33 (-3279 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-2535 (($ $ $) 32 (-3279 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-3451 (((-1074) $) 9)) (-2502 (($ $) 27)) (-2012 (((-1038) $) 10)) (-2602 ((|#1| $ |#1|) 37)) (-3410 ((|#1| $ |#1|) 36)) (-1871 (($ (-592 (-592 |#1|))) 38)) (-3131 (($ (-592 |#1|)) 39)) (-3700 (($ $ $) 23)) (-2222 (($ $ $) 22)) (-1270 (((-798) $) 11)) (-1576 (($ $ (-856)) 13) (($ $ (-713)) 17) (($ $ (-525)) 24)) (-3363 (($) 21 T CONST)) (-4045 (((-108) $ $) 30 (-3279 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-4026 (((-108) $ $) 29 (-3279 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 31 (-3279 (|has| |#1| (-789)) (|has| |#1| (-346))))) (-4017 (((-108) $ $) 34)) (-4100 (($ $ $) 26)) (** (($ $ (-856)) 14) (($ $ (-713)) 18) (($ $ (-525)) 25)) (* (($ $ $) 15)))
+(((-838 |#1|) (-131) (-1020)) (T -838))
+((-3131 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-838 *3)))) (-1871 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-4 *1 (-838 *3)))) (-2602 (*1 *2 *1 *2) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1020)))) (-3410 (*1 *2 *1 *2) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1020)))) (-3624 (*1 *2 *1 *3) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1020)) (-5 *2 (-1022 *3)))) (-4017 (*1 *2 *1 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1020)) (-5 *2 (-108)))))
+(-13 (-450) (-10 -8 (-15 -3131 ($ (-592 |t#1|))) (-15 -1871 ($ (-592 (-592 |t#1|)))) (-15 -2602 (|t#1| $ |t#1|)) (-15 -3410 (|t#1| $ |t#1|)) (-15 -3624 ((-1022 |t#1|) $ |t#1|)) (-15 -4017 ((-108) $ $)) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-346)) (-6 (-789)) |%noBranch|)))
+(((-97) . T) ((-566 (-798)) . T) ((-450) . T) ((-669) . T) ((-789) -3279 (|has| |#1| (-789)) (|has| |#1| (-346))) ((-1032) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-1281 (((-592 (-592 (-713))) $) 109)) (-2150 (((-592 (-713)) (-840 |#1|) $) 131)) (-3760 (((-592 (-713)) (-840 |#1|) $) 132)) (-4102 (((-592 (-840 |#1|)) $) 99)) (-2899 (((-840 |#1|) $ (-525)) 104) (((-840 |#1|) $) 105)) (-2184 (($ (-592 (-840 |#1|))) 111)) (-3973 (((-713) $) 106)) (-2142 (((-1022 (-1022 |#1|)) $) 129)) (-3624 (((-1022 |#1|) $ |#1|) 122) (((-1022 (-1022 |#1|)) $ (-1022 |#1|)) 140) (((-1022 (-592 |#1|)) $ (-592 |#1|)) 143)) (-2473 (((-1022 |#1|) $) 102)) (-2783 (((-108) (-840 |#1|) $) 93)) (-3451 (((-1074) $) NIL)) (-2896 (((-1178) $) 96) (((-1178) $ (-525) (-525)) 144)) (-2012 (((-1038) $) NIL)) (-1323 (((-592 (-840 |#1|)) $) 97)) (-3410 (((-840 |#1|) $ (-713)) 100)) (-1587 (((-713) $) 107)) (-1270 (((-798) $) 120) (((-592 (-840 |#1|)) $) 23) (($ (-592 (-840 |#1|))) 110)) (-3200 (((-592 |#1|) $) 108)) (-3994 (((-108) $ $) 137)) (-4037 (((-108) $ $) 135)) (-4017 (((-108) $ $) 134)))
+(((-839 |#1|) (-13 (-1020) (-10 -8 (-15 -1270 ((-592 (-840 |#1|)) $)) (-15 -1323 ((-592 (-840 |#1|)) $)) (-15 -3410 ((-840 |#1|) $ (-713))) (-15 -2899 ((-840 |#1|) $ (-525))) (-15 -2899 ((-840 |#1|) $)) (-15 -3973 ((-713) $)) (-15 -1587 ((-713) $)) (-15 -3200 ((-592 |#1|) $)) (-15 -4102 ((-592 (-840 |#1|)) $)) (-15 -1281 ((-592 (-592 (-713))) $)) (-15 -1270 ($ (-592 (-840 |#1|)))) (-15 -2184 ($ (-592 (-840 |#1|)))) (-15 -3624 ((-1022 |#1|) $ |#1|)) (-15 -2142 ((-1022 (-1022 |#1|)) $)) (-15 -3624 ((-1022 (-1022 |#1|)) $ (-1022 |#1|))) (-15 -3624 ((-1022 (-592 |#1|)) $ (-592 |#1|))) (-15 -2783 ((-108) (-840 |#1|) $)) (-15 -2150 ((-592 (-713)) (-840 |#1|) $)) (-15 -3760 ((-592 (-713)) (-840 |#1|) $)) (-15 -2473 ((-1022 |#1|) $)) (-15 -4017 ((-108) $ $)) (-15 -4037 ((-108) $ $)) (-15 -2896 ((-1178) $)) (-15 -2896 ((-1178) $ (-525) (-525))))) (-1020)) (T -839))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-1323 (*1 *2 *1) (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-3410 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-840 *4)) (-5 *1 (-839 *4)) (-4 *4 (-1020)))) (-2899 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-840 *4)) (-5 *1 (-839 *4)) (-4 *4 (-1020)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-3200 (*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-4102 (*1 *2 *1) (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-1281 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-713)))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-592 (-840 *3))) (-4 *3 (-1020)) (-5 *1 (-839 *3)))) (-2184 (*1 *1 *2) (-12 (-5 *2 (-592 (-840 *3))) (-4 *3 (-1020)) (-5 *1 (-839 *3)))) (-3624 (*1 *2 *1 *3) (-12 (-5 *2 (-1022 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-2142 (*1 *2 *1) (-12 (-5 *2 (-1022 (-1022 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-3624 (*1 *2 *1 *3) (-12 (-4 *4 (-1020)) (-5 *2 (-1022 (-1022 *4))) (-5 *1 (-839 *4)) (-5 *3 (-1022 *4)))) (-3624 (*1 *2 *1 *3) (-12 (-4 *4 (-1020)) (-5 *2 (-1022 (-592 *4))) (-5 *1 (-839 *4)) (-5 *3 (-592 *4)))) (-2783 (*1 *2 *3 *1) (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-108)) (-5 *1 (-839 *4)))) (-2150 (*1 *2 *3 *1) (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-592 (-713))) (-5 *1 (-839 *4)))) (-3760 (*1 *2 *3 *1) (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-592 (-713))) (-5 *1 (-839 *4)))) (-2473 (*1 *2 *1) (-12 (-5 *2 (-1022 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-4017 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-4037 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))) (-2896 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1178)) (-5 *1 (-839 *4)) (-4 *4 (-1020)))))
+(-13 (-1020) (-10 -8 (-15 -1270 ((-592 (-840 |#1|)) $)) (-15 -1323 ((-592 (-840 |#1|)) $)) (-15 -3410 ((-840 |#1|) $ (-713))) (-15 -2899 ((-840 |#1|) $ (-525))) (-15 -2899 ((-840 |#1|) $)) (-15 -3973 ((-713) $)) (-15 -1587 ((-713) $)) (-15 -3200 ((-592 |#1|) $)) (-15 -4102 ((-592 (-840 |#1|)) $)) (-15 -1281 ((-592 (-592 (-713))) $)) (-15 -1270 ($ (-592 (-840 |#1|)))) (-15 -2184 ($ (-592 (-840 |#1|)))) (-15 -3624 ((-1022 |#1|) $ |#1|)) (-15 -2142 ((-1022 (-1022 |#1|)) $)) (-15 -3624 ((-1022 (-1022 |#1|)) $ (-1022 |#1|))) (-15 -3624 ((-1022 (-592 |#1|)) $ (-592 |#1|))) (-15 -2783 ((-108) (-840 |#1|) $)) (-15 -2150 ((-592 (-713)) (-840 |#1|) $)) (-15 -3760 ((-592 (-713)) (-840 |#1|) $)) (-15 -2473 ((-1022 |#1|) $)) (-15 -4017 ((-108) $ $)) (-15 -4037 ((-108) $ $)) (-15 -2896 ((-1178) $)) (-15 -2896 ((-1178) $ (-525) (-525)))))
+((-1260 (((-108) $ $) NIL)) (-2855 (((-592 $) (-592 $)) 77)) (-1436 (((-525) $) 60)) (-2305 (($) NIL T CONST)) (-3762 (((-3 $ "failed") $) NIL)) (-3973 (((-713) $) 58)) (-3624 (((-1022 |#1|) $ |#1|) 49)) (-1985 (((-108) $) NIL)) (-2126 (((-108) $) 63)) (-2062 (((-713) $) 61)) (-2473 (((-1022 |#1|) $) 42)) (-2371 (($ $ $) NIL (-3279 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-2535 (($ $ $) NIL (-3279 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-2920 (((-2 (|:| |preimage| (-592 |#1|)) (|:| |image| (-592 |#1|))) $) 37)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 93)) (-2012 (((-1038) $) NIL)) (-3004 (((-1022 |#1|) $) 100 (|has| |#1| (-346)))) (-3545 (((-108) $) 59)) (-2602 ((|#1| $ |#1|) 47)) (-3410 ((|#1| $ |#1|) 94)) (-1587 (((-713) $) 44)) (-1871 (($ (-592 (-592 |#1|))) 85)) (-1267 (((-904) $) 53)) (-3131 (($ (-592 |#1|)) 21)) (-3700 (($ $ $) NIL)) (-2222 (($ $ $) NIL)) (-1971 (($ (-592 (-592 |#1|))) 39)) (-1269 (($ (-592 (-592 |#1|))) 88)) (-3971 (($ (-592 |#1|)) 96)) (-1270 (((-798) $) 84) (($ (-592 (-592 |#1|))) 66) (($ (-592 |#1|)) 67)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3363 (($) 16 T CONST)) (-4045 (((-108) $ $) NIL (-3279 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-4026 (((-108) $ $) NIL (-3279 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-3994 (((-108) $ $) 45)) (-4037 (((-108) $ $) NIL (-3279 (|has| |#1| (-346)) (|has| |#1| (-789))))) (-4017 (((-108) $ $) 65)) (-4100 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ $ $) 22)))
+(((-840 |#1|) (-13 (-838 |#1|) (-10 -8 (-15 -2920 ((-2 (|:| |preimage| (-592 |#1|)) (|:| |image| (-592 |#1|))) $)) (-15 -1971 ($ (-592 (-592 |#1|)))) (-15 -1270 ($ (-592 (-592 |#1|)))) (-15 -1270 ($ (-592 |#1|))) (-15 -1269 ($ (-592 (-592 |#1|)))) (-15 -1587 ((-713) $)) (-15 -2473 ((-1022 |#1|) $)) (-15 -1267 ((-904) $)) (-15 -3973 ((-713) $)) (-15 -2062 ((-713) $)) (-15 -1436 ((-525) $)) (-15 -3545 ((-108) $)) (-15 -2126 ((-108) $)) (-15 -2855 ((-592 $) (-592 $))) (IF (|has| |#1| (-346)) (-15 -3004 ((-1022 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-510)) (-15 -3971 ($ (-592 |#1|))) (IF (|has| |#1| (-346)) (-15 -3971 ($ (-592 |#1|))) |%noBranch|)))) (-1020)) (T -840))
+((-2920 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-592 *3)) (|:| |image| (-592 *3)))) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-1971 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-840 *3)))) (-1269 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-2473 (*1 *2 *1) (-12 (-5 *2 (-1022 *3)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-1267 (*1 *2 *1) (-12 (-5 *2 (-904)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-3545 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-2126 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))) (-2855 (*1 *2 *2) (-12 (-5 *2 (-592 (-840 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-1022 *3)) (-5 *1 (-840 *3)) (-4 *3 (-346)) (-4 *3 (-1020)))) (-3971 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-840 *3)))))
+(-13 (-838 |#1|) (-10 -8 (-15 -2920 ((-2 (|:| |preimage| (-592 |#1|)) (|:| |image| (-592 |#1|))) $)) (-15 -1971 ($ (-592 (-592 |#1|)))) (-15 -1270 ($ (-592 (-592 |#1|)))) (-15 -1270 ($ (-592 |#1|))) (-15 -1269 ($ (-592 (-592 |#1|)))) (-15 -1587 ((-713) $)) (-15 -2473 ((-1022 |#1|) $)) (-15 -1267 ((-904) $)) (-15 -3973 ((-713) $)) (-15 -2062 ((-713) $)) (-15 -1436 ((-525) $)) (-15 -3545 ((-108) $)) (-15 -2126 ((-108) $)) (-15 -2855 ((-592 $) (-592 $))) (IF (|has| |#1| (-346)) (-15 -3004 ((-1022 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-510)) (-15 -3971 ($ (-592 |#1|))) (IF (|has| |#1| (-346)) (-15 -3971 ($ (-592 |#1|))) |%noBranch|))))
+((-2817 (((-3 (-592 (-1087 |#4|)) "failed") (-592 (-1087 |#4|)) (-1087 |#4|)) 128)) (-2272 ((|#1|) 77)) (-1210 (((-396 (-1087 |#4|)) (-1087 |#4|)) 137)) (-2250 (((-396 (-1087 |#4|)) (-592 |#3|) (-1087 |#4|)) 69)) (-2946 (((-396 (-1087 |#4|)) (-1087 |#4|)) 147)) (-3594 (((-3 (-592 (-1087 |#4|)) "failed") (-592 (-1087 |#4|)) (-1087 |#4|) |#3|) 92)))
+(((-841 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2817 ((-3 (-592 (-1087 |#4|)) "failed") (-592 (-1087 |#4|)) (-1087 |#4|))) (-15 -2946 ((-396 (-1087 |#4|)) (-1087 |#4|))) (-15 -1210 ((-396 (-1087 |#4|)) (-1087 |#4|))) (-15 -2272 (|#1|)) (-15 -3594 ((-3 (-592 (-1087 |#4|)) "failed") (-592 (-1087 |#4|)) (-1087 |#4|) |#3|)) (-15 -2250 ((-396 (-1087 |#4|)) (-592 |#3|) (-1087 |#4|)))) (-844) (-735) (-789) (-884 |#1| |#2| |#3|)) (T -841))
+((-2250 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *7)) (-4 *7 (-789)) (-4 *5 (-844)) (-4 *6 (-735)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-396 (-1087 *8))) (-5 *1 (-841 *5 *6 *7 *8)) (-5 *4 (-1087 *8)))) (-3594 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-592 (-1087 *7))) (-5 *3 (-1087 *7)) (-4 *7 (-884 *5 *6 *4)) (-4 *5 (-844)) (-4 *6 (-735)) (-4 *4 (-789)) (-5 *1 (-841 *5 *6 *4 *7)))) (-2272 (*1 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-844)) (-5 *1 (-841 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))) (-1210 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-396 (-1087 *7))) (-5 *1 (-841 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-2946 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-396 (-1087 *7))) (-5 *1 (-841 *4 *5 *6 *7)) (-5 *3 (-1087 *7)))) (-2817 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1087 *7))) (-5 *3 (-1087 *7)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-844)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-841 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2817 ((-3 (-592 (-1087 |#4|)) "failed") (-592 (-1087 |#4|)) (-1087 |#4|))) (-15 -2946 ((-396 (-1087 |#4|)) (-1087 |#4|))) (-15 -1210 ((-396 (-1087 |#4|)) (-1087 |#4|))) (-15 -2272 (|#1|)) (-15 -3594 ((-3 (-592 (-1087 |#4|)) "failed") (-592 (-1087 |#4|)) (-1087 |#4|) |#3|)) (-15 -2250 ((-396 (-1087 |#4|)) (-592 |#3|) (-1087 |#4|))))
+((-2817 (((-3 (-592 (-1087 |#2|)) "failed") (-592 (-1087 |#2|)) (-1087 |#2|)) 36)) (-2272 ((|#1|) 54)) (-1210 (((-396 (-1087 |#2|)) (-1087 |#2|)) 102)) (-2250 (((-396 (-1087 |#2|)) (-1087 |#2|)) 90)) (-2946 (((-396 (-1087 |#2|)) (-1087 |#2|)) 113)))
+(((-842 |#1| |#2|) (-10 -7 (-15 -2817 ((-3 (-592 (-1087 |#2|)) "failed") (-592 (-1087 |#2|)) (-1087 |#2|))) (-15 -2946 ((-396 (-1087 |#2|)) (-1087 |#2|))) (-15 -1210 ((-396 (-1087 |#2|)) (-1087 |#2|))) (-15 -2272 (|#1|)) (-15 -2250 ((-396 (-1087 |#2|)) (-1087 |#2|)))) (-844) (-1149 |#1|)) (T -842))
+((-2250 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-1149 *4)) (-5 *2 (-396 (-1087 *5))) (-5 *1 (-842 *4 *5)) (-5 *3 (-1087 *5)))) (-2272 (*1 *2) (-12 (-4 *2 (-844)) (-5 *1 (-842 *2 *3)) (-4 *3 (-1149 *2)))) (-1210 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-1149 *4)) (-5 *2 (-396 (-1087 *5))) (-5 *1 (-842 *4 *5)) (-5 *3 (-1087 *5)))) (-2946 (*1 *2 *3) (-12 (-4 *4 (-844)) (-4 *5 (-1149 *4)) (-5 *2 (-396 (-1087 *5))) (-5 *1 (-842 *4 *5)) (-5 *3 (-1087 *5)))) (-2817 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1087 *5))) (-5 *3 (-1087 *5)) (-4 *5 (-1149 *4)) (-4 *4 (-844)) (-5 *1 (-842 *4 *5)))))
+(-10 -7 (-15 -2817 ((-3 (-592 (-1087 |#2|)) "failed") (-592 (-1087 |#2|)) (-1087 |#2|))) (-15 -2946 ((-396 (-1087 |#2|)) (-1087 |#2|))) (-15 -1210 ((-396 (-1087 |#2|)) (-1087 |#2|))) (-15 -2272 (|#1|)) (-15 -2250 ((-396 (-1087 |#2|)) (-1087 |#2|))))
+((-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) 41)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 18)) (-3425 (((-3 $ "failed") $) 35)))
+(((-843 |#1|) (-10 -8 (-15 -3425 ((-3 |#1| "failed") |#1|)) (-15 -3259 ((-3 (-592 (-1087 |#1|)) "failed") (-592 (-1087 |#1|)) (-1087 |#1|))) (-15 -1534 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|)))) (-844)) (T -843))
+NIL
+(-10 -8 (-15 -3425 ((-3 |#1| "failed") |#1|)) (-15 -3259 ((-3 (-592 (-1087 |#1|)) "failed") (-592 (-1087 |#1|)) (-1087 |#1|))) (-15 -1534 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-1342 (((-3 $ "failed") $ $) 19)) (-4050 (((-396 (-1087 $)) (-1087 $)) 60)) (-3706 (($ $) 51)) (-2100 (((-396 $) $) 52)) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) 57)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-3836 (((-108) $) 53)) (-1985 (((-108) $) 31)) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-1215 (((-396 (-1087 $)) (-1087 $)) 58)) (-2802 (((-396 (-1087 $)) (-1087 $)) 59)) (-2195 (((-396 $) $) 50)) (-1680 (((-3 $ "failed") $ $) 42)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) 56 (|has| $ (-136)))) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-3425 (((-3 $ "failed") $) 55 (|has| $ (-136)))) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) 39)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+(((-844) (-131)) (T -844))
+((-1534 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-844)))) (-4050 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *2 (-396 (-1087 *1))) (-5 *3 (-1087 *1)))) (-2802 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *2 (-396 (-1087 *1))) (-5 *3 (-1087 *1)))) (-1215 (*1 *2 *3) (-12 (-4 *1 (-844)) (-5 *2 (-396 (-1087 *1))) (-5 *3 (-1087 *1)))) (-3259 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-592 (-1087 *1))) (-5 *3 (-1087 *1)) (-4 *1 (-844)))) (-2105 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-136)) (-4 *1 (-844)) (-5 *2 (-1173 *1)))) (-3425 (*1 *1 *1) (|partial| -12 (-4 *1 (-136)) (-4 *1 (-844)))))
+(-13 (-1131) (-10 -8 (-15 -4050 ((-396 (-1087 $)) (-1087 $))) (-15 -2802 ((-396 (-1087 $)) (-1087 $))) (-15 -1215 ((-396 (-1087 $)) (-1087 $))) (-15 -1534 ((-1087 $) (-1087 $) (-1087 $))) (-15 -3259 ((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $))) (IF (|has| $ (-136)) (PROGN (-15 -2105 ((-3 (-1173 $) "failed") (-632 $))) (-15 -3425 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1131) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-2679 (((-108) $) NIL)) (-3452 (((-713)) NIL)) (-3029 (($ $ (-856)) NIL (|has| $ (-346))) (($ $) NIL)) (-1670 (((-1101 (-856) (-713)) (-525)) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3197 (((-108) $ $) NIL)) (-4190 (((-713)) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 $ "failed") $) NIL)) (-3898 (($ $) NIL)) (-3612 (($ (-1173 $)) NIL)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) NIL)) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3977 (($) NIL)) (-3564 (((-108) $) NIL)) (-2327 (($ $) NIL) (($ $ (-713)) NIL)) (-3836 (((-108) $) NIL)) (-3973 (((-775 (-856)) $) NIL) (((-856) $) NIL)) (-1985 (((-108) $) NIL)) (-1794 (($) NIL (|has| $ (-346)))) (-4200 (((-108) $) NIL (|has| $ (-346)))) (-2900 (($ $ (-856)) NIL (|has| $ (-346))) (($ $) NIL)) (-1760 (((-3 $ "failed") $) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2640 (((-1087 $) $ (-856)) NIL (|has| $ (-346))) (((-1087 $) $) NIL)) (-1736 (((-856) $) NIL)) (-2884 (((-1087 $) $) NIL (|has| $ (-346)))) (-1549 (((-3 (-1087 $) "failed") $ $) NIL (|has| $ (-346))) (((-1087 $) $) NIL (|has| $ (-346)))) (-2499 (($ $ (-1087 $)) NIL (|has| $ (-346)))) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL T CONST)) (-3640 (($ (-856)) NIL)) (-3341 (((-108) $) NIL)) (-2012 (((-1038) $) NIL)) (-3523 (($) NIL (|has| $ (-346)))) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) NIL)) (-2195 (((-396 $) $) NIL)) (-3748 (((-856)) NIL) (((-775 (-856))) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2181 (((-3 (-713) "failed") $ $) NIL) (((-713) $) NIL)) (-3831 (((-128)) NIL)) (-2523 (($ $ (-713)) NIL) (($ $) NIL)) (-1587 (((-856) $) NIL) (((-775 (-856)) $) NIL)) (-1571 (((-1087 $)) NIL)) (-2726 (($) NIL)) (-2411 (($) NIL (|has| $ (-346)))) (-3464 (((-632 $) (-1173 $)) NIL) (((-1173 $) $) NIL)) (-2749 (((-525) $) NIL)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL)) (-3425 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2104 (((-713)) NIL)) (-1449 (((-1173 $) (-856)) NIL) (((-1173 $)) NIL)) (-3959 (((-108) $ $) NIL)) (-1728 (((-108) $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-3842 (($ $ (-713)) NIL (|has| $ (-346))) (($ $) NIL (|has| $ (-346)))) (-2093 (($ $ (-713)) NIL) (($ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
+(((-845 |#1|) (-13 (-327) (-307 $) (-567 (-525))) (-856)) (T -845))
NIL
(-13 (-327) (-307 $) (-567 (-525)))
-((-3045 (((-3 (-2 (|:| -1737 (-713)) (|:| -3111 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|)) 79)) (-4175 (((-108) (-314 |#2| |#3| |#4| |#5|)) 17)) (-1737 (((-3 (-713) "failed") (-314 |#2| |#3| |#4| |#5|)) 15)))
-(((-845 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1737 ((-3 (-713) "failed") (-314 |#2| |#3| |#4| |#5|))) (-15 -4175 ((-108) (-314 |#2| |#3| |#4| |#5|))) (-15 -3045 ((-3 (-2 (|:| -1737 (-713)) (|:| -3111 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|)))) (-13 (-789) (-517) (-967 (-525))) (-408 |#1|) (-1148 |#2|) (-1148 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -845))
-((-3045 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-2 (|:| -1737 (-713)) (|:| -3111 *8))) (-5 *1 (-845 *4 *5 *6 *7 *8)))) (-4175 (*1 *2 *3) (-12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-108)) (-5 *1 (-845 *4 *5 *6 *7 *8)))) (-1737 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-713)) (-5 *1 (-845 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1737 ((-3 (-713) "failed") (-314 |#2| |#3| |#4| |#5|))) (-15 -4175 ((-108) (-314 |#2| |#3| |#4| |#5|))) (-15 -3045 ((-3 (-2 (|:| -1737 (-713)) (|:| -3111 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|))))
-((-3045 (((-3 (-2 (|:| -1737 (-713)) (|:| -3111 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)) 56)) (-4175 (((-108) (-314 (-385 (-525)) |#1| |#2| |#3|)) 16)) (-1737 (((-3 (-713) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)) 14)))
-(((-846 |#1| |#2| |#3|) (-10 -7 (-15 -1737 ((-3 (-713) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -4175 ((-108) (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -3045 ((-3 (-2 (|:| -1737 (-713)) (|:| -3111 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)))) (-1148 (-385 (-525))) (-1148 (-385 |#1|)) (-320 (-385 (-525)) |#1| |#2|)) (T -846))
-((-3045 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1148 (-385 (-525)))) (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-2 (|:| -1737 (-713)) (|:| -3111 *6))) (-5 *1 (-846 *4 *5 *6)))) (-4175 (*1 *2 *3) (-12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1148 (-385 (-525)))) (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-108)) (-5 *1 (-846 *4 *5 *6)))) (-1737 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1148 (-385 (-525)))) (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-713)) (-5 *1 (-846 *4 *5 *6)))))
-(-10 -7 (-15 -1737 ((-3 (-713) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -4175 ((-108) (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -3045 ((-3 (-2 (|:| -1737 (-713)) (|:| -3111 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|))))
-((-3719 ((|#2| |#2|) 26)) (-4098 (((-525) (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))) 15)) (-3644 (((-855) (-525)) 35)) (-2627 (((-525) |#2|) 42)) (-1788 (((-525) |#2|) 21) (((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|) 20)))
-(((-847 |#1| |#2|) (-10 -7 (-15 -3644 ((-855) (-525))) (-15 -1788 ((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|)) (-15 -1788 ((-525) |#2|)) (-15 -4098 ((-525) (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))))) (-15 -2627 ((-525) |#2|)) (-15 -3719 (|#2| |#2|))) (-1148 (-385 (-525))) (-1148 (-385 |#1|))) (T -847))
-((-3719 (*1 *2 *2) (-12 (-4 *3 (-1148 (-385 (-525)))) (-5 *1 (-847 *3 *2)) (-4 *2 (-1148 (-385 *3))))) (-2627 (*1 *2 *3) (-12 (-4 *4 (-1148 (-385 (-525)))) (-5 *2 (-525)) (-5 *1 (-847 *4 *3)) (-4 *3 (-1148 (-385 *4))))) (-4098 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))) (-4 *4 (-1148 (-385 (-525)))) (-5 *2 (-525)) (-5 *1 (-847 *4 *5)) (-4 *5 (-1148 (-385 *4))))) (-1788 (*1 *2 *3) (-12 (-4 *4 (-1148 (-385 (-525)))) (-5 *2 (-525)) (-5 *1 (-847 *4 *3)) (-4 *3 (-1148 (-385 *4))))) (-1788 (*1 *2 *3) (-12 (-4 *3 (-1148 (-385 (-525)))) (-5 *2 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))) (-5 *1 (-847 *3 *4)) (-4 *4 (-1148 (-385 *3))))) (-3644 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-1148 (-385 (-525)))) (-5 *2 (-855)) (-5 *1 (-847 *4 *5)) (-4 *5 (-1148 (-385 *4))))))
-(-10 -7 (-15 -3644 ((-855) (-525))) (-15 -1788 ((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|)) (-15 -1788 ((-525) |#2|)) (-15 -4098 ((-525) (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))))) (-15 -2627 ((-525) |#2|)) (-15 -3719 (|#2| |#2|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3115 ((|#1| $) 81)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2305 (((-108) $ $) NIL)) (-1505 (($) NIL T CONST)) (-2373 (($ $ $) NIL)) (-2866 (((-3 $ "failed") $) 75)) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-2454 (($ |#1| (-396 |#1|)) 73)) (-2988 (((-1086 |#1|) |#1| |#1|) 41)) (-2366 (($ $) 49)) (-2133 (((-108) $) NIL)) (-2876 (((-525) $) 78)) (-2872 (($ $ (-525)) 80)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-1555 ((|#1| $) 77)) (-1752 (((-396 |#1|) $) 76)) (-3959 (((-396 $) $) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) 74)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-1211 (($ $) 39)) (-1908 (((-797) $) 99) (($ (-525)) 54) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 31) (((-385 |#1|) $) 59) (($ (-385 (-396 |#1|))) 67)) (-2093 (((-713)) 52)) (-2262 (((-108) $ $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) 23 T CONST)) (-3882 (($) 12 T CONST)) (-3961 (((-108) $ $) 68)) (-4082 (($ $ $) NIL)) (-4070 (($ $) 88) (($ $ $) NIL)) (-4059 (($ $ $) 38)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 90) (($ $ $) 37) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-848 |#1|) (-13 (-341) (-37 |#1|) (-10 -8 (-15 -1908 ((-385 |#1|) $)) (-15 -1908 ($ (-385 (-396 |#1|)))) (-15 -1211 ($ $)) (-15 -1752 ((-396 |#1|) $)) (-15 -1555 (|#1| $)) (-15 -2872 ($ $ (-525))) (-15 -2876 ((-525) $)) (-15 -2988 ((-1086 |#1|) |#1| |#1|)) (-15 -2366 ($ $)) (-15 -2454 ($ |#1| (-396 |#1|))) (-15 -3115 (|#1| $)))) (-286)) (T -848))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-385 *3)) (-5 *1 (-848 *3)) (-4 *3 (-286)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-385 (-396 *3))) (-4 *3 (-286)) (-5 *1 (-848 *3)))) (-1211 (*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-286)))) (-1752 (*1 *2 *1) (-12 (-5 *2 (-396 *3)) (-5 *1 (-848 *3)) (-4 *3 (-286)))) (-1555 (*1 *2 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-286)))) (-2872 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-848 *3)) (-4 *3 (-286)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-848 *3)) (-4 *3 (-286)))) (-2988 (*1 *2 *3 *3) (-12 (-5 *2 (-1086 *3)) (-5 *1 (-848 *3)) (-4 *3 (-286)))) (-2366 (*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-286)))) (-2454 (*1 *1 *2 *3) (-12 (-5 *3 (-396 *2)) (-4 *2 (-286)) (-5 *1 (-848 *2)))) (-3115 (*1 *2 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-286)))))
-(-13 (-341) (-37 |#1|) (-10 -8 (-15 -1908 ((-385 |#1|) $)) (-15 -1908 ($ (-385 (-396 |#1|)))) (-15 -1211 ($ $)) (-15 -1752 ((-396 |#1|) $)) (-15 -1555 (|#1| $)) (-15 -2872 ($ $ (-525))) (-15 -2876 ((-525) $)) (-15 -2988 ((-1086 |#1|) |#1| |#1|)) (-15 -2366 ($ $)) (-15 -2454 ($ |#1| (-396 |#1|))) (-15 -3115 (|#1| $))))
-((-2454 (((-51) (-886 |#1|) (-396 (-886 |#1|)) (-1090)) 17) (((-51) (-385 (-886 |#1|)) (-1090)) 18)))
-(((-849 |#1|) (-10 -7 (-15 -2454 ((-51) (-385 (-886 |#1|)) (-1090))) (-15 -2454 ((-51) (-886 |#1|) (-396 (-886 |#1|)) (-1090)))) (-13 (-286) (-138))) (T -849))
-((-2454 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-886 *6)) (-5 *4 (-396 (-886 *6))) (-5 *5 (-1090)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-849 *6)))) (-2454 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-849 *5)))))
-(-10 -7 (-15 -2454 ((-51) (-385 (-886 |#1|)) (-1090))) (-15 -2454 ((-51) (-886 |#1|) (-396 (-886 |#1|)) (-1090))))
-((-3979 ((|#4| (-592 |#4|)) 121) (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-3244 (((-1086 |#4|) (-592 (-1086 |#4|))) 114) (((-1086 |#4|) (-1086 |#4|) (-1086 |#4|)) 50) ((|#4| (-592 |#4|)) 55) ((|#4| |#4| |#4|) 84)))
-(((-850 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3244 (|#4| |#4| |#4|)) (-15 -3244 (|#4| (-592 |#4|))) (-15 -3244 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -3244 ((-1086 |#4|) (-592 (-1086 |#4|)))) (-15 -3979 (|#4| |#4| |#4|)) (-15 -3979 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -3979 (|#4| (-592 |#4|)))) (-735) (-789) (-286) (-883 |#3| |#1| |#2|)) (T -850))
-((-3979 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *6 *4 *5)) (-5 *1 (-850 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)))) (-3979 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-883 *5 *3 *4)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-850 *3 *4 *5 *6)))) (-3979 (*1 *2 *2 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-850 *3 *4 *5 *2)) (-4 *2 (-883 *5 *3 *4)))) (-3244 (*1 *2 *3) (-12 (-5 *3 (-592 (-1086 *7))) (-4 *7 (-883 *6 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-1086 *7)) (-5 *1 (-850 *4 *5 *6 *7)))) (-3244 (*1 *2 *2 *2) (-12 (-5 *2 (-1086 *6)) (-4 *6 (-883 *5 *3 *4)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-850 *3 *4 *5 *6)))) (-3244 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *6 *4 *5)) (-5 *1 (-850 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)))) (-3244 (*1 *2 *2 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-850 *3 *4 *5 *2)) (-4 *2 (-883 *5 *3 *4)))))
-(-10 -7 (-15 -3244 (|#4| |#4| |#4|)) (-15 -3244 (|#4| (-592 |#4|))) (-15 -3244 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -3244 ((-1086 |#4|) (-592 (-1086 |#4|)))) (-15 -3979 (|#4| |#4| |#4|)) (-15 -3979 ((-1086 |#4|) (-1086 |#4|) (-1086 |#4|))) (-15 -3979 (|#4| (-592 |#4|))))
-((-3771 (((-838 (-525)) (-903)) 23) (((-838 (-525)) (-592 (-525))) 20)) (-2359 (((-838 (-525)) (-592 (-525))) 48) (((-838 (-525)) (-855)) 49)) (-1231 (((-838 (-525))) 24)) (-3365 (((-838 (-525))) 38) (((-838 (-525)) (-592 (-525))) 37)) (-3304 (((-838 (-525))) 36) (((-838 (-525)) (-592 (-525))) 35)) (-3091 (((-838 (-525))) 34) (((-838 (-525)) (-592 (-525))) 33)) (-3732 (((-838 (-525))) 32) (((-838 (-525)) (-592 (-525))) 31)) (-3043 (((-838 (-525))) 30) (((-838 (-525)) (-592 (-525))) 29)) (-1833 (((-838 (-525))) 40) (((-838 (-525)) (-592 (-525))) 39)) (-2221 (((-838 (-525)) (-592 (-525))) 52) (((-838 (-525)) (-855)) 53)) (-3617 (((-838 (-525)) (-592 (-525))) 50) (((-838 (-525)) (-855)) 51)) (-2139 (((-838 (-525)) (-592 (-525))) 46) (((-838 (-525)) (-855)) 47)) (-1651 (((-838 (-525)) (-592 (-855))) 43)))
-(((-851) (-10 -7 (-15 -2359 ((-838 (-525)) (-855))) (-15 -2359 ((-838 (-525)) (-592 (-525)))) (-15 -2139 ((-838 (-525)) (-855))) (-15 -2139 ((-838 (-525)) (-592 (-525)))) (-15 -1651 ((-838 (-525)) (-592 (-855)))) (-15 -3617 ((-838 (-525)) (-855))) (-15 -3617 ((-838 (-525)) (-592 (-525)))) (-15 -2221 ((-838 (-525)) (-855))) (-15 -2221 ((-838 (-525)) (-592 (-525)))) (-15 -3043 ((-838 (-525)) (-592 (-525)))) (-15 -3043 ((-838 (-525)))) (-15 -3732 ((-838 (-525)) (-592 (-525)))) (-15 -3732 ((-838 (-525)))) (-15 -3091 ((-838 (-525)) (-592 (-525)))) (-15 -3091 ((-838 (-525)))) (-15 -3304 ((-838 (-525)) (-592 (-525)))) (-15 -3304 ((-838 (-525)))) (-15 -3365 ((-838 (-525)) (-592 (-525)))) (-15 -3365 ((-838 (-525)))) (-15 -1833 ((-838 (-525)) (-592 (-525)))) (-15 -1833 ((-838 (-525)))) (-15 -1231 ((-838 (-525)))) (-15 -3771 ((-838 (-525)) (-592 (-525)))) (-15 -3771 ((-838 (-525)) (-903))))) (T -851))
-((-3771 (*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3771 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-1231 (*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-1833 (*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3365 (*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3304 (*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3091 (*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3732 (*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3732 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3043 (*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-592 (-855))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-2139 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-2139 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-2359 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))) (-2359 (*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-838 (-525))) (-5 *1 (-851)))))
-(-10 -7 (-15 -2359 ((-838 (-525)) (-855))) (-15 -2359 ((-838 (-525)) (-592 (-525)))) (-15 -2139 ((-838 (-525)) (-855))) (-15 -2139 ((-838 (-525)) (-592 (-525)))) (-15 -1651 ((-838 (-525)) (-592 (-855)))) (-15 -3617 ((-838 (-525)) (-855))) (-15 -3617 ((-838 (-525)) (-592 (-525)))) (-15 -2221 ((-838 (-525)) (-855))) (-15 -2221 ((-838 (-525)) (-592 (-525)))) (-15 -3043 ((-838 (-525)) (-592 (-525)))) (-15 -3043 ((-838 (-525)))) (-15 -3732 ((-838 (-525)) (-592 (-525)))) (-15 -3732 ((-838 (-525)))) (-15 -3091 ((-838 (-525)) (-592 (-525)))) (-15 -3091 ((-838 (-525)))) (-15 -3304 ((-838 (-525)) (-592 (-525)))) (-15 -3304 ((-838 (-525)))) (-15 -3365 ((-838 (-525)) (-592 (-525)))) (-15 -3365 ((-838 (-525)))) (-15 -1833 ((-838 (-525)) (-592 (-525)))) (-15 -1833 ((-838 (-525)))) (-15 -1231 ((-838 (-525)))) (-15 -3771 ((-838 (-525)) (-592 (-525)))) (-15 -3771 ((-838 (-525)) (-903))))
-((-2254 (((-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090))) 12)) (-3053 (((-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090))) 11)))
-(((-852 |#1|) (-10 -7 (-15 -3053 ((-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090)))) (-15 -2254 ((-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090))))) (-429)) (T -852))
-((-2254 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-886 *4))) (-5 *3 (-592 (-1090))) (-4 *4 (-429)) (-5 *1 (-852 *4)))) (-3053 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-886 *4))) (-5 *3 (-592 (-1090))) (-4 *4 (-429)) (-5 *1 (-852 *4)))))
-(-10 -7 (-15 -3053 ((-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090)))) (-15 -2254 ((-592 (-886 |#1|)) (-592 (-886 |#1|)) (-592 (-1090)))))
-((-1908 (((-294 |#1|) (-454)) 16)))
-(((-853 |#1|) (-10 -7 (-15 -1908 ((-294 |#1|) (-454)))) (-13 (-789) (-517))) (T -853))
-((-1908 (*1 *2 *3) (-12 (-5 *3 (-454)) (-5 *2 (-294 *4)) (-5 *1 (-853 *4)) (-4 *4 (-13 (-789) (-517))))))
-(-10 -7 (-15 -1908 ((-294 |#1|) (-454))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 51)) (-2133 (((-108) $) 31)) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-2338 (((-3 $ "failed") $ $) 42)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43)) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) 39)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
-(((-854) (-131)) (T -854))
-((-2946 (*1 *2 *3) (-12 (-4 *1 (-854)) (-5 *2 (-2 (|:| -1459 (-592 *1)) (|:| -1669 *1))) (-5 *3 (-592 *1)))) (-1705 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-854)))))
-(-13 (-429) (-10 -8 (-15 -2946 ((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $))) (-15 -1705 ((-3 (-592 $) "failed") (-592 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-1505 (($) NIL T CONST)) (-2866 (((-3 $ "failed") $) NIL)) (-2133 (((-108) $) NIL)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3244 (($ $ $) NIL)) (-1908 (((-797) $) NIL)) (-3465 (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (-3882 (($) NIL T CONST)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (* (($ (-855) $) NIL) (($ $ $) NIL)))
-(((-855) (-13 (-736) (-669) (-10 -8 (-15 -3244 ($ $ $)) (-6 (-4256 "*"))))) (T -855))
-((-3244 (*1 *1 *1 *1) (-5 *1 (-855))))
-(-13 (-736) (-669) (-10 -8 (-15 -3244 ($ $ $)) (-6 (-4256 "*"))))
-((-3450 ((|#2| (-592 |#1|) (-592 |#1|)) 24)))
-(((-856 |#1| |#2|) (-10 -7 (-15 -3450 (|#2| (-592 |#1|) (-592 |#1|)))) (-341) (-1148 |#1|)) (T -856))
-((-3450 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-4 *2 (-1148 *4)) (-5 *1 (-856 *4 *2)))))
-(-10 -7 (-15 -3450 (|#2| (-592 |#1|) (-592 |#1|))))
-((-2718 (((-1086 |#2|) (-592 |#2|) (-592 |#2|)) 17) (((-1145 |#1| |#2|) (-1145 |#1| |#2|) (-592 |#2|) (-592 |#2|)) 13)))
-(((-857 |#1| |#2|) (-10 -7 (-15 -2718 ((-1145 |#1| |#2|) (-1145 |#1| |#2|) (-592 |#2|) (-592 |#2|))) (-15 -2718 ((-1086 |#2|) (-592 |#2|) (-592 |#2|)))) (-1090) (-341)) (T -857))
-((-2718 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-341)) (-5 *2 (-1086 *5)) (-5 *1 (-857 *4 *5)) (-14 *4 (-1090)))) (-2718 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1145 *4 *5)) (-5 *3 (-592 *5)) (-14 *4 (-1090)) (-4 *5 (-341)) (-5 *1 (-857 *4 *5)))))
-(-10 -7 (-15 -2718 ((-1145 |#1| |#2|) (-1145 |#1| |#2|) (-592 |#2|) (-592 |#2|))) (-15 -2718 ((-1086 |#2|) (-592 |#2|) (-592 |#2|))))
-((-3646 (((-525) (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-1073)) 139)) (-1420 ((|#4| |#4|) 155)) (-1714 (((-592 (-385 (-886 |#1|))) (-592 (-1090))) 119)) (-3913 (((-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))) (-632 |#4|) (-592 (-385 (-886 |#1|))) (-592 (-592 |#4|)) (-713) (-713) (-525)) 75)) (-2110 (((-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|)))))) (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|)))))) (-592 |#4|)) 59)) (-3638 (((-632 |#4|) (-632 |#4|) (-592 |#4|)) 55)) (-1415 (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-1073)) 151)) (-2080 (((-525) (-632 |#4|) (-855) (-1073)) 133) (((-525) (-632 |#4|) (-592 (-1090)) (-855) (-1073)) 132) (((-525) (-632 |#4|) (-592 |#4|) (-855) (-1073)) 131) (((-525) (-632 |#4|) (-1073)) 128) (((-525) (-632 |#4|) (-592 (-1090)) (-1073)) 127) (((-525) (-632 |#4|) (-592 |#4|) (-1073)) 126) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-855)) 125) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 (-1090)) (-855)) 124) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 |#4|) (-855)) 123) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|)) 121) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 (-1090))) 120) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 |#4|)) 116)) (-2504 ((|#4| (-886 |#1|)) 68)) (-1536 (((-108) (-592 |#4|) (-592 (-592 |#4|))) 152)) (-2257 (((-592 (-592 (-525))) (-525) (-525)) 130)) (-2840 (((-592 (-592 |#4|)) (-592 (-592 |#4|))) 88)) (-3148 (((-713) (-592 (-2 (|:| -2239 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|))))) 86)) (-1597 (((-713) (-592 (-2 (|:| -2239 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|))))) 85)) (-1799 (((-108) (-592 (-886 |#1|))) 17) (((-108) (-592 |#4|)) 13)) (-1526 (((-2 (|:| |sysok| (-108)) (|:| |z0| (-592 |#4|)) (|:| |n0| (-592 |#4|))) (-592 |#4|) (-592 |#4|)) 71)) (-2874 (((-592 |#4|) |#4|) 49)) (-3561 (((-592 (-385 (-886 |#1|))) (-592 |#4|)) 115) (((-632 (-385 (-886 |#1|))) (-632 |#4|)) 56) (((-385 (-886 |#1|)) |#4|) 112)) (-2405 (((-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|)))))))))) (|:| |rgsz| (-525))) (-632 |#4|) (-592 (-385 (-886 |#1|))) (-713) (-1073) (-525)) 93)) (-1443 (((-592 (-2 (|:| -2239 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))) (-632 |#4|) (-713)) 84)) (-2769 (((-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-632 |#4|) (-713)) 101)) (-2381 (((-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|)))))) (-2 (|:| -3276 (-632 (-385 (-886 |#1|)))) (|:| |vec| (-592 (-385 (-886 |#1|)))) (|:| -2239 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) 48)))
-(((-858 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2080 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 |#4|))) (-15 -2080 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 (-1090)))) (-15 -2080 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|))) (-15 -2080 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 |#4|) (-855))) (-15 -2080 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 (-1090)) (-855))) (-15 -2080 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-855))) (-15 -2080 ((-525) (-632 |#4|) (-592 |#4|) (-1073))) (-15 -2080 ((-525) (-632 |#4|) (-592 (-1090)) (-1073))) (-15 -2080 ((-525) (-632 |#4|) (-1073))) (-15 -2080 ((-525) (-632 |#4|) (-592 |#4|) (-855) (-1073))) (-15 -2080 ((-525) (-632 |#4|) (-592 (-1090)) (-855) (-1073))) (-15 -2080 ((-525) (-632 |#4|) (-855) (-1073))) (-15 -3646 ((-525) (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-1073))) (-15 -1415 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-1073))) (-15 -2405 ((-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|)))))))))) (|:| |rgsz| (-525))) (-632 |#4|) (-592 (-385 (-886 |#1|))) (-713) (-1073) (-525))) (-15 -3561 ((-385 (-886 |#1|)) |#4|)) (-15 -3561 ((-632 (-385 (-886 |#1|))) (-632 |#4|))) (-15 -3561 ((-592 (-385 (-886 |#1|))) (-592 |#4|))) (-15 -1714 ((-592 (-385 (-886 |#1|))) (-592 (-1090)))) (-15 -2504 (|#4| (-886 |#1|))) (-15 -1526 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-592 |#4|)) (|:| |n0| (-592 |#4|))) (-592 |#4|) (-592 |#4|))) (-15 -1443 ((-592 (-2 (|:| -2239 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))) (-632 |#4|) (-713))) (-15 -2110 ((-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|)))))) (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|)))))) (-592 |#4|))) (-15 -2381 ((-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|)))))) (-2 (|:| -3276 (-632 (-385 (-886 |#1|)))) (|:| |vec| (-592 (-385 (-886 |#1|)))) (|:| -2239 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (-15 -2874 ((-592 |#4|) |#4|)) (-15 -1597 ((-713) (-592 (-2 (|:| -2239 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -3148 ((-713) (-592 (-2 (|:| -2239 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -2840 ((-592 (-592 |#4|)) (-592 (-592 |#4|)))) (-15 -2257 ((-592 (-592 (-525))) (-525) (-525))) (-15 -1536 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -2769 ((-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-632 |#4|) (-713))) (-15 -3638 ((-632 |#4|) (-632 |#4|) (-592 |#4|))) (-15 -3913 ((-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))) (-632 |#4|) (-592 (-385 (-886 |#1|))) (-592 (-592 |#4|)) (-713) (-713) (-525))) (-15 -1420 (|#4| |#4|)) (-15 -1799 ((-108) (-592 |#4|))) (-15 -1799 ((-108) (-592 (-886 |#1|))))) (-13 (-286) (-138)) (-13 (-789) (-567 (-1090))) (-735) (-883 |#1| |#3| |#2|)) (T -858))
-((-1799 (*1 *2 *3) (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-108)) (-5 *1 (-858 *4 *5 *6 *7)) (-4 *7 (-883 *4 *6 *5)))) (-1799 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-108)) (-5 *1 (-858 *4 *5 *6 *7)))) (-1420 (*1 *2 *2) (-12 (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1090)))) (-4 *5 (-735)) (-5 *1 (-858 *3 *4 *5 *2)) (-4 *2 (-883 *3 *5 *4)))) (-3913 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-5 *4 (-632 *12)) (-5 *5 (-592 (-385 (-886 *9)))) (-5 *6 (-592 (-592 *12))) (-5 *7 (-713)) (-5 *8 (-525)) (-4 *9 (-13 (-286) (-138))) (-4 *12 (-883 *9 *11 *10)) (-4 *10 (-13 (-789) (-567 (-1090)))) (-4 *11 (-735)) (-5 *2 (-2 (|:| |eqzro| (-592 *12)) (|:| |neqzro| (-592 *12)) (|:| |wcond| (-592 (-886 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *9)))) (|:| -2499 (-592 (-1172 (-385 (-886 *9))))))))) (-5 *1 (-858 *9 *10 *11 *12)))) (-3638 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *7)) (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *1 (-858 *4 *5 *6 *7)))) (-2769 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-713)) (-4 *8 (-883 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |det| *8) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (-5 *1 (-858 *5 *6 *7 *8)))) (-1536 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-592 *8))) (-4 *8 (-883 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-108)) (-5 *1 (-858 *5 *6 *7 *8)))) (-2257 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-592 (-592 (-525)))) (-5 *1 (-858 *4 *5 *6 *7)) (-5 *3 (-525)) (-4 *7 (-883 *4 *6 *5)))) (-2840 (*1 *2 *2) (-12 (-5 *2 (-592 (-592 *6))) (-4 *6 (-883 *3 *5 *4)) (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1090)))) (-4 *5 (-735)) (-5 *1 (-858 *3 *4 *5 *6)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -2239 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| *7) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 *7))))) (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-713)) (-5 *1 (-858 *4 *5 *6 *7)))) (-1597 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -2239 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| *7) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 *7))))) (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-713)) (-5 *1 (-858 *4 *5 *6 *7)))) (-2874 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-592 *3)) (-5 *1 (-858 *4 *5 *6 *3)) (-4 *3 (-883 *4 *6 *5)))) (-2381 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3276 (-632 (-385 (-886 *4)))) (|:| |vec| (-592 (-385 (-886 *4)))) (|:| -2239 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-2 (|:| |partsol| (-1172 (-385 (-886 *4)))) (|:| -2499 (-592 (-1172 (-385 (-886 *4))))))) (-5 *1 (-858 *4 *5 *6 *7)) (-4 *7 (-883 *4 *6 *5)))) (-2110 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1172 (-385 (-886 *4)))) (|:| -2499 (-592 (-1172 (-385 (-886 *4))))))) (-5 *3 (-592 *7)) (-4 *4 (-13 (-286) (-138))) (-4 *7 (-883 *4 *6 *5)) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *1 (-858 *4 *5 *6 *7)))) (-1443 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-4 *8 (-883 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| -2239 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| *8) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 *8))))) (-5 *1 (-858 *5 *6 *7 *8)) (-5 *4 (-713)))) (-1526 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-4 *7 (-883 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-108)) (|:| |z0| (-592 *7)) (|:| |n0| (-592 *7)))) (-5 *1 (-858 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-886 *4)) (-4 *4 (-13 (-286) (-138))) (-4 *2 (-883 *4 *6 *5)) (-5 *1 (-858 *4 *5 *6 *2)) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-592 (-1090))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-592 (-385 (-886 *4)))) (-5 *1 (-858 *4 *5 *6 *7)) (-4 *7 (-883 *4 *6 *5)))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-592 (-385 (-886 *4)))) (-5 *1 (-858 *4 *5 *6 *7)))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-632 *7)) (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-632 (-385 (-886 *4)))) (-5 *1 (-858 *4 *5 *6 *7)))) (-3561 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-385 (-886 *4))) (-5 *1 (-858 *4 *5 *6 *3)) (-4 *3 (-883 *4 *6 *5)))) (-2405 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-632 *11)) (-5 *4 (-592 (-385 (-886 *8)))) (-5 *5 (-713)) (-5 *6 (-1073)) (-4 *8 (-13 (-286) (-138))) (-4 *11 (-883 *8 *10 *9)) (-4 *9 (-13 (-789) (-567 (-1090)))) (-4 *10 (-735)) (-5 *2 (-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 *11)) (|:| |neqzro| (-592 *11)) (|:| |wcond| (-592 (-886 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *8)))) (|:| -2499 (-592 (-1172 (-385 (-886 *8)))))))))) (|:| |rgsz| (-525)))) (-5 *1 (-858 *8 *9 *10 *11)) (-5 *7 (-525)))) (-1415 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7)) (|:| |wcond| (-592 (-886 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *4)))) (|:| -2499 (-592 (-1172 (-385 (-886 *4)))))))))) (-5 *1 (-858 *4 *5 *6 *7)) (-4 *7 (-883 *4 *6 *5)))) (-3646 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-886 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *5)))) (|:| -2499 (-592 (-1172 (-385 (-886 *5)))))))))) (-5 *4 (-1073)) (-4 *5 (-13 (-286) (-138))) (-4 *8 (-883 *5 *7 *6)) (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-525)) (-5 *1 (-858 *5 *6 *7 *8)))) (-2080 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-855)) (-5 *5 (-1073)) (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735)) (-5 *2 (-525)) (-5 *1 (-858 *6 *7 *8 *9)))) (-2080 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-632 *10)) (-5 *4 (-592 (-1090))) (-5 *5 (-855)) (-5 *6 (-1073)) (-4 *10 (-883 *7 *9 *8)) (-4 *7 (-13 (-286) (-138))) (-4 *8 (-13 (-789) (-567 (-1090)))) (-4 *9 (-735)) (-5 *2 (-525)) (-5 *1 (-858 *7 *8 *9 *10)))) (-2080 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-632 *10)) (-5 *4 (-592 *10)) (-5 *5 (-855)) (-5 *6 (-1073)) (-4 *10 (-883 *7 *9 *8)) (-4 *7 (-13 (-286) (-138))) (-4 *8 (-13 (-789) (-567 (-1090)))) (-4 *9 (-735)) (-5 *2 (-525)) (-5 *1 (-858 *7 *8 *9 *10)))) (-2080 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-1073)) (-4 *8 (-883 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-525)) (-5 *1 (-858 *5 *6 *7 *8)))) (-2080 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 (-1090))) (-5 *5 (-1073)) (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735)) (-5 *2 (-525)) (-5 *1 (-858 *6 *7 *8 *9)))) (-2080 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 *9)) (-5 *5 (-1073)) (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735)) (-5 *2 (-525)) (-5 *1 (-858 *6 *7 *8 *9)))) (-2080 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-855)) (-4 *8 (-883 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-886 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *5)))) (|:| -2499 (-592 (-1172 (-385 (-886 *5)))))))))) (-5 *1 (-858 *5 *6 *7 *8)))) (-2080 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 (-1090))) (-5 *5 (-855)) (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *9)) (|:| |neqzro| (-592 *9)) (|:| |wcond| (-592 (-886 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *6)))) (|:| -2499 (-592 (-1172 (-385 (-886 *6)))))))))) (-5 *1 (-858 *6 *7 *8 *9)))) (-2080 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *5 (-855)) (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *9)) (|:| |neqzro| (-592 *9)) (|:| |wcond| (-592 (-886 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *6)))) (|:| -2499 (-592 (-1172 (-385 (-886 *6)))))))))) (-5 *1 (-858 *6 *7 *8 *9)) (-5 *4 (-592 *9)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-632 *7)) (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7)) (|:| |wcond| (-592 (-886 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *4)))) (|:| -2499 (-592 (-1172 (-385 (-886 *4)))))))))) (-5 *1 (-858 *4 *5 *6 *7)))) (-2080 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-592 (-1090))) (-4 *8 (-883 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-886 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *5)))) (|:| -2499 (-592 (-1172 (-385 (-886 *5)))))))))) (-5 *1 (-858 *5 *6 *7 *8)))) (-2080 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-4 *8 (-883 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-886 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 *5)))) (|:| -2499 (-592 (-1172 (-385 (-886 *5)))))))))) (-5 *1 (-858 *5 *6 *7 *8)) (-5 *4 (-592 *8)))))
-(-10 -7 (-15 -2080 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 |#4|))) (-15 -2080 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 (-1090)))) (-15 -2080 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|))) (-15 -2080 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 |#4|) (-855))) (-15 -2080 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-592 (-1090)) (-855))) (-15 -2080 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-632 |#4|) (-855))) (-15 -2080 ((-525) (-632 |#4|) (-592 |#4|) (-1073))) (-15 -2080 ((-525) (-632 |#4|) (-592 (-1090)) (-1073))) (-15 -2080 ((-525) (-632 |#4|) (-1073))) (-15 -2080 ((-525) (-632 |#4|) (-592 |#4|) (-855) (-1073))) (-15 -2080 ((-525) (-632 |#4|) (-592 (-1090)) (-855) (-1073))) (-15 -2080 ((-525) (-632 |#4|) (-855) (-1073))) (-15 -3646 ((-525) (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-1073))) (-15 -1415 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|))))))))) (-1073))) (-15 -2405 ((-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|)))))))))) (|:| |rgsz| (-525))) (-632 |#4|) (-592 (-385 (-886 |#1|))) (-713) (-1073) (-525))) (-15 -3561 ((-385 (-886 |#1|)) |#4|)) (-15 -3561 ((-632 (-385 (-886 |#1|))) (-632 |#4|))) (-15 -3561 ((-592 (-385 (-886 |#1|))) (-592 |#4|))) (-15 -1714 ((-592 (-385 (-886 |#1|))) (-592 (-1090)))) (-15 -2504 (|#4| (-886 |#1|))) (-15 -1526 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-592 |#4|)) (|:| |n0| (-592 |#4|))) (-592 |#4|) (-592 |#4|))) (-15 -1443 ((-592 (-2 (|:| -2239 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))) (-632 |#4|) (-713))) (-15 -2110 ((-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|)))))) (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|)))))) (-592 |#4|))) (-15 -2381 ((-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|)))))) (-2 (|:| -3276 (-632 (-385 (-886 |#1|)))) (|:| |vec| (-592 (-385 (-886 |#1|)))) (|:| -2239 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (-15 -2874 ((-592 |#4|) |#4|)) (-15 -1597 ((-713) (-592 (-2 (|:| -2239 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -3148 ((-713) (-592 (-2 (|:| -2239 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -2840 ((-592 (-592 |#4|)) (-592 (-592 |#4|)))) (-15 -2257 ((-592 (-592 (-525))) (-525) (-525))) (-15 -1536 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -2769 ((-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-632 |#4|) (-713))) (-15 -3638 ((-632 |#4|) (-632 |#4|) (-592 |#4|))) (-15 -3913 ((-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-886 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1172 (-385 (-886 |#1|)))) (|:| -2499 (-592 (-1172 (-385 (-886 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))) (-632 |#4|) (-592 (-385 (-886 |#1|))) (-592 (-592 |#4|)) (-713) (-713) (-525))) (-15 -1420 (|#4| |#4|)) (-15 -1799 ((-108) (-592 |#4|))) (-15 -1799 ((-108) (-592 (-886 |#1|)))))
-((-2111 (((-861) |#1| (-1090)) 17) (((-861) |#1| (-1090) (-1014 (-205))) 21)) (-2298 (((-861) |#1| |#1| (-1090) (-1014 (-205))) 19) (((-861) |#1| (-1090) (-1014 (-205))) 15)))
-(((-859 |#1|) (-10 -7 (-15 -2298 ((-861) |#1| (-1090) (-1014 (-205)))) (-15 -2298 ((-861) |#1| |#1| (-1090) (-1014 (-205)))) (-15 -2111 ((-861) |#1| (-1090) (-1014 (-205)))) (-15 -2111 ((-861) |#1| (-1090)))) (-567 (-501))) (T -859))
-((-2111 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-5 *2 (-861)) (-5 *1 (-859 *3)) (-4 *3 (-567 (-501))))) (-2111 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-1014 (-205))) (-5 *2 (-861)) (-5 *1 (-859 *3)) (-4 *3 (-567 (-501))))) (-2298 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-1014 (-205))) (-5 *2 (-861)) (-5 *1 (-859 *3)) (-4 *3 (-567 (-501))))) (-2298 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1090)) (-5 *5 (-1014 (-205))) (-5 *2 (-861)) (-5 *1 (-859 *3)) (-4 *3 (-567 (-501))))))
-(-10 -7 (-15 -2298 ((-861) |#1| (-1090) (-1014 (-205)))) (-15 -2298 ((-861) |#1| |#1| (-1090) (-1014 (-205)))) (-15 -2111 ((-861) |#1| (-1090) (-1014 (-205)))) (-15 -2111 ((-861) |#1| (-1090))))
-((-3742 (($ $ (-1014 (-205)) (-1014 (-205)) (-1014 (-205))) 70)) (-2843 (((-1014 (-205)) $) 40)) (-2833 (((-1014 (-205)) $) 39)) (-2821 (((-1014 (-205)) $) 38)) (-1878 (((-592 (-592 (-205))) $) 43)) (-3220 (((-1014 (-205)) $) 41)) (-2046 (((-525) (-525)) 32)) (-2987 (((-525) (-525)) 28)) (-4086 (((-525) (-525)) 30)) (-4137 (((-108) (-108)) 35)) (-3409 (((-525)) 31)) (-1808 (($ $ (-1014 (-205))) 73) (($ $) 74)) (-3189 (($ (-1 (-877 (-205)) (-205)) (-1014 (-205))) 78) (($ (-1 (-877 (-205)) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205))) 79)) (-2298 (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205))) 81) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205))) 82) (($ $ (-1014 (-205))) 76)) (-1793 (((-525)) 36)) (-3021 (((-525)) 27)) (-2397 (((-525)) 29)) (-3944 (((-592 (-592 (-877 (-205)))) $) 94)) (-3748 (((-108) (-108)) 37)) (-1908 (((-797) $) 93)) (-3446 (((-108)) 34)))
-(((-860) (-13 (-906) (-10 -8 (-15 -3189 ($ (-1 (-877 (-205)) (-205)) (-1014 (-205)))) (-15 -3189 ($ (-1 (-877 (-205)) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -2298 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)))) (-15 -2298 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -2298 ($ $ (-1014 (-205)))) (-15 -3742 ($ $ (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -1808 ($ $ (-1014 (-205)))) (-15 -1808 ($ $)) (-15 -3220 ((-1014 (-205)) $)) (-15 -1878 ((-592 (-592 (-205))) $)) (-15 -3021 ((-525))) (-15 -2987 ((-525) (-525))) (-15 -2397 ((-525))) (-15 -4086 ((-525) (-525))) (-15 -3409 ((-525))) (-15 -2046 ((-525) (-525))) (-15 -3446 ((-108))) (-15 -4137 ((-108) (-108))) (-15 -1793 ((-525))) (-15 -3748 ((-108) (-108)))))) (T -860))
-((-3189 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-877 (-205)) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-860)))) (-3189 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-877 (-205)) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-860)))) (-2298 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-860)))) (-2298 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-860)))) (-2298 (*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-860)))) (-3742 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-860)))) (-1808 (*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-860)))) (-1808 (*1 *1 *1) (-5 *1 (-860))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-860)))) (-1878 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-860)))) (-3021 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-2987 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-2397 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-4086 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-3409 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-2046 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-3446 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860)))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860)))) (-1793 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))) (-3748 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860)))))
-(-13 (-906) (-10 -8 (-15 -3189 ($ (-1 (-877 (-205)) (-205)) (-1014 (-205)))) (-15 -3189 ($ (-1 (-877 (-205)) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -2298 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)))) (-15 -2298 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -2298 ($ $ (-1014 (-205)))) (-15 -3742 ($ $ (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -1808 ($ $ (-1014 (-205)))) (-15 -1808 ($ $)) (-15 -3220 ((-1014 (-205)) $)) (-15 -1878 ((-592 (-592 (-205))) $)) (-15 -3021 ((-525))) (-15 -2987 ((-525) (-525))) (-15 -2397 ((-525))) (-15 -4086 ((-525) (-525))) (-15 -3409 ((-525))) (-15 -2046 ((-525) (-525))) (-15 -3446 ((-108))) (-15 -4137 ((-108) (-108))) (-15 -1793 ((-525))) (-15 -3748 ((-108) (-108)))))
-((-3742 (($ $ (-1014 (-205))) 70) (($ $ (-1014 (-205)) (-1014 (-205))) 71)) (-2833 (((-1014 (-205)) $) 44)) (-2821 (((-1014 (-205)) $) 43)) (-3220 (((-1014 (-205)) $) 45)) (-3838 (((-525) (-525)) 37)) (-3544 (((-525) (-525)) 33)) (-2200 (((-525) (-525)) 35)) (-3954 (((-108) (-108)) 39)) (-3232 (((-525)) 36)) (-1808 (($ $ (-1014 (-205))) 74) (($ $) 75)) (-3189 (($ (-1 (-877 (-205)) (-205)) (-1014 (-205))) 84) (($ (-1 (-877 (-205)) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205))) 85)) (-2111 (($ (-1 (-205) (-205)) (-1014 (-205))) 92) (($ (-1 (-205) (-205))) 95)) (-2298 (($ (-1 (-205) (-205)) (-1014 (-205))) 79) (($ (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205))) 80) (($ (-592 (-1 (-205) (-205))) (-1014 (-205))) 87) (($ (-592 (-1 (-205) (-205))) (-1014 (-205)) (-1014 (-205))) 88) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205))) 81) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205))) 82) (($ $ (-1014 (-205))) 76)) (-3371 (((-108) $) 40)) (-2920 (((-525)) 41)) (-1955 (((-525)) 32)) (-1354 (((-525)) 34)) (-3944 (((-592 (-592 (-877 (-205)))) $) 23)) (-2553 (((-108) (-108)) 42)) (-1908 (((-797) $) 106)) (-2435 (((-108)) 38)))
-(((-861) (-13 (-888) (-10 -8 (-15 -2298 ($ (-1 (-205) (-205)) (-1014 (-205)))) (-15 -2298 ($ (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -2298 ($ (-592 (-1 (-205) (-205))) (-1014 (-205)))) (-15 -2298 ($ (-592 (-1 (-205) (-205))) (-1014 (-205)) (-1014 (-205)))) (-15 -2298 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)))) (-15 -2298 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -3189 ($ (-1 (-877 (-205)) (-205)) (-1014 (-205)))) (-15 -3189 ($ (-1 (-877 (-205)) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -2111 ($ (-1 (-205) (-205)) (-1014 (-205)))) (-15 -2111 ($ (-1 (-205) (-205)))) (-15 -2298 ($ $ (-1014 (-205)))) (-15 -3371 ((-108) $)) (-15 -3742 ($ $ (-1014 (-205)))) (-15 -3742 ($ $ (-1014 (-205)) (-1014 (-205)))) (-15 -1808 ($ $ (-1014 (-205)))) (-15 -1808 ($ $)) (-15 -3220 ((-1014 (-205)) $)) (-15 -1955 ((-525))) (-15 -3544 ((-525) (-525))) (-15 -1354 ((-525))) (-15 -2200 ((-525) (-525))) (-15 -3232 ((-525))) (-15 -3838 ((-525) (-525))) (-15 -2435 ((-108))) (-15 -3954 ((-108) (-108))) (-15 -2920 ((-525))) (-15 -2553 ((-108) (-108)))))) (T -861))
-((-2298 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-2298 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-2298 (*1 *1 *2 *3) (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-2298 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-2298 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-2298 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-3189 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-877 (-205)) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-3189 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-877 (-205)) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-2111 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205))) (-5 *1 (-861)))) (-2111 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-861)))) (-2298 (*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861)))) (-3371 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-861)))) (-3742 (*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861)))) (-3742 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861)))) (-1808 (*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861)))) (-1808 (*1 *1 *1) (-5 *1 (-861))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861)))) (-1955 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-3544 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-1354 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-2200 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-3232 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-2435 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))) (-3954 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))) (-2920 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-2553 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))))
-(-13 (-888) (-10 -8 (-15 -2298 ($ (-1 (-205) (-205)) (-1014 (-205)))) (-15 -2298 ($ (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -2298 ($ (-592 (-1 (-205) (-205))) (-1014 (-205)))) (-15 -2298 ($ (-592 (-1 (-205) (-205))) (-1014 (-205)) (-1014 (-205)))) (-15 -2298 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)))) (-15 -2298 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -3189 ($ (-1 (-877 (-205)) (-205)) (-1014 (-205)))) (-15 -3189 ($ (-1 (-877 (-205)) (-205)) (-1014 (-205)) (-1014 (-205)) (-1014 (-205)))) (-15 -2111 ($ (-1 (-205) (-205)) (-1014 (-205)))) (-15 -2111 ($ (-1 (-205) (-205)))) (-15 -2298 ($ $ (-1014 (-205)))) (-15 -3371 ((-108) $)) (-15 -3742 ($ $ (-1014 (-205)))) (-15 -3742 ($ $ (-1014 (-205)) (-1014 (-205)))) (-15 -1808 ($ $ (-1014 (-205)))) (-15 -1808 ($ $)) (-15 -3220 ((-1014 (-205)) $)) (-15 -1955 ((-525))) (-15 -3544 ((-525) (-525))) (-15 -1354 ((-525))) (-15 -2200 ((-525) (-525))) (-15 -3232 ((-525))) (-15 -3838 ((-525) (-525))) (-15 -2435 ((-108))) (-15 -3954 ((-108) (-108))) (-15 -2920 ((-525))) (-15 -2553 ((-108) (-108)))))
-((-3459 (((-592 (-1014 (-205))) (-592 (-592 (-877 (-205))))) 24)))
-(((-862) (-10 -7 (-15 -3459 ((-592 (-1014 (-205))) (-592 (-592 (-877 (-205)))))))) (T -862))
-((-3459 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *2 (-592 (-1014 (-205)))) (-5 *1 (-862)))))
-(-10 -7 (-15 -3459 ((-592 (-1014 (-205))) (-592 (-592 (-877 (-205)))))))
-((-3285 ((|#2| |#2|) 26)) (-4171 ((|#2| |#2|) 27)) (-3359 ((|#2| |#2|) 25)) (-1888 ((|#2| |#2| (-1073)) 24)))
-(((-863 |#1| |#2|) (-10 -7 (-15 -1888 (|#2| |#2| (-1073))) (-15 -3359 (|#2| |#2|)) (-15 -3285 (|#2| |#2|)) (-15 -4171 (|#2| |#2|))) (-789) (-408 |#1|)) (T -863))
-((-4171 (*1 *2 *2) (-12 (-4 *3 (-789)) (-5 *1 (-863 *3 *2)) (-4 *2 (-408 *3)))) (-3285 (*1 *2 *2) (-12 (-4 *3 (-789)) (-5 *1 (-863 *3 *2)) (-4 *2 (-408 *3)))) (-3359 (*1 *2 *2) (-12 (-4 *3 (-789)) (-5 *1 (-863 *3 *2)) (-4 *2 (-408 *3)))) (-1888 (*1 *2 *2 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-789)) (-5 *1 (-863 *4 *2)) (-4 *2 (-408 *4)))))
-(-10 -7 (-15 -1888 (|#2| |#2| (-1073))) (-15 -3359 (|#2| |#2|)) (-15 -3285 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)))
-((-3285 (((-294 (-525)) (-1090)) 16)) (-4171 (((-294 (-525)) (-1090)) 14)) (-3359 (((-294 (-525)) (-1090)) 12)) (-1888 (((-294 (-525)) (-1090) (-1073)) 19)))
-(((-864) (-10 -7 (-15 -1888 ((-294 (-525)) (-1090) (-1073))) (-15 -3359 ((-294 (-525)) (-1090))) (-15 -3285 ((-294 (-525)) (-1090))) (-15 -4171 ((-294 (-525)) (-1090))))) (T -864))
-((-4171 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-294 (-525))) (-5 *1 (-864)))) (-3285 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-294 (-525))) (-5 *1 (-864)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-294 (-525))) (-5 *1 (-864)))) (-1888 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-1073)) (-5 *2 (-294 (-525))) (-5 *1 (-864)))))
-(-10 -7 (-15 -1888 ((-294 (-525)) (-1090) (-1073))) (-15 -3359 ((-294 (-525)) (-1090))) (-15 -3285 ((-294 (-525)) (-1090))) (-15 -4171 ((-294 (-525)) (-1090))))
-((-1524 (((-823 |#1| |#3|) |#2| (-826 |#1|) (-823 |#1| |#3|)) 25)) (-1465 (((-1 (-108) |#2|) (-1 (-108) |#3|)) 13)))
-(((-865 |#1| |#2| |#3|) (-10 -7 (-15 -1465 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -1524 ((-823 |#1| |#3|) |#2| (-826 |#1|) (-823 |#1| |#3|)))) (-1019) (-820 |#1|) (-13 (-1019) (-967 |#2|))) (T -865))
-((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *6)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-4 *6 (-13 (-1019) (-967 *3))) (-4 *3 (-820 *5)) (-5 *1 (-865 *5 *3 *6)))) (-1465 (*1 *2 *3) (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1019) (-967 *5))) (-4 *5 (-820 *4)) (-4 *4 (-1019)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-865 *4 *5 *6)))))
-(-10 -7 (-15 -1465 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -1524 ((-823 |#1| |#3|) |#2| (-826 |#1|) (-823 |#1| |#3|))))
-((-1524 (((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|)) 30)))
-(((-866 |#1| |#2| |#3|) (-10 -7 (-15 -1524 ((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|)))) (-1019) (-13 (-517) (-789) (-820 |#1|)) (-13 (-408 |#2|) (-567 (-826 |#1|)) (-820 |#1|) (-967 (-565 $)))) (T -866))
-((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *3)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-4 *3 (-13 (-408 *6) (-567 (-826 *5)) (-820 *5) (-967 (-565 $)))) (-4 *6 (-13 (-517) (-789) (-820 *5))) (-5 *1 (-866 *5 *6 *3)))))
-(-10 -7 (-15 -1524 ((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|))))
-((-1524 (((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|)) 13)))
-(((-867 |#1|) (-10 -7 (-15 -1524 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|)))) (-510)) (T -867))
-((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 (-525) *3)) (-5 *4 (-826 (-525))) (-4 *3 (-510)) (-5 *1 (-867 *3)))))
-(-10 -7 (-15 -1524 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|))))
-((-1524 (((-823 |#1| |#2|) (-565 |#2|) (-826 |#1|) (-823 |#1| |#2|)) 54)))
-(((-868 |#1| |#2|) (-10 -7 (-15 -1524 ((-823 |#1| |#2|) (-565 |#2|) (-826 |#1|) (-823 |#1| |#2|)))) (-1019) (-13 (-789) (-967 (-565 $)) (-567 (-826 |#1|)) (-820 |#1|))) (T -868))
-((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *6)) (-5 *3 (-565 *6)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-4 *6 (-13 (-789) (-967 (-565 $)) (-567 (-826 *5)) (-820 *5))) (-5 *1 (-868 *5 *6)))))
-(-10 -7 (-15 -1524 ((-823 |#1| |#2|) (-565 |#2|) (-826 |#1|) (-823 |#1| |#2|))))
-((-1524 (((-819 |#1| |#2| |#3|) |#3| (-826 |#1|) (-819 |#1| |#2| |#3|)) 15)))
-(((-869 |#1| |#2| |#3|) (-10 -7 (-15 -1524 ((-819 |#1| |#2| |#3|) |#3| (-826 |#1|) (-819 |#1| |#2| |#3|)))) (-1019) (-820 |#1|) (-612 |#2|)) (T -869))
-((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-819 *5 *6 *3)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-4 *6 (-820 *5)) (-4 *3 (-612 *6)) (-5 *1 (-869 *5 *6 *3)))))
-(-10 -7 (-15 -1524 ((-819 |#1| |#2| |#3|) |#3| (-826 |#1|) (-819 |#1| |#2| |#3|))))
-((-1524 (((-823 |#1| |#5|) |#5| (-826 |#1|) (-823 |#1| |#5|)) 17 (|has| |#3| (-820 |#1|))) (((-823 |#1| |#5|) |#5| (-826 |#1|) (-823 |#1| |#5|) (-1 (-823 |#1| |#5|) |#3| (-826 |#1|) (-823 |#1| |#5|))) 16)))
-(((-870 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1524 ((-823 |#1| |#5|) |#5| (-826 |#1|) (-823 |#1| |#5|) (-1 (-823 |#1| |#5|) |#3| (-826 |#1|) (-823 |#1| |#5|)))) (IF (|has| |#3| (-820 |#1|)) (-15 -1524 ((-823 |#1| |#5|) |#5| (-826 |#1|) (-823 |#1| |#5|))) |%noBranch|)) (-1019) (-735) (-789) (-13 (-976) (-789) (-820 |#1|)) (-13 (-883 |#4| |#2| |#3|) (-567 (-826 |#1|)))) (T -870))
-((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *3)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-4 *3 (-13 (-883 *8 *6 *7) (-567 (-826 *5)))) (-4 *7 (-820 *5)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-13 (-976) (-789) (-820 *5))) (-5 *1 (-870 *5 *6 *7 *8 *3)))) (-1524 (*1 *2 *3 *4 *2 *5) (-12 (-5 *2 (-823 *6 *3)) (-5 *4 (-826 *6)) (-5 *5 (-1 (-823 *6 *3) *8 (-826 *6) (-823 *6 *3))) (-4 *6 (-1019)) (-4 *8 (-789)) (-4 *3 (-13 (-883 *9 *7 *8) (-567 (-826 *6)))) (-4 *7 (-735)) (-4 *9 (-13 (-976) (-789) (-820 *6))) (-5 *1 (-870 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -1524 ((-823 |#1| |#5|) |#5| (-826 |#1|) (-823 |#1| |#5|) (-1 (-823 |#1| |#5|) |#3| (-826 |#1|) (-823 |#1| |#5|)))) (IF (|has| |#3| (-820 |#1|)) (-15 -1524 ((-823 |#1| |#5|) |#5| (-826 |#1|) (-823 |#1| |#5|))) |%noBranch|))
-((-1215 ((|#2| |#2| (-592 (-1 (-108) |#3|))) 12) ((|#2| |#2| (-1 (-108) |#3|)) 13)))
-(((-871 |#1| |#2| |#3|) (-10 -7 (-15 -1215 (|#2| |#2| (-1 (-108) |#3|))) (-15 -1215 (|#2| |#2| (-592 (-1 (-108) |#3|))))) (-789) (-408 |#1|) (-1126)) (T -871))
-((-1215 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-1 (-108) *5))) (-4 *5 (-1126)) (-4 *4 (-789)) (-5 *1 (-871 *4 *2 *5)) (-4 *2 (-408 *4)))) (-1215 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1126)) (-4 *4 (-789)) (-5 *1 (-871 *4 *2 *5)) (-4 *2 (-408 *4)))))
-(-10 -7 (-15 -1215 (|#2| |#2| (-1 (-108) |#3|))) (-15 -1215 (|#2| |#2| (-592 (-1 (-108) |#3|)))))
-((-1215 (((-294 (-525)) (-1090) (-592 (-1 (-108) |#1|))) 18) (((-294 (-525)) (-1090) (-1 (-108) |#1|)) 15)))
-(((-872 |#1|) (-10 -7 (-15 -1215 ((-294 (-525)) (-1090) (-1 (-108) |#1|))) (-15 -1215 ((-294 (-525)) (-1090) (-592 (-1 (-108) |#1|))))) (-1126)) (T -872))
-((-1215 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-592 (-1 (-108) *5))) (-4 *5 (-1126)) (-5 *2 (-294 (-525))) (-5 *1 (-872 *5)))) (-1215 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1126)) (-5 *2 (-294 (-525))) (-5 *1 (-872 *5)))))
-(-10 -7 (-15 -1215 ((-294 (-525)) (-1090) (-1 (-108) |#1|))) (-15 -1215 ((-294 (-525)) (-1090) (-592 (-1 (-108) |#1|)))))
-((-1524 (((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|)) 25)))
-(((-873 |#1| |#2| |#3|) (-10 -7 (-15 -1524 ((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|)))) (-1019) (-13 (-517) (-820 |#1|) (-567 (-826 |#1|))) (-924 |#2|)) (T -873))
-((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 *3)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-4 *3 (-924 *6)) (-4 *6 (-13 (-517) (-820 *5) (-567 (-826 *5)))) (-5 *1 (-873 *5 *6 *3)))))
-(-10 -7 (-15 -1524 ((-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|))))
-((-1524 (((-823 |#1| (-1090)) (-1090) (-826 |#1|) (-823 |#1| (-1090))) 17)))
-(((-874 |#1|) (-10 -7 (-15 -1524 ((-823 |#1| (-1090)) (-1090) (-826 |#1|) (-823 |#1| (-1090))))) (-1019)) (T -874))
-((-1524 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-823 *5 (-1090))) (-5 *3 (-1090)) (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-5 *1 (-874 *5)))))
-(-10 -7 (-15 -1524 ((-823 |#1| (-1090)) (-1090) (-826 |#1|) (-823 |#1| (-1090)))))
-((-2390 (((-823 |#1| |#3|) (-592 |#3|) (-592 (-826 |#1|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|))) 33)) (-1524 (((-823 |#1| |#3|) (-592 |#3|) (-592 (-826 |#1|)) (-1 |#3| (-592 |#3|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|))) 32)))
-(((-875 |#1| |#2| |#3|) (-10 -7 (-15 -1524 ((-823 |#1| |#3|) (-592 |#3|) (-592 (-826 |#1|)) (-1 |#3| (-592 |#3|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|)))) (-15 -2390 ((-823 |#1| |#3|) (-592 |#3|) (-592 (-826 |#1|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|))))) (-1019) (-13 (-976) (-789)) (-13 (-976) (-567 (-826 |#1|)) (-967 |#2|))) (T -875))
-((-2390 (*1 *2 *3 *4 *2 *5) (-12 (-5 *2 (-823 *6 *8)) (-5 *3 (-592 *8)) (-5 *4 (-592 (-826 *6))) (-5 *5 (-1 (-823 *6 *8) *8 (-826 *6) (-823 *6 *8))) (-4 *6 (-1019)) (-4 *8 (-13 (-976) (-567 (-826 *6)) (-967 *7))) (-4 *7 (-13 (-976) (-789))) (-5 *1 (-875 *6 *7 *8)))) (-1524 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *2 (-823 *7 *9)) (-5 *3 (-592 *9)) (-5 *4 (-592 (-826 *7))) (-5 *5 (-1 *9 (-592 *9))) (-5 *6 (-1 (-823 *7 *9) *9 (-826 *7) (-823 *7 *9))) (-4 *7 (-1019)) (-4 *9 (-13 (-976) (-567 (-826 *7)) (-967 *8))) (-4 *8 (-13 (-976) (-789))) (-5 *1 (-875 *7 *8 *9)))))
-(-10 -7 (-15 -1524 ((-823 |#1| |#3|) (-592 |#3|) (-592 (-826 |#1|)) (-1 |#3| (-592 |#3|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|)))) (-15 -2390 ((-823 |#1| |#3|) (-592 |#3|) (-592 (-826 |#1|)) (-823 |#1| |#3|) (-1 (-823 |#1| |#3|) |#3| (-826 |#1|) (-823 |#1| |#3|)))))
-((-3296 (((-1086 (-385 (-525))) (-525)) 63)) (-4212 (((-1086 (-525)) (-525)) 66)) (-3539 (((-1086 (-525)) (-525)) 60)) (-3071 (((-525) (-1086 (-525))) 55)) (-1642 (((-1086 (-385 (-525))) (-525)) 49)) (-2071 (((-1086 (-525)) (-525)) 38)) (-2073 (((-1086 (-525)) (-525)) 68)) (-2245 (((-1086 (-525)) (-525)) 67)) (-1998 (((-1086 (-385 (-525))) (-525)) 51)))
-(((-876) (-10 -7 (-15 -1998 ((-1086 (-385 (-525))) (-525))) (-15 -2245 ((-1086 (-525)) (-525))) (-15 -2073 ((-1086 (-525)) (-525))) (-15 -2071 ((-1086 (-525)) (-525))) (-15 -1642 ((-1086 (-385 (-525))) (-525))) (-15 -3071 ((-525) (-1086 (-525)))) (-15 -3539 ((-1086 (-525)) (-525))) (-15 -4212 ((-1086 (-525)) (-525))) (-15 -3296 ((-1086 (-385 (-525))) (-525))))) (T -876))
-((-3296 (*1 *2 *3) (-12 (-5 *2 (-1086 (-385 (-525)))) (-5 *1 (-876)) (-5 *3 (-525)))) (-4212 (*1 *2 *3) (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525)))) (-3539 (*1 *2 *3) (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525)))) (-3071 (*1 *2 *3) (-12 (-5 *3 (-1086 (-525))) (-5 *2 (-525)) (-5 *1 (-876)))) (-1642 (*1 *2 *3) (-12 (-5 *2 (-1086 (-385 (-525)))) (-5 *1 (-876)) (-5 *3 (-525)))) (-2071 (*1 *2 *3) (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525)))) (-2073 (*1 *2 *3) (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525)))) (-2245 (*1 *2 *3) (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525)))) (-1998 (*1 *2 *3) (-12 (-5 *2 (-1086 (-385 (-525)))) (-5 *1 (-876)) (-5 *3 (-525)))))
-(-10 -7 (-15 -1998 ((-1086 (-385 (-525))) (-525))) (-15 -2245 ((-1086 (-525)) (-525))) (-15 -2073 ((-1086 (-525)) (-525))) (-15 -2071 ((-1086 (-525)) (-525))) (-15 -1642 ((-1086 (-385 (-525))) (-525))) (-15 -3071 ((-525) (-1086 (-525)))) (-15 -3539 ((-1086 (-525)) (-525))) (-15 -4212 ((-1086 (-525)) (-525))) (-15 -3296 ((-1086 (-385 (-525))) (-525))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1383 (($ (-713)) NIL (|has| |#1| (-23)))) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3072 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-1356 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789))))) (-3327 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 ((|#1| $ (-525) |#1|) 11 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| $ (-6 -4255)))) (-1693 (($ $) NIL)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2273 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2870 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) NIL)) (-3763 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019)))) (-3451 (($ (-592 |#1|)) 13)) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-3307 (((-632 |#1|) $ $) NIL (|has| |#1| (-976)))) (-4018 (($ (-713) |#1|) 8)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) 10 (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-1932 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3898 ((|#1| $) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-976))))) (-3017 (((-108) $ (-713)) NIL)) (-1722 ((|#1| $) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-976))))) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3167 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3135 ((|#1| $) NIL (|has| (-525) (-789)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1911 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-3538 (($ $ (-592 |#1|)) 26)) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 20) (($ $ (-1139 (-525))) NIL)) (-1595 ((|#1| $ $) NIL (|has| |#1| (-976)))) (-3191 (((-855) $) 16)) (-3653 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2873 (($ $ $) 24)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3703 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| |#1| (-567 (-501)))) (($ (-592 |#1|)) 17)) (-1922 (($ (-592 |#1|)) NIL)) (-2664 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-592 $)) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4070 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4059 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-669))) (($ $ |#1|) NIL (|has| |#1| (-669)))) (-4140 (((-713) $) 14 (|has| $ (-6 -4254)))))
-(((-877 |#1|) (-912 |#1|) (-976)) (T -877))
-NIL
-(-912 |#1|)
-((-1809 (((-457 |#1| |#2|) (-886 |#2|)) 20)) (-2657 (((-227 |#1| |#2|) (-886 |#2|)) 33)) (-2108 (((-886 |#2|) (-457 |#1| |#2|)) 25)) (-1983 (((-227 |#1| |#2|) (-457 |#1| |#2|)) 55)) (-3670 (((-886 |#2|) (-227 |#1| |#2|)) 30)) (-2479 (((-457 |#1| |#2|) (-227 |#1| |#2|)) 46)))
-(((-878 |#1| |#2|) (-10 -7 (-15 -2479 ((-457 |#1| |#2|) (-227 |#1| |#2|))) (-15 -1983 ((-227 |#1| |#2|) (-457 |#1| |#2|))) (-15 -1809 ((-457 |#1| |#2|) (-886 |#2|))) (-15 -2108 ((-886 |#2|) (-457 |#1| |#2|))) (-15 -3670 ((-886 |#2|) (-227 |#1| |#2|))) (-15 -2657 ((-227 |#1| |#2|) (-886 |#2|)))) (-592 (-1090)) (-976)) (T -878))
-((-2657 (*1 *2 *3) (-12 (-5 *3 (-886 *5)) (-4 *5 (-976)) (-5 *2 (-227 *4 *5)) (-5 *1 (-878 *4 *5)) (-14 *4 (-592 (-1090))))) (-3670 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-976)) (-5 *2 (-886 *5)) (-5 *1 (-878 *4 *5)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-976)) (-5 *2 (-886 *5)) (-5 *1 (-878 *4 *5)))) (-1809 (*1 *2 *3) (-12 (-5 *3 (-886 *5)) (-4 *5 (-976)) (-5 *2 (-457 *4 *5)) (-5 *1 (-878 *4 *5)) (-14 *4 (-592 (-1090))))) (-1983 (*1 *2 *3) (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-976)) (-5 *2 (-227 *4 *5)) (-5 *1 (-878 *4 *5)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-976)) (-5 *2 (-457 *4 *5)) (-5 *1 (-878 *4 *5)))))
-(-10 -7 (-15 -2479 ((-457 |#1| |#2|) (-227 |#1| |#2|))) (-15 -1983 ((-227 |#1| |#2|) (-457 |#1| |#2|))) (-15 -1809 ((-457 |#1| |#2|) (-886 |#2|))) (-15 -2108 ((-886 |#2|) (-457 |#1| |#2|))) (-15 -3670 ((-886 |#2|) (-227 |#1| |#2|))) (-15 -2657 ((-227 |#1| |#2|) (-886 |#2|))))
-((-3346 (((-592 |#2|) |#2| |#2|) 10)) (-2369 (((-713) (-592 |#1|)) 37 (|has| |#1| (-787)))) (-2493 (((-592 |#2|) |#2|) 11)) (-3765 (((-713) (-592 |#1|) (-525) (-525)) 39 (|has| |#1| (-787)))) (-1452 ((|#1| |#2|) 32 (|has| |#1| (-787)))))
-(((-879 |#1| |#2|) (-10 -7 (-15 -3346 ((-592 |#2|) |#2| |#2|)) (-15 -2493 ((-592 |#2|) |#2|)) (IF (|has| |#1| (-787)) (PROGN (-15 -1452 (|#1| |#2|)) (-15 -2369 ((-713) (-592 |#1|))) (-15 -3765 ((-713) (-592 |#1|) (-525) (-525)))) |%noBranch|)) (-341) (-1148 |#1|)) (T -879))
-((-3765 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-525)) (-4 *5 (-787)) (-4 *5 (-341)) (-5 *2 (-713)) (-5 *1 (-879 *5 *6)) (-4 *6 (-1148 *5)))) (-2369 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-787)) (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-879 *4 *5)) (-4 *5 (-1148 *4)))) (-1452 (*1 *2 *3) (-12 (-4 *2 (-341)) (-4 *2 (-787)) (-5 *1 (-879 *2 *3)) (-4 *3 (-1148 *2)))) (-2493 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-879 *4 *3)) (-4 *3 (-1148 *4)))) (-3346 (*1 *2 *3 *3) (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-879 *4 *3)) (-4 *3 (-1148 *4)))))
-(-10 -7 (-15 -3346 ((-592 |#2|) |#2| |#2|)) (-15 -2493 ((-592 |#2|) |#2|)) (IF (|has| |#1| (-787)) (PROGN (-15 -1452 (|#1| |#2|)) (-15 -2369 ((-713) (-592 |#1|))) (-15 -3765 ((-713) (-592 |#1|) (-525) (-525)))) |%noBranch|))
-((-1370 (((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)) 19)))
-(((-880 |#1| |#2|) (-10 -7 (-15 -1370 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) (-976) (-976)) (T -880))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-976)) (-4 *6 (-976)) (-5 *2 (-886 *6)) (-5 *1 (-880 *5 *6)))))
-(-10 -7 (-15 -1370 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|))))
-((-3927 (((-1145 |#1| (-886 |#2|)) (-886 |#2|) (-1168 |#1|)) 18)))
-(((-881 |#1| |#2|) (-10 -7 (-15 -3927 ((-1145 |#1| (-886 |#2|)) (-886 |#2|) (-1168 |#1|)))) (-1090) (-976)) (T -881))
-((-3927 (*1 *2 *3 *4) (-12 (-5 *4 (-1168 *5)) (-14 *5 (-1090)) (-4 *6 (-976)) (-5 *2 (-1145 *5 (-886 *6))) (-5 *1 (-881 *5 *6)) (-5 *3 (-886 *6)))))
-(-10 -7 (-15 -3927 ((-1145 |#1| (-886 |#2|)) (-886 |#2|) (-1168 |#1|))))
-((-1324 (((-713) $) 71) (((-713) $ (-592 |#4|)) 74)) (-3321 (($ $) 173)) (-1510 (((-396 $) $) 165)) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 116)) (-1264 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2831 ((|#2| $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL) ((|#4| $) 59)) (-2506 (($ $ $ |#4|) 76)) (-1860 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) 106) (((-632 |#2|) (-632 $)) 99)) (-3811 (($ $) 180) (($ $ |#4|) 183)) (-1234 (((-592 $) $) 63)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 199) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 192)) (-1986 (((-592 $) $) 28)) (-4079 (($ |#2| |#3|) NIL) (($ $ |#4| (-713)) NIL) (($ $ (-592 |#4|) (-592 (-713))) 57)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ |#4|) 162)) (-3245 (((-3 (-592 $) "failed") $) 42)) (-3193 (((-3 (-592 $) "failed") $) 31)) (-3283 (((-3 (-2 (|:| |var| |#4|) (|:| -1600 (-713))) "failed") $) 47)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 109)) (-2918 (((-396 (-1086 $)) (-1086 $)) 122)) (-1371 (((-396 (-1086 $)) (-1086 $)) 120)) (-3959 (((-396 $) $) 140)) (-3092 (($ $ (-592 (-273 $))) 21) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-592 |#4|) (-592 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-592 |#4|) (-592 $)) NIL)) (-1400 (($ $ |#4|) 78)) (-1427 (((-826 (-357)) $) 213) (((-826 (-525)) $) 206) (((-501) $) 221)) (-2751 ((|#2| $) NIL) (($ $ |#4|) 175)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) 154)) (-1657 ((|#2| $ |#3|) NIL) (($ $ |#4| (-713)) 52) (($ $ (-592 |#4|) (-592 (-713))) 55)) (-3421 (((-3 $ "failed") $) 156)) (-3983 (((-108) $ $) 186)))
-(((-882 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1763 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -1510 ((-396 |#1|) |#1|)) (-15 -3321 (|#1| |#1|)) (-15 -3421 ((-3 |#1| "failed") |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1427 ((-501) |#1|)) (-15 -1427 ((-826 (-525)) |#1|)) (-15 -1427 ((-826 (-357)) |#1|)) (-15 -1524 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|))) (-15 -1524 ((-823 (-357) |#1|) |#1| (-826 (-357)) (-823 (-357) |#1|))) (-15 -3959 ((-396 |#1|) |#1|)) (-15 -1371 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2918 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2620 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|))) (-15 -2438 ((-3 (-1172 |#1|) "failed") (-632 |#1|))) (-15 -3811 (|#1| |#1| |#4|)) (-15 -2751 (|#1| |#1| |#4|)) (-15 -1400 (|#1| |#1| |#4|)) (-15 -2506 (|#1| |#1| |#1| |#4|)) (-15 -1234 ((-592 |#1|) |#1|)) (-15 -1324 ((-713) |#1| (-592 |#4|))) (-15 -1324 ((-713) |#1|)) (-15 -3283 ((-3 (-2 (|:| |var| |#4|) (|:| -1600 (-713))) "failed") |#1|)) (-15 -3245 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3193 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -4079 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -4079 (|#1| |#1| |#4| (-713))) (-15 -3194 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1| |#4|)) (-15 -1986 ((-592 |#1|) |#1|)) (-15 -1657 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -1657 (|#1| |#1| |#4| (-713))) (-15 -1860 ((-632 |#2|) (-632 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-632 (-525)) (-632 |#1|))) (-15 -2831 (|#4| |#1|)) (-15 -1264 ((-3 |#4| "failed") |#1|)) (-15 -3092 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -3092 (|#1| |#1| |#4| |#1|)) (-15 -3092 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -3092 (|#1| |#1| |#4| |#2|)) (-15 -3092 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -3092 (|#1| |#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| (-273 |#1|))) (-15 -3092 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -4079 (|#1| |#2| |#3|)) (-15 -1657 (|#2| |#1| |#3|)) (-15 -2831 ((-525) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -2831 (|#2| |#1|)) (-15 -2751 (|#2| |#1|)) (-15 -3811 (|#1| |#1|))) (-883 |#2| |#3| |#4|) (-976) (-735) (-789)) (T -882))
-NIL
-(-10 -8 (-15 -1763 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -1510 ((-396 |#1|) |#1|)) (-15 -3321 (|#1| |#1|)) (-15 -3421 ((-3 |#1| "failed") |#1|)) (-15 -3983 ((-108) |#1| |#1|)) (-15 -1427 ((-501) |#1|)) (-15 -1427 ((-826 (-525)) |#1|)) (-15 -1427 ((-826 (-357)) |#1|)) (-15 -1524 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|))) (-15 -1524 ((-823 (-357) |#1|) |#1| (-826 (-357)) (-823 (-357) |#1|))) (-15 -3959 ((-396 |#1|) |#1|)) (-15 -1371 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2918 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2620 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|))) (-15 -2438 ((-3 (-1172 |#1|) "failed") (-632 |#1|))) (-15 -3811 (|#1| |#1| |#4|)) (-15 -2751 (|#1| |#1| |#4|)) (-15 -1400 (|#1| |#1| |#4|)) (-15 -2506 (|#1| |#1| |#1| |#4|)) (-15 -1234 ((-592 |#1|) |#1|)) (-15 -1324 ((-713) |#1| (-592 |#4|))) (-15 -1324 ((-713) |#1|)) (-15 -3283 ((-3 (-2 (|:| |var| |#4|) (|:| -1600 (-713))) "failed") |#1|)) (-15 -3245 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3193 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -4079 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -4079 (|#1| |#1| |#4| (-713))) (-15 -3194 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1| |#4|)) (-15 -1986 ((-592 |#1|) |#1|)) (-15 -1657 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -1657 (|#1| |#1| |#4| (-713))) (-15 -1860 ((-632 |#2|) (-632 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-632 (-525)) (-632 |#1|))) (-15 -2831 (|#4| |#1|)) (-15 -1264 ((-3 |#4| "failed") |#1|)) (-15 -3092 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -3092 (|#1| |#1| |#4| |#1|)) (-15 -3092 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -3092 (|#1| |#1| |#4| |#2|)) (-15 -3092 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -3092 (|#1| |#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| (-273 |#1|))) (-15 -3092 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -4079 (|#1| |#2| |#3|)) (-15 -1657 (|#2| |#1| |#3|)) (-15 -2831 ((-525) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -2831 (|#2| |#1|)) (-15 -2751 (|#2| |#1|)) (-15 -3811 (|#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-4104 (((-592 |#3|) $) 110)) (-3927 (((-1086 $) $ |#3|) 125) (((-1086 |#1|) $) 124)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-3635 (($ $) 88 (|has| |#1| (-517)))) (-2950 (((-108) $) 90 (|has| |#1| (-517)))) (-1324 (((-713) $) 112) (((-713) $ (-592 |#3|)) 111)) (-3263 (((-3 $ "failed") $ $) 19)) (-3357 (((-396 (-1086 $)) (-1086 $)) 100 (|has| |#1| (-843)))) (-3321 (($ $) 98 (|has| |#1| (-429)))) (-1510 (((-396 $) $) 97 (|has| |#1| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 103 (|has| |#1| (-843)))) (-1505 (($) 17 T CONST)) (-1264 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-967 (-525)))) (((-3 |#3| "failed") $) 136)) (-2831 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-967 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-967 (-525)))) ((|#3| $) 135)) (-2506 (($ $ $ |#3|) 108 (|has| |#1| (-160)))) (-1247 (($ $) 154)) (-1860 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-2866 (((-3 $ "failed") $) 34)) (-3811 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-1234 (((-592 $) $) 109)) (-2250 (((-108) $) 96 (|has| |#1| (-843)))) (-2099 (($ $ |#1| |#2| $) 172)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 84 (-12 (|has| |#3| (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 83 (-12 (|has| |#3| (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-2133 (((-108) $) 31)) (-3610 (((-713) $) 169)) (-4092 (($ (-1086 |#1|) |#3|) 117) (($ (-1086 $) |#3|) 116)) (-1986 (((-592 $) $) 126)) (-1819 (((-108) $) 152)) (-4079 (($ |#1| |#2|) 153) (($ $ |#3| (-713)) 119) (($ $ (-592 |#3|) (-592 (-713))) 118)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ |#3|) 120)) (-3181 ((|#2| $) 170) (((-713) $ |#3|) 122) (((-592 (-713)) $ (-592 |#3|)) 121)) (-3525 (($ $ $) 79 (|has| |#1| (-789)))) (-3630 (($ $ $) 78 (|has| |#1| (-789)))) (-1331 (($ (-1 |#2| |#2|) $) 171)) (-1370 (($ (-1 |#1| |#1|) $) 151)) (-1666 (((-3 |#3| "failed") $) 123)) (-1212 (($ $) 149)) (-1224 ((|#1| $) 148)) (-3216 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-2337 (((-1073) $) 9)) (-3245 (((-3 (-592 $) "failed") $) 114)) (-3193 (((-3 (-592 $) "failed") $) 115)) (-3283 (((-3 (-2 (|:| |var| |#3|) (|:| -1600 (-713))) "failed") $) 113)) (-2663 (((-1037) $) 10)) (-4221 (((-108) $) 166)) (-4232 ((|#1| $) 167)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 95 (|has| |#1| (-429)))) (-3244 (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-2918 (((-396 (-1086 $)) (-1086 $)) 102 (|has| |#1| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) 101 (|has| |#1| (-843)))) (-3959 (((-396 $) $) 99 (|has| |#1| (-843)))) (-2338 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-3092 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-592 |#3|) (-592 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-592 |#3|) (-592 $)) 138)) (-1400 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-3013 (($ $ |#3|) 42) (($ $ (-592 |#3|)) 41) (($ $ |#3| (-713)) 40) (($ $ (-592 |#3|) (-592 (-713))) 39)) (-2513 ((|#2| $) 150) (((-713) $ |#3|) 130) (((-592 (-713)) $ (-592 |#3|)) 129)) (-1427 (((-826 (-357)) $) 82 (-12 (|has| |#3| (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) 81 (-12 (|has| |#3| (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2751 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) 104 (-1341 (|has| $ (-136)) (|has| |#1| (-843))))) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-517))) (($ (-385 (-525))) 72 (-3309 (|has| |#1| (-967 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525))))))) (-3600 (((-592 |#1|) $) 168)) (-1657 ((|#1| $ |#2|) 155) (($ $ |#3| (-713)) 128) (($ $ (-592 |#3|) (-592 (-713))) 127)) (-3421 (((-3 $ "failed") $) 73 (-3309 (-1341 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2093 (((-713)) 29)) (-4116 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-2262 (((-108) $ $) 89 (|has| |#1| (-517)))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ |#3|) 38) (($ $ (-592 |#3|)) 37) (($ $ |#3| (-713)) 36) (($ $ (-592 |#3|) (-592 (-713))) 35)) (-4024 (((-108) $ $) 76 (|has| |#1| (-789)))) (-3995 (((-108) $ $) 75 (|has| |#1| (-789)))) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 77 (|has| |#1| (-789)))) (-3983 (((-108) $ $) 74 (|has| |#1| (-789)))) (-4082 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-883 |#1| |#2| |#3|) (-131) (-976) (-735) (-789)) (T -883))
-((-3811 (*1 *1 *1) (-12 (-4 *1 (-883 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-2513 (*1 *2 *1 *3) (-12 (-4 *1 (-883 *4 *5 *3)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-713)))) (-2513 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *1 (-883 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713))))) (-1657 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-883 *4 *5 *2)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *2 (-789)))) (-1657 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-883 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)))) (-1986 (*1 *2 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-883 *3 *4 *5)))) (-3927 (*1 *2 *1 *3) (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-1086 *1)) (-4 *1 (-883 *4 *5 *3)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-883 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-1086 *3)))) (-1666 (*1 *2 *1) (|partial| -12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)))) (-3181 (*1 *2 *1 *3) (-12 (-4 *1 (-883 *4 *5 *3)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-713)))) (-3181 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *1 (-883 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713))))) (-3194 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-883 *4 *5 *3)))) (-4079 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-883 *4 *5 *2)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *2 (-789)))) (-4079 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-883 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)))) (-4092 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *4)) (-4 *4 (-976)) (-4 *1 (-883 *4 *5 *3)) (-4 *5 (-735)) (-4 *3 (-789)))) (-4092 (*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-883 *4 *5 *3)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)))) (-3193 (*1 *2 *1) (|partial| -12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-883 *3 *4 *5)))) (-3245 (*1 *2 *1) (|partial| -12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-883 *3 *4 *5)))) (-3283 (*1 *2 *1) (|partial| -12 (-4 *1 (-883 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| |var| *5) (|:| -1600 (-713)))))) (-1324 (*1 *2 *1) (-12 (-4 *1 (-883 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-713)))) (-1324 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *1 (-883 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-883 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *5)))) (-1234 (*1 *2 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-883 *3 *4 *5)))) (-2506 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-160)))) (-1400 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-160)))) (-2751 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-429)))) (-3811 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-429)))) (-3321 (*1 *1 *1) (-12 (-4 *1 (-883 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-1510 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-396 *1)) (-4 *1 (-883 *3 *4 *5)))))
-(-13 (-834 |t#3|) (-304 |t#1| |t#2|) (-288 $) (-486 |t#3| |t#1|) (-486 |t#3| $) (-967 |t#3|) (-355 |t#1|) (-10 -8 (-15 -2513 ((-713) $ |t#3|)) (-15 -2513 ((-592 (-713)) $ (-592 |t#3|))) (-15 -1657 ($ $ |t#3| (-713))) (-15 -1657 ($ $ (-592 |t#3|) (-592 (-713)))) (-15 -1986 ((-592 $) $)) (-15 -3927 ((-1086 $) $ |t#3|)) (-15 -3927 ((-1086 |t#1|) $)) (-15 -1666 ((-3 |t#3| "failed") $)) (-15 -3181 ((-713) $ |t#3|)) (-15 -3181 ((-592 (-713)) $ (-592 |t#3|))) (-15 -3194 ((-2 (|:| -1338 $) (|:| -1632 $)) $ $ |t#3|)) (-15 -4079 ($ $ |t#3| (-713))) (-15 -4079 ($ $ (-592 |t#3|) (-592 (-713)))) (-15 -4092 ($ (-1086 |t#1|) |t#3|)) (-15 -4092 ($ (-1086 $) |t#3|)) (-15 -3193 ((-3 (-592 $) "failed") $)) (-15 -3245 ((-3 (-592 $) "failed") $)) (-15 -3283 ((-3 (-2 (|:| |var| |t#3|) (|:| -1600 (-713))) "failed") $)) (-15 -1324 ((-713) $)) (-15 -1324 ((-713) $ (-592 |t#3|))) (-15 -4104 ((-592 |t#3|) $)) (-15 -1234 ((-592 $) $)) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (IF (|has| |t#3| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-567 (-826 (-525)))) (IF (|has| |t#3| (-567 (-826 (-525)))) (-6 (-567 (-826 (-525)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-567 (-826 (-357)))) (IF (|has| |t#3| (-567 (-826 (-357)))) (-6 (-567 (-826 (-357)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-820 (-525))) (IF (|has| |t#3| (-820 (-525))) (-6 (-820 (-525))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-820 (-357))) (IF (|has| |t#3| (-820 (-357))) (-6 (-820 (-357))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-15 -2506 ($ $ $ |t#3|)) (-15 -1400 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-6 (-429)) (-15 -2751 ($ $ |t#3|)) (-15 -3811 ($ $)) (-15 -3811 ($ $ |t#3|)) (-15 -1510 ((-396 $) $)) (-15 -3321 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4252)) (-6 -4252) |%noBranch|) (IF (|has| |t#1| (-843)) (-6 (-843)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))) ((-567 (-826 (-357))) -12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#3| (-567 (-826 (-357))))) ((-567 (-826 (-525))) -12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#3| (-567 (-826 (-525))))) ((-269) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3309 (|has| |#1| (-843)) (|has| |#1| (-429))) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-834 |#3|) . T) ((-820 (-357)) -12 (|has| |#1| (-820 (-357))) (|has| |#3| (-820 (-357)))) ((-820 (-525)) -12 (|has| |#1| (-820 (-525))) (|has| |#3| (-820 (-525)))) ((-843) |has| |#1| (-843)) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-967 |#3|) . T) ((-982 #0#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) |has| |#1| (-843)))
-((-4104 (((-592 |#2|) |#5|) 36)) (-3927 (((-1086 |#5|) |#5| |#2| (-1086 |#5|)) 23) (((-385 (-1086 |#5|)) |#5| |#2|) 16)) (-4092 ((|#5| (-385 (-1086 |#5|)) |#2|) 30)) (-1666 (((-3 |#2| "failed") |#5|) 65)) (-3245 (((-3 (-592 |#5|) "failed") |#5|) 59)) (-3152 (((-3 (-2 (|:| |val| |#5|) (|:| -1600 (-525))) "failed") |#5|) 47)) (-3193 (((-3 (-592 |#5|) "failed") |#5|) 61)) (-3283 (((-3 (-2 (|:| |var| |#2|) (|:| -1600 (-525))) "failed") |#5|) 51)))
-(((-884 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4104 ((-592 |#2|) |#5|)) (-15 -1666 ((-3 |#2| "failed") |#5|)) (-15 -3927 ((-385 (-1086 |#5|)) |#5| |#2|)) (-15 -4092 (|#5| (-385 (-1086 |#5|)) |#2|)) (-15 -3927 ((-1086 |#5|) |#5| |#2| (-1086 |#5|))) (-15 -3193 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -3245 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -3283 ((-3 (-2 (|:| |var| |#2|) (|:| -1600 (-525))) "failed") |#5|)) (-15 -3152 ((-3 (-2 (|:| |val| |#5|) (|:| -1600 (-525))) "failed") |#5|))) (-735) (-789) (-976) (-883 |#3| |#1| |#2|) (-13 (-341) (-10 -8 (-15 -1908 ($ |#4|)) (-15 -1303 (|#4| $)) (-15 -1312 (|#4| $))))) (T -884))
-((-3152 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1600 (-525)))) (-5 *1 (-884 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $)) (-15 -1312 (*7 $))))))) (-3283 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1600 (-525)))) (-5 *1 (-884 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $)) (-15 -1312 (*7 $))))))) (-3245 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-592 *3)) (-5 *1 (-884 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $)) (-15 -1312 (*7 $))))))) (-3193 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-592 *3)) (-5 *1 (-884 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $)) (-15 -1312 (*7 $))))))) (-3927 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $)) (-15 -1312 (*7 $))))) (-4 *7 (-883 *6 *5 *4)) (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-976)) (-5 *1 (-884 *5 *4 *6 *7 *3)))) (-4092 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-1086 *2))) (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-976)) (-4 *2 (-13 (-341) (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $)) (-15 -1312 (*7 $))))) (-5 *1 (-884 *5 *4 *6 *7 *2)) (-4 *7 (-883 *6 *5 *4)))) (-3927 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-976)) (-4 *7 (-883 *6 *5 *4)) (-5 *2 (-385 (-1086 *3))) (-5 *1 (-884 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $)) (-15 -1312 (*7 $))))))) (-1666 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-976)) (-4 *6 (-883 *5 *4 *2)) (-4 *2 (-789)) (-5 *1 (-884 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1908 ($ *6)) (-15 -1303 (*6 $)) (-15 -1312 (*6 $))))))) (-4104 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976)) (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-592 *5)) (-5 *1 (-884 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $)) (-15 -1312 (*7 $))))))))
-(-10 -7 (-15 -4104 ((-592 |#2|) |#5|)) (-15 -1666 ((-3 |#2| "failed") |#5|)) (-15 -3927 ((-385 (-1086 |#5|)) |#5| |#2|)) (-15 -4092 (|#5| (-385 (-1086 |#5|)) |#2|)) (-15 -3927 ((-1086 |#5|) |#5| |#2| (-1086 |#5|))) (-15 -3193 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -3245 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -3283 ((-3 (-2 (|:| |var| |#2|) (|:| -1600 (-525))) "failed") |#5|)) (-15 -3152 ((-3 (-2 (|:| |val| |#5|) (|:| -1600 (-525))) "failed") |#5|)))
-((-1370 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-885 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1370 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-735) (-789) (-976) (-883 |#3| |#1| |#2|) (-13 (-1019) (-10 -8 (-15 -4059 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713)))))) (T -885))
-((-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-789)) (-4 *8 (-976)) (-4 *6 (-735)) (-4 *2 (-13 (-1019) (-10 -8 (-15 -4059 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713)))))) (-5 *1 (-885 *6 *7 *8 *5 *2)) (-4 *5 (-883 *8 *6 *7)))))
-(-10 -7 (-15 -1370 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-4104 (((-592 (-1090)) $) 16)) (-3927 (((-1086 $) $ (-1090)) 21) (((-1086 |#1|) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-1324 (((-713) $) NIL) (((-713) $ (-592 (-1090))) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3321 (($ $) NIL (|has| |#1| (-429)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) 8) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-1090) "failed") $) NIL)) (-2831 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-1090) $) NIL)) (-2506 (($ $ $ (-1090)) NIL (|has| |#1| (-160)))) (-1247 (($ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3811 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1090)) NIL (|has| |#1| (-429)))) (-1234 (((-592 $) $) NIL)) (-2250 (((-108) $) NIL (|has| |#1| (-843)))) (-2099 (($ $ |#1| (-497 (-1090)) $) NIL)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-1090) (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-1090) (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) NIL)) (-4092 (($ (-1086 |#1|) (-1090)) NIL) (($ (-1086 $) (-1090)) NIL)) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-497 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ (-1090)) NIL)) (-3181 (((-497 (-1090)) $) NIL) (((-713) $ (-1090)) NIL) (((-592 (-713)) $ (-592 (-1090))) NIL)) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-1331 (($ (-1 (-497 (-1090)) (-497 (-1090))) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-1666 (((-3 (-1090) "failed") $) 19)) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2337 (((-1073) $) NIL)) (-3245 (((-3 (-592 $) "failed") $) NIL)) (-3193 (((-3 (-592 $) "failed") $) NIL)) (-3283 (((-3 (-2 (|:| |var| (-1090)) (|:| -1600 (-713))) "failed") $) NIL)) (-3766 (($ $ (-1090)) 29 (|has| |#1| (-37 (-385 (-525)))))) (-2663 (((-1037) $) NIL)) (-4221 (((-108) $) NIL)) (-4232 ((|#1| $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-429)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3959 (((-396 $) $) NIL (|has| |#1| (-843)))) (-2338 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3092 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1090) |#1|) NIL) (($ $ (-592 (-1090)) (-592 |#1|)) NIL) (($ $ (-1090) $) NIL) (($ $ (-592 (-1090)) (-592 $)) NIL)) (-1400 (($ $ (-1090)) NIL (|has| |#1| (-160)))) (-3013 (($ $ (-1090)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL)) (-2513 (((-497 (-1090)) $) NIL) (((-713) $ (-1090)) NIL) (((-592 (-713)) $ (-592 (-1090))) NIL)) (-1427 (((-826 (-357)) $) NIL (-12 (|has| (-1090) (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-1090) (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-1090) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2751 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1090)) NIL (|has| |#1| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-1908 (((-797) $) 25) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1090)) 27) (($ (-385 (-525))) NIL (-3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3600 (((-592 |#1|) $) NIL)) (-1657 ((|#1| $ (-497 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2093 (((-713)) NIL)) (-4116 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $ (-1090)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL)) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-886 |#1|) (-13 (-883 |#1| (-497 (-1090)) (-1090)) (-10 -8 (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3766 ($ $ (-1090))) |%noBranch|))) (-976)) (T -886))
-((-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-886 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)))))
-(-13 (-883 |#1| (-497 (-1090)) (-1090)) (-10 -8 (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3766 ($ $ (-1090))) |%noBranch|)))
-((-3718 (((-2 (|:| -1600 (-713)) (|:| -1459 |#5|) (|:| |radicand| |#5|)) |#3| (-713)) 38)) (-3164 (((-2 (|:| -1600 (-713)) (|:| -1459 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-713)) 34)) (-2716 (((-2 (|:| -1600 (-713)) (|:| -1459 |#4|) (|:| |radicand| (-592 |#4|))) |#4| (-713)) 54)) (-1538 (((-2 (|:| -1600 (-713)) (|:| -1459 |#5|) (|:| |radicand| |#5|)) |#5| (-713)) 64 (|has| |#3| (-429)))))
-(((-887 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3718 ((-2 (|:| -1600 (-713)) (|:| -1459 |#5|) (|:| |radicand| |#5|)) |#3| (-713))) (-15 -3164 ((-2 (|:| -1600 (-713)) (|:| -1459 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-713))) (IF (|has| |#3| (-429)) (-15 -1538 ((-2 (|:| -1600 (-713)) (|:| -1459 |#5|) (|:| |radicand| |#5|)) |#5| (-713))) |%noBranch|) (-15 -2716 ((-2 (|:| -1600 (-713)) (|:| -1459 |#4|) (|:| |radicand| (-592 |#4|))) |#4| (-713)))) (-735) (-789) (-517) (-883 |#3| |#1| |#2|) (-13 (-341) (-10 -8 (-15 -1303 (|#4| $)) (-15 -1312 (|#4| $)) (-15 -1908 ($ |#4|))))) (T -887))
-((-2716 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517)) (-4 *3 (-883 *7 *5 *6)) (-5 *2 (-2 (|:| -1600 (-713)) (|:| -1459 *3) (|:| |radicand| (-592 *3)))) (-5 *1 (-887 *5 *6 *7 *3 *8)) (-5 *4 (-713)) (-4 *8 (-13 (-341) (-10 -8 (-15 -1303 (*3 $)) (-15 -1312 (*3 $)) (-15 -1908 ($ *3))))))) (-1538 (*1 *2 *3 *4) (-12 (-4 *7 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517)) (-4 *8 (-883 *7 *5 *6)) (-5 *2 (-2 (|:| -1600 (-713)) (|:| -1459 *3) (|:| |radicand| *3))) (-5 *1 (-887 *5 *6 *7 *8 *3)) (-5 *4 (-713)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1303 (*8 $)) (-15 -1312 (*8 $)) (-15 -1908 ($ *8))))))) (-3164 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-525))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517)) (-4 *8 (-883 *7 *5 *6)) (-5 *2 (-2 (|:| -1600 (-713)) (|:| -1459 *9) (|:| |radicand| *9))) (-5 *1 (-887 *5 *6 *7 *8 *9)) (-5 *4 (-713)) (-4 *9 (-13 (-341) (-10 -8 (-15 -1303 (*8 $)) (-15 -1312 (*8 $)) (-15 -1908 ($ *8))))))) (-3718 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-517)) (-4 *7 (-883 *3 *5 *6)) (-5 *2 (-2 (|:| -1600 (-713)) (|:| -1459 *8) (|:| |radicand| *8))) (-5 *1 (-887 *5 *6 *3 *7 *8)) (-5 *4 (-713)) (-4 *8 (-13 (-341) (-10 -8 (-15 -1303 (*7 $)) (-15 -1312 (*7 $)) (-15 -1908 ($ *7))))))))
-(-10 -7 (-15 -3718 ((-2 (|:| -1600 (-713)) (|:| -1459 |#5|) (|:| |radicand| |#5|)) |#3| (-713))) (-15 -3164 ((-2 (|:| -1600 (-713)) (|:| -1459 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-713))) (IF (|has| |#3| (-429)) (-15 -1538 ((-2 (|:| -1600 (-713)) (|:| -1459 |#5|) (|:| |radicand| |#5|)) |#5| (-713))) |%noBranch|) (-15 -2716 ((-2 (|:| -1600 (-713)) (|:| -1459 |#4|) (|:| |radicand| (-592 |#4|))) |#4| (-713))))
-((-2833 (((-1014 (-205)) $) 8)) (-2821 (((-1014 (-205)) $) 9)) (-3944 (((-592 (-592 (-877 (-205)))) $) 10)) (-1908 (((-797) $) 6)))
-(((-888) (-131)) (T -888))
-((-3944 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-592 (-592 (-877 (-205))))))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1014 (-205))))) (-2833 (*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1014 (-205))))))
-(-13 (-566 (-797)) (-10 -8 (-15 -3944 ((-592 (-592 (-877 (-205)))) $)) (-15 -2821 ((-1014 (-205)) $)) (-15 -2833 ((-1014 (-205)) $))))
-(((-566 (-797)) . T))
-((-3108 (((-3 (-632 |#1|) "failed") |#2| (-855)) 15)))
-(((-889 |#1| |#2|) (-10 -7 (-15 -3108 ((-3 (-632 |#1|) "failed") |#2| (-855)))) (-517) (-602 |#1|)) (T -889))
-((-3108 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-855)) (-4 *5 (-517)) (-5 *2 (-632 *5)) (-5 *1 (-889 *5 *3)) (-4 *3 (-602 *5)))))
-(-10 -7 (-15 -3108 ((-3 (-632 |#1|) "failed") |#2| (-855))))
-((-4186 (((-891 |#2|) (-1 |#2| |#1| |#2|) (-891 |#1|) |#2|) 16)) (-4004 ((|#2| (-1 |#2| |#1| |#2|) (-891 |#1|) |#2|) 18)) (-1370 (((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)) 13)))
-(((-890 |#1| |#2|) (-10 -7 (-15 -4186 ((-891 |#2|) (-1 |#2| |#1| |#2|) (-891 |#1|) |#2|)) (-15 -4004 (|#2| (-1 |#2| |#1| |#2|) (-891 |#1|) |#2|)) (-15 -1370 ((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)))) (-1126) (-1126)) (T -890))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-891 *6)) (-5 *1 (-890 *5 *6)))) (-4004 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-891 *5)) (-4 *5 (-1126)) (-4 *2 (-1126)) (-5 *1 (-890 *5 *2)))) (-4186 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-891 *6)) (-4 *6 (-1126)) (-4 *5 (-1126)) (-5 *2 (-891 *5)) (-5 *1 (-890 *6 *5)))))
-(-10 -7 (-15 -4186 ((-891 |#2|) (-1 |#2| |#1| |#2|) (-891 |#1|) |#2|)) (-15 -4004 (|#2| (-1 |#2| |#1| |#2|) (-891 |#1|) |#2|)) (-15 -1370 ((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3072 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-1356 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789))))) (-3327 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 ((|#1| $ (-525) |#1|) 16 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| $ (-6 -4255)))) (-1693 (($ $) NIL)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2273 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2870 ((|#1| $ (-525) |#1|) 15 (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) 13)) (-3763 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019)))) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4018 (($ (-713) |#1|) 12)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) 10 (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-1932 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3167 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3135 ((|#1| $) NIL (|has| (-525) (-789)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1911 (($ $ |#1|) 17 (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) 11)) (-3928 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 14) (($ $ (-1139 (-525))) NIL)) (-3653 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3703 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) NIL)) (-2664 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4140 (((-713) $) 8 (|has| $ (-6 -4254)))))
-(((-891 |#1|) (-19 |#1|) (-1126)) (T -891))
+((-3139 (((-3 (-2 (|:| -3973 (-713)) (|:| -2626 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|)) 79)) (-3062 (((-108) (-314 |#2| |#3| |#4| |#5|)) 17)) (-3973 (((-3 (-713) "failed") (-314 |#2| |#3| |#4| |#5|)) 15)))
+(((-846 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3973 ((-3 (-713) "failed") (-314 |#2| |#3| |#4| |#5|))) (-15 -3062 ((-108) (-314 |#2| |#3| |#4| |#5|))) (-15 -3139 ((-3 (-2 (|:| -3973 (-713)) (|:| -2626 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|)))) (-13 (-789) (-517) (-968 (-525))) (-408 |#1|) (-1149 |#2|) (-1149 (-385 |#3|)) (-320 |#2| |#3| |#4|)) (T -846))
+((-3139 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1149 *5)) (-4 *7 (-1149 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-2 (|:| -3973 (-713)) (|:| -2626 *8))) (-5 *1 (-846 *4 *5 *6 *7 *8)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1149 *5)) (-4 *7 (-1149 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-108)) (-5 *1 (-846 *4 *5 *6 *7 *8)))) (-3973 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1149 *5)) (-4 *7 (-1149 (-385 *6))) (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-713)) (-5 *1 (-846 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3973 ((-3 (-713) "failed") (-314 |#2| |#3| |#4| |#5|))) (-15 -3062 ((-108) (-314 |#2| |#3| |#4| |#5|))) (-15 -3139 ((-3 (-2 (|:| -3973 (-713)) (|:| -2626 |#5|)) "failed") (-314 |#2| |#3| |#4| |#5|))))
+((-3139 (((-3 (-2 (|:| -3973 (-713)) (|:| -2626 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)) 56)) (-3062 (((-108) (-314 (-385 (-525)) |#1| |#2| |#3|)) 16)) (-3973 (((-3 (-713) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)) 14)))
+(((-847 |#1| |#2| |#3|) (-10 -7 (-15 -3973 ((-3 (-713) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -3062 ((-108) (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -3139 ((-3 (-2 (|:| -3973 (-713)) (|:| -2626 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|)))) (-1149 (-385 (-525))) (-1149 (-385 |#1|)) (-320 (-385 (-525)) |#1| |#2|)) (T -847))
+((-3139 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1149 (-385 (-525)))) (-4 *5 (-1149 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-2 (|:| -3973 (-713)) (|:| -2626 *6))) (-5 *1 (-847 *4 *5 *6)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1149 (-385 (-525)))) (-4 *5 (-1149 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-108)) (-5 *1 (-847 *4 *5 *6)))) (-3973 (*1 *2 *3) (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6)) (-4 *4 (-1149 (-385 (-525)))) (-4 *5 (-1149 (-385 *4))) (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-713)) (-5 *1 (-847 *4 *5 *6)))))
+(-10 -7 (-15 -3973 ((-3 (-713) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -3062 ((-108) (-314 (-385 (-525)) |#1| |#2| |#3|))) (-15 -3139 ((-3 (-2 (|:| -3973 (-713)) (|:| -2626 |#3|)) "failed") (-314 (-385 (-525)) |#1| |#2| |#3|))))
+((-3328 ((|#2| |#2|) 26)) (-3511 (((-525) (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))) 15)) (-3816 (((-856) (-525)) 35)) (-3310 (((-525) |#2|) 42)) (-3253 (((-525) |#2|) 21) (((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|) 20)))
+(((-848 |#1| |#2|) (-10 -7 (-15 -3816 ((-856) (-525))) (-15 -3253 ((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|)) (-15 -3253 ((-525) |#2|)) (-15 -3511 ((-525) (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))))) (-15 -3310 ((-525) |#2|)) (-15 -3328 (|#2| |#2|))) (-1149 (-385 (-525))) (-1149 (-385 |#1|))) (T -848))
+((-3328 (*1 *2 *2) (-12 (-4 *3 (-1149 (-385 (-525)))) (-5 *1 (-848 *3 *2)) (-4 *2 (-1149 (-385 *3))))) (-3310 (*1 *2 *3) (-12 (-4 *4 (-1149 (-385 (-525)))) (-5 *2 (-525)) (-5 *1 (-848 *4 *3)) (-4 *3 (-1149 (-385 *4))))) (-3511 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))) (-4 *4 (-1149 (-385 (-525)))) (-5 *2 (-525)) (-5 *1 (-848 *4 *5)) (-4 *5 (-1149 (-385 *4))))) (-3253 (*1 *2 *3) (-12 (-4 *4 (-1149 (-385 (-525)))) (-5 *2 (-525)) (-5 *1 (-848 *4 *3)) (-4 *3 (-1149 (-385 *4))))) (-3253 (*1 *2 *3) (-12 (-4 *3 (-1149 (-385 (-525)))) (-5 *2 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))) (-5 *1 (-848 *3 *4)) (-4 *4 (-1149 (-385 *3))))) (-3816 (*1 *2 *3) (-12 (-5 *3 (-525)) (-4 *4 (-1149 (-385 (-525)))) (-5 *2 (-856)) (-5 *1 (-848 *4 *5)) (-4 *5 (-1149 (-385 *4))))))
+(-10 -7 (-15 -3816 ((-856) (-525))) (-15 -3253 ((-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))) |#1|)) (-15 -3253 ((-525) |#2|)) (-15 -3511 ((-525) (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))))) (-15 -3310 ((-525) |#2|)) (-15 -3328 (|#2| |#2|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2628 ((|#1| $) 81)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3197 (((-108) $ $) NIL)) (-2305 (($) NIL T CONST)) (-1726 (($ $ $) NIL)) (-3762 (((-3 $ "failed") $) 75)) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-2309 (($ |#1| (-396 |#1|)) 73)) (-2677 (((-1087 |#1|) |#1| |#1|) 41)) (-2690 (($ $) 49)) (-1985 (((-108) $) NIL)) (-3868 (((-525) $) 78)) (-3824 (($ $ (-525)) 80)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3041 ((|#1| $) 77)) (-1412 (((-396 |#1|) $) 76)) (-2195 (((-396 $) $) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) 74)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2636 (($ $) 39)) (-1270 (((-798) $) 99) (($ (-525)) 54) (($ $) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 31) (((-385 |#1|) $) 59) (($ (-385 (-396 |#1|))) 67)) (-2104 (((-713)) 52)) (-3959 (((-108) $ $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) 23 T CONST)) (-3363 (($) 12 T CONST)) (-3994 (((-108) $ $) 68)) (-4100 (($ $ $) NIL)) (-4090 (($ $) 88) (($ $ $) NIL)) (-4080 (($ $ $) 38)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 90) (($ $ $) 37) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-849 |#1|) (-13 (-341) (-37 |#1|) (-10 -8 (-15 -1270 ((-385 |#1|) $)) (-15 -1270 ($ (-385 (-396 |#1|)))) (-15 -2636 ($ $)) (-15 -1412 ((-396 |#1|) $)) (-15 -3041 (|#1| $)) (-15 -3824 ($ $ (-525))) (-15 -3868 ((-525) $)) (-15 -2677 ((-1087 |#1|) |#1| |#1|)) (-15 -2690 ($ $)) (-15 -2309 ($ |#1| (-396 |#1|))) (-15 -2628 (|#1| $)))) (-286)) (T -849))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-385 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-385 (-396 *3))) (-4 *3 (-286)) (-5 *1 (-849 *3)))) (-2636 (*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-396 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286)))) (-3041 (*1 *2 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))) (-3824 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-849 *3)) (-4 *3 (-286)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-849 *3)) (-4 *3 (-286)))) (-2677 (*1 *2 *3 *3) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286)))) (-2690 (*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))) (-2309 (*1 *1 *2 *3) (-12 (-5 *3 (-396 *2)) (-4 *2 (-286)) (-5 *1 (-849 *2)))) (-2628 (*1 *2 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))))
+(-13 (-341) (-37 |#1|) (-10 -8 (-15 -1270 ((-385 |#1|) $)) (-15 -1270 ($ (-385 (-396 |#1|)))) (-15 -2636 ($ $)) (-15 -1412 ((-396 |#1|) $)) (-15 -3041 (|#1| $)) (-15 -3824 ($ $ (-525))) (-15 -3868 ((-525) $)) (-15 -2677 ((-1087 |#1|) |#1| |#1|)) (-15 -2690 ($ $)) (-15 -2309 ($ |#1| (-396 |#1|))) (-15 -2628 (|#1| $))))
+((-2309 (((-51) (-887 |#1|) (-396 (-887 |#1|)) (-1091)) 17) (((-51) (-385 (-887 |#1|)) (-1091)) 18)))
+(((-850 |#1|) (-10 -7 (-15 -2309 ((-51) (-385 (-887 |#1|)) (-1091))) (-15 -2309 ((-51) (-887 |#1|) (-396 (-887 |#1|)) (-1091)))) (-13 (-286) (-138))) (T -850))
+((-2309 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-887 *6)) (-5 *4 (-396 (-887 *6))) (-5 *5 (-1091)) (-4 *6 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-850 *6)))) (-2309 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-850 *5)))))
+(-10 -7 (-15 -2309 ((-51) (-385 (-887 |#1|)) (-1091))) (-15 -2309 ((-51) (-887 |#1|) (-396 (-887 |#1|)) (-1091))))
+((-3812 ((|#4| (-592 |#4|)) 121) (((-1087 |#4|) (-1087 |#4|) (-1087 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-2794 (((-1087 |#4|) (-592 (-1087 |#4|))) 114) (((-1087 |#4|) (-1087 |#4|) (-1087 |#4|)) 50) ((|#4| (-592 |#4|)) 55) ((|#4| |#4| |#4|) 84)))
+(((-851 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2794 (|#4| |#4| |#4|)) (-15 -2794 (|#4| (-592 |#4|))) (-15 -2794 ((-1087 |#4|) (-1087 |#4|) (-1087 |#4|))) (-15 -2794 ((-1087 |#4|) (-592 (-1087 |#4|)))) (-15 -3812 (|#4| |#4| |#4|)) (-15 -3812 ((-1087 |#4|) (-1087 |#4|) (-1087 |#4|))) (-15 -3812 (|#4| (-592 |#4|)))) (-735) (-789) (-286) (-884 |#3| |#1| |#2|)) (T -851))
+((-3812 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *6 *4 *5)) (-5 *1 (-851 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)))) (-3812 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *6)))) (-3812 (*1 *2 *2 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *2)) (-4 *2 (-884 *5 *3 *4)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-592 (-1087 *7))) (-4 *7 (-884 *6 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-1087 *7)) (-5 *1 (-851 *4 *5 *6 *7)))) (-2794 (*1 *2 *2 *2) (-12 (-5 *2 (-1087 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *6)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *6 *4 *5)) (-5 *1 (-851 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)))) (-2794 (*1 *2 *2 *2) (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *2)) (-4 *2 (-884 *5 *3 *4)))))
+(-10 -7 (-15 -2794 (|#4| |#4| |#4|)) (-15 -2794 (|#4| (-592 |#4|))) (-15 -2794 ((-1087 |#4|) (-1087 |#4|) (-1087 |#4|))) (-15 -2794 ((-1087 |#4|) (-592 (-1087 |#4|)))) (-15 -3812 (|#4| |#4| |#4|)) (-15 -3812 ((-1087 |#4|) (-1087 |#4|) (-1087 |#4|))) (-15 -3812 (|#4| (-592 |#4|))))
+((-2706 (((-839 (-525)) (-904)) 23) (((-839 (-525)) (-592 (-525))) 20)) (-2614 (((-839 (-525)) (-592 (-525))) 48) (((-839 (-525)) (-856)) 49)) (-2820 (((-839 (-525))) 24)) (-4112 (((-839 (-525))) 38) (((-839 (-525)) (-592 (-525))) 37)) (-1733 (((-839 (-525))) 36) (((-839 (-525)) (-592 (-525))) 35)) (-2402 (((-839 (-525))) 34) (((-839 (-525)) (-592 (-525))) 33)) (-3437 (((-839 (-525))) 32) (((-839 (-525)) (-592 (-525))) 31)) (-3122 (((-839 (-525))) 30) (((-839 (-525)) (-592 (-525))) 29)) (-2703 (((-839 (-525))) 40) (((-839 (-525)) (-592 (-525))) 39)) (-1689 (((-839 (-525)) (-592 (-525))) 52) (((-839 (-525)) (-856)) 53)) (-1719 (((-839 (-525)) (-592 (-525))) 50) (((-839 (-525)) (-856)) 51)) (-2054 (((-839 (-525)) (-592 (-525))) 46) (((-839 (-525)) (-856)) 47)) (-1524 (((-839 (-525)) (-592 (-856))) 43)))
+(((-852) (-10 -7 (-15 -2614 ((-839 (-525)) (-856))) (-15 -2614 ((-839 (-525)) (-592 (-525)))) (-15 -2054 ((-839 (-525)) (-856))) (-15 -2054 ((-839 (-525)) (-592 (-525)))) (-15 -1524 ((-839 (-525)) (-592 (-856)))) (-15 -1719 ((-839 (-525)) (-856))) (-15 -1719 ((-839 (-525)) (-592 (-525)))) (-15 -1689 ((-839 (-525)) (-856))) (-15 -1689 ((-839 (-525)) (-592 (-525)))) (-15 -3122 ((-839 (-525)) (-592 (-525)))) (-15 -3122 ((-839 (-525)))) (-15 -3437 ((-839 (-525)) (-592 (-525)))) (-15 -3437 ((-839 (-525)))) (-15 -2402 ((-839 (-525)) (-592 (-525)))) (-15 -2402 ((-839 (-525)))) (-15 -1733 ((-839 (-525)) (-592 (-525)))) (-15 -1733 ((-839 (-525)))) (-15 -4112 ((-839 (-525)) (-592 (-525)))) (-15 -4112 ((-839 (-525)))) (-15 -2703 ((-839 (-525)) (-592 (-525)))) (-15 -2703 ((-839 (-525)))) (-15 -2820 ((-839 (-525)))) (-15 -2706 ((-839 (-525)) (-592 (-525)))) (-15 -2706 ((-839 (-525)) (-904))))) (T -852))
+((-2706 (*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2820 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2703 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2703 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-4112 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-1733 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-1733 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2402 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2402 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-3437 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-3437 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-3122 (*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-3122 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-1689 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-1719 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-1524 (*1 *2 *3) (-12 (-5 *3 (-592 (-856))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2614 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))) (-2614 (*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(-10 -7 (-15 -2614 ((-839 (-525)) (-856))) (-15 -2614 ((-839 (-525)) (-592 (-525)))) (-15 -2054 ((-839 (-525)) (-856))) (-15 -2054 ((-839 (-525)) (-592 (-525)))) (-15 -1524 ((-839 (-525)) (-592 (-856)))) (-15 -1719 ((-839 (-525)) (-856))) (-15 -1719 ((-839 (-525)) (-592 (-525)))) (-15 -1689 ((-839 (-525)) (-856))) (-15 -1689 ((-839 (-525)) (-592 (-525)))) (-15 -3122 ((-839 (-525)) (-592 (-525)))) (-15 -3122 ((-839 (-525)))) (-15 -3437 ((-839 (-525)) (-592 (-525)))) (-15 -3437 ((-839 (-525)))) (-15 -2402 ((-839 (-525)) (-592 (-525)))) (-15 -2402 ((-839 (-525)))) (-15 -1733 ((-839 (-525)) (-592 (-525)))) (-15 -1733 ((-839 (-525)))) (-15 -4112 ((-839 (-525)) (-592 (-525)))) (-15 -4112 ((-839 (-525)))) (-15 -2703 ((-839 (-525)) (-592 (-525)))) (-15 -2703 ((-839 (-525)))) (-15 -2820 ((-839 (-525)))) (-15 -2706 ((-839 (-525)) (-592 (-525)))) (-15 -2706 ((-839 (-525)) (-904))))
+((-3878 (((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1091))) 12)) (-1947 (((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1091))) 11)))
+(((-853 |#1|) (-10 -7 (-15 -1947 ((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1091)))) (-15 -3878 ((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1091))))) (-429)) (T -853))
+((-3878 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-887 *4))) (-5 *3 (-592 (-1091))) (-4 *4 (-429)) (-5 *1 (-853 *4)))) (-1947 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-887 *4))) (-5 *3 (-592 (-1091))) (-4 *4 (-429)) (-5 *1 (-853 *4)))))
+(-10 -7 (-15 -1947 ((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1091)))) (-15 -3878 ((-592 (-887 |#1|)) (-592 (-887 |#1|)) (-592 (-1091)))))
+((-1270 (((-294 |#1|) (-454)) 16)))
+(((-854 |#1|) (-10 -7 (-15 -1270 ((-294 |#1|) (-454)))) (-13 (-789) (-517))) (T -854))
+((-1270 (*1 *2 *3) (-12 (-5 *3 (-454)) (-5 *2 (-294 *4)) (-5 *1 (-854 *4)) (-4 *4 (-13 (-789) (-517))))))
+(-10 -7 (-15 -1270 ((-294 |#1|) (-454))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 51)) (-1985 (((-108) $) 31)) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-1680 (((-3 $ "failed") $ $) 42)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) 39)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+(((-855) (-131)) (T -855))
+((-3343 (*1 *2 *3) (-12 (-4 *1 (-855)) (-5 *2 (-2 (|:| -1655 (-592 *1)) (|:| -3523 *1))) (-5 *3 (-592 *1)))) (-3993 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-855)))))
+(-13 (-429) (-10 -8 (-15 -3343 ((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $))) (-15 -3993 ((-3 (-592 $) "failed") (-592 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-2305 (($) NIL T CONST)) (-3762 (((-3 $ "failed") $) NIL)) (-1985 (((-108) $) NIL)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2794 (($ $ $) NIL)) (-1270 (((-798) $) NIL)) (-1576 (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3363 (($) NIL T CONST)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ $ $) NIL)))
+(((-856) (-13 (-736) (-669) (-10 -8 (-15 -2794 ($ $ $)) (-6 (-4257 "*"))))) (T -856))
+((-2794 (*1 *1 *1 *1) (-5 *1 (-856))))
+(-13 (-736) (-669) (-10 -8 (-15 -2794 ($ $ $)) (-6 (-4257 "*"))))
+((-2654 ((|#2| (-592 |#1|) (-592 |#1|)) 24)))
+(((-857 |#1| |#2|) (-10 -7 (-15 -2654 (|#2| (-592 |#1|) (-592 |#1|)))) (-341) (-1149 |#1|)) (T -857))
+((-2654 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-4 *2 (-1149 *4)) (-5 *1 (-857 *4 *2)))))
+(-10 -7 (-15 -2654 (|#2| (-592 |#1|) (-592 |#1|))))
+((-2993 (((-1087 |#2|) (-592 |#2|) (-592 |#2|)) 17) (((-1146 |#1| |#2|) (-1146 |#1| |#2|) (-592 |#2|) (-592 |#2|)) 13)))
+(((-858 |#1| |#2|) (-10 -7 (-15 -2993 ((-1146 |#1| |#2|) (-1146 |#1| |#2|) (-592 |#2|) (-592 |#2|))) (-15 -2993 ((-1087 |#2|) (-592 |#2|) (-592 |#2|)))) (-1091) (-341)) (T -858))
+((-2993 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *5)) (-4 *5 (-341)) (-5 *2 (-1087 *5)) (-5 *1 (-858 *4 *5)) (-14 *4 (-1091)))) (-2993 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1146 *4 *5)) (-5 *3 (-592 *5)) (-14 *4 (-1091)) (-4 *5 (-341)) (-5 *1 (-858 *4 *5)))))
+(-10 -7 (-15 -2993 ((-1146 |#1| |#2|) (-1146 |#1| |#2|) (-592 |#2|) (-592 |#2|))) (-15 -2993 ((-1087 |#2|) (-592 |#2|) (-592 |#2|))))
+((-3840 (((-525) (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-1074)) 139)) (-2458 ((|#4| |#4|) 155)) (-4098 (((-592 (-385 (-887 |#1|))) (-592 (-1091))) 119)) (-1454 (((-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-592 (-592 |#4|)) (-713) (-713) (-525)) 75)) (-2353 (((-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|)))))) (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|)))))) (-592 |#4|)) 59)) (-3742 (((-632 |#4|) (-632 |#4|) (-592 |#4|)) 55)) (-2403 (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-1074)) 151)) (-1943 (((-525) (-632 |#4|) (-856) (-1074)) 133) (((-525) (-632 |#4|) (-592 (-1091)) (-856) (-1074)) 132) (((-525) (-632 |#4|) (-592 |#4|) (-856) (-1074)) 131) (((-525) (-632 |#4|) (-1074)) 128) (((-525) (-632 |#4|) (-592 (-1091)) (-1074)) 127) (((-525) (-632 |#4|) (-592 |#4|) (-1074)) 126) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|) (-856)) 125) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1091)) (-856)) 124) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|) (-856)) 123) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|)) 121) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1091))) 120) (((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|)) 116)) (-1491 ((|#4| (-887 |#1|)) 68)) (-3695 (((-108) (-592 |#4|) (-592 (-592 |#4|))) 152)) (-3911 (((-592 (-592 (-525))) (-525) (-525)) 130)) (-1691 (((-592 (-592 |#4|)) (-592 (-592 |#4|))) 88)) (-1574 (((-713) (-592 (-2 (|:| -3318 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|))))) 86)) (-1832 (((-713) (-592 (-2 (|:| -3318 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|))))) 85)) (-3557 (((-108) (-592 (-887 |#1|))) 17) (((-108) (-592 |#4|)) 13)) (-2349 (((-2 (|:| |sysok| (-108)) (|:| |z0| (-592 |#4|)) (|:| |n0| (-592 |#4|))) (-592 |#4|) (-592 |#4|)) 71)) (-3846 (((-592 |#4|) |#4|) 49)) (-2493 (((-592 (-385 (-887 |#1|))) (-592 |#4|)) 115) (((-632 (-385 (-887 |#1|))) (-632 |#4|)) 56) (((-385 (-887 |#1|)) |#4|) 112)) (-3028 (((-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|)))))))))) (|:| |rgsz| (-525))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-713) (-1074) (-525)) 93)) (-3641 (((-592 (-2 (|:| -3318 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))) (-632 |#4|) (-713)) 84)) (-2301 (((-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-632 |#4|) (-713)) 101)) (-2847 (((-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|)))))) (-2 (|:| -1484 (-632 (-385 (-887 |#1|)))) (|:| |vec| (-592 (-385 (-887 |#1|)))) (|:| -3318 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) 48)))
+(((-859 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1943 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|))) (-15 -1943 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1091)))) (-15 -1943 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|))) (-15 -1943 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|) (-856))) (-15 -1943 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1091)) (-856))) (-15 -1943 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|) (-856))) (-15 -1943 ((-525) (-632 |#4|) (-592 |#4|) (-1074))) (-15 -1943 ((-525) (-632 |#4|) (-592 (-1091)) (-1074))) (-15 -1943 ((-525) (-632 |#4|) (-1074))) (-15 -1943 ((-525) (-632 |#4|) (-592 |#4|) (-856) (-1074))) (-15 -1943 ((-525) (-632 |#4|) (-592 (-1091)) (-856) (-1074))) (-15 -1943 ((-525) (-632 |#4|) (-856) (-1074))) (-15 -3840 ((-525) (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-1074))) (-15 -2403 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-1074))) (-15 -3028 ((-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|)))))))))) (|:| |rgsz| (-525))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-713) (-1074) (-525))) (-15 -2493 ((-385 (-887 |#1|)) |#4|)) (-15 -2493 ((-632 (-385 (-887 |#1|))) (-632 |#4|))) (-15 -2493 ((-592 (-385 (-887 |#1|))) (-592 |#4|))) (-15 -4098 ((-592 (-385 (-887 |#1|))) (-592 (-1091)))) (-15 -1491 (|#4| (-887 |#1|))) (-15 -2349 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-592 |#4|)) (|:| |n0| (-592 |#4|))) (-592 |#4|) (-592 |#4|))) (-15 -3641 ((-592 (-2 (|:| -3318 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))) (-632 |#4|) (-713))) (-15 -2353 ((-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|)))))) (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|)))))) (-592 |#4|))) (-15 -2847 ((-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|)))))) (-2 (|:| -1484 (-632 (-385 (-887 |#1|)))) (|:| |vec| (-592 (-385 (-887 |#1|)))) (|:| -3318 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (-15 -3846 ((-592 |#4|) |#4|)) (-15 -1832 ((-713) (-592 (-2 (|:| -3318 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -1574 ((-713) (-592 (-2 (|:| -3318 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -1691 ((-592 (-592 |#4|)) (-592 (-592 |#4|)))) (-15 -3911 ((-592 (-592 (-525))) (-525) (-525))) (-15 -3695 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -2301 ((-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-632 |#4|) (-713))) (-15 -3742 ((-632 |#4|) (-632 |#4|) (-592 |#4|))) (-15 -1454 ((-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-592 (-592 |#4|)) (-713) (-713) (-525))) (-15 -2458 (|#4| |#4|)) (-15 -3557 ((-108) (-592 |#4|))) (-15 -3557 ((-108) (-592 (-887 |#1|))))) (-13 (-286) (-138)) (-13 (-789) (-567 (-1091))) (-735) (-884 |#1| |#3| |#2|)) (T -859))
+((-3557 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *2 (-108)) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *2 (-108)) (-5 *1 (-859 *4 *5 *6 *7)))) (-2458 (*1 *2 *2) (-12 (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1091)))) (-4 *5 (-735)) (-5 *1 (-859 *3 *4 *5 *2)) (-4 *2 (-884 *3 *5 *4)))) (-1454 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-5 *4 (-632 *12)) (-5 *5 (-592 (-385 (-887 *9)))) (-5 *6 (-592 (-592 *12))) (-5 *7 (-713)) (-5 *8 (-525)) (-4 *9 (-13 (-286) (-138))) (-4 *12 (-884 *9 *11 *10)) (-4 *10 (-13 (-789) (-567 (-1091)))) (-4 *11 (-735)) (-5 *2 (-2 (|:| |eqzro| (-592 *12)) (|:| |neqzro| (-592 *12)) (|:| |wcond| (-592 (-887 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 *9)))) (|:| -1449 (-592 (-1173 (-385 (-887 *9))))))))) (-5 *1 (-859 *9 *10 *11 *12)))) (-3742 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *7)) (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *1 (-859 *4 *5 *6 *7)))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-713)) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1091)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |det| *8) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (-5 *1 (-859 *5 *6 *7 *8)))) (-3695 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-592 *8))) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1091)))) (-4 *7 (-735)) (-5 *2 (-108)) (-5 *1 (-859 *5 *6 *7 *8)))) (-3911 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *2 (-592 (-592 (-525)))) (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-525)) (-4 *7 (-884 *4 *6 *5)))) (-1691 (*1 *2 *2) (-12 (-5 *2 (-592 (-592 *6))) (-4 *6 (-884 *3 *5 *4)) (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1091)))) (-4 *5 (-735)) (-5 *1 (-859 *3 *4 *5 *6)))) (-1574 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3318 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| *7) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 *7))))) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *2 (-713)) (-5 *1 (-859 *4 *5 *6 *7)))) (-1832 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3318 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| *7) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 *7))))) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *2 (-713)) (-5 *1 (-859 *4 *5 *6 *7)))) (-3846 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *2 (-592 *3)) (-5 *1 (-859 *4 *5 *6 *3)) (-4 *3 (-884 *4 *6 *5)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1484 (-632 (-385 (-887 *4)))) (|:| |vec| (-592 (-385 (-887 *4)))) (|:| -3318 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *2 (-2 (|:| |partsol| (-1173 (-385 (-887 *4)))) (|:| -1449 (-592 (-1173 (-385 (-887 *4))))))) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))) (-2353 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1173 (-385 (-887 *4)))) (|:| -1449 (-592 (-1173 (-385 (-887 *4))))))) (-5 *3 (-592 *7)) (-4 *4 (-13 (-286) (-138))) (-4 *7 (-884 *4 *6 *5)) (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *1 (-859 *4 *5 *6 *7)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1091)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| -3318 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| *8) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 *8))))) (-5 *1 (-859 *5 *6 *7 *8)) (-5 *4 (-713)))) (-2349 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-4 *7 (-884 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-108)) (|:| |z0| (-592 *7)) (|:| |n0| (-592 *7)))) (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-13 (-286) (-138))) (-4 *2 (-884 *4 *6 *5)) (-5 *1 (-859 *4 *5 *6 *2)) (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)))) (-4098 (*1 *2 *3) (-12 (-5 *3 (-592 (-1091))) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *2 (-592 (-385 (-887 *4)))) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))) (-2493 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *2 (-592 (-385 (-887 *4)))) (-5 *1 (-859 *4 *5 *6 *7)))) (-2493 (*1 *2 *3) (-12 (-5 *3 (-632 *7)) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *2 (-632 (-385 (-887 *4)))) (-5 *1 (-859 *4 *5 *6 *7)))) (-2493 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *2 (-385 (-887 *4))) (-5 *1 (-859 *4 *5 *6 *3)) (-4 *3 (-884 *4 *6 *5)))) (-3028 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-632 *11)) (-5 *4 (-592 (-385 (-887 *8)))) (-5 *5 (-713)) (-5 *6 (-1074)) (-4 *8 (-13 (-286) (-138))) (-4 *11 (-884 *8 *10 *9)) (-4 *9 (-13 (-789) (-567 (-1091)))) (-4 *10 (-735)) (-5 *2 (-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 *11)) (|:| |neqzro| (-592 *11)) (|:| |wcond| (-592 (-887 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 *8)))) (|:| -1449 (-592 (-1173 (-385 (-887 *8)))))))))) (|:| |rgsz| (-525)))) (-5 *1 (-859 *8 *9 *10 *11)) (-5 *7 (-525)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7)) (|:| |wcond| (-592 (-887 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 *4)))) (|:| -1449 (-592 (-1173 (-385 (-887 *4)))))))))) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))) (-3840 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-887 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 *5)))) (|:| -1449 (-592 (-1173 (-385 (-887 *5)))))))))) (-5 *4 (-1074)) (-4 *5 (-13 (-286) (-138))) (-4 *8 (-884 *5 *7 *6)) (-4 *6 (-13 (-789) (-567 (-1091)))) (-4 *7 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *5 *6 *7 *8)))) (-1943 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-856)) (-5 *5 (-1074)) (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1091)))) (-4 *8 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *6 *7 *8 *9)))) (-1943 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-632 *10)) (-5 *4 (-592 (-1091))) (-5 *5 (-856)) (-5 *6 (-1074)) (-4 *10 (-884 *7 *9 *8)) (-4 *7 (-13 (-286) (-138))) (-4 *8 (-13 (-789) (-567 (-1091)))) (-4 *9 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *7 *8 *9 *10)))) (-1943 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-632 *10)) (-5 *4 (-592 *10)) (-5 *5 (-856)) (-5 *6 (-1074)) (-4 *10 (-884 *7 *9 *8)) (-4 *7 (-13 (-286) (-138))) (-4 *8 (-13 (-789) (-567 (-1091)))) (-4 *9 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *7 *8 *9 *10)))) (-1943 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-1074)) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1091)))) (-4 *7 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *5 *6 *7 *8)))) (-1943 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 (-1091))) (-5 *5 (-1074)) (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1091)))) (-4 *8 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *6 *7 *8 *9)))) (-1943 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 *9)) (-5 *5 (-1074)) (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1091)))) (-4 *8 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *6 *7 *8 *9)))) (-1943 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-856)) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1091)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-887 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 *5)))) (|:| -1449 (-592 (-1173 (-385 (-887 *5)))))))))) (-5 *1 (-859 *5 *6 *7 *8)))) (-1943 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 (-1091))) (-5 *5 (-856)) (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1091)))) (-4 *8 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *9)) (|:| |neqzro| (-592 *9)) (|:| |wcond| (-592 (-887 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 *6)))) (|:| -1449 (-592 (-1173 (-385 (-887 *6)))))))))) (-5 *1 (-859 *6 *7 *8 *9)))) (-1943 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-632 *9)) (-5 *5 (-856)) (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1091)))) (-4 *8 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *9)) (|:| |neqzro| (-592 *9)) (|:| |wcond| (-592 (-887 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 *6)))) (|:| -1449 (-592 (-1173 (-385 (-887 *6)))))))))) (-5 *1 (-859 *6 *7 *8 *9)) (-5 *4 (-592 *9)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-632 *7)) (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7)) (|:| |wcond| (-592 (-887 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 *4)))) (|:| -1449 (-592 (-1173 (-385 (-887 *4)))))))))) (-5 *1 (-859 *4 *5 *6 *7)))) (-1943 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-5 *4 (-592 (-1091))) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1091)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-887 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 *5)))) (|:| -1449 (-592 (-1173 (-385 (-887 *5)))))))))) (-5 *1 (-859 *5 *6 *7 *8)))) (-1943 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *8)) (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1091)))) (-4 *7 (-735)) (-5 *2 (-592 (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8)) (|:| |wcond| (-592 (-887 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 *5)))) (|:| -1449 (-592 (-1173 (-385 (-887 *5)))))))))) (-5 *1 (-859 *5 *6 *7 *8)) (-5 *4 (-592 *8)))))
+(-10 -7 (-15 -1943 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|))) (-15 -1943 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1091)))) (-15 -1943 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|))) (-15 -1943 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 |#4|) (-856))) (-15 -1943 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|) (-592 (-1091)) (-856))) (-15 -1943 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-632 |#4|) (-856))) (-15 -1943 ((-525) (-632 |#4|) (-592 |#4|) (-1074))) (-15 -1943 ((-525) (-632 |#4|) (-592 (-1091)) (-1074))) (-15 -1943 ((-525) (-632 |#4|) (-1074))) (-15 -1943 ((-525) (-632 |#4|) (-592 |#4|) (-856) (-1074))) (-15 -1943 ((-525) (-632 |#4|) (-592 (-1091)) (-856) (-1074))) (-15 -1943 ((-525) (-632 |#4|) (-856) (-1074))) (-15 -3840 ((-525) (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-1074))) (-15 -2403 ((-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|))))))))) (-1074))) (-15 -3028 ((-2 (|:| |rgl| (-592 (-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|)))))))))) (|:| |rgsz| (-525))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-713) (-1074) (-525))) (-15 -2493 ((-385 (-887 |#1|)) |#4|)) (-15 -2493 ((-632 (-385 (-887 |#1|))) (-632 |#4|))) (-15 -2493 ((-592 (-385 (-887 |#1|))) (-592 |#4|))) (-15 -4098 ((-592 (-385 (-887 |#1|))) (-592 (-1091)))) (-15 -1491 (|#4| (-887 |#1|))) (-15 -2349 ((-2 (|:| |sysok| (-108)) (|:| |z0| (-592 |#4|)) (|:| |n0| (-592 |#4|))) (-592 |#4|) (-592 |#4|))) (-15 -3641 ((-592 (-2 (|:| -3318 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))) (-632 |#4|) (-713))) (-15 -2353 ((-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|)))))) (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|)))))) (-592 |#4|))) (-15 -2847 ((-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|)))))) (-2 (|:| -1484 (-632 (-385 (-887 |#1|)))) (|:| |vec| (-592 (-385 (-887 |#1|)))) (|:| -3318 (-713)) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (-15 -3846 ((-592 |#4|) |#4|)) (-15 -1832 ((-713) (-592 (-2 (|:| -3318 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -1574 ((-713) (-592 (-2 (|:| -3318 (-713)) (|:| |eqns| (-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))) (|:| |fgb| (-592 |#4|)))))) (-15 -1691 ((-592 (-592 |#4|)) (-592 (-592 |#4|)))) (-15 -3911 ((-592 (-592 (-525))) (-525) (-525))) (-15 -3695 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -2301 ((-592 (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525))))) (-632 |#4|) (-713))) (-15 -3742 ((-632 |#4|) (-632 |#4|) (-592 |#4|))) (-15 -1454 ((-2 (|:| |eqzro| (-592 |#4|)) (|:| |neqzro| (-592 |#4|)) (|:| |wcond| (-592 (-887 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1173 (-385 (-887 |#1|)))) (|:| -1449 (-592 (-1173 (-385 (-887 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))) (-632 |#4|) (-592 (-385 (-887 |#1|))) (-592 (-592 |#4|)) (-713) (-713) (-525))) (-15 -2458 (|#4| |#4|)) (-15 -3557 ((-108) (-592 |#4|))) (-15 -3557 ((-108) (-592 (-887 |#1|)))))
+((-2369 (((-862) |#1| (-1091)) 17) (((-862) |#1| (-1091) (-1015 (-205))) 21)) (-3154 (((-862) |#1| |#1| (-1091) (-1015 (-205))) 19) (((-862) |#1| (-1091) (-1015 (-205))) 15)))
+(((-860 |#1|) (-10 -7 (-15 -3154 ((-862) |#1| (-1091) (-1015 (-205)))) (-15 -3154 ((-862) |#1| |#1| (-1091) (-1015 (-205)))) (-15 -2369 ((-862) |#1| (-1091) (-1015 (-205)))) (-15 -2369 ((-862) |#1| (-1091)))) (-567 (-501))) (T -860))
+((-2369 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-5 *2 (-862)) (-5 *1 (-860 *3)) (-4 *3 (-567 (-501))))) (-2369 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-1015 (-205))) (-5 *2 (-862)) (-5 *1 (-860 *3)) (-4 *3 (-567 (-501))))) (-3154 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-1015 (-205))) (-5 *2 (-862)) (-5 *1 (-860 *3)) (-4 *3 (-567 (-501))))) (-3154 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1091)) (-5 *5 (-1015 (-205))) (-5 *2 (-862)) (-5 *1 (-860 *3)) (-4 *3 (-567 (-501))))))
+(-10 -7 (-15 -3154 ((-862) |#1| (-1091) (-1015 (-205)))) (-15 -3154 ((-862) |#1| |#1| (-1091) (-1015 (-205)))) (-15 -2369 ((-862) |#1| (-1091) (-1015 (-205)))) (-15 -2369 ((-862) |#1| (-1091))))
+((-3526 (($ $ (-1015 (-205)) (-1015 (-205)) (-1015 (-205))) 70)) (-2613 (((-1015 (-205)) $) 40)) (-2604 (((-1015 (-205)) $) 39)) (-2596 (((-1015 (-205)) $) 38)) (-3571 (((-592 (-592 (-205))) $) 43)) (-4121 (((-1015 (-205)) $) 41)) (-2330 (((-525) (-525)) 32)) (-2666 (((-525) (-525)) 28)) (-3405 (((-525) (-525)) 30)) (-2829 (((-108) (-108)) 35)) (-3323 (((-525)) 31)) (-3676 (($ $ (-1015 (-205))) 73) (($ $) 74)) (-3817 (($ (-1 (-878 (-205)) (-205)) (-1015 (-205))) 78) (($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205))) 79)) (-3154 (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205))) 81) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205))) 82) (($ $ (-1015 (-205))) 76)) (-3494 (((-525)) 36)) (-2984 (((-525)) 27)) (-2977 (((-525)) 29)) (-1703 (((-592 (-592 (-878 (-205)))) $) 94)) (-3575 (((-108) (-108)) 37)) (-1270 (((-798) $) 93)) (-2624 (((-108)) 34)))
+(((-861) (-13 (-907) (-10 -8 (-15 -3817 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)))) (-15 -3817 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -3154 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)))) (-15 -3154 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -3154 ($ $ (-1015 (-205)))) (-15 -3526 ($ $ (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -3676 ($ $ (-1015 (-205)))) (-15 -3676 ($ $)) (-15 -4121 ((-1015 (-205)) $)) (-15 -3571 ((-592 (-592 (-205))) $)) (-15 -2984 ((-525))) (-15 -2666 ((-525) (-525))) (-15 -2977 ((-525))) (-15 -3405 ((-525) (-525))) (-15 -3323 ((-525))) (-15 -2330 ((-525) (-525))) (-15 -2624 ((-108))) (-15 -2829 ((-108) (-108))) (-15 -3494 ((-525))) (-15 -3575 ((-108) (-108)))))) (T -861))
+((-3817 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-861)))) (-3817 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-861)))) (-3154 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-861)))) (-3154 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-861)))) (-3154 (*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861)))) (-3526 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861)))) (-3676 (*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861)))) (-3676 (*1 *1 *1) (-5 *1 (-861))) (-4121 (*1 *2 *1) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-861)))) (-2984 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-2666 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-2977 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-3405 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-3323 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-2330 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-2624 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))) (-2829 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))) (-3494 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))) (-3575 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))))
+(-13 (-907) (-10 -8 (-15 -3817 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)))) (-15 -3817 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -3154 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)))) (-15 -3154 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -3154 ($ $ (-1015 (-205)))) (-15 -3526 ($ $ (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -3676 ($ $ (-1015 (-205)))) (-15 -3676 ($ $)) (-15 -4121 ((-1015 (-205)) $)) (-15 -3571 ((-592 (-592 (-205))) $)) (-15 -2984 ((-525))) (-15 -2666 ((-525) (-525))) (-15 -2977 ((-525))) (-15 -3405 ((-525) (-525))) (-15 -3323 ((-525))) (-15 -2330 ((-525) (-525))) (-15 -2624 ((-108))) (-15 -2829 ((-108) (-108))) (-15 -3494 ((-525))) (-15 -3575 ((-108) (-108)))))
+((-3526 (($ $ (-1015 (-205))) 70) (($ $ (-1015 (-205)) (-1015 (-205))) 71)) (-2604 (((-1015 (-205)) $) 44)) (-2596 (((-1015 (-205)) $) 43)) (-4121 (((-1015 (-205)) $) 45)) (-1998 (((-525) (-525)) 37)) (-2262 (((-525) (-525)) 33)) (-1463 (((-525) (-525)) 35)) (-1781 (((-108) (-108)) 39)) (-1204 (((-525)) 36)) (-3676 (($ $ (-1015 (-205))) 74) (($ $) 75)) (-3817 (($ (-1 (-878 (-205)) (-205)) (-1015 (-205))) 84) (($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205))) 85)) (-2369 (($ (-1 (-205) (-205)) (-1015 (-205))) 92) (($ (-1 (-205) (-205))) 95)) (-3154 (($ (-1 (-205) (-205)) (-1015 (-205))) 79) (($ (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205))) 80) (($ (-592 (-1 (-205) (-205))) (-1015 (-205))) 87) (($ (-592 (-1 (-205) (-205))) (-1015 (-205)) (-1015 (-205))) 88) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205))) 81) (($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205))) 82) (($ $ (-1015 (-205))) 76)) (-4178 (((-108) $) 40)) (-1233 (((-525)) 41)) (-4055 (((-525)) 32)) (-2526 (((-525)) 34)) (-1703 (((-592 (-592 (-878 (-205)))) $) 23)) (-3618 (((-108) (-108)) 42)) (-1270 (((-798) $) 106)) (-2073 (((-108)) 38)))
+(((-862) (-13 (-889) (-10 -8 (-15 -3154 ($ (-1 (-205) (-205)) (-1015 (-205)))) (-15 -3154 ($ (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -3154 ($ (-592 (-1 (-205) (-205))) (-1015 (-205)))) (-15 -3154 ($ (-592 (-1 (-205) (-205))) (-1015 (-205)) (-1015 (-205)))) (-15 -3154 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)))) (-15 -3154 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -3817 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)))) (-15 -3817 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -2369 ($ (-1 (-205) (-205)) (-1015 (-205)))) (-15 -2369 ($ (-1 (-205) (-205)))) (-15 -3154 ($ $ (-1015 (-205)))) (-15 -4178 ((-108) $)) (-15 -3526 ($ $ (-1015 (-205)))) (-15 -3526 ($ $ (-1015 (-205)) (-1015 (-205)))) (-15 -3676 ($ $ (-1015 (-205)))) (-15 -3676 ($ $)) (-15 -4121 ((-1015 (-205)) $)) (-15 -4055 ((-525))) (-15 -2262 ((-525) (-525))) (-15 -2526 ((-525))) (-15 -1463 ((-525) (-525))) (-15 -1204 ((-525))) (-15 -1998 ((-525) (-525))) (-15 -2073 ((-108))) (-15 -1781 ((-108) (-108))) (-15 -1233 ((-525))) (-15 -3618 ((-108) (-108)))))) (T -862))
+((-3154 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-3154 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-3154 (*1 *1 *2 *3) (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-3154 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-3154 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-3154 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-3817 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-3817 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-2369 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205))) (-5 *1 (-862)))) (-2369 (*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-862)))) (-3154 (*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))) (-4178 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-862)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))) (-3526 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))) (-3676 (*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))) (-3676 (*1 *1 *1) (-5 *1 (-862))) (-4121 (*1 *2 *1) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))) (-4055 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-2262 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-2526 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-1463 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-1204 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-1998 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-2073 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))) (-1781 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))) (-1233 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))) (-3618 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))))
+(-13 (-889) (-10 -8 (-15 -3154 ($ (-1 (-205) (-205)) (-1015 (-205)))) (-15 -3154 ($ (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -3154 ($ (-592 (-1 (-205) (-205))) (-1015 (-205)))) (-15 -3154 ($ (-592 (-1 (-205) (-205))) (-1015 (-205)) (-1015 (-205)))) (-15 -3154 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)))) (-15 -3154 ($ (-1 (-205) (-205)) (-1 (-205) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -3817 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)))) (-15 -3817 ($ (-1 (-878 (-205)) (-205)) (-1015 (-205)) (-1015 (-205)) (-1015 (-205)))) (-15 -2369 ($ (-1 (-205) (-205)) (-1015 (-205)))) (-15 -2369 ($ (-1 (-205) (-205)))) (-15 -3154 ($ $ (-1015 (-205)))) (-15 -4178 ((-108) $)) (-15 -3526 ($ $ (-1015 (-205)))) (-15 -3526 ($ $ (-1015 (-205)) (-1015 (-205)))) (-15 -3676 ($ $ (-1015 (-205)))) (-15 -3676 ($ $)) (-15 -4121 ((-1015 (-205)) $)) (-15 -4055 ((-525))) (-15 -2262 ((-525) (-525))) (-15 -2526 ((-525))) (-15 -1463 ((-525) (-525))) (-15 -1204 ((-525))) (-15 -1998 ((-525) (-525))) (-15 -2073 ((-108))) (-15 -1781 ((-108) (-108))) (-15 -1233 ((-525))) (-15 -3618 ((-108) (-108)))))
+((-2732 (((-592 (-1015 (-205))) (-592 (-592 (-878 (-205))))) 24)))
+(((-863) (-10 -7 (-15 -2732 ((-592 (-1015 (-205))) (-592 (-592 (-878 (-205)))))))) (T -863))
+((-2732 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *2 (-592 (-1015 (-205)))) (-5 *1 (-863)))))
+(-10 -7 (-15 -2732 ((-592 (-1015 (-205))) (-592 (-592 (-878 (-205)))))))
+((-1365 ((|#2| |#2|) 26)) (-2488 ((|#2| |#2|) 27)) (-1479 ((|#2| |#2|) 25)) (-1257 ((|#2| |#2| (-1074)) 24)))
+(((-864 |#1| |#2|) (-10 -7 (-15 -1257 (|#2| |#2| (-1074))) (-15 -1479 (|#2| |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -2488 (|#2| |#2|))) (-789) (-408 |#1|)) (T -864))
+((-2488 (*1 *2 *2) (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3)))) (-1365 (*1 *2 *2) (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3)))) (-1479 (*1 *2 *2) (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3)))) (-1257 (*1 *2 *2 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-789)) (-5 *1 (-864 *4 *2)) (-4 *2 (-408 *4)))))
+(-10 -7 (-15 -1257 (|#2| |#2| (-1074))) (-15 -1479 (|#2| |#2|)) (-15 -1365 (|#2| |#2|)) (-15 -2488 (|#2| |#2|)))
+((-1365 (((-294 (-525)) (-1091)) 16)) (-2488 (((-294 (-525)) (-1091)) 14)) (-1479 (((-294 (-525)) (-1091)) 12)) (-1257 (((-294 (-525)) (-1091) (-1074)) 19)))
+(((-865) (-10 -7 (-15 -1257 ((-294 (-525)) (-1091) (-1074))) (-15 -1479 ((-294 (-525)) (-1091))) (-15 -1365 ((-294 (-525)) (-1091))) (-15 -2488 ((-294 (-525)) (-1091))))) (T -865))
+((-2488 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))) (-1365 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))) (-1257 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-1074)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))))
+(-10 -7 (-15 -1257 ((-294 (-525)) (-1091) (-1074))) (-15 -1479 ((-294 (-525)) (-1091))) (-15 -1365 ((-294 (-525)) (-1091))) (-15 -2488 ((-294 (-525)) (-1091))))
+((-2317 (((-824 |#1| |#3|) |#2| (-827 |#1|) (-824 |#1| |#3|)) 25)) (-2203 (((-1 (-108) |#2|) (-1 (-108) |#3|)) 13)))
+(((-866 |#1| |#2| |#3|) (-10 -7 (-15 -2203 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -2317 ((-824 |#1| |#3|) |#2| (-827 |#1|) (-824 |#1| |#3|)))) (-1020) (-821 |#1|) (-13 (-1020) (-968 |#2|))) (T -866))
+((-2317 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *6)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *6 (-13 (-1020) (-968 *3))) (-4 *3 (-821 *5)) (-5 *1 (-866 *5 *3 *6)))) (-2203 (*1 *2 *3) (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1020) (-968 *5))) (-4 *5 (-821 *4)) (-4 *4 (-1020)) (-5 *2 (-1 (-108) *5)) (-5 *1 (-866 *4 *5 *6)))))
+(-10 -7 (-15 -2203 ((-1 (-108) |#2|) (-1 (-108) |#3|))) (-15 -2317 ((-824 |#1| |#3|) |#2| (-827 |#1|) (-824 |#1| |#3|))))
+((-2317 (((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)) 30)))
+(((-867 |#1| |#2| |#3|) (-10 -7 (-15 -2317 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)))) (-1020) (-13 (-517) (-789) (-821 |#1|)) (-13 (-408 |#2|) (-567 (-827 |#1|)) (-821 |#1|) (-968 (-565 $)))) (T -867))
+((-2317 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *3 (-13 (-408 *6) (-567 (-827 *5)) (-821 *5) (-968 (-565 $)))) (-4 *6 (-13 (-517) (-789) (-821 *5))) (-5 *1 (-867 *5 *6 *3)))))
+(-10 -7 (-15 -2317 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))))
+((-2317 (((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|)) 13)))
+(((-868 |#1|) (-10 -7 (-15 -2317 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|)))) (-510)) (T -868))
+((-2317 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 (-525) *3)) (-5 *4 (-827 (-525))) (-4 *3 (-510)) (-5 *1 (-868 *3)))))
+(-10 -7 (-15 -2317 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))))
+((-2317 (((-824 |#1| |#2|) (-565 |#2|) (-827 |#1|) (-824 |#1| |#2|)) 54)))
+(((-869 |#1| |#2|) (-10 -7 (-15 -2317 ((-824 |#1| |#2|) (-565 |#2|) (-827 |#1|) (-824 |#1| |#2|)))) (-1020) (-13 (-789) (-968 (-565 $)) (-567 (-827 |#1|)) (-821 |#1|))) (T -869))
+((-2317 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *6)) (-5 *3 (-565 *6)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *6 (-13 (-789) (-968 (-565 $)) (-567 (-827 *5)) (-821 *5))) (-5 *1 (-869 *5 *6)))))
+(-10 -7 (-15 -2317 ((-824 |#1| |#2|) (-565 |#2|) (-827 |#1|) (-824 |#1| |#2|))))
+((-2317 (((-820 |#1| |#2| |#3|) |#3| (-827 |#1|) (-820 |#1| |#2| |#3|)) 15)))
+(((-870 |#1| |#2| |#3|) (-10 -7 (-15 -2317 ((-820 |#1| |#2| |#3|) |#3| (-827 |#1|) (-820 |#1| |#2| |#3|)))) (-1020) (-821 |#1|) (-612 |#2|)) (T -870))
+((-2317 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-820 *5 *6 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *6 (-821 *5)) (-4 *3 (-612 *6)) (-5 *1 (-870 *5 *6 *3)))))
+(-10 -7 (-15 -2317 ((-820 |#1| |#2| |#3|) |#3| (-827 |#1|) (-820 |#1| |#2| |#3|))))
+((-2317 (((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|)) 17 (|has| |#3| (-821 |#1|))) (((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|) (-1 (-824 |#1| |#5|) |#3| (-827 |#1|) (-824 |#1| |#5|))) 16)))
+(((-871 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2317 ((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|) (-1 (-824 |#1| |#5|) |#3| (-827 |#1|) (-824 |#1| |#5|)))) (IF (|has| |#3| (-821 |#1|)) (-15 -2317 ((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|))) |%noBranch|)) (-1020) (-735) (-789) (-13 (-977) (-789) (-821 |#1|)) (-13 (-884 |#4| |#2| |#3|) (-567 (-827 |#1|)))) (T -871))
+((-2317 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *3 (-13 (-884 *8 *6 *7) (-567 (-827 *5)))) (-4 *7 (-821 *5)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-13 (-977) (-789) (-821 *5))) (-5 *1 (-871 *5 *6 *7 *8 *3)))) (-2317 (*1 *2 *3 *4 *2 *5) (-12 (-5 *2 (-824 *6 *3)) (-5 *4 (-827 *6)) (-5 *5 (-1 (-824 *6 *3) *8 (-827 *6) (-824 *6 *3))) (-4 *6 (-1020)) (-4 *8 (-789)) (-4 *3 (-13 (-884 *9 *7 *8) (-567 (-827 *6)))) (-4 *7 (-735)) (-4 *9 (-13 (-977) (-789) (-821 *6))) (-5 *1 (-871 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -2317 ((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|) (-1 (-824 |#1| |#5|) |#3| (-827 |#1|) (-824 |#1| |#5|)))) (IF (|has| |#3| (-821 |#1|)) (-15 -2317 ((-824 |#1| |#5|) |#5| (-827 |#1|) (-824 |#1| |#5|))) |%noBranch|))
+((-2568 ((|#2| |#2| (-592 (-1 (-108) |#3|))) 12) ((|#2| |#2| (-1 (-108) |#3|)) 13)))
+(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -2568 (|#2| |#2| (-1 (-108) |#3|))) (-15 -2568 (|#2| |#2| (-592 (-1 (-108) |#3|))))) (-789) (-408 |#1|) (-1127)) (T -872))
+((-2568 (*1 *2 *2 *3) (-12 (-5 *3 (-592 (-1 (-108) *5))) (-4 *5 (-1127)) (-4 *4 (-789)) (-5 *1 (-872 *4 *2 *5)) (-4 *2 (-408 *4)))) (-2568 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1127)) (-4 *4 (-789)) (-5 *1 (-872 *4 *2 *5)) (-4 *2 (-408 *4)))))
+(-10 -7 (-15 -2568 (|#2| |#2| (-1 (-108) |#3|))) (-15 -2568 (|#2| |#2| (-592 (-1 (-108) |#3|)))))
+((-2568 (((-294 (-525)) (-1091) (-592 (-1 (-108) |#1|))) 18) (((-294 (-525)) (-1091) (-1 (-108) |#1|)) 15)))
+(((-873 |#1|) (-10 -7 (-15 -2568 ((-294 (-525)) (-1091) (-1 (-108) |#1|))) (-15 -2568 ((-294 (-525)) (-1091) (-592 (-1 (-108) |#1|))))) (-1127)) (T -873))
+((-2568 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-592 (-1 (-108) *5))) (-4 *5 (-1127)) (-5 *2 (-294 (-525))) (-5 *1 (-873 *5)))) (-2568 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1127)) (-5 *2 (-294 (-525))) (-5 *1 (-873 *5)))))
+(-10 -7 (-15 -2568 ((-294 (-525)) (-1091) (-1 (-108) |#1|))) (-15 -2568 ((-294 (-525)) (-1091) (-592 (-1 (-108) |#1|)))))
+((-2317 (((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)) 25)))
+(((-874 |#1| |#2| |#3|) (-10 -7 (-15 -2317 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)))) (-1020) (-13 (-517) (-821 |#1|) (-567 (-827 |#1|))) (-925 |#2|)) (T -874))
+((-2317 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-4 *3 (-925 *6)) (-4 *6 (-13 (-517) (-821 *5) (-567 (-827 *5)))) (-5 *1 (-874 *5 *6 *3)))))
+(-10 -7 (-15 -2317 ((-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))))
+((-2317 (((-824 |#1| (-1091)) (-1091) (-827 |#1|) (-824 |#1| (-1091))) 17)))
+(((-875 |#1|) (-10 -7 (-15 -2317 ((-824 |#1| (-1091)) (-1091) (-827 |#1|) (-824 |#1| (-1091))))) (-1020)) (T -875))
+((-2317 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-824 *5 (-1091))) (-5 *3 (-1091)) (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-5 *1 (-875 *5)))))
+(-10 -7 (-15 -2317 ((-824 |#1| (-1091)) (-1091) (-827 |#1|) (-824 |#1| (-1091)))))
+((-2926 (((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))) 33)) (-2317 (((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-1 |#3| (-592 |#3|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))) 32)))
+(((-876 |#1| |#2| |#3|) (-10 -7 (-15 -2317 ((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-1 |#3| (-592 |#3|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)))) (-15 -2926 ((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|))))) (-1020) (-13 (-977) (-789)) (-13 (-977) (-567 (-827 |#1|)) (-968 |#2|))) (T -876))
+((-2926 (*1 *2 *3 *4 *2 *5) (-12 (-5 *2 (-824 *6 *8)) (-5 *3 (-592 *8)) (-5 *4 (-592 (-827 *6))) (-5 *5 (-1 (-824 *6 *8) *8 (-827 *6) (-824 *6 *8))) (-4 *6 (-1020)) (-4 *8 (-13 (-977) (-567 (-827 *6)) (-968 *7))) (-4 *7 (-13 (-977) (-789))) (-5 *1 (-876 *6 *7 *8)))) (-2317 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *2 (-824 *7 *9)) (-5 *3 (-592 *9)) (-5 *4 (-592 (-827 *7))) (-5 *5 (-1 *9 (-592 *9))) (-5 *6 (-1 (-824 *7 *9) *9 (-827 *7) (-824 *7 *9))) (-4 *7 (-1020)) (-4 *9 (-13 (-977) (-567 (-827 *7)) (-968 *8))) (-4 *8 (-13 (-977) (-789))) (-5 *1 (-876 *7 *8 *9)))))
+(-10 -7 (-15 -2317 ((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-1 |#3| (-592 |#3|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)))) (-15 -2926 ((-824 |#1| |#3|) (-592 |#3|) (-592 (-827 |#1|)) (-824 |#1| |#3|) (-1 (-824 |#1| |#3|) |#3| (-827 |#1|) (-824 |#1| |#3|)))))
+((-1668 (((-1087 (-385 (-525))) (-525)) 63)) (-2152 (((-1087 (-525)) (-525)) 66)) (-2199 (((-1087 (-525)) (-525)) 60)) (-2137 (((-525) (-1087 (-525))) 55)) (-1425 (((-1087 (-385 (-525))) (-525)) 49)) (-1868 (((-1087 (-525)) (-525)) 38)) (-1888 (((-1087 (-525)) (-525)) 68)) (-3773 (((-1087 (-525)) (-525)) 67)) (-2569 (((-1087 (-385 (-525))) (-525)) 51)))
+(((-877) (-10 -7 (-15 -2569 ((-1087 (-385 (-525))) (-525))) (-15 -3773 ((-1087 (-525)) (-525))) (-15 -1888 ((-1087 (-525)) (-525))) (-15 -1868 ((-1087 (-525)) (-525))) (-15 -1425 ((-1087 (-385 (-525))) (-525))) (-15 -2137 ((-525) (-1087 (-525)))) (-15 -2199 ((-1087 (-525)) (-525))) (-15 -2152 ((-1087 (-525)) (-525))) (-15 -1668 ((-1087 (-385 (-525))) (-525))))) (T -877))
+((-1668 (*1 *2 *3) (-12 (-5 *2 (-1087 (-385 (-525)))) (-5 *1 (-877)) (-5 *3 (-525)))) (-2152 (*1 *2 *3) (-12 (-5 *2 (-1087 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))) (-2199 (*1 *2 *3) (-12 (-5 *2 (-1087 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-1087 (-525))) (-5 *2 (-525)) (-5 *1 (-877)))) (-1425 (*1 *2 *3) (-12 (-5 *2 (-1087 (-385 (-525)))) (-5 *1 (-877)) (-5 *3 (-525)))) (-1868 (*1 *2 *3) (-12 (-5 *2 (-1087 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))) (-1888 (*1 *2 *3) (-12 (-5 *2 (-1087 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))) (-3773 (*1 *2 *3) (-12 (-5 *2 (-1087 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))) (-2569 (*1 *2 *3) (-12 (-5 *2 (-1087 (-385 (-525)))) (-5 *1 (-877)) (-5 *3 (-525)))))
+(-10 -7 (-15 -2569 ((-1087 (-385 (-525))) (-525))) (-15 -3773 ((-1087 (-525)) (-525))) (-15 -1888 ((-1087 (-525)) (-525))) (-15 -1868 ((-1087 (-525)) (-525))) (-15 -1425 ((-1087 (-385 (-525))) (-525))) (-15 -2137 ((-525) (-1087 (-525)))) (-15 -2199 ((-1087 (-525)) (-525))) (-15 -2152 ((-1087 (-525)) (-525))) (-15 -1668 ((-1087 (-385 (-525))) (-525))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2708 (($ (-713)) NIL (|has| |#1| (-23)))) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-2151 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2549 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4256))) (($ $) NIL (-12 (|has| $ (-6 -4256)) (|has| |#1| (-789))))) (-2855 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 ((|#1| $ (-525) |#1|) 11 (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) NIL (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-3559 (($ $) NIL (|has| $ (-6 -4256)))) (-3620 (($ $) NIL)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1614 (($ |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2632 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) NIL)) (-1916 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-2261 (($ (-592 |#1|)) 13)) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-1430 (((-632 |#1|) $ $) NIL (|has| |#1| (-977)))) (-3489 (($ (-713) |#1|) 8)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) 10 (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-3743 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1325 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-2957 (((-108) $ (-713)) NIL)) (-2023 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2683 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3110 ((|#1| $) NIL (|has| (-525) (-789)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2042 (($ $ |#1|) NIL (|has| $ (-6 -4256)))) (-2182 (($ $ (-592 |#1|)) 26)) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 20) (($ $ (-1140 (-525))) NIL)) (-1809 ((|#1| $ $) NIL (|has| |#1| (-977)))) (-3831 (((-856) $) 16)) (-3157 (($ $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-3838 (($ $ $) 24)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3216 (($ $ $ (-525)) NIL (|has| $ (-6 -4256)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| |#1| (-567 (-501)))) (($ (-592 |#1|)) 17)) (-1279 (($ (-592 |#1|)) NIL)) (-2014 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-592 $)) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4090 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4080 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-669))) (($ $ |#1|) NIL (|has| |#1| (-669)))) (-3596 (((-713) $) 14 (|has| $ (-6 -4255)))))
+(((-878 |#1|) (-913 |#1|) (-977)) (T -878))
+NIL
+(-913 |#1|)
+((-1686 (((-457 |#1| |#2|) (-887 |#2|)) 20)) (-3556 (((-227 |#1| |#2|) (-887 |#2|)) 33)) (-2337 (((-887 |#2|) (-457 |#1| |#2|)) 25)) (-2130 (((-227 |#1| |#2|) (-457 |#1| |#2|)) 55)) (-4046 (((-887 |#2|) (-227 |#1| |#2|)) 30)) (-1258 (((-457 |#1| |#2|) (-227 |#1| |#2|)) 46)))
+(((-879 |#1| |#2|) (-10 -7 (-15 -1258 ((-457 |#1| |#2|) (-227 |#1| |#2|))) (-15 -2130 ((-227 |#1| |#2|) (-457 |#1| |#2|))) (-15 -1686 ((-457 |#1| |#2|) (-887 |#2|))) (-15 -2337 ((-887 |#2|) (-457 |#1| |#2|))) (-15 -4046 ((-887 |#2|) (-227 |#1| |#2|))) (-15 -3556 ((-227 |#1| |#2|) (-887 |#2|)))) (-592 (-1091)) (-977)) (T -879))
+((-3556 (*1 *2 *3) (-12 (-5 *3 (-887 *5)) (-4 *5 (-977)) (-5 *2 (-227 *4 *5)) (-5 *1 (-879 *4 *5)) (-14 *4 (-592 (-1091))))) (-4046 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1091))) (-4 *5 (-977)) (-5 *2 (-887 *5)) (-5 *1 (-879 *4 *5)))) (-2337 (*1 *2 *3) (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1091))) (-4 *5 (-977)) (-5 *2 (-887 *5)) (-5 *1 (-879 *4 *5)))) (-1686 (*1 *2 *3) (-12 (-5 *3 (-887 *5)) (-4 *5 (-977)) (-5 *2 (-457 *4 *5)) (-5 *1 (-879 *4 *5)) (-14 *4 (-592 (-1091))))) (-2130 (*1 *2 *3) (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1091))) (-4 *5 (-977)) (-5 *2 (-227 *4 *5)) (-5 *1 (-879 *4 *5)))) (-1258 (*1 *2 *3) (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1091))) (-4 *5 (-977)) (-5 *2 (-457 *4 *5)) (-5 *1 (-879 *4 *5)))))
+(-10 -7 (-15 -1258 ((-457 |#1| |#2|) (-227 |#1| |#2|))) (-15 -2130 ((-227 |#1| |#2|) (-457 |#1| |#2|))) (-15 -1686 ((-457 |#1| |#2|) (-887 |#2|))) (-15 -2337 ((-887 |#2|) (-457 |#1| |#2|))) (-15 -4046 ((-887 |#2|) (-227 |#1| |#2|))) (-15 -3556 ((-227 |#1| |#2|) (-887 |#2|))))
+((-3951 (((-592 |#2|) |#2| |#2|) 10)) (-2720 (((-713) (-592 |#1|)) 37 (|has| |#1| (-787)))) (-1385 (((-592 |#2|) |#2|) 11)) (-2637 (((-713) (-592 |#1|) (-525) (-525)) 39 (|has| |#1| (-787)))) (-2180 ((|#1| |#2|) 32 (|has| |#1| (-787)))))
+(((-880 |#1| |#2|) (-10 -7 (-15 -3951 ((-592 |#2|) |#2| |#2|)) (-15 -1385 ((-592 |#2|) |#2|)) (IF (|has| |#1| (-787)) (PROGN (-15 -2180 (|#1| |#2|)) (-15 -2720 ((-713) (-592 |#1|))) (-15 -2637 ((-713) (-592 |#1|) (-525) (-525)))) |%noBranch|)) (-341) (-1149 |#1|)) (T -880))
+((-2637 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-525)) (-4 *5 (-787)) (-4 *5 (-341)) (-5 *2 (-713)) (-5 *1 (-880 *5 *6)) (-4 *6 (-1149 *5)))) (-2720 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-787)) (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-880 *4 *5)) (-4 *5 (-1149 *4)))) (-2180 (*1 *2 *3) (-12 (-4 *2 (-341)) (-4 *2 (-787)) (-5 *1 (-880 *2 *3)) (-4 *3 (-1149 *2)))) (-1385 (*1 *2 *3) (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-880 *4 *3)) (-4 *3 (-1149 *4)))) (-3951 (*1 *2 *3 *3) (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-880 *4 *3)) (-4 *3 (-1149 *4)))))
+(-10 -7 (-15 -3951 ((-592 |#2|) |#2| |#2|)) (-15 -1385 ((-592 |#2|) |#2|)) (IF (|has| |#1| (-787)) (PROGN (-15 -2180 (|#1| |#2|)) (-15 -2720 ((-713) (-592 |#1|))) (-15 -2637 ((-713) (-592 |#1|) (-525) (-525)))) |%noBranch|))
+((-2694 (((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)) 19)))
+(((-881 |#1| |#2|) (-10 -7 (-15 -2694 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|)))) (-977) (-977)) (T -881))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-887 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-5 *2 (-887 *6)) (-5 *1 (-881 *5 *6)))))
+(-10 -7 (-15 -2694 ((-887 |#2|) (-1 |#2| |#1|) (-887 |#1|))))
+((-2146 (((-1146 |#1| (-887 |#2|)) (-887 |#2|) (-1169 |#1|)) 18)))
+(((-882 |#1| |#2|) (-10 -7 (-15 -2146 ((-1146 |#1| (-887 |#2|)) (-887 |#2|) (-1169 |#1|)))) (-1091) (-977)) (T -882))
+((-2146 (*1 *2 *3 *4) (-12 (-5 *4 (-1169 *5)) (-14 *5 (-1091)) (-4 *6 (-977)) (-5 *2 (-1146 *5 (-887 *6))) (-5 *1 (-882 *5 *6)) (-5 *3 (-887 *6)))))
+(-10 -7 (-15 -2146 ((-1146 |#1| (-887 |#2|)) (-887 |#2|) (-1169 |#1|))))
+((-3848 (((-713) $) 71) (((-713) $ (-592 |#4|)) 74)) (-3706 (($ $) 173)) (-2100 (((-396 $) $) 165)) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) 116)) (-2591 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-3898 ((|#2| $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL) ((|#4| $) 59)) (-1516 (($ $ $ |#4|) 76)) (-3416 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) 106) (((-632 |#2|) (-632 $)) 99)) (-3026 (($ $) 180) (($ $ |#4|) 183)) (-2558 (((-592 $) $) 63)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 199) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 192)) (-2177 (((-592 $) $) 28)) (-2352 (($ |#2| |#3|) NIL) (($ $ |#4| (-713)) NIL) (($ $ (-592 |#4|) (-592 (-713))) 57)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ |#4|) 162)) (-4228 (((-3 (-592 $) "failed") $) 42)) (-3852 (((-3 (-592 $) "failed") $) 31)) (-1553 (((-3 (-2 (|:| |var| |#4|) (|:| -1864 (-713))) "failed") $) 47)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 109)) (-1215 (((-396 (-1087 $)) (-1087 $)) 122)) (-2802 (((-396 (-1087 $)) (-1087 $)) 120)) (-2195 (((-396 $) $) 140)) (-2602 (($ $ (-592 (-273 $))) 21) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-592 |#4|) (-592 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-592 |#4|) (-592 $)) NIL)) (-2094 (($ $ |#4|) 78)) (-2749 (((-827 (-357)) $) 213) (((-827 (-525)) $) 206) (((-501) $) 221)) (-2026 ((|#2| $) NIL) (($ $ |#4|) 175)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) 154)) (-3468 ((|#2| $ |#3|) NIL) (($ $ |#4| (-713)) 52) (($ $ (-592 |#4|) (-592 (-713))) 55)) (-3425 (((-3 $ "failed") $) 156)) (-4017 (((-108) $ $) 186)))
+(((-883 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1534 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|))) (-15 -2100 ((-396 |#1|) |#1|)) (-15 -3706 (|#1| |#1|)) (-15 -3425 ((-3 |#1| "failed") |#1|)) (-15 -4017 ((-108) |#1| |#1|)) (-15 -2749 ((-501) |#1|)) (-15 -2749 ((-827 (-525)) |#1|)) (-15 -2749 ((-827 (-357)) |#1|)) (-15 -2317 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -2317 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -2195 ((-396 |#1|) |#1|)) (-15 -2802 ((-396 (-1087 |#1|)) (-1087 |#1|))) (-15 -1215 ((-396 (-1087 |#1|)) (-1087 |#1|))) (-15 -3259 ((-3 (-592 (-1087 |#1|)) "failed") (-592 (-1087 |#1|)) (-1087 |#1|))) (-15 -2105 ((-3 (-1173 |#1|) "failed") (-632 |#1|))) (-15 -3026 (|#1| |#1| |#4|)) (-15 -2026 (|#1| |#1| |#4|)) (-15 -2094 (|#1| |#1| |#4|)) (-15 -1516 (|#1| |#1| |#1| |#4|)) (-15 -2558 ((-592 |#1|) |#1|)) (-15 -3848 ((-713) |#1| (-592 |#4|))) (-15 -3848 ((-713) |#1|)) (-15 -1553 ((-3 (-2 (|:| |var| |#4|) (|:| -1864 (-713))) "failed") |#1|)) (-15 -4228 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3852 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -2352 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -2352 (|#1| |#1| |#4| (-713))) (-15 -3863 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1| |#4|)) (-15 -2177 ((-592 |#1|) |#1|)) (-15 -3468 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -3468 (|#1| |#1| |#4| (-713))) (-15 -3416 ((-632 |#2|) (-632 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-632 (-525)) (-632 |#1|))) (-15 -3898 (|#4| |#1|)) (-15 -2591 ((-3 |#4| "failed") |#1|)) (-15 -2602 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -2602 (|#1| |#1| |#4| |#1|)) (-15 -2602 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -2602 (|#1| |#1| |#4| |#2|)) (-15 -2602 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2602 (|#1| |#1| |#1| |#1|)) (-15 -2602 (|#1| |#1| (-273 |#1|))) (-15 -2602 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2352 (|#1| |#2| |#3|)) (-15 -3468 (|#2| |#1| |#3|)) (-15 -3898 ((-525) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -3898 (|#2| |#1|)) (-15 -2026 (|#2| |#1|)) (-15 -3026 (|#1| |#1|))) (-884 |#2| |#3| |#4|) (-977) (-735) (-789)) (T -883))
+NIL
+(-10 -8 (-15 -1534 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|))) (-15 -2100 ((-396 |#1|) |#1|)) (-15 -3706 (|#1| |#1|)) (-15 -3425 ((-3 |#1| "failed") |#1|)) (-15 -4017 ((-108) |#1| |#1|)) (-15 -2749 ((-501) |#1|)) (-15 -2749 ((-827 (-525)) |#1|)) (-15 -2749 ((-827 (-357)) |#1|)) (-15 -2317 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -2317 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -2195 ((-396 |#1|) |#1|)) (-15 -2802 ((-396 (-1087 |#1|)) (-1087 |#1|))) (-15 -1215 ((-396 (-1087 |#1|)) (-1087 |#1|))) (-15 -3259 ((-3 (-592 (-1087 |#1|)) "failed") (-592 (-1087 |#1|)) (-1087 |#1|))) (-15 -2105 ((-3 (-1173 |#1|) "failed") (-632 |#1|))) (-15 -3026 (|#1| |#1| |#4|)) (-15 -2026 (|#1| |#1| |#4|)) (-15 -2094 (|#1| |#1| |#4|)) (-15 -1516 (|#1| |#1| |#1| |#4|)) (-15 -2558 ((-592 |#1|) |#1|)) (-15 -3848 ((-713) |#1| (-592 |#4|))) (-15 -3848 ((-713) |#1|)) (-15 -1553 ((-3 (-2 (|:| |var| |#4|) (|:| -1864 (-713))) "failed") |#1|)) (-15 -4228 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -3852 ((-3 (-592 |#1|) "failed") |#1|)) (-15 -2352 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -2352 (|#1| |#1| |#4| (-713))) (-15 -3863 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1| |#4|)) (-15 -2177 ((-592 |#1|) |#1|)) (-15 -3468 (|#1| |#1| (-592 |#4|) (-592 (-713)))) (-15 -3468 (|#1| |#1| |#4| (-713))) (-15 -3416 ((-632 |#2|) (-632 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-632 (-525)) (-632 |#1|))) (-15 -3898 (|#4| |#1|)) (-15 -2591 ((-3 |#4| "failed") |#1|)) (-15 -2602 (|#1| |#1| (-592 |#4|) (-592 |#1|))) (-15 -2602 (|#1| |#1| |#4| |#1|)) (-15 -2602 (|#1| |#1| (-592 |#4|) (-592 |#2|))) (-15 -2602 (|#1| |#1| |#4| |#2|)) (-15 -2602 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2602 (|#1| |#1| |#1| |#1|)) (-15 -2602 (|#1| |#1| (-273 |#1|))) (-15 -2602 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2352 (|#1| |#2| |#3|)) (-15 -3468 (|#2| |#1| |#3|)) (-15 -3898 ((-525) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -3898 (|#2| |#1|)) (-15 -2026 (|#2| |#1|)) (-15 -3026 (|#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2383 (((-592 |#3|) $) 110)) (-2146 (((-1087 $) $ |#3|) 125) (((-1087 |#1|) $) 124)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-3711 (($ $) 88 (|has| |#1| (-517)))) (-3380 (((-108) $) 90 (|has| |#1| (-517)))) (-3848 (((-713) $) 112) (((-713) $ (-592 |#3|)) 111)) (-1342 (((-3 $ "failed") $ $) 19)) (-4050 (((-396 (-1087 $)) (-1087 $)) 100 (|has| |#1| (-844)))) (-3706 (($ $) 98 (|has| |#1| (-429)))) (-2100 (((-396 $) $) 97 (|has| |#1| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) 103 (|has| |#1| (-844)))) (-2305 (($) 17 T CONST)) (-2591 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-968 (-525)))) (((-3 |#3| "failed") $) 136)) (-3898 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-968 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-968 (-525)))) ((|#3| $) 135)) (-1516 (($ $ $ |#3|) 108 (|has| |#1| (-160)))) (-2571 (($ $) 154)) (-3416 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-3762 (((-3 $ "failed") $) 34)) (-3026 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-2558 (((-592 $) $) 109)) (-3836 (((-108) $) 96 (|has| |#1| (-844)))) (-2192 (($ $ |#1| |#2| $) 172)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 84 (-12 (|has| |#3| (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 83 (-12 (|has| |#3| (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-1985 (((-108) $) 31)) (-1647 (((-713) $) 169)) (-2368 (($ (-1087 |#1|) |#3|) 117) (($ (-1087 $) |#3|) 116)) (-2177 (((-592 $) $) 126)) (-1788 (((-108) $) 152)) (-2352 (($ |#1| |#2|) 153) (($ $ |#3| (-713)) 119) (($ $ (-592 |#3|) (-592 (-713))) 118)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ |#3|) 120)) (-3724 ((|#2| $) 170) (((-713) $ |#3|) 122) (((-592 (-713)) $ (-592 |#3|)) 121)) (-2371 (($ $ $) 79 (|has| |#1| (-789)))) (-2535 (($ $ $) 78 (|has| |#1| (-789)))) (-3922 (($ (-1 |#2| |#2|) $) 171)) (-2694 (($ (-1 |#1| |#1|) $) 151)) (-3567 (((-3 |#3| "failed") $) 123)) (-2538 (($ $) 149)) (-2548 ((|#1| $) 148)) (-2756 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-3451 (((-1074) $) 9)) (-4228 (((-3 (-592 $) "failed") $) 114)) (-3852 (((-3 (-592 $) "failed") $) 115)) (-1553 (((-3 (-2 (|:| |var| |#3|) (|:| -1864 (-713))) "failed") $) 113)) (-2012 (((-1038) $) 10)) (-2513 (((-108) $) 166)) (-2525 ((|#1| $) 167)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 95 (|has| |#1| (-429)))) (-2794 (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-1215 (((-396 (-1087 $)) (-1087 $)) 102 (|has| |#1| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) 101 (|has| |#1| (-844)))) (-2195 (((-396 $) $) 99 (|has| |#1| (-844)))) (-1680 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-2602 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-592 |#3|) (-592 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-592 |#3|) (-592 $)) 138)) (-2094 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-2523 (($ $ |#3|) 42) (($ $ (-592 |#3|)) 41) (($ $ |#3| (-713)) 40) (($ $ (-592 |#3|) (-592 (-713))) 39)) (-1587 ((|#2| $) 150) (((-713) $ |#3|) 130) (((-592 (-713)) $ (-592 |#3|)) 129)) (-2749 (((-827 (-357)) $) 82 (-12 (|has| |#3| (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) 81 (-12 (|has| |#3| (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2026 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) 104 (-3830 (|has| $ (-136)) (|has| |#1| (-844))))) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (($ $) 85 (|has| |#1| (-517))) (($ (-385 (-525))) 72 (-3279 (|has| |#1| (-968 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525))))))) (-1562 (((-592 |#1|) $) 168)) (-3468 ((|#1| $ |#2|) 155) (($ $ |#3| (-713)) 128) (($ $ (-592 |#3|) (-592 (-713))) 127)) (-3425 (((-3 $ "failed") $) 73 (-3279 (-3830 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2104 (((-713)) 29)) (-3658 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-3959 (((-108) $ $) 89 (|has| |#1| (-517)))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ |#3|) 38) (($ $ (-592 |#3|)) 37) (($ $ |#3| (-713)) 36) (($ $ (-592 |#3|) (-592 (-713))) 35)) (-4045 (((-108) $ $) 76 (|has| |#1| (-789)))) (-4026 (((-108) $ $) 75 (|has| |#1| (-789)))) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 77 (|has| |#1| (-789)))) (-4017 (((-108) $ $) 74 (|has| |#1| (-789)))) (-4100 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-884 |#1| |#2| |#3|) (-131) (-977) (-735) (-789)) (T -884))
+((-3026 (*1 *1 *1) (-12 (-4 *1 (-884 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-1587 (*1 *2 *1 *3) (-12 (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-713)))) (-1587 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713))))) (-3468 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-884 *4 *5 *2)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *2 (-789)))) (-3468 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)))) (-2177 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5)))) (-2146 (*1 *2 *1 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-1087 *1)) (-4 *1 (-884 *4 *5 *3)))) (-2146 (*1 *2 *1) (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-1087 *3)))) (-3567 (*1 *2 *1) (|partial| -12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-3724 (*1 *2 *1 *3) (-12 (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-713)))) (-3724 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713))))) (-3863 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-884 *4 *5 *3)))) (-2352 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-884 *4 *5 *2)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *2 (-789)))) (-2352 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)))) (-2368 (*1 *1 *2 *3) (-12 (-5 *2 (-1087 *4)) (-4 *4 (-977)) (-4 *1 (-884 *4 *5 *3)) (-4 *5 (-735)) (-4 *3 (-789)))) (-2368 (*1 *1 *2 *3) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)))) (-3852 (*1 *2 *1) (|partial| -12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5)))) (-4228 (*1 *2 *1) (|partial| -12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5)))) (-1553 (*1 *2 *1) (|partial| -12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| |var| *5) (|:| -1864 (-713)))))) (-3848 (*1 *2 *1) (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-713)))) (-3848 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713)))) (-2383 (*1 *2 *1) (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *5)))) (-2558 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5)))) (-1516 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-160)))) (-2094 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-160)))) (-2026 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-429)))) (-3026 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *3 (-429)))) (-3706 (*1 *1 *1) (-12 (-4 *1 (-884 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-2100 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-396 *1)) (-4 *1 (-884 *3 *4 *5)))))
+(-13 (-835 |t#3|) (-304 |t#1| |t#2|) (-288 $) (-486 |t#3| |t#1|) (-486 |t#3| $) (-968 |t#3|) (-355 |t#1|) (-10 -8 (-15 -1587 ((-713) $ |t#3|)) (-15 -1587 ((-592 (-713)) $ (-592 |t#3|))) (-15 -3468 ($ $ |t#3| (-713))) (-15 -3468 ($ $ (-592 |t#3|) (-592 (-713)))) (-15 -2177 ((-592 $) $)) (-15 -2146 ((-1087 $) $ |t#3|)) (-15 -2146 ((-1087 |t#1|) $)) (-15 -3567 ((-3 |t#3| "failed") $)) (-15 -3724 ((-713) $ |t#3|)) (-15 -3724 ((-592 (-713)) $ (-592 |t#3|))) (-15 -3863 ((-2 (|:| -2370 $) (|:| -3496 $)) $ $ |t#3|)) (-15 -2352 ($ $ |t#3| (-713))) (-15 -2352 ($ $ (-592 |t#3|) (-592 (-713)))) (-15 -2368 ($ (-1087 |t#1|) |t#3|)) (-15 -2368 ($ (-1087 $) |t#3|)) (-15 -3852 ((-3 (-592 $) "failed") $)) (-15 -4228 ((-3 (-592 $) "failed") $)) (-15 -1553 ((-3 (-2 (|:| |var| |t#3|) (|:| -1864 (-713))) "failed") $)) (-15 -3848 ((-713) $)) (-15 -3848 ((-713) $ (-592 |t#3|))) (-15 -2383 ((-592 |t#3|) $)) (-15 -2558 ((-592 $) $)) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (IF (|has| |t#3| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-567 (-827 (-525)))) (IF (|has| |t#3| (-567 (-827 (-525)))) (-6 (-567 (-827 (-525)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-567 (-827 (-357)))) (IF (|has| |t#3| (-567 (-827 (-357)))) (-6 (-567 (-827 (-357)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-821 (-525))) (IF (|has| |t#3| (-821 (-525))) (-6 (-821 (-525))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-821 (-357))) (IF (|has| |t#3| (-821 (-357))) (-6 (-821 (-357))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-15 -1516 ($ $ $ |t#3|)) (-15 -2094 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-6 (-429)) (-15 -2026 ($ $ |t#3|)) (-15 -3026 ($ $)) (-15 -3026 ($ $ |t#3|)) (-15 -2100 ((-396 $) $)) (-15 -3706 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4253)) (-6 -4253) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))) ((-567 (-827 (-357))) -12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#3| (-567 (-827 (-357))))) ((-567 (-827 (-525))) -12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#3| (-567 (-827 (-525))))) ((-269) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3279 (|has| |#1| (-844)) (|has| |#1| (-429))) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 |#3|) . T) ((-821 (-357)) -12 (|has| |#1| (-821 (-357))) (|has| |#3| (-821 (-357)))) ((-821 (-525)) -12 (|has| |#1| (-821 (-525))) (|has| |#3| (-821 (-525)))) ((-844) |has| |#1| (-844)) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-968 |#3|) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1131) |has| |#1| (-844)))
+((-2383 (((-592 |#2|) |#5|) 36)) (-2146 (((-1087 |#5|) |#5| |#2| (-1087 |#5|)) 23) (((-385 (-1087 |#5|)) |#5| |#2|) 16)) (-2368 ((|#5| (-385 (-1087 |#5|)) |#2|) 30)) (-3567 (((-3 |#2| "failed") |#5|) 65)) (-4228 (((-3 (-592 |#5|) "failed") |#5|) 59)) (-1617 (((-3 (-2 (|:| |val| |#5|) (|:| -1864 (-525))) "failed") |#5|) 47)) (-3852 (((-3 (-592 |#5|) "failed") |#5|) 61)) (-1553 (((-3 (-2 (|:| |var| |#2|) (|:| -1864 (-525))) "failed") |#5|) 51)))
+(((-885 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2383 ((-592 |#2|) |#5|)) (-15 -3567 ((-3 |#2| "failed") |#5|)) (-15 -2146 ((-385 (-1087 |#5|)) |#5| |#2|)) (-15 -2368 (|#5| (-385 (-1087 |#5|)) |#2|)) (-15 -2146 ((-1087 |#5|) |#5| |#2| (-1087 |#5|))) (-15 -3852 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -4228 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -1553 ((-3 (-2 (|:| |var| |#2|) (|:| -1864 (-525))) "failed") |#5|)) (-15 -1617 ((-3 (-2 (|:| |val| |#5|) (|:| -1864 (-525))) "failed") |#5|))) (-735) (-789) (-977) (-884 |#3| |#1| |#2|) (-13 (-341) (-10 -8 (-15 -1270 ($ |#4|)) (-15 -1498 (|#4| $)) (-15 -1512 (|#4| $))))) (T -885))
+((-1617 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1864 (-525)))) (-5 *1 (-885 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $)) (-15 -1512 (*7 $))))))) (-1553 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1864 (-525)))) (-5 *1 (-885 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $)) (-15 -1512 (*7 $))))))) (-4228 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *3)) (-5 *1 (-885 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $)) (-15 -1512 (*7 $))))))) (-3852 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *3)) (-5 *1 (-885 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $)) (-15 -1512 (*7 $))))))) (-2146 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $)) (-15 -1512 (*7 $))))) (-4 *7 (-884 *6 *5 *4)) (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-977)) (-5 *1 (-885 *5 *4 *6 *7 *3)))) (-2368 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-1087 *2))) (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-977)) (-4 *2 (-13 (-341) (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $)) (-15 -1512 (*7 $))))) (-5 *1 (-885 *5 *4 *6 *7 *2)) (-4 *7 (-884 *6 *5 *4)))) (-2146 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-385 (-1087 *3))) (-5 *1 (-885 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $)) (-15 -1512 (*7 $))))))) (-3567 (*1 *2 *3) (|partial| -12 (-4 *4 (-735)) (-4 *5 (-977)) (-4 *6 (-884 *5 *4 *2)) (-4 *2 (-789)) (-5 *1 (-885 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1270 ($ *6)) (-15 -1498 (*6 $)) (-15 -1512 (*6 $))))))) (-2383 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *5)) (-5 *1 (-885 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $)) (-15 -1512 (*7 $))))))))
+(-10 -7 (-15 -2383 ((-592 |#2|) |#5|)) (-15 -3567 ((-3 |#2| "failed") |#5|)) (-15 -2146 ((-385 (-1087 |#5|)) |#5| |#2|)) (-15 -2368 (|#5| (-385 (-1087 |#5|)) |#2|)) (-15 -2146 ((-1087 |#5|) |#5| |#2| (-1087 |#5|))) (-15 -3852 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -4228 ((-3 (-592 |#5|) "failed") |#5|)) (-15 -1553 ((-3 (-2 (|:| |var| |#2|) (|:| -1864 (-525))) "failed") |#5|)) (-15 -1617 ((-3 (-2 (|:| |val| |#5|) (|:| -1864 (-525))) "failed") |#5|)))
+((-2694 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-886 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2694 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-735) (-789) (-977) (-884 |#3| |#1| |#2|) (-13 (-1020) (-10 -8 (-15 -4080 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713)))))) (T -886))
+((-2694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-789)) (-4 *8 (-977)) (-4 *6 (-735)) (-4 *2 (-13 (-1020) (-10 -8 (-15 -4080 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713)))))) (-5 *1 (-886 *6 *7 *8 *5 *2)) (-4 *5 (-884 *8 *6 *7)))))
+(-10 -7 (-15 -2694 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2383 (((-592 (-1091)) $) 16)) (-2146 (((-1087 $) $ (-1091)) 21) (((-1087 |#1|) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-3848 (((-713) $) NIL) (((-713) $ (-592 (-1091))) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-3706 (($ $) NIL (|has| |#1| (-429)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) 8) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-1091) "failed") $) NIL)) (-3898 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-1091) $) NIL)) (-1516 (($ $ $ (-1091)) NIL (|has| |#1| (-160)))) (-2571 (($ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3026 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1091)) NIL (|has| |#1| (-429)))) (-2558 (((-592 $) $) NIL)) (-3836 (((-108) $) NIL (|has| |#1| (-844)))) (-2192 (($ $ |#1| (-497 (-1091)) $) NIL)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1091) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1091) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) NIL)) (-2368 (($ (-1087 |#1|) (-1091)) NIL) (($ (-1087 $) (-1091)) NIL)) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-497 (-1091))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ (-1091)) NIL)) (-3724 (((-497 (-1091)) $) NIL) (((-713) $ (-1091)) NIL) (((-592 (-713)) $ (-592 (-1091))) NIL)) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-3922 (($ (-1 (-497 (-1091)) (-497 (-1091))) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-3567 (((-3 (-1091) "failed") $) 19)) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3451 (((-1074) $) NIL)) (-4228 (((-3 (-592 $) "failed") $) NIL)) (-3852 (((-3 (-592 $) "failed") $) NIL)) (-1553 (((-3 (-2 (|:| |var| (-1091)) (|:| -1864 (-713))) "failed") $) NIL)) (-2650 (($ $ (-1091)) 29 (|has| |#1| (-37 (-385 (-525)))))) (-2012 (((-1038) $) NIL)) (-2513 (((-108) $) NIL)) (-2525 ((|#1| $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-429)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2195 (((-396 $) $) NIL (|has| |#1| (-844)))) (-1680 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2602 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1091) |#1|) NIL) (($ $ (-592 (-1091)) (-592 |#1|)) NIL) (($ $ (-1091) $) NIL) (($ $ (-592 (-1091)) (-592 $)) NIL)) (-2094 (($ $ (-1091)) NIL (|has| |#1| (-160)))) (-2523 (($ $ (-1091)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL)) (-1587 (((-497 (-1091)) $) NIL) (((-713) $ (-1091)) NIL) (((-592 (-713)) $ (-592 (-1091))) NIL)) (-2749 (((-827 (-357)) $) NIL (-12 (|has| (-1091) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1091) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1091) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2026 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1091)) NIL (|has| |#1| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1270 (((-798) $) 25) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1091)) 27) (($ (-385 (-525))) NIL (-3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-1562 (((-592 |#1|) $) NIL)) (-3468 ((|#1| $ (-497 (-1091))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2104 (((-713)) NIL)) (-3658 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $ (-1091)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL)) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-887 |#1|) (-13 (-884 |#1| (-497 (-1091)) (-1091)) (-10 -8 (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2650 ($ $ (-1091))) |%noBranch|))) (-977)) (T -887))
+((-2650 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-887 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)))))
+(-13 (-884 |#1| (-497 (-1091)) (-1091)) (-10 -8 (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2650 ($ $ (-1091))) |%noBranch|)))
+((-3317 (((-2 (|:| -1864 (-713)) (|:| -1655 |#5|) (|:| |radicand| |#5|)) |#3| (-713)) 38)) (-1721 (((-2 (|:| -1864 (-713)) (|:| -1655 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-713)) 34)) (-2980 (((-2 (|:| -1864 (-713)) (|:| -1655 |#4|) (|:| |radicand| (-592 |#4|))) |#4| (-713)) 54)) (-3715 (((-2 (|:| -1864 (-713)) (|:| -1655 |#5|) (|:| |radicand| |#5|)) |#5| (-713)) 64 (|has| |#3| (-429)))))
+(((-888 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3317 ((-2 (|:| -1864 (-713)) (|:| -1655 |#5|) (|:| |radicand| |#5|)) |#3| (-713))) (-15 -1721 ((-2 (|:| -1864 (-713)) (|:| -1655 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-713))) (IF (|has| |#3| (-429)) (-15 -3715 ((-2 (|:| -1864 (-713)) (|:| -1655 |#5|) (|:| |radicand| |#5|)) |#5| (-713))) |%noBranch|) (-15 -2980 ((-2 (|:| -1864 (-713)) (|:| -1655 |#4|) (|:| |radicand| (-592 |#4|))) |#4| (-713)))) (-735) (-789) (-517) (-884 |#3| |#1| |#2|) (-13 (-341) (-10 -8 (-15 -1498 (|#4| $)) (-15 -1512 (|#4| $)) (-15 -1270 ($ |#4|))))) (T -888))
+((-2980 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517)) (-4 *3 (-884 *7 *5 *6)) (-5 *2 (-2 (|:| -1864 (-713)) (|:| -1655 *3) (|:| |radicand| (-592 *3)))) (-5 *1 (-888 *5 *6 *7 *3 *8)) (-5 *4 (-713)) (-4 *8 (-13 (-341) (-10 -8 (-15 -1498 (*3 $)) (-15 -1512 (*3 $)) (-15 -1270 ($ *3))))))) (-3715 (*1 *2 *3 *4) (-12 (-4 *7 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517)) (-4 *8 (-884 *7 *5 *6)) (-5 *2 (-2 (|:| -1864 (-713)) (|:| -1655 *3) (|:| |radicand| *3))) (-5 *1 (-888 *5 *6 *7 *8 *3)) (-5 *4 (-713)) (-4 *3 (-13 (-341) (-10 -8 (-15 -1498 (*8 $)) (-15 -1512 (*8 $)) (-15 -1270 ($ *8))))))) (-1721 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-525))) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517)) (-4 *8 (-884 *7 *5 *6)) (-5 *2 (-2 (|:| -1864 (-713)) (|:| -1655 *9) (|:| |radicand| *9))) (-5 *1 (-888 *5 *6 *7 *8 *9)) (-5 *4 (-713)) (-4 *9 (-13 (-341) (-10 -8 (-15 -1498 (*8 $)) (-15 -1512 (*8 $)) (-15 -1270 ($ *8))))))) (-3317 (*1 *2 *3 *4) (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-517)) (-4 *7 (-884 *3 *5 *6)) (-5 *2 (-2 (|:| -1864 (-713)) (|:| -1655 *8) (|:| |radicand| *8))) (-5 *1 (-888 *5 *6 *3 *7 *8)) (-5 *4 (-713)) (-4 *8 (-13 (-341) (-10 -8 (-15 -1498 (*7 $)) (-15 -1512 (*7 $)) (-15 -1270 ($ *7))))))))
+(-10 -7 (-15 -3317 ((-2 (|:| -1864 (-713)) (|:| -1655 |#5|) (|:| |radicand| |#5|)) |#3| (-713))) (-15 -1721 ((-2 (|:| -1864 (-713)) (|:| -1655 |#5|) (|:| |radicand| |#5|)) (-385 (-525)) (-713))) (IF (|has| |#3| (-429)) (-15 -3715 ((-2 (|:| -1864 (-713)) (|:| -1655 |#5|) (|:| |radicand| |#5|)) |#5| (-713))) |%noBranch|) (-15 -2980 ((-2 (|:| -1864 (-713)) (|:| -1655 |#4|) (|:| |radicand| (-592 |#4|))) |#4| (-713))))
+((-2604 (((-1015 (-205)) $) 8)) (-2596 (((-1015 (-205)) $) 9)) (-1703 (((-592 (-592 (-878 (-205)))) $) 10)) (-1270 (((-798) $) 6)))
+(((-889) (-131)) (T -889))
+((-1703 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-592 (-592 (-878 (-205))))))) (-2596 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1015 (-205))))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1015 (-205))))))
+(-13 (-566 (-798)) (-10 -8 (-15 -1703 ((-592 (-592 (-878 (-205)))) $)) (-15 -2596 ((-1015 (-205)) $)) (-15 -2604 ((-1015 (-205)) $))))
+(((-566 (-798)) . T))
+((-2562 (((-3 (-632 |#1|) "failed") |#2| (-856)) 15)))
+(((-890 |#1| |#2|) (-10 -7 (-15 -2562 ((-3 (-632 |#1|) "failed") |#2| (-856)))) (-517) (-602 |#1|)) (T -890))
+((-2562 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-856)) (-4 *5 (-517)) (-5 *2 (-632 *5)) (-5 *1 (-890 *5 *3)) (-4 *3 (-602 *5)))))
+(-10 -7 (-15 -2562 ((-3 (-632 |#1|) "failed") |#2| (-856))))
+((-3123 (((-892 |#2|) (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|) 16)) (-3503 ((|#2| (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|) 18)) (-2694 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 13)))
+(((-891 |#1| |#2|) (-10 -7 (-15 -3123 ((-892 |#2|) (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|)) (-15 -3503 (|#2| (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|)) (-15 -2694 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1127) (-1127)) (T -891))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6)))) (-3503 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-892 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-891 *5 *2)))) (-3123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-892 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-5 *2 (-892 *5)) (-5 *1 (-891 *6 *5)))))
+(-10 -7 (-15 -3123 ((-892 |#2|) (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|)) (-15 -3503 (|#2| (-1 |#2| |#1| |#2|) (-892 |#1|) |#2|)) (-15 -2694 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-2151 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2549 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4256))) (($ $) NIL (-12 (|has| $ (-6 -4256)) (|has| |#1| (-789))))) (-2855 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 ((|#1| $ (-525) |#1|) 16 (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) NIL (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-3559 (($ $) NIL (|has| $ (-6 -4256)))) (-3620 (($ $) NIL)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1614 (($ |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2632 ((|#1| $ (-525) |#1|) 15 (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) 13)) (-1916 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-3489 (($ (-713) |#1|) 12)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) 10 (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-3743 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2683 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3110 ((|#1| $) NIL (|has| (-525) (-789)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2042 (($ $ |#1|) 17 (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) 11)) (-3410 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) 14) (($ $ (-1140 (-525))) NIL)) (-3157 (($ $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3216 (($ $ $ (-525)) NIL (|has| $ (-6 -4256)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) NIL)) (-2014 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3596 (((-713) $) 8 (|has| $ (-6 -4255)))))
+(((-892 |#1|) (-19 |#1|) (-1127)) (T -892))
NIL
(-19 |#1|)
-((-3113 (($ $ (-1012 $)) 7) (($ $ (-1090)) 6)))
-(((-892) (-131)) (T -892))
-((-3113 (*1 *1 *1 *2) (-12 (-5 *2 (-1012 *1)) (-4 *1 (-892)))) (-3113 (*1 *1 *1 *2) (-12 (-4 *1 (-892)) (-5 *2 (-1090)))))
-(-13 (-10 -8 (-15 -3113 ($ $ (-1090))) (-15 -3113 ($ $ (-1012 $)))))
-((-3205 (((-2 (|:| -1459 (-592 (-525))) (|:| |poly| (-592 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-592 (-886 |#1|)) (-592 (-1090)) (-1090)) 25) (((-2 (|:| -1459 (-592 (-525))) (|:| |poly| (-592 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-592 (-886 |#1|)) (-592 (-1090))) 26) (((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1086 |#1|))) (-886 |#1|) (-1090) (-886 |#1|) (-1090)) 43)))
-(((-893 |#1|) (-10 -7 (-15 -3205 ((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1086 |#1|))) (-886 |#1|) (-1090) (-886 |#1|) (-1090))) (-15 -3205 ((-2 (|:| -1459 (-592 (-525))) (|:| |poly| (-592 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-592 (-886 |#1|)) (-592 (-1090)))) (-15 -3205 ((-2 (|:| -1459 (-592 (-525))) (|:| |poly| (-592 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-592 (-886 |#1|)) (-592 (-1090)) (-1090)))) (-13 (-341) (-138))) (T -893))
-((-3205 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-886 *6))) (-5 *4 (-592 (-1090))) (-5 *5 (-1090)) (-4 *6 (-13 (-341) (-138))) (-5 *2 (-2 (|:| -1459 (-592 (-525))) (|:| |poly| (-592 (-1086 *6))) (|:| |prim| (-1086 *6)))) (-5 *1 (-893 *6)))) (-3205 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-592 (-1090))) (-4 *5 (-13 (-341) (-138))) (-5 *2 (-2 (|:| -1459 (-592 (-525))) (|:| |poly| (-592 (-1086 *5))) (|:| |prim| (-1086 *5)))) (-5 *1 (-893 *5)))) (-3205 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-886 *5)) (-5 *4 (-1090)) (-4 *5 (-13 (-341) (-138))) (-5 *2 (-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1086 *5)))) (-5 *1 (-893 *5)))))
-(-10 -7 (-15 -3205 ((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1086 |#1|))) (-886 |#1|) (-1090) (-886 |#1|) (-1090))) (-15 -3205 ((-2 (|:| -1459 (-592 (-525))) (|:| |poly| (-592 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-592 (-886 |#1|)) (-592 (-1090)))) (-15 -3205 ((-2 (|:| -1459 (-592 (-525))) (|:| |poly| (-592 (-1086 |#1|))) (|:| |prim| (-1086 |#1|))) (-592 (-886 |#1|)) (-592 (-1090)) (-1090))))
-((-4051 (((-592 |#1|) |#1| |#1|) 42)) (-2250 (((-108) |#1|) 39)) (-1261 ((|#1| |#1|) 65)) (-1853 ((|#1| |#1|) 64)))
-(((-894 |#1|) (-10 -7 (-15 -2250 ((-108) |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1261 (|#1| |#1|)) (-15 -4051 ((-592 |#1|) |#1| |#1|))) (-510)) (T -894))
-((-4051 (*1 *2 *3 *3) (-12 (-5 *2 (-592 *3)) (-5 *1 (-894 *3)) (-4 *3 (-510)))) (-1261 (*1 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-510)))) (-1853 (*1 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-510)))) (-2250 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-510)))))
-(-10 -7 (-15 -2250 ((-108) |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -1261 (|#1| |#1|)) (-15 -4051 ((-592 |#1|) |#1| |#1|)))
-((-2670 (((-1177) (-797)) 9)))
-(((-895) (-10 -7 (-15 -2670 ((-1177) (-797))))) (T -895))
-((-2670 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-895)))))
-(-10 -7 (-15 -2670 ((-1177) (-797))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 63 (|has| |#1| (-517)))) (-3635 (($ $) 64 (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 28)) (-2831 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-1247 (($ $) 24)) (-2866 (((-3 $ "failed") $) 35)) (-3811 (($ $) NIL (|has| |#1| (-429)))) (-2099 (($ $ |#1| |#2| $) 48)) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) 16)) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| |#2|) NIL)) (-3181 ((|#2| $) 19)) (-1331 (($ (-1 |#2| |#2|) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-1212 (($ $) 23)) (-1224 ((|#1| $) 21)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-4221 (((-108) $) 40)) (-4232 ((|#1| $) NIL)) (-1631 (($ $ |#2| |#1| $) 75 (-12 (|has| |#2| (-126)) (|has| |#1| (-517))))) (-2338 (((-3 $ "failed") $ $) 76 (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-517)))) (-2513 ((|#2| $) 17)) (-2751 ((|#1| $) NIL (|has| |#1| (-429)))) (-1908 (((-797) $) NIL) (($ (-525)) 39) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 34) (($ (-385 (-525))) NIL (-3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525))))))) (-3600 (((-592 |#1|) $) NIL)) (-1657 ((|#1| $ |#2|) 31)) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) 15)) (-4116 (($ $ $ (-713)) 59 (|has| |#1| (-160)))) (-2262 (((-108) $ $) 69 (|has| |#1| (-517)))) (-3465 (($ $ (-855)) 55) (($ $ (-713)) 56)) (-3875 (($) 22 T CONST)) (-3882 (($) 12 T CONST)) (-3961 (((-108) $ $) 68)) (-4082 (($ $ |#1|) 77 (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) 54) (($ $ (-713)) 52)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-896 |#1| |#2|) (-13 (-304 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| |#2| (-126)) (-15 -1631 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4252)) (-6 -4252) |%noBranch|))) (-976) (-734)) (T -896))
-((-1631 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-896 *3 *2)) (-4 *2 (-126)) (-4 *3 (-517)) (-4 *3 (-976)) (-4 *2 (-734)))))
-(-13 (-304 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| |#2| (-126)) (-15 -1631 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4252)) (-6 -4252) |%noBranch|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL (-3309 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (-1487 (($ $ $) 63 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))) (-3263 (((-3 $ "failed") $ $) 50 (-3309 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (-3107 (((-713)) 34 (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-1715 ((|#2| $) 21)) (-1467 ((|#1| $) 20)) (-1505 (($) NIL (-3309 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) CONST)) (-2866 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (-3375 (($) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-2133 (((-108) $) NIL (-3309 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (-3525 (($ $ $) NIL (-3309 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3630 (($ $ $) NIL (-3309 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-4065 (($ |#1| |#2|) 19)) (-1780 (((-855) $) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 37 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-4185 (($ (-855)) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-2663 (((-1037) $) NIL)) (-3634 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-1518 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-1908 (((-797) $) 14)) (-3465 (($ $ (-525)) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450)))) (($ $ (-713)) NIL (-3309 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))) (($ $ (-855)) NIL (-3309 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (-3875 (($) 40 (-3309 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) CONST)) (-3882 (($) 24 (-3309 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))) CONST)) (-4024 (((-108) $ $) NIL (-3309 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3995 (((-108) $ $) NIL (-3309 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3961 (((-108) $ $) 18)) (-4010 (((-108) $ $) NIL (-3309 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3983 (((-108) $ $) 66 (-3309 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-4082 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-4070 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4059 (($ $ $) 43 (-3309 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (** (($ $ (-525)) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450)))) (($ $ (-713)) 31 (-3309 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))) (($ $ (-855)) NIL (-3309 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (* (($ (-525) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-713) $) 46 (-3309 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))) (($ (-855) $) NIL (-3309 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))) (($ $ $) 27 (-3309 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))))
-(((-897 |#1| |#2|) (-13 (-1019) (-10 -8 (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-669)) (IF (|has| |#2| (-669)) (-6 (-669)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-126)) (IF (|has| |#2| (-126)) (-6 (-126)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-450)) (-6 (-450)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-735)) (IF (|has| |#2| (-735)) (-6 (-735)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (-15 -4065 ($ |#1| |#2|)) (-15 -1467 (|#1| $)) (-15 -1715 (|#2| $)))) (-1019) (-1019)) (T -897))
-((-4065 (*1 *1 *2 *3) (-12 (-5 *1 (-897 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) (-1467 (*1 *2 *1) (-12 (-4 *2 (-1019)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1019)))) (-1715 (*1 *2 *1) (-12 (-4 *2 (-1019)) (-5 *1 (-897 *3 *2)) (-4 *3 (-1019)))))
-(-13 (-1019) (-10 -8 (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-669)) (IF (|has| |#2| (-669)) (-6 (-669)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-126)) (IF (|has| |#2| (-126)) (-6 (-126)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-450)) (-6 (-450)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-735)) (IF (|has| |#2| (-735)) (-6 (-735)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (-15 -4065 ($ |#1| |#2|)) (-15 -1467 (|#1| $)) (-15 -1715 (|#2| $))))
-((-3871 (((-1023) $) 12)) (-2877 (($ (-1090) (-1023)) 13)) (-1310 (((-1090) $) 10)) (-1908 (((-797) $) 24)))
-(((-898) (-13 (-566 (-797)) (-10 -8 (-15 -1310 ((-1090) $)) (-15 -3871 ((-1023) $)) (-15 -2877 ($ (-1090) (-1023)))))) (T -898))
-((-1310 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-898)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-898)))) (-2877 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1023)) (-5 *1 (-898)))))
-(-13 (-566 (-797)) (-10 -8 (-15 -1310 ((-1090) $)) (-15 -3871 ((-1023) $)) (-15 -2877 ($ (-1090) (-1023)))))
-((-4104 (((-1021 (-1090)) $) 19)) (-3733 (((-108) $) 26)) (-1251 (((-1090) $) 27)) (-2011 (((-108) $) 24)) (-2905 ((|#1| $) 25)) (-3127 (((-807 $ $) $) 34)) (-3813 (((-108) $) 33)) (-1330 (($ $ $) 12)) (-4089 (($ $) 29)) (-4003 (((-108) $) 28)) (-2480 (($ $) 10)) (-3481 (((-807 $ $) $) 36)) (-2123 (((-108) $) 35)) (-3028 (($ $ $) 13)) (-1474 (((-807 $ $) $) 38)) (-1757 (((-108) $) 37)) (-4160 (($ $ $) 14)) (-1908 (($ |#1|) 7) (($ (-1090)) 9) (((-797) $) 40 (|has| |#1| (-566 (-797))))) (-1800 (((-807 $ $) $) 32)) (-1315 (((-108) $) 30)) (-1341 (($ $ $) 11)))
-(((-899 |#1|) (-13 (-900) (-10 -8 (IF (|has| |#1| (-566 (-797))) (-6 (-566 (-797))) |%noBranch|) (-15 -1908 ($ |#1|)) (-15 -1908 ($ (-1090))) (-15 -4104 ((-1021 (-1090)) $)) (-15 -2011 ((-108) $)) (-15 -2905 (|#1| $)) (-15 -3733 ((-108) $)) (-15 -1251 ((-1090) $)) (-15 -4003 ((-108) $)) (-15 -4089 ($ $)) (-15 -1315 ((-108) $)) (-15 -1800 ((-807 $ $) $)) (-15 -3813 ((-108) $)) (-15 -3127 ((-807 $ $) $)) (-15 -2123 ((-108) $)) (-15 -3481 ((-807 $ $) $)) (-15 -1757 ((-108) $)) (-15 -1474 ((-807 $ $) $)))) (-900)) (T -899))
-((-1908 (*1 *1 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-900)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-1021 (-1090))) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-2011 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-2905 (*1 *2 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-900)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-1251 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-4089 (*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-900)))) (-1315 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-1800 (*1 *2 *1) (-12 (-5 *2 (-807 (-899 *3) (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-3813 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-3127 (*1 *2 *1) (-12 (-5 *2 (-807 (-899 *3) (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-2123 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-3481 (*1 *2 *1) (-12 (-5 *2 (-807 (-899 *3) (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))) (-1474 (*1 *2 *1) (-12 (-5 *2 (-807 (-899 *3) (-899 *3))) (-5 *1 (-899 *3)) (-4 *3 (-900)))))
-(-13 (-900) (-10 -8 (IF (|has| |#1| (-566 (-797))) (-6 (-566 (-797))) |%noBranch|) (-15 -1908 ($ |#1|)) (-15 -1908 ($ (-1090))) (-15 -4104 ((-1021 (-1090)) $)) (-15 -2011 ((-108) $)) (-15 -2905 (|#1| $)) (-15 -3733 ((-108) $)) (-15 -1251 ((-1090) $)) (-15 -4003 ((-108) $)) (-15 -4089 ($ $)) (-15 -1315 ((-108) $)) (-15 -1800 ((-807 $ $) $)) (-15 -3813 ((-108) $)) (-15 -3127 ((-807 $ $) $)) (-15 -2123 ((-108) $)) (-15 -3481 ((-807 $ $) $)) (-15 -1757 ((-108) $)) (-15 -1474 ((-807 $ $) $))))
-((-1330 (($ $ $) 8)) (-2480 (($ $) 6)) (-3028 (($ $ $) 9)) (-4160 (($ $ $) 10)) (-1341 (($ $ $) 7)))
-(((-900) (-131)) (T -900))
-((-4160 (*1 *1 *1 *1) (-4 *1 (-900))) (-3028 (*1 *1 *1 *1) (-4 *1 (-900))) (-1330 (*1 *1 *1 *1) (-4 *1 (-900))) (-1341 (*1 *1 *1 *1) (-4 *1 (-900))) (-2480 (*1 *1 *1) (-4 *1 (-900))))
-(-13 (-10 -8 (-15 -2480 ($ $)) (-15 -1341 ($ $ $)) (-15 -1330 ($ $ $)) (-15 -3028 ($ $ $)) (-15 -4160 ($ $ $))))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3410 (((-108) $ (-713)) 8)) (-1505 (($) 7 T CONST)) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) 9)) (-2749 (($ $ $) 43)) (-1932 (($ $ $) 44)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-3630 ((|#1| $) 45)) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2570 ((|#1| $) 39)) (-2573 (($ |#1| $) 40)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3513 ((|#1| $) 41)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-3612 (($ (-592 |#1|)) 42)) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-901 |#1|) (-131) (-789)) (T -901))
-((-3630 (*1 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-789)))) (-1932 (*1 *1 *1 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-789)))) (-2749 (*1 *1 *1 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-789)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4254) (-15 -3630 (|t#1| $)) (-15 -1932 ($ $ $)) (-15 -2749 ($ $ $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T))
-((-2928 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3244 |#2|)) |#2| |#2|) 85)) (-1820 ((|#2| |#2| |#2|) 83)) (-3866 (((-2 (|:| |coef2| |#2|) (|:| -3244 |#2|)) |#2| |#2|) 87)) (-1974 (((-2 (|:| |coef1| |#2|) (|:| -3244 |#2|)) |#2| |#2|) 89)) (-3064 (((-2 (|:| |coef2| |#2|) (|:| -3018 |#1|)) |#2| |#2|) 107 (|has| |#1| (-429)))) (-1667 (((-2 (|:| |coef2| |#2|) (|:| -2506 |#1|)) |#2| |#2|) 46)) (-3456 (((-2 (|:| |coef2| |#2|) (|:| -2506 |#1|)) |#2| |#2|) 64)) (-1240 (((-2 (|:| |coef1| |#2|) (|:| -2506 |#1|)) |#2| |#2|) 66)) (-2709 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-3236 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 71)) (-3785 (((-2 (|:| |coef2| |#2|) (|:| -1400 |#1|)) |#2|) 97)) (-1641 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 74)) (-2259 (((-592 (-713)) |#2| |#2|) 82)) (-3396 ((|#1| |#2| |#2|) 42)) (-2939 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3018 |#1|)) |#2| |#2|) 105 (|has| |#1| (-429)))) (-3018 ((|#1| |#2| |#2|) 103 (|has| |#1| (-429)))) (-1934 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2506 |#1|)) |#2| |#2|) 44)) (-3063 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2506 |#1|)) |#2| |#2|) 63)) (-2506 ((|#1| |#2| |#2|) 61)) (-3196 (((-2 (|:| -1459 |#1|) (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2|) 35)) (-3807 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3554 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-1868 ((|#2| |#2| |#2|) 75)) (-1216 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 69)) (-4201 ((|#2| |#2| |#2| (-713)) 67)) (-3244 ((|#2| |#2| |#2|) 111 (|has| |#1| (-429)))) (-2338 (((-1172 |#2|) (-1172 |#2|) |#1|) 21)) (-1760 (((-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2|) 39)) (-2360 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1400 |#1|)) |#2|) 95)) (-1400 ((|#1| |#2|) 92)) (-1949 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 73)) (-2844 ((|#2| |#2| |#2| (-713)) 72)) (-4057 (((-592 |#2|) |#2| |#2|) 80)) (-1348 ((|#2| |#2| |#1| |#1| (-713)) 50)) (-1557 ((|#1| |#1| |#1| (-713)) 49)) (* (((-1172 |#2|) |#1| (-1172 |#2|)) 16)))
-(((-902 |#1| |#2|) (-10 -7 (-15 -2506 (|#1| |#2| |#2|)) (-15 -3063 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2506 |#1|)) |#2| |#2|)) (-15 -3456 ((-2 (|:| |coef2| |#2|) (|:| -2506 |#1|)) |#2| |#2|)) (-15 -1240 ((-2 (|:| |coef1| |#2|) (|:| -2506 |#1|)) |#2| |#2|)) (-15 -4201 (|#2| |#2| |#2| (-713))) (-15 -1216 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -3236 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -2844 (|#2| |#2| |#2| (-713))) (-15 -1949 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1641 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1868 (|#2| |#2| |#2|)) (-15 -3554 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2709 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1820 (|#2| |#2| |#2|)) (-15 -2928 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3244 |#2|)) |#2| |#2|)) (-15 -3866 ((-2 (|:| |coef2| |#2|) (|:| -3244 |#2|)) |#2| |#2|)) (-15 -1974 ((-2 (|:| |coef1| |#2|) (|:| -3244 |#2|)) |#2| |#2|)) (-15 -1400 (|#1| |#2|)) (-15 -2360 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1400 |#1|)) |#2|)) (-15 -3785 ((-2 (|:| |coef2| |#2|) (|:| -1400 |#1|)) |#2|)) (-15 -4057 ((-592 |#2|) |#2| |#2|)) (-15 -2259 ((-592 (-713)) |#2| |#2|)) (IF (|has| |#1| (-429)) (PROGN (-15 -3018 (|#1| |#2| |#2|)) (-15 -2939 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3018 |#1|)) |#2| |#2|)) (-15 -3064 ((-2 (|:| |coef2| |#2|) (|:| -3018 |#1|)) |#2| |#2|)) (-15 -3244 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1172 |#2|) |#1| (-1172 |#2|))) (-15 -2338 ((-1172 |#2|) (-1172 |#2|) |#1|)) (-15 -3196 ((-2 (|:| -1459 |#1|) (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2|)) (-15 -1760 ((-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2|)) (-15 -1557 (|#1| |#1| |#1| (-713))) (-15 -1348 (|#2| |#2| |#1| |#1| (-713))) (-15 -3807 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3396 (|#1| |#2| |#2|)) (-15 -1934 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2506 |#1|)) |#2| |#2|)) (-15 -1667 ((-2 (|:| |coef2| |#2|) (|:| -2506 |#1|)) |#2| |#2|))) (-517) (-1148 |#1|)) (T -902))
-((-1667 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2506 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-1934 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2506 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-3396 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1148 *2)))) (-3807 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) (-4 *2 (-1148 *3)))) (-1348 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) (-4 *2 (-1148 *3)))) (-1557 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *2 (-517)) (-5 *1 (-902 *2 *4)) (-4 *4 (-1148 *2)))) (-1760 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-3196 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -1459 *4) (|:| -1338 *3) (|:| -1632 *3))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-2338 (*1 *2 *2 *3) (-12 (-5 *2 (-1172 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-517)) (-5 *1 (-902 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1172 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-517)) (-5 *1 (-902 *3 *4)))) (-3244 (*1 *2 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) (-4 *2 (-1148 *3)))) (-3064 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3018 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-2939 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3018 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-3018 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-4 *2 (-429)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1148 *2)))) (-2259 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-713))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-4057 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-3785 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1400 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-2360 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1400 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-1400 (*1 *2 *3) (-12 (-4 *2 (-517)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1148 *2)))) (-1974 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3244 *3))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-3866 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3244 *3))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-2928 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3244 *3))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-1820 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) (-4 *2 (-1148 *3)))) (-2709 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-3554 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-1868 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) (-4 *2 (-1148 *3)))) (-1641 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-902 *5 *3)) (-4 *3 (-1148 *5)))) (-1949 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-902 *5 *3)) (-4 *3 (-1148 *5)))) (-2844 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-902 *4 *2)) (-4 *2 (-1148 *4)))) (-3236 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-902 *5 *3)) (-4 *3 (-1148 *5)))) (-1216 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-902 *5 *3)) (-4 *3 (-1148 *5)))) (-4201 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-902 *4 *2)) (-4 *2 (-1148 *4)))) (-1240 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2506 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-3456 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2506 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-3063 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2506 *4))) (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))) (-2506 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1148 *2)))))
-(-10 -7 (-15 -2506 (|#1| |#2| |#2|)) (-15 -3063 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2506 |#1|)) |#2| |#2|)) (-15 -3456 ((-2 (|:| |coef2| |#2|) (|:| -2506 |#1|)) |#2| |#2|)) (-15 -1240 ((-2 (|:| |coef1| |#2|) (|:| -2506 |#1|)) |#2| |#2|)) (-15 -4201 (|#2| |#2| |#2| (-713))) (-15 -1216 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -3236 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -2844 (|#2| |#2| |#2| (-713))) (-15 -1949 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1641 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1868 (|#2| |#2| |#2|)) (-15 -3554 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2709 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1820 (|#2| |#2| |#2|)) (-15 -2928 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3244 |#2|)) |#2| |#2|)) (-15 -3866 ((-2 (|:| |coef2| |#2|) (|:| -3244 |#2|)) |#2| |#2|)) (-15 -1974 ((-2 (|:| |coef1| |#2|) (|:| -3244 |#2|)) |#2| |#2|)) (-15 -1400 (|#1| |#2|)) (-15 -2360 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1400 |#1|)) |#2|)) (-15 -3785 ((-2 (|:| |coef2| |#2|) (|:| -1400 |#1|)) |#2|)) (-15 -4057 ((-592 |#2|) |#2| |#2|)) (-15 -2259 ((-592 (-713)) |#2| |#2|)) (IF (|has| |#1| (-429)) (PROGN (-15 -3018 (|#1| |#2| |#2|)) (-15 -2939 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3018 |#1|)) |#2| |#2|)) (-15 -3064 ((-2 (|:| |coef2| |#2|) (|:| -3018 |#1|)) |#2| |#2|)) (-15 -3244 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1172 |#2|) |#1| (-1172 |#2|))) (-15 -2338 ((-1172 |#2|) (-1172 |#2|) |#1|)) (-15 -3196 ((-2 (|:| -1459 |#1|) (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2|)) (-15 -1760 ((-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) |#2| |#2|)) (-15 -1557 (|#1| |#1| |#1| (-713))) (-15 -1348 (|#2| |#2| |#1| |#1| (-713))) (-15 -3807 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3396 (|#1| |#2| |#2|)) (-15 -1934 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2506 |#1|)) |#2| |#2|)) (-15 -1667 ((-2 (|:| |coef2| |#2|) (|:| -2506 |#1|)) |#2| |#2|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) 27)) (-1505 (($) NIL T CONST)) (-1235 (((-592 (-592 (-525))) (-592 (-525))) 29)) (-3595 (((-525) $) 45)) (-3980 (($ (-592 (-525))) 17)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1427 (((-592 (-525)) $) 12)) (-3634 (($ $) 32)) (-1908 (((-797) $) 43) (((-592 (-525)) $) 10)) (-3875 (($) 7 T CONST)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 20)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 19)) (-4059 (($ $ $) 21)) (* (($ (-855) $) NIL) (($ (-713) $) 25)))
-(((-903) (-13 (-737) (-567 (-592 (-525))) (-10 -8 (-15 -3980 ($ (-592 (-525)))) (-15 -1235 ((-592 (-592 (-525))) (-592 (-525)))) (-15 -3595 ((-525) $)) (-15 -3634 ($ $)) (-15 -1908 ((-592 (-525)) $))))) (T -903))
-((-3980 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-903)))) (-1235 (*1 *2 *3) (-12 (-5 *2 (-592 (-592 (-525)))) (-5 *1 (-903)) (-5 *3 (-592 (-525))))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-903)))) (-3634 (*1 *1 *1) (-5 *1 (-903))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-903)))))
-(-13 (-737) (-567 (-592 (-525))) (-10 -8 (-15 -3980 ($ (-592 (-525)))) (-15 -1235 ((-592 (-592 (-525))) (-592 (-525)))) (-15 -3595 ((-525) $)) (-15 -3634 ($ $)) (-15 -1908 ((-592 (-525)) $))))
-((-4082 (($ $ |#2|) 30)) (-4070 (($ $) 22) (($ $ $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-385 (-525)) $) 26) (($ $ (-385 (-525))) 28)))
-(((-904 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -4082 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4070 (|#1| |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|))) (-905 |#2| |#3| |#4|) (-976) (-734) (-789)) (T -904))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -4082 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4070 (|#1| |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-855) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-4104 (((-592 |#3|) $) 74)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3635 (($ $) 52 (|has| |#1| (-517)))) (-2950 (((-108) $) 54 (|has| |#1| (-517)))) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-1247 (($ $) 60)) (-2866 (((-3 $ "failed") $) 34)) (-4150 (((-108) $) 73)) (-2133 (((-108) $) 31)) (-1819 (((-108) $) 62)) (-4079 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-592 |#3|) (-592 |#2|)) 75)) (-1370 (($ (-1 |#1| |#1|) $) 63)) (-1212 (($ $) 65)) (-1224 ((|#1| $) 66)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-2338 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2513 ((|#2| $) 64)) (-1801 (($ $) 72)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-1657 ((|#1| $ |#2|) 59)) (-3421 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) 53 (|has| |#1| (-517)))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4082 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
-(((-905 |#1| |#2| |#3|) (-131) (-976) (-734) (-789)) (T -905))
-((-1224 (*1 *2 *1) (-12 (-4 *1 (-905 *2 *3 *4)) (-4 *3 (-734)) (-4 *4 (-789)) (-4 *2 (-976)))) (-1212 (*1 *1 *1) (-12 (-4 *1 (-905 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-734)) (-4 *4 (-789)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *2 *4)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *2 (-734)))) (-4079 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-905 *4 *3 *2)) (-4 *4 (-976)) (-4 *3 (-734)) (-4 *2 (-789)))) (-4079 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 *5)) (-4 *1 (-905 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-734)) (-4 *6 (-789)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-734)) (-4 *5 (-789)) (-5 *2 (-592 *5)))) (-4150 (*1 *2 *1) (-12 (-4 *1 (-905 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-734)) (-4 *5 (-789)) (-5 *2 (-108)))) (-1801 (*1 *1 *1) (-12 (-4 *1 (-905 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-734)) (-4 *4 (-789)))))
-(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -4079 ($ $ |t#3| |t#2|)) (-15 -4079 ($ $ (-592 |t#3|) (-592 |t#2|))) (-15 -1212 ($ $)) (-15 -1224 (|t#1| $)) (-15 -2513 (|t#2| $)) (-15 -4104 ((-592 |t#3|) $)) (-15 -4150 ((-108) $)) (-15 -1801 ($ $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-982 #0#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-2843 (((-1014 (-205)) $) 8)) (-2833 (((-1014 (-205)) $) 9)) (-2821 (((-1014 (-205)) $) 10)) (-3944 (((-592 (-592 (-877 (-205)))) $) 11)) (-1908 (((-797) $) 6)))
-(((-906) (-131)) (T -906))
-((-3944 (*1 *2 *1) (-12 (-4 *1 (-906)) (-5 *2 (-592 (-592 (-877 (-205))))))) (-2821 (*1 *2 *1) (-12 (-4 *1 (-906)) (-5 *2 (-1014 (-205))))) (-2833 (*1 *2 *1) (-12 (-4 *1 (-906)) (-5 *2 (-1014 (-205))))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-906)) (-5 *2 (-1014 (-205))))))
-(-13 (-566 (-797)) (-10 -8 (-15 -3944 ((-592 (-592 (-877 (-205)))) $)) (-15 -2821 ((-1014 (-205)) $)) (-15 -2833 ((-1014 (-205)) $)) (-15 -2843 ((-1014 (-205)) $))))
-(((-566 (-797)) . T))
-((-4104 (((-592 |#4|) $) 23)) (-3696 (((-108) $) 48)) (-3810 (((-108) $) 47)) (-3327 (((-2 (|:| |under| $) (|:| -1720 $) (|:| |upper| $)) $ |#4|) 36)) (-2637 (((-108) $) 49)) (-2643 (((-108) $ $) 55)) (-2494 (((-108) $ $) 58)) (-3405 (((-108) $) 53)) (-3937 (((-592 |#5|) (-592 |#5|) $) 90)) (-3144 (((-592 |#5|) (-592 |#5|) $) 87)) (-1632 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-1835 (((-592 |#4|) $) 27)) (-1913 (((-108) |#4| $) 30)) (-2809 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-1861 (($ $ |#4|) 33)) (-3570 (($ $ |#4|) 32)) (-1263 (($ $ |#4|) 34)) (-3961 (((-108) $ $) 40)))
-(((-907 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3810 ((-108) |#1|)) (-15 -3937 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -3144 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -1632 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2809 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2637 ((-108) |#1|)) (-15 -2494 ((-108) |#1| |#1|)) (-15 -2643 ((-108) |#1| |#1|)) (-15 -3405 ((-108) |#1|)) (-15 -3696 ((-108) |#1|)) (-15 -3327 ((-2 (|:| |under| |#1|) (|:| -1720 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1861 (|#1| |#1| |#4|)) (-15 -1263 (|#1| |#1| |#4|)) (-15 -3570 (|#1| |#1| |#4|)) (-15 -1913 ((-108) |#4| |#1|)) (-15 -1835 ((-592 |#4|) |#1|)) (-15 -4104 ((-592 |#4|) |#1|)) (-15 -3961 ((-108) |#1| |#1|))) (-908 |#2| |#3| |#4| |#5|) (-976) (-735) (-789) (-990 |#2| |#3| |#4|)) (T -907))
-NIL
-(-10 -8 (-15 -3810 ((-108) |#1|)) (-15 -3937 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -3144 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -1632 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2809 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2637 ((-108) |#1|)) (-15 -2494 ((-108) |#1| |#1|)) (-15 -2643 ((-108) |#1| |#1|)) (-15 -3405 ((-108) |#1|)) (-15 -3696 ((-108) |#1|)) (-15 -3327 ((-2 (|:| |under| |#1|) (|:| -1720 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1861 (|#1| |#1| |#4|)) (-15 -1263 (|#1| |#1| |#4|)) (-15 -3570 (|#1| |#1| |#4|)) (-15 -1913 ((-108) |#4| |#1|)) (-15 -1835 ((-592 |#4|) |#1|)) (-15 -4104 ((-592 |#4|) |#1|)) (-15 -3961 ((-108) |#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-4104 (((-592 |#3|) $) 33)) (-3696 (((-108) $) 26)) (-3810 (((-108) $) 17 (|has| |#1| (-517)))) (-3327 (((-2 (|:| |under| $) (|:| -1720 $) (|:| |upper| $)) $ |#3|) 27)) (-3410 (((-108) $ (-713)) 44)) (-2724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4254)))) (-1505 (($) 45 T CONST)) (-2637 (((-108) $) 22 (|has| |#1| (-517)))) (-2643 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2494 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3405 (((-108) $) 25 (|has| |#1| (-517)))) (-3937 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-3144 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-1264 (((-3 $ "failed") (-592 |#4|)) 36)) (-2831 (($ (-592 |#4|)) 35)) (-3163 (($ $) 68 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ |#4| $) 67 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4254)))) (-1632 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-4004 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4254)))) (-2026 (((-592 |#4|) $) 52 (|has| $ (-6 -4254)))) (-1257 ((|#3| $) 34)) (-3100 (((-108) $ (-713)) 43)) (-3168 (((-592 |#4|) $) 53 (|has| $ (-6 -4254)))) (-4132 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#4| |#4|) $) 47)) (-1835 (((-592 |#3|) $) 32)) (-1913 (((-108) |#3| $) 31)) (-3017 (((-108) $ (-713)) 42)) (-2337 (((-1073) $) 9)) (-2809 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2663 (((-1037) $) 10)) (-4054 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3494 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-2642 (((-108) $ $) 38)) (-1613 (((-108) $) 41)) (-3773 (($) 40)) (-2686 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4254)))) (-2135 (($ $) 39)) (-1427 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1922 (($ (-592 |#4|)) 60)) (-1861 (($ $ |#3|) 28)) (-3570 (($ $ |#3|) 30)) (-1263 (($ $ |#3|) 29)) (-1908 (((-797) $) 11) (((-592 |#4|) $) 37)) (-2667 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 6)) (-4140 (((-713) $) 46 (|has| $ (-6 -4254)))))
-(((-908 |#1| |#2| |#3| |#4|) (-131) (-976) (-735) (-789) (-990 |t#1| |t#2| |t#3|)) (T -908))
-((-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *1 (-908 *3 *4 *5 *6)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *1 (-908 *3 *4 *5 *6)))) (-1257 (*1 *2 *1) (-12 (-4 *1 (-908 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-990 *3 *4 *2)) (-4 *2 (-789)))) (-4104 (*1 *2 *1) (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-592 *5)))) (-1835 (*1 *2 *1) (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-592 *5)))) (-1913 (*1 *2 *3 *1) (-12 (-4 *1 (-908 *4 *5 *3 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *6 (-990 *4 *5 *3)) (-5 *2 (-108)))) (-3570 (*1 *1 *1 *2) (-12 (-4 *1 (-908 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *5 (-990 *3 *4 *2)))) (-1263 (*1 *1 *1 *2) (-12 (-4 *1 (-908 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *5 (-990 *3 *4 *2)))) (-1861 (*1 *1 *1 *2) (-12 (-4 *1 (-908 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *5 (-990 *3 *4 *2)))) (-3327 (*1 *2 *1 *3) (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *6 (-990 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -1720 *1) (|:| |upper| *1))) (-4 *1 (-908 *4 *5 *3 *6)))) (-3696 (*1 *2 *1) (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-2643 (*1 *2 *1 *1) (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-2494 (*1 *2 *1 *1) (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-2637 (*1 *2 *1) (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-2809 (*1 *2 *3 *1) (-12 (-4 *1 (-908 *4 *5 *6 *3)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1632 (*1 *2 *3 *1) (-12 (-4 *1 (-908 *4 *5 *6 *3)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3144 (*1 *2 *2 *1) (-12 (-5 *2 (-592 *6)) (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)))) (-3937 (*1 *2 *2 *1) (-12 (-5 *2 (-592 *6)) (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)))) (-3810 (*1 *2 *1) (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))))
-(-13 (-1019) (-142 |t#4|) (-566 (-592 |t#4|)) (-10 -8 (-6 -4254) (-15 -1264 ((-3 $ "failed") (-592 |t#4|))) (-15 -2831 ($ (-592 |t#4|))) (-15 -1257 (|t#3| $)) (-15 -4104 ((-592 |t#3|) $)) (-15 -1835 ((-592 |t#3|) $)) (-15 -1913 ((-108) |t#3| $)) (-15 -3570 ($ $ |t#3|)) (-15 -1263 ($ $ |t#3|)) (-15 -1861 ($ $ |t#3|)) (-15 -3327 ((-2 (|:| |under| $) (|:| -1720 $) (|:| |upper| $)) $ |t#3|)) (-15 -3696 ((-108) $)) (IF (|has| |t#1| (-517)) (PROGN (-15 -3405 ((-108) $)) (-15 -2643 ((-108) $ $)) (-15 -2494 ((-108) $ $)) (-15 -2637 ((-108) $)) (-15 -2809 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1632 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3144 ((-592 |t#4|) (-592 |t#4|) $)) (-15 -3937 ((-592 |t#4|) (-592 |t#4|) $)) (-15 -3810 ((-108) $))) |%noBranch|)))
-(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-797)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-1019) . T) ((-1126) . T))
-((-3316 (((-592 |#4|) |#4| |#4|) 118)) (-2471 (((-592 |#4|) (-592 |#4|) (-108)) 107 (|has| |#1| (-429))) (((-592 |#4|) (-592 |#4|)) 108 (|has| |#1| (-429)))) (-3210 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 35)) (-1627 (((-108) |#4|) 34)) (-3678 (((-592 |#4|) |#4|) 103 (|has| |#1| (-429)))) (-3530 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-1 (-108) |#4|) (-592 |#4|)) 20)) (-1547 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|)) 22)) (-3227 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|)) 23)) (-3768 (((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|)) 73)) (-2189 (((-592 |#4|) (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2234 (((-592 |#4|) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-2382 (((-592 |#4|) (-592 |#4|)) 110)) (-2755 (((-592 |#4|) (-592 |#4|) (-592 |#4|) (-108)) 48) (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 50)) (-1379 ((|#4| |#4| (-592 |#4|)) 49)) (-1620 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 114 (|has| |#1| (-429)))) (-1843 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 117 (|has| |#1| (-429)))) (-3447 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 116 (|has| |#1| (-429)))) (-2023 (((-592 |#4|) (-592 |#4|) (-592 |#4|) (-1 (-592 |#4|) (-592 |#4|))) 87) (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 89) (((-592 |#4|) (-592 |#4|) |#4|) 121) (((-592 |#4|) |#4| |#4|) 119) (((-592 |#4|) (-592 |#4|)) 88)) (-1984 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 100 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-1217 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 41)) (-3790 (((-108) (-592 |#4|)) 62)) (-4118 (((-108) (-592 |#4|) (-592 (-592 |#4|))) 53)) (-1220 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 29)) (-1295 (((-108) |#4|) 28)) (-2909 (((-592 |#4|) (-592 |#4|)) 98 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-3007 (((-592 |#4|) (-592 |#4|)) 99 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-1815 (((-592 |#4|) (-592 |#4|)) 66)) (-1677 (((-592 |#4|) (-592 |#4|)) 79)) (-2730 (((-108) (-592 |#4|) (-592 |#4|)) 51)) (-1988 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 39)) (-2496 (((-108) |#4|) 36)))
-(((-909 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2023 ((-592 |#4|) (-592 |#4|))) (-15 -2023 ((-592 |#4|) |#4| |#4|)) (-15 -2382 ((-592 |#4|) (-592 |#4|))) (-15 -3316 ((-592 |#4|) |#4| |#4|)) (-15 -2023 ((-592 |#4|) (-592 |#4|) |#4|)) (-15 -2023 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -2023 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-1 (-592 |#4|) (-592 |#4|)))) (-15 -2730 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -4118 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -3790 ((-108) (-592 |#4|))) (-15 -3530 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-1 (-108) |#4|) (-592 |#4|))) (-15 -1547 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -3227 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -1217 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -1627 ((-108) |#4|)) (-15 -3210 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -1295 ((-108) |#4|)) (-15 -1220 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2496 ((-108) |#4|)) (-15 -1988 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2755 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -2755 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-108))) (-15 -1379 (|#4| |#4| (-592 |#4|))) (-15 -1815 ((-592 |#4|) (-592 |#4|))) (-15 -3768 ((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|))) (-15 -1677 ((-592 |#4|) (-592 |#4|))) (-15 -2189 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2234 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-429)) (PROGN (-15 -3678 ((-592 |#4|) |#4|)) (-15 -2471 ((-592 |#4|) (-592 |#4|))) (-15 -2471 ((-592 |#4|) (-592 |#4|) (-108))) (-15 -1620 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -3447 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -1843 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (PROGN (-15 -3007 ((-592 |#4|) (-592 |#4|))) (-15 -2909 ((-592 |#4|) (-592 |#4|))) (-15 -1984 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) |%noBranch|)) (-517) (-735) (-789) (-990 |#1| |#2| |#3|)) (T -909))
-((-1984 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-2909 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-3007 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-1843 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-3447 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-1620 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-2471 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-909 *4 *5 *6 *7)))) (-2471 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-3678 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3)) (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6)))) (-2234 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-909 *5 *6 *7 *8)))) (-2189 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-592 *9)) (-5 *3 (-1 (-108) *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-990 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *1 (-909 *6 *7 *8 *9)))) (-1677 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-3768 (*1 *2 *3) (|partial| -12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-453 *4 *5 *6 *7)) (|:| -1649 (-592 *7)))) (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-1815 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-1379 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-909 *4 *5 *6 *2)))) (-2755 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-909 *4 *5 *6 *7)))) (-2755 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-1988 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-2496 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6)))) (-1220 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-1295 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6)))) (-3210 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-1627 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6)))) (-1217 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-3227 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-592 *8)))) (-1547 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-592 *8)))) (-3530 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-592 *8)))) (-3790 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-909 *4 *5 *6 *7)))) (-4118 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-592 *8))) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-108)) (-5 *1 (-909 *5 *6 *7 *8)))) (-2730 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-909 *4 *5 *6 *7)))) (-2023 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1 (-592 *7) (-592 *7))) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-909 *4 *5 *6 *7)))) (-2023 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-2023 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *3)) (-4 *3 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-909 *4 *5 *6 *3)))) (-3316 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3)) (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6)))) (-2382 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))) (-2023 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3)) (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6)))) (-2023 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2023 ((-592 |#4|) (-592 |#4|))) (-15 -2023 ((-592 |#4|) |#4| |#4|)) (-15 -2382 ((-592 |#4|) (-592 |#4|))) (-15 -3316 ((-592 |#4|) |#4| |#4|)) (-15 -2023 ((-592 |#4|) (-592 |#4|) |#4|)) (-15 -2023 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -2023 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-1 (-592 |#4|) (-592 |#4|)))) (-15 -2730 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -4118 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -3790 ((-108) (-592 |#4|))) (-15 -3530 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-1 (-108) |#4|) (-592 |#4|))) (-15 -1547 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -3227 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -1217 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -1627 ((-108) |#4|)) (-15 -3210 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -1295 ((-108) |#4|)) (-15 -1220 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2496 ((-108) |#4|)) (-15 -1988 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2755 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -2755 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-108))) (-15 -1379 (|#4| |#4| (-592 |#4|))) (-15 -1815 ((-592 |#4|) (-592 |#4|))) (-15 -3768 ((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|))) (-15 -1677 ((-592 |#4|) (-592 |#4|))) (-15 -2189 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2234 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-429)) (PROGN (-15 -3678 ((-592 |#4|) |#4|)) (-15 -2471 ((-592 |#4|) (-592 |#4|))) (-15 -2471 ((-592 |#4|) (-592 |#4|) (-108))) (-15 -1620 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -3447 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -1843 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (PROGN (-15 -3007 ((-592 |#4|) (-592 |#4|))) (-15 -2909 ((-592 |#4|) (-592 |#4|))) (-15 -1984 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) |%noBranch|))
-((-2294 (((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-2845 (((-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1172 |#1|)))) (-632 |#1|) (-1172 |#1|)) 36)) (-3466 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16)))
-(((-910 |#1|) (-10 -7 (-15 -2294 ((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3466 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2845 ((-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1172 |#1|)))) (-632 |#1|) (-1172 |#1|)))) (-341)) (T -910))
-((-2845 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-592 (-2 (|:| C (-632 *5)) (|:| |g| (-1172 *5))))) (-5 *1 (-910 *5)) (-5 *3 (-632 *5)) (-5 *4 (-1172 *5)))) (-3466 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-632 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-5 *1 (-910 *5)))) (-2294 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-341)) (-5 *2 (-2 (|:| R (-632 *6)) (|:| A (-632 *6)) (|:| |Ainv| (-632 *6)))) (-5 *1 (-910 *6)) (-5 *3 (-632 *6)))))
-(-10 -7 (-15 -2294 ((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -3466 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2845 ((-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1172 |#1|)))) (-632 |#1|) (-1172 |#1|))))
-((-1510 (((-396 |#4|) |#4|) 48)))
-(((-911 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1510 ((-396 |#4|) |#4|))) (-789) (-735) (-429) (-883 |#3| |#2| |#1|)) (T -911))
-((-1510 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-429)) (-5 *2 (-396 *3)) (-5 *1 (-911 *4 *5 *6 *3)) (-4 *3 (-883 *6 *5 *4)))))
-(-10 -7 (-15 -1510 ((-396 |#4|) |#4|)))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-1383 (($ (-713)) 112 (|has| |#1| (-23)))) (-1840 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-3072 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-1356 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4255))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4255))))) (-3327 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-3410 (((-108) $ (-713)) 8)) (-2109 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 58 (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4254)))) (-1505 (($) 7 T CONST)) (-4103 (($ $) 90 (|has| $ (-6 -4255)))) (-1693 (($ $) 100)) (-3163 (($ $) 78 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ |#1| $) 77 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4254)))) (-2870 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) 51)) (-3763 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1019)))) (-3451 (($ (-592 |#1|)) 118)) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3307 (((-632 |#1|) $ $) 105 (|has| |#1| (-976)))) (-4018 (($ (-713) |#1|) 69)) (-3100 (((-108) $ (-713)) 9)) (-2009 (((-525) $) 43 (|has| (-525) (-789)))) (-3525 (($ $ $) 87 (|has| |#1| (-789)))) (-1932 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1792 (((-525) $) 44 (|has| (-525) (-789)))) (-3630 (($ $ $) 86 (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3898 ((|#1| $) 102 (-12 (|has| |#1| (-976)) (|has| |#1| (-933))))) (-3017 (((-108) $ (-713)) 10)) (-1722 ((|#1| $) 103 (-12 (|has| |#1| (-976)) (|has| |#1| (-933))))) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-3167 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3222 (((-592 (-525)) $) 46)) (-1548 (((-108) (-525) $) 47)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3135 ((|#1| $) 42 (|has| (-525) (-789)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1911 (($ $ |#1|) 41 (|has| $ (-6 -4255)))) (-3538 (($ $ (-592 |#1|)) 115)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-3218 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) 48)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1139 (-525))) 63)) (-1595 ((|#1| $ $) 106 (|has| |#1| (-976)))) (-3191 (((-855) $) 117)) (-3653 (($ $ (-525)) 62) (($ $ (-1139 (-525))) 61)) (-2873 (($ $ $) 104)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-3703 (($ $ $ (-525)) 91 (|has| $ (-6 -4255)))) (-2135 (($ $) 13)) (-1427 (((-501) $) 79 (|has| |#1| (-567 (-501)))) (($ (-592 |#1|)) 116)) (-1922 (($ (-592 |#1|)) 70)) (-2664 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) 84 (|has| |#1| (-789)))) (-3995 (((-108) $ $) 83 (|has| |#1| (-789)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4010 (((-108) $ $) 85 (|has| |#1| (-789)))) (-3983 (((-108) $ $) 82 (|has| |#1| (-789)))) (-4070 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4059 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-525) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-669))) (($ $ |#1|) 107 (|has| |#1| (-669)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-912 |#1|) (-131) (-976)) (T -912))
-((-3451 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-976)) (-4 *1 (-912 *3)))) (-3191 (*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-976)) (-5 *2 (-855)))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-976)) (-4 *1 (-912 *3)))) (-2873 (*1 *1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-976)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-912 *3)) (-4 *3 (-976)))))
-(-13 (-1170 |t#1|) (-10 -8 (-15 -3451 ($ (-592 |t#1|))) (-15 -3191 ((-855) $)) (-15 -1427 ($ (-592 |t#1|))) (-15 -2873 ($ $ $)) (-15 -3538 ($ $ (-592 |t#1|)))))
-(((-33) . T) ((-97) -3309 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-789)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-597 |#1|) . T) ((-19 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1019) -3309 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-1126) . T) ((-1170 |#1|) . T))
-((-1370 (((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)) 17)))
-(((-913 |#1| |#2|) (-10 -7 (-15 -1370 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|)))) (-976) (-976)) (T -913))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-976)) (-4 *6 (-976)) (-5 *2 (-877 *6)) (-5 *1 (-913 *5 *6)))))
-(-10 -7 (-15 -1370 ((-877 |#2|) (-1 |#2| |#1|) (-877 |#1|))))
-((-1678 ((|#1| (-877 |#1|)) 13)) (-4198 ((|#1| (-877 |#1|)) 12)) (-2640 ((|#1| (-877 |#1|)) 11)) (-3103 ((|#1| (-877 |#1|)) 15)) (-1758 ((|#1| (-877 |#1|)) 21)) (-1286 ((|#1| (-877 |#1|)) 14)) (-2674 ((|#1| (-877 |#1|)) 16)) (-3881 ((|#1| (-877 |#1|)) 20)) (-3629 ((|#1| (-877 |#1|)) 19)))
-(((-914 |#1|) (-10 -7 (-15 -2640 (|#1| (-877 |#1|))) (-15 -4198 (|#1| (-877 |#1|))) (-15 -1678 (|#1| (-877 |#1|))) (-15 -1286 (|#1| (-877 |#1|))) (-15 -3103 (|#1| (-877 |#1|))) (-15 -2674 (|#1| (-877 |#1|))) (-15 -3629 (|#1| (-877 |#1|))) (-15 -3881 (|#1| (-877 |#1|))) (-15 -1758 (|#1| (-877 |#1|)))) (-976)) (T -914))
-((-1758 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))) (-3881 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))) (-3629 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))) (-2674 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))) (-3103 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))) (-1286 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))) (-1678 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))) (-2640 (*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))))
-(-10 -7 (-15 -2640 (|#1| (-877 |#1|))) (-15 -4198 (|#1| (-877 |#1|))) (-15 -1678 (|#1| (-877 |#1|))) (-15 -1286 (|#1| (-877 |#1|))) (-15 -3103 (|#1| (-877 |#1|))) (-15 -2674 (|#1| (-877 |#1|))) (-15 -3629 (|#1| (-877 |#1|))) (-15 -3881 (|#1| (-877 |#1|))) (-15 -1758 (|#1| (-877 |#1|))))
-((-3557 (((-3 |#1| "failed") |#1|) 18)) (-2852 (((-3 |#1| "failed") |#1|) 6)) (-2312 (((-3 |#1| "failed") |#1|) 16)) (-3863 (((-3 |#1| "failed") |#1|) 4)) (-4113 (((-3 |#1| "failed") |#1|) 20)) (-1562 (((-3 |#1| "failed") |#1|) 8)) (-3808 (((-3 |#1| "failed") |#1| (-713)) 1)) (-3023 (((-3 |#1| "failed") |#1|) 3)) (-1444 (((-3 |#1| "failed") |#1|) 2)) (-2999 (((-3 |#1| "failed") |#1|) 21)) (-3688 (((-3 |#1| "failed") |#1|) 9)) (-3667 (((-3 |#1| "failed") |#1|) 19)) (-3870 (((-3 |#1| "failed") |#1|) 7)) (-2050 (((-3 |#1| "failed") |#1|) 17)) (-1630 (((-3 |#1| "failed") |#1|) 5)) (-1609 (((-3 |#1| "failed") |#1|) 24)) (-2604 (((-3 |#1| "failed") |#1|) 12)) (-3120 (((-3 |#1| "failed") |#1|) 22)) (-1262 (((-3 |#1| "failed") |#1|) 10)) (-3226 (((-3 |#1| "failed") |#1|) 26)) (-1293 (((-3 |#1| "failed") |#1|) 14)) (-1360 (((-3 |#1| "failed") |#1|) 27)) (-2762 (((-3 |#1| "failed") |#1|) 15)) (-1580 (((-3 |#1| "failed") |#1|) 25)) (-4166 (((-3 |#1| "failed") |#1|) 13)) (-3178 (((-3 |#1| "failed") |#1|) 23)) (-1608 (((-3 |#1| "failed") |#1|) 11)))
-(((-915 |#1|) (-131) (-1112)) (T -915))
-((-1360 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3226 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-1580 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-1609 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3178 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3120 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-2999 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-4113 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3667 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3557 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-2050 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-2312 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-2762 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-1293 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-4166 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-2604 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-1608 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-1262 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3688 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-1562 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3870 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-2852 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-1630 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3863 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3023 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-1444 (*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))) (-3808 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-713)) (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(-13 (-10 -7 (-15 -3808 ((-3 |t#1| "failed") |t#1| (-713))) (-15 -1444 ((-3 |t#1| "failed") |t#1|)) (-15 -3023 ((-3 |t#1| "failed") |t#1|)) (-15 -3863 ((-3 |t#1| "failed") |t#1|)) (-15 -1630 ((-3 |t#1| "failed") |t#1|)) (-15 -2852 ((-3 |t#1| "failed") |t#1|)) (-15 -3870 ((-3 |t#1| "failed") |t#1|)) (-15 -1562 ((-3 |t#1| "failed") |t#1|)) (-15 -3688 ((-3 |t#1| "failed") |t#1|)) (-15 -1262 ((-3 |t#1| "failed") |t#1|)) (-15 -1608 ((-3 |t#1| "failed") |t#1|)) (-15 -2604 ((-3 |t#1| "failed") |t#1|)) (-15 -4166 ((-3 |t#1| "failed") |t#1|)) (-15 -1293 ((-3 |t#1| "failed") |t#1|)) (-15 -2762 ((-3 |t#1| "failed") |t#1|)) (-15 -2312 ((-3 |t#1| "failed") |t#1|)) (-15 -2050 ((-3 |t#1| "failed") |t#1|)) (-15 -3557 ((-3 |t#1| "failed") |t#1|)) (-15 -3667 ((-3 |t#1| "failed") |t#1|)) (-15 -4113 ((-3 |t#1| "failed") |t#1|)) (-15 -2999 ((-3 |t#1| "failed") |t#1|)) (-15 -3120 ((-3 |t#1| "failed") |t#1|)) (-15 -3178 ((-3 |t#1| "failed") |t#1|)) (-15 -1609 ((-3 |t#1| "failed") |t#1|)) (-15 -1580 ((-3 |t#1| "failed") |t#1|)) (-15 -3226 ((-3 |t#1| "failed") |t#1|)) (-15 -1360 ((-3 |t#1| "failed") |t#1|))))
-((-3473 ((|#4| |#4| (-592 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-2731 ((|#4| |#4| (-592 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-1370 ((|#4| (-1 |#4| (-886 |#1|)) |#4|) 30)))
-(((-916 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2731 (|#4| |#4| |#3|)) (-15 -2731 (|#4| |#4| (-592 |#3|))) (-15 -3473 (|#4| |#4| |#3|)) (-15 -3473 (|#4| |#4| (-592 |#3|))) (-15 -1370 (|#4| (-1 |#4| (-886 |#1|)) |#4|))) (-976) (-735) (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $)) (-15 -1251 ((-3 $ "failed") (-1090))))) (-883 (-886 |#1|) |#2| |#3|)) (T -916))
-((-1370 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-886 *4))) (-4 *4 (-976)) (-4 *2 (-883 (-886 *4) *5 *6)) (-4 *5 (-735)) (-4 *6 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $)) (-15 -1251 ((-3 $ "failed") (-1090)))))) (-5 *1 (-916 *4 *5 *6 *2)))) (-3473 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $)) (-15 -1251 ((-3 $ "failed") (-1090)))))) (-4 *4 (-976)) (-4 *5 (-735)) (-5 *1 (-916 *4 *5 *6 *2)) (-4 *2 (-883 (-886 *4) *5 *6)))) (-3473 (*1 *2 *2 *3) (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $)) (-15 -1251 ((-3 $ "failed") (-1090)))))) (-5 *1 (-916 *4 *5 *3 *2)) (-4 *2 (-883 (-886 *4) *5 *3)))) (-2731 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $)) (-15 -1251 ((-3 $ "failed") (-1090)))))) (-4 *4 (-976)) (-4 *5 (-735)) (-5 *1 (-916 *4 *5 *6 *2)) (-4 *2 (-883 (-886 *4) *5 *6)))) (-2731 (*1 *2 *2 *3) (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $)) (-15 -1251 ((-3 $ "failed") (-1090)))))) (-5 *1 (-916 *4 *5 *3 *2)) (-4 *2 (-883 (-886 *4) *5 *3)))))
-(-10 -7 (-15 -2731 (|#4| |#4| |#3|)) (-15 -2731 (|#4| |#4| (-592 |#3|))) (-15 -3473 (|#4| |#4| |#3|)) (-15 -3473 (|#4| |#4| (-592 |#3|))) (-15 -1370 (|#4| (-1 |#4| (-886 |#1|)) |#4|)))
-((-2385 ((|#2| |#3|) 35)) (-1776 (((-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|) 73)) (-2780 (((-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) 89)))
-(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2780 ((-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -1776 ((-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|)) (-15 -2385 (|#2| |#3|))) (-327) (-1148 |#1|) (-1148 |#2|) (-667 |#2| |#3|)) (T -917))
-((-2385 (*1 *2 *3) (-12 (-4 *3 (-1148 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-917 *4 *2 *3 *5)) (-4 *4 (-327)) (-4 *5 (-667 *2 *3)))) (-1776 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 *3)) (-5 *2 (-2 (|:| -2499 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-917 *4 *3 *5 *6)) (-4 *6 (-667 *3 *5)))) (-2780 (*1 *2) (-12 (-4 *3 (-327)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 *4)) (-5 *2 (-2 (|:| -2499 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) (-5 *1 (-917 *3 *4 *5 *6)) (-4 *6 (-667 *4 *5)))))
-(-10 -7 (-15 -2780 ((-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -1776 ((-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|)) (-15 -2385 (|#2| |#3|)))
-((-1661 (((-919 (-385 (-525)) (-799 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))) (-919 (-385 (-525)) (-799 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525))))) 69)))
-(((-918 |#1| |#2|) (-10 -7 (-15 -1661 ((-919 (-385 (-525)) (-799 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))) (-919 (-385 (-525)) (-799 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525))))))) (-592 (-1090)) (-713)) (T -918))
-((-1661 (*1 *2 *2) (-12 (-5 *2 (-919 (-385 (-525)) (-799 *3) (-220 *4 (-713)) (-227 *3 (-385 (-525))))) (-14 *3 (-592 (-1090))) (-14 *4 (-713)) (-5 *1 (-918 *3 *4)))))
-(-10 -7 (-15 -1661 ((-919 (-385 (-525)) (-799 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))) (-919 (-385 (-525)) (-799 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))))))
-((-1893 (((-108) $ $) NIL)) (-3433 (((-3 (-108) "failed") $) 69)) (-2811 (($ $) 36 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-1527 (($ $ (-3 (-108) "failed")) 70)) (-2562 (($ (-592 |#4|) |#4|) 25)) (-2337 (((-1073) $) NIL)) (-3153 (($ $) 67)) (-2663 (((-1037) $) NIL)) (-1613 (((-108) $) 68)) (-3773 (($) 30)) (-1450 ((|#4| $) 72)) (-4122 (((-592 |#4|) $) 71)) (-1908 (((-797) $) 66)) (-3961 (((-108) $ $) NIL)))
-(((-919 |#1| |#2| |#3| |#4|) (-13 (-1019) (-566 (-797)) (-10 -8 (-15 -3773 ($)) (-15 -2562 ($ (-592 |#4|) |#4|)) (-15 -3433 ((-3 (-108) "failed") $)) (-15 -1527 ($ $ (-3 (-108) "failed"))) (-15 -1613 ((-108) $)) (-15 -4122 ((-592 |#4|) $)) (-15 -1450 (|#4| $)) (-15 -3153 ($ $)) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (-15 -2811 ($ $)) |%noBranch|) |%noBranch|))) (-429) (-789) (-735) (-883 |#1| |#3| |#2|)) (T -919))
-((-3773 (*1 *1) (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735)) (-5 *1 (-919 *2 *3 *4 *5)) (-4 *5 (-883 *2 *4 *3)))) (-2562 (*1 *1 *2 *3) (-12 (-5 *2 (-592 *3)) (-4 *3 (-883 *4 *6 *5)) (-4 *4 (-429)) (-4 *5 (-789)) (-4 *6 (-735)) (-5 *1 (-919 *4 *5 *6 *3)))) (-3433 (*1 *2 *1) (|partial| -12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-108)) (-5 *1 (-919 *3 *4 *5 *6)) (-4 *6 (-883 *3 *5 *4)))) (-1527 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *1 (-919 *3 *4 *5 *6)) (-4 *6 (-883 *3 *5 *4)))) (-1613 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-108)) (-5 *1 (-919 *3 *4 *5 *6)) (-4 *6 (-883 *3 *5 *4)))) (-4122 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-592 *6)) (-5 *1 (-919 *3 *4 *5 *6)) (-4 *6 (-883 *3 *5 *4)))) (-1450 (*1 *2 *1) (-12 (-4 *2 (-883 *3 *5 *4)) (-5 *1 (-919 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)))) (-3153 (*1 *1 *1) (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735)) (-5 *1 (-919 *2 *3 *4 *5)) (-4 *5 (-883 *2 *4 *3)))) (-2811 (*1 *1 *1) (-12 (-4 *2 (-138)) (-4 *2 (-286)) (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735)) (-5 *1 (-919 *2 *3 *4 *5)) (-4 *5 (-883 *2 *4 *3)))))
-(-13 (-1019) (-566 (-797)) (-10 -8 (-15 -3773 ($)) (-15 -2562 ($ (-592 |#4|) |#4|)) (-15 -3433 ((-3 (-108) "failed") $)) (-15 -1527 ($ $ (-3 (-108) "failed"))) (-15 -1613 ((-108) $)) (-15 -4122 ((-592 |#4|) $)) (-15 -1450 (|#4| $)) (-15 -3153 ($ $)) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (-15 -2811 ($ $)) |%noBranch|) |%noBranch|)))
-((-2249 (((-108) |#5| |#5|) 38)) (-1777 (((-108) |#5| |#5|) 52)) (-4111 (((-108) |#5| (-592 |#5|)) 74) (((-108) |#5| |#5|) 61)) (-1592 (((-108) (-592 |#4|) (-592 |#4|)) 58)) (-3845 (((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) 63)) (-1623 (((-1177)) 33)) (-3692 (((-1177) (-1073) (-1073) (-1073)) 29)) (-3378 (((-592 |#5|) (-592 |#5|)) 81)) (-3024 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|)))) 79)) (-2293 (((-592 (-2 (|:| -1881 (-592 |#4|)) (|:| -3740 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108)) 101)) (-2600 (((-108) |#5| |#5|) 47)) (-1782 (((-3 (-108) "failed") |#5| |#5|) 71)) (-3637 (((-108) (-592 |#4|) (-592 |#4|)) 57)) (-2102 (((-108) (-592 |#4|) (-592 |#4|)) 59)) (-2491 (((-108) (-592 |#4|) (-592 |#4|)) 60)) (-3916 (((-3 (-2 (|:| -1881 (-592 |#4|)) (|:| -3740 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)) 97)) (-3479 (((-592 |#5|) (-592 |#5|)) 43)))
-(((-920 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3692 ((-1177) (-1073) (-1073) (-1073))) (-15 -1623 ((-1177))) (-15 -2249 ((-108) |#5| |#5|)) (-15 -3479 ((-592 |#5|) (-592 |#5|))) (-15 -2600 ((-108) |#5| |#5|)) (-15 -1777 ((-108) |#5| |#5|)) (-15 -1592 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3637 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2102 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2491 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1782 ((-3 (-108) "failed") |#5| |#5|)) (-15 -4111 ((-108) |#5| |#5|)) (-15 -4111 ((-108) |#5| (-592 |#5|))) (-15 -3378 ((-592 |#5|) (-592 |#5|))) (-15 -3845 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|)))) (-15 -3024 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) (-15 -2293 ((-592 (-2 (|:| -1881 (-592 |#4|)) (|:| -3740 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3916 ((-3 (-2 (|:| -1881 (-592 |#4|)) (|:| -3740 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|) (-995 |#1| |#2| |#3| |#4|)) (T -920))
-((-3916 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-990 *6 *7 *8)) (-5 *2 (-2 (|:| -1881 (-592 *9)) (|:| -3740 *4) (|:| |ineq| (-592 *9)))) (-5 *1 (-920 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9)) (-4 *4 (-995 *6 *7 *8 *9)))) (-2293 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-995 *6 *7 *8 *9)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-990 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| -1881 (-592 *9)) (|:| -3740 *10) (|:| |ineq| (-592 *9))))) (-5 *1 (-920 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9)))) (-3024 (*1 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -3740 *7)))) (-4 *6 (-990 *3 *4 *5)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *6 *7)))) (-3845 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -3740 *8))) (-4 *7 (-990 *4 *5 *6)) (-4 *8 (-995 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *8)))) (-3378 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *1 (-920 *3 *4 *5 *6 *7)))) (-4111 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-920 *5 *6 *7 *8 *3)))) (-4111 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-1782 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-2491 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-2102 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-3637 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-1592 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-1777 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-2600 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *1 (-920 *3 *4 *5 *6 *7)))) (-2249 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-1623 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) (-5 *1 (-920 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))) (-3692 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3692 ((-1177) (-1073) (-1073) (-1073))) (-15 -1623 ((-1177))) (-15 -2249 ((-108) |#5| |#5|)) (-15 -3479 ((-592 |#5|) (-592 |#5|))) (-15 -2600 ((-108) |#5| |#5|)) (-15 -1777 ((-108) |#5| |#5|)) (-15 -1592 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3637 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2102 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2491 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1782 ((-3 (-108) "failed") |#5| |#5|)) (-15 -4111 ((-108) |#5| |#5|)) (-15 -4111 ((-108) |#5| (-592 |#5|))) (-15 -3378 ((-592 |#5|) (-592 |#5|))) (-15 -3845 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|)))) (-15 -3024 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) (-15 -2293 ((-592 (-2 (|:| -1881 (-592 |#4|)) (|:| -3740 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3916 ((-3 (-2 (|:| -1881 (-592 |#4|)) (|:| -3740 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108))))
-((-1251 (((-1090) $) 15)) (-3871 (((-1073) $) 16)) (-3755 (($ (-1090) (-1073)) 14)) (-1908 (((-797) $) 13)))
-(((-921) (-13 (-566 (-797)) (-10 -8 (-15 -3755 ($ (-1090) (-1073))) (-15 -1251 ((-1090) $)) (-15 -3871 ((-1073) $))))) (T -921))
-((-3755 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1073)) (-5 *1 (-921)))) (-1251 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-921)))) (-3871 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-921)))))
-(-13 (-566 (-797)) (-10 -8 (-15 -3755 ($ (-1090) (-1073))) (-15 -1251 ((-1090) $)) (-15 -3871 ((-1073) $))))
-((-1370 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-922 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1370 (|#4| (-1 |#2| |#1|) |#3|))) (-517) (-517) (-924 |#1|) (-924 |#2|)) (T -922))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-4 *2 (-924 *6)) (-5 *1 (-922 *5 *6 *4 *2)) (-4 *4 (-924 *5)))))
-(-10 -7 (-15 -1370 (|#4| (-1 |#2| |#1|) |#3|)))
-((-1264 (((-3 |#2| "failed") $) NIL) (((-3 (-1090) "failed") $) 65) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) 95)) (-2831 ((|#2| $) NIL) (((-1090) $) 60) (((-385 (-525)) $) NIL) (((-525) $) 92)) (-1860 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) 112) (((-632 |#2|) (-632 $)) 28)) (-3375 (($) 98)) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 75) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 84)) (-3830 (($ $) 10)) (-1816 (((-3 $ "failed") $) 20)) (-1370 (($ (-1 |#2| |#2|) $) 22)) (-2279 (($) 16)) (-2723 (($ $) 54)) (-3013 (($ $) NIL) (($ $ (-713)) NIL) (($ $ (-1090)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1915 (($ $) 12)) (-1427 (((-826 (-525)) $) 70) (((-826 (-357)) $) 79) (((-501) $) 40) (((-357) $) 44) (((-205) $) 47)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 90) (($ |#2|) NIL) (($ (-1090)) 57)) (-2093 (((-713)) 31)) (-3983 (((-108) $ $) 50)))
-(((-923 |#1| |#2|) (-10 -8 (-15 -3983 ((-108) |#1| |#1|)) (-15 -2279 (|#1|)) (-15 -1816 ((-3 |#1| "failed") |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1427 ((-205) |#1|)) (-15 -1427 ((-357) |#1|)) (-15 -1427 ((-501) |#1|)) (-15 -2831 ((-1090) |#1|)) (-15 -1264 ((-3 (-1090) "failed") |#1|)) (-15 -1908 (|#1| (-1090))) (-15 -3375 (|#1|)) (-15 -2723 (|#1| |#1|)) (-15 -1915 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -1524 ((-823 (-357) |#1|) |#1| (-826 (-357)) (-823 (-357) |#1|))) (-15 -1524 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|))) (-15 -1427 ((-826 (-357)) |#1|)) (-15 -1427 ((-826 (-525)) |#1|)) (-15 -1860 ((-632 |#2|) (-632 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-632 (-525)) (-632 |#1|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1|)) (-15 -1370 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2831 (|#2| |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -1908 (|#1| |#2|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1908 (|#1| |#1|)) (-15 -1908 (|#1| (-525))) (-15 -2093 ((-713))) (-15 -1908 ((-797) |#1|))) (-924 |#2|) (-517)) (T -923))
-((-2093 (*1 *2) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-923 *3 *4)) (-4 *3 (-924 *4)))))
-(-10 -8 (-15 -3983 ((-108) |#1| |#1|)) (-15 -2279 (|#1|)) (-15 -1816 ((-3 |#1| "failed") |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1427 ((-205) |#1|)) (-15 -1427 ((-357) |#1|)) (-15 -1427 ((-501) |#1|)) (-15 -2831 ((-1090) |#1|)) (-15 -1264 ((-3 (-1090) "failed") |#1|)) (-15 -1908 (|#1| (-1090))) (-15 -3375 (|#1|)) (-15 -2723 (|#1| |#1|)) (-15 -1915 (|#1| |#1|)) (-15 -3830 (|#1| |#1|)) (-15 -1524 ((-823 (-357) |#1|) |#1| (-826 (-357)) (-823 (-357) |#1|))) (-15 -1524 ((-823 (-525) |#1|) |#1| (-826 (-525)) (-823 (-525) |#1|))) (-15 -1427 ((-826 (-357)) |#1|)) (-15 -1427 ((-826 (-525)) |#1|)) (-15 -1860 ((-632 |#2|) (-632 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-632 (-525)) (-632 |#1|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1|)) (-15 -1370 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2831 (|#2| |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -1908 (|#1| |#2|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1908 (|#1| |#1|)) (-15 -1908 (|#1| (-525))) (-15 -2093 ((-713))) (-15 -1908 ((-797) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3115 ((|#1| $) 139 (|has| |#1| (-286)))) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-3263 (((-3 $ "failed") $ $) 19)) (-3357 (((-396 (-1086 $)) (-1086 $)) 130 (|has| |#1| (-843)))) (-3321 (($ $) 73)) (-1510 (((-396 $) $) 72)) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 133 (|has| |#1| (-843)))) (-2305 (((-108) $ $) 59)) (-1690 (((-525) $) 120 (|has| |#1| (-762)))) (-1505 (($) 17 T CONST)) (-1264 (((-3 |#1| "failed") $) 178) (((-3 (-1090) "failed") $) 128 (|has| |#1| (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) 112 (|has| |#1| (-967 (-525)))) (((-3 (-525) "failed") $) 110 (|has| |#1| (-967 (-525))))) (-2831 ((|#1| $) 177) (((-1090) $) 127 (|has| |#1| (-967 (-1090)))) (((-385 (-525)) $) 111 (|has| |#1| (-967 (-525)))) (((-525) $) 109 (|has| |#1| (-967 (-525))))) (-2373 (($ $ $) 55)) (-1860 (((-632 (-525)) (-632 $)) 152 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 151 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 150) (((-632 |#1|) (-632 $)) 149)) (-2866 (((-3 $ "failed") $) 34)) (-3375 (($) 137 (|has| |#1| (-510)))) (-2356 (($ $ $) 56)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 51)) (-2250 (((-108) $) 71)) (-3026 (((-108) $) 122 (|has| |#1| (-762)))) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 146 (|has| |#1| (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 145 (|has| |#1| (-820 (-357))))) (-2133 (((-108) $) 31)) (-3830 (($ $) 141)) (-1303 ((|#1| $) 143)) (-1816 (((-3 $ "failed") $) 108 (|has| |#1| (-1066)))) (-2882 (((-108) $) 121 (|has| |#1| (-762)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-3525 (($ $ $) 118 (|has| |#1| (-789)))) (-3630 (($ $ $) 117 (|has| |#1| (-789)))) (-1370 (($ (-1 |#1| |#1|) $) 169)) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-4211 (($ $) 70)) (-2279 (($) 107 (|has| |#1| (-1066)) CONST)) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-2723 (($ $) 138 (|has| |#1| (-286)))) (-1720 ((|#1| $) 135 (|has| |#1| (-510)))) (-2918 (((-396 (-1086 $)) (-1086 $)) 132 (|has| |#1| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) 131 (|has| |#1| (-843)))) (-3959 (((-396 $) $) 74)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2338 (((-3 $ "failed") $ $) 42)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-3092 (($ $ (-592 |#1|) (-592 |#1|)) 175 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 173 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 172 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) 171 (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) 170 (|has| |#1| (-486 (-1090) |#1|)))) (-2183 (((-713) $) 58)) (-3928 (($ $ |#1|) 176 (|has| |#1| (-265 |#1| |#1|)))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 57)) (-3013 (($ $) 168 (|has| |#1| (-213))) (($ $ (-713)) 166 (|has| |#1| (-213))) (($ $ (-1090)) 164 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 163 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 162 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) 161 (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-1915 (($ $) 140)) (-1312 ((|#1| $) 142)) (-1427 (((-826 (-525)) $) 148 (|has| |#1| (-567 (-826 (-525))))) (((-826 (-357)) $) 147 (|has| |#1| (-567 (-826 (-357))))) (((-501) $) 125 (|has| |#1| (-567 (-501)))) (((-357) $) 124 (|has| |#1| (-952))) (((-205) $) 123 (|has| |#1| (-952)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) 134 (-1341 (|has| $ (-136)) (|has| |#1| (-843))))) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 181) (($ (-1090)) 129 (|has| |#1| (-967 (-1090))))) (-3421 (((-3 $ "failed") $) 126 (-3309 (|has| |#1| (-136)) (-1341 (|has| $ (-136)) (|has| |#1| (-843)))))) (-2093 (((-713)) 29)) (-2498 ((|#1| $) 136 (|has| |#1| (-510)))) (-2262 (((-108) $ $) 39)) (-2092 (($ $) 119 (|has| |#1| (-762)))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $) 167 (|has| |#1| (-213))) (($ $ (-713)) 165 (|has| |#1| (-213))) (($ $ (-1090)) 160 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 159 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 158 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) 157 (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-4024 (((-108) $ $) 115 (|has| |#1| (-789)))) (-3995 (((-108) $ $) 114 (|has| |#1| (-789)))) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 116 (|has| |#1| (-789)))) (-3983 (((-108) $ $) 113 (|has| |#1| (-789)))) (-4082 (($ $ $) 64) (($ |#1| |#1|) 144)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
-(((-924 |#1|) (-131) (-517)) (T -924))
-((-4082 (*1 *1 *2 *2) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)))) (-1303 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)))) (-1312 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)))) (-3830 (*1 *1 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)))) (-1915 (*1 *1 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)) (-4 *2 (-286)))) (-2723 (*1 *1 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)) (-4 *2 (-286)))) (-3375 (*1 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-510)) (-4 *2 (-517)))) (-2498 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)) (-4 *2 (-510)))) (-1720 (*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)) (-4 *2 (-510)))))
-(-13 (-341) (-37 |t#1|) (-967 |t#1|) (-316 |t#1|) (-211 |t#1|) (-355 |t#1|) (-818 |t#1|) (-378 |t#1|) (-10 -8 (-15 -4082 ($ |t#1| |t#1|)) (-15 -1303 (|t#1| $)) (-15 -1312 (|t#1| $)) (-15 -3830 ($ $)) (-15 -1915 ($ $)) (IF (|has| |t#1| (-1066)) (-6 (-1066)) |%noBranch|) (IF (|has| |t#1| (-967 (-525))) (PROGN (-6 (-967 (-525))) (-6 (-967 (-385 (-525))))) |%noBranch|) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-762)) (-6 (-762)) |%noBranch|) (IF (|has| |t#1| (-952)) (-6 (-952)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-967 (-1090))) (-6 (-967 (-1090))) |%noBranch|) (IF (|has| |t#1| (-286)) (PROGN (-15 -3115 (|t#1| $)) (-15 -2723 ($ $))) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -3375 ($)) (-15 -2498 (|t#1| $)) (-15 -1720 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-843)) (-6 (-843)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) . T) ((-567 (-205)) |has| |#1| (-952)) ((-567 (-357)) |has| |#1| (-952)) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-826 (-357))) |has| |#1| (-567 (-826 (-357)))) ((-567 (-826 (-525))) |has| |#1| (-567 (-826 (-525)))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-223) . T) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) . T) ((-286) . T) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-341) . T) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-378 |#1|) . T) ((-429) . T) ((-486 (-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-669) . T) ((-733) |has| |#1| (-762)) ((-734) |has| |#1| (-762)) ((-736) |has| |#1| (-762)) ((-737) |has| |#1| (-762)) ((-762) |has| |#1| (-762)) ((-787) |has| |#1| (-762)) ((-789) -3309 (|has| |#1| (-789)) (|has| |#1| (-762))) ((-834 (-1090)) |has| |#1| (-834 (-1090))) ((-820 (-357)) |has| |#1| (-820 (-357))) ((-820 (-525)) |has| |#1| (-820 (-525))) ((-818 |#1|) . T) ((-843) |has| |#1| (-843)) ((-854) . T) ((-952) |has| |#1| (-952)) ((-967 (-385 (-525))) |has| |#1| (-967 (-525))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 (-1090)) |has| |#1| (-967 (-1090))) ((-967 |#1|) . T) ((-982 #0#) . T) ((-982 |#1|) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) |has| |#1| (-1066)) ((-1126) . T) ((-1130) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-2423 (($ (-1057 |#1| |#2|)) 11)) (-3515 (((-1057 |#1| |#2|) $) 12)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3928 ((|#2| $ (-220 |#1| |#2|)) 16)) (-1908 (((-797) $) NIL)) (-3875 (($) NIL T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL)))
-(((-925 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2423 ($ (-1057 |#1| |#2|))) (-15 -3515 ((-1057 |#1| |#2|) $)) (-15 -3928 (|#2| $ (-220 |#1| |#2|))))) (-855) (-341)) (T -925))
-((-2423 (*1 *1 *2) (-12 (-5 *2 (-1057 *3 *4)) (-14 *3 (-855)) (-4 *4 (-341)) (-5 *1 (-925 *3 *4)))) (-3515 (*1 *2 *1) (-12 (-5 *2 (-1057 *3 *4)) (-5 *1 (-925 *3 *4)) (-14 *3 (-855)) (-4 *4 (-341)))) (-3928 (*1 *2 *1 *3) (-12 (-5 *3 (-220 *4 *2)) (-14 *4 (-855)) (-4 *2 (-341)) (-5 *1 (-925 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -2423 ($ (-1057 |#1| |#2|))) (-15 -3515 ((-1057 |#1| |#2|) $)) (-15 -3928 (|#2| $ (-220 |#1| |#2|)))))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3410 (((-108) $ (-713)) 8)) (-1505 (($) 7 T CONST)) (-1298 (($ $) 46)) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) 9)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-1722 (((-713) $) 45)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2570 ((|#1| $) 39)) (-2573 (($ |#1| $) 40)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3887 ((|#1| $) 44)) (-3513 ((|#1| $) 41)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-3883 ((|#1| |#1| $) 48)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-2712 ((|#1| $) 47)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-3612 (($ (-592 |#1|)) 42)) (-1877 ((|#1| $) 43)) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-926 |#1|) (-131) (-1126)) (T -926))
-((-3883 (*1 *2 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126)))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126)))) (-1298 (*1 *1 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126)))) (-1722 (*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1126)) (-5 *2 (-713)))) (-3887 (*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126)))) (-1877 (*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4254) (-15 -3883 (|t#1| |t#1| $)) (-15 -2712 (|t#1| $)) (-15 -1298 ($ $)) (-15 -1722 ((-713) $)) (-15 -3887 (|t#1| $)) (-15 -1877 (|t#1| $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T))
-((-1611 (((-108) $) 42)) (-1264 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2831 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 43)) (-1468 (((-3 (-385 (-525)) "failed") $) 78)) (-3081 (((-108) $) 72)) (-2098 (((-385 (-525)) $) 76)) (-2133 (((-108) $) 41)) (-3477 ((|#2| $) 22)) (-1370 (($ (-1 |#2| |#2|) $) 19)) (-4211 (($ $) 61)) (-3013 (($ $) NIL) (($ $ (-713)) NIL) (($ $ (-1090)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-1427 (((-501) $) 67)) (-3634 (($ $) 17)) (-1908 (((-797) $) 56) (($ (-525)) 38) (($ |#2|) 36) (($ (-385 (-525))) NIL)) (-2093 (((-713)) 10)) (-2092 ((|#2| $) 71)) (-3961 (((-108) $ $) 25)) (-3983 (((-108) $ $) 69)) (-4070 (($ $) 29) (($ $ $) 28)) (-4059 (($ $ $) 26)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
-(((-927 |#1| |#2|) (-10 -8 (-15 -1908 (|#1| (-385 (-525)))) (-15 -3983 ((-108) |#1| |#1|)) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 -4211 (|#1| |#1|)) (-15 -1427 ((-501) |#1|)) (-15 -1468 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2098 ((-385 (-525)) |#1|)) (-15 -3081 ((-108) |#1|)) (-15 -2092 (|#2| |#1|)) (-15 -3477 (|#2| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -1370 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1|)) (-15 -2831 (|#2| |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -1908 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1908 (|#1| (-525))) (-15 -2093 ((-713))) (-15 -2133 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4070 (|#1| |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -1611 ((-108) |#1|)) (-15 * (|#1| (-855) |#1|)) (-15 -4059 (|#1| |#1| |#1|)) (-15 -1908 ((-797) |#1|)) (-15 -3961 ((-108) |#1| |#1|))) (-928 |#2|) (-160)) (T -927))
-((-2093 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-927 *3 *4)) (-4 *3 (-928 *4)))))
-(-10 -8 (-15 -1908 (|#1| (-385 (-525)))) (-15 -3983 ((-108) |#1| |#1|)) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 -4211 (|#1| |#1|)) (-15 -1427 ((-501) |#1|)) (-15 -1468 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2098 ((-385 (-525)) |#1|)) (-15 -3081 ((-108) |#1|)) (-15 -2092 (|#2| |#1|)) (-15 -3477 (|#2| |#1|)) (-15 -3634 (|#1| |#1|)) (-15 -1370 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1|)) (-15 -2831 (|#2| |#1|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -1908 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1908 (|#1| (-525))) (-15 -2093 ((-713))) (-15 -2133 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4070 (|#1| |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -1611 ((-108) |#1|)) (-15 * (|#1| (-855) |#1|)) (-15 -4059 (|#1| |#1| |#1|)) (-15 -1908 ((-797) |#1|)) (-15 -3961 ((-108) |#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-1264 (((-3 (-525) "failed") $) 119 (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 117 (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) 116)) (-2831 (((-525) $) 120 (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) 118 (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) 115)) (-1860 (((-632 (-525)) (-632 $)) 90 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 89 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 88) (((-632 |#1|) (-632 $)) 87)) (-2866 (((-3 $ "failed") $) 34)) (-3981 ((|#1| $) 80)) (-1468 (((-3 (-385 (-525)) "failed") $) 76 (|has| |#1| (-510)))) (-3081 (((-108) $) 78 (|has| |#1| (-510)))) (-2098 (((-385 (-525)) $) 77 (|has| |#1| (-510)))) (-2191 (($ |#1| |#1| |#1| |#1|) 81)) (-2133 (((-108) $) 31)) (-3477 ((|#1| $) 82)) (-3525 (($ $ $) 68 (|has| |#1| (-789)))) (-3630 (($ $ $) 67 (|has| |#1| (-789)))) (-1370 (($ (-1 |#1| |#1|) $) 91)) (-2337 (((-1073) $) 9)) (-4211 (($ $) 73 (|has| |#1| (-341)))) (-3123 ((|#1| $) 83)) (-2231 ((|#1| $) 84)) (-3714 ((|#1| $) 85)) (-2663 (((-1037) $) 10)) (-3092 (($ $ (-592 |#1|) (-592 |#1|)) 97 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 95 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 94 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) 93 (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) 92 (|has| |#1| (-486 (-1090) |#1|)))) (-3928 (($ $ |#1|) 98 (|has| |#1| (-265 |#1| |#1|)))) (-3013 (($ $) 114 (|has| |#1| (-213))) (($ $ (-713)) 112 (|has| |#1| (-213))) (($ $ (-1090)) 110 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 109 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 108 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) 107 (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1427 (((-501) $) 74 (|has| |#1| (-567 (-501))))) (-3634 (($ $) 86)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 62 (-3309 (|has| |#1| (-341)) (|has| |#1| (-967 (-385 (-525))))))) (-3421 (((-3 $ "failed") $) 75 (|has| |#1| (-136)))) (-2093 (((-713)) 29)) (-2092 ((|#1| $) 79 (|has| |#1| (-985)))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 72 (|has| |#1| (-341)))) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $) 113 (|has| |#1| (-213))) (($ $ (-713)) 111 (|has| |#1| (-213))) (($ $ (-1090)) 106 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 105 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 104 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) 103 (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-4024 (((-108) $ $) 65 (|has| |#1| (-789)))) (-3995 (((-108) $ $) 64 (|has| |#1| (-789)))) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 66 (|has| |#1| (-789)))) (-3983 (((-108) $ $) 63 (|has| |#1| (-789)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 71 (|has| |#1| (-341)))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-385 (-525))) 70 (|has| |#1| (-341))) (($ (-385 (-525)) $) 69 (|has| |#1| (-341)))))
-(((-928 |#1|) (-131) (-160)) (T -928))
-((-3634 (*1 *1 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))) (-2231 (*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))) (-3123 (*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))) (-3477 (*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))) (-2191 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))) (-3981 (*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)) (-4 *2 (-985)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-928 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-2098 (*1 *2 *1) (-12 (-4 *1 (-928 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-1468 (*1 *2 *1) (|partial| -12 (-4 *1 (-928 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))))
-(-13 (-37 |t#1|) (-389 |t#1|) (-211 |t#1|) (-316 |t#1|) (-355 |t#1|) (-10 -8 (-15 -3634 ($ $)) (-15 -3714 (|t#1| $)) (-15 -2231 (|t#1| $)) (-15 -3123 (|t#1| $)) (-15 -3477 (|t#1| $)) (-15 -2191 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -3981 (|t#1| $)) (IF (|has| |t#1| (-269)) (-6 (-269)) |%noBranch|) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-223)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-985)) (-15 -2092 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -3081 ((-108) $)) (-15 -2098 ((-385 (-525)) $)) (-15 -1468 ((-3 (-385 (-525)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-341)) ((-37 |#1|) . T) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-341)) ((-107 |#1| |#1|) . T) ((-107 $ $) -3309 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-223) |has| |#1| (-341)) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) -3309 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-486 (-1090) |#1|) |has| |#1| (-486 (-1090) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-594 #0#) |has| |#1| (-341)) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-341)) ((-660 |#1|) . T) ((-669) . T) ((-789) |has| |#1| (-789)) ((-834 (-1090)) |has| |#1| (-834 (-1090))) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-982 #0#) |has| |#1| (-341)) ((-982 |#1|) . T) ((-982 $) -3309 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1370 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-929 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1370 (|#3| (-1 |#4| |#2|) |#1|))) (-928 |#2|) (-160) (-928 |#4|) (-160)) (T -929))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-928 *6)) (-5 *1 (-929 *4 *5 *2 *6)) (-4 *4 (-928 *5)))))
-(-10 -7 (-15 -1370 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-2831 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3981 ((|#1| $) 12)) (-1468 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-3081 (((-108) $) NIL (|has| |#1| (-510)))) (-2098 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-2191 (($ |#1| |#1| |#1| |#1|) 16)) (-2133 (((-108) $) NIL)) (-3477 ((|#1| $) NIL)) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-341)))) (-3123 ((|#1| $) 15)) (-2231 ((|#1| $) 14)) (-3714 ((|#1| $) 13)) (-2663 (((-1037) $) NIL)) (-3092 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1090)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1090) |#1|))) (($ $ (-1090) |#1|) NIL (|has| |#1| (-486 (-1090) |#1|)))) (-3928 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-3013 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1427 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-3634 (($ $) NIL)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-385 (-525))) NIL (-3309 (|has| |#1| (-341)) (|has| |#1| (-967 (-385 (-525))))))) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) NIL)) (-2092 ((|#1| $) NIL (|has| |#1| (-985)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3875 (($) 8 T CONST)) (-3882 (($) 10 T CONST)) (-1424 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-341)))))
-(((-930 |#1|) (-928 |#1|) (-160)) (T -930))
-NIL
-(-928 |#1|)
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3410 (((-108) $ (-713)) NIL)) (-1505 (($) NIL T CONST)) (-1298 (($ $) 20)) (-2450 (($ (-592 |#1|)) 29)) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-1722 (((-713) $) 22)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2570 ((|#1| $) 24)) (-2573 (($ |#1| $) 15)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3887 ((|#1| $) 23)) (-3513 ((|#1| $) 19)) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3883 ((|#1| |#1| $) 14)) (-1613 (((-108) $) 17)) (-3773 (($) NIL)) (-2712 ((|#1| $) 18)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-3612 (($ (-592 |#1|)) NIL)) (-1877 ((|#1| $) 26)) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-931 |#1|) (-13 (-926 |#1|) (-10 -8 (-15 -2450 ($ (-592 |#1|))))) (-1019)) (T -931))
-((-2450 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-931 *3)))))
-(-13 (-926 |#1|) (-10 -8 (-15 -2450 ($ (-592 |#1|)))))
-((-3969 (($ $) 12)) (-3391 (($ $ (-525)) 13)))
-(((-932 |#1|) (-10 -8 (-15 -3969 (|#1| |#1|)) (-15 -3391 (|#1| |#1| (-525)))) (-933)) (T -932))
-NIL
-(-10 -8 (-15 -3969 (|#1| |#1|)) (-15 -3391 (|#1| |#1| (-525))))
-((-3969 (($ $) 6)) (-3391 (($ $ (-525)) 7)) (** (($ $ (-385 (-525))) 8)))
-(((-933) (-131)) (T -933))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-933)) (-5 *2 (-385 (-525))))) (-3391 (*1 *1 *1 *2) (-12 (-4 *1 (-933)) (-5 *2 (-525)))) (-3969 (*1 *1 *1) (-4 *1 (-933))))
-(-13 (-10 -8 (-15 -3969 ($ $)) (-15 -3391 ($ $ (-525))) (-15 ** ($ $ (-385 (-525))))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-4124 (((-2 (|:| |num| (-1172 |#2|)) (|:| |den| |#2|)) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| (-385 |#2|) (-341)))) (-3635 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-2950 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-2794 (((-632 (-385 |#2|)) (-1172 $)) NIL) (((-632 (-385 |#2|))) NIL)) (-3512 (((-385 |#2|) $) NIL)) (-2837 (((-1100 (-855) (-713)) (-525)) NIL (|has| (-385 |#2|) (-327)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-1510 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2305 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-3107 (((-713)) NIL (|has| (-385 |#2|) (-346)))) (-3741 (((-108)) NIL)) (-4193 (((-108) |#1|) 148) (((-108) |#2|) 153)) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL (|has| (-385 |#2|) (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 |#2|) (-967 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) NIL)) (-2831 (((-525) $) NIL (|has| (-385 |#2|) (-967 (-525)))) (((-385 (-525)) $) NIL (|has| (-385 |#2|) (-967 (-385 (-525))))) (((-385 |#2|) $) NIL)) (-2229 (($ (-1172 (-385 |#2|)) (-1172 $)) NIL) (($ (-1172 (-385 |#2|))) 70) (($ (-1172 |#2|) |#2|) NIL)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-385 |#2|) (-327)))) (-2373 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-1409 (((-632 (-385 |#2|)) $ (-1172 $)) NIL) (((-632 (-385 |#2|)) $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-385 |#2|))) (|:| |vec| (-1172 (-385 |#2|)))) (-632 $) (-1172 $)) NIL) (((-632 (-385 |#2|)) (-632 $)) NIL)) (-3507 (((-1172 $) (-1172 $)) NIL)) (-4004 (($ |#3|) 65) (((-3 $ "failed") (-385 |#3|)) NIL (|has| (-385 |#2|) (-341)))) (-2866 (((-3 $ "failed") $) NIL)) (-2654 (((-592 (-592 |#1|))) NIL (|has| |#1| (-346)))) (-3619 (((-108) |#1| |#1|) NIL)) (-2239 (((-855)) NIL)) (-3375 (($) NIL (|has| (-385 |#2|) (-346)))) (-1993 (((-108)) NIL)) (-1351 (((-108) |#1|) 56) (((-108) |#2|) 150)) (-2356 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| (-385 |#2|) (-341)))) (-3811 (($ $) NIL)) (-3205 (($) NIL (|has| (-385 |#2|) (-327)))) (-3746 (((-108) $) NIL (|has| (-385 |#2|) (-327)))) (-1410 (($ $ (-713)) NIL (|has| (-385 |#2|) (-327))) (($ $) NIL (|has| (-385 |#2|) (-327)))) (-2250 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-1737 (((-855) $) NIL (|has| (-385 |#2|) (-327))) (((-775 (-855)) $) NIL (|has| (-385 |#2|) (-327)))) (-2133 (((-108) $) NIL)) (-2324 (((-713)) NIL)) (-3248 (((-1172 $) (-1172 $)) NIL)) (-3477 (((-385 |#2|) $) NIL)) (-3256 (((-592 (-886 |#1|)) (-1090)) NIL (|has| |#1| (-341)))) (-1816 (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-327)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2362 ((|#3| $) NIL (|has| (-385 |#2|) (-341)))) (-1780 (((-855) $) NIL (|has| (-385 |#2|) (-346)))) (-3774 ((|#3| $) NIL)) (-3216 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2337 (((-1073) $) NIL)) (-3214 (((-632 (-385 |#2|))) 52)) (-3596 (((-632 (-385 |#2|))) 51)) (-4211 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-2367 (($ (-1172 |#2|) |#2|) 71)) (-2744 (((-632 (-385 |#2|))) 50)) (-3998 (((-632 (-385 |#2|))) 49)) (-1664 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-1323 (((-2 (|:| |num| (-1172 |#2|)) (|:| |den| |#2|)) $) 77)) (-3382 (((-1172 $)) 46)) (-2780 (((-1172 $)) 45)) (-1738 (((-108) $) NIL)) (-3801 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-2279 (($) NIL (|has| (-385 |#2|) (-327)) CONST)) (-4185 (($ (-855)) NIL (|has| (-385 |#2|) (-346)))) (-1973 (((-3 |#2| "failed")) 63)) (-2663 (((-1037) $) NIL)) (-3717 (((-713)) NIL)) (-1669 (($) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| (-385 |#2|) (-341)))) (-3244 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) NIL (|has| (-385 |#2|) (-327)))) (-3959 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2338 (((-3 $ "failed") $ $) NIL (|has| (-385 |#2|) (-341)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2183 (((-713) $) NIL (|has| (-385 |#2|) (-341)))) (-3928 ((|#1| $ |#1| |#1|) NIL)) (-4182 (((-3 |#2| "failed")) 62)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1400 (((-385 |#2|) (-1172 $)) NIL) (((-385 |#2|)) 42)) (-2443 (((-713) $) NIL (|has| (-385 |#2|) (-327))) (((-3 (-713) "failed") $ $) NIL (|has| (-385 |#2|) (-327)))) (-3013 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-713)) NIL (-3309 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3309 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-2160 (((-632 (-385 |#2|)) (-1172 $) (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341)))) (-1654 ((|#3|) 53)) (-3775 (($) NIL (|has| (-385 |#2|) (-327)))) (-4093 (((-1172 (-385 |#2|)) $ (-1172 $)) NIL) (((-632 (-385 |#2|)) (-1172 $) (-1172 $)) NIL) (((-1172 (-385 |#2|)) $) 72) (((-632 (-385 |#2|)) (-1172 $)) NIL)) (-1427 (((-1172 (-385 |#2|)) $) NIL) (($ (-1172 (-385 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| (-385 |#2|) (-327)))) (-3641 (((-1172 $) (-1172 $)) NIL)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ (-385 |#2|)) NIL) (($ (-385 (-525))) NIL (-3309 (|has| (-385 |#2|) (-967 (-385 (-525)))) (|has| (-385 |#2|) (-341)))) (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3421 (($ $) NIL (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-136)))) (-1260 ((|#3| $) NIL)) (-2093 (((-713)) NIL)) (-2476 (((-108)) 60)) (-4214 (((-108) |#1|) 154) (((-108) |#2|) 155)) (-2499 (((-1172 $)) 125)) (-2262 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2820 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3552 (((-108)) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (-3875 (($) 94 T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-834 (-1090))))) (($ $ (-713)) NIL (-3309 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3309 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 |#2|)) NIL) (($ (-385 |#2|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) NIL (|has| (-385 |#2|) (-341)))))
-(((-934 |#1| |#2| |#3| |#4| |#5|) (-320 |#1| |#2| |#3|) (-1130) (-1148 |#1|) (-1148 (-385 |#2|)) (-385 |#2|) (-713)) (T -934))
+((-2608 (($ $ (-1013 $)) 7) (($ $ (-1091)) 6)))
+(((-893) (-131)) (T -893))
+((-2608 (*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-893)))) (-2608 (*1 *1 *1 *2) (-12 (-4 *1 (-893)) (-5 *2 (-1091)))))
+(-13 (-10 -8 (-15 -2608 ($ $ (-1091))) (-15 -2608 ($ $ (-1013 $)))))
+((-3977 (((-2 (|:| -1655 (-592 (-525))) (|:| |poly| (-592 (-1087 |#1|))) (|:| |prim| (-1087 |#1|))) (-592 (-887 |#1|)) (-592 (-1091)) (-1091)) 25) (((-2 (|:| -1655 (-592 (-525))) (|:| |poly| (-592 (-1087 |#1|))) (|:| |prim| (-1087 |#1|))) (-592 (-887 |#1|)) (-592 (-1091))) 26) (((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1087 |#1|))) (-887 |#1|) (-1091) (-887 |#1|) (-1091)) 43)))
+(((-894 |#1|) (-10 -7 (-15 -3977 ((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1087 |#1|))) (-887 |#1|) (-1091) (-887 |#1|) (-1091))) (-15 -3977 ((-2 (|:| -1655 (-592 (-525))) (|:| |poly| (-592 (-1087 |#1|))) (|:| |prim| (-1087 |#1|))) (-592 (-887 |#1|)) (-592 (-1091)))) (-15 -3977 ((-2 (|:| -1655 (-592 (-525))) (|:| |poly| (-592 (-1087 |#1|))) (|:| |prim| (-1087 |#1|))) (-592 (-887 |#1|)) (-592 (-1091)) (-1091)))) (-13 (-341) (-138))) (T -894))
+((-3977 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1091))) (-5 *5 (-1091)) (-4 *6 (-13 (-341) (-138))) (-5 *2 (-2 (|:| -1655 (-592 (-525))) (|:| |poly| (-592 (-1087 *6))) (|:| |prim| (-1087 *6)))) (-5 *1 (-894 *6)))) (-3977 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-592 (-1091))) (-4 *5 (-13 (-341) (-138))) (-5 *2 (-2 (|:| -1655 (-592 (-525))) (|:| |poly| (-592 (-1087 *5))) (|:| |prim| (-1087 *5)))) (-5 *1 (-894 *5)))) (-3977 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-887 *5)) (-5 *4 (-1091)) (-4 *5 (-13 (-341) (-138))) (-5 *2 (-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1087 *5)))) (-5 *1 (-894 *5)))))
+(-10 -7 (-15 -3977 ((-2 (|:| |coef1| (-525)) (|:| |coef2| (-525)) (|:| |prim| (-1087 |#1|))) (-887 |#1|) (-1091) (-887 |#1|) (-1091))) (-15 -3977 ((-2 (|:| -1655 (-592 (-525))) (|:| |poly| (-592 (-1087 |#1|))) (|:| |prim| (-1087 |#1|))) (-592 (-887 |#1|)) (-592 (-1091)))) (-15 -3977 ((-2 (|:| -1655 (-592 (-525))) (|:| |poly| (-592 (-1087 |#1|))) (|:| |prim| (-1087 |#1|))) (-592 (-887 |#1|)) (-592 (-1091)) (-1091))))
+((-3183 (((-592 |#1|) |#1| |#1|) 42)) (-3836 (((-108) |#1|) 39)) (-1828 ((|#1| |#1|) 65)) (-3350 ((|#1| |#1|) 64)))
+(((-895 |#1|) (-10 -7 (-15 -3836 ((-108) |#1|)) (-15 -3350 (|#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -3183 ((-592 |#1|) |#1| |#1|))) (-510)) (T -895))
+((-3183 (*1 *2 *3 *3) (-12 (-5 *2 (-592 *3)) (-5 *1 (-895 *3)) (-4 *3 (-510)))) (-1828 (*1 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-510)))) (-3350 (*1 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-510)))) (-3836 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-895 *3)) (-4 *3 (-510)))))
+(-10 -7 (-15 -3836 ((-108) |#1|)) (-15 -3350 (|#1| |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -3183 ((-592 |#1|) |#1| |#1|)))
+((-3785 (((-1178) (-798)) 9)))
+(((-896) (-10 -7 (-15 -3785 ((-1178) (-798))))) (T -896))
+((-3785 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1178)) (-5 *1 (-896)))))
+(-10 -7 (-15 -3785 ((-1178) (-798))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 63 (|has| |#1| (-517)))) (-3711 (($ $) 64 (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 28)) (-3898 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-2571 (($ $) 24)) (-3762 (((-3 $ "failed") $) 35)) (-3026 (($ $) NIL (|has| |#1| (-429)))) (-2192 (($ $ |#1| |#2| $) 48)) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) 16)) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| |#2|) NIL)) (-3724 ((|#2| $) 19)) (-3922 (($ (-1 |#2| |#2|) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2538 (($ $) 23)) (-2548 ((|#1| $) 21)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2513 (((-108) $) 40)) (-2525 ((|#1| $) NIL)) (-3485 (($ $ |#2| |#1| $) 75 (-12 (|has| |#2| (-126)) (|has| |#1| (-517))))) (-1680 (((-3 $ "failed") $ $) 76 (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-517)))) (-1587 ((|#2| $) 17)) (-2026 ((|#1| $) NIL (|has| |#1| (-429)))) (-1270 (((-798) $) NIL) (($ (-525)) 39) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 34) (($ (-385 (-525))) NIL (-3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-1562 (((-592 |#1|) $) NIL)) (-3468 ((|#1| $ |#2|) 31)) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) 15)) (-3658 (($ $ $ (-713)) 59 (|has| |#1| (-160)))) (-3959 (((-108) $ $) 69 (|has| |#1| (-517)))) (-1576 (($ $ (-856)) 55) (($ $ (-713)) 56)) (-3355 (($) 22 T CONST)) (-3363 (($) 12 T CONST)) (-3994 (((-108) $ $) 68)) (-4100 (($ $ |#1|) 77 (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) 54) (($ $ (-713)) 52)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-897 |#1| |#2|) (-13 (-304 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| |#2| (-126)) (-15 -3485 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4253)) (-6 -4253) |%noBranch|))) (-977) (-734)) (T -897))
+((-3485 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-897 *3 *2)) (-4 *2 (-126)) (-4 *3 (-517)) (-4 *3 (-977)) (-4 *2 (-734)))))
+(-13 (-304 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| |#2| (-126)) (-15 -3485 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4253)) (-6 -4253) |%noBranch|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL (-3279 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (-2017 (($ $ $) 63 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))) (-1342 (((-3 $ "failed") $ $) 50 (-3279 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (-4190 (((-713)) 34 (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-4119 ((|#2| $) 21)) (-2236 ((|#1| $) 20)) (-2305 (($) NIL (-3279 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) CONST)) (-3762 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (-2899 (($) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-1985 (((-108) $) NIL (-3279 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (-2371 (($ $ $) NIL (-3279 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-2535 (($ $ $) NIL (-3279 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3270 (($ |#1| |#2|) 19)) (-1736 (((-856) $) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 37 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-3640 (($ (-856)) NIL (-12 (|has| |#1| (-346)) (|has| |#2| (-346))))) (-2012 (((-1038) $) NIL)) (-3700 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-2222 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-1270 (((-798) $) 14)) (-1576 (($ $ (-525)) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450)))) (($ $ (-713)) NIL (-3279 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))) (($ $ (-856)) NIL (-3279 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (-3355 (($) 40 (-3279 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))) CONST)) (-3363 (($) 24 (-3279 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))) CONST)) (-4045 (((-108) $ $) NIL (-3279 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-4026 (((-108) $ $) NIL (-3279 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3994 (((-108) $ $) 18)) (-4037 (((-108) $ $) NIL (-3279 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-4017 (((-108) $ $) 66 (-3279 (-12 (|has| |#1| (-735)) (|has| |#2| (-735))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-4100 (($ $ $) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450))))) (-4090 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-4080 (($ $ $) 43 (-3279 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735)))))) (** (($ $ (-525)) NIL (-12 (|has| |#1| (-450)) (|has| |#2| (-450)))) (($ $ (-713)) 31 (-3279 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669))))) (($ $ (-856)) NIL (-3279 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))) (* (($ (-525) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-713) $) 46 (-3279 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))) (($ (-856) $) NIL (-3279 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-126)) (|has| |#2| (-126))) (-12 (|has| |#1| (-735)) (|has| |#2| (-735))))) (($ $ $) 27 (-3279 (-12 (|has| |#1| (-450)) (|has| |#2| (-450))) (-12 (|has| |#1| (-669)) (|has| |#2| (-669)))))))
+(((-898 |#1| |#2|) (-13 (-1020) (-10 -8 (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-669)) (IF (|has| |#2| (-669)) (-6 (-669)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-126)) (IF (|has| |#2| (-126)) (-6 (-126)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-450)) (-6 (-450)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-735)) (IF (|has| |#2| (-735)) (-6 (-735)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (-15 -3270 ($ |#1| |#2|)) (-15 -2236 (|#1| $)) (-15 -4119 (|#2| $)))) (-1020) (-1020)) (T -898))
+((-3270 (*1 *1 *2 *3) (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-2236 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-898 *2 *3)) (-4 *3 (-1020)))) (-4119 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-898 *3 *2)) (-4 *3 (-1020)))))
+(-13 (-1020) (-10 -8 (IF (|has| |#1| (-346)) (IF (|has| |#2| (-346)) (-6 (-346)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-669)) (IF (|has| |#2| (-669)) (-6 (-669)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-126)) (IF (|has| |#2| (-126)) (-6 (-126)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-450)) (IF (|has| |#2| (-450)) (-6 (-450)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-735)) (IF (|has| |#2| (-735)) (-6 (-735)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (-15 -3270 ($ |#1| |#2|)) (-15 -2236 (|#1| $)) (-15 -4119 (|#2| $))))
+((-3352 (((-1024) $) 12)) (-3980 (($ (-1091) (-1024)) 13)) (-3800 (((-1091) $) 10)) (-1270 (((-798) $) 24)))
+(((-899) (-13 (-566 (-798)) (-10 -8 (-15 -3800 ((-1091) $)) (-15 -3352 ((-1024) $)) (-15 -3980 ($ (-1091) (-1024)))))) (T -899))
+((-3800 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-899)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-899)))) (-3980 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1024)) (-5 *1 (-899)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -3800 ((-1091) $)) (-15 -3352 ((-1024) $)) (-15 -3980 ($ (-1091) (-1024)))))
+((-2383 (((-1022 (-1091)) $) 19)) (-3445 (((-108) $) 26)) (-2577 (((-1091) $) 27)) (-3972 (((-108) $) 24)) (-4125 ((|#1| $) 25)) (-1407 (((-808 $ $) $) 34)) (-3039 (((-108) $) 33)) (-3818 (($ $ $) 12)) (-3433 (($ $) 29)) (-3473 (((-108) $) 28)) (-1825 (($ $) 10)) (-2935 (((-808 $ $) $) 36)) (-1877 (((-108) $) 35)) (-4131 (($ $ $) 13)) (-2345 (((-808 $ $) $) 38)) (-1467 (((-108) $) 37)) (-2978 (($ $ $) 14)) (-1270 (($ |#1|) 7) (($ (-1091)) 9) (((-798) $) 40 (|has| |#1| (-566 (-798))))) (-3566 (((-808 $ $) $) 32)) (-3751 (((-108) $) 30)) (-3830 (($ $ $) 11)))
+(((-900 |#1|) (-13 (-901) (-10 -8 (IF (|has| |#1| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) (-15 -1270 ($ |#1|)) (-15 -1270 ($ (-1091))) (-15 -2383 ((-1022 (-1091)) $)) (-15 -3972 ((-108) $)) (-15 -4125 (|#1| $)) (-15 -3445 ((-108) $)) (-15 -2577 ((-1091) $)) (-15 -3473 ((-108) $)) (-15 -3433 ($ $)) (-15 -3751 ((-108) $)) (-15 -3566 ((-808 $ $) $)) (-15 -3039 ((-108) $)) (-15 -1407 ((-808 $ $) $)) (-15 -1877 ((-108) $)) (-15 -2935 ((-808 $ $) $)) (-15 -1467 ((-108) $)) (-15 -2345 ((-808 $ $) $)))) (-901)) (T -900))
+((-1270 (*1 *1 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-2383 (*1 *2 *1) (-12 (-5 *2 (-1022 (-1091))) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-3972 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-4125 (*1 *2 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-3433 (*1 *1 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901)))) (-3751 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-3039 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-1407 (*1 *2 *1) (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-1877 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-1467 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))) (-2345 (*1 *2 *1) (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
+(-13 (-901) (-10 -8 (IF (|has| |#1| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) (-15 -1270 ($ |#1|)) (-15 -1270 ($ (-1091))) (-15 -2383 ((-1022 (-1091)) $)) (-15 -3972 ((-108) $)) (-15 -4125 (|#1| $)) (-15 -3445 ((-108) $)) (-15 -2577 ((-1091) $)) (-15 -3473 ((-108) $)) (-15 -3433 ($ $)) (-15 -3751 ((-108) $)) (-15 -3566 ((-808 $ $) $)) (-15 -3039 ((-108) $)) (-15 -1407 ((-808 $ $) $)) (-15 -1877 ((-108) $)) (-15 -2935 ((-808 $ $) $)) (-15 -1467 ((-108) $)) (-15 -2345 ((-808 $ $) $))))
+((-3818 (($ $ $) 8)) (-1825 (($ $) 6)) (-4131 (($ $ $) 9)) (-2978 (($ $ $) 10)) (-3830 (($ $ $) 7)))
+(((-901) (-131)) (T -901))
+((-2978 (*1 *1 *1 *1) (-4 *1 (-901))) (-4131 (*1 *1 *1 *1) (-4 *1 (-901))) (-3818 (*1 *1 *1 *1) (-4 *1 (-901))) (-3830 (*1 *1 *1 *1) (-4 *1 (-901))) (-1825 (*1 *1 *1) (-4 *1 (-901))))
+(-13 (-10 -8 (-15 -1825 ($ $)) (-15 -3830 ($ $ $)) (-15 -3818 ($ $ $)) (-15 -4131 ($ $ $)) (-15 -2978 ($ $ $))))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3330 (((-108) $ (-713)) 8)) (-2305 (($) 7 T CONST)) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) 9)) (-1999 (($ $ $) 43)) (-3743 (($ $ $) 44)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2535 ((|#1| $) 45)) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-3955 ((|#1| $) 39)) (-3985 (($ |#1| $) 40)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-1881 ((|#1| $) 41)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-1665 (($ (-592 |#1|)) 42)) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-902 |#1|) (-131) (-789)) (T -902))
+((-2535 (*1 *2 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789)))) (-3743 (*1 *1 *1 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789)))) (-1999 (*1 *1 *1 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4255) (-15 -2535 (|t#1| $)) (-15 -3743 ($ $ $)) (-15 -1999 ($ $ $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1127) . T))
+((-3214 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2794 |#2|)) |#2| |#2|) 85)) (-1798 ((|#2| |#2| |#2|) 83)) (-2363 (((-2 (|:| |coef2| |#2|) (|:| -2794 |#2|)) |#2| |#2|) 87)) (-4235 (((-2 (|:| |coef1| |#2|) (|:| -2794 |#2|)) |#2| |#2|) 89)) (-2063 (((-2 (|:| |coef2| |#2|) (|:| -2965 |#1|)) |#2| |#2|) 107 (|has| |#1| (-429)))) (-3588 (((-2 (|:| |coef2| |#2|) (|:| -1516 |#1|)) |#2| |#2|) 46)) (-2701 (((-2 (|:| |coef2| |#2|) (|:| -1516 |#1|)) |#2| |#2|) 64)) (-2912 (((-2 (|:| |coef1| |#2|) (|:| -1516 |#1|)) |#2| |#2|) 66)) (-2931 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-1229 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 71)) (-2842 (((-2 (|:| |coef2| |#2|) (|:| -2094 |#1|)) |#2|) 97)) (-1414 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 74)) (-3931 (((-592 (-713)) |#2| |#2|) 82)) (-3254 ((|#1| |#2| |#2|) 42)) (-3293 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2965 |#1|)) |#2| |#2|) 105 (|has| |#1| (-429)))) (-2965 ((|#1| |#2| |#2|) 103 (|has| |#1| (-429)))) (-3765 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1516 |#1|)) |#2| |#2|) 44)) (-2050 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1516 |#1|)) |#2| |#2|) 63)) (-1516 ((|#1| |#2| |#2|) 61)) (-3886 (((-2 (|:| -1655 |#1|) (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2|) 35)) (-2999 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-2400 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-3488 ((|#2| |#2| |#2|) 75)) (-2669 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 69)) (-2006 ((|#2| |#2| |#2| (-713)) 67)) (-2794 ((|#2| |#2| |#2|) 111 (|has| |#1| (-429)))) (-1680 (((-1173 |#2|) (-1173 |#2|) |#1|) 21)) (-1496 (((-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2|) 39)) (-2625 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2094 |#1|)) |#2|) 95)) (-2094 ((|#1| |#2|) 92)) (-3936 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713)) 73)) (-1724 ((|#2| |#2| |#2| (-713)) 72)) (-3223 (((-592 |#2|) |#2| |#2|) 80)) (-2467 ((|#2| |#2| |#1| |#1| (-713)) 50)) (-3056 ((|#1| |#1| |#1| (-713)) 49)) (* (((-1173 |#2|) |#1| (-1173 |#2|)) 16)))
+(((-903 |#1| |#2|) (-10 -7 (-15 -1516 (|#1| |#2| |#2|)) (-15 -2050 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1516 |#1|)) |#2| |#2|)) (-15 -2701 ((-2 (|:| |coef2| |#2|) (|:| -1516 |#1|)) |#2| |#2|)) (-15 -2912 ((-2 (|:| |coef1| |#2|) (|:| -1516 |#1|)) |#2| |#2|)) (-15 -2006 (|#2| |#2| |#2| (-713))) (-15 -2669 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1229 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1724 (|#2| |#2| |#2| (-713))) (-15 -3936 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1414 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -3488 (|#2| |#2| |#2|)) (-15 -2400 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2931 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1798 (|#2| |#2| |#2|)) (-15 -3214 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2794 |#2|)) |#2| |#2|)) (-15 -2363 ((-2 (|:| |coef2| |#2|) (|:| -2794 |#2|)) |#2| |#2|)) (-15 -4235 ((-2 (|:| |coef1| |#2|) (|:| -2794 |#2|)) |#2| |#2|)) (-15 -2094 (|#1| |#2|)) (-15 -2625 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2094 |#1|)) |#2|)) (-15 -2842 ((-2 (|:| |coef2| |#2|) (|:| -2094 |#1|)) |#2|)) (-15 -3223 ((-592 |#2|) |#2| |#2|)) (-15 -3931 ((-592 (-713)) |#2| |#2|)) (IF (|has| |#1| (-429)) (PROGN (-15 -2965 (|#1| |#2| |#2|)) (-15 -3293 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2965 |#1|)) |#2| |#2|)) (-15 -2063 ((-2 (|:| |coef2| |#2|) (|:| -2965 |#1|)) |#2| |#2|)) (-15 -2794 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1173 |#2|) |#1| (-1173 |#2|))) (-15 -1680 ((-1173 |#2|) (-1173 |#2|) |#1|)) (-15 -3886 ((-2 (|:| -1655 |#1|) (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2|)) (-15 -1496 ((-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2|)) (-15 -3056 (|#1| |#1| |#1| (-713))) (-15 -2467 (|#2| |#2| |#1| |#1| (-713))) (-15 -2999 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3254 (|#1| |#2| |#2|)) (-15 -3765 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1516 |#1|)) |#2| |#2|)) (-15 -3588 ((-2 (|:| |coef2| |#2|) (|:| -1516 |#1|)) |#2| |#2|))) (-517) (-1149 |#1|)) (T -903))
+((-3588 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1516 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-3765 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1516 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-3254 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1149 *2)))) (-2999 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1149 *3)))) (-2467 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1149 *3)))) (-3056 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *2 (-517)) (-5 *1 (-903 *2 *4)) (-4 *4 (-1149 *2)))) (-1496 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-3886 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -1655 *4) (|:| -2370 *3) (|:| -3496 *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-1680 (*1 *2 *2 *3) (-12 (-5 *2 (-1173 *4)) (-4 *4 (-1149 *3)) (-4 *3 (-517)) (-5 *1 (-903 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1173 *4)) (-4 *4 (-1149 *3)) (-4 *3 (-517)) (-5 *1 (-903 *3 *4)))) (-2794 (*1 *2 *2 *2) (-12 (-4 *3 (-429)) (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1149 *3)))) (-2063 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2965 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-3293 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2965 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-2965 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-4 *2 (-429)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1149 *2)))) (-3931 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-713))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-3223 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-2842 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2094 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-2625 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2094 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-2094 (*1 *2 *3) (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1149 *2)))) (-4235 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2794 *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-2363 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2794 *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-3214 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2794 *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-1798 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1149 *3)))) (-2931 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-2400 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-3488 (*1 *2 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1149 *3)))) (-1414 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *5 *3)) (-4 *3 (-1149 *5)))) (-3936 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *5 *3)) (-4 *3 (-1149 *5)))) (-1724 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-903 *4 *2)) (-4 *2 (-1149 *4)))) (-1229 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *5 *3)) (-4 *3 (-1149 *5)))) (-2669 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-903 *5 *3)) (-4 *3 (-1149 *5)))) (-2006 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-903 *4 *2)) (-4 *2 (-1149 *4)))) (-2912 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1516 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-2701 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1516 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-2050 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1516 *4))) (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))) (-1516 (*1 *2 *3 *3) (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1149 *2)))))
+(-10 -7 (-15 -1516 (|#1| |#2| |#2|)) (-15 -2050 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1516 |#1|)) |#2| |#2|)) (-15 -2701 ((-2 (|:| |coef2| |#2|) (|:| -1516 |#1|)) |#2| |#2|)) (-15 -2912 ((-2 (|:| |coef1| |#2|) (|:| -1516 |#1|)) |#2| |#2|)) (-15 -2006 (|#2| |#2| |#2| (-713))) (-15 -2669 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1229 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1724 (|#2| |#2| |#2| (-713))) (-15 -3936 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -1414 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-713))) (-15 -3488 (|#2| |#2| |#2|)) (-15 -2400 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2931 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1798 (|#2| |#2| |#2|)) (-15 -3214 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2794 |#2|)) |#2| |#2|)) (-15 -2363 ((-2 (|:| |coef2| |#2|) (|:| -2794 |#2|)) |#2| |#2|)) (-15 -4235 ((-2 (|:| |coef1| |#2|) (|:| -2794 |#2|)) |#2| |#2|)) (-15 -2094 (|#1| |#2|)) (-15 -2625 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2094 |#1|)) |#2|)) (-15 -2842 ((-2 (|:| |coef2| |#2|) (|:| -2094 |#1|)) |#2|)) (-15 -3223 ((-592 |#2|) |#2| |#2|)) (-15 -3931 ((-592 (-713)) |#2| |#2|)) (IF (|has| |#1| (-429)) (PROGN (-15 -2965 (|#1| |#2| |#2|)) (-15 -3293 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2965 |#1|)) |#2| |#2|)) (-15 -2063 ((-2 (|:| |coef2| |#2|) (|:| -2965 |#1|)) |#2| |#2|)) (-15 -2794 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1173 |#2|) |#1| (-1173 |#2|))) (-15 -1680 ((-1173 |#2|) (-1173 |#2|) |#1|)) (-15 -3886 ((-2 (|:| -1655 |#1|) (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2|)) (-15 -1496 ((-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) |#2| |#2|)) (-15 -3056 (|#1| |#1| |#1| (-713))) (-15 -2467 (|#2| |#2| |#1| |#1| (-713))) (-15 -2999 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3254 (|#1| |#2| |#2|)) (-15 -3765 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1516 |#1|)) |#2| |#2|)) (-15 -3588 ((-2 (|:| |coef2| |#2|) (|:| -1516 |#1|)) |#2| |#2|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) 27)) (-2305 (($) NIL T CONST)) (-2840 (((-592 (-592 (-525))) (-592 (-525))) 29)) (-1515 (((-525) $) 45)) (-3825 (($ (-592 (-525))) 17)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2749 (((-592 (-525)) $) 12)) (-3700 (($ $) 32)) (-1270 (((-798) $) 43) (((-592 (-525)) $) 10)) (-3355 (($) 7 T CONST)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 20)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 19)) (-4080 (($ $ $) 21)) (* (($ (-856) $) NIL) (($ (-713) $) 25)))
+(((-904) (-13 (-737) (-567 (-592 (-525))) (-10 -8 (-15 -3825 ($ (-592 (-525)))) (-15 -2840 ((-592 (-592 (-525))) (-592 (-525)))) (-15 -1515 ((-525) $)) (-15 -3700 ($ $)) (-15 -1270 ((-592 (-525)) $))))) (T -904))
+((-3825 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-904)))) (-2840 (*1 *2 *3) (-12 (-5 *2 (-592 (-592 (-525)))) (-5 *1 (-904)) (-5 *3 (-592 (-525))))) (-1515 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-904)))) (-3700 (*1 *1 *1) (-5 *1 (-904))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-904)))))
+(-13 (-737) (-567 (-592 (-525))) (-10 -8 (-15 -3825 ($ (-592 (-525)))) (-15 -2840 ((-592 (-592 (-525))) (-592 (-525)))) (-15 -1515 ((-525) $)) (-15 -3700 ($ $)) (-15 -1270 ((-592 (-525)) $))))
+((-4100 (($ $ |#2|) 30)) (-4090 (($ $) 22) (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-385 (-525)) $) 26) (($ $ (-385 (-525))) 28)))
+(((-905 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -4100 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|))) (-906 |#2| |#3| |#4|) (-977) (-734) (-789)) (T -905))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-385 (-525)))) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 -4100 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 * (|#1| (-856) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2383 (((-592 |#3|) $) 74)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3711 (($ $) 52 (|has| |#1| (-517)))) (-3380 (((-108) $) 54 (|has| |#1| (-517)))) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-2571 (($ $) 60)) (-3762 (((-3 $ "failed") $) 34)) (-2911 (((-108) $) 73)) (-1985 (((-108) $) 31)) (-1788 (((-108) $) 62)) (-2352 (($ |#1| |#2|) 61) (($ $ |#3| |#2|) 76) (($ $ (-592 |#3|) (-592 |#2|)) 75)) (-2694 (($ (-1 |#1| |#1|) $) 63)) (-2538 (($ $) 65)) (-2548 ((|#1| $) 66)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1680 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-1587 ((|#2| $) 64)) (-3577 (($ $) 72)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-3468 ((|#1| $ |#2|) 59)) (-3425 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4100 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+(((-906 |#1| |#2| |#3|) (-131) (-977) (-734) (-789)) (T -906))
+((-2548 (*1 *2 *1) (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *3 (-734)) (-4 *4 (-789)) (-4 *2 (-977)))) (-2538 (*1 *1 *1) (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-734)) (-4 *4 (-789)))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-906 *3 *2 *4)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *2 (-734)))) (-2352 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-906 *4 *3 *2)) (-4 *4 (-977)) (-4 *3 (-734)) (-4 *2 (-789)))) (-2352 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 *5)) (-4 *1 (-906 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-734)) (-4 *6 (-789)))) (-2383 (*1 *2 *1) (-12 (-4 *1 (-906 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-734)) (-4 *5 (-789)) (-5 *2 (-592 *5)))) (-2911 (*1 *2 *1) (-12 (-4 *1 (-906 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-734)) (-4 *5 (-789)) (-5 *2 (-108)))) (-3577 (*1 *1 *1) (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-734)) (-4 *4 (-789)))))
+(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -2352 ($ $ |t#3| |t#2|)) (-15 -2352 ($ $ (-592 |t#3|) (-592 |t#2|))) (-15 -2538 ($ $)) (-15 -2548 (|t#1| $)) (-15 -1587 (|t#2| $)) (-15 -2383 ((-592 |t#3|) $)) (-15 -2911 ((-108) $)) (-15 -3577 ($ $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-2613 (((-1015 (-205)) $) 8)) (-2604 (((-1015 (-205)) $) 9)) (-2596 (((-1015 (-205)) $) 10)) (-1703 (((-592 (-592 (-878 (-205)))) $) 11)) (-1270 (((-798) $) 6)))
+(((-907) (-131)) (T -907))
+((-1703 (*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-592 (-592 (-878 (-205))))))) (-2596 (*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))) (-2613 (*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))))
+(-13 (-566 (-798)) (-10 -8 (-15 -1703 ((-592 (-592 (-878 (-205)))) $)) (-15 -2596 ((-1015 (-205)) $)) (-15 -2604 ((-1015 (-205)) $)) (-15 -2613 ((-1015 (-205)) $))))
+(((-566 (-798)) . T))
+((-2383 (((-592 |#4|) $) 23)) (-3163 (((-108) $) 48)) (-3018 (((-108) $) 47)) (-2855 (((-2 (|:| |under| $) (|:| -2793 $) (|:| |upper| $)) $ |#4|) 36)) (-3393 (((-108) $) 49)) (-3438 (((-108) $ $) 55)) (-1396 (((-108) $ $) 58)) (-3291 (((-108) $) 53)) (-1653 (((-592 |#5|) (-592 |#5|) $) 90)) (-1551 (((-592 |#5|) (-592 |#5|) $) 87)) (-3496 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2723 (((-592 |#4|) $) 27)) (-2069 (((-108) |#4| $) 30)) (-1410 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3422 (($ $ |#4|) 33)) (-1248 (($ $ |#4|) 32)) (-1847 (($ $ |#4|) 34)) (-3994 (((-108) $ $) 40)))
+(((-908 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3018 ((-108) |#1|)) (-15 -1653 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -1551 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -3496 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1410 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3393 ((-108) |#1|)) (-15 -1396 ((-108) |#1| |#1|)) (-15 -3438 ((-108) |#1| |#1|)) (-15 -3291 ((-108) |#1|)) (-15 -3163 ((-108) |#1|)) (-15 -2855 ((-2 (|:| |under| |#1|) (|:| -2793 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3422 (|#1| |#1| |#4|)) (-15 -1847 (|#1| |#1| |#4|)) (-15 -1248 (|#1| |#1| |#4|)) (-15 -2069 ((-108) |#4| |#1|)) (-15 -2723 ((-592 |#4|) |#1|)) (-15 -2383 ((-592 |#4|) |#1|)) (-15 -3994 ((-108) |#1| |#1|))) (-909 |#2| |#3| |#4| |#5|) (-977) (-735) (-789) (-991 |#2| |#3| |#4|)) (T -908))
+NIL
+(-10 -8 (-15 -3018 ((-108) |#1|)) (-15 -1653 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -1551 ((-592 |#5|) (-592 |#5|) |#1|)) (-15 -3496 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1410 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3393 ((-108) |#1|)) (-15 -1396 ((-108) |#1| |#1|)) (-15 -3438 ((-108) |#1| |#1|)) (-15 -3291 ((-108) |#1|)) (-15 -3163 ((-108) |#1|)) (-15 -2855 ((-2 (|:| |under| |#1|) (|:| -2793 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3422 (|#1| |#1| |#4|)) (-15 -1847 (|#1| |#1| |#4|)) (-15 -1248 (|#1| |#1| |#4|)) (-15 -2069 ((-108) |#4| |#1|)) (-15 -2723 ((-592 |#4|) |#1|)) (-15 -2383 ((-592 |#4|) |#1|)) (-15 -3994 ((-108) |#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-2383 (((-592 |#3|) $) 33)) (-3163 (((-108) $) 26)) (-3018 (((-108) $) 17 (|has| |#1| (-517)))) (-2855 (((-2 (|:| |under| $) (|:| -2793 $) (|:| |upper| $)) $ |#3|) 27)) (-3330 (((-108) $ (-713)) 44)) (-3826 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4255)))) (-2305 (($) 45 T CONST)) (-3393 (((-108) $) 22 (|has| |#1| (-517)))) (-3438 (((-108) $ $) 24 (|has| |#1| (-517)))) (-1396 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3291 (((-108) $) 25 (|has| |#1| (-517)))) (-1653 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1551 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-2591 (((-3 $ "failed") (-592 |#4|)) 36)) (-3898 (($ (-592 |#4|)) 35)) (-3137 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4255)))) (-3496 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-3503 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4255))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4255)))) (-3702 (((-592 |#4|) $) 52 (|has| $ (-6 -4255)))) (-1776 ((|#3| $) 34)) (-2482 (((-108) $ (-713)) 43)) (-1749 (((-592 |#4|) $) 53 (|has| $ (-6 -4255)))) (-2783 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#4| |#4|) $) 47)) (-2723 (((-592 |#3|) $) 32)) (-2069 (((-108) |#3| $) 31)) (-2957 (((-108) $ (-713)) 42)) (-3451 (((-1074) $) 9)) (-1410 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2012 (((-1038) $) 10)) (-3207 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3006 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-3428 (((-108) $ $) 38)) (-2013 (((-108) $) 41)) (-2718 (($) 40)) (-2040 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4255)))) (-1451 (($ $) 39)) (-2749 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1279 (($ (-592 |#4|)) 60)) (-3422 (($ $ |#3|) 28)) (-1248 (($ $ |#3|) 30)) (-1847 (($ $ |#3|) 29)) (-1270 (((-798) $) 11) (((-592 |#4|) $) 37)) (-3633 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 6)) (-3596 (((-713) $) 46 (|has| $ (-6 -4255)))))
+(((-909 |#1| |#2| |#3| |#4|) (-131) (-977) (-735) (-789) (-991 |t#1| |t#2| |t#3|)) (T -909))
+((-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *1 (-909 *3 *4 *5 *6)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *1 (-909 *3 *4 *5 *6)))) (-1776 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-991 *3 *4 *2)) (-4 *2 (-789)))) (-2383 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5)))) (-2723 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5)))) (-2069 (*1 *2 *3 *1) (-12 (-4 *1 (-909 *4 *5 *3 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *6 (-991 *4 *5 *3)) (-5 *2 (-108)))) (-1248 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))) (-1847 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))) (-3422 (*1 *1 *1 *2) (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))) (-2855 (*1 *2 *1 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *6 (-991 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2793 *1) (|:| |upper| *1))) (-4 *1 (-909 *4 *5 *3 *6)))) (-3163 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-3291 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-3438 (*1 *2 *1 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-1396 (*1 *2 *1 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-3393 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))) (-1410 (*1 *2 *3 *1) (-12 (-4 *1 (-909 *4 *5 *6 *3)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3496 (*1 *2 *3 *1) (-12 (-4 *1 (-909 *4 *5 *6 *3)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1551 (*1 *2 *2 *1) (-12 (-5 *2 (-592 *6)) (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)))) (-1653 (*1 *2 *2 *1) (-12 (-5 *2 (-592 *6)) (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-5 *2 (-108)))))
+(-13 (-1020) (-142 |t#4|) (-566 (-592 |t#4|)) (-10 -8 (-6 -4255) (-15 -2591 ((-3 $ "failed") (-592 |t#4|))) (-15 -3898 ($ (-592 |t#4|))) (-15 -1776 (|t#3| $)) (-15 -2383 ((-592 |t#3|) $)) (-15 -2723 ((-592 |t#3|) $)) (-15 -2069 ((-108) |t#3| $)) (-15 -1248 ($ $ |t#3|)) (-15 -1847 ($ $ |t#3|)) (-15 -3422 ($ $ |t#3|)) (-15 -2855 ((-2 (|:| |under| $) (|:| -2793 $) (|:| |upper| $)) $ |t#3|)) (-15 -3163 ((-108) $)) (IF (|has| |t#1| (-517)) (PROGN (-15 -3291 ((-108) $)) (-15 -3438 ((-108) $ $)) (-15 -1396 ((-108) $ $)) (-15 -3393 ((-108) $)) (-15 -1410 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3496 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1551 ((-592 |t#4|) (-592 |t#4|) $)) (-15 -1653 ((-592 |t#4|) (-592 |t#4|) $)) (-15 -3018 ((-108) $))) |%noBranch|)))
+(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-798)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-1020) . T) ((-1127) . T))
+((-3666 (((-592 |#4|) |#4| |#4|) 118)) (-2528 (((-592 |#4|) (-592 |#4|) (-108)) 107 (|has| |#1| (-429))) (((-592 |#4|) (-592 |#4|)) 108 (|has| |#1| (-429)))) (-4028 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 35)) (-3440 (((-108) |#4|) 34)) (-4128 (((-592 |#4|) |#4|) 103 (|has| |#1| (-429)))) (-2060 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-1 (-108) |#4|) (-592 |#4|)) 20)) (-3822 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|)) 22)) (-4197 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|)) 23)) (-2670 (((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|)) 73)) (-1355 (((-592 |#4|) (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-3667 (((-592 |#4|) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-2858 (((-592 |#4|) (-592 |#4|)) 110)) (-2078 (((-592 |#4|) (-592 |#4|) (-592 |#4|) (-108)) 48) (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 50)) (-2875 ((|#4| |#4| (-592 |#4|)) 49)) (-3115 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 114 (|has| |#1| (-429)))) (-2807 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 117 (|has| |#1| (-429)))) (-2635 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 116 (|has| |#1| (-429)))) (-3356 (((-592 |#4|) (-592 |#4|) (-592 |#4|) (-1 (-592 |#4|) (-592 |#4|))) 87) (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 89) (((-592 |#4|) (-592 |#4|) |#4|) 121) (((-592 |#4|) |#4| |#4|) 119) (((-592 |#4|) (-592 |#4|)) 88)) (-2145 (((-592 |#4|) (-592 |#4|) (-592 |#4|)) 100 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-2680 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 41)) (-2882 (((-108) (-592 |#4|)) 62)) (-2646 (((-108) (-592 |#4|) (-592 (-592 |#4|))) 53)) (-2715 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 29)) (-2456 (((-108) |#4|) 28)) (-4171 (((-592 |#4|) (-592 |#4|)) 98 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-2879 (((-592 |#4|) (-592 |#4|)) 99 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-1750 (((-592 |#4|) (-592 |#4|)) 66)) (-1294 (((-592 |#4|) (-592 |#4|)) 79)) (-3072 (((-108) (-592 |#4|) (-592 |#4|)) 51)) (-2225 (((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|)) 39)) (-1417 (((-108) |#4|) 36)))
+(((-910 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3356 ((-592 |#4|) (-592 |#4|))) (-15 -3356 ((-592 |#4|) |#4| |#4|)) (-15 -2858 ((-592 |#4|) (-592 |#4|))) (-15 -3666 ((-592 |#4|) |#4| |#4|)) (-15 -3356 ((-592 |#4|) (-592 |#4|) |#4|)) (-15 -3356 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -3356 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-1 (-592 |#4|) (-592 |#4|)))) (-15 -3072 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2646 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -2882 ((-108) (-592 |#4|))) (-15 -2060 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-1 (-108) |#4|) (-592 |#4|))) (-15 -3822 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -4197 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -2680 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -3440 ((-108) |#4|)) (-15 -4028 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2456 ((-108) |#4|)) (-15 -2715 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -1417 ((-108) |#4|)) (-15 -2225 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2078 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -2078 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-108))) (-15 -2875 (|#4| |#4| (-592 |#4|))) (-15 -1750 ((-592 |#4|) (-592 |#4|))) (-15 -2670 ((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|))) (-15 -1294 ((-592 |#4|) (-592 |#4|))) (-15 -1355 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3667 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-429)) (PROGN (-15 -4128 ((-592 |#4|) |#4|)) (-15 -2528 ((-592 |#4|) (-592 |#4|))) (-15 -2528 ((-592 |#4|) (-592 |#4|) (-108))) (-15 -3115 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -2635 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -2807 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (PROGN (-15 -2879 ((-592 |#4|) (-592 |#4|))) (-15 -4171 ((-592 |#4|) (-592 |#4|))) (-15 -2145 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) |%noBranch|)) (-517) (-735) (-789) (-991 |#1| |#2| |#3|)) (T -910))
+((-2145 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-4171 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-2879 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138)) (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-2807 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-2635 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-3115 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-2528 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *7)))) (-2528 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-4128 (*1 *2 *3) (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-3667 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-910 *5 *6 *7 *8)))) (-1355 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-592 *9)) (-5 *3 (-1 (-108) *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *1 (-910 *6 *7 *8 *9)))) (-1294 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-2670 (*1 *2 *3) (|partial| -12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-453 *4 *5 *6 *7)) (|:| -2936 (-592 *7)))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-1750 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-2875 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *2)))) (-2078 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *7)))) (-2078 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-2225 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-1417 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-2715 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-2456 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-4028 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-3440 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-2680 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7)))) (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))) (-4197 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))) (-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))) (-2060 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8)))) (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *4 *5 *6 *7)))) (-2646 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-592 *8))) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *5 *6 *7 *8)))) (-3072 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-910 *4 *5 *6 *7)))) (-3356 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-592 *7)) (-5 *3 (-1 (-592 *7) (-592 *7))) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *7)))) (-3356 (*1 *2 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-3356 (*1 *2 *2 *3) (-12 (-5 *2 (-592 *3)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *3)))) (-3666 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-2858 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))) (-3356 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3)) (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))) (-3356 (*1 *2 *2) (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3356 ((-592 |#4|) (-592 |#4|))) (-15 -3356 ((-592 |#4|) |#4| |#4|)) (-15 -2858 ((-592 |#4|) (-592 |#4|))) (-15 -3666 ((-592 |#4|) |#4| |#4|)) (-15 -3356 ((-592 |#4|) (-592 |#4|) |#4|)) (-15 -3356 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -3356 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-1 (-592 |#4|) (-592 |#4|)))) (-15 -3072 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2646 ((-108) (-592 |#4|) (-592 (-592 |#4|)))) (-15 -2882 ((-108) (-592 |#4|))) (-15 -2060 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-1 (-108) |#4|) (-592 |#4|))) (-15 -3822 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -4197 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 (-1 (-108) |#4|)) (-592 |#4|))) (-15 -2680 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -3440 ((-108) |#4|)) (-15 -4028 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2456 ((-108) |#4|)) (-15 -2715 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -1417 ((-108) |#4|)) (-15 -2225 ((-2 (|:| |goodPols| (-592 |#4|)) (|:| |badPols| (-592 |#4|))) (-592 |#4|))) (-15 -2078 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -2078 ((-592 |#4|) (-592 |#4|) (-592 |#4|) (-108))) (-15 -2875 (|#4| |#4| (-592 |#4|))) (-15 -1750 ((-592 |#4|) (-592 |#4|))) (-15 -2670 ((-3 (-2 (|:| |bas| (-453 |#1| |#2| |#3| |#4|)) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|))) (-15 -1294 ((-592 |#4|) (-592 |#4|))) (-15 -1355 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3667 ((-592 |#4|) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-429)) (PROGN (-15 -4128 ((-592 |#4|) |#4|)) (-15 -2528 ((-592 |#4|) (-592 |#4|))) (-15 -2528 ((-592 |#4|) (-592 |#4|) (-108))) (-15 -3115 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -2635 ((-592 |#4|) (-592 |#4|) (-592 |#4|))) (-15 -2807 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (PROGN (-15 -2879 ((-592 |#4|) (-592 |#4|))) (-15 -4171 ((-592 |#4|) (-592 |#4|))) (-15 -2145 ((-592 |#4|) (-592 |#4|) (-592 |#4|)))) |%noBranch|) |%noBranch|))
+((-3120 (((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 19)) (-1734 (((-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1173 |#1|)))) (-632 |#1|) (-1173 |#1|)) 36)) (-2804 (((-632 |#1|) (-632 |#1|) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|)) 16)))
+(((-911 |#1|) (-10 -7 (-15 -3120 ((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2804 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1734 ((-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1173 |#1|)))) (-632 |#1|) (-1173 |#1|)))) (-341)) (T -911))
+((-1734 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-592 (-2 (|:| C (-632 *5)) (|:| |g| (-1173 *5))))) (-5 *1 (-911 *5)) (-5 *3 (-632 *5)) (-5 *4 (-1173 *5)))) (-2804 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-632 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341)) (-5 *1 (-911 *5)))) (-3120 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-341)) (-5 *2 (-2 (|:| R (-632 *6)) (|:| A (-632 *6)) (|:| |Ainv| (-632 *6)))) (-5 *1 (-911 *6)) (-5 *3 (-632 *6)))))
+(-10 -7 (-15 -3120 ((-2 (|:| R (-632 |#1|)) (|:| A (-632 |#1|)) (|:| |Ainv| (-632 |#1|))) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -2804 ((-632 |#1|) (-632 |#1|) (-632 |#1|) (-94 |#1|) (-1 |#1| |#1|))) (-15 -1734 ((-592 (-2 (|:| C (-632 |#1|)) (|:| |g| (-1173 |#1|)))) (-632 |#1|) (-1173 |#1|))))
+((-2100 (((-396 |#4|) |#4|) 48)))
+(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2100 ((-396 |#4|) |#4|))) (-789) (-735) (-429) (-884 |#3| |#2| |#1|)) (T -912))
+((-2100 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-429)) (-5 *2 (-396 *3)) (-5 *1 (-912 *4 *5 *6 *3)) (-4 *3 (-884 *6 *5 *4)))))
+(-10 -7 (-15 -2100 ((-396 |#4|) |#4|)))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2708 (($ (-713)) 112 (|has| |#1| (-23)))) (-2782 (((-1178) $ (-525) (-525)) 40 (|has| $ (-6 -4256)))) (-2151 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-2549 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4256))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4256))))) (-2855 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-3330 (((-108) $ (-713)) 8)) (-1429 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) 58 (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4255)))) (-2305 (($) 7 T CONST)) (-3559 (($ $) 90 (|has| $ (-6 -4256)))) (-3620 (($ $) 100)) (-3137 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4255)))) (-2632 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) 51)) (-1916 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1020)))) (-2261 (($ (-592 |#1|)) 118)) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-1430 (((-632 |#1|) $ $) 105 (|has| |#1| (-977)))) (-3489 (($ (-713) |#1|) 69)) (-2482 (((-108) $ (-713)) 9)) (-2710 (((-525) $) 43 (|has| (-525) (-789)))) (-2371 (($ $ $) 87 (|has| |#1| (-789)))) (-3743 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3478 (((-525) $) 44 (|has| (-525) (-789)))) (-2535 (($ $ $) 86 (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1325 ((|#1| $) 102 (-12 (|has| |#1| (-977)) (|has| |#1| (-934))))) (-2957 (((-108) $ (-713)) 10)) (-2023 ((|#1| $) 103 (-12 (|has| |#1| (-977)) (|has| |#1| (-934))))) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-2683 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-4142 (((-592 (-525)) $) 46)) (-3845 (((-108) (-525) $) 47)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3110 ((|#1| $) 42 (|has| (-525) (-789)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2042 (($ $ |#1|) 41 (|has| $ (-6 -4256)))) (-2182 (($ $ (-592 |#1|)) 115)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-4101 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) 48)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1140 (-525))) 63)) (-1809 ((|#1| $ $) 106 (|has| |#1| (-977)))) (-3831 (((-856) $) 117)) (-3157 (($ $ (-525)) 62) (($ $ (-1140 (-525))) 61)) (-3838 (($ $ $) 104)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3216 (($ $ $ (-525)) 91 (|has| $ (-6 -4256)))) (-1451 (($ $) 13)) (-2749 (((-501) $) 79 (|has| |#1| (-567 (-501)))) (($ (-592 |#1|)) 116)) (-1279 (($ (-592 |#1|)) 70)) (-2014 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) 84 (|has| |#1| (-789)))) (-4026 (((-108) $ $) 83 (|has| |#1| (-789)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-4037 (((-108) $ $) 85 (|has| |#1| (-789)))) (-4017 (((-108) $ $) 82 (|has| |#1| (-789)))) (-4090 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4080 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-525) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-669))) (($ $ |#1|) 107 (|has| |#1| (-669)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-913 |#1|) (-131) (-977)) (T -913))
+((-2261 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-977)) (-4 *1 (-913 *3)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-977)) (-5 *2 (-856)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-977)) (-4 *1 (-913 *3)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-977)))) (-2182 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-913 *3)) (-4 *3 (-977)))))
+(-13 (-1171 |t#1|) (-10 -8 (-15 -2261 ($ (-592 |t#1|))) (-15 -3831 ((-856) $)) (-15 -2749 ($ (-592 |t#1|))) (-15 -3838 ($ $ $)) (-15 -2182 ($ $ (-592 |t#1|)))))
+(((-33) . T) ((-97) -3279 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-789)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-19 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1020) -3279 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-1127) . T) ((-1171 |#1|) . T))
+((-2694 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 17)))
+(((-914 |#1| |#2|) (-10 -7 (-15 -2694 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)))) (-977) (-977)) (T -914))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-5 *2 (-878 *6)) (-5 *1 (-914 *5 *6)))))
+(-10 -7 (-15 -2694 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|))))
+((-1306 ((|#1| (-878 |#1|)) 13)) (-1969 ((|#1| (-878 |#1|)) 12)) (-3419 ((|#1| (-878 |#1|)) 11)) (-2519 ((|#1| (-878 |#1|)) 15)) (-1478 ((|#1| (-878 |#1|)) 21)) (-3754 ((|#1| (-878 |#1|)) 14)) (-2649 ((|#1| (-878 |#1|)) 16)) (-2510 ((|#1| (-878 |#1|)) 20)) (-3664 ((|#1| (-878 |#1|)) 19)))
+(((-915 |#1|) (-10 -7 (-15 -3419 (|#1| (-878 |#1|))) (-15 -1969 (|#1| (-878 |#1|))) (-15 -1306 (|#1| (-878 |#1|))) (-15 -3754 (|#1| (-878 |#1|))) (-15 -2519 (|#1| (-878 |#1|))) (-15 -2649 (|#1| (-878 |#1|))) (-15 -3664 (|#1| (-878 |#1|))) (-15 -2510 (|#1| (-878 |#1|))) (-15 -1478 (|#1| (-878 |#1|)))) (-977)) (T -915))
+((-1478 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-3664 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-3754 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-1306 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-1969 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+(-10 -7 (-15 -3419 (|#1| (-878 |#1|))) (-15 -1969 (|#1| (-878 |#1|))) (-15 -1306 (|#1| (-878 |#1|))) (-15 -3754 (|#1| (-878 |#1|))) (-15 -2519 (|#1| (-878 |#1|))) (-15 -2649 (|#1| (-878 |#1|))) (-15 -3664 (|#1| (-878 |#1|))) (-15 -2510 (|#1| (-878 |#1|))) (-15 -1478 (|#1| (-878 |#1|))))
+((-2442 (((-3 |#1| "failed") |#1|) 18)) (-1801 (((-3 |#1| "failed") |#1|) 6)) (-3255 (((-3 |#1| "failed") |#1|) 16)) (-2332 (((-3 |#1| "failed") |#1|) 4)) (-3630 (((-3 |#1| "failed") |#1|) 20)) (-3097 (((-3 |#1| "failed") |#1|) 8)) (-3005 (((-3 |#1| "failed") |#1| (-713)) 1)) (-2996 (((-3 |#1| "failed") |#1|) 3)) (-3649 (((-3 |#1| "failed") |#1|) 2)) (-2808 (((-3 |#1| "failed") |#1|) 21)) (-4224 (((-3 |#1| "failed") |#1|) 9)) (-4027 (((-3 |#1| "failed") |#1|) 19)) (-2407 (((-3 |#1| "failed") |#1|) 7)) (-3057 (((-3 |#1| "failed") |#1|) 17)) (-3472 (((-3 |#1| "failed") |#1|) 5)) (-1976 (((-3 |#1| "failed") |#1|) 24)) (-3164 (((-3 |#1| "failed") |#1|) 12)) (-1330 (((-3 |#1| "failed") |#1|) 22)) (-1839 (((-3 |#1| "failed") |#1|) 10)) (-4186 (((-3 |#1| "failed") |#1|) 26)) (-2430 (((-3 |#1| "failed") |#1|) 14)) (-2597 (((-3 |#1| "failed") |#1|) 27)) (-2190 (((-3 |#1| "failed") |#1|) 15)) (-1226 (((-3 |#1| "failed") |#1|) 25)) (-3016 (((-3 |#1| "failed") |#1|) 13)) (-1848 (((-3 |#1| "failed") |#1|) 23)) (-1965 (((-3 |#1| "failed") |#1|) 11)))
+(((-916 |#1|) (-131) (-1113)) (T -916))
+((-2597 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-4186 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-1226 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-1976 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-1848 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-1330 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-2808 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-3630 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-4027 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-2442 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-3057 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-3255 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-2190 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-2430 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-3016 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-3164 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-1965 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-1839 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-4224 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-3097 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-2407 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-1801 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-3472 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-2332 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-2996 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-3649 (*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))) (-3005 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-713)) (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(-13 (-10 -7 (-15 -3005 ((-3 |t#1| "failed") |t#1| (-713))) (-15 -3649 ((-3 |t#1| "failed") |t#1|)) (-15 -2996 ((-3 |t#1| "failed") |t#1|)) (-15 -2332 ((-3 |t#1| "failed") |t#1|)) (-15 -3472 ((-3 |t#1| "failed") |t#1|)) (-15 -1801 ((-3 |t#1| "failed") |t#1|)) (-15 -2407 ((-3 |t#1| "failed") |t#1|)) (-15 -3097 ((-3 |t#1| "failed") |t#1|)) (-15 -4224 ((-3 |t#1| "failed") |t#1|)) (-15 -1839 ((-3 |t#1| "failed") |t#1|)) (-15 -1965 ((-3 |t#1| "failed") |t#1|)) (-15 -3164 ((-3 |t#1| "failed") |t#1|)) (-15 -3016 ((-3 |t#1| "failed") |t#1|)) (-15 -2430 ((-3 |t#1| "failed") |t#1|)) (-15 -2190 ((-3 |t#1| "failed") |t#1|)) (-15 -3255 ((-3 |t#1| "failed") |t#1|)) (-15 -3057 ((-3 |t#1| "failed") |t#1|)) (-15 -2442 ((-3 |t#1| "failed") |t#1|)) (-15 -4027 ((-3 |t#1| "failed") |t#1|)) (-15 -3630 ((-3 |t#1| "failed") |t#1|)) (-15 -2808 ((-3 |t#1| "failed") |t#1|)) (-15 -1330 ((-3 |t#1| "failed") |t#1|)) (-15 -1848 ((-3 |t#1| "failed") |t#1|)) (-15 -1976 ((-3 |t#1| "failed") |t#1|)) (-15 -1226 ((-3 |t#1| "failed") |t#1|)) (-15 -4186 ((-3 |t#1| "failed") |t#1|)) (-15 -2597 ((-3 |t#1| "failed") |t#1|))))
+((-2877 ((|#4| |#4| (-592 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3080 ((|#4| |#4| (-592 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-2694 ((|#4| (-1 |#4| (-887 |#1|)) |#4|) 30)))
+(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3080 (|#4| |#4| |#3|)) (-15 -3080 (|#4| |#4| (-592 |#3|))) (-15 -2877 (|#4| |#4| |#3|)) (-15 -2877 (|#4| |#4| (-592 |#3|))) (-15 -2694 (|#4| (-1 |#4| (-887 |#1|)) |#4|))) (-977) (-735) (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $)) (-15 -2577 ((-3 $ "failed") (-1091))))) (-884 (-887 |#1|) |#2| |#3|)) (T -917))
+((-2694 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-887 *4))) (-4 *4 (-977)) (-4 *2 (-884 (-887 *4) *5 *6)) (-4 *5 (-735)) (-4 *6 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $)) (-15 -2577 ((-3 $ "failed") (-1091)))))) (-5 *1 (-917 *4 *5 *6 *2)))) (-2877 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $)) (-15 -2577 ((-3 $ "failed") (-1091)))))) (-4 *4 (-977)) (-4 *5 (-735)) (-5 *1 (-917 *4 *5 *6 *2)) (-4 *2 (-884 (-887 *4) *5 *6)))) (-2877 (*1 *2 *2 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $)) (-15 -2577 ((-3 $ "failed") (-1091)))))) (-5 *1 (-917 *4 *5 *3 *2)) (-4 *2 (-884 (-887 *4) *5 *3)))) (-3080 (*1 *2 *2 *3) (-12 (-5 *3 (-592 *6)) (-4 *6 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $)) (-15 -2577 ((-3 $ "failed") (-1091)))))) (-4 *4 (-977)) (-4 *5 (-735)) (-5 *1 (-917 *4 *5 *6 *2)) (-4 *2 (-884 (-887 *4) *5 *6)))) (-3080 (*1 *2 *2 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $)) (-15 -2577 ((-3 $ "failed") (-1091)))))) (-5 *1 (-917 *4 *5 *3 *2)) (-4 *2 (-884 (-887 *4) *5 *3)))))
+(-10 -7 (-15 -3080 (|#4| |#4| |#3|)) (-15 -3080 (|#4| |#4| (-592 |#3|))) (-15 -2877 (|#4| |#4| |#3|)) (-15 -2877 (|#4| |#4| (-592 |#3|))) (-15 -2694 (|#4| (-1 |#4| (-887 |#1|)) |#4|)))
+((-2885 ((|#2| |#3|) 35)) (-1681 (((-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|) 73)) (-2463 (((-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) 89)))
+(((-918 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2463 ((-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -1681 ((-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|)) (-15 -2885 (|#2| |#3|))) (-327) (-1149 |#1|) (-1149 |#2|) (-667 |#2| |#3|)) (T -918))
+((-2885 (*1 *2 *3) (-12 (-4 *3 (-1149 *2)) (-4 *2 (-1149 *4)) (-5 *1 (-918 *4 *2 *3 *5)) (-4 *4 (-327)) (-4 *5 (-667 *2 *3)))) (-1681 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *3 (-1149 *4)) (-4 *5 (-1149 *3)) (-5 *2 (-2 (|:| -1449 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-918 *4 *3 *5 *6)) (-4 *6 (-667 *3 *5)))) (-2463 (*1 *2) (-12 (-4 *3 (-327)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 *4)) (-5 *2 (-2 (|:| -1449 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) (-5 *1 (-918 *3 *4 *5 *6)) (-4 *6 (-667 *4 *5)))))
+(-10 -7 (-15 -2463 ((-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -1681 ((-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|)) (-15 -2885 (|#2| |#3|)))
+((-3528 (((-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))) (-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525))))) 69)))
+(((-919 |#1| |#2|) (-10 -7 (-15 -3528 ((-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))) (-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525))))))) (-592 (-1091)) (-713)) (T -919))
+((-3528 (*1 *2 *2) (-12 (-5 *2 (-920 (-385 (-525)) (-800 *3) (-220 *4 (-713)) (-227 *3 (-385 (-525))))) (-14 *3 (-592 (-1091))) (-14 *4 (-713)) (-5 *1 (-919 *3 *4)))))
+(-10 -7 (-15 -3528 ((-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))) (-920 (-385 (-525)) (-800 |#1|) (-220 |#2| (-713)) (-227 |#1| (-385 (-525)))))))
+((-1260 (((-108) $ $) NIL)) (-1583 (((-3 (-108) "failed") $) 69)) (-1434 (($ $) 36 (-12 (|has| |#1| (-138)) (|has| |#1| (-286))))) (-2364 (($ $ (-3 (-108) "failed")) 70)) (-3897 (($ (-592 |#4|) |#4|) 25)) (-3451 (((-1074) $) NIL)) (-1627 (($ $) 67)) (-2012 (((-1038) $) NIL)) (-2013 (((-108) $) 68)) (-2718 (($) 30)) (-2148 ((|#4| $) 72)) (-2678 (((-592 |#4|) $) 71)) (-1270 (((-798) $) 66)) (-3994 (((-108) $ $) NIL)))
+(((-920 |#1| |#2| |#3| |#4|) (-13 (-1020) (-566 (-798)) (-10 -8 (-15 -2718 ($)) (-15 -3897 ($ (-592 |#4|) |#4|)) (-15 -1583 ((-3 (-108) "failed") $)) (-15 -2364 ($ $ (-3 (-108) "failed"))) (-15 -2013 ((-108) $)) (-15 -2678 ((-592 |#4|) $)) (-15 -2148 (|#4| $)) (-15 -1627 ($ $)) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (-15 -1434 ($ $)) |%noBranch|) |%noBranch|))) (-429) (-789) (-735) (-884 |#1| |#3| |#2|)) (T -920))
+((-2718 (*1 *1) (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735)) (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3)))) (-3897 (*1 *1 *2 *3) (-12 (-5 *2 (-592 *3)) (-4 *3 (-884 *4 *6 *5)) (-4 *4 (-429)) (-4 *5 (-789)) (-4 *6 (-735)) (-5 *1 (-920 *4 *5 *6 *3)))) (-1583 (*1 *2 *1) (|partial| -12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-108)) (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))) (-2364 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))) (-2013 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-108)) (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))) (-2678 (*1 *2 *1) (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-592 *6)) (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))) (-2148 (*1 *2 *1) (-12 (-4 *2 (-884 *3 *5 *4)) (-5 *1 (-920 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)))) (-1627 (*1 *1 *1) (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735)) (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3)))) (-1434 (*1 *1 *1) (-12 (-4 *2 (-138)) (-4 *2 (-286)) (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735)) (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3)))))
+(-13 (-1020) (-566 (-798)) (-10 -8 (-15 -2718 ($)) (-15 -3897 ($ (-592 |#4|) |#4|)) (-15 -1583 ((-3 (-108) "failed") $)) (-15 -2364 ($ $ (-3 (-108) "failed"))) (-15 -2013 ((-108) $)) (-15 -2678 ((-592 |#4|) $)) (-15 -2148 (|#4| $)) (-15 -1627 ($ $)) (IF (|has| |#1| (-286)) (IF (|has| |#1| (-138)) (-15 -1434 ($ $)) |%noBranch|) |%noBranch|)))
+((-3823 (((-108) |#5| |#5|) 38)) (-1693 (((-108) |#5| |#5|) 52)) (-3617 (((-108) |#5| (-592 |#5|)) 74) (((-108) |#5| |#5|) 61)) (-1635 (((-108) (-592 |#4|) (-592 |#4|)) 58)) (-2098 (((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) 63)) (-3402 (((-1178)) 33)) (-3143 (((-1178) (-1074) (-1074) (-1074)) 29)) (-3128 (((-592 |#5|) (-592 |#5|)) 81)) (-3002 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|)))) 79)) (-3109 (((-592 (-2 (|:| -4216 (-592 |#4|)) (|:| -1895 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108)) 101)) (-3133 (((-108) |#5| |#5|) 47)) (-3196 (((-3 (-108) "failed") |#5| |#5|) 71)) (-3734 (((-108) (-592 |#4|) (-592 |#4|)) 57)) (-2244 (((-108) (-592 |#4|) (-592 |#4|)) 59)) (-1363 (((-108) (-592 |#4|) (-592 |#4|)) 60)) (-1477 (((-3 (-2 (|:| -4216 (-592 |#4|)) (|:| -1895 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)) 97)) (-2919 (((-592 |#5|) (-592 |#5|)) 43)))
+(((-921 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3143 ((-1178) (-1074) (-1074) (-1074))) (-15 -3402 ((-1178))) (-15 -3823 ((-108) |#5| |#5|)) (-15 -2919 ((-592 |#5|) (-592 |#5|))) (-15 -3133 ((-108) |#5| |#5|)) (-15 -1693 ((-108) |#5| |#5|)) (-15 -1635 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3734 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2244 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1363 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3196 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3617 ((-108) |#5| |#5|)) (-15 -3617 ((-108) |#5| (-592 |#5|))) (-15 -3128 ((-592 |#5|) (-592 |#5|))) (-15 -2098 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|)))) (-15 -3002 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) (-15 -3109 ((-592 (-2 (|:| -4216 (-592 |#4|)) (|:| -1895 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -1477 ((-3 (-2 (|:| -4216 (-592 |#4|)) (|:| -1895 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -921))
+((-1477 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| -4216 (-592 *9)) (|:| -1895 *4) (|:| |ineq| (-592 *9)))) (-5 *1 (-921 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9)) (-4 *4 (-996 *6 *7 *8 *9)))) (-3109 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-996 *6 *7 *8 *9)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| -4216 (-592 *9)) (|:| -1895 *10) (|:| |ineq| (-592 *9))))) (-5 *1 (-921 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9)))) (-3002 (*1 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -1895 *7)))) (-4 *6 (-991 *3 *4 *5)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-921 *3 *4 *5 *6 *7)))) (-2098 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -1895 *8))) (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *8)))) (-3128 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *1 (-921 *3 *4 *5 *6 *7)))) (-3617 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-921 *5 *6 *7 *8 *3)))) (-3617 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-3196 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-1363 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-2244 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-3734 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-1635 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-1693 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-3133 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-2919 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *1 (-921 *3 *4 *5 *6 *7)))) (-3823 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-3402 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1178)) (-5 *1 (-921 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-3143 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1178)) (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3143 ((-1178) (-1074) (-1074) (-1074))) (-15 -3402 ((-1178))) (-15 -3823 ((-108) |#5| |#5|)) (-15 -2919 ((-592 |#5|) (-592 |#5|))) (-15 -3133 ((-108) |#5| |#5|)) (-15 -1693 ((-108) |#5| |#5|)) (-15 -1635 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3734 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2244 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1363 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3196 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3617 ((-108) |#5| |#5|)) (-15 -3617 ((-108) |#5| (-592 |#5|))) (-15 -3128 ((-592 |#5|) (-592 |#5|))) (-15 -2098 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|)))) (-15 -3002 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) (-15 -3109 ((-592 (-2 (|:| -4216 (-592 |#4|)) (|:| -1895 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -1477 ((-3 (-2 (|:| -4216 (-592 |#4|)) (|:| -1895 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108))))
+((-2577 (((-1091) $) 15)) (-3352 (((-1074) $) 16)) (-1799 (($ (-1091) (-1074)) 14)) (-1270 (((-798) $) 13)))
+(((-922) (-13 (-566 (-798)) (-10 -8 (-15 -1799 ($ (-1091) (-1074))) (-15 -2577 ((-1091) $)) (-15 -3352 ((-1074) $))))) (T -922))
+((-1799 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1074)) (-5 *1 (-922)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-922)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-922)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -1799 ($ (-1091) (-1074))) (-15 -2577 ((-1091) $)) (-15 -3352 ((-1074) $))))
+((-2694 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-923 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2694 (|#4| (-1 |#2| |#1|) |#3|))) (-517) (-517) (-925 |#1|) (-925 |#2|)) (T -923))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-517)) (-4 *6 (-517)) (-4 *2 (-925 *6)) (-5 *1 (-923 *5 *6 *4 *2)) (-4 *4 (-925 *5)))))
+(-10 -7 (-15 -2694 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2591 (((-3 |#2| "failed") $) NIL) (((-3 (-1091) "failed") $) 65) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) 95)) (-3898 ((|#2| $) NIL) (((-1091) $) 60) (((-385 (-525)) $) NIL) (((-525) $) 92)) (-3416 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) 112) (((-632 |#2|) (-632 $)) 28)) (-2899 (($) 98)) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 75) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 84)) (-1931 (($ $) 10)) (-1760 (((-3 $ "failed") $) 20)) (-2694 (($ (-1 |#2| |#2|) $) 22)) (-3940 (($) 16)) (-3025 (($ $) 54)) (-2523 (($ $) NIL) (($ $ (-713)) NIL) (($ $ (-1091)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2097 (($ $) 12)) (-2749 (((-827 (-525)) $) 70) (((-827 (-357)) $) 79) (((-501) $) 40) (((-357) $) 44) (((-205) $) 47)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 90) (($ |#2|) NIL) (($ (-1091)) 57)) (-2104 (((-713)) 31)) (-4017 (((-108) $ $) 50)))
+(((-924 |#1| |#2|) (-10 -8 (-15 -4017 ((-108) |#1| |#1|)) (-15 -3940 (|#1|)) (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2749 ((-205) |#1|)) (-15 -2749 ((-357) |#1|)) (-15 -2749 ((-501) |#1|)) (-15 -3898 ((-1091) |#1|)) (-15 -2591 ((-3 (-1091) "failed") |#1|)) (-15 -1270 (|#1| (-1091))) (-15 -2899 (|#1|)) (-15 -3025 (|#1| |#1|)) (-15 -2097 (|#1| |#1|)) (-15 -1931 (|#1| |#1|)) (-15 -2317 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -2317 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -2749 ((-827 (-357)) |#1|)) (-15 -2749 ((-827 (-525)) |#1|)) (-15 -3416 ((-632 |#2|) (-632 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-632 (-525)) (-632 |#1|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1|)) (-15 -2694 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3898 (|#2| |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -1270 (|#1| |#2|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -1270 (|#1| |#1|)) (-15 -1270 (|#1| (-525))) (-15 -2104 ((-713))) (-15 -1270 ((-798) |#1|))) (-925 |#2|) (-517)) (T -924))
+((-2104 (*1 *2) (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-924 *3 *4)) (-4 *3 (-925 *4)))))
+(-10 -8 (-15 -4017 ((-108) |#1| |#1|)) (-15 -3940 (|#1|)) (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2749 ((-205) |#1|)) (-15 -2749 ((-357) |#1|)) (-15 -2749 ((-501) |#1|)) (-15 -3898 ((-1091) |#1|)) (-15 -2591 ((-3 (-1091) "failed") |#1|)) (-15 -1270 (|#1| (-1091))) (-15 -2899 (|#1|)) (-15 -3025 (|#1| |#1|)) (-15 -2097 (|#1| |#1|)) (-15 -1931 (|#1| |#1|)) (-15 -2317 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -2317 ((-824 (-525) |#1|) |#1| (-827 (-525)) (-824 (-525) |#1|))) (-15 -2749 ((-827 (-357)) |#1|)) (-15 -2749 ((-827 (-525)) |#1|)) (-15 -3416 ((-632 |#2|) (-632 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-632 (-525)) (-632 |#1|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1|)) (-15 -2694 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3898 (|#2| |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -1270 (|#1| |#2|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -1270 (|#1| |#1|)) (-15 -1270 (|#1| (-525))) (-15 -2104 ((-713))) (-15 -1270 ((-798) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2628 ((|#1| $) 139 (|has| |#1| (-286)))) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-1342 (((-3 $ "failed") $ $) 19)) (-4050 (((-396 (-1087 $)) (-1087 $)) 130 (|has| |#1| (-844)))) (-3706 (($ $) 73)) (-2100 (((-396 $) $) 72)) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) 133 (|has| |#1| (-844)))) (-3197 (((-108) $ $) 59)) (-1436 (((-525) $) 120 (|has| |#1| (-762)))) (-2305 (($) 17 T CONST)) (-2591 (((-3 |#1| "failed") $) 178) (((-3 (-1091) "failed") $) 128 (|has| |#1| (-968 (-1091)))) (((-3 (-385 (-525)) "failed") $) 112 (|has| |#1| (-968 (-525)))) (((-3 (-525) "failed") $) 110 (|has| |#1| (-968 (-525))))) (-3898 ((|#1| $) 177) (((-1091) $) 127 (|has| |#1| (-968 (-1091)))) (((-385 (-525)) $) 111 (|has| |#1| (-968 (-525)))) (((-525) $) 109 (|has| |#1| (-968 (-525))))) (-1726 (($ $ $) 55)) (-3416 (((-632 (-525)) (-632 $)) 152 (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 151 (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) 150) (((-632 |#1|) (-632 $)) 149)) (-3762 (((-3 $ "failed") $) 34)) (-2899 (($) 137 (|has| |#1| (-510)))) (-1704 (($ $ $) 56)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 51)) (-3836 (((-108) $) 71)) (-3017 (((-108) $) 122 (|has| |#1| (-762)))) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 146 (|has| |#1| (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 145 (|has| |#1| (-821 (-357))))) (-1985 (((-108) $) 31)) (-1931 (($ $) 141)) (-1498 ((|#1| $) 143)) (-1760 (((-3 $ "failed") $) 108 (|has| |#1| (-1067)))) (-3912 (((-108) $) 121 (|has| |#1| (-762)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2371 (($ $ $) 118 (|has| |#1| (-789)))) (-2535 (($ $ $) 117 (|has| |#1| (-789)))) (-2694 (($ (-1 |#1| |#1|) $) 169)) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-2502 (($ $) 70)) (-3940 (($) 107 (|has| |#1| (-1067)) CONST)) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-3025 (($ $) 138 (|has| |#1| (-286)))) (-2793 ((|#1| $) 135 (|has| |#1| (-510)))) (-1215 (((-396 (-1087 $)) (-1087 $)) 132 (|has| |#1| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) 131 (|has| |#1| (-844)))) (-2195 (((-396 $) $) 74)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1680 (((-3 $ "failed") $ $) 42)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2602 (($ $ (-592 |#1|) (-592 |#1|)) 175 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 174 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 173 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 172 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1091)) (-592 |#1|)) 171 (|has| |#1| (-486 (-1091) |#1|))) (($ $ (-1091) |#1|) 170 (|has| |#1| (-486 (-1091) |#1|)))) (-1290 (((-713) $) 58)) (-3410 (($ $ |#1|) 176 (|has| |#1| (-265 |#1| |#1|)))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 57)) (-2523 (($ $) 168 (|has| |#1| (-213))) (($ $ (-713)) 166 (|has| |#1| (-213))) (($ $ (-1091)) 164 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) 163 (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) 162 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) 161 (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) 154) (($ $ (-1 |#1| |#1|)) 153)) (-2097 (($ $) 140)) (-1512 ((|#1| $) 142)) (-2749 (((-827 (-525)) $) 148 (|has| |#1| (-567 (-827 (-525))))) (((-827 (-357)) $) 147 (|has| |#1| (-567 (-827 (-357))))) (((-501) $) 125 (|has| |#1| (-567 (-501)))) (((-357) $) 124 (|has| |#1| (-953))) (((-205) $) 123 (|has| |#1| (-953)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) 134 (-3830 (|has| $ (-136)) (|has| |#1| (-844))))) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 181) (($ (-1091)) 129 (|has| |#1| (-968 (-1091))))) (-3425 (((-3 $ "failed") $) 126 (-3279 (|has| |#1| (-136)) (-3830 (|has| $ (-136)) (|has| |#1| (-844)))))) (-2104 (((-713)) 29)) (-1438 ((|#1| $) 136 (|has| |#1| (-510)))) (-3959 (((-108) $ $) 39)) (-2086 (($ $) 119 (|has| |#1| (-762)))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $) 167 (|has| |#1| (-213))) (($ $ (-713)) 165 (|has| |#1| (-213))) (($ $ (-1091)) 160 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) 159 (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) 158 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) 157 (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) 156) (($ $ (-1 |#1| |#1|)) 155)) (-4045 (((-108) $ $) 115 (|has| |#1| (-789)))) (-4026 (((-108) $ $) 114 (|has| |#1| (-789)))) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 116 (|has| |#1| (-789)))) (-4017 (((-108) $ $) 113 (|has| |#1| (-789)))) (-4100 (($ $ $) 64) (($ |#1| |#1|) 144)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ |#1| $) 180) (($ $ |#1|) 179)))
+(((-925 |#1|) (-131) (-517)) (T -925))
+((-4100 (*1 *1 *2 *2) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))) (-1498 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))) (-1931 (*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))) (-2097 (*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-286)))) (-3025 (*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-286)))) (-2899 (*1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-510)) (-4 *2 (-517)))) (-1438 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-510)))) (-2793 (*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-510)))))
+(-13 (-341) (-37 |t#1|) (-968 |t#1|) (-316 |t#1|) (-211 |t#1|) (-355 |t#1|) (-819 |t#1|) (-378 |t#1|) (-10 -8 (-15 -4100 ($ |t#1| |t#1|)) (-15 -1498 (|t#1| $)) (-15 -1512 (|t#1| $)) (-15 -1931 ($ $)) (-15 -2097 ($ $)) (IF (|has| |t#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |t#1| (-968 (-525))) (PROGN (-6 (-968 (-525))) (-6 (-968 (-385 (-525))))) |%noBranch|) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-762)) (-6 (-762)) |%noBranch|) (IF (|has| |t#1| (-953)) (-6 (-953)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-968 (-1091))) (-6 (-968 (-1091))) |%noBranch|) (IF (|has| |t#1| (-286)) (PROGN (-15 -2628 (|t#1| $)) (-15 -3025 ($ $))) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -2899 ($)) (-15 -1438 (|t#1| $)) (-15 -2793 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-844)) (-6 (-844)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-567 (-205)) |has| |#1| (-953)) ((-567 (-357)) |has| |#1| (-953)) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-567 (-827 (-357))) |has| |#1| (-567 (-827 (-357)))) ((-567 (-827 (-525))) |has| |#1| (-567 (-827 (-525)))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-223) . T) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) . T) ((-286) . T) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-341) . T) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-378 |#1|) . T) ((-429) . T) ((-486 (-1091) |#1|) |has| |#1| (-486 (-1091) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-669) . T) ((-733) |has| |#1| (-762)) ((-734) |has| |#1| (-762)) ((-736) |has| |#1| (-762)) ((-737) |has| |#1| (-762)) ((-762) |has| |#1| (-762)) ((-787) |has| |#1| (-762)) ((-789) -3279 (|has| |#1| (-789)) (|has| |#1| (-762))) ((-835 (-1091)) |has| |#1| (-835 (-1091))) ((-821 (-357)) |has| |#1| (-821 (-357))) ((-821 (-525)) |has| |#1| (-821 (-525))) ((-819 |#1|) . T) ((-844) |has| |#1| (-844)) ((-855) . T) ((-953) |has| |#1| (-953)) ((-968 (-385 (-525))) |has| |#1| (-968 (-525))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 (-1091)) |has| |#1| (-968 (-1091))) ((-968 |#1|) . T) ((-983 #0#) . T) ((-983 |#1|) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1067) |has| |#1| (-1067)) ((-1127) . T) ((-1131) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-1924 (($ (-1058 |#1| |#2|)) 11)) (-1660 (((-1058 |#1| |#2|) $) 12)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3410 ((|#2| $ (-220 |#1| |#2|)) 16)) (-1270 (((-798) $) NIL)) (-3355 (($) NIL T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL)))
+(((-926 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1924 ($ (-1058 |#1| |#2|))) (-15 -1660 ((-1058 |#1| |#2|) $)) (-15 -3410 (|#2| $ (-220 |#1| |#2|))))) (-856) (-341)) (T -926))
+((-1924 (*1 *1 *2) (-12 (-5 *2 (-1058 *3 *4)) (-14 *3 (-856)) (-4 *4 (-341)) (-5 *1 (-926 *3 *4)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-1058 *3 *4)) (-5 *1 (-926 *3 *4)) (-14 *3 (-856)) (-4 *4 (-341)))) (-3410 (*1 *2 *1 *3) (-12 (-5 *3 (-220 *4 *2)) (-14 *4 (-856)) (-4 *2 (-341)) (-5 *1 (-926 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -1924 ($ (-1058 |#1| |#2|))) (-15 -1660 ((-1058 |#1| |#2|) $)) (-15 -3410 (|#2| $ (-220 |#1| |#2|)))))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3330 (((-108) $ (-713)) 8)) (-2305 (($) 7 T CONST)) (-2481 (($ $) 46)) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) 9)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-2023 (((-713) $) 45)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-3955 ((|#1| $) 39)) (-3985 (($ |#1| $) 40)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-2566 ((|#1| $) 44)) (-1881 ((|#1| $) 41)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2522 ((|#1| |#1| $) 48)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-2961 ((|#1| $) 47)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-1665 (($ (-592 |#1|)) 42)) (-3562 ((|#1| $) 43)) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-927 |#1|) (-131) (-1127)) (T -927))
+((-2522 (*1 *2 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1127)))) (-2961 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1127)))) (-2481 (*1 *1 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1127)))) (-2023 (*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1127)) (-5 *2 (-713)))) (-2566 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1127)))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1127)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4255) (-15 -2522 (|t#1| |t#1| $)) (-15 -2961 (|t#1| $)) (-15 -2481 ($ $)) (-15 -2023 ((-713) $)) (-15 -2566 (|t#1| $)) (-15 -3562 (|t#1| $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1127) . T))
+((-1989 (((-108) $) 42)) (-2591 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-3898 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#2| $) 43)) (-2251 (((-3 (-385 (-525)) "failed") $) 78)) (-2265 (((-108) $) 72)) (-2178 (((-385 (-525)) $) 76)) (-1985 (((-108) $) 41)) (-2900 ((|#2| $) 22)) (-2694 (($ (-1 |#2| |#2|) $) 19)) (-2502 (($ $) 61)) (-2523 (($ $) NIL) (($ $ (-713)) NIL) (($ $ (-1091)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-2749 (((-501) $) 67)) (-3700 (($ $) 17)) (-1270 (((-798) $) 56) (($ (-525)) 38) (($ |#2|) 36) (($ (-385 (-525))) NIL)) (-2104 (((-713)) 10)) (-2086 ((|#2| $) 71)) (-3994 (((-108) $ $) 25)) (-4017 (((-108) $ $) 69)) (-4090 (($ $) 29) (($ $ $) 28)) (-4080 (($ $ $) 26)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL)))
+(((-928 |#1| |#2|) (-10 -8 (-15 -1270 (|#1| (-385 (-525)))) (-15 -4017 ((-108) |#1| |#1|)) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 -2502 (|#1| |#1|)) (-15 -2749 ((-501) |#1|)) (-15 -2251 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2178 ((-385 (-525)) |#1|)) (-15 -2265 ((-108) |#1|)) (-15 -2086 (|#2| |#1|)) (-15 -2900 (|#2| |#1|)) (-15 -3700 (|#1| |#1|)) (-15 -2694 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1|)) (-15 -3898 (|#2| |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -1270 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1270 (|#1| (-525))) (-15 -2104 ((-713))) (-15 -1985 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -1989 ((-108) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -1270 ((-798) |#1|)) (-15 -3994 ((-108) |#1| |#1|))) (-929 |#2|) (-160)) (T -928))
+((-2104 (*1 *2) (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-928 *3 *4)) (-4 *3 (-929 *4)))))
+(-10 -8 (-15 -1270 (|#1| (-385 (-525)))) (-15 -4017 ((-108) |#1| |#1|)) (-15 * (|#1| (-385 (-525)) |#1|)) (-15 * (|#1| |#1| (-385 (-525)))) (-15 -2502 (|#1| |#1|)) (-15 -2749 ((-501) |#1|)) (-15 -2251 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2178 ((-385 (-525)) |#1|)) (-15 -2265 ((-108) |#1|)) (-15 -2086 (|#2| |#1|)) (-15 -2900 (|#2| |#1|)) (-15 -3700 (|#1| |#1|)) (-15 -2694 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1|)) (-15 -3898 (|#2| |#1|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -1270 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1270 (|#1| (-525))) (-15 -2104 ((-713))) (-15 -1985 ((-108) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 * (|#1| (-713) |#1|)) (-15 -1989 ((-108) |#1|)) (-15 * (|#1| (-856) |#1|)) (-15 -4080 (|#1| |#1| |#1|)) (-15 -1270 ((-798) |#1|)) (-15 -3994 ((-108) |#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-2591 (((-3 (-525) "failed") $) 119 (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 117 (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) 116)) (-3898 (((-525) $) 120 (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) 118 (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) 115)) (-3416 (((-632 (-525)) (-632 $)) 90 (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 89 (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) 88) (((-632 |#1|) (-632 $)) 87)) (-3762 (((-3 $ "failed") $) 34)) (-2227 ((|#1| $) 80)) (-2251 (((-3 (-385 (-525)) "failed") $) 76 (|has| |#1| (-510)))) (-2265 (((-108) $) 78 (|has| |#1| (-510)))) (-2178 (((-385 (-525)) $) 77 (|has| |#1| (-510)))) (-1378 (($ |#1| |#1| |#1| |#1|) 81)) (-1985 (((-108) $) 31)) (-2900 ((|#1| $) 82)) (-2371 (($ $ $) 68 (|has| |#1| (-789)))) (-2535 (($ $ $) 67 (|has| |#1| (-789)))) (-2694 (($ (-1 |#1| |#1|) $) 91)) (-3451 (((-1074) $) 9)) (-2502 (($ $) 73 (|has| |#1| (-341)))) (-1364 ((|#1| $) 83)) (-3638 ((|#1| $) 84)) (-3289 ((|#1| $) 85)) (-2012 (((-1038) $) 10)) (-2602 (($ $ (-592 |#1|) (-592 |#1|)) 97 (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) 96 (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) 95 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) 94 (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1091)) (-592 |#1|)) 93 (|has| |#1| (-486 (-1091) |#1|))) (($ $ (-1091) |#1|) 92 (|has| |#1| (-486 (-1091) |#1|)))) (-3410 (($ $ |#1|) 98 (|has| |#1| (-265 |#1| |#1|)))) (-2523 (($ $) 114 (|has| |#1| (-213))) (($ $ (-713)) 112 (|has| |#1| (-213))) (($ $ (-1091)) 110 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) 109 (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) 108 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) 107 (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-2749 (((-501) $) 74 (|has| |#1| (-567 (-501))))) (-3700 (($ $) 86)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 37) (($ (-385 (-525))) 62 (-3279 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525))))))) (-3425 (((-3 $ "failed") $) 75 (|has| |#1| (-136)))) (-2104 (((-713)) 29)) (-2086 ((|#1| $) 79 (|has| |#1| (-986)))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 72 (|has| |#1| (-341)))) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $) 113 (|has| |#1| (-213))) (($ $ (-713)) 111 (|has| |#1| (-213))) (($ $ (-1091)) 106 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) 105 (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) 104 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) 103 (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) 102) (($ $ (-1 |#1| |#1|)) 101)) (-4045 (((-108) $ $) 65 (|has| |#1| (-789)))) (-4026 (((-108) $ $) 64 (|has| |#1| (-789)))) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 66 (|has| |#1| (-789)))) (-4017 (((-108) $ $) 63 (|has| |#1| (-789)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 71 (|has| |#1| (-341)))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 39) (($ |#1| $) 38) (($ $ (-385 (-525))) 70 (|has| |#1| (-341))) (($ (-385 (-525)) $) 69 (|has| |#1| (-341)))))
+(((-929 |#1|) (-131) (-160)) (T -929))
+((-3700 (*1 *1 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-3289 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-3638 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-2900 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-1378 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-2227 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))) (-2086 (*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)) (-4 *2 (-986)))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108)))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))) (-2251 (*1 *2 *1) (|partial| -12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-385 (-525))))))
+(-13 (-37 |t#1|) (-389 |t#1|) (-211 |t#1|) (-316 |t#1|) (-355 |t#1|) (-10 -8 (-15 -3700 ($ $)) (-15 -3289 (|t#1| $)) (-15 -3638 (|t#1| $)) (-15 -1364 (|t#1| $)) (-15 -2900 (|t#1| $)) (-15 -1378 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2227 (|t#1| $)) (IF (|has| |t#1| (-269)) (-6 (-269)) |%noBranch|) (IF (|has| |t#1| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-223)) |%noBranch|) (IF (|has| |t#1| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-136)) |%noBranch|) (IF (|has| |t#1| (-986)) (-15 -2086 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-510)) (PROGN (-15 -2265 ((-108) $)) (-15 -2178 ((-385 (-525)) $)) (-15 -2251 ((-3 (-385 (-525)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-341)) ((-37 |#1|) . T) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-341)) ((-107 |#1| |#1|) . T) ((-107 $ $) -3279 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-211 |#1|) . T) ((-213) |has| |#1| (-213)) ((-223) |has| |#1| (-341)) ((-265 |#1| $) |has| |#1| (-265 |#1| |#1|)) ((-269) -3279 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-288 |#1|) |has| |#1| (-288 |#1|)) ((-316 |#1|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-486 (-1091) |#1|) |has| |#1| (-486 (-1091) |#1|)) ((-486 |#1| |#1|) |has| |#1| (-288 |#1|)) ((-594 #0#) |has| |#1| (-341)) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-341)) ((-660 |#1|) . T) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 (-1091)) |has| |#1| (-835 (-1091))) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-983 #0#) |has| |#1| (-341)) ((-983 |#1|) . T) ((-983 $) -3279 (|has| |#1| (-341)) (|has| |#1| (-269))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-2694 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-930 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2694 (|#3| (-1 |#4| |#2|) |#1|))) (-929 |#2|) (-160) (-929 |#4|) (-160)) (T -930))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160)) (-4 *2 (-929 *6)) (-5 *1 (-930 *4 *5 *2 *6)) (-4 *4 (-929 *5)))))
+(-10 -7 (-15 -2694 (|#3| (-1 |#4| |#2|) |#1|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-3898 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2227 ((|#1| $) 12)) (-2251 (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-510)))) (-2265 (((-108) $) NIL (|has| |#1| (-510)))) (-2178 (((-385 (-525)) $) NIL (|has| |#1| (-510)))) (-1378 (($ |#1| |#1| |#1| |#1|) 16)) (-1985 (((-108) $) NIL)) (-2900 ((|#1| $) NIL)) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL (|has| |#1| (-341)))) (-1364 ((|#1| $) 15)) (-3638 ((|#1| $) 14)) (-3289 ((|#1| $) 13)) (-2012 (((-1038) $) NIL)) (-2602 (($ $ (-592 |#1|) (-592 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-288 |#1|))) (($ $ (-273 |#1|)) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-273 |#1|))) NIL (|has| |#1| (-288 |#1|))) (($ $ (-592 (-1091)) (-592 |#1|)) NIL (|has| |#1| (-486 (-1091) |#1|))) (($ $ (-1091) |#1|) NIL (|has| |#1| (-486 (-1091) |#1|)))) (-3410 (($ $ |#1|) NIL (|has| |#1| (-265 |#1| |#1|)))) (-2523 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2749 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-3700 (($ $) NIL)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-385 (-525))) NIL (-3279 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525))))))) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) NIL)) (-2086 ((|#1| $) NIL (|has| |#1| (-986)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3355 (($) 8 T CONST)) (-3363 (($) 10 T CONST)) (-2093 (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-341)))))
+(((-931 |#1|) (-929 |#1|) (-160)) (T -931))
+NIL
+(-929 |#1|)
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3330 (((-108) $ (-713)) NIL)) (-2305 (($) NIL T CONST)) (-2481 (($ $) 20)) (-2246 (($ (-592 |#1|)) 29)) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-2023 (((-713) $) 22)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-3955 ((|#1| $) 24)) (-3985 (($ |#1| $) 15)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-2566 ((|#1| $) 23)) (-1881 ((|#1| $) 19)) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2522 ((|#1| |#1| $) 14)) (-2013 (((-108) $) 17)) (-2718 (($) NIL)) (-2961 ((|#1| $) 18)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-1665 (($ (-592 |#1|)) NIL)) (-3562 ((|#1| $) 26)) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-932 |#1|) (-13 (-927 |#1|) (-10 -8 (-15 -2246 ($ (-592 |#1|))))) (-1020)) (T -932))
+((-2246 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-932 *3)))))
+(-13 (-927 |#1|) (-10 -8 (-15 -2246 ($ (-592 |#1|)))))
+((-2211 (($ $) 12)) (-3220 (($ $ (-525)) 13)))
+(((-933 |#1|) (-10 -8 (-15 -2211 (|#1| |#1|)) (-15 -3220 (|#1| |#1| (-525)))) (-934)) (T -933))
+NIL
+(-10 -8 (-15 -2211 (|#1| |#1|)) (-15 -3220 (|#1| |#1| (-525))))
+((-2211 (($ $) 6)) (-3220 (($ $ (-525)) 7)) (** (($ $ (-385 (-525))) 8)))
+(((-934) (-131)) (T -934))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-934)) (-5 *2 (-385 (-525))))) (-3220 (*1 *1 *1 *2) (-12 (-4 *1 (-934)) (-5 *2 (-525)))) (-2211 (*1 *1 *1) (-4 *1 (-934))))
+(-13 (-10 -8 (-15 -2211 ($ $)) (-15 -3220 ($ $ (-525))) (-15 ** ($ $ (-385 (-525))))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2698 (((-2 (|:| |num| (-1173 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| (-385 |#2|) (-341)))) (-3711 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3380 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-1264 (((-632 (-385 |#2|)) (-1173 $)) NIL) (((-632 (-385 |#2|))) NIL)) (-3029 (((-385 |#2|) $) NIL)) (-1670 (((-1101 (-856) (-713)) (-525)) NIL (|has| (-385 |#2|) (-327)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-2100 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-3197 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-4190 (((-713)) NIL (|has| (-385 |#2|) (-346)))) (-3513 (((-108)) NIL)) (-1914 (((-108) |#1|) 148) (((-108) |#2|) 153)) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL (|has| (-385 |#2|) (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-3 (-385 |#2|) "failed") $) NIL)) (-3898 (((-525) $) NIL (|has| (-385 |#2|) (-968 (-525)))) (((-385 (-525)) $) NIL (|has| (-385 |#2|) (-968 (-385 (-525))))) (((-385 |#2|) $) NIL)) (-3612 (($ (-1173 (-385 |#2|)) (-1173 $)) NIL) (($ (-1173 (-385 |#2|))) 70) (($ (-1173 |#2|) |#2|) NIL)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-385 |#2|) (-327)))) (-1726 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2312 (((-632 (-385 |#2|)) $ (-1173 $)) NIL) (((-632 (-385 |#2|)) $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| (-385 |#2|) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-385 |#2|))) (|:| |vec| (-1173 (-385 |#2|)))) (-632 $) (-1173 $)) NIL) (((-632 (-385 |#2|)) (-632 $)) NIL)) (-1826 (((-1173 $) (-1173 $)) NIL)) (-3503 (($ |#3|) 65) (((-3 $ "failed") (-385 |#3|)) NIL (|has| (-385 |#2|) (-341)))) (-3762 (((-3 $ "failed") $) NIL)) (-3535 (((-592 (-592 |#1|))) NIL (|has| |#1| (-346)))) (-1737 (((-108) |#1| |#1|) NIL)) (-3318 (((-856)) NIL)) (-2899 (($) NIL (|has| (-385 |#2|) (-346)))) (-2524 (((-108)) NIL)) (-2503 (((-108) |#1|) 56) (((-108) |#2|) 150)) (-1704 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| (-385 |#2|) (-341)))) (-3026 (($ $) NIL)) (-3977 (($) NIL (|has| (-385 |#2|) (-327)))) (-3564 (((-108) $) NIL (|has| (-385 |#2|) (-327)))) (-2327 (($ $ (-713)) NIL (|has| (-385 |#2|) (-327))) (($ $) NIL (|has| (-385 |#2|) (-327)))) (-3836 (((-108) $) NIL (|has| (-385 |#2|) (-341)))) (-3973 (((-856) $) NIL (|has| (-385 |#2|) (-327))) (((-775 (-856)) $) NIL (|has| (-385 |#2|) (-327)))) (-1985 (((-108) $) NIL)) (-3332 (((-713)) NIL)) (-1211 (((-1173 $) (-1173 $)) NIL)) (-2900 (((-385 |#2|) $) NIL)) (-1280 (((-592 (-887 |#1|)) (-1091)) NIL (|has| |#1| (-341)))) (-1760 (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-327)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-2640 ((|#3| $) NIL (|has| (-385 |#2|) (-341)))) (-1736 (((-856) $) NIL (|has| (-385 |#2|) (-346)))) (-3492 ((|#3| $) NIL)) (-2756 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-3451 (((-1074) $) NIL)) (-4069 (((-632 (-385 |#2|))) 52)) (-1525 (((-632 (-385 |#2|))) 51)) (-2502 (($ $) NIL (|has| (-385 |#2|) (-341)))) (-2697 (($ (-1173 |#2|) |#2|) 71)) (-1938 (((-632 (-385 |#2|))) 50)) (-3952 (((-632 (-385 |#2|))) 49)) (-3547 (((-2 (|:| |num| (-632 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-3832 (((-2 (|:| |num| (-1173 |#2|)) (|:| |den| |#2|)) $) 77)) (-3153 (((-1173 $)) 46)) (-2463 (((-1173 $)) 45)) (-3983 (((-108) $) NIL)) (-2960 (((-108) $) NIL) (((-108) $ |#1|) NIL) (((-108) $ |#2|) NIL)) (-3940 (($) NIL (|has| (-385 |#2|) (-327)) CONST)) (-3640 (($ (-856)) NIL (|has| (-385 |#2|) (-346)))) (-4223 (((-3 |#2| "failed")) 63)) (-2012 (((-1038) $) NIL)) (-3309 (((-713)) NIL)) (-3523 (($) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| (-385 |#2|) (-341)))) (-2794 (($ (-592 $)) NIL (|has| (-385 |#2|) (-341))) (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) NIL (|has| (-385 |#2|) (-327)))) (-2195 (((-396 $) $) NIL (|has| (-385 |#2|) (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-385 |#2|) (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1680 (((-3 $ "failed") $ $) NIL (|has| (-385 |#2|) (-341)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| (-385 |#2|) (-341)))) (-1290 (((-713) $) NIL (|has| (-385 |#2|) (-341)))) (-3410 ((|#1| $ |#1| |#1|) NIL)) (-3100 (((-3 |#2| "failed")) 62)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| (-385 |#2|) (-341)))) (-2094 (((-385 |#2|) (-1173 $)) NIL) (((-385 |#2|)) 42)) (-2181 (((-713) $) NIL (|has| (-385 |#2|) (-327))) (((-3 (-713) "failed") $ $) NIL (|has| (-385 |#2|) (-327)))) (-2523 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091))))) (($ $ (-1091)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091))))) (($ $ (-713)) NIL (-3279 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3279 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-2361 (((-632 (-385 |#2|)) (-1173 $) (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341)))) (-1571 ((|#3|) 53)) (-2726 (($) NIL (|has| (-385 |#2|) (-327)))) (-3464 (((-1173 (-385 |#2|)) $ (-1173 $)) NIL) (((-632 (-385 |#2|)) (-1173 $) (-1173 $)) NIL) (((-1173 (-385 |#2|)) $) 72) (((-632 (-385 |#2|)) (-1173 $)) NIL)) (-2749 (((-1173 (-385 |#2|)) $) NIL) (($ (-1173 (-385 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (|has| (-385 |#2|) (-327)))) (-3777 (((-1173 $) (-1173 $)) NIL)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 |#2|)) NIL) (($ (-385 (-525))) NIL (-3279 (|has| (-385 |#2|) (-968 (-385 (-525)))) (|has| (-385 |#2|) (-341)))) (($ $) NIL (|has| (-385 |#2|) (-341)))) (-3425 (($ $) NIL (|has| (-385 |#2|) (-327))) (((-3 $ "failed") $) NIL (|has| (-385 |#2|) (-136)))) (-1805 ((|#3| $) NIL)) (-2104 (((-713)) NIL)) (-1227 (((-108)) 60)) (-2183 (((-108) |#1|) 154) (((-108) |#2|) 155)) (-1449 (((-1173 $)) 125)) (-3959 (((-108) $ $) NIL (|has| (-385 |#2|) (-341)))) (-1532 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-2366 (((-108)) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (-3355 (($) 94 T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $ (-1 (-385 |#2|) (-385 |#2|)) (-713)) NIL (|has| (-385 |#2|) (-341))) (($ $ (-1 (-385 |#2|) (-385 |#2|))) NIL (|has| (-385 |#2|) (-341))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091))))) (($ $ (-1091)) NIL (-12 (|has| (-385 |#2|) (-341)) (|has| (-385 |#2|) (-835 (-1091))))) (($ $ (-713)) NIL (-3279 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327)))) (($ $) NIL (-3279 (-12 (|has| (-385 |#2|) (-213)) (|has| (-385 |#2|) (-341))) (|has| (-385 |#2|) (-327))))) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ $) NIL (|has| (-385 |#2|) (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| (-385 |#2|) (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 |#2|)) NIL) (($ (-385 |#2|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-385 |#2|) (-341))) (($ $ (-385 (-525))) NIL (|has| (-385 |#2|) (-341)))))
+(((-935 |#1| |#2| |#3| |#4| |#5|) (-320 |#1| |#2| |#3|) (-1131) (-1149 |#1|) (-1149 (-385 |#2|)) (-385 |#2|) (-713)) (T -935))
NIL
(-320 |#1| |#2| |#3|)
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-2018 (((-592 (-525)) $) 54)) (-3533 (($ (-592 (-525))) 62)) (-3115 (((-525) $) 40 (|has| (-525) (-286)))) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-2305 (((-108) $ $) NIL)) (-1690 (((-525) $) NIL (|has| (-525) (-762)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) 49) (((-3 (-1090) "failed") $) NIL (|has| (-525) (-967 (-1090)))) (((-3 (-385 (-525)) "failed") $) 47 (|has| (-525) (-967 (-525)))) (((-3 (-525) "failed") $) 49 (|has| (-525) (-967 (-525))))) (-2831 (((-525) $) NIL) (((-1090) $) NIL (|has| (-525) (-967 (-1090)))) (((-385 (-525)) $) NIL (|has| (-525) (-967 (-525)))) (((-525) $) NIL (|has| (-525) (-967 (-525))))) (-2373 (($ $ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3375 (($) NIL (|has| (-525) (-510)))) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-1393 (((-592 (-525)) $) 60)) (-3026 (((-108) $) NIL (|has| (-525) (-762)))) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (|has| (-525) (-820 (-525)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (|has| (-525) (-820 (-357))))) (-2133 (((-108) $) NIL)) (-3830 (($ $) NIL)) (-1303 (((-525) $) 37)) (-1816 (((-3 $ "failed") $) NIL (|has| (-525) (-1066)))) (-2882 (((-108) $) NIL (|has| (-525) (-762)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3525 (($ $ $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| (-525) (-789)))) (-1370 (($ (-1 (-525) (-525)) $) NIL)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL)) (-2279 (($) NIL (|has| (-525) (-1066)) CONST)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2723 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) 42)) (-2803 (((-1071 (-525)) $) 59)) (-3615 (($ (-592 (-525)) (-592 (-525))) 63)) (-1720 (((-525) $) 53 (|has| (-525) (-510)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| (-525) (-843)))) (-3959 (((-396 $) $) NIL)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3092 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1090)) (-592 (-525))) NIL (|has| (-525) (-486 (-1090) (-525)))) (($ $ (-1090) (-525)) NIL (|has| (-525) (-486 (-1090) (-525))))) (-2183 (((-713) $) NIL)) (-3928 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-3013 (($ $) 11 (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1090)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-1915 (($ $) NIL)) (-1312 (((-525) $) 39)) (-3000 (((-592 (-525)) $) 61)) (-1427 (((-826 (-525)) $) NIL (|has| (-525) (-567 (-826 (-525))))) (((-826 (-357)) $) NIL (|has| (-525) (-567 (-826 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-952))) (((-205) $) NIL (|has| (-525) (-952)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-843))))) (-1908 (((-797) $) 77) (($ (-525)) 43) (($ $) NIL) (($ (-385 (-525))) 20) (($ (-525)) 43) (($ (-1090)) NIL (|has| (-525) (-967 (-1090)))) (((-385 (-525)) $) 18)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| (-525) (-843))) (|has| (-525) (-136))))) (-2093 (((-713)) 9)) (-2498 (((-525) $) 51 (|has| (-525) (-510)))) (-2262 (((-108) $ $) NIL)) (-2092 (($ $) NIL (|has| (-525) (-762)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) 10 T CONST)) (-3882 (($) 12 T CONST)) (-1424 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1090)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| (-525) (-834 (-1090)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4024 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3995 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3961 (((-108) $ $) 14)) (-4010 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3983 (((-108) $ $) 33 (|has| (-525) (-789)))) (-4082 (($ $ $) 29) (($ (-525) (-525)) 31)) (-4070 (($ $) 15) (($ $ $) 23)) (-4059 (($ $ $) 21)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 25) (($ $ $) 27) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) 25) (($ $ (-525)) NIL)))
-(((-935 |#1|) (-13 (-924 (-525)) (-10 -8 (-15 -1908 ((-385 (-525)) $)) (-15 -2723 ((-385 (-525)) $)) (-15 -2018 ((-592 (-525)) $)) (-15 -2803 ((-1071 (-525)) $)) (-15 -1393 ((-592 (-525)) $)) (-15 -3000 ((-592 (-525)) $)) (-15 -3533 ($ (-592 (-525)))) (-15 -3615 ($ (-592 (-525)) (-592 (-525)))))) (-525)) (T -935))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))) (-2723 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))) (-2803 (*1 *2 *1) (-12 (-5 *2 (-1071 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))) (-3533 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))) (-3615 (*1 *1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))))
-(-13 (-924 (-525)) (-10 -8 (-15 -1908 ((-385 (-525)) $)) (-15 -2723 ((-385 (-525)) $)) (-15 -2018 ((-592 (-525)) $)) (-15 -2803 ((-1071 (-525)) $)) (-15 -1393 ((-592 (-525)) $)) (-15 -3000 ((-592 (-525)) $)) (-15 -3533 ($ (-592 (-525)))) (-15 -3615 ($ (-592 (-525)) (-592 (-525))))))
-((-1340 (((-51) (-385 (-525)) (-525)) 9)))
-(((-936) (-10 -7 (-15 -1340 ((-51) (-385 (-525)) (-525))))) (T -936))
-((-1340 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-525))) (-5 *4 (-525)) (-5 *2 (-51)) (-5 *1 (-936)))))
-(-10 -7 (-15 -1340 ((-51) (-385 (-525)) (-525))))
-((-3107 (((-525)) 13)) (-4233 (((-525)) 16)) (-1316 (((-1177) (-525)) 15)) (-1717 (((-525) (-525)) 17) (((-525)) 12)))
-(((-937) (-10 -7 (-15 -1717 ((-525))) (-15 -3107 ((-525))) (-15 -1717 ((-525) (-525))) (-15 -1316 ((-1177) (-525))) (-15 -4233 ((-525))))) (T -937))
-((-4233 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-937)))) (-1316 (*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-937)))) (-1717 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-937)))) (-3107 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-937)))) (-1717 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-937)))))
-(-10 -7 (-15 -1717 ((-525))) (-15 -3107 ((-525))) (-15 -1717 ((-525) (-525))) (-15 -1316 ((-1177) (-525))) (-15 -4233 ((-525))))
-((-4169 (((-396 |#1|) |#1|) 41)) (-3959 (((-396 |#1|) |#1|) 40)))
-(((-938 |#1|) (-10 -7 (-15 -3959 ((-396 |#1|) |#1|)) (-15 -4169 ((-396 |#1|) |#1|))) (-1148 (-385 (-525)))) (T -938))
-((-4169 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-938 *3)) (-4 *3 (-1148 (-385 (-525)))))) (-3959 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-938 *3)) (-4 *3 (-1148 (-385 (-525)))))))
-(-10 -7 (-15 -3959 ((-396 |#1|) |#1|)) (-15 -4169 ((-396 |#1|) |#1|)))
-((-1468 (((-3 (-385 (-525)) "failed") |#1|) 15)) (-3081 (((-108) |#1|) 14)) (-2098 (((-385 (-525)) |#1|) 10)))
-(((-939 |#1|) (-10 -7 (-15 -2098 ((-385 (-525)) |#1|)) (-15 -3081 ((-108) |#1|)) (-15 -1468 ((-3 (-385 (-525)) "failed") |#1|))) (-967 (-385 (-525)))) (T -939))
-((-1468 (*1 *2 *3) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-939 *3)) (-4 *3 (-967 (-385 (-525)))))) (-3081 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-939 *3)) (-4 *3 (-967 (-385 (-525)))))) (-2098 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-939 *3)) (-4 *3 (-967 (-385 (-525)))))))
-(-10 -7 (-15 -2098 ((-385 (-525)) |#1|)) (-15 -3081 ((-108) |#1|)) (-15 -1468 ((-3 (-385 (-525)) "failed") |#1|)))
-((-2109 ((|#2| $ "value" |#2|) 12)) (-3928 ((|#2| $ "value") 10)) (-1519 (((-108) $ $) 18)))
-(((-940 |#1| |#2|) (-10 -8 (-15 -2109 (|#2| |#1| "value" |#2|)) (-15 -1519 ((-108) |#1| |#1|)) (-15 -3928 (|#2| |#1| "value"))) (-941 |#2|) (-1126)) (T -940))
-NIL
-(-10 -8 (-15 -2109 (|#2| |#1| "value" |#2|)) (-15 -1519 ((-108) |#1| |#1|)) (-15 -3928 (|#2| |#1| "value")))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3871 ((|#1| $) 48)) (-3410 (((-108) $ (-713)) 8)) (-2822 ((|#1| $ |#1|) 39 (|has| $ (-6 -4255)))) (-2109 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-1505 (($) 7 T CONST)) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) 50)) (-3106 (((-108) $ $) 42 (|has| |#1| (-1019)))) (-3100 (((-108) $ (-713)) 9)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-1564 (((-592 |#1|) $) 45)) (-3723 (((-108) $) 49)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#1| $ "value") 47)) (-4068 (((-525) $ $) 44)) (-1810 (((-108) $) 46)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) 51)) (-1519 (((-108) $ $) 43 (|has| |#1| (-1019)))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-941 |#1|) (-131) (-1126)) (T -941))
-((-2021 (*1 *2 *1) (-12 (-4 *3 (-1126)) (-5 *2 (-592 *1)) (-4 *1 (-941 *3)))) (-4125 (*1 *2 *1) (-12 (-4 *3 (-1126)) (-5 *2 (-592 *1)) (-4 *1 (-941 *3)))) (-3723 (*1 *2 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-941 *2)) (-4 *2 (-1126)))) (-3928 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-941 *2)) (-4 *2 (-1126)))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))) (-1564 (*1 *2 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-5 *2 (-592 *3)))) (-4068 (*1 *2 *1 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-5 *2 (-525)))) (-1519 (*1 *2 *1 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-4 *3 (-1019)) (-5 *2 (-108)))) (-3106 (*1 *2 *1 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-4 *3 (-1019)) (-5 *2 (-108)))) (-3675 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *1)) (|has| *1 (-6 -4255)) (-4 *1 (-941 *3)) (-4 *3 (-1126)))) (-2109 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4255)) (-4 *1 (-941 *2)) (-4 *2 (-1126)))) (-2822 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-941 *2)) (-4 *2 (-1126)))))
-(-13 (-464 |t#1|) (-10 -8 (-15 -2021 ((-592 $) $)) (-15 -4125 ((-592 $) $)) (-15 -3723 ((-108) $)) (-15 -3871 (|t#1| $)) (-15 -3928 (|t#1| $ "value")) (-15 -1810 ((-108) $)) (-15 -1564 ((-592 |t#1|) $)) (-15 -4068 ((-525) $ $)) (IF (|has| |t#1| (-1019)) (PROGN (-15 -1519 ((-108) $ $)) (-15 -3106 ((-108) $ $))) |%noBranch|) (IF (|has| $ (-6 -4255)) (PROGN (-15 -3675 ($ $ (-592 $))) (-15 -2109 (|t#1| $ "value" |t#1|)) (-15 -2822 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T))
-((-3969 (($ $) 9) (($ $ (-855)) 43) (($ (-385 (-525))) 13) (($ (-525)) 15)) (-4105 (((-3 $ "failed") (-1086 $) (-855) (-797)) 23) (((-3 $ "failed") (-1086 $) (-855)) 28)) (-3391 (($ $ (-525)) 49)) (-2093 (((-713)) 17)) (-2913 (((-592 $) (-1086 $)) NIL) (((-592 $) (-1086 (-385 (-525)))) 54) (((-592 $) (-1086 (-525))) 59) (((-592 $) (-886 $)) 63) (((-592 $) (-886 (-385 (-525)))) 67) (((-592 $) (-886 (-525))) 71)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) 47)))
-(((-942 |#1|) (-10 -8 (-15 -3969 (|#1| (-525))) (-15 -3969 (|#1| (-385 (-525)))) (-15 -3969 (|#1| |#1| (-855))) (-15 -2913 ((-592 |#1|) (-886 (-525)))) (-15 -2913 ((-592 |#1|) (-886 (-385 (-525))))) (-15 -2913 ((-592 |#1|) (-886 |#1|))) (-15 -2913 ((-592 |#1|) (-1086 (-525)))) (-15 -2913 ((-592 |#1|) (-1086 (-385 (-525))))) (-15 -2913 ((-592 |#1|) (-1086 |#1|))) (-15 -4105 ((-3 |#1| "failed") (-1086 |#1|) (-855))) (-15 -4105 ((-3 |#1| "failed") (-1086 |#1|) (-855) (-797))) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -3391 (|#1| |#1| (-525))) (-15 -3969 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -2093 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-855)))) (-943)) (T -942))
-((-2093 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-942 *3)) (-4 *3 (-943)))))
-(-10 -8 (-15 -3969 (|#1| (-525))) (-15 -3969 (|#1| (-385 (-525)))) (-15 -3969 (|#1| |#1| (-855))) (-15 -2913 ((-592 |#1|) (-886 (-525)))) (-15 -2913 ((-592 |#1|) (-886 (-385 (-525))))) (-15 -2913 ((-592 |#1|) (-886 |#1|))) (-15 -2913 ((-592 |#1|) (-1086 (-525)))) (-15 -2913 ((-592 |#1|) (-1086 (-385 (-525))))) (-15 -2913 ((-592 |#1|) (-1086 |#1|))) (-15 -4105 ((-3 |#1| "failed") (-1086 |#1|) (-855))) (-15 -4105 ((-3 |#1| "failed") (-1086 |#1|) (-855) (-797))) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -3391 (|#1| |#1| (-525))) (-15 -3969 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -2093 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-855))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 89)) (-3635 (($ $) 90)) (-2950 (((-108) $) 92)) (-3263 (((-3 $ "failed") $ $) 19)) (-3321 (($ $) 109)) (-1510 (((-396 $) $) 110)) (-3969 (($ $) 73) (($ $ (-855)) 59) (($ (-385 (-525))) 58) (($ (-525)) 57)) (-2305 (((-108) $ $) 100)) (-1690 (((-525) $) 127)) (-1505 (($) 17 T CONST)) (-4105 (((-3 $ "failed") (-1086 $) (-855) (-797)) 67) (((-3 $ "failed") (-1086 $) (-855)) 66)) (-1264 (((-3 (-525) "failed") $) 85 (|has| (-385 (-525)) (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 83 (|has| (-385 (-525)) (-967 (-385 (-525))))) (((-3 (-385 (-525)) "failed") $) 81)) (-2831 (((-525) $) 86 (|has| (-385 (-525)) (-967 (-525)))) (((-385 (-525)) $) 84 (|has| (-385 (-525)) (-967 (-385 (-525))))) (((-385 (-525)) $) 80)) (-1482 (($ $ (-797)) 56)) (-2867 (($ $ (-797)) 55)) (-2373 (($ $ $) 104)) (-2866 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 103)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 98)) (-2250 (((-108) $) 111)) (-3026 (((-108) $) 125)) (-2133 (((-108) $) 31)) (-3391 (($ $ (-525)) 72)) (-2882 (((-108) $) 126)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 107)) (-3525 (($ $ $) 124)) (-3630 (($ $ $) 123)) (-2784 (((-3 (-1086 $) "failed") $) 68)) (-3350 (((-3 (-797) "failed") $) 70)) (-3558 (((-3 (-1086 $) "failed") $) 69)) (-3216 (($ (-592 $)) 96) (($ $ $) 95)) (-2337 (((-1073) $) 9)) (-4211 (($ $) 112)) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 97)) (-3244 (($ (-592 $)) 94) (($ $ $) 93)) (-3959 (((-396 $) $) 108)) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 105)) (-2338 (((-3 $ "failed") $ $) 88)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 99)) (-2183 (((-713) $) 101)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 102)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 117) (($ $) 87) (($ (-385 (-525))) 82) (($ (-525)) 79) (($ (-385 (-525))) 76)) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) 91)) (-2038 (((-385 (-525)) $ $) 54)) (-2913 (((-592 $) (-1086 $)) 65) (((-592 $) (-1086 (-385 (-525)))) 64) (((-592 $) (-1086 (-525))) 63) (((-592 $) (-886 $)) 62) (((-592 $) (-886 (-385 (-525)))) 61) (((-592 $) (-886 (-525))) 60)) (-2092 (($ $) 128)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 113)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-4024 (((-108) $ $) 121)) (-3995 (((-108) $ $) 120)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 122)) (-3983 (((-108) $ $) 119)) (-4082 (($ $ $) 118)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 114) (($ $ (-385 (-525))) 71)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ (-385 (-525)) $) 116) (($ $ (-385 (-525))) 115) (($ (-525) $) 78) (($ $ (-525)) 77) (($ (-385 (-525)) $) 75) (($ $ (-385 (-525))) 74)))
-(((-943) (-131)) (T -943))
-((-3969 (*1 *1 *1) (-4 *1 (-943))) (-3350 (*1 *2 *1) (|partial| -12 (-4 *1 (-943)) (-5 *2 (-797)))) (-3558 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-943)))) (-2784 (*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-943)))) (-4105 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-855)) (-5 *4 (-797)) (-4 *1 (-943)))) (-4105 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-855)) (-4 *1 (-943)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-943)) (-5 *2 (-592 *1)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-1086 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-943)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-1086 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-943)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-886 *1)) (-4 *1 (-943)) (-5 *2 (-592 *1)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-886 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-943)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-886 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-943)))) (-3969 (*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-855)))) (-3969 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-943)))) (-3969 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-943)))) (-1482 (*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-797)))) (-2867 (*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-797)))) (-2038 (*1 *2 *1 *1) (-12 (-4 *1 (-943)) (-5 *2 (-385 (-525))))))
-(-13 (-138) (-787) (-160) (-341) (-389 (-385 (-525))) (-37 (-525)) (-37 (-385 (-525))) (-933) (-10 -8 (-15 -3350 ((-3 (-797) "failed") $)) (-15 -3558 ((-3 (-1086 $) "failed") $)) (-15 -2784 ((-3 (-1086 $) "failed") $)) (-15 -4105 ((-3 $ "failed") (-1086 $) (-855) (-797))) (-15 -4105 ((-3 $ "failed") (-1086 $) (-855))) (-15 -2913 ((-592 $) (-1086 $))) (-15 -2913 ((-592 $) (-1086 (-385 (-525))))) (-15 -2913 ((-592 $) (-1086 (-525)))) (-15 -2913 ((-592 $) (-886 $))) (-15 -2913 ((-592 $) (-886 (-385 (-525))))) (-15 -2913 ((-592 $) (-886 (-525)))) (-15 -3969 ($ $ (-855))) (-15 -3969 ($ $)) (-15 -3969 ($ (-385 (-525)))) (-15 -3969 ($ (-525))) (-15 -1482 ($ $ (-797))) (-15 -2867 ($ $ (-797))) (-15 -2038 ((-385 (-525)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 #1=(-525)) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-797)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-389 (-385 (-525))) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 #1#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 #1#) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-787) . T) ((-789) . T) ((-854) . T) ((-933) . T) ((-967 (-385 (-525))) . T) ((-967 (-525)) |has| (-385 (-525)) (-967 (-525))) ((-982 #0#) . T) ((-982 #1#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) . T))
-((-3657 (((-2 (|:| |ans| |#2|) (|:| -4152 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66)))
-(((-944 |#1| |#2|) (-10 -7 (-15 -3657 ((-2 (|:| |ans| |#2|) (|:| -4152 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525))) (-13 (-1112) (-27) (-408 |#1|))) (T -944))
-((-3657 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *3 (-525)) (-5 *5 (-1090)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-592 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2838 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1112) (-27) (-408 *8))) (-4 *8 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| |ans| *4) (|:| -4152 *4) (|:| |sol?| (-108)))) (-5 *1 (-944 *8 *4)))))
-(-10 -7 (-15 -3657 ((-2 (|:| |ans| |#2|) (|:| -4152 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-1825 (((-3 (-592 |#2|) "failed") (-525) |#2| |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
-(((-945 |#1| |#2|) (-10 -7 (-15 -1825 ((-3 (-592 |#2|) "failed") (-525) |#2| |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525))) (-13 (-1112) (-27) (-408 |#1|))) (T -945))
-((-1825 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *3 (-525)) (-5 *5 (-1090)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-592 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2838 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1112) (-27) (-408 *8))) (-4 *8 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-945 *8 *4)))))
-(-10 -7 (-15 -1825 ((-3 (-592 |#2|) "failed") (-525) |#2| |#2| |#2| (-1090) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -2838 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3874 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -1881 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|)) 30)) (-1975 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -3787 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|)) 58)) (-2313 (((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|)) 63)))
-(((-946 |#1| |#2|) (-10 -7 (-15 -1975 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -3787 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2313 ((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|))) (-15 -3874 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -1881 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|)))) (-13 (-341) (-138) (-967 (-525))) (-1148 |#1|)) (T -946))
-((-3874 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1148 *6)) (-4 *6 (-13 (-341) (-138) (-967 (-525)))) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) (|:| -1881 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| (-525)) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-946 *6 *3)) (-5 *4 (-525)))) (-2313 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-341) (-138) (-967 (-525)))) (-4 *5 (-1148 *4)) (-5 *2 (-2 (|:| |ans| (-385 *5)) (|:| |nosol| (-108)))) (-5 *1 (-946 *4 *5)) (-5 *3 (-385 *5)))) (-1975 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-341) (-138) (-967 (-525)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |c| (-385 *6)) (|:| -3787 *6))) (-5 *1 (-946 *5 *6)) (-5 *3 (-385 *6)))))
-(-10 -7 (-15 -1975 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -3787 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -2313 ((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|))) (-15 -3874 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -1881 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|))))
-((-2777 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -3787 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|)) 22)) (-3900 (((-3 (-592 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)) 33)))
-(((-947 |#1| |#2|) (-10 -7 (-15 -2777 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -3787 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -3900 ((-3 (-592 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)))) (-13 (-341) (-138) (-967 (-525))) (-1148 |#1|)) (T -947))
-((-3900 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-341) (-138) (-967 (-525)))) (-4 *5 (-1148 *4)) (-5 *2 (-592 (-385 *5))) (-5 *1 (-947 *4 *5)) (-5 *3 (-385 *5)))) (-2777 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-13 (-341) (-138) (-967 (-525)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |h| *6) (|:| |c1| (-385 *6)) (|:| |c2| (-385 *6)) (|:| -3787 *6))) (-5 *1 (-947 *5 *6)) (-5 *3 (-385 *6)))))
-(-10 -7 (-15 -2777 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -3787 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -3900 ((-3 (-592 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|))))
-((-2727 (((-1 |#1|) (-592 (-2 (|:| -3871 |#1|) (|:| -1628 (-525))))) 37)) (-2758 (((-1 |#1|) (-1021 |#1|)) 45)) (-3820 (((-1 |#1|) (-1172 |#1|) (-1172 (-525)) (-525)) 34)))
-(((-948 |#1|) (-10 -7 (-15 -2758 ((-1 |#1|) (-1021 |#1|))) (-15 -2727 ((-1 |#1|) (-592 (-2 (|:| -3871 |#1|) (|:| -1628 (-525)))))) (-15 -3820 ((-1 |#1|) (-1172 |#1|) (-1172 (-525)) (-525)))) (-1019)) (T -948))
-((-3820 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1172 *6)) (-5 *4 (-1172 (-525))) (-5 *5 (-525)) (-4 *6 (-1019)) (-5 *2 (-1 *6)) (-5 *1 (-948 *6)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3871 *4) (|:| -1628 (-525))))) (-4 *4 (-1019)) (-5 *2 (-1 *4)) (-5 *1 (-948 *4)))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-1021 *4)) (-4 *4 (-1019)) (-5 *2 (-1 *4)) (-5 *1 (-948 *4)))))
-(-10 -7 (-15 -2758 ((-1 |#1|) (-1021 |#1|))) (-15 -2727 ((-1 |#1|) (-592 (-2 (|:| -3871 |#1|) (|:| -1628 (-525)))))) (-15 -3820 ((-1 |#1|) (-1172 |#1|) (-1172 (-525)) (-525))))
-((-1737 (((-713) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-949 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1737 ((-713) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-341) (-1148 |#1|) (-1148 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-13 (-346) (-341))) (T -949))
-((-1737 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-314 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-341)) (-4 *7 (-1148 *6)) (-4 *4 (-1148 (-385 *7))) (-4 *8 (-320 *6 *7 *4)) (-4 *9 (-13 (-346) (-341))) (-5 *2 (-713)) (-5 *1 (-949 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -1737 ((-713) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-1808 (((-3 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) "failed") |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) 31) (((-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-385 (-525))) 28)) (-3794 (((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-385 (-525))) 33) (((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-385 (-525))) 29) (((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) 32) (((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1|) 27)) (-3680 (((-592 (-385 (-525))) (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) 19)) (-3114 (((-385 (-525)) (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) 16)))
-(((-950 |#1|) (-10 -7 (-15 -3794 ((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1|)) (-15 -3794 ((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) (-15 -3794 ((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -3794 ((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-385 (-525)))) (-15 -1808 ((-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-385 (-525)))) (-15 -1808 ((-3 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) "failed") |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) (-15 -3114 ((-385 (-525)) (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) (-15 -3680 ((-592 (-385 (-525))) (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))))) (-1148 (-525))) (T -950))
-((-3680 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) (-5 *2 (-592 (-385 (-525)))) (-5 *1 (-950 *4)) (-4 *4 (-1148 (-525))))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) (-5 *2 (-385 (-525))) (-5 *1 (-950 *4)) (-4 *4 (-1148 (-525))))) (-1808 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525))))) (-1808 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) (-5 *4 (-385 (-525))) (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525))))) (-3794 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-385 (-525))) (-5 *2 (-592 (-2 (|:| -4138 *5) (|:| -4152 *5)))) (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525))) (-5 *4 (-2 (|:| -4138 *5) (|:| -4152 *5))))) (-3794 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525))) (-5 *4 (-385 (-525))))) (-3794 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525))) (-5 *4 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))))) (-3794 (*1 *2 *3) (-12 (-5 *2 (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525))))))
-(-10 -7 (-15 -3794 ((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1|)) (-15 -3794 ((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) (-15 -3794 ((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -3794 ((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-385 (-525)))) (-15 -1808 ((-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-385 (-525)))) (-15 -1808 ((-3 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) "failed") |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) (-15 -3114 ((-385 (-525)) (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) (-15 -3680 ((-592 (-385 (-525))) (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))))))
-((-1808 (((-3 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) "failed") |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) 35) (((-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-385 (-525))) 32)) (-3794 (((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-385 (-525))) 30) (((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-385 (-525))) 26) (((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) 28) (((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1|) 24)))
-(((-951 |#1|) (-10 -7 (-15 -3794 ((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1|)) (-15 -3794 ((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) (-15 -3794 ((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -3794 ((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-385 (-525)))) (-15 -1808 ((-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-385 (-525)))) (-15 -1808 ((-3 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) "failed") |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))))) (-1148 (-385 (-525)))) (T -951))
-((-1808 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) (-5 *1 (-951 *3)) (-4 *3 (-1148 (-385 (-525)))))) (-1808 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) (-5 *4 (-385 (-525))) (-5 *1 (-951 *3)) (-4 *3 (-1148 (-385 (-525)))))) (-3794 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-385 (-525))) (-5 *2 (-592 (-2 (|:| -4138 *5) (|:| -4152 *5)))) (-5 *1 (-951 *3)) (-4 *3 (-1148 (-385 (-525)))) (-5 *4 (-2 (|:| -4138 *5) (|:| -4152 *5))))) (-3794 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) (-5 *1 (-951 *3)) (-4 *3 (-1148 (-385 (-525)))) (-5 *4 (-385 (-525))))) (-3794 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) (-5 *1 (-951 *3)) (-4 *3 (-1148 (-385 (-525)))) (-5 *4 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))))) (-3794 (*1 *2 *3) (-12 (-5 *2 (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) (-5 *1 (-951 *3)) (-4 *3 (-1148 (-385 (-525)))))))
-(-10 -7 (-15 -3794 ((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1|)) (-15 -3794 ((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))) (-15 -3794 ((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -3794 ((-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-385 (-525)))) (-15 -1808 ((-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-385 (-525)))) (-15 -1808 ((-3 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) "failed") |#1| (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))) (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))))
-((-1427 (((-205) $) 6) (((-357) $) 9)))
-(((-952) (-131)) (T -952))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-3086 (((-592 (-525)) $) 54)) (-2106 (($ (-592 (-525))) 62)) (-2628 (((-525) $) 40 (|has| (-525) (-286)))) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-525) (-844)))) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| (-525) (-844)))) (-3197 (((-108) $ $) NIL)) (-1436 (((-525) $) NIL (|has| (-525) (-762)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) 49) (((-3 (-1091) "failed") $) NIL (|has| (-525) (-968 (-1091)))) (((-3 (-385 (-525)) "failed") $) 47 (|has| (-525) (-968 (-525)))) (((-3 (-525) "failed") $) 49 (|has| (-525) (-968 (-525))))) (-3898 (((-525) $) NIL) (((-1091) $) NIL (|has| (-525) (-968 (-1091)))) (((-385 (-525)) $) NIL (|has| (-525) (-968 (-525)))) (((-525) $) NIL (|has| (-525) (-968 (-525))))) (-1726 (($ $ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| (-525) (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2899 (($) NIL (|has| (-525) (-510)))) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-1983 (((-592 (-525)) $) 60)) (-3017 (((-108) $) NIL (|has| (-525) (-762)))) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (|has| (-525) (-821 (-525)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (|has| (-525) (-821 (-357))))) (-1985 (((-108) $) NIL)) (-1931 (($ $) NIL)) (-1498 (((-525) $) 37)) (-1760 (((-3 $ "failed") $) NIL (|has| (-525) (-1067)))) (-3912 (((-108) $) NIL (|has| (-525) (-762)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2371 (($ $ $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| (-525) (-789)))) (-2694 (($ (-1 (-525) (-525)) $) NIL)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL)) (-3940 (($) NIL (|has| (-525) (-1067)) CONST)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3025 (($ $) NIL (|has| (-525) (-286))) (((-385 (-525)) $) 42)) (-1345 (((-1072 (-525)) $) 59)) (-1696 (($ (-592 (-525)) (-592 (-525))) 63)) (-2793 (((-525) $) 53 (|has| (-525) (-510)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-525) (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| (-525) (-844)))) (-2195 (((-396 $) $) NIL)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2602 (($ $ (-592 (-525)) (-592 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-525) (-525)) NIL (|has| (-525) (-288 (-525)))) (($ $ (-273 (-525))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-273 (-525)))) NIL (|has| (-525) (-288 (-525)))) (($ $ (-592 (-1091)) (-592 (-525))) NIL (|has| (-525) (-486 (-1091) (-525)))) (($ $ (-1091) (-525)) NIL (|has| (-525) (-486 (-1091) (-525))))) (-1290 (((-713) $) NIL)) (-3410 (($ $ (-525)) NIL (|has| (-525) (-265 (-525) (-525))))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2523 (($ $) 11 (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1091)) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-2097 (($ $) NIL)) (-1512 (((-525) $) 39)) (-2818 (((-592 (-525)) $) 61)) (-2749 (((-827 (-525)) $) NIL (|has| (-525) (-567 (-827 (-525))))) (((-827 (-357)) $) NIL (|has| (-525) (-567 (-827 (-357))))) (((-501) $) NIL (|has| (-525) (-567 (-501)))) (((-357) $) NIL (|has| (-525) (-953))) (((-205) $) NIL (|has| (-525) (-953)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-525) (-844))))) (-1270 (((-798) $) 77) (($ (-525)) 43) (($ $) NIL) (($ (-385 (-525))) 20) (($ (-525)) 43) (($ (-1091)) NIL (|has| (-525) (-968 (-1091)))) (((-385 (-525)) $) 18)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| (-525) (-844))) (|has| (-525) (-136))))) (-2104 (((-713)) 9)) (-1438 (((-525) $) 51 (|has| (-525) (-510)))) (-3959 (((-108) $ $) NIL)) (-2086 (($ $) NIL (|has| (-525) (-762)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) 10 T CONST)) (-3363 (($) 12 T CONST)) (-2093 (($ $) NIL (|has| (-525) (-213))) (($ $ (-713)) NIL (|has| (-525) (-213))) (($ $ (-1091)) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| (-525) (-835 (-1091)))) (($ $ (-1 (-525) (-525)) (-713)) NIL) (($ $ (-1 (-525) (-525))) NIL)) (-4045 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4026 (((-108) $ $) NIL (|has| (-525) (-789)))) (-3994 (((-108) $ $) 14)) (-4037 (((-108) $ $) NIL (|has| (-525) (-789)))) (-4017 (((-108) $ $) 33 (|has| (-525) (-789)))) (-4100 (($ $ $) 29) (($ (-525) (-525)) 31)) (-4090 (($ $) 15) (($ $ $) 23)) (-4080 (($ $ $) 21)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 25) (($ $ $) 27) (($ $ (-385 (-525))) NIL) (($ (-385 (-525)) $) NIL) (($ (-525) $) 25) (($ $ (-525)) NIL)))
+(((-936 |#1|) (-13 (-925 (-525)) (-10 -8 (-15 -1270 ((-385 (-525)) $)) (-15 -3025 ((-385 (-525)) $)) (-15 -3086 ((-592 (-525)) $)) (-15 -1345 ((-1072 (-525)) $)) (-15 -1983 ((-592 (-525)) $)) (-15 -2818 ((-592 (-525)) $)) (-15 -2106 ($ (-592 (-525)))) (-15 -1696 ($ (-592 (-525)) (-592 (-525)))))) (-525)) (T -936))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-3086 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-1345 (*1 *2 *1) (-12 (-5 *2 (-1072 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-1983 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-2818 (*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-2106 (*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))) (-1696 (*1 *1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
+(-13 (-925 (-525)) (-10 -8 (-15 -1270 ((-385 (-525)) $)) (-15 -3025 ((-385 (-525)) $)) (-15 -3086 ((-592 (-525)) $)) (-15 -1345 ((-1072 (-525)) $)) (-15 -1983 ((-592 (-525)) $)) (-15 -2818 ((-592 (-525)) $)) (-15 -2106 ($ (-592 (-525)))) (-15 -1696 ($ (-592 (-525)) (-592 (-525))))))
+((-2398 (((-51) (-385 (-525)) (-525)) 9)))
+(((-937) (-10 -7 (-15 -2398 ((-51) (-385 (-525)) (-525))))) (T -937))
+((-2398 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-525))) (-5 *4 (-525)) (-5 *2 (-51)) (-5 *1 (-937)))))
+(-10 -7 (-15 -2398 ((-51) (-385 (-525)) (-525))))
+((-4190 (((-525)) 13)) (-2416 (((-525)) 16)) (-3763 (((-1178) (-525)) 15)) (-2758 (((-525) (-525)) 17) (((-525)) 12)))
+(((-938) (-10 -7 (-15 -2758 ((-525))) (-15 -4190 ((-525))) (-15 -2758 ((-525) (-525))) (-15 -3763 ((-1178) (-525))) (-15 -2416 ((-525))))) (T -938))
+((-2416 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))) (-3763 (*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1178)) (-5 *1 (-938)))) (-2758 (*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))) (-4190 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))) (-2758 (*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))))
+(-10 -7 (-15 -2758 ((-525))) (-15 -4190 ((-525))) (-15 -2758 ((-525) (-525))) (-15 -3763 ((-1178) (-525))) (-15 -2416 ((-525))))
+((-3024 (((-396 |#1|) |#1|) 41)) (-2195 (((-396 |#1|) |#1|) 40)))
+(((-939 |#1|) (-10 -7 (-15 -2195 ((-396 |#1|) |#1|)) (-15 -3024 ((-396 |#1|) |#1|))) (-1149 (-385 (-525)))) (T -939))
+((-3024 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-939 *3)) (-4 *3 (-1149 (-385 (-525)))))) (-2195 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-939 *3)) (-4 *3 (-1149 (-385 (-525)))))))
+(-10 -7 (-15 -2195 ((-396 |#1|) |#1|)) (-15 -3024 ((-396 |#1|) |#1|)))
+((-2251 (((-3 (-385 (-525)) "failed") |#1|) 15)) (-2265 (((-108) |#1|) 14)) (-2178 (((-385 (-525)) |#1|) 10)))
+(((-940 |#1|) (-10 -7 (-15 -2178 ((-385 (-525)) |#1|)) (-15 -2265 ((-108) |#1|)) (-15 -2251 ((-3 (-385 (-525)) "failed") |#1|))) (-968 (-385 (-525)))) (T -940))
+((-2251 (*1 *2 *3) (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-940 *3)) (-4 *3 (-968 (-385 (-525)))))) (-2265 (*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-940 *3)) (-4 *3 (-968 (-385 (-525)))))) (-2178 (*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-940 *3)) (-4 *3 (-968 (-385 (-525)))))))
+(-10 -7 (-15 -2178 ((-385 (-525)) |#1|)) (-15 -2265 ((-108) |#1|)) (-15 -2251 ((-3 (-385 (-525)) "failed") |#1|)))
+((-1429 ((|#2| $ "value" |#2|) 12)) (-3410 ((|#2| $ "value") 10)) (-2240 (((-108) $ $) 18)))
+(((-941 |#1| |#2|) (-10 -8 (-15 -1429 (|#2| |#1| "value" |#2|)) (-15 -2240 ((-108) |#1| |#1|)) (-15 -3410 (|#2| |#1| "value"))) (-942 |#2|) (-1127)) (T -941))
+NIL
+(-10 -8 (-15 -1429 (|#2| |#1| "value" |#2|)) (-15 -2240 ((-108) |#1| |#1|)) (-15 -3410 (|#2| |#1| "value")))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3352 ((|#1| $) 48)) (-3330 (((-108) $ (-713)) 8)) (-1545 ((|#1| $ |#1|) 39 (|has| $ (-6 -4256)))) (-1429 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) 41 (|has| $ (-6 -4256)))) (-2305 (($) 7 T CONST)) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) 50)) (-2553 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-2482 (((-108) $ (-713)) 9)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-2647 (((-592 |#1|) $) 45)) (-3365 (((-108) $) 49)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#1| $ "value") 47)) (-3294 (((-525) $ $) 44)) (-1698 (((-108) $) 46)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) 51)) (-2240 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-942 |#1|) (-131) (-1127)) (T -942))
+((-3320 (*1 *2 *1) (-12 (-4 *3 (-1127)) (-5 *2 (-592 *1)) (-4 *1 (-942 *3)))) (-2714 (*1 *2 *1) (-12 (-4 *3 (-1127)) (-5 *2 (-592 *1)) (-4 *1 (-942 *3)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1127)) (-5 *2 (-108)))) (-3352 (*1 *2 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-1127)))) (-3410 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-942 *2)) (-4 *2 (-1127)))) (-1698 (*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1127)) (-5 *2 (-108)))) (-2647 (*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1127)) (-5 *2 (-592 *3)))) (-3294 (*1 *2 *1 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1127)) (-5 *2 (-525)))) (-2240 (*1 *2 *1 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1127)) (-4 *3 (-1020)) (-5 *2 (-108)))) (-2553 (*1 *2 *1 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1127)) (-4 *3 (-1020)) (-5 *2 (-108)))) (-4099 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *1)) (|has| *1 (-6 -4256)) (-4 *1 (-942 *3)) (-4 *3 (-1127)))) (-1429 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4256)) (-4 *1 (-942 *2)) (-4 *2 (-1127)))) (-1545 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-942 *2)) (-4 *2 (-1127)))))
+(-13 (-464 |t#1|) (-10 -8 (-15 -3320 ((-592 $) $)) (-15 -2714 ((-592 $) $)) (-15 -3365 ((-108) $)) (-15 -3352 (|t#1| $)) (-15 -3410 (|t#1| $ "value")) (-15 -1698 ((-108) $)) (-15 -2647 ((-592 |t#1|) $)) (-15 -3294 ((-525) $ $)) (IF (|has| |t#1| (-1020)) (PROGN (-15 -2240 ((-108) $ $)) (-15 -2553 ((-108) $ $))) |%noBranch|) (IF (|has| $ (-6 -4256)) (PROGN (-15 -4099 ($ $ (-592 $))) (-15 -1429 (|t#1| $ "value" |t#1|)) (-15 -1545 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1127) . T))
+((-2211 (($ $) 9) (($ $ (-856)) 43) (($ (-385 (-525))) 13) (($ (-525)) 15)) (-3572 (((-3 $ "failed") (-1087 $) (-856) (-798)) 23) (((-3 $ "failed") (-1087 $) (-856)) 28)) (-3220 (($ $ (-525)) 49)) (-2104 (((-713)) 17)) (-4208 (((-592 $) (-1087 $)) NIL) (((-592 $) (-1087 (-385 (-525)))) 54) (((-592 $) (-1087 (-525))) 59) (((-592 $) (-887 $)) 63) (((-592 $) (-887 (-385 (-525)))) 67) (((-592 $) (-887 (-525))) 71)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) 47)))
+(((-943 |#1|) (-10 -8 (-15 -2211 (|#1| (-525))) (-15 -2211 (|#1| (-385 (-525)))) (-15 -2211 (|#1| |#1| (-856))) (-15 -4208 ((-592 |#1|) (-887 (-525)))) (-15 -4208 ((-592 |#1|) (-887 (-385 (-525))))) (-15 -4208 ((-592 |#1|) (-887 |#1|))) (-15 -4208 ((-592 |#1|) (-1087 (-525)))) (-15 -4208 ((-592 |#1|) (-1087 (-385 (-525))))) (-15 -4208 ((-592 |#1|) (-1087 |#1|))) (-15 -3572 ((-3 |#1| "failed") (-1087 |#1|) (-856))) (-15 -3572 ((-3 |#1| "failed") (-1087 |#1|) (-856) (-798))) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -3220 (|#1| |#1| (-525))) (-15 -2211 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -2104 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856)))) (-944)) (T -943))
+((-2104 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-943 *3)) (-4 *3 (-944)))))
+(-10 -8 (-15 -2211 (|#1| (-525))) (-15 -2211 (|#1| (-385 (-525)))) (-15 -2211 (|#1| |#1| (-856))) (-15 -4208 ((-592 |#1|) (-887 (-525)))) (-15 -4208 ((-592 |#1|) (-887 (-385 (-525))))) (-15 -4208 ((-592 |#1|) (-887 |#1|))) (-15 -4208 ((-592 |#1|) (-1087 (-525)))) (-15 -4208 ((-592 |#1|) (-1087 (-385 (-525))))) (-15 -4208 ((-592 |#1|) (-1087 |#1|))) (-15 -3572 ((-3 |#1| "failed") (-1087 |#1|) (-856))) (-15 -3572 ((-3 |#1| "failed") (-1087 |#1|) (-856) (-798))) (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -3220 (|#1| |#1| (-525))) (-15 -2211 (|#1| |#1|)) (-15 ** (|#1| |#1| (-525))) (-15 -2104 ((-713))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 89)) (-3711 (($ $) 90)) (-3380 (((-108) $) 92)) (-1342 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 109)) (-2100 (((-396 $) $) 110)) (-2211 (($ $) 73) (($ $ (-856)) 59) (($ (-385 (-525))) 58) (($ (-525)) 57)) (-3197 (((-108) $ $) 100)) (-1436 (((-525) $) 127)) (-2305 (($) 17 T CONST)) (-3572 (((-3 $ "failed") (-1087 $) (-856) (-798)) 67) (((-3 $ "failed") (-1087 $) (-856)) 66)) (-2591 (((-3 (-525) "failed") $) 85 (|has| (-385 (-525)) (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 83 (|has| (-385 (-525)) (-968 (-385 (-525))))) (((-3 (-385 (-525)) "failed") $) 81)) (-3898 (((-525) $) 86 (|has| (-385 (-525)) (-968 (-525)))) (((-385 (-525)) $) 84 (|has| (-385 (-525)) (-968 (-385 (-525))))) (((-385 (-525)) $) 80)) (-2736 (($ $ (-798)) 56)) (-3775 (($ $ (-798)) 55)) (-1726 (($ $ $) 104)) (-3762 (((-3 $ "failed") $) 34)) (-1704 (($ $ $) 103)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 98)) (-3836 (((-108) $) 111)) (-3017 (((-108) $) 125)) (-1985 (((-108) $) 31)) (-3220 (($ $ (-525)) 72)) (-3912 (((-108) $) 126)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 107)) (-2371 (($ $ $) 124)) (-2535 (($ $ $) 123)) (-2511 (((-3 (-1087 $) "failed") $) 68)) (-3987 (((-3 (-798) "failed") $) 70)) (-2455 (((-3 (-1087 $) "failed") $) 69)) (-2756 (($ (-592 $)) 96) (($ $ $) 95)) (-3451 (((-1074) $) 9)) (-2502 (($ $) 112)) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 97)) (-2794 (($ (-592 $)) 94) (($ $ $) 93)) (-2195 (((-396 $) $) 108)) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 106) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 105)) (-1680 (((-3 $ "failed") $ $) 88)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 99)) (-1290 (((-713) $) 101)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 102)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 117) (($ $) 87) (($ (-385 (-525))) 82) (($ (-525)) 79) (($ (-385 (-525))) 76)) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) 91)) (-1369 (((-385 (-525)) $ $) 54)) (-4208 (((-592 $) (-1087 $)) 65) (((-592 $) (-1087 (-385 (-525)))) 64) (((-592 $) (-1087 (-525))) 63) (((-592 $) (-887 $)) 62) (((-592 $) (-887 (-385 (-525)))) 61) (((-592 $) (-887 (-525))) 60)) (-2086 (($ $) 128)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 113)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-4045 (((-108) $ $) 121)) (-4026 (((-108) $ $) 120)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 122)) (-4017 (((-108) $ $) 119)) (-4100 (($ $ $) 118)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 114) (($ $ (-385 (-525))) 71)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ (-385 (-525)) $) 116) (($ $ (-385 (-525))) 115) (($ (-525) $) 78) (($ $ (-525)) 77) (($ (-385 (-525)) $) 75) (($ $ (-385 (-525))) 74)))
+(((-944) (-131)) (T -944))
+((-2211 (*1 *1 *1) (-4 *1 (-944))) (-3987 (*1 *2 *1) (|partial| -12 (-4 *1 (-944)) (-5 *2 (-798)))) (-2455 (*1 *2 *1) (|partial| -12 (-5 *2 (-1087 *1)) (-4 *1 (-944)))) (-2511 (*1 *2 *1) (|partial| -12 (-5 *2 (-1087 *1)) (-4 *1 (-944)))) (-3572 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1087 *1)) (-5 *3 (-856)) (-5 *4 (-798)) (-4 *1 (-944)))) (-3572 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1087 *1)) (-5 *3 (-856)) (-4 *1 (-944)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-944)) (-5 *2 (-592 *1)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-1087 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-944)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-1087 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-944)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-944)) (-5 *2 (-592 *1)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-887 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-944)))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-887 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-944)))) (-2211 (*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-856)))) (-2211 (*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-944)))) (-2211 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-944)))) (-2736 (*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-798)))) (-3775 (*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-798)))) (-1369 (*1 *2 *1 *1) (-12 (-4 *1 (-944)) (-5 *2 (-385 (-525))))))
+(-13 (-138) (-787) (-160) (-341) (-389 (-385 (-525))) (-37 (-525)) (-37 (-385 (-525))) (-934) (-10 -8 (-15 -3987 ((-3 (-798) "failed") $)) (-15 -2455 ((-3 (-1087 $) "failed") $)) (-15 -2511 ((-3 (-1087 $) "failed") $)) (-15 -3572 ((-3 $ "failed") (-1087 $) (-856) (-798))) (-15 -3572 ((-3 $ "failed") (-1087 $) (-856))) (-15 -4208 ((-592 $) (-1087 $))) (-15 -4208 ((-592 $) (-1087 (-385 (-525))))) (-15 -4208 ((-592 $) (-1087 (-525)))) (-15 -4208 ((-592 $) (-887 $))) (-15 -4208 ((-592 $) (-887 (-385 (-525))))) (-15 -4208 ((-592 $) (-887 (-525)))) (-15 -2211 ($ $ (-856))) (-15 -2211 ($ $)) (-15 -2211 ($ (-385 (-525)))) (-15 -2211 ($ (-525))) (-15 -2736 ($ $ (-798))) (-15 -3775 ($ $ (-798))) (-15 -1369 ((-385 (-525)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 #1=(-525)) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 #1# #1#) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-798)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-389 (-385 (-525))) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 #1#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 #1#) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-787) . T) ((-789) . T) ((-855) . T) ((-934) . T) ((-968 (-385 (-525))) . T) ((-968 (-525)) |has| (-385 (-525)) (-968 (-525))) ((-983 #0#) . T) ((-983 #1#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1131) . T))
+((-3937 (((-2 (|:| |ans| |#2|) (|:| -3602 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66)))
+(((-945 |#1| |#2|) (-10 -7 (-15 -3937 ((-2 (|:| |ans| |#2|) (|:| -3602 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1113) (-27) (-408 |#1|))) (T -945))
+((-3937 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *3 (-525)) (-5 *5 (-1091)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-592 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1679 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1113) (-27) (-408 *8))) (-4 *8 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-2 (|:| |ans| *4) (|:| -3602 *4) (|:| |sol?| (-108)))) (-5 *1 (-945 *8 *4)))))
+(-10 -7 (-15 -3937 ((-2 (|:| |ans| |#2|) (|:| -3602 |#2|) (|:| |sol?| (-108))) (-525) |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-1849 (((-3 (-592 |#2|) "failed") (-525) |#2| |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
+(((-946 |#1| |#2|) (-10 -7 (-15 -1849 ((-3 (-592 |#2|) "failed") (-525) |#2| |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))) (-13 (-1113) (-27) (-408 |#1|))) (T -946))
+((-1849 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *3 (-525)) (-5 *5 (-1091)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-592 *4))) (-5 *7 (-1 (-3 (-2 (|:| -1679 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1113) (-27) (-408 *8))) (-4 *8 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-946 *8 *4)))))
+(-10 -7 (-15 -1849 ((-3 (-592 |#2|) "failed") (-525) |#2| |#2| |#2| (-1091) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-592 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-592 |#2|)) (-1 (-3 (-2 (|:| -1679 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-2447 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -4216 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|)) 30)) (-2018 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -3278 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|)) 58)) (-3260 (((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|)) 63)))
+(((-947 |#1| |#2|) (-10 -7 (-15 -2018 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -3278 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -3260 ((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|))) (-15 -2447 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -4216 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|)))) (-13 (-341) (-138) (-968 (-525))) (-1149 |#1|)) (T -947))
+((-2447 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1149 *6)) (-4 *6 (-13 (-341) (-138) (-968 (-525)))) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108)))) (|:| -4216 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| (-525)) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-947 *6 *3)) (-5 *4 (-525)))) (-3260 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1149 *4)) (-5 *2 (-2 (|:| |ans| (-385 *5)) (|:| |nosol| (-108)))) (-5 *1 (-947 *4 *5)) (-5 *3 (-385 *5)))) (-2018 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1149 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |c| (-385 *6)) (|:| -3278 *6))) (-5 *1 (-947 *5 *6)) (-5 *3 (-385 *6)))))
+(-10 -7 (-15 -2018 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |c| (-385 |#2|)) (|:| -3278 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -3260 ((-2 (|:| |ans| (-385 |#2|)) (|:| |nosol| (-108))) (-385 |#2|) (-385 |#2|))) (-15 -2447 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-108)))) (|:| -4216 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-525)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-525) (-1 |#2| |#2|))))
+((-2423 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -3278 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|)) 22)) (-1346 (((-3 (-592 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)) 33)))
+(((-948 |#1| |#2|) (-10 -7 (-15 -2423 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -3278 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -1346 ((-3 (-592 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|)))) (-13 (-341) (-138) (-968 (-525))) (-1149 |#1|)) (T -948))
+((-1346 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1149 *4)) (-5 *2 (-592 (-385 *5))) (-5 *1 (-948 *4 *5)) (-5 *3 (-385 *5)))) (-2423 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1149 *5)) (-4 *5 (-13 (-341) (-138) (-968 (-525)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |h| *6) (|:| |c1| (-385 *6)) (|:| |c2| (-385 *6)) (|:| -3278 *6))) (-5 *1 (-948 *5 *6)) (-5 *3 (-385 *6)))))
+(-10 -7 (-15 -2423 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-385 |#2|)) (|:| |h| |#2|) (|:| |c1| (-385 |#2|)) (|:| |c2| (-385 |#2|)) (|:| -3278 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|) (-1 |#2| |#2|))) (-15 -1346 ((-3 (-592 (-385 |#2|)) "failed") (-385 |#2|) (-385 |#2|) (-385 |#2|))))
+((-3048 (((-1 |#1|) (-592 (-2 (|:| -3352 |#1|) (|:| -3448 (-525))))) 37)) (-2128 (((-1 |#1|) (-1022 |#1|)) 45)) (-3096 (((-1 |#1|) (-1173 |#1|) (-1173 (-525)) (-525)) 34)))
+(((-949 |#1|) (-10 -7 (-15 -2128 ((-1 |#1|) (-1022 |#1|))) (-15 -3048 ((-1 |#1|) (-592 (-2 (|:| -3352 |#1|) (|:| -3448 (-525)))))) (-15 -3096 ((-1 |#1|) (-1173 |#1|) (-1173 (-525)) (-525)))) (-1020)) (T -949))
+((-3096 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1173 *6)) (-5 *4 (-1173 (-525))) (-5 *5 (-525)) (-4 *6 (-1020)) (-5 *2 (-1 *6)) (-5 *1 (-949 *6)))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3352 *4) (|:| -3448 (-525))))) (-4 *4 (-1020)) (-5 *2 (-1 *4)) (-5 *1 (-949 *4)))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-1022 *4)) (-4 *4 (-1020)) (-5 *2 (-1 *4)) (-5 *1 (-949 *4)))))
+(-10 -7 (-15 -2128 ((-1 |#1|) (-1022 |#1|))) (-15 -3048 ((-1 |#1|) (-592 (-2 (|:| -3352 |#1|) (|:| -3448 (-525)))))) (-15 -3096 ((-1 |#1|) (-1173 |#1|) (-1173 (-525)) (-525))))
+((-3973 (((-713) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-950 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3973 ((-713) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-341) (-1149 |#1|) (-1149 (-385 |#2|)) (-320 |#1| |#2| |#3|) (-13 (-346) (-341))) (T -950))
+((-3973 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-314 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-341)) (-4 *7 (-1149 *6)) (-4 *4 (-1149 (-385 *7))) (-4 *8 (-320 *6 *7 *4)) (-4 *9 (-13 (-346) (-341))) (-5 *2 (-713)) (-5 *1 (-950 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -3973 ((-713) (-314 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-3676 (((-3 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) "failed") |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) 31) (((-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-385 (-525))) 28)) (-2905 (((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-385 (-525))) 33) (((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-385 (-525))) 29) (((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) 32) (((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1|) 27)) (-4152 (((-592 (-385 (-525))) (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) 19)) (-2617 (((-385 (-525)) (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) 16)))
+(((-951 |#1|) (-10 -7 (-15 -2905 ((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1|)) (-15 -2905 ((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) (-15 -2905 ((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -2905 ((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-385 (-525)))) (-15 -3676 ((-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-385 (-525)))) (-15 -3676 ((-3 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) "failed") |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) (-15 -2617 ((-385 (-525)) (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) (-15 -4152 ((-592 (-385 (-525))) (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))))) (-1149 (-525))) (T -951))
+((-4152 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) (-5 *2 (-592 (-385 (-525)))) (-5 *1 (-951 *4)) (-4 *4 (-1149 (-525))))) (-2617 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) (-5 *2 (-385 (-525))) (-5 *1 (-951 *4)) (-4 *4 (-1149 (-525))))) (-3676 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) (-5 *1 (-951 *3)) (-4 *3 (-1149 (-525))))) (-3676 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) (-5 *4 (-385 (-525))) (-5 *1 (-951 *3)) (-4 *3 (-1149 (-525))))) (-2905 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-385 (-525))) (-5 *2 (-592 (-2 (|:| -3593 *5) (|:| -3602 *5)))) (-5 *1 (-951 *3)) (-4 *3 (-1149 (-525))) (-5 *4 (-2 (|:| -3593 *5) (|:| -3602 *5))))) (-2905 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) (-5 *1 (-951 *3)) (-4 *3 (-1149 (-525))) (-5 *4 (-385 (-525))))) (-2905 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) (-5 *1 (-951 *3)) (-4 *3 (-1149 (-525))) (-5 *4 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))))) (-2905 (*1 *2 *3) (-12 (-5 *2 (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) (-5 *1 (-951 *3)) (-4 *3 (-1149 (-525))))))
+(-10 -7 (-15 -2905 ((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1|)) (-15 -2905 ((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) (-15 -2905 ((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -2905 ((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-385 (-525)))) (-15 -3676 ((-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-385 (-525)))) (-15 -3676 ((-3 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) "failed") |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) (-15 -2617 ((-385 (-525)) (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) (-15 -4152 ((-592 (-385 (-525))) (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))))))
+((-3676 (((-3 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) "failed") |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) 35) (((-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-385 (-525))) 32)) (-2905 (((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-385 (-525))) 30) (((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-385 (-525))) 26) (((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) 28) (((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1|) 24)))
+(((-952 |#1|) (-10 -7 (-15 -2905 ((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1|)) (-15 -2905 ((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) (-15 -2905 ((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -2905 ((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-385 (-525)))) (-15 -3676 ((-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-385 (-525)))) (-15 -3676 ((-3 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) "failed") |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))))) (-1149 (-385 (-525)))) (T -952))
+((-3676 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) (-5 *1 (-952 *3)) (-4 *3 (-1149 (-385 (-525)))))) (-3676 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) (-5 *4 (-385 (-525))) (-5 *1 (-952 *3)) (-4 *3 (-1149 (-385 (-525)))))) (-2905 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-385 (-525))) (-5 *2 (-592 (-2 (|:| -3593 *5) (|:| -3602 *5)))) (-5 *1 (-952 *3)) (-4 *3 (-1149 (-385 (-525)))) (-5 *4 (-2 (|:| -3593 *5) (|:| -3602 *5))))) (-2905 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) (-5 *1 (-952 *3)) (-4 *3 (-1149 (-385 (-525)))) (-5 *4 (-385 (-525))))) (-2905 (*1 *2 *3 *4) (-12 (-5 *2 (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) (-5 *1 (-952 *3)) (-4 *3 (-1149 (-385 (-525)))) (-5 *4 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))))) (-2905 (*1 *2 *3) (-12 (-5 *2 (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) (-5 *1 (-952 *3)) (-4 *3 (-1149 (-385 (-525)))))))
+(-10 -7 (-15 -2905 ((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1|)) (-15 -2905 ((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))) (-15 -2905 ((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-385 (-525)))) (-15 -2905 ((-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-385 (-525)))) (-15 -3676 ((-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-385 (-525)))) (-15 -3676 ((-3 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) "failed") |#1| (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))) (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))))
+((-2749 (((-205) $) 6) (((-357) $) 9)))
+(((-953) (-131)) (T -953))
NIL
(-13 (-567 (-205)) (-567 (-357)))
(((-567 (-205)) . T) ((-567 (-357)) . T))
-((-2925 (((-592 (-357)) (-886 (-525)) (-357)) 28) (((-592 (-357)) (-886 (-385 (-525))) (-357)) 27)) (-2507 (((-592 (-592 (-357))) (-592 (-886 (-525))) (-592 (-1090)) (-357)) 37)))
-(((-953) (-10 -7 (-15 -2925 ((-592 (-357)) (-886 (-385 (-525))) (-357))) (-15 -2925 ((-592 (-357)) (-886 (-525)) (-357))) (-15 -2507 ((-592 (-592 (-357))) (-592 (-886 (-525))) (-592 (-1090)) (-357))))) (T -953))
-((-2507 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-592 (-1090))) (-5 *2 (-592 (-592 (-357)))) (-5 *1 (-953)) (-5 *5 (-357)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-886 (-525))) (-5 *2 (-592 (-357))) (-5 *1 (-953)) (-5 *4 (-357)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-886 (-385 (-525)))) (-5 *2 (-592 (-357))) (-5 *1 (-953)) (-5 *4 (-357)))))
-(-10 -7 (-15 -2925 ((-592 (-357)) (-886 (-385 (-525))) (-357))) (-15 -2925 ((-592 (-357)) (-886 (-525)) (-357))) (-15 -2507 ((-592 (-592 (-357))) (-592 (-886 (-525))) (-592 (-1090)) (-357))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 70)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-3969 (($ $) NIL) (($ $ (-855)) NIL) (($ (-385 (-525))) NIL) (($ (-525)) NIL)) (-2305 (((-108) $ $) NIL)) (-1690 (((-525) $) 65)) (-1505 (($) NIL T CONST)) (-4105 (((-3 $ "failed") (-1086 $) (-855) (-797)) NIL) (((-3 $ "failed") (-1086 $) (-855)) 50)) (-1264 (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 (-525)) (-967 (-385 (-525))))) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-525) "failed") $) NIL (-3309 (|has| (-385 (-525)) (-967 (-525))) (|has| |#1| (-967 (-525)))))) (-2831 (((-385 (-525)) $) 15 (|has| (-385 (-525)) (-967 (-385 (-525))))) (((-385 (-525)) $) 15) ((|#1| $) 108) (((-525) $) NIL (-3309 (|has| (-385 (-525)) (-967 (-525))) (|has| |#1| (-967 (-525)))))) (-1482 (($ $ (-797)) 42)) (-2867 (($ $ (-797)) 43)) (-2373 (($ $ $) NIL)) (-3891 (((-385 (-525)) $ $) 19)) (-2866 (((-3 $ "failed") $) 83)) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-3026 (((-108) $) 61)) (-2133 (((-108) $) NIL)) (-3391 (($ $ (-525)) NIL)) (-2882 (((-108) $) 64)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-2784 (((-3 (-1086 $) "failed") $) 78)) (-3350 (((-3 (-797) "failed") $) 77)) (-3558 (((-3 (-1086 $) "failed") $) 75)) (-3577 (((-3 (-986 $ (-1086 $)) "failed") $) 73)) (-3216 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 84)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ (-592 $)) NIL) (($ $ $) NIL)) (-3959 (((-396 $) $) NIL)) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-1908 (((-797) $) 82) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ $) 58) (($ (-385 (-525))) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 110)) (-2093 (((-713)) NIL)) (-2262 (((-108) $ $) NIL)) (-2038 (((-385 (-525)) $ $) 25)) (-2913 (((-592 $) (-1086 $)) 56) (((-592 $) (-1086 (-385 (-525)))) NIL) (((-592 $) (-1086 (-525))) NIL) (((-592 $) (-886 $)) NIL) (((-592 $) (-886 (-385 (-525)))) NIL) (((-592 $) (-886 (-525))) NIL)) (-4158 (($ (-986 $ (-1086 $)) (-797)) 41)) (-2092 (($ $) 20)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3875 (($) 29 T CONST)) (-3882 (($) 35 T CONST)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 71)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 22)) (-4082 (($ $ $) 33)) (-4070 (($ $) 34) (($ $ $) 69)) (-4059 (($ $ $) 103)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 91) (($ $ $) 96) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ (-525) $) 91) (($ $ (-525)) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
-(((-954 |#1|) (-13 (-943) (-389 |#1|) (-37 |#1|) (-10 -8 (-15 -4158 ($ (-986 $ (-1086 $)) (-797))) (-15 -3577 ((-3 (-986 $ (-1086 $)) "failed") $)) (-15 -3891 ((-385 (-525)) $ $)))) (-13 (-787) (-341) (-952))) (T -954))
-((-4158 (*1 *1 *2 *3) (-12 (-5 *2 (-986 (-954 *4) (-1086 (-954 *4)))) (-5 *3 (-797)) (-4 *4 (-13 (-787) (-341) (-952))) (-5 *1 (-954 *4)))) (-3577 (*1 *2 *1) (|partial| -12 (-5 *2 (-986 (-954 *3) (-1086 (-954 *3)))) (-5 *1 (-954 *3)) (-4 *3 (-13 (-787) (-341) (-952))))) (-3891 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-954 *3)) (-4 *3 (-13 (-787) (-341) (-952))))))
-(-13 (-943) (-389 |#1|) (-37 |#1|) (-10 -8 (-15 -4158 ($ (-986 $ (-1086 $)) (-797))) (-15 -3577 ((-3 (-986 $ (-1086 $)) "failed") $)) (-15 -3891 ((-385 (-525)) $ $))))
-((-2440 (((-2 (|:| -1881 |#2|) (|:| -1862 (-592 |#1|))) |#2| (-592 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-955 |#1| |#2|) (-10 -7 (-15 -2440 (|#2| |#2| |#1|)) (-15 -2440 ((-2 (|:| -1881 |#2|) (|:| -1862 (-592 |#1|))) |#2| (-592 |#1|)))) (-341) (-602 |#1|)) (T -955))
-((-2440 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| -1881 *3) (|:| -1862 (-592 *5)))) (-5 *1 (-955 *5 *3)) (-5 *4 (-592 *5)) (-4 *3 (-602 *5)))) (-2440 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-955 *3 *2)) (-4 *2 (-602 *3)))))
-(-10 -7 (-15 -2440 (|#2| |#2| |#1|)) (-15 -2440 ((-2 (|:| -1881 |#2|) (|:| -1862 (-592 |#1|))) |#2| (-592 |#1|))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2162 ((|#1| $ |#1|) 14)) (-2109 ((|#1| $ |#1|) 12)) (-3682 (($ |#1|) 10)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3928 ((|#1| $) 11)) (-1673 ((|#1| $) 13)) (-1908 (((-797) $) 21 (|has| |#1| (-1019)))) (-3961 (((-108) $ $) 9)))
-(((-956 |#1|) (-13 (-1126) (-10 -8 (-15 -3682 ($ |#1|)) (-15 -3928 (|#1| $)) (-15 -2109 (|#1| $ |#1|)) (-15 -1673 (|#1| $)) (-15 -2162 (|#1| $ |#1|)) (-15 -3961 ((-108) $ $)) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|))) (-1126)) (T -956))
-((-3682 (*1 *1 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126)))) (-3928 (*1 *2 *1) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126)))) (-2109 (*1 *2 *1 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126)))) (-1673 (*1 *2 *1) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126)))) (-2162 (*1 *2 *1 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126)))) (-3961 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-956 *3)) (-4 *3 (-1126)))))
-(-13 (-1126) (-10 -8 (-15 -3682 ($ |#1|)) (-15 -3928 (|#1| $)) (-15 -2109 (|#1| $ |#1|)) (-15 -1673 (|#1| $)) (-15 -2162 (|#1| $ |#1|)) (-15 -3961 ((-108) $ $)) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|)))
-((-1893 (((-108) $ $) NIL)) (-2894 (((-592 (-2 (|:| -3286 $) (|:| -2396 (-592 |#4|)))) (-592 |#4|)) NIL)) (-2308 (((-592 $) (-592 |#4|)) 105) (((-592 $) (-592 |#4|) (-108)) 106) (((-592 $) (-592 |#4|) (-108) (-108)) 104) (((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108)) 107)) (-4104 (((-592 |#3|) $) NIL)) (-3696 (((-108) $) NIL)) (-3810 (((-108) $) NIL (|has| |#1| (-517)))) (-1466 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3833 ((|#4| |#4| $) NIL)) (-3321 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 $))) |#4| $) 99)) (-3327 (((-2 (|:| |under| $) (|:| -1720 $) (|:| |upper| $)) $ |#3|) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-2724 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) 54)) (-1505 (($) NIL T CONST)) (-2637 (((-108) $) 26 (|has| |#1| (-517)))) (-2643 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2494 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3405 (((-108) $) NIL (|has| |#1| (-517)))) (-2895 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3937 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-3144 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1264 (((-3 $ "failed") (-592 |#4|)) NIL)) (-2831 (($ (-592 |#4|)) NIL)) (-3145 (((-3 $ "failed") $) 39)) (-3096 ((|#4| |#4| $) 57)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2273 (($ |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-1632 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-517)))) (-1954 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2295 ((|#4| |#4| $) NIL)) (-4004 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1426 (((-2 (|:| -3286 (-592 |#4|)) (|:| -2396 (-592 |#4|))) $) NIL)) (-1725 (((-108) |#4| $) NIL)) (-2678 (((-108) |#4| $) NIL)) (-1503 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2560 (((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)) 119)) (-2026 (((-592 |#4|) $) 16 (|has| $ (-6 -4254)))) (-2267 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1257 ((|#3| $) 33)) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 |#4|) $) 17 (|has| $ (-6 -4254)))) (-4132 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2857 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#4| |#4|) $) 21)) (-1835 (((-592 |#3|) $) NIL)) (-1913 (((-108) |#3| $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL)) (-3211 (((-3 |#4| (-592 $)) |#4| |#4| $) NIL)) (-1868 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 $))) |#4| |#4| $) 97)) (-2292 (((-3 |#4| "failed") $) 37)) (-2505 (((-592 $) |#4| $) 80)) (-2269 (((-3 (-108) (-592 $)) |#4| $) NIL)) (-2819 (((-592 (-2 (|:| |val| (-108)) (|:| -3740 $))) |#4| $) 90) (((-108) |#4| $) 52)) (-3187 (((-592 $) |#4| $) 102) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 103) (((-592 $) |#4| (-592 $)) NIL)) (-3992 (((-592 $) (-592 |#4|) (-108) (-108) (-108)) 114)) (-2394 (($ |#4| $) 70) (($ (-592 |#4|) $) 71) (((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 67)) (-2931 (((-592 |#4|) $) NIL)) (-3691 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4189 ((|#4| |#4| $) NIL)) (-2491 (((-108) $ $) NIL)) (-2809 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2469 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2954 ((|#4| |#4| $) NIL)) (-2663 (((-1037) $) NIL)) (-3135 (((-3 |#4| "failed") $) 35)) (-4054 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2662 (((-3 $ "failed") $ |#4|) 48)) (-3538 (($ $ |#4|) NIL) (((-592 $) |#4| $) 82) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 77)) (-3494 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) 15)) (-3773 (($) 13)) (-2513 (((-713) $) NIL)) (-2686 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) 12)) (-1427 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-1922 (($ (-592 |#4|)) 20)) (-1861 (($ $ |#3|) 42)) (-3570 (($ $ |#3|) 44)) (-2031 (($ $) NIL)) (-1263 (($ $ |#3|) NIL)) (-1908 (((-797) $) 31) (((-592 |#4|) $) 40)) (-3056 (((-713) $) NIL (|has| |#3| (-346)))) (-3480 (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1971 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-2348 (((-592 $) |#4| $) 79) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) NIL)) (-2667 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2241 (((-592 |#3|) $) NIL)) (-3673 (((-108) |#4| $) NIL)) (-1252 (((-108) |#3| $) 53)) (-3961 (((-108) $ $) NIL)) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-957 |#1| |#2| |#3| |#4|) (-13 (-995 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2394 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2308 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -2308 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -3992 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -2560 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108))))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|)) (T -957))
-((-2394 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-957 *5 *6 *7 *3))) (-5 *1 (-957 *5 *6 *7 *3)) (-4 *3 (-990 *5 *6 *7)))) (-2308 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-957 *5 *6 *7 *8))) (-5 *1 (-957 *5 *6 *7 *8)))) (-2308 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-957 *5 *6 *7 *8))) (-5 *1 (-957 *5 *6 *7 *8)))) (-3992 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-957 *5 *6 *7 *8))) (-5 *1 (-957 *5 *6 *7 *8)))) (-2560 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-592 *8)) (|:| |towers| (-592 (-957 *5 *6 *7 *8))))) (-5 *1 (-957 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
-(-13 (-995 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2394 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2308 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -2308 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -3992 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -2560 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)))))
-((-1848 (((-592 (-632 |#1|)) (-592 (-632 |#1|))) 58) (((-632 |#1|) (-632 |#1|)) 57) (((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-592 (-632 |#1|))) 56) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 53)) (-3052 (((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-855)) 52) (((-632 |#1|) (-632 |#1|) (-855)) 51)) (-1633 (((-592 (-632 (-525))) (-592 (-592 (-525)))) 68) (((-592 (-632 (-525))) (-592 (-839 (-525))) (-525)) 67) (((-632 (-525)) (-592 (-525))) 64) (((-632 (-525)) (-839 (-525)) (-525)) 63)) (-3093 (((-632 (-886 |#1|)) (-713)) 81)) (-3324 (((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-855)) 37 (|has| |#1| (-6 (-4256 "*")))) (((-632 |#1|) (-632 |#1|) (-855)) 35 (|has| |#1| (-6 (-4256 "*"))))))
-(((-958 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4256 "*"))) (-15 -3324 ((-632 |#1|) (-632 |#1|) (-855))) |%noBranch|) (IF (|has| |#1| (-6 (-4256 "*"))) (-15 -3324 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-855))) |%noBranch|) (-15 -3093 ((-632 (-886 |#1|)) (-713))) (-15 -3052 ((-632 |#1|) (-632 |#1|) (-855))) (-15 -3052 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-855))) (-15 -1848 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1848 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -1848 ((-632 |#1|) (-632 |#1|))) (-15 -1848 ((-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -1633 ((-632 (-525)) (-839 (-525)) (-525))) (-15 -1633 ((-632 (-525)) (-592 (-525)))) (-15 -1633 ((-592 (-632 (-525))) (-592 (-839 (-525))) (-525))) (-15 -1633 ((-592 (-632 (-525))) (-592 (-592 (-525)))))) (-976)) (T -958))
-((-1633 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-525)))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-958 *4)) (-4 *4 (-976)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-839 (-525)))) (-5 *4 (-525)) (-5 *2 (-592 (-632 *4))) (-5 *1 (-958 *5)) (-4 *5 (-976)))) (-1633 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-958 *4)) (-4 *4 (-976)))) (-1633 (*1 *2 *3 *4) (-12 (-5 *3 (-839 (-525))) (-5 *4 (-525)) (-5 *2 (-632 *4)) (-5 *1 (-958 *5)) (-4 *5 (-976)))) (-1848 (*1 *2 *2) (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-976)) (-5 *1 (-958 *3)))) (-1848 (*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-958 *3)))) (-1848 (*1 *2 *2 *2) (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-976)) (-5 *1 (-958 *3)))) (-1848 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-958 *3)))) (-3052 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-855)) (-4 *4 (-976)) (-5 *1 (-958 *4)))) (-3052 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-855)) (-4 *4 (-976)) (-5 *1 (-958 *4)))) (-3093 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-632 (-886 *4))) (-5 *1 (-958 *4)) (-4 *4 (-976)))) (-3324 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-855)) (|has| *4 (-6 (-4256 "*"))) (-4 *4 (-976)) (-5 *1 (-958 *4)))) (-3324 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-855)) (|has| *4 (-6 (-4256 "*"))) (-4 *4 (-976)) (-5 *1 (-958 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4256 "*"))) (-15 -3324 ((-632 |#1|) (-632 |#1|) (-855))) |%noBranch|) (IF (|has| |#1| (-6 (-4256 "*"))) (-15 -3324 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-855))) |%noBranch|) (-15 -3093 ((-632 (-886 |#1|)) (-713))) (-15 -3052 ((-632 |#1|) (-632 |#1|) (-855))) (-15 -3052 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-855))) (-15 -1848 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -1848 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -1848 ((-632 |#1|) (-632 |#1|))) (-15 -1848 ((-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -1633 ((-632 (-525)) (-839 (-525)) (-525))) (-15 -1633 ((-632 (-525)) (-592 (-525)))) (-15 -1633 ((-592 (-632 (-525))) (-592 (-839 (-525))) (-525))) (-15 -1633 ((-592 (-632 (-525))) (-592 (-592 (-525))))))
-((-1439 (((-632 |#1|) (-592 (-632 |#1|)) (-1172 |#1|)) 51 (|has| |#1| (-286)))) (-1921 (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1172 (-1172 |#1|))) 77 (|has| |#1| (-341))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1172 |#1|)) 80 (|has| |#1| (-341)))) (-1603 (((-1172 |#1|) (-592 (-1172 |#1|)) (-525)) 94 (-12 (|has| |#1| (-341)) (|has| |#1| (-346))))) (-3025 (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-855)) 86 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108)) 84 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|))) 83 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108) (-525) (-525)) 82 (-12 (|has| |#1| (-341)) (|has| |#1| (-346))))) (-2333 (((-108) (-592 (-632 |#1|))) 72 (|has| |#1| (-341))) (((-108) (-592 (-632 |#1|)) (-525)) 74 (|has| |#1| (-341)))) (-1688 (((-1172 (-1172 |#1|)) (-592 (-632 |#1|)) (-1172 |#1|)) 49 (|has| |#1| (-286)))) (-3458 (((-632 |#1|) (-592 (-632 |#1|)) (-632 |#1|)) 34)) (-3909 (((-632 |#1|) (-1172 (-1172 |#1|))) 31)) (-3495 (((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-525)) 66 (|has| |#1| (-341))) (((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|))) 65 (|has| |#1| (-341))) (((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-108) (-525)) 70 (|has| |#1| (-341)))))
-(((-959 |#1|) (-10 -7 (-15 -3909 ((-632 |#1|) (-1172 (-1172 |#1|)))) (-15 -3458 ((-632 |#1|) (-592 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-286)) (PROGN (-15 -1688 ((-1172 (-1172 |#1|)) (-592 (-632 |#1|)) (-1172 |#1|))) (-15 -1439 ((-632 |#1|) (-592 (-632 |#1|)) (-1172 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3495 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-108) (-525))) (-15 -3495 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3495 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-525))) (-15 -2333 ((-108) (-592 (-632 |#1|)) (-525))) (-15 -2333 ((-108) (-592 (-632 |#1|)))) (-15 -1921 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1172 |#1|))) (-15 -1921 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1172 (-1172 |#1|))))) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#1| (-341)) (PROGN (-15 -3025 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108) (-525) (-525))) (-15 -3025 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)))) (-15 -3025 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108))) (-15 -3025 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-855))) (-15 -1603 ((-1172 |#1|) (-592 (-1172 |#1|)) (-525)))) |%noBranch|) |%noBranch|)) (-976)) (T -959))
-((-1603 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1172 *5))) (-5 *4 (-525)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-976)) (-5 *2 (-1172 *5)) (-5 *1 (-959 *5)))) (-3025 (*1 *2 *3 *4) (-12 (-5 *4 (-855)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-976)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-959 *5)) (-5 *3 (-592 (-632 *5))))) (-3025 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-976)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-959 *5)) (-5 *3 (-592 (-632 *5))))) (-3025 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *4 (-346)) (-4 *4 (-976)) (-5 *2 (-592 (-592 (-632 *4)))) (-5 *1 (-959 *4)) (-5 *3 (-592 (-632 *4))))) (-3025 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-525)) (-4 *6 (-341)) (-4 *6 (-346)) (-4 *6 (-976)) (-5 *2 (-592 (-592 (-632 *6)))) (-5 *1 (-959 *6)) (-5 *3 (-592 (-632 *6))))) (-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-1172 (-1172 *5))) (-4 *5 (-341)) (-4 *5 (-976)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-959 *5)) (-5 *3 (-592 (-632 *5))))) (-1921 (*1 *2 *3 *4) (-12 (-5 *4 (-1172 *5)) (-4 *5 (-341)) (-4 *5 (-976)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-959 *5)) (-5 *3 (-592 (-632 *5))))) (-2333 (*1 *2 *3) (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-4 *4 (-976)) (-5 *2 (-108)) (-5 *1 (-959 *4)))) (-2333 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-4 *5 (-341)) (-4 *5 (-976)) (-5 *2 (-108)) (-5 *1 (-959 *5)))) (-3495 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-4 *5 (-341)) (-4 *5 (-976)) (-5 *2 (-632 *5)) (-5 *1 (-959 *5)))) (-3495 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-4 *4 (-976)) (-5 *2 (-632 *4)) (-5 *1 (-959 *4)))) (-3495 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-592 (-632 *6))) (-5 *4 (-108)) (-5 *5 (-525)) (-4 *6 (-341)) (-4 *6 (-976)) (-5 *2 (-632 *6)) (-5 *1 (-959 *6)))) (-1439 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-1172 *5)) (-4 *5 (-286)) (-4 *5 (-976)) (-5 *2 (-632 *5)) (-5 *1 (-959 *5)))) (-1688 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-4 *5 (-286)) (-4 *5 (-976)) (-5 *2 (-1172 (-1172 *5))) (-5 *1 (-959 *5)) (-5 *4 (-1172 *5)))) (-3458 (*1 *2 *3 *2) (-12 (-5 *2 (-632 *4)) (-5 *3 (-592 (-632 *4))) (-4 *4 (-976)) (-5 *1 (-959 *4)))) (-3909 (*1 *2 *3) (-12 (-5 *3 (-1172 (-1172 *4))) (-4 *4 (-976)) (-5 *2 (-632 *4)) (-5 *1 (-959 *4)))))
-(-10 -7 (-15 -3909 ((-632 |#1|) (-1172 (-1172 |#1|)))) (-15 -3458 ((-632 |#1|) (-592 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-286)) (PROGN (-15 -1688 ((-1172 (-1172 |#1|)) (-592 (-632 |#1|)) (-1172 |#1|))) (-15 -1439 ((-632 |#1|) (-592 (-632 |#1|)) (-1172 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3495 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-108) (-525))) (-15 -3495 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3495 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-525))) (-15 -2333 ((-108) (-592 (-632 |#1|)) (-525))) (-15 -2333 ((-108) (-592 (-632 |#1|)))) (-15 -1921 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1172 |#1|))) (-15 -1921 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1172 (-1172 |#1|))))) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#1| (-341)) (PROGN (-15 -3025 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108) (-525) (-525))) (-15 -3025 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)))) (-15 -3025 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108))) (-15 -3025 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-855))) (-15 -1603 ((-1172 |#1|) (-592 (-1172 |#1|)) (-525)))) |%noBranch|) |%noBranch|))
-((-2122 ((|#1| (-855) |#1|) 9)))
-(((-960 |#1|) (-10 -7 (-15 -2122 (|#1| (-855) |#1|))) (-13 (-1019) (-10 -8 (-15 -4059 ($ $ $))))) (T -960))
-((-2122 (*1 *2 *3 *2) (-12 (-5 *3 (-855)) (-5 *1 (-960 *2)) (-4 *2 (-13 (-1019) (-10 -8 (-15 -4059 ($ $ $))))))))
-(-10 -7 (-15 -2122 (|#1| (-855) |#1|)))
-((-1765 (((-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525))))))) (-632 (-385 (-886 (-525))))) 59)) (-2778 (((-592 (-632 (-294 (-525)))) (-294 (-525)) (-632 (-385 (-886 (-525))))) 48)) (-3729 (((-592 (-294 (-525))) (-632 (-385 (-886 (-525))))) 41)) (-2602 (((-592 (-632 (-294 (-525)))) (-632 (-385 (-886 (-525))))) 69)) (-1270 (((-632 (-294 (-525))) (-632 (-294 (-525)))) 34)) (-1208 (((-592 (-632 (-294 (-525)))) (-592 (-632 (-294 (-525))))) 62)) (-2998 (((-3 (-632 (-294 (-525))) "failed") (-632 (-385 (-886 (-525))))) 66)))
-(((-961) (-10 -7 (-15 -1765 ((-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525))))))) (-632 (-385 (-886 (-525)))))) (-15 -2778 ((-592 (-632 (-294 (-525)))) (-294 (-525)) (-632 (-385 (-886 (-525)))))) (-15 -3729 ((-592 (-294 (-525))) (-632 (-385 (-886 (-525)))))) (-15 -2998 ((-3 (-632 (-294 (-525))) "failed") (-632 (-385 (-886 (-525)))))) (-15 -1270 ((-632 (-294 (-525))) (-632 (-294 (-525))))) (-15 -1208 ((-592 (-632 (-294 (-525)))) (-592 (-632 (-294 (-525)))))) (-15 -2602 ((-592 (-632 (-294 (-525)))) (-632 (-385 (-886 (-525)))))))) (T -961))
-((-2602 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-886 (-525))))) (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-961)))) (-1208 (*1 *2 *2) (-12 (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-961)))) (-1270 (*1 *2 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-961)))) (-2998 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 (-385 (-886 (-525))))) (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-961)))) (-3729 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-886 (-525))))) (-5 *2 (-592 (-294 (-525)))) (-5 *1 (-961)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *4 (-632 (-385 (-886 (-525))))) (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-961)) (-5 *3 (-294 (-525))))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-886 (-525))))) (-5 *2 (-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525)))))))) (-5 *1 (-961)))))
-(-10 -7 (-15 -1765 ((-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525))))))) (-632 (-385 (-886 (-525)))))) (-15 -2778 ((-592 (-632 (-294 (-525)))) (-294 (-525)) (-632 (-385 (-886 (-525)))))) (-15 -3729 ((-592 (-294 (-525))) (-632 (-385 (-886 (-525)))))) (-15 -2998 ((-3 (-632 (-294 (-525))) "failed") (-632 (-385 (-886 (-525)))))) (-15 -1270 ((-632 (-294 (-525))) (-632 (-294 (-525))))) (-15 -1208 ((-592 (-632 (-294 (-525)))) (-592 (-632 (-294 (-525)))))) (-15 -2602 ((-592 (-632 (-294 (-525)))) (-632 (-385 (-886 (-525)))))))
-((-3264 ((|#1| |#1| (-855)) 9)))
-(((-962 |#1|) (-10 -7 (-15 -3264 (|#1| |#1| (-855)))) (-13 (-1019) (-10 -8 (-15 * ($ $ $))))) (T -962))
-((-3264 (*1 *2 *2 *3) (-12 (-5 *3 (-855)) (-5 *1 (-962 *2)) (-4 *2 (-13 (-1019) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -3264 (|#1| |#1| (-855))))
-((-1908 ((|#1| (-290)) 11) (((-1177) |#1|) 9)))
-(((-963 |#1|) (-10 -7 (-15 -1908 ((-1177) |#1|)) (-15 -1908 (|#1| (-290)))) (-1126)) (T -963))
-((-1908 (*1 *2 *3) (-12 (-5 *3 (-290)) (-5 *1 (-963 *2)) (-4 *2 (-1126)))) (-1908 (*1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *1 (-963 *3)) (-4 *3 (-1126)))))
-(-10 -7 (-15 -1908 ((-1177) |#1|)) (-15 -1908 (|#1| (-290))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-4004 (($ |#4|) 25)) (-2866 (((-3 $ "failed") $) NIL)) (-2133 (((-108) $) NIL)) (-3774 ((|#4| $) 27)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 46) (($ (-525)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2093 (((-713)) 43)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 21 T CONST)) (-3882 (($) 23 T CONST)) (-3961 (((-108) $ $) 40)) (-4070 (($ $) 31) (($ $ $) NIL)) (-4059 (($ $ $) 29)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-964 |#1| |#2| |#3| |#4| |#5|) (-13 (-160) (-37 |#1|) (-10 -8 (-15 -4004 ($ |#4|)) (-15 -1908 ($ |#4|)) (-15 -3774 (|#4| $)))) (-341) (-735) (-789) (-883 |#1| |#2| |#3|) (-592 |#4|)) (T -964))
-((-4004 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-964 *3 *4 *5 *2 *6)) (-4 *2 (-883 *3 *4 *5)) (-14 *6 (-592 *2)))) (-1908 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-964 *3 *4 *5 *2 *6)) (-4 *2 (-883 *3 *4 *5)) (-14 *6 (-592 *2)))) (-3774 (*1 *2 *1) (-12 (-4 *2 (-883 *3 *4 *5)) (-5 *1 (-964 *3 *4 *5 *2 *6)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-14 *6 (-592 *2)))))
-(-13 (-160) (-37 |#1|) (-10 -8 (-15 -4004 ($ |#4|)) (-15 -1908 ($ |#4|)) (-15 -3774 (|#4| $))))
-((-1893 (((-108) $ $) NIL (-3309 (|has| (-51) (-1019)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019))))) (-4001 (($) NIL) (($ (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) NIL)) (-1840 (((-1177) $ (-1090) (-1090)) NIL (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) NIL)) (-2336 (((-108) (-108)) 39)) (-3279 (((-108) (-108)) 38)) (-2109 (((-51) $ (-1090) (-51)) NIL)) (-3290 (($ (-1 (-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-1446 (((-3 (-51) "failed") (-1090) $) NIL)) (-1505 (($) NIL T CONST)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019))))) (-2792 (($ (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-3 (-51) "failed") (-1090) $) NIL)) (-2273 (($ (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019)))) (($ (-1 (-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-4004 (((-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $ (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019)))) (((-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $ (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-2870 (((-51) $ (-1090) (-51)) NIL (|has| $ (-6 -4255)))) (-2796 (((-51) $ (-1090)) NIL)) (-2026 (((-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-592 (-51)) $) NIL (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-1090) $) NIL (|has| (-1090) (-789)))) (-3168 (((-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-592 (-51)) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019))))) (-1792 (((-1090) $) NIL (|has| (-1090) (-789)))) (-2857 (($ (-1 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (-3309 (|has| (-51) (-1019)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019))))) (-4005 (((-592 (-1090)) $) 34)) (-1699 (((-108) (-1090) $) NIL)) (-2570 (((-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) $) NIL)) (-2573 (($ (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) $) NIL)) (-3222 (((-592 (-1090)) $) NIL)) (-1548 (((-108) (-1090) $) NIL)) (-2663 (((-1037) $) NIL (-3309 (|has| (-51) (-1019)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019))))) (-3135 (((-51) $) NIL (|has| (-1090) (-789)))) (-4054 (((-3 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) "failed") (-1 (-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL)) (-1911 (($ $ (-51)) NIL (|has| $ (-6 -4255)))) (-3513 (((-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) $) NIL)) (-3494 (((-108) (-1 (-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))))) NIL (-12 (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019)))) (($ $ (-273 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) NIL (-12 (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019)))) (($ $ (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) NIL (-12 (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019)))) (($ $ (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) NIL (-12 (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019)))) (($ $ (-592 (-51)) (-592 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-592 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019))))) (-3171 (((-592 (-51)) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 (((-51) $ (-1090)) 35) (((-51) $ (-1090) (-51)) NIL)) (-4006 (($) NIL) (($ (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) NIL)) (-2686 (((-713) (-1 (-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019)))) (((-713) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019)))) (((-713) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-567 (-501))))) (-1922 (($ (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) NIL)) (-1908 (((-797) $) 37 (-3309 (|has| (-51) (-566 (-797))) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-566 (-797)))))) (-3612 (($ (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) NIL)) (-2667 (((-108) (-1 (-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (-3309 (|has| (-51) (-1019)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019))))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-965) (-13 (-1103 (-1090) (-51)) (-10 -7 (-15 -2336 ((-108) (-108))) (-15 -3279 ((-108) (-108))) (-6 -4254)))) (T -965))
-((-2336 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-965)))) (-3279 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-965)))))
-(-13 (-1103 (-1090) (-51)) (-10 -7 (-15 -2336 ((-108) (-108))) (-15 -3279 ((-108) (-108))) (-6 -4254)))
-((-2831 ((|#2| $) 10)))
-(((-966 |#1| |#2|) (-10 -8 (-15 -2831 (|#2| |#1|))) (-967 |#2|) (-1126)) (T -966))
-NIL
-(-10 -8 (-15 -2831 (|#2| |#1|)))
-((-1264 (((-3 |#1| "failed") $) 7)) (-2831 ((|#1| $) 8)) (-1908 (($ |#1|) 6)))
-(((-967 |#1|) (-131) (-1126)) (T -967))
-((-2831 (*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-1126)))) (-1264 (*1 *2 *1) (|partial| -12 (-4 *1 (-967 *2)) (-4 *2 (-1126)))) (-1908 (*1 *1 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-1126)))))
-(-13 (-10 -8 (-15 -1908 ($ |t#1|)) (-15 -1264 ((-3 |t#1| "failed") $)) (-15 -2831 (|t#1| $))))
-((-1249 (((-592 (-592 (-273 (-385 (-886 |#2|))))) (-592 (-886 |#2|)) (-592 (-1090))) 38)))
-(((-968 |#1| |#2|) (-10 -7 (-15 -1249 ((-592 (-592 (-273 (-385 (-886 |#2|))))) (-592 (-886 |#2|)) (-592 (-1090))))) (-517) (-13 (-517) (-967 |#1|))) (T -968))
-((-1249 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-886 *6))) (-5 *4 (-592 (-1090))) (-4 *6 (-13 (-517) (-967 *5))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *6)))))) (-5 *1 (-968 *5 *6)))))
-(-10 -7 (-15 -1249 ((-592 (-592 (-273 (-385 (-886 |#2|))))) (-592 (-886 |#2|)) (-592 (-1090)))))
-((-3406 (((-357)) 15)) (-2758 (((-1 (-357)) (-357) (-357)) 20)) (-3787 (((-1 (-357)) (-713)) 43)) (-3389 (((-357)) 34)) (-3837 (((-1 (-357)) (-357) (-357)) 35)) (-3472 (((-357)) 26)) (-2222 (((-1 (-357)) (-357)) 27)) (-3727 (((-357) (-713)) 38)) (-3501 (((-1 (-357)) (-713)) 39)) (-1346 (((-1 (-357)) (-713) (-713)) 42)) (-2851 (((-1 (-357)) (-713) (-713)) 40)))
-(((-969) (-10 -7 (-15 -3406 ((-357))) (-15 -3389 ((-357))) (-15 -3472 ((-357))) (-15 -3727 ((-357) (-713))) (-15 -2758 ((-1 (-357)) (-357) (-357))) (-15 -3837 ((-1 (-357)) (-357) (-357))) (-15 -2222 ((-1 (-357)) (-357))) (-15 -3501 ((-1 (-357)) (-713))) (-15 -2851 ((-1 (-357)) (-713) (-713))) (-15 -1346 ((-1 (-357)) (-713) (-713))) (-15 -3787 ((-1 (-357)) (-713))))) (T -969))
-((-3787 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-969)))) (-1346 (*1 *2 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-969)))) (-2851 (*1 *2 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-969)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-969)))) (-2222 (*1 *2 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-969)) (-5 *3 (-357)))) (-3837 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-969)) (-5 *3 (-357)))) (-2758 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-969)) (-5 *3 (-357)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-357)) (-5 *1 (-969)))) (-3472 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-969)))) (-3389 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-969)))) (-3406 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-969)))))
-(-10 -7 (-15 -3406 ((-357))) (-15 -3389 ((-357))) (-15 -3472 ((-357))) (-15 -3727 ((-357) (-713))) (-15 -2758 ((-1 (-357)) (-357) (-357))) (-15 -3837 ((-1 (-357)) (-357) (-357))) (-15 -2222 ((-1 (-357)) (-357))) (-15 -3501 ((-1 (-357)) (-713))) (-15 -2851 ((-1 (-357)) (-713) (-713))) (-15 -1346 ((-1 (-357)) (-713) (-713))) (-15 -3787 ((-1 (-357)) (-713))))
-((-3959 (((-396 |#1|) |#1|) 33)))
-(((-970 |#1|) (-10 -7 (-15 -3959 ((-396 |#1|) |#1|))) (-1148 (-385 (-886 (-525))))) (T -970))
-((-3959 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-970 *3)) (-4 *3 (-1148 (-385 (-886 (-525))))))))
-(-10 -7 (-15 -3959 ((-396 |#1|) |#1|)))
-((-2497 (((-385 (-396 (-886 |#1|))) (-385 (-886 |#1|))) 14)))
-(((-971 |#1|) (-10 -7 (-15 -2497 ((-385 (-396 (-886 |#1|))) (-385 (-886 |#1|))))) (-286)) (T -971))
-((-2497 (*1 *2 *3) (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-286)) (-5 *2 (-385 (-396 (-886 *4)))) (-5 *1 (-971 *4)))))
-(-10 -7 (-15 -2497 ((-385 (-396 (-886 |#1|))) (-385 (-886 |#1|)))))
-((-4104 (((-592 (-1090)) (-385 (-886 |#1|))) 17)) (-3927 (((-385 (-1086 (-385 (-886 |#1|)))) (-385 (-886 |#1|)) (-1090)) 24)) (-4092 (((-385 (-886 |#1|)) (-385 (-1086 (-385 (-886 |#1|)))) (-1090)) 26)) (-1666 (((-3 (-1090) "failed") (-385 (-886 |#1|))) 20)) (-3092 (((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-592 (-273 (-385 (-886 |#1|))))) 32) (((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|)))) 33) (((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-592 (-1090)) (-592 (-385 (-886 |#1|)))) 28) (((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|))) 29)) (-1908 (((-385 (-886 |#1|)) |#1|) 11)))
-(((-972 |#1|) (-10 -7 (-15 -4104 ((-592 (-1090)) (-385 (-886 |#1|)))) (-15 -1666 ((-3 (-1090) "failed") (-385 (-886 |#1|)))) (-15 -3927 ((-385 (-1086 (-385 (-886 |#1|)))) (-385 (-886 |#1|)) (-1090))) (-15 -4092 ((-385 (-886 |#1|)) (-385 (-1086 (-385 (-886 |#1|)))) (-1090))) (-15 -3092 ((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|)))) (-15 -3092 ((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-592 (-1090)) (-592 (-385 (-886 |#1|))))) (-15 -3092 ((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))))) (-15 -3092 ((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-592 (-273 (-385 (-886 |#1|)))))) (-15 -1908 ((-385 (-886 |#1|)) |#1|))) (-517)) (T -972))
-((-1908 (*1 *2 *3) (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-972 *3)) (-4 *3 (-517)))) (-3092 (*1 *2 *2 *3) (-12 (-5 *2 (-385 (-886 *4))) (-5 *3 (-592 (-273 (-385 (-886 *4))))) (-4 *4 (-517)) (-5 *1 (-972 *4)))) (-3092 (*1 *2 *2 *3) (-12 (-5 *2 (-385 (-886 *4))) (-5 *3 (-273 (-385 (-886 *4)))) (-4 *4 (-517)) (-5 *1 (-972 *4)))) (-3092 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-385 (-886 *5))) (-5 *3 (-592 (-1090))) (-5 *4 (-592 (-385 (-886 *5)))) (-4 *5 (-517)) (-5 *1 (-972 *5)))) (-3092 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-385 (-886 *4))) (-5 *3 (-1090)) (-4 *4 (-517)) (-5 *1 (-972 *4)))) (-4092 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-1086 (-385 (-886 *5))))) (-5 *4 (-1090)) (-4 *5 (-517)) (-5 *2 (-385 (-886 *5))) (-5 *1 (-972 *5)))) (-3927 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-517)) (-5 *2 (-385 (-1086 (-385 (-886 *5))))) (-5 *1 (-972 *5)) (-5 *3 (-385 (-886 *5))))) (-1666 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-5 *2 (-1090)) (-5 *1 (-972 *4)))) (-4104 (*1 *2 *3) (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-1090))) (-5 *1 (-972 *4)))))
-(-10 -7 (-15 -4104 ((-592 (-1090)) (-385 (-886 |#1|)))) (-15 -1666 ((-3 (-1090) "failed") (-385 (-886 |#1|)))) (-15 -3927 ((-385 (-1086 (-385 (-886 |#1|)))) (-385 (-886 |#1|)) (-1090))) (-15 -4092 ((-385 (-886 |#1|)) (-385 (-1086 (-385 (-886 |#1|)))) (-1090))) (-15 -3092 ((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|)))) (-15 -3092 ((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-592 (-1090)) (-592 (-385 (-886 |#1|))))) (-15 -3092 ((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-273 (-385 (-886 |#1|))))) (-15 -3092 ((-385 (-886 |#1|)) (-385 (-886 |#1|)) (-592 (-273 (-385 (-886 |#1|)))))) (-15 -1908 ((-385 (-886 |#1|)) |#1|)))
-((-1893 (((-108) $ $) NIL)) (-2894 (((-592 (-2 (|:| -3286 $) (|:| -2396 (-592 (-722 |#1| (-799 |#2|)))))) (-592 (-722 |#1| (-799 |#2|)))) NIL)) (-2308 (((-592 $) (-592 (-722 |#1| (-799 |#2|)))) NIL) (((-592 $) (-592 (-722 |#1| (-799 |#2|))) (-108)) NIL) (((-592 $) (-592 (-722 |#1| (-799 |#2|))) (-108) (-108)) NIL)) (-4104 (((-592 (-799 |#2|)) $) NIL)) (-3696 (((-108) $) NIL)) (-3810 (((-108) $) NIL (|has| |#1| (-517)))) (-1466 (((-108) (-722 |#1| (-799 |#2|)) $) NIL) (((-108) $) NIL)) (-3833 (((-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) $) NIL)) (-3321 (((-592 (-2 (|:| |val| (-722 |#1| (-799 |#2|))) (|:| -3740 $))) (-722 |#1| (-799 |#2|)) $) NIL)) (-3327 (((-2 (|:| |under| $) (|:| -1720 $) (|:| |upper| $)) $ (-799 |#2|)) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-2724 (($ (-1 (-108) (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-3 (-722 |#1| (-799 |#2|)) "failed") $ (-799 |#2|)) NIL)) (-1505 (($) NIL T CONST)) (-2637 (((-108) $) NIL (|has| |#1| (-517)))) (-2643 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2494 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3405 (((-108) $) NIL (|has| |#1| (-517)))) (-2895 (((-592 (-722 |#1| (-799 |#2|))) (-592 (-722 |#1| (-799 |#2|))) $ (-1 (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) (-1 (-108) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)))) NIL)) (-3937 (((-592 (-722 |#1| (-799 |#2|))) (-592 (-722 |#1| (-799 |#2|))) $) NIL (|has| |#1| (-517)))) (-3144 (((-592 (-722 |#1| (-799 |#2|))) (-592 (-722 |#1| (-799 |#2|))) $) NIL (|has| |#1| (-517)))) (-1264 (((-3 $ "failed") (-592 (-722 |#1| (-799 |#2|)))) NIL)) (-2831 (($ (-592 (-722 |#1| (-799 |#2|)))) NIL)) (-3145 (((-3 $ "failed") $) NIL)) (-3096 (((-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) $) NIL)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-722 |#1| (-799 |#2|)) (-1019))))) (-2273 (($ (-722 |#1| (-799 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-722 |#1| (-799 |#2|)) (-1019)))) (($ (-1 (-108) (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1632 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-722 |#1| (-799 |#2|))) (|:| |den| |#1|)) (-722 |#1| (-799 |#2|)) $) NIL (|has| |#1| (-517)))) (-1954 (((-108) (-722 |#1| (-799 |#2|)) $ (-1 (-108) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)))) NIL)) (-2295 (((-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) $) NIL)) (-4004 (((-722 |#1| (-799 |#2|)) (-1 (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) $ (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-722 |#1| (-799 |#2|)) (-1019)))) (((-722 |#1| (-799 |#2|)) (-1 (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) $ (-722 |#1| (-799 |#2|))) NIL (|has| $ (-6 -4254))) (((-722 |#1| (-799 |#2|)) (-1 (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) $ (-1 (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) (-1 (-108) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)))) NIL)) (-1426 (((-2 (|:| -3286 (-592 (-722 |#1| (-799 |#2|)))) (|:| -2396 (-592 (-722 |#1| (-799 |#2|))))) $) NIL)) (-1725 (((-108) (-722 |#1| (-799 |#2|)) $) NIL)) (-2678 (((-108) (-722 |#1| (-799 |#2|)) $) NIL)) (-1503 (((-108) (-722 |#1| (-799 |#2|)) $) NIL) (((-108) $) NIL)) (-2026 (((-592 (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2267 (((-108) (-722 |#1| (-799 |#2|)) $) NIL) (((-108) $) NIL)) (-1257 (((-799 |#2|) $) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-722 |#1| (-799 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-722 |#1| (-799 |#2|)) (-1019))))) (-2857 (($ (-1 (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) $) NIL)) (-1835 (((-592 (-799 |#2|)) $) NIL)) (-1913 (((-108) (-799 |#2|) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL)) (-3211 (((-3 (-722 |#1| (-799 |#2|)) (-592 $)) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) $) NIL)) (-1868 (((-592 (-2 (|:| |val| (-722 |#1| (-799 |#2|))) (|:| -3740 $))) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) $) NIL)) (-2292 (((-3 (-722 |#1| (-799 |#2|)) "failed") $) NIL)) (-2505 (((-592 $) (-722 |#1| (-799 |#2|)) $) NIL)) (-2269 (((-3 (-108) (-592 $)) (-722 |#1| (-799 |#2|)) $) NIL)) (-2819 (((-592 (-2 (|:| |val| (-108)) (|:| -3740 $))) (-722 |#1| (-799 |#2|)) $) NIL) (((-108) (-722 |#1| (-799 |#2|)) $) NIL)) (-3187 (((-592 $) (-722 |#1| (-799 |#2|)) $) NIL) (((-592 $) (-592 (-722 |#1| (-799 |#2|))) $) NIL) (((-592 $) (-592 (-722 |#1| (-799 |#2|))) (-592 $)) NIL) (((-592 $) (-722 |#1| (-799 |#2|)) (-592 $)) NIL)) (-2394 (($ (-722 |#1| (-799 |#2|)) $) NIL) (($ (-592 (-722 |#1| (-799 |#2|))) $) NIL)) (-2931 (((-592 (-722 |#1| (-799 |#2|))) $) NIL)) (-3691 (((-108) (-722 |#1| (-799 |#2|)) $) NIL) (((-108) $) NIL)) (-4189 (((-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) $) NIL)) (-2491 (((-108) $ $) NIL)) (-2809 (((-2 (|:| |num| (-722 |#1| (-799 |#2|))) (|:| |den| |#1|)) (-722 |#1| (-799 |#2|)) $) NIL (|has| |#1| (-517)))) (-2469 (((-108) (-722 |#1| (-799 |#2|)) $) NIL) (((-108) $) NIL)) (-2954 (((-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)) $) NIL)) (-2663 (((-1037) $) NIL)) (-3135 (((-3 (-722 |#1| (-799 |#2|)) "failed") $) NIL)) (-4054 (((-3 (-722 |#1| (-799 |#2|)) "failed") (-1 (-108) (-722 |#1| (-799 |#2|))) $) NIL)) (-2662 (((-3 $ "failed") $ (-722 |#1| (-799 |#2|))) NIL)) (-3538 (($ $ (-722 |#1| (-799 |#2|))) NIL) (((-592 $) (-722 |#1| (-799 |#2|)) $) NIL) (((-592 $) (-722 |#1| (-799 |#2|)) (-592 $)) NIL) (((-592 $) (-592 (-722 |#1| (-799 |#2|))) $) NIL) (((-592 $) (-592 (-722 |#1| (-799 |#2|))) (-592 $)) NIL)) (-3494 (((-108) (-1 (-108) (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-722 |#1| (-799 |#2|))) (-592 (-722 |#1| (-799 |#2|)))) NIL (-12 (|has| (-722 |#1| (-799 |#2|)) (-288 (-722 |#1| (-799 |#2|)))) (|has| (-722 |#1| (-799 |#2|)) (-1019)))) (($ $ (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|))) NIL (-12 (|has| (-722 |#1| (-799 |#2|)) (-288 (-722 |#1| (-799 |#2|)))) (|has| (-722 |#1| (-799 |#2|)) (-1019)))) (($ $ (-273 (-722 |#1| (-799 |#2|)))) NIL (-12 (|has| (-722 |#1| (-799 |#2|)) (-288 (-722 |#1| (-799 |#2|)))) (|has| (-722 |#1| (-799 |#2|)) (-1019)))) (($ $ (-592 (-273 (-722 |#1| (-799 |#2|))))) NIL (-12 (|has| (-722 |#1| (-799 |#2|)) (-288 (-722 |#1| (-799 |#2|)))) (|has| (-722 |#1| (-799 |#2|)) (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-2513 (((-713) $) NIL)) (-2686 (((-713) (-722 |#1| (-799 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-722 |#1| (-799 |#2|)) (-1019)))) (((-713) (-1 (-108) (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| (-722 |#1| (-799 |#2|)) (-567 (-501))))) (-1922 (($ (-592 (-722 |#1| (-799 |#2|)))) NIL)) (-1861 (($ $ (-799 |#2|)) NIL)) (-3570 (($ $ (-799 |#2|)) NIL)) (-2031 (($ $) NIL)) (-1263 (($ $ (-799 |#2|)) NIL)) (-1908 (((-797) $) NIL) (((-592 (-722 |#1| (-799 |#2|))) $) NIL)) (-3056 (((-713) $) NIL (|has| (-799 |#2|) (-346)))) (-3480 (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 (-722 |#1| (-799 |#2|))))) "failed") (-592 (-722 |#1| (-799 |#2|))) (-1 (-108) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 (-722 |#1| (-799 |#2|))))) "failed") (-592 (-722 |#1| (-799 |#2|))) (-1 (-108) (-722 |#1| (-799 |#2|))) (-1 (-108) (-722 |#1| (-799 |#2|)) (-722 |#1| (-799 |#2|)))) NIL)) (-1971 (((-108) $ (-1 (-108) (-722 |#1| (-799 |#2|)) (-592 (-722 |#1| (-799 |#2|))))) NIL)) (-2348 (((-592 $) (-722 |#1| (-799 |#2|)) $) NIL) (((-592 $) (-722 |#1| (-799 |#2|)) (-592 $)) NIL) (((-592 $) (-592 (-722 |#1| (-799 |#2|))) $) NIL) (((-592 $) (-592 (-722 |#1| (-799 |#2|))) (-592 $)) NIL)) (-2667 (((-108) (-1 (-108) (-722 |#1| (-799 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2241 (((-592 (-799 |#2|)) $) NIL)) (-3673 (((-108) (-722 |#1| (-799 |#2|)) $) NIL)) (-1252 (((-108) (-799 |#2|) $) NIL)) (-3961 (((-108) $ $) NIL)) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-973 |#1| |#2|) (-13 (-995 |#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|))) (-10 -8 (-15 -2308 ((-592 $) (-592 (-722 |#1| (-799 |#2|))) (-108) (-108))))) (-429) (-592 (-1090))) (T -973))
-((-2308 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-973 *5 *6))) (-5 *1 (-973 *5 *6)))))
-(-13 (-995 |#1| (-497 (-799 |#2|)) (-799 |#2|) (-722 |#1| (-799 |#2|))) (-10 -8 (-15 -2308 ((-592 $) (-592 (-722 |#1| (-799 |#2|))) (-108) (-108)))))
-((-2758 (((-1 (-525)) (-1014 (-525))) 33)) (-3804 (((-525) (-525) (-525) (-525) (-525)) 30)) (-1892 (((-1 (-525)) |RationalNumber|) NIL)) (-2087 (((-1 (-525)) |RationalNumber|) NIL)) (-3015 (((-1 (-525)) (-525) |RationalNumber|) NIL)))
-(((-974) (-10 -7 (-15 -2758 ((-1 (-525)) (-1014 (-525)))) (-15 -3015 ((-1 (-525)) (-525) |RationalNumber|)) (-15 -1892 ((-1 (-525)) |RationalNumber|)) (-15 -2087 ((-1 (-525)) |RationalNumber|)) (-15 -3804 ((-525) (-525) (-525) (-525) (-525))))) (T -974))
-((-3804 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-974)))) (-2087 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-974)))) (-1892 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-974)))) (-3015 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-974)) (-5 *3 (-525)))) (-2758 (*1 *2 *3) (-12 (-5 *3 (-1014 (-525))) (-5 *2 (-1 (-525))) (-5 *1 (-974)))))
-(-10 -7 (-15 -2758 ((-1 (-525)) (-1014 (-525)))) (-15 -3015 ((-1 (-525)) (-525) |RationalNumber|)) (-15 -1892 ((-1 (-525)) |RationalNumber|)) (-15 -2087 ((-1 (-525)) |RationalNumber|)) (-15 -3804 ((-525) (-525) (-525) (-525) (-525))))
-((-1908 (((-797) $) NIL) (($ (-525)) 10)))
-(((-975 |#1|) (-10 -8 (-15 -1908 (|#1| (-525))) (-15 -1908 ((-797) |#1|))) (-976)) (T -975))
-NIL
-(-10 -8 (-15 -1908 (|#1| (-525))) (-15 -1908 ((-797) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11) (($ (-525)) 28)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
-(((-976) (-131)) (T -976))
-((-2093 (*1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-713)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-976)))))
-(-13 (-983) (-669) (-594 $) (-10 -8 (-15 -2093 ((-713))) (-15 -1908 ($ (-525))) (-6 -4251)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 $) . T) ((-669) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-2718 (((-385 (-886 |#2|)) (-592 |#2|) (-592 |#2|) (-713) (-713)) 45)))
-(((-977 |#1| |#2|) (-10 -7 (-15 -2718 ((-385 (-886 |#2|)) (-592 |#2|) (-592 |#2|) (-713) (-713)))) (-1090) (-341)) (T -977))
-((-2718 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-713)) (-4 *6 (-341)) (-5 *2 (-385 (-886 *6))) (-5 *1 (-977 *5 *6)) (-14 *5 (-1090)))))
-(-10 -7 (-15 -2718 ((-385 (-886 |#2|)) (-592 |#2|) (-592 |#2|) (-713) (-713))))
-((-3844 (((-108) $) 29)) (-1399 (((-108) $) 16)) (-2606 (((-713) $) 13)) (-2618 (((-713) $) 14)) (-1997 (((-108) $) 26)) (-3265 (((-108) $) 31)))
-(((-978 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2618 ((-713) |#1|)) (-15 -2606 ((-713) |#1|)) (-15 -3265 ((-108) |#1|)) (-15 -3844 ((-108) |#1|)) (-15 -1997 ((-108) |#1|)) (-15 -1399 ((-108) |#1|))) (-979 |#2| |#3| |#4| |#5| |#6|) (-713) (-713) (-976) (-218 |#3| |#4|) (-218 |#2| |#4|)) (T -978))
-NIL
-(-10 -8 (-15 -2618 ((-713) |#1|)) (-15 -2606 ((-713) |#1|)) (-15 -3265 ((-108) |#1|)) (-15 -3844 ((-108) |#1|)) (-15 -1997 ((-108) |#1|)) (-15 -1399 ((-108) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3844 (((-108) $) 51)) (-3263 (((-3 $ "failed") $ $) 19)) (-1399 (((-108) $) 53)) (-3410 (((-108) $ (-713)) 61)) (-1505 (($) 17 T CONST)) (-3262 (($ $) 34 (|has| |#3| (-286)))) (-3606 ((|#4| $ (-525)) 39)) (-2239 (((-713) $) 33 (|has| |#3| (-517)))) (-2796 ((|#3| $ (-525) (-525)) 41)) (-2026 (((-592 |#3|) $) 68 (|has| $ (-6 -4254)))) (-3177 (((-713) $) 32 (|has| |#3| (-517)))) (-2517 (((-592 |#5|) $) 31 (|has| |#3| (-517)))) (-2606 (((-713) $) 45)) (-2618 (((-713) $) 44)) (-3100 (((-108) $ (-713)) 60)) (-2746 (((-525) $) 49)) (-2551 (((-525) $) 47)) (-3168 (((-592 |#3|) $) 69 (|has| $ (-6 -4254)))) (-4132 (((-108) |#3| $) 71 (-12 (|has| |#3| (-1019)) (|has| $ (-6 -4254))))) (-1906 (((-525) $) 48)) (-1950 (((-525) $) 46)) (-3515 (($ (-592 (-592 |#3|))) 54)) (-2857 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3019 (((-592 (-592 |#3|)) $) 43)) (-3017 (((-108) $ (-713)) 59)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-2338 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-517)))) (-3494 (((-108) (-1 (-108) |#3|) $) 66 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 |#3|) (-592 |#3|)) 75 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ (-273 |#3|)) 73 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ (-592 (-273 |#3|))) 72 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))))) (-2642 (((-108) $ $) 55)) (-1613 (((-108) $) 58)) (-3773 (($) 57)) (-3928 ((|#3| $ (-525) (-525)) 42) ((|#3| $ (-525) (-525) |#3|) 40)) (-1997 (((-108) $) 52)) (-2686 (((-713) |#3| $) 70 (-12 (|has| |#3| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#3|) $) 67 (|has| $ (-6 -4254)))) (-2135 (($ $) 56)) (-2543 ((|#5| $ (-525)) 38)) (-1908 (((-797) $) 11)) (-2667 (((-108) (-1 (-108) |#3|) $) 65 (|has| $ (-6 -4254)))) (-3265 (((-108) $) 50)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4082 (($ $ |#3|) 35 (|has| |#3| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-4140 (((-713) $) 62 (|has| $ (-6 -4254)))))
-(((-979 |#1| |#2| |#3| |#4| |#5|) (-131) (-713) (-713) (-976) (-218 |t#2| |t#3|) (-218 |t#1| |t#3|)) (T -979))
-((-1370 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-3515 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *5))) (-4 *5 (-976)) (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-1399 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-1997 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-3844 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-1906 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-1950 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713)))) (-2618 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713)))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-592 (-592 *5))))) (-3928 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *2 *6 *7)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-976)))) (-2796 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *2 *6 *7)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-976)))) (-3928 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *2 *6 *7)) (-4 *2 (-976)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)))) (-3606 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *6 *2 *7)) (-4 *6 (-976)) (-4 *7 (-218 *4 *6)) (-4 *2 (-218 *5 *6)))) (-2543 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *6 *7 *2)) (-4 *6 (-976)) (-4 *7 (-218 *5 *6)) (-4 *2 (-218 *4 *6)))) (-1370 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-2338 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-979 *3 *4 *2 *5 *6)) (-4 *2 (-976)) (-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-517)))) (-4082 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2 *5 *6)) (-4 *2 (-976)) (-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-341)))) (-3262 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *2 *4)) (-4 *4 (-286)))) (-2239 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-713)))) (-3177 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-713)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-592 *7)))))
-(-13 (-107 |t#3| |t#3|) (-464 |t#3|) (-10 -8 (-6 -4254) (IF (|has| |t#3| (-160)) (-6 (-660 |t#3|)) |%noBranch|) (-15 -3515 ($ (-592 (-592 |t#3|)))) (-15 -1399 ((-108) $)) (-15 -1997 ((-108) $)) (-15 -3844 ((-108) $)) (-15 -3265 ((-108) $)) (-15 -2746 ((-525) $)) (-15 -1906 ((-525) $)) (-15 -2551 ((-525) $)) (-15 -1950 ((-525) $)) (-15 -2606 ((-713) $)) (-15 -2618 ((-713) $)) (-15 -3019 ((-592 (-592 |t#3|)) $)) (-15 -3928 (|t#3| $ (-525) (-525))) (-15 -2796 (|t#3| $ (-525) (-525))) (-15 -3928 (|t#3| $ (-525) (-525) |t#3|)) (-15 -3606 (|t#4| $ (-525))) (-15 -2543 (|t#5| $ (-525))) (-15 -1370 ($ (-1 |t#3| |t#3|) $)) (-15 -1370 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-517)) (-15 -2338 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-341)) (-15 -4082 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-286)) (-15 -3262 ($ $)) |%noBranch|) (IF (|has| |t#3| (-517)) (PROGN (-15 -2239 ((-713) $)) (-15 -3177 ((-713) $)) (-15 -2517 ((-592 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-107 |#3| |#3|) . T) ((-126) . T) ((-566 (-797)) . T) ((-288 |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))) ((-464 |#3|) . T) ((-486 |#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))) ((-594 |#3|) . T) ((-660 |#3|) |has| |#3| (-160)) ((-982 |#3|) . T) ((-1019) . T) ((-1126) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3844 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1399 (((-108) $) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-1505 (($) NIL T CONST)) (-3262 (($ $) 43 (|has| |#3| (-286)))) (-3606 (((-220 |#2| |#3|) $ (-525)) 32)) (-3499 (($ (-632 |#3|)) 41)) (-2239 (((-713) $) 45 (|has| |#3| (-517)))) (-2796 ((|#3| $ (-525) (-525)) NIL)) (-2026 (((-592 |#3|) $) NIL (|has| $ (-6 -4254)))) (-3177 (((-713) $) 47 (|has| |#3| (-517)))) (-2517 (((-592 (-220 |#1| |#3|)) $) 51 (|has| |#3| (-517)))) (-2606 (((-713) $) NIL)) (-2618 (((-713) $) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2746 (((-525) $) NIL)) (-2551 (((-525) $) NIL)) (-3168 (((-592 |#3|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#3| (-1019))))) (-1906 (((-525) $) NIL)) (-1950 (((-525) $) NIL)) (-3515 (($ (-592 (-592 |#3|))) 27)) (-2857 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3019 (((-592 (-592 |#3|)) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2338 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-517)))) (-3494 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 |#3|) (-592 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ (-592 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#3| $ (-525) (-525)) NIL) ((|#3| $ (-525) (-525) |#3|) NIL)) (-3191 (((-128)) 54 (|has| |#3| (-341)))) (-1997 (((-108) $) NIL)) (-2686 (((-713) |#3| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#3| (-1019)))) (((-713) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) 63 (|has| |#3| (-567 (-501))))) (-2543 (((-220 |#1| |#3|) $ (-525)) 36)) (-1908 (((-797) $) 16) (((-632 |#3|) $) 38)) (-2667 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254)))) (-3265 (((-108) $) NIL)) (-3875 (($) 13 T CONST)) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-980 |#1| |#2| |#3|) (-13 (-979 |#1| |#2| |#3| (-220 |#2| |#3|) (-220 |#1| |#3|)) (-566 (-632 |#3|)) (-10 -8 (IF (|has| |#3| (-341)) (-6 (-1179 |#3|)) |%noBranch|) (IF (|has| |#3| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (-15 -3499 ($ (-632 |#3|))) (-15 -1908 ((-632 |#3|) $)))) (-713) (-713) (-976)) (T -980))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-632 *5)) (-5 *1 (-980 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-976)))) (-3499 (*1 *1 *2) (-12 (-5 *2 (-632 *5)) (-4 *5 (-976)) (-5 *1 (-980 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)))))
-(-13 (-979 |#1| |#2| |#3| (-220 |#2| |#3|) (-220 |#1| |#3|)) (-566 (-632 |#3|)) (-10 -8 (IF (|has| |#3| (-341)) (-6 (-1179 |#3|)) |%noBranch|) (IF (|has| |#3| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (-15 -3499 ($ (-632 |#3|))) (-15 -1908 ((-632 |#3|) $))))
-((-4004 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-1370 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-981 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -1370 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4004 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-713) (-713) (-976) (-218 |#2| |#3|) (-218 |#1| |#3|) (-979 |#1| |#2| |#3| |#4| |#5|) (-976) (-218 |#2| |#7|) (-218 |#1| |#7|) (-979 |#1| |#2| |#7| |#8| |#9|)) (T -981))
-((-4004 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-976)) (-4 *2 (-976)) (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7)) (-4 *9 (-218 *5 *7)) (-4 *10 (-218 *6 *2)) (-4 *11 (-218 *5 *2)) (-5 *1 (-981 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-979 *5 *6 *7 *8 *9)) (-4 *12 (-979 *5 *6 *2 *10 *11)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-976)) (-4 *10 (-976)) (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7)) (-4 *9 (-218 *5 *7)) (-4 *2 (-979 *5 *6 *10 *11 *12)) (-5 *1 (-981 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-979 *5 *6 *7 *8 *9)) (-4 *11 (-218 *6 *10)) (-4 *12 (-218 *5 *10)))))
-(-10 -7 (-15 -1370 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4004 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ |#1|) 23)))
-(((-982 |#1|) (-131) (-983)) (T -982))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-982 *2)) (-4 *2 (-983)))))
+((-3193 (((-592 (-357)) (-887 (-525)) (-357)) 28) (((-592 (-357)) (-887 (-385 (-525))) (-357)) 27)) (-1526 (((-592 (-592 (-357))) (-592 (-887 (-525))) (-592 (-1091)) (-357)) 37)))
+(((-954) (-10 -7 (-15 -3193 ((-592 (-357)) (-887 (-385 (-525))) (-357))) (-15 -3193 ((-592 (-357)) (-887 (-525)) (-357))) (-15 -1526 ((-592 (-592 (-357))) (-592 (-887 (-525))) (-592 (-1091)) (-357))))) (T -954))
+((-1526 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-592 (-1091))) (-5 *2 (-592 (-592 (-357)))) (-5 *1 (-954)) (-5 *5 (-357)))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-887 (-525))) (-5 *2 (-592 (-357))) (-5 *1 (-954)) (-5 *4 (-357)))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-887 (-385 (-525)))) (-5 *2 (-592 (-357))) (-5 *1 (-954)) (-5 *4 (-357)))))
+(-10 -7 (-15 -3193 ((-592 (-357)) (-887 (-385 (-525))) (-357))) (-15 -3193 ((-592 (-357)) (-887 (-525)) (-357))) (-15 -1526 ((-592 (-592 (-357))) (-592 (-887 (-525))) (-592 (-1091)) (-357))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 70)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-2211 (($ $) NIL) (($ $ (-856)) NIL) (($ (-385 (-525))) NIL) (($ (-525)) NIL)) (-3197 (((-108) $ $) NIL)) (-1436 (((-525) $) 65)) (-2305 (($) NIL T CONST)) (-3572 (((-3 $ "failed") (-1087 $) (-856) (-798)) NIL) (((-3 $ "failed") (-1087 $) (-856)) 50)) (-2591 (((-3 (-385 (-525)) "failed") $) NIL (|has| (-385 (-525)) (-968 (-385 (-525))))) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-525) "failed") $) NIL (-3279 (|has| (-385 (-525)) (-968 (-525))) (|has| |#1| (-968 (-525)))))) (-3898 (((-385 (-525)) $) 15 (|has| (-385 (-525)) (-968 (-385 (-525))))) (((-385 (-525)) $) 15) ((|#1| $) 108) (((-525) $) NIL (-3279 (|has| (-385 (-525)) (-968 (-525))) (|has| |#1| (-968 (-525)))))) (-2736 (($ $ (-798)) 42)) (-3775 (($ $ (-798)) 43)) (-1726 (($ $ $) NIL)) (-1265 (((-385 (-525)) $ $) 19)) (-3762 (((-3 $ "failed") $) 83)) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-3017 (((-108) $) 61)) (-1985 (((-108) $) NIL)) (-3220 (($ $ (-525)) NIL)) (-3912 (((-108) $) 64)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-2511 (((-3 (-1087 $) "failed") $) 78)) (-3987 (((-3 (-798) "failed") $) 77)) (-2455 (((-3 (-1087 $) "failed") $) 75)) (-1319 (((-3 (-987 $ (-1087 $)) "failed") $) 73)) (-2756 (($ (-592 $)) NIL) (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 84)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ (-592 $)) NIL) (($ $ $) NIL)) (-2195 (((-396 $) $) NIL)) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-1270 (((-798) $) 82) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ $) 58) (($ (-385 (-525))) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#1|) 110)) (-2104 (((-713)) NIL)) (-3959 (((-108) $ $) NIL)) (-1369 (((-385 (-525)) $ $) 25)) (-4208 (((-592 $) (-1087 $)) 56) (((-592 $) (-1087 (-385 (-525)))) NIL) (((-592 $) (-1087 (-525))) NIL) (((-592 $) (-887 $)) NIL) (((-592 $) (-887 (-385 (-525)))) NIL) (((-592 $) (-887 (-525))) NIL)) (-2966 (($ (-987 $ (-1087 $)) (-798)) 41)) (-2086 (($ $) 20)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL)) (-3355 (($) 29 T CONST)) (-3363 (($) 35 T CONST)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 71)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 22)) (-4100 (($ $ $) 33)) (-4090 (($ $) 34) (($ $ $) 69)) (-4080 (($ $ $) 103)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL) (($ $ (-385 (-525))) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 91) (($ $ $) 96) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ (-525) $) 91) (($ $ (-525)) NIL) (($ (-385 (-525)) $) NIL) (($ $ (-385 (-525))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
+(((-955 |#1|) (-13 (-944) (-389 |#1|) (-37 |#1|) (-10 -8 (-15 -2966 ($ (-987 $ (-1087 $)) (-798))) (-15 -1319 ((-3 (-987 $ (-1087 $)) "failed") $)) (-15 -1265 ((-385 (-525)) $ $)))) (-13 (-787) (-341) (-953))) (T -955))
+((-2966 (*1 *1 *2 *3) (-12 (-5 *2 (-987 (-955 *4) (-1087 (-955 *4)))) (-5 *3 (-798)) (-4 *4 (-13 (-787) (-341) (-953))) (-5 *1 (-955 *4)))) (-1319 (*1 *2 *1) (|partial| -12 (-5 *2 (-987 (-955 *3) (-1087 (-955 *3)))) (-5 *1 (-955 *3)) (-4 *3 (-13 (-787) (-341) (-953))))) (-1265 (*1 *2 *1 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-955 *3)) (-4 *3 (-13 (-787) (-341) (-953))))))
+(-13 (-944) (-389 |#1|) (-37 |#1|) (-10 -8 (-15 -2966 ($ (-987 $ (-1087 $)) (-798))) (-15 -1319 ((-3 (-987 $ (-1087 $)) "failed") $)) (-15 -1265 ((-385 (-525)) $ $))))
+((-2135 (((-2 (|:| -4216 |#2|) (|:| -1238 (-592 |#1|))) |#2| (-592 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-956 |#1| |#2|) (-10 -7 (-15 -2135 (|#2| |#2| |#1|)) (-15 -2135 ((-2 (|:| -4216 |#2|) (|:| -1238 (-592 |#1|))) |#2| (-592 |#1|)))) (-341) (-602 |#1|)) (T -956))
+((-2135 (*1 *2 *3 *4) (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| -4216 *3) (|:| -1238 (-592 *5)))) (-5 *1 (-956 *5 *3)) (-5 *4 (-592 *5)) (-4 *3 (-602 *5)))) (-2135 (*1 *2 *2 *3) (-12 (-4 *3 (-341)) (-5 *1 (-956 *3 *2)) (-4 *2 (-602 *3)))))
+(-10 -7 (-15 -2135 (|#2| |#2| |#1|)) (-15 -2135 ((-2 (|:| -4216 |#2|) (|:| -1238 (-592 |#1|))) |#2| (-592 |#1|))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2392 ((|#1| $ |#1|) 14)) (-1429 ((|#1| $ |#1|) 12)) (-4162 (($ |#1|) 10)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3410 ((|#1| $) 11)) (-1255 ((|#1| $) 13)) (-1270 (((-798) $) 21 (|has| |#1| (-1020)))) (-3994 (((-108) $ $) 9)))
+(((-957 |#1|) (-13 (-1127) (-10 -8 (-15 -4162 ($ |#1|)) (-15 -3410 (|#1| $)) (-15 -1429 (|#1| $ |#1|)) (-15 -1255 (|#1| $)) (-15 -2392 (|#1| $ |#1|)) (-15 -3994 ((-108) $ $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|))) (-1127)) (T -957))
+((-4162 (*1 *1 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1127)))) (-3410 (*1 *2 *1) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1127)))) (-1429 (*1 *2 *1 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1127)))) (-1255 (*1 *2 *1) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1127)))) (-2392 (*1 *2 *1 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1127)))) (-3994 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-957 *3)) (-4 *3 (-1127)))))
+(-13 (-1127) (-10 -8 (-15 -4162 ($ |#1|)) (-15 -3410 (|#1| $)) (-15 -1429 (|#1| $ |#1|)) (-15 -1255 (|#1| $)) (-15 -2392 (|#1| $ |#1|)) (-15 -3994 ((-108) $ $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|)))
+((-1260 (((-108) $ $) NIL)) (-4022 (((-592 (-2 (|:| -2849 $) (|:| -2409 (-592 |#4|)))) (-592 |#4|)) NIL)) (-3221 (((-592 $) (-592 |#4|)) 105) (((-592 $) (-592 |#4|) (-108)) 106) (((-592 $) (-592 |#4|) (-108) (-108)) 104) (((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108)) 107)) (-2383 (((-592 |#3|) $) NIL)) (-3163 (((-108) $) NIL)) (-3018 (((-108) $) NIL (|has| |#1| (-517)))) (-2220 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1952 ((|#4| |#4| $) NIL)) (-3706 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 $))) |#4| $) 99)) (-2855 (((-2 (|:| |under| $) (|:| -2793 $) (|:| |upper| $)) $ |#3|) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-3826 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255))) (((-3 |#4| "failed") $ |#3|) 54)) (-2305 (($) NIL T CONST)) (-3393 (((-108) $) 26 (|has| |#1| (-517)))) (-3438 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1396 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3291 (((-108) $) NIL (|has| |#1| (-517)))) (-4032 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1653 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1551 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-2591 (((-3 $ "failed") (-592 |#4|)) NIL)) (-3898 (($ (-592 |#4|)) NIL)) (-3121 (((-3 $ "failed") $) 39)) (-2457 ((|#4| |#4| $) 57)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020))))) (-1614 (($ |#4| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-3496 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-517)))) (-4047 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-3129 ((|#4| |#4| $) NIL)) (-3503 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4255))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4255))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2520 (((-2 (|:| -2849 (-592 |#4|)) (|:| -2409 (-592 |#4|))) $) NIL)) (-3859 (((-108) |#4| $) NIL)) (-2671 (((-108) |#4| $) NIL)) (-2259 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3873 (((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)) 119)) (-3702 (((-592 |#4|) $) 16 (|has| $ (-6 -4255)))) (-4008 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1776 ((|#3| $) 33)) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 |#4|) $) 17 (|has| $ (-6 -4255)))) (-2783 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020))))) (-2622 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#4| |#4|) $) 21)) (-2723 (((-592 |#3|) $) NIL)) (-2069 (((-108) |#3| $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL)) (-4038 (((-3 |#4| (-592 $)) |#4| |#4| $) NIL)) (-3488 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 $))) |#4| |#4| $) 97)) (-1636 (((-3 |#4| "failed") $) 37)) (-1502 (((-592 $) |#4| $) 80)) (-4030 (((-3 (-108) (-592 $)) |#4| $) NIL)) (-1521 (((-592 (-2 (|:| |val| (-108)) (|:| -1895 $))) |#4| $) 90) (((-108) |#4| $) 52)) (-3792 (((-592 $) |#4| $) 102) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 103) (((-592 $) |#4| (-592 $)) NIL)) (-3913 (((-592 $) (-592 |#4|) (-108) (-108) (-108)) 114)) (-2964 (($ |#4| $) 70) (($ (-592 |#4|) $) 71) (((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 67)) (-3231 (((-592 |#4|) $) NIL)) (-3134 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3149 ((|#4| |#4| $) NIL)) (-1363 (((-108) $ $) NIL)) (-1410 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2505 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3417 ((|#4| |#4| $) NIL)) (-2012 (((-1038) $) NIL)) (-3110 (((-3 |#4| "failed") $) 35)) (-3207 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3599 (((-3 $ "failed") $ |#4|) 48)) (-2182 (($ $ |#4|) NIL) (((-592 $) |#4| $) 82) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 77)) (-3006 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) 15)) (-2718 (($) 13)) (-1587 (((-713) $) NIL)) (-2040 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) 12)) (-2749 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-1279 (($ (-592 |#4|)) 20)) (-3422 (($ $ |#3|) 42)) (-1248 (($ $ |#3|) 44)) (-1963 (($ $) NIL)) (-1847 (($ $ |#3|) NIL)) (-1270 (((-798) $) 31) (((-592 |#4|) $) 40)) (-1970 (((-713) $) NIL (|has| |#3| (-346)))) (-2927 (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4213 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-3552 (((-592 $) |#4| $) 79) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) NIL)) (-3633 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-3726 (((-592 |#3|) $) NIL)) (-4079 (((-108) |#4| $) NIL)) (-1728 (((-108) |#3| $) 53)) (-3994 (((-108) $ $) NIL)) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-958 |#1| |#2| |#3| |#4|) (-13 (-996 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2964 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3221 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -3221 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -3913 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -3873 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108))))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|)) (T -958))
+((-2964 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-958 *5 *6 *7 *3))) (-5 *1 (-958 *5 *6 *7 *3)) (-4 *3 (-991 *5 *6 *7)))) (-3221 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8)))) (-3221 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8)))) (-3913 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8)))) (-3873 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-592 *8)) (|:| |towers| (-592 (-958 *5 *6 *7 *8))))) (-5 *1 (-958 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
+(-13 (-996 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2964 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3221 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -3221 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -3913 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -3873 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)))))
+((-3305 (((-592 (-632 |#1|)) (-592 (-632 |#1|))) 58) (((-632 |#1|) (-632 |#1|)) 57) (((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-592 (-632 |#1|))) 56) (((-632 |#1|) (-632 |#1|) (-632 |#1|)) 53)) (-1936 (((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856)) 52) (((-632 |#1|) (-632 |#1|) (-856)) 51)) (-3508 (((-592 (-632 (-525))) (-592 (-592 (-525)))) 68) (((-592 (-632 (-525))) (-592 (-840 (-525))) (-525)) 67) (((-632 (-525)) (-592 (-525))) 64) (((-632 (-525)) (-840 (-525)) (-525)) 63)) (-2417 (((-632 (-887 |#1|)) (-713)) 81)) (-3737 (((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856)) 37 (|has| |#1| (-6 (-4257 "*")))) (((-632 |#1|) (-632 |#1|) (-856)) 35 (|has| |#1| (-6 (-4257 "*"))))))
+(((-959 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4257 "*"))) (-15 -3737 ((-632 |#1|) (-632 |#1|) (-856))) |%noBranch|) (IF (|has| |#1| (-6 (-4257 "*"))) (-15 -3737 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856))) |%noBranch|) (-15 -2417 ((-632 (-887 |#1|)) (-713))) (-15 -1936 ((-632 |#1|) (-632 |#1|) (-856))) (-15 -1936 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856))) (-15 -3305 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3305 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3305 ((-632 |#1|) (-632 |#1|))) (-15 -3305 ((-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3508 ((-632 (-525)) (-840 (-525)) (-525))) (-15 -3508 ((-632 (-525)) (-592 (-525)))) (-15 -3508 ((-592 (-632 (-525))) (-592 (-840 (-525))) (-525))) (-15 -3508 ((-592 (-632 (-525))) (-592 (-592 (-525)))))) (-977)) (T -959))
+((-3508 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-525)))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-959 *4)) (-4 *4 (-977)))) (-3508 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-840 (-525)))) (-5 *4 (-525)) (-5 *2 (-592 (-632 *4))) (-5 *1 (-959 *5)) (-4 *5 (-977)))) (-3508 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-959 *4)) (-4 *4 (-977)))) (-3508 (*1 *2 *3 *4) (-12 (-5 *3 (-840 (-525))) (-5 *4 (-525)) (-5 *2 (-632 *4)) (-5 *1 (-959 *5)) (-4 *5 (-977)))) (-3305 (*1 *2 *2) (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-977)) (-5 *1 (-959 *3)))) (-3305 (*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-959 *3)))) (-3305 (*1 *2 *2 *2) (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-977)) (-5 *1 (-959 *3)))) (-3305 (*1 *2 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-959 *3)))) (-1936 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-856)) (-4 *4 (-977)) (-5 *1 (-959 *4)))) (-1936 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-856)) (-4 *4 (-977)) (-5 *1 (-959 *4)))) (-2417 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-632 (-887 *4))) (-5 *1 (-959 *4)) (-4 *4 (-977)))) (-3737 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-856)) (|has| *4 (-6 (-4257 "*"))) (-4 *4 (-977)) (-5 *1 (-959 *4)))) (-3737 (*1 *2 *2 *3) (-12 (-5 *2 (-632 *4)) (-5 *3 (-856)) (|has| *4 (-6 (-4257 "*"))) (-4 *4 (-977)) (-5 *1 (-959 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4257 "*"))) (-15 -3737 ((-632 |#1|) (-632 |#1|) (-856))) |%noBranch|) (IF (|has| |#1| (-6 (-4257 "*"))) (-15 -3737 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856))) |%noBranch|) (-15 -2417 ((-632 (-887 |#1|)) (-713))) (-15 -1936 ((-632 |#1|) (-632 |#1|) (-856))) (-15 -1936 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-856))) (-15 -3305 ((-632 |#1|) (-632 |#1|) (-632 |#1|))) (-15 -3305 ((-592 (-632 |#1|)) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3305 ((-632 |#1|) (-632 |#1|))) (-15 -3305 ((-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3508 ((-632 (-525)) (-840 (-525)) (-525))) (-15 -3508 ((-632 (-525)) (-592 (-525)))) (-15 -3508 ((-592 (-632 (-525))) (-592 (-840 (-525))) (-525))) (-15 -3508 ((-592 (-632 (-525))) (-592 (-592 (-525))))))
+((-3595 (((-632 |#1|) (-592 (-632 |#1|)) (-1173 |#1|)) 51 (|has| |#1| (-286)))) (-2223 (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1173 (-1173 |#1|))) 77 (|has| |#1| (-341))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1173 |#1|)) 80 (|has| |#1| (-341)))) (-1900 (((-1173 |#1|) (-592 (-1173 |#1|)) (-525)) 94 (-12 (|has| |#1| (-341)) (|has| |#1| (-346))))) (-3009 (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-856)) 86 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108)) 84 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|))) 83 (-12 (|has| |#1| (-341)) (|has| |#1| (-346)))) (((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108) (-525) (-525)) 82 (-12 (|has| |#1| (-341)) (|has| |#1| (-346))))) (-3415 (((-108) (-592 (-632 |#1|))) 72 (|has| |#1| (-341))) (((-108) (-592 (-632 |#1|)) (-525)) 74 (|has| |#1| (-341)))) (-1413 (((-1173 (-1173 |#1|)) (-592 (-632 |#1|)) (-1173 |#1|)) 49 (|has| |#1| (-286)))) (-2721 (((-632 |#1|) (-592 (-632 |#1|)) (-632 |#1|)) 34)) (-1421 (((-632 |#1|) (-1173 (-1173 |#1|))) 31)) (-3012 (((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-525)) 66 (|has| |#1| (-341))) (((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|))) 65 (|has| |#1| (-341))) (((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-108) (-525)) 70 (|has| |#1| (-341)))))
+(((-960 |#1|) (-10 -7 (-15 -1421 ((-632 |#1|) (-1173 (-1173 |#1|)))) (-15 -2721 ((-632 |#1|) (-592 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-286)) (PROGN (-15 -1413 ((-1173 (-1173 |#1|)) (-592 (-632 |#1|)) (-1173 |#1|))) (-15 -3595 ((-632 |#1|) (-592 (-632 |#1|)) (-1173 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3012 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-108) (-525))) (-15 -3012 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3012 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-525))) (-15 -3415 ((-108) (-592 (-632 |#1|)) (-525))) (-15 -3415 ((-108) (-592 (-632 |#1|)))) (-15 -2223 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1173 |#1|))) (-15 -2223 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1173 (-1173 |#1|))))) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#1| (-341)) (PROGN (-15 -3009 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108) (-525) (-525))) (-15 -3009 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)))) (-15 -3009 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108))) (-15 -3009 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-856))) (-15 -1900 ((-1173 |#1|) (-592 (-1173 |#1|)) (-525)))) |%noBranch|) |%noBranch|)) (-977)) (T -960))
+((-1900 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1173 *5))) (-5 *4 (-525)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-977)) (-5 *2 (-1173 *5)) (-5 *1 (-960 *5)))) (-3009 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-977)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5)) (-5 *3 (-592 (-632 *5))))) (-3009 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-977)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5)) (-5 *3 (-592 (-632 *5))))) (-3009 (*1 *2 *3) (-12 (-4 *4 (-341)) (-4 *4 (-346)) (-4 *4 (-977)) (-5 *2 (-592 (-592 (-632 *4)))) (-5 *1 (-960 *4)) (-5 *3 (-592 (-632 *4))))) (-3009 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-108)) (-5 *5 (-525)) (-4 *6 (-341)) (-4 *6 (-346)) (-4 *6 (-977)) (-5 *2 (-592 (-592 (-632 *6)))) (-5 *1 (-960 *6)) (-5 *3 (-592 (-632 *6))))) (-2223 (*1 *2 *3 *4) (-12 (-5 *4 (-1173 (-1173 *5))) (-4 *5 (-341)) (-4 *5 (-977)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5)) (-5 *3 (-592 (-632 *5))))) (-2223 (*1 *2 *3 *4) (-12 (-5 *4 (-1173 *5)) (-4 *5 (-341)) (-4 *5 (-977)) (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5)) (-5 *3 (-592 (-632 *5))))) (-3415 (*1 *2 *3) (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-4 *4 (-977)) (-5 *2 (-108)) (-5 *1 (-960 *4)))) (-3415 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-4 *5 (-341)) (-4 *5 (-977)) (-5 *2 (-108)) (-5 *1 (-960 *5)))) (-3012 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-4 *5 (-341)) (-4 *5 (-977)) (-5 *2 (-632 *5)) (-5 *1 (-960 *5)))) (-3012 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-4 *4 (-977)) (-5 *2 (-632 *4)) (-5 *1 (-960 *4)))) (-3012 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-592 (-632 *6))) (-5 *4 (-108)) (-5 *5 (-525)) (-4 *6 (-341)) (-4 *6 (-977)) (-5 *2 (-632 *6)) (-5 *1 (-960 *6)))) (-3595 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-1173 *5)) (-4 *5 (-286)) (-4 *5 (-977)) (-5 *2 (-632 *5)) (-5 *1 (-960 *5)))) (-1413 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-632 *5))) (-4 *5 (-286)) (-4 *5 (-977)) (-5 *2 (-1173 (-1173 *5))) (-5 *1 (-960 *5)) (-5 *4 (-1173 *5)))) (-2721 (*1 *2 *3 *2) (-12 (-5 *2 (-632 *4)) (-5 *3 (-592 (-632 *4))) (-4 *4 (-977)) (-5 *1 (-960 *4)))) (-1421 (*1 *2 *3) (-12 (-5 *3 (-1173 (-1173 *4))) (-4 *4 (-977)) (-5 *2 (-632 *4)) (-5 *1 (-960 *4)))))
+(-10 -7 (-15 -1421 ((-632 |#1|) (-1173 (-1173 |#1|)))) (-15 -2721 ((-632 |#1|) (-592 (-632 |#1|)) (-632 |#1|))) (IF (|has| |#1| (-286)) (PROGN (-15 -1413 ((-1173 (-1173 |#1|)) (-592 (-632 |#1|)) (-1173 |#1|))) (-15 -3595 ((-632 |#1|) (-592 (-632 |#1|)) (-1173 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -3012 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-108) (-525))) (-15 -3012 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3012 ((-632 |#1|) (-592 (-632 |#1|)) (-592 (-632 |#1|)) (-525))) (-15 -3415 ((-108) (-592 (-632 |#1|)) (-525))) (-15 -3415 ((-108) (-592 (-632 |#1|)))) (-15 -2223 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1173 |#1|))) (-15 -2223 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-1173 (-1173 |#1|))))) |%noBranch|) (IF (|has| |#1| (-346)) (IF (|has| |#1| (-341)) (PROGN (-15 -3009 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108) (-525) (-525))) (-15 -3009 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)))) (-15 -3009 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-108))) (-15 -3009 ((-592 (-592 (-632 |#1|))) (-592 (-632 |#1|)) (-856))) (-15 -1900 ((-1173 |#1|) (-592 (-1173 |#1|)) (-525)))) |%noBranch|) |%noBranch|))
+((-2763 ((|#1| (-856) |#1|) 9)))
+(((-961 |#1|) (-10 -7 (-15 -2763 (|#1| (-856) |#1|))) (-13 (-1020) (-10 -8 (-15 -4080 ($ $ $))))) (T -961))
+((-2763 (*1 *2 *3 *2) (-12 (-5 *3 (-856)) (-5 *1 (-961 *2)) (-4 *2 (-13 (-1020) (-10 -8 (-15 -4080 ($ $ $))))))))
+(-10 -7 (-15 -2763 (|#1| (-856) |#1|)))
+((-1558 (((-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525))))))) (-632 (-385 (-887 (-525))))) 59)) (-2437 (((-592 (-632 (-294 (-525)))) (-294 (-525)) (-632 (-385 (-887 (-525))))) 48)) (-3420 (((-592 (-294 (-525))) (-632 (-385 (-887 (-525))))) 41)) (-3151 (((-592 (-632 (-294 (-525)))) (-632 (-385 (-887 (-525))))) 69)) (-3584 (((-632 (-294 (-525))) (-632 (-294 (-525)))) 34)) (-2607 (((-592 (-632 (-294 (-525)))) (-592 (-632 (-294 (-525))))) 62)) (-2796 (((-3 (-632 (-294 (-525))) "failed") (-632 (-385 (-887 (-525))))) 66)))
+(((-962) (-10 -7 (-15 -1558 ((-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525))))))) (-632 (-385 (-887 (-525)))))) (-15 -2437 ((-592 (-632 (-294 (-525)))) (-294 (-525)) (-632 (-385 (-887 (-525)))))) (-15 -3420 ((-592 (-294 (-525))) (-632 (-385 (-887 (-525)))))) (-15 -2796 ((-3 (-632 (-294 (-525))) "failed") (-632 (-385 (-887 (-525)))))) (-15 -3584 ((-632 (-294 (-525))) (-632 (-294 (-525))))) (-15 -2607 ((-592 (-632 (-294 (-525)))) (-592 (-632 (-294 (-525)))))) (-15 -3151 ((-592 (-632 (-294 (-525)))) (-632 (-385 (-887 (-525)))))))) (T -962))
+((-3151 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-887 (-525))))) (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962)))) (-2607 (*1 *2 *2) (-12 (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962)))) (-3584 (*1 *2 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-962)))) (-2796 (*1 *2 *3) (|partial| -12 (-5 *3 (-632 (-385 (-887 (-525))))) (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-962)))) (-3420 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-887 (-525))))) (-5 *2 (-592 (-294 (-525)))) (-5 *1 (-962)))) (-2437 (*1 *2 *3 *4) (-12 (-5 *4 (-632 (-385 (-887 (-525))))) (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962)) (-5 *3 (-294 (-525))))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-632 (-385 (-887 (-525))))) (-5 *2 (-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525)))))))) (-5 *1 (-962)))))
+(-10 -7 (-15 -1558 ((-592 (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525)) (|:| |radvect| (-592 (-632 (-294 (-525))))))) (-632 (-385 (-887 (-525)))))) (-15 -2437 ((-592 (-632 (-294 (-525)))) (-294 (-525)) (-632 (-385 (-887 (-525)))))) (-15 -3420 ((-592 (-294 (-525))) (-632 (-385 (-887 (-525)))))) (-15 -2796 ((-3 (-632 (-294 (-525))) "failed") (-632 (-385 (-887 (-525)))))) (-15 -3584 ((-632 (-294 (-525))) (-632 (-294 (-525))))) (-15 -2607 ((-592 (-632 (-294 (-525)))) (-592 (-632 (-294 (-525)))))) (-15 -3151 ((-592 (-632 (-294 (-525)))) (-632 (-385 (-887 (-525)))))))
+((-1356 ((|#1| |#1| (-856)) 9)))
+(((-963 |#1|) (-10 -7 (-15 -1356 (|#1| |#1| (-856)))) (-13 (-1020) (-10 -8 (-15 * ($ $ $))))) (T -963))
+((-1356 (*1 *2 *2 *3) (-12 (-5 *3 (-856)) (-5 *1 (-963 *2)) (-4 *2 (-13 (-1020) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -1356 (|#1| |#1| (-856))))
+((-1270 ((|#1| (-290)) 11) (((-1178) |#1|) 9)))
+(((-964 |#1|) (-10 -7 (-15 -1270 ((-1178) |#1|)) (-15 -1270 (|#1| (-290)))) (-1127)) (T -964))
+((-1270 (*1 *2 *3) (-12 (-5 *3 (-290)) (-5 *1 (-964 *2)) (-4 *2 (-1127)))) (-1270 (*1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *1 (-964 *3)) (-4 *3 (-1127)))))
+(-10 -7 (-15 -1270 ((-1178) |#1|)) (-15 -1270 (|#1| (-290))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-3503 (($ |#4|) 25)) (-3762 (((-3 $ "failed") $) NIL)) (-1985 (((-108) $) NIL)) (-3492 ((|#4| $) 27)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 46) (($ (-525)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2104 (((-713)) 43)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 21 T CONST)) (-3363 (($) 23 T CONST)) (-3994 (((-108) $ $) 40)) (-4090 (($ $) 31) (($ $ $) NIL)) (-4080 (($ $ $) 29)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-965 |#1| |#2| |#3| |#4| |#5|) (-13 (-160) (-37 |#1|) (-10 -8 (-15 -3503 ($ |#4|)) (-15 -1270 ($ |#4|)) (-15 -3492 (|#4| $)))) (-341) (-735) (-789) (-884 |#1| |#2| |#3|) (-592 |#4|)) (T -965))
+((-3503 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-965 *3 *4 *5 *2 *6)) (-4 *2 (-884 *3 *4 *5)) (-14 *6 (-592 *2)))) (-1270 (*1 *1 *2) (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-965 *3 *4 *5 *2 *6)) (-4 *2 (-884 *3 *4 *5)) (-14 *6 (-592 *2)))) (-3492 (*1 *2 *1) (-12 (-4 *2 (-884 *3 *4 *5)) (-5 *1 (-965 *3 *4 *5 *2 *6)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-14 *6 (-592 *2)))))
+(-13 (-160) (-37 |#1|) (-10 -8 (-15 -3503 ($ |#4|)) (-15 -1270 ($ |#4|)) (-15 -3492 (|#4| $))))
+((-1260 (((-108) $ $) NIL (-3279 (|has| (-51) (-1020)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020))))) (-3476 (($) NIL) (($ (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) NIL)) (-2782 (((-1178) $ (-1091) (-1091)) NIL (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) NIL)) (-3441 (((-108) (-108)) 39)) (-1519 (((-108) (-108)) 38)) (-1429 (((-51) $ (-1091) (-51)) NIL)) (-1608 (($ (-1 (-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255)))) (-2772 (((-3 (-51) "failed") (-1091) $) NIL)) (-2305 (($) NIL T CONST)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020))))) (-2592 (($ (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255))) (((-3 (-51) "failed") (-1091) $) NIL)) (-1614 (($ (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020)))) (($ (-1 (-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255)))) (-3503 (((-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $ (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020)))) (((-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $ (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255)))) (-2632 (((-51) $ (-1091) (-51)) NIL (|has| $ (-6 -4256)))) (-2570 (((-51) $ (-1091)) NIL)) (-3702 (((-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255))) (((-592 (-51)) $) NIL (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-1091) $) NIL (|has| (-1091) (-789)))) (-1749 (((-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255))) (((-592 (-51)) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-51) (-1020))))) (-3478 (((-1091) $) NIL (|has| (-1091) (-789)))) (-2622 (($ (-1 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4256))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (-3279 (|has| (-51) (-1020)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020))))) (-4076 (((-592 (-1091)) $) 34)) (-1522 (((-108) (-1091) $) NIL)) (-3955 (((-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) $) NIL)) (-3985 (($ (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) $) NIL)) (-4142 (((-592 (-1091)) $) NIL)) (-3845 (((-108) (-1091) $) NIL)) (-2012 (((-1038) $) NIL (-3279 (|has| (-51) (-1020)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020))))) (-3110 (((-51) $) NIL (|has| (-1091) (-789)))) (-3207 (((-3 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) "failed") (-1 (-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL)) (-2042 (($ $ (-51)) NIL (|has| $ (-6 -4256)))) (-1881 (((-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) $) NIL)) (-3006 (((-108) (-1 (-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))))) NIL (-12 (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020)))) (($ $ (-273 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) NIL (-12 (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020)))) (($ $ (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) NIL (-12 (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020)))) (($ $ (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) NIL (-12 (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020)))) (($ $ (-592 (-51)) (-592 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-592 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-51) (-1020))))) (-1777 (((-592 (-51)) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 (((-51) $ (-1091)) 35) (((-51) $ (-1091) (-51)) NIL)) (-3981 (($) NIL) (($ (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) NIL)) (-2040 (((-713) (-1 (-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255))) (((-713) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020)))) (((-713) (-51) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-51) (-1020)))) (((-713) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-567 (-501))))) (-1279 (($ (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) NIL)) (-1270 (((-798) $) 37 (-3279 (|has| (-51) (-566 (-798))) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-566 (-798)))))) (-1665 (($ (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) NIL)) (-3633 (((-108) (-1 (-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (-3279 (|has| (-51) (-1020)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020))))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-966) (-13 (-1104 (-1091) (-51)) (-10 -7 (-15 -3441 ((-108) (-108))) (-15 -1519 ((-108) (-108))) (-6 -4255)))) (T -966))
+((-3441 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-966)))) (-1519 (*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-966)))))
+(-13 (-1104 (-1091) (-51)) (-10 -7 (-15 -3441 ((-108) (-108))) (-15 -1519 ((-108) (-108))) (-6 -4255)))
+((-3898 ((|#2| $) 10)))
+(((-967 |#1| |#2|) (-10 -8 (-15 -3898 (|#2| |#1|))) (-968 |#2|) (-1127)) (T -967))
+NIL
+(-10 -8 (-15 -3898 (|#2| |#1|)))
+((-2591 (((-3 |#1| "failed") $) 7)) (-3898 ((|#1| $) 8)) (-1270 (($ |#1|) 6)))
+(((-968 |#1|) (-131) (-1127)) (T -968))
+((-3898 (*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1127)))) (-2591 (*1 *2 *1) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1127)))) (-1270 (*1 *1 *2) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1127)))))
+(-13 (-10 -8 (-15 -1270 ($ |t#1|)) (-15 -2591 ((-3 |t#1| "failed") $)) (-15 -3898 (|t#1| $))))
+((-1706 (((-592 (-592 (-273 (-385 (-887 |#2|))))) (-592 (-887 |#2|)) (-592 (-1091))) 38)))
+(((-969 |#1| |#2|) (-10 -7 (-15 -1706 ((-592 (-592 (-273 (-385 (-887 |#2|))))) (-592 (-887 |#2|)) (-592 (-1091))))) (-517) (-13 (-517) (-968 |#1|))) (T -969))
+((-1706 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1091))) (-4 *6 (-13 (-517) (-968 *5))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *6)))))) (-5 *1 (-969 *5 *6)))))
+(-10 -7 (-15 -1706 ((-592 (-592 (-273 (-385 (-887 |#2|))))) (-592 (-887 |#2|)) (-592 (-1091)))))
+((-3298 (((-357)) 15)) (-2128 (((-1 (-357)) (-357) (-357)) 20)) (-3278 (((-1 (-357)) (-713)) 43)) (-3206 (((-357)) 34)) (-2003 (((-1 (-357)) (-357) (-357)) 35)) (-2867 (((-357)) 26)) (-1700 (((-1 (-357)) (-357)) 27)) (-3399 (((-357) (-713)) 38)) (-3059 (((-1 (-357)) (-713)) 39)) (-3834 (((-1 (-357)) (-713) (-713)) 42)) (-1791 (((-1 (-357)) (-713) (-713)) 40)))
+(((-970) (-10 -7 (-15 -3298 ((-357))) (-15 -3206 ((-357))) (-15 -2867 ((-357))) (-15 -3399 ((-357) (-713))) (-15 -2128 ((-1 (-357)) (-357) (-357))) (-15 -2003 ((-1 (-357)) (-357) (-357))) (-15 -1700 ((-1 (-357)) (-357))) (-15 -3059 ((-1 (-357)) (-713))) (-15 -1791 ((-1 (-357)) (-713) (-713))) (-15 -3834 ((-1 (-357)) (-713) (-713))) (-15 -3278 ((-1 (-357)) (-713))))) (T -970))
+((-3278 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))) (-3834 (*1 *2 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))) (-1791 (*1 *2 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))) (-1700 (*1 *2 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357)))) (-2003 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357)))) (-2128 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-357)) (-5 *1 (-970)))) (-2867 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))) (-3206 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))) (-3298 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))))
+(-10 -7 (-15 -3298 ((-357))) (-15 -3206 ((-357))) (-15 -2867 ((-357))) (-15 -3399 ((-357) (-713))) (-15 -2128 ((-1 (-357)) (-357) (-357))) (-15 -2003 ((-1 (-357)) (-357) (-357))) (-15 -1700 ((-1 (-357)) (-357))) (-15 -3059 ((-1 (-357)) (-713))) (-15 -1791 ((-1 (-357)) (-713) (-713))) (-15 -3834 ((-1 (-357)) (-713) (-713))) (-15 -3278 ((-1 (-357)) (-713))))
+((-2195 (((-396 |#1|) |#1|) 33)))
+(((-971 |#1|) (-10 -7 (-15 -2195 ((-396 |#1|) |#1|))) (-1149 (-385 (-887 (-525))))) (T -971))
+((-2195 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-971 *3)) (-4 *3 (-1149 (-385 (-887 (-525))))))))
+(-10 -7 (-15 -2195 ((-396 |#1|) |#1|)))
+((-1427 (((-385 (-396 (-887 |#1|))) (-385 (-887 |#1|))) 14)))
+(((-972 |#1|) (-10 -7 (-15 -1427 ((-385 (-396 (-887 |#1|))) (-385 (-887 |#1|))))) (-286)) (T -972))
+((-1427 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-286)) (-5 *2 (-385 (-396 (-887 *4)))) (-5 *1 (-972 *4)))))
+(-10 -7 (-15 -1427 ((-385 (-396 (-887 |#1|))) (-385 (-887 |#1|)))))
+((-2383 (((-592 (-1091)) (-385 (-887 |#1|))) 17)) (-2146 (((-385 (-1087 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1091)) 24)) (-2368 (((-385 (-887 |#1|)) (-385 (-1087 (-385 (-887 |#1|)))) (-1091)) 26)) (-3567 (((-3 (-1091) "failed") (-385 (-887 |#1|))) 20)) (-2602 (((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-273 (-385 (-887 |#1|))))) 32) (((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|)))) 33) (((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-1091)) (-592 (-385 (-887 |#1|)))) 28) (((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-1091) (-385 (-887 |#1|))) 29)) (-1270 (((-385 (-887 |#1|)) |#1|) 11)))
+(((-973 |#1|) (-10 -7 (-15 -2383 ((-592 (-1091)) (-385 (-887 |#1|)))) (-15 -3567 ((-3 (-1091) "failed") (-385 (-887 |#1|)))) (-15 -2146 ((-385 (-1087 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1091))) (-15 -2368 ((-385 (-887 |#1|)) (-385 (-1087 (-385 (-887 |#1|)))) (-1091))) (-15 -2602 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-1091) (-385 (-887 |#1|)))) (-15 -2602 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-1091)) (-592 (-385 (-887 |#1|))))) (-15 -2602 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -2602 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -1270 ((-385 (-887 |#1|)) |#1|))) (-517)) (T -973))
+((-1270 (*1 *2 *3) (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-973 *3)) (-4 *3 (-517)))) (-2602 (*1 *2 *2 *3) (-12 (-5 *2 (-385 (-887 *4))) (-5 *3 (-592 (-273 (-385 (-887 *4))))) (-4 *4 (-517)) (-5 *1 (-973 *4)))) (-2602 (*1 *2 *2 *3) (-12 (-5 *2 (-385 (-887 *4))) (-5 *3 (-273 (-385 (-887 *4)))) (-4 *4 (-517)) (-5 *1 (-973 *4)))) (-2602 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-385 (-887 *5))) (-5 *3 (-592 (-1091))) (-5 *4 (-592 (-385 (-887 *5)))) (-4 *5 (-517)) (-5 *1 (-973 *5)))) (-2602 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-385 (-887 *4))) (-5 *3 (-1091)) (-4 *4 (-517)) (-5 *1 (-973 *4)))) (-2368 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-1087 (-385 (-887 *5))))) (-5 *4 (-1091)) (-4 *5 (-517)) (-5 *2 (-385 (-887 *5))) (-5 *1 (-973 *5)))) (-2146 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-517)) (-5 *2 (-385 (-1087 (-385 (-887 *5))))) (-5 *1 (-973 *5)) (-5 *3 (-385 (-887 *5))))) (-3567 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-5 *2 (-1091)) (-5 *1 (-973 *4)))) (-2383 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-1091))) (-5 *1 (-973 *4)))))
+(-10 -7 (-15 -2383 ((-592 (-1091)) (-385 (-887 |#1|)))) (-15 -3567 ((-3 (-1091) "failed") (-385 (-887 |#1|)))) (-15 -2146 ((-385 (-1087 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1091))) (-15 -2368 ((-385 (-887 |#1|)) (-385 (-1087 (-385 (-887 |#1|)))) (-1091))) (-15 -2602 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-1091) (-385 (-887 |#1|)))) (-15 -2602 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-1091)) (-592 (-385 (-887 |#1|))))) (-15 -2602 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-273 (-385 (-887 |#1|))))) (-15 -2602 ((-385 (-887 |#1|)) (-385 (-887 |#1|)) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -1270 ((-385 (-887 |#1|)) |#1|)))
+((-1260 (((-108) $ $) NIL)) (-4022 (((-592 (-2 (|:| -2849 $) (|:| -2409 (-592 (-722 |#1| (-800 |#2|)))))) (-592 (-722 |#1| (-800 |#2|)))) NIL)) (-3221 (((-592 $) (-592 (-722 |#1| (-800 |#2|)))) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-108)) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-108) (-108)) NIL)) (-2383 (((-592 (-800 |#2|)) $) NIL)) (-3163 (((-108) $) NIL)) (-3018 (((-108) $) NIL (|has| |#1| (-517)))) (-2220 (((-108) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) $) NIL)) (-1952 (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-3706 (((-592 (-2 (|:| |val| (-722 |#1| (-800 |#2|))) (|:| -1895 $))) (-722 |#1| (-800 |#2|)) $) NIL)) (-2855 (((-2 (|:| |under| $) (|:| -2793 $) (|:| |upper| $)) $ (-800 |#2|)) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-3826 (($ (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-3 (-722 |#1| (-800 |#2|)) "failed") $ (-800 |#2|)) NIL)) (-2305 (($) NIL T CONST)) (-3393 (((-108) $) NIL (|has| |#1| (-517)))) (-3438 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1396 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3291 (((-108) $) NIL (|has| |#1| (-517)))) (-4032 (((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|))) $ (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) (-1 (-108) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)))) NIL)) (-1653 (((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|))) $) NIL (|has| |#1| (-517)))) (-1551 (((-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|))) $) NIL (|has| |#1| (-517)))) (-2591 (((-3 $ "failed") (-592 (-722 |#1| (-800 |#2|)))) NIL)) (-3898 (($ (-592 (-722 |#1| (-800 |#2|)))) NIL)) (-3121 (((-3 $ "failed") $) NIL)) (-2457 (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-722 |#1| (-800 |#2|)) (-1020))))) (-1614 (($ (-722 |#1| (-800 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (($ (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-3496 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-722 |#1| (-800 |#2|))) (|:| |den| |#1|)) (-722 |#1| (-800 |#2|)) $) NIL (|has| |#1| (-517)))) (-4047 (((-108) (-722 |#1| (-800 |#2|)) $ (-1 (-108) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)))) NIL)) (-3129 (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-3503 (((-722 |#1| (-800 |#2|)) (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) $ (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) NIL (-12 (|has| $ (-6 -4255)) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (((-722 |#1| (-800 |#2|)) (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) $ (-722 |#1| (-800 |#2|))) NIL (|has| $ (-6 -4255))) (((-722 |#1| (-800 |#2|)) (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $ (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) (-1 (-108) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)))) NIL)) (-2520 (((-2 (|:| -2849 (-592 (-722 |#1| (-800 |#2|)))) (|:| -2409 (-592 (-722 |#1| (-800 |#2|))))) $) NIL)) (-3859 (((-108) (-722 |#1| (-800 |#2|)) $) NIL)) (-2671 (((-108) (-722 |#1| (-800 |#2|)) $) NIL)) (-2259 (((-108) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) $) NIL)) (-3702 (((-592 (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-4008 (((-108) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) $) NIL)) (-1776 (((-800 |#2|) $) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-722 |#1| (-800 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-722 |#1| (-800 |#2|)) (-1020))))) (-2622 (($ (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) $) NIL)) (-2723 (((-592 (-800 |#2|)) $) NIL)) (-2069 (((-108) (-800 |#2|) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL)) (-4038 (((-3 (-722 |#1| (-800 |#2|)) (-592 $)) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-3488 (((-592 (-2 (|:| |val| (-722 |#1| (-800 |#2|))) (|:| -1895 $))) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-1636 (((-3 (-722 |#1| (-800 |#2|)) "failed") $) NIL)) (-1502 (((-592 $) (-722 |#1| (-800 |#2|)) $) NIL)) (-4030 (((-3 (-108) (-592 $)) (-722 |#1| (-800 |#2|)) $) NIL)) (-1521 (((-592 (-2 (|:| |val| (-108)) (|:| -1895 $))) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) (-722 |#1| (-800 |#2|)) $) NIL)) (-3792 (((-592 $) (-722 |#1| (-800 |#2|)) $) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) $) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-592 $)) NIL) (((-592 $) (-722 |#1| (-800 |#2|)) (-592 $)) NIL)) (-2964 (($ (-722 |#1| (-800 |#2|)) $) NIL) (($ (-592 (-722 |#1| (-800 |#2|))) $) NIL)) (-3231 (((-592 (-722 |#1| (-800 |#2|))) $) NIL)) (-3134 (((-108) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) $) NIL)) (-3149 (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-1363 (((-108) $ $) NIL)) (-1410 (((-2 (|:| |num| (-722 |#1| (-800 |#2|))) (|:| |den| |#1|)) (-722 |#1| (-800 |#2|)) $) NIL (|has| |#1| (-517)))) (-2505 (((-108) (-722 |#1| (-800 |#2|)) $) NIL) (((-108) $) NIL)) (-3417 (((-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)) $) NIL)) (-2012 (((-1038) $) NIL)) (-3110 (((-3 (-722 |#1| (-800 |#2|)) "failed") $) NIL)) (-3207 (((-3 (-722 |#1| (-800 |#2|)) "failed") (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL)) (-3599 (((-3 $ "failed") $ (-722 |#1| (-800 |#2|))) NIL)) (-2182 (($ $ (-722 |#1| (-800 |#2|))) NIL) (((-592 $) (-722 |#1| (-800 |#2|)) $) NIL) (((-592 $) (-722 |#1| (-800 |#2|)) (-592 $)) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) $) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-592 $)) NIL)) (-3006 (((-108) (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-722 |#1| (-800 |#2|))) (-592 (-722 |#1| (-800 |#2|)))) NIL (-12 (|has| (-722 |#1| (-800 |#2|)) (-288 (-722 |#1| (-800 |#2|)))) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (($ $ (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|))) NIL (-12 (|has| (-722 |#1| (-800 |#2|)) (-288 (-722 |#1| (-800 |#2|)))) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (($ $ (-273 (-722 |#1| (-800 |#2|)))) NIL (-12 (|has| (-722 |#1| (-800 |#2|)) (-288 (-722 |#1| (-800 |#2|)))) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (($ $ (-592 (-273 (-722 |#1| (-800 |#2|))))) NIL (-12 (|has| (-722 |#1| (-800 |#2|)) (-288 (-722 |#1| (-800 |#2|)))) (|has| (-722 |#1| (-800 |#2|)) (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-1587 (((-713) $) NIL)) (-2040 (((-713) (-722 |#1| (-800 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-722 |#1| (-800 |#2|)) (-1020)))) (((-713) (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| (-722 |#1| (-800 |#2|)) (-567 (-501))))) (-1279 (($ (-592 (-722 |#1| (-800 |#2|)))) NIL)) (-3422 (($ $ (-800 |#2|)) NIL)) (-1248 (($ $ (-800 |#2|)) NIL)) (-1963 (($ $) NIL)) (-1847 (($ $ (-800 |#2|)) NIL)) (-1270 (((-798) $) NIL) (((-592 (-722 |#1| (-800 |#2|))) $) NIL)) (-1970 (((-713) $) NIL (|has| (-800 |#2|) (-346)))) (-2927 (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 (-722 |#1| (-800 |#2|))))) "failed") (-592 (-722 |#1| (-800 |#2|))) (-1 (-108) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 (-722 |#1| (-800 |#2|))))) "failed") (-592 (-722 |#1| (-800 |#2|))) (-1 (-108) (-722 |#1| (-800 |#2|))) (-1 (-108) (-722 |#1| (-800 |#2|)) (-722 |#1| (-800 |#2|)))) NIL)) (-4213 (((-108) $ (-1 (-108) (-722 |#1| (-800 |#2|)) (-592 (-722 |#1| (-800 |#2|))))) NIL)) (-3552 (((-592 $) (-722 |#1| (-800 |#2|)) $) NIL) (((-592 $) (-722 |#1| (-800 |#2|)) (-592 $)) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) $) NIL) (((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-592 $)) NIL)) (-3633 (((-108) (-1 (-108) (-722 |#1| (-800 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-3726 (((-592 (-800 |#2|)) $) NIL)) (-4079 (((-108) (-722 |#1| (-800 |#2|)) $) NIL)) (-1728 (((-108) (-800 |#2|) $) NIL)) (-3994 (((-108) $ $) NIL)) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-974 |#1| |#2|) (-13 (-996 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|))) (-10 -8 (-15 -3221 ((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-108) (-108))))) (-429) (-592 (-1091))) (T -974))
+((-3221 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429)) (-14 *6 (-592 (-1091))) (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-974 *5 *6)))))
+(-13 (-996 |#1| (-497 (-800 |#2|)) (-800 |#2|) (-722 |#1| (-800 |#2|))) (-10 -8 (-15 -3221 ((-592 $) (-592 (-722 |#1| (-800 |#2|))) (-108) (-108)))))
+((-2128 (((-1 (-525)) (-1015 (-525))) 33)) (-2981 (((-525) (-525) (-525) (-525) (-525)) 30)) (-1867 (((-1 (-525)) |RationalNumber|) NIL)) (-2031 (((-1 (-525)) |RationalNumber|) NIL)) (-2938 (((-1 (-525)) (-525) |RationalNumber|) NIL)))
+(((-975) (-10 -7 (-15 -2128 ((-1 (-525)) (-1015 (-525)))) (-15 -2938 ((-1 (-525)) (-525) |RationalNumber|)) (-15 -1867 ((-1 (-525)) |RationalNumber|)) (-15 -2031 ((-1 (-525)) |RationalNumber|)) (-15 -2981 ((-525) (-525) (-525) (-525) (-525))))) (T -975))
+((-2981 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-975)))) (-2031 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975)))) (-1867 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975)))) (-2938 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975)) (-5 *3 (-525)))) (-2128 (*1 *2 *3) (-12 (-5 *3 (-1015 (-525))) (-5 *2 (-1 (-525))) (-5 *1 (-975)))))
+(-10 -7 (-15 -2128 ((-1 (-525)) (-1015 (-525)))) (-15 -2938 ((-1 (-525)) (-525) |RationalNumber|)) (-15 -1867 ((-1 (-525)) |RationalNumber|)) (-15 -2031 ((-1 (-525)) |RationalNumber|)) (-15 -2981 ((-525) (-525) (-525) (-525) (-525))))
+((-1270 (((-798) $) NIL) (($ (-525)) 10)))
+(((-976 |#1|) (-10 -8 (-15 -1270 (|#1| (-525))) (-15 -1270 ((-798) |#1|))) (-977)) (T -976))
+NIL
+(-10 -8 (-15 -1270 (|#1| (-525))) (-15 -1270 ((-798) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11) (($ (-525)) 28)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+(((-977) (-131)) (T -977))
+((-2104 (*1 *2) (-12 (-4 *1 (-977)) (-5 *2 (-713)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-977)))))
+(-13 (-984) (-669) (-594 $) (-10 -8 (-15 -2104 ((-713))) (-15 -1270 ($ (-525))) (-6 -4252)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 $) . T) ((-669) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-2993 (((-385 (-887 |#2|)) (-592 |#2|) (-592 |#2|) (-713) (-713)) 45)))
+(((-978 |#1| |#2|) (-10 -7 (-15 -2993 ((-385 (-887 |#2|)) (-592 |#2|) (-592 |#2|) (-713) (-713)))) (-1091) (-341)) (T -978))
+((-2993 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-713)) (-4 *6 (-341)) (-5 *2 (-385 (-887 *6))) (-5 *1 (-978 *5 *6)) (-14 *5 (-1091)))))
+(-10 -7 (-15 -2993 ((-385 (-887 |#2|)) (-592 |#2|) (-592 |#2|) (-713) (-713))))
+((-2079 (((-108) $) 29)) (-2077 (((-108) $) 16)) (-1857 (((-713) $) 13)) (-1869 (((-713) $) 14)) (-2559 (((-108) $) 26)) (-1366 (((-108) $) 31)))
+(((-979 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1869 ((-713) |#1|)) (-15 -1857 ((-713) |#1|)) (-15 -1366 ((-108) |#1|)) (-15 -2079 ((-108) |#1|)) (-15 -2559 ((-108) |#1|)) (-15 -2077 ((-108) |#1|))) (-980 |#2| |#3| |#4| |#5| |#6|) (-713) (-713) (-977) (-218 |#3| |#4|) (-218 |#2| |#4|)) (T -979))
+NIL
+(-10 -8 (-15 -1869 ((-713) |#1|)) (-15 -1857 ((-713) |#1|)) (-15 -1366 ((-108) |#1|)) (-15 -2079 ((-108) |#1|)) (-15 -2559 ((-108) |#1|)) (-15 -2077 ((-108) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2079 (((-108) $) 51)) (-1342 (((-3 $ "failed") $ $) 19)) (-2077 (((-108) $) 53)) (-3330 (((-108) $ (-713)) 61)) (-2305 (($) 17 T CONST)) (-1333 (($ $) 34 (|has| |#3| (-286)))) (-1616 ((|#4| $ (-525)) 39)) (-3318 (((-713) $) 33 (|has| |#3| (-517)))) (-2570 ((|#3| $ (-525) (-525)) 41)) (-3702 (((-592 |#3|) $) 68 (|has| $ (-6 -4255)))) (-1841 (((-713) $) 32 (|has| |#3| (-517)))) (-1615 (((-592 |#5|) $) 31 (|has| |#3| (-517)))) (-1857 (((-713) $) 45)) (-1869 (((-713) $) 44)) (-2482 (((-108) $ (-713)) 60)) (-1964 (((-525) $) 49)) (-3779 (((-525) $) 47)) (-1749 (((-592 |#3|) $) 69 (|has| $ (-6 -4255)))) (-2783 (((-108) |#3| $) 71 (-12 (|has| |#3| (-1020)) (|has| $ (-6 -4255))))) (-1987 (((-525) $) 48)) (-3948 (((-525) $) 46)) (-1660 (($ (-592 (-592 |#3|))) 54)) (-2622 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2973 (((-592 (-592 |#3|)) $) 43)) (-2957 (((-108) $ (-713)) 59)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1680 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-517)))) (-3006 (((-108) (-1 (-108) |#3|) $) 66 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 |#3|) (-592 |#3|)) 75 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-273 |#3|)) 73 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-592 (-273 |#3|))) 72 (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))) (-3428 (((-108) $ $) 55)) (-2013 (((-108) $) 58)) (-2718 (($) 57)) (-3410 ((|#3| $ (-525) (-525)) 42) ((|#3| $ (-525) (-525) |#3|) 40)) (-2559 (((-108) $) 52)) (-2040 (((-713) |#3| $) 70 (-12 (|has| |#3| (-1020)) (|has| $ (-6 -4255)))) (((-713) (-1 (-108) |#3|) $) 67 (|has| $ (-6 -4255)))) (-1451 (($ $) 56)) (-3701 ((|#5| $ (-525)) 38)) (-1270 (((-798) $) 11)) (-3633 (((-108) (-1 (-108) |#3|) $) 65 (|has| $ (-6 -4255)))) (-1366 (((-108) $) 50)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4100 (($ $ |#3|) 35 (|has| |#3| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-3596 (((-713) $) 62 (|has| $ (-6 -4255)))))
+(((-980 |#1| |#2| |#3| |#4| |#5|) (-131) (-713) (-713) (-977) (-218 |t#2| |t#3|) (-218 |t#1| |t#3|)) (T -980))
+((-2694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-1660 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *5))) (-4 *5 (-977)) (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-2077 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-2559 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-2079 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-1366 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))) (-1964 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-1987 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-3948 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713)))) (-2973 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-592 (-592 *5))))) (-3410 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-977)))) (-2570 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-977)))) (-3410 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7)) (-4 *2 (-977)) (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)))) (-1616 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *6 *2 *7)) (-4 *6 (-977)) (-4 *7 (-218 *4 *6)) (-4 *2 (-218 *5 *6)))) (-3701 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *6 *7 *2)) (-4 *6 (-977)) (-4 *7 (-218 *5 *6)) (-4 *2 (-218 *4 *6)))) (-2694 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)))) (-1680 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-980 *3 *4 *2 *5 *6)) (-4 *2 (-977)) (-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-517)))) (-4100 (*1 *1 *1 *2) (-12 (-4 *1 (-980 *3 *4 *2 *5 *6)) (-4 *2 (-977)) (-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-341)))) (-1333 (*1 *1 *1) (-12 (-4 *1 (-980 *2 *3 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *2 *4)) (-4 *4 (-286)))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-713)))) (-1841 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-713)))) (-1615 (*1 *2 *1) (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517)) (-5 *2 (-592 *7)))))
+(-13 (-107 |t#3| |t#3|) (-464 |t#3|) (-10 -8 (-6 -4255) (IF (|has| |t#3| (-160)) (-6 (-660 |t#3|)) |%noBranch|) (-15 -1660 ($ (-592 (-592 |t#3|)))) (-15 -2077 ((-108) $)) (-15 -2559 ((-108) $)) (-15 -2079 ((-108) $)) (-15 -1366 ((-108) $)) (-15 -1964 ((-525) $)) (-15 -1987 ((-525) $)) (-15 -3779 ((-525) $)) (-15 -3948 ((-525) $)) (-15 -1857 ((-713) $)) (-15 -1869 ((-713) $)) (-15 -2973 ((-592 (-592 |t#3|)) $)) (-15 -3410 (|t#3| $ (-525) (-525))) (-15 -2570 (|t#3| $ (-525) (-525))) (-15 -3410 (|t#3| $ (-525) (-525) |t#3|)) (-15 -1616 (|t#4| $ (-525))) (-15 -3701 (|t#5| $ (-525))) (-15 -2694 ($ (-1 |t#3| |t#3|) $)) (-15 -2694 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-517)) (-15 -1680 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-341)) (-15 -4100 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-286)) (-15 -1333 ($ $)) |%noBranch|) (IF (|has| |t#3| (-517)) (PROGN (-15 -3318 ((-713) $)) (-15 -1841 ((-713) $)) (-15 -1615 ((-592 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-97) . T) ((-107 |#3| |#3|) . T) ((-126) . T) ((-566 (-798)) . T) ((-288 |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))) ((-464 |#3|) . T) ((-486 |#3| |#3|) -12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))) ((-594 |#3|) . T) ((-660 |#3|) |has| |#3| (-160)) ((-983 |#3|) . T) ((-1020) . T) ((-1127) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2079 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2077 (((-108) $) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-2305 (($) NIL T CONST)) (-1333 (($ $) 43 (|has| |#3| (-286)))) (-1616 (((-220 |#2| |#3|) $ (-525)) 32)) (-3043 (($ (-632 |#3|)) 41)) (-3318 (((-713) $) 45 (|has| |#3| (-517)))) (-2570 ((|#3| $ (-525) (-525)) NIL)) (-3702 (((-592 |#3|) $) NIL (|has| $ (-6 -4255)))) (-1841 (((-713) $) 47 (|has| |#3| (-517)))) (-1615 (((-592 (-220 |#1| |#3|)) $) 51 (|has| |#3| (-517)))) (-1857 (((-713) $) NIL)) (-1869 (((-713) $) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-1964 (((-525) $) NIL)) (-3779 (((-525) $) NIL)) (-1749 (((-592 |#3|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#3| (-1020))))) (-1987 (((-525) $) NIL)) (-3948 (((-525) $) NIL)) (-1660 (($ (-592 (-592 |#3|))) 27)) (-2622 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2973 (((-592 (-592 |#3|)) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1680 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-517)))) (-3006 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 |#3|) (-592 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-592 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#3| $ (-525) (-525)) NIL) ((|#3| $ (-525) (-525) |#3|) NIL)) (-3831 (((-128)) 54 (|has| |#3| (-341)))) (-2559 (((-108) $) NIL)) (-2040 (((-713) |#3| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#3| (-1020)))) (((-713) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) 63 (|has| |#3| (-567 (-501))))) (-3701 (((-220 |#1| |#3|) $ (-525)) 36)) (-1270 (((-798) $) 16) (((-632 |#3|) $) 38)) (-3633 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4255)))) (-1366 (((-108) $) NIL)) (-3355 (($) 13 T CONST)) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-981 |#1| |#2| |#3|) (-13 (-980 |#1| |#2| |#3| (-220 |#2| |#3|) (-220 |#1| |#3|)) (-566 (-632 |#3|)) (-10 -8 (IF (|has| |#3| (-341)) (-6 (-1180 |#3|)) |%noBranch|) (IF (|has| |#3| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (-15 -3043 ($ (-632 |#3|))) (-15 -1270 ((-632 |#3|) $)))) (-713) (-713) (-977)) (T -981))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-632 *5)) (-5 *1 (-981 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)) (-4 *5 (-977)))) (-3043 (*1 *1 *2) (-12 (-5 *2 (-632 *5)) (-4 *5 (-977)) (-5 *1 (-981 *3 *4 *5)) (-14 *3 (-713)) (-14 *4 (-713)))))
+(-13 (-980 |#1| |#2| |#3| (-220 |#2| |#3|) (-220 |#1| |#3|)) (-566 (-632 |#3|)) (-10 -8 (IF (|has| |#3| (-341)) (-6 (-1180 |#3|)) |%noBranch|) (IF (|has| |#3| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|) (-15 -3043 ($ (-632 |#3|))) (-15 -1270 ((-632 |#3|) $))))
+((-3503 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-2694 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-982 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2694 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3503 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-713) (-713) (-977) (-218 |#2| |#3|) (-218 |#1| |#3|) (-980 |#1| |#2| |#3| |#4| |#5|) (-977) (-218 |#2| |#7|) (-218 |#1| |#7|) (-980 |#1| |#2| |#7| |#8| |#9|)) (T -982))
+((-3503 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-977)) (-4 *2 (-977)) (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7)) (-4 *9 (-218 *5 *7)) (-4 *10 (-218 *6 *2)) (-4 *11 (-218 *5 *2)) (-5 *1 (-982 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-980 *5 *6 *7 *8 *9)) (-4 *12 (-980 *5 *6 *2 *10 *11)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-977)) (-4 *10 (-977)) (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7)) (-4 *9 (-218 *5 *7)) (-4 *2 (-980 *5 *6 *10 *11 *12)) (-5 *1 (-982 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-980 *5 *6 *7 *8 *9)) (-4 *11 (-218 *6 *10)) (-4 *12 (-218 *5 *10)))))
+(-10 -7 (-15 -2694 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -3503 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ |#1|) 23)))
+(((-983 |#1|) (-131) (-984)) (T -983))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-983 *2)) (-4 *2 (-984)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3465 (($ $ (-855)) 26)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
-(((-983) (-131)) (T -983))
-NIL
-(-13 (-21) (-1031))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-797)) . T) ((-1031) . T) ((-1019) . T))
-((-4114 (($ $) 16)) (-3608 (($ $) 22)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 49)) (-3477 (($ $) 24)) (-2723 (($ $) 11)) (-1720 (($ $) 38)) (-1427 (((-357) $) NIL) (((-205) $) NIL) (((-826 (-357)) $) 33)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 28) (($ (-525)) NIL) (($ (-385 (-525))) 28)) (-2093 (((-713)) 8)) (-2498 (($ $) 39)))
-(((-984 |#1|) (-10 -8 (-15 -3608 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -2723 (|#1| |#1|)) (-15 -1720 (|#1| |#1|)) (-15 -2498 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -1524 ((-823 (-357) |#1|) |#1| (-826 (-357)) (-823 (-357) |#1|))) (-15 -1427 ((-826 (-357)) |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1908 (|#1| (-525))) (-15 -1427 ((-205) |#1|)) (-15 -1427 ((-357) |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1908 (|#1| |#1|)) (-15 -1908 (|#1| (-525))) (-15 -2093 ((-713))) (-15 -1908 ((-797) |#1|))) (-985)) (T -984))
-((-2093 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-984 *3)) (-4 *3 (-985)))))
-(-10 -8 (-15 -3608 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -2723 (|#1| |#1|)) (-15 -1720 (|#1| |#1|)) (-15 -2498 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -1524 ((-823 (-357) |#1|) |#1| (-826 (-357)) (-823 (-357) |#1|))) (-15 -1427 ((-826 (-357)) |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1908 (|#1| (-525))) (-15 -1427 ((-205) |#1|)) (-15 -1427 ((-357) |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1908 (|#1| |#1|)) (-15 -1908 (|#1| (-525))) (-15 -2093 ((-713))) (-15 -1908 ((-797) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3115 (((-525) $) 89)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-4114 (($ $) 87)) (-3263 (((-3 $ "failed") $ $) 19)) (-3321 (($ $) 73)) (-1510 (((-396 $) $) 72)) (-3969 (($ $) 97)) (-2305 (((-108) $ $) 59)) (-1690 (((-525) $) 114)) (-1505 (($) 17 T CONST)) (-3608 (($ $) 86)) (-1264 (((-3 (-525) "failed") $) 102) (((-3 (-385 (-525)) "failed") $) 99)) (-2831 (((-525) $) 101) (((-385 (-525)) $) 98)) (-2373 (($ $ $) 55)) (-2866 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 51)) (-2250 (((-108) $) 71)) (-3026 (((-108) $) 112)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 93)) (-2133 (((-108) $) 31)) (-3391 (($ $ (-525)) 96)) (-3477 (($ $) 92)) (-2882 (((-108) $) 113)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-3525 (($ $ $) 111)) (-3630 (($ $ $) 110)) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-4211 (($ $) 70)) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-2723 (($ $) 88)) (-1720 (($ $) 90)) (-3959 (((-396 $) $) 74)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2338 (((-3 $ "failed") $ $) 42)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2183 (((-713) $) 58)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 57)) (-1427 (((-357) $) 105) (((-205) $) 104) (((-826 (-357)) $) 94)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-525)) 103) (($ (-385 (-525))) 100)) (-2093 (((-713)) 29)) (-2498 (($ $) 91)) (-2262 (((-108) $ $) 39)) (-2092 (($ $) 115)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-4024 (((-108) $ $) 108)) (-3995 (((-108) $ $) 107)) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 109)) (-3983 (((-108) $ $) 106)) (-4082 (($ $ $) 64)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 95)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
-(((-985) (-131)) (T -985))
-((-2092 (*1 *1 *1) (-4 *1 (-985))) (-3477 (*1 *1 *1) (-4 *1 (-985))) (-2498 (*1 *1 *1) (-4 *1 (-985))) (-1720 (*1 *1 *1) (-4 *1 (-985))) (-3115 (*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-525)))) (-2723 (*1 *1 *1) (-4 *1 (-985))) (-4114 (*1 *1 *1) (-4 *1 (-985))) (-3608 (*1 *1 *1) (-4 *1 (-985))))
-(-13 (-341) (-787) (-952) (-967 (-525)) (-967 (-385 (-525))) (-933) (-567 (-826 (-357))) (-820 (-357)) (-138) (-10 -8 (-15 -3477 ($ $)) (-15 -2498 ($ $)) (-15 -1720 ($ $)) (-15 -3115 ((-525) $)) (-15 -2723 ($ $)) (-15 -4114 ($ $)) (-15 -3608 ($ $)) (-15 -2092 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-797)) . T) ((-160) . T) ((-567 (-205)) . T) ((-567 (-357)) . T) ((-567 (-826 (-357))) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-787) . T) ((-789) . T) ((-820 (-357)) . T) ((-854) . T) ((-933) . T) ((-952) . T) ((-967 (-385 (-525))) . T) ((-967 (-525)) . T) ((-982 #0#) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) |#2| $) 23)) (-3107 ((|#1| $) 10)) (-1690 (((-525) |#2| $) 88)) (-4105 (((-3 $ "failed") |#2| (-855)) 57)) (-4152 ((|#1| $) 28)) (-3891 ((|#1| |#2| $ |#1|) 37)) (-1808 (($ $) 25)) (-2866 (((-3 |#2| "failed") |#2| $) 87)) (-3026 (((-108) |#2| $) NIL)) (-2882 (((-108) |#2| $) NIL)) (-1602 (((-108) |#2| $) 24)) (-1472 ((|#1| $) 89)) (-4138 ((|#1| $) 27)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1654 ((|#2| $) 79)) (-1908 (((-797) $) 70)) (-2038 ((|#1| |#2| $ |#1|) 38)) (-2913 (((-592 $) |#2|) 59)) (-3961 (((-108) $ $) 74)))
-(((-986 |#1| |#2|) (-13 (-992 |#1| |#2|) (-10 -8 (-15 -4138 (|#1| $)) (-15 -4152 (|#1| $)) (-15 -3107 (|#1| $)) (-15 -1472 (|#1| $)) (-15 -1808 ($ $)) (-15 -1602 ((-108) |#2| $)) (-15 -3891 (|#1| |#2| $ |#1|)))) (-13 (-787) (-341)) (-1148 |#1|)) (T -986))
-((-3891 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) (-4 *3 (-1148 *2)))) (-4138 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) (-4 *3 (-1148 *2)))) (-4152 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) (-4 *3 (-1148 *2)))) (-3107 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) (-4 *3 (-1148 *2)))) (-1472 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) (-4 *3 (-1148 *2)))) (-1808 (*1 *1 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3)) (-4 *3 (-1148 *2)))) (-1602 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-787) (-341))) (-5 *2 (-108)) (-5 *1 (-986 *4 *3)) (-4 *3 (-1148 *4)))))
-(-13 (-992 |#1| |#2|) (-10 -8 (-15 -4138 (|#1| $)) (-15 -4152 (|#1| $)) (-15 -3107 (|#1| $)) (-15 -1472 (|#1| $)) (-15 -1808 ($ $)) (-15 -1602 ((-108) |#2| $)) (-15 -3891 (|#1| |#2| $ |#1|))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3280 (($ $ $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3903 (($ $ $ $) NIL)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2305 (((-108) $ $) NIL)) (-1690 (((-525) $) NIL)) (-3097 (($ $ $) NIL)) (-1505 (($) NIL T CONST)) (-3308 (($ (-1090)) 10) (($ (-525)) 7)) (-1264 (((-3 (-525) "failed") $) NIL)) (-2831 (((-525) $) NIL)) (-2373 (($ $ $) NIL)) (-1860 (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-1468 (((-3 (-385 (-525)) "failed") $) NIL)) (-3081 (((-108) $) NIL)) (-2098 (((-385 (-525)) $) NIL)) (-3375 (($) NIL) (($ $) NIL)) (-2356 (($ $ $) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-1948 (($ $ $ $) NIL)) (-2010 (($ $ $) NIL)) (-3026 (((-108) $) NIL)) (-3834 (($ $ $) NIL)) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL)) (-2133 (((-108) $) NIL)) (-2144 (((-108) $) NIL)) (-1816 (((-3 $ "failed") $) NIL)) (-2882 (((-108) $) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2615 (($ $ $ $) NIL)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-3486 (($ $) NIL)) (-1722 (($ $) NIL)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-1866 (($ $ $) NIL)) (-2279 (($) NIL T CONST)) (-2969 (($ $) NIL)) (-2663 (((-1037) $) NIL) (($ $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3066 (($ $) NIL)) (-3959 (((-396 $) $) NIL)) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2656 (((-108) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-3013 (($ $ (-713)) NIL) (($ $) NIL)) (-2660 (($ $) NIL)) (-2135 (($ $) NIL)) (-1427 (((-525) $) 16) (((-501) $) NIL) (((-826 (-525)) $) NIL) (((-357) $) NIL) (((-205) $) NIL) (($ (-1090)) 9)) (-1908 (((-797) $) 20) (($ (-525)) 6) (($ $) NIL) (($ (-525)) 6)) (-2093 (((-713)) NIL)) (-3662 (((-108) $ $) NIL)) (-3015 (($ $ $) NIL)) (-3772 (($) NIL)) (-2262 (((-108) $ $) NIL)) (-3089 (($ $ $ $) NIL)) (-2092 (($ $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $ (-713)) NIL) (($ $) NIL)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) NIL)) (-4070 (($ $) 19) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL)))
-(((-987) (-13 (-510) (-10 -8 (-6 -4241) (-6 -4246) (-6 -4242) (-15 -1427 ($ (-1090))) (-15 -3308 ($ (-1090))) (-15 -3308 ($ (-525)))))) (T -987))
-((-1427 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-987)))) (-3308 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-987)))) (-3308 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-987)))))
-(-13 (-510) (-10 -8 (-6 -4241) (-6 -4246) (-6 -4242) (-15 -1427 ($ (-1090))) (-15 -3308 ($ (-1090))) (-15 -3308 ($ (-525)))))
-((-1893 (((-108) $ $) NIL (-3309 (|has| (-51) (-1019)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019))))) (-4001 (($) NIL) (($ (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) NIL)) (-1840 (((-1177) $ (-1090) (-1090)) NIL (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) NIL)) (-2956 (($) 9)) (-2109 (((-51) $ (-1090) (-51)) NIL)) (-3643 (($ $) 30)) (-3571 (($ $) 28)) (-3616 (($ $) 27)) (-3906 (($ $) 29)) (-2567 (($ $) 32)) (-2779 (($ $) 33)) (-3509 (($ $) 26)) (-3424 (($ $) 31)) (-3290 (($ (-1 (-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) 25 (|has| $ (-6 -4254)))) (-1446 (((-3 (-51) "failed") (-1090) $) 40)) (-1505 (($) NIL T CONST)) (-2728 (($) 7)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019))))) (-2792 (($ (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) $) 50 (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-3 (-51) "failed") (-1090) $) NIL)) (-2273 (($ (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019)))) (($ (-1 (-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-4004 (((-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $ (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019)))) (((-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $ (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254)))) (-3008 (((-3 (-1073) "failed") $ (-1073) (-525)) 59)) (-2870 (((-51) $ (-1090) (-51)) NIL (|has| $ (-6 -4255)))) (-2796 (((-51) $ (-1090)) NIL)) (-2026 (((-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-592 (-51)) $) NIL (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-1090) $) NIL (|has| (-1090) (-789)))) (-3168 (((-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) 35 (|has| $ (-6 -4254))) (((-592 (-51)) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019))))) (-1792 (((-1090) $) NIL (|has| (-1090) (-789)))) (-2857 (($ (-1 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (-3309 (|has| (-51) (-1019)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019))))) (-4005 (((-592 (-1090)) $) NIL)) (-1699 (((-108) (-1090) $) NIL)) (-2570 (((-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) $) NIL)) (-2573 (($ (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) $) 43)) (-3222 (((-592 (-1090)) $) NIL)) (-1548 (((-108) (-1090) $) NIL)) (-2663 (((-1037) $) NIL (-3309 (|has| (-51) (-1019)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019))))) (-2007 (((-357) $ (-1090)) 49)) (-2648 (((-592 (-1073)) $ (-1073)) 60)) (-3135 (((-51) $) NIL (|has| (-1090) (-789)))) (-4054 (((-3 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) "failed") (-1 (-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL)) (-1911 (($ $ (-51)) NIL (|has| $ (-6 -4255)))) (-3513 (((-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) $) NIL)) (-3494 (((-108) (-1 (-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))))) NIL (-12 (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019)))) (($ $ (-273 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) NIL (-12 (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019)))) (($ $ (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) NIL (-12 (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019)))) (($ $ (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) NIL (-12 (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-288 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019)))) (($ $ (-592 (-51)) (-592 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019)))) (($ $ (-592 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019))))) (-3171 (((-592 (-51)) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 (((-51) $ (-1090)) NIL) (((-51) $ (-1090) (-51)) NIL)) (-4006 (($) NIL) (($ (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) NIL)) (-1485 (($ $ (-1090)) 51)) (-2686 (((-713) (-1 (-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019)))) (((-713) (-51) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-51) (-1019)))) (((-713) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-567 (-501))))) (-1922 (($ (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) 37)) (-2664 (($ $ $) 38)) (-1908 (((-797) $) NIL (-3309 (|has| (-51) (-566 (-797))) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-566 (-797)))))) (-1830 (($ $ (-1090) (-357)) 47)) (-2242 (($ $ (-1090) (-357)) 48)) (-3612 (($ (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))))) NIL)) (-2667 (((-108) (-1 (-108) (-2 (|:| -3946 (-1090)) (|:| -2511 (-51)))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (-3309 (|has| (-51) (-1019)) (|has| (-2 (|:| -3946 (-1090)) (|:| -2511 (-51))) (-1019))))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-988) (-13 (-1103 (-1090) (-51)) (-10 -8 (-15 -2664 ($ $ $)) (-15 -2728 ($)) (-15 -3509 ($ $)) (-15 -3616 ($ $)) (-15 -3571 ($ $)) (-15 -3906 ($ $)) (-15 -3424 ($ $)) (-15 -3643 ($ $)) (-15 -2567 ($ $)) (-15 -2779 ($ $)) (-15 -1830 ($ $ (-1090) (-357))) (-15 -2242 ($ $ (-1090) (-357))) (-15 -2007 ((-357) $ (-1090))) (-15 -2648 ((-592 (-1073)) $ (-1073))) (-15 -1485 ($ $ (-1090))) (-15 -2956 ($)) (-15 -3008 ((-3 (-1073) "failed") $ (-1073) (-525))) (-6 -4254)))) (T -988))
-((-2664 (*1 *1 *1 *1) (-5 *1 (-988))) (-2728 (*1 *1) (-5 *1 (-988))) (-3509 (*1 *1 *1) (-5 *1 (-988))) (-3616 (*1 *1 *1) (-5 *1 (-988))) (-3571 (*1 *1 *1) (-5 *1 (-988))) (-3906 (*1 *1 *1) (-5 *1 (-988))) (-3424 (*1 *1 *1) (-5 *1 (-988))) (-3643 (*1 *1 *1) (-5 *1 (-988))) (-2567 (*1 *1 *1) (-5 *1 (-988))) (-2779 (*1 *1 *1) (-5 *1 (-988))) (-1830 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-357)) (-5 *1 (-988)))) (-2242 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-357)) (-5 *1 (-988)))) (-2007 (*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-357)) (-5 *1 (-988)))) (-2648 (*1 *2 *1 *3) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-988)) (-5 *3 (-1073)))) (-1485 (*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-988)))) (-2956 (*1 *1) (-5 *1 (-988))) (-3008 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1073)) (-5 *3 (-525)) (-5 *1 (-988)))))
-(-13 (-1103 (-1090) (-51)) (-10 -8 (-15 -2664 ($ $ $)) (-15 -2728 ($)) (-15 -3509 ($ $)) (-15 -3616 ($ $)) (-15 -3571 ($ $)) (-15 -3906 ($ $)) (-15 -3424 ($ $)) (-15 -3643 ($ $)) (-15 -2567 ($ $)) (-15 -2779 ($ $)) (-15 -1830 ($ $ (-1090) (-357))) (-15 -2242 ($ $ (-1090) (-357))) (-15 -2007 ((-357) $ (-1090))) (-15 -2648 ((-592 (-1073)) $ (-1073))) (-15 -1485 ($ $ (-1090))) (-15 -2956 ($)) (-15 -3008 ((-3 (-1073) "failed") $ (-1073) (-525))) (-6 -4254)))
-((-1614 (($ $) 45)) (-2584 (((-108) $ $) 74)) (-1264 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-886 (-385 (-525)))) 227) (((-3 $ "failed") (-886 (-525))) 226) (((-3 $ "failed") (-886 |#2|)) 229)) (-2831 ((|#2| $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL) ((|#4| $) NIL) (($ (-886 (-385 (-525)))) 215) (($ (-886 (-525))) 211) (($ (-886 |#2|)) 231)) (-1247 (($ $) NIL) (($ $ |#4|) 43)) (-1954 (((-108) $ $) 112) (((-108) $ (-592 $)) 113)) (-2368 (((-108) $) 56)) (-3196 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 107)) (-1532 (($ $) 138)) (-2673 (($ $) 134)) (-1961 (($ $) 133)) (-3797 (($ $ $) 79) (($ $ $ |#4|) 84)) (-1559 (($ $ $) 82) (($ $ $ |#4|) 86)) (-2267 (((-108) $ $) 121) (((-108) $ (-592 $)) 122)) (-1257 ((|#4| $) 33)) (-2173 (($ $ $) 110)) (-2125 (((-108) $) 55)) (-4219 (((-713) $) 35)) (-1604 (($ $) 152)) (-2533 (($ $) 149)) (-3401 (((-592 $) $) 68)) (-1236 (($ $) 57)) (-3989 (($ $) 145)) (-2174 (((-592 $) $) 65)) (-3133 (($ $) 59)) (-1224 ((|#2| $) NIL) (($ $ |#4|) 38)) (-4156 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4011 (-713))) $ $) 111)) (-2972 (((-2 (|:| -1459 $) (|:| |gap| (-713)) (|:| -1338 $) (|:| -1632 $)) $ $) 108) (((-2 (|:| -1459 $) (|:| |gap| (-713)) (|:| -1338 $) (|:| -1632 $)) $ $ |#4|) 109)) (-1258 (((-2 (|:| -1459 $) (|:| |gap| (-713)) (|:| -1632 $)) $ $) 104) (((-2 (|:| -1459 $) (|:| |gap| (-713)) (|:| -1632 $)) $ $ |#4|) 105)) (-3984 (($ $ $) 89) (($ $ $ |#4|) 95)) (-2968 (($ $ $) 90) (($ $ $ |#4|) 96)) (-1863 (((-592 $) $) 51)) (-3691 (((-108) $ $) 118) (((-108) $ (-592 $)) 119)) (-4189 (($ $ $) 103)) (-2279 (($ $) 37)) (-2491 (((-108) $ $) 72)) (-2469 (((-108) $ $) 114) (((-108) $ (-592 $)) 116)) (-2954 (($ $ $) 101)) (-3888 (($ $) 40)) (-3244 ((|#2| |#2| $) 142) (($ (-592 $)) NIL) (($ $ $) NIL)) (-1305 (($ $ |#2|) NIL) (($ $ $) 131)) (-1445 (($ $ |#2|) 126) (($ $ $) 129)) (-2101 (($ $) 48)) (-2410 (($ $) 52)) (-1427 (((-826 (-357)) $) NIL) (((-826 (-525)) $) NIL) (((-501) $) NIL) (($ (-886 (-385 (-525)))) 217) (($ (-886 (-525))) 213) (($ (-886 |#2|)) 228) (((-1073) $) 250) (((-886 |#2|) $) 162)) (-1908 (((-797) $) 30) (($ (-525)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-886 |#2|) $) 163) (($ (-385 (-525))) NIL) (($ $) NIL)) (-2429 (((-3 (-108) "failed") $ $) 71)))
-(((-989 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1908 (|#1| |#1|)) (-15 -3244 (|#1| |#1| |#1|)) (-15 -3244 (|#1| (-592 |#1|))) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1908 ((-886 |#2|) |#1|)) (-15 -1427 ((-886 |#2|) |#1|)) (-15 -1427 ((-1073) |#1|)) (-15 -1604 (|#1| |#1|)) (-15 -2533 (|#1| |#1|)) (-15 -3989 (|#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -3244 (|#2| |#2| |#1|)) (-15 -1305 (|#1| |#1| |#1|)) (-15 -1445 (|#1| |#1| |#1|)) (-15 -1305 (|#1| |#1| |#2|)) (-15 -1445 (|#1| |#1| |#2|)) (-15 -2673 (|#1| |#1|)) (-15 -1961 (|#1| |#1|)) (-15 -1427 (|#1| (-886 |#2|))) (-15 -2831 (|#1| (-886 |#2|))) (-15 -1264 ((-3 |#1| "failed") (-886 |#2|))) (-15 -1427 (|#1| (-886 (-525)))) (-15 -2831 (|#1| (-886 (-525)))) (-15 -1264 ((-3 |#1| "failed") (-886 (-525)))) (-15 -1427 (|#1| (-886 (-385 (-525))))) (-15 -2831 (|#1| (-886 (-385 (-525))))) (-15 -1264 ((-3 |#1| "failed") (-886 (-385 (-525))))) (-15 -4189 (|#1| |#1| |#1|)) (-15 -2954 (|#1| |#1| |#1|)) (-15 -4156 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4011 (-713))) |#1| |#1|)) (-15 -2173 (|#1| |#1| |#1|)) (-15 -3196 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|)) (-15 -2972 ((-2 (|:| -1459 |#1|) (|:| |gap| (-713)) (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1| |#4|)) (-15 -2972 ((-2 (|:| -1459 |#1|) (|:| |gap| (-713)) (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|)) (-15 -1258 ((-2 (|:| -1459 |#1|) (|:| |gap| (-713)) (|:| -1632 |#1|)) |#1| |#1| |#4|)) (-15 -1258 ((-2 (|:| -1459 |#1|) (|:| |gap| (-713)) (|:| -1632 |#1|)) |#1| |#1|)) (-15 -2968 (|#1| |#1| |#1| |#4|)) (-15 -3984 (|#1| |#1| |#1| |#4|)) (-15 -2968 (|#1| |#1| |#1|)) (-15 -3984 (|#1| |#1| |#1|)) (-15 -1559 (|#1| |#1| |#1| |#4|)) (-15 -3797 (|#1| |#1| |#1| |#4|)) (-15 -1559 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -2267 ((-108) |#1| (-592 |#1|))) (-15 -2267 ((-108) |#1| |#1|)) (-15 -3691 ((-108) |#1| (-592 |#1|))) (-15 -3691 ((-108) |#1| |#1|)) (-15 -2469 ((-108) |#1| (-592 |#1|))) (-15 -2469 ((-108) |#1| |#1|)) (-15 -1954 ((-108) |#1| (-592 |#1|))) (-15 -1954 ((-108) |#1| |#1|)) (-15 -2584 ((-108) |#1| |#1|)) (-15 -2491 ((-108) |#1| |#1|)) (-15 -2429 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3401 ((-592 |#1|) |#1|)) (-15 -2174 ((-592 |#1|) |#1|)) (-15 -3133 (|#1| |#1|)) (-15 -1236 (|#1| |#1|)) (-15 -2368 ((-108) |#1|)) (-15 -2125 ((-108) |#1|)) (-15 -1247 (|#1| |#1| |#4|)) (-15 -1224 (|#1| |#1| |#4|)) (-15 -2410 (|#1| |#1|)) (-15 -1863 ((-592 |#1|) |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -1614 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -4219 ((-713) |#1|)) (-15 -1257 (|#4| |#1|)) (-15 -1427 ((-501) |#1|)) (-15 -1427 ((-826 (-525)) |#1|)) (-15 -1427 ((-826 (-357)) |#1|)) (-15 -2831 (|#4| |#1|)) (-15 -1264 ((-3 |#4| "failed") |#1|)) (-15 -1908 (|#1| |#4|)) (-15 -1224 (|#2| |#1|)) (-15 -1247 (|#1| |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1908 (|#1| |#2|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -2831 (|#2| |#1|)) (-15 -1908 (|#1| (-525))) (-15 -1908 ((-797) |#1|))) (-990 |#2| |#3| |#4|) (-976) (-735) (-789)) (T -989))
-NIL
-(-10 -8 (-15 -1908 (|#1| |#1|)) (-15 -3244 (|#1| |#1| |#1|)) (-15 -3244 (|#1| (-592 |#1|))) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1908 ((-886 |#2|) |#1|)) (-15 -1427 ((-886 |#2|) |#1|)) (-15 -1427 ((-1073) |#1|)) (-15 -1604 (|#1| |#1|)) (-15 -2533 (|#1| |#1|)) (-15 -3989 (|#1| |#1|)) (-15 -1532 (|#1| |#1|)) (-15 -3244 (|#2| |#2| |#1|)) (-15 -1305 (|#1| |#1| |#1|)) (-15 -1445 (|#1| |#1| |#1|)) (-15 -1305 (|#1| |#1| |#2|)) (-15 -1445 (|#1| |#1| |#2|)) (-15 -2673 (|#1| |#1|)) (-15 -1961 (|#1| |#1|)) (-15 -1427 (|#1| (-886 |#2|))) (-15 -2831 (|#1| (-886 |#2|))) (-15 -1264 ((-3 |#1| "failed") (-886 |#2|))) (-15 -1427 (|#1| (-886 (-525)))) (-15 -2831 (|#1| (-886 (-525)))) (-15 -1264 ((-3 |#1| "failed") (-886 (-525)))) (-15 -1427 (|#1| (-886 (-385 (-525))))) (-15 -2831 (|#1| (-886 (-385 (-525))))) (-15 -1264 ((-3 |#1| "failed") (-886 (-385 (-525))))) (-15 -4189 (|#1| |#1| |#1|)) (-15 -2954 (|#1| |#1| |#1|)) (-15 -4156 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4011 (-713))) |#1| |#1|)) (-15 -2173 (|#1| |#1| |#1|)) (-15 -3196 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|)) (-15 -2972 ((-2 (|:| -1459 |#1|) (|:| |gap| (-713)) (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1| |#4|)) (-15 -2972 ((-2 (|:| -1459 |#1|) (|:| |gap| (-713)) (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|)) (-15 -1258 ((-2 (|:| -1459 |#1|) (|:| |gap| (-713)) (|:| -1632 |#1|)) |#1| |#1| |#4|)) (-15 -1258 ((-2 (|:| -1459 |#1|) (|:| |gap| (-713)) (|:| -1632 |#1|)) |#1| |#1|)) (-15 -2968 (|#1| |#1| |#1| |#4|)) (-15 -3984 (|#1| |#1| |#1| |#4|)) (-15 -2968 (|#1| |#1| |#1|)) (-15 -3984 (|#1| |#1| |#1|)) (-15 -1559 (|#1| |#1| |#1| |#4|)) (-15 -3797 (|#1| |#1| |#1| |#4|)) (-15 -1559 (|#1| |#1| |#1|)) (-15 -3797 (|#1| |#1| |#1|)) (-15 -2267 ((-108) |#1| (-592 |#1|))) (-15 -2267 ((-108) |#1| |#1|)) (-15 -3691 ((-108) |#1| (-592 |#1|))) (-15 -3691 ((-108) |#1| |#1|)) (-15 -2469 ((-108) |#1| (-592 |#1|))) (-15 -2469 ((-108) |#1| |#1|)) (-15 -1954 ((-108) |#1| (-592 |#1|))) (-15 -1954 ((-108) |#1| |#1|)) (-15 -2584 ((-108) |#1| |#1|)) (-15 -2491 ((-108) |#1| |#1|)) (-15 -2429 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3401 ((-592 |#1|) |#1|)) (-15 -2174 ((-592 |#1|) |#1|)) (-15 -3133 (|#1| |#1|)) (-15 -1236 (|#1| |#1|)) (-15 -2368 ((-108) |#1|)) (-15 -2125 ((-108) |#1|)) (-15 -1247 (|#1| |#1| |#4|)) (-15 -1224 (|#1| |#1| |#4|)) (-15 -2410 (|#1| |#1|)) (-15 -1863 ((-592 |#1|) |#1|)) (-15 -2101 (|#1| |#1|)) (-15 -1614 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -4219 ((-713) |#1|)) (-15 -1257 (|#4| |#1|)) (-15 -1427 ((-501) |#1|)) (-15 -1427 ((-826 (-525)) |#1|)) (-15 -1427 ((-826 (-357)) |#1|)) (-15 -2831 (|#4| |#1|)) (-15 -1264 ((-3 |#4| "failed") |#1|)) (-15 -1908 (|#1| |#4|)) (-15 -1224 (|#2| |#1|)) (-15 -1247 (|#1| |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1908 (|#1| |#2|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -2831 (|#2| |#1|)) (-15 -1908 (|#1| (-525))) (-15 -1908 ((-797) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-4104 (((-592 |#3|) $) 110)) (-3927 (((-1086 $) $ |#3|) 125) (((-1086 |#1|) $) 124)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-3635 (($ $) 88 (|has| |#1| (-517)))) (-2950 (((-108) $) 90 (|has| |#1| (-517)))) (-1324 (((-713) $) 112) (((-713) $ (-592 |#3|)) 111)) (-1614 (($ $) 271)) (-2584 (((-108) $ $) 257)) (-3263 (((-3 $ "failed") $ $) 19)) (-1820 (($ $ $) 216 (|has| |#1| (-517)))) (-2459 (((-592 $) $ $) 211 (|has| |#1| (-517)))) (-3357 (((-396 (-1086 $)) (-1086 $)) 100 (|has| |#1| (-843)))) (-3321 (($ $) 98 (|has| |#1| (-429)))) (-1510 (((-396 $) $) 97 (|has| |#1| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 103 (|has| |#1| (-843)))) (-1505 (($) 17 T CONST)) (-1264 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-967 (-525)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-886 (-385 (-525)))) 231 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1090))))) (((-3 $ "failed") (-886 (-525))) 228 (-3309 (-12 (-2480 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1090)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1090)))))) (((-3 $ "failed") (-886 |#1|)) 225 (-3309 (-12 (-2480 (|has| |#1| (-37 (-385 (-525))))) (-2480 (|has| |#1| (-37 (-525)))) (|has| |#3| (-567 (-1090)))) (-12 (-2480 (|has| |#1| (-510))) (-2480 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1090)))) (-12 (-2480 (|has| |#1| (-924 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1090))))))) (-2831 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-967 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-967 (-525)))) ((|#3| $) 135) (($ (-886 (-385 (-525)))) 230 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1090))))) (($ (-886 (-525))) 227 (-3309 (-12 (-2480 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1090)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1090)))))) (($ (-886 |#1|)) 224 (-3309 (-12 (-2480 (|has| |#1| (-37 (-385 (-525))))) (-2480 (|has| |#1| (-37 (-525)))) (|has| |#3| (-567 (-1090)))) (-12 (-2480 (|has| |#1| (-510))) (-2480 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1090)))) (-12 (-2480 (|has| |#1| (-924 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1090))))))) (-2506 (($ $ $ |#3|) 108 (|has| |#1| (-160))) (($ $ $) 212 (|has| |#1| (-517)))) (-1247 (($ $) 154) (($ $ |#3|) 266)) (-1860 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-1954 (((-108) $ $) 256) (((-108) $ (-592 $)) 255)) (-2866 (((-3 $ "failed") $) 34)) (-2368 (((-108) $) 264)) (-3196 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 236)) (-1532 (($ $) 205 (|has| |#1| (-429)))) (-3811 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-1234 (((-592 $) $) 109)) (-2250 (((-108) $) 96 (|has| |#1| (-843)))) (-2673 (($ $) 221 (|has| |#1| (-517)))) (-1961 (($ $) 222 (|has| |#1| (-517)))) (-3797 (($ $ $) 248) (($ $ $ |#3|) 246)) (-1559 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2099 (($ $ |#1| |#2| $) 172)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 84 (-12 (|has| |#3| (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 83 (-12 (|has| |#3| (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-2133 (((-108) $) 31)) (-3610 (((-713) $) 169)) (-2267 (((-108) $ $) 250) (((-108) $ (-592 $)) 249)) (-1581 (($ $ $ $ $) 207 (|has| |#1| (-517)))) (-1257 ((|#3| $) 275)) (-4092 (($ (-1086 |#1|) |#3|) 117) (($ (-1086 $) |#3|) 116)) (-1986 (((-592 $) $) 126)) (-1819 (((-108) $) 152)) (-4079 (($ |#1| |#2|) 153) (($ $ |#3| (-713)) 119) (($ $ (-592 |#3|) (-592 (-713))) 118)) (-2173 (($ $ $) 235)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ |#3|) 120)) (-2125 (((-108) $) 265)) (-3181 ((|#2| $) 170) (((-713) $ |#3|) 122) (((-592 (-713)) $ (-592 |#3|)) 121)) (-3525 (($ $ $) 79 (|has| |#1| (-789)))) (-4219 (((-713) $) 274)) (-3630 (($ $ $) 78 (|has| |#1| (-789)))) (-1331 (($ (-1 |#2| |#2|) $) 171)) (-1370 (($ (-1 |#1| |#1|) $) 151)) (-1666 (((-3 |#3| "failed") $) 123)) (-1604 (($ $) 202 (|has| |#1| (-429)))) (-2533 (($ $) 203 (|has| |#1| (-429)))) (-3401 (((-592 $) $) 260)) (-1236 (($ $) 263)) (-3989 (($ $) 204 (|has| |#1| (-429)))) (-2174 (((-592 $) $) 261)) (-3133 (($ $) 262)) (-1212 (($ $) 149)) (-1224 ((|#1| $) 148) (($ $ |#3|) 267)) (-3216 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-4156 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4011 (-713))) $ $) 234)) (-2972 (((-2 (|:| -1459 $) (|:| |gap| (-713)) (|:| -1338 $) (|:| -1632 $)) $ $) 238) (((-2 (|:| -1459 $) (|:| |gap| (-713)) (|:| -1338 $) (|:| -1632 $)) $ $ |#3|) 237)) (-1258 (((-2 (|:| -1459 $) (|:| |gap| (-713)) (|:| -1632 $)) $ $) 240) (((-2 (|:| -1459 $) (|:| |gap| (-713)) (|:| -1632 $)) $ $ |#3|) 239)) (-3984 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2968 (($ $ $) 243) (($ $ $ |#3|) 241)) (-2337 (((-1073) $) 9)) (-1868 (($ $ $) 210 (|has| |#1| (-517)))) (-1863 (((-592 $) $) 269)) (-3245 (((-3 (-592 $) "failed") $) 114)) (-3193 (((-3 (-592 $) "failed") $) 115)) (-3283 (((-3 (-2 (|:| |var| |#3|) (|:| -1600 (-713))) "failed") $) 113)) (-3691 (((-108) $ $) 252) (((-108) $ (-592 $)) 251)) (-4189 (($ $ $) 232)) (-2279 (($ $) 273)) (-2491 (((-108) $ $) 258)) (-2469 (((-108) $ $) 254) (((-108) $ (-592 $)) 253)) (-2954 (($ $ $) 233)) (-3888 (($ $) 272)) (-2663 (((-1037) $) 10)) (-1622 (((-2 (|:| -3244 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-517)))) (-1534 (((-2 (|:| -3244 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-517)))) (-4221 (((-108) $) 166)) (-4232 ((|#1| $) 167)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 95 (|has| |#1| (-429)))) (-3244 ((|#1| |#1| $) 206 (|has| |#1| (-429))) (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-2918 (((-396 (-1086 $)) (-1086 $)) 102 (|has| |#1| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) 101 (|has| |#1| (-843)))) (-3959 (((-396 $) $) 99 (|has| |#1| (-843)))) (-1279 (((-2 (|:| -3244 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-517)))) (-2338 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-1305 (($ $ |#1|) 219 (|has| |#1| (-517))) (($ $ $) 217 (|has| |#1| (-517)))) (-1445 (($ $ |#1|) 220 (|has| |#1| (-517))) (($ $ $) 218 (|has| |#1| (-517)))) (-3092 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-592 |#3|) (-592 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-592 |#3|) (-592 $)) 138)) (-1400 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-3013 (($ $ |#3|) 42) (($ $ (-592 |#3|)) 41) (($ $ |#3| (-713)) 40) (($ $ (-592 |#3|) (-592 (-713))) 39)) (-2513 ((|#2| $) 150) (((-713) $ |#3|) 130) (((-592 (-713)) $ (-592 |#3|)) 129)) (-2101 (($ $) 270)) (-2410 (($ $) 268)) (-1427 (((-826 (-357)) $) 82 (-12 (|has| |#3| (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) 81 (-12 (|has| |#3| (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-567 (-501))) (|has| |#1| (-567 (-501))))) (($ (-886 (-385 (-525)))) 229 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1090))))) (($ (-886 (-525))) 226 (-3309 (-12 (-2480 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1090)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1090)))))) (($ (-886 |#1|)) 223 (|has| |#3| (-567 (-1090)))) (((-1073) $) 201 (-12 (|has| |#1| (-967 (-525))) (|has| |#3| (-567 (-1090))))) (((-886 |#1|) $) 200 (|has| |#3| (-567 (-1090))))) (-2751 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) 104 (-1341 (|has| $ (-136)) (|has| |#1| (-843))))) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-886 |#1|) $) 199 (|has| |#3| (-567 (-1090)))) (($ (-385 (-525))) 72 (-3309 (|has| |#1| (-967 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-3600 (((-592 |#1|) $) 168)) (-1657 ((|#1| $ |#2|) 155) (($ $ |#3| (-713)) 128) (($ $ (-592 |#3|) (-592 (-713))) 127)) (-3421 (((-3 $ "failed") $) 73 (-3309 (-1341 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2093 (((-713)) 29)) (-4116 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-2262 (((-108) $ $) 89 (|has| |#1| (-517)))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-2429 (((-3 (-108) "failed") $ $) 259)) (-3882 (($) 30 T CONST)) (-3756 (($ $ $ $ (-713)) 208 (|has| |#1| (-517)))) (-2339 (($ $ $ (-713)) 209 (|has| |#1| (-517)))) (-1424 (($ $ |#3|) 38) (($ $ (-592 |#3|)) 37) (($ $ |#3| (-713)) 36) (($ $ (-592 |#3|) (-592 (-713))) 35)) (-4024 (((-108) $ $) 76 (|has| |#1| (-789)))) (-3995 (((-108) $ $) 75 (|has| |#1| (-789)))) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 77 (|has| |#1| (-789)))) (-3983 (((-108) $ $) 74 (|has| |#1| (-789)))) (-4082 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-990 |#1| |#2| |#3|) (-131) (-976) (-735) (-789)) (T -990))
-((-1257 (*1 *2 *1) (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)))) (-4219 (*1 *2 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-713)))) (-2279 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3888 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1614 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2101 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1863 (*1 *2 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-990 *3 *4 *5)))) (-2410 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1224 (*1 *1 *1 *2) (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)))) (-1247 (*1 *1 *1 *2) (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)))) (-2125 (*1 *2 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2368 (*1 *2 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-1236 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3133 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2174 (*1 *2 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-990 *3 *4 *5)))) (-3401 (*1 *2 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-990 *3 *4 *5)))) (-2429 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2491 (*1 *2 *1 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2584 (*1 *2 *1 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-1954 (*1 *2 *1 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-1954 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-2469 (*1 *2 *1 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2469 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-3691 (*1 *2 *1 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-3691 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-2267 (*1 *2 *1 *1) (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2267 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-3797 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1559 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3797 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)))) (-1559 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)))) (-3984 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2968 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3984 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)))) (-2968 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *2 (-789)))) (-1258 (*1 *2 *1 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -1459 *1) (|:| |gap| (-713)) (|:| -1632 *1))) (-4 *1 (-990 *3 *4 *5)))) (-1258 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -1459 *1) (|:| |gap| (-713)) (|:| -1632 *1))) (-4 *1 (-990 *4 *5 *3)))) (-2972 (*1 *2 *1 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -1459 *1) (|:| |gap| (-713)) (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-990 *3 *4 *5)))) (-2972 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -1459 *1) (|:| |gap| (-713)) (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-990 *4 *5 *3)))) (-3196 (*1 *2 *1 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-990 *3 *4 *5)))) (-2173 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-4156 (*1 *2 *1 *1) (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4011 (-713)))) (-4 *1 (-990 *3 *4 *5)))) (-2954 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-4189 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1264 (*1 *1 *2) (|partial| -12 (-5 *2 (-886 (-385 (-525)))) (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)))) (-2831 (*1 *1 *2) (-12 (-5 *2 (-886 (-385 (-525)))) (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-886 (-385 (-525)))) (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)))) (-1264 (*1 *1 *2) (|partial| -3309 (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) (-12 (-2480 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))))) (-2831 (*1 *1 *2) (-3309 (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) (-12 (-2480 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))))) (-1427 (*1 *1 *2) (-3309 (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) (-12 (-2480 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))))) (-1264 (*1 *1 *2) (|partial| -3309 (-12 (-5 *2 (-886 *3)) (-12 (-2480 (-4 *3 (-37 (-385 (-525))))) (-2480 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-886 *3)) (-12 (-2480 (-4 *3 (-510))) (-2480 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-886 *3)) (-12 (-2480 (-4 *3 (-924 (-525)))) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))))) (-2831 (*1 *1 *2) (-3309 (-12 (-5 *2 (-886 *3)) (-12 (-2480 (-4 *3 (-37 (-385 (-525))))) (-2480 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-886 *3)) (-12 (-2480 (-4 *3 (-510))) (-2480 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-886 *3)) (-12 (-2480 (-4 *3 (-924 (-525)))) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090)))) (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *5 (-567 (-1090))) (-4 *4 (-735)) (-4 *5 (-789)))) (-1961 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-2673 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-1445 (*1 *1 *1 *2) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-1305 (*1 *1 *1 *2) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-1445 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-1305 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-1820 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-1279 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -3244 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-990 *3 *4 *5)))) (-1534 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -3244 *1) (|:| |coef1| *1))) (-4 *1 (-990 *3 *4 *5)))) (-1622 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -3244 *1) (|:| |coef2| *1))) (-4 *1 (-990 *3 *4 *5)))) (-2506 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-2459 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-990 *3 *4 *5)))) (-1868 (*1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-2339 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))) (-3756 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))) (-1581 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3244 (*1 *2 *2 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-1532 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-3989 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-2533 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-1604 (*1 *1 *1) (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))))
-(-13 (-883 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1257 (|t#3| $)) (-15 -4219 ((-713) $)) (-15 -2279 ($ $)) (-15 -3888 ($ $)) (-15 -1614 ($ $)) (-15 -2101 ($ $)) (-15 -1863 ((-592 $) $)) (-15 -2410 ($ $)) (-15 -1224 ($ $ |t#3|)) (-15 -1247 ($ $ |t#3|)) (-15 -2125 ((-108) $)) (-15 -2368 ((-108) $)) (-15 -1236 ($ $)) (-15 -3133 ($ $)) (-15 -2174 ((-592 $) $)) (-15 -3401 ((-592 $) $)) (-15 -2429 ((-3 (-108) "failed") $ $)) (-15 -2491 ((-108) $ $)) (-15 -2584 ((-108) $ $)) (-15 -1954 ((-108) $ $)) (-15 -1954 ((-108) $ (-592 $))) (-15 -2469 ((-108) $ $)) (-15 -2469 ((-108) $ (-592 $))) (-15 -3691 ((-108) $ $)) (-15 -3691 ((-108) $ (-592 $))) (-15 -2267 ((-108) $ $)) (-15 -2267 ((-108) $ (-592 $))) (-15 -3797 ($ $ $)) (-15 -1559 ($ $ $)) (-15 -3797 ($ $ $ |t#3|)) (-15 -1559 ($ $ $ |t#3|)) (-15 -3984 ($ $ $)) (-15 -2968 ($ $ $)) (-15 -3984 ($ $ $ |t#3|)) (-15 -2968 ($ $ $ |t#3|)) (-15 -1258 ((-2 (|:| -1459 $) (|:| |gap| (-713)) (|:| -1632 $)) $ $)) (-15 -1258 ((-2 (|:| -1459 $) (|:| |gap| (-713)) (|:| -1632 $)) $ $ |t#3|)) (-15 -2972 ((-2 (|:| -1459 $) (|:| |gap| (-713)) (|:| -1338 $) (|:| -1632 $)) $ $)) (-15 -2972 ((-2 (|:| -1459 $) (|:| |gap| (-713)) (|:| -1338 $) (|:| -1632 $)) $ $ |t#3|)) (-15 -3196 ((-2 (|:| -1338 $) (|:| -1632 $)) $ $)) (-15 -2173 ($ $ $)) (-15 -4156 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4011 (-713))) $ $)) (-15 -2954 ($ $ $)) (-15 -4189 ($ $ $)) (IF (|has| |t#3| (-567 (-1090))) (PROGN (-6 (-566 (-886 |t#1|))) (-6 (-567 (-886 |t#1|))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -1264 ((-3 $ "failed") (-886 (-385 (-525))))) (-15 -2831 ($ (-886 (-385 (-525))))) (-15 -1427 ($ (-886 (-385 (-525))))) (-15 -1264 ((-3 $ "failed") (-886 (-525)))) (-15 -2831 ($ (-886 (-525)))) (-15 -1427 ($ (-886 (-525)))) (IF (|has| |t#1| (-924 (-525))) |%noBranch| (PROGN (-15 -1264 ((-3 $ "failed") (-886 |t#1|))) (-15 -2831 ($ (-886 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-525))) (IF (|has| |t#1| (-37 (-385 (-525)))) |%noBranch| (PROGN (-15 -1264 ((-3 $ "failed") (-886 (-525)))) (-15 -2831 ($ (-886 (-525)))) (-15 -1427 ($ (-886 (-525)))) (IF (|has| |t#1| (-510)) |%noBranch| (PROGN (-15 -1264 ((-3 $ "failed") (-886 |t#1|))) (-15 -2831 ($ (-886 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-525))) |%noBranch| (IF (|has| |t#1| (-37 (-385 (-525)))) |%noBranch| (PROGN (-15 -1264 ((-3 $ "failed") (-886 |t#1|))) (-15 -2831 ($ (-886 |t#1|)))))) (-15 -1427 ($ (-886 |t#1|))) (IF (|has| |t#1| (-967 (-525))) (-6 (-567 (-1073))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -1961 ($ $)) (-15 -2673 ($ $)) (-15 -1445 ($ $ |t#1|)) (-15 -1305 ($ $ |t#1|)) (-15 -1445 ($ $ $)) (-15 -1305 ($ $ $)) (-15 -1820 ($ $ $)) (-15 -1279 ((-2 (|:| -3244 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -1534 ((-2 (|:| -3244 $) (|:| |coef1| $)) $ $)) (-15 -1622 ((-2 (|:| -3244 $) (|:| |coef2| $)) $ $)) (-15 -2506 ($ $ $)) (-15 -2459 ((-592 $) $ $)) (-15 -1868 ($ $ $)) (-15 -2339 ($ $ $ (-713))) (-15 -3756 ($ $ $ $ (-713))) (-15 -1581 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -3244 (|t#1| |t#1| $)) (-15 -1532 ($ $)) (-15 -3989 ($ $)) (-15 -2533 ($ $)) (-15 -1604 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-566 (-886 |#1|)) |has| |#3| (-567 (-1090))) ((-160) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))) ((-567 (-826 (-357))) -12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#3| (-567 (-826 (-357))))) ((-567 (-826 (-525))) -12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#3| (-567 (-826 (-525))))) ((-567 (-886 |#1|)) |has| |#3| (-567 (-1090))) ((-567 (-1073)) -12 (|has| |#1| (-967 (-525))) (|has| |#3| (-567 (-1090)))) ((-269) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3309 (|has| |#1| (-843)) (|has| |#1| (-429))) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-834 |#3|) . T) ((-820 (-357)) -12 (|has| |#1| (-820 (-357))) (|has| |#3| (-820 (-357)))) ((-820 (-525)) -12 (|has| |#1| (-820 (-525))) (|has| |#3| (-820 (-525)))) ((-883 |#1| |#2| |#3|) . T) ((-843) |has| |#1| (-843)) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 |#1|) . T) ((-967 |#3|) . T) ((-982 #0#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) |has| |#1| (-843)))
-((-1611 (((-108) |#3| $) 13)) (-4105 (((-3 $ "failed") |#3| (-855)) 23)) (-2866 (((-3 |#3| "failed") |#3| $) 38)) (-3026 (((-108) |#3| $) 16)) (-2882 (((-108) |#3| $) 14)))
-(((-991 |#1| |#2| |#3|) (-10 -8 (-15 -4105 ((-3 |#1| "failed") |#3| (-855))) (-15 -2866 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3026 ((-108) |#3| |#1|)) (-15 -2882 ((-108) |#3| |#1|)) (-15 -1611 ((-108) |#3| |#1|))) (-992 |#2| |#3|) (-13 (-787) (-341)) (-1148 |#2|)) (T -991))
-NIL
-(-10 -8 (-15 -4105 ((-3 |#1| "failed") |#3| (-855))) (-15 -2866 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3026 ((-108) |#3| |#1|)) (-15 -2882 ((-108) |#3| |#1|)) (-15 -1611 ((-108) |#3| |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) |#2| $) 21)) (-1690 (((-525) |#2| $) 22)) (-4105 (((-3 $ "failed") |#2| (-855)) 15)) (-3891 ((|#1| |#2| $ |#1|) 13)) (-2866 (((-3 |#2| "failed") |#2| $) 18)) (-3026 (((-108) |#2| $) 19)) (-2882 (((-108) |#2| $) 20)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1654 ((|#2| $) 17)) (-1908 (((-797) $) 11)) (-2038 ((|#1| |#2| $ |#1|) 14)) (-2913 (((-592 $) |#2|) 16)) (-3961 (((-108) $ $) 6)))
-(((-992 |#1| |#2|) (-131) (-13 (-787) (-341)) (-1148 |t#1|)) (T -992))
-((-1690 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1148 *4)) (-5 *2 (-525)))) (-1611 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1148 *4)) (-5 *2 (-108)))) (-2882 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1148 *4)) (-5 *2 (-108)))) (-3026 (*1 *2 *3 *1) (-12 (-4 *1 (-992 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1148 *4)) (-5 *2 (-108)))) (-2866 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-992 *3 *2)) (-4 *3 (-13 (-787) (-341))) (-4 *2 (-1148 *3)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-992 *3 *2)) (-4 *3 (-13 (-787) (-341))) (-4 *2 (-1148 *3)))) (-2913 (*1 *2 *3) (-12 (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1148 *4)) (-5 *2 (-592 *1)) (-4 *1 (-992 *4 *3)))) (-4105 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-855)) (-4 *4 (-13 (-787) (-341))) (-4 *1 (-992 *4 *2)) (-4 *2 (-1148 *4)))) (-2038 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-992 *2 *3)) (-4 *2 (-13 (-787) (-341))) (-4 *3 (-1148 *2)))) (-3891 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-992 *2 *3)) (-4 *2 (-13 (-787) (-341))) (-4 *3 (-1148 *2)))))
-(-13 (-1019) (-10 -8 (-15 -1690 ((-525) |t#2| $)) (-15 -1611 ((-108) |t#2| $)) (-15 -2882 ((-108) |t#2| $)) (-15 -3026 ((-108) |t#2| $)) (-15 -2866 ((-3 |t#2| "failed") |t#2| $)) (-15 -1654 (|t#2| $)) (-15 -2913 ((-592 $) |t#2|)) (-15 -4105 ((-3 $ "failed") |t#2| (-855))) (-15 -2038 (|t#1| |t#2| $ |t#1|)) (-15 -3891 (|t#1| |t#2| $ |t#1|))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-3334 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) (-713)) 96)) (-3184 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713)) 56)) (-1280 (((-1177) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-713)) 87)) (-4063 (((-713) (-592 |#4|) (-592 |#5|)) 27)) (-2340 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713)) 58) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713) (-108)) 60)) (-3149 (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108)) 78) (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108)) 79)) (-1427 (((-1073) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) 82)) (-2172 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-108)) 55)) (-3179 (((-713) (-592 |#4|) (-592 |#5|)) 19)))
-(((-993 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3179 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -4063 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -2172 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-108))) (-15 -3184 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713))) (-15 -3184 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5|)) (-15 -2340 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -2340 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713))) (-15 -2340 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5|)) (-15 -3149 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3149 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3334 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) (-713))) (-15 -1427 ((-1073) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|)))) (-15 -1280 ((-1177) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-713)))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|) (-995 |#1| |#2| |#3| |#4|)) (T -993))
-((-1280 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -3740 *9)))) (-5 *4 (-713)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1177)) (-5 *1 (-993 *5 *6 *7 *8 *9)))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -3740 *8))) (-4 *7 (-990 *4 *5 *6)) (-4 *8 (-995 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1073)) (-5 *1 (-993 *4 *5 *6 *7 *8)))) (-3334 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -3740 *11)))) (-5 *3 (-592 *10)) (-5 *4 (-592 *11)) (-5 *5 (-2 (|:| |done| (-592 *11)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *10)) (|:| -3740 *11)))))) (-5 *6 (-713)) (-4 *10 (-990 *7 *8 *9)) (-4 *11 (-995 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-5 *1 (-993 *7 *8 *9 *10 *11)))) (-3149 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-993 *5 *6 *7 *8 *9)))) (-3149 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-993 *5 *6 *7 *8 *9)))) (-2340 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4)))))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2340 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-990 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4)))))) (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3)))) (-2340 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-4 *3 (-990 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4)))))) (-5 *1 (-993 *7 *8 *9 *3 *4)) (-4 *4 (-995 *7 *8 *9 *3)))) (-3184 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4)))))) (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-3184 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-990 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4)))))) (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3)))) (-2172 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-990 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4)))))) (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-993 *5 *6 *7 *8 *9)))) (-3179 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-993 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3179 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -4063 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -2172 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-108))) (-15 -3184 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713))) (-15 -3184 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5|)) (-15 -2340 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -2340 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713))) (-15 -2340 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5|)) (-15 -3149 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3149 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3334 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) (-713))) (-15 -1427 ((-1073) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|)))) (-15 -1280 ((-1177) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-713))))
-((-1725 (((-108) |#5| $) 21)) (-2678 (((-108) |#5| $) 24)) (-1503 (((-108) |#5| $) 16) (((-108) $) 45)) (-3187 (((-592 $) |#5| $) NIL) (((-592 $) (-592 |#5|) $) 77) (((-592 $) (-592 |#5|) (-592 $)) 75) (((-592 $) |#5| (-592 $)) 78)) (-3538 (($ $ |#5|) NIL) (((-592 $) |#5| $) NIL) (((-592 $) |#5| (-592 $)) 60) (((-592 $) (-592 |#5|) $) 62) (((-592 $) (-592 |#5|) (-592 $)) 64)) (-2348 (((-592 $) |#5| $) NIL) (((-592 $) |#5| (-592 $)) 54) (((-592 $) (-592 |#5|) $) 56) (((-592 $) (-592 |#5|) (-592 $)) 58)) (-3673 (((-108) |#5| $) 27)))
-(((-994 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3538 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -3538 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -3538 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -3538 ((-592 |#1|) |#5| |#1|)) (-15 -2348 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -2348 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -2348 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -2348 ((-592 |#1|) |#5| |#1|)) (-15 -3187 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -3187 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -3187 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -3187 ((-592 |#1|) |#5| |#1|)) (-15 -2678 ((-108) |#5| |#1|)) (-15 -1503 ((-108) |#1|)) (-15 -3673 ((-108) |#5| |#1|)) (-15 -1725 ((-108) |#5| |#1|)) (-15 -1503 ((-108) |#5| |#1|)) (-15 -3538 (|#1| |#1| |#5|))) (-995 |#2| |#3| |#4| |#5|) (-429) (-735) (-789) (-990 |#2| |#3| |#4|)) (T -994))
-NIL
-(-10 -8 (-15 -3538 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -3538 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -3538 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -3538 ((-592 |#1|) |#5| |#1|)) (-15 -2348 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -2348 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -2348 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -2348 ((-592 |#1|) |#5| |#1|)) (-15 -3187 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -3187 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -3187 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -3187 ((-592 |#1|) |#5| |#1|)) (-15 -2678 ((-108) |#5| |#1|)) (-15 -1503 ((-108) |#1|)) (-15 -3673 ((-108) |#5| |#1|)) (-15 -1725 ((-108) |#5| |#1|)) (-15 -1503 ((-108) |#5| |#1|)) (-15 -3538 (|#1| |#1| |#5|)))
-((-1893 (((-108) $ $) 7)) (-2894 (((-592 (-2 (|:| -3286 $) (|:| -2396 (-592 |#4|)))) (-592 |#4|)) 85)) (-2308 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-4104 (((-592 |#3|) $) 33)) (-3696 (((-108) $) 26)) (-3810 (((-108) $) 17 (|has| |#1| (-517)))) (-1466 (((-108) |#4| $) 101) (((-108) $) 97)) (-3833 ((|#4| |#4| $) 92)) (-3321 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 $))) |#4| $) 126)) (-3327 (((-2 (|:| |under| $) (|:| -1720 $) (|:| |upper| $)) $ |#3|) 27)) (-3410 (((-108) $ (-713)) 44)) (-2724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) 79)) (-1505 (($) 45 T CONST)) (-2637 (((-108) $) 22 (|has| |#1| (-517)))) (-2643 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2494 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3405 (((-108) $) 25 (|has| |#1| (-517)))) (-2895 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3937 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-3144 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-1264 (((-3 $ "failed") (-592 |#4|)) 36)) (-2831 (($ (-592 |#4|)) 35)) (-3145 (((-3 $ "failed") $) 82)) (-3096 ((|#4| |#4| $) 89)) (-3163 (($ $) 68 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ |#4| $) 67 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4254)))) (-1632 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-1954 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2295 ((|#4| |#4| $) 87)) (-4004 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1426 (((-2 (|:| -3286 (-592 |#4|)) (|:| -2396 (-592 |#4|))) $) 105)) (-1725 (((-108) |#4| $) 136)) (-2678 (((-108) |#4| $) 133)) (-1503 (((-108) |#4| $) 137) (((-108) $) 134)) (-2026 (((-592 |#4|) $) 52 (|has| $ (-6 -4254)))) (-2267 (((-108) |#4| $) 104) (((-108) $) 103)) (-1257 ((|#3| $) 34)) (-3100 (((-108) $ (-713)) 43)) (-3168 (((-592 |#4|) $) 53 (|has| $ (-6 -4254)))) (-4132 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#4| |#4|) $) 47)) (-1835 (((-592 |#3|) $) 32)) (-1913 (((-108) |#3| $) 31)) (-3017 (((-108) $ (-713)) 42)) (-2337 (((-1073) $) 9)) (-3211 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-1868 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 $))) |#4| |#4| $) 127)) (-2292 (((-3 |#4| "failed") $) 83)) (-2505 (((-592 $) |#4| $) 129)) (-2269 (((-3 (-108) (-592 $)) |#4| $) 132)) (-2819 (((-592 (-2 (|:| |val| (-108)) (|:| -3740 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-3187 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-2394 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-2931 (((-592 |#4|) $) 107)) (-3691 (((-108) |#4| $) 99) (((-108) $) 95)) (-4189 ((|#4| |#4| $) 90)) (-2491 (((-108) $ $) 110)) (-2809 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2469 (((-108) |#4| $) 100) (((-108) $) 96)) (-2954 ((|#4| |#4| $) 91)) (-2663 (((-1037) $) 10)) (-3135 (((-3 |#4| "failed") $) 84)) (-4054 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2662 (((-3 $ "failed") $ |#4|) 78)) (-3538 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-3494 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-2642 (((-108) $ $) 38)) (-1613 (((-108) $) 41)) (-3773 (($) 40)) (-2513 (((-713) $) 106)) (-2686 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4254)))) (-2135 (($ $) 39)) (-1427 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1922 (($ (-592 |#4|)) 60)) (-1861 (($ $ |#3|) 28)) (-3570 (($ $ |#3|) 30)) (-2031 (($ $) 88)) (-1263 (($ $ |#3|) 29)) (-1908 (((-797) $) 11) (((-592 |#4|) $) 37)) (-3056 (((-713) $) 76 (|has| |#3| (-346)))) (-3480 (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-1971 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-2348 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-2667 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4254)))) (-2241 (((-592 |#3|) $) 81)) (-3673 (((-108) |#4| $) 135)) (-1252 (((-108) |#3| $) 80)) (-3961 (((-108) $ $) 6)) (-4140 (((-713) $) 46 (|has| $ (-6 -4254)))))
-(((-995 |#1| |#2| |#3| |#4|) (-131) (-429) (-735) (-789) (-990 |t#1| |t#2| |t#3|)) (T -995))
-((-1503 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-1725 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-3673 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-1503 (*1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) (-2678 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-2269 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-3 (-108) (-592 *1))) (-4 *1 (-995 *4 *5 *6 *3)))) (-2819 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -3740 *1)))) (-4 *1 (-995 *4 *5 *6 *3)))) (-2819 (*1 *2 *3 *1) (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-2505 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)))) (-3211 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-3 *3 (-592 *1))) (-4 *1 (-995 *4 *5 *6 *3)))) (-1868 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *1)))) (-4 *1 (-995 *4 *5 *6 *3)))) (-3321 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *1)))) (-4 *1 (-995 *4 *5 *6 *3)))) (-3187 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)))) (-3187 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *7)))) (-3187 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-995 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)))) (-3187 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)))) (-2348 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)))) (-2348 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)))) (-2348 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *7)))) (-2348 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-995 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)))) (-2394 (*1 *1 *2 *1) (-12 (-4 *1 (-995 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-2394 (*1 *1 *2 *1) (-12 (-5 *2 (-592 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)))) (-3538 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)))) (-3538 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)))) (-3538 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *7)))) (-3538 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-995 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)))) (-2308 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-995 *5 *6 *7 *8)))))
-(-13 (-1120 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1503 ((-108) |t#4| $)) (-15 -1725 ((-108) |t#4| $)) (-15 -3673 ((-108) |t#4| $)) (-15 -1503 ((-108) $)) (-15 -2678 ((-108) |t#4| $)) (-15 -2269 ((-3 (-108) (-592 $)) |t#4| $)) (-15 -2819 ((-592 (-2 (|:| |val| (-108)) (|:| -3740 $))) |t#4| $)) (-15 -2819 ((-108) |t#4| $)) (-15 -2505 ((-592 $) |t#4| $)) (-15 -3211 ((-3 |t#4| (-592 $)) |t#4| |t#4| $)) (-15 -1868 ((-592 (-2 (|:| |val| |t#4|) (|:| -3740 $))) |t#4| |t#4| $)) (-15 -3321 ((-592 (-2 (|:| |val| |t#4|) (|:| -3740 $))) |t#4| $)) (-15 -3187 ((-592 $) |t#4| $)) (-15 -3187 ((-592 $) (-592 |t#4|) $)) (-15 -3187 ((-592 $) (-592 |t#4|) (-592 $))) (-15 -3187 ((-592 $) |t#4| (-592 $))) (-15 -2348 ((-592 $) |t#4| $)) (-15 -2348 ((-592 $) |t#4| (-592 $))) (-15 -2348 ((-592 $) (-592 |t#4|) $)) (-15 -2348 ((-592 $) (-592 |t#4|) (-592 $))) (-15 -2394 ($ |t#4| $)) (-15 -2394 ($ (-592 |t#4|) $)) (-15 -3538 ((-592 $) |t#4| $)) (-15 -3538 ((-592 $) |t#4| (-592 $))) (-15 -3538 ((-592 $) (-592 |t#4|) $)) (-15 -3538 ((-592 $) (-592 |t#4|) (-592 $))) (-15 -2308 ((-592 $) (-592 |t#4|) (-108)))))
-(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-797)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-908 |#1| |#2| |#3| |#4|) . T) ((-1019) . T) ((-1120 |#1| |#2| |#3| |#4|) . T) ((-1126) . T))
-((-3367 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#5|) 81)) (-3384 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5|) 113)) (-1509 (((-592 |#5|) |#4| |#5|) 70)) (-3958 (((-592 (-2 (|:| |val| (-108)) (|:| -3740 |#5|))) |#4| |#5|) 46) (((-108) |#4| |#5|) 53)) (-1854 (((-1177)) 37)) (-2184 (((-1177)) 26)) (-1894 (((-1177) (-1073) (-1073) (-1073)) 33)) (-3160 (((-1177) (-1073) (-1073) (-1073)) 22)) (-3489 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) |#4| |#4| |#5|) 96)) (-2886 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) |#3| (-108)) 107) (((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5| (-108) (-108)) 50)) (-1637 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5|) 102)))
-(((-996 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3160 ((-1177) (-1073) (-1073) (-1073))) (-15 -2184 ((-1177))) (-15 -1894 ((-1177) (-1073) (-1073) (-1073))) (-15 -1854 ((-1177))) (-15 -3489 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) |#4| |#4| |#5|)) (-15 -2886 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2886 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) |#3| (-108))) (-15 -1637 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5|)) (-15 -3384 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5|)) (-15 -3958 ((-108) |#4| |#5|)) (-15 -3958 ((-592 (-2 (|:| |val| (-108)) (|:| -3740 |#5|))) |#4| |#5|)) (-15 -1509 ((-592 |#5|) |#4| |#5|)) (-15 -3367 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#5|))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|) (-995 |#1| |#2| |#3| |#4|)) (T -996))
-((-3367 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4)))) (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-1509 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-3958 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -3740 *4)))) (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-3958 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-3384 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4)))) (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-1637 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4)))) (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2886 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -3740 *9)))) (-5 *5 (-108)) (-4 *8 (-990 *6 *7 *4)) (-4 *9 (-995 *6 *7 *4 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789)) (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -3740 *9)))) (-5 *1 (-996 *6 *7 *4 *8 *9)))) (-2886 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-990 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4)))) (-5 *1 (-996 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3)))) (-3489 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4)))) (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-1854 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) (-5 *1 (-996 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))) (-1894 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-2184 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) (-5 *1 (-996 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))) (-3160 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3160 ((-1177) (-1073) (-1073) (-1073))) (-15 -2184 ((-1177))) (-15 -1894 ((-1177) (-1073) (-1073) (-1073))) (-15 -1854 ((-1177))) (-15 -3489 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) |#4| |#4| |#5|)) (-15 -2886 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -2886 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) |#3| (-108))) (-15 -1637 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5|)) (-15 -3384 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5|)) (-15 -3958 ((-108) |#4| |#5|)) (-15 -3958 ((-592 (-2 (|:| |val| (-108)) (|:| -3740 |#5|))) |#4| |#5|)) (-15 -1509 ((-592 |#5|) |#4| |#5|)) (-15 -3367 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#5|)))
-((-1893 (((-108) $ $) NIL)) (-1310 (((-1090) $) 8)) (-2337 (((-1073) $) 16)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 11)) (-3961 (((-108) $ $) 13)))
-(((-997 |#1|) (-13 (-1019) (-10 -8 (-15 -1310 ((-1090) $)))) (-1090)) (T -997))
-((-1310 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-997 *3)) (-14 *3 (-1090)))))
-(-13 (-1019) (-10 -8 (-15 -1310 ((-1090) $))))
-((-1893 (((-108) $ $) NIL)) (-1215 (($ $ (-592 (-1090)) (-1 (-108) (-592 |#3|))) 33)) (-4112 (($ |#3| |#3|) 22) (($ |#3| |#3| (-592 (-1090))) 20)) (-3247 ((|#3| $) 13)) (-1264 (((-3 (-273 |#3|) "failed") $) 58)) (-2831 (((-273 |#3|) $) NIL)) (-3604 (((-592 (-1090)) $) 16)) (-3502 (((-826 |#1|) $) 11)) (-3235 ((|#3| $) 12)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3928 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-855)) 39)) (-1908 (((-797) $) 86) (($ (-273 |#3|)) 21)) (-3961 (((-108) $ $) 36)))
-(((-998 |#1| |#2| |#3|) (-13 (-1019) (-265 |#3| |#3|) (-967 (-273 |#3|)) (-10 -8 (-15 -4112 ($ |#3| |#3|)) (-15 -4112 ($ |#3| |#3| (-592 (-1090)))) (-15 -1215 ($ $ (-592 (-1090)) (-1 (-108) (-592 |#3|)))) (-15 -3502 ((-826 |#1|) $)) (-15 -3235 (|#3| $)) (-15 -3247 (|#3| $)) (-15 -3928 (|#3| $ |#3| (-855))) (-15 -3604 ((-592 (-1090)) $)))) (-1019) (-13 (-976) (-820 |#1|) (-789) (-567 (-826 |#1|))) (-13 (-408 |#2|) (-820 |#1|) (-567 (-826 |#1|)))) (T -998))
-((-4112 (*1 *1 *2 *2) (-12 (-4 *3 (-1019)) (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))) (-5 *1 (-998 *3 *4 *2)) (-4 *2 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))))) (-4112 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-592 (-1090))) (-4 *4 (-1019)) (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) (-5 *1 (-998 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))))) (-1215 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-1 (-108) (-592 *6))) (-4 *6 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))) (-4 *4 (-1019)) (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) (-5 *1 (-998 *4 *5 *6)))) (-3502 (*1 *2 *1) (-12 (-4 *3 (-1019)) (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))) (-5 *2 (-826 *3)) (-5 *1 (-998 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))))) (-3235 (*1 *2 *1) (-12 (-4 *3 (-1019)) (-4 *2 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))) (-5 *1 (-998 *3 *4 *2)) (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))))) (-3247 (*1 *2 *1) (-12 (-4 *3 (-1019)) (-4 *2 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))) (-5 *1 (-998 *3 *4 *2)) (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))))) (-3928 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-855)) (-4 *4 (-1019)) (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) (-5 *1 (-998 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))))) (-3604 (*1 *2 *1) (-12 (-4 *3 (-1019)) (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))) (-5 *2 (-592 (-1090))) (-5 *1 (-998 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))))))
-(-13 (-1019) (-265 |#3| |#3|) (-967 (-273 |#3|)) (-10 -8 (-15 -4112 ($ |#3| |#3|)) (-15 -4112 ($ |#3| |#3| (-592 (-1090)))) (-15 -1215 ($ $ (-592 (-1090)) (-1 (-108) (-592 |#3|)))) (-15 -3502 ((-826 |#1|) $)) (-15 -3235 (|#3| $)) (-15 -3247 (|#3| $)) (-15 -3928 (|#3| $ |#3| (-855))) (-15 -3604 ((-592 (-1090)) $))))
-((-1893 (((-108) $ $) NIL)) (-4215 (($ (-592 (-998 |#1| |#2| |#3|))) 13)) (-4167 (((-592 (-998 |#1| |#2| |#3|)) $) 20)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3928 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-855)) 26)) (-1908 (((-797) $) 16)) (-3961 (((-108) $ $) 19)))
-(((-999 |#1| |#2| |#3|) (-13 (-1019) (-265 |#3| |#3|) (-10 -8 (-15 -4215 ($ (-592 (-998 |#1| |#2| |#3|)))) (-15 -4167 ((-592 (-998 |#1| |#2| |#3|)) $)) (-15 -3928 (|#3| $ |#3| (-855))))) (-1019) (-13 (-976) (-820 |#1|) (-789) (-567 (-826 |#1|))) (-13 (-408 |#2|) (-820 |#1|) (-567 (-826 |#1|)))) (T -999))
-((-4215 (*1 *1 *2) (-12 (-5 *2 (-592 (-998 *3 *4 *5))) (-4 *3 (-1019)) (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))) (-4 *5 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))) (-5 *1 (-999 *3 *4 *5)))) (-4167 (*1 *2 *1) (-12 (-4 *3 (-1019)) (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3)))) (-5 *2 (-592 (-998 *3 *4 *5))) (-5 *1 (-999 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))))) (-3928 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-855)) (-4 *4 (-1019)) (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4)))) (-5 *1 (-999 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))))))
-(-13 (-1019) (-265 |#3| |#3|) (-10 -8 (-15 -4215 ($ (-592 (-998 |#1| |#2| |#3|)))) (-15 -4167 ((-592 (-998 |#1| |#2| |#3|)) $)) (-15 -3928 (|#3| $ |#3| (-855)))))
-((-2624 (((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108)) 75) (((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|))) 77) (((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108)) 76)))
-(((-1000 |#1| |#2|) (-10 -7 (-15 -2624 ((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108))) (-15 -2624 ((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)))) (-15 -2624 ((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108)))) (-13 (-286) (-138)) (-592 (-1090))) (T -1000))
-((-2624 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-592 (-2 (|:| -4107 (-1086 *5)) (|:| -4093 (-592 (-886 *5)))))) (-5 *1 (-1000 *5 *6)) (-5 *3 (-592 (-886 *5))) (-14 *6 (-592 (-1090))))) (-2624 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-5 *2 (-592 (-2 (|:| -4107 (-1086 *4)) (|:| -4093 (-592 (-886 *4)))))) (-5 *1 (-1000 *4 *5)) (-5 *3 (-592 (-886 *4))) (-14 *5 (-592 (-1090))))) (-2624 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-592 (-2 (|:| -4107 (-1086 *5)) (|:| -4093 (-592 (-886 *5)))))) (-5 *1 (-1000 *5 *6)) (-5 *3 (-592 (-886 *5))) (-14 *6 (-592 (-1090))))))
-(-10 -7 (-15 -2624 ((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108))) (-15 -2624 ((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)))) (-15 -2624 ((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108))))
-((-3959 (((-396 |#3|) |#3|) 18)))
-(((-1001 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-396 |#3|) |#3|))) (-1148 (-385 (-525))) (-13 (-341) (-138) (-667 (-385 (-525)) |#1|)) (-1148 |#2|)) (T -1001))
-((-3959 (*1 *2 *3) (-12 (-4 *4 (-1148 (-385 (-525)))) (-4 *5 (-13 (-341) (-138) (-667 (-385 (-525)) *4))) (-5 *2 (-396 *3)) (-5 *1 (-1001 *4 *5 *3)) (-4 *3 (-1148 *5)))))
-(-10 -7 (-15 -3959 ((-396 |#3|) |#3|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 126)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-341)))) (-3635 (($ $) NIL (|has| |#1| (-341)))) (-2950 (((-108) $) NIL (|has| |#1| (-341)))) (-2794 (((-632 |#1|) (-1172 $)) NIL) (((-632 |#1|)) 115)) (-3512 ((|#1| $) 119)) (-2837 (((-1100 (-855) (-713)) (-525)) NIL (|has| |#1| (-327)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL (|has| |#1| (-341)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2305 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3107 (((-713)) 40 (|has| |#1| (-346)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-2831 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-2229 (($ (-1172 |#1|) (-1172 $)) NIL) (($ (-1172 |#1|)) 43)) (-3749 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-327)))) (-2373 (($ $ $) NIL (|has| |#1| (-341)))) (-1409 (((-632 |#1|) $ (-1172 $)) NIL) (((-632 |#1|) $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 106) (((-632 |#1|) (-632 $)) 101)) (-4004 (($ |#2|) 61) (((-3 $ "failed") (-385 |#2|)) NIL (|has| |#1| (-341)))) (-2866 (((-3 $ "failed") $) NIL)) (-2239 (((-855)) 77)) (-3375 (($) 44 (|has| |#1| (-346)))) (-2356 (($ $ $) NIL (|has| |#1| (-341)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3205 (($) NIL (|has| |#1| (-327)))) (-3746 (((-108) $) NIL (|has| |#1| (-327)))) (-1410 (($ $ (-713)) NIL (|has| |#1| (-327))) (($ $) NIL (|has| |#1| (-327)))) (-2250 (((-108) $) NIL (|has| |#1| (-341)))) (-1737 (((-855) $) NIL (|has| |#1| (-327))) (((-775 (-855)) $) NIL (|has| |#1| (-327)))) (-2133 (((-108) $) NIL)) (-3477 ((|#1| $) NIL)) (-1816 (((-3 $ "failed") $) NIL (|has| |#1| (-327)))) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2362 ((|#2| $) 84 (|has| |#1| (-341)))) (-1780 (((-855) $) 131 (|has| |#1| (-346)))) (-3774 ((|#2| $) 58)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-341)))) (-2279 (($) NIL (|has| |#1| (-327)) CONST)) (-4185 (($ (-855)) 125 (|has| |#1| (-346)))) (-2663 (((-1037) $) NIL)) (-1669 (($) 121)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3005 (((-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))) NIL (|has| |#1| (-327)))) (-3959 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-2338 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2183 (((-713) $) NIL (|has| |#1| (-341)))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-341)))) (-1400 ((|#1| (-1172 $)) NIL) ((|#1|) 109)) (-2443 (((-713) $) NIL (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) NIL (|has| |#1| (-327)))) (-3013 (($ $) NIL (-3309 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) NIL (-3309 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))))) (($ $ (-1 |#1| |#1|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-2160 (((-632 |#1|) (-1172 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-1654 ((|#2|) 73)) (-3775 (($) NIL (|has| |#1| (-327)))) (-4093 (((-1172 |#1|) $ (-1172 $)) 89) (((-632 |#1|) (-1172 $) (-1172 $)) NIL) (((-1172 |#1|) $) 71) (((-632 |#1|) (-1172 $)) 85)) (-1427 (((-1172 |#1|) $) NIL) (($ (-1172 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (|has| |#1| (-327)))) (-1908 (((-797) $) 57) (($ (-525)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-341))) (($ (-385 (-525))) NIL (-3309 (|has| |#1| (-341)) (|has| |#1| (-967 (-385 (-525))))))) (-3421 (($ $) NIL (|has| |#1| (-327))) (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-1260 ((|#2| $) 82)) (-2093 (((-713)) 75)) (-2499 (((-1172 $)) 81)) (-2262 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3875 (($) 30 T CONST)) (-3882 (($) 19 T CONST)) (-1424 (($ $) NIL (-3309 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) NIL (-3309 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-834 (-1090))))) (($ $ (-1 |#1| |#1|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-3961 (((-108) $ $) 63)) (-4082 (($ $ $) NIL (|has| |#1| (-341)))) (-4070 (($ $) 67) (($ $ $) NIL)) (-4059 (($ $ $) 65)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-385 (-525)) $) NIL (|has| |#1| (-341))) (($ $ (-385 (-525))) NIL (|has| |#1| (-341)))))
-(((-1002 |#1| |#2| |#3|) (-667 |#1| |#2|) (-160) (-1148 |#1|) |#2|) (T -1002))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-1576 (($ $ (-856)) 26)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+(((-984) (-131)) (T -984))
+NIL
+(-13 (-21) (-1032))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-126) . T) ((-566 (-798)) . T) ((-1032) . T) ((-1020) . T))
+((-3642 (($ $) 16)) (-1625 (($ $) 22)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 49)) (-2900 (($ $) 24)) (-3025 (($ $) 11)) (-2793 (($ $) 38)) (-2749 (((-357) $) NIL) (((-205) $) NIL) (((-827 (-357)) $) 33)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL) (($ (-385 (-525))) 28) (($ (-525)) NIL) (($ (-385 (-525))) 28)) (-2104 (((-713)) 8)) (-1438 (($ $) 39)))
+(((-985 |#1|) (-10 -8 (-15 -1625 (|#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3025 (|#1| |#1|)) (-15 -2793 (|#1| |#1|)) (-15 -1438 (|#1| |#1|)) (-15 -2900 (|#1| |#1|)) (-15 -2317 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -2749 ((-827 (-357)) |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -1270 (|#1| (-525))) (-15 -2749 ((-205) |#1|)) (-15 -2749 ((-357) |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -1270 (|#1| |#1|)) (-15 -1270 (|#1| (-525))) (-15 -2104 ((-713))) (-15 -1270 ((-798) |#1|))) (-986)) (T -985))
+((-2104 (*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-985 *3)) (-4 *3 (-986)))))
+(-10 -8 (-15 -1625 (|#1| |#1|)) (-15 -3642 (|#1| |#1|)) (-15 -3025 (|#1| |#1|)) (-15 -2793 (|#1| |#1|)) (-15 -1438 (|#1| |#1|)) (-15 -2900 (|#1| |#1|)) (-15 -2317 ((-824 (-357) |#1|) |#1| (-827 (-357)) (-824 (-357) |#1|))) (-15 -2749 ((-827 (-357)) |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -1270 (|#1| (-525))) (-15 -2749 ((-205) |#1|)) (-15 -2749 ((-357) |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -1270 (|#1| |#1|)) (-15 -1270 (|#1| (-525))) (-15 -2104 ((-713))) (-15 -1270 ((-798) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2628 (((-525) $) 89)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-3642 (($ $) 87)) (-1342 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 73)) (-2100 (((-396 $) $) 72)) (-2211 (($ $) 97)) (-3197 (((-108) $ $) 59)) (-1436 (((-525) $) 114)) (-2305 (($) 17 T CONST)) (-1625 (($ $) 86)) (-2591 (((-3 (-525) "failed") $) 102) (((-3 (-385 (-525)) "failed") $) 99)) (-3898 (((-525) $) 101) (((-385 (-525)) $) 98)) (-1726 (($ $ $) 55)) (-3762 (((-3 $ "failed") $) 34)) (-1704 (($ $ $) 56)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 51)) (-3836 (((-108) $) 71)) (-3017 (((-108) $) 112)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 93)) (-1985 (((-108) $) 31)) (-3220 (($ $ (-525)) 96)) (-2900 (($ $) 92)) (-3912 (((-108) $) 113)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2371 (($ $ $) 111)) (-2535 (($ $ $) 110)) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-2502 (($ $) 70)) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-3025 (($ $) 88)) (-2793 (($ $) 90)) (-2195 (((-396 $) $) 74)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1680 (((-3 $ "failed") $ $) 42)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1290 (((-713) $) 58)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 57)) (-2749 (((-357) $) 105) (((-205) $) 104) (((-827 (-357)) $) 94)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ (-525)) 103) (($ (-385 (-525))) 100)) (-2104 (((-713)) 29)) (-1438 (($ $) 91)) (-3959 (((-108) $ $) 39)) (-2086 (($ $) 115)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-4045 (((-108) $ $) 108)) (-4026 (((-108) $ $) 107)) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 109)) (-4017 (((-108) $ $) 106)) (-4100 (($ $ $) 64)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68) (($ $ (-385 (-525))) 95)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66)))
+(((-986) (-131)) (T -986))
+((-2086 (*1 *1 *1) (-4 *1 (-986))) (-2900 (*1 *1 *1) (-4 *1 (-986))) (-1438 (*1 *1 *1) (-4 *1 (-986))) (-2793 (*1 *1 *1) (-4 *1 (-986))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-525)))) (-3025 (*1 *1 *1) (-4 *1 (-986))) (-3642 (*1 *1 *1) (-4 *1 (-986))) (-1625 (*1 *1 *1) (-4 *1 (-986))))
+(-13 (-341) (-787) (-953) (-968 (-525)) (-968 (-385 (-525))) (-934) (-567 (-827 (-357))) (-821 (-357)) (-138) (-10 -8 (-15 -2900 ($ $)) (-15 -1438 ($ $)) (-15 -2793 ($ $)) (-15 -2628 ((-525) $)) (-15 -3025 ($ $)) (-15 -3642 ($ $)) (-15 -1625 ($ $)) (-15 -2086 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 $ $) . T) ((-126) . T) ((-138) . T) ((-566 (-798)) . T) ((-160) . T) ((-567 (-205)) . T) ((-567 (-357)) . T) ((-567 (-827 (-357))) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 $) . T) ((-669) . T) ((-733) . T) ((-734) . T) ((-736) . T) ((-737) . T) ((-787) . T) ((-789) . T) ((-821 (-357)) . T) ((-855) . T) ((-934) . T) ((-953) . T) ((-968 (-385 (-525))) . T) ((-968 (-525)) . T) ((-983 #0#) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1131) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) |#2| $) 23)) (-4190 ((|#1| $) 10)) (-1436 (((-525) |#2| $) 88)) (-3572 (((-3 $ "failed") |#2| (-856)) 57)) (-3602 ((|#1| $) 28)) (-1265 ((|#1| |#2| $ |#1|) 37)) (-3676 (($ $) 25)) (-3762 (((-3 |#2| "failed") |#2| $) 87)) (-3017 (((-108) |#2| $) NIL)) (-3912 (((-108) |#2| $) NIL)) (-1887 (((-108) |#2| $) 24)) (-2314 ((|#1| $) 89)) (-3593 ((|#1| $) 27)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1571 ((|#2| $) 79)) (-1270 (((-798) $) 70)) (-1369 ((|#1| |#2| $ |#1|) 38)) (-4208 (((-592 $) |#2|) 59)) (-3994 (((-108) $ $) 74)))
+(((-987 |#1| |#2|) (-13 (-993 |#1| |#2|) (-10 -8 (-15 -3593 (|#1| $)) (-15 -3602 (|#1| $)) (-15 -4190 (|#1| $)) (-15 -2314 (|#1| $)) (-15 -3676 ($ $)) (-15 -1887 ((-108) |#2| $)) (-15 -1265 (|#1| |#2| $ |#1|)))) (-13 (-787) (-341)) (-1149 |#1|)) (T -987))
+((-1265 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1149 *2)))) (-3593 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1149 *2)))) (-3602 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1149 *2)))) (-4190 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1149 *2)))) (-2314 (*1 *2 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1149 *2)))) (-3676 (*1 *1 *1) (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3)) (-4 *3 (-1149 *2)))) (-1887 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-787) (-341))) (-5 *2 (-108)) (-5 *1 (-987 *4 *3)) (-4 *3 (-1149 *4)))))
+(-13 (-993 |#1| |#2|) (-10 -8 (-15 -3593 (|#1| $)) (-15 -3602 (|#1| $)) (-15 -4190 (|#1| $)) (-15 -2314 (|#1| $)) (-15 -3676 ($ $)) (-15 -1887 ((-108) |#2| $)) (-15 -1265 (|#1| |#2| $ |#1|))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1530 (($ $ $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-1381 (($ $ $ $) NIL)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3197 (((-108) $ $) NIL)) (-1436 (((-525) $) NIL)) (-4177 (($ $ $) NIL)) (-2305 (($) NIL T CONST)) (-1762 (($ (-1091)) 10) (($ (-525)) 7)) (-2591 (((-3 (-525) "failed") $) NIL)) (-3898 (((-525) $) NIL)) (-1726 (($ $ $) NIL)) (-3416 (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL) (((-632 (-525)) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2251 (((-3 (-385 (-525)) "failed") $) NIL)) (-2265 (((-108) $) NIL)) (-2178 (((-385 (-525)) $) NIL)) (-2899 (($) NIL) (($ $) NIL)) (-1704 (($ $ $) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-3926 (($ $ $ $) NIL)) (-3963 (($ $ $) NIL)) (-3017 (((-108) $) NIL)) (-1962 (($ $ $) NIL)) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL)) (-1985 (((-108) $) NIL)) (-2126 (((-108) $) NIL)) (-1760 (((-3 $ "failed") $) NIL)) (-3912 (((-108) $) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3224 (($ $ $ $) NIL)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-1634 (($ $) NIL)) (-2023 (($ $) NIL)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-3461 (($ $ $) NIL)) (-3940 (($) NIL T CONST)) (-4058 (($ $) NIL)) (-2012 (((-1038) $) NIL) (($ $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2075 (($ $) NIL)) (-2195 (((-396 $) $) NIL)) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3545 (((-108) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-2523 (($ $ (-713)) NIL) (($ $) NIL)) (-3881 (($ $) NIL)) (-1451 (($ $) NIL)) (-2749 (((-525) $) 16) (((-501) $) NIL) (((-827 (-525)) $) NIL) (((-357) $) NIL) (((-205) $) NIL) (($ (-1091)) 9)) (-1270 (((-798) $) 20) (($ (-525)) 6) (($ $) NIL) (($ (-525)) 6)) (-2104 (((-713)) NIL)) (-3975 (((-108) $ $) NIL)) (-2938 (($ $ $) NIL)) (-3200 (($) NIL)) (-3959 (((-108) $ $) NIL)) (-2372 (($ $ $ $) NIL)) (-2086 (($ $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $ (-713)) NIL) (($ $) NIL)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) NIL)) (-4090 (($ $) 19) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL)))
+(((-988) (-13 (-510) (-10 -8 (-6 -4242) (-6 -4247) (-6 -4243) (-15 -2749 ($ (-1091))) (-15 -1762 ($ (-1091))) (-15 -1762 ($ (-525)))))) (T -988))
+((-2749 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-988)))) (-1762 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-988)))) (-1762 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-988)))))
+(-13 (-510) (-10 -8 (-6 -4242) (-6 -4247) (-6 -4243) (-15 -2749 ($ (-1091))) (-15 -1762 ($ (-1091))) (-15 -1762 ($ (-525)))))
+((-1260 (((-108) $ $) NIL (-3279 (|has| (-51) (-1020)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020))))) (-3476 (($) NIL) (($ (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) NIL)) (-2782 (((-1178) $ (-1091) (-1091)) NIL (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) NIL)) (-3435 (($) 9)) (-1429 (((-51) $ (-1091) (-51)) NIL)) (-3804 (($ $) 30)) (-1259 (($ $) 28)) (-1708 (($ $) 27)) (-1401 (($ $) 29)) (-3927 (($ $) 32)) (-2448 (($ $) 33)) (-1846 (($ $) 26)) (-3442 (($ $) 31)) (-1608 (($ (-1 (-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) 25 (|has| $ (-6 -4255)))) (-2772 (((-3 (-51) "failed") (-1091) $) 40)) (-2305 (($) NIL T CONST)) (-3055 (($) 7)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020))))) (-2592 (($ (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) $) 50 (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255))) (((-3 (-51) "failed") (-1091) $) NIL)) (-1614 (($ (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020)))) (($ (-1 (-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255)))) (-3503 (((-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $ (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020)))) (((-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $ (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255)))) (-2887 (((-3 (-1074) "failed") $ (-1074) (-525)) 59)) (-2632 (((-51) $ (-1091) (-51)) NIL (|has| $ (-6 -4256)))) (-2570 (((-51) $ (-1091)) NIL)) (-3702 (((-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255))) (((-592 (-51)) $) NIL (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-1091) $) NIL (|has| (-1091) (-789)))) (-1749 (((-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) 35 (|has| $ (-6 -4255))) (((-592 (-51)) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020)))) (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-51) (-1020))))) (-3478 (((-1091) $) NIL (|has| (-1091) (-789)))) (-2622 (($ (-1 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4256))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (-3279 (|has| (-51) (-1020)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020))))) (-4076 (((-592 (-1091)) $) NIL)) (-1522 (((-108) (-1091) $) NIL)) (-3955 (((-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) $) NIL)) (-3985 (($ (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) $) 43)) (-4142 (((-592 (-1091)) $) NIL)) (-3845 (((-108) (-1091) $) NIL)) (-2012 (((-1038) $) NIL (-3279 (|has| (-51) (-1020)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020))))) (-2675 (((-357) $ (-1091)) 49)) (-3479 (((-592 (-1074)) $ (-1074)) 60)) (-3110 (((-51) $) NIL (|has| (-1091) (-789)))) (-3207 (((-3 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) "failed") (-1 (-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL)) (-2042 (($ $ (-51)) NIL (|has| $ (-6 -4256)))) (-1881 (((-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) $) NIL)) (-3006 (((-108) (-1 (-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))))) NIL (-12 (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020)))) (($ $ (-273 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) NIL (-12 (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020)))) (($ $ (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) NIL (-12 (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020)))) (($ $ (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) NIL (-12 (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-288 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020)))) (($ $ (-592 (-51)) (-592 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-273 (-51))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020)))) (($ $ (-592 (-273 (-51)))) NIL (-12 (|has| (-51) (-288 (-51))) (|has| (-51) (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) (-51) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-51) (-1020))))) (-1777 (((-592 (-51)) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 (((-51) $ (-1091)) NIL) (((-51) $ (-1091) (-51)) NIL)) (-3981 (($) NIL) (($ (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) NIL)) (-2774 (($ $ (-1091)) 51)) (-2040 (((-713) (-1 (-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255))) (((-713) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020)))) (((-713) (-51) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-51) (-1020)))) (((-713) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-567 (-501))))) (-1279 (($ (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) 37)) (-2014 (($ $ $) 38)) (-1270 (((-798) $) NIL (-3279 (|has| (-51) (-566 (-798))) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-566 (-798)))))) (-2667 (($ $ (-1091) (-357)) 47)) (-3738 (($ $ (-1091) (-357)) 48)) (-1665 (($ (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))))) NIL)) (-3633 (((-108) (-1 (-108) (-2 (|:| -3423 (-1091)) (|:| -2544 (-51)))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) (-51)) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (-3279 (|has| (-51) (-1020)) (|has| (-2 (|:| -3423 (-1091)) (|:| -2544 (-51))) (-1020))))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-989) (-13 (-1104 (-1091) (-51)) (-10 -8 (-15 -2014 ($ $ $)) (-15 -3055 ($)) (-15 -1846 ($ $)) (-15 -1708 ($ $)) (-15 -1259 ($ $)) (-15 -1401 ($ $)) (-15 -3442 ($ $)) (-15 -3804 ($ $)) (-15 -3927 ($ $)) (-15 -2448 ($ $)) (-15 -2667 ($ $ (-1091) (-357))) (-15 -3738 ($ $ (-1091) (-357))) (-15 -2675 ((-357) $ (-1091))) (-15 -3479 ((-592 (-1074)) $ (-1074))) (-15 -2774 ($ $ (-1091))) (-15 -3435 ($)) (-15 -2887 ((-3 (-1074) "failed") $ (-1074) (-525))) (-6 -4255)))) (T -989))
+((-2014 (*1 *1 *1 *1) (-5 *1 (-989))) (-3055 (*1 *1) (-5 *1 (-989))) (-1846 (*1 *1 *1) (-5 *1 (-989))) (-1708 (*1 *1 *1) (-5 *1 (-989))) (-1259 (*1 *1 *1) (-5 *1 (-989))) (-1401 (*1 *1 *1) (-5 *1 (-989))) (-3442 (*1 *1 *1) (-5 *1 (-989))) (-3804 (*1 *1 *1) (-5 *1 (-989))) (-3927 (*1 *1 *1) (-5 *1 (-989))) (-2448 (*1 *1 *1) (-5 *1 (-989))) (-2667 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-357)) (-5 *1 (-989)))) (-3738 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-357)) (-5 *1 (-989)))) (-2675 (*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-357)) (-5 *1 (-989)))) (-3479 (*1 *2 *1 *3) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-989)) (-5 *3 (-1074)))) (-2774 (*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-989)))) (-3435 (*1 *1) (-5 *1 (-989))) (-2887 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1074)) (-5 *3 (-525)) (-5 *1 (-989)))))
+(-13 (-1104 (-1091) (-51)) (-10 -8 (-15 -2014 ($ $ $)) (-15 -3055 ($)) (-15 -1846 ($ $)) (-15 -1708 ($ $)) (-15 -1259 ($ $)) (-15 -1401 ($ $)) (-15 -3442 ($ $)) (-15 -3804 ($ $)) (-15 -3927 ($ $)) (-15 -2448 ($ $)) (-15 -2667 ($ $ (-1091) (-357))) (-15 -3738 ($ $ (-1091) (-357))) (-15 -2675 ((-357) $ (-1091))) (-15 -3479 ((-592 (-1074)) $ (-1074))) (-15 -2774 ($ $ (-1091))) (-15 -3435 ($)) (-15 -2887 ((-3 (-1074) "failed") $ (-1074) (-525))) (-6 -4255)))
+((-2941 (($ $) 45)) (-4078 (((-108) $ $) 74)) (-2591 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-887 (-385 (-525)))) 227) (((-3 $ "failed") (-887 (-525))) 226) (((-3 $ "failed") (-887 |#2|)) 229)) (-3898 ((|#2| $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL) ((|#4| $) NIL) (($ (-887 (-385 (-525)))) 215) (($ (-887 (-525))) 211) (($ (-887 |#2|)) 231)) (-2571 (($ $) NIL) (($ $ |#4|) 43)) (-4047 (((-108) $ $) 112) (((-108) $ (-592 $)) 113)) (-2712 (((-108) $) 56)) (-3886 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 107)) (-2449 (($ $) 138)) (-2638 (($ $) 134)) (-4120 (($ $) 133)) (-2932 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3074 (($ $ $) 82) (($ $ $ |#4|) 86)) (-4008 (((-108) $ $) 121) (((-108) $ (-592 $)) 122)) (-1776 ((|#4| $) 33)) (-4229 (($ $ $) 110)) (-1898 (((-108) $) 55)) (-2232 (((-713) $) 35)) (-1910 (($ $) 152)) (-1758 (($ $) 149)) (-3275 (((-592 $) $) 68)) (-2852 (($ $) 57)) (-3891 (($ $) 145)) (-1205 (((-592 $) $) 65)) (-1450 (($ $) 59)) (-2548 ((|#2| $) NIL) (($ $ |#4|) 38)) (-2956 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4011 (-713))) $ $) 111)) (-3563 (((-2 (|:| -1655 $) (|:| |gap| (-713)) (|:| -2370 $) (|:| -3496 $)) $ $) 108) (((-2 (|:| -1655 $) (|:| |gap| (-713)) (|:| -2370 $) (|:| -3496 $)) $ $ |#4|) 109)) (-1784 (((-2 (|:| -1655 $) (|:| |gap| (-713)) (|:| -3496 $)) $ $) 104) (((-2 (|:| -1655 $) (|:| |gap| (-713)) (|:| -3496 $)) $ $ |#4|) 105)) (-3847 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3531 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3436 (((-592 $) $) 51)) (-3134 (((-108) $ $) 118) (((-108) $ (-592 $)) 119)) (-3149 (($ $ $) 103)) (-3940 (($ $) 37)) (-1363 (((-108) $ $) 72)) (-2505 (((-108) $ $) 114) (((-108) $ (-592 $)) 116)) (-3417 (($ $ $) 101)) (-2581 (($ $) 40)) (-2794 ((|#2| |#2| $) 142) (($ (-592 $)) NIL) (($ $ $) NIL)) (-2552 (($ $ |#2|) NIL) (($ $ $) 131)) (-3660 (($ $ |#2|) 126) (($ $ $) 129)) (-2228 (($ $) 48)) (-3067 (($ $) 52)) (-2749 (((-827 (-357)) $) NIL) (((-827 (-525)) $) NIL) (((-501) $) NIL) (($ (-887 (-385 (-525)))) 217) (($ (-887 (-525))) 213) (($ (-887 |#2|)) 228) (((-1074) $) 250) (((-887 |#2|) $) 162)) (-1270 (((-798) $) 30) (($ (-525)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-887 |#2|) $) 163) (($ (-385 (-525))) NIL) (($ $) NIL)) (-1992 (((-3 (-108) "failed") $ $) 71)))
+(((-990 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1270 (|#1| |#1|)) (-15 -2794 (|#1| |#1| |#1|)) (-15 -2794 (|#1| (-592 |#1|))) (-15 -1270 (|#1| (-385 (-525)))) (-15 -1270 ((-887 |#2|) |#1|)) (-15 -2749 ((-887 |#2|) |#1|)) (-15 -2749 ((-1074) |#1|)) (-15 -1910 (|#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -2449 (|#1| |#1|)) (-15 -2794 (|#2| |#2| |#1|)) (-15 -2552 (|#1| |#1| |#1|)) (-15 -3660 (|#1| |#1| |#1|)) (-15 -2552 (|#1| |#1| |#2|)) (-15 -3660 (|#1| |#1| |#2|)) (-15 -2638 (|#1| |#1|)) (-15 -4120 (|#1| |#1|)) (-15 -2749 (|#1| (-887 |#2|))) (-15 -3898 (|#1| (-887 |#2|))) (-15 -2591 ((-3 |#1| "failed") (-887 |#2|))) (-15 -2749 (|#1| (-887 (-525)))) (-15 -3898 (|#1| (-887 (-525)))) (-15 -2591 ((-3 |#1| "failed") (-887 (-525)))) (-15 -2749 (|#1| (-887 (-385 (-525))))) (-15 -3898 (|#1| (-887 (-385 (-525))))) (-15 -2591 ((-3 |#1| "failed") (-887 (-385 (-525))))) (-15 -3149 (|#1| |#1| |#1|)) (-15 -3417 (|#1| |#1| |#1|)) (-15 -2956 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4011 (-713))) |#1| |#1|)) (-15 -4229 (|#1| |#1| |#1|)) (-15 -3886 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|)) (-15 -3563 ((-2 (|:| -1655 |#1|) (|:| |gap| (-713)) (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1| |#4|)) (-15 -3563 ((-2 (|:| -1655 |#1|) (|:| |gap| (-713)) (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|)) (-15 -1784 ((-2 (|:| -1655 |#1|) (|:| |gap| (-713)) (|:| -3496 |#1|)) |#1| |#1| |#4|)) (-15 -1784 ((-2 (|:| -1655 |#1|) (|:| |gap| (-713)) (|:| -3496 |#1|)) |#1| |#1|)) (-15 -3531 (|#1| |#1| |#1| |#4|)) (-15 -3847 (|#1| |#1| |#1| |#4|)) (-15 -3531 (|#1| |#1| |#1|)) (-15 -3847 (|#1| |#1| |#1|)) (-15 -3074 (|#1| |#1| |#1| |#4|)) (-15 -2932 (|#1| |#1| |#1| |#4|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2932 (|#1| |#1| |#1|)) (-15 -4008 ((-108) |#1| (-592 |#1|))) (-15 -4008 ((-108) |#1| |#1|)) (-15 -3134 ((-108) |#1| (-592 |#1|))) (-15 -3134 ((-108) |#1| |#1|)) (-15 -2505 ((-108) |#1| (-592 |#1|))) (-15 -2505 ((-108) |#1| |#1|)) (-15 -4047 ((-108) |#1| (-592 |#1|))) (-15 -4047 ((-108) |#1| |#1|)) (-15 -4078 ((-108) |#1| |#1|)) (-15 -1363 ((-108) |#1| |#1|)) (-15 -1992 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3275 ((-592 |#1|) |#1|)) (-15 -1205 ((-592 |#1|) |#1|)) (-15 -1450 (|#1| |#1|)) (-15 -2852 (|#1| |#1|)) (-15 -2712 ((-108) |#1|)) (-15 -1898 ((-108) |#1|)) (-15 -2571 (|#1| |#1| |#4|)) (-15 -2548 (|#1| |#1| |#4|)) (-15 -3067 (|#1| |#1|)) (-15 -3436 ((-592 |#1|) |#1|)) (-15 -2228 (|#1| |#1|)) (-15 -2941 (|#1| |#1|)) (-15 -2581 (|#1| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -2232 ((-713) |#1|)) (-15 -1776 (|#4| |#1|)) (-15 -2749 ((-501) |#1|)) (-15 -2749 ((-827 (-525)) |#1|)) (-15 -2749 ((-827 (-357)) |#1|)) (-15 -3898 (|#4| |#1|)) (-15 -2591 ((-3 |#4| "failed") |#1|)) (-15 -1270 (|#1| |#4|)) (-15 -2548 (|#2| |#1|)) (-15 -2571 (|#1| |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1270 (|#1| |#2|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -3898 (|#2| |#1|)) (-15 -1270 (|#1| (-525))) (-15 -1270 ((-798) |#1|))) (-991 |#2| |#3| |#4|) (-977) (-735) (-789)) (T -990))
+NIL
+(-10 -8 (-15 -1270 (|#1| |#1|)) (-15 -2794 (|#1| |#1| |#1|)) (-15 -2794 (|#1| (-592 |#1|))) (-15 -1270 (|#1| (-385 (-525)))) (-15 -1270 ((-887 |#2|) |#1|)) (-15 -2749 ((-887 |#2|) |#1|)) (-15 -2749 ((-1074) |#1|)) (-15 -1910 (|#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -3891 (|#1| |#1|)) (-15 -2449 (|#1| |#1|)) (-15 -2794 (|#2| |#2| |#1|)) (-15 -2552 (|#1| |#1| |#1|)) (-15 -3660 (|#1| |#1| |#1|)) (-15 -2552 (|#1| |#1| |#2|)) (-15 -3660 (|#1| |#1| |#2|)) (-15 -2638 (|#1| |#1|)) (-15 -4120 (|#1| |#1|)) (-15 -2749 (|#1| (-887 |#2|))) (-15 -3898 (|#1| (-887 |#2|))) (-15 -2591 ((-3 |#1| "failed") (-887 |#2|))) (-15 -2749 (|#1| (-887 (-525)))) (-15 -3898 (|#1| (-887 (-525)))) (-15 -2591 ((-3 |#1| "failed") (-887 (-525)))) (-15 -2749 (|#1| (-887 (-385 (-525))))) (-15 -3898 (|#1| (-887 (-385 (-525))))) (-15 -2591 ((-3 |#1| "failed") (-887 (-385 (-525))))) (-15 -3149 (|#1| |#1| |#1|)) (-15 -3417 (|#1| |#1| |#1|)) (-15 -2956 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4011 (-713))) |#1| |#1|)) (-15 -4229 (|#1| |#1| |#1|)) (-15 -3886 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|)) (-15 -3563 ((-2 (|:| -1655 |#1|) (|:| |gap| (-713)) (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1| |#4|)) (-15 -3563 ((-2 (|:| -1655 |#1|) (|:| |gap| (-713)) (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|)) (-15 -1784 ((-2 (|:| -1655 |#1|) (|:| |gap| (-713)) (|:| -3496 |#1|)) |#1| |#1| |#4|)) (-15 -1784 ((-2 (|:| -1655 |#1|) (|:| |gap| (-713)) (|:| -3496 |#1|)) |#1| |#1|)) (-15 -3531 (|#1| |#1| |#1| |#4|)) (-15 -3847 (|#1| |#1| |#1| |#4|)) (-15 -3531 (|#1| |#1| |#1|)) (-15 -3847 (|#1| |#1| |#1|)) (-15 -3074 (|#1| |#1| |#1| |#4|)) (-15 -2932 (|#1| |#1| |#1| |#4|)) (-15 -3074 (|#1| |#1| |#1|)) (-15 -2932 (|#1| |#1| |#1|)) (-15 -4008 ((-108) |#1| (-592 |#1|))) (-15 -4008 ((-108) |#1| |#1|)) (-15 -3134 ((-108) |#1| (-592 |#1|))) (-15 -3134 ((-108) |#1| |#1|)) (-15 -2505 ((-108) |#1| (-592 |#1|))) (-15 -2505 ((-108) |#1| |#1|)) (-15 -4047 ((-108) |#1| (-592 |#1|))) (-15 -4047 ((-108) |#1| |#1|)) (-15 -4078 ((-108) |#1| |#1|)) (-15 -1363 ((-108) |#1| |#1|)) (-15 -1992 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3275 ((-592 |#1|) |#1|)) (-15 -1205 ((-592 |#1|) |#1|)) (-15 -1450 (|#1| |#1|)) (-15 -2852 (|#1| |#1|)) (-15 -2712 ((-108) |#1|)) (-15 -1898 ((-108) |#1|)) (-15 -2571 (|#1| |#1| |#4|)) (-15 -2548 (|#1| |#1| |#4|)) (-15 -3067 (|#1| |#1|)) (-15 -3436 ((-592 |#1|) |#1|)) (-15 -2228 (|#1| |#1|)) (-15 -2941 (|#1| |#1|)) (-15 -2581 (|#1| |#1|)) (-15 -3940 (|#1| |#1|)) (-15 -2232 ((-713) |#1|)) (-15 -1776 (|#4| |#1|)) (-15 -2749 ((-501) |#1|)) (-15 -2749 ((-827 (-525)) |#1|)) (-15 -2749 ((-827 (-357)) |#1|)) (-15 -3898 (|#4| |#1|)) (-15 -2591 ((-3 |#4| "failed") |#1|)) (-15 -1270 (|#1| |#4|)) (-15 -2548 (|#2| |#1|)) (-15 -2571 (|#1| |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1270 (|#1| |#2|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -3898 (|#2| |#1|)) (-15 -1270 (|#1| (-525))) (-15 -1270 ((-798) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2383 (((-592 |#3|) $) 110)) (-2146 (((-1087 $) $ |#3|) 125) (((-1087 |#1|) $) 124)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-3711 (($ $) 88 (|has| |#1| (-517)))) (-3380 (((-108) $) 90 (|has| |#1| (-517)))) (-3848 (((-713) $) 112) (((-713) $ (-592 |#3|)) 111)) (-2941 (($ $) 271)) (-4078 (((-108) $ $) 257)) (-1342 (((-3 $ "failed") $ $) 19)) (-1798 (($ $ $) 216 (|has| |#1| (-517)))) (-2387 (((-592 $) $ $) 211 (|has| |#1| (-517)))) (-4050 (((-396 (-1087 $)) (-1087 $)) 100 (|has| |#1| (-844)))) (-3706 (($ $) 98 (|has| |#1| (-429)))) (-2100 (((-396 $) $) 97 (|has| |#1| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) 103 (|has| |#1| (-844)))) (-2305 (($) 17 T CONST)) (-2591 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-968 (-525)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-887 (-385 (-525)))) 231 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1091))))) (((-3 $ "failed") (-887 (-525))) 228 (-3279 (-12 (-1825 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1091)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1091)))))) (((-3 $ "failed") (-887 |#1|)) 225 (-3279 (-12 (-1825 (|has| |#1| (-37 (-385 (-525))))) (-1825 (|has| |#1| (-37 (-525)))) (|has| |#3| (-567 (-1091)))) (-12 (-1825 (|has| |#1| (-510))) (-1825 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1091)))) (-12 (-1825 (|has| |#1| (-925 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1091))))))) (-3898 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-968 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-968 (-525)))) ((|#3| $) 135) (($ (-887 (-385 (-525)))) 230 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1091))))) (($ (-887 (-525))) 227 (-3279 (-12 (-1825 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1091)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1091)))))) (($ (-887 |#1|)) 224 (-3279 (-12 (-1825 (|has| |#1| (-37 (-385 (-525))))) (-1825 (|has| |#1| (-37 (-525)))) (|has| |#3| (-567 (-1091)))) (-12 (-1825 (|has| |#1| (-510))) (-1825 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1091)))) (-12 (-1825 (|has| |#1| (-925 (-525)))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1091))))))) (-1516 (($ $ $ |#3|) 108 (|has| |#1| (-160))) (($ $ $) 212 (|has| |#1| (-517)))) (-2571 (($ $) 154) (($ $ |#3|) 266)) (-3416 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-4047 (((-108) $ $) 256) (((-108) $ (-592 $)) 255)) (-3762 (((-3 $ "failed") $) 34)) (-2712 (((-108) $) 264)) (-3886 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 236)) (-2449 (($ $) 205 (|has| |#1| (-429)))) (-3026 (($ $) 176 (|has| |#1| (-429))) (($ $ |#3|) 105 (|has| |#1| (-429)))) (-2558 (((-592 $) $) 109)) (-3836 (((-108) $) 96 (|has| |#1| (-844)))) (-2638 (($ $) 221 (|has| |#1| (-517)))) (-4120 (($ $) 222 (|has| |#1| (-517)))) (-2932 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3074 (($ $ $) 247) (($ $ $ |#3|) 245)) (-2192 (($ $ |#1| |#2| $) 172)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 84 (-12 (|has| |#3| (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 83 (-12 (|has| |#3| (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-1985 (((-108) $) 31)) (-1647 (((-713) $) 169)) (-4008 (((-108) $ $) 250) (((-108) $ (-592 $)) 249)) (-1235 (($ $ $ $ $) 207 (|has| |#1| (-517)))) (-1776 ((|#3| $) 275)) (-2368 (($ (-1087 |#1|) |#3|) 117) (($ (-1087 $) |#3|) 116)) (-2177 (((-592 $) $) 126)) (-1788 (((-108) $) 152)) (-2352 (($ |#1| |#2|) 153) (($ $ |#3| (-713)) 119) (($ $ (-592 |#3|) (-592 (-713))) 118)) (-4229 (($ $ $) 235)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ |#3|) 120)) (-1898 (((-108) $) 265)) (-3724 ((|#2| $) 170) (((-713) $ |#3|) 122) (((-592 (-713)) $ (-592 |#3|)) 121)) (-2371 (($ $ $) 79 (|has| |#1| (-789)))) (-2232 (((-713) $) 274)) (-2535 (($ $ $) 78 (|has| |#1| (-789)))) (-3922 (($ (-1 |#2| |#2|) $) 171)) (-2694 (($ (-1 |#1| |#1|) $) 151)) (-3567 (((-3 |#3| "failed") $) 123)) (-1910 (($ $) 202 (|has| |#1| (-429)))) (-1758 (($ $) 203 (|has| |#1| (-429)))) (-3275 (((-592 $) $) 260)) (-2852 (($ $) 263)) (-3891 (($ $) 204 (|has| |#1| (-429)))) (-1205 (((-592 $) $) 261)) (-1450 (($ $) 262)) (-2538 (($ $) 149)) (-2548 ((|#1| $) 148) (($ $ |#3|) 267)) (-2756 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-2956 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4011 (-713))) $ $) 234)) (-3563 (((-2 (|:| -1655 $) (|:| |gap| (-713)) (|:| -2370 $) (|:| -3496 $)) $ $) 238) (((-2 (|:| -1655 $) (|:| |gap| (-713)) (|:| -2370 $) (|:| -3496 $)) $ $ |#3|) 237)) (-1784 (((-2 (|:| -1655 $) (|:| |gap| (-713)) (|:| -3496 $)) $ $) 240) (((-2 (|:| -1655 $) (|:| |gap| (-713)) (|:| -3496 $)) $ $ |#3|) 239)) (-3847 (($ $ $) 244) (($ $ $ |#3|) 242)) (-3531 (($ $ $) 243) (($ $ $ |#3|) 241)) (-3451 (((-1074) $) 9)) (-3488 (($ $ $) 210 (|has| |#1| (-517)))) (-3436 (((-592 $) $) 269)) (-4228 (((-3 (-592 $) "failed") $) 114)) (-3852 (((-3 (-592 $) "failed") $) 115)) (-1553 (((-3 (-2 (|:| |var| |#3|) (|:| -1864 (-713))) "failed") $) 113)) (-3134 (((-108) $ $) 252) (((-108) $ (-592 $)) 251)) (-3149 (($ $ $) 232)) (-3940 (($ $) 273)) (-1363 (((-108) $ $) 258)) (-2505 (((-108) $ $) 254) (((-108) $ (-592 $)) 253)) (-3417 (($ $ $) 233)) (-2581 (($ $) 272)) (-2012 (((-1038) $) 10)) (-3141 (((-2 (|:| -2794 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-517)))) (-2485 (((-2 (|:| -2794 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-517)))) (-2513 (((-108) $) 166)) (-2525 ((|#1| $) 167)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 95 (|has| |#1| (-429)))) (-2794 ((|#1| |#1| $) 206 (|has| |#1| (-429))) (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-1215 (((-396 (-1087 $)) (-1087 $)) 102 (|has| |#1| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) 101 (|has| |#1| (-844)))) (-2195 (((-396 $) $) 99 (|has| |#1| (-844)))) (-3674 (((-2 (|:| -2794 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-517)))) (-1680 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-2552 (($ $ |#1|) 219 (|has| |#1| (-517))) (($ $ $) 217 (|has| |#1| (-517)))) (-3660 (($ $ |#1|) 220 (|has| |#1| (-517))) (($ $ $) 218 (|has| |#1| (-517)))) (-2602 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-592 |#3|) (-592 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-592 |#3|) (-592 $)) 138)) (-2094 (($ $ |#3|) 107 (|has| |#1| (-160)))) (-2523 (($ $ |#3|) 42) (($ $ (-592 |#3|)) 41) (($ $ |#3| (-713)) 40) (($ $ (-592 |#3|) (-592 (-713))) 39)) (-1587 ((|#2| $) 150) (((-713) $ |#3|) 130) (((-592 (-713)) $ (-592 |#3|)) 129)) (-2228 (($ $) 270)) (-3067 (($ $) 268)) (-2749 (((-827 (-357)) $) 82 (-12 (|has| |#3| (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) 81 (-12 (|has| |#3| (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) 80 (-12 (|has| |#3| (-567 (-501))) (|has| |#1| (-567 (-501))))) (($ (-887 (-385 (-525)))) 229 (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1091))))) (($ (-887 (-525))) 226 (-3279 (-12 (-1825 (|has| |#1| (-37 (-385 (-525))))) (|has| |#1| (-37 (-525))) (|has| |#3| (-567 (-1091)))) (-12 (|has| |#1| (-37 (-385 (-525)))) (|has| |#3| (-567 (-1091)))))) (($ (-887 |#1|)) 223 (|has| |#3| (-567 (-1091)))) (((-1074) $) 201 (-12 (|has| |#1| (-968 (-525))) (|has| |#3| (-567 (-1091))))) (((-887 |#1|) $) 200 (|has| |#3| (-567 (-1091))))) (-2026 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ |#3|) 106 (|has| |#1| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) 104 (-3830 (|has| $ (-136)) (|has| |#1| (-844))))) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ |#3|) 137) (((-887 |#1|) $) 199 (|has| |#3| (-567 (-1091)))) (($ (-385 (-525))) 72 (-3279 (|has| |#1| (-968 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-1562 (((-592 |#1|) $) 168)) (-3468 ((|#1| $ |#2|) 155) (($ $ |#3| (-713)) 128) (($ $ (-592 |#3|) (-592 (-713))) 127)) (-3425 (((-3 $ "failed") $) 73 (-3279 (-3830 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2104 (((-713)) 29)) (-3658 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-3959 (((-108) $ $) 89 (|has| |#1| (-517)))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-1992 (((-3 (-108) "failed") $ $) 259)) (-3363 (($) 30 T CONST)) (-3634 (($ $ $ $ (-713)) 208 (|has| |#1| (-517)))) (-3462 (($ $ $ (-713)) 209 (|has| |#1| (-517)))) (-2093 (($ $ |#3|) 38) (($ $ (-592 |#3|)) 37) (($ $ |#3| (-713)) 36) (($ $ (-592 |#3|) (-592 (-713))) 35)) (-4045 (((-108) $ $) 76 (|has| |#1| (-789)))) (-4026 (((-108) $ $) 75 (|has| |#1| (-789)))) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 77 (|has| |#1| (-789)))) (-4017 (((-108) $ $) 74 (|has| |#1| (-789)))) (-4100 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-991 |#1| |#2| |#3|) (-131) (-977) (-735) (-789)) (T -991))
+((-1776 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-2232 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-713)))) (-3940 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2581 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2941 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2228 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3436 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-991 *3 *4 *5)))) (-3067 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2548 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-2571 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-1898 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2852 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1450 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-1205 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-991 *3 *4 *5)))) (-3275 (*1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-991 *3 *4 *5)))) (-1992 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-1363 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-4078 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-4047 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-4047 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-2505 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-2505 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-3134 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-3134 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-4008 (*1 *2 *1 *1) (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108)))) (-4008 (*1 *2 *1 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)))) (-2932 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3074 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2932 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-3074 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-3847 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3531 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3847 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-3531 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *2 (-789)))) (-1784 (*1 *2 *1 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -1655 *1) (|:| |gap| (-713)) (|:| -3496 *1))) (-4 *1 (-991 *3 *4 *5)))) (-1784 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -1655 *1) (|:| |gap| (-713)) (|:| -3496 *1))) (-4 *1 (-991 *4 *5 *3)))) (-3563 (*1 *2 *1 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -1655 *1) (|:| |gap| (-713)) (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-991 *3 *4 *5)))) (-3563 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-2 (|:| -1655 *1) (|:| |gap| (-713)) (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-991 *4 *5 *3)))) (-3886 (*1 *2 *1 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-991 *3 *4 *5)))) (-4229 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2956 (*1 *2 *1 *1) (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4011 (-713)))) (-4 *1 (-991 *3 *4 *5)))) (-3417 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-3149 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)))) (-2591 (*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-385 (-525)))) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1091))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))) (-3898 (*1 *1 *2) (-12 (-5 *2 (-887 (-385 (-525)))) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1091))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-887 (-385 (-525)))) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1091))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))) (-2591 (*1 *1 *2) (|partial| -3279 (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-1825 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1091)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1091)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))))) (-3898 (*1 *1 *2) (-3279 (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-1825 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1091)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1091)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))))) (-2749 (*1 *1 *2) (-3279 (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-1825 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1091)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5)) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1091)))) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))))) (-2591 (*1 *1 *2) (|partial| -3279 (-12 (-5 *2 (-887 *3)) (-12 (-1825 (-4 *3 (-37 (-385 (-525))))) (-1825 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1091)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 *3)) (-12 (-1825 (-4 *3 (-510))) (-1825 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1091)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 *3)) (-12 (-1825 (-4 *3 (-925 (-525)))) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1091)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))))) (-3898 (*1 *1 *2) (-3279 (-12 (-5 *2 (-887 *3)) (-12 (-1825 (-4 *3 (-37 (-385 (-525))))) (-1825 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1091)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 *3)) (-12 (-1825 (-4 *3 (-510))) (-1825 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1091)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))) (-12 (-5 *2 (-887 *3)) (-12 (-1825 (-4 *3 (-925 (-525)))) (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1091)))) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735)) (-4 *5 (-789))))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-887 *3)) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *5 (-567 (-1091))) (-4 *4 (-735)) (-4 *5 (-789)))) (-4120 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-2638 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3660 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-2552 (*1 *1 *1 *2) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3660 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-2552 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-1798 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3674 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2794 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-991 *3 *4 *5)))) (-2485 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2794 *1) (|:| |coef1| *1))) (-4 *1 (-991 *3 *4 *5)))) (-3141 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-2 (|:| -2794 *1) (|:| |coef2| *1))) (-4 *1 (-991 *3 *4 *5)))) (-1516 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-2387 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-991 *3 *4 *5)))) (-3488 (*1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-3462 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))) (-3634 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))) (-1235 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-517)))) (-2794 (*1 *2 *2 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-2449 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-3891 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-1758 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))) (-1910 (*1 *1 *1) (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-429)))))
+(-13 (-884 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1776 (|t#3| $)) (-15 -2232 ((-713) $)) (-15 -3940 ($ $)) (-15 -2581 ($ $)) (-15 -2941 ($ $)) (-15 -2228 ($ $)) (-15 -3436 ((-592 $) $)) (-15 -3067 ($ $)) (-15 -2548 ($ $ |t#3|)) (-15 -2571 ($ $ |t#3|)) (-15 -1898 ((-108) $)) (-15 -2712 ((-108) $)) (-15 -2852 ($ $)) (-15 -1450 ($ $)) (-15 -1205 ((-592 $) $)) (-15 -3275 ((-592 $) $)) (-15 -1992 ((-3 (-108) "failed") $ $)) (-15 -1363 ((-108) $ $)) (-15 -4078 ((-108) $ $)) (-15 -4047 ((-108) $ $)) (-15 -4047 ((-108) $ (-592 $))) (-15 -2505 ((-108) $ $)) (-15 -2505 ((-108) $ (-592 $))) (-15 -3134 ((-108) $ $)) (-15 -3134 ((-108) $ (-592 $))) (-15 -4008 ((-108) $ $)) (-15 -4008 ((-108) $ (-592 $))) (-15 -2932 ($ $ $)) (-15 -3074 ($ $ $)) (-15 -2932 ($ $ $ |t#3|)) (-15 -3074 ($ $ $ |t#3|)) (-15 -3847 ($ $ $)) (-15 -3531 ($ $ $)) (-15 -3847 ($ $ $ |t#3|)) (-15 -3531 ($ $ $ |t#3|)) (-15 -1784 ((-2 (|:| -1655 $) (|:| |gap| (-713)) (|:| -3496 $)) $ $)) (-15 -1784 ((-2 (|:| -1655 $) (|:| |gap| (-713)) (|:| -3496 $)) $ $ |t#3|)) (-15 -3563 ((-2 (|:| -1655 $) (|:| |gap| (-713)) (|:| -2370 $) (|:| -3496 $)) $ $)) (-15 -3563 ((-2 (|:| -1655 $) (|:| |gap| (-713)) (|:| -2370 $) (|:| -3496 $)) $ $ |t#3|)) (-15 -3886 ((-2 (|:| -2370 $) (|:| -3496 $)) $ $)) (-15 -4229 ($ $ $)) (-15 -2956 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4011 (-713))) $ $)) (-15 -3417 ($ $ $)) (-15 -3149 ($ $ $)) (IF (|has| |t#3| (-567 (-1091))) (PROGN (-6 (-566 (-887 |t#1|))) (-6 (-567 (-887 |t#1|))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2591 ((-3 $ "failed") (-887 (-385 (-525))))) (-15 -3898 ($ (-887 (-385 (-525))))) (-15 -2749 ($ (-887 (-385 (-525))))) (-15 -2591 ((-3 $ "failed") (-887 (-525)))) (-15 -3898 ($ (-887 (-525)))) (-15 -2749 ($ (-887 (-525)))) (IF (|has| |t#1| (-925 (-525))) |%noBranch| (PROGN (-15 -2591 ((-3 $ "failed") (-887 |t#1|))) (-15 -3898 ($ (-887 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-525))) (IF (|has| |t#1| (-37 (-385 (-525)))) |%noBranch| (PROGN (-15 -2591 ((-3 $ "failed") (-887 (-525)))) (-15 -3898 ($ (-887 (-525)))) (-15 -2749 ($ (-887 (-525)))) (IF (|has| |t#1| (-510)) |%noBranch| (PROGN (-15 -2591 ((-3 $ "failed") (-887 |t#1|))) (-15 -3898 ($ (-887 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-525))) |%noBranch| (IF (|has| |t#1| (-37 (-385 (-525)))) |%noBranch| (PROGN (-15 -2591 ((-3 $ "failed") (-887 |t#1|))) (-15 -3898 ($ (-887 |t#1|)))))) (-15 -2749 ($ (-887 |t#1|))) (IF (|has| |t#1| (-968 (-525))) (-6 (-567 (-1074))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-15 -4120 ($ $)) (-15 -2638 ($ $)) (-15 -3660 ($ $ |t#1|)) (-15 -2552 ($ $ |t#1|)) (-15 -3660 ($ $ $)) (-15 -2552 ($ $ $)) (-15 -1798 ($ $ $)) (-15 -3674 ((-2 (|:| -2794 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2485 ((-2 (|:| -2794 $) (|:| |coef1| $)) $ $)) (-15 -3141 ((-2 (|:| -2794 $) (|:| |coef2| $)) $ $)) (-15 -1516 ($ $ $)) (-15 -2387 ((-592 $) $ $)) (-15 -3488 ($ $ $)) (-15 -3462 ($ $ $ (-713))) (-15 -3634 ($ $ $ $ (-713))) (-15 -1235 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (PROGN (-15 -2794 (|t#1| |t#1| $)) (-15 -2449 ($ $)) (-15 -3891 ($ $)) (-15 -1758 ($ $)) (-15 -1910 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-566 (-887 |#1|)) |has| |#3| (-567 (-1091))) ((-160) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| |#1| (-567 (-501))) (|has| |#3| (-567 (-501)))) ((-567 (-827 (-357))) -12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#3| (-567 (-827 (-357))))) ((-567 (-827 (-525))) -12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#3| (-567 (-827 (-525))))) ((-567 (-887 |#1|)) |has| |#3| (-567 (-1091))) ((-567 (-1074)) -12 (|has| |#1| (-968 (-525))) (|has| |#3| (-567 (-1091)))) ((-269) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-288 $) . T) ((-304 |#1| |#2|) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3279 (|has| |#1| (-844)) (|has| |#1| (-429))) ((-486 |#3| |#1|) . T) ((-486 |#3| $) . T) ((-486 $ $) . T) ((-517) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 |#3|) . T) ((-821 (-357)) -12 (|has| |#1| (-821 (-357))) (|has| |#3| (-821 (-357)))) ((-821 (-525)) -12 (|has| |#1| (-821 (-525))) (|has| |#3| (-821 (-525)))) ((-884 |#1| |#2| |#3|) . T) ((-844) |has| |#1| (-844)) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 |#1|) . T) ((-968 |#3|) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1131) |has| |#1| (-844)))
+((-1989 (((-108) |#3| $) 13)) (-3572 (((-3 $ "failed") |#3| (-856)) 23)) (-3762 (((-3 |#3| "failed") |#3| $) 38)) (-3017 (((-108) |#3| $) 16)) (-3912 (((-108) |#3| $) 14)))
+(((-992 |#1| |#2| |#3|) (-10 -8 (-15 -3572 ((-3 |#1| "failed") |#3| (-856))) (-15 -3762 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3017 ((-108) |#3| |#1|)) (-15 -3912 ((-108) |#3| |#1|)) (-15 -1989 ((-108) |#3| |#1|))) (-993 |#2| |#3|) (-13 (-787) (-341)) (-1149 |#2|)) (T -992))
+NIL
+(-10 -8 (-15 -3572 ((-3 |#1| "failed") |#3| (-856))) (-15 -3762 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3017 ((-108) |#3| |#1|)) (-15 -3912 ((-108) |#3| |#1|)) (-15 -1989 ((-108) |#3| |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) |#2| $) 21)) (-1436 (((-525) |#2| $) 22)) (-3572 (((-3 $ "failed") |#2| (-856)) 15)) (-1265 ((|#1| |#2| $ |#1|) 13)) (-3762 (((-3 |#2| "failed") |#2| $) 18)) (-3017 (((-108) |#2| $) 19)) (-3912 (((-108) |#2| $) 20)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1571 ((|#2| $) 17)) (-1270 (((-798) $) 11)) (-1369 ((|#1| |#2| $ |#1|) 14)) (-4208 (((-592 $) |#2|) 16)) (-3994 (((-108) $ $) 6)))
+(((-993 |#1| |#2|) (-131) (-13 (-787) (-341)) (-1149 |t#1|)) (T -993))
+((-1436 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1149 *4)) (-5 *2 (-525)))) (-1989 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1149 *4)) (-5 *2 (-108)))) (-3912 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1149 *4)) (-5 *2 (-108)))) (-3017 (*1 *2 *3 *1) (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1149 *4)) (-5 *2 (-108)))) (-3762 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-993 *3 *2)) (-4 *3 (-13 (-787) (-341))) (-4 *2 (-1149 *3)))) (-1571 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *2)) (-4 *3 (-13 (-787) (-341))) (-4 *2 (-1149 *3)))) (-4208 (*1 *2 *3) (-12 (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1149 *4)) (-5 *2 (-592 *1)) (-4 *1 (-993 *4 *3)))) (-3572 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-856)) (-4 *4 (-13 (-787) (-341))) (-4 *1 (-993 *4 *2)) (-4 *2 (-1149 *4)))) (-1369 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-993 *2 *3)) (-4 *2 (-13 (-787) (-341))) (-4 *3 (-1149 *2)))) (-1265 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-993 *2 *3)) (-4 *2 (-13 (-787) (-341))) (-4 *3 (-1149 *2)))))
+(-13 (-1020) (-10 -8 (-15 -1436 ((-525) |t#2| $)) (-15 -1989 ((-108) |t#2| $)) (-15 -3912 ((-108) |t#2| $)) (-15 -3017 ((-108) |t#2| $)) (-15 -3762 ((-3 |t#2| "failed") |t#2| $)) (-15 -1571 (|t#2| $)) (-15 -4208 ((-592 $) |t#2|)) (-15 -3572 ((-3 $ "failed") |t#2| (-856))) (-15 -1369 (|t#1| |t#2| $ |t#1|)) (-15 -1265 (|t#1| |t#2| $ |t#1|))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-3835 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) (-713)) 96)) (-3757 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713)) 56)) (-3730 (((-1178) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-713)) 87)) (-3257 (((-713) (-592 |#4|) (-592 |#5|)) 27)) (-3474 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713)) 58) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713) (-108)) 60)) (-1588 (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108)) 78) (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108)) 79)) (-2749 (((-1074) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) 82)) (-4218 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-108)) 55)) (-1862 (((-713) (-592 |#4|) (-592 |#5|)) 19)))
+(((-994 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1862 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -3257 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -4218 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-108))) (-15 -3757 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713))) (-15 -3757 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5|)) (-15 -3474 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -3474 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713))) (-15 -3474 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5|)) (-15 -1588 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -1588 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3835 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) (-713))) (-15 -2749 ((-1074) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|)))) (-15 -3730 ((-1178) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-713)))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -994))
+((-3730 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -1895 *9)))) (-5 *4 (-713)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1178)) (-5 *1 (-994 *5 *6 *7 *8 *9)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -1895 *8))) (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1074)) (-5 *1 (-994 *4 *5 *6 *7 *8)))) (-3835 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -1895 *11)))) (-5 *3 (-592 *10)) (-5 *4 (-592 *11)) (-5 *5 (-2 (|:| |done| (-592 *11)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *10)) (|:| -1895 *11)))))) (-5 *6 (-713)) (-4 *10 (-991 *7 *8 *9)) (-4 *11 (-996 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-5 *1 (-994 *7 *8 *9 *10 *11)))) (-1588 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-994 *5 *6 *7 *8 *9)))) (-1588 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-994 *5 *6 *7 *8 *9)))) (-3474 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4)))))) (-5 *1 (-994 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3474 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4)))))) (-5 *1 (-994 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3)))) (-3474 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-4 *3 (-991 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4)))))) (-5 *1 (-994 *7 *8 *9 *3 *4)) (-4 *4 (-996 *7 *8 *9 *3)))) (-3757 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4)))))) (-5 *1 (-994 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3757 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4)))))) (-5 *1 (-994 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3)))) (-4218 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4)))))) (-5 *1 (-994 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3)))) (-3257 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-994 *5 *6 *7 *8 *9)))) (-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-994 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1862 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -3257 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -4218 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-108))) (-15 -3757 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713))) (-15 -3757 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5|)) (-15 -3474 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -3474 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713))) (-15 -3474 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5|)) (-15 -1588 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -1588 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3835 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) (-713))) (-15 -2749 ((-1074) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|)))) (-15 -3730 ((-1178) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-713))))
+((-3859 (((-108) |#5| $) 21)) (-2671 (((-108) |#5| $) 24)) (-2259 (((-108) |#5| $) 16) (((-108) $) 45)) (-3792 (((-592 $) |#5| $) NIL) (((-592 $) (-592 |#5|) $) 77) (((-592 $) (-592 |#5|) (-592 $)) 75) (((-592 $) |#5| (-592 $)) 78)) (-2182 (($ $ |#5|) NIL) (((-592 $) |#5| $) NIL) (((-592 $) |#5| (-592 $)) 60) (((-592 $) (-592 |#5|) $) 62) (((-592 $) (-592 |#5|) (-592 $)) 64)) (-3552 (((-592 $) |#5| $) NIL) (((-592 $) |#5| (-592 $)) 54) (((-592 $) (-592 |#5|) $) 56) (((-592 $) (-592 |#5|) (-592 $)) 58)) (-4079 (((-108) |#5| $) 27)))
+(((-995 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2182 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -2182 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -2182 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -2182 ((-592 |#1|) |#5| |#1|)) (-15 -3552 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -3552 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -3552 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -3552 ((-592 |#1|) |#5| |#1|)) (-15 -3792 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -3792 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -3792 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -3792 ((-592 |#1|) |#5| |#1|)) (-15 -2671 ((-108) |#5| |#1|)) (-15 -2259 ((-108) |#1|)) (-15 -4079 ((-108) |#5| |#1|)) (-15 -3859 ((-108) |#5| |#1|)) (-15 -2259 ((-108) |#5| |#1|)) (-15 -2182 (|#1| |#1| |#5|))) (-996 |#2| |#3| |#4| |#5|) (-429) (-735) (-789) (-991 |#2| |#3| |#4|)) (T -995))
+NIL
+(-10 -8 (-15 -2182 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -2182 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -2182 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -2182 ((-592 |#1|) |#5| |#1|)) (-15 -3552 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -3552 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -3552 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -3552 ((-592 |#1|) |#5| |#1|)) (-15 -3792 ((-592 |#1|) |#5| (-592 |#1|))) (-15 -3792 ((-592 |#1|) (-592 |#5|) (-592 |#1|))) (-15 -3792 ((-592 |#1|) (-592 |#5|) |#1|)) (-15 -3792 ((-592 |#1|) |#5| |#1|)) (-15 -2671 ((-108) |#5| |#1|)) (-15 -2259 ((-108) |#1|)) (-15 -4079 ((-108) |#5| |#1|)) (-15 -3859 ((-108) |#5| |#1|)) (-15 -2259 ((-108) |#5| |#1|)) (-15 -2182 (|#1| |#1| |#5|)))
+((-1260 (((-108) $ $) 7)) (-4022 (((-592 (-2 (|:| -2849 $) (|:| -2409 (-592 |#4|)))) (-592 |#4|)) 85)) (-3221 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-2383 (((-592 |#3|) $) 33)) (-3163 (((-108) $) 26)) (-3018 (((-108) $) 17 (|has| |#1| (-517)))) (-2220 (((-108) |#4| $) 101) (((-108) $) 97)) (-1952 ((|#4| |#4| $) 92)) (-3706 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 $))) |#4| $) 126)) (-2855 (((-2 (|:| |under| $) (|:| -2793 $) (|:| |upper| $)) $ |#3|) 27)) (-3330 (((-108) $ (-713)) 44)) (-3826 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4255))) (((-3 |#4| "failed") $ |#3|) 79)) (-2305 (($) 45 T CONST)) (-3393 (((-108) $) 22 (|has| |#1| (-517)))) (-3438 (((-108) $ $) 24 (|has| |#1| (-517)))) (-1396 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3291 (((-108) $) 25 (|has| |#1| (-517)))) (-4032 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1653 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1551 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-2591 (((-3 $ "failed") (-592 |#4|)) 36)) (-3898 (($ (-592 |#4|)) 35)) (-3121 (((-3 $ "failed") $) 82)) (-2457 ((|#4| |#4| $) 89)) (-3137 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4255)))) (-3496 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-4047 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-3129 ((|#4| |#4| $) 87)) (-3503 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4255))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4255))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2520 (((-2 (|:| -2849 (-592 |#4|)) (|:| -2409 (-592 |#4|))) $) 105)) (-3859 (((-108) |#4| $) 136)) (-2671 (((-108) |#4| $) 133)) (-2259 (((-108) |#4| $) 137) (((-108) $) 134)) (-3702 (((-592 |#4|) $) 52 (|has| $ (-6 -4255)))) (-4008 (((-108) |#4| $) 104) (((-108) $) 103)) (-1776 ((|#3| $) 34)) (-2482 (((-108) $ (-713)) 43)) (-1749 (((-592 |#4|) $) 53 (|has| $ (-6 -4255)))) (-2783 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#4| |#4|) $) 47)) (-2723 (((-592 |#3|) $) 32)) (-2069 (((-108) |#3| $) 31)) (-2957 (((-108) $ (-713)) 42)) (-3451 (((-1074) $) 9)) (-4038 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-3488 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 $))) |#4| |#4| $) 127)) (-1636 (((-3 |#4| "failed") $) 83)) (-1502 (((-592 $) |#4| $) 129)) (-4030 (((-3 (-108) (-592 $)) |#4| $) 132)) (-1521 (((-592 (-2 (|:| |val| (-108)) (|:| -1895 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-3792 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-2964 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-3231 (((-592 |#4|) $) 107)) (-3134 (((-108) |#4| $) 99) (((-108) $) 95)) (-3149 ((|#4| |#4| $) 90)) (-1363 (((-108) $ $) 110)) (-1410 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2505 (((-108) |#4| $) 100) (((-108) $) 96)) (-3417 ((|#4| |#4| $) 91)) (-2012 (((-1038) $) 10)) (-3110 (((-3 |#4| "failed") $) 84)) (-3207 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3599 (((-3 $ "failed") $ |#4|) 78)) (-2182 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-3006 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-3428 (((-108) $ $) 38)) (-2013 (((-108) $) 41)) (-2718 (($) 40)) (-1587 (((-713) $) 106)) (-2040 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4255)))) (-1451 (($ $) 39)) (-2749 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1279 (($ (-592 |#4|)) 60)) (-3422 (($ $ |#3|) 28)) (-1248 (($ $ |#3|) 30)) (-1963 (($ $) 88)) (-1847 (($ $ |#3|) 29)) (-1270 (((-798) $) 11) (((-592 |#4|) $) 37)) (-1970 (((-713) $) 76 (|has| |#3| (-346)))) (-2927 (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4213 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-3552 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-3633 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4255)))) (-3726 (((-592 |#3|) $) 81)) (-4079 (((-108) |#4| $) 135)) (-1728 (((-108) |#3| $) 80)) (-3994 (((-108) $ $) 6)) (-3596 (((-713) $) 46 (|has| $ (-6 -4255)))))
+(((-996 |#1| |#2| |#3| |#4|) (-131) (-429) (-735) (-789) (-991 |t#1| |t#2| |t#3|)) (T -996))
+((-2259 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-3859 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-4079 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-2259 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-2671 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-4030 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-3 (-108) (-592 *1))) (-4 *1 (-996 *4 *5 *6 *3)))) (-1521 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1895 *1)))) (-4 *1 (-996 *4 *5 *6 *3)))) (-1521 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-1502 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)))) (-4038 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-3 *3 (-592 *1))) (-4 *1 (-996 *4 *5 *6 *3)))) (-3488 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *1)))) (-4 *1 (-996 *4 *5 *6 *3)))) (-3706 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *1)))) (-4 *1 (-996 *4 *5 *6 *3)))) (-3792 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)))) (-3792 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *7)))) (-3792 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)))) (-3792 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)))) (-3552 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)))) (-3552 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)))) (-3552 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *7)))) (-3552 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)))) (-2964 (*1 *1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-2964 (*1 *1 *2 *1) (-12 (-5 *2 (-592 *6)) (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)))) (-2182 (*1 *2 *3 *1) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)))) (-2182 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)))) (-2182 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *7)))) (-2182 (*1 *2 *3 *2) (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)))) (-3221 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-996 *5 *6 *7 *8)))))
+(-13 (-1121 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2259 ((-108) |t#4| $)) (-15 -3859 ((-108) |t#4| $)) (-15 -4079 ((-108) |t#4| $)) (-15 -2259 ((-108) $)) (-15 -2671 ((-108) |t#4| $)) (-15 -4030 ((-3 (-108) (-592 $)) |t#4| $)) (-15 -1521 ((-592 (-2 (|:| |val| (-108)) (|:| -1895 $))) |t#4| $)) (-15 -1521 ((-108) |t#4| $)) (-15 -1502 ((-592 $) |t#4| $)) (-15 -4038 ((-3 |t#4| (-592 $)) |t#4| |t#4| $)) (-15 -3488 ((-592 (-2 (|:| |val| |t#4|) (|:| -1895 $))) |t#4| |t#4| $)) (-15 -3706 ((-592 (-2 (|:| |val| |t#4|) (|:| -1895 $))) |t#4| $)) (-15 -3792 ((-592 $) |t#4| $)) (-15 -3792 ((-592 $) (-592 |t#4|) $)) (-15 -3792 ((-592 $) (-592 |t#4|) (-592 $))) (-15 -3792 ((-592 $) |t#4| (-592 $))) (-15 -3552 ((-592 $) |t#4| $)) (-15 -3552 ((-592 $) |t#4| (-592 $))) (-15 -3552 ((-592 $) (-592 |t#4|) $)) (-15 -3552 ((-592 $) (-592 |t#4|) (-592 $))) (-15 -2964 ($ |t#4| $)) (-15 -2964 ($ (-592 |t#4|) $)) (-15 -2182 ((-592 $) |t#4| $)) (-15 -2182 ((-592 $) |t#4| (-592 $))) (-15 -2182 ((-592 $) (-592 |t#4|) $)) (-15 -2182 ((-592 $) (-592 |t#4|) (-592 $))) (-15 -3221 ((-592 $) (-592 |t#4|) (-108)))))
+(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-798)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-909 |#1| |#2| |#3| |#4|) . T) ((-1020) . T) ((-1121 |#1| |#2| |#3| |#4|) . T) ((-1127) . T))
+((-4135 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#5|) 81)) (-3166 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5|) 113)) (-2082 (((-592 |#5|) |#4| |#5|) 70)) (-1802 (((-592 (-2 (|:| |val| (-108)) (|:| -1895 |#5|))) |#4| |#5|) 46) (((-108) |#4| |#5|) 53)) (-3361 (((-1178)) 37)) (-1302 (((-1178)) 26)) (-1876 (((-1178) (-1074) (-1074) (-1074)) 33)) (-1687 (((-1178) (-1074) (-1074) (-1074)) 22)) (-2982 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) |#4| |#4| |#5|) 96)) (-3953 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) |#3| (-108)) 107) (((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5| (-108) (-108)) 50)) (-1373 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5|) 102)))
+(((-997 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1687 ((-1178) (-1074) (-1074) (-1074))) (-15 -1302 ((-1178))) (-15 -1876 ((-1178) (-1074) (-1074) (-1074))) (-15 -3361 ((-1178))) (-15 -2982 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) |#4| |#4| |#5|)) (-15 -3953 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3953 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) |#3| (-108))) (-15 -1373 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5|)) (-15 -3166 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5|)) (-15 -1802 ((-108) |#4| |#5|)) (-15 -1802 ((-592 (-2 (|:| |val| (-108)) (|:| -1895 |#5|))) |#4| |#5|)) (-15 -2082 ((-592 |#5|) |#4| |#5|)) (-15 -4135 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#5|))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -997))
+((-4135 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4)))) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-2082 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1802 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1895 *4)))) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1802 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3166 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4)))) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1373 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4)))) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3953 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -1895 *9)))) (-5 *5 (-108)) (-4 *8 (-991 *6 *7 *4)) (-4 *9 (-996 *6 *7 *4 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789)) (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -1895 *9)))) (-5 *1 (-997 *6 *7 *4 *8 *9)))) (-3953 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4)))) (-5 *1 (-997 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3)))) (-2982 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4)))) (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3361 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1178)) (-5 *1 (-997 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-1876 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1178)) (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-1302 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1178)) (-5 *1 (-997 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-1687 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1178)) (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1687 ((-1178) (-1074) (-1074) (-1074))) (-15 -1302 ((-1178))) (-15 -1876 ((-1178) (-1074) (-1074) (-1074))) (-15 -3361 ((-1178))) (-15 -2982 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) |#4| |#4| |#5|)) (-15 -3953 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3953 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) |#3| (-108))) (-15 -1373 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5|)) (-15 -3166 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5|)) (-15 -1802 ((-108) |#4| |#5|)) (-15 -1802 ((-592 (-2 (|:| |val| (-108)) (|:| -1895 |#5|))) |#4| |#5|)) (-15 -2082 ((-592 |#5|) |#4| |#5|)) (-15 -4135 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#5|)))
+((-1260 (((-108) $ $) NIL)) (-3800 (((-1091) $) 8)) (-3451 (((-1074) $) 16)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 11)) (-3994 (((-108) $ $) 13)))
+(((-998 |#1|) (-13 (-1020) (-10 -8 (-15 -3800 ((-1091) $)))) (-1091)) (T -998))
+((-3800 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-998 *3)) (-14 *3 (-1091)))))
+(-13 (-1020) (-10 -8 (-15 -3800 ((-1091) $))))
+((-1260 (((-108) $ $) NIL)) (-2568 (($ $ (-592 (-1091)) (-1 (-108) (-592 |#3|))) 33)) (-4187 (($ |#3| |#3|) 22) (($ |#3| |#3| (-592 (-1091))) 20)) (-1314 ((|#3| $) 13)) (-2591 (((-3 (-273 |#3|) "failed") $) 58)) (-3898 (((-273 |#3|) $) NIL)) (-1596 (((-592 (-1091)) $) 16)) (-3023 (((-827 |#1|) $) 11)) (-1303 ((|#3| $) 12)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3410 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-856)) 39)) (-1270 (((-798) $) 86) (($ (-273 |#3|)) 21)) (-3994 (((-108) $ $) 36)))
+(((-999 |#1| |#2| |#3|) (-13 (-1020) (-265 |#3| |#3|) (-968 (-273 |#3|)) (-10 -8 (-15 -4187 ($ |#3| |#3|)) (-15 -4187 ($ |#3| |#3| (-592 (-1091)))) (-15 -2568 ($ $ (-592 (-1091)) (-1 (-108) (-592 |#3|)))) (-15 -3023 ((-827 |#1|) $)) (-15 -1303 (|#3| $)) (-15 -1314 (|#3| $)) (-15 -3410 (|#3| $ |#3| (-856))) (-15 -1596 ((-592 (-1091)) $)))) (-1020) (-13 (-977) (-821 |#1|) (-789) (-567 (-827 |#1|))) (-13 (-408 |#2|) (-821 |#1|) (-567 (-827 |#1|)))) (T -999))
+((-4187 (*1 *1 *2 *2) (-12 (-4 *3 (-1020)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))) (-5 *1 (-999 *3 *4 *2)) (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))) (-4187 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-592 (-1091))) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-5 *1 (-999 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))))) (-2568 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1091))) (-5 *3 (-1 (-108) (-592 *6))) (-4 *6 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-5 *1 (-999 *4 *5 *6)))) (-3023 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))) (-5 *2 (-827 *3)) (-5 *1 (-999 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))) (-1303 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))) (-5 *1 (-999 *3 *4 *2)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))))) (-1314 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))) (-5 *1 (-999 *3 *4 *2)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))))) (-3410 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-856)) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-5 *1 (-999 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))))) (-1596 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))) (-5 *2 (-592 (-1091))) (-5 *1 (-999 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))))
+(-13 (-1020) (-265 |#3| |#3|) (-968 (-273 |#3|)) (-10 -8 (-15 -4187 ($ |#3| |#3|)) (-15 -4187 ($ |#3| |#3| (-592 (-1091)))) (-15 -2568 ($ $ (-592 (-1091)) (-1 (-108) (-592 |#3|)))) (-15 -3023 ((-827 |#1|) $)) (-15 -1303 (|#3| $)) (-15 -1314 (|#3| $)) (-15 -3410 (|#3| $ |#3| (-856))) (-15 -1596 ((-592 (-1091)) $))))
+((-1260 (((-108) $ $) NIL)) (-2536 (($ (-592 (-999 |#1| |#2| |#3|))) 13)) (-1331 (((-592 (-999 |#1| |#2| |#3|)) $) 20)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3410 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-856)) 26)) (-1270 (((-798) $) 16)) (-3994 (((-108) $ $) 19)))
+(((-1000 |#1| |#2| |#3|) (-13 (-1020) (-265 |#3| |#3|) (-10 -8 (-15 -2536 ($ (-592 (-999 |#1| |#2| |#3|)))) (-15 -1331 ((-592 (-999 |#1| |#2| |#3|)) $)) (-15 -3410 (|#3| $ |#3| (-856))))) (-1020) (-13 (-977) (-821 |#1|) (-789) (-567 (-827 |#1|))) (-13 (-408 |#2|) (-821 |#1|) (-567 (-827 |#1|)))) (T -1000))
+((-2536 (*1 *1 *2) (-12 (-5 *2 (-592 (-999 *3 *4 *5))) (-4 *3 (-1020)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))) (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))) (-5 *1 (-1000 *3 *4 *5)))) (-1331 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3)))) (-5 *2 (-592 (-999 *3 *4 *5))) (-5 *1 (-1000 *3 *4 *5)) (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))) (-3410 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-856)) (-4 *4 (-1020)) (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4)))) (-5 *1 (-1000 *4 *5 *2)) (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))))))
+(-13 (-1020) (-265 |#3| |#3|) (-10 -8 (-15 -2536 ($ (-592 (-999 |#1| |#2| |#3|)))) (-15 -1331 ((-592 (-999 |#1| |#2| |#3|)) $)) (-15 -3410 (|#3| $ |#3| (-856)))))
+((-3290 (((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108)) 75) (((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|))) 77) (((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108)) 76)))
+(((-1001 |#1| |#2|) (-10 -7 (-15 -3290 ((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108))) (-15 -3290 ((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -3290 ((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108)))) (-13 (-286) (-138)) (-592 (-1091))) (T -1001))
+((-3290 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-592 (-2 (|:| -3582 (-1087 *5)) (|:| -3464 (-592 (-887 *5)))))) (-5 *1 (-1001 *5 *6)) (-5 *3 (-592 (-887 *5))) (-14 *6 (-592 (-1091))))) (-3290 (*1 *2 *3) (-12 (-4 *4 (-13 (-286) (-138))) (-5 *2 (-592 (-2 (|:| -3582 (-1087 *4)) (|:| -3464 (-592 (-887 *4)))))) (-5 *1 (-1001 *4 *5)) (-5 *3 (-592 (-887 *4))) (-14 *5 (-592 (-1091))))) (-3290 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-5 *2 (-592 (-2 (|:| -3582 (-1087 *5)) (|:| -3464 (-592 (-887 *5)))))) (-5 *1 (-1001 *5 *6)) (-5 *3 (-592 (-887 *5))) (-14 *6 (-592 (-1091))))))
+(-10 -7 (-15 -3290 ((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108))) (-15 -3290 ((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -3290 ((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108))))
+((-2195 (((-396 |#3|) |#3|) 18)))
+(((-1002 |#1| |#2| |#3|) (-10 -7 (-15 -2195 ((-396 |#3|) |#3|))) (-1149 (-385 (-525))) (-13 (-341) (-138) (-667 (-385 (-525)) |#1|)) (-1149 |#2|)) (T -1002))
+((-2195 (*1 *2 *3) (-12 (-4 *4 (-1149 (-385 (-525)))) (-4 *5 (-13 (-341) (-138) (-667 (-385 (-525)) *4))) (-5 *2 (-396 *3)) (-5 *1 (-1002 *4 *5 *3)) (-4 *3 (-1149 *5)))))
+(-10 -7 (-15 -2195 ((-396 |#3|) |#3|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 126)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-341)))) (-3711 (($ $) NIL (|has| |#1| (-341)))) (-3380 (((-108) $) NIL (|has| |#1| (-341)))) (-1264 (((-632 |#1|) (-1173 $)) NIL) (((-632 |#1|)) 115)) (-3029 ((|#1| $) 119)) (-1670 (((-1101 (-856) (-713)) (-525)) NIL (|has| |#1| (-327)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL (|has| |#1| (-341)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3197 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4190 (((-713)) 40 (|has| |#1| (-346)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-3898 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-3612 (($ (-1173 |#1|) (-1173 $)) NIL) (($ (-1173 |#1|)) 43)) (-3585 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-327)))) (-1726 (($ $ $) NIL (|has| |#1| (-341)))) (-2312 (((-632 |#1|) $ (-1173 $)) NIL) (((-632 |#1|) $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) 106) (((-632 |#1|) (-632 $)) 101)) (-3503 (($ |#2|) 61) (((-3 $ "failed") (-385 |#2|)) NIL (|has| |#1| (-341)))) (-3762 (((-3 $ "failed") $) NIL)) (-3318 (((-856)) 77)) (-2899 (($) 44 (|has| |#1| (-346)))) (-1704 (($ $ $) NIL (|has| |#1| (-341)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3977 (($) NIL (|has| |#1| (-327)))) (-3564 (((-108) $) NIL (|has| |#1| (-327)))) (-2327 (($ $ (-713)) NIL (|has| |#1| (-327))) (($ $) NIL (|has| |#1| (-327)))) (-3836 (((-108) $) NIL (|has| |#1| (-341)))) (-3973 (((-856) $) NIL (|has| |#1| (-327))) (((-775 (-856)) $) NIL (|has| |#1| (-327)))) (-1985 (((-108) $) NIL)) (-2900 ((|#1| $) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-327)))) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2640 ((|#2| $) 84 (|has| |#1| (-341)))) (-1736 (((-856) $) 131 (|has| |#1| (-346)))) (-3492 ((|#2| $) 58)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL (|has| |#1| (-341)))) (-3940 (($) NIL (|has| |#1| (-327)) CONST)) (-3640 (($ (-856)) 125 (|has| |#1| (-346)))) (-2012 (((-1038) $) NIL)) (-3523 (($) 121)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-341)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2859 (((-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))) NIL (|has| |#1| (-327)))) (-2195 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-1680 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1290 (((-713) $) NIL (|has| |#1| (-341)))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-341)))) (-2094 ((|#1| (-1173 $)) NIL) ((|#1|) 109)) (-2181 (((-713) $) NIL (|has| |#1| (-327))) (((-3 (-713) "failed") $ $) NIL (|has| |#1| (-327)))) (-2523 (($ $) NIL (-3279 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) NIL (-3279 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1091)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1091))))) (($ $ (-1 |#1| |#1|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-2361 (((-632 |#1|) (-1173 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-1571 ((|#2|) 73)) (-2726 (($) NIL (|has| |#1| (-327)))) (-3464 (((-1173 |#1|) $ (-1173 $)) 89) (((-632 |#1|) (-1173 $) (-1173 $)) NIL) (((-1173 |#1|) $) 71) (((-632 |#1|) (-1173 $)) 85)) (-2749 (((-1173 |#1|) $) NIL) (($ (-1173 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (|has| |#1| (-327)))) (-1270 (((-798) $) 57) (($ (-525)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-341))) (($ (-385 (-525))) NIL (-3279 (|has| |#1| (-341)) (|has| |#1| (-968 (-385 (-525))))))) (-3425 (($ $) NIL (|has| |#1| (-327))) (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-1805 ((|#2| $) 82)) (-2104 (((-713)) 75)) (-1449 (((-1173 $)) 81)) (-3959 (((-108) $ $) NIL (|has| |#1| (-341)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3355 (($) 30 T CONST)) (-3363 (($) 19 T CONST)) (-2093 (($ $) NIL (-3279 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-713)) NIL (-3279 (-12 (|has| |#1| (-213)) (|has| |#1| (-341))) (|has| |#1| (-327)))) (($ $ (-1091)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-341)) (|has| |#1| (-835 (-1091))))) (($ $ (-1 |#1| |#1|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-341)))) (-3994 (((-108) $ $) 63)) (-4100 (($ $ $) NIL (|has| |#1| (-341)))) (-4090 (($ $) 67) (($ $ $) NIL)) (-4080 (($ $ $) 65)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-385 (-525)) $) NIL (|has| |#1| (-341))) (($ $ (-385 (-525))) NIL (|has| |#1| (-341)))))
+(((-1003 |#1| |#2| |#3|) (-667 |#1| |#2|) (-160) (-1149 |#1|) |#2|) (T -1003))
NIL
(-667 |#1| |#2|)
-((-3959 (((-396 |#3|) |#3|) 19)))
-(((-1003 |#1| |#2| |#3|) (-10 -7 (-15 -3959 ((-396 |#3|) |#3|))) (-1148 (-385 (-886 (-525)))) (-13 (-341) (-138) (-667 (-385 (-886 (-525))) |#1|)) (-1148 |#2|)) (T -1003))
-((-3959 (*1 *2 *3) (-12 (-4 *4 (-1148 (-385 (-886 (-525))))) (-4 *5 (-13 (-341) (-138) (-667 (-385 (-886 (-525))) *4))) (-5 *2 (-396 *3)) (-5 *1 (-1003 *4 *5 *3)) (-4 *3 (-1148 *5)))))
-(-10 -7 (-15 -3959 ((-396 |#3|) |#3|)))
-((-1893 (((-108) $ $) NIL)) (-3525 (($ $ $) 14)) (-3630 (($ $ $) 15)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1728 (($) 6)) (-1427 (((-1090) $) 18)) (-1908 (((-797) $) 12)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 13)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 8)))
-(((-1004) (-13 (-789) (-10 -8 (-15 -1728 ($)) (-15 -1427 ((-1090) $))))) (T -1004))
-((-1728 (*1 *1) (-5 *1 (-1004))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1004)))))
-(-13 (-789) (-10 -8 (-15 -1728 ($)) (-15 -1427 ((-1090) $))))
-((-4015 ((|#1| |#1| (-1 (-525) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-108) |#1|)) 20)) (-1952 (((-1177)) 15)) (-2074 (((-592 |#1|)) 9)))
-(((-1005 |#1|) (-10 -7 (-15 -1952 ((-1177))) (-15 -2074 ((-592 |#1|))) (-15 -4015 (|#1| |#1| (-1 (-108) |#1|))) (-15 -4015 (|#1| |#1| (-1 (-525) |#1| |#1|)))) (-127)) (T -1005))
-((-4015 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-525) *2 *2)) (-4 *2 (-127)) (-5 *1 (-1005 *2)))) (-4015 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-127)) (-5 *1 (-1005 *2)))) (-2074 (*1 *2) (-12 (-5 *2 (-592 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-127)))) (-1952 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1005 *3)) (-4 *3 (-127)))))
-(-10 -7 (-15 -1952 ((-1177))) (-15 -2074 ((-592 |#1|))) (-15 -4015 (|#1| |#1| (-1 (-108) |#1|))) (-15 -4015 (|#1| |#1| (-1 (-525) |#1| |#1|))))
-((-2284 (($ (-104) $) 15)) (-2474 (((-3 (-104) "failed") (-1090) $) 14)) (-3773 (($) 6)) (-1326 (($) 16)) (-3183 (($) 17)) (-1643 (((-592 (-162)) $) 9)) (-1908 (((-797) $) 20)))
-(((-1006) (-13 (-566 (-797)) (-10 -8 (-15 -3773 ($)) (-15 -1643 ((-592 (-162)) $)) (-15 -2474 ((-3 (-104) "failed") (-1090) $)) (-15 -2284 ($ (-104) $)) (-15 -1326 ($)) (-15 -3183 ($))))) (T -1006))
-((-3773 (*1 *1) (-5 *1 (-1006))) (-1643 (*1 *2 *1) (-12 (-5 *2 (-592 (-162))) (-5 *1 (-1006)))) (-2474 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1090)) (-5 *2 (-104)) (-5 *1 (-1006)))) (-2284 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1006)))) (-1326 (*1 *1) (-5 *1 (-1006))) (-3183 (*1 *1) (-5 *1 (-1006))))
-(-13 (-566 (-797)) (-10 -8 (-15 -3773 ($)) (-15 -1643 ((-592 (-162)) $)) (-15 -2474 ((-3 (-104) "failed") (-1090) $)) (-15 -2284 ($ (-104) $)) (-15 -1326 ($)) (-15 -3183 ($))))
-((-2722 (((-1172 (-632 |#1|)) (-592 (-632 |#1|))) 42) (((-1172 (-632 (-886 |#1|))) (-592 (-1090)) (-632 (-886 |#1|))) 63) (((-1172 (-632 (-385 (-886 |#1|)))) (-592 (-1090)) (-632 (-385 (-886 |#1|)))) 79)) (-4093 (((-1172 |#1|) (-632 |#1|) (-592 (-632 |#1|))) 36)))
-(((-1007 |#1|) (-10 -7 (-15 -2722 ((-1172 (-632 (-385 (-886 |#1|)))) (-592 (-1090)) (-632 (-385 (-886 |#1|))))) (-15 -2722 ((-1172 (-632 (-886 |#1|))) (-592 (-1090)) (-632 (-886 |#1|)))) (-15 -2722 ((-1172 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -4093 ((-1172 |#1|) (-632 |#1|) (-592 (-632 |#1|))))) (-341)) (T -1007))
-((-4093 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-592 (-632 *5))) (-4 *5 (-341)) (-5 *2 (-1172 *5)) (-5 *1 (-1007 *5)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-5 *2 (-1172 (-632 *4))) (-5 *1 (-1007 *4)))) (-2722 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1090))) (-4 *5 (-341)) (-5 *2 (-1172 (-632 (-886 *5)))) (-5 *1 (-1007 *5)) (-5 *4 (-632 (-886 *5))))) (-2722 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1090))) (-4 *5 (-341)) (-5 *2 (-1172 (-632 (-385 (-886 *5))))) (-5 *1 (-1007 *5)) (-5 *4 (-632 (-385 (-886 *5)))))))
-(-10 -7 (-15 -2722 ((-1172 (-632 (-385 (-886 |#1|)))) (-592 (-1090)) (-632 (-385 (-886 |#1|))))) (-15 -2722 ((-1172 (-632 (-886 |#1|))) (-592 (-1090)) (-632 (-886 |#1|)))) (-15 -2722 ((-1172 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -4093 ((-1172 |#1|) (-632 |#1|) (-592 (-632 |#1|)))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3140 (((-592 (-713)) $) NIL) (((-592 (-713)) $ (-1090)) NIL)) (-1628 (((-713) $) NIL) (((-713) $ (-1090)) NIL)) (-4104 (((-592 (-1009 (-1090))) $) NIL)) (-3927 (((-1086 $) $ (-1009 (-1090))) NIL) (((-1086 |#1|) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-1324 (((-713) $) NIL) (((-713) $ (-592 (-1009 (-1090)))) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3321 (($ $) NIL (|has| |#1| (-429)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3847 (($ $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-1009 (-1090)) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL) (((-3 (-1042 |#1| (-1090)) "failed") $) NIL)) (-2831 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-1009 (-1090)) $) NIL) (((-1090) $) NIL) (((-1042 |#1| (-1090)) $) NIL)) (-2506 (($ $ $ (-1009 (-1090))) NIL (|has| |#1| (-160)))) (-1247 (($ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3811 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1009 (-1090))) NIL (|has| |#1| (-429)))) (-1234 (((-592 $) $) NIL)) (-2250 (((-108) $) NIL (|has| |#1| (-843)))) (-2099 (($ $ |#1| (-497 (-1009 (-1090))) $) NIL)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-1009 (-1090)) (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-1009 (-1090)) (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-1737 (((-713) $ (-1090)) NIL) (((-713) $) NIL)) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) NIL)) (-4092 (($ (-1086 |#1|) (-1009 (-1090))) NIL) (($ (-1086 $) (-1009 (-1090))) NIL)) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-497 (-1009 (-1090)))) NIL) (($ $ (-1009 (-1090)) (-713)) NIL) (($ $ (-592 (-1009 (-1090))) (-592 (-713))) NIL)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ (-1009 (-1090))) NIL)) (-3181 (((-497 (-1009 (-1090))) $) NIL) (((-713) $ (-1009 (-1090))) NIL) (((-592 (-713)) $ (-592 (-1009 (-1090)))) NIL)) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-1331 (($ (-1 (-497 (-1009 (-1090))) (-497 (-1009 (-1090)))) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-2282 (((-1 $ (-713)) (-1090)) NIL) (((-1 $ (-713)) $) NIL (|has| |#1| (-213)))) (-1666 (((-3 (-1009 (-1090)) "failed") $) NIL)) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-2576 (((-1009 (-1090)) $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2337 (((-1073) $) NIL)) (-1946 (((-108) $) NIL)) (-3245 (((-3 (-592 $) "failed") $) NIL)) (-3193 (((-3 (-592 $) "failed") $) NIL)) (-3283 (((-3 (-2 (|:| |var| (-1009 (-1090))) (|:| -1600 (-713))) "failed") $) NIL)) (-3448 (($ $) NIL)) (-2663 (((-1037) $) NIL)) (-4221 (((-108) $) NIL)) (-4232 ((|#1| $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-429)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3959 (((-396 $) $) NIL (|has| |#1| (-843)))) (-2338 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3092 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1009 (-1090)) |#1|) NIL) (($ $ (-592 (-1009 (-1090))) (-592 |#1|)) NIL) (($ $ (-1009 (-1090)) $) NIL) (($ $ (-592 (-1009 (-1090))) (-592 $)) NIL) (($ $ (-1090) $) NIL (|has| |#1| (-213))) (($ $ (-592 (-1090)) (-592 $)) NIL (|has| |#1| (-213))) (($ $ (-1090) |#1|) NIL (|has| |#1| (-213))) (($ $ (-592 (-1090)) (-592 |#1|)) NIL (|has| |#1| (-213)))) (-1400 (($ $ (-1009 (-1090))) NIL (|has| |#1| (-160)))) (-3013 (($ $ (-1009 (-1090))) NIL) (($ $ (-592 (-1009 (-1090)))) NIL) (($ $ (-1009 (-1090)) (-713)) NIL) (($ $ (-592 (-1009 (-1090))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3780 (((-592 (-1090)) $) NIL)) (-2513 (((-497 (-1009 (-1090))) $) NIL) (((-713) $ (-1009 (-1090))) NIL) (((-592 (-713)) $ (-592 (-1009 (-1090)))) NIL) (((-713) $ (-1090)) NIL)) (-1427 (((-826 (-357)) $) NIL (-12 (|has| (-1009 (-1090)) (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-1009 (-1090)) (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-1009 (-1090)) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2751 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1009 (-1090))) NIL (|has| |#1| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1009 (-1090))) NIL) (($ (-1090)) NIL) (($ (-1042 |#1| (-1090))) NIL) (($ (-385 (-525))) NIL (-3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3600 (((-592 |#1|) $) NIL)) (-1657 ((|#1| $ (-497 (-1009 (-1090)))) NIL) (($ $ (-1009 (-1090)) (-713)) NIL) (($ $ (-592 (-1009 (-1090))) (-592 (-713))) NIL)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2093 (((-713)) NIL)) (-4116 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $ (-1009 (-1090))) NIL) (($ $ (-592 (-1009 (-1090)))) NIL) (($ $ (-1009 (-1090)) (-713)) NIL) (($ $ (-592 (-1009 (-1090))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1008 |#1|) (-13 (-232 |#1| (-1090) (-1009 (-1090)) (-497 (-1009 (-1090)))) (-967 (-1042 |#1| (-1090)))) (-976)) (T -1008))
-NIL
-(-13 (-232 |#1| (-1090) (-1009 (-1090)) (-497 (-1009 (-1090)))) (-967 (-1042 |#1| (-1090))))
-((-1893 (((-108) $ $) NIL)) (-1628 (((-713) $) NIL)) (-1251 ((|#1| $) 10)) (-1264 (((-3 |#1| "failed") $) NIL)) (-2831 ((|#1| $) NIL)) (-1737 (((-713) $) 11)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-2282 (($ |#1| (-713)) 9)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3013 (($ $) NIL) (($ $ (-713)) NIL)) (-1908 (((-797) $) NIL) (($ |#1|) NIL)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 15)))
-(((-1009 |#1|) (-245 |#1|) (-789)) (T -1009))
+((-2195 (((-396 |#3|) |#3|) 19)))
+(((-1004 |#1| |#2| |#3|) (-10 -7 (-15 -2195 ((-396 |#3|) |#3|))) (-1149 (-385 (-887 (-525)))) (-13 (-341) (-138) (-667 (-385 (-887 (-525))) |#1|)) (-1149 |#2|)) (T -1004))
+((-2195 (*1 *2 *3) (-12 (-4 *4 (-1149 (-385 (-887 (-525))))) (-4 *5 (-13 (-341) (-138) (-667 (-385 (-887 (-525))) *4))) (-5 *2 (-396 *3)) (-5 *1 (-1004 *4 *5 *3)) (-4 *3 (-1149 *5)))))
+(-10 -7 (-15 -2195 ((-396 |#3|) |#3|)))
+((-1260 (((-108) $ $) NIL)) (-2371 (($ $ $) 14)) (-2535 (($ $ $) 15)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3894 (($) 6)) (-2749 (((-1091) $) 18)) (-1270 (((-798) $) 12)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 13)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 8)))
+(((-1005) (-13 (-789) (-10 -8 (-15 -3894 ($)) (-15 -2749 ((-1091) $))))) (T -1005))
+((-3894 (*1 *1) (-5 *1 (-1005))) (-2749 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1005)))))
+(-13 (-789) (-10 -8 (-15 -3894 ($)) (-15 -2749 ((-1091) $))))
+((-4041 ((|#1| |#1| (-1 (-525) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-108) |#1|)) 20)) (-1838 (((-1178)) 15)) (-3184 (((-592 |#1|)) 9)))
+(((-1006 |#1|) (-10 -7 (-15 -1838 ((-1178))) (-15 -3184 ((-592 |#1|))) (-15 -4041 (|#1| |#1| (-1 (-108) |#1|))) (-15 -4041 (|#1| |#1| (-1 (-525) |#1| |#1|)))) (-127)) (T -1006))
+((-4041 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-525) *2 *2)) (-4 *2 (-127)) (-5 *1 (-1006 *2)))) (-4041 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-127)) (-5 *1 (-1006 *2)))) (-3184 (*1 *2) (-12 (-5 *2 (-592 *3)) (-5 *1 (-1006 *3)) (-4 *3 (-127)))) (-1838 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1006 *3)) (-4 *3 (-127)))))
+(-10 -7 (-15 -1838 ((-1178))) (-15 -3184 ((-592 |#1|))) (-15 -4041 (|#1| |#1| (-1 (-108) |#1|))) (-15 -4041 (|#1| |#1| (-1 (-525) |#1| |#1|))))
+((-4148 (($ (-104) $) 15)) (-2551 (((-3 (-104) "failed") (-1091) $) 14)) (-2718 (($) 6)) (-3869 (($) 16)) (-3744 (($) 17)) (-1437 (((-592 (-162)) $) 9)) (-1270 (((-798) $) 20)))
+(((-1007) (-13 (-566 (-798)) (-10 -8 (-15 -2718 ($)) (-15 -1437 ((-592 (-162)) $)) (-15 -2551 ((-3 (-104) "failed") (-1091) $)) (-15 -4148 ($ (-104) $)) (-15 -3869 ($)) (-15 -3744 ($))))) (T -1007))
+((-2718 (*1 *1) (-5 *1 (-1007))) (-1437 (*1 *2 *1) (-12 (-5 *2 (-592 (-162))) (-5 *1 (-1007)))) (-2551 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1091)) (-5 *2 (-104)) (-5 *1 (-1007)))) (-4148 (*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1007)))) (-3869 (*1 *1) (-5 *1 (-1007))) (-3744 (*1 *1) (-5 *1 (-1007))))
+(-13 (-566 (-798)) (-10 -8 (-15 -2718 ($)) (-15 -1437 ((-592 (-162)) $)) (-15 -2551 ((-3 (-104) "failed") (-1091) $)) (-15 -4148 ($ (-104) $)) (-15 -3869 ($)) (-15 -3744 ($))))
+((-3019 (((-1173 (-632 |#1|)) (-592 (-632 |#1|))) 42) (((-1173 (-632 (-887 |#1|))) (-592 (-1091)) (-632 (-887 |#1|))) 63) (((-1173 (-632 (-385 (-887 |#1|)))) (-592 (-1091)) (-632 (-385 (-887 |#1|)))) 79)) (-3464 (((-1173 |#1|) (-632 |#1|) (-592 (-632 |#1|))) 36)))
+(((-1008 |#1|) (-10 -7 (-15 -3019 ((-1173 (-632 (-385 (-887 |#1|)))) (-592 (-1091)) (-632 (-385 (-887 |#1|))))) (-15 -3019 ((-1173 (-632 (-887 |#1|))) (-592 (-1091)) (-632 (-887 |#1|)))) (-15 -3019 ((-1173 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3464 ((-1173 |#1|) (-632 |#1|) (-592 (-632 |#1|))))) (-341)) (T -1008))
+((-3464 (*1 *2 *3 *4) (-12 (-5 *3 (-632 *5)) (-5 *4 (-592 (-632 *5))) (-4 *5 (-341)) (-5 *2 (-1173 *5)) (-5 *1 (-1008 *5)))) (-3019 (*1 *2 *3) (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-5 *2 (-1173 (-632 *4))) (-5 *1 (-1008 *4)))) (-3019 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1091))) (-4 *5 (-341)) (-5 *2 (-1173 (-632 (-887 *5)))) (-5 *1 (-1008 *5)) (-5 *4 (-632 (-887 *5))))) (-3019 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-1091))) (-4 *5 (-341)) (-5 *2 (-1173 (-632 (-385 (-887 *5))))) (-5 *1 (-1008 *5)) (-5 *4 (-632 (-385 (-887 *5)))))))
+(-10 -7 (-15 -3019 ((-1173 (-632 (-385 (-887 |#1|)))) (-592 (-1091)) (-632 (-385 (-887 |#1|))))) (-15 -3019 ((-1173 (-632 (-887 |#1|))) (-592 (-1091)) (-632 (-887 |#1|)))) (-15 -3019 ((-1173 (-632 |#1|)) (-592 (-632 |#1|)))) (-15 -3464 ((-1173 |#1|) (-632 |#1|) (-592 (-632 |#1|)))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1503 (((-592 (-713)) $) NIL) (((-592 (-713)) $ (-1091)) NIL)) (-3448 (((-713) $) NIL) (((-713) $ (-1091)) NIL)) (-2383 (((-592 (-1010 (-1091))) $) NIL)) (-2146 (((-1087 $) $ (-1010 (-1091))) NIL) (((-1087 |#1|) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-3848 (((-713) $) NIL) (((-713) $ (-592 (-1010 (-1091)))) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-3706 (($ $) NIL (|has| |#1| (-429)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2123 (($ $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-1010 (-1091)) "failed") $) NIL) (((-3 (-1091) "failed") $) NIL) (((-3 (-1043 |#1| (-1091)) "failed") $) NIL)) (-3898 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-1010 (-1091)) $) NIL) (((-1091) $) NIL) (((-1043 |#1| (-1091)) $) NIL)) (-1516 (($ $ $ (-1010 (-1091))) NIL (|has| |#1| (-160)))) (-2571 (($ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3026 (($ $) NIL (|has| |#1| (-429))) (($ $ (-1010 (-1091))) NIL (|has| |#1| (-429)))) (-2558 (((-592 $) $) NIL)) (-3836 (((-108) $) NIL (|has| |#1| (-844)))) (-2192 (($ $ |#1| (-497 (-1010 (-1091))) $) NIL)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1010 (-1091)) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1010 (-1091)) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-3973 (((-713) $ (-1091)) NIL) (((-713) $) NIL)) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) NIL)) (-2368 (($ (-1087 |#1|) (-1010 (-1091))) NIL) (($ (-1087 $) (-1010 (-1091))) NIL)) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-497 (-1010 (-1091)))) NIL) (($ $ (-1010 (-1091)) (-713)) NIL) (($ $ (-592 (-1010 (-1091))) (-592 (-713))) NIL)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ (-1010 (-1091))) NIL)) (-3724 (((-497 (-1010 (-1091))) $) NIL) (((-713) $ (-1010 (-1091))) NIL) (((-592 (-713)) $ (-592 (-1010 (-1091)))) NIL)) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-3922 (($ (-1 (-497 (-1010 (-1091))) (-497 (-1010 (-1091)))) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-4123 (((-1 $ (-713)) (-1091)) NIL) (((-1 $ (-713)) $) NIL (|has| |#1| (-213)))) (-3567 (((-3 (-1010 (-1091)) "failed") $) NIL)) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-1241 (((-1010 (-1091)) $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3451 (((-1074) $) NIL)) (-3896 (((-108) $) NIL)) (-4228 (((-3 (-592 $) "failed") $) NIL)) (-3852 (((-3 (-592 $) "failed") $) NIL)) (-1553 (((-3 (-2 (|:| |var| (-1010 (-1091))) (|:| -1864 (-713))) "failed") $) NIL)) (-3600 (($ $) NIL)) (-2012 (((-1038) $) NIL)) (-2513 (((-108) $) NIL)) (-2525 ((|#1| $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-429)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2195 (((-396 $) $) NIL (|has| |#1| (-844)))) (-1680 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-2602 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1010 (-1091)) |#1|) NIL) (($ $ (-592 (-1010 (-1091))) (-592 |#1|)) NIL) (($ $ (-1010 (-1091)) $) NIL) (($ $ (-592 (-1010 (-1091))) (-592 $)) NIL) (($ $ (-1091) $) NIL (|has| |#1| (-213))) (($ $ (-592 (-1091)) (-592 $)) NIL (|has| |#1| (-213))) (($ $ (-1091) |#1|) NIL (|has| |#1| (-213))) (($ $ (-592 (-1091)) (-592 |#1|)) NIL (|has| |#1| (-213)))) (-2094 (($ $ (-1010 (-1091))) NIL (|has| |#1| (-160)))) (-2523 (($ $ (-1010 (-1091))) NIL) (($ $ (-592 (-1010 (-1091)))) NIL) (($ $ (-1010 (-1091)) (-713)) NIL) (($ $ (-592 (-1010 (-1091))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2786 (((-592 (-1091)) $) NIL)) (-1587 (((-497 (-1010 (-1091))) $) NIL) (((-713) $ (-1010 (-1091))) NIL) (((-592 (-713)) $ (-592 (-1010 (-1091)))) NIL) (((-713) $ (-1091)) NIL)) (-2749 (((-827 (-357)) $) NIL (-12 (|has| (-1010 (-1091)) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1010 (-1091)) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1010 (-1091)) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2026 ((|#1| $) NIL (|has| |#1| (-429))) (($ $ (-1010 (-1091))) NIL (|has| |#1| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-1010 (-1091))) NIL) (($ (-1091)) NIL) (($ (-1043 |#1| (-1091))) NIL) (($ (-385 (-525))) NIL (-3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-1562 (((-592 |#1|) $) NIL)) (-3468 ((|#1| $ (-497 (-1010 (-1091)))) NIL) (($ $ (-1010 (-1091)) (-713)) NIL) (($ $ (-592 (-1010 (-1091))) (-592 (-713))) NIL)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2104 (((-713)) NIL)) (-3658 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $ (-1010 (-1091))) NIL) (($ $ (-592 (-1010 (-1091)))) NIL) (($ $ (-1010 (-1091)) (-713)) NIL) (($ $ (-592 (-1010 (-1091))) (-592 (-713))) NIL) (($ $) NIL (|has| |#1| (-213))) (($ $ (-713)) NIL (|has| |#1| (-213))) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1009 |#1|) (-13 (-232 |#1| (-1091) (-1010 (-1091)) (-497 (-1010 (-1091)))) (-968 (-1043 |#1| (-1091)))) (-977)) (T -1009))
+NIL
+(-13 (-232 |#1| (-1091) (-1010 (-1091)) (-497 (-1010 (-1091)))) (-968 (-1043 |#1| (-1091))))
+((-1260 (((-108) $ $) NIL)) (-3448 (((-713) $) NIL)) (-2577 ((|#1| $) 10)) (-2591 (((-3 |#1| "failed") $) NIL)) (-3898 ((|#1| $) NIL)) (-3973 (((-713) $) 11)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-4123 (($ |#1| (-713)) 9)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2523 (($ $) NIL) (($ $ (-713)) NIL)) (-1270 (((-798) $) NIL) (($ |#1|) NIL)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 15)))
+(((-1010 |#1|) (-245 |#1|) (-789)) (T -1010))
NIL
(-245 |#1|)
-((-1370 (((-592 |#2|) (-1 |#2| |#1|) (-1014 |#1|)) 24 (|has| |#1| (-787))) (((-1014 |#2|) (-1 |#2| |#1|) (-1014 |#1|)) 14)))
-(((-1010 |#1| |#2|) (-10 -7 (-15 -1370 ((-1014 |#2|) (-1 |#2| |#1|) (-1014 |#1|))) (IF (|has| |#1| (-787)) (-15 -1370 ((-592 |#2|) (-1 |#2| |#1|) (-1014 |#1|))) |%noBranch|)) (-1126) (-1126)) (T -1010))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1014 *5)) (-4 *5 (-787)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-592 *6)) (-5 *1 (-1010 *5 *6)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1014 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1014 *6)) (-5 *1 (-1010 *5 *6)))))
-(-10 -7 (-15 -1370 ((-1014 |#2|) (-1 |#2| |#1|) (-1014 |#1|))) (IF (|has| |#1| (-787)) (-15 -1370 ((-592 |#2|) (-1 |#2| |#1|) (-1014 |#1|))) |%noBranch|))
-((-1370 (((-1012 |#2|) (-1 |#2| |#1|) (-1012 |#1|)) 19)))
-(((-1011 |#1| |#2|) (-10 -7 (-15 -1370 ((-1012 |#2|) (-1 |#2| |#1|) (-1012 |#1|)))) (-1126) (-1126)) (T -1011))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1012 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1012 *6)) (-5 *1 (-1011 *5 *6)))))
-(-10 -7 (-15 -1370 ((-1012 |#2|) (-1 |#2| |#1|) (-1012 |#1|))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1251 (((-1090) $) 11)) (-2314 (((-1014 |#1|) $) 12)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3755 (($ (-1090) (-1014 |#1|)) 10)) (-1908 (((-797) $) 20 (|has| |#1| (-1019)))) (-3961 (((-108) $ $) 15 (|has| |#1| (-1019)))))
-(((-1012 |#1|) (-13 (-1126) (-10 -8 (-15 -3755 ($ (-1090) (-1014 |#1|))) (-15 -1251 ((-1090) $)) (-15 -2314 ((-1014 |#1|) $)) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|))) (-1126)) (T -1012))
-((-3755 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1014 *4)) (-4 *4 (-1126)) (-5 *1 (-1012 *4)))) (-1251 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1012 *3)) (-4 *3 (-1126)))) (-2314 (*1 *2 *1) (-12 (-5 *2 (-1014 *3)) (-5 *1 (-1012 *3)) (-4 *3 (-1126)))))
-(-13 (-1126) (-10 -8 (-15 -3755 ($ (-1090) (-1014 |#1|))) (-15 -1251 ((-1090) $)) (-15 -2314 ((-1014 |#1|) $)) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|)))
-((-2314 (($ |#1| |#1|) 7)) (-2707 ((|#1| $) 10)) (-2503 ((|#1| $) 12)) (-2514 (((-525) $) 8)) (-2240 ((|#1| $) 9)) (-2525 ((|#1| $) 11)) (-1427 (($ |#1|) 6)) (-1404 (($ |#1| |#1|) 14)) (-3764 (($ $ (-525)) 13)))
-(((-1013 |#1|) (-131) (-1126)) (T -1013))
-((-1404 (*1 *1 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))) (-3764 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1013 *3)) (-4 *3 (-1126)))) (-2503 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))) (-2525 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))) (-2707 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))) (-2240 (*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))) (-2514 (*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1126)) (-5 *2 (-525)))) (-2314 (*1 *1 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))) (-1427 (*1 *1 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))))
-(-13 (-1126) (-10 -8 (-15 -1404 ($ |t#1| |t#1|)) (-15 -3764 ($ $ (-525))) (-15 -2503 (|t#1| $)) (-15 -2525 (|t#1| $)) (-15 -2707 (|t#1| $)) (-15 -2240 (|t#1| $)) (-15 -2514 ((-525) $)) (-15 -2314 ($ |t#1| |t#1|)) (-15 -1427 ($ |t#1|))))
-(((-1126) . T))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2314 (($ |#1| |#1|) 15)) (-1370 (((-592 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-787)))) (-2707 ((|#1| $) 10)) (-2503 ((|#1| $) 9)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2514 (((-525) $) 14)) (-2240 ((|#1| $) 12)) (-2525 ((|#1| $) 11)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-2692 (((-592 |#1|) $) 36 (|has| |#1| (-787))) (((-592 |#1|) (-592 $)) 35 (|has| |#1| (-787)))) (-1427 (($ |#1|) 26)) (-1908 (((-797) $) 25 (|has| |#1| (-1019)))) (-1404 (($ |#1| |#1|) 8)) (-3764 (($ $ (-525)) 16)) (-3961 (((-108) $ $) 19 (|has| |#1| (-1019)))))
-(((-1014 |#1|) (-13 (-1013 |#1|) (-10 -7 (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1015 |#1| (-592 |#1|))) |%noBranch|))) (-1126)) (T -1014))
-NIL
-(-13 (-1013 |#1|) (-10 -7 (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1015 |#1| (-592 |#1|))) |%noBranch|)))
-((-2314 (($ |#1| |#1|) 7)) (-1370 ((|#2| (-1 |#1| |#1|) $) 16)) (-2707 ((|#1| $) 10)) (-2503 ((|#1| $) 12)) (-2514 (((-525) $) 8)) (-2240 ((|#1| $) 9)) (-2525 ((|#1| $) 11)) (-2692 ((|#2| (-592 $)) 18) ((|#2| $) 17)) (-1427 (($ |#1|) 6)) (-1404 (($ |#1| |#1|) 14)) (-3764 (($ $ (-525)) 13)))
-(((-1015 |#1| |#2|) (-131) (-787) (-1064 |t#1|)) (T -1015))
-((-2692 (*1 *2 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-1015 *4 *2)) (-4 *4 (-787)) (-4 *2 (-1064 *4)))) (-2692 (*1 *2 *1) (-12 (-4 *1 (-1015 *3 *2)) (-4 *3 (-787)) (-4 *2 (-1064 *3)))) (-1370 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1015 *4 *2)) (-4 *4 (-787)) (-4 *2 (-1064 *4)))))
-(-13 (-1013 |t#1|) (-10 -8 (-15 -2692 (|t#2| (-592 $))) (-15 -2692 (|t#2| $)) (-15 -1370 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-1013 |#1|) . T) ((-1126) . T))
-((-3254 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1914 (($ $ $) 10)) (-1706 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1016 |#1| |#2|) (-10 -8 (-15 -3254 (|#1| |#2| |#1|)) (-15 -3254 (|#1| |#1| |#2|)) (-15 -3254 (|#1| |#1| |#1|)) (-15 -1914 (|#1| |#1| |#1|)) (-15 -1706 (|#1| |#1| |#2|)) (-15 -1706 (|#1| |#1| |#1|))) (-1017 |#2|) (-1019)) (T -1016))
-NIL
-(-10 -8 (-15 -3254 (|#1| |#2| |#1|)) (-15 -3254 (|#1| |#1| |#2|)) (-15 -3254 (|#1| |#1| |#1|)) (-15 -1914 (|#1| |#1| |#1|)) (-15 -1706 (|#1| |#1| |#2|)) (-15 -1706 (|#1| |#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-3254 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-1914 (($ $ $) 20)) (-2258 (((-108) $ $) 19)) (-3410 (((-108) $ (-713)) 35)) (-3399 (($) 25) (($ (-592 |#1|)) 24)) (-2724 (($ (-1 (-108) |#1|) $) 56 (|has| $ (-6 -4254)))) (-1505 (($) 36 T CONST)) (-3163 (($ $) 59 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ |#1| $) 58 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4254)))) (-2026 (((-592 |#1|) $) 43 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) 34)) (-3168 (((-592 |#1|) $) 44 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 46 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 38)) (-3017 (((-108) $ (-713)) 33)) (-2337 (((-1073) $) 9)) (-3187 (($ $ $) 23)) (-2663 (((-1037) $) 10)) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 52)) (-3494 (((-108) (-1 (-108) |#1|) $) 41 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 |#1|) (-592 |#1|)) 50 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 48 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 (-273 |#1|))) 47 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 29)) (-1613 (((-108) $) 32)) (-3773 (($) 31)) (-1706 (($ $ $) 22) (($ $ |#1|) 21)) (-2686 (((-713) |#1| $) 45 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#1|) $) 42 (|has| $ (-6 -4254)))) (-2135 (($ $) 30)) (-1427 (((-501) $) 60 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 51)) (-1908 (((-797) $) 11)) (-3832 (($) 27) (($ (-592 |#1|)) 26)) (-2667 (((-108) (-1 (-108) |#1|) $) 40 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 6)) (-3983 (((-108) $ $) 28)) (-4140 (((-713) $) 37 (|has| $ (-6 -4254)))))
-(((-1017 |#1|) (-131) (-1019)) (T -1017))
-((-3983 (*1 *2 *1 *1) (-12 (-4 *1 (-1017 *3)) (-4 *3 (-1019)) (-5 *2 (-108)))) (-3832 (*1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-4 *1 (-1017 *3)))) (-3399 (*1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) (-3399 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-4 *1 (-1017 *3)))) (-3187 (*1 *1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) (-1706 (*1 *1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) (-1706 (*1 *1 *1 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) (-1914 (*1 *1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) (-2258 (*1 *2 *1 *1) (-12 (-4 *1 (-1017 *3)) (-4 *3 (-1019)) (-5 *2 (-108)))) (-3254 (*1 *1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) (-3254 (*1 *1 *1 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))) (-3254 (*1 *1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))))
-(-13 (-1019) (-142 |t#1|) (-10 -8 (-6 -4244) (-15 -3983 ((-108) $ $)) (-15 -3832 ($)) (-15 -3832 ($ (-592 |t#1|))) (-15 -3399 ($)) (-15 -3399 ($ (-592 |t#1|))) (-15 -3187 ($ $ $)) (-15 -1706 ($ $ $)) (-15 -1706 ($ $ |t#1|)) (-15 -1914 ($ $ $)) (-15 -2258 ((-108) $ $)) (-15 -3254 ($ $ $)) (-15 -3254 ($ $ |t#1|)) (-15 -3254 ($ |t#1| $))))
-(((-33) . T) ((-97) . T) ((-566 (-797)) . T) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) . T) ((-1126) . T))
-((-2337 (((-1073) $) 10)) (-2663 (((-1037) $) 8)))
-(((-1018 |#1|) (-10 -8 (-15 -2337 ((-1073) |#1|)) (-15 -2663 ((-1037) |#1|))) (-1019)) (T -1018))
-NIL
-(-10 -8 (-15 -2337 ((-1073) |#1|)) (-15 -2663 ((-1037) |#1|)))
-((-1893 (((-108) $ $) 7)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3961 (((-108) $ $) 6)))
-(((-1019) (-131)) (T -1019))
-((-2663 (*1 *2 *1) (-12 (-4 *1 (-1019)) (-5 *2 (-1037)))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-1019)) (-5 *2 (-1073)))))
-(-13 (-97) (-566 (-797)) (-10 -8 (-15 -2663 ((-1037) $)) (-15 -2337 ((-1073) $))))
-(((-97) . T) ((-566 (-797)) . T))
-((-1893 (((-108) $ $) NIL)) (-3107 (((-713)) 30)) (-2591 (($ (-592 (-855))) 52)) (-2830 (((-3 $ "failed") $ (-855) (-855)) 58)) (-3375 (($) 32)) (-4132 (((-108) (-855) $) 35)) (-1780 (((-855) $) 50)) (-2337 (((-1073) $) NIL)) (-4185 (($ (-855)) 31)) (-3206 (((-3 $ "failed") $ (-855)) 55)) (-2663 (((-1037) $) NIL)) (-3002 (((-1172 $)) 40)) (-2278 (((-592 (-855)) $) 24)) (-3626 (((-713) $ (-855) (-855)) 56)) (-1908 (((-797) $) 29)) (-3961 (((-108) $ $) 21)))
-(((-1020 |#1| |#2|) (-13 (-346) (-10 -8 (-15 -3206 ((-3 $ "failed") $ (-855))) (-15 -2830 ((-3 $ "failed") $ (-855) (-855))) (-15 -2278 ((-592 (-855)) $)) (-15 -2591 ($ (-592 (-855)))) (-15 -3002 ((-1172 $))) (-15 -4132 ((-108) (-855) $)) (-15 -3626 ((-713) $ (-855) (-855))))) (-855) (-855)) (T -1020))
-((-3206 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-855)) (-5 *1 (-1020 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855)))) (-2830 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-855)) (-5 *1 (-1020 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855)))) (-2278 (*1 *2 *1) (-12 (-5 *2 (-592 (-855))) (-5 *1 (-1020 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855)))) (-2591 (*1 *1 *2) (-12 (-5 *2 (-592 (-855))) (-5 *1 (-1020 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855)))) (-3002 (*1 *2) (-12 (-5 *2 (-1172 (-1020 *3 *4))) (-5 *1 (-1020 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855)))) (-4132 (*1 *2 *3 *1) (-12 (-5 *3 (-855)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5)) (-14 *4 (-855)) (-14 *5 (-855)))) (-3626 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-855)) (-5 *2 (-713)) (-5 *1 (-1020 *4 *5)) (-14 *4 (-855)) (-14 *5 (-855)))))
-(-13 (-346) (-10 -8 (-15 -3206 ((-3 $ "failed") $ (-855))) (-15 -2830 ((-3 $ "failed") $ (-855) (-855))) (-15 -2278 ((-592 (-855)) $)) (-15 -2591 ($ (-592 (-855)))) (-15 -3002 ((-1172 $))) (-15 -4132 ((-108) (-855) $)) (-15 -3626 ((-713) $ (-855) (-855)))))
-((-1893 (((-108) $ $) NIL)) (-2085 (($) NIL (|has| |#1| (-346)))) (-3254 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-1914 (($ $ $) 72)) (-2258 (((-108) $ $) 73)) (-3410 (((-108) $ (-713)) NIL)) (-3107 (((-713)) NIL (|has| |#1| (-346)))) (-3399 (($ (-592 |#1|)) NIL) (($) 13)) (-3290 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2792 (($ |#1| $) 67 (|has| $ (-6 -4254))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2273 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4254)))) (-3375 (($) NIL (|has| |#1| (-346)))) (-2026 (((-592 |#1|) $) 19 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-3525 ((|#1| $) 57 (|has| |#1| (-789)))) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 66 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3630 ((|#1| $) 55 (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 34)) (-1780 (((-855) $) NIL (|has| |#1| (-346)))) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL)) (-3187 (($ $ $) 70)) (-2570 ((|#1| $) 25)) (-2573 (($ |#1| $) 65)) (-4185 (($ (-855)) NIL (|has| |#1| (-346)))) (-2663 (((-1037) $) NIL)) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 31)) (-3513 ((|#1| $) 27)) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) 21)) (-3773 (($) 11)) (-1706 (($ $ |#1|) NIL) (($ $ $) 71)) (-4006 (($) NIL) (($ (-592 |#1|)) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) 16)) (-1427 (((-501) $) 52 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 61)) (-2082 (($ $) NIL (|has| |#1| (-346)))) (-1908 (((-797) $) NIL)) (-3835 (((-713) $) NIL)) (-3832 (($ (-592 |#1|)) NIL) (($) 12)) (-3612 (($ (-592 |#1|)) NIL)) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 54)) (-3983 (((-108) $ $) NIL)) (-4140 (((-713) $) 10 (|has| $ (-6 -4254)))))
-(((-1021 |#1|) (-403 |#1|) (-1019)) (T -1021))
+((-2694 (((-592 |#2|) (-1 |#2| |#1|) (-1015 |#1|)) 24 (|has| |#1| (-787))) (((-1015 |#2|) (-1 |#2| |#1|) (-1015 |#1|)) 14)))
+(((-1011 |#1| |#2|) (-10 -7 (-15 -2694 ((-1015 |#2|) (-1 |#2| |#1|) (-1015 |#1|))) (IF (|has| |#1| (-787)) (-15 -2694 ((-592 |#2|) (-1 |#2| |#1|) (-1015 |#1|))) |%noBranch|)) (-1127) (-1127)) (T -1011))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1015 *5)) (-4 *5 (-787)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-592 *6)) (-5 *1 (-1011 *5 *6)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1015 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1015 *6)) (-5 *1 (-1011 *5 *6)))))
+(-10 -7 (-15 -2694 ((-1015 |#2|) (-1 |#2| |#1|) (-1015 |#1|))) (IF (|has| |#1| (-787)) (-15 -2694 ((-592 |#2|) (-1 |#2| |#1|) (-1015 |#1|))) |%noBranch|))
+((-2694 (((-1013 |#2|) (-1 |#2| |#1|) (-1013 |#1|)) 19)))
+(((-1012 |#1| |#2|) (-10 -7 (-15 -2694 ((-1013 |#2|) (-1 |#2| |#1|) (-1013 |#1|)))) (-1127) (-1127)) (T -1012))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1013 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1013 *6)) (-5 *1 (-1012 *5 *6)))))
+(-10 -7 (-15 -2694 ((-1013 |#2|) (-1 |#2| |#1|) (-1013 |#1|))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2577 (((-1091) $) 11)) (-2959 (((-1015 |#1|) $) 12)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-1799 (($ (-1091) (-1015 |#1|)) 10)) (-1270 (((-798) $) 20 (|has| |#1| (-1020)))) (-3994 (((-108) $ $) 15 (|has| |#1| (-1020)))))
+(((-1013 |#1|) (-13 (-1127) (-10 -8 (-15 -1799 ($ (-1091) (-1015 |#1|))) (-15 -2577 ((-1091) $)) (-15 -2959 ((-1015 |#1|) $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|))) (-1127)) (T -1013))
+((-1799 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1015 *4)) (-4 *4 (-1127)) (-5 *1 (-1013 *4)))) (-2577 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1013 *3)) (-4 *3 (-1127)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-1015 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-1127)))))
+(-13 (-1127) (-10 -8 (-15 -1799 ($ (-1091) (-1015 |#1|))) (-15 -2577 ((-1091) $)) (-15 -2959 ((-1015 |#1|) $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|)))
+((-2959 (($ |#1| |#1|) 7)) (-2913 ((|#1| $) 10)) (-3606 ((|#1| $) 12)) (-3619 (((-525) $) 8)) (-3716 ((|#1| $) 9)) (-3631 ((|#1| $) 11)) (-2749 (($ |#1|) 6)) (-2728 (($ |#1| |#1|) 14)) (-3771 (($ $ (-525)) 13)))
+(((-1014 |#1|) (-131) (-1127)) (T -1014))
+((-2728 (*1 *1 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1127)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1014 *3)) (-4 *3 (-1127)))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1127)))) (-3631 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1127)))) (-2913 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1127)))) (-3716 (*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1127)))) (-3619 (*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1127)) (-5 *2 (-525)))) (-2959 (*1 *1 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1127)))) (-2749 (*1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1127)))))
+(-13 (-1127) (-10 -8 (-15 -2728 ($ |t#1| |t#1|)) (-15 -3771 ($ $ (-525))) (-15 -3606 (|t#1| $)) (-15 -3631 (|t#1| $)) (-15 -2913 (|t#1| $)) (-15 -3716 (|t#1| $)) (-15 -3619 ((-525) $)) (-15 -2959 ($ |t#1| |t#1|)) (-15 -2749 ($ |t#1|))))
+(((-1127) . T))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2959 (($ |#1| |#1|) 15)) (-2694 (((-592 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-787)))) (-2913 ((|#1| $) 10)) (-3606 ((|#1| $) 9)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-3619 (((-525) $) 14)) (-3716 ((|#1| $) 12)) (-3631 ((|#1| $) 11)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3788 (((-592 |#1|) $) 36 (|has| |#1| (-787))) (((-592 |#1|) (-592 $)) 35 (|has| |#1| (-787)))) (-2749 (($ |#1|) 26)) (-1270 (((-798) $) 25 (|has| |#1| (-1020)))) (-2728 (($ |#1| |#1|) 8)) (-3771 (($ $ (-525)) 16)) (-3994 (((-108) $ $) 19 (|has| |#1| (-1020)))))
+(((-1015 |#1|) (-13 (-1014 |#1|) (-10 -7 (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1016 |#1| (-592 |#1|))) |%noBranch|))) (-1127)) (T -1015))
+NIL
+(-13 (-1014 |#1|) (-10 -7 (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1016 |#1| (-592 |#1|))) |%noBranch|)))
+((-2959 (($ |#1| |#1|) 7)) (-2694 ((|#2| (-1 |#1| |#1|) $) 16)) (-2913 ((|#1| $) 10)) (-3606 ((|#1| $) 12)) (-3619 (((-525) $) 8)) (-3716 ((|#1| $) 9)) (-3631 ((|#1| $) 11)) (-3788 ((|#2| (-592 $)) 18) ((|#2| $) 17)) (-2749 (($ |#1|) 6)) (-2728 (($ |#1| |#1|) 14)) (-3771 (($ $ (-525)) 13)))
+(((-1016 |#1| |#2|) (-131) (-787) (-1065 |t#1|)) (T -1016))
+((-3788 (*1 *2 *3) (-12 (-5 *3 (-592 *1)) (-4 *1 (-1016 *4 *2)) (-4 *4 (-787)) (-4 *2 (-1065 *4)))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-1016 *3 *2)) (-4 *3 (-787)) (-4 *2 (-1065 *3)))) (-2694 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1016 *4 *2)) (-4 *4 (-787)) (-4 *2 (-1065 *4)))))
+(-13 (-1014 |t#1|) (-10 -8 (-15 -3788 (|t#2| (-592 $))) (-15 -3788 (|t#2| $)) (-15 -2694 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-1014 |#1|) . T) ((-1127) . T))
+((-2805 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2083 (($ $ $) 10)) (-4004 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1017 |#1| |#2|) (-10 -8 (-15 -2805 (|#1| |#2| |#1|)) (-15 -2805 (|#1| |#1| |#2|)) (-15 -2805 (|#1| |#1| |#1|)) (-15 -2083 (|#1| |#1| |#1|)) (-15 -4004 (|#1| |#1| |#2|)) (-15 -4004 (|#1| |#1| |#1|))) (-1018 |#2|) (-1020)) (T -1017))
+NIL
+(-10 -8 (-15 -2805 (|#1| |#2| |#1|)) (-15 -2805 (|#1| |#1| |#2|)) (-15 -2805 (|#1| |#1| |#1|)) (-15 -2083 (|#1| |#1| |#1|)) (-15 -4004 (|#1| |#1| |#2|)) (-15 -4004 (|#1| |#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-2805 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2083 (($ $ $) 20)) (-3921 (((-108) $ $) 19)) (-3330 (((-108) $ (-713)) 35)) (-2955 (($) 25) (($ (-592 |#1|)) 24)) (-3826 (($ (-1 (-108) |#1|) $) 56 (|has| $ (-6 -4255)))) (-2305 (($) 36 T CONST)) (-3137 (($ $) 59 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ |#1| $) 58 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#1|) $) 55 (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4255)))) (-3702 (((-592 |#1|) $) 43 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) 34)) (-1749 (((-592 |#1|) $) 44 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 46 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 38)) (-2957 (((-108) $ (-713)) 33)) (-3451 (((-1074) $) 9)) (-3792 (($ $ $) 23)) (-2012 (((-1038) $) 10)) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 52)) (-3006 (((-108) (-1 (-108) |#1|) $) 41 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 |#1|) (-592 |#1|)) 50 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 48 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 (-273 |#1|))) 47 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 29)) (-2013 (((-108) $) 32)) (-2718 (($) 31)) (-4004 (($ $ $) 22) (($ $ |#1|) 21)) (-2040 (((-713) |#1| $) 45 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) (((-713) (-1 (-108) |#1|) $) 42 (|has| $ (-6 -4255)))) (-1451 (($ $) 30)) (-2749 (((-501) $) 60 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 51)) (-1270 (((-798) $) 11)) (-3316 (($) 27) (($ (-592 |#1|)) 26)) (-3633 (((-108) (-1 (-108) |#1|) $) 40 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 6)) (-4017 (((-108) $ $) 28)) (-3596 (((-713) $) 37 (|has| $ (-6 -4255)))))
+(((-1018 |#1|) (-131) (-1020)) (T -1018))
+((-4017 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1020)) (-5 *2 (-108)))) (-3316 (*1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-3316 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-1018 *3)))) (-2955 (*1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-2955 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-1018 *3)))) (-3792 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-4004 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-4004 (*1 *1 *1 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-2083 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-3921 (*1 *2 *1 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1020)) (-5 *2 (-108)))) (-2805 (*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-2805 (*1 *1 *1 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))) (-2805 (*1 *1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
+(-13 (-1020) (-142 |t#1|) (-10 -8 (-6 -4245) (-15 -4017 ((-108) $ $)) (-15 -3316 ($)) (-15 -3316 ($ (-592 |t#1|))) (-15 -2955 ($)) (-15 -2955 ($ (-592 |t#1|))) (-15 -3792 ($ $ $)) (-15 -4004 ($ $ $)) (-15 -4004 ($ $ |t#1|)) (-15 -2083 ($ $ $)) (-15 -3921 ((-108) $ $)) (-15 -2805 ($ $ $)) (-15 -2805 ($ $ |t#1|)) (-15 -2805 ($ |t#1| $))))
+(((-33) . T) ((-97) . T) ((-566 (-798)) . T) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) . T) ((-1127) . T))
+((-3451 (((-1074) $) 10)) (-2012 (((-1038) $) 8)))
+(((-1019 |#1|) (-10 -8 (-15 -3451 ((-1074) |#1|)) (-15 -2012 ((-1038) |#1|))) (-1020)) (T -1019))
+NIL
+(-10 -8 (-15 -3451 ((-1074) |#1|)) (-15 -2012 ((-1038) |#1|)))
+((-1260 (((-108) $ $) 7)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3994 (((-108) $ $) 6)))
+(((-1020) (-131)) (T -1020))
+((-2012 (*1 *2 *1) (-12 (-4 *1 (-1020)) (-5 *2 (-1038)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-1020)) (-5 *2 (-1074)))))
+(-13 (-97) (-566 (-798)) (-10 -8 (-15 -2012 ((-1038) $)) (-15 -3451 ((-1074) $))))
+(((-97) . T) ((-566 (-798)) . T))
+((-1260 (((-108) $ $) NIL)) (-4190 (((-713)) 30)) (-4153 (($ (-592 (-856))) 52)) (-1621 (((-3 $ "failed") $ (-856) (-856)) 58)) (-2899 (($) 32)) (-2783 (((-108) (-856) $) 35)) (-1736 (((-856) $) 50)) (-3451 (((-1074) $) NIL)) (-3640 (($ (-856)) 31)) (-3986 (((-3 $ "failed") $ (-856)) 55)) (-2012 (((-1038) $) NIL)) (-2838 (((-1173 $)) 40)) (-4103 (((-592 (-856)) $) 24)) (-3058 (((-713) $ (-856) (-856)) 56)) (-1270 (((-798) $) 29)) (-3994 (((-108) $ $) 21)))
+(((-1021 |#1| |#2|) (-13 (-346) (-10 -8 (-15 -3986 ((-3 $ "failed") $ (-856))) (-15 -1621 ((-3 $ "failed") $ (-856) (-856))) (-15 -4103 ((-592 (-856)) $)) (-15 -4153 ($ (-592 (-856)))) (-15 -2838 ((-1173 $))) (-15 -2783 ((-108) (-856) $)) (-15 -3058 ((-713) $ (-856) (-856))))) (-856) (-856)) (T -1021))
+((-3986 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-856)) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))) (-1621 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-856)) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))) (-4103 (*1 *2 *1) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))) (-4153 (*1 *1 *2) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))) (-2838 (*1 *2) (-12 (-5 *2 (-1173 (-1021 *3 *4))) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856)))) (-2783 (*1 *2 *3 *1) (-12 (-5 *3 (-856)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5)) (-14 *4 (-856)) (-14 *5 (-856)))) (-3058 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-713)) (-5 *1 (-1021 *4 *5)) (-14 *4 (-856)) (-14 *5 (-856)))))
+(-13 (-346) (-10 -8 (-15 -3986 ((-3 $ "failed") $ (-856))) (-15 -1621 ((-3 $ "failed") $ (-856) (-856))) (-15 -4103 ((-592 (-856)) $)) (-15 -4153 ($ (-592 (-856)))) (-15 -2838 ((-1173 $))) (-15 -2783 ((-108) (-856) $)) (-15 -3058 ((-713) $ (-856) (-856)))))
+((-1260 (((-108) $ $) NIL)) (-2001 (($) NIL (|has| |#1| (-346)))) (-2805 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-2083 (($ $ $) 72)) (-3921 (((-108) $ $) 73)) (-3330 (((-108) $ (-713)) NIL)) (-4190 (((-713)) NIL (|has| |#1| (-346)))) (-2955 (($ (-592 |#1|)) NIL) (($) 13)) (-1608 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2592 (($ |#1| $) 67 (|has| $ (-6 -4255))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-1614 (($ |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4255)))) (-2899 (($) NIL (|has| |#1| (-346)))) (-3702 (((-592 |#1|) $) 19 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-2371 ((|#1| $) 57 (|has| |#1| (-789)))) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 66 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2535 ((|#1| $) 55 (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 34)) (-1736 (((-856) $) NIL (|has| |#1| (-346)))) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL)) (-3792 (($ $ $) 70)) (-3955 ((|#1| $) 25)) (-3985 (($ |#1| $) 65)) (-3640 (($ (-856)) NIL (|has| |#1| (-346)))) (-2012 (((-1038) $) NIL)) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 31)) (-1881 ((|#1| $) 27)) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) 21)) (-2718 (($) 11)) (-4004 (($ $ |#1|) NIL) (($ $ $) 71)) (-3981 (($) NIL) (($ (-592 |#1|)) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) 16)) (-2749 (((-501) $) 52 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 61)) (-1966 (($ $) NIL (|has| |#1| (-346)))) (-1270 (((-798) $) NIL)) (-1974 (((-713) $) NIL)) (-3316 (($ (-592 |#1|)) NIL) (($) 12)) (-1665 (($ (-592 |#1|)) NIL)) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 54)) (-4017 (((-108) $ $) NIL)) (-3596 (((-713) $) 10 (|has| $ (-6 -4255)))))
+(((-1022 |#1|) (-403 |#1|) (-1020)) (T -1022))
NIL
(-403 |#1|)
-((-1893 (((-108) $ $) 7)) (-2589 (((-108) $) 32)) (-1842 ((|#2| $) 27)) (-3258 (((-108) $) 33)) (-3607 ((|#1| $) 28)) (-1682 (((-108) $) 35)) (-2970 (((-108) $) 37)) (-1259 (((-108) $) 34)) (-2337 (((-1073) $) 9)) (-2318 (((-108) $) 31)) (-1870 ((|#3| $) 26)) (-2663 (((-1037) $) 10)) (-2451 (((-108) $) 30)) (-3905 ((|#4| $) 25)) (-1206 ((|#5| $) 24)) (-1881 (((-108) $ $) 38)) (-3928 (($ $ (-525)) 14) (($ $ (-592 (-525))) 13)) (-4034 (((-592 $) $) 29)) (-1427 (($ (-592 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-1908 (((-797) $) 11)) (-3054 (($ $) 16)) (-3046 (($ $) 17)) (-3822 (((-108) $) 36)) (-3961 (((-108) $ $) 6)) (-4140 (((-525) $) 15)))
-(((-1022 |#1| |#2| |#3| |#4| |#5|) (-131) (-1019) (-1019) (-1019) (-1019) (-1019)) (T -1022))
-((-1881 (*1 *2 *1 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-1682 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-1259 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-2589 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-2318 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-2451 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))) (-4034 (*1 *2 *1) (-12 (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-592 *1)) (-4 *1 (-1022 *3 *4 *5 *6 *7)))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-1022 *2 *3 *4 *5 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))) (-1842 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *2 *4 *5 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))) (-1870 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *2 *5 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))) (-3905 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *2 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))) (-1206 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *2)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)))) (-1427 (*1 *1 *2) (-12 (-4 *1 (-1022 *2 *3 *4 *5 *6)) (-4 *2 (-1019)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)))) (-1427 (*1 *1 *2) (-12 (-4 *1 (-1022 *3 *2 *4 *5 *6)) (-4 *3 (-1019)) (-4 *2 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)))) (-1427 (*1 *1 *2) (-12 (-4 *1 (-1022 *3 *4 *2 *5 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *2 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)))) (-1427 (*1 *1 *2) (-12 (-4 *1 (-1022 *3 *4 *5 *2 *6)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *2 (-1019)) (-4 *6 (-1019)))) (-1427 (*1 *1 *2) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *2)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))) (-3046 (*1 *1 *1) (-12 (-4 *1 (-1022 *2 *3 *4 *5 *6)) (-4 *2 (-1019)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)))) (-3054 (*1 *1 *1) (-12 (-4 *1 (-1022 *2 *3 *4 *5 *6)) (-4 *2 (-1019)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)))) (-4140 (*1 *2 *1) (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-525)))) (-3928 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)))) (-3928 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)))))
-(-13 (-1019) (-10 -8 (-15 -1881 ((-108) $ $)) (-15 -2970 ((-108) $)) (-15 -3822 ((-108) $)) (-15 -1682 ((-108) $)) (-15 -1259 ((-108) $)) (-15 -3258 ((-108) $)) (-15 -2589 ((-108) $)) (-15 -2318 ((-108) $)) (-15 -2451 ((-108) $)) (-15 -4034 ((-592 $) $)) (-15 -3607 (|t#1| $)) (-15 -1842 (|t#2| $)) (-15 -1870 (|t#3| $)) (-15 -3905 (|t#4| $)) (-15 -1206 (|t#5| $)) (-15 -1427 ($ (-592 $))) (-15 -1427 ($ |t#1|)) (-15 -1427 ($ |t#2|)) (-15 -1427 ($ |t#3|)) (-15 -1427 ($ |t#4|)) (-15 -1427 ($ |t#5|)) (-15 -3046 ($ $)) (-15 -3054 ($ $)) (-15 -4140 ((-525) $)) (-15 -3928 ($ $ (-525))) (-15 -3928 ($ $ (-592 (-525))))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL)) (-2589 (((-108) $) NIL)) (-1842 (((-1090) $) NIL)) (-3258 (((-108) $) NIL)) (-3607 (((-1073) $) NIL)) (-1682 (((-108) $) NIL)) (-2970 (((-108) $) NIL)) (-1259 (((-108) $) NIL)) (-2337 (((-1073) $) NIL)) (-2318 (((-108) $) NIL)) (-1870 (((-525) $) NIL)) (-2663 (((-1037) $) NIL)) (-2451 (((-108) $) NIL)) (-3905 (((-205) $) NIL)) (-1206 (((-797) $) NIL)) (-1881 (((-108) $ $) NIL)) (-3928 (($ $ (-525)) NIL) (($ $ (-592 (-525))) NIL)) (-4034 (((-592 $) $) NIL)) (-1427 (($ (-592 $)) NIL) (($ (-1073)) NIL) (($ (-1090)) NIL) (($ (-525)) NIL) (($ (-205)) NIL) (($ (-797)) NIL)) (-1908 (((-797) $) NIL)) (-3054 (($ $) NIL)) (-3046 (($ $) NIL)) (-3822 (((-108) $) NIL)) (-3961 (((-108) $ $) NIL)) (-4140 (((-525) $) NIL)))
-(((-1023) (-1022 (-1073) (-1090) (-525) (-205) (-797))) (T -1023))
-NIL
-(-1022 (-1073) (-1090) (-525) (-205) (-797))
-((-1893 (((-108) $ $) NIL)) (-2589 (((-108) $) 38)) (-1842 ((|#2| $) 42)) (-3258 (((-108) $) 37)) (-3607 ((|#1| $) 41)) (-1682 (((-108) $) 35)) (-2970 (((-108) $) 14)) (-1259 (((-108) $) 36)) (-2337 (((-1073) $) NIL)) (-2318 (((-108) $) 39)) (-1870 ((|#3| $) 44)) (-2663 (((-1037) $) NIL)) (-2451 (((-108) $) 40)) (-3905 ((|#4| $) 43)) (-1206 ((|#5| $) 45)) (-1881 (((-108) $ $) 34)) (-3928 (($ $ (-525)) 56) (($ $ (-592 (-525))) 58)) (-4034 (((-592 $) $) 22)) (-1427 (($ (-592 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-1908 (((-797) $) 23)) (-3054 (($ $) 21)) (-3046 (($ $) 52)) (-3822 (((-108) $) 18)) (-3961 (((-108) $ $) 33)) (-4140 (((-525) $) 54)))
-(((-1024 |#1| |#2| |#3| |#4| |#5|) (-1022 |#1| |#2| |#3| |#4| |#5|) (-1019) (-1019) (-1019) (-1019) (-1019)) (T -1024))
-NIL
-(-1022 |#1| |#2| |#3| |#4| |#5|)
-((-2891 (((-1177) $) 23)) (-2676 (($ (-1090) (-412) |#2|) 11)) (-1908 (((-797) $) 16)))
-(((-1025 |#1| |#2|) (-13 (-373) (-10 -8 (-15 -2676 ($ (-1090) (-412) |#2|)))) (-789) (-408 |#1|)) (T -1025))
-((-2676 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1090)) (-5 *3 (-412)) (-4 *5 (-789)) (-5 *1 (-1025 *5 *4)) (-4 *4 (-408 *5)))))
-(-13 (-373) (-10 -8 (-15 -2676 ($ (-1090) (-412) |#2|))))
-((-2249 (((-108) |#5| |#5|) 38)) (-1777 (((-108) |#5| |#5|) 52)) (-4111 (((-108) |#5| (-592 |#5|)) 75) (((-108) |#5| |#5|) 61)) (-1592 (((-108) (-592 |#4|) (-592 |#4|)) 58)) (-3845 (((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) 63)) (-1623 (((-1177)) 33)) (-3692 (((-1177) (-1073) (-1073) (-1073)) 29)) (-3378 (((-592 |#5|) (-592 |#5|)) 82)) (-3024 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|)))) 80)) (-2293 (((-592 (-2 (|:| -1881 (-592 |#4|)) (|:| -3740 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108)) 102)) (-2600 (((-108) |#5| |#5|) 47)) (-1782 (((-3 (-108) "failed") |#5| |#5|) 71)) (-3637 (((-108) (-592 |#4|) (-592 |#4|)) 57)) (-2102 (((-108) (-592 |#4|) (-592 |#4|)) 59)) (-2491 (((-108) (-592 |#4|) (-592 |#4|)) 60)) (-3916 (((-3 (-2 (|:| -1881 (-592 |#4|)) (|:| -3740 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)) 98)) (-3479 (((-592 |#5|) (-592 |#5|)) 43)))
-(((-1026 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3692 ((-1177) (-1073) (-1073) (-1073))) (-15 -1623 ((-1177))) (-15 -2249 ((-108) |#5| |#5|)) (-15 -3479 ((-592 |#5|) (-592 |#5|))) (-15 -2600 ((-108) |#5| |#5|)) (-15 -1777 ((-108) |#5| |#5|)) (-15 -1592 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3637 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2102 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2491 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1782 ((-3 (-108) "failed") |#5| |#5|)) (-15 -4111 ((-108) |#5| |#5|)) (-15 -4111 ((-108) |#5| (-592 |#5|))) (-15 -3378 ((-592 |#5|) (-592 |#5|))) (-15 -3845 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|)))) (-15 -3024 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) (-15 -2293 ((-592 (-2 (|:| -1881 (-592 |#4|)) (|:| -3740 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3916 ((-3 (-2 (|:| -1881 (-592 |#4|)) (|:| -3740 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|) (-995 |#1| |#2| |#3| |#4|)) (T -1026))
-((-3916 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-990 *6 *7 *8)) (-5 *2 (-2 (|:| -1881 (-592 *9)) (|:| -3740 *4) (|:| |ineq| (-592 *9)))) (-5 *1 (-1026 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9)) (-4 *4 (-995 *6 *7 *8 *9)))) (-2293 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-995 *6 *7 *8 *9)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-990 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| -1881 (-592 *9)) (|:| -3740 *10) (|:| |ineq| (-592 *9))))) (-5 *1 (-1026 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9)))) (-3024 (*1 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -3740 *7)))) (-4 *6 (-990 *3 *4 *5)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1026 *3 *4 *5 *6 *7)))) (-3845 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -3740 *8))) (-4 *7 (-990 *4 *5 *6)) (-4 *8 (-995 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *8)))) (-3378 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *1 (-1026 *3 *4 *5 *6 *7)))) (-4111 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1026 *5 *6 *7 *8 *3)))) (-4111 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-1782 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-2491 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-2102 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-3637 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-1592 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-1777 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-2600 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-3479 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *1 (-1026 *3 *4 *5 *6 *7)))) (-2249 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))) (-1623 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) (-5 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))) (-3692 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3692 ((-1177) (-1073) (-1073) (-1073))) (-15 -1623 ((-1177))) (-15 -2249 ((-108) |#5| |#5|)) (-15 -3479 ((-592 |#5|) (-592 |#5|))) (-15 -2600 ((-108) |#5| |#5|)) (-15 -1777 ((-108) |#5| |#5|)) (-15 -1592 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3637 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2102 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2491 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1782 ((-3 (-108) "failed") |#5| |#5|)) (-15 -4111 ((-108) |#5| |#5|)) (-15 -4111 ((-108) |#5| (-592 |#5|))) (-15 -3378 ((-592 |#5|) (-592 |#5|))) (-15 -3845 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|)))) (-15 -3024 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) (-15 -2293 ((-592 (-2 (|:| -1881 (-592 |#4|)) (|:| -3740 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3916 ((-3 (-2 (|:| -1881 (-592 |#4|)) (|:| -3740 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108))))
-((-3022 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#5|) 96)) (-1433 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) |#4| |#4| |#5|) 72)) (-2771 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5|) 90)) (-2966 (((-592 |#5|) |#4| |#5|) 110)) (-3078 (((-592 |#5|) |#4| |#5|) 117)) (-2854 (((-592 |#5|) |#4| |#5|) 118)) (-2309 (((-592 (-2 (|:| |val| (-108)) (|:| -3740 |#5|))) |#4| |#5|) 97)) (-4161 (((-592 (-2 (|:| |val| (-108)) (|:| -3740 |#5|))) |#4| |#5|) 116)) (-1745 (((-592 (-2 (|:| |val| (-108)) (|:| -3740 |#5|))) |#4| |#5|) 46) (((-108) |#4| |#5|) 53)) (-4008 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) |#3| (-108)) 84) (((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5| (-108) (-108)) 50)) (-2208 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5|) 79)) (-1854 (((-1177)) 37)) (-2184 (((-1177)) 26)) (-1894 (((-1177) (-1073) (-1073) (-1073)) 33)) (-3160 (((-1177) (-1073) (-1073) (-1073)) 22)))
-(((-1027 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3160 ((-1177) (-1073) (-1073) (-1073))) (-15 -2184 ((-1177))) (-15 -1894 ((-1177) (-1073) (-1073) (-1073))) (-15 -1854 ((-1177))) (-15 -1433 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) |#4| |#4| |#5|)) (-15 -4008 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -4008 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) |#3| (-108))) (-15 -2208 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5|)) (-15 -2771 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5|)) (-15 -1745 ((-108) |#4| |#5|)) (-15 -2309 ((-592 (-2 (|:| |val| (-108)) (|:| -3740 |#5|))) |#4| |#5|)) (-15 -2966 ((-592 |#5|) |#4| |#5|)) (-15 -4161 ((-592 (-2 (|:| |val| (-108)) (|:| -3740 |#5|))) |#4| |#5|)) (-15 -3078 ((-592 |#5|) |#4| |#5|)) (-15 -1745 ((-592 (-2 (|:| |val| (-108)) (|:| -3740 |#5|))) |#4| |#5|)) (-15 -2854 ((-592 |#5|) |#4| |#5|)) (-15 -3022 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#5|))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|) (-995 |#1| |#2| |#3| |#4|)) (T -1027))
-((-3022 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4)))) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2854 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-1745 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -3740 *4)))) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-3078 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-4161 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -3740 *4)))) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2966 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2309 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -3740 *4)))) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-1745 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2771 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4)))) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-2208 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4)))) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-4008 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -3740 *9)))) (-5 *5 (-108)) (-4 *8 (-990 *6 *7 *4)) (-4 *9 (-995 *6 *7 *4 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789)) (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -3740 *9)))) (-5 *1 (-1027 *6 *7 *4 *8 *9)))) (-4008 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-990 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4)))) (-5 *1 (-1027 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3)))) (-1433 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4)))) (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))) (-1854 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) (-5 *1 (-1027 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))) (-1894 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))) (-2184 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177)) (-5 *1 (-1027 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))) (-3160 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3160 ((-1177) (-1073) (-1073) (-1073))) (-15 -2184 ((-1177))) (-15 -1894 ((-1177) (-1073) (-1073) (-1073))) (-15 -1854 ((-1177))) (-15 -1433 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) |#4| |#4| |#5|)) (-15 -4008 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -4008 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) |#3| (-108))) (-15 -2208 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5|)) (-15 -2771 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#4| |#5|)) (-15 -1745 ((-108) |#4| |#5|)) (-15 -2309 ((-592 (-2 (|:| |val| (-108)) (|:| -3740 |#5|))) |#4| |#5|)) (-15 -2966 ((-592 |#5|) |#4| |#5|)) (-15 -4161 ((-592 (-2 (|:| |val| (-108)) (|:| -3740 |#5|))) |#4| |#5|)) (-15 -3078 ((-592 |#5|) |#4| |#5|)) (-15 -1745 ((-592 (-2 (|:| |val| (-108)) (|:| -3740 |#5|))) |#4| |#5|)) (-15 -2854 ((-592 |#5|) |#4| |#5|)) (-15 -3022 ((-592 (-2 (|:| |val| |#4|) (|:| -3740 |#5|))) |#4| |#5|)))
-((-1893 (((-108) $ $) 7)) (-2894 (((-592 (-2 (|:| -3286 $) (|:| -2396 (-592 |#4|)))) (-592 |#4|)) 85)) (-2308 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-4104 (((-592 |#3|) $) 33)) (-3696 (((-108) $) 26)) (-3810 (((-108) $) 17 (|has| |#1| (-517)))) (-1466 (((-108) |#4| $) 101) (((-108) $) 97)) (-3833 ((|#4| |#4| $) 92)) (-3321 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 $))) |#4| $) 126)) (-3327 (((-2 (|:| |under| $) (|:| -1720 $) (|:| |upper| $)) $ |#3|) 27)) (-3410 (((-108) $ (-713)) 44)) (-2724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) 79)) (-1505 (($) 45 T CONST)) (-2637 (((-108) $) 22 (|has| |#1| (-517)))) (-2643 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2494 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3405 (((-108) $) 25 (|has| |#1| (-517)))) (-2895 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3937 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-3144 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-1264 (((-3 $ "failed") (-592 |#4|)) 36)) (-2831 (($ (-592 |#4|)) 35)) (-3145 (((-3 $ "failed") $) 82)) (-3096 ((|#4| |#4| $) 89)) (-3163 (($ $) 68 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ |#4| $) 67 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4254)))) (-1632 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-1954 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2295 ((|#4| |#4| $) 87)) (-4004 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1426 (((-2 (|:| -3286 (-592 |#4|)) (|:| -2396 (-592 |#4|))) $) 105)) (-1725 (((-108) |#4| $) 136)) (-2678 (((-108) |#4| $) 133)) (-1503 (((-108) |#4| $) 137) (((-108) $) 134)) (-2026 (((-592 |#4|) $) 52 (|has| $ (-6 -4254)))) (-2267 (((-108) |#4| $) 104) (((-108) $) 103)) (-1257 ((|#3| $) 34)) (-3100 (((-108) $ (-713)) 43)) (-3168 (((-592 |#4|) $) 53 (|has| $ (-6 -4254)))) (-4132 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#4| |#4|) $) 47)) (-1835 (((-592 |#3|) $) 32)) (-1913 (((-108) |#3| $) 31)) (-3017 (((-108) $ (-713)) 42)) (-2337 (((-1073) $) 9)) (-3211 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-1868 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 $))) |#4| |#4| $) 127)) (-2292 (((-3 |#4| "failed") $) 83)) (-2505 (((-592 $) |#4| $) 129)) (-2269 (((-3 (-108) (-592 $)) |#4| $) 132)) (-2819 (((-592 (-2 (|:| |val| (-108)) (|:| -3740 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-3187 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-2394 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-2931 (((-592 |#4|) $) 107)) (-3691 (((-108) |#4| $) 99) (((-108) $) 95)) (-4189 ((|#4| |#4| $) 90)) (-2491 (((-108) $ $) 110)) (-2809 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2469 (((-108) |#4| $) 100) (((-108) $) 96)) (-2954 ((|#4| |#4| $) 91)) (-2663 (((-1037) $) 10)) (-3135 (((-3 |#4| "failed") $) 84)) (-4054 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2662 (((-3 $ "failed") $ |#4|) 78)) (-3538 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-3494 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-2642 (((-108) $ $) 38)) (-1613 (((-108) $) 41)) (-3773 (($) 40)) (-2513 (((-713) $) 106)) (-2686 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4254)))) (-2135 (($ $) 39)) (-1427 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1922 (($ (-592 |#4|)) 60)) (-1861 (($ $ |#3|) 28)) (-3570 (($ $ |#3|) 30)) (-2031 (($ $) 88)) (-1263 (($ $ |#3|) 29)) (-1908 (((-797) $) 11) (((-592 |#4|) $) 37)) (-3056 (((-713) $) 76 (|has| |#3| (-346)))) (-3480 (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-1971 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-2348 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-2667 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4254)))) (-2241 (((-592 |#3|) $) 81)) (-3673 (((-108) |#4| $) 135)) (-1252 (((-108) |#3| $) 80)) (-3961 (((-108) $ $) 6)) (-4140 (((-713) $) 46 (|has| $ (-6 -4254)))))
-(((-1028 |#1| |#2| |#3| |#4|) (-131) (-429) (-735) (-789) (-990 |t#1| |t#2| |t#3|)) (T -1028))
-NIL
-(-13 (-995 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-797)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-908 |#1| |#2| |#3| |#4|) . T) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1019) . T) ((-1120 |#1| |#2| |#3| |#4|) . T) ((-1126) . T))
-((-3648 (((-592 (-525)) (-525) (-525) (-525)) 22)) (-2013 (((-592 (-525)) (-525) (-525) (-525)) 12)) (-3636 (((-592 (-525)) (-525) (-525) (-525)) 18)) (-4151 (((-525) (-525) (-525)) 9)) (-2343 (((-1172 (-525)) (-592 (-525)) (-1172 (-525)) (-525)) 46) (((-1172 (-525)) (-1172 (-525)) (-1172 (-525)) (-525)) 41)) (-2434 (((-592 (-525)) (-592 (-525)) (-592 (-525)) (-108)) 28)) (-2265 (((-632 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525))) 45)) (-1956 (((-632 (-525)) (-592 (-525)) (-592 (-525))) 33)) (-3467 (((-592 (-632 (-525))) (-592 (-525))) 35)) (-2155 (((-592 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525))) 49)) (-2776 (((-632 (-525)) (-592 (-525)) (-592 (-525)) (-592 (-525))) 57)))
-(((-1029) (-10 -7 (-15 -2776 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -2155 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -3467 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -1956 ((-632 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -2265 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -2434 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-108))) (-15 -2343 ((-1172 (-525)) (-1172 (-525)) (-1172 (-525)) (-525))) (-15 -2343 ((-1172 (-525)) (-592 (-525)) (-1172 (-525)) (-525))) (-15 -4151 ((-525) (-525) (-525))) (-15 -3636 ((-592 (-525)) (-525) (-525) (-525))) (-15 -2013 ((-592 (-525)) (-525) (-525) (-525))) (-15 -3648 ((-592 (-525)) (-525) (-525) (-525))))) (T -1029))
-((-3648 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1029)) (-5 *3 (-525)))) (-2013 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1029)) (-5 *3 (-525)))) (-3636 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1029)) (-5 *3 (-525)))) (-4151 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1029)))) (-2343 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1172 (-525))) (-5 *3 (-592 (-525))) (-5 *4 (-525)) (-5 *1 (-1029)))) (-2343 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1172 (-525))) (-5 *3 (-525)) (-5 *1 (-1029)))) (-2434 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *3 (-108)) (-5 *1 (-1029)))) (-2265 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-632 (-525))) (-5 *3 (-592 (-525))) (-5 *1 (-1029)))) (-1956 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1029)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-1029)))) (-2155 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *3 (-632 (-525))) (-5 *1 (-1029)))) (-2776 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1029)))))
-(-10 -7 (-15 -2776 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -2155 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -3467 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -1956 ((-632 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -2265 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -2434 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-108))) (-15 -2343 ((-1172 (-525)) (-1172 (-525)) (-1172 (-525)) (-525))) (-15 -2343 ((-1172 (-525)) (-592 (-525)) (-1172 (-525)) (-525))) (-15 -4151 ((-525) (-525) (-525))) (-15 -3636 ((-592 (-525)) (-525) (-525) (-525))) (-15 -2013 ((-592 (-525)) (-525) (-525) (-525))) (-15 -3648 ((-592 (-525)) (-525) (-525) (-525))))
-((-3465 (($ $ (-855)) 12)) (** (($ $ (-855)) 10)))
-(((-1030 |#1|) (-10 -8 (-15 -3465 (|#1| |#1| (-855))) (-15 ** (|#1| |#1| (-855)))) (-1031)) (T -1030))
-NIL
-(-10 -8 (-15 -3465 (|#1| |#1| (-855))) (-15 ** (|#1| |#1| (-855))))
-((-1893 (((-108) $ $) 7)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3465 (($ $ (-855)) 13)) (-3961 (((-108) $ $) 6)) (** (($ $ (-855)) 14)) (* (($ $ $) 15)))
-(((-1031) (-131)) (T -1031))
-((* (*1 *1 *1 *1) (-4 *1 (-1031))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-855)))) (-3465 (*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-855)))))
-(-13 (-1019) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-855))) (-15 -3465 ($ $ (-855)))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-1893 (((-108) $ $) NIL (|has| |#3| (-1019)))) (-1611 (((-108) $) NIL (|has| |#3| (-126)))) (-2516 (($ (-855)) NIL (|has| |#3| (-976)))) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-1487 (($ $ $) NIL (|has| |#3| (-735)))) (-3263 (((-3 $ "failed") $ $) NIL (|has| |#3| (-126)))) (-3410 (((-108) $ (-713)) NIL)) (-3107 (((-713)) NIL (|has| |#3| (-346)))) (-1690 (((-525) $) NIL (|has| |#3| (-787)))) (-2109 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4255)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL (-12 (|has| |#3| (-967 (-525))) (|has| |#3| (-1019)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#3| (-967 (-385 (-525)))) (|has| |#3| (-1019)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1019)))) (-2831 (((-525) $) NIL (-12 (|has| |#3| (-967 (-525))) (|has| |#3| (-1019)))) (((-385 (-525)) $) NIL (-12 (|has| |#3| (-967 (-385 (-525)))) (|has| |#3| (-1019)))) ((|#3| $) NIL (|has| |#3| (-1019)))) (-1860 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-976)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-976)))) (((-2 (|:| -3276 (-632 |#3|)) (|:| |vec| (-1172 |#3|))) (-632 $) (-1172 $)) NIL (|has| |#3| (-976))) (((-632 |#3|) (-632 $)) NIL (|has| |#3| (-976)))) (-2866 (((-3 $ "failed") $) NIL (|has| |#3| (-976)))) (-3375 (($) NIL (|has| |#3| (-346)))) (-2870 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#3| $ (-525)) 12)) (-3026 (((-108) $) NIL (|has| |#3| (-787)))) (-2026 (((-592 |#3|) $) NIL (|has| $ (-6 -4254)))) (-2133 (((-108) $) NIL (|has| |#3| (-976)))) (-2882 (((-108) $) NIL (|has| |#3| (-787)))) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) NIL (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (-3309 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3168 (((-592 |#3|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#3| (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (-3309 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2857 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#3| |#3|) $) NIL)) (-1780 (((-855) $) NIL (|has| |#3| (-346)))) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#3| (-1019)))) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-4185 (($ (-855)) NIL (|has| |#3| (-346)))) (-2663 (((-1037) $) NIL (|has| |#3| (-1019)))) (-3135 ((|#3| $) NIL (|has| (-525) (-789)))) (-1911 (($ $ |#3|) NIL (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019)))) (($ $ (-592 |#3|) (-592 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#3| (-1019))))) (-3171 (((-592 |#3|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#3| $ (-525) |#3|) NIL) ((|#3| $ (-525)) NIL)) (-1595 ((|#3| $ $) NIL (|has| |#3| (-976)))) (-4007 (($ (-1172 |#3|)) NIL)) (-3191 (((-128)) NIL (|has| |#3| (-341)))) (-3013 (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-976))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-976)))) (-2686 (((-713) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254))) (((-713) |#3| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#3| (-1019))))) (-2135 (($ $) NIL)) (-1908 (((-1172 |#3|) $) NIL) (($ (-525)) NIL (-3309 (-12 (|has| |#3| (-967 (-525))) (|has| |#3| (-1019))) (|has| |#3| (-976)))) (($ (-385 (-525))) NIL (-12 (|has| |#3| (-967 (-385 (-525)))) (|has| |#3| (-1019)))) (($ |#3|) NIL (|has| |#3| (-1019))) (((-797) $) NIL (|has| |#3| (-566 (-797))))) (-2093 (((-713)) NIL (|has| |#3| (-976)))) (-2667 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4254)))) (-2092 (($ $) NIL (|has| |#3| (-787)))) (-3465 (($ $ (-713)) NIL (|has| |#3| (-976))) (($ $ (-855)) NIL (|has| |#3| (-976)))) (-3875 (($) NIL (|has| |#3| (-126)) CONST)) (-3882 (($) NIL (|has| |#3| (-976)) CONST)) (-1424 (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-976)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-976)))) (($ $ (-1090)) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#3| (-834 (-1090))) (|has| |#3| (-976)))) (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-976))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-976)))) (-4024 (((-108) $ $) NIL (-3309 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3995 (((-108) $ $) NIL (-3309 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3961 (((-108) $ $) NIL (|has| |#3| (-1019)))) (-4010 (((-108) $ $) NIL (-3309 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3983 (((-108) $ $) 17 (-3309 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-4082 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-4070 (($ $ $) NIL (|has| |#3| (-976))) (($ $) NIL (|has| |#3| (-976)))) (-4059 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-713)) NIL (|has| |#3| (-976))) (($ $ (-855)) NIL (|has| |#3| (-976)))) (* (($ $ $) NIL (|has| |#3| (-976))) (($ (-525) $) NIL (|has| |#3| (-976))) (($ $ |#3|) NIL (|has| |#3| (-669))) (($ |#3| $) NIL (|has| |#3| (-669))) (($ (-713) $) NIL (|has| |#3| (-126))) (($ (-855) $) NIL (|has| |#3| (-25)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-1032 |#1| |#2| |#3|) (-218 |#1| |#3|) (-713) (-713) (-735)) (T -1032))
+((-1260 (((-108) $ $) 7)) (-4129 (((-108) $) 32)) (-3046 ((|#2| $) 27)) (-1301 (((-108) $) 33)) (-3111 ((|#1| $) 28)) (-1348 (((-108) $) 35)) (-3544 (((-108) $) 37)) (-1796 (((-108) $) 34)) (-3451 (((-1074) $) 9)) (-3283 (((-108) $) 31)) (-4217 ((|#3| $) 26)) (-2012 (((-1038) $) 10)) (-2263 (((-108) $) 30)) (-2294 ((|#4| $) 25)) (-2531 ((|#5| $) 24)) (-4216 (((-108) $ $) 38)) (-3410 (($ $ (-525)) 14) (($ $ (-592 (-525))) 13)) (-2290 (((-592 $) $) 29)) (-2749 (($ (-592 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-1270 (((-798) $) 11)) (-4124 (($ $) 16)) (-4113 (($ $) 17)) (-3117 (((-108) $) 36)) (-3994 (((-108) $ $) 6)) (-3596 (((-525) $) 15)))
+(((-1023 |#1| |#2| |#3| |#4| |#5|) (-131) (-1020) (-1020) (-1020) (-1020) (-1020)) (T -1023))
+((-4216 (*1 *2 *1 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-1348 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-1301 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-4129 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-3283 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-2263 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))) (-2290 (*1 *2 *1) (-12 (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-592 *1)) (-4 *1 (-1023 *3 *4 *5 *6 *7)))) (-3111 (*1 *2 *1) (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-3046 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *2 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *2 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-2294 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *2 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-2531 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *2)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)))) (-2749 (*1 *1 *2) (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *2 (-1020)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))) (-2749 (*1 *1 *2) (-12 (-4 *1 (-1023 *3 *2 *4 *5 *6)) (-4 *3 (-1020)) (-4 *2 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))) (-2749 (*1 *1 *2) (-12 (-4 *1 (-1023 *3 *4 *2 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *2 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))) (-2749 (*1 *1 *2) (-12 (-4 *1 (-1023 *3 *4 *5 *2 *6)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *2 (-1020)) (-4 *6 (-1020)))) (-2749 (*1 *1 *2) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *2)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))) (-4113 (*1 *1 *1) (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *2 (-1020)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))) (-4124 (*1 *1 *1) (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *2 (-1020)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-525)))) (-3410 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)))) (-3410 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)))))
+(-13 (-1020) (-10 -8 (-15 -4216 ((-108) $ $)) (-15 -3544 ((-108) $)) (-15 -3117 ((-108) $)) (-15 -1348 ((-108) $)) (-15 -1796 ((-108) $)) (-15 -1301 ((-108) $)) (-15 -4129 ((-108) $)) (-15 -3283 ((-108) $)) (-15 -2263 ((-108) $)) (-15 -2290 ((-592 $) $)) (-15 -3111 (|t#1| $)) (-15 -3046 (|t#2| $)) (-15 -4217 (|t#3| $)) (-15 -2294 (|t#4| $)) (-15 -2531 (|t#5| $)) (-15 -2749 ($ (-592 $))) (-15 -2749 ($ |t#1|)) (-15 -2749 ($ |t#2|)) (-15 -2749 ($ |t#3|)) (-15 -2749 ($ |t#4|)) (-15 -2749 ($ |t#5|)) (-15 -4113 ($ $)) (-15 -4124 ($ $)) (-15 -3596 ((-525) $)) (-15 -3410 ($ $ (-525))) (-15 -3410 ($ $ (-592 (-525))))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL)) (-4129 (((-108) $) NIL)) (-3046 (((-1091) $) NIL)) (-1301 (((-108) $) NIL)) (-3111 (((-1074) $) NIL)) (-1348 (((-108) $) NIL)) (-3544 (((-108) $) NIL)) (-1796 (((-108) $) NIL)) (-3451 (((-1074) $) NIL)) (-3283 (((-108) $) NIL)) (-4217 (((-525) $) NIL)) (-2012 (((-1038) $) NIL)) (-2263 (((-108) $) NIL)) (-2294 (((-205) $) NIL)) (-2531 (((-798) $) NIL)) (-4216 (((-108) $ $) NIL)) (-3410 (($ $ (-525)) NIL) (($ $ (-592 (-525))) NIL)) (-2290 (((-592 $) $) NIL)) (-2749 (($ (-592 $)) NIL) (($ (-1074)) NIL) (($ (-1091)) NIL) (($ (-525)) NIL) (($ (-205)) NIL) (($ (-798)) NIL)) (-1270 (((-798) $) NIL)) (-4124 (($ $) NIL)) (-4113 (($ $) NIL)) (-3117 (((-108) $) NIL)) (-3994 (((-108) $ $) NIL)) (-3596 (((-525) $) NIL)))
+(((-1024) (-1023 (-1074) (-1091) (-525) (-205) (-798))) (T -1024))
+NIL
+(-1023 (-1074) (-1091) (-525) (-205) (-798))
+((-1260 (((-108) $ $) NIL)) (-4129 (((-108) $) 38)) (-3046 ((|#2| $) 42)) (-1301 (((-108) $) 37)) (-3111 ((|#1| $) 41)) (-1348 (((-108) $) 35)) (-3544 (((-108) $) 14)) (-1796 (((-108) $) 36)) (-3451 (((-1074) $) NIL)) (-3283 (((-108) $) 39)) (-4217 ((|#3| $) 44)) (-2012 (((-1038) $) NIL)) (-2263 (((-108) $) 40)) (-2294 ((|#4| $) 43)) (-2531 ((|#5| $) 45)) (-4216 (((-108) $ $) 34)) (-3410 (($ $ (-525)) 56) (($ $ (-592 (-525))) 58)) (-2290 (((-592 $) $) 22)) (-2749 (($ (-592 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-1270 (((-798) $) 23)) (-4124 (($ $) 21)) (-4113 (($ $) 52)) (-3117 (((-108) $) 18)) (-3994 (((-108) $ $) 33)) (-3596 (((-525) $) 54)))
+(((-1025 |#1| |#2| |#3| |#4| |#5|) (-1023 |#1| |#2| |#3| |#4| |#5|) (-1020) (-1020) (-1020) (-1020) (-1020)) (T -1025))
+NIL
+(-1023 |#1| |#2| |#3| |#4| |#5|)
+((-2350 (((-1178) $) 23)) (-1528 (($ (-1091) (-412) |#2|) 11)) (-1270 (((-798) $) 16)))
+(((-1026 |#1| |#2|) (-13 (-373) (-10 -8 (-15 -1528 ($ (-1091) (-412) |#2|)))) (-789) (-408 |#1|)) (T -1026))
+((-1528 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1091)) (-5 *3 (-412)) (-4 *5 (-789)) (-5 *1 (-1026 *5 *4)) (-4 *4 (-408 *5)))))
+(-13 (-373) (-10 -8 (-15 -1528 ($ (-1091) (-412) |#2|))))
+((-3823 (((-108) |#5| |#5|) 38)) (-1693 (((-108) |#5| |#5|) 52)) (-3617 (((-108) |#5| (-592 |#5|)) 75) (((-108) |#5| |#5|) 61)) (-1635 (((-108) (-592 |#4|) (-592 |#4|)) 58)) (-2098 (((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) 63)) (-3402 (((-1178)) 33)) (-3143 (((-1178) (-1074) (-1074) (-1074)) 29)) (-3128 (((-592 |#5|) (-592 |#5|)) 82)) (-3002 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|)))) 80)) (-3109 (((-592 (-2 (|:| -4216 (-592 |#4|)) (|:| -1895 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108)) 102)) (-3133 (((-108) |#5| |#5|) 47)) (-3196 (((-3 (-108) "failed") |#5| |#5|) 71)) (-3734 (((-108) (-592 |#4|) (-592 |#4|)) 57)) (-2244 (((-108) (-592 |#4|) (-592 |#4|)) 59)) (-1363 (((-108) (-592 |#4|) (-592 |#4|)) 60)) (-1477 (((-3 (-2 (|:| -4216 (-592 |#4|)) (|:| -1895 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)) 98)) (-2919 (((-592 |#5|) (-592 |#5|)) 43)))
+(((-1027 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3143 ((-1178) (-1074) (-1074) (-1074))) (-15 -3402 ((-1178))) (-15 -3823 ((-108) |#5| |#5|)) (-15 -2919 ((-592 |#5|) (-592 |#5|))) (-15 -3133 ((-108) |#5| |#5|)) (-15 -1693 ((-108) |#5| |#5|)) (-15 -1635 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3734 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2244 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1363 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3196 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3617 ((-108) |#5| |#5|)) (-15 -3617 ((-108) |#5| (-592 |#5|))) (-15 -3128 ((-592 |#5|) (-592 |#5|))) (-15 -2098 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|)))) (-15 -3002 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) (-15 -3109 ((-592 (-2 (|:| -4216 (-592 |#4|)) (|:| -1895 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -1477 ((-3 (-2 (|:| -4216 (-592 |#4|)) (|:| -1895 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108)))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -1027))
+((-1477 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| -4216 (-592 *9)) (|:| -1895 *4) (|:| |ineq| (-592 *9)))) (-5 *1 (-1027 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9)) (-4 *4 (-996 *6 *7 *8 *9)))) (-3109 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-996 *6 *7 *8 *9)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| -4216 (-592 *9)) (|:| -1895 *10) (|:| |ineq| (-592 *9))))) (-5 *1 (-1027 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9)))) (-3002 (*1 *2 *2) (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -1895 *7)))) (-4 *6 (-991 *3 *4 *5)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1027 *3 *4 *5 *6 *7)))) (-2098 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -1895 *8))) (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-996 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *8)))) (-3128 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *1 (-1027 *3 *4 *5 *6 *7)))) (-3617 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1027 *5 *6 *7 *8 *3)))) (-3617 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-3196 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-1363 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-2244 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-3734 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-1635 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-1693 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-3133 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-2919 (*1 *2 *2) (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *1 (-1027 *3 *4 *5 *6 *7)))) (-3823 (*1 *2 *3 *3) (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))) (-3402 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1178)) (-5 *1 (-1027 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-3143 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1178)) (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3143 ((-1178) (-1074) (-1074) (-1074))) (-15 -3402 ((-1178))) (-15 -3823 ((-108) |#5| |#5|)) (-15 -2919 ((-592 |#5|) (-592 |#5|))) (-15 -3133 ((-108) |#5| |#5|)) (-15 -1693 ((-108) |#5| |#5|)) (-15 -1635 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3734 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -2244 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -1363 ((-108) (-592 |#4|) (-592 |#4|))) (-15 -3196 ((-3 (-108) "failed") |#5| |#5|)) (-15 -3617 ((-108) |#5| |#5|)) (-15 -3617 ((-108) |#5| (-592 |#5|))) (-15 -3128 ((-592 |#5|) (-592 |#5|))) (-15 -2098 ((-108) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|)) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|)))) (-15 -3002 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) (-15 -3109 ((-592 (-2 (|:| -4216 (-592 |#4|)) (|:| -1895 |#5|) (|:| |ineq| (-592 |#4|)))) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -1477 ((-3 (-2 (|:| -4216 (-592 |#4|)) (|:| -1895 |#5|) (|:| |ineq| (-592 |#4|))) "failed") (-592 |#4|) |#5| (-592 |#4|) (-108) (-108) (-108) (-108) (-108))))
+((-2991 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#5|) 96)) (-2590 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) |#4| |#4| |#5|) 72)) (-2333 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5|) 90)) (-3522 (((-592 |#5|) |#4| |#5|) 110)) (-2233 (((-592 |#5|) |#4| |#5|) 117)) (-1823 (((-592 |#5|) |#4| |#5|) 118)) (-3229 (((-592 (-2 (|:| |val| (-108)) (|:| -1895 |#5|))) |#4| |#5|) 97)) (-2985 (((-592 (-2 (|:| |val| (-108)) (|:| -1895 |#5|))) |#4| |#5|) 116)) (-1338 (((-592 (-2 (|:| |val| (-108)) (|:| -1895 |#5|))) |#4| |#5|) 46) (((-108) |#4| |#5|) 53)) (-3989 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) |#3| (-108)) 84) (((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5| (-108) (-108)) 50)) (-1554 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5|) 79)) (-3361 (((-1178)) 37)) (-1302 (((-1178)) 26)) (-1876 (((-1178) (-1074) (-1074) (-1074)) 33)) (-1687 (((-1178) (-1074) (-1074) (-1074)) 22)))
+(((-1028 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1687 ((-1178) (-1074) (-1074) (-1074))) (-15 -1302 ((-1178))) (-15 -1876 ((-1178) (-1074) (-1074) (-1074))) (-15 -3361 ((-1178))) (-15 -2590 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) |#4| |#4| |#5|)) (-15 -3989 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3989 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) |#3| (-108))) (-15 -1554 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5|)) (-15 -2333 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5|)) (-15 -1338 ((-108) |#4| |#5|)) (-15 -3229 ((-592 (-2 (|:| |val| (-108)) (|:| -1895 |#5|))) |#4| |#5|)) (-15 -3522 ((-592 |#5|) |#4| |#5|)) (-15 -2985 ((-592 (-2 (|:| |val| (-108)) (|:| -1895 |#5|))) |#4| |#5|)) (-15 -2233 ((-592 |#5|) |#4| |#5|)) (-15 -1338 ((-592 (-2 (|:| |val| (-108)) (|:| -1895 |#5|))) |#4| |#5|)) (-15 -1823 ((-592 |#5|) |#4| |#5|)) (-15 -2991 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#5|))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-996 |#1| |#2| |#3| |#4|)) (T -1028))
+((-2991 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1823 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1338 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1895 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-2233 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-2985 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1895 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3522 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4)) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3229 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1895 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1338 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-2333 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-1554 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3989 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -1895 *9)))) (-5 *5 (-108)) (-4 *8 (-991 *6 *7 *4)) (-4 *9 (-996 *6 *7 *4 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789)) (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -1895 *9)))) (-5 *1 (-1028 *6 *7 *4 *8 *9)))) (-3989 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4)))) (-5 *1 (-1028 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3)))) (-2590 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4)))) (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))) (-3361 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1178)) (-5 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-1876 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1178)) (-5 *1 (-1028 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))) (-1302 (*1 *2) (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1178)) (-5 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))) (-1687 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1074)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1178)) (-5 *1 (-1028 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1687 ((-1178) (-1074) (-1074) (-1074))) (-15 -1302 ((-1178))) (-15 -1876 ((-1178) (-1074) (-1074) (-1074))) (-15 -3361 ((-1178))) (-15 -2590 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) |#4| |#4| |#5|)) (-15 -3989 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5| (-108) (-108))) (-15 -3989 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) |#3| (-108))) (-15 -1554 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5|)) (-15 -2333 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#4| |#5|)) (-15 -1338 ((-108) |#4| |#5|)) (-15 -3229 ((-592 (-2 (|:| |val| (-108)) (|:| -1895 |#5|))) |#4| |#5|)) (-15 -3522 ((-592 |#5|) |#4| |#5|)) (-15 -2985 ((-592 (-2 (|:| |val| (-108)) (|:| -1895 |#5|))) |#4| |#5|)) (-15 -2233 ((-592 |#5|) |#4| |#5|)) (-15 -1338 ((-592 (-2 (|:| |val| (-108)) (|:| -1895 |#5|))) |#4| |#5|)) (-15 -1823 ((-592 |#5|) |#4| |#5|)) (-15 -2991 ((-592 (-2 (|:| |val| |#4|) (|:| -1895 |#5|))) |#4| |#5|)))
+((-1260 (((-108) $ $) 7)) (-4022 (((-592 (-2 (|:| -2849 $) (|:| -2409 (-592 |#4|)))) (-592 |#4|)) 85)) (-3221 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-2383 (((-592 |#3|) $) 33)) (-3163 (((-108) $) 26)) (-3018 (((-108) $) 17 (|has| |#1| (-517)))) (-2220 (((-108) |#4| $) 101) (((-108) $) 97)) (-1952 ((|#4| |#4| $) 92)) (-3706 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 $))) |#4| $) 126)) (-2855 (((-2 (|:| |under| $) (|:| -2793 $) (|:| |upper| $)) $ |#3|) 27)) (-3330 (((-108) $ (-713)) 44)) (-3826 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4255))) (((-3 |#4| "failed") $ |#3|) 79)) (-2305 (($) 45 T CONST)) (-3393 (((-108) $) 22 (|has| |#1| (-517)))) (-3438 (((-108) $ $) 24 (|has| |#1| (-517)))) (-1396 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3291 (((-108) $) 25 (|has| |#1| (-517)))) (-4032 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1653 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1551 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-2591 (((-3 $ "failed") (-592 |#4|)) 36)) (-3898 (($ (-592 |#4|)) 35)) (-3121 (((-3 $ "failed") $) 82)) (-2457 ((|#4| |#4| $) 89)) (-3137 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4255)))) (-3496 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-4047 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-3129 ((|#4| |#4| $) 87)) (-3503 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4255))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4255))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2520 (((-2 (|:| -2849 (-592 |#4|)) (|:| -2409 (-592 |#4|))) $) 105)) (-3859 (((-108) |#4| $) 136)) (-2671 (((-108) |#4| $) 133)) (-2259 (((-108) |#4| $) 137) (((-108) $) 134)) (-3702 (((-592 |#4|) $) 52 (|has| $ (-6 -4255)))) (-4008 (((-108) |#4| $) 104) (((-108) $) 103)) (-1776 ((|#3| $) 34)) (-2482 (((-108) $ (-713)) 43)) (-1749 (((-592 |#4|) $) 53 (|has| $ (-6 -4255)))) (-2783 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#4| |#4|) $) 47)) (-2723 (((-592 |#3|) $) 32)) (-2069 (((-108) |#3| $) 31)) (-2957 (((-108) $ (-713)) 42)) (-3451 (((-1074) $) 9)) (-4038 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-3488 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 $))) |#4| |#4| $) 127)) (-1636 (((-3 |#4| "failed") $) 83)) (-1502 (((-592 $) |#4| $) 129)) (-4030 (((-3 (-108) (-592 $)) |#4| $) 132)) (-1521 (((-592 (-2 (|:| |val| (-108)) (|:| -1895 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-3792 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-2964 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-3231 (((-592 |#4|) $) 107)) (-3134 (((-108) |#4| $) 99) (((-108) $) 95)) (-3149 ((|#4| |#4| $) 90)) (-1363 (((-108) $ $) 110)) (-1410 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2505 (((-108) |#4| $) 100) (((-108) $) 96)) (-3417 ((|#4| |#4| $) 91)) (-2012 (((-1038) $) 10)) (-3110 (((-3 |#4| "failed") $) 84)) (-3207 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3599 (((-3 $ "failed") $ |#4|) 78)) (-2182 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-3006 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-3428 (((-108) $ $) 38)) (-2013 (((-108) $) 41)) (-2718 (($) 40)) (-1587 (((-713) $) 106)) (-2040 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4255)))) (-1451 (($ $) 39)) (-2749 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1279 (($ (-592 |#4|)) 60)) (-3422 (($ $ |#3|) 28)) (-1248 (($ $ |#3|) 30)) (-1963 (($ $) 88)) (-1847 (($ $ |#3|) 29)) (-1270 (((-798) $) 11) (((-592 |#4|) $) 37)) (-1970 (((-713) $) 76 (|has| |#3| (-346)))) (-2927 (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4213 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-3552 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-3633 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4255)))) (-3726 (((-592 |#3|) $) 81)) (-4079 (((-108) |#4| $) 135)) (-1728 (((-108) |#3| $) 80)) (-3994 (((-108) $ $) 6)) (-3596 (((-713) $) 46 (|has| $ (-6 -4255)))))
+(((-1029 |#1| |#2| |#3| |#4|) (-131) (-429) (-735) (-789) (-991 |t#1| |t#2| |t#3|)) (T -1029))
+NIL
+(-13 (-996 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-798)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-909 |#1| |#2| |#3| |#4|) . T) ((-996 |#1| |#2| |#3| |#4|) . T) ((-1020) . T) ((-1121 |#1| |#2| |#3| |#4|) . T) ((-1127) . T))
+((-3851 (((-592 (-525)) (-525) (-525) (-525)) 22)) (-4001 (((-592 (-525)) (-525) (-525) (-525)) 12)) (-3723 (((-592 (-525)) (-525) (-525) (-525)) 18)) (-2921 (((-525) (-525) (-525)) 9)) (-3510 (((-1173 (-525)) (-592 (-525)) (-1173 (-525)) (-525)) 46) (((-1173 (-525)) (-1173 (-525)) (-1173 (-525)) (-525)) 41)) (-2061 (((-592 (-525)) (-592 (-525)) (-592 (-525)) (-108)) 28)) (-3988 (((-632 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525))) 45)) (-4068 (((-632 (-525)) (-592 (-525)) (-592 (-525))) 33)) (-2816 (((-592 (-632 (-525))) (-592 (-525))) 35)) (-2300 (((-592 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525))) 49)) (-2408 (((-632 (-525)) (-592 (-525)) (-592 (-525)) (-592 (-525))) 57)))
+(((-1030) (-10 -7 (-15 -2408 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -2300 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -2816 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -4068 ((-632 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -3988 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -2061 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-108))) (-15 -3510 ((-1173 (-525)) (-1173 (-525)) (-1173 (-525)) (-525))) (-15 -3510 ((-1173 (-525)) (-592 (-525)) (-1173 (-525)) (-525))) (-15 -2921 ((-525) (-525) (-525))) (-15 -3723 ((-592 (-525)) (-525) (-525) (-525))) (-15 -4001 ((-592 (-525)) (-525) (-525) (-525))) (-15 -3851 ((-592 (-525)) (-525) (-525) (-525))))) (T -1030))
+((-3851 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))) (-4001 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))) (-3723 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))) (-2921 (*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1030)))) (-3510 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1173 (-525))) (-5 *3 (-592 (-525))) (-5 *4 (-525)) (-5 *1 (-1030)))) (-3510 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1173 (-525))) (-5 *3 (-525)) (-5 *1 (-1030)))) (-2061 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *3 (-108)) (-5 *1 (-1030)))) (-3988 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-632 (-525))) (-5 *3 (-592 (-525))) (-5 *1 (-1030)))) (-4068 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1030)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-1030)))) (-2300 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *3 (-632 (-525))) (-5 *1 (-1030)))) (-2408 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1030)))))
+(-10 -7 (-15 -2408 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -2300 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -2816 ((-592 (-632 (-525))) (-592 (-525)))) (-15 -4068 ((-632 (-525)) (-592 (-525)) (-592 (-525)))) (-15 -3988 ((-632 (-525)) (-592 (-525)) (-592 (-525)) (-632 (-525)))) (-15 -2061 ((-592 (-525)) (-592 (-525)) (-592 (-525)) (-108))) (-15 -3510 ((-1173 (-525)) (-1173 (-525)) (-1173 (-525)) (-525))) (-15 -3510 ((-1173 (-525)) (-592 (-525)) (-1173 (-525)) (-525))) (-15 -2921 ((-525) (-525) (-525))) (-15 -3723 ((-592 (-525)) (-525) (-525) (-525))) (-15 -4001 ((-592 (-525)) (-525) (-525) (-525))) (-15 -3851 ((-592 (-525)) (-525) (-525) (-525))))
+((-1576 (($ $ (-856)) 12)) (** (($ $ (-856)) 10)))
+(((-1031 |#1|) (-10 -8 (-15 -1576 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856)))) (-1032)) (T -1031))
+NIL
+(-10 -8 (-15 -1576 (|#1| |#1| (-856))) (-15 ** (|#1| |#1| (-856))))
+((-1260 (((-108) $ $) 7)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-1576 (($ $ (-856)) 13)) (-3994 (((-108) $ $) 6)) (** (($ $ (-856)) 14)) (* (($ $ $) 15)))
+(((-1032) (-131)) (T -1032))
+((* (*1 *1 *1 *1) (-4 *1 (-1032))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-856)))) (-1576 (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-856)))))
+(-13 (-1020) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-856))) (-15 -1576 ($ $ (-856)))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-1260 (((-108) $ $) NIL (|has| |#3| (-1020)))) (-1989 (((-108) $) NIL (|has| |#3| (-126)))) (-1606 (($ (-856)) NIL (|has| |#3| (-977)))) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-2017 (($ $ $) NIL (|has| |#3| (-735)))) (-1342 (((-3 $ "failed") $ $) NIL (|has| |#3| (-126)))) (-3330 (((-108) $ (-713)) NIL)) (-4190 (((-713)) NIL (|has| |#3| (-346)))) (-1436 (((-525) $) NIL (|has| |#3| (-787)))) (-1429 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4256)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1020)))) (-3898 (((-525) $) NIL (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020)))) (((-385 (-525)) $) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020)))) ((|#3| $) NIL (|has| |#3| (-1020)))) (-3416 (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (-12 (|has| |#3| (-588 (-525))) (|has| |#3| (-977)))) (((-2 (|:| -1484 (-632 |#3|)) (|:| |vec| (-1173 |#3|))) (-632 $) (-1173 $)) NIL (|has| |#3| (-977))) (((-632 |#3|) (-632 $)) NIL (|has| |#3| (-977)))) (-3762 (((-3 $ "failed") $) NIL (|has| |#3| (-669)))) (-2899 (($) NIL (|has| |#3| (-346)))) (-2632 ((|#3| $ (-525) |#3|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#3| $ (-525)) 12)) (-3017 (((-108) $) NIL (|has| |#3| (-787)))) (-3702 (((-592 |#3|) $) NIL (|has| $ (-6 -4255)))) (-1985 (((-108) $) NIL (|has| |#3| (-669)))) (-3912 (((-108) $) NIL (|has| |#3| (-787)))) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) NIL (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (-3279 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-1749 (((-592 |#3|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#3| (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (-3279 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-2622 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#3| |#3|) $) NIL)) (-1736 (((-856) $) NIL (|has| |#3| (-346)))) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#3| (-1020)))) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-3640 (($ (-856)) NIL (|has| |#3| (-346)))) (-2012 (((-1038) $) NIL (|has| |#3| (-1020)))) (-3110 ((|#3| $) NIL (|has| (-525) (-789)))) (-2042 (($ $ |#3|) NIL (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#3|))) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-273 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020)))) (($ $ (-592 |#3|) (-592 |#3|)) NIL (-12 (|has| |#3| (-288 |#3|)) (|has| |#3| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#3| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#3| (-1020))))) (-1777 (((-592 |#3|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#3| $ (-525) |#3|) NIL) ((|#3| $ (-525)) NIL)) (-1809 ((|#3| $ $) NIL (|has| |#3| (-977)))) (-2256 (($ (-1173 |#3|)) NIL)) (-3831 (((-128)) NIL (|has| |#3| (-341)))) (-2523 (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $ (-1091)) NIL (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))) (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-977))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-977)))) (-2040 (((-713) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4255))) (((-713) |#3| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#3| (-1020))))) (-1451 (($ $) NIL)) (-1270 (((-1173 |#3|) $) NIL) (($ (-525)) NIL (-3279 (-12 (|has| |#3| (-968 (-525))) (|has| |#3| (-1020))) (|has| |#3| (-977)))) (($ (-385 (-525))) NIL (-12 (|has| |#3| (-968 (-385 (-525)))) (|has| |#3| (-1020)))) (($ |#3|) NIL (|has| |#3| (-1020))) (((-798) $) NIL (|has| |#3| (-566 (-798))))) (-2104 (((-713)) NIL (|has| |#3| (-977)))) (-3633 (((-108) (-1 (-108) |#3|) $) NIL (|has| $ (-6 -4255)))) (-2086 (($ $) NIL (|has| |#3| (-787)))) (-1576 (($ $ (-713)) NIL (|has| |#3| (-669))) (($ $ (-856)) NIL (|has| |#3| (-669)))) (-3355 (($) NIL (|has| |#3| (-126)) CONST)) (-3363 (($) NIL (|has| |#3| (-669)) CONST)) (-2093 (($ $) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $ (-713)) NIL (-12 (|has| |#3| (-213)) (|has| |#3| (-977)))) (($ $ (-1091)) NIL (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#3| (-835 (-1091))) (|has| |#3| (-977)))) (($ $ (-1 |#3| |#3|) (-713)) NIL (|has| |#3| (-977))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-977)))) (-4045 (((-108) $ $) NIL (-3279 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-4026 (((-108) $ $) NIL (-3279 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-3994 (((-108) $ $) NIL (|has| |#3| (-1020)))) (-4037 (((-108) $ $) NIL (-3279 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-4017 (((-108) $ $) 17 (-3279 (|has| |#3| (-735)) (|has| |#3| (-787))))) (-4100 (($ $ |#3|) NIL (|has| |#3| (-341)))) (-4090 (($ $ $) NIL (|has| |#3| (-977))) (($ $) NIL (|has| |#3| (-977)))) (-4080 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-713)) NIL (|has| |#3| (-669))) (($ $ (-856)) NIL (|has| |#3| (-669)))) (* (($ (-525) $) NIL (|has| |#3| (-977))) (($ $ $) NIL (|has| |#3| (-669))) (($ $ |#3|) NIL (|has| |#3| (-669))) (($ |#3| $) NIL (|has| |#3| (-669))) (($ (-713) $) NIL (|has| |#3| (-126))) (($ (-856) $) NIL (|has| |#3| (-25)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-1033 |#1| |#2| |#3|) (-218 |#1| |#3|) (-713) (-713) (-735)) (T -1033))
NIL
(-218 |#1| |#3|)
-((-1478 (((-592 (-1145 |#2| |#1|)) (-1145 |#2| |#1|) (-1145 |#2| |#1|)) 37)) (-2530 (((-525) (-1145 |#2| |#1|)) 69 (|has| |#1| (-429)))) (-2904 (((-525) (-1145 |#2| |#1|)) 54)) (-2484 (((-592 (-1145 |#2| |#1|)) (-1145 |#2| |#1|) (-1145 |#2| |#1|)) 45)) (-2032 (((-525) (-1145 |#2| |#1|) (-1145 |#2| |#1|)) 68 (|has| |#1| (-429)))) (-3583 (((-592 |#1|) (-1145 |#2| |#1|) (-1145 |#2| |#1|)) 48)) (-3162 (((-525) (-1145 |#2| |#1|) (-1145 |#2| |#1|)) 53)))
-(((-1033 |#1| |#2|) (-10 -7 (-15 -1478 ((-592 (-1145 |#2| |#1|)) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -2484 ((-592 (-1145 |#2| |#1|)) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -3583 ((-592 |#1|) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -3162 ((-525) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -2904 ((-525) (-1145 |#2| |#1|))) (IF (|has| |#1| (-429)) (PROGN (-15 -2032 ((-525) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -2530 ((-525) (-1145 |#2| |#1|)))) |%noBranch|)) (-762) (-1090)) (T -1033))
-((-2530 (*1 *2 *3) (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-525)) (-5 *1 (-1033 *4 *5)))) (-2032 (*1 *2 *3 *3) (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-525)) (-5 *1 (-1033 *4 *5)))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-525)) (-5 *1 (-1033 *4 *5)))) (-3162 (*1 *2 *3 *3) (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-525)) (-5 *1 (-1033 *4 *5)))) (-3583 (*1 *2 *3 *3) (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-592 *4)) (-5 *1 (-1033 *4 *5)))) (-2484 (*1 *2 *3 *3) (-12 (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-592 (-1145 *5 *4))) (-5 *1 (-1033 *4 *5)) (-5 *3 (-1145 *5 *4)))) (-1478 (*1 *2 *3 *3) (-12 (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-592 (-1145 *5 *4))) (-5 *1 (-1033 *4 *5)) (-5 *3 (-1145 *5 *4)))))
-(-10 -7 (-15 -1478 ((-592 (-1145 |#2| |#1|)) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -2484 ((-592 (-1145 |#2| |#1|)) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -3583 ((-592 |#1|) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -3162 ((-525) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -2904 ((-525) (-1145 |#2| |#1|))) (IF (|has| |#1| (-429)) (PROGN (-15 -2032 ((-525) (-1145 |#2| |#1|) (-1145 |#2| |#1|))) (-15 -2530 ((-525) (-1145 |#2| |#1|)))) |%noBranch|))
-((-1690 (((-3 (-525) "failed") |#2| (-1090) |#2| (-1073)) 17) (((-3 (-525) "failed") |#2| (-1090) (-782 |#2|)) 15) (((-3 (-525) "failed") |#2|) 54)))
-(((-1034 |#1| |#2|) (-10 -7 (-15 -1690 ((-3 (-525) "failed") |#2|)) (-15 -1690 ((-3 (-525) "failed") |#2| (-1090) (-782 |#2|))) (-15 -1690 ((-3 (-525) "failed") |#2| (-1090) |#2| (-1073)))) (-13 (-517) (-789) (-967 (-525)) (-588 (-525)) (-429)) (-13 (-27) (-1112) (-408 |#1|))) (T -1034))
-((-1690 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-1073)) (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)) (-429))) (-5 *2 (-525)) (-5 *1 (-1034 *6 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *6))))) (-1690 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-782 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)) (-429))) (-5 *2 (-525)) (-5 *1 (-1034 *6 *3)))) (-1690 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)) (-429))) (-5 *2 (-525)) (-5 *1 (-1034 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *4))))))
-(-10 -7 (-15 -1690 ((-3 (-525) "failed") |#2|)) (-15 -1690 ((-3 (-525) "failed") |#2| (-1090) (-782 |#2|))) (-15 -1690 ((-3 (-525) "failed") |#2| (-1090) |#2| (-1073))))
-((-1690 (((-3 (-525) "failed") (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|)) (-1073)) 35) (((-3 (-525) "failed") (-385 (-886 |#1|)) (-1090) (-782 (-385 (-886 |#1|)))) 30) (((-3 (-525) "failed") (-385 (-886 |#1|))) 13)))
-(((-1035 |#1|) (-10 -7 (-15 -1690 ((-3 (-525) "failed") (-385 (-886 |#1|)))) (-15 -1690 ((-3 (-525) "failed") (-385 (-886 |#1|)) (-1090) (-782 (-385 (-886 |#1|))))) (-15 -1690 ((-3 (-525) "failed") (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|)) (-1073)))) (-429)) (T -1035))
-((-1690 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-385 (-886 *6))) (-5 *4 (-1090)) (-5 *5 (-1073)) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1035 *6)))) (-1690 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-385 (-886 *6))) (-5 *4 (-1090)) (-5 *5 (-782 (-385 (-886 *6)))) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1035 *6)))) (-1690 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-429)) (-5 *2 (-525)) (-5 *1 (-1035 *4)))))
-(-10 -7 (-15 -1690 ((-3 (-525) "failed") (-385 (-886 |#1|)))) (-15 -1690 ((-3 (-525) "failed") (-385 (-886 |#1|)) (-1090) (-782 (-385 (-886 |#1|))))) (-15 -1690 ((-3 (-525) "failed") (-385 (-886 |#1|)) (-1090) (-385 (-886 |#1|)) (-1073))))
-((-2811 (((-294 (-525)) (-47)) 12)))
-(((-1036) (-10 -7 (-15 -2811 ((-294 (-525)) (-47))))) (T -1036))
-((-2811 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-294 (-525))) (-5 *1 (-1036)))))
-(-10 -7 (-15 -2811 ((-294 (-525)) (-47))))
-((-1893 (((-108) $ $) NIL)) (-2350 (($ $) 41)) (-1611 (((-108) $) 65)) (-3038 (($ $ $) 48)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 85)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3280 (($ $ $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3903 (($ $ $ $) 74)) (-3321 (($ $) NIL)) (-1510 (((-396 $) $) NIL)) (-2305 (((-108) $ $) NIL)) (-1690 (((-525) $) NIL)) (-3097 (($ $ $) 71)) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL)) (-2831 (((-525) $) NIL)) (-2373 (($ $ $) 59)) (-1860 (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 79) (((-632 (-525)) (-632 $)) 28)) (-2866 (((-3 $ "failed") $) NIL)) (-1468 (((-3 (-385 (-525)) "failed") $) NIL)) (-3081 (((-108) $) NIL)) (-2098 (((-385 (-525)) $) NIL)) (-3375 (($) 82) (($ $) 83)) (-2356 (($ $ $) 58)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL)) (-2250 (((-108) $) NIL)) (-1948 (($ $ $ $) NIL)) (-2010 (($ $ $) 80)) (-3026 (((-108) $) NIL)) (-3834 (($ $ $) NIL)) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL)) (-2133 (((-108) $) 66)) (-2144 (((-108) $) 64)) (-2480 (($ $) 42)) (-1816 (((-3 $ "failed") $) NIL)) (-2882 (((-108) $) 75)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2615 (($ $ $ $) 72)) (-3525 (($ $ $) 68) (($) 39)) (-3630 (($ $ $) 67) (($) 38)) (-3486 (($ $) NIL)) (-1722 (($ $) 70)) (-3216 (($ $ $) NIL) (($ (-592 $)) NIL)) (-2337 (((-1073) $) NIL)) (-1866 (($ $ $) NIL)) (-2279 (($) NIL T CONST)) (-2969 (($ $) 50)) (-2663 (((-1037) $) NIL) (($ $) 69)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL)) (-3244 (($ $ $) 62) (($ (-592 $)) NIL)) (-3066 (($ $) NIL)) (-3959 (((-396 $) $) NIL)) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL)) (-2338 (((-3 $ "failed") $ $) NIL)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-2656 (((-108) $) NIL)) (-2183 (((-713) $) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 61)) (-3013 (($ $ (-713)) NIL) (($ $) NIL)) (-2660 (($ $) 51)) (-2135 (($ $) NIL)) (-1427 (((-525) $) 32) (((-501) $) NIL) (((-826 (-525)) $) NIL) (((-357) $) NIL) (((-205) $) NIL)) (-1908 (((-797) $) 31) (($ (-525)) 81) (($ $) NIL) (($ (-525)) 81)) (-2093 (((-713)) NIL)) (-3662 (((-108) $ $) NIL)) (-3015 (($ $ $) NIL)) (-3772 (($) 37)) (-2262 (((-108) $ $) NIL)) (-3089 (($ $ $ $) 73)) (-2092 (($ $) 63)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3800 (($ $ $) 44)) (-3875 (($) 35 T CONST)) (-1417 (($ $ $) 47)) (-3882 (($) 36 T CONST)) (-2766 (((-1073) $) 21) (((-1073) $ (-108)) 23) (((-1177) (-764) $) 24) (((-1177) (-764) $ (-108)) 25)) (-1430 (($ $) 45)) (-1424 (($ $ (-713)) NIL) (($ $) NIL)) (-1406 (($ $ $) 46)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 40)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 49)) (-3791 (($ $ $) 43)) (-4070 (($ $) 52) (($ $ $) 54)) (-4059 (($ $ $) 53)) (** (($ $ (-855)) NIL) (($ $ (-713)) 57)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 34) (($ $ $) 55)))
-(((-1037) (-13 (-510) (-607) (-770) (-10 -8 (-6 -4241) (-6 -4246) (-6 -4242) (-15 -3630 ($)) (-15 -3525 ($)) (-15 -2480 ($ $)) (-15 -2350 ($ $)) (-15 -3791 ($ $ $)) (-15 -3800 ($ $ $)) (-15 -3038 ($ $ $)) (-15 -1430 ($ $)) (-15 -1406 ($ $ $)) (-15 -1417 ($ $ $))))) (T -1037))
-((-3800 (*1 *1 *1 *1) (-5 *1 (-1037))) (-3791 (*1 *1 *1 *1) (-5 *1 (-1037))) (-2350 (*1 *1 *1) (-5 *1 (-1037))) (-3630 (*1 *1) (-5 *1 (-1037))) (-3525 (*1 *1) (-5 *1 (-1037))) (-2480 (*1 *1 *1) (-5 *1 (-1037))) (-3038 (*1 *1 *1 *1) (-5 *1 (-1037))) (-1430 (*1 *1 *1) (-5 *1 (-1037))) (-1406 (*1 *1 *1 *1) (-5 *1 (-1037))) (-1417 (*1 *1 *1 *1) (-5 *1 (-1037))))
-(-13 (-510) (-607) (-770) (-10 -8 (-6 -4241) (-6 -4246) (-6 -4242) (-15 -3630 ($)) (-15 -3525 ($)) (-15 -2480 ($ $)) (-15 -2350 ($ $)) (-15 -3791 ($ $ $)) (-15 -3800 ($ $ $)) (-15 -3038 ($ $ $)) (-15 -1430 ($ $)) (-15 -1406 ($ $ $)) (-15 -1417 ($ $ $))))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-1649 ((|#1| $) 44)) (-3410 (((-108) $ (-713)) 8)) (-1505 (($) 7 T CONST)) (-1570 ((|#1| |#1| $) 46)) (-3215 ((|#1| $) 45)) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) 9)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2570 ((|#1| $) 39)) (-2573 (($ |#1| $) 40)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3513 ((|#1| $) 41)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-1434 (((-713) $) 43)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-3612 (($ (-592 |#1|)) 42)) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-1038 |#1|) (-131) (-1126)) (T -1038))
-((-1570 (*1 *2 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1126)))) (-3215 (*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1126)))) (-1649 (*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1126)))) (-1434 (*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-1126)) (-5 *2 (-713)))))
-(-13 (-102 |t#1|) (-10 -8 (-6 -4254) (-15 -1570 (|t#1| |t#1| $)) (-15 -3215 (|t#1| $)) (-15 -1649 (|t#1| $)) (-15 -1434 ((-713) $))))
-(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-1019) |has| |#1| (-1019)) ((-1126) . T))
-((-3512 ((|#3| $) 76)) (-1264 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2831 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#3| $) 37)) (-1860 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL) (((-2 (|:| -3276 (-632 |#3|)) (|:| |vec| (-1172 |#3|))) (-632 $) (-1172 $)) 73) (((-632 |#3|) (-632 $)) 65)) (-3013 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-1454 ((|#3| $) 78)) (-2812 ((|#4| $) 32)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#3|) 16)) (** (($ $ (-855)) NIL) (($ $ (-713)) 15) (($ $ (-525)) 82)))
-(((-1039 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-525))) (-15 -1454 (|#3| |#1|)) (-15 -3512 (|#3| |#1|)) (-15 -2812 (|#4| |#1|)) (-15 -1860 ((-632 |#3|) (-632 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 |#3|)) (|:| |vec| (-1172 |#3|))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-632 (-525)) (-632 |#1|))) (-15 -2831 (|#3| |#1|)) (-15 -1264 ((-3 |#3| "failed") |#1|)) (-15 -1908 (|#1| |#3|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -3013 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -3013 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -3013 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1908 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-855))) (-15 -1908 ((-797) |#1|))) (-1040 |#2| |#3| |#4| |#5|) (-713) (-976) (-218 |#2| |#3|) (-218 |#2| |#3|)) (T -1039))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-525))) (-15 -1454 (|#3| |#1|)) (-15 -3512 (|#3| |#1|)) (-15 -2812 (|#4| |#1|)) (-15 -1860 ((-632 |#3|) (-632 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 |#3|)) (|:| |vec| (-1172 |#3|))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 |#1|) (-1172 |#1|))) (-15 -1860 ((-632 (-525)) (-632 |#1|))) (-15 -2831 (|#3| |#1|)) (-15 -1264 ((-3 |#3| "failed") |#1|)) (-15 -1908 (|#1| |#3|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-525) |#1|)) (-15 -3013 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -3013 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -3013 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1908 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-855))) (-15 -1908 ((-797) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3512 ((|#2| $) 72)) (-3844 (((-108) $) 112)) (-3263 (((-3 $ "failed") $ $) 19)) (-1399 (((-108) $) 110)) (-3410 (((-108) $ (-713)) 102)) (-2715 (($ |#2|) 75)) (-1505 (($) 17 T CONST)) (-3262 (($ $) 129 (|has| |#2| (-286)))) (-3606 ((|#3| $ (-525)) 124)) (-1264 (((-3 (-525) "failed") $) 86 (|has| |#2| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) 84 (|has| |#2| (-967 (-385 (-525))))) (((-3 |#2| "failed") $) 81)) (-2831 (((-525) $) 87 (|has| |#2| (-967 (-525)))) (((-385 (-525)) $) 85 (|has| |#2| (-967 (-385 (-525))))) ((|#2| $) 80)) (-1860 (((-632 (-525)) (-632 $)) 79 (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 78 (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) 77) (((-632 |#2|) (-632 $)) 76)) (-2866 (((-3 $ "failed") $) 34)) (-2239 (((-713) $) 130 (|has| |#2| (-517)))) (-2796 ((|#2| $ (-525) (-525)) 122)) (-2026 (((-592 |#2|) $) 95 (|has| $ (-6 -4254)))) (-2133 (((-108) $) 31)) (-3177 (((-713) $) 131 (|has| |#2| (-517)))) (-2517 (((-592 |#4|) $) 132 (|has| |#2| (-517)))) (-2606 (((-713) $) 118)) (-2618 (((-713) $) 119)) (-3100 (((-108) $ (-713)) 103)) (-2216 ((|#2| $) 67 (|has| |#2| (-6 (-4256 "*"))))) (-2746 (((-525) $) 114)) (-2551 (((-525) $) 116)) (-3168 (((-592 |#2|) $) 94 (|has| $ (-6 -4254)))) (-4132 (((-108) |#2| $) 92 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254))))) (-1906 (((-525) $) 115)) (-1950 (((-525) $) 117)) (-3515 (($ (-592 (-592 |#2|))) 109)) (-2857 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-3019 (((-592 (-592 |#2|)) $) 120)) (-3017 (((-108) $ (-713)) 104)) (-2337 (((-1073) $) 9)) (-1386 (((-3 $ "failed") $) 66 (|has| |#2| (-341)))) (-2663 (((-1037) $) 10)) (-2338 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-517)))) (-3494 (((-108) (-1 (-108) |#2|) $) 97 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#2|))) 91 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) 90 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) 88 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-2642 (((-108) $ $) 108)) (-1613 (((-108) $) 105)) (-3773 (($) 106)) (-3928 ((|#2| $ (-525) (-525) |#2|) 123) ((|#2| $ (-525) (-525)) 121)) (-3013 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-713)) 51) (($ $ (-592 (-1090)) (-592 (-713))) 44 (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) 43 (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) 42 (|has| |#2| (-834 (-1090)))) (($ $ (-1090)) 41 (|has| |#2| (-834 (-1090)))) (($ $ (-713)) 39 (|has| |#2| (-213))) (($ $) 37 (|has| |#2| (-213)))) (-1454 ((|#2| $) 71)) (-2540 (($ (-592 |#2|)) 74)) (-1997 (((-108) $) 111)) (-2812 ((|#3| $) 73)) (-2923 ((|#2| $) 68 (|has| |#2| (-6 (-4256 "*"))))) (-2686 (((-713) (-1 (-108) |#2|) $) 96 (|has| $ (-6 -4254))) (((-713) |#2| $) 93 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 107)) (-2543 ((|#4| $ (-525)) 125)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 83 (|has| |#2| (-967 (-385 (-525))))) (($ |#2|) 82)) (-2093 (((-713)) 29)) (-2667 (((-108) (-1 (-108) |#2|) $) 98 (|has| $ (-6 -4254)))) (-3265 (((-108) $) 113)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-713)) 49) (($ $ (-592 (-1090)) (-592 (-713))) 48 (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) 47 (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) 46 (|has| |#2| (-834 (-1090)))) (($ $ (-1090)) 45 (|has| |#2| (-834 (-1090)))) (($ $ (-713)) 40 (|has| |#2| (-213))) (($ $) 38 (|has| |#2| (-213)))) (-3961 (((-108) $ $) 6)) (-4082 (($ $ |#2|) 128 (|has| |#2| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 65 (|has| |#2| (-341)))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-4140 (((-713) $) 101 (|has| $ (-6 -4254)))))
-(((-1040 |#1| |#2| |#3| |#4|) (-131) (-713) (-976) (-218 |t#1| |t#2|) (-218 |t#1| |t#2|)) (T -1040))
-((-2715 (*1 *1 *2) (-12 (-4 *2 (-976)) (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)))) (-2540 (*1 *1 *2) (-12 (-5 *2 (-592 *4)) (-4 *4 (-976)) (-4 *1 (-1040 *3 *4 *5 *6)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)))) (-2812 (*1 *2 *1) (-12 (-4 *1 (-1040 *3 *4 *2 *5)) (-4 *4 (-976)) (-4 *5 (-218 *3 *4)) (-4 *2 (-218 *3 *4)))) (-3512 (*1 *2 *1) (-12 (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (-4 *2 (-976)))) (-1454 (*1 *2 *1) (-12 (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (-4 *2 (-976)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1040 *3 *4 *5 *2)) (-4 *4 (-976)) (-4 *5 (-218 *3 *4)) (-4 *2 (-218 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1040 *3 *4 *2 *5)) (-4 *4 (-976)) (-4 *2 (-218 *3 *4)) (-4 *5 (-218 *3 *4)))) (-2923 (*1 *2 *1) (-12 (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4256 "*"))) (-4 *2 (-976)))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4256 "*"))) (-4 *2 (-976)))) (-1386 (*1 *1 *1) (|partial| -12 (-4 *1 (-1040 *2 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-218 *2 *3)) (-4 *5 (-218 *2 *3)) (-4 *3 (-341)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1040 *3 *4 *5 *6)) (-4 *4 (-976)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)) (-4 *4 (-341)))))
-(-13 (-211 |t#2|) (-107 |t#2| |t#2|) (-979 |t#1| |t#1| |t#2| |t#3| |t#4|) (-389 |t#2|) (-355 |t#2|) (-10 -8 (IF (|has| |t#2| (-160)) (-6 (-660 |t#2|)) |%noBranch|) (-15 -2715 ($ |t#2|)) (-15 -2540 ($ (-592 |t#2|))) (-15 -2812 (|t#3| $)) (-15 -3512 (|t#2| $)) (-15 -1454 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4256 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -2923 (|t#2| $)) (-15 -2216 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-341)) (PROGN (-15 -1386 ((-3 $ "failed") $)) (-15 ** ($ $ (-525)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4256 "*"))) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-566 (-797)) . T) ((-211 |#2|) . T) ((-213) |has| |#2| (-213)) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-355 |#2|) . T) ((-389 |#2|) . T) ((-464 |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-594 |#2|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#2| (-588 (-525))) ((-588 |#2|) . T) ((-660 |#2|) -3309 (|has| |#2| (-160)) (|has| |#2| (-6 (-4256 "*")))) ((-669) . T) ((-834 (-1090)) |has| |#2| (-834 (-1090))) ((-979 |#1| |#1| |#2| |#3| |#4|) . T) ((-967 (-385 (-525))) |has| |#2| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#2| (-967 (-525))) ((-967 |#2|) . T) ((-982 |#2|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1126) . T))
-((-1480 ((|#4| |#4|) 70)) (-3539 ((|#4| |#4|) 65)) (-2621 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2499 (-592 |#3|))) |#4| |#3|) 78)) (-1847 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-1747 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
-(((-1041 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3539 (|#4| |#4|)) (-15 -1747 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1480 (|#4| |#4|)) (-15 -1847 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2621 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2499 (-592 |#3|))) |#4| |#3|))) (-286) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -1041))
-((-2621 (*1 *2 *3 *4) (-12 (-4 *5 (-286)) (-4 *6 (-351 *5)) (-4 *4 (-351 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2499 (-592 *4)))) (-5 *1 (-1041 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))) (-1847 (*1 *2 *3) (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1041 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-1480 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1041 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-1747 (*1 *2 *3) (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1041 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-3539 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1041 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
-(-10 -7 (-15 -3539 (|#4| |#4|)) (-15 -1747 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1480 (|#4| |#4|)) (-15 -1847 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2621 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2499 (-592 |#3|))) |#4| |#3|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 17)) (-4104 (((-592 |#2|) $) 161)) (-3927 (((-1086 $) $ |#2|) 54) (((-1086 |#1|) $) 43)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 110 (|has| |#1| (-517)))) (-3635 (($ $) 112 (|has| |#1| (-517)))) (-2950 (((-108) $) 114 (|has| |#1| (-517)))) (-1324 (((-713) $) NIL) (((-713) $ (-592 |#2|)) 194)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3321 (($ $) NIL (|has| |#1| (-429)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) 158) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 |#2| "failed") $) NIL)) (-2831 ((|#1| $) 156) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) ((|#2| $) NIL)) (-2506 (($ $ $ |#2|) NIL (|has| |#1| (-160)))) (-1247 (($ $) 198)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) 82)) (-3811 (($ $) NIL (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-1234 (((-592 $) $) NIL)) (-2250 (((-108) $) NIL (|has| |#1| (-843)))) (-2099 (($ $ |#1| (-497 |#2|) $) NIL)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| |#1| (-820 (-357))) (|has| |#2| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| |#1| (-820 (-525))) (|has| |#2| (-820 (-525)))))) (-2133 (((-108) $) 19)) (-3610 (((-713) $) 26)) (-4092 (($ (-1086 |#1|) |#2|) 48) (($ (-1086 $) |#2|) 64)) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) 32)) (-4079 (($ |#1| (-497 |#2|)) 71) (($ $ |#2| (-713)) 52) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ |#2|) NIL)) (-3181 (((-497 |#2|) $) 188) (((-713) $ |#2|) 189) (((-592 (-713)) $ (-592 |#2|)) 190)) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-1331 (($ (-1 (-497 |#2|) (-497 |#2|)) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) 122)) (-1666 (((-3 |#2| "failed") $) 163)) (-1212 (($ $) 197)) (-1224 ((|#1| $) 37)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2337 (((-1073) $) NIL)) (-3245 (((-3 (-592 $) "failed") $) NIL)) (-3193 (((-3 (-592 $) "failed") $) NIL)) (-3283 (((-3 (-2 (|:| |var| |#2|) (|:| -1600 (-713))) "failed") $) NIL)) (-2663 (((-1037) $) NIL)) (-4221 (((-108) $) 33)) (-4232 ((|#1| $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 140 (|has| |#1| (-429)))) (-3244 (($ (-592 $)) 145 (|has| |#1| (-429))) (($ $ $) 132 (|has| |#1| (-429)))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#1| (-843)))) (-3959 (((-396 $) $) NIL (|has| |#1| (-843)))) (-2338 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-517)))) (-3092 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#2| |#1|) 166) (($ $ (-592 |#2|) (-592 |#1|)) 179) (($ $ |#2| $) 165) (($ $ (-592 |#2|) (-592 $)) 178)) (-1400 (($ $ |#2|) NIL (|has| |#1| (-160)))) (-3013 (($ $ |#2|) 196) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-2513 (((-497 |#2|) $) 184) (((-713) $ |#2|) 180) (((-592 (-713)) $ (-592 |#2|)) 182)) (-1427 (((-826 (-357)) $) NIL (-12 (|has| |#1| (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| |#1| (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2751 ((|#1| $) 128 (|has| |#1| (-429))) (($ $ |#2|) 131 (|has| |#1| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-1908 (((-797) $) 151) (($ (-525)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (-3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525))))))) (-3600 (((-592 |#1|) $) 154)) (-1657 ((|#1| $ (-497 |#2|)) 73) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2093 (((-713)) 79)) (-4116 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-2262 (((-108) $ $) 117 (|has| |#1| (-517)))) (-3465 (($ $ (-855)) 102) (($ $ (-713)) 104)) (-3875 (($) 12 T CONST)) (-3882 (($) 14 T CONST)) (-1424 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) 97)) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4082 (($ $ |#1|) 126 (|has| |#1| (-341)))) (-4070 (($ $) 85) (($ $ $) 95)) (-4059 (($ $ $) 49)) (** (($ $ (-855)) 103) (($ $ (-713)) 100)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 88) (($ $ $) 65) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
-(((-1042 |#1| |#2|) (-883 |#1| (-497 |#2|) |#2|) (-976) (-789)) (T -1042))
-NIL
-(-883 |#1| (-497 |#2|) |#2|)
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-4104 (((-592 |#2|) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-4049 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3969 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4026 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) 115 (|has| |#1| (-37 (-385 (-525)))))) (-4072 (($ $) 147 (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) NIL T CONST)) (-1247 (($ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-2467 (((-886 |#1|) $ (-713)) NIL) (((-886 |#1|) $ (-713) (-713)) NIL)) (-4150 (((-108) $) NIL)) (-1335 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1737 (((-713) $ |#2|) NIL) (((-713) $ |#2| (-713)) NIL)) (-2133 (((-108) $) NIL)) (-3391 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1819 (((-108) $) NIL)) (-4079 (($ $ (-592 |#2|) (-592 (-497 |#2|))) NIL) (($ $ |#2| (-497 |#2|)) NIL) (($ |#1| (-497 |#2|)) NIL) (($ $ |#2| (-713)) 58) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-2091 (($ $) 113 (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-2337 (((-1073) $) NIL)) (-3766 (($ $ |#2|) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-385 (-525)))))) (-2663 (((-1037) $) NIL)) (-2697 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-385 (-525)))))) (-3538 (($ $ (-713)) 15)) (-2338 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1982 (($ $) 111 (|has| |#1| (-37 (-385 (-525)))))) (-3092 (($ $ |#2| $) 97) (($ $ (-592 |#2|) (-592 $)) 90) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL)) (-3013 (($ $ |#2|) 100) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-2513 (((-497 |#2|) $) NIL)) (-1726 (((-1 (-1071 |#3|) |#3|) (-592 |#2|) (-592 (-1071 |#3|))) 79)) (-4084 (($ $) 149 (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) 145 (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-1801 (($ $) 17)) (-1908 (((-797) $) 182) (($ (-525)) NIL) (($ |#1|) 44 (|has| |#1| (-160))) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#2|) 65) (($ |#3|) 63)) (-1657 ((|#1| $ (-497 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL) ((|#3| $ (-713)) 42)) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) NIL)) (-4121 (($ $) 155 (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4096 (($ $) 151 (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) 159 (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-2929 (($ $) 161 (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) 157 (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) 153 (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 18 T CONST)) (-3882 (($) 10 T CONST)) (-1424 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ |#1|) 184 (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) 61)) (** (($ $ (-855)) NIL) (($ $ (-713)) 70) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 103 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 60) (($ $ (-385 (-525))) 108 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 106 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
-(((-1043 |#1| |#2| |#3|) (-13 (-683 |#1| |#2|) (-10 -8 (-15 -1657 (|#3| $ (-713))) (-15 -1908 ($ |#2|)) (-15 -1908 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1726 ((-1 (-1071 |#3|) |#3|) (-592 |#2|) (-592 (-1071 |#3|)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -3766 ($ $ |#2| |#1|)) (-15 -2697 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-976) (-789) (-883 |#1| (-497 |#2|) |#2|)) (T -1043))
-((-1657 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *2 (-883 *4 (-497 *5) *5)) (-5 *1 (-1043 *4 *5 *2)) (-4 *4 (-976)) (-4 *5 (-789)))) (-1908 (*1 *1 *2) (-12 (-4 *3 (-976)) (-4 *2 (-789)) (-5 *1 (-1043 *3 *2 *4)) (-4 *4 (-883 *3 (-497 *2) *2)))) (-1908 (*1 *1 *2) (-12 (-4 *3 (-976)) (-4 *4 (-789)) (-5 *1 (-1043 *3 *4 *2)) (-4 *2 (-883 *3 (-497 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-976)) (-4 *4 (-789)) (-5 *1 (-1043 *3 *4 *2)) (-4 *2 (-883 *3 (-497 *4) *4)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1071 *7))) (-4 *6 (-789)) (-4 *7 (-883 *5 (-497 *6) *6)) (-4 *5 (-976)) (-5 *2 (-1 (-1071 *7) *7)) (-5 *1 (-1043 *5 *6 *7)))) (-3766 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-4 *2 (-789)) (-5 *1 (-1043 *3 *2 *4)) (-4 *4 (-883 *3 (-497 *2) *2)))) (-2697 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1043 *4 *3 *5))) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-976)) (-4 *3 (-789)) (-4 *5 (-883 *4 (-497 *3) *3)) (-5 *1 (-1043 *4 *3 *5)))))
-(-13 (-683 |#1| |#2|) (-10 -8 (-15 -1657 (|#3| $ (-713))) (-15 -1908 ($ |#2|)) (-15 -1908 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1726 ((-1 (-1071 |#3|) |#3|) (-592 |#2|) (-592 (-1071 |#3|)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -3766 ($ $ |#2| |#1|)) (-15 -2697 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-1893 (((-108) $ $) 7)) (-2894 (((-592 (-2 (|:| -3286 $) (|:| -2396 (-592 |#4|)))) (-592 |#4|)) 85)) (-2308 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-4104 (((-592 |#3|) $) 33)) (-3696 (((-108) $) 26)) (-3810 (((-108) $) 17 (|has| |#1| (-517)))) (-1466 (((-108) |#4| $) 101) (((-108) $) 97)) (-3833 ((|#4| |#4| $) 92)) (-3321 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 $))) |#4| $) 126)) (-3327 (((-2 (|:| |under| $) (|:| -1720 $) (|:| |upper| $)) $ |#3|) 27)) (-3410 (((-108) $ (-713)) 44)) (-2724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) 79)) (-1505 (($) 45 T CONST)) (-2637 (((-108) $) 22 (|has| |#1| (-517)))) (-2643 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2494 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3405 (((-108) $) 25 (|has| |#1| (-517)))) (-2895 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3937 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-3144 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-1264 (((-3 $ "failed") (-592 |#4|)) 36)) (-2831 (($ (-592 |#4|)) 35)) (-3145 (((-3 $ "failed") $) 82)) (-3096 ((|#4| |#4| $) 89)) (-3163 (($ $) 68 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ |#4| $) 67 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4254)))) (-1632 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-1954 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2295 ((|#4| |#4| $) 87)) (-4004 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1426 (((-2 (|:| -3286 (-592 |#4|)) (|:| -2396 (-592 |#4|))) $) 105)) (-1725 (((-108) |#4| $) 136)) (-2678 (((-108) |#4| $) 133)) (-1503 (((-108) |#4| $) 137) (((-108) $) 134)) (-2026 (((-592 |#4|) $) 52 (|has| $ (-6 -4254)))) (-2267 (((-108) |#4| $) 104) (((-108) $) 103)) (-1257 ((|#3| $) 34)) (-3100 (((-108) $ (-713)) 43)) (-3168 (((-592 |#4|) $) 53 (|has| $ (-6 -4254)))) (-4132 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#4| |#4|) $) 47)) (-1835 (((-592 |#3|) $) 32)) (-1913 (((-108) |#3| $) 31)) (-3017 (((-108) $ (-713)) 42)) (-2337 (((-1073) $) 9)) (-3211 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-1868 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 $))) |#4| |#4| $) 127)) (-2292 (((-3 |#4| "failed") $) 83)) (-2505 (((-592 $) |#4| $) 129)) (-2269 (((-3 (-108) (-592 $)) |#4| $) 132)) (-2819 (((-592 (-2 (|:| |val| (-108)) (|:| -3740 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-3187 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-2394 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-2931 (((-592 |#4|) $) 107)) (-3691 (((-108) |#4| $) 99) (((-108) $) 95)) (-4189 ((|#4| |#4| $) 90)) (-2491 (((-108) $ $) 110)) (-2809 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2469 (((-108) |#4| $) 100) (((-108) $) 96)) (-2954 ((|#4| |#4| $) 91)) (-2663 (((-1037) $) 10)) (-3135 (((-3 |#4| "failed") $) 84)) (-4054 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2662 (((-3 $ "failed") $ |#4|) 78)) (-3538 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-3494 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-2642 (((-108) $ $) 38)) (-1613 (((-108) $) 41)) (-3773 (($) 40)) (-2513 (((-713) $) 106)) (-2686 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4254)))) (-2135 (($ $) 39)) (-1427 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1922 (($ (-592 |#4|)) 60)) (-1861 (($ $ |#3|) 28)) (-3570 (($ $ |#3|) 30)) (-2031 (($ $) 88)) (-1263 (($ $ |#3|) 29)) (-1908 (((-797) $) 11) (((-592 |#4|) $) 37)) (-3056 (((-713) $) 76 (|has| |#3| (-346)))) (-3480 (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-1971 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-2348 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-2667 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4254)))) (-2241 (((-592 |#3|) $) 81)) (-3673 (((-108) |#4| $) 135)) (-1252 (((-108) |#3| $) 80)) (-3961 (((-108) $ $) 6)) (-4140 (((-713) $) 46 (|has| $ (-6 -4254)))))
-(((-1044 |#1| |#2| |#3| |#4|) (-131) (-429) (-735) (-789) (-990 |t#1| |t#2| |t#3|)) (T -1044))
-NIL
-(-13 (-1028 |t#1| |t#2| |t#3| |t#4|) (-726 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-797)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-726 |#1| |#2| |#3| |#4|) . T) ((-908 |#1| |#2| |#3| |#4|) . T) ((-995 |#1| |#2| |#3| |#4|) . T) ((-1019) . T) ((-1028 |#1| |#2| |#3| |#4|) . T) ((-1120 |#1| |#2| |#3| |#4|) . T) ((-1126) . T))
-((-2925 (((-592 |#2|) |#1|) 12)) (-2759 (((-592 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-592 |#2|) |#1|) 49)) (-4088 (((-592 |#2|) |#2| |#2| |#2|) 36) (((-592 |#2|) |#1|) 47)) (-2285 ((|#2| |#1|) 43)) (-1789 (((-2 (|:| |solns| (-592 |#2|)) (|:| |maps| (-592 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-2446 (((-592 |#2|) |#2| |#2|) 35) (((-592 |#2|) |#1|) 46)) (-3402 (((-592 |#2|) |#2| |#2| |#2| |#2|) 37) (((-592 |#2|) |#1|) 48)) (-4069 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-2256 ((|#2| |#2| |#2| |#2|) 40)) (-3478 ((|#2| |#2| |#2|) 39)) (-2157 ((|#2| |#2| |#2| |#2| |#2|) 41)))
-(((-1045 |#1| |#2|) (-10 -7 (-15 -2925 ((-592 |#2|) |#1|)) (-15 -2285 (|#2| |#1|)) (-15 -1789 ((-2 (|:| |solns| (-592 |#2|)) (|:| |maps| (-592 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2446 ((-592 |#2|) |#1|)) (-15 -4088 ((-592 |#2|) |#1|)) (-15 -3402 ((-592 |#2|) |#1|)) (-15 -2759 ((-592 |#2|) |#1|)) (-15 -2446 ((-592 |#2|) |#2| |#2|)) (-15 -4088 ((-592 |#2|) |#2| |#2| |#2|)) (-15 -3402 ((-592 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2759 ((-592 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3478 (|#2| |#2| |#2|)) (-15 -2256 (|#2| |#2| |#2| |#2|)) (-15 -2157 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4069 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1148 |#2|) (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (T -1045))
-((-4069 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2)))) (-2157 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2)))) (-2256 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2)))) (-3478 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2)))) (-2759 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1045 *4 *3)) (-4 *4 (-1148 *3)))) (-3402 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1045 *4 *3)) (-4 *4 (-1148 *3)))) (-4088 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1045 *4 *3)) (-4 *4 (-1148 *3)))) (-2446 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1045 *4 *3)) (-4 *4 (-1148 *3)))) (-2759 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4)))) (-3402 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4)))) (-4088 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4)))) (-2446 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4)))) (-1789 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-2 (|:| |solns| (-592 *5)) (|:| |maps| (-592 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1045 *3 *5)) (-4 *3 (-1148 *5)))) (-2285 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2)))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4)))))
-(-10 -7 (-15 -2925 ((-592 |#2|) |#1|)) (-15 -2285 (|#2| |#1|)) (-15 -1789 ((-2 (|:| |solns| (-592 |#2|)) (|:| |maps| (-592 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -2446 ((-592 |#2|) |#1|)) (-15 -4088 ((-592 |#2|) |#1|)) (-15 -3402 ((-592 |#2|) |#1|)) (-15 -2759 ((-592 |#2|) |#1|)) (-15 -2446 ((-592 |#2|) |#2| |#2|)) (-15 -4088 ((-592 |#2|) |#2| |#2| |#2|)) (-15 -3402 ((-592 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2759 ((-592 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3478 (|#2| |#2| |#2|)) (-15 -2256 (|#2| |#2| |#2| |#2|)) (-15 -2157 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4069 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-2665 (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-886 |#1|))))) 95) (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-886 |#1|)))) (-592 (-1090))) 94) (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-886 |#1|)))) 92) (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-886 |#1|))) (-592 (-1090))) 90) (((-592 (-273 (-294 |#1|))) (-273 (-385 (-886 |#1|)))) 75) (((-592 (-273 (-294 |#1|))) (-273 (-385 (-886 |#1|))) (-1090)) 76) (((-592 (-273 (-294 |#1|))) (-385 (-886 |#1|))) 70) (((-592 (-273 (-294 |#1|))) (-385 (-886 |#1|)) (-1090)) 59)) (-3531 (((-592 (-592 (-294 |#1|))) (-592 (-385 (-886 |#1|))) (-592 (-1090))) 88) (((-592 (-294 |#1|)) (-385 (-886 |#1|)) (-1090)) 43)) (-3918 (((-1080 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-385 (-886 |#1|)) (-1090)) 98) (((-1080 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-273 (-385 (-886 |#1|))) (-1090)) 97)))
-(((-1046 |#1|) (-10 -7 (-15 -2665 ((-592 (-273 (-294 |#1|))) (-385 (-886 |#1|)) (-1090))) (-15 -2665 ((-592 (-273 (-294 |#1|))) (-385 (-886 |#1|)))) (-15 -2665 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-886 |#1|))) (-1090))) (-15 -2665 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-886 |#1|))))) (-15 -2665 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-886 |#1|))) (-592 (-1090)))) (-15 -2665 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-886 |#1|))))) (-15 -2665 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-886 |#1|)))) (-592 (-1090)))) (-15 -2665 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-886 |#1|)))))) (-15 -3531 ((-592 (-294 |#1|)) (-385 (-886 |#1|)) (-1090))) (-15 -3531 ((-592 (-592 (-294 |#1|))) (-592 (-385 (-886 |#1|))) (-592 (-1090)))) (-15 -3918 ((-1080 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-273 (-385 (-886 |#1|))) (-1090))) (-15 -3918 ((-1080 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-385 (-886 |#1|)) (-1090)))) (-13 (-286) (-789) (-138))) (T -1046))
-((-3918 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-1080 (-592 (-294 *5)) (-592 (-273 (-294 *5))))) (-5 *1 (-1046 *5)))) (-3918 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-886 *5)))) (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-1080 (-592 (-294 *5)) (-592 (-273 (-294 *5))))) (-5 *1 (-1046 *5)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-886 *5)))) (-5 *4 (-592 (-1090))) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-294 *5)))) (-5 *1 (-1046 *5)))) (-3531 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-294 *5))) (-5 *1 (-1046 *5)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-592 (-273 (-385 (-886 *4))))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1046 *4)))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-273 (-385 (-886 *5))))) (-5 *4 (-592 (-1090))) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1046 *5)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-592 (-385 (-886 *4)))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1046 *4)))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-886 *5)))) (-5 *4 (-592 (-1090))) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1046 *5)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-273 (-385 (-886 *4)))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1046 *4)))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-886 *5)))) (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1046 *5)))) (-2665 (*1 *2 *3) (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1046 *4)))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1046 *5)))))
-(-10 -7 (-15 -2665 ((-592 (-273 (-294 |#1|))) (-385 (-886 |#1|)) (-1090))) (-15 -2665 ((-592 (-273 (-294 |#1|))) (-385 (-886 |#1|)))) (-15 -2665 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-886 |#1|))) (-1090))) (-15 -2665 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-886 |#1|))))) (-15 -2665 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-886 |#1|))) (-592 (-1090)))) (-15 -2665 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-886 |#1|))))) (-15 -2665 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-886 |#1|)))) (-592 (-1090)))) (-15 -2665 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-886 |#1|)))))) (-15 -3531 ((-592 (-294 |#1|)) (-385 (-886 |#1|)) (-1090))) (-15 -3531 ((-592 (-592 (-294 |#1|))) (-592 (-385 (-886 |#1|))) (-592 (-1090)))) (-15 -3918 ((-1080 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-273 (-385 (-886 |#1|))) (-1090))) (-15 -3918 ((-1080 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-385 (-886 |#1|)) (-1090))))
-((-3826 (((-385 (-1086 (-294 |#1|))) (-1172 (-294 |#1|)) (-385 (-1086 (-294 |#1|))) (-525)) 29)) (-1307 (((-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|)))) 40)))
-(((-1047 |#1|) (-10 -7 (-15 -1307 ((-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|))))) (-15 -3826 ((-385 (-1086 (-294 |#1|))) (-1172 (-294 |#1|)) (-385 (-1086 (-294 |#1|))) (-525)))) (-13 (-517) (-789))) (T -1047))
-((-3826 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-385 (-1086 (-294 *5)))) (-5 *3 (-1172 (-294 *5))) (-5 *4 (-525)) (-4 *5 (-13 (-517) (-789))) (-5 *1 (-1047 *5)))) (-1307 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-385 (-1086 (-294 *3)))) (-4 *3 (-13 (-517) (-789))) (-5 *1 (-1047 *3)))))
-(-10 -7 (-15 -1307 ((-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|))) (-385 (-1086 (-294 |#1|))))) (-15 -3826 ((-385 (-1086 (-294 |#1|))) (-1172 (-294 |#1|)) (-385 (-1086 (-294 |#1|))) (-525))))
-((-2925 (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-294 |#1|))) (-592 (-1090))) 222) (((-592 (-273 (-294 |#1|))) (-294 |#1|) (-1090)) 20) (((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1090)) 26) (((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|))) 25) (((-592 (-273 (-294 |#1|))) (-294 |#1|)) 21)))
-(((-1048 |#1|) (-10 -7 (-15 -2925 ((-592 (-273 (-294 |#1|))) (-294 |#1|))) (-15 -2925 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)))) (-15 -2925 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1090))) (-15 -2925 ((-592 (-273 (-294 |#1|))) (-294 |#1|) (-1090))) (-15 -2925 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-294 |#1|))) (-592 (-1090))))) (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (T -1048))
-((-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-1090))) (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1048 *5)) (-5 *3 (-592 (-273 (-294 *5)))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-294 *5)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1048 *5)) (-5 *3 (-273 (-294 *5))))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1048 *4)) (-5 *3 (-273 (-294 *4))))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1048 *4)) (-5 *3 (-294 *4)))))
-(-10 -7 (-15 -2925 ((-592 (-273 (-294 |#1|))) (-294 |#1|))) (-15 -2925 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)))) (-15 -2925 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1090))) (-15 -2925 ((-592 (-273 (-294 |#1|))) (-294 |#1|) (-1090))) (-15 -2925 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-294 |#1|))) (-592 (-1090)))))
-((-2688 ((|#2| |#2|) 20 (|has| |#1| (-789))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 17)) (-1523 ((|#2| |#2|) 19 (|has| |#1| (-789))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 16)))
-(((-1049 |#1| |#2|) (-10 -7 (-15 -1523 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2688 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-789)) (PROGN (-15 -1523 (|#2| |#2|)) (-15 -2688 (|#2| |#2|))) |%noBranch|)) (-1126) (-13 (-558 (-525) |#1|) (-10 -7 (-6 -4254) (-6 -4255)))) (T -1049))
-((-2688 (*1 *2 *2) (-12 (-4 *3 (-789)) (-4 *3 (-1126)) (-5 *1 (-1049 *3 *2)) (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4254) (-6 -4255)))))) (-1523 (*1 *2 *2) (-12 (-4 *3 (-789)) (-4 *3 (-1126)) (-5 *1 (-1049 *3 *2)) (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4254) (-6 -4255)))))) (-2688 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-1049 *4 *2)) (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4254) (-6 -4255)))))) (-1523 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-1049 *4 *2)) (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4254) (-6 -4255)))))))
-(-10 -7 (-15 -1523 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2688 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-789)) (PROGN (-15 -1523 (|#2| |#2|)) (-15 -2688 (|#2| |#2|))) |%noBranch|))
-((-1893 (((-108) $ $) NIL)) (-3221 (((-1079 3 |#1|) $) 108)) (-3490 (((-108) $) 72)) (-3104 (($ $ (-592 (-877 |#1|))) 20) (($ $ (-592 (-592 |#1|))) 75) (($ (-592 (-877 |#1|))) 74) (((-592 (-877 |#1|)) $) 73)) (-1968 (((-108) $) 41)) (-3451 (($ $ (-877 |#1|)) 46) (($ $ (-592 |#1|)) 51) (($ $ (-713)) 53) (($ (-877 |#1|)) 47) (((-877 |#1|) $) 45)) (-3761 (((-2 (|:| -3156 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713))) $) 106)) (-4081 (((-713) $) 26)) (-2324 (((-713) $) 25)) (-3889 (($ $ (-713) (-877 |#1|)) 39)) (-3325 (((-108) $) 82)) (-1665 (($ $ (-592 (-592 (-877 |#1|))) (-592 (-159)) (-159)) 89) (($ $ (-592 (-592 (-592 |#1|))) (-592 (-159)) (-159)) 91) (($ $ (-592 (-592 (-877 |#1|))) (-108) (-108)) 85) (($ $ (-592 (-592 (-592 |#1|))) (-108) (-108)) 93) (($ (-592 (-592 (-877 |#1|)))) 86) (($ (-592 (-592 (-877 |#1|))) (-108) (-108)) 87) (((-592 (-592 (-877 |#1|))) $) 84)) (-1932 (($ (-592 $)) 28) (($ $ $) 29)) (-3117 (((-592 (-159)) $) 103)) (-1221 (((-592 (-877 |#1|)) $) 97)) (-3275 (((-592 (-592 (-159))) $) 102)) (-3994 (((-592 (-592 (-592 (-877 |#1|)))) $) NIL)) (-2379 (((-592 (-592 (-592 (-713)))) $) 100)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-4080 (((-713) $ (-592 (-877 |#1|))) 37)) (-1890 (((-108) $) 54)) (-1539 (($ $ (-592 (-877 |#1|))) 56) (($ $ (-592 (-592 |#1|))) 62) (($ (-592 (-877 |#1|))) 57) (((-592 (-877 |#1|)) $) 55)) (-2729 (($) 23) (($ (-1079 3 |#1|)) 24)) (-2135 (($ $) 35)) (-3482 (((-592 $) $) 34)) (-1925 (($ (-592 $)) 31)) (-2585 (((-592 $) $) 33)) (-1908 (((-797) $) 112)) (-3412 (((-108) $) 64)) (-3369 (($ $ (-592 (-877 |#1|))) 66) (($ $ (-592 (-592 |#1|))) 69) (($ (-592 (-877 |#1|))) 67) (((-592 (-877 |#1|)) $) 65)) (-3470 (($ $) 107)) (-3961 (((-108) $ $) NIL)))
-(((-1050 |#1|) (-1051 |#1|) (-976)) (T -1050))
-NIL
-(-1051 |#1|)
-((-1893 (((-108) $ $) 7)) (-3221 (((-1079 3 |#1|) $) 13)) (-3490 (((-108) $) 29)) (-3104 (($ $ (-592 (-877 |#1|))) 33) (($ $ (-592 (-592 |#1|))) 32) (($ (-592 (-877 |#1|))) 31) (((-592 (-877 |#1|)) $) 30)) (-1968 (((-108) $) 44)) (-3451 (($ $ (-877 |#1|)) 49) (($ $ (-592 |#1|)) 48) (($ $ (-713)) 47) (($ (-877 |#1|)) 46) (((-877 |#1|) $) 45)) (-3761 (((-2 (|:| -3156 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713))) $) 15)) (-4081 (((-713) $) 58)) (-2324 (((-713) $) 59)) (-3889 (($ $ (-713) (-877 |#1|)) 50)) (-3325 (((-108) $) 21)) (-1665 (($ $ (-592 (-592 (-877 |#1|))) (-592 (-159)) (-159)) 28) (($ $ (-592 (-592 (-592 |#1|))) (-592 (-159)) (-159)) 27) (($ $ (-592 (-592 (-877 |#1|))) (-108) (-108)) 26) (($ $ (-592 (-592 (-592 |#1|))) (-108) (-108)) 25) (($ (-592 (-592 (-877 |#1|)))) 24) (($ (-592 (-592 (-877 |#1|))) (-108) (-108)) 23) (((-592 (-592 (-877 |#1|))) $) 22)) (-1932 (($ (-592 $)) 57) (($ $ $) 56)) (-3117 (((-592 (-159)) $) 16)) (-1221 (((-592 (-877 |#1|)) $) 20)) (-3275 (((-592 (-592 (-159))) $) 17)) (-3994 (((-592 (-592 (-592 (-877 |#1|)))) $) 18)) (-2379 (((-592 (-592 (-592 (-713)))) $) 19)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-4080 (((-713) $ (-592 (-877 |#1|))) 51)) (-1890 (((-108) $) 39)) (-1539 (($ $ (-592 (-877 |#1|))) 43) (($ $ (-592 (-592 |#1|))) 42) (($ (-592 (-877 |#1|))) 41) (((-592 (-877 |#1|)) $) 40)) (-2729 (($) 61) (($ (-1079 3 |#1|)) 60)) (-2135 (($ $) 52)) (-3482 (((-592 $) $) 53)) (-1925 (($ (-592 $)) 55)) (-2585 (((-592 $) $) 54)) (-1908 (((-797) $) 11)) (-3412 (((-108) $) 34)) (-3369 (($ $ (-592 (-877 |#1|))) 38) (($ $ (-592 (-592 |#1|))) 37) (($ (-592 (-877 |#1|))) 36) (((-592 (-877 |#1|)) $) 35)) (-3470 (($ $) 14)) (-3961 (((-108) $ $) 6)))
-(((-1051 |#1|) (-131) (-976)) (T -1051))
-((-1908 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-797)))) (-2729 (*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-976)))) (-2729 (*1 *1 *2) (-12 (-5 *2 (-1079 3 *3)) (-4 *3 (-976)) (-4 *1 (-1051 *3)))) (-2324 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-713)))) (-4081 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-713)))) (-1932 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-1932 (*1 *1 *1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-976)))) (-1925 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-2585 (*1 *2 *1) (-12 (-4 *3 (-976)) (-5 *2 (-592 *1)) (-4 *1 (-1051 *3)))) (-3482 (*1 *2 *1) (-12 (-4 *3 (-976)) (-5 *2 (-592 *1)) (-4 *1 (-1051 *3)))) (-2135 (*1 *1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-976)))) (-4080 (*1 *2 *1 *3) (-12 (-5 *3 (-592 (-877 *4))) (-4 *1 (-1051 *4)) (-4 *4 (-976)) (-5 *2 (-713)))) (-3889 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-877 *4)) (-4 *1 (-1051 *4)) (-4 *4 (-976)))) (-3451 (*1 *1 *1 *2) (-12 (-5 *2 (-877 *3)) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-3451 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-3451 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-3451 (*1 *1 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-976)) (-4 *1 (-1051 *3)))) (-3451 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-877 *3)))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108)))) (-1539 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-877 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-1539 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-1539 (*1 *1 *2) (-12 (-5 *2 (-592 (-877 *3))) (-4 *3 (-976)) (-4 *1 (-1051 *3)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-877 *3))))) (-1890 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-877 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-3369 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-3369 (*1 *1 *2) (-12 (-5 *2 (-592 (-877 *3))) (-4 *3 (-976)) (-4 *1 (-1051 *3)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-877 *3))))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108)))) (-3104 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-877 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-3104 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))) (-3104 (*1 *1 *2) (-12 (-5 *2 (-592 (-877 *3))) (-4 *3 (-976)) (-4 *1 (-1051 *3)))) (-3104 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-877 *3))))) (-3490 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108)))) (-1665 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-592 (-877 *5)))) (-5 *3 (-592 (-159))) (-5 *4 (-159)) (-4 *1 (-1051 *5)) (-4 *5 (-976)))) (-1665 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-592 (-159))) (-5 *4 (-159)) (-4 *1 (-1051 *5)) (-4 *5 (-976)))) (-1665 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-592 (-877 *4)))) (-5 *3 (-108)) (-4 *1 (-1051 *4)) (-4 *4 (-976)))) (-1665 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-108)) (-4 *1 (-1051 *4)) (-4 *4 (-976)))) (-1665 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-877 *3)))) (-4 *3 (-976)) (-4 *1 (-1051 *3)))) (-1665 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-592 (-877 *4)))) (-5 *3 (-108)) (-4 *4 (-976)) (-4 *1 (-1051 *4)))) (-1665 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-592 (-877 *3)))))) (-3325 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108)))) (-1221 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-877 *3))))) (-2379 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-592 (-592 (-713))))))) (-3994 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-592 (-592 (-877 *3))))))) (-3275 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-592 (-159)))))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-159))))) (-3761 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-2 (|:| -3156 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713)))))) (-3470 (*1 *1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-976)))) (-3221 (*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-1079 3 *3)))))
-(-13 (-1019) (-10 -8 (-15 -2729 ($)) (-15 -2729 ($ (-1079 3 |t#1|))) (-15 -2324 ((-713) $)) (-15 -4081 ((-713) $)) (-15 -1932 ($ (-592 $))) (-15 -1932 ($ $ $)) (-15 -1925 ($ (-592 $))) (-15 -2585 ((-592 $) $)) (-15 -3482 ((-592 $) $)) (-15 -2135 ($ $)) (-15 -4080 ((-713) $ (-592 (-877 |t#1|)))) (-15 -3889 ($ $ (-713) (-877 |t#1|))) (-15 -3451 ($ $ (-877 |t#1|))) (-15 -3451 ($ $ (-592 |t#1|))) (-15 -3451 ($ $ (-713))) (-15 -3451 ($ (-877 |t#1|))) (-15 -3451 ((-877 |t#1|) $)) (-15 -1968 ((-108) $)) (-15 -1539 ($ $ (-592 (-877 |t#1|)))) (-15 -1539 ($ $ (-592 (-592 |t#1|)))) (-15 -1539 ($ (-592 (-877 |t#1|)))) (-15 -1539 ((-592 (-877 |t#1|)) $)) (-15 -1890 ((-108) $)) (-15 -3369 ($ $ (-592 (-877 |t#1|)))) (-15 -3369 ($ $ (-592 (-592 |t#1|)))) (-15 -3369 ($ (-592 (-877 |t#1|)))) (-15 -3369 ((-592 (-877 |t#1|)) $)) (-15 -3412 ((-108) $)) (-15 -3104 ($ $ (-592 (-877 |t#1|)))) (-15 -3104 ($ $ (-592 (-592 |t#1|)))) (-15 -3104 ($ (-592 (-877 |t#1|)))) (-15 -3104 ((-592 (-877 |t#1|)) $)) (-15 -3490 ((-108) $)) (-15 -1665 ($ $ (-592 (-592 (-877 |t#1|))) (-592 (-159)) (-159))) (-15 -1665 ($ $ (-592 (-592 (-592 |t#1|))) (-592 (-159)) (-159))) (-15 -1665 ($ $ (-592 (-592 (-877 |t#1|))) (-108) (-108))) (-15 -1665 ($ $ (-592 (-592 (-592 |t#1|))) (-108) (-108))) (-15 -1665 ($ (-592 (-592 (-877 |t#1|))))) (-15 -1665 ($ (-592 (-592 (-877 |t#1|))) (-108) (-108))) (-15 -1665 ((-592 (-592 (-877 |t#1|))) $)) (-15 -3325 ((-108) $)) (-15 -1221 ((-592 (-877 |t#1|)) $)) (-15 -2379 ((-592 (-592 (-592 (-713)))) $)) (-15 -3994 ((-592 (-592 (-592 (-877 |t#1|)))) $)) (-15 -3275 ((-592 (-592 (-159))) $)) (-15 -3117 ((-592 (-159)) $)) (-15 -3761 ((-2 (|:| -3156 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713))) $)) (-15 -3470 ($ $)) (-15 -3221 ((-1079 3 |t#1|) $)) (-15 -1908 ((-797) $))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-4016 (((-592 (-1095)) (-1073)) 9)))
-(((-1052) (-10 -7 (-15 -4016 ((-592 (-1095)) (-1073))))) (T -1052))
-((-4016 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-592 (-1095))) (-5 *1 (-1052)))))
-(-10 -7 (-15 -4016 ((-592 (-1095)) (-1073))))
-((-2842 (((-1177) (-592 (-797))) 23) (((-1177) (-797)) 22)) (-3138 (((-1177) (-592 (-797))) 21) (((-1177) (-797)) 20)) (-2891 (((-1177) (-592 (-797))) 19) (((-1177) (-797)) 11) (((-1177) (-1073) (-797)) 17)))
-(((-1053) (-10 -7 (-15 -2891 ((-1177) (-1073) (-797))) (-15 -2891 ((-1177) (-797))) (-15 -3138 ((-1177) (-797))) (-15 -2842 ((-1177) (-797))) (-15 -2891 ((-1177) (-592 (-797)))) (-15 -3138 ((-1177) (-592 (-797)))) (-15 -2842 ((-1177) (-592 (-797)))))) (T -1053))
-((-2842 (*1 *2 *3) (-12 (-5 *3 (-592 (-797))) (-5 *2 (-1177)) (-5 *1 (-1053)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-592 (-797))) (-5 *2 (-1177)) (-5 *1 (-1053)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-592 (-797))) (-5 *2 (-1177)) (-5 *1 (-1053)))) (-2842 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-1053)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-1053)))) (-2891 (*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-1053)))) (-2891 (*1 *2 *3 *4) (-12 (-5 *3 (-1073)) (-5 *4 (-797)) (-5 *2 (-1177)) (-5 *1 (-1053)))))
-(-10 -7 (-15 -2891 ((-1177) (-1073) (-797))) (-15 -2891 ((-1177) (-797))) (-15 -3138 ((-1177) (-797))) (-15 -2842 ((-1177) (-797))) (-15 -2891 ((-1177) (-592 (-797)))) (-15 -3138 ((-1177) (-592 (-797)))) (-15 -2842 ((-1177) (-592 (-797)))))
-((-3351 (($ $ $) 10)) (-4046 (($ $) 9)) (-3442 (($ $ $) 13)) (-2016 (($ $ $) 15)) (-1414 (($ $ $) 12)) (-3902 (($ $ $) 14)) (-1476 (($ $) 17)) (-3020 (($ $) 16)) (-2092 (($ $) 6)) (-2126 (($ $ $) 11) (($ $) 7)) (-2851 (($ $ $) 8)))
-(((-1054) (-131)) (T -1054))
-((-1476 (*1 *1 *1) (-4 *1 (-1054))) (-3020 (*1 *1 *1) (-4 *1 (-1054))) (-2016 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3902 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3442 (*1 *1 *1 *1) (-4 *1 (-1054))) (-1414 (*1 *1 *1 *1) (-4 *1 (-1054))) (-2126 (*1 *1 *1 *1) (-4 *1 (-1054))) (-3351 (*1 *1 *1 *1) (-4 *1 (-1054))) (-4046 (*1 *1 *1) (-4 *1 (-1054))) (-2851 (*1 *1 *1 *1) (-4 *1 (-1054))) (-2126 (*1 *1 *1) (-4 *1 (-1054))) (-2092 (*1 *1 *1) (-4 *1 (-1054))))
-(-13 (-10 -8 (-15 -2092 ($ $)) (-15 -2126 ($ $)) (-15 -2851 ($ $ $)) (-15 -4046 ($ $)) (-15 -3351 ($ $ $)) (-15 -2126 ($ $ $)) (-15 -1414 ($ $ $)) (-15 -3442 ($ $ $)) (-15 -3902 ($ $ $)) (-15 -2016 ($ $ $)) (-15 -3020 ($ $)) (-15 -1476 ($ $))))
-((-1893 (((-108) $ $) 41)) (-3871 ((|#1| $) 15)) (-3158 (((-108) $ $ (-1 (-108) |#2| |#2|)) 36)) (-3433 (((-108) $) 17)) (-1872 (($ $ |#1|) 28)) (-1712 (($ $ (-108)) 30)) (-2824 (($ $) 31)) (-1219 (($ $ |#2|) 29)) (-2337 (((-1073) $) NIL)) (-2932 (((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|)) 35)) (-2663 (((-1037) $) NIL)) (-1613 (((-108) $) 14)) (-3773 (($) 10)) (-2135 (($ $) 27)) (-1922 (($ |#1| |#2| (-108)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -3740 |#2|))) 21) (((-592 $) (-592 (-2 (|:| |val| |#1|) (|:| -3740 |#2|)))) 24) (((-592 $) |#1| (-592 |#2|)) 26)) (-1207 ((|#2| $) 16)) (-1908 (((-797) $) 50)) (-3961 (((-108) $ $) 39)))
-(((-1055 |#1| |#2|) (-13 (-1019) (-10 -8 (-15 -3773 ($)) (-15 -1613 ((-108) $)) (-15 -3871 (|#1| $)) (-15 -1207 (|#2| $)) (-15 -3433 ((-108) $)) (-15 -1922 ($ |#1| |#2| (-108))) (-15 -1922 ($ |#1| |#2|)) (-15 -1922 ($ (-2 (|:| |val| |#1|) (|:| -3740 |#2|)))) (-15 -1922 ((-592 $) (-592 (-2 (|:| |val| |#1|) (|:| -3740 |#2|))))) (-15 -1922 ((-592 $) |#1| (-592 |#2|))) (-15 -2135 ($ $)) (-15 -1872 ($ $ |#1|)) (-15 -1219 ($ $ |#2|)) (-15 -1712 ($ $ (-108))) (-15 -2824 ($ $)) (-15 -2932 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -3158 ((-108) $ $ (-1 (-108) |#2| |#2|))))) (-13 (-1019) (-33)) (-13 (-1019) (-33))) (T -1055))
-((-3773 (*1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))))) (-3871 (*1 *2 *1) (-12 (-4 *2 (-13 (-1019) (-33))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-13 (-1019) (-33))))) (-1207 (*1 *2 *1) (-12 (-4 *2 (-13 (-1019) (-33))) (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1019) (-33))))) (-3433 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))))) (-1922 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) (-1922 (*1 *1 *2 *3) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) (-1922 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3740 *4))) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1055 *3 *4)))) (-1922 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |val| *4) (|:| -3740 *5)))) (-4 *4 (-13 (-1019) (-33))) (-4 *5 (-13 (-1019) (-33))) (-5 *2 (-592 (-1055 *4 *5))) (-5 *1 (-1055 *4 *5)))) (-1922 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *5)) (-4 *5 (-13 (-1019) (-33))) (-5 *2 (-592 (-1055 *3 *5))) (-5 *1 (-1055 *3 *5)) (-4 *3 (-13 (-1019) (-33))))) (-2135 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) (-1872 (*1 *1 *1 *2) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) (-1219 (*1 *1 *1 *2) (-12 (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1019) (-33))) (-4 *2 (-13 (-1019) (-33))))) (-1712 (*1 *1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))))) (-2824 (*1 *1 *1) (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) (-2932 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1019) (-33))) (-4 *6 (-13 (-1019) (-33))) (-5 *2 (-108)) (-5 *1 (-1055 *5 *6)))) (-3158 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1019) (-33))) (-5 *2 (-108)) (-5 *1 (-1055 *4 *5)) (-4 *4 (-13 (-1019) (-33))))))
-(-13 (-1019) (-10 -8 (-15 -3773 ($)) (-15 -1613 ((-108) $)) (-15 -3871 (|#1| $)) (-15 -1207 (|#2| $)) (-15 -3433 ((-108) $)) (-15 -1922 ($ |#1| |#2| (-108))) (-15 -1922 ($ |#1| |#2|)) (-15 -1922 ($ (-2 (|:| |val| |#1|) (|:| -3740 |#2|)))) (-15 -1922 ((-592 $) (-592 (-2 (|:| |val| |#1|) (|:| -3740 |#2|))))) (-15 -1922 ((-592 $) |#1| (-592 |#2|))) (-15 -2135 ($ $)) (-15 -1872 ($ $ |#1|)) (-15 -1219 ($ $ |#2|)) (-15 -1712 ($ $ (-108))) (-15 -2824 ($ $)) (-15 -2932 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -3158 ((-108) $ $ (-1 (-108) |#2| |#2|)))))
-((-1893 (((-108) $ $) NIL (|has| (-1055 |#1| |#2|) (-1019)))) (-3871 (((-1055 |#1| |#2|) $) 25)) (-2738 (($ $) 76)) (-3062 (((-108) (-1055 |#1| |#2|) $ (-1 (-108) |#2| |#2|)) 85)) (-1412 (($ $ $ (-592 (-1055 |#1| |#2|))) 90) (($ $ $ (-592 (-1055 |#1| |#2|)) (-1 (-108) |#2| |#2|)) 91)) (-3410 (((-108) $ (-713)) NIL)) (-2822 (((-1055 |#1| |#2|) $ (-1055 |#1| |#2|)) 43 (|has| $ (-6 -4255)))) (-2109 (((-1055 |#1| |#2|) $ "value" (-1055 |#1| |#2|)) NIL (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-1505 (($) NIL T CONST)) (-2115 (((-592 (-2 (|:| |val| |#1|) (|:| -3740 |#2|))) $) 80)) (-2792 (($ (-1055 |#1| |#2|) $) 39)) (-2273 (($ (-1055 |#1| |#2|) $) 31)) (-2026 (((-592 (-1055 |#1| |#2|)) $) NIL (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) 51)) (-4060 (((-108) (-1055 |#1| |#2|) $) 82)) (-3106 (((-108) $ $) NIL (|has| (-1055 |#1| |#2|) (-1019)))) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 (-1055 |#1| |#2|)) $) 55 (|has| $ (-6 -4254)))) (-4132 (((-108) (-1055 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-1055 |#1| |#2|) (-1019))))) (-2857 (($ (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $) 47 (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-1055 |#1| |#2|) (-1055 |#1| |#2|)) $) 46)) (-3017 (((-108) $ (-713)) NIL)) (-1564 (((-592 (-1055 |#1| |#2|)) $) 53)) (-3723 (((-108) $) 42)) (-2337 (((-1073) $) NIL (|has| (-1055 |#1| |#2|) (-1019)))) (-2663 (((-1037) $) NIL (|has| (-1055 |#1| |#2|) (-1019)))) (-3559 (((-3 $ "failed") $) 75)) (-3494 (((-108) (-1 (-108) (-1055 |#1| |#2|)) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-1055 |#1| |#2|)))) NIL (-12 (|has| (-1055 |#1| |#2|) (-288 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1019)))) (($ $ (-273 (-1055 |#1| |#2|))) NIL (-12 (|has| (-1055 |#1| |#2|) (-288 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1019)))) (($ $ (-1055 |#1| |#2|) (-1055 |#1| |#2|)) NIL (-12 (|has| (-1055 |#1| |#2|) (-288 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1019)))) (($ $ (-592 (-1055 |#1| |#2|)) (-592 (-1055 |#1| |#2|))) NIL (-12 (|has| (-1055 |#1| |#2|) (-288 (-1055 |#1| |#2|))) (|has| (-1055 |#1| |#2|) (-1019))))) (-2642 (((-108) $ $) 50)) (-1613 (((-108) $) 22)) (-3773 (($) 24)) (-3928 (((-1055 |#1| |#2|) $ "value") NIL)) (-4068 (((-525) $ $) NIL)) (-1810 (((-108) $) 44)) (-2686 (((-713) (-1 (-108) (-1055 |#1| |#2|)) $) NIL (|has| $ (-6 -4254))) (((-713) (-1055 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-1055 |#1| |#2|) (-1019))))) (-2135 (($ $) 49)) (-1922 (($ (-1055 |#1| |#2|)) 9) (($ |#1| |#2| (-592 $)) 12) (($ |#1| |#2| (-592 (-1055 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-592 |#2|)) 17)) (-2472 (((-592 |#2|) $) 81)) (-1908 (((-797) $) 73 (|has| (-1055 |#1| |#2|) (-566 (-797))))) (-2021 (((-592 $) $) 28)) (-1519 (((-108) $ $) NIL (|has| (-1055 |#1| |#2|) (-1019)))) (-2667 (((-108) (-1 (-108) (-1055 |#1| |#2|)) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 64 (|has| (-1055 |#1| |#2|) (-1019)))) (-4140 (((-713) $) 58 (|has| $ (-6 -4254)))))
-(((-1056 |#1| |#2|) (-13 (-941 (-1055 |#1| |#2|)) (-10 -8 (-6 -4255) (-6 -4254) (-15 -3559 ((-3 $ "failed") $)) (-15 -2738 ($ $)) (-15 -1922 ($ (-1055 |#1| |#2|))) (-15 -1922 ($ |#1| |#2| (-592 $))) (-15 -1922 ($ |#1| |#2| (-592 (-1055 |#1| |#2|)))) (-15 -1922 ($ |#1| |#2| |#1| (-592 |#2|))) (-15 -2472 ((-592 |#2|) $)) (-15 -2115 ((-592 (-2 (|:| |val| |#1|) (|:| -3740 |#2|))) $)) (-15 -4060 ((-108) (-1055 |#1| |#2|) $)) (-15 -3062 ((-108) (-1055 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -2273 ($ (-1055 |#1| |#2|) $)) (-15 -2792 ($ (-1055 |#1| |#2|) $)) (-15 -1412 ($ $ $ (-592 (-1055 |#1| |#2|)))) (-15 -1412 ($ $ $ (-592 (-1055 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) (-13 (-1019) (-33)) (-13 (-1019) (-33))) (T -1056))
-((-3559 (*1 *1 *1) (|partial| -12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) (-2738 (*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))))) (-1922 (*1 *1 *2) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1056 *3 *4)))) (-1922 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-592 (-1056 *2 *3))) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))) (-5 *1 (-1056 *2 *3)))) (-1922 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-592 (-1055 *2 *3))) (-4 *2 (-13 (-1019) (-33))) (-4 *3 (-13 (-1019) (-33))) (-5 *1 (-1056 *2 *3)))) (-1922 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-1019) (-33))) (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1019) (-33))))) (-2472 (*1 *2 *1) (-12 (-5 *2 (-592 *4)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))))) (-2115 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4)))) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))))) (-4060 (*1 *2 *3 *1) (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-1019) (-33))) (-4 *5 (-13 (-1019) (-33))) (-5 *2 (-108)) (-5 *1 (-1056 *4 *5)))) (-3062 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1055 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1019) (-33))) (-4 *6 (-13 (-1019) (-33))) (-5 *2 (-108)) (-5 *1 (-1056 *5 *6)))) (-2273 (*1 *1 *2 *1) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1056 *3 *4)))) (-2792 (*1 *1 *2 *1) (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1056 *3 *4)))) (-1412 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-592 (-1055 *3 *4))) (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1056 *3 *4)))) (-1412 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1055 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) (-4 *4 (-13 (-1019) (-33))) (-4 *5 (-13 (-1019) (-33))) (-5 *1 (-1056 *4 *5)))))
-(-13 (-941 (-1055 |#1| |#2|)) (-10 -8 (-6 -4255) (-6 -4254) (-15 -3559 ((-3 $ "failed") $)) (-15 -2738 ($ $)) (-15 -1922 ($ (-1055 |#1| |#2|))) (-15 -1922 ($ |#1| |#2| (-592 $))) (-15 -1922 ($ |#1| |#2| (-592 (-1055 |#1| |#2|)))) (-15 -1922 ($ |#1| |#2| |#1| (-592 |#2|))) (-15 -2472 ((-592 |#2|) $)) (-15 -2115 ((-592 (-2 (|:| |val| |#1|) (|:| -3740 |#2|))) $)) (-15 -4060 ((-108) (-1055 |#1| |#2|) $)) (-15 -3062 ((-108) (-1055 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -2273 ($ (-1055 |#1| |#2|) $)) (-15 -2792 ($ (-1055 |#1| |#2|) $)) (-15 -1412 ($ $ $ (-592 (-1055 |#1| |#2|)))) (-15 -1412 ($ $ $ (-592 (-1055 |#1| |#2|)) (-1 (-108) |#2| |#2|)))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-2734 (($ $) NIL)) (-3512 ((|#2| $) NIL)) (-3844 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-2710 (($ (-632 |#2|)) 47)) (-1399 (((-108) $) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-2715 (($ |#2|) 9)) (-1505 (($) NIL T CONST)) (-3262 (($ $) 60 (|has| |#2| (-286)))) (-3606 (((-220 |#1| |#2|) $ (-525)) 34)) (-1264 (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-2831 (((-525) $) NIL (|has| |#2| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-385 (-525))))) ((|#2| $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) 74)) (-2239 (((-713) $) 62 (|has| |#2| (-517)))) (-2796 ((|#2| $ (-525) (-525)) NIL)) (-2026 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-2133 (((-108) $) NIL)) (-3177 (((-713) $) 64 (|has| |#2| (-517)))) (-2517 (((-592 (-220 |#1| |#2|)) $) 68 (|has| |#2| (-517)))) (-2606 (((-713) $) NIL)) (-2618 (((-713) $) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2216 ((|#2| $) 58 (|has| |#2| (-6 (-4256 "*"))))) (-2746 (((-525) $) NIL)) (-2551 (((-525) $) NIL)) (-3168 (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-1906 (((-525) $) NIL)) (-1950 (((-525) $) NIL)) (-3515 (($ (-592 (-592 |#2|))) 29)) (-2857 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3019 (((-592 (-592 |#2|)) $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL)) (-1386 (((-3 $ "failed") $) 71 (|has| |#2| (-341)))) (-2663 (((-1037) $) NIL)) (-2338 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-3494 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#2| $ (-525) (-525) |#2|) NIL) ((|#2| $ (-525) (-525)) NIL)) (-3013 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-1454 ((|#2| $) NIL)) (-2540 (($ (-592 |#2|)) 42)) (-1997 (((-108) $) NIL)) (-2812 (((-220 |#1| |#2|) $) NIL)) (-2923 ((|#2| $) 56 (|has| |#2| (-6 (-4256 "*"))))) (-2686 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-2135 (($ $) NIL)) (-1427 (((-501) $) 83 (|has| |#2| (-567 (-501))))) (-2543 (((-220 |#1| |#2|) $ (-525)) 36)) (-1908 (((-797) $) 39) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-967 (-385 (-525))))) (($ |#2|) NIL) (((-632 |#2|) $) 44)) (-2093 (((-713)) 17)) (-2667 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3265 (((-108) $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 11 T CONST)) (-3882 (($) 14 T CONST)) (-1424 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) 54) (($ $ (-525)) 73 (|has| |#2| (-341)))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-220 |#1| |#2|) $ (-220 |#1| |#2|)) 50) (((-220 |#1| |#2|) (-220 |#1| |#2|) $) 52)) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-1057 |#1| |#2|) (-13 (-1040 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-10 -8 (-15 -2734 ($ $)) (-15 -2710 ($ (-632 |#2|))) (-15 -1908 ((-632 |#2|) $)) (IF (|has| |#2| (-6 (-4256 "*"))) (-6 -4243) |%noBranch|) (IF (|has| |#2| (-6 (-4256 "*"))) (IF (|has| |#2| (-6 -4251)) (-6 -4251) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|))) (-713) (-976)) (T -1057))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-632 *4)) (-5 *1 (-1057 *3 *4)) (-14 *3 (-713)) (-4 *4 (-976)))) (-2734 (*1 *1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-14 *2 (-713)) (-4 *3 (-976)))) (-2710 (*1 *1 *2) (-12 (-5 *2 (-632 *4)) (-4 *4 (-976)) (-5 *1 (-1057 *3 *4)) (-14 *3 (-713)))))
-(-13 (-1040 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-10 -8 (-15 -2734 ($ $)) (-15 -2710 ($ (-632 |#2|))) (-15 -1908 ((-632 |#2|) $)) (IF (|has| |#2| (-6 (-4256 "*"))) (-6 -4243) |%noBranch|) (IF (|has| |#2| (-6 (-4256 "*"))) (IF (|has| |#2| (-6 -4251)) (-6 -4251) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|)))
-((-1289 (($ $) 19)) (-2645 (($ $ (-135)) 10) (($ $ (-132)) 14)) (-3416 (((-108) $ $) 24)) (-3762 (($ $) 17)) (-3928 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) NIL) (($ $ (-1139 (-525))) NIL) (($ $ $) 29)) (-1908 (($ (-135)) 27) (((-797) $) NIL)))
-(((-1058 |#1|) (-10 -8 (-15 -1908 ((-797) |#1|)) (-15 -3928 (|#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-132))) (-15 -2645 (|#1| |#1| (-135))) (-15 -1908 (|#1| (-135))) (-15 -3416 ((-108) |#1| |#1|)) (-15 -1289 (|#1| |#1|)) (-15 -3762 (|#1| |#1|)) (-15 -3928 (|#1| |#1| (-1139 (-525)))) (-15 -3928 ((-135) |#1| (-525))) (-15 -3928 ((-135) |#1| (-525) (-135)))) (-1059)) (T -1058))
-NIL
-(-10 -8 (-15 -1908 ((-797) |#1|)) (-15 -3928 (|#1| |#1| |#1|)) (-15 -2645 (|#1| |#1| (-132))) (-15 -2645 (|#1| |#1| (-135))) (-15 -1908 (|#1| (-135))) (-15 -3416 ((-108) |#1| |#1|)) (-15 -1289 (|#1| |#1|)) (-15 -3762 (|#1| |#1|)) (-15 -3928 (|#1| |#1| (-1139 (-525)))) (-15 -3928 ((-135) |#1| (-525))) (-15 -3928 ((-135) |#1| (-525) (-135))))
-((-1893 (((-108) $ $) 19 (|has| (-135) (-1019)))) (-3578 (($ $) 120)) (-1289 (($ $) 121)) (-2645 (($ $ (-135)) 108) (($ $ (-132)) 107)) (-1840 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-3397 (((-108) $ $) 118)) (-3381 (((-108) $ $ (-525)) 117)) (-1921 (((-592 $) $ (-135)) 110) (((-592 $) $ (-132)) 109)) (-3072 (((-108) (-1 (-108) (-135) (-135)) $) 98) (((-108) $) 92 (|has| (-135) (-789)))) (-1356 (($ (-1 (-108) (-135) (-135)) $) 89 (|has| $ (-6 -4255))) (($ $) 88 (-12 (|has| (-135) (-789)) (|has| $ (-6 -4255))))) (-3327 (($ (-1 (-108) (-135) (-135)) $) 99) (($ $) 93 (|has| (-135) (-789)))) (-3410 (((-108) $ (-713)) 8)) (-2109 (((-135) $ (-525) (-135)) 52 (|has| $ (-6 -4255))) (((-135) $ (-1139 (-525)) (-135)) 58 (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) (-135)) $) 75 (|has| $ (-6 -4254)))) (-1505 (($) 7 T CONST)) (-1551 (($ $ (-135)) 104) (($ $ (-132)) 103)) (-4103 (($ $) 90 (|has| $ (-6 -4255)))) (-1693 (($ $) 100)) (-3924 (($ $ (-1139 (-525)) $) 114)) (-3163 (($ $) 78 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ (-135) $) 77 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) (-135)) $) 74 (|has| $ (-6 -4254)))) (-4004 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) 76 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) 73 (|has| $ (-6 -4254))) (((-135) (-1 (-135) (-135) (-135)) $) 72 (|has| $ (-6 -4254)))) (-2870 (((-135) $ (-525) (-135)) 53 (|has| $ (-6 -4255)))) (-2796 (((-135) $ (-525)) 51)) (-3416 (((-108) $ $) 119)) (-3763 (((-525) (-1 (-108) (-135)) $) 97) (((-525) (-135) $) 96 (|has| (-135) (-1019))) (((-525) (-135) $ (-525)) 95 (|has| (-135) (-1019))) (((-525) $ $ (-525)) 113) (((-525) (-132) $ (-525)) 112)) (-2026 (((-592 (-135)) $) 30 (|has| $ (-6 -4254)))) (-4018 (($ (-713) (-135)) 69)) (-3100 (((-108) $ (-713)) 9)) (-2009 (((-525) $) 43 (|has| (-525) (-789)))) (-3525 (($ $ $) 87 (|has| (-135) (-789)))) (-1932 (($ (-1 (-108) (-135) (-135)) $ $) 101) (($ $ $) 94 (|has| (-135) (-789)))) (-3168 (((-592 (-135)) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) (-135) $) 27 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254))))) (-1792 (((-525) $) 44 (|has| (-525) (-789)))) (-3630 (($ $ $) 86 (|has| (-135) (-789)))) (-2945 (((-108) $ $ (-135)) 115)) (-2485 (((-713) $ $ (-135)) 116)) (-2857 (($ (-1 (-135) (-135)) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-135) (-135)) $) 35) (($ (-1 (-135) (-135) (-135)) $ $) 64)) (-2773 (($ $) 122)) (-3762 (($ $) 123)) (-3017 (((-108) $ (-713)) 10)) (-1565 (($ $ (-135)) 106) (($ $ (-132)) 105)) (-2337 (((-1073) $) 22 (|has| (-135) (-1019)))) (-3167 (($ (-135) $ (-525)) 60) (($ $ $ (-525)) 59)) (-3222 (((-592 (-525)) $) 46)) (-1548 (((-108) (-525) $) 47)) (-2663 (((-1037) $) 21 (|has| (-135) (-1019)))) (-3135 (((-135) $) 42 (|has| (-525) (-789)))) (-4054 (((-3 (-135) "failed") (-1 (-108) (-135)) $) 71)) (-1911 (($ $ (-135)) 41 (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) (-135)) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-135)))) 26 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-273 (-135))) 25 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-135) (-135)) 24 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-592 (-135)) (-592 (-135))) 23 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))))) (-2642 (((-108) $ $) 14)) (-3218 (((-108) (-135) $) 45 (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-3171 (((-592 (-135)) $) 48)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 (((-135) $ (-525) (-135)) 50) (((-135) $ (-525)) 49) (($ $ (-1139 (-525))) 63) (($ $ $) 102)) (-3653 (($ $ (-525)) 62) (($ $ (-1139 (-525))) 61)) (-2686 (((-713) (-1 (-108) (-135)) $) 31 (|has| $ (-6 -4254))) (((-713) (-135) $) 28 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254))))) (-3703 (($ $ $ (-525)) 91 (|has| $ (-6 -4255)))) (-2135 (($ $) 13)) (-1427 (((-501) $) 79 (|has| (-135) (-567 (-501))))) (-1922 (($ (-592 (-135))) 70)) (-2664 (($ $ (-135)) 68) (($ (-135) $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1908 (($ (-135)) 111) (((-797) $) 18 (|has| (-135) (-566 (-797))))) (-2667 (((-108) (-1 (-108) (-135)) $) 33 (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) 84 (|has| (-135) (-789)))) (-3995 (((-108) $ $) 83 (|has| (-135) (-789)))) (-3961 (((-108) $ $) 20 (|has| (-135) (-1019)))) (-4010 (((-108) $ $) 85 (|has| (-135) (-789)))) (-3983 (((-108) $ $) 82 (|has| (-135) (-789)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-1059) (-131)) (T -1059))
-((-3762 (*1 *1 *1) (-4 *1 (-1059))) (-2773 (*1 *1 *1) (-4 *1 (-1059))) (-1289 (*1 *1 *1) (-4 *1 (-1059))) (-3578 (*1 *1 *1) (-4 *1 (-1059))) (-3416 (*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-108)))) (-3397 (*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-108)))) (-3381 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-525)) (-5 *2 (-108)))) (-2485 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-135)) (-5 *2 (-713)))) (-2945 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-135)) (-5 *2 (-108)))) (-3924 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-1139 (-525))))) (-3763 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-525)))) (-3763 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-525)) (-5 *3 (-132)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-135)) (-4 *1 (-1059)))) (-1921 (*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-592 *1)) (-4 *1 (-1059)))) (-1921 (*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-592 *1)) (-4 *1 (-1059)))) (-2645 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-135)))) (-2645 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-132)))) (-1565 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-135)))) (-1565 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-132)))) (-1551 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-135)))) (-1551 (*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-132)))) (-3928 (*1 *1 *1 *1) (-4 *1 (-1059))))
-(-13 (-19 (-135)) (-10 -8 (-15 -3762 ($ $)) (-15 -2773 ($ $)) (-15 -1289 ($ $)) (-15 -3578 ($ $)) (-15 -3416 ((-108) $ $)) (-15 -3397 ((-108) $ $)) (-15 -3381 ((-108) $ $ (-525))) (-15 -2485 ((-713) $ $ (-135))) (-15 -2945 ((-108) $ $ (-135))) (-15 -3924 ($ $ (-1139 (-525)) $)) (-15 -3763 ((-525) $ $ (-525))) (-15 -3763 ((-525) (-132) $ (-525))) (-15 -1908 ($ (-135))) (-15 -1921 ((-592 $) $ (-135))) (-15 -1921 ((-592 $) $ (-132))) (-15 -2645 ($ $ (-135))) (-15 -2645 ($ $ (-132))) (-15 -1565 ($ $ (-135))) (-15 -1565 ($ $ (-132))) (-15 -1551 ($ $ (-135))) (-15 -1551 ($ $ (-132))) (-15 -3928 ($ $ $))))
-(((-33) . T) ((-97) -3309 (|has| (-135) (-1019)) (|has| (-135) (-789))) ((-566 (-797)) -3309 (|has| (-135) (-1019)) (|has| (-135) (-789)) (|has| (-135) (-566 (-797)))) ((-142 #0=(-135)) . T) ((-567 (-501)) |has| (-135) (-567 (-501))) ((-265 #1=(-525) #0#) . T) ((-267 #1# #0#) . T) ((-288 #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))) ((-351 #0#) . T) ((-464 #0#) . T) ((-558 #1# #0#) . T) ((-486 #0# #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))) ((-597 #0#) . T) ((-19 #0#) . T) ((-789) |has| (-135) (-789)) ((-1019) -3309 (|has| (-135) (-1019)) (|has| (-135) (-789))) ((-1126) . T))
-((-3334 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) (-713)) 94)) (-3184 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713)) 54)) (-1280 (((-1177) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-713)) 85)) (-4063 (((-713) (-592 |#4|) (-592 |#5|)) 27)) (-2340 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713)) 56) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713) (-108)) 58)) (-3149 (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108)) 76) (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108)) 77)) (-1427 (((-1073) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) 80)) (-2172 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5|) 53)) (-3179 (((-713) (-592 |#4|) (-592 |#5|)) 19)))
-(((-1060 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3179 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -4063 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -2172 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5|)) (-15 -3184 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713))) (-15 -3184 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5|)) (-15 -2340 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -2340 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713))) (-15 -2340 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5|)) (-15 -3149 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3149 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3334 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) (-713))) (-15 -1427 ((-1073) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|)))) (-15 -1280 ((-1177) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-713)))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|) (-1028 |#1| |#2| |#3| |#4|)) (T -1060))
-((-1280 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -3740 *9)))) (-5 *4 (-713)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1177)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -3740 *8))) (-4 *7 (-990 *4 *5 *6)) (-4 *8 (-1028 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1073)) (-5 *1 (-1060 *4 *5 *6 *7 *8)))) (-3334 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -3740 *11)))) (-5 *3 (-592 *10)) (-5 *4 (-592 *11)) (-5 *5 (-2 (|:| |done| (-592 *11)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *10)) (|:| -3740 *11)))))) (-5 *6 (-713)) (-4 *10 (-990 *7 *8 *9)) (-4 *11 (-1028 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-5 *1 (-1060 *7 *8 *9 *10 *11)))) (-3149 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3149 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-2340 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1028 *5 *6 *7 *3)))) (-2340 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-990 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1028 *6 *7 *8 *3)))) (-2340 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-4 *3 (-990 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4)))))) (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1028 *7 *8 *9 *3)))) (-3184 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1028 *5 *6 *7 *3)))) (-3184 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-990 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4)))))) (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1028 *6 *7 *8 *3)))) (-2172 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4)))))) (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1028 *5 *6 *7 *3)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))) (-3179 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3179 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -4063 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -2172 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5|)) (-15 -3184 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713))) (-15 -3184 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5|)) (-15 -2340 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -2340 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5| (-713))) (-15 -2340 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) |#4| |#5|)) (-15 -3149 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -3149 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3334 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))))) (-713))) (-15 -1427 ((-1073) (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|)))) (-15 -1280 ((-1177) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -3740 |#5|))) (-713))))
-((-1893 (((-108) $ $) NIL)) (-2894 (((-592 (-2 (|:| -3286 $) (|:| -2396 (-592 |#4|)))) (-592 |#4|)) NIL)) (-2308 (((-592 $) (-592 |#4|)) 110) (((-592 $) (-592 |#4|) (-108)) 111) (((-592 $) (-592 |#4|) (-108) (-108)) 109) (((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108)) 112)) (-4104 (((-592 |#3|) $) NIL)) (-3696 (((-108) $) NIL)) (-3810 (((-108) $) NIL (|has| |#1| (-517)))) (-1466 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3833 ((|#4| |#4| $) NIL)) (-3321 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 $))) |#4| $) 84)) (-3327 (((-2 (|:| |under| $) (|:| -1720 $) (|:| |upper| $)) $ |#3|) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-2724 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) 62)) (-1505 (($) NIL T CONST)) (-2637 (((-108) $) 26 (|has| |#1| (-517)))) (-2643 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2494 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3405 (((-108) $) NIL (|has| |#1| (-517)))) (-2895 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-3937 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-3144 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1264 (((-3 $ "failed") (-592 |#4|)) NIL)) (-2831 (($ (-592 |#4|)) NIL)) (-3145 (((-3 $ "failed") $) 39)) (-3096 ((|#4| |#4| $) 65)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2273 (($ |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-1632 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-517)))) (-1954 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2295 ((|#4| |#4| $) NIL)) (-4004 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1426 (((-2 (|:| -3286 (-592 |#4|)) (|:| -2396 (-592 |#4|))) $) NIL)) (-1725 (((-108) |#4| $) NIL)) (-2678 (((-108) |#4| $) NIL)) (-1503 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2560 (((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)) 124)) (-2026 (((-592 |#4|) $) 16 (|has| $ (-6 -4254)))) (-2267 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1257 ((|#3| $) 33)) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 |#4|) $) 17 (|has| $ (-6 -4254)))) (-4132 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2857 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#4| |#4|) $) 21)) (-1835 (((-592 |#3|) $) NIL)) (-1913 (((-108) |#3| $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL)) (-3211 (((-3 |#4| (-592 $)) |#4| |#4| $) NIL)) (-1868 (((-592 (-2 (|:| |val| |#4|) (|:| -3740 $))) |#4| |#4| $) 103)) (-2292 (((-3 |#4| "failed") $) 37)) (-2505 (((-592 $) |#4| $) 88)) (-2269 (((-3 (-108) (-592 $)) |#4| $) NIL)) (-2819 (((-592 (-2 (|:| |val| (-108)) (|:| -3740 $))) |#4| $) 98) (((-108) |#4| $) 53)) (-3187 (((-592 $) |#4| $) 107) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 108) (((-592 $) |#4| (-592 $)) NIL)) (-3992 (((-592 $) (-592 |#4|) (-108) (-108) (-108)) 119)) (-2394 (($ |#4| $) 75) (($ (-592 |#4|) $) 76) (((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 74)) (-2931 (((-592 |#4|) $) NIL)) (-3691 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4189 ((|#4| |#4| $) NIL)) (-2491 (((-108) $ $) NIL)) (-2809 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2469 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2954 ((|#4| |#4| $) NIL)) (-2663 (((-1037) $) NIL)) (-3135 (((-3 |#4| "failed") $) 35)) (-4054 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2662 (((-3 $ "failed") $ |#4|) 48)) (-3538 (($ $ |#4|) NIL) (((-592 $) |#4| $) 90) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 86)) (-3494 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) 15)) (-3773 (($) 13)) (-2513 (((-713) $) NIL)) (-2686 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) 12)) (-1427 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-1922 (($ (-592 |#4|)) 20)) (-1861 (($ $ |#3|) 42)) (-3570 (($ $ |#3|) 44)) (-2031 (($ $) NIL)) (-1263 (($ $ |#3|) NIL)) (-1908 (((-797) $) 31) (((-592 |#4|) $) 40)) (-3056 (((-713) $) NIL (|has| |#3| (-346)))) (-3480 (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1971 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-2348 (((-592 $) |#4| $) 54) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) NIL)) (-2667 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2241 (((-592 |#3|) $) NIL)) (-3673 (((-108) |#4| $) NIL)) (-1252 (((-108) |#3| $) 61)) (-3961 (((-108) $ $) NIL)) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-1061 |#1| |#2| |#3| |#4|) (-13 (-1028 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2394 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2308 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -2308 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -3992 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -2560 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108))))) (-429) (-735) (-789) (-990 |#1| |#2| |#3|)) (T -1061))
-((-2394 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1061 *5 *6 *7 *3))) (-5 *1 (-1061 *5 *6 *7 *3)) (-4 *3 (-990 *5 *6 *7)))) (-2308 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-2308 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-3992 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))) (-2560 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-592 *8)) (|:| |towers| (-592 (-1061 *5 *6 *7 *8))))) (-5 *1 (-1061 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
-(-13 (-1028 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2394 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -2308 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -2308 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -3992 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -2560 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1649 ((|#1| $) 34)) (-2823 (($ (-592 |#1|)) 39)) (-3410 (((-108) $ (-713)) NIL)) (-1505 (($) NIL T CONST)) (-1570 ((|#1| |#1| $) 36)) (-3215 ((|#1| $) 32)) (-2026 (((-592 |#1|) $) 18 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2857 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 22)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2570 ((|#1| $) 35)) (-2573 (($ |#1| $) 37)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3513 ((|#1| $) 33)) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) 31)) (-3773 (($) 38)) (-1434 (((-713) $) 29)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) 27)) (-1908 (((-797) $) 14 (|has| |#1| (-566 (-797))))) (-3612 (($ (-592 |#1|)) NIL)) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 17 (|has| |#1| (-1019)))) (-4140 (((-713) $) 30 (|has| $ (-6 -4254)))))
-(((-1062 |#1|) (-13 (-1038 |#1|) (-10 -8 (-15 -2823 ($ (-592 |#1|))))) (-1126)) (T -1062))
-((-2823 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-1062 *3)))))
-(-13 (-1038 |#1|) (-10 -8 (-15 -2823 ($ (-592 |#1|)))))
-((-2109 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1139 (-525)) |#2|) 44) ((|#2| $ (-525) |#2|) 41)) (-2495 (((-108) $) 12)) (-2857 (($ (-1 |#2| |#2|) $) 39)) (-3135 ((|#2| $) NIL) (($ $ (-713)) 17)) (-1911 (($ $ |#2|) 40)) (-2518 (((-108) $) 11)) (-3928 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1139 (-525))) 31) ((|#2| $ (-525)) 23) ((|#2| $ (-525) |#2|) NIL)) (-1497 (($ $ $) 47) (($ $ |#2|) NIL)) (-2664 (($ $ $) 33) (($ |#2| $) NIL) (($ (-592 $)) 36) (($ $ |#2|) NIL)))
-(((-1063 |#1| |#2|) (-10 -8 (-15 -2495 ((-108) |#1|)) (-15 -2518 ((-108) |#1|)) (-15 -2109 (|#2| |#1| (-525) |#2|)) (-15 -3928 (|#2| |#1| (-525) |#2|)) (-15 -3928 (|#2| |#1| (-525))) (-15 -1911 (|#1| |#1| |#2|)) (-15 -2664 (|#1| |#1| |#2|)) (-15 -2664 (|#1| (-592 |#1|))) (-15 -3928 (|#1| |#1| (-1139 (-525)))) (-15 -2109 (|#2| |#1| (-1139 (-525)) |#2|)) (-15 -2109 (|#2| |#1| "last" |#2|)) (-15 -2109 (|#1| |#1| "rest" |#1|)) (-15 -2109 (|#2| |#1| "first" |#2|)) (-15 -1497 (|#1| |#1| |#2|)) (-15 -1497 (|#1| |#1| |#1|)) (-15 -3928 (|#2| |#1| "last")) (-15 -3928 (|#1| |#1| "rest")) (-15 -3135 (|#1| |#1| (-713))) (-15 -3928 (|#2| |#1| "first")) (-15 -3135 (|#2| |#1|)) (-15 -2664 (|#1| |#2| |#1|)) (-15 -2664 (|#1| |#1| |#1|)) (-15 -2109 (|#2| |#1| "value" |#2|)) (-15 -3928 (|#2| |#1| "value")) (-15 -2857 (|#1| (-1 |#2| |#2|) |#1|))) (-1064 |#2|) (-1126)) (T -1063))
-NIL
-(-10 -8 (-15 -2495 ((-108) |#1|)) (-15 -2518 ((-108) |#1|)) (-15 -2109 (|#2| |#1| (-525) |#2|)) (-15 -3928 (|#2| |#1| (-525) |#2|)) (-15 -3928 (|#2| |#1| (-525))) (-15 -1911 (|#1| |#1| |#2|)) (-15 -2664 (|#1| |#1| |#2|)) (-15 -2664 (|#1| (-592 |#1|))) (-15 -3928 (|#1| |#1| (-1139 (-525)))) (-15 -2109 (|#2| |#1| (-1139 (-525)) |#2|)) (-15 -2109 (|#2| |#1| "last" |#2|)) (-15 -2109 (|#1| |#1| "rest" |#1|)) (-15 -2109 (|#2| |#1| "first" |#2|)) (-15 -1497 (|#1| |#1| |#2|)) (-15 -1497 (|#1| |#1| |#1|)) (-15 -3928 (|#2| |#1| "last")) (-15 -3928 (|#1| |#1| "rest")) (-15 -3135 (|#1| |#1| (-713))) (-15 -3928 (|#2| |#1| "first")) (-15 -3135 (|#2| |#1|)) (-15 -2664 (|#1| |#2| |#1|)) (-15 -2664 (|#1| |#1| |#1|)) (-15 -2109 (|#2| |#1| "value" |#2|)) (-15 -3928 (|#2| |#1| "value")) (-15 -2857 (|#1| (-1 |#2| |#2|) |#1|)))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3871 ((|#1| $) 48)) (-1899 ((|#1| $) 65)) (-1614 (($ $) 67)) (-1840 (((-1177) $ (-525) (-525)) 97 (|has| $ (-6 -4255)))) (-3035 (($ $ (-525)) 52 (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) 8)) (-2822 ((|#1| $ |#1|) 39 (|has| $ (-6 -4255)))) (-3795 (($ $ $) 56 (|has| $ (-6 -4255)))) (-2813 ((|#1| $ |#1|) 54 (|has| $ (-6 -4255)))) (-1517 ((|#1| $ |#1|) 58 (|has| $ (-6 -4255)))) (-2109 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4255))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4255))) (($ $ "rest" $) 55 (|has| $ (-6 -4255))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 117 (|has| $ (-6 -4255))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4254)))) (-1882 ((|#1| $) 66)) (-1505 (($) 7 T CONST)) (-3145 (($ $) 73) (($ $ (-713)) 71)) (-3163 (($ $) 99 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4254))) (($ |#1| $) 100 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2870 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) 87)) (-2495 (((-108) $) 83)) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) 50)) (-3106 (((-108) $ $) 42 (|has| |#1| (-1019)))) (-4018 (($ (-713) |#1|) 108)) (-3100 (((-108) $ (-713)) 9)) (-2009 (((-525) $) 95 (|has| (-525) (-789)))) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1792 (((-525) $) 94 (|has| (-525) (-789)))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3017 (((-108) $ (-713)) 10)) (-1564 (((-592 |#1|) $) 45)) (-3723 (((-108) $) 49)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2292 ((|#1| $) 70) (($ $ (-713)) 68)) (-3167 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-3222 (((-592 (-525)) $) 92)) (-1548 (((-108) (-525) $) 91)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3135 ((|#1| $) 76) (($ $ (-713)) 74)) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-1911 (($ $ |#1|) 96 (|has| $ (-6 -4255)))) (-2518 (((-108) $) 84)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-3218 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) 90)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1139 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-4068 (((-525) $ $) 44)) (-3653 (($ $ (-1139 (-525))) 114) (($ $ (-525)) 113)) (-1810 (((-108) $) 46)) (-1350 (($ $) 62)) (-2027 (($ $) 59 (|has| $ (-6 -4255)))) (-1290 (((-713) $) 63)) (-3080 (($ $) 64)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1427 (((-501) $) 98 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 107)) (-1497 (($ $ $) 61 (|has| $ (-6 -4255))) (($ $ |#1|) 60 (|has| $ (-6 -4255)))) (-2664 (($ $ $) 78) (($ |#1| $) 77) (($ (-592 $)) 110) (($ $ |#1|) 109)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) 51)) (-1519 (((-108) $ $) 43 (|has| |#1| (-1019)))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-1064 |#1|) (-131) (-1126)) (T -1064))
-((-2518 (*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))) (-2495 (*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))))
-(-13 (-1160 |t#1|) (-597 |t#1|) (-10 -8 (-15 -2518 ((-108) $)) (-15 -2495 ((-108) $))))
-(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-597 |#1|) . T) ((-941 |#1|) . T) ((-1019) |has| |#1| (-1019)) ((-1126) . T) ((-1160 |#1|) . T))
-((-1893 (((-108) $ $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4001 (($) NIL) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-1840 (((-1177) $ |#1| |#1|) NIL (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 ((|#2| $ |#1| |#2|) NIL)) (-3290 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1446 (((-3 |#2| "failed") |#1| $) NIL)) (-1505 (($) NIL T CONST)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-2792 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) NIL)) (-2273 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-4004 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2870 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#2| $ |#1|) NIL)) (-2026 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-2009 ((|#1| $) NIL (|has| |#1| (-789)))) (-3168 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-1792 ((|#1| $) NIL (|has| |#1| (-789)))) (-2857 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4005 (((-592 |#1|) $) NIL)) (-1699 (((-108) |#1| $) NIL)) (-2570 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-2573 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3222 (((-592 |#1|) $) NIL)) (-1548 (((-108) |#1| $) NIL)) (-2663 (((-1037) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-3135 ((|#2| $) NIL (|has| |#1| (-789)))) (-4054 (((-3 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL)) (-1911 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3513 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3494 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-3171 (((-592 |#2|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4006 (($) NIL) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-2686 (((-713) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-567 (-501))))) (-1922 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-1908 (((-797) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-566 (-797))) (|has| |#2| (-566 (-797)))))) (-3612 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-2667 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-1065 |#1| |#2| |#3|) (-1103 |#1| |#2|) (-1019) (-1019) |#2|) (T -1065))
-NIL
-(-1103 |#1| |#2|)
-((-1893 (((-108) $ $) 7)) (-1816 (((-3 $ "failed") $) 13)) (-2337 (((-1073) $) 9)) (-2279 (($) 14 T CONST)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11)) (-3961 (((-108) $ $) 6)))
-(((-1066) (-131)) (T -1066))
-((-2279 (*1 *1) (-4 *1 (-1066))) (-1816 (*1 *1 *1) (|partial| -4 *1 (-1066))))
-(-13 (-1019) (-10 -8 (-15 -2279 ($) -3359) (-15 -1816 ((-3 $ "failed") $))))
-(((-97) . T) ((-566 (-797)) . T) ((-1019) . T))
-((-2117 (((-1071 |#1|) (-1071 |#1|)) 17)) (-4071 (((-1071 |#1|) (-1071 |#1|)) 13)) (-2976 (((-1071 |#1|) (-1071 |#1|) (-525) (-525)) 20)) (-2448 (((-1071 |#1|) (-1071 |#1|)) 15)))
-(((-1067 |#1|) (-10 -7 (-15 -4071 ((-1071 |#1|) (-1071 |#1|))) (-15 -2448 ((-1071 |#1|) (-1071 |#1|))) (-15 -2117 ((-1071 |#1|) (-1071 |#1|))) (-15 -2976 ((-1071 |#1|) (-1071 |#1|) (-525) (-525)))) (-13 (-517) (-138))) (T -1067))
-((-2976 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1067 *4)))) (-2117 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1067 *3)))) (-2448 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1067 *3)))) (-4071 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1067 *3)))))
-(-10 -7 (-15 -4071 ((-1071 |#1|) (-1071 |#1|))) (-15 -2448 ((-1071 |#1|) (-1071 |#1|))) (-15 -2117 ((-1071 |#1|) (-1071 |#1|))) (-15 -2976 ((-1071 |#1|) (-1071 |#1|) (-525) (-525))))
-((-2664 (((-1071 |#1|) (-1071 (-1071 |#1|))) 15)))
-(((-1068 |#1|) (-10 -7 (-15 -2664 ((-1071 |#1|) (-1071 (-1071 |#1|))))) (-1126)) (T -1068))
-((-2664 (*1 *2 *3) (-12 (-5 *3 (-1071 (-1071 *4))) (-4 *4 (-1126)) (-5 *2 (-1071 *4)) (-5 *1 (-1068 *4)))))
-(-10 -7 (-15 -2664 ((-1071 |#1|) (-1071 (-1071 |#1|)))))
-((-4186 (((-1071 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|)) 25)) (-4004 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|)) 26)) (-1370 (((-1071 |#2|) (-1 |#2| |#1|) (-1071 |#1|)) 16)))
-(((-1069 |#1| |#2|) (-10 -7 (-15 -1370 ((-1071 |#2|) (-1 |#2| |#1|) (-1071 |#1|))) (-15 -4186 ((-1071 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|))) (-15 -4004 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|)))) (-1126) (-1126)) (T -1069))
-((-4004 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1071 *5)) (-4 *5 (-1126)) (-4 *2 (-1126)) (-5 *1 (-1069 *5 *2)))) (-4186 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1071 *6)) (-4 *6 (-1126)) (-4 *3 (-1126)) (-5 *2 (-1071 *3)) (-5 *1 (-1069 *6 *3)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1071 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1071 *6)) (-5 *1 (-1069 *5 *6)))))
-(-10 -7 (-15 -1370 ((-1071 |#2|) (-1 |#2| |#1|) (-1071 |#1|))) (-15 -4186 ((-1071 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|))) (-15 -4004 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1071 |#1|))))
-((-1370 (((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-1071 |#2|)) 21)))
-(((-1070 |#1| |#2| |#3|) (-10 -7 (-15 -1370 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-1071 |#2|)))) (-1126) (-1126) (-1126)) (T -1070))
-((-1370 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1071 *6)) (-5 *5 (-1071 *7)) (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-1071 *8)) (-5 *1 (-1070 *6 *7 *8)))))
-(-10 -7 (-15 -1370 ((-1071 |#3|) (-1 |#3| |#1| |#2|) (-1071 |#1|) (-1071 |#2|))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3871 ((|#1| $) NIL)) (-1899 ((|#1| $) NIL)) (-1614 (($ $) 51)) (-1840 (((-1177) $ (-525) (-525)) 76 (|has| $ (-6 -4255)))) (-3035 (($ $ (-525)) 110 (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) NIL)) (-2947 (((-797) $) 41 (|has| |#1| (-1019)))) (-3816 (((-108)) 40 (|has| |#1| (-1019)))) (-2822 ((|#1| $ |#1|) NIL (|has| $ (-6 -4255)))) (-3795 (($ $ $) 98 (|has| $ (-6 -4255))) (($ $ (-525) $) 122)) (-2813 ((|#1| $ |#1|) 107 (|has| $ (-6 -4255)))) (-1517 ((|#1| $ |#1|) 102 (|has| $ (-6 -4255)))) (-2109 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4255))) (($ $ "rest" $) 106 (|has| $ (-6 -4255))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 89 (|has| $ (-6 -4255))) ((|#1| $ (-525) |#1|) 55 (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) NIL (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) |#1|) $) 58)) (-1882 ((|#1| $) NIL)) (-1505 (($) NIL T CONST)) (-1540 (($ $) 14)) (-3145 (($ $) 29) (($ $ (-713)) 88)) (-1753 (((-108) (-592 |#1|) $) 116 (|has| |#1| (-1019)))) (-4028 (($ (-592 |#1|)) 112)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2273 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) 57)) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2870 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) NIL)) (-2495 (((-108) $) NIL)) (-2026 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-1610 (((-1177) (-525) $) 121 (|has| |#1| (-1019)))) (-2408 (((-713) $) 118)) (-4125 (((-592 $) $) NIL)) (-3106 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4018 (($ (-713) |#1|) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) NIL (|has| (-525) (-789)))) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-2857 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-3017 (((-108) $ (-713)) NIL)) (-1564 (((-592 |#1|) $) NIL)) (-3723 (((-108) $) NIL)) (-1896 (($ $) 90)) (-2296 (((-108) $) 13)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2292 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-3167 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) 74)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-2655 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-3547 ((|#1| $) 10)) (-3135 ((|#1| $) 28) (($ $ (-713)) 49)) (-1659 (((-2 (|:| |cycle?| (-108)) (|:| -3759 (-713)) (|:| |period| (-713))) (-713) $) 25)) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2703 (($ (-1 (-108) |#1|) $) 126)) (-2713 (($ (-1 (-108) |#1|) $) 127)) (-1911 (($ $ |#1|) 68 (|has| $ (-6 -4255)))) (-3538 (($ $ (-525)) 32)) (-2518 (((-108) $) 72)) (-1255 (((-108) $) 12)) (-1867 (((-108) $) 117)) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 20)) (-3218 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) NIL)) (-1613 (((-108) $) 15)) (-3773 (($) 43)) (-3928 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1139 (-525))) NIL) ((|#1| $ (-525)) 54) ((|#1| $ (-525) |#1|) NIL)) (-4068 (((-525) $ $) 48)) (-3653 (($ $ (-1139 (-525))) NIL) (($ $ (-525)) NIL)) (-2202 (($ (-1 $)) 47)) (-1810 (((-108) $) 69)) (-1350 (($ $) 70)) (-2027 (($ $) 99 (|has| $ (-6 -4255)))) (-1290 (((-713) $) NIL)) (-3080 (($ $) NIL)) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) 44)) (-1427 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 53)) (-3707 (($ |#1| $) 97)) (-1497 (($ $ $) 100 (|has| $ (-6 -4255))) (($ $ |#1|) 101 (|has| $ (-6 -4255)))) (-2664 (($ $ $) 78) (($ |#1| $) 45) (($ (-592 $)) 83) (($ $ |#1|) 77)) (-1801 (($ $) 50)) (-1908 (($ (-592 |#1|)) 111) (((-797) $) 42 (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) NIL)) (-1519 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 114 (|has| |#1| (-1019)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-1071 |#1|) (-13 (-619 |#1|) (-10 -8 (-6 -4255) (-15 -1908 ($ (-592 |#1|))) (-15 -4028 ($ (-592 |#1|))) (IF (|has| |#1| (-1019)) (-15 -1753 ((-108) (-592 |#1|) $)) |%noBranch|) (-15 -1659 ((-2 (|:| |cycle?| (-108)) (|:| -3759 (-713)) (|:| |period| (-713))) (-713) $)) (-15 -2202 ($ (-1 $))) (-15 -3707 ($ |#1| $)) (IF (|has| |#1| (-1019)) (PROGN (-15 -1610 ((-1177) (-525) $)) (-15 -2947 ((-797) $)) (-15 -3816 ((-108)))) |%noBranch|) (-15 -3795 ($ $ (-525) $)) (-15 -2655 ($ (-1 |#1|))) (-15 -2655 ($ (-1 |#1| |#1|) |#1|)) (-15 -2703 ($ (-1 (-108) |#1|) $)) (-15 -2713 ($ (-1 (-108) |#1|) $)))) (-1126)) (T -1071))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))) (-4028 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))) (-1753 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1019)) (-4 *4 (-1126)) (-5 *2 (-108)) (-5 *1 (-1071 *4)))) (-1659 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-108)) (|:| -3759 (-713)) (|:| |period| (-713)))) (-5 *1 (-1071 *4)) (-4 *4 (-1126)) (-5 *3 (-713)))) (-2202 (*1 *1 *2) (-12 (-5 *2 (-1 (-1071 *3))) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))) (-3707 (*1 *1 *2 *1) (-12 (-5 *1 (-1071 *2)) (-4 *2 (-1126)))) (-1610 (*1 *2 *3 *1) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-1071 *4)) (-4 *4 (-1019)) (-4 *4 (-1126)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1071 *3)) (-4 *3 (-1019)) (-4 *3 (-1126)))) (-3816 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1071 *3)) (-4 *3 (-1019)) (-4 *3 (-1126)))) (-3795 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1071 *3)) (-4 *3 (-1126)))) (-2655 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))) (-2655 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))) (-2703 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))) (-2713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))))
-(-13 (-619 |#1|) (-10 -8 (-6 -4255) (-15 -1908 ($ (-592 |#1|))) (-15 -4028 ($ (-592 |#1|))) (IF (|has| |#1| (-1019)) (-15 -1753 ((-108) (-592 |#1|) $)) |%noBranch|) (-15 -1659 ((-2 (|:| |cycle?| (-108)) (|:| -3759 (-713)) (|:| |period| (-713))) (-713) $)) (-15 -2202 ($ (-1 $))) (-15 -3707 ($ |#1| $)) (IF (|has| |#1| (-1019)) (PROGN (-15 -1610 ((-1177) (-525) $)) (-15 -2947 ((-797) $)) (-15 -3816 ((-108)))) |%noBranch|) (-15 -3795 ($ $ (-525) $)) (-15 -2655 ($ (-1 |#1|))) (-15 -2655 ($ (-1 |#1| |#1|) |#1|)) (-15 -2703 ($ (-1 (-108) |#1|) $)) (-15 -2713 ($ (-1 (-108) |#1|) $))))
-((-1893 (((-108) $ $) 19)) (-3578 (($ $) 120)) (-1289 (($ $) 121)) (-2645 (($ $ (-135)) 108) (($ $ (-132)) 107)) (-1840 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-3397 (((-108) $ $) 118)) (-3381 (((-108) $ $ (-525)) 117)) (-3607 (($ (-525)) 127)) (-1921 (((-592 $) $ (-135)) 110) (((-592 $) $ (-132)) 109)) (-3072 (((-108) (-1 (-108) (-135) (-135)) $) 98) (((-108) $) 92 (|has| (-135) (-789)))) (-1356 (($ (-1 (-108) (-135) (-135)) $) 89 (|has| $ (-6 -4255))) (($ $) 88 (-12 (|has| (-135) (-789)) (|has| $ (-6 -4255))))) (-3327 (($ (-1 (-108) (-135) (-135)) $) 99) (($ $) 93 (|has| (-135) (-789)))) (-3410 (((-108) $ (-713)) 8)) (-2109 (((-135) $ (-525) (-135)) 52 (|has| $ (-6 -4255))) (((-135) $ (-1139 (-525)) (-135)) 58 (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) (-135)) $) 75 (|has| $ (-6 -4254)))) (-1505 (($) 7 T CONST)) (-1551 (($ $ (-135)) 104) (($ $ (-132)) 103)) (-4103 (($ $) 90 (|has| $ (-6 -4255)))) (-1693 (($ $) 100)) (-3924 (($ $ (-1139 (-525)) $) 114)) (-3163 (($ $) 78 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ (-135) $) 77 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) (-135)) $) 74 (|has| $ (-6 -4254)))) (-4004 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) 76 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) 73 (|has| $ (-6 -4254))) (((-135) (-1 (-135) (-135) (-135)) $) 72 (|has| $ (-6 -4254)))) (-2870 (((-135) $ (-525) (-135)) 53 (|has| $ (-6 -4255)))) (-2796 (((-135) $ (-525)) 51)) (-3416 (((-108) $ $) 119)) (-3763 (((-525) (-1 (-108) (-135)) $) 97) (((-525) (-135) $) 96 (|has| (-135) (-1019))) (((-525) (-135) $ (-525)) 95 (|has| (-135) (-1019))) (((-525) $ $ (-525)) 113) (((-525) (-132) $ (-525)) 112)) (-2026 (((-592 (-135)) $) 30 (|has| $ (-6 -4254)))) (-4018 (($ (-713) (-135)) 69)) (-3100 (((-108) $ (-713)) 9)) (-2009 (((-525) $) 43 (|has| (-525) (-789)))) (-3525 (($ $ $) 87 (|has| (-135) (-789)))) (-1932 (($ (-1 (-108) (-135) (-135)) $ $) 101) (($ $ $) 94 (|has| (-135) (-789)))) (-3168 (((-592 (-135)) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) (-135) $) 27 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254))))) (-1792 (((-525) $) 44 (|has| (-525) (-789)))) (-3630 (($ $ $) 86 (|has| (-135) (-789)))) (-2945 (((-108) $ $ (-135)) 115)) (-2485 (((-713) $ $ (-135)) 116)) (-2857 (($ (-1 (-135) (-135)) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-135) (-135)) $) 35) (($ (-1 (-135) (-135) (-135)) $ $) 64)) (-2773 (($ $) 122)) (-3762 (($ $) 123)) (-3017 (((-108) $ (-713)) 10)) (-1565 (($ $ (-135)) 106) (($ $ (-132)) 105)) (-2337 (((-1073) $) 22)) (-3167 (($ (-135) $ (-525)) 60) (($ $ $ (-525)) 59)) (-3222 (((-592 (-525)) $) 46)) (-1548 (((-108) (-525) $) 47)) (-2663 (((-1037) $) 21)) (-3135 (((-135) $) 42 (|has| (-525) (-789)))) (-4054 (((-3 (-135) "failed") (-1 (-108) (-135)) $) 71)) (-1911 (($ $ (-135)) 41 (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) (-135)) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-135)))) 26 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-273 (-135))) 25 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-135) (-135)) 24 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-592 (-135)) (-592 (-135))) 23 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))))) (-2642 (((-108) $ $) 14)) (-3218 (((-108) (-135) $) 45 (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-3171 (((-592 (-135)) $) 48)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 (((-135) $ (-525) (-135)) 50) (((-135) $ (-525)) 49) (($ $ (-1139 (-525))) 63) (($ $ $) 102)) (-3653 (($ $ (-525)) 62) (($ $ (-1139 (-525))) 61)) (-2686 (((-713) (-1 (-108) (-135)) $) 31 (|has| $ (-6 -4254))) (((-713) (-135) $) 28 (-12 (|has| (-135) (-1019)) (|has| $ (-6 -4254))))) (-3703 (($ $ $ (-525)) 91 (|has| $ (-6 -4255)))) (-2135 (($ $) 13)) (-1427 (((-501) $) 79 (|has| (-135) (-567 (-501))))) (-1922 (($ (-592 (-135))) 70)) (-2664 (($ $ (-135)) 68) (($ (-135) $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1908 (($ (-135)) 111) (((-797) $) 18)) (-2667 (((-108) (-1 (-108) (-135)) $) 33 (|has| $ (-6 -4254)))) (-2766 (((-1073) $) 131) (((-1073) $ (-108)) 130) (((-1177) (-764) $) 129) (((-1177) (-764) $ (-108)) 128)) (-4024 (((-108) $ $) 84 (|has| (-135) (-789)))) (-3995 (((-108) $ $) 83 (|has| (-135) (-789)))) (-3961 (((-108) $ $) 20)) (-4010 (((-108) $ $) 85 (|has| (-135) (-789)))) (-3983 (((-108) $ $) 82 (|has| (-135) (-789)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-1072) (-131)) (T -1072))
-((-3607 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1072)))))
-(-13 (-1059) (-1019) (-770) (-10 -8 (-15 -3607 ($ (-525)))))
-(((-33) . T) ((-97) . T) ((-566 (-797)) . T) ((-142 #0=(-135)) . T) ((-567 (-501)) |has| (-135) (-567 (-501))) ((-265 #1=(-525) #0#) . T) ((-267 #1# #0#) . T) ((-288 #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))) ((-351 #0#) . T) ((-464 #0#) . T) ((-558 #1# #0#) . T) ((-486 #0# #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))) ((-597 #0#) . T) ((-19 #0#) . T) ((-770) . T) ((-789) |has| (-135) (-789)) ((-1019) . T) ((-1059) . T) ((-1126) . T))
-((-1893 (((-108) $ $) NIL)) (-3578 (($ $) NIL)) (-1289 (($ $) NIL)) (-2645 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3397 (((-108) $ $) NIL)) (-3381 (((-108) $ $ (-525)) NIL)) (-3607 (($ (-525)) 7)) (-1921 (((-592 $) $ (-135)) NIL) (((-592 $) $ (-132)) NIL)) (-3072 (((-108) (-1 (-108) (-135) (-135)) $) NIL) (((-108) $) NIL (|has| (-135) (-789)))) (-1356 (($ (-1 (-108) (-135) (-135)) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-789))))) (-3327 (($ (-1 (-108) (-135) (-135)) $) NIL) (($ $) NIL (|has| (-135) (-789)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4255))) (((-135) $ (-1139 (-525)) (-135)) NIL (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-1551 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-4103 (($ $) NIL (|has| $ (-6 -4255)))) (-1693 (($ $) NIL)) (-3924 (($ $ (-1139 (-525)) $) NIL)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-2273 (($ (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019)))) (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-4004 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4254))) (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4254)))) (-2870 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4255)))) (-2796 (((-135) $ (-525)) NIL)) (-3416 (((-108) $ $) NIL)) (-3763 (((-525) (-1 (-108) (-135)) $) NIL) (((-525) (-135) $) NIL (|has| (-135) (-1019))) (((-525) (-135) $ (-525)) NIL (|has| (-135) (-1019))) (((-525) $ $ (-525)) NIL) (((-525) (-132) $ (-525)) NIL)) (-2026 (((-592 (-135)) $) NIL (|has| $ (-6 -4254)))) (-4018 (($ (-713) (-135)) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) NIL (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (|has| (-135) (-789)))) (-1932 (($ (-1 (-108) (-135) (-135)) $ $) NIL) (($ $ $) NIL (|has| (-135) (-789)))) (-3168 (((-592 (-135)) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| (-135) (-789)))) (-2945 (((-108) $ $ (-135)) NIL)) (-2485 (((-713) $ $ (-135)) NIL)) (-2857 (($ (-1 (-135) (-135)) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-135) (-135)) $) NIL) (($ (-1 (-135) (-135) (-135)) $ $) NIL)) (-2773 (($ $) NIL)) (-3762 (($ $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-1565 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-2337 (((-1073) $) NIL)) (-3167 (($ (-135) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-2663 (((-1037) $) NIL)) (-3135 (((-135) $) NIL (|has| (-525) (-789)))) (-4054 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-1911 (($ $ (-135)) NIL (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019)))) (($ $ (-592 (-135)) (-592 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-3171 (((-592 (-135)) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) NIL) (($ $ (-1139 (-525))) NIL) (($ $ $) NIL)) (-3653 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2686 (((-713) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254))) (((-713) (-135) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-135) (-1019))))) (-3703 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| (-135) (-567 (-501))))) (-1922 (($ (-592 (-135))) NIL)) (-2664 (($ $ (-135)) NIL) (($ (-135) $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1908 (($ (-135)) NIL) (((-797) $) NIL)) (-2667 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4254)))) (-2766 (((-1073) $) 18) (((-1073) $ (-108)) 20) (((-1177) (-764) $) 21) (((-1177) (-764) $ (-108)) 22)) (-4024 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3995 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3983 (((-108) $ $) NIL (|has| (-135) (-789)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-1073) (-1072)) (T -1073))
-NIL
-(-1072)
-((-1893 (((-108) $ $) NIL (-3309 (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019)) (|has| |#1| (-1019))))) (-4001 (($) NIL) (($ (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) NIL)) (-1840 (((-1177) $ (-1073) (-1073)) NIL (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 ((|#1| $ (-1073) |#1|) NIL)) (-3290 (($ (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-1446 (((-3 |#1| "failed") (-1073) $) NIL)) (-1505 (($) NIL T CONST)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019))))) (-2792 (($ (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254))) (((-3 |#1| "failed") (-1073) $) NIL)) (-2273 (($ (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-4004 (((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $ (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019)))) (((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $ (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254)))) (-2870 ((|#1| $ (-1073) |#1|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-1073)) NIL)) (-2026 (((-592 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-1073) $) NIL (|has| (-1073) (-789)))) (-3168 (((-592 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019)))) (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1792 (((-1073) $) NIL (|has| (-1073) (-789)))) (-2857 (($ (-1 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (-3309 (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019)) (|has| |#1| (-1019))))) (-4005 (((-592 (-1073)) $) NIL)) (-1699 (((-108) (-1073) $) NIL)) (-2570 (((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) $) NIL)) (-2573 (($ (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) $) NIL)) (-3222 (((-592 (-1073)) $) NIL)) (-1548 (((-108) (-1073) $) NIL)) (-2663 (((-1037) $) NIL (-3309 (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019)) (|has| |#1| (-1019))))) (-3135 ((|#1| $) NIL (|has| (-1073) (-789)))) (-4054 (((-3 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) "failed") (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL)) (-1911 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-3513 (((-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) $) NIL)) (-3494 (((-108) (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))))) NIL (-12 (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019)))) (($ $ (-273 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) NIL (-12 (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019)))) (($ $ (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) NIL (-12 (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019)))) (($ $ (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) NIL (-12 (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-288 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#1| $ (-1073)) NIL) ((|#1| $ (-1073) |#1|) NIL)) (-4006 (($) NIL) (($ (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) NIL)) (-2686 (((-713) (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019)))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-567 (-501))))) (-1922 (($ (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) NIL)) (-1908 (((-797) $) NIL (-3309 (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-566 (-797))) (|has| |#1| (-566 (-797)))))) (-3612 (($ (-592 (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)))) NIL)) (-2667 (((-108) (-1 (-108) (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (-3309 (|has| (-2 (|:| -3946 (-1073)) (|:| -2511 |#1|)) (-1019)) (|has| |#1| (-1019))))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-1074 |#1|) (-13 (-1103 (-1073) |#1|) (-10 -7 (-6 -4254))) (-1019)) (T -1074))
-NIL
-(-13 (-1103 (-1073) |#1|) (-10 -7 (-6 -4254)))
-((-4173 (((-1071 |#1|) (-1071 |#1|)) 77)) (-2866 (((-3 (-1071 |#1|) "failed") (-1071 |#1|)) 37)) (-3760 (((-1071 |#1|) (-385 (-525)) (-1071 |#1|)) 118 (|has| |#1| (-37 (-385 (-525)))))) (-4011 (((-1071 |#1|) |#1| (-1071 |#1|)) 124 (|has| |#1| (-341)))) (-3948 (((-1071 |#1|) (-1071 |#1|)) 90)) (-4021 (((-1071 (-525)) (-525)) 57)) (-3310 (((-1071 |#1|) (-1071 (-1071 |#1|))) 109 (|has| |#1| (-37 (-385 (-525)))))) (-4115 (((-1071 |#1|) (-525) (-525) (-1071 |#1|)) 95)) (-4157 (((-1071 |#1|) |#1| (-525)) 45)) (-1692 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 60)) (-4042 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 121 (|has| |#1| (-341)))) (-1328 (((-1071 |#1|) |#1| (-1 (-1071 |#1|))) 108 (|has| |#1| (-37 (-385 (-525)))))) (-3972 (((-1071 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1071 |#1|))) 122 (|has| |#1| (-341)))) (-4044 (((-1071 |#1|) (-1071 |#1|)) 89)) (-3267 (((-1071 |#1|) (-1071 |#1|)) 76)) (-3890 (((-1071 |#1|) (-525) (-525) (-1071 |#1|)) 96)) (-3766 (((-1071 |#1|) |#1| (-1071 |#1|)) 105 (|has| |#1| (-37 (-385 (-525)))))) (-1876 (((-1071 (-525)) (-525)) 56)) (-2409 (((-1071 |#1|) |#1|) 59)) (-2741 (((-1071 |#1|) (-1071 |#1|) (-525) (-525)) 92)) (-2508 (((-1071 |#1|) (-1 |#1| (-525)) (-1071 |#1|)) 66)) (-2338 (((-3 (-1071 |#1|) "failed") (-1071 |#1|) (-1071 |#1|)) 35)) (-2363 (((-1071 |#1|) (-1071 |#1|)) 91)) (-3092 (((-1071 |#1|) (-1071 |#1|) |#1|) 71)) (-2628 (((-1071 |#1|) (-1071 |#1|)) 62)) (-4100 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 72)) (-1908 (((-1071 |#1|) |#1|) 67)) (-1273 (((-1071 |#1|) (-1071 (-1071 |#1|))) 82)) (-4082 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 36)) (-4070 (((-1071 |#1|) (-1071 |#1|)) 21) (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 23)) (-4059 (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 17)) (* (((-1071 |#1|) (-1071 |#1|) |#1|) 29) (((-1071 |#1|) |#1| (-1071 |#1|)) 26) (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 27)))
-(((-1075 |#1|) (-10 -7 (-15 -4059 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -4070 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -4070 ((-1071 |#1|) (-1071 |#1|))) (-15 * ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 * ((-1071 |#1|) |#1| (-1071 |#1|))) (-15 * ((-1071 |#1|) (-1071 |#1|) |#1|)) (-15 -2338 ((-3 (-1071 |#1|) "failed") (-1071 |#1|) (-1071 |#1|))) (-15 -4082 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -2866 ((-3 (-1071 |#1|) "failed") (-1071 |#1|))) (-15 -4157 ((-1071 |#1|) |#1| (-525))) (-15 -1876 ((-1071 (-525)) (-525))) (-15 -4021 ((-1071 (-525)) (-525))) (-15 -2409 ((-1071 |#1|) |#1|)) (-15 -1692 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -2628 ((-1071 |#1|) (-1071 |#1|))) (-15 -2508 ((-1071 |#1|) (-1 |#1| (-525)) (-1071 |#1|))) (-15 -1908 ((-1071 |#1|) |#1|)) (-15 -3092 ((-1071 |#1|) (-1071 |#1|) |#1|)) (-15 -4100 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3267 ((-1071 |#1|) (-1071 |#1|))) (-15 -4173 ((-1071 |#1|) (-1071 |#1|))) (-15 -1273 ((-1071 |#1|) (-1071 (-1071 |#1|)))) (-15 -4044 ((-1071 |#1|) (-1071 |#1|))) (-15 -3948 ((-1071 |#1|) (-1071 |#1|))) (-15 -2363 ((-1071 |#1|) (-1071 |#1|))) (-15 -2741 ((-1071 |#1|) (-1071 |#1|) (-525) (-525))) (-15 -4115 ((-1071 |#1|) (-525) (-525) (-1071 |#1|))) (-15 -3890 ((-1071 |#1|) (-525) (-525) (-1071 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -3766 ((-1071 |#1|) |#1| (-1071 |#1|))) (-15 -1328 ((-1071 |#1|) |#1| (-1 (-1071 |#1|)))) (-15 -3310 ((-1071 |#1|) (-1071 (-1071 |#1|)))) (-15 -3760 ((-1071 |#1|) (-385 (-525)) (-1071 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -4042 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3972 ((-1071 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1071 |#1|)))) (-15 -4011 ((-1071 |#1|) |#1| (-1071 |#1|)))) |%noBranch|)) (-976)) (T -1075))
-((-4011 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-341)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-3972 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-525))) (-5 *5 (-1 (-1071 *4))) (-4 *4 (-341)) (-4 *4 (-976)) (-5 *2 (-1071 *4)) (-5 *1 (-1075 *4)))) (-4042 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-341)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-3760 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-385 (-525))) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-976)) (-5 *1 (-1075 *4)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-1071 (-1071 *4))) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-976)) (-5 *2 (-1071 *4)) (-5 *1 (-1075 *4)))) (-1328 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1071 *3))) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-5 *2 (-1071 *3)) (-5 *1 (-1075 *3)))) (-3766 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-3890 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-525)) (-4 *4 (-976)) (-5 *1 (-1075 *4)))) (-4115 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-525)) (-4 *4 (-976)) (-5 *1 (-1075 *4)))) (-2741 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-525)) (-4 *4 (-976)) (-5 *1 (-1075 *4)))) (-2363 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-3948 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-4044 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-1273 (*1 *2 *3) (-12 (-5 *3 (-1071 (-1071 *4))) (-4 *4 (-976)) (-5 *2 (-1071 *4)) (-5 *1 (-1075 *4)))) (-4173 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-3267 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-4100 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-3092 (*1 *2 *2 *3) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-1908 (*1 *2 *3) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-976)))) (-2508 (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *4)) (-5 *3 (-1 *4 (-525))) (-4 *4 (-976)) (-5 *1 (-1075 *4)))) (-2628 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-1692 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-2409 (*1 *2 *3) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-976)))) (-4021 (*1 *2 *3) (-12 (-5 *2 (-1071 (-525))) (-5 *1 (-1075 *4)) (-4 *4 (-976)) (-5 *3 (-525)))) (-1876 (*1 *2 *3) (-12 (-5 *2 (-1071 (-525))) (-5 *1 (-1075 *4)) (-4 *4 (-976)) (-5 *3 (-525)))) (-4157 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-5 *2 (-1071 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-976)))) (-2866 (*1 *2 *2) (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-4082 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-2338 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-4070 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-4070 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))) (-4059 (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))))
-(-10 -7 (-15 -4059 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -4070 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -4070 ((-1071 |#1|) (-1071 |#1|))) (-15 * ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 * ((-1071 |#1|) |#1| (-1071 |#1|))) (-15 * ((-1071 |#1|) (-1071 |#1|) |#1|)) (-15 -2338 ((-3 (-1071 |#1|) "failed") (-1071 |#1|) (-1071 |#1|))) (-15 -4082 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -2866 ((-3 (-1071 |#1|) "failed") (-1071 |#1|))) (-15 -4157 ((-1071 |#1|) |#1| (-525))) (-15 -1876 ((-1071 (-525)) (-525))) (-15 -4021 ((-1071 (-525)) (-525))) (-15 -2409 ((-1071 |#1|) |#1|)) (-15 -1692 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -2628 ((-1071 |#1|) (-1071 |#1|))) (-15 -2508 ((-1071 |#1|) (-1 |#1| (-525)) (-1071 |#1|))) (-15 -1908 ((-1071 |#1|) |#1|)) (-15 -3092 ((-1071 |#1|) (-1071 |#1|) |#1|)) (-15 -4100 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3267 ((-1071 |#1|) (-1071 |#1|))) (-15 -4173 ((-1071 |#1|) (-1071 |#1|))) (-15 -1273 ((-1071 |#1|) (-1071 (-1071 |#1|)))) (-15 -4044 ((-1071 |#1|) (-1071 |#1|))) (-15 -3948 ((-1071 |#1|) (-1071 |#1|))) (-15 -2363 ((-1071 |#1|) (-1071 |#1|))) (-15 -2741 ((-1071 |#1|) (-1071 |#1|) (-525) (-525))) (-15 -4115 ((-1071 |#1|) (-525) (-525) (-1071 |#1|))) (-15 -3890 ((-1071 |#1|) (-525) (-525) (-1071 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -3766 ((-1071 |#1|) |#1| (-1071 |#1|))) (-15 -1328 ((-1071 |#1|) |#1| (-1 (-1071 |#1|)))) (-15 -3310 ((-1071 |#1|) (-1071 (-1071 |#1|)))) (-15 -3760 ((-1071 |#1|) (-385 (-525)) (-1071 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -4042 ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3972 ((-1071 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1071 |#1|)))) (-15 -4011 ((-1071 |#1|) |#1| (-1071 |#1|)))) |%noBranch|))
-((-4049 (((-1071 |#1|) (-1071 |#1|)) 57)) (-3911 (((-1071 |#1|) (-1071 |#1|)) 39)) (-4026 (((-1071 |#1|) (-1071 |#1|)) 53)) (-3434 (((-1071 |#1|) (-1071 |#1|)) 35)) (-4072 (((-1071 |#1|) (-1071 |#1|)) 60)) (-3931 (((-1071 |#1|) (-1071 |#1|)) 42)) (-2091 (((-1071 |#1|) (-1071 |#1|)) 31)) (-1982 (((-1071 |#1|) (-1071 |#1|)) 27)) (-4084 (((-1071 |#1|) (-1071 |#1|)) 61)) (-3942 (((-1071 |#1|) (-1071 |#1|)) 43)) (-4061 (((-1071 |#1|) (-1071 |#1|)) 58)) (-3919 (((-1071 |#1|) (-1071 |#1|)) 40)) (-4038 (((-1071 |#1|) (-1071 |#1|)) 55)) (-3455 (((-1071 |#1|) (-1071 |#1|)) 37)) (-4121 (((-1071 |#1|) (-1071 |#1|)) 65)) (-3974 (((-1071 |#1|) (-1071 |#1|)) 47)) (-4096 (((-1071 |#1|) (-1071 |#1|)) 63)) (-3951 (((-1071 |#1|) (-1071 |#1|)) 45)) (-4147 (((-1071 |#1|) (-1071 |#1|)) 68)) (-3999 (((-1071 |#1|) (-1071 |#1|)) 50)) (-2929 (((-1071 |#1|) (-1071 |#1|)) 69)) (-4013 (((-1071 |#1|) (-1071 |#1|)) 51)) (-4133 (((-1071 |#1|) (-1071 |#1|)) 67)) (-3985 (((-1071 |#1|) (-1071 |#1|)) 49)) (-4110 (((-1071 |#1|) (-1071 |#1|)) 66)) (-3963 (((-1071 |#1|) (-1071 |#1|)) 48)) (** (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 33)))
-(((-1076 |#1|) (-10 -7 (-15 -1982 ((-1071 |#1|) (-1071 |#1|))) (-15 -2091 ((-1071 |#1|) (-1071 |#1|))) (-15 ** ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3434 ((-1071 |#1|) (-1071 |#1|))) (-15 -3455 ((-1071 |#1|) (-1071 |#1|))) (-15 -3911 ((-1071 |#1|) (-1071 |#1|))) (-15 -3919 ((-1071 |#1|) (-1071 |#1|))) (-15 -3931 ((-1071 |#1|) (-1071 |#1|))) (-15 -3942 ((-1071 |#1|) (-1071 |#1|))) (-15 -3951 ((-1071 |#1|) (-1071 |#1|))) (-15 -3963 ((-1071 |#1|) (-1071 |#1|))) (-15 -3974 ((-1071 |#1|) (-1071 |#1|))) (-15 -3985 ((-1071 |#1|) (-1071 |#1|))) (-15 -3999 ((-1071 |#1|) (-1071 |#1|))) (-15 -4013 ((-1071 |#1|) (-1071 |#1|))) (-15 -4026 ((-1071 |#1|) (-1071 |#1|))) (-15 -4038 ((-1071 |#1|) (-1071 |#1|))) (-15 -4049 ((-1071 |#1|) (-1071 |#1|))) (-15 -4061 ((-1071 |#1|) (-1071 |#1|))) (-15 -4072 ((-1071 |#1|) (-1071 |#1|))) (-15 -4084 ((-1071 |#1|) (-1071 |#1|))) (-15 -4096 ((-1071 |#1|) (-1071 |#1|))) (-15 -4110 ((-1071 |#1|) (-1071 |#1|))) (-15 -4121 ((-1071 |#1|) (-1071 |#1|))) (-15 -4133 ((-1071 |#1|) (-1071 |#1|))) (-15 -4147 ((-1071 |#1|) (-1071 |#1|))) (-15 -2929 ((-1071 |#1|) (-1071 |#1|)))) (-37 (-385 (-525)))) (T -1076))
-((-2929 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4147 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4133 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4121 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4110 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4096 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4084 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4072 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4061 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4049 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4038 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4026 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-4013 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3999 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3985 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3974 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3951 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3942 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3931 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3455 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-3434 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-2091 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1076 *3)))))
-(-10 -7 (-15 -1982 ((-1071 |#1|) (-1071 |#1|))) (-15 -2091 ((-1071 |#1|) (-1071 |#1|))) (-15 ** ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3434 ((-1071 |#1|) (-1071 |#1|))) (-15 -3455 ((-1071 |#1|) (-1071 |#1|))) (-15 -3911 ((-1071 |#1|) (-1071 |#1|))) (-15 -3919 ((-1071 |#1|) (-1071 |#1|))) (-15 -3931 ((-1071 |#1|) (-1071 |#1|))) (-15 -3942 ((-1071 |#1|) (-1071 |#1|))) (-15 -3951 ((-1071 |#1|) (-1071 |#1|))) (-15 -3963 ((-1071 |#1|) (-1071 |#1|))) (-15 -3974 ((-1071 |#1|) (-1071 |#1|))) (-15 -3985 ((-1071 |#1|) (-1071 |#1|))) (-15 -3999 ((-1071 |#1|) (-1071 |#1|))) (-15 -4013 ((-1071 |#1|) (-1071 |#1|))) (-15 -4026 ((-1071 |#1|) (-1071 |#1|))) (-15 -4038 ((-1071 |#1|) (-1071 |#1|))) (-15 -4049 ((-1071 |#1|) (-1071 |#1|))) (-15 -4061 ((-1071 |#1|) (-1071 |#1|))) (-15 -4072 ((-1071 |#1|) (-1071 |#1|))) (-15 -4084 ((-1071 |#1|) (-1071 |#1|))) (-15 -4096 ((-1071 |#1|) (-1071 |#1|))) (-15 -4110 ((-1071 |#1|) (-1071 |#1|))) (-15 -4121 ((-1071 |#1|) (-1071 |#1|))) (-15 -4133 ((-1071 |#1|) (-1071 |#1|))) (-15 -4147 ((-1071 |#1|) (-1071 |#1|))) (-15 -2929 ((-1071 |#1|) (-1071 |#1|))))
-((-4049 (((-1071 |#1|) (-1071 |#1|)) 100)) (-3911 (((-1071 |#1|) (-1071 |#1|)) 64)) (-3468 (((-2 (|:| -4026 (-1071 |#1|)) (|:| -4038 (-1071 |#1|))) (-1071 |#1|)) 96)) (-4026 (((-1071 |#1|) (-1071 |#1|)) 97)) (-3418 (((-2 (|:| -3434 (-1071 |#1|)) (|:| -3455 (-1071 |#1|))) (-1071 |#1|)) 53)) (-3434 (((-1071 |#1|) (-1071 |#1|)) 54)) (-4072 (((-1071 |#1|) (-1071 |#1|)) 102)) (-3931 (((-1071 |#1|) (-1071 |#1|)) 71)) (-2091 (((-1071 |#1|) (-1071 |#1|)) 39)) (-1982 (((-1071 |#1|) (-1071 |#1|)) 36)) (-4084 (((-1071 |#1|) (-1071 |#1|)) 103)) (-3942 (((-1071 |#1|) (-1071 |#1|)) 72)) (-4061 (((-1071 |#1|) (-1071 |#1|)) 101)) (-3919 (((-1071 |#1|) (-1071 |#1|)) 67)) (-4038 (((-1071 |#1|) (-1071 |#1|)) 98)) (-3455 (((-1071 |#1|) (-1071 |#1|)) 55)) (-4121 (((-1071 |#1|) (-1071 |#1|)) 111)) (-3974 (((-1071 |#1|) (-1071 |#1|)) 86)) (-4096 (((-1071 |#1|) (-1071 |#1|)) 105)) (-3951 (((-1071 |#1|) (-1071 |#1|)) 82)) (-4147 (((-1071 |#1|) (-1071 |#1|)) 115)) (-3999 (((-1071 |#1|) (-1071 |#1|)) 90)) (-2929 (((-1071 |#1|) (-1071 |#1|)) 117)) (-4013 (((-1071 |#1|) (-1071 |#1|)) 92)) (-4133 (((-1071 |#1|) (-1071 |#1|)) 113)) (-3985 (((-1071 |#1|) (-1071 |#1|)) 88)) (-4110 (((-1071 |#1|) (-1071 |#1|)) 107)) (-3963 (((-1071 |#1|) (-1071 |#1|)) 84)) (** (((-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) 40)))
-(((-1077 |#1|) (-10 -7 (-15 -1982 ((-1071 |#1|) (-1071 |#1|))) (-15 -2091 ((-1071 |#1|) (-1071 |#1|))) (-15 ** ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3418 ((-2 (|:| -3434 (-1071 |#1|)) (|:| -3455 (-1071 |#1|))) (-1071 |#1|))) (-15 -3434 ((-1071 |#1|) (-1071 |#1|))) (-15 -3455 ((-1071 |#1|) (-1071 |#1|))) (-15 -3911 ((-1071 |#1|) (-1071 |#1|))) (-15 -3919 ((-1071 |#1|) (-1071 |#1|))) (-15 -3931 ((-1071 |#1|) (-1071 |#1|))) (-15 -3942 ((-1071 |#1|) (-1071 |#1|))) (-15 -3951 ((-1071 |#1|) (-1071 |#1|))) (-15 -3963 ((-1071 |#1|) (-1071 |#1|))) (-15 -3974 ((-1071 |#1|) (-1071 |#1|))) (-15 -3985 ((-1071 |#1|) (-1071 |#1|))) (-15 -3999 ((-1071 |#1|) (-1071 |#1|))) (-15 -4013 ((-1071 |#1|) (-1071 |#1|))) (-15 -3468 ((-2 (|:| -4026 (-1071 |#1|)) (|:| -4038 (-1071 |#1|))) (-1071 |#1|))) (-15 -4026 ((-1071 |#1|) (-1071 |#1|))) (-15 -4038 ((-1071 |#1|) (-1071 |#1|))) (-15 -4049 ((-1071 |#1|) (-1071 |#1|))) (-15 -4061 ((-1071 |#1|) (-1071 |#1|))) (-15 -4072 ((-1071 |#1|) (-1071 |#1|))) (-15 -4084 ((-1071 |#1|) (-1071 |#1|))) (-15 -4096 ((-1071 |#1|) (-1071 |#1|))) (-15 -4110 ((-1071 |#1|) (-1071 |#1|))) (-15 -4121 ((-1071 |#1|) (-1071 |#1|))) (-15 -4133 ((-1071 |#1|) (-1071 |#1|))) (-15 -4147 ((-1071 |#1|) (-1071 |#1|))) (-15 -2929 ((-1071 |#1|) (-1071 |#1|)))) (-37 (-385 (-525)))) (T -1077))
-((-2929 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-4147 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-4133 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-4121 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-4110 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-4096 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-4084 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-4072 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-4061 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-4049 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-4038 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-4026 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3468 (*1 *2 *3) (-12 (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-2 (|:| -4026 (-1071 *4)) (|:| -4038 (-1071 *4)))) (-5 *1 (-1077 *4)) (-5 *3 (-1071 *4)))) (-4013 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3999 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3985 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3974 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3951 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3942 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3931 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3455 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3434 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-3418 (*1 *2 *3) (-12 (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-2 (|:| -3434 (-1071 *4)) (|:| -3455 (-1071 *4)))) (-5 *1 (-1077 *4)) (-5 *3 (-1071 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2091 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))))
-(-10 -7 (-15 -1982 ((-1071 |#1|) (-1071 |#1|))) (-15 -2091 ((-1071 |#1|) (-1071 |#1|))) (-15 ** ((-1071 |#1|) (-1071 |#1|) (-1071 |#1|))) (-15 -3418 ((-2 (|:| -3434 (-1071 |#1|)) (|:| -3455 (-1071 |#1|))) (-1071 |#1|))) (-15 -3434 ((-1071 |#1|) (-1071 |#1|))) (-15 -3455 ((-1071 |#1|) (-1071 |#1|))) (-15 -3911 ((-1071 |#1|) (-1071 |#1|))) (-15 -3919 ((-1071 |#1|) (-1071 |#1|))) (-15 -3931 ((-1071 |#1|) (-1071 |#1|))) (-15 -3942 ((-1071 |#1|) (-1071 |#1|))) (-15 -3951 ((-1071 |#1|) (-1071 |#1|))) (-15 -3963 ((-1071 |#1|) (-1071 |#1|))) (-15 -3974 ((-1071 |#1|) (-1071 |#1|))) (-15 -3985 ((-1071 |#1|) (-1071 |#1|))) (-15 -3999 ((-1071 |#1|) (-1071 |#1|))) (-15 -4013 ((-1071 |#1|) (-1071 |#1|))) (-15 -3468 ((-2 (|:| -4026 (-1071 |#1|)) (|:| -4038 (-1071 |#1|))) (-1071 |#1|))) (-15 -4026 ((-1071 |#1|) (-1071 |#1|))) (-15 -4038 ((-1071 |#1|) (-1071 |#1|))) (-15 -4049 ((-1071 |#1|) (-1071 |#1|))) (-15 -4061 ((-1071 |#1|) (-1071 |#1|))) (-15 -4072 ((-1071 |#1|) (-1071 |#1|))) (-15 -4084 ((-1071 |#1|) (-1071 |#1|))) (-15 -4096 ((-1071 |#1|) (-1071 |#1|))) (-15 -4110 ((-1071 |#1|) (-1071 |#1|))) (-15 -4121 ((-1071 |#1|) (-1071 |#1|))) (-15 -4133 ((-1071 |#1|) (-1071 |#1|))) (-15 -4147 ((-1071 |#1|) (-1071 |#1|))) (-15 -2929 ((-1071 |#1|) (-1071 |#1|))))
-((-3516 (((-891 |#2|) |#2| |#2|) 35)) (-3811 ((|#2| |#2| |#1|) 19 (|has| |#1| (-286)))))
-(((-1078 |#1| |#2|) (-10 -7 (-15 -3516 ((-891 |#2|) |#2| |#2|)) (IF (|has| |#1| (-286)) (-15 -3811 (|#2| |#2| |#1|)) |%noBranch|)) (-517) (-1148 |#1|)) (T -1078))
-((-3811 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-1078 *3 *2)) (-4 *2 (-1148 *3)))) (-3516 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-891 *3)) (-5 *1 (-1078 *4 *3)) (-4 *3 (-1148 *4)))))
-(-10 -7 (-15 -3516 ((-891 |#2|) |#2| |#2|)) (IF (|has| |#1| (-286)) (-15 -3811 (|#2| |#2| |#1|)) |%noBranch|))
-((-1893 (((-108) $ $) NIL)) (-3574 (($ $ (-592 (-713))) 67)) (-3221 (($) 26)) (-3701 (($ $) 42)) (-3976 (((-592 $) $) 51)) (-1903 (((-108) $) 16)) (-1246 (((-592 (-877 |#2|)) $) 74)) (-3348 (($ $) 68)) (-2941 (((-713) $) 37)) (-4018 (($) 25)) (-3935 (($ $ (-592 (-713)) (-877 |#2|)) 60) (($ $ (-592 (-713)) (-713)) 61) (($ $ (-713) (-877 |#2|)) 63)) (-1932 (($ $ $) 48) (($ (-592 $)) 50)) (-2078 (((-713) $) 75)) (-3723 (((-108) $) 15)) (-2337 (((-1073) $) NIL)) (-3003 (((-108) $) 18)) (-2663 (((-1037) $) NIL)) (-3798 (((-159) $) 73)) (-1486 (((-877 |#2|) $) 69)) (-1213 (((-713) $) 70)) (-2482 (((-108) $) 72)) (-2177 (($ $ (-592 (-713)) (-159)) 66)) (-1477 (($ $) 43)) (-1908 (((-797) $) 86)) (-3683 (($ $ (-592 (-713)) (-108)) 65)) (-2021 (((-592 $) $) 11)) (-1269 (($ $ (-713)) 36)) (-2669 (($ $) 32)) (-2847 (($ $ $ (-877 |#2|) (-713)) 56)) (-3073 (($ $ (-877 |#2|)) 55)) (-1818 (($ $ (-592 (-713)) (-877 |#2|)) 54) (($ $ (-592 (-713)) (-713)) 58) (((-713) $ (-877 |#2|)) 59)) (-3961 (((-108) $ $) 80)))
-(((-1079 |#1| |#2|) (-13 (-1019) (-10 -8 (-15 -3723 ((-108) $)) (-15 -1903 ((-108) $)) (-15 -3003 ((-108) $)) (-15 -4018 ($)) (-15 -3221 ($)) (-15 -2669 ($ $)) (-15 -1269 ($ $ (-713))) (-15 -2021 ((-592 $) $)) (-15 -2941 ((-713) $)) (-15 -3701 ($ $)) (-15 -1477 ($ $)) (-15 -1932 ($ $ $)) (-15 -1932 ($ (-592 $))) (-15 -3976 ((-592 $) $)) (-15 -1818 ($ $ (-592 (-713)) (-877 |#2|))) (-15 -3073 ($ $ (-877 |#2|))) (-15 -2847 ($ $ $ (-877 |#2|) (-713))) (-15 -3935 ($ $ (-592 (-713)) (-877 |#2|))) (-15 -1818 ($ $ (-592 (-713)) (-713))) (-15 -3935 ($ $ (-592 (-713)) (-713))) (-15 -1818 ((-713) $ (-877 |#2|))) (-15 -3935 ($ $ (-713) (-877 |#2|))) (-15 -3683 ($ $ (-592 (-713)) (-108))) (-15 -2177 ($ $ (-592 (-713)) (-159))) (-15 -3574 ($ $ (-592 (-713)))) (-15 -1486 ((-877 |#2|) $)) (-15 -1213 ((-713) $)) (-15 -2482 ((-108) $)) (-15 -3798 ((-159) $)) (-15 -2078 ((-713) $)) (-15 -3348 ($ $)) (-15 -1246 ((-592 (-877 |#2|)) $)))) (-855) (-976)) (T -1079))
-((-3723 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-4018 (*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))) (-3221 (*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))) (-2669 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))) (-1269 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-2021 (*1 *2 *1) (-12 (-5 *2 (-592 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-2941 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-3701 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))) (-1477 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))) (-1932 (*1 *1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))) (-1932 (*1 *1 *2) (-12 (-5 *2 (-592 (-1079 *3 *4))) (-14 *3 (-855)) (-4 *4 (-976)) (-5 *1 (-1079 *3 *4)))) (-3976 (*1 *2 *1) (-12 (-5 *2 (-592 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-1818 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-877 *5)) (-4 *5 (-976)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)))) (-3073 (*1 *1 *1 *2) (-12 (-5 *2 (-877 *4)) (-4 *4 (-976)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)))) (-2847 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-877 *5)) (-5 *3 (-713)) (-4 *5 (-976)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)))) (-3935 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-877 *5)) (-4 *5 (-976)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)))) (-1818 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)) (-4 *5 (-976)))) (-3935 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)) (-4 *5 (-976)))) (-1818 (*1 *2 *1 *3) (-12 (-5 *3 (-877 *5)) (-4 *5 (-976)) (-5 *2 (-713)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)))) (-3935 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-877 *5)) (-4 *5 (-976)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)))) (-3683 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-108)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)) (-4 *5 (-976)))) (-2177 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-159)) (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)) (-4 *5 (-976)))) (-3574 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-1486 (*1 *2 *1) (-12 (-5 *2 (-877 *4)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-1213 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-2078 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))) (-3348 (*1 *1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))) (-1246 (*1 *2 *1) (-12 (-5 *2 (-592 (-877 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855)) (-4 *4 (-976)))))
-(-13 (-1019) (-10 -8 (-15 -3723 ((-108) $)) (-15 -1903 ((-108) $)) (-15 -3003 ((-108) $)) (-15 -4018 ($)) (-15 -3221 ($)) (-15 -2669 ($ $)) (-15 -1269 ($ $ (-713))) (-15 -2021 ((-592 $) $)) (-15 -2941 ((-713) $)) (-15 -3701 ($ $)) (-15 -1477 ($ $)) (-15 -1932 ($ $ $)) (-15 -1932 ($ (-592 $))) (-15 -3976 ((-592 $) $)) (-15 -1818 ($ $ (-592 (-713)) (-877 |#2|))) (-15 -3073 ($ $ (-877 |#2|))) (-15 -2847 ($ $ $ (-877 |#2|) (-713))) (-15 -3935 ($ $ (-592 (-713)) (-877 |#2|))) (-15 -1818 ($ $ (-592 (-713)) (-713))) (-15 -3935 ($ $ (-592 (-713)) (-713))) (-15 -1818 ((-713) $ (-877 |#2|))) (-15 -3935 ($ $ (-713) (-877 |#2|))) (-15 -3683 ($ $ (-592 (-713)) (-108))) (-15 -2177 ($ $ (-592 (-713)) (-159))) (-15 -3574 ($ $ (-592 (-713)))) (-15 -1486 ((-877 |#2|) $)) (-15 -1213 ((-713) $)) (-15 -2482 ((-108) $)) (-15 -3798 ((-159) $)) (-15 -2078 ((-713) $)) (-15 -3348 ($ $)) (-15 -1246 ((-592 (-877 |#2|)) $))))
-((-1893 (((-108) $ $) NIL)) (-3247 ((|#2| $) 11)) (-3235 ((|#1| $) 10)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1922 (($ |#1| |#2|) 9)) (-1908 (((-797) $) 16)) (-3961 (((-108) $ $) NIL)))
-(((-1080 |#1| |#2|) (-13 (-1019) (-10 -8 (-15 -1922 ($ |#1| |#2|)) (-15 -3235 (|#1| $)) (-15 -3247 (|#2| $)))) (-1019) (-1019)) (T -1080))
-((-1922 (*1 *1 *2 *3) (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) (-3235 (*1 *2 *1) (-12 (-4 *2 (-1019)) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1019)))) (-3247 (*1 *2 *1) (-12 (-4 *2 (-1019)) (-5 *1 (-1080 *3 *2)) (-4 *3 (-1019)))))
-(-13 (-1019) (-10 -8 (-15 -1922 ($ |#1| |#2|)) (-15 -3235 (|#1| $)) (-15 -3247 (|#2| $))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3115 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-4104 (((-592 (-1004)) $) NIL)) (-1251 (((-1090) $) 11)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3635 (($ $) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-2950 (((-108) $) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-4114 (($ $ (-525)) NIL) (($ $ (-525) (-525)) 66)) (-2911 (((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) NIL)) (-3048 (((-1088 |#1| |#2| |#3|) $) 36)) (-4164 (((-3 (-1088 |#1| |#2| |#3|) "failed") $) 29)) (-4168 (((-1088 |#1| |#2| |#3|) $) 30)) (-4049 (($ $) 107 (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) 83 (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-3321 (($ $) NIL (|has| |#1| (-341)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3969 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-2305 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4026 (($ $) 103 (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) 79 (|has| |#1| (-37 (-385 (-525)))))) (-1690 (((-525) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-3483 (($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) NIL)) (-4072 (($ $) 111 (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) 87 (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-1088 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1090) "failed") $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-967 (-1090))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341)))) (((-3 (-525) "failed") $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341))))) (-2831 (((-1088 |#1| |#2| |#3|) $) 131) (((-1090) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-967 (-1090))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341)))) (((-525) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341))))) (-2536 (($ $) 34) (($ (-525) $) 35)) (-2373 (($ $ $) NIL (|has| |#1| (-341)))) (-1247 (($ $) NIL)) (-1860 (((-632 (-1088 |#1| |#2| |#3|)) (-632 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3276 (-632 (-1088 |#1| |#2| |#3|))) (|:| |vec| (-1172 (-1088 |#1| |#2| |#3|)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341))))) (-2866 (((-3 $ "failed") $) 48)) (-2456 (((-385 (-886 |#1|)) $ (-525)) 65 (|has| |#1| (-517))) (((-385 (-886 |#1|)) $ (-525) (-525)) 67 (|has| |#1| (-517)))) (-3375 (($) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-2356 (($ $ $) NIL (|has| |#1| (-341)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2250 (((-108) $) NIL (|has| |#1| (-341)))) (-3026 (((-108) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-4150 (((-108) $) 25)) (-1335 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-820 (-525))) (|has| |#1| (-341)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-820 (-357))) (|has| |#1| (-341))))) (-1737 (((-525) $) NIL) (((-525) $ (-525)) 24)) (-2133 (((-108) $) NIL)) (-3830 (($ $) NIL (|has| |#1| (-341)))) (-1303 (((-1088 |#1| |#2| |#3|) $) 38 (|has| |#1| (-341)))) (-3391 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1816 (((-3 $ "failed") $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-341))))) (-2882 (((-108) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-3817 (($ $ (-855)) NIL)) (-3445 (($ (-1 |#1| (-525)) $) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-525)) 18) (($ $ (-1004) (-525)) NIL) (($ $ (-592 (-1004)) (-592 (-525))) NIL)) (-3525 (($ $ $) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3630 (($ $ $) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-341)))) (-2091 (($ $) 72 (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4179 (($ (-525) (-1088 |#1| |#2| |#3|)) 33)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-341)))) (-3766 (($ $) 70 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) NIL (-3309 (-12 (|has| |#1| (-15 -3766 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -4104 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112))))) (($ $ (-1168 |#2|)) 71 (|has| |#1| (-37 (-385 (-525)))))) (-2279 (($) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-341))) CONST)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2723 (($ $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-1720 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-3959 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-3538 (($ $ (-525)) 145)) (-2338 (((-3 $ "failed") $ $) 49 (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1982 (($ $) 73 (|has| |#1| (-37 (-385 (-525)))))) (-3092 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1090) (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-486 (-1090) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1090)) (-592 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-486 (-1090) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-273 (-1088 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-288 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-273 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-288 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-288 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1088 |#1| |#2| |#3|)) (-592 (-1088 |#1| |#2| |#3|))) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-288 (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-2183 (((-713) $) NIL (|has| |#1| (-341)))) (-3928 ((|#1| $ (-525)) NIL) (($ $ $) 54 (|has| (-525) (-1031))) (($ $ (-1088 |#1| |#2| |#3|)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-265 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-341)))) (-3013 (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1168 |#2|)) 51) (($ $ (-713)) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 50 (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090) (-713)) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-592 (-1090))) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090)) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))))) (-1915 (($ $) NIL (|has| |#1| (-341)))) (-1312 (((-1088 |#1| |#2| |#3|) $) 41 (|has| |#1| (-341)))) (-2513 (((-525) $) 37)) (-4084 (($ $) 113 (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) 89 (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) 109 (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) 85 (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) 105 (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) 81 (|has| |#1| (-37 (-385 (-525)))))) (-1427 (((-501) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-567 (-501))) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-952)) (|has| |#1| (-341)))) (((-205) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-952)) (|has| |#1| (-341)))) (((-826 (-357)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-567 (-826 (-357)))) (|has| |#1| (-341)))) (((-826 (-525)) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-567 (-826 (-525)))) (|has| |#1| (-341))))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-1801 (($ $) NIL)) (-1908 (((-797) $) 149) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1088 |#1| |#2| |#3|)) 27) (($ (-1168 |#2|)) 23) (($ (-1090)) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-967 (-1090))) (|has| |#1| (-341)))) (($ $) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517)))) (($ (-385 (-525))) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341))) (|has| |#1| (-37 (-385 (-525))))))) (-1657 ((|#1| $ (-525)) 68)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-2093 (((-713)) NIL)) (-2563 ((|#1| $) 12)) (-2498 (((-1088 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-4121 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) 95 (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-4096 (($ $) 115 (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) 91 (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) 99 (|has| |#1| (-37 (-385 (-525)))))) (-2038 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1908 (|#1| (-1090))))))) (-2929 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) 101 (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) 97 (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) 93 (|has| |#1| (-37 (-385 (-525)))))) (-2092 (($ $) NIL (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3875 (($) 20 T CONST)) (-3882 (($) 16 T CONST)) (-1424 (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090) (-713)) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-592 (-1090))) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090)) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))))) (-4024 (((-108) $ $) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3995 (((-108) $ $) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3983 (((-108) $ $) NIL (-3309 (-12 (|has| (-1088 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1088 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 44 (|has| |#1| (-341))) (($ (-1088 |#1| |#2| |#3|) (-1088 |#1| |#2| |#3|)) 45 (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) 21)) (** (($ $ (-855)) NIL) (($ $ (-713)) 53) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) 74 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 128 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1088 |#1| |#2| |#3|)) 43 (|has| |#1| (-341))) (($ (-1088 |#1| |#2| |#3|) $) 42 (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-1081 |#1| |#2| |#3|) (-13 (-1134 |#1| (-1088 |#1| |#2| |#3|)) (-10 -8 (-15 -1908 ($ (-1168 |#2|))) (-15 -3013 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3766 ($ $ (-1168 |#2|))) |%noBranch|))) (-976) (-1090) |#1|) (T -1081))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1081 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3))))
-(-13 (-1134 |#1| (-1088 |#1| |#2| |#3|)) (-10 -8 (-15 -1908 ($ (-1168 |#2|))) (-15 -3013 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3766 ($ $ (-1168 |#2|))) |%noBranch|)))
-((-3541 ((|#2| |#2| (-1012 |#2|)) 26) ((|#2| |#2| (-1090)) 28)))
-(((-1082 |#1| |#2|) (-10 -7 (-15 -3541 (|#2| |#2| (-1090))) (-15 -3541 (|#2| |#2| (-1012 |#2|)))) (-13 (-517) (-789) (-967 (-525)) (-588 (-525))) (-13 (-408 |#1|) (-149) (-27) (-1112))) (T -1082))
-((-3541 (*1 *2 *2 *3) (-12 (-5 *3 (-1012 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1112))) (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1082 *4 *2)))) (-3541 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1082 *4 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1112))))))
-(-10 -7 (-15 -3541 (|#2| |#2| (-1090))) (-15 -3541 (|#2| |#2| (-1012 |#2|))))
-((-3541 (((-3 (-385 (-886 |#1|)) (-294 |#1|)) (-385 (-886 |#1|)) (-1012 (-385 (-886 |#1|)))) 31) (((-385 (-886 |#1|)) (-886 |#1|) (-1012 (-886 |#1|))) 44) (((-3 (-385 (-886 |#1|)) (-294 |#1|)) (-385 (-886 |#1|)) (-1090)) 33) (((-385 (-886 |#1|)) (-886 |#1|) (-1090)) 36)))
-(((-1083 |#1|) (-10 -7 (-15 -3541 ((-385 (-886 |#1|)) (-886 |#1|) (-1090))) (-15 -3541 ((-3 (-385 (-886 |#1|)) (-294 |#1|)) (-385 (-886 |#1|)) (-1090))) (-15 -3541 ((-385 (-886 |#1|)) (-886 |#1|) (-1012 (-886 |#1|)))) (-15 -3541 ((-3 (-385 (-886 |#1|)) (-294 |#1|)) (-385 (-886 |#1|)) (-1012 (-385 (-886 |#1|)))))) (-13 (-517) (-789) (-967 (-525)))) (T -1083))
-((-3541 (*1 *2 *3 *4) (-12 (-5 *4 (-1012 (-385 (-886 *5)))) (-4 *5 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-3 (-385 (-886 *5)) (-294 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-385 (-886 *5))))) (-3541 (*1 *2 *3 *4) (-12 (-5 *4 (-1012 (-886 *5))) (-4 *5 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-385 (-886 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-886 *5)))) (-3541 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-3 (-385 (-886 *5)) (-294 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-385 (-886 *5))))) (-3541 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-385 (-886 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-886 *5)))))
-(-10 -7 (-15 -3541 ((-385 (-886 |#1|)) (-886 |#1|) (-1090))) (-15 -3541 ((-3 (-385 (-886 |#1|)) (-294 |#1|)) (-385 (-886 |#1|)) (-1090))) (-15 -3541 ((-385 (-886 |#1|)) (-886 |#1|) (-1012 (-886 |#1|)))) (-15 -3541 ((-3 (-385 (-886 |#1|)) (-294 |#1|)) (-385 (-886 |#1|)) (-1012 (-385 (-886 |#1|))))))
-((-1370 (((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)) 13)))
-(((-1084 |#1| |#2|) (-10 -7 (-15 -1370 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)))) (-976) (-976)) (T -1084))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-976)) (-4 *6 (-976)) (-5 *2 (-1086 *6)) (-5 *1 (-1084 *5 *6)))))
-(-10 -7 (-15 -1370 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|))))
-((-1510 (((-396 (-1086 (-385 |#4|))) (-1086 (-385 |#4|))) 51)) (-3959 (((-396 (-1086 (-385 |#4|))) (-1086 (-385 |#4|))) 52)))
-(((-1085 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3959 ((-396 (-1086 (-385 |#4|))) (-1086 (-385 |#4|)))) (-15 -1510 ((-396 (-1086 (-385 |#4|))) (-1086 (-385 |#4|))))) (-735) (-789) (-429) (-883 |#3| |#1| |#2|)) (T -1085))
-((-1510 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429)) (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-396 (-1086 (-385 *7)))) (-5 *1 (-1085 *4 *5 *6 *7)) (-5 *3 (-1086 (-385 *7))))) (-3959 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429)) (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-396 (-1086 (-385 *7)))) (-5 *1 (-1085 *4 *5 *6 *7)) (-5 *3 (-1086 (-385 *7))))))
-(-10 -7 (-15 -3959 ((-396 (-1086 (-385 |#4|))) (-1086 (-385 |#4|)))) (-15 -1510 ((-396 (-1086 (-385 |#4|))) (-1086 (-385 |#4|)))))
-((-1893 (((-108) $ $) 139)) (-1611 (((-108) $) 30)) (-1401 (((-1172 |#1|) $ (-713)) NIL)) (-4104 (((-592 (-1004)) $) NIL)) (-1361 (($ (-1086 |#1|)) NIL)) (-3927 (((-1086 $) $ (-1004)) 60) (((-1086 |#1|) $) 49)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) 134 (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-1324 (((-713) $) NIL) (((-713) $ (-592 (-1004))) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1820 (($ $ $) 128 (|has| |#1| (-517)))) (-3357 (((-396 (-1086 $)) (-1086 $)) 73 (|has| |#1| (-843)))) (-3321 (($ $) NIL (|has| |#1| (-429)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 93 (|has| |#1| (-843)))) (-2305 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3311 (($ $ (-713)) 42)) (-1821 (($ $ (-713)) 43)) (-3976 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-1004) "failed") $) NIL)) (-2831 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-1004) $) NIL)) (-2506 (($ $ $ (-1004)) NIL (|has| |#1| (-160))) ((|#1| $ $) 130 (|has| |#1| (-160)))) (-2373 (($ $ $) NIL (|has| |#1| (-341)))) (-1247 (($ $) 58)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#1| (-341)))) (-1766 (($ $ $) 106)) (-3744 (($ $ $) NIL (|has| |#1| (-517)))) (-3196 (((-2 (|:| -1459 |#1|) (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-517)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3811 (($ $) 135 (|has| |#1| (-429))) (($ $ (-1004)) NIL (|has| |#1| (-429)))) (-1234 (((-592 $) $) NIL)) (-2250 (((-108) $) NIL (|has| |#1| (-843)))) (-2099 (($ $ |#1| (-713) $) 47)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-1004) (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-1004) (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-3697 (((-797) $ (-797)) 119)) (-1737 (((-713) $ $) NIL (|has| |#1| (-517)))) (-2133 (((-108) $) 32)) (-3610 (((-713) $) NIL)) (-1816 (((-3 $ "failed") $) NIL (|has| |#1| (-1066)))) (-4092 (($ (-1086 |#1|) (-1004)) 51) (($ (-1086 $) (-1004)) 67)) (-3817 (($ $ (-713)) 34)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-713)) 65) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ (-1004)) NIL) (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 123)) (-3181 (((-713) $) NIL) (((-713) $ (-1004)) NIL) (((-592 (-713)) $ (-592 (-1004))) NIL)) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-1331 (($ (-1 (-713) (-713)) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-2180 (((-1086 |#1|) $) NIL)) (-1666 (((-3 (-1004) "failed") $) NIL)) (-1212 (($ $) NIL)) (-1224 ((|#1| $) 54)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-2337 (((-1073) $) NIL)) (-3781 (((-2 (|:| -1338 $) (|:| -1632 $)) $ (-713)) 41)) (-3245 (((-3 (-592 $) "failed") $) NIL)) (-3193 (((-3 (-592 $) "failed") $) NIL)) (-3283 (((-3 (-2 (|:| |var| (-1004)) (|:| -1600 (-713))) "failed") $) NIL)) (-3766 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2279 (($) NIL (|has| |#1| (-1066)) CONST)) (-2663 (((-1037) $) NIL)) (-4221 (((-108) $) 33)) (-4232 ((|#1| $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 81 (|has| |#1| (-429)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) 137 (|has| |#1| (-429)))) (-1631 (($ $ (-713) |#1| $) 101)) (-2918 (((-396 (-1086 $)) (-1086 $)) 79 (|has| |#1| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) 78 (|has| |#1| (-843)))) (-3959 (((-396 $) $) 86 (|has| |#1| (-843)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-2338 (((-3 $ "failed") $ |#1|) 133 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 102 (|has| |#1| (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-3092 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1004) |#1|) NIL) (($ $ (-592 (-1004)) (-592 |#1|)) NIL) (($ $ (-1004) $) NIL) (($ $ (-592 (-1004)) (-592 $)) NIL)) (-2183 (((-713) $) NIL (|has| |#1| (-341)))) (-3928 ((|#1| $ |#1|) 121) (($ $ $) 122) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-2063 (((-3 $ "failed") $ (-713)) 37)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 140 (|has| |#1| (-341)))) (-1400 (($ $ (-1004)) NIL (|has| |#1| (-160))) ((|#1| $) 126 (|has| |#1| (-160)))) (-3013 (($ $ (-1004)) NIL) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2513 (((-713) $) 56) (((-713) $ (-1004)) NIL) (((-592 (-713)) $ (-592 (-1004))) NIL)) (-1427 (((-826 (-357)) $) NIL (-12 (|has| (-1004) (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-1004) (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-1004) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2751 ((|#1| $) 132 (|has| |#1| (-429))) (($ $ (-1004)) NIL (|has| |#1| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-843))))) (-1925 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-1908 (((-797) $) 120) (($ (-525)) NIL) (($ |#1|) 55) (($ (-1004)) NIL) (($ (-385 (-525))) NIL (-3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-3600 (((-592 |#1|) $) NIL)) (-1657 ((|#1| $ (-713)) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2093 (((-713)) NIL)) (-4116 (($ $ $ (-713)) 28 (|has| |#1| (-160)))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3465 (($ $ (-855)) 15) (($ $ (-713)) 16)) (-3875 (($) 17 T CONST)) (-3882 (($) 18 T CONST)) (-1424 (($ $ (-1004)) NIL) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1090)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) 98)) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4082 (($ $ |#1|) 141 (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) 68)) (** (($ $ (-855)) 14) (($ $ (-713)) 12)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 27) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 104) (($ $ |#1|) NIL)))
-(((-1086 |#1|) (-13 (-1148 |#1|) (-10 -8 (-15 -3697 ((-797) $ (-797))) (-15 -1631 ($ $ (-713) |#1| $)))) (-976)) (T -1086))
-((-3697 (*1 *2 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1086 *3)) (-4 *3 (-976)))) (-1631 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1086 *3)) (-4 *3 (-976)))))
-(-13 (-1148 |#1|) (-10 -8 (-15 -3697 ((-797) $ (-797))) (-15 -1631 ($ $ (-713) |#1| $))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-4104 (((-592 (-1004)) $) NIL)) (-1251 (((-1090) $) 11)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-4114 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-2911 (((-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-4049 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL (|has| |#1| (-341)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3969 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2305 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4026 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3483 (($ (-713) (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-4072 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-1081 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1088 |#1| |#2| |#3|) "failed") $) 36)) (-2831 (((-1081 |#1| |#2| |#3|) $) NIL) (((-1088 |#1| |#2| |#3|) $) NIL)) (-2373 (($ $ $) NIL (|has| |#1| (-341)))) (-1247 (($ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3082 (((-385 (-525)) $) 55)) (-2356 (($ $ $) NIL (|has| |#1| (-341)))) (-4192 (($ (-385 (-525)) (-1081 |#1| |#2| |#3|)) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2250 (((-108) $) NIL (|has| |#1| (-341)))) (-4150 (((-108) $) NIL)) (-1335 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1737 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-2133 (((-108) $) NIL)) (-3391 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3817 (($ $ (-855)) NIL) (($ $ (-385 (-525))) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-385 (-525))) 20) (($ $ (-1004) (-385 (-525))) NIL) (($ $ (-592 (-1004)) (-592 (-385 (-525)))) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-2091 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3543 (((-1081 |#1| |#2| |#3|) $) 41)) (-1311 (((-3 (-1081 |#1| |#2| |#3|) "failed") $) NIL)) (-4179 (((-1081 |#1| |#2| |#3|) $) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-341)))) (-3766 (($ $) 39 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) NIL (-3309 (-12 (|has| |#1| (-15 -3766 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -4104 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112))))) (($ $ (-1168 |#2|)) 40 (|has| |#1| (-37 (-385 (-525)))))) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3959 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-3538 (($ $ (-385 (-525))) NIL)) (-2338 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1982 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3092 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-2183 (((-713) $) NIL (|has| |#1| (-341)))) (-3928 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1031)))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-341)))) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1168 |#2|)) 38)) (-2513 (((-385 (-525)) $) NIL)) (-4084 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1801 (($ $) NIL)) (-1908 (((-797) $) 58) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1081 |#1| |#2| |#3|)) 30) (($ (-1088 |#1| |#2| |#3|)) 31) (($ (-1168 |#2|)) 26) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1657 ((|#1| $ (-385 (-525))) NIL)) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) NIL)) (-2563 ((|#1| $) 12)) (-4121 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4096 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2038 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1908 (|#1| (-1090))))))) (-2929 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3875 (($) 22 T CONST)) (-3882 (($) 16 T CONST)) (-1424 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) 24)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-1087 |#1| |#2| |#3|) (-13 (-1155 |#1| (-1081 |#1| |#2| |#3|)) (-967 (-1088 |#1| |#2| |#3|)) (-10 -8 (-15 -1908 ($ (-1168 |#2|))) (-15 -3013 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3766 ($ $ (-1168 |#2|))) |%noBranch|))) (-976) (-1090) |#1|) (T -1087))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1087 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3))))
-(-13 (-1155 |#1| (-1081 |#1| |#2| |#3|)) (-967 (-1088 |#1| |#2| |#3|)) (-10 -8 (-15 -1908 ($ (-1168 |#2|))) (-15 -3013 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3766 ($ $ (-1168 |#2|))) |%noBranch|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 125)) (-4104 (((-592 (-1004)) $) NIL)) (-1251 (((-1090) $) 116)) (-1495 (((-1145 |#2| |#1|) $ (-713)) 63)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-4114 (($ $ (-713)) 79) (($ $ (-713) (-713)) 76)) (-2911 (((-1071 (-2 (|:| |k| (-713)) (|:| |c| |#1|))) $) 102)) (-4049 (($ $) 169 (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) 145 (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3969 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4026 (($ $) 165 (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3483 (($ (-1071 (-2 (|:| |k| (-713)) (|:| |c| |#1|)))) 115) (($ (-1071 |#1|)) 110)) (-4072 (($ $) 173 (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) 149 (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) NIL T CONST)) (-1247 (($ $) NIL)) (-2866 (((-3 $ "failed") $) 23)) (-4188 (($ $) 26)) (-2467 (((-886 |#1|) $ (-713)) 75) (((-886 |#1|) $ (-713) (-713)) 77)) (-4150 (((-108) $) 120)) (-1335 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1737 (((-713) $) 122) (((-713) $ (-713)) 124)) (-2133 (((-108) $) NIL)) (-3391 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3817 (($ $ (-855)) NIL)) (-3445 (($ (-1 |#1| (-525)) $) NIL)) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-713)) 13) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-2091 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-2337 (((-1073) $) NIL)) (-3766 (($ $) 129 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) NIL (-3309 (-12 (|has| |#1| (-15 -3766 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -4104 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112))))) (($ $ (-1168 |#2|)) 130 (|has| |#1| (-37 (-385 (-525)))))) (-2663 (((-1037) $) NIL)) (-3538 (($ $ (-713)) 15)) (-2338 (((-3 $ "failed") $ $) 24 (|has| |#1| (-517)))) (-1982 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-3092 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-713)))))) (-3928 ((|#1| $ (-713)) 119) (($ $ $) 128 (|has| (-713) (-1031)))) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $ (-1168 |#2|)) 29)) (-2513 (((-713) $) NIL)) (-4084 (($ $) 175 (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) 151 (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) 171 (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) 147 (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) 167 (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-1801 (($ $) NIL)) (-1908 (((-797) $) 201) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 126 (|has| |#1| (-160))) (($ (-1145 |#2| |#1|)) 51) (($ (-1168 |#2|)) 32)) (-3600 (((-1071 |#1|) $) 98)) (-1657 ((|#1| $ (-713)) 118)) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) NIL)) (-2563 ((|#1| $) 54)) (-4121 (($ $) 181 (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) 157 (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4096 (($ $) 177 (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) 153 (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) 185 (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) 161 (|has| |#1| (-37 (-385 (-525)))))) (-2038 ((|#1| $ (-713)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-713)))) (|has| |#1| (-15 -1908 (|#1| (-1090))))))) (-2929 (($ $) 187 (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) 163 (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) 183 (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) 159 (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) 179 (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) 155 (|has| |#1| (-37 (-385 (-525)))))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 17 T CONST)) (-3882 (($) 19 T CONST)) (-1424 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) 194)) (-4059 (($ $ $) 31)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ |#1|) 198 (|has| |#1| (-341))) (($ $ $) 134 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 137 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-1088 |#1| |#2| |#3|) (-13 (-1163 |#1|) (-10 -8 (-15 -1908 ($ (-1145 |#2| |#1|))) (-15 -1495 ((-1145 |#2| |#1|) $ (-713))) (-15 -1908 ($ (-1168 |#2|))) (-15 -3013 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3766 ($ $ (-1168 |#2|))) |%noBranch|))) (-976) (-1090) |#1|) (T -1088))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1145 *4 *3)) (-4 *3 (-976)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-1088 *3 *4 *5)))) (-1495 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1145 *5 *4)) (-5 *1 (-1088 *4 *5 *6)) (-4 *4 (-976)) (-14 *5 (-1090)) (-14 *6 *4))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3))))
-(-13 (-1163 |#1|) (-10 -8 (-15 -1908 ($ (-1145 |#2| |#1|))) (-15 -1495 ((-1145 |#2| |#1|) $ (-713))) (-15 -1908 ($ (-1168 |#2|))) (-15 -3013 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3766 ($ $ (-1168 |#2|))) |%noBranch|)))
-((-1908 (((-797) $) 27) (($ (-1090)) 29)) (-3309 (($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 40)) (-3298 (($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 33) (($ $) 34)) (-2986 (($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 35)) (-2977 (($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 37)) (-2967 (($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 36)) (-2957 (($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 38)) (-2675 (($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 39)))
-(((-1089) (-13 (-566 (-797)) (-10 -8 (-15 -1908 ($ (-1090))) (-15 -2986 ($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2967 ($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2977 ($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2957 ($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3309 ($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2675 ($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3298 ($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3298 ($ $))))) (T -1089))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1089)))) (-2986 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) (-5 *1 (-1089)))) (-2967 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) (-5 *1 (-1089)))) (-2977 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) (-5 *1 (-1089)))) (-2957 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) (-5 *1 (-1089)))) (-3309 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) (-5 *1 (-1089)))) (-2675 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) (-5 *1 (-1089)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) (-5 *1 (-1089)))) (-3298 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089)))) (-5 *1 (-1089)))) (-3298 (*1 *1 *1) (-5 *1 (-1089))))
-(-13 (-566 (-797)) (-10 -8 (-15 -1908 ($ (-1090))) (-15 -2986 ($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2967 ($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2977 ($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2957 ($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3309 ($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2675 ($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3298 ($ (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3298 ($ $))))
-((-1893 (((-108) $ $) NIL)) (-3769 (($ $ (-592 (-797))) 59)) (-1941 (($ $ (-592 (-797))) 57)) (-3607 (((-1073) $) 84)) (-1734 (((-2 (|:| -2714 (-592 (-797))) (|:| -1487 (-592 (-797))) (|:| |presup| (-592 (-797))) (|:| -2807 (-592 (-797))) (|:| |args| (-592 (-797)))) $) 87)) (-3542 (((-108) $) 22)) (-2860 (($ $ (-592 (-592 (-797)))) 56) (($ $ (-2 (|:| -2714 (-592 (-797))) (|:| -1487 (-592 (-797))) (|:| |presup| (-592 (-797))) (|:| -2807 (-592 (-797))) (|:| |args| (-592 (-797))))) 82)) (-1505 (($) 124 T CONST)) (-1806 (((-1177)) 106)) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 66) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 73)) (-4018 (($) 95) (($ $) 101)) (-1310 (($ $) 83)) (-3525 (($ $ $) NIL)) (-3630 (($ $ $) NIL)) (-3037 (((-592 $) $) 107)) (-2337 (((-1073) $) 90)) (-2663 (((-1037) $) NIL)) (-3928 (($ $ (-592 (-797))) 58)) (-1427 (((-501) $) 46) (((-1090) $) 47) (((-826 (-525)) $) 77) (((-826 (-357)) $) 75)) (-1908 (((-797) $) 53) (($ (-1073)) 48)) (-3784 (($ $ (-592 (-797))) 60)) (-2766 (((-1073) $) 33) (((-1073) $ (-108)) 34) (((-1177) (-764) $) 35) (((-1177) (-764) $ (-108)) 36)) (-4024 (((-108) $ $) NIL)) (-3995 (((-108) $ $) NIL)) (-3961 (((-108) $ $) 49)) (-4010 (((-108) $ $) NIL)) (-3983 (((-108) $ $) 50)))
-(((-1090) (-13 (-789) (-567 (-501)) (-770) (-567 (-1090)) (-567 (-826 (-525))) (-567 (-826 (-357))) (-820 (-525)) (-820 (-357)) (-10 -8 (-15 -4018 ($)) (-15 -4018 ($ $)) (-15 -1806 ((-1177))) (-15 -1908 ($ (-1073))) (-15 -1310 ($ $)) (-15 -3542 ((-108) $)) (-15 -1734 ((-2 (|:| -2714 (-592 (-797))) (|:| -1487 (-592 (-797))) (|:| |presup| (-592 (-797))) (|:| -2807 (-592 (-797))) (|:| |args| (-592 (-797)))) $)) (-15 -2860 ($ $ (-592 (-592 (-797))))) (-15 -2860 ($ $ (-2 (|:| -2714 (-592 (-797))) (|:| -1487 (-592 (-797))) (|:| |presup| (-592 (-797))) (|:| -2807 (-592 (-797))) (|:| |args| (-592 (-797)))))) (-15 -1941 ($ $ (-592 (-797)))) (-15 -3769 ($ $ (-592 (-797)))) (-15 -3784 ($ $ (-592 (-797)))) (-15 -3928 ($ $ (-592 (-797)))) (-15 -3607 ((-1073) $)) (-15 -3037 ((-592 $) $)) (-15 -1505 ($) -3359)))) (T -1090))
-((-4018 (*1 *1) (-5 *1 (-1090))) (-4018 (*1 *1 *1) (-5 *1 (-1090))) (-1806 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1090)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1090)))) (-1310 (*1 *1 *1) (-5 *1 (-1090))) (-3542 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1090)))) (-1734 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2714 (-592 (-797))) (|:| -1487 (-592 (-797))) (|:| |presup| (-592 (-797))) (|:| -2807 (-592 (-797))) (|:| |args| (-592 (-797))))) (-5 *1 (-1090)))) (-2860 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 (-797)))) (-5 *1 (-1090)))) (-2860 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2714 (-592 (-797))) (|:| -1487 (-592 (-797))) (|:| |presup| (-592 (-797))) (|:| -2807 (-592 (-797))) (|:| |args| (-592 (-797))))) (-5 *1 (-1090)))) (-1941 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-1090)))) (-3769 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-1090)))) (-3784 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-1090)))) (-3928 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-1090)))) (-3607 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1090)))) (-3037 (*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-1090)))) (-1505 (*1 *1) (-5 *1 (-1090))))
-(-13 (-789) (-567 (-501)) (-770) (-567 (-1090)) (-567 (-826 (-525))) (-567 (-826 (-357))) (-820 (-525)) (-820 (-357)) (-10 -8 (-15 -4018 ($)) (-15 -4018 ($ $)) (-15 -1806 ((-1177))) (-15 -1908 ($ (-1073))) (-15 -1310 ($ $)) (-15 -3542 ((-108) $)) (-15 -1734 ((-2 (|:| -2714 (-592 (-797))) (|:| -1487 (-592 (-797))) (|:| |presup| (-592 (-797))) (|:| -2807 (-592 (-797))) (|:| |args| (-592 (-797)))) $)) (-15 -2860 ($ $ (-592 (-592 (-797))))) (-15 -2860 ($ $ (-2 (|:| -2714 (-592 (-797))) (|:| -1487 (-592 (-797))) (|:| |presup| (-592 (-797))) (|:| -2807 (-592 (-797))) (|:| |args| (-592 (-797)))))) (-15 -1941 ($ $ (-592 (-797)))) (-15 -3769 ($ $ (-592 (-797)))) (-15 -3784 ($ $ (-592 (-797)))) (-15 -3928 ($ $ (-592 (-797)))) (-15 -3607 ((-1073) $)) (-15 -3037 ((-592 $) $)) (-15 -1505 ($) -3359)))
-((-3141 (((-1172 |#1|) |#1| (-855)) 16) (((-1172 |#1|) (-592 |#1|)) 20)))
-(((-1091 |#1|) (-10 -7 (-15 -3141 ((-1172 |#1|) (-592 |#1|))) (-15 -3141 ((-1172 |#1|) |#1| (-855)))) (-976)) (T -1091))
-((-3141 (*1 *2 *3 *4) (-12 (-5 *4 (-855)) (-5 *2 (-1172 *3)) (-5 *1 (-1091 *3)) (-4 *3 (-976)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-976)) (-5 *2 (-1172 *4)) (-5 *1 (-1091 *4)))))
-(-10 -7 (-15 -3141 ((-1172 |#1|) (-592 |#1|))) (-15 -3141 ((-1172 |#1|) |#1| (-855))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL (|has| |#1| (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-967 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-2831 (((-525) $) NIL (|has| |#1| (-967 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-967 (-385 (-525))))) ((|#1| $) NIL)) (-1247 (($ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3811 (($ $) NIL (|has| |#1| (-429)))) (-2099 (($ $ |#1| (-903) $) NIL)) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) NIL)) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-903)) NIL)) (-3181 (((-903) $) NIL)) (-1331 (($ (-1 (-903) (-903)) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-4221 (((-108) $) NIL)) (-4232 ((|#1| $) NIL)) (-1631 (($ $ (-903) |#1| $) NIL (-12 (|has| (-903) (-126)) (|has| |#1| (-517))))) (-2338 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-2513 (((-903) $) NIL)) (-2751 ((|#1| $) NIL (|has| |#1| (-429)))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) NIL) (($ (-385 (-525))) NIL (-3309 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-967 (-385 (-525))))))) (-3600 (((-592 |#1|) $) NIL)) (-1657 ((|#1| $ (-903)) NIL)) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) NIL)) (-4116 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 9 T CONST)) (-3882 (($) 14 T CONST)) (-3961 (((-108) $ $) 16)) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) 19)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-1092 |#1|) (-13 (-304 |#1| (-903)) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| (-903) (-126)) (-15 -1631 ($ $ (-903) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4252)) (-6 -4252) |%noBranch|))) (-976)) (T -1092))
-((-1631 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-903)) (-4 (-903) (-126)) (-5 *1 (-1092 *3)) (-4 *3 (-517)) (-4 *3 (-976)))))
-(-13 (-304 |#1| (-903)) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| (-903) (-126)) (-15 -1631 ($ $ (-903) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4252)) (-6 -4252) |%noBranch|)))
-((-3591 (((-1094) (-1090) $) 25)) (-1537 (($) 29)) (-2192 (((-3 (|:| |fst| (-412)) (|:| -3190 "void")) (-1090) $) 22)) (-3632 (((-1177) (-1090) (-3 (|:| |fst| (-412)) (|:| -3190 "void")) $) 41) (((-1177) (-1090) (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) 42) (((-1177) (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) 43)) (-2421 (((-1177) (-1090)) 58)) (-3255 (((-1177) (-1090) $) 55) (((-1177) (-1090)) 56) (((-1177)) 57)) (-3166 (((-1177) (-1090)) 37)) (-2625 (((-1090)) 36)) (-3773 (($) 34)) (-2197 (((-415) (-1090) (-415) (-1090) $) 45) (((-415) (-592 (-1090)) (-415) (-1090) $) 49) (((-415) (-1090) (-415)) 46) (((-415) (-1090) (-415) (-1090)) 50)) (-2890 (((-1090)) 35)) (-1908 (((-797) $) 28)) (-1652 (((-1177)) 30) (((-1177) (-1090)) 33)) (-3867 (((-592 (-1090)) (-1090) $) 24)) (-3438 (((-1177) (-1090) (-592 (-1090)) $) 38) (((-1177) (-1090) (-592 (-1090))) 39) (((-1177) (-592 (-1090))) 40)))
-(((-1093) (-13 (-566 (-797)) (-10 -8 (-15 -1537 ($)) (-15 -1652 ((-1177))) (-15 -1652 ((-1177) (-1090))) (-15 -2197 ((-415) (-1090) (-415) (-1090) $)) (-15 -2197 ((-415) (-592 (-1090)) (-415) (-1090) $)) (-15 -2197 ((-415) (-1090) (-415))) (-15 -2197 ((-415) (-1090) (-415) (-1090))) (-15 -3166 ((-1177) (-1090))) (-15 -2890 ((-1090))) (-15 -2625 ((-1090))) (-15 -3438 ((-1177) (-1090) (-592 (-1090)) $)) (-15 -3438 ((-1177) (-1090) (-592 (-1090)))) (-15 -3438 ((-1177) (-592 (-1090)))) (-15 -3632 ((-1177) (-1090) (-3 (|:| |fst| (-412)) (|:| -3190 "void")) $)) (-15 -3632 ((-1177) (-1090) (-3 (|:| |fst| (-412)) (|:| -3190 "void")))) (-15 -3632 ((-1177) (-3 (|:| |fst| (-412)) (|:| -3190 "void")))) (-15 -3255 ((-1177) (-1090) $)) (-15 -3255 ((-1177) (-1090))) (-15 -3255 ((-1177))) (-15 -2421 ((-1177) (-1090))) (-15 -3773 ($)) (-15 -2192 ((-3 (|:| |fst| (-412)) (|:| -3190 "void")) (-1090) $)) (-15 -3867 ((-592 (-1090)) (-1090) $)) (-15 -3591 ((-1094) (-1090) $))))) (T -1093))
-((-1537 (*1 *1) (-5 *1 (-1093))) (-1652 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1093)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-2197 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-415)) (-5 *3 (-1090)) (-5 *1 (-1093)))) (-2197 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1090))) (-5 *4 (-1090)) (-5 *1 (-1093)))) (-2197 (*1 *2 *3 *2) (-12 (-5 *2 (-415)) (-5 *3 (-1090)) (-5 *1 (-1093)))) (-2197 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-415)) (-5 *3 (-1090)) (-5 *1 (-1093)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-2890 (*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093)))) (-2625 (*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093)))) (-3438 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1090)) (-5 *4 (-592 (-1090))) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-592 (-1090))) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-3438 (*1 *2 *3) (-12 (-5 *3 (-592 (-1090))) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-3632 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1090)) (-5 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-3632 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-5 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-3255 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-3255 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1093)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093)))) (-3773 (*1 *1) (-5 *1 (-1093))) (-2192 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-5 *1 (-1093)))) (-3867 (*1 *2 *3 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-1093)) (-5 *3 (-1090)))) (-3591 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1094)) (-5 *1 (-1093)))))
-(-13 (-566 (-797)) (-10 -8 (-15 -1537 ($)) (-15 -1652 ((-1177))) (-15 -1652 ((-1177) (-1090))) (-15 -2197 ((-415) (-1090) (-415) (-1090) $)) (-15 -2197 ((-415) (-592 (-1090)) (-415) (-1090) $)) (-15 -2197 ((-415) (-1090) (-415))) (-15 -2197 ((-415) (-1090) (-415) (-1090))) (-15 -3166 ((-1177) (-1090))) (-15 -2890 ((-1090))) (-15 -2625 ((-1090))) (-15 -3438 ((-1177) (-1090) (-592 (-1090)) $)) (-15 -3438 ((-1177) (-1090) (-592 (-1090)))) (-15 -3438 ((-1177) (-592 (-1090)))) (-15 -3632 ((-1177) (-1090) (-3 (|:| |fst| (-412)) (|:| -3190 "void")) $)) (-15 -3632 ((-1177) (-1090) (-3 (|:| |fst| (-412)) (|:| -3190 "void")))) (-15 -3632 ((-1177) (-3 (|:| |fst| (-412)) (|:| -3190 "void")))) (-15 -3255 ((-1177) (-1090) $)) (-15 -3255 ((-1177) (-1090))) (-15 -3255 ((-1177))) (-15 -2421 ((-1177) (-1090))) (-15 -3773 ($)) (-15 -2192 ((-3 (|:| |fst| (-412)) (|:| -3190 "void")) (-1090) $)) (-15 -3867 ((-592 (-1090)) (-1090) $)) (-15 -3591 ((-1094) (-1090) $))))
-((-1679 (((-592 (-592 (-3 (|:| -1310 (-1090)) (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525))))))))) $) 59)) (-2638 (((-592 (-3 (|:| -1310 (-1090)) (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525)))))))) (-412) $) 43)) (-2839 (($ (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-415))))) 17)) (-2421 (((-1177) $) 67)) (-2069 (((-592 (-1090)) $) 22)) (-3563 (((-1023) $) 55)) (-1790 (((-415) (-1090) $) 27)) (-3879 (((-592 (-1090)) $) 30)) (-3773 (($) 19)) (-2197 (((-415) (-592 (-1090)) (-415) $) 25) (((-415) (-1090) (-415) $) 24)) (-1908 (((-797) $) 9) (((-1100 (-1090) (-415)) $) 13)))
-(((-1094) (-13 (-566 (-797)) (-10 -8 (-15 -1908 ((-1100 (-1090) (-415)) $)) (-15 -3773 ($)) (-15 -2197 ((-415) (-592 (-1090)) (-415) $)) (-15 -2197 ((-415) (-1090) (-415) $)) (-15 -1790 ((-415) (-1090) $)) (-15 -2069 ((-592 (-1090)) $)) (-15 -2638 ((-592 (-3 (|:| -1310 (-1090)) (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525)))))))) (-412) $)) (-15 -3879 ((-592 (-1090)) $)) (-15 -1679 ((-592 (-592 (-3 (|:| -1310 (-1090)) (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525))))))))) $)) (-15 -3563 ((-1023) $)) (-15 -2421 ((-1177) $)) (-15 -2839 ($ (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-415))))))))) (T -1094))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-1100 (-1090) (-415))) (-5 *1 (-1094)))) (-3773 (*1 *1) (-5 *1 (-1094))) (-2197 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1090))) (-5 *1 (-1094)))) (-2197 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-415)) (-5 *3 (-1090)) (-5 *1 (-1094)))) (-1790 (*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-415)) (-5 *1 (-1094)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-1094)))) (-2638 (*1 *2 *3 *1) (-12 (-5 *3 (-412)) (-5 *2 (-592 (-3 (|:| -1310 (-1090)) (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525))))))))) (-5 *1 (-1094)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-1094)))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-3 (|:| -1310 (-1090)) (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525)))))))))) (-5 *1 (-1094)))) (-3563 (*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-1094)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1094)))) (-2839 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-415))))) (-5 *1 (-1094)))))
-(-13 (-566 (-797)) (-10 -8 (-15 -1908 ((-1100 (-1090) (-415)) $)) (-15 -3773 ($)) (-15 -2197 ((-415) (-592 (-1090)) (-415) $)) (-15 -2197 ((-415) (-1090) (-415) $)) (-15 -1790 ((-415) (-1090) $)) (-15 -2069 ((-592 (-1090)) $)) (-15 -2638 ((-592 (-3 (|:| -1310 (-1090)) (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525)))))))) (-412) $)) (-15 -3879 ((-592 (-1090)) $)) (-15 -1679 ((-592 (-592 (-3 (|:| -1310 (-1090)) (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525))))))))) $)) (-15 -3563 ((-1023) $)) (-15 -2421 ((-1177) $)) (-15 -2839 ($ (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-415))))))))
-((-1893 (((-108) $ $) NIL)) (-2592 (((-108) $) 42)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3234 (((-3 (-525) (-205) (-1090) (-1073) $) $) 50)) (-3170 (((-592 $) $) 55)) (-1427 (((-1023) $) 24) (($ (-1023)) 25)) (-3910 (((-108) $) 52)) (-1908 (((-797) $) NIL) (($ (-525)) 26) (((-525) $) 28) (($ (-205)) 29) (((-205) $) 31) (($ (-1090)) 32) (((-1090) $) 34) (($ (-1073)) 35) (((-1073) $) 37)) (-3864 (((-108) $ (|[\|\|]| (-525))) 11) (((-108) $ (|[\|\|]| (-205))) 15) (((-108) $ (|[\|\|]| (-1090))) 23) (((-108) $ (|[\|\|]| (-1073))) 19)) (-2112 (($ (-1090) (-592 $)) 39) (($ $ (-592 $)) 40)) (-2159 (((-525) $) 27) (((-205) $) 30) (((-1090) $) 33) (((-1073) $) 36)) (-3961 (((-108) $ $) 7)))
-(((-1095) (-13 (-1167) (-1019) (-10 -8 (-15 -1427 ((-1023) $)) (-15 -1427 ($ (-1023))) (-15 -1908 ($ (-525))) (-15 -1908 ((-525) $)) (-15 -2159 ((-525) $)) (-15 -1908 ($ (-205))) (-15 -1908 ((-205) $)) (-15 -2159 ((-205) $)) (-15 -1908 ($ (-1090))) (-15 -1908 ((-1090) $)) (-15 -2159 ((-1090) $)) (-15 -1908 ($ (-1073))) (-15 -1908 ((-1073) $)) (-15 -2159 ((-1073) $)) (-15 -2112 ($ (-1090) (-592 $))) (-15 -2112 ($ $ (-592 $))) (-15 -2592 ((-108) $)) (-15 -3234 ((-3 (-525) (-205) (-1090) (-1073) $) $)) (-15 -3170 ((-592 $) $)) (-15 -3910 ((-108) $)) (-15 -3864 ((-108) $ (|[\|\|]| (-525)))) (-15 -3864 ((-108) $ (|[\|\|]| (-205)))) (-15 -3864 ((-108) $ (|[\|\|]| (-1090)))) (-15 -3864 ((-108) $ (|[\|\|]| (-1073))))))) (T -1095))
-((-1427 (*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-1095)))) (-1427 (*1 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-1095)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1095)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1095)))) (-2159 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1095)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1095)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1095)))) (-2159 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1095)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1095)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1095)))) (-2159 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1095)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1095)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095)))) (-2159 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095)))) (-2112 (*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-1095))) (-5 *1 (-1095)))) (-2112 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1095))) (-5 *1 (-1095)))) (-2592 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1095)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-3 (-525) (-205) (-1090) (-1073) (-1095))) (-5 *1 (-1095)))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-592 (-1095))) (-5 *1 (-1095)))) (-3910 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1095)))) (-3864 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-108)) (-5 *1 (-1095)))) (-3864 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-205))) (-5 *2 (-108)) (-5 *1 (-1095)))) (-3864 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-108)) (-5 *1 (-1095)))) (-3864 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-108)) (-5 *1 (-1095)))))
-(-13 (-1167) (-1019) (-10 -8 (-15 -1427 ((-1023) $)) (-15 -1427 ($ (-1023))) (-15 -1908 ($ (-525))) (-15 -1908 ((-525) $)) (-15 -2159 ((-525) $)) (-15 -1908 ($ (-205))) (-15 -1908 ((-205) $)) (-15 -2159 ((-205) $)) (-15 -1908 ($ (-1090))) (-15 -1908 ((-1090) $)) (-15 -2159 ((-1090) $)) (-15 -1908 ($ (-1073))) (-15 -1908 ((-1073) $)) (-15 -2159 ((-1073) $)) (-15 -2112 ($ (-1090) (-592 $))) (-15 -2112 ($ $ (-592 $))) (-15 -2592 ((-108) $)) (-15 -3234 ((-3 (-525) (-205) (-1090) (-1073) $) $)) (-15 -3170 ((-592 $) $)) (-15 -3910 ((-108) $)) (-15 -3864 ((-108) $ (|[\|\|]| (-525)))) (-15 -3864 ((-108) $ (|[\|\|]| (-205)))) (-15 -3864 ((-108) $ (|[\|\|]| (-1090)))) (-15 -3864 ((-108) $ (|[\|\|]| (-1073))))))
-((-3829 (((-592 (-592 (-886 |#1|))) (-592 (-385 (-886 |#1|))) (-592 (-1090))) 57)) (-2925 (((-592 (-273 (-385 (-886 |#1|)))) (-273 (-385 (-886 |#1|)))) 69) (((-592 (-273 (-385 (-886 |#1|)))) (-385 (-886 |#1|))) 65) (((-592 (-273 (-385 (-886 |#1|)))) (-273 (-385 (-886 |#1|))) (-1090)) 70) (((-592 (-273 (-385 (-886 |#1|)))) (-385 (-886 |#1|)) (-1090)) 64) (((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-273 (-385 (-886 |#1|))))) 93) (((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-385 (-886 |#1|)))) 92) (((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-273 (-385 (-886 |#1|)))) (-592 (-1090))) 94) (((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-385 (-886 |#1|))) (-592 (-1090))) 91)))
-(((-1096 |#1|) (-10 -7 (-15 -2925 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-385 (-886 |#1|))) (-592 (-1090)))) (-15 -2925 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-273 (-385 (-886 |#1|)))) (-592 (-1090)))) (-15 -2925 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-385 (-886 |#1|))))) (-15 -2925 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-273 (-385 (-886 |#1|)))))) (-15 -2925 ((-592 (-273 (-385 (-886 |#1|)))) (-385 (-886 |#1|)) (-1090))) (-15 -2925 ((-592 (-273 (-385 (-886 |#1|)))) (-273 (-385 (-886 |#1|))) (-1090))) (-15 -2925 ((-592 (-273 (-385 (-886 |#1|)))) (-385 (-886 |#1|)))) (-15 -2925 ((-592 (-273 (-385 (-886 |#1|)))) (-273 (-385 (-886 |#1|))))) (-15 -3829 ((-592 (-592 (-886 |#1|))) (-592 (-385 (-886 |#1|))) (-592 (-1090))))) (-517)) (T -1096))
-((-3829 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-886 *5)))) (-5 *4 (-592 (-1090))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-886 *5)))) (-5 *1 (-1096 *5)))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-273 (-385 (-886 *4))))) (-5 *1 (-1096 *4)) (-5 *3 (-273 (-385 (-886 *4)))))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-273 (-385 (-886 *4))))) (-5 *1 (-1096 *4)) (-5 *3 (-385 (-886 *4))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-517)) (-5 *2 (-592 (-273 (-385 (-886 *5))))) (-5 *1 (-1096 *5)) (-5 *3 (-273 (-385 (-886 *5)))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-1090)) (-4 *5 (-517)) (-5 *2 (-592 (-273 (-385 (-886 *5))))) (-5 *1 (-1096 *5)) (-5 *3 (-385 (-886 *5))))) (-2925 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *4)))))) (-5 *1 (-1096 *4)) (-5 *3 (-592 (-273 (-385 (-886 *4))))))) (-2925 (*1 *2 *3) (-12 (-5 *3 (-592 (-385 (-886 *4)))) (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *4)))))) (-5 *1 (-1096 *4)))) (-2925 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-1090))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *5)))))) (-5 *1 (-1096 *5)) (-5 *3 (-592 (-273 (-385 (-886 *5))))))) (-2925 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-886 *5)))) (-5 *4 (-592 (-1090))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *5)))))) (-5 *1 (-1096 *5)))))
-(-10 -7 (-15 -2925 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-385 (-886 |#1|))) (-592 (-1090)))) (-15 -2925 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-273 (-385 (-886 |#1|)))) (-592 (-1090)))) (-15 -2925 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-385 (-886 |#1|))))) (-15 -2925 ((-592 (-592 (-273 (-385 (-886 |#1|))))) (-592 (-273 (-385 (-886 |#1|)))))) (-15 -2925 ((-592 (-273 (-385 (-886 |#1|)))) (-385 (-886 |#1|)) (-1090))) (-15 -2925 ((-592 (-273 (-385 (-886 |#1|)))) (-273 (-385 (-886 |#1|))) (-1090))) (-15 -2925 ((-592 (-273 (-385 (-886 |#1|)))) (-385 (-886 |#1|)))) (-15 -2925 ((-592 (-273 (-385 (-886 |#1|)))) (-273 (-385 (-886 |#1|))))) (-15 -3829 ((-592 (-592 (-886 |#1|))) (-592 (-385 (-886 |#1|))) (-592 (-1090)))))
-((-2403 (((-1073)) 7)) (-2500 (((-1073)) 9)) (-3753 (((-1177) (-1073)) 11)) (-4056 (((-1073)) 8)))
-(((-1097) (-10 -7 (-15 -2403 ((-1073))) (-15 -4056 ((-1073))) (-15 -2500 ((-1073))) (-15 -3753 ((-1177) (-1073))))) (T -1097))
-((-3753 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1097)))) (-2500 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1097)))) (-4056 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1097)))) (-2403 (*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1097)))))
-(-10 -7 (-15 -2403 ((-1073))) (-15 -4056 ((-1073))) (-15 -2500 ((-1073))) (-15 -3753 ((-1177) (-1073))))
-((-2671 (((-592 (-592 |#1|)) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|)))) 38)) (-2996 (((-592 (-592 (-592 |#1|))) (-592 (-592 |#1|))) 24)) (-2219 (((-1099 (-592 |#1|)) (-592 |#1|)) 34)) (-2487 (((-592 (-592 |#1|)) (-592 |#1|)) 30)) (-1232 (((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 (-592 (-592 |#1|)))) 37)) (-3949 (((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 |#1|) (-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|)))) 36)) (-2828 (((-592 (-592 |#1|)) (-592 (-592 |#1|))) 28)) (-1386 (((-592 |#1|) (-592 |#1|)) 31)) (-1755 (((-592 (-592 (-592 |#1|))) (-592 |#1|) (-592 (-592 (-592 |#1|)))) 18)) (-2096 (((-592 (-592 (-592 |#1|))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 (-592 |#1|)))) 16)) (-2521 (((-2 (|:| |fs| (-108)) (|:| |sd| (-592 |#1|)) (|:| |td| (-592 (-592 |#1|)))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 |#1|))) 14)) (-1364 (((-592 (-592 |#1|)) (-592 (-592 (-592 |#1|)))) 39)) (-1928 (((-592 (-592 |#1|)) (-1099 (-592 |#1|))) 41)))
-(((-1098 |#1|) (-10 -7 (-15 -2521 ((-2 (|:| |fs| (-108)) (|:| |sd| (-592 |#1|)) (|:| |td| (-592 (-592 |#1|)))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 |#1|)))) (-15 -2096 ((-592 (-592 (-592 |#1|))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -1755 ((-592 (-592 (-592 |#1|))) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -2671 ((-592 (-592 |#1|)) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -1364 ((-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -1928 ((-592 (-592 |#1|)) (-1099 (-592 |#1|)))) (-15 -2996 ((-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)))) (-15 -2219 ((-1099 (-592 |#1|)) (-592 |#1|))) (-15 -2828 ((-592 (-592 |#1|)) (-592 (-592 |#1|)))) (-15 -2487 ((-592 (-592 |#1|)) (-592 |#1|))) (-15 -1386 ((-592 |#1|) (-592 |#1|))) (-15 -3949 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 |#1|) (-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))))) (-15 -1232 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 (-592 (-592 |#1|)))))) (-789)) (T -1098))
-((-1232 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-2 (|:| |f1| (-592 *4)) (|:| |f2| (-592 (-592 (-592 *4)))) (|:| |f3| (-592 (-592 *4))) (|:| |f4| (-592 (-592 (-592 *4)))))) (-5 *1 (-1098 *4)) (-5 *3 (-592 (-592 (-592 *4)))))) (-3949 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-789)) (-5 *5 (-592 (-592 *6))) (-5 *2 (-2 (|:| |f1| (-592 *6)) (|:| |f2| (-592 *5)) (|:| |f3| *5) (|:| |f4| (-592 *5)))) (-5 *1 (-1098 *6)) (-5 *3 (-592 *6)) (-5 *4 (-592 *5)))) (-1386 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-1098 *3)))) (-2487 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1098 *4)) (-5 *3 (-592 *4)))) (-2828 (*1 *2 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-789)) (-5 *1 (-1098 *3)))) (-2219 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-1099 (-592 *4))) (-5 *1 (-1098 *4)) (-5 *3 (-592 *4)))) (-2996 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 (-592 *4)))) (-5 *1 (-1098 *4)) (-5 *3 (-592 (-592 *4))))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-1099 (-592 *4))) (-4 *4 (-789)) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1098 *4)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-592 *4)))) (-4 *4 (-789)) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1098 *4)))) (-2671 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-592 *4))) (-5 *3 (-592 (-592 (-592 *4)))) (-4 *4 (-789)) (-5 *1 (-1098 *4)))) (-1755 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-592 *4)) (-4 *4 (-789)) (-5 *1 (-1098 *4)))) (-2096 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-592 *5)) (-4 *5 (-789)) (-5 *1 (-1098 *5)))) (-2521 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-789)) (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| (-592 *6)) (|:| |td| (-592 (-592 *6))))) (-5 *1 (-1098 *6)) (-5 *4 (-592 *6)) (-5 *5 (-592 (-592 *6))))))
-(-10 -7 (-15 -2521 ((-2 (|:| |fs| (-108)) (|:| |sd| (-592 |#1|)) (|:| |td| (-592 (-592 |#1|)))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 |#1|)))) (-15 -2096 ((-592 (-592 (-592 |#1|))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -1755 ((-592 (-592 (-592 |#1|))) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -2671 ((-592 (-592 |#1|)) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -1364 ((-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -1928 ((-592 (-592 |#1|)) (-1099 (-592 |#1|)))) (-15 -2996 ((-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)))) (-15 -2219 ((-1099 (-592 |#1|)) (-592 |#1|))) (-15 -2828 ((-592 (-592 |#1|)) (-592 (-592 |#1|)))) (-15 -2487 ((-592 (-592 |#1|)) (-592 |#1|))) (-15 -1386 ((-592 |#1|) (-592 |#1|))) (-15 -3949 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 |#1|) (-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))))) (-15 -1232 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 (-592 (-592 |#1|))))))
-((-2432 (($ (-592 (-592 |#1|))) 10)) (-3019 (((-592 (-592 |#1|)) $) 11)) (-1908 (((-797) $) 26)))
-(((-1099 |#1|) (-10 -8 (-15 -2432 ($ (-592 (-592 |#1|)))) (-15 -3019 ((-592 (-592 |#1|)) $)) (-15 -1908 ((-797) $))) (-1019)) (T -1099))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1099 *3)) (-4 *3 (-1019)))) (-3019 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 *3))) (-5 *1 (-1099 *3)) (-4 *3 (-1019)))) (-2432 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-5 *1 (-1099 *3)))))
-(-10 -8 (-15 -2432 ($ (-592 (-592 |#1|)))) (-15 -3019 ((-592 (-592 |#1|)) $)) (-15 -1908 ((-797) $)))
-((-1893 (((-108) $ $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4001 (($) NIL) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-1840 (((-1177) $ |#1| |#1|) NIL (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 ((|#2| $ |#1| |#2|) NIL)) (-3290 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-1446 (((-3 |#2| "failed") |#1| $) NIL)) (-1505 (($) NIL T CONST)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-2792 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) NIL)) (-2273 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-4004 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (|has| $ (-6 -4254))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254)))) (-2870 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#2| $ |#1|) NIL)) (-2026 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) NIL)) (-2009 ((|#1| $) NIL (|has| |#1| (-789)))) (-3168 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-592 |#2|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-1792 ((|#1| $) NIL (|has| |#1| (-789)))) (-2857 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4005 (((-592 |#1|) $) NIL)) (-1699 (((-108) |#1| $) NIL)) (-2570 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-2573 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3222 (((-592 |#1|) $) NIL)) (-1548 (((-108) |#1| $) NIL)) (-2663 (((-1037) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-3135 ((|#2| $) NIL (|has| |#1| (-789)))) (-4054 (((-3 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL)) (-1911 (($ $ |#2|) NIL (|has| $ (-6 -4255)))) (-3513 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL)) (-3494 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-3171 (((-592 |#2|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4006 (($) NIL) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-2686 (((-713) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) NIL (-12 (|has| $ (-6 -4254)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-567 (-501))))) (-1922 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-1908 (((-797) $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-566 (-797))) (|has| |#2| (-566 (-797)))))) (-3612 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) NIL)) (-2667 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) NIL (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) NIL (-3309 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| |#2| (-1019))))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-1100 |#1| |#2|) (-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254))) (-1019) (-1019)) (T -1100))
-NIL
-(-13 (-1103 |#1| |#2|) (-10 -7 (-6 -4254)))
-((-3228 ((|#1| (-592 |#1|)) 32)) (-3836 ((|#1| |#1| (-525)) 18)) (-4229 (((-1086 |#1|) |#1| (-855)) 15)))
-(((-1101 |#1|) (-10 -7 (-15 -3228 (|#1| (-592 |#1|))) (-15 -4229 ((-1086 |#1|) |#1| (-855))) (-15 -3836 (|#1| |#1| (-525)))) (-341)) (T -1101))
-((-3836 (*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-1101 *2)) (-4 *2 (-341)))) (-4229 (*1 *2 *3 *4) (-12 (-5 *4 (-855)) (-5 *2 (-1086 *3)) (-5 *1 (-1101 *3)) (-4 *3 (-341)))) (-3228 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-1101 *2)) (-4 *2 (-341)))))
-(-10 -7 (-15 -3228 (|#1| (-592 |#1|))) (-15 -4229 ((-1086 |#1|) |#1| (-855))) (-15 -3836 (|#1| |#1| (-525))))
-((-4001 (($) 10) (($ (-592 (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)))) 14)) (-2792 (($ (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) $) 61) (($ (-1 (-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2026 (((-592 (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) $) 39) (((-592 |#3|) $) 41)) (-2857 (($ (-1 (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-1370 (($ (-1 (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2570 (((-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) $) 54)) (-2573 (($ (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) $) 16)) (-3222 (((-592 |#2|) $) 19)) (-1548 (((-108) |#2| $) 59)) (-4054 (((-3 (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) "failed") (-1 (-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) $) 58)) (-3513 (((-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) $) 63)) (-3494 (((-108) (-1 (-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 67)) (-3171 (((-592 |#3|) $) 43)) (-3928 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2686 (((-713) (-1 (-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) $) NIL) (((-713) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) $) NIL) (((-713) |#3| $) NIL) (((-713) (-1 (-108) |#3|) $) 68)) (-1908 (((-797) $) 27)) (-2667 (((-108) (-1 (-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 65)) (-3961 (((-108) $ $) 49)))
-(((-1102 |#1| |#2| |#3|) (-10 -8 (-15 -1908 ((-797) |#1|)) (-15 -3961 ((-108) |#1| |#1|)) (-15 -1370 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4001 (|#1| (-592 (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))))) (-15 -4001 (|#1|)) (-15 -1370 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2857 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2667 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3494 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -2686 ((-713) (-1 (-108) |#3|) |#1|)) (-15 -2026 ((-592 |#3|) |#1|)) (-15 -2686 ((-713) |#3| |#1|)) (-15 -3928 (|#3| |#1| |#2| |#3|)) (-15 -3928 (|#3| |#1| |#2|)) (-15 -3171 ((-592 |#3|) |#1|)) (-15 -1548 ((-108) |#2| |#1|)) (-15 -3222 ((-592 |#2|) |#1|)) (-15 -2792 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2792 (|#1| (-1 (-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -2792 (|#1| (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -4054 ((-3 (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) "failed") (-1 (-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -2570 ((-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -2573 (|#1| (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -3513 ((-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -2686 ((-713) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -2026 ((-592 (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -2686 ((-713) (-1 (-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -3494 ((-108) (-1 (-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -2667 ((-108) (-1 (-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -2857 (|#1| (-1 (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -1370 (|#1| (-1 (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) |#1|))) (-1103 |#2| |#3|) (-1019) (-1019)) (T -1102))
-NIL
-(-10 -8 (-15 -1908 ((-797) |#1|)) (-15 -3961 ((-108) |#1| |#1|)) (-15 -1370 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4001 (|#1| (-592 (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))))) (-15 -4001 (|#1|)) (-15 -1370 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2857 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2667 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3494 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -2686 ((-713) (-1 (-108) |#3|) |#1|)) (-15 -2026 ((-592 |#3|) |#1|)) (-15 -2686 ((-713) |#3| |#1|)) (-15 -3928 (|#3| |#1| |#2| |#3|)) (-15 -3928 (|#3| |#1| |#2|)) (-15 -3171 ((-592 |#3|) |#1|)) (-15 -1548 ((-108) |#2| |#1|)) (-15 -3222 ((-592 |#2|) |#1|)) (-15 -2792 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2792 (|#1| (-1 (-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -2792 (|#1| (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -4054 ((-3 (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) "failed") (-1 (-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -2570 ((-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -2573 (|#1| (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -3513 ((-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -2686 ((-713) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) |#1|)) (-15 -2026 ((-592 (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -2686 ((-713) (-1 (-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -3494 ((-108) (-1 (-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -2667 ((-108) (-1 (-108) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -2857 (|#1| (-1 (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) |#1|)) (-15 -1370 (|#1| (-1 (-2 (|:| -3946 |#2|) (|:| -2511 |#3|)) (-2 (|:| -3946 |#2|) (|:| -2511 |#3|))) |#1|)))
-((-1893 (((-108) $ $) 19 (-3309 (|has| |#2| (-1019)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-4001 (($) 72) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 71)) (-1840 (((-1177) $ |#1| |#1|) 99 (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) 8)) (-2109 ((|#2| $ |#1| |#2|) 73)) (-3290 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 45 (|has| $ (-6 -4254)))) (-2724 (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 55 (|has| $ (-6 -4254)))) (-1446 (((-3 |#2| "failed") |#1| $) 61)) (-1505 (($) 7 T CONST)) (-3163 (($ $) 58 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254))))) (-2792 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 47 (|has| $ (-6 -4254))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 46 (|has| $ (-6 -4254))) (((-3 |#2| "failed") |#1| $) 62)) (-2273 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 54 (|has| $ (-6 -4254)))) (-4004 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 56 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 53 (|has| $ (-6 -4254))) (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 52 (|has| $ (-6 -4254)))) (-2870 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4255)))) (-2796 ((|#2| $ |#1|) 88)) (-2026 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 30 (|has| $ (-6 -4254))) (((-592 |#2|) $) 79 (|has| $ (-6 -4254)))) (-3100 (((-108) $ (-713)) 9)) (-2009 ((|#1| $) 96 (|has| |#1| (-789)))) (-3168 (((-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 29 (|has| $ (-6 -4254))) (((-592 |#2|) $) 80 (|has| $ (-6 -4254)))) (-4132 (((-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254))))) (-1792 ((|#1| $) 95 (|has| |#1| (-789)))) (-2857 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 34 (|has| $ (-6 -4255))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4255)))) (-1370 (($ (-1 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3017 (((-108) $ (-713)) 10)) (-2337 (((-1073) $) 22 (-3309 (|has| |#2| (-1019)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-4005 (((-592 |#1|) $) 63)) (-1699 (((-108) |#1| $) 64)) (-2570 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 39)) (-2573 (($ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 40)) (-3222 (((-592 |#1|) $) 93)) (-1548 (((-108) |#1| $) 92)) (-2663 (((-1037) $) 21 (-3309 (|has| |#2| (-1019)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-3135 ((|#2| $) 97 (|has| |#1| (-789)))) (-4054 (((-3 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) "failed") (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 51)) (-1911 (($ $ |#2|) 98 (|has| $ (-6 -4255)))) (-3513 (((-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 41)) (-3494 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 32 (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))))) 26 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-273 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 25 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) 24 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 23 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)))) (($ $ (-592 |#2|) (-592 |#2|)) 86 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-273 |#2|)) 84 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019)))) (($ $ (-592 (-273 |#2|))) 83 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))))) (-2642 (((-108) $ $) 14)) (-3218 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4254)) (|has| |#2| (-1019))))) (-3171 (((-592 |#2|) $) 91)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-4006 (($) 49) (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 48)) (-2686 (((-713) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 31 (|has| $ (-6 -4254))) (((-713) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| $ (-6 -4254)))) (((-713) |#2| $) 81 (-12 (|has| |#2| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4254)))) (-2135 (($ $) 13)) (-1427 (((-501) $) 59 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-567 (-501))))) (-1922 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 50)) (-1908 (((-797) $) 18 (-3309 (|has| |#2| (-566 (-797))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-566 (-797)))))) (-3612 (($ (-592 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) 42)) (-2667 (((-108) (-1 (-108) (-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) $) 33 (|has| $ (-6 -4254))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (-3309 (|has| |#2| (-1019)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-1103 |#1| |#2|) (-131) (-1019) (-1019)) (T -1103))
-((-2109 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1103 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019)))) (-4001 (*1 *1) (-12 (-4 *1 (-1103 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))) (-4001 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3946 *3) (|:| -2511 *4)))) (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *1 (-1103 *3 *4)))) (-1370 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1103 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))))
-(-13 (-563 |t#1| |t#2|) (-558 |t#1| |t#2|) (-10 -8 (-15 -2109 (|t#2| $ |t#1| |t#2|)) (-15 -4001 ($)) (-15 -4001 ($ (-592 (-2 (|:| -3946 |t#1|) (|:| -2511 |t#2|))))) (-15 -1370 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-33) . T) ((-102 #0=(-2 (|:| -3946 |#1|) (|:| -2511 |#2|))) . T) ((-97) -3309 (|has| |#2| (-1019)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))) ((-566 (-797)) -3309 (|has| |#2| (-1019)) (|has| |#2| (-566 (-797))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-566 (-797)))) ((-142 #0#) . T) ((-567 (-501)) |has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-567 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-265 |#1| |#2|) . T) ((-267 |#1| |#2|) . T) ((-288 #0#) -12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-464 #0#) . T) ((-464 |#2|) . T) ((-558 |#1| |#2|) . T) ((-486 #0# #0#) -12 (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-288 (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)))) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1019))) ((-563 |#1| |#2|) . T) ((-1019) -3309 (|has| |#2| (-1019)) (|has| (-2 (|:| -3946 |#1|) (|:| -2511 |#2|)) (-1019))) ((-1126) . T))
-((-3318 (((-108)) 24)) (-2696 (((-1177) (-1073)) 26)) (-1550 (((-108)) 36)) (-2949 (((-1177)) 34)) (-3704 (((-1177) (-1073) (-1073)) 25)) (-3605 (((-108)) 37)) (-2573 (((-1177) |#1| |#2|) 44)) (-2319 (((-1177)) 20)) (-2056 (((-3 |#2| "failed") |#1|) 42)) (-3185 (((-1177)) 35)))
-(((-1104 |#1| |#2|) (-10 -7 (-15 -2319 ((-1177))) (-15 -3704 ((-1177) (-1073) (-1073))) (-15 -2696 ((-1177) (-1073))) (-15 -2949 ((-1177))) (-15 -3185 ((-1177))) (-15 -3318 ((-108))) (-15 -1550 ((-108))) (-15 -3605 ((-108))) (-15 -2056 ((-3 |#2| "failed") |#1|)) (-15 -2573 ((-1177) |#1| |#2|))) (-1019) (-1019)) (T -1104))
-((-2573 (*1 *2 *3 *4) (-12 (-5 *2 (-1177)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-2056 (*1 *2 *3) (|partial| -12 (-4 *2 (-1019)) (-5 *1 (-1104 *3 *2)) (-4 *3 (-1019)))) (-3605 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-1550 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-3318 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-3185 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-2949 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))) (-2696 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1104 *4 *5)) (-4 *4 (-1019)) (-4 *5 (-1019)))) (-3704 (*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1104 *4 *5)) (-4 *4 (-1019)) (-4 *5 (-1019)))) (-2319 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019)))))
-(-10 -7 (-15 -2319 ((-1177))) (-15 -3704 ((-1177) (-1073) (-1073))) (-15 -2696 ((-1177) (-1073))) (-15 -2949 ((-1177))) (-15 -3185 ((-1177))) (-15 -3318 ((-108))) (-15 -1550 ((-108))) (-15 -3605 ((-108))) (-15 -2056 ((-3 |#2| "failed") |#1|)) (-15 -2573 ((-1177) |#1| |#2|)))
-((-2095 (((-1073) (-1073)) 18)) (-2548 (((-51) (-1073)) 21)))
-(((-1105) (-10 -7 (-15 -2548 ((-51) (-1073))) (-15 -2095 ((-1073) (-1073))))) (T -1105))
-((-2095 (*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1105)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-1105)))))
-(-10 -7 (-15 -2548 ((-51) (-1073))) (-15 -2095 ((-1073) (-1073))))
-((-1908 (((-1107) |#1|) 11)))
-(((-1106 |#1|) (-10 -7 (-15 -1908 ((-1107) |#1|))) (-1019)) (T -1106))
-((-1908 (*1 *2 *3) (-12 (-5 *2 (-1107)) (-5 *1 (-1106 *3)) (-4 *3 (-1019)))))
-(-10 -7 (-15 -1908 ((-1107) |#1|)))
-((-1893 (((-108) $ $) NIL)) (-2896 (((-592 (-1073)) $) 34)) (-3831 (((-592 (-1073)) $ (-592 (-1073))) 37)) (-1748 (((-592 (-1073)) $ (-592 (-1073))) 36)) (-1471 (((-592 (-1073)) $ (-592 (-1073))) 38)) (-1425 (((-592 (-1073)) $) 33)) (-4018 (($) 22)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-3579 (((-592 (-1073)) $) 35)) (-3303 (((-1177) $ (-525)) 29) (((-1177) $) 30)) (-1427 (($ (-797) (-525)) 26) (($ (-797) (-525) (-797)) NIL)) (-1908 (((-797) $) 40) (($ (-797)) 24)) (-3961 (((-108) $ $) NIL)))
-(((-1107) (-13 (-1019) (-10 -8 (-15 -1908 ($ (-797))) (-15 -1427 ($ (-797) (-525))) (-15 -1427 ($ (-797) (-525) (-797))) (-15 -3303 ((-1177) $ (-525))) (-15 -3303 ((-1177) $)) (-15 -3579 ((-592 (-1073)) $)) (-15 -2896 ((-592 (-1073)) $)) (-15 -4018 ($)) (-15 -1425 ((-592 (-1073)) $)) (-15 -1471 ((-592 (-1073)) $ (-592 (-1073)))) (-15 -3831 ((-592 (-1073)) $ (-592 (-1073)))) (-15 -1748 ((-592 (-1073)) $ (-592 (-1073))))))) (T -1107))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1107)))) (-1427 (*1 *1 *2 *3) (-12 (-5 *2 (-797)) (-5 *3 (-525)) (-5 *1 (-1107)))) (-1427 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-525)) (-5 *1 (-1107)))) (-3303 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-1107)))) (-3303 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1107)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107)))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107)))) (-4018 (*1 *1) (-5 *1 (-1107))) (-1425 (*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107)))) (-1471 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107)))) (-3831 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107)))) (-1748 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107)))))
-(-13 (-1019) (-10 -8 (-15 -1908 ($ (-797))) (-15 -1427 ($ (-797) (-525))) (-15 -1427 ($ (-797) (-525) (-797))) (-15 -3303 ((-1177) $ (-525))) (-15 -3303 ((-1177) $)) (-15 -3579 ((-592 (-1073)) $)) (-15 -2896 ((-592 (-1073)) $)) (-15 -4018 ($)) (-15 -1425 ((-592 (-1073)) $)) (-15 -1471 ((-592 (-1073)) $ (-592 (-1073)))) (-15 -3831 ((-592 (-1073)) $ (-592 (-1073)))) (-15 -1748 ((-592 (-1073)) $ (-592 (-1073))))))
-((-1893 (((-108) $ $) NIL)) (-1644 (((-1073) $ (-1073)) 17) (((-1073) $) 16)) (-1287 (((-1073) $ (-1073)) 15)) (-1332 (($ $ (-1073)) NIL)) (-1920 (((-3 (-1073) "failed") $) 11)) (-2044 (((-1073) $) 8)) (-3720 (((-3 (-1073) "failed") $) 12)) (-1300 (((-1073) $) 9)) (-2396 (($ (-366)) NIL) (($ (-366) (-1073)) NIL)) (-1310 (((-366) $) NIL)) (-2337 (((-1073) $) NIL)) (-2388 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2782 (((-108) $) 18)) (-1908 (((-797) $) NIL)) (-2702 (($ $) NIL)) (-3961 (((-108) $ $) NIL)))
-(((-1108) (-13 (-342 (-366) (-1073)) (-10 -8 (-15 -1644 ((-1073) $ (-1073))) (-15 -1644 ((-1073) $)) (-15 -2044 ((-1073) $)) (-15 -1920 ((-3 (-1073) "failed") $)) (-15 -3720 ((-3 (-1073) "failed") $)) (-15 -2782 ((-108) $))))) (T -1108))
-((-1644 (*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1108)))) (-1644 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1108)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1108)))) (-1920 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1108)))) (-3720 (*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1108)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1108)))))
-(-13 (-342 (-366) (-1073)) (-10 -8 (-15 -1644 ((-1073) $ (-1073))) (-15 -1644 ((-1073) $)) (-15 -2044 ((-1073) $)) (-15 -1920 ((-3 (-1073) "failed") $)) (-15 -3720 ((-3 (-1073) "failed") $)) (-15 -2782 ((-108) $))))
-((-1690 (((-3 (-525) "failed") |#1|) 19)) (-3569 (((-3 (-525) "failed") |#1|) 14)) (-3582 (((-525) (-1073)) 28)))
-(((-1109 |#1|) (-10 -7 (-15 -1690 ((-3 (-525) "failed") |#1|)) (-15 -3569 ((-3 (-525) "failed") |#1|)) (-15 -3582 ((-525) (-1073)))) (-976)) (T -1109))
-((-3582 (*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-525)) (-5 *1 (-1109 *4)) (-4 *4 (-976)))) (-3569 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1109 *3)) (-4 *3 (-976)))) (-1690 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1109 *3)) (-4 *3 (-976)))))
-(-10 -7 (-15 -1690 ((-3 (-525) "failed") |#1|)) (-15 -3569 ((-3 (-525) "failed") |#1|)) (-15 -3582 ((-525) (-1073))))
-((-1586 (((-1050 (-205))) 9)))
-(((-1110) (-10 -7 (-15 -1586 ((-1050 (-205)))))) (T -1110))
-((-1586 (*1 *2) (-12 (-5 *2 (-1050 (-205))) (-5 *1 (-1110)))))
-(-10 -7 (-15 -1586 ((-1050 (-205)))))
-((-1335 (($) 11)) (-4121 (($ $) 35)) (-4096 (($ $) 33)) (-3951 (($ $) 25)) (-4147 (($ $) 17)) (-2929 (($ $) 15)) (-4133 (($ $) 19)) (-3985 (($ $) 30)) (-4110 (($ $) 34)) (-3963 (($ $) 29)))
-(((-1111 |#1|) (-10 -8 (-15 -1335 (|#1|)) (-15 -4121 (|#1| |#1|)) (-15 -4096 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -2929 (|#1| |#1|)) (-15 -4133 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -3951 (|#1| |#1|)) (-15 -3985 (|#1| |#1|)) (-15 -3963 (|#1| |#1|))) (-1112)) (T -1111))
-NIL
-(-10 -8 (-15 -1335 (|#1|)) (-15 -4121 (|#1| |#1|)) (-15 -4096 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -2929 (|#1| |#1|)) (-15 -4133 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -3951 (|#1| |#1|)) (-15 -3985 (|#1| |#1|)) (-15 -3963 (|#1| |#1|)))
-((-4049 (($ $) 26)) (-3911 (($ $) 11)) (-4026 (($ $) 27)) (-3434 (($ $) 10)) (-4072 (($ $) 28)) (-3931 (($ $) 9)) (-1335 (($) 16)) (-2091 (($ $) 19)) (-1982 (($ $) 18)) (-4084 (($ $) 29)) (-3942 (($ $) 8)) (-4061 (($ $) 30)) (-3919 (($ $) 7)) (-4038 (($ $) 31)) (-3455 (($ $) 6)) (-4121 (($ $) 20)) (-3974 (($ $) 32)) (-4096 (($ $) 21)) (-3951 (($ $) 33)) (-4147 (($ $) 22)) (-3999 (($ $) 34)) (-2929 (($ $) 23)) (-4013 (($ $) 35)) (-4133 (($ $) 24)) (-3985 (($ $) 36)) (-4110 (($ $) 25)) (-3963 (($ $) 37)) (** (($ $ $) 17)))
-(((-1112) (-131)) (T -1112))
-((-1335 (*1 *1) (-4 *1 (-1112))))
-(-13 (-1115) (-91) (-466) (-34) (-263) (-10 -8 (-15 -1335 ($))))
-(((-34) . T) ((-91) . T) ((-263) . T) ((-466) . T) ((-1115) . T))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-3871 ((|#1| $) 17)) (-3139 (($ |#1| (-592 $)) 23) (($ (-592 |#1|)) 27) (($ |#1|) 25)) (-3410 (((-108) $ (-713)) 48)) (-2822 ((|#1| $ |#1|) 14 (|has| $ (-6 -4255)))) (-2109 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) 13 (|has| $ (-6 -4255)))) (-1505 (($) NIL T CONST)) (-2026 (((-592 |#1|) $) 52 (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) 43)) (-3106 (((-108) $ $) 33 (|has| |#1| (-1019)))) (-3100 (((-108) $ (-713)) 41)) (-3168 (((-592 |#1|) $) 53 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 51 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2857 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 22)) (-3017 (((-108) $ (-713)) 40)) (-1564 (((-592 |#1|) $) 37)) (-3723 (((-108) $) 36)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3494 (((-108) (-1 (-108) |#1|) $) 50 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 74)) (-1613 (((-108) $) 9)) (-3773 (($) 10)) (-3928 ((|#1| $ "value") NIL)) (-4068 (((-525) $ $) 32)) (-2187 (((-592 $) $) 59)) (-3618 (((-108) $ $) 77)) (-1635 (((-592 $) $) 72)) (-3639 (($ $) 73)) (-1810 (((-108) $) 56)) (-2686 (((-713) (-1 (-108) |#1|) $) 20 (|has| $ (-6 -4254))) (((-713) |#1| $) 16 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2135 (($ $) 58)) (-1908 (((-797) $) 61 (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) 12)) (-1519 (((-108) $ $) 29 (|has| |#1| (-1019)))) (-2667 (((-108) (-1 (-108) |#1|) $) 49 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 28 (|has| |#1| (-1019)))) (-4140 (((-713) $) 39 (|has| $ (-6 -4254)))))
-(((-1113 |#1|) (-13 (-941 |#1|) (-10 -8 (-6 -4254) (-6 -4255) (-15 -3139 ($ |#1| (-592 $))) (-15 -3139 ($ (-592 |#1|))) (-15 -3139 ($ |#1|)) (-15 -1810 ((-108) $)) (-15 -3639 ($ $)) (-15 -1635 ((-592 $) $)) (-15 -3618 ((-108) $ $)) (-15 -2187 ((-592 $) $)))) (-1019)) (T -1113))
-((-1810 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1113 *3)) (-4 *3 (-1019)))) (-3139 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-1113 *2))) (-4 *2 (-1019)) (-5 *1 (-1113 *2)))) (-3139 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-1113 *3)))) (-3139 (*1 *1 *2) (-12 (-5 *1 (-1113 *2)) (-4 *2 (-1019)))) (-3639 (*1 *1 *1) (-12 (-5 *1 (-1113 *2)) (-4 *2 (-1019)))) (-1635 (*1 *2 *1) (-12 (-5 *2 (-592 (-1113 *3))) (-5 *1 (-1113 *3)) (-4 *3 (-1019)))) (-3618 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1113 *3)) (-4 *3 (-1019)))) (-2187 (*1 *2 *1) (-12 (-5 *2 (-592 (-1113 *3))) (-5 *1 (-1113 *3)) (-4 *3 (-1019)))))
-(-13 (-941 |#1|) (-10 -8 (-6 -4254) (-6 -4255) (-15 -3139 ($ |#1| (-592 $))) (-15 -3139 ($ (-592 |#1|))) (-15 -3139 ($ |#1|)) (-15 -1810 ((-108) $)) (-15 -3639 ($ $)) (-15 -1635 ((-592 $) $)) (-15 -3618 ((-108) $ $)) (-15 -2187 ((-592 $) $))))
-((-3911 (($ $) 15)) (-3931 (($ $) 12)) (-3942 (($ $) 10)) (-3919 (($ $) 17)))
-(((-1114 |#1|) (-10 -8 (-15 -3919 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -3911 (|#1| |#1|))) (-1115)) (T -1114))
-NIL
-(-10 -8 (-15 -3919 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)))
-((-3911 (($ $) 11)) (-3434 (($ $) 10)) (-3931 (($ $) 9)) (-3942 (($ $) 8)) (-3919 (($ $) 7)) (-3455 (($ $) 6)))
-(((-1115) (-131)) (T -1115))
-((-3911 (*1 *1 *1) (-4 *1 (-1115))) (-3434 (*1 *1 *1) (-4 *1 (-1115))) (-3931 (*1 *1 *1) (-4 *1 (-1115))) (-3942 (*1 *1 *1) (-4 *1 (-1115))) (-3919 (*1 *1 *1) (-4 *1 (-1115))) (-3455 (*1 *1 *1) (-4 *1 (-1115))))
-(-13 (-10 -8 (-15 -3455 ($ $)) (-15 -3919 ($ $)) (-15 -3942 ($ $)) (-15 -3931 ($ $)) (-15 -3434 ($ $)) (-15 -3911 ($ $))))
-((-2574 ((|#2| |#2|) 88)) (-1349 (((-108) |#2|) 26)) (-3981 ((|#2| |#2|) 30)) (-3993 ((|#2| |#2|) 32)) (-2430 ((|#2| |#2| (-1090)) 83) ((|#2| |#2|) 84)) (-1428 (((-157 |#2|) |#2|) 28)) (-3702 ((|#2| |#2| (-1090)) 85) ((|#2| |#2|) 86)))
-(((-1116 |#1| |#2|) (-10 -7 (-15 -2430 (|#2| |#2|)) (-15 -2430 (|#2| |#2| (-1090))) (-15 -3702 (|#2| |#2|)) (-15 -3702 (|#2| |#2| (-1090))) (-15 -2574 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -1349 ((-108) |#2|)) (-15 -1428 ((-157 |#2|) |#2|))) (-13 (-429) (-789) (-967 (-525)) (-588 (-525))) (-13 (-27) (-1112) (-408 |#1|))) (T -1116))
-((-1428 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-157 *3)) (-5 *1 (-1116 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *4))))) (-1349 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *2 (-108)) (-5 *1 (-1116 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *4))))) (-3993 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))) (-3981 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))) (-2574 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))) (-3702 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1116 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))) (-3702 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))) (-2430 (*1 *2 *2 *3) (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1116 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))) (-2430 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525)))) (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))))
-(-10 -7 (-15 -2430 (|#2| |#2|)) (-15 -2430 (|#2| |#2| (-1090))) (-15 -3702 (|#2| |#2|)) (-15 -3702 (|#2| |#2| (-1090))) (-15 -2574 (|#2| |#2|)) (-15 -3981 (|#2| |#2|)) (-15 -3993 (|#2| |#2|)) (-15 -1349 ((-108) |#2|)) (-15 -1428 ((-157 |#2|) |#2|)))
-((-3407 ((|#4| |#4| |#1|) 27)) (-2646 ((|#4| |#4| |#1|) 28)))
-(((-1117 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3407 (|#4| |#4| |#1|)) (-15 -2646 (|#4| |#4| |#1|))) (-517) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -1117))
-((-2646 (*1 *2 *2 *3) (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-3407 (*1 *2 *2 *3) (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
-(-10 -7 (-15 -3407 (|#4| |#4| |#1|)) (-15 -2646 (|#4| |#4| |#1|)))
-((-1874 ((|#2| |#2|) 134)) (-2114 ((|#2| |#2|) 131)) (-2198 ((|#2| |#2|) 122)) (-1616 ((|#2| |#2|) 119)) (-2398 ((|#2| |#2|) 127)) (-3009 ((|#2| |#2|) 115)) (-3431 ((|#2| |#2|) 43)) (-1849 ((|#2| |#2|) 95)) (-2811 ((|#2| |#2|) 75)) (-2565 ((|#2| |#2|) 129)) (-1612 ((|#2| |#2|) 117)) (-2897 ((|#2| |#2|) 139)) (-2156 ((|#2| |#2|) 137)) (-3947 ((|#2| |#2|) 138)) (-3907 ((|#2| |#2|) 136)) (-2708 ((|#2| |#2|) 149)) (-1898 ((|#2| |#2|) 30 (-12 (|has| |#2| (-567 (-826 |#1|))) (|has| |#2| (-820 |#1|)) (|has| |#1| (-567 (-826 |#1|))) (|has| |#1| (-820 |#1|))))) (-1464 ((|#2| |#2|) 76)) (-3124 ((|#2| |#2|) 140)) (-2692 ((|#2| |#2|) 141)) (-4123 ((|#2| |#2|) 128)) (-2304 ((|#2| |#2|) 116)) (-3277 ((|#2| |#2|) 135)) (-1674 ((|#2| |#2|) 133)) (-2658 ((|#2| |#2|) 123)) (-2790 ((|#2| |#2|) 121)) (-2280 ((|#2| |#2|) 125)) (-4074 ((|#2| |#2|) 113)))
-(((-1118 |#1| |#2|) (-10 -7 (-15 -2692 (|#2| |#2|)) (-15 -2811 (|#2| |#2|)) (-15 -2708 (|#2| |#2|)) (-15 -1849 (|#2| |#2|)) (-15 -3431 (|#2| |#2|)) (-15 -1464 (|#2| |#2|)) (-15 -3124 (|#2| |#2|)) (-15 -4074 (|#2| |#2|)) (-15 -2280 (|#2| |#2|)) (-15 -2658 (|#2| |#2|)) (-15 -3277 (|#2| |#2|)) (-15 -2304 (|#2| |#2|)) (-15 -4123 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -2565 (|#2| |#2|)) (-15 -3009 (|#2| |#2|)) (-15 -2398 (|#2| |#2|)) (-15 -2198 (|#2| |#2|)) (-15 -1874 (|#2| |#2|)) (-15 -1616 (|#2| |#2|)) (-15 -2114 (|#2| |#2|)) (-15 -2790 (|#2| |#2|)) (-15 -1674 (|#2| |#2|)) (-15 -3907 (|#2| |#2|)) (-15 -2156 (|#2| |#2|)) (-15 -3947 (|#2| |#2|)) (-15 -2897 (|#2| |#2|)) (IF (|has| |#1| (-820 |#1|)) (IF (|has| |#1| (-567 (-826 |#1|))) (IF (|has| |#2| (-567 (-826 |#1|))) (IF (|has| |#2| (-820 |#1|)) (-15 -1898 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-789) (-429)) (-13 (-408 |#1|) (-1112))) (T -1118))
-((-1898 (*1 *2 *2) (-12 (-4 *3 (-567 (-826 *3))) (-4 *3 (-820 *3)) (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-567 (-826 *3))) (-4 *2 (-820 *3)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2897 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-3947 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2156 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-1674 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2790 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2114 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-1616 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-1874 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2198 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2398 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-3009 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2565 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-1612 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-4123 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-3277 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2658 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2280 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-3124 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-1464 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-3431 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-1849 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2708 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2811 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))) (-2692 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2)) (-4 *2 (-13 (-408 *3) (-1112))))))
-(-10 -7 (-15 -2692 (|#2| |#2|)) (-15 -2811 (|#2| |#2|)) (-15 -2708 (|#2| |#2|)) (-15 -1849 (|#2| |#2|)) (-15 -3431 (|#2| |#2|)) (-15 -1464 (|#2| |#2|)) (-15 -3124 (|#2| |#2|)) (-15 -4074 (|#2| |#2|)) (-15 -2280 (|#2| |#2|)) (-15 -2658 (|#2| |#2|)) (-15 -3277 (|#2| |#2|)) (-15 -2304 (|#2| |#2|)) (-15 -4123 (|#2| |#2|)) (-15 -1612 (|#2| |#2|)) (-15 -2565 (|#2| |#2|)) (-15 -3009 (|#2| |#2|)) (-15 -2398 (|#2| |#2|)) (-15 -2198 (|#2| |#2|)) (-15 -1874 (|#2| |#2|)) (-15 -1616 (|#2| |#2|)) (-15 -2114 (|#2| |#2|)) (-15 -2790 (|#2| |#2|)) (-15 -1674 (|#2| |#2|)) (-15 -3907 (|#2| |#2|)) (-15 -2156 (|#2| |#2|)) (-15 -3947 (|#2| |#2|)) (-15 -2897 (|#2| |#2|)) (IF (|has| |#1| (-820 |#1|)) (IF (|has| |#1| (-567 (-826 |#1|))) (IF (|has| |#2| (-567 (-826 |#1|))) (IF (|has| |#2| (-820 |#1|)) (-15 -1898 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-1466 (((-108) |#5| $) 60) (((-108) $) 102)) (-3833 ((|#5| |#5| $) 75)) (-2724 (($ (-1 (-108) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-2895 (((-592 |#5|) (-592 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 73)) (-1264 (((-3 $ "failed") (-592 |#5|)) 126)) (-3145 (((-3 $ "failed") $) 112)) (-3096 ((|#5| |#5| $) 94)) (-1954 (((-108) |#5| $ (-1 (-108) |#5| |#5|)) 31)) (-2295 ((|#5| |#5| $) 98)) (-4004 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 69)) (-1426 (((-2 (|:| -3286 (-592 |#5|)) (|:| -2396 (-592 |#5|))) $) 55)) (-2267 (((-108) |#5| $) 58) (((-108) $) 103)) (-1257 ((|#4| $) 108)) (-2292 (((-3 |#5| "failed") $) 110)) (-2931 (((-592 |#5|) $) 49)) (-3691 (((-108) |#5| $) 67) (((-108) $) 107)) (-4189 ((|#5| |#5| $) 81)) (-2491 (((-108) $ $) 27)) (-2469 (((-108) |#5| $) 63) (((-108) $) 105)) (-2954 ((|#5| |#5| $) 78)) (-3135 (((-3 |#5| "failed") $) 109)) (-3538 (($ $ |#5|) 127)) (-2513 (((-713) $) 52)) (-1922 (($ (-592 |#5|)) 124)) (-1861 (($ $ |#4|) 122)) (-3570 (($ $ |#4|) 121)) (-2031 (($ $) 120)) (-1908 (((-797) $) NIL) (((-592 |#5|) $) 113)) (-3056 (((-713) $) 130)) (-3480 (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|)) 45)) (-1971 (((-108) $ (-1 (-108) |#5| (-592 |#5|))) 100)) (-2241 (((-592 |#4|) $) 115)) (-1252 (((-108) |#4| $) 118)) (-3961 (((-108) $ $) 19)))
-(((-1119 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3056 ((-713) |#1|)) (-15 -3538 (|#1| |#1| |#5|)) (-15 -2724 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1252 ((-108) |#4| |#1|)) (-15 -2241 ((-592 |#4|) |#1|)) (-15 -3145 ((-3 |#1| "failed") |#1|)) (-15 -2292 ((-3 |#5| "failed") |#1|)) (-15 -3135 ((-3 |#5| "failed") |#1|)) (-15 -2295 (|#5| |#5| |#1|)) (-15 -2031 (|#1| |#1|)) (-15 -3096 (|#5| |#5| |#1|)) (-15 -4189 (|#5| |#5| |#1|)) (-15 -2954 (|#5| |#5| |#1|)) (-15 -3833 (|#5| |#5| |#1|)) (-15 -2895 ((-592 |#5|) (-592 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -4004 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3691 ((-108) |#1|)) (-15 -2469 ((-108) |#1|)) (-15 -1466 ((-108) |#1|)) (-15 -1971 ((-108) |#1| (-1 (-108) |#5| (-592 |#5|)))) (-15 -3691 ((-108) |#5| |#1|)) (-15 -2469 ((-108) |#5| |#1|)) (-15 -1466 ((-108) |#5| |#1|)) (-15 -1954 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -2267 ((-108) |#1|)) (-15 -2267 ((-108) |#5| |#1|)) (-15 -1426 ((-2 (|:| -3286 (-592 |#5|)) (|:| -2396 (-592 |#5|))) |#1|)) (-15 -2513 ((-713) |#1|)) (-15 -2931 ((-592 |#5|) |#1|)) (-15 -3480 ((-3 (-2 (|:| |bas| |#1|) (|:| -1649 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3480 ((-3 (-2 (|:| |bas| |#1|) (|:| -1649 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5| |#5|))) (-15 -2491 ((-108) |#1| |#1|)) (-15 -1861 (|#1| |#1| |#4|)) (-15 -3570 (|#1| |#1| |#4|)) (-15 -1257 (|#4| |#1|)) (-15 -1264 ((-3 |#1| "failed") (-592 |#5|))) (-15 -1908 ((-592 |#5|) |#1|)) (-15 -1922 (|#1| (-592 |#5|))) (-15 -4004 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4004 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2724 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -4004 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1908 ((-797) |#1|)) (-15 -3961 ((-108) |#1| |#1|))) (-1120 |#2| |#3| |#4| |#5|) (-517) (-735) (-789) (-990 |#2| |#3| |#4|)) (T -1119))
-NIL
-(-10 -8 (-15 -3056 ((-713) |#1|)) (-15 -3538 (|#1| |#1| |#5|)) (-15 -2724 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1252 ((-108) |#4| |#1|)) (-15 -2241 ((-592 |#4|) |#1|)) (-15 -3145 ((-3 |#1| "failed") |#1|)) (-15 -2292 ((-3 |#5| "failed") |#1|)) (-15 -3135 ((-3 |#5| "failed") |#1|)) (-15 -2295 (|#5| |#5| |#1|)) (-15 -2031 (|#1| |#1|)) (-15 -3096 (|#5| |#5| |#1|)) (-15 -4189 (|#5| |#5| |#1|)) (-15 -2954 (|#5| |#5| |#1|)) (-15 -3833 (|#5| |#5| |#1|)) (-15 -2895 ((-592 |#5|) (-592 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -4004 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3691 ((-108) |#1|)) (-15 -2469 ((-108) |#1|)) (-15 -1466 ((-108) |#1|)) (-15 -1971 ((-108) |#1| (-1 (-108) |#5| (-592 |#5|)))) (-15 -3691 ((-108) |#5| |#1|)) (-15 -2469 ((-108) |#5| |#1|)) (-15 -1466 ((-108) |#5| |#1|)) (-15 -1954 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -2267 ((-108) |#1|)) (-15 -2267 ((-108) |#5| |#1|)) (-15 -1426 ((-2 (|:| -3286 (-592 |#5|)) (|:| -2396 (-592 |#5|))) |#1|)) (-15 -2513 ((-713) |#1|)) (-15 -2931 ((-592 |#5|) |#1|)) (-15 -3480 ((-3 (-2 (|:| |bas| |#1|) (|:| -1649 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -3480 ((-3 (-2 (|:| |bas| |#1|) (|:| -1649 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5| |#5|))) (-15 -2491 ((-108) |#1| |#1|)) (-15 -1861 (|#1| |#1| |#4|)) (-15 -3570 (|#1| |#1| |#4|)) (-15 -1257 (|#4| |#1|)) (-15 -1264 ((-3 |#1| "failed") (-592 |#5|))) (-15 -1908 ((-592 |#5|) |#1|)) (-15 -1922 (|#1| (-592 |#5|))) (-15 -4004 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4004 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2724 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -4004 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1908 ((-797) |#1|)) (-15 -3961 ((-108) |#1| |#1|)))
-((-1893 (((-108) $ $) 7)) (-2894 (((-592 (-2 (|:| -3286 $) (|:| -2396 (-592 |#4|)))) (-592 |#4|)) 85)) (-2308 (((-592 $) (-592 |#4|)) 86)) (-4104 (((-592 |#3|) $) 33)) (-3696 (((-108) $) 26)) (-3810 (((-108) $) 17 (|has| |#1| (-517)))) (-1466 (((-108) |#4| $) 101) (((-108) $) 97)) (-3833 ((|#4| |#4| $) 92)) (-3327 (((-2 (|:| |under| $) (|:| -1720 $) (|:| |upper| $)) $ |#3|) 27)) (-3410 (((-108) $ (-713)) 44)) (-2724 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) 79)) (-1505 (($) 45 T CONST)) (-2637 (((-108) $) 22 (|has| |#1| (-517)))) (-2643 (((-108) $ $) 24 (|has| |#1| (-517)))) (-2494 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3405 (((-108) $) 25 (|has| |#1| (-517)))) (-2895 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-3937 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-3144 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-1264 (((-3 $ "failed") (-592 |#4|)) 36)) (-2831 (($ (-592 |#4|)) 35)) (-3145 (((-3 $ "failed") $) 82)) (-3096 ((|#4| |#4| $) 89)) (-3163 (($ $) 68 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ |#4| $) 67 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4254)))) (-1632 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-1954 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-2295 ((|#4| |#4| $) 87)) (-4004 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-1426 (((-2 (|:| -3286 (-592 |#4|)) (|:| -2396 (-592 |#4|))) $) 105)) (-2026 (((-592 |#4|) $) 52 (|has| $ (-6 -4254)))) (-2267 (((-108) |#4| $) 104) (((-108) $) 103)) (-1257 ((|#3| $) 34)) (-3100 (((-108) $ (-713)) 43)) (-3168 (((-592 |#4|) $) 53 (|has| $ (-6 -4254)))) (-4132 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#4| |#4|) $) 47)) (-1835 (((-592 |#3|) $) 32)) (-1913 (((-108) |#3| $) 31)) (-3017 (((-108) $ (-713)) 42)) (-2337 (((-1073) $) 9)) (-2292 (((-3 |#4| "failed") $) 83)) (-2931 (((-592 |#4|) $) 107)) (-3691 (((-108) |#4| $) 99) (((-108) $) 95)) (-4189 ((|#4| |#4| $) 90)) (-2491 (((-108) $ $) 110)) (-2809 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2469 (((-108) |#4| $) 100) (((-108) $) 96)) (-2954 ((|#4| |#4| $) 91)) (-2663 (((-1037) $) 10)) (-3135 (((-3 |#4| "failed") $) 84)) (-4054 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-2662 (((-3 $ "failed") $ |#4|) 78)) (-3538 (($ $ |#4|) 77)) (-3494 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-2642 (((-108) $ $) 38)) (-1613 (((-108) $) 41)) (-3773 (($) 40)) (-2513 (((-713) $) 106)) (-2686 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1019)) (|has| $ (-6 -4254)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4254)))) (-2135 (($ $) 39)) (-1427 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1922 (($ (-592 |#4|)) 60)) (-1861 (($ $ |#3|) 28)) (-3570 (($ $ |#3|) 30)) (-2031 (($ $) 88)) (-1263 (($ $ |#3|) 29)) (-1908 (((-797) $) 11) (((-592 |#4|) $) 37)) (-3056 (((-713) $) 76 (|has| |#3| (-346)))) (-3480 (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-1971 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-2667 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4254)))) (-2241 (((-592 |#3|) $) 81)) (-1252 (((-108) |#3| $) 80)) (-3961 (((-108) $ $) 6)) (-4140 (((-713) $) 46 (|has| $ (-6 -4254)))))
-(((-1120 |#1| |#2| |#3| |#4|) (-131) (-517) (-735) (-789) (-990 |t#1| |t#2| |t#3|)) (T -1120))
-((-2491 (*1 *2 *1 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) (-3480 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1649 (-592 *8)))) (-5 *3 (-592 *8)) (-4 *1 (-1120 *5 *6 *7 *8)))) (-3480 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) (-4 *9 (-990 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1649 (-592 *9)))) (-5 *3 (-592 *9)) (-4 *1 (-1120 *6 *7 *8 *9)))) (-2931 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-592 *6)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-713)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-2 (|:| -3286 (-592 *6)) (|:| -2396 (-592 *6)))))) (-2267 (*1 *2 *3 *1) (-12 (-4 *1 (-1120 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) (-1954 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1120 *5 *6 *7 *3)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-108)))) (-1466 (*1 *2 *3 *1) (-12 (-4 *1 (-1120 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-2469 (*1 *2 *3 *1) (-12 (-4 *1 (-1120 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-3691 (*1 *2 *3 *1) (-12 (-4 *1 (-1120 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-1971 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-108) *7 (-592 *7))) (-4 *1 (-1120 *4 *5 *6 *7)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) (-3691 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))) (-4004 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) (-4 *1 (-1120 *5 *6 *7 *2)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *2 (-990 *5 *6 *7)))) (-2895 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1120 *5 *6 *7 *8)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)))) (-3833 (*1 *2 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-2954 (*1 *2 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-4189 (*1 *2 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-3096 (*1 *2 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-2031 (*1 *1 *1) (-12 (-4 *1 (-1120 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-990 *2 *3 *4)))) (-2295 (*1 *2 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-1120 *4 *5 *6 *7)))) (-2894 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| -3286 *1) (|:| -2396 (-592 *7))))) (-5 *3 (-592 *7)) (-4 *1 (-1120 *4 *5 *6 *7)))) (-3135 (*1 *2 *1) (|partial| -12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-2292 (*1 *2 *1) (|partial| -12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-3145 (*1 *1 *1) (|partial| -12 (-4 *1 (-1120 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-990 *2 *3 *4)))) (-2241 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-592 *5)))) (-1252 (*1 *2 *3 *1) (-12 (-4 *1 (-1120 *4 *5 *3 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *6 (-990 *4 *5 *3)) (-5 *2 (-108)))) (-2724 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1120 *4 *5 *3 *2)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *2 (-990 *4 *5 *3)))) (-2662 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-3538 (*1 *1 *1 *2) (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))) (-3056 (*1 *2 *1) (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *5 (-346)) (-5 *2 (-713)))))
-(-13 (-908 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4254) (-6 -4255) (-15 -2491 ((-108) $ $)) (-15 -3480 ((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |t#4|))) "failed") (-592 |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3480 ((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |t#4|))) "failed") (-592 |t#4|) (-1 (-108) |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2931 ((-592 |t#4|) $)) (-15 -2513 ((-713) $)) (-15 -1426 ((-2 (|:| -3286 (-592 |t#4|)) (|:| -2396 (-592 |t#4|))) $)) (-15 -2267 ((-108) |t#4| $)) (-15 -2267 ((-108) $)) (-15 -1954 ((-108) |t#4| $ (-1 (-108) |t#4| |t#4|))) (-15 -1466 ((-108) |t#4| $)) (-15 -2469 ((-108) |t#4| $)) (-15 -3691 ((-108) |t#4| $)) (-15 -1971 ((-108) $ (-1 (-108) |t#4| (-592 |t#4|)))) (-15 -1466 ((-108) $)) (-15 -2469 ((-108) $)) (-15 -3691 ((-108) $)) (-15 -4004 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2895 ((-592 |t#4|) (-592 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3833 (|t#4| |t#4| $)) (-15 -2954 (|t#4| |t#4| $)) (-15 -4189 (|t#4| |t#4| $)) (-15 -3096 (|t#4| |t#4| $)) (-15 -2031 ($ $)) (-15 -2295 (|t#4| |t#4| $)) (-15 -2308 ((-592 $) (-592 |t#4|))) (-15 -2894 ((-592 (-2 (|:| -3286 $) (|:| -2396 (-592 |t#4|)))) (-592 |t#4|))) (-15 -3135 ((-3 |t#4| "failed") $)) (-15 -2292 ((-3 |t#4| "failed") $)) (-15 -3145 ((-3 $ "failed") $)) (-15 -2241 ((-592 |t#3|) $)) (-15 -1252 ((-108) |t#3| $)) (-15 -2724 ((-3 |t#4| "failed") $ |t#3|)) (-15 -2662 ((-3 $ "failed") $ |t#4|)) (-15 -3538 ($ $ |t#4|)) (IF (|has| |t#3| (-346)) (-15 -3056 ((-713) $)) |%noBranch|)))
-(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-797)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))) ((-908 |#1| |#2| |#3| |#4|) . T) ((-1019) . T) ((-1126) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-4104 (((-592 (-1090)) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-4049 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3969 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4026 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4072 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) NIL T CONST)) (-1247 (($ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-2467 (((-886 |#1|) $ (-713)) 17) (((-886 |#1|) $ (-713) (-713)) NIL)) (-4150 (((-108) $) NIL)) (-1335 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1737 (((-713) $ (-1090)) NIL) (((-713) $ (-1090) (-713)) NIL)) (-2133 (((-108) $) NIL)) (-3391 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1819 (((-108) $) NIL)) (-4079 (($ $ (-592 (-1090)) (-592 (-497 (-1090)))) NIL) (($ $ (-1090) (-497 (-1090))) NIL) (($ |#1| (-497 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-2091 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-2337 (((-1073) $) NIL)) (-3766 (($ $ (-1090)) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090) |#1|) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2663 (((-1037) $) NIL)) (-2697 (($ (-1 $) (-1090) |#1|) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3538 (($ $ (-713)) NIL)) (-2338 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1982 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3092 (($ $ (-1090) $) NIL) (($ $ (-592 (-1090)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL)) (-3013 (($ $ (-1090)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL)) (-2513 (((-497 (-1090)) $) NIL)) (-4084 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1801 (($ $) NIL)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-1090)) NIL) (($ (-886 |#1|)) NIL)) (-1657 ((|#1| $ (-497 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (((-886 |#1|) $ (-713)) NIL)) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) NIL)) (-4121 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4096 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2929 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) NIL T CONST)) (-1424 (($ $ (-1090)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL)) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1121 |#1|) (-13 (-683 |#1| (-1090)) (-10 -8 (-15 -1657 ((-886 |#1|) $ (-713))) (-15 -1908 ($ (-1090))) (-15 -1908 ($ (-886 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -3766 ($ $ (-1090) |#1|)) (-15 -2697 ($ (-1 $) (-1090) |#1|))) |%noBranch|))) (-976)) (T -1121))
-((-1657 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-886 *4)) (-5 *1 (-1121 *4)) (-4 *4 (-976)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1121 *3)) (-4 *3 (-976)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-976)) (-5 *1 (-1121 *3)))) (-3766 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *1 (-1121 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)))) (-2697 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1121 *4))) (-5 *3 (-1090)) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-976)) (-5 *1 (-1121 *4)))))
-(-13 (-683 |#1| (-1090)) (-10 -8 (-15 -1657 ((-886 |#1|) $ (-713))) (-15 -1908 ($ (-1090))) (-15 -1908 ($ (-886 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -3766 ($ $ (-1090) |#1|)) (-15 -2697 ($ (-1 $) (-1090) |#1|))) |%noBranch|)))
-((-1359 (($ |#1| (-592 (-592 (-877 (-205)))) (-108)) 19)) (-2603 (((-108) $ (-108)) 18)) (-2223 (((-108) $) 17)) (-3300 (((-592 (-592 (-877 (-205)))) $) 13)) (-2921 ((|#1| $) 8)) (-3628 (((-108) $) 15)))
-(((-1122 |#1|) (-10 -8 (-15 -2921 (|#1| $)) (-15 -3300 ((-592 (-592 (-877 (-205)))) $)) (-15 -3628 ((-108) $)) (-15 -2223 ((-108) $)) (-15 -2603 ((-108) $ (-108))) (-15 -1359 ($ |#1| (-592 (-592 (-877 (-205)))) (-108)))) (-906)) (T -1122))
-((-1359 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-108)) (-5 *1 (-1122 *2)) (-4 *2 (-906)))) (-2603 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1122 *3)) (-4 *3 (-906)))) (-2223 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1122 *3)) (-4 *3 (-906)))) (-3628 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1122 *3)) (-4 *3 (-906)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *1 (-1122 *3)) (-4 *3 (-906)))) (-2921 (*1 *2 *1) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-906)))))
-(-10 -8 (-15 -2921 (|#1| $)) (-15 -3300 ((-592 (-592 (-877 (-205)))) $)) (-15 -3628 ((-108) $)) (-15 -2223 ((-108) $)) (-15 -2603 ((-108) $ (-108))) (-15 -1359 ($ |#1| (-592 (-592 (-877 (-205)))) (-108))))
-((-2516 (((-877 (-205)) (-877 (-205))) 25)) (-3451 (((-877 (-205)) (-205) (-205) (-205) (-205)) 10)) (-2756 (((-592 (-877 (-205))) (-877 (-205)) (-877 (-205)) (-877 (-205)) (-205) (-592 (-592 (-205)))) 37)) (-1595 (((-205) (-877 (-205)) (-877 (-205))) 21)) (-2873 (((-877 (-205)) (-877 (-205)) (-877 (-205))) 22)) (-3537 (((-592 (-592 (-205))) (-525)) 31)) (-4070 (((-877 (-205)) (-877 (-205)) (-877 (-205))) 20)) (-4059 (((-877 (-205)) (-877 (-205)) (-877 (-205))) 19)) (* (((-877 (-205)) (-205) (-877 (-205))) 18)))
-(((-1123) (-10 -7 (-15 -3451 ((-877 (-205)) (-205) (-205) (-205) (-205))) (-15 * ((-877 (-205)) (-205) (-877 (-205)))) (-15 -4059 ((-877 (-205)) (-877 (-205)) (-877 (-205)))) (-15 -4070 ((-877 (-205)) (-877 (-205)) (-877 (-205)))) (-15 -1595 ((-205) (-877 (-205)) (-877 (-205)))) (-15 -2873 ((-877 (-205)) (-877 (-205)) (-877 (-205)))) (-15 -2516 ((-877 (-205)) (-877 (-205)))) (-15 -3537 ((-592 (-592 (-205))) (-525))) (-15 -2756 ((-592 (-877 (-205))) (-877 (-205)) (-877 (-205)) (-877 (-205)) (-205) (-592 (-592 (-205))))))) (T -1123))
-((-2756 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-592 (-592 (-205)))) (-5 *4 (-205)) (-5 *2 (-592 (-877 *4))) (-5 *1 (-1123)) (-5 *3 (-877 *4)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-1123)))) (-2516 (*1 *2 *2) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123)))) (-2873 (*1 *2 *2 *2) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123)))) (-1595 (*1 *2 *3 *3) (-12 (-5 *3 (-877 (-205))) (-5 *2 (-205)) (-5 *1 (-1123)))) (-4070 (*1 *2 *2 *2) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123)))) (-4059 (*1 *2 *2 *2) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-877 (-205))) (-5 *3 (-205)) (-5 *1 (-1123)))) (-3451 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123)) (-5 *3 (-205)))))
-(-10 -7 (-15 -3451 ((-877 (-205)) (-205) (-205) (-205) (-205))) (-15 * ((-877 (-205)) (-205) (-877 (-205)))) (-15 -4059 ((-877 (-205)) (-877 (-205)) (-877 (-205)))) (-15 -4070 ((-877 (-205)) (-877 (-205)) (-877 (-205)))) (-15 -1595 ((-205) (-877 (-205)) (-877 (-205)))) (-15 -2873 ((-877 (-205)) (-877 (-205)) (-877 (-205)))) (-15 -2516 ((-877 (-205)) (-877 (-205)))) (-15 -3537 ((-592 (-592 (-205))) (-525))) (-15 -2756 ((-592 (-877 (-205))) (-877 (-205)) (-877 (-205)) (-877 (-205)) (-205) (-592 (-592 (-205))))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2724 ((|#1| $ (-713)) 13)) (-1722 (((-713) $) 12)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-1908 (((-891 |#1|) $) 10) (($ (-891 |#1|)) 9) (((-797) $) 23 (|has| |#1| (-566 (-797))))) (-3961 (((-108) $ $) 16 (|has| |#1| (-1019)))))
-(((-1124 |#1|) (-13 (-566 (-891 |#1|)) (-10 -8 (-15 -1908 ($ (-891 |#1|))) (-15 -2724 (|#1| $ (-713))) (-15 -1722 ((-713) $)) (IF (|has| |#1| (-566 (-797))) (-6 (-566 (-797))) |%noBranch|) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|))) (-1126)) (T -1124))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-891 *3)) (-4 *3 (-1126)) (-5 *1 (-1124 *3)))) (-2724 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-1124 *2)) (-4 *2 (-1126)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1124 *3)) (-4 *3 (-1126)))))
-(-13 (-566 (-891 |#1|)) (-10 -8 (-15 -1908 ($ (-891 |#1|))) (-15 -2724 (|#1| $ (-713))) (-15 -1722 ((-713) $)) (IF (|has| |#1| (-566 (-797))) (-6 (-566 (-797))) |%noBranch|) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|)))
-((-1823 (((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)) (-525)) 80)) (-1483 (((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|))) 74)) (-1369 (((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|))) 59)))
-(((-1125 |#1|) (-10 -7 (-15 -1483 ((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-15 -1369 ((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-15 -1823 ((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)) (-525)))) (-327)) (T -1125))
-((-1823 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *5 (-327)) (-5 *2 (-396 (-1086 (-1086 *5)))) (-5 *1 (-1125 *5)) (-5 *3 (-1086 (-1086 *5))))) (-1369 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1086 (-1086 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-1086 (-1086 *4))))) (-1483 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1086 (-1086 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-1086 (-1086 *4))))))
-(-10 -7 (-15 -1483 ((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-15 -1369 ((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)))) (-15 -1823 ((-396 (-1086 (-1086 |#1|))) (-1086 (-1086 |#1|)) (-525))))
-NIL
-(((-1126) (-131)) (T -1126))
-NIL
-(-13 (-10 -7 (-6 -1996)))
-((-1999 (((-108)) 15)) (-3665 (((-1177) (-592 |#1|) (-592 |#1|)) 19) (((-1177) (-592 |#1|)) 20)) (-3100 (((-108) |#1| |#1|) 32 (|has| |#1| (-789)))) (-3017 (((-108) |#1| |#1| (-1 (-108) |#1| |#1|)) 27) (((-3 (-108) "failed") |#1| |#1|) 25)) (-2081 ((|#1| (-592 |#1|)) 33 (|has| |#1| (-789))) ((|#1| (-592 |#1|) (-1 (-108) |#1| |#1|)) 28)) (-2960 (((-2 (|:| -2707 (-592 |#1|)) (|:| -2240 (-592 |#1|)))) 17)))
-(((-1127 |#1|) (-10 -7 (-15 -3665 ((-1177) (-592 |#1|))) (-15 -3665 ((-1177) (-592 |#1|) (-592 |#1|))) (-15 -2960 ((-2 (|:| -2707 (-592 |#1|)) (|:| -2240 (-592 |#1|))))) (-15 -3017 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3017 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -2081 (|#1| (-592 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1999 ((-108))) (IF (|has| |#1| (-789)) (PROGN (-15 -2081 (|#1| (-592 |#1|))) (-15 -3100 ((-108) |#1| |#1|))) |%noBranch|)) (-1019)) (T -1127))
-((-3100 (*1 *2 *3 *3) (-12 (-5 *2 (-108)) (-5 *1 (-1127 *3)) (-4 *3 (-789)) (-4 *3 (-1019)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-1019)) (-4 *2 (-789)) (-5 *1 (-1127 *2)))) (-1999 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1127 *3)) (-4 *3 (-1019)))) (-2081 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1127 *2)) (-4 *2 (-1019)))) (-3017 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1019)) (-5 *2 (-108)) (-5 *1 (-1127 *3)))) (-3017 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1127 *3)) (-4 *3 (-1019)))) (-2960 (*1 *2) (-12 (-5 *2 (-2 (|:| -2707 (-592 *3)) (|:| -2240 (-592 *3)))) (-5 *1 (-1127 *3)) (-4 *3 (-1019)))) (-3665 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1019)) (-5 *2 (-1177)) (-5 *1 (-1127 *4)))) (-3665 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1019)) (-5 *2 (-1177)) (-5 *1 (-1127 *4)))))
-(-10 -7 (-15 -3665 ((-1177) (-592 |#1|))) (-15 -3665 ((-1177) (-592 |#1|) (-592 |#1|))) (-15 -2960 ((-2 (|:| -2707 (-592 |#1|)) (|:| -2240 (-592 |#1|))))) (-15 -3017 ((-3 (-108) "failed") |#1| |#1|)) (-15 -3017 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -2081 (|#1| (-592 |#1|) (-1 (-108) |#1| |#1|))) (-15 -1999 ((-108))) (IF (|has| |#1| (-789)) (PROGN (-15 -2081 (|#1| (-592 |#1|))) (-15 -3100 ((-108) |#1| |#1|))) |%noBranch|))
-((-1783 (((-1177) (-592 (-1090)) (-592 (-1090))) 13) (((-1177) (-592 (-1090))) 11)) (-3588 (((-1177)) 14)) (-2760 (((-2 (|:| -2240 (-592 (-1090))) (|:| -2707 (-592 (-1090))))) 18)))
-(((-1128) (-10 -7 (-15 -1783 ((-1177) (-592 (-1090)))) (-15 -1783 ((-1177) (-592 (-1090)) (-592 (-1090)))) (-15 -2760 ((-2 (|:| -2240 (-592 (-1090))) (|:| -2707 (-592 (-1090)))))) (-15 -3588 ((-1177))))) (T -1128))
-((-3588 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1128)))) (-2760 (*1 *2) (-12 (-5 *2 (-2 (|:| -2240 (-592 (-1090))) (|:| -2707 (-592 (-1090))))) (-5 *1 (-1128)))) (-1783 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-1090))) (-5 *2 (-1177)) (-5 *1 (-1128)))) (-1783 (*1 *2 *3) (-12 (-5 *3 (-592 (-1090))) (-5 *2 (-1177)) (-5 *1 (-1128)))))
-(-10 -7 (-15 -1783 ((-1177) (-592 (-1090)))) (-15 -1783 ((-1177) (-592 (-1090)) (-592 (-1090)))) (-15 -2760 ((-2 (|:| -2240 (-592 (-1090))) (|:| -2707 (-592 (-1090)))))) (-15 -3588 ((-1177))))
-((-3321 (($ $) 17)) (-2250 (((-108) $) 24)))
-(((-1129 |#1|) (-10 -8 (-15 -3321 (|#1| |#1|)) (-15 -2250 ((-108) |#1|))) (-1130)) (T -1129))
-NIL
-(-10 -8 (-15 -3321 (|#1| |#1|)) (-15 -2250 ((-108) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-3263 (((-3 $ "failed") $ $) 19)) (-3321 (($ $) 51)) (-1510 (((-396 $) $) 52)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-2250 (((-108) $) 53)) (-2133 (((-108) $) 31)) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-3959 (((-396 $) $) 50)) (-2338 (((-3 $ "failed") $ $) 42)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43)) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) 39)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
-(((-1130) (-131)) (T -1130))
-((-2250 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-108)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1130)))) (-3321 (*1 *1 *1) (-4 *1 (-1130))) (-3959 (*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1130)))))
-(-13 (-429) (-10 -8 (-15 -2250 ((-108) $)) (-15 -1510 ((-396 $) $)) (-15 -3321 ($ $)) (-15 -3959 ((-396 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-797)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1370 (((-1136 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1136 |#1| |#3| |#5|)) 23)))
-(((-1131 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1370 ((-1136 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1136 |#1| |#3| |#5|)))) (-976) (-976) (-1090) (-1090) |#1| |#2|) (T -1131))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1136 *5 *7 *9)) (-4 *5 (-976)) (-4 *6 (-976)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1136 *6 *8 *10)) (-5 *1 (-1131 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1090)))))
-(-10 -7 (-15 -1370 ((-1136 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1136 |#1| |#3| |#5|))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-4104 (((-592 (-1004)) $) 74)) (-1251 (((-1090) $) 103)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3635 (($ $) 52 (|has| |#1| (-517)))) (-2950 (((-108) $) 54 (|has| |#1| (-517)))) (-4114 (($ $ (-525)) 98) (($ $ (-525) (-525)) 97)) (-2911 (((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 105)) (-4049 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) 19)) (-3321 (($ $) 162 (|has| |#1| (-341)))) (-1510 (((-396 $) $) 163 (|has| |#1| (-341)))) (-3969 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-2305 (((-108) $ $) 153 (|has| |#1| (-341)))) (-4026 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-3483 (($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 174)) (-4072 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) 17 T CONST)) (-2373 (($ $ $) 157 (|has| |#1| (-341)))) (-1247 (($ $) 60)) (-2866 (((-3 $ "failed") $) 34)) (-2456 (((-385 (-886 |#1|)) $ (-525)) 172 (|has| |#1| (-517))) (((-385 (-886 |#1|)) $ (-525) (-525)) 171 (|has| |#1| (-517)))) (-2356 (($ $ $) 156 (|has| |#1| (-341)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-2250 (((-108) $) 164 (|has| |#1| (-341)))) (-4150 (((-108) $) 73)) (-1335 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-1737 (((-525) $) 100) (((-525) $ (-525)) 99)) (-2133 (((-108) $) 31)) (-3391 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-3817 (($ $ (-855)) 101)) (-3445 (($ (-1 |#1| (-525)) $) 173)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-1819 (((-108) $) 62)) (-4079 (($ |#1| (-525)) 61) (($ $ (-1004) (-525)) 76) (($ $ (-592 (-1004)) (-592 (-525))) 75)) (-1370 (($ (-1 |#1| |#1|) $) 63)) (-2091 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) 65)) (-1224 ((|#1| $) 66)) (-3216 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-2337 (((-1073) $) 9)) (-4211 (($ $) 165 (|has| |#1| (-341)))) (-3766 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 169 (-3309 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-892)) (|has| |#1| (-1112)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -4104 ((-592 (-1090)) |#1|))) (|has| |#1| (-15 -3766 (|#1| |#1| (-1090)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 150 (|has| |#1| (-341)))) (-3244 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-3959 (((-396 $) $) 161 (|has| |#1| (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 158 (|has| |#1| (-341)))) (-3538 (($ $ (-525)) 95)) (-2338 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-1982 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-3092 (((-1071 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-525)))))) (-2183 (((-713) $) 154 (|has| |#1| (-341)))) (-3928 ((|#1| $ (-525)) 104) (($ $ $) 81 (|has| (-525) (-1031)))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 155 (|has| |#1| (-341)))) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) 89 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1090) (-713)) 88 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090))) 87 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1090)) 86 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-2513 (((-525) $) 64)) (-4084 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1801 (($ $) 72)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-1657 ((|#1| $ (-525)) 59)) (-3421 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2093 (((-713)) 29)) (-2563 ((|#1| $) 102)) (-4121 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) 53 (|has| |#1| (-517)))) (-4096 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-2038 ((|#1| $ (-525)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1908 (|#1| (-1090))))))) (-2929 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ (-592 (-1090)) (-592 (-713))) 93 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1090) (-713)) 92 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090))) 91 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1090)) 90 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-3961 (((-108) $ $) 6)) (-4082 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
-(((-1132 |#1|) (-131) (-976)) (T -1132))
-((-3483 (*1 *1 *2) (-12 (-5 *2 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-4 *3 (-976)) (-4 *1 (-1132 *3)))) (-3445 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1132 *3)) (-4 *3 (-976)))) (-2456 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-1132 *4)) (-4 *4 (-976)) (-4 *4 (-517)) (-5 *2 (-385 (-886 *4))))) (-2456 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-1132 *4)) (-4 *4 (-976)) (-4 *4 (-517)) (-5 *2 (-385 (-886 *4))))) (-3766 (*1 *1 *1) (-12 (-4 *1 (-1132 *2)) (-4 *2 (-976)) (-4 *2 (-37 (-385 (-525)))))) (-3766 (*1 *1 *1 *2) (-3309 (-12 (-5 *2 (-1090)) (-4 *1 (-1132 *3)) (-4 *3 (-976)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-892)) (-4 *3 (-1112)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1090)) (-4 *1 (-1132 *3)) (-4 *3 (-976)) (-12 (|has| *3 (-15 -4104 ((-592 (-1090)) *3))) (|has| *3 (-15 -3766 (*3 *3 (-1090)))) (-4 *3 (-37 (-385 (-525)))))))))
-(-13 (-1150 |t#1| (-525)) (-10 -8 (-15 -3483 ($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |t#1|))))) (-15 -3445 ($ (-1 |t#1| (-525)) $)) (IF (|has| |t#1| (-517)) (PROGN (-15 -2456 ((-385 (-886 |t#1|)) $ (-525))) (-15 -2456 ((-385 (-886 |t#1|)) $ (-525) (-525)))) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -3766 ($ $)) (IF (|has| |t#1| (-15 -3766 (|t#1| |t#1| (-1090)))) (IF (|has| |t#1| (-15 -4104 ((-592 (-1090)) |t#1|))) (-15 -3766 ($ $ (-1090))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1112)) (IF (|has| |t#1| (-892)) (IF (|has| |t#1| (-29 (-525))) (-15 -3766 ($ $ (-1090))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-933)) (-6 (-1112))) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-525)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3309 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3309 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-525) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-525) (-1031)) ((-269) -3309 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -3309 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-834 (-1090)) -12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))) ((-905 |#1| #0# (-1004)) . T) ((-854) |has| |#1| (-341)) ((-933) |has| |#1| (-37 (-385 (-525)))) ((-982 #1#) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-982 |#1|) . T) ((-982 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1112) |has| |#1| (-37 (-385 (-525)))) ((-1115) |has| |#1| (-37 (-385 (-525)))) ((-1130) |has| |#1| (-341)) ((-1150 |#1| #0#) . T))
-((-1611 (((-108) $) 12)) (-1264 (((-3 |#3| "failed") $) 17) (((-3 (-1090) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL)) (-2831 ((|#3| $) 14) (((-1090) $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL)))
-(((-1133 |#1| |#2| |#3|) (-10 -8 (-15 -2831 ((-525) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2831 ((-1090) |#1|)) (-15 -1264 ((-3 (-1090) "failed") |#1|)) (-15 -2831 (|#3| |#1|)) (-15 -1264 ((-3 |#3| "failed") |#1|)) (-15 -1611 ((-108) |#1|))) (-1134 |#2| |#3|) (-976) (-1163 |#2|)) (T -1133))
-NIL
-(-10 -8 (-15 -2831 ((-525) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -2831 ((-1090) |#1|)) (-15 -1264 ((-3 (-1090) "failed") |#1|)) (-15 -2831 (|#3| |#1|)) (-15 -1264 ((-3 |#3| "failed") |#1|)) (-15 -1611 ((-108) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3115 ((|#2| $) 231 (-1341 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-4104 (((-592 (-1004)) $) 74)) (-1251 (((-1090) $) 103)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3635 (($ $) 52 (|has| |#1| (-517)))) (-2950 (((-108) $) 54 (|has| |#1| (-517)))) (-4114 (($ $ (-525)) 98) (($ $ (-525) (-525)) 97)) (-2911 (((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 105)) (-3048 ((|#2| $) 267)) (-4164 (((-3 |#2| "failed") $) 263)) (-4168 ((|#2| $) 264)) (-4049 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) 19)) (-3357 (((-396 (-1086 $)) (-1086 $)) 240 (-1341 (|has| |#2| (-843)) (|has| |#1| (-341))))) (-3321 (($ $) 162 (|has| |#1| (-341)))) (-1510 (((-396 $) $) 163 (|has| |#1| (-341)))) (-3969 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 237 (-1341 (|has| |#2| (-843)) (|has| |#1| (-341))))) (-2305 (((-108) $ $) 153 (|has| |#1| (-341)))) (-4026 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-1690 (((-525) $) 249 (-1341 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-3483 (($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 174)) (-4072 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) 17 T CONST)) (-1264 (((-3 |#2| "failed") $) 270) (((-3 (-525) "failed") $) 259 (-1341 (|has| |#2| (-967 (-525))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) 257 (-1341 (|has| |#2| (-967 (-525))) (|has| |#1| (-341)))) (((-3 (-1090) "failed") $) 242 (-1341 (|has| |#2| (-967 (-1090))) (|has| |#1| (-341))))) (-2831 ((|#2| $) 269) (((-525) $) 260 (-1341 (|has| |#2| (-967 (-525))) (|has| |#1| (-341)))) (((-385 (-525)) $) 258 (-1341 (|has| |#2| (-967 (-525))) (|has| |#1| (-341)))) (((-1090) $) 243 (-1341 (|has| |#2| (-967 (-1090))) (|has| |#1| (-341))))) (-2536 (($ $) 266) (($ (-525) $) 265)) (-2373 (($ $ $) 157 (|has| |#1| (-341)))) (-1247 (($ $) 60)) (-1860 (((-632 |#2|) (-632 $)) 221 (|has| |#1| (-341))) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) 220 (|has| |#1| (-341))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 219 (-1341 (|has| |#2| (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) 218 (-1341 (|has| |#2| (-588 (-525))) (|has| |#1| (-341))))) (-2866 (((-3 $ "failed") $) 34)) (-2456 (((-385 (-886 |#1|)) $ (-525)) 172 (|has| |#1| (-517))) (((-385 (-886 |#1|)) $ (-525) (-525)) 171 (|has| |#1| (-517)))) (-3375 (($) 233 (-1341 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-2356 (($ $ $) 156 (|has| |#1| (-341)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-2250 (((-108) $) 164 (|has| |#1| (-341)))) (-3026 (((-108) $) 247 (-1341 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-4150 (((-108) $) 73)) (-1335 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 225 (-1341 (|has| |#2| (-820 (-357))) (|has| |#1| (-341)))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 224 (-1341 (|has| |#2| (-820 (-525))) (|has| |#1| (-341))))) (-1737 (((-525) $) 100) (((-525) $ (-525)) 99)) (-2133 (((-108) $) 31)) (-3830 (($ $) 229 (|has| |#1| (-341)))) (-1303 ((|#2| $) 227 (|has| |#1| (-341)))) (-3391 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-1816 (((-3 $ "failed") $) 261 (-1341 (|has| |#2| (-1066)) (|has| |#1| (-341))))) (-2882 (((-108) $) 248 (-1341 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-3817 (($ $ (-855)) 101)) (-3445 (($ (-1 |#1| (-525)) $) 173)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-1819 (((-108) $) 62)) (-4079 (($ |#1| (-525)) 61) (($ $ (-1004) (-525)) 76) (($ $ (-592 (-1004)) (-592 (-525))) 75)) (-3525 (($ $ $) 251 (-1341 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3630 (($ $ $) 252 (-1341 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-1370 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-341)))) (-2091 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) 65)) (-1224 ((|#1| $) 66)) (-3216 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-4179 (($ (-525) |#2|) 268)) (-2337 (((-1073) $) 9)) (-4211 (($ $) 165 (|has| |#1| (-341)))) (-3766 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 169 (-3309 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-892)) (|has| |#1| (-1112)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -4104 ((-592 (-1090)) |#1|))) (|has| |#1| (-15 -3766 (|#1| |#1| (-1090)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2279 (($) 262 (-1341 (|has| |#2| (-1066)) (|has| |#1| (-341))) CONST)) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 150 (|has| |#1| (-341)))) (-3244 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-2723 (($ $) 232 (-1341 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-1720 ((|#2| $) 235 (-1341 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-2918 (((-396 (-1086 $)) (-1086 $)) 238 (-1341 (|has| |#2| (-843)) (|has| |#1| (-341))))) (-1371 (((-396 (-1086 $)) (-1086 $)) 239 (-1341 (|has| |#2| (-843)) (|has| |#1| (-341))))) (-3959 (((-396 $) $) 161 (|has| |#1| (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 158 (|has| |#1| (-341)))) (-3538 (($ $ (-525)) 95)) (-2338 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-1982 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-3092 (((-1071 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1090) |#2|) 212 (-1341 (|has| |#2| (-486 (-1090) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-1090)) (-592 |#2|)) 211 (-1341 (|has| |#2| (-486 (-1090) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-273 |#2|))) 210 (-1341 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-273 |#2|)) 209 (-1341 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ |#2| |#2|) 208 (-1341 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-592 |#2|) (-592 |#2|)) 207 (-1341 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341))))) (-2183 (((-713) $) 154 (|has| |#1| (-341)))) (-3928 ((|#1| $ (-525)) 104) (($ $ $) 81 (|has| (-525) (-1031))) (($ $ |#2|) 206 (-1341 (|has| |#2| (-265 |#2| |#2|)) (|has| |#1| (-341))))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 155 (|has| |#1| (-341)))) (-3013 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) 216 (|has| |#1| (-341))) (($ $ (-713)) 84 (-3309 (-1341 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 82 (-3309 (-1341 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090)) (-592 (-713))) 89 (-3309 (-1341 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1090) (-713)) 88 (-3309 (-1341 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-592 (-1090))) 87 (-3309 (-1341 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1090)) 86 (-3309 (-1341 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))))) (-1915 (($ $) 230 (|has| |#1| (-341)))) (-1312 ((|#2| $) 228 (|has| |#1| (-341)))) (-2513 (((-525) $) 64)) (-4084 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1427 (((-205) $) 246 (-1341 (|has| |#2| (-952)) (|has| |#1| (-341)))) (((-357) $) 245 (-1341 (|has| |#2| (-952)) (|has| |#1| (-341)))) (((-501) $) 244 (-1341 (|has| |#2| (-567 (-501))) (|has| |#1| (-341)))) (((-826 (-357)) $) 223 (-1341 (|has| |#2| (-567 (-826 (-357)))) (|has| |#1| (-341)))) (((-826 (-525)) $) 222 (-1341 (|has| |#2| (-567 (-826 (-525)))) (|has| |#1| (-341))))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) 236 (-1341 (-1341 (|has| $ (-136)) (|has| |#2| (-843))) (|has| |#1| (-341))))) (-1801 (($ $) 72)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ |#2|) 271) (($ (-1090)) 241 (-1341 (|has| |#2| (-967 (-1090))) (|has| |#1| (-341)))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-1657 ((|#1| $ (-525)) 59)) (-3421 (((-3 $ "failed") $) 48 (-3309 (-1341 (-3309 (|has| |#2| (-136)) (-1341 (|has| $ (-136)) (|has| |#2| (-843)))) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-2093 (((-713)) 29)) (-2563 ((|#1| $) 102)) (-2498 ((|#2| $) 234 (-1341 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-4121 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) 53 (|has| |#1| (-517)))) (-4096 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-2038 ((|#1| $ (-525)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1908 (|#1| (-1090))))))) (-2929 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-2092 (($ $) 250 (-1341 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) 214 (|has| |#1| (-341))) (($ $ (-713)) 85 (-3309 (-1341 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 83 (-3309 (-1341 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090)) (-592 (-713))) 93 (-3309 (-1341 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1090) (-713)) 92 (-3309 (-1341 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-592 (-1090))) 91 (-3309 (-1341 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1090)) 90 (-3309 (-1341 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))))) (-4024 (((-108) $ $) 254 (-1341 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3995 (((-108) $ $) 255 (-1341 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 253 (-1341 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3983 (((-108) $ $) 256 (-1341 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-4082 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341))) (($ |#2| |#2|) 226 (|has| |#1| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-341))) (($ |#2| $) 204 (|has| |#1| (-341))) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
-(((-1134 |#1| |#2|) (-131) (-976) (-1163 |t#1|)) (T -1134))
-((-2513 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1163 *3)) (-5 *2 (-525)))) (-1908 (*1 *1 *2) (-12 (-4 *3 (-976)) (-4 *1 (-1134 *3 *2)) (-4 *2 (-1163 *3)))) (-4179 (*1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *4 (-976)) (-4 *1 (-1134 *4 *3)) (-4 *3 (-1163 *4)))) (-3048 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1163 *3)))) (-2536 (*1 *1 *1) (-12 (-4 *1 (-1134 *2 *3)) (-4 *2 (-976)) (-4 *3 (-1163 *2)))) (-2536 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-1134 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1163 *3)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1163 *3)))) (-4164 (*1 *2 *1) (|partial| -12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1163 *3)))))
-(-13 (-1132 |t#1|) (-967 |t#2|) (-10 -8 (-15 -4179 ($ (-525) |t#2|)) (-15 -2513 ((-525) $)) (-15 -3048 (|t#2| $)) (-15 -2536 ($ $)) (-15 -2536 ($ (-525) $)) (-15 -1908 ($ |t#2|)) (-15 -4168 (|t#2| $)) (-15 -4164 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-341)) (-6 (-924 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-525)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 |#2|) |has| |#1| (-341)) ((-37 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 |#2| |#2|) |has| |#1| (-341)) ((-107 $ $) -3309 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) -3309 (-12 (|has| |#1| (-341)) (|has| |#2| (-136))) (|has| |#1| (-136))) ((-138) -3309 (-12 (|has| |#1| (-341)) (|has| |#2| (-138))) (|has| |#1| (-138))) ((-566 (-797)) . T) ((-160) -3309 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-567 (-205)) -12 (|has| |#1| (-341)) (|has| |#2| (-952))) ((-567 (-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-952))) ((-567 (-501)) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-501)))) ((-567 (-826 (-357))) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-826 (-357))))) ((-567 (-826 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-826 (-525))))) ((-211 |#2|) |has| |#1| (-341)) ((-213) -3309 (-12 (|has| |#1| (-341)) (|has| |#2| (-213))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 |#2| $) -12 (|has| |#1| (-341)) (|has| |#2| (-265 |#2| |#2|))) ((-265 $ $) |has| (-525) (-1031)) ((-269) -3309 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-288 |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-288 |#2|))) ((-341) |has| |#1| (-341)) ((-316 |#2|) |has| |#1| (-341)) ((-355 |#2|) |has| |#1| (-341)) ((-378 |#2|) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-486 (-1090) |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-486 (-1090) |#2|))) ((-486 |#2| |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-288 |#2|))) ((-517) -3309 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 |#2|) |has| |#1| (-341)) ((-594 $) . T) ((-588 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-588 (-525)))) ((-588 |#2|) |has| |#1| (-341)) ((-660 #1#) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 |#2|) |has| |#1| (-341)) ((-660 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-733) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-734) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-736) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-737) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-762) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-787) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-789) -3309 (-12 (|has| |#1| (-341)) (|has| |#2| (-789))) (-12 (|has| |#1| (-341)) (|has| |#2| (-762)))) ((-834 (-1090)) -3309 (-12 (|has| |#1| (-341)) (|has| |#2| (-834 (-1090)))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))) ((-820 (-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-820 (-357)))) ((-820 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-820 (-525)))) ((-818 |#2|) |has| |#1| (-341)) ((-843) -12 (|has| |#1| (-341)) (|has| |#2| (-843))) ((-905 |#1| #0# (-1004)) . T) ((-854) |has| |#1| (-341)) ((-924 |#2|) |has| |#1| (-341)) ((-933) |has| |#1| (-37 (-385 (-525)))) ((-952) -12 (|has| |#1| (-341)) (|has| |#2| (-952))) ((-967 (-385 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-967 (-525)))) ((-967 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-967 (-525)))) ((-967 (-1090)) -12 (|has| |#1| (-341)) (|has| |#2| (-967 (-1090)))) ((-967 |#2|) . T) ((-982 #1#) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-982 |#1|) . T) ((-982 |#2|) |has| |#1| (-341)) ((-982 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) -12 (|has| |#1| (-341)) (|has| |#2| (-1066))) ((-1112) |has| |#1| (-37 (-385 (-525)))) ((-1115) |has| |#1| (-37 (-385 (-525)))) ((-1126) |has| |#1| (-341)) ((-1130) |has| |#1| (-341)) ((-1132 |#1|) . T) ((-1150 |#1| #0#) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 70)) (-3115 ((|#2| $) NIL (-12 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-4104 (((-592 (-1004)) $) NIL)) (-1251 (((-1090) $) 88)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-4114 (($ $ (-525)) 97) (($ $ (-525) (-525)) 99)) (-2911 (((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 47)) (-3048 ((|#2| $) 11)) (-4164 (((-3 |#2| "failed") $) 30)) (-4168 ((|#2| $) 31)) (-4049 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#2| (-843)) (|has| |#1| (-341))))) (-3321 (($ $) NIL (|has| |#1| (-341)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3969 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#2| (-843)) (|has| |#1| (-341))))) (-2305 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4026 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) 164 (|has| |#1| (-37 (-385 (-525)))))) (-1690 (((-525) $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-3483 (($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 57)) (-4072 (($ $) 196 (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) 172 (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#2| "failed") $) 144) (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#1| (-341)))) (((-3 (-1090) "failed") $) NIL (-12 (|has| |#2| (-967 (-1090))) (|has| |#1| (-341))))) (-2831 ((|#2| $) 143) (((-525) $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-967 (-525))) (|has| |#1| (-341)))) (((-1090) $) NIL (-12 (|has| |#2| (-967 (-1090))) (|has| |#1| (-341))))) (-2536 (($ $) 61) (($ (-525) $) 24)) (-2373 (($ $ $) NIL (|has| |#1| (-341)))) (-1247 (($ $) NIL)) (-1860 (((-632 |#2|) (-632 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#1| (-341))))) (-2866 (((-3 $ "failed") $) 77)) (-2456 (((-385 (-886 |#1|)) $ (-525)) 112 (|has| |#1| (-517))) (((-385 (-886 |#1|)) $ (-525) (-525)) 114 (|has| |#1| (-517)))) (-3375 (($) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-2356 (($ $ $) NIL (|has| |#1| (-341)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2250 (((-108) $) NIL (|has| |#1| (-341)))) (-3026 (((-108) $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-4150 (((-108) $) 64)) (-1335 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| |#2| (-820 (-357))) (|has| |#1| (-341)))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| |#2| (-820 (-525))) (|has| |#1| (-341))))) (-1737 (((-525) $) 93) (((-525) $ (-525)) 95)) (-2133 (((-108) $) NIL)) (-3830 (($ $) NIL (|has| |#1| (-341)))) (-1303 ((|#2| $) 151 (|has| |#1| (-341)))) (-3391 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1816 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1066)) (|has| |#1| (-341))))) (-2882 (((-108) $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-3817 (($ $ (-855)) 136)) (-3445 (($ (-1 |#1| (-525)) $) 132)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-525)) 19) (($ $ (-1004) (-525)) NIL) (($ $ (-592 (-1004)) (-592 (-525))) NIL)) (-3525 (($ $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3630 (($ $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-1370 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-341)))) (-2091 (($ $) 162 (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4179 (($ (-525) |#2|) 10)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 145 (|has| |#1| (-341)))) (-3766 (($ $) 214 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 219 (-3309 (-12 (|has| |#1| (-15 -3766 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -4104 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112)))))) (-2279 (($) NIL (-12 (|has| |#2| (-1066)) (|has| |#1| (-341))) CONST)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2723 (($ $) NIL (-12 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-1720 ((|#2| $) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#2| (-843)) (|has| |#1| (-341))))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| |#2| (-843)) (|has| |#1| (-341))))) (-3959 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-3538 (($ $ (-525)) 126)) (-2338 (((-3 $ "failed") $ $) 116 (|has| |#1| (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1982 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-3092 (((-1071 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1090) |#2|) NIL (-12 (|has| |#2| (-486 (-1090) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-1090)) (-592 |#2|)) NIL (-12 (|has| |#2| (-486 (-1090) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341))))) (-2183 (((-713) $) NIL (|has| |#1| (-341)))) (-3928 ((|#1| $ (-525)) 91) (($ $ $) 79 (|has| (-525) (-1031))) (($ $ |#2|) NIL (-12 (|has| |#2| (-265 |#2| |#2|)) (|has| |#1| (-341))))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-341)))) (-3013 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-3309 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 137 (-3309 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-3309 (-12 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090) (-713)) NIL (-3309 (-12 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-592 (-1090))) NIL (-3309 (-12 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090)) 140 (-3309 (-12 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))))) (-1915 (($ $) NIL (|has| |#1| (-341)))) (-1312 ((|#2| $) 152 (|has| |#1| (-341)))) (-2513 (((-525) $) 12)) (-4084 (($ $) 198 (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) 174 (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) 170 (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) 166 (|has| |#1| (-37 (-385 (-525)))))) (-1427 (((-205) $) NIL (-12 (|has| |#2| (-952)) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| |#2| (-952)) (|has| |#1| (-341)))) (((-501) $) NIL (-12 (|has| |#2| (-567 (-501))) (|has| |#1| (-341)))) (((-826 (-357)) $) NIL (-12 (|has| |#2| (-567 (-826 (-357)))) (|has| |#1| (-341)))) (((-826 (-525)) $) NIL (-12 (|has| |#2| (-567 (-826 (-525)))) (|has| |#1| (-341))))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-843)) (|has| |#1| (-341))))) (-1801 (($ $) 124)) (-1908 (((-797) $) 245) (($ (-525)) 23) (($ |#1|) 21 (|has| |#1| (-160))) (($ |#2|) 20) (($ (-1090)) NIL (-12 (|has| |#2| (-967 (-1090))) (|has| |#1| (-341)))) (($ (-385 (-525))) 155 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1657 ((|#1| $ (-525)) 74)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#2| (-843)) (|has| |#1| (-341))) (-12 (|has| |#2| (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-2093 (((-713)) 142)) (-2563 ((|#1| $) 90)) (-2498 ((|#2| $) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-4121 (($ $) 204 (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) 180 (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4096 (($ $) 200 (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) 176 (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) 208 (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) 184 (|has| |#1| (-37 (-385 (-525)))))) (-2038 ((|#1| $ (-525)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1908 (|#1| (-1090))))))) (-2929 (($ $) 210 (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) 186 (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) 206 (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) 182 (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) 202 (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) 178 (|has| |#1| (-37 (-385 (-525)))))) (-2092 (($ $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3875 (($) 13 T CONST)) (-3882 (($) 17 T CONST)) (-1424 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-3309 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-3309 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-3309 (-12 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090) (-713)) NIL (-3309 (-12 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-592 (-1090))) NIL (-3309 (-12 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090)) NIL (-3309 (-12 (|has| |#2| (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))))) (-4024 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3995 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3961 (((-108) $ $) 63)) (-4010 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3983 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 149 (|has| |#1| (-341))) (($ |#2| |#2|) 150 (|has| |#1| (-341)))) (-4070 (($ $) 213) (($ $ $) 68)) (-4059 (($ $ $) 66)) (** (($ $ (-855)) NIL) (($ $ (-713)) 73) (($ $ (-525)) 146 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-341))) (($ |#2| $) 147 (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-1135 |#1| |#2|) (-1134 |#1| |#2|) (-976) (-1163 |#1|)) (T -1135))
-NIL
-(-1134 |#1| |#2|)
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3115 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-4104 (((-592 (-1004)) $) NIL)) (-1251 (((-1090) $) 10)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3635 (($ $) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-2950 (((-108) $) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-4114 (($ $ (-525)) NIL) (($ $ (-525) (-525)) NIL)) (-2911 (((-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) NIL)) (-3048 (((-1164 |#1| |#2| |#3|) $) NIL)) (-4164 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) NIL)) (-4168 (((-1164 |#1| |#2| |#3|) $) NIL)) (-4049 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-3321 (($ $) NIL (|has| |#1| (-341)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3969 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-2305 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4026 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1690 (((-525) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-3483 (($ (-1071 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) NIL)) (-4072 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-1164 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1090) "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-967 (-1090))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341)))) (((-3 (-525) "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341))))) (-2831 (((-1164 |#1| |#2| |#3|) $) NIL) (((-1090) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-967 (-1090))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341)))) (((-525) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341))))) (-2536 (($ $) NIL) (($ (-525) $) NIL)) (-2373 (($ $ $) NIL (|has| |#1| (-341)))) (-1247 (($ $) NIL)) (-1860 (((-632 (-1164 |#1| |#2| |#3|)) (-632 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3276 (-632 (-1164 |#1| |#2| |#3|))) (|:| |vec| (-1172 (-1164 |#1| |#2| |#3|)))) (-632 $) (-1172 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341))))) (-2866 (((-3 $ "failed") $) NIL)) (-2456 (((-385 (-886 |#1|)) $ (-525)) NIL (|has| |#1| (-517))) (((-385 (-886 |#1|)) $ (-525) (-525)) NIL (|has| |#1| (-517)))) (-3375 (($) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-2356 (($ $ $) NIL (|has| |#1| (-341)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2250 (((-108) $) NIL (|has| |#1| (-341)))) (-3026 (((-108) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-4150 (((-108) $) NIL)) (-1335 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1524 (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-820 (-525))) (|has| |#1| (-341)))) (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-820 (-357))) (|has| |#1| (-341))))) (-1737 (((-525) $) NIL) (((-525) $ (-525)) NIL)) (-2133 (((-108) $) NIL)) (-3830 (($ $) NIL (|has| |#1| (-341)))) (-1303 (((-1164 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341)))) (-3391 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1816 (((-3 $ "failed") $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-341))))) (-2882 (((-108) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-3817 (($ $ (-855)) NIL)) (-3445 (($ (-1 |#1| (-525)) $) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-525)) 17) (($ $ (-1004) (-525)) NIL) (($ $ (-592 (-1004)) (-592 (-525))) NIL)) (-3525 (($ $ $) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3630 (($ $ $) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-341)))) (-2091 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4179 (($ (-525) (-1164 |#1| |#2| |#3|)) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-341)))) (-3766 (($ $) 25 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) NIL (-3309 (-12 (|has| |#1| (-15 -3766 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -4104 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112))))) (($ $ (-1168 |#2|)) 26 (|has| |#1| (-37 (-385 (-525)))))) (-2279 (($) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-1066)) (|has| |#1| (-341))) CONST)) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2723 (($ $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-1720 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-3959 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-3538 (($ $ (-525)) NIL)) (-2338 (((-3 $ "failed") $ $) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1982 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3092 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1090) (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-486 (-1090) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1090)) (-592 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-486 (-1090) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-273 (-1164 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-288 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-273 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-288 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-288 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1164 |#1| |#2| |#3|)) (-592 (-1164 |#1| |#2| |#3|))) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-288 (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-2183 (((-713) $) NIL (|has| |#1| (-341)))) (-3928 ((|#1| $ (-525)) NIL) (($ $ $) NIL (|has| (-525) (-1031))) (($ $ (-1164 |#1| |#2| |#3|)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-265 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-341)))) (-3013 (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1168 |#2|)) 24) (($ $ (-713)) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 23 (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090) (-713)) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-592 (-1090))) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090)) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))))) (-1915 (($ $) NIL (|has| |#1| (-341)))) (-1312 (((-1164 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341)))) (-2513 (((-525) $) NIL)) (-4084 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1427 (((-501) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-567 (-501))) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-952)) (|has| |#1| (-341)))) (((-205) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-952)) (|has| |#1| (-341)))) (((-826 (-357)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-567 (-826 (-357)))) (|has| |#1| (-341)))) (((-826 (-525)) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-567 (-826 (-525)))) (|has| |#1| (-341))))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))))) (-1801 (($ $) NIL)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1164 |#1| |#2| |#3|)) NIL) (($ (-1168 |#2|)) 22) (($ (-1090)) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-967 (-1090))) (|has| |#1| (-341)))) (($ $) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517)))) (($ (-385 (-525))) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-967 (-525))) (|has| |#1| (-341))) (|has| |#1| (-37 (-385 (-525))))))) (-1657 ((|#1| $ (-525)) NIL)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-2093 (((-713)) NIL)) (-2563 ((|#1| $) 11)) (-2498 (((-1164 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-4121 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-843)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-4096 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2038 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1908 (|#1| (-1090))))))) (-2929 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2092 (($ $) NIL (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3875 (($) 19 T CONST)) (-3882 (($) 15 T CONST)) (-1424 (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090) (-713)) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-592 (-1090))) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090)))))) (($ $ (-1090)) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-834 (-1090))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-834 (-1090))))))) (-4024 (((-108) $ $) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3995 (((-108) $ $) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3983 (((-108) $ $) NIL (-3309 (-12 (|has| (-1164 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1164 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341))) (($ (-1164 |#1| |#2| |#3|) (-1164 |#1| |#2| |#3|)) NIL (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) 20)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1164 |#1| |#2| |#3|)) NIL (|has| |#1| (-341))) (($ (-1164 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-1136 |#1| |#2| |#3|) (-13 (-1134 |#1| (-1164 |#1| |#2| |#3|)) (-10 -8 (-15 -1908 ($ (-1168 |#2|))) (-15 -3013 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3766 ($ $ (-1168 |#2|))) |%noBranch|))) (-976) (-1090) |#1|) (T -1136))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1136 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1136 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1136 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3))))
-(-13 (-1134 |#1| (-1164 |#1| |#2| |#3|)) (-10 -8 (-15 -1908 ($ (-1168 |#2|))) (-15 -3013 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3766 ($ $ (-1168 |#2|))) |%noBranch|)))
-((-4163 (((-2 (|:| |contp| (-525)) (|:| -2203 (-592 (-2 (|:| |irr| |#1|) (|:| -1591 (-525)))))) |#1| (-108)) 12)) (-4169 (((-396 |#1|) |#1|) 22)) (-3959 (((-396 |#1|) |#1|) 21)))
-(((-1137 |#1|) (-10 -7 (-15 -3959 ((-396 |#1|) |#1|)) (-15 -4169 ((-396 |#1|) |#1|)) (-15 -4163 ((-2 (|:| |contp| (-525)) (|:| -2203 (-592 (-2 (|:| |irr| |#1|) (|:| -1591 (-525)))))) |#1| (-108)))) (-1148 (-525))) (T -1137))
-((-4163 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -2203 (-592 (-2 (|:| |irr| *3) (|:| -1591 (-525))))))) (-5 *1 (-1137 *3)) (-4 *3 (-1148 (-525))))) (-4169 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-1137 *3)) (-4 *3 (-1148 (-525))))) (-3959 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-1137 *3)) (-4 *3 (-1148 (-525))))))
-(-10 -7 (-15 -3959 ((-396 |#1|) |#1|)) (-15 -4169 ((-396 |#1|) |#1|)) (-15 -4163 ((-2 (|:| |contp| (-525)) (|:| -2203 (-592 (-2 (|:| |irr| |#1|) (|:| -1591 (-525)))))) |#1| (-108))))
-((-1370 (((-1071 |#2|) (-1 |#2| |#1|) (-1139 |#1|)) 23 (|has| |#1| (-787))) (((-1139 |#2|) (-1 |#2| |#1|) (-1139 |#1|)) 17)))
-(((-1138 |#1| |#2|) (-10 -7 (-15 -1370 ((-1139 |#2|) (-1 |#2| |#1|) (-1139 |#1|))) (IF (|has| |#1| (-787)) (-15 -1370 ((-1071 |#2|) (-1 |#2| |#1|) (-1139 |#1|))) |%noBranch|)) (-1126) (-1126)) (T -1138))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5)) (-4 *5 (-787)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1071 *6)) (-5 *1 (-1138 *5 *6)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1139 *6)) (-5 *1 (-1138 *5 *6)))))
-(-10 -7 (-15 -1370 ((-1139 |#2|) (-1 |#2| |#1|) (-1139 |#1|))) (IF (|has| |#1| (-787)) (-15 -1370 ((-1071 |#2|) (-1 |#2| |#1|) (-1139 |#1|))) |%noBranch|))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-2314 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-1370 (((-1071 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-787)))) (-2707 ((|#1| $) 14)) (-2503 ((|#1| $) 10)) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-2514 (((-525) $) 18)) (-2240 ((|#1| $) 17)) (-2525 ((|#1| $) 11)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-4036 (((-108) $) 16)) (-2692 (((-1071 |#1|) $) 38 (|has| |#1| (-787))) (((-1071 |#1|) (-592 $)) 37 (|has| |#1| (-787)))) (-1427 (($ |#1|) 25)) (-1908 (($ (-1014 |#1|)) 24) (((-797) $) 34 (|has| |#1| (-1019)))) (-1404 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3764 (($ $ (-525)) 13)) (-3961 (((-108) $ $) 27 (|has| |#1| (-1019)))))
-(((-1139 |#1|) (-13 (-1013 |#1|) (-10 -8 (-15 -1404 ($ |#1|)) (-15 -2314 ($ |#1|)) (-15 -1908 ($ (-1014 |#1|))) (-15 -4036 ((-108) $)) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1015 |#1| (-1071 |#1|))) |%noBranch|))) (-1126)) (T -1139))
-((-1404 (*1 *1 *2) (-12 (-5 *1 (-1139 *2)) (-4 *2 (-1126)))) (-2314 (*1 *1 *2) (-12 (-5 *1 (-1139 *2)) (-4 *2 (-1126)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-1014 *3)) (-4 *3 (-1126)) (-5 *1 (-1139 *3)))) (-4036 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1139 *3)) (-4 *3 (-1126)))))
-(-13 (-1013 |#1|) (-10 -8 (-15 -1404 ($ |#1|)) (-15 -2314 ($ |#1|)) (-15 -1908 ($ (-1014 |#1|))) (-15 -4036 ((-108) $)) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1015 |#1| (-1071 |#1|))) |%noBranch|)))
-((-1370 (((-1145 |#3| |#4|) (-1 |#4| |#2|) (-1145 |#1| |#2|)) 15)))
-(((-1140 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1370 ((-1145 |#3| |#4|) (-1 |#4| |#2|) (-1145 |#1| |#2|)))) (-1090) (-976) (-1090) (-976)) (T -1140))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1145 *5 *6)) (-14 *5 (-1090)) (-4 *6 (-976)) (-4 *8 (-976)) (-5 *2 (-1145 *7 *8)) (-5 *1 (-1140 *5 *6 *7 *8)) (-14 *7 (-1090)))))
-(-10 -7 (-15 -1370 ((-1145 |#3| |#4|) (-1 |#4| |#2|) (-1145 |#1| |#2|))))
-((-1284 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2717 ((|#1| |#3|) 13)) (-2636 ((|#3| |#3|) 19)))
-(((-1141 |#1| |#2| |#3|) (-10 -7 (-15 -2717 (|#1| |#3|)) (-15 -2636 (|#3| |#3|)) (-15 -1284 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-517) (-924 |#1|) (-1148 |#2|)) (T -1141))
-((-1284 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-924 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1141 *4 *5 *3)) (-4 *3 (-1148 *5)))) (-2636 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *4 (-924 *3)) (-5 *1 (-1141 *3 *4 *2)) (-4 *2 (-1148 *4)))) (-2717 (*1 *2 *3) (-12 (-4 *4 (-924 *2)) (-4 *2 (-517)) (-5 *1 (-1141 *2 *4 *3)) (-4 *3 (-1148 *4)))))
-(-10 -7 (-15 -2717 (|#1| |#3|)) (-15 -2636 (|#3| |#3|)) (-15 -1284 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1624 (((-3 |#2| "failed") |#2| (-713) |#1|) 29)) (-1402 (((-3 |#2| "failed") |#2| (-713)) 30)) (-3840 (((-3 (-2 (|:| -4138 |#2|) (|:| -4152 |#2|)) "failed") |#2|) 43)) (-3846 (((-592 |#2|) |#2|) 45)) (-2217 (((-3 |#2| "failed") |#2| |#2|) 40)))
-(((-1142 |#1| |#2|) (-10 -7 (-15 -1402 ((-3 |#2| "failed") |#2| (-713))) (-15 -1624 ((-3 |#2| "failed") |#2| (-713) |#1|)) (-15 -2217 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3840 ((-3 (-2 (|:| -4138 |#2|) (|:| -4152 |#2|)) "failed") |#2|)) (-15 -3846 ((-592 |#2|) |#2|))) (-13 (-517) (-138)) (-1148 |#1|)) (T -1142))
-((-3846 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-592 *3)) (-5 *1 (-1142 *4 *3)) (-4 *3 (-1148 *4)))) (-3840 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-2 (|:| -4138 *3) (|:| -4152 *3))) (-5 *1 (-1142 *4 *3)) (-4 *3 (-1148 *4)))) (-2217 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1142 *3 *2)) (-4 *2 (-1148 *3)))) (-1624 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1142 *4 *2)) (-4 *2 (-1148 *4)))) (-1402 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1142 *4 *2)) (-4 *2 (-1148 *4)))))
-(-10 -7 (-15 -1402 ((-3 |#2| "failed") |#2| (-713))) (-15 -1624 ((-3 |#2| "failed") |#2| (-713) |#1|)) (-15 -2217 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3840 ((-3 (-2 (|:| -4138 |#2|) (|:| -4152 |#2|)) "failed") |#2|)) (-15 -3846 ((-592 |#2|) |#2|)))
-((-3715 (((-3 (-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) "failed") |#2| |#2|) 32)))
-(((-1143 |#1| |#2|) (-10 -7 (-15 -3715 ((-3 (-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) "failed") |#2| |#2|))) (-517) (-1148 |#1|)) (T -1143))
-((-3715 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3))) (-5 *1 (-1143 *4 *3)) (-4 *3 (-1148 *4)))))
-(-10 -7 (-15 -3715 ((-3 (-2 (|:| -1338 |#2|) (|:| -1632 |#2|)) "failed") |#2| |#2|)))
-((-1274 ((|#2| |#2| |#2|) 19)) (-4040 ((|#2| |#2| |#2|) 30)) (-2137 ((|#2| |#2| |#2| (-713) (-713)) 36)))
-(((-1144 |#1| |#2|) (-10 -7 (-15 -1274 (|#2| |#2| |#2|)) (-15 -4040 (|#2| |#2| |#2|)) (-15 -2137 (|#2| |#2| |#2| (-713) (-713)))) (-976) (-1148 |#1|)) (T -1144))
-((-2137 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-713)) (-4 *4 (-976)) (-5 *1 (-1144 *4 *2)) (-4 *2 (-1148 *4)))) (-4040 (*1 *2 *2 *2) (-12 (-4 *3 (-976)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-1148 *3)))) (-1274 (*1 *2 *2 *2) (-12 (-4 *3 (-976)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-1148 *3)))))
-(-10 -7 (-15 -1274 (|#2| |#2| |#2|)) (-15 -4040 (|#2| |#2| |#2|)) (-15 -2137 (|#2| |#2| |#2| (-713) (-713))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-1401 (((-1172 |#2|) $ (-713)) NIL)) (-4104 (((-592 (-1004)) $) NIL)) (-1361 (($ (-1086 |#2|)) NIL)) (-3927 (((-1086 $) $ (-1004)) NIL) (((-1086 |#2|) $) NIL)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-3635 (($ $) NIL (|has| |#2| (-517)))) (-2950 (((-108) $) NIL (|has| |#2| (-517)))) (-1324 (((-713) $) NIL) (((-713) $ (-592 (-1004))) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1820 (($ $ $) NIL (|has| |#2| (-517)))) (-3357 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-3321 (($ $) NIL (|has| |#2| (-429)))) (-1510 (((-396 $) $) NIL (|has| |#2| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-2305 (((-108) $ $) NIL (|has| |#2| (-341)))) (-3311 (($ $ (-713)) NIL)) (-1821 (($ $ (-713)) NIL)) (-3976 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-429)))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-967 (-525)))) (((-3 (-1004) "failed") $) NIL)) (-2831 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-967 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-967 (-525)))) (((-1004) $) NIL)) (-2506 (($ $ $ (-1004)) NIL (|has| |#2| (-160))) ((|#2| $ $) NIL (|has| |#2| (-160)))) (-2373 (($ $ $) NIL (|has| |#2| (-341)))) (-1247 (($ $) NIL)) (-1860 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#2|)) (|:| |vec| (-1172 |#2|))) (-632 $) (-1172 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-2356 (($ $ $) NIL (|has| |#2| (-341)))) (-1766 (($ $ $) NIL)) (-3744 (($ $ $) NIL (|has| |#2| (-517)))) (-3196 (((-2 (|:| -1459 |#2|) (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#2| (-517)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| |#2| (-341)))) (-3811 (($ $) NIL (|has| |#2| (-429))) (($ $ (-1004)) NIL (|has| |#2| (-429)))) (-1234 (((-592 $) $) NIL)) (-2250 (((-108) $) NIL (|has| |#2| (-843)))) (-2099 (($ $ |#2| (-713) $) NIL)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) NIL (-12 (|has| (-1004) (-820 (-357))) (|has| |#2| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) NIL (-12 (|has| (-1004) (-820 (-525))) (|has| |#2| (-820 (-525)))))) (-1737 (((-713) $ $) NIL (|has| |#2| (-517)))) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) NIL)) (-1816 (((-3 $ "failed") $) NIL (|has| |#2| (-1066)))) (-4092 (($ (-1086 |#2|) (-1004)) NIL) (($ (-1086 $) (-1004)) NIL)) (-3817 (($ $ (-713)) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) NIL)) (-4079 (($ |#2| (-713)) 17) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ (-1004)) NIL) (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL)) (-3181 (((-713) $) NIL) (((-713) $ (-1004)) NIL) (((-592 (-713)) $ (-592 (-1004))) NIL)) (-3525 (($ $ $) NIL (|has| |#2| (-789)))) (-3630 (($ $ $) NIL (|has| |#2| (-789)))) (-1331 (($ (-1 (-713) (-713)) $) NIL)) (-1370 (($ (-1 |#2| |#2|) $) NIL)) (-2180 (((-1086 |#2|) $) NIL)) (-1666 (((-3 (-1004) "failed") $) NIL)) (-1212 (($ $) NIL)) (-1224 ((|#2| $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-2337 (((-1073) $) NIL)) (-3781 (((-2 (|:| -1338 $) (|:| -1632 $)) $ (-713)) NIL)) (-3245 (((-3 (-592 $) "failed") $) NIL)) (-3193 (((-3 (-592 $) "failed") $) NIL)) (-3283 (((-3 (-2 (|:| |var| (-1004)) (|:| -1600 (-713))) "failed") $) NIL)) (-3766 (($ $) NIL (|has| |#2| (-37 (-385 (-525)))))) (-2279 (($) NIL (|has| |#2| (-1066)) CONST)) (-2663 (((-1037) $) NIL)) (-4221 (((-108) $) NIL)) (-4232 ((|#2| $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#2| (-429)))) (-3244 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-1631 (($ $ (-713) |#2| $) NIL)) (-2918 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) NIL (|has| |#2| (-843)))) (-3959 (((-396 $) $) NIL (|has| |#2| (-843)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#2| (-341)))) (-2338 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-3092 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1004) |#2|) NIL) (($ $ (-592 (-1004)) (-592 |#2|)) NIL) (($ $ (-1004) $) NIL) (($ $ (-592 (-1004)) (-592 $)) NIL)) (-2183 (((-713) $) NIL (|has| |#2| (-341)))) (-3928 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#2| (-517))) ((|#2| (-385 $) |#2|) NIL (|has| |#2| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#2| (-517)))) (-2063 (((-3 $ "failed") $ (-713)) NIL)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#2| (-341)))) (-1400 (($ $ (-1004)) NIL (|has| |#2| (-160))) ((|#2| $) NIL (|has| |#2| (-160)))) (-3013 (($ $ (-1004)) NIL) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2513 (((-713) $) NIL) (((-713) $ (-1004)) NIL) (((-592 (-713)) $ (-592 (-1004))) NIL)) (-1427 (((-826 (-357)) $) NIL (-12 (|has| (-1004) (-567 (-826 (-357)))) (|has| |#2| (-567 (-826 (-357)))))) (((-826 (-525)) $) NIL (-12 (|has| (-1004) (-567 (-826 (-525)))) (|has| |#2| (-567 (-826 (-525)))))) (((-501) $) NIL (-12 (|has| (-1004) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2751 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-1004)) NIL (|has| |#2| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-843))))) (-1925 (((-3 $ "failed") $ $) NIL (|has| |#2| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#2| (-517)))) (-1908 (((-797) $) 13) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-1004)) NIL) (($ (-1168 |#1|)) 19) (($ (-385 (-525))) NIL (-3309 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-967 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-3600 (((-592 |#2|) $) NIL)) (-1657 ((|#2| $ (-713)) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-3421 (((-3 $ "failed") $) NIL (-3309 (-12 (|has| $ (-136)) (|has| |#2| (-843))) (|has| |#2| (-136))))) (-2093 (((-713)) NIL)) (-4116 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-2262 (((-108) $ $) NIL (|has| |#2| (-517)))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-3882 (($) 14 T CONST)) (-1424 (($ $ (-1004)) NIL) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1090)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1090) (-713)) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) NIL (|has| |#2| (-834 (-1090)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4024 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3961 (((-108) $ $) NIL)) (-4010 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4082 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1145 |#1| |#2|) (-13 (-1148 |#2|) (-10 -8 (-15 -1908 ($ (-1168 |#1|))) (-15 -1631 ($ $ (-713) |#2| $)))) (-1090) (-976)) (T -1145))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1168 *3)) (-14 *3 (-1090)) (-5 *1 (-1145 *3 *4)) (-4 *4 (-976)))) (-1631 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1145 *4 *3)) (-14 *4 (-1090)) (-4 *3 (-976)))))
-(-13 (-1148 |#2|) (-10 -8 (-15 -1908 ($ (-1168 |#1|))) (-15 -1631 ($ $ (-713) |#2| $))))
-((-1370 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1146 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1370 (|#4| (-1 |#3| |#1|) |#2|))) (-976) (-1148 |#1|) (-976) (-1148 |#3|)) (T -1146))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-976)) (-4 *6 (-976)) (-4 *2 (-1148 *6)) (-5 *1 (-1146 *5 *4 *6 *2)) (-4 *4 (-1148 *5)))))
-(-10 -7 (-15 -1370 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1401 (((-1172 |#2|) $ (-713)) 114)) (-4104 (((-592 (-1004)) $) 15)) (-1361 (($ (-1086 |#2|)) 67)) (-1324 (((-713) $) NIL) (((-713) $ (-592 (-1004))) 18)) (-3357 (((-396 (-1086 $)) (-1086 $)) 185)) (-3321 (($ $) 175)) (-1510 (((-396 $) $) 173)) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 82)) (-3311 (($ $ (-713)) 71)) (-1821 (($ $ (-713)) 73)) (-3976 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-1264 (((-3 |#2| "failed") $) 117) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-1004) "failed") $) NIL)) (-2831 ((|#2| $) 115) (((-385 (-525)) $) NIL) (((-525) $) NIL) (((-1004) $) NIL)) (-3744 (($ $ $) 151)) (-3196 (((-2 (|:| -1459 |#2|) (|:| -1338 $) (|:| -1632 $)) $ $) 153)) (-1737 (((-713) $ $) 170)) (-1816 (((-3 $ "failed") $) 123)) (-4079 (($ |#2| (-713)) NIL) (($ $ (-1004) (-713)) 47) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-3181 (((-713) $) NIL) (((-713) $ (-1004)) 42) (((-592 (-713)) $ (-592 (-1004))) 43)) (-2180 (((-1086 |#2|) $) 59)) (-1666 (((-3 (-1004) "failed") $) 40)) (-3781 (((-2 (|:| -1338 $) (|:| -1632 $)) $ (-713)) 70)) (-3766 (($ $) 197)) (-2279 (($) 119)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 182)) (-2918 (((-396 (-1086 $)) (-1086 $)) 88)) (-1371 (((-396 (-1086 $)) (-1086 $)) 86)) (-3959 (((-396 $) $) 107)) (-3092 (($ $ (-592 (-273 $))) 39) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1004) |#2|) 31) (($ $ (-592 (-1004)) (-592 |#2|)) 28) (($ $ (-1004) $) 25) (($ $ (-592 (-1004)) (-592 $)) 23)) (-2183 (((-713) $) 188)) (-3928 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) 147) ((|#2| (-385 $) |#2|) 187) (((-385 $) $ (-385 $)) 169)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 191)) (-3013 (($ $ (-1004)) 140) (($ $ (-592 (-1004))) NIL) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) 138) (($ $ (-1090)) NIL) (($ $ (-592 (-1090))) NIL) (($ $ (-1090) (-713)) NIL) (($ $ (-592 (-1090)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-2513 (((-713) $) NIL) (((-713) $ (-1004)) 16) (((-592 (-713)) $ (-592 (-1004))) 20)) (-2751 ((|#2| $) NIL) (($ $ (-1004)) 125)) (-1925 (((-3 $ "failed") $ $) 161) (((-3 (-385 $) "failed") (-385 $) $) 157)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-1004)) 51) (($ (-385 (-525))) NIL) (($ $) NIL)))
-(((-1147 |#1| |#2|) (-10 -8 (-15 -1908 (|#1| |#1|)) (-15 -1763 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -1510 ((-396 |#1|) |#1|)) (-15 -3321 (|#1| |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -2279 (|#1|)) (-15 -1816 ((-3 |#1| "failed") |#1|)) (-15 -3928 ((-385 |#1|) |#1| (-385 |#1|))) (-15 -2183 ((-713) |#1|)) (-15 -1760 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|)) (-15 -3766 (|#1| |#1|)) (-15 -3928 (|#2| (-385 |#1|) |#2|)) (-15 -3976 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3196 ((-2 (|:| -1459 |#2|) (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|)) (-15 -3744 (|#1| |#1| |#1|)) (-15 -1925 ((-3 (-385 |#1|) "failed") (-385 |#1|) |#1|)) (-15 -1925 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1737 ((-713) |#1| |#1|)) (-15 -3928 ((-385 |#1|) (-385 |#1|) (-385 |#1|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1821 (|#1| |#1| (-713))) (-15 -3311 (|#1| |#1| (-713))) (-15 -3781 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| (-713))) (-15 -1361 (|#1| (-1086 |#2|))) (-15 -2180 ((-1086 |#2|) |#1|)) (-15 -1401 ((-1172 |#2|) |#1| (-713))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -3928 (|#1| |#1| |#1|)) (-15 -3928 (|#2| |#1| |#2|)) (-15 -3959 ((-396 |#1|) |#1|)) (-15 -3357 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -1371 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2918 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2620 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|))) (-15 -2751 (|#1| |#1| (-1004))) (-15 -4104 ((-592 (-1004)) |#1|)) (-15 -1324 ((-713) |#1| (-592 (-1004)))) (-15 -1324 ((-713) |#1|)) (-15 -4079 (|#1| |#1| (-592 (-1004)) (-592 (-713)))) (-15 -4079 (|#1| |#1| (-1004) (-713))) (-15 -3181 ((-592 (-713)) |#1| (-592 (-1004)))) (-15 -3181 ((-713) |#1| (-1004))) (-15 -1666 ((-3 (-1004) "failed") |#1|)) (-15 -2513 ((-592 (-713)) |#1| (-592 (-1004)))) (-15 -2513 ((-713) |#1| (-1004))) (-15 -2831 ((-1004) |#1|)) (-15 -1264 ((-3 (-1004) "failed") |#1|)) (-15 -1908 (|#1| (-1004))) (-15 -3092 (|#1| |#1| (-592 (-1004)) (-592 |#1|))) (-15 -3092 (|#1| |#1| (-1004) |#1|)) (-15 -3092 (|#1| |#1| (-592 (-1004)) (-592 |#2|))) (-15 -3092 (|#1| |#1| (-1004) |#2|)) (-15 -3092 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -3092 (|#1| |#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| (-273 |#1|))) (-15 -3092 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2513 ((-713) |#1|)) (-15 -4079 (|#1| |#2| (-713))) (-15 -2831 ((-525) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1908 (|#1| |#2|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -2831 (|#2| |#1|)) (-15 -3181 ((-713) |#1|)) (-15 -2751 (|#2| |#1|)) (-15 -3013 (|#1| |#1| (-592 (-1004)) (-592 (-713)))) (-15 -3013 (|#1| |#1| (-1004) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1004)))) (-15 -3013 (|#1| |#1| (-1004))) (-15 -1908 (|#1| (-525))) (-15 -1908 ((-797) |#1|))) (-1148 |#2|) (-976)) (T -1147))
-NIL
-(-10 -8 (-15 -1908 (|#1| |#1|)) (-15 -1763 ((-1086 |#1|) (-1086 |#1|) (-1086 |#1|))) (-15 -1510 ((-396 |#1|) |#1|)) (-15 -3321 (|#1| |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -2279 (|#1|)) (-15 -1816 ((-3 |#1| "failed") |#1|)) (-15 -3928 ((-385 |#1|) |#1| (-385 |#1|))) (-15 -2183 ((-713) |#1|)) (-15 -1760 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|)) (-15 -3766 (|#1| |#1|)) (-15 -3928 (|#2| (-385 |#1|) |#2|)) (-15 -3976 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3196 ((-2 (|:| -1459 |#2|) (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| |#1|)) (-15 -3744 (|#1| |#1| |#1|)) (-15 -1925 ((-3 (-385 |#1|) "failed") (-385 |#1|) |#1|)) (-15 -1925 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1737 ((-713) |#1| |#1|)) (-15 -3928 ((-385 |#1|) (-385 |#1|) (-385 |#1|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1821 (|#1| |#1| (-713))) (-15 -3311 (|#1| |#1| (-713))) (-15 -3781 ((-2 (|:| -1338 |#1|) (|:| -1632 |#1|)) |#1| (-713))) (-15 -1361 (|#1| (-1086 |#2|))) (-15 -2180 ((-1086 |#2|) |#1|)) (-15 -1401 ((-1172 |#2|) |#1| (-713))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3013 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)) (-592 (-713)))) (-15 -3013 (|#1| |#1| (-1090) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1090)))) (-15 -3013 (|#1| |#1| (-1090))) (-15 -3013 (|#1| |#1|)) (-15 -3013 (|#1| |#1| (-713))) (-15 -3928 (|#1| |#1| |#1|)) (-15 -3928 (|#2| |#1| |#2|)) (-15 -3959 ((-396 |#1|) |#1|)) (-15 -3357 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -1371 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2918 ((-396 (-1086 |#1|)) (-1086 |#1|))) (-15 -2620 ((-3 (-592 (-1086 |#1|)) "failed") (-592 (-1086 |#1|)) (-1086 |#1|))) (-15 -2751 (|#1| |#1| (-1004))) (-15 -4104 ((-592 (-1004)) |#1|)) (-15 -1324 ((-713) |#1| (-592 (-1004)))) (-15 -1324 ((-713) |#1|)) (-15 -4079 (|#1| |#1| (-592 (-1004)) (-592 (-713)))) (-15 -4079 (|#1| |#1| (-1004) (-713))) (-15 -3181 ((-592 (-713)) |#1| (-592 (-1004)))) (-15 -3181 ((-713) |#1| (-1004))) (-15 -1666 ((-3 (-1004) "failed") |#1|)) (-15 -2513 ((-592 (-713)) |#1| (-592 (-1004)))) (-15 -2513 ((-713) |#1| (-1004))) (-15 -2831 ((-1004) |#1|)) (-15 -1264 ((-3 (-1004) "failed") |#1|)) (-15 -1908 (|#1| (-1004))) (-15 -3092 (|#1| |#1| (-592 (-1004)) (-592 |#1|))) (-15 -3092 (|#1| |#1| (-1004) |#1|)) (-15 -3092 (|#1| |#1| (-592 (-1004)) (-592 |#2|))) (-15 -3092 (|#1| |#1| (-1004) |#2|)) (-15 -3092 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -3092 (|#1| |#1| |#1| |#1|)) (-15 -3092 (|#1| |#1| (-273 |#1|))) (-15 -3092 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -2513 ((-713) |#1|)) (-15 -4079 (|#1| |#2| (-713))) (-15 -2831 ((-525) |#1|)) (-15 -1264 ((-3 (-525) "failed") |#1|)) (-15 -2831 ((-385 (-525)) |#1|)) (-15 -1264 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1908 (|#1| |#2|)) (-15 -1264 ((-3 |#2| "failed") |#1|)) (-15 -2831 (|#2| |#1|)) (-15 -3181 ((-713) |#1|)) (-15 -2751 (|#2| |#1|)) (-15 -3013 (|#1| |#1| (-592 (-1004)) (-592 (-713)))) (-15 -3013 (|#1| |#1| (-1004) (-713))) (-15 -3013 (|#1| |#1| (-592 (-1004)))) (-15 -3013 (|#1| |#1| (-1004))) (-15 -1908 (|#1| (-525))) (-15 -1908 ((-797) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1401 (((-1172 |#1|) $ (-713)) 238)) (-4104 (((-592 (-1004)) $) 110)) (-1361 (($ (-1086 |#1|)) 236)) (-3927 (((-1086 $) $ (-1004)) 125) (((-1086 |#1|) $) 124)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-3635 (($ $) 88 (|has| |#1| (-517)))) (-2950 (((-108) $) 90 (|has| |#1| (-517)))) (-1324 (((-713) $) 112) (((-713) $ (-592 (-1004))) 111)) (-3263 (((-3 $ "failed") $ $) 19)) (-1820 (($ $ $) 223 (|has| |#1| (-517)))) (-3357 (((-396 (-1086 $)) (-1086 $)) 100 (|has| |#1| (-843)))) (-3321 (($ $) 98 (|has| |#1| (-429)))) (-1510 (((-396 $) $) 97 (|has| |#1| (-429)))) (-2620 (((-3 (-592 (-1086 $)) "failed") (-592 (-1086 $)) (-1086 $)) 103 (|has| |#1| (-843)))) (-2305 (((-108) $ $) 208 (|has| |#1| (-341)))) (-3311 (($ $ (-713)) 231)) (-1821 (($ $ (-713)) 230)) (-3976 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-429)))) (-1505 (($) 17 T CONST)) (-1264 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-967 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-967 (-525)))) (((-3 (-1004) "failed") $) 136)) (-2831 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-967 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-967 (-525)))) (((-1004) $) 135)) (-2506 (($ $ $ (-1004)) 108 (|has| |#1| (-160))) ((|#1| $ $) 226 (|has| |#1| (-160)))) (-2373 (($ $ $) 212 (|has| |#1| (-341)))) (-1247 (($ $) 154)) (-1860 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 (-525))) (|:| |vec| (-1172 (-525)))) (-632 $) (-1172 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -3276 (-632 |#1|)) (|:| |vec| (-1172 |#1|))) (-632 $) (-1172 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-2866 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 211 (|has| |#1| (-341)))) (-1766 (($ $ $) 229)) (-3744 (($ $ $) 220 (|has| |#1| (-517)))) (-3196 (((-2 (|:| -1459 |#1|) (|:| -1338 $) (|:| -1632 $)) $ $) 219 (|has| |#1| (-517)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 206 (|has| |#1| (-341)))) (-3811 (($ $) 176 (|has| |#1| (-429))) (($ $ (-1004)) 105 (|has| |#1| (-429)))) (-1234 (((-592 $) $) 109)) (-2250 (((-108) $) 96 (|has| |#1| (-843)))) (-2099 (($ $ |#1| (-713) $) 172)) (-1524 (((-823 (-357) $) $ (-826 (-357)) (-823 (-357) $)) 84 (-12 (|has| (-1004) (-820 (-357))) (|has| |#1| (-820 (-357))))) (((-823 (-525) $) $ (-826 (-525)) (-823 (-525) $)) 83 (-12 (|has| (-1004) (-820 (-525))) (|has| |#1| (-820 (-525)))))) (-1737 (((-713) $ $) 224 (|has| |#1| (-517)))) (-2133 (((-108) $) 31)) (-3610 (((-713) $) 169)) (-1816 (((-3 $ "failed") $) 204 (|has| |#1| (-1066)))) (-4092 (($ (-1086 |#1|) (-1004)) 117) (($ (-1086 $) (-1004)) 116)) (-3817 (($ $ (-713)) 235)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 215 (|has| |#1| (-341)))) (-1986 (((-592 $) $) 126)) (-1819 (((-108) $) 152)) (-4079 (($ |#1| (-713)) 153) (($ $ (-1004) (-713)) 119) (($ $ (-592 (-1004)) (-592 (-713))) 118)) (-3194 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $ (-1004)) 120) (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 233)) (-3181 (((-713) $) 170) (((-713) $ (-1004)) 122) (((-592 (-713)) $ (-592 (-1004))) 121)) (-3525 (($ $ $) 79 (|has| |#1| (-789)))) (-3630 (($ $ $) 78 (|has| |#1| (-789)))) (-1331 (($ (-1 (-713) (-713)) $) 171)) (-1370 (($ (-1 |#1| |#1|) $) 151)) (-2180 (((-1086 |#1|) $) 237)) (-1666 (((-3 (-1004) "failed") $) 123)) (-1212 (($ $) 149)) (-1224 ((|#1| $) 148)) (-3216 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-2337 (((-1073) $) 9)) (-3781 (((-2 (|:| -1338 $) (|:| -1632 $)) $ (-713)) 232)) (-3245 (((-3 (-592 $) "failed") $) 114)) (-3193 (((-3 (-592 $) "failed") $) 115)) (-3283 (((-3 (-2 (|:| |var| (-1004)) (|:| -1600 (-713))) "failed") $) 113)) (-3766 (($ $) 216 (|has| |#1| (-37 (-385 (-525)))))) (-2279 (($) 203 (|has| |#1| (-1066)) CONST)) (-2663 (((-1037) $) 10)) (-4221 (((-108) $) 166)) (-4232 ((|#1| $) 167)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 95 (|has| |#1| (-429)))) (-3244 (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-2918 (((-396 (-1086 $)) (-1086 $)) 102 (|has| |#1| (-843)))) (-1371 (((-396 (-1086 $)) (-1086 $)) 101 (|has| |#1| (-843)))) (-3959 (((-396 $) $) 99 (|has| |#1| (-843)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 213 (|has| |#1| (-341)))) (-2338 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 207 (|has| |#1| (-341)))) (-3092 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ (-1004) |#1|) 141) (($ $ (-592 (-1004)) (-592 |#1|)) 140) (($ $ (-1004) $) 139) (($ $ (-592 (-1004)) (-592 $)) 138)) (-2183 (((-713) $) 209 (|has| |#1| (-341)))) (-3928 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-385 $) (-385 $) (-385 $)) 225 (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) 217 (|has| |#1| (-341))) (((-385 $) $ (-385 $)) 205 (|has| |#1| (-517)))) (-2063 (((-3 $ "failed") $ (-713)) 234)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 210 (|has| |#1| (-341)))) (-1400 (($ $ (-1004)) 107 (|has| |#1| (-160))) ((|#1| $) 227 (|has| |#1| (-160)))) (-3013 (($ $ (-1004)) 42) (($ $ (-592 (-1004))) 41) (($ $ (-1004) (-713)) 40) (($ $ (-592 (-1004)) (-592 (-713))) 39) (($ $ (-713)) 253) (($ $) 251) (($ $ (-1090)) 250 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 249 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 248 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) 247 (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-2513 (((-713) $) 150) (((-713) $ (-1004)) 130) (((-592 (-713)) $ (-592 (-1004))) 129)) (-1427 (((-826 (-357)) $) 82 (-12 (|has| (-1004) (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357)))))) (((-826 (-525)) $) 81 (-12 (|has| (-1004) (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525)))))) (((-501) $) 80 (-12 (|has| (-1004) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2751 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ (-1004)) 106 (|has| |#1| (-429)))) (-2438 (((-3 (-1172 $) "failed") (-632 $)) 104 (-1341 (|has| $ (-136)) (|has| |#1| (-843))))) (-1925 (((-3 $ "failed") $ $) 222 (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) 221 (|has| |#1| (-517)))) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ (-1004)) 137) (($ (-385 (-525))) 72 (-3309 (|has| |#1| (-967 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-3600 (((-592 |#1|) $) 168)) (-1657 ((|#1| $ (-713)) 155) (($ $ (-1004) (-713)) 128) (($ $ (-592 (-1004)) (-592 (-713))) 127)) (-3421 (((-3 $ "failed") $) 73 (-3309 (-1341 (|has| $ (-136)) (|has| |#1| (-843))) (|has| |#1| (-136))))) (-2093 (((-713)) 29)) (-4116 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-2262 (((-108) $ $) 89 (|has| |#1| (-517)))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ (-1004)) 38) (($ $ (-592 (-1004))) 37) (($ $ (-1004) (-713)) 36) (($ $ (-592 (-1004)) (-592 (-713))) 35) (($ $ (-713)) 254) (($ $) 252) (($ $ (-1090)) 246 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090))) 245 (|has| |#1| (-834 (-1090)))) (($ $ (-1090) (-713)) 244 (|has| |#1| (-834 (-1090)))) (($ $ (-592 (-1090)) (-592 (-713))) 243 (|has| |#1| (-834 (-1090)))) (($ $ (-1 |#1| |#1|) (-713)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-4024 (((-108) $ $) 76 (|has| |#1| (-789)))) (-3995 (((-108) $ $) 75 (|has| |#1| (-789)))) (-3961 (((-108) $ $) 6)) (-4010 (((-108) $ $) 77 (|has| |#1| (-789)))) (-3983 (((-108) $ $) 74 (|has| |#1| (-789)))) (-4082 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
-(((-1148 |#1|) (-131) (-976)) (T -1148))
-((-1401 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-1148 *4)) (-4 *4 (-976)) (-5 *2 (-1172 *4)))) (-2180 (*1 *2 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-976)) (-5 *2 (-1086 *3)))) (-1361 (*1 *1 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-976)) (-4 *1 (-1148 *3)))) (-3817 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1148 *3)) (-4 *3 (-976)))) (-2063 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-713)) (-4 *1 (-1148 *3)) (-4 *3 (-976)))) (-3194 (*1 *2 *1 *1) (-12 (-4 *3 (-976)) (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-1148 *3)))) (-3781 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *4 (-976)) (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-1148 *4)))) (-3311 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1148 *3)) (-4 *3 (-976)))) (-1821 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1148 *3)) (-4 *3 (-976)))) (-1766 (*1 *1 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)))) (-3013 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1148 *3)) (-4 *3 (-976)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-160)))) (-2506 (*1 *2 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-160)))) (-3928 (*1 *2 *2 *2) (-12 (-5 *2 (-385 *1)) (-4 *1 (-1148 *3)) (-4 *3 (-976)) (-4 *3 (-517)))) (-1737 (*1 *2 *1 *1) (-12 (-4 *1 (-1148 *3)) (-4 *3 (-976)) (-4 *3 (-517)) (-5 *2 (-713)))) (-1820 (*1 *1 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-517)))) (-1925 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-517)))) (-1925 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-385 *1)) (-4 *1 (-1148 *3)) (-4 *3 (-976)) (-4 *3 (-517)))) (-3744 (*1 *1 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-517)))) (-3196 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-5 *2 (-2 (|:| -1459 *3) (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-1148 *3)))) (-3976 (*1 *2 *1 *1) (-12 (-4 *3 (-429)) (-4 *3 (-976)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1148 *3)))) (-3928 (*1 *2 *3 *2) (-12 (-5 *3 (-385 *1)) (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-3766 (*1 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-37 (-385 (-525)))))))
-(-13 (-883 |t#1| (-713) (-1004)) (-265 |t#1| |t#1|) (-265 $ $) (-213) (-211 |t#1|) (-10 -8 (-15 -1401 ((-1172 |t#1|) $ (-713))) (-15 -2180 ((-1086 |t#1|) $)) (-15 -1361 ($ (-1086 |t#1|))) (-15 -3817 ($ $ (-713))) (-15 -2063 ((-3 $ "failed") $ (-713))) (-15 -3194 ((-2 (|:| -1338 $) (|:| -1632 $)) $ $)) (-15 -3781 ((-2 (|:| -1338 $) (|:| -1632 $)) $ (-713))) (-15 -3311 ($ $ (-713))) (-15 -1821 ($ $ (-713))) (-15 -1766 ($ $ $)) (-15 -3013 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1066)) (-6 (-1066)) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-15 -1400 (|t#1| $)) (-15 -2506 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-265 (-385 $) (-385 $))) (-15 -3928 ((-385 $) (-385 $) (-385 $))) (-15 -1737 ((-713) $ $)) (-15 -1820 ($ $ $)) (-15 -1925 ((-3 $ "failed") $ $)) (-15 -1925 ((-3 (-385 $) "failed") (-385 $) $)) (-15 -3744 ($ $ $)) (-15 -3196 ((-2 (|:| -1459 |t#1|) (|:| -1338 $) (|:| -1632 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (-15 -3976 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-6 (-286)) (-6 -4250) (-15 -3928 (|t#1| (-385 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (-15 -3766 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-713)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| (-1004) (-567 (-501))) (|has| |#1| (-567 (-501)))) ((-567 (-826 (-357))) -12 (|has| (-1004) (-567 (-826 (-357)))) (|has| |#1| (-567 (-826 (-357))))) ((-567 (-826 (-525))) -12 (|has| (-1004) (-567 (-826 (-525)))) (|has| |#1| (-567 (-826 (-525))))) ((-211 |#1|) . T) ((-213) . T) ((-265 (-385 $) (-385 $)) |has| |#1| (-517)) ((-265 |#1| |#1|) . T) ((-265 $ $) . T) ((-269) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-288 $) . T) ((-304 |#1| #0#) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3309 (|has| |#1| (-843)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-486 #2=(-1004) |#1|) . T) ((-486 #2# $) . T) ((-486 $ $) . T) ((-517) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-594 #1#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #1#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-834 #2#) . T) ((-834 (-1090)) |has| |#1| (-834 (-1090))) ((-820 (-357)) -12 (|has| (-1004) (-820 (-357))) (|has| |#1| (-820 (-357)))) ((-820 (-525)) -12 (|has| (-1004) (-820 (-525))) (|has| |#1| (-820 (-525)))) ((-883 |#1| #0# #2#) . T) ((-843) |has| |#1| (-843)) ((-854) |has| |#1| (-341)) ((-967 (-385 (-525))) |has| |#1| (-967 (-385 (-525)))) ((-967 (-525)) |has| |#1| (-967 (-525))) ((-967 #2#) . T) ((-967 |#1|) . T) ((-982 #1#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3309 (|has| |#1| (-843)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1066) |has| |#1| (-1066)) ((-1130) |has| |#1| (-843)))
-((-4104 (((-592 (-1004)) $) 28)) (-1247 (($ $) 25)) (-4079 (($ |#2| |#3|) NIL) (($ $ (-1004) |#3|) 22) (($ $ (-592 (-1004)) (-592 |#3|)) 21)) (-1212 (($ $) 14)) (-1224 ((|#2| $) 12)) (-2513 ((|#3| $) 10)))
-(((-1149 |#1| |#2| |#3|) (-10 -8 (-15 -4104 ((-592 (-1004)) |#1|)) (-15 -4079 (|#1| |#1| (-592 (-1004)) (-592 |#3|))) (-15 -4079 (|#1| |#1| (-1004) |#3|)) (-15 -1247 (|#1| |#1|)) (-15 -4079 (|#1| |#2| |#3|)) (-15 -2513 (|#3| |#1|)) (-15 -1212 (|#1| |#1|)) (-15 -1224 (|#2| |#1|))) (-1150 |#2| |#3|) (-976) (-734)) (T -1149))
-NIL
-(-10 -8 (-15 -4104 ((-592 (-1004)) |#1|)) (-15 -4079 (|#1| |#1| (-592 (-1004)) (-592 |#3|))) (-15 -4079 (|#1| |#1| (-1004) |#3|)) (-15 -1247 (|#1| |#1|)) (-15 -4079 (|#1| |#2| |#3|)) (-15 -2513 (|#3| |#1|)) (-15 -1212 (|#1| |#1|)) (-15 -1224 (|#2| |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-4104 (((-592 (-1004)) $) 74)) (-1251 (((-1090) $) 103)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3635 (($ $) 52 (|has| |#1| (-517)))) (-2950 (((-108) $) 54 (|has| |#1| (-517)))) (-4114 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-2911 (((-1071 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-1247 (($ $) 60)) (-2866 (((-3 $ "failed") $) 34)) (-4150 (((-108) $) 73)) (-1737 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-2133 (((-108) $) 31)) (-3817 (($ $ (-855)) 101)) (-1819 (((-108) $) 62)) (-4079 (($ |#1| |#2|) 61) (($ $ (-1004) |#2|) 76) (($ $ (-592 (-1004)) (-592 |#2|)) 75)) (-1370 (($ (-1 |#1| |#1|) $) 63)) (-1212 (($ $) 65)) (-1224 ((|#1| $) 66)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-3538 (($ $ |#2|) 95)) (-2338 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-3092 (((-1071 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-3928 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1031)))) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) 89 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1090) (-713)) 88 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-592 (-1090))) 87 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1090)) 86 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2513 ((|#2| $) 64)) (-1801 (($ $) 72)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-1657 ((|#1| $ |#2|) 59)) (-3421 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2093 (((-713)) 29)) (-2563 ((|#1| $) 102)) (-2262 (((-108) $ $) 53 (|has| |#1| (-517)))) (-2038 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -1908 (|#1| (-1090))))))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ (-592 (-1090)) (-592 (-713))) 93 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1090) (-713)) 92 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-592 (-1090))) 91 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1090)) 90 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3961 (((-108) $ $) 6)) (-4082 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
-(((-1150 |#1| |#2|) (-131) (-976) (-734)) (T -1150))
-((-2911 (*1 *2 *1) (-12 (-4 *1 (-1150 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) (-5 *2 (-1071 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3928 (*1 *2 *1 *3) (-12 (-4 *1 (-1150 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)))) (-1251 (*1 *2 *1) (-12 (-4 *1 (-1150 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) (-5 *2 (-1090)))) (-2563 (*1 *2 *1) (-12 (-4 *1 (-1150 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)))) (-3817 (*1 *1 *1 *2) (-12 (-5 *2 (-855)) (-4 *1 (-1150 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) (-1737 (*1 *2 *1 *2) (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) (-4114 (*1 *1 *1 *2) (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) (-4114 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) (-2038 (*1 *2 *1 *3) (-12 (-4 *1 (-1150 *2 *3)) (-4 *3 (-734)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1908 (*2 (-1090)))) (-4 *2 (-976)))) (-3538 (*1 *1 *1 *2) (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))) (-3092 (*1 *2 *1 *3) (-12 (-4 *1 (-1150 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1071 *3)))))
-(-13 (-905 |t#1| |t#2| (-1004)) (-10 -8 (-15 -2911 ((-1071 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3928 (|t#1| $ |t#2|)) (-15 -1251 ((-1090) $)) (-15 -2563 (|t#1| $)) (-15 -3817 ($ $ (-855))) (-15 -1737 (|t#2| $)) (-15 -1737 (|t#2| $ |t#2|)) (-15 -4114 ($ $ |t#2|)) (-15 -4114 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -1908 (|t#1| (-1090)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2038 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3538 ($ $ |t#2|)) (IF (|has| |t#2| (-1031)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-213)) (IF (|has| |t#1| (-834 (-1090))) (-6 (-834 (-1090))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -3092 ((-1071 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-265 $ $) |has| |#2| (-1031)) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-834 (-1090)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-834 (-1090)))) ((-905 |#1| |#2| (-1004)) . T) ((-982 #0#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-3321 ((|#2| |#2|) 12)) (-1510 (((-396 |#2|) |#2|) 14)) (-4035 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525)))) 30)))
-(((-1151 |#1| |#2|) (-10 -7 (-15 -1510 ((-396 |#2|) |#2|)) (-15 -3321 (|#2| |#2|)) (-15 -4035 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525)))))) (-517) (-13 (-1148 |#1|) (-517) (-10 -8 (-15 -3244 ($ $ $))))) (T -1151))
-((-4035 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-525)))) (-4 *4 (-13 (-1148 *3) (-517) (-10 -8 (-15 -3244 ($ $ $))))) (-4 *3 (-517)) (-5 *1 (-1151 *3 *4)))) (-3321 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-1151 *3 *2)) (-4 *2 (-13 (-1148 *3) (-517) (-10 -8 (-15 -3244 ($ $ $))))))) (-1510 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-1151 *4 *3)) (-4 *3 (-13 (-1148 *4) (-517) (-10 -8 (-15 -3244 ($ $ $))))))))
-(-10 -7 (-15 -1510 ((-396 |#2|) |#2|)) (-15 -3321 (|#2| |#2|)) (-15 -4035 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))))))
-((-1370 (((-1157 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1157 |#1| |#3| |#5|)) 24)))
-(((-1152 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1370 ((-1157 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1157 |#1| |#3| |#5|)))) (-976) (-976) (-1090) (-1090) |#1| |#2|) (T -1152))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1157 *5 *7 *9)) (-4 *5 (-976)) (-4 *6 (-976)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1157 *6 *8 *10)) (-5 *1 (-1152 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1090)))))
-(-10 -7 (-15 -1370 ((-1157 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1157 |#1| |#3| |#5|))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-4104 (((-592 (-1004)) $) 74)) (-1251 (((-1090) $) 103)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3635 (($ $) 52 (|has| |#1| (-517)))) (-2950 (((-108) $) 54 (|has| |#1| (-517)))) (-4114 (($ $ (-385 (-525))) 98) (($ $ (-385 (-525)) (-385 (-525))) 97)) (-2911 (((-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 105)) (-4049 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) 19)) (-3321 (($ $) 162 (|has| |#1| (-341)))) (-1510 (((-396 $) $) 163 (|has| |#1| (-341)))) (-3969 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-2305 (((-108) $ $) 153 (|has| |#1| (-341)))) (-4026 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-3483 (($ (-713) (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 172)) (-4072 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) 17 T CONST)) (-2373 (($ $ $) 157 (|has| |#1| (-341)))) (-1247 (($ $) 60)) (-2866 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 156 (|has| |#1| (-341)))) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-2250 (((-108) $) 164 (|has| |#1| (-341)))) (-4150 (((-108) $) 73)) (-1335 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-1737 (((-385 (-525)) $) 100) (((-385 (-525)) $ (-385 (-525))) 99)) (-2133 (((-108) $) 31)) (-3391 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-3817 (($ $ (-855)) 101) (($ $ (-385 (-525))) 171)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-1819 (((-108) $) 62)) (-4079 (($ |#1| (-385 (-525))) 61) (($ $ (-1004) (-385 (-525))) 76) (($ $ (-592 (-1004)) (-592 (-385 (-525)))) 75)) (-1370 (($ (-1 |#1| |#1|) $) 63)) (-2091 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) 65)) (-1224 ((|#1| $) 66)) (-3216 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-2337 (((-1073) $) 9)) (-4211 (($ $) 165 (|has| |#1| (-341)))) (-3766 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 169 (-3309 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-892)) (|has| |#1| (-1112)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -4104 ((-592 (-1090)) |#1|))) (|has| |#1| (-15 -3766 (|#1| |#1| (-1090)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 150 (|has| |#1| (-341)))) (-3244 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-3959 (((-396 $) $) 161 (|has| |#1| (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 158 (|has| |#1| (-341)))) (-3538 (($ $ (-385 (-525))) 95)) (-2338 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-1982 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-3092 (((-1071 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-2183 (((-713) $) 154 (|has| |#1| (-341)))) (-3928 ((|#1| $ (-385 (-525))) 104) (($ $ $) 81 (|has| (-385 (-525)) (-1031)))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 155 (|has| |#1| (-341)))) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) 89 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1090) (-713)) 88 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1090))) 87 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1090)) 86 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2513 (((-385 (-525)) $) 64)) (-4084 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1801 (($ $) 72)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-1657 ((|#1| $ (-385 (-525))) 59)) (-3421 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2093 (((-713)) 29)) (-2563 ((|#1| $) 102)) (-4121 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) 53 (|has| |#1| (-517)))) (-4096 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-2038 ((|#1| $ (-385 (-525))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1908 (|#1| (-1090))))))) (-2929 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ (-592 (-1090)) (-592 (-713))) 93 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1090) (-713)) 92 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1090))) 91 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1090)) 90 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3961 (((-108) $ $) 6)) (-4082 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
-(((-1153 |#1|) (-131) (-976)) (T -1153))
-((-3483 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4)))) (-4 *4 (-976)) (-4 *1 (-1153 *4)))) (-3817 (*1 *1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-1153 *3)) (-4 *3 (-976)))) (-3766 (*1 *1 *1) (-12 (-4 *1 (-1153 *2)) (-4 *2 (-976)) (-4 *2 (-37 (-385 (-525)))))) (-3766 (*1 *1 *1 *2) (-3309 (-12 (-5 *2 (-1090)) (-4 *1 (-1153 *3)) (-4 *3 (-976)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-892)) (-4 *3 (-1112)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1090)) (-4 *1 (-1153 *3)) (-4 *3 (-976)) (-12 (|has| *3 (-15 -4104 ((-592 (-1090)) *3))) (|has| *3 (-15 -3766 (*3 *3 (-1090)))) (-4 *3 (-37 (-385 (-525)))))))))
-(-13 (-1150 |t#1| (-385 (-525))) (-10 -8 (-15 -3483 ($ (-713) (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |t#1|))))) (-15 -3817 ($ $ (-385 (-525)))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -3766 ($ $)) (IF (|has| |t#1| (-15 -3766 (|t#1| |t#1| (-1090)))) (IF (|has| |t#1| (-15 -4104 ((-592 (-1090)) |t#1|))) (-15 -3766 ($ $ (-1090))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1112)) (IF (|has| |t#1| (-892)) (IF (|has| |t#1| (-29 (-525))) (-15 -3766 ($ $ (-1090))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-933)) (-6 (-1112))) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-385 (-525))) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3309 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3309 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-385 (-525)) (-1031)) ((-269) -3309 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -3309 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-834 (-1090)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090)))) ((-905 |#1| #0# (-1004)) . T) ((-854) |has| |#1| (-341)) ((-933) |has| |#1| (-37 (-385 (-525)))) ((-982 #1#) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-982 |#1|) . T) ((-982 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1112) |has| |#1| (-37 (-385 (-525)))) ((-1115) |has| |#1| (-37 (-385 (-525)))) ((-1130) |has| |#1| (-341)) ((-1150 |#1| #0#) . T))
-((-1611 (((-108) $) 12)) (-1264 (((-3 |#3| "failed") $) 17)) (-2831 ((|#3| $) 14)))
-(((-1154 |#1| |#2| |#3|) (-10 -8 (-15 -2831 (|#3| |#1|)) (-15 -1264 ((-3 |#3| "failed") |#1|)) (-15 -1611 ((-108) |#1|))) (-1155 |#2| |#3|) (-976) (-1132 |#2|)) (T -1154))
-NIL
-(-10 -8 (-15 -2831 (|#3| |#1|)) (-15 -1264 ((-3 |#3| "failed") |#1|)) (-15 -1611 ((-108) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-4104 (((-592 (-1004)) $) 74)) (-1251 (((-1090) $) 103)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3635 (($ $) 52 (|has| |#1| (-517)))) (-2950 (((-108) $) 54 (|has| |#1| (-517)))) (-4114 (($ $ (-385 (-525))) 98) (($ $ (-385 (-525)) (-385 (-525))) 97)) (-2911 (((-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 105)) (-4049 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) 19)) (-3321 (($ $) 162 (|has| |#1| (-341)))) (-1510 (((-396 $) $) 163 (|has| |#1| (-341)))) (-3969 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-2305 (((-108) $ $) 153 (|has| |#1| (-341)))) (-4026 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-3483 (($ (-713) (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 172)) (-4072 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) 17 T CONST)) (-1264 (((-3 |#2| "failed") $) 183)) (-2831 ((|#2| $) 182)) (-2373 (($ $ $) 157 (|has| |#1| (-341)))) (-1247 (($ $) 60)) (-2866 (((-3 $ "failed") $) 34)) (-3082 (((-385 (-525)) $) 180)) (-2356 (($ $ $) 156 (|has| |#1| (-341)))) (-4192 (($ (-385 (-525)) |#2|) 181)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-2250 (((-108) $) 164 (|has| |#1| (-341)))) (-4150 (((-108) $) 73)) (-1335 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-1737 (((-385 (-525)) $) 100) (((-385 (-525)) $ (-385 (-525))) 99)) (-2133 (((-108) $) 31)) (-3391 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-3817 (($ $ (-855)) 101) (($ $ (-385 (-525))) 171)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-1819 (((-108) $) 62)) (-4079 (($ |#1| (-385 (-525))) 61) (($ $ (-1004) (-385 (-525))) 76) (($ $ (-592 (-1004)) (-592 (-385 (-525)))) 75)) (-1370 (($ (-1 |#1| |#1|) $) 63)) (-2091 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) 65)) (-1224 ((|#1| $) 66)) (-3216 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-3543 ((|#2| $) 179)) (-1311 (((-3 |#2| "failed") $) 177)) (-4179 ((|#2| $) 178)) (-2337 (((-1073) $) 9)) (-4211 (($ $) 165 (|has| |#1| (-341)))) (-3766 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 169 (-3309 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-892)) (|has| |#1| (-1112)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -4104 ((-592 (-1090)) |#1|))) (|has| |#1| (-15 -3766 (|#1| |#1| (-1090)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 150 (|has| |#1| (-341)))) (-3244 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-3959 (((-396 $) $) 161 (|has| |#1| (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 158 (|has| |#1| (-341)))) (-3538 (($ $ (-385 (-525))) 95)) (-2338 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-1982 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-3092 (((-1071 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-2183 (((-713) $) 154 (|has| |#1| (-341)))) (-3928 ((|#1| $ (-385 (-525))) 104) (($ $ $) 81 (|has| (-385 (-525)) (-1031)))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 155 (|has| |#1| (-341)))) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) 89 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1090) (-713)) 88 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1090))) 87 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1090)) 86 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2513 (((-385 (-525)) $) 64)) (-4084 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1801 (($ $) 72)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ |#2|) 184) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-1657 ((|#1| $ (-385 (-525))) 59)) (-3421 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2093 (((-713)) 29)) (-2563 ((|#1| $) 102)) (-4121 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) 53 (|has| |#1| (-517)))) (-4096 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-2038 ((|#1| $ (-385 (-525))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1908 (|#1| (-1090))))))) (-2929 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ (-592 (-1090)) (-592 (-713))) 93 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1090) (-713)) 92 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1090))) 91 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1090)) 90 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3961 (((-108) $ $) 6)) (-4082 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
-(((-1155 |#1| |#2|) (-131) (-976) (-1132 |t#1|)) (T -1155))
-((-2513 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1132 *3)) (-5 *2 (-385 (-525))))) (-1908 (*1 *1 *2) (-12 (-4 *3 (-976)) (-4 *1 (-1155 *3 *2)) (-4 *2 (-1132 *3)))) (-4192 (*1 *1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-4 *4 (-976)) (-4 *1 (-1155 *4 *3)) (-4 *3 (-1132 *4)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1132 *3)) (-5 *2 (-385 (-525))))) (-3543 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1132 *3)))) (-4179 (*1 *2 *1) (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1132 *3)))) (-1311 (*1 *2 *1) (|partial| -12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1132 *3)))))
-(-13 (-1153 |t#1|) (-967 |t#2|) (-10 -8 (-15 -4192 ($ (-385 (-525)) |t#2|)) (-15 -3082 ((-385 (-525)) $)) (-15 -3543 (|t#2| $)) (-15 -2513 ((-385 (-525)) $)) (-15 -1908 ($ |t#2|)) (-15 -4179 (|t#2| $)) (-15 -1311 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-385 (-525))) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3309 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3309 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-385 (-525)) (-1031)) ((-269) -3309 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -3309 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-834 (-1090)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090)))) ((-905 |#1| #0# (-1004)) . T) ((-854) |has| |#1| (-341)) ((-933) |has| |#1| (-37 (-385 (-525)))) ((-967 |#2|) . T) ((-982 #1#) -3309 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-982 |#1|) . T) ((-982 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1112) |has| |#1| (-37 (-385 (-525)))) ((-1115) |has| |#1| (-37 (-385 (-525)))) ((-1130) |has| |#1| (-341)) ((-1150 |#1| #0#) . T) ((-1153 |#1|) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-4104 (((-592 (-1004)) $) NIL)) (-1251 (((-1090) $) 96)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-4114 (($ $ (-385 (-525))) 106) (($ $ (-385 (-525)) (-385 (-525))) 108)) (-2911 (((-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 51)) (-4049 (($ $) 180 (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) 156 (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL (|has| |#1| (-341)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3969 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2305 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4026 (($ $) 176 (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) 152 (|has| |#1| (-37 (-385 (-525)))))) (-3483 (($ (-713) (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 61)) (-4072 (($ $) 184 (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#2| "failed") $) NIL)) (-2831 ((|#2| $) NIL)) (-2373 (($ $ $) NIL (|has| |#1| (-341)))) (-1247 (($ $) NIL)) (-2866 (((-3 $ "failed") $) 79)) (-3082 (((-385 (-525)) $) 13)) (-2356 (($ $ $) NIL (|has| |#1| (-341)))) (-4192 (($ (-385 (-525)) |#2|) 11)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2250 (((-108) $) NIL (|has| |#1| (-341)))) (-4150 (((-108) $) 68)) (-1335 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1737 (((-385 (-525)) $) 103) (((-385 (-525)) $ (-385 (-525))) 104)) (-2133 (((-108) $) NIL)) (-3391 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3817 (($ $ (-855)) 120) (($ $ (-385 (-525))) 118)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-385 (-525))) 31) (($ $ (-1004) (-385 (-525))) NIL) (($ $ (-592 (-1004)) (-592 (-385 (-525)))) NIL)) (-1370 (($ (-1 |#1| |#1|) $) 115)) (-2091 (($ $) 150 (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3543 ((|#2| $) 12)) (-1311 (((-3 |#2| "failed") $) 41)) (-4179 ((|#2| $) 42)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) 93 (|has| |#1| (-341)))) (-3766 (($ $) 135 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 140 (-3309 (-12 (|has| |#1| (-15 -3766 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -4104 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112)))))) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3959 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-3538 (($ $ (-385 (-525))) 112)) (-2338 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1982 (($ $) 148 (|has| |#1| (-37 (-385 (-525)))))) (-3092 (((-1071 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-2183 (((-713) $) NIL (|has| |#1| (-341)))) (-3928 ((|#1| $ (-385 (-525))) 100) (($ $ $) 86 (|has| (-385 (-525)) (-1031)))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-341)))) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) 127 (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-2513 (((-385 (-525)) $) 16)) (-4084 (($ $) 186 (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) 162 (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) 182 (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) 158 (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) 178 (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) 154 (|has| |#1| (-37 (-385 (-525)))))) (-1801 (($ $) 110)) (-1908 (((-797) $) NIL) (($ (-525)) 35) (($ |#1|) 27 (|has| |#1| (-160))) (($ |#2|) 32) (($ (-385 (-525))) 128 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1657 ((|#1| $ (-385 (-525))) 99)) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) 117)) (-2563 ((|#1| $) 98)) (-4121 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4096 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) 164 (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) 196 (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) 172 (|has| |#1| (-37 (-385 (-525)))))) (-2038 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1908 (|#1| (-1090))))))) (-2929 (($ $) 198 (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) 174 (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) 170 (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) 166 (|has| |#1| (-37 (-385 (-525)))))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3875 (($) 21 T CONST)) (-3882 (($) 17 T CONST)) (-1424 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3961 (((-108) $ $) 66)) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 92 (|has| |#1| (-341)))) (-4070 (($ $) 131) (($ $ $) 72)) (-4059 (($ $ $) 70)) (** (($ $ (-855)) NIL) (($ $ (-713)) 76) (($ $ (-525)) 145 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 146 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-1156 |#1| |#2|) (-1155 |#1| |#2|) (-976) (-1132 |#1|)) (T -1156))
-NIL
-(-1155 |#1| |#2|)
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-4104 (((-592 (-1004)) $) NIL)) (-1251 (((-1090) $) 11)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) NIL (|has| |#1| (-517)))) (-4114 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-2911 (((-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-4049 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3321 (($ $) NIL (|has| |#1| (-341)))) (-1510 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3969 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2305 (((-108) $ $) NIL (|has| |#1| (-341)))) (-4026 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3483 (($ (-713) (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-4072 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-1136 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1164 |#1| |#2| |#3|) "failed") $) 22)) (-2831 (((-1136 |#1| |#2| |#3|) $) NIL) (((-1164 |#1| |#2| |#3|) $) NIL)) (-2373 (($ $ $) NIL (|has| |#1| (-341)))) (-1247 (($ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-3082 (((-385 (-525)) $) 57)) (-2356 (($ $ $) NIL (|has| |#1| (-341)))) (-4192 (($ (-385 (-525)) (-1136 |#1| |#2| |#3|)) NIL)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-2250 (((-108) $) NIL (|has| |#1| (-341)))) (-4150 (((-108) $) NIL)) (-1335 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1737 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-2133 (((-108) $) NIL)) (-3391 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3817 (($ $ (-855)) NIL) (($ $ (-385 (-525))) NIL)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-385 (-525))) 30) (($ $ (-1004) (-385 (-525))) NIL) (($ $ (-592 (-1004)) (-592 (-385 (-525)))) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-2091 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-3216 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3543 (((-1136 |#1| |#2| |#3|) $) 60)) (-1311 (((-3 (-1136 |#1| |#2| |#3|) "failed") $) NIL)) (-4179 (((-1136 |#1| |#2| |#3|) $) NIL)) (-2337 (((-1073) $) NIL)) (-4211 (($ $) NIL (|has| |#1| (-341)))) (-3766 (($ $) 39 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) NIL (-3309 (-12 (|has| |#1| (-15 -3766 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -4104 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112))))) (($ $ (-1168 |#2|)) 40 (|has| |#1| (-37 (-385 (-525)))))) (-2663 (((-1037) $) NIL)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) NIL (|has| |#1| (-341)))) (-3244 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3959 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2982 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) NIL (|has| |#1| (-341)))) (-3538 (($ $ (-385 (-525))) NIL)) (-2338 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1705 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1982 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3092 (((-1071 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-2183 (((-713) $) NIL (|has| |#1| (-341)))) (-3928 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1031)))) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) NIL (|has| |#1| (-341)))) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1168 |#2|)) 38)) (-2513 (((-385 (-525)) $) NIL)) (-4084 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1801 (($ $) NIL)) (-1908 (((-797) $) 89) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1136 |#1| |#2| |#3|)) 16) (($ (-1164 |#1| |#2| |#3|)) 17) (($ (-1168 |#2|)) 36) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-1657 ((|#1| $ (-385 (-525))) NIL)) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) NIL)) (-2563 ((|#1| $) 12)) (-4121 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4096 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2038 ((|#1| $ (-385 (-525))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1908 (|#1| (-1090))))))) (-2929 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3875 (($) 32 T CONST)) (-3882 (($) 26 T CONST)) (-1424 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) 34)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-1157 |#1| |#2| |#3|) (-13 (-1155 |#1| (-1136 |#1| |#2| |#3|)) (-967 (-1164 |#1| |#2| |#3|)) (-10 -8 (-15 -1908 ($ (-1168 |#2|))) (-15 -3013 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3766 ($ $ (-1168 |#2|))) |%noBranch|))) (-976) (-1090) |#1|) (T -1157))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1157 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3))))
-(-13 (-1155 |#1| (-1136 |#1| |#2| |#3|)) (-967 (-1164 |#1| |#2| |#3|)) (-10 -8 (-15 -1908 ($ (-1168 |#2|))) (-15 -3013 ($ $ (-1168 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3766 ($ $ (-1168 |#2|))) |%noBranch|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 34)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL)) (-3635 (($ $) NIL)) (-2950 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 (-525) "failed") $) NIL (|has| (-1157 |#2| |#3| |#4|) (-967 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-1157 |#2| |#3| |#4|) (-967 (-385 (-525))))) (((-3 (-1157 |#2| |#3| |#4|) "failed") $) 20)) (-2831 (((-525) $) NIL (|has| (-1157 |#2| |#3| |#4|) (-967 (-525)))) (((-385 (-525)) $) NIL (|has| (-1157 |#2| |#3| |#4|) (-967 (-385 (-525))))) (((-1157 |#2| |#3| |#4|) $) NIL)) (-1247 (($ $) 35)) (-2866 (((-3 $ "failed") $) 25)) (-3811 (($ $) NIL (|has| (-1157 |#2| |#3| |#4|) (-429)))) (-2099 (($ $ (-1157 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|) $) NIL)) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) 11)) (-1819 (((-108) $) NIL)) (-4079 (($ (-1157 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) 23)) (-3181 (((-297 |#2| |#3| |#4|) $) NIL)) (-1331 (($ (-1 (-297 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) $) NIL)) (-1370 (($ (-1 (-1157 |#2| |#3| |#4|) (-1157 |#2| |#3| |#4|)) $) NIL)) (-3560 (((-3 (-782 |#2|) "failed") $) 75)) (-1212 (($ $) NIL)) (-1224 (((-1157 |#2| |#3| |#4|) $) 18)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-4221 (((-108) $) NIL)) (-4232 (((-1157 |#2| |#3| |#4|) $) NIL)) (-2338 (((-3 $ "failed") $ (-1157 |#2| |#3| |#4|)) NIL (|has| (-1157 |#2| |#3| |#4|) (-517))) (((-3 $ "failed") $ $) NIL)) (-3970 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1157 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1073))) "failed") $) 58)) (-2513 (((-297 |#2| |#3| |#4|) $) 14)) (-2751 (((-1157 |#2| |#3| |#4|) $) NIL (|has| (-1157 |#2| |#3| |#4|) (-429)))) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ (-1157 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL (-3309 (|has| (-1157 |#2| |#3| |#4|) (-37 (-385 (-525)))) (|has| (-1157 |#2| |#3| |#4|) (-967 (-385 (-525))))))) (-3600 (((-592 (-1157 |#2| |#3| |#4|)) $) NIL)) (-1657 (((-1157 |#2| |#3| |#4|) $ (-297 |#2| |#3| |#4|)) NIL)) (-3421 (((-3 $ "failed") $) NIL (|has| (-1157 |#2| |#3| |#4|) (-136)))) (-2093 (((-713)) NIL)) (-4116 (($ $ $ (-713)) NIL (|has| (-1157 |#2| |#3| |#4|) (-160)))) (-2262 (((-108) $ $) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 63 T CONST)) (-3882 (($) NIL T CONST)) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ (-1157 |#2| |#3| |#4|)) NIL (|has| (-1157 |#2| |#3| |#4|) (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-1157 |#2| |#3| |#4|)) NIL) (($ (-1157 |#2| |#3| |#4|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-1157 |#2| |#3| |#4|) (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| (-1157 |#2| |#3| |#4|) (-37 (-385 (-525)))))))
-(((-1158 |#1| |#2| |#3| |#4|) (-13 (-304 (-1157 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) (-517) (-10 -8 (-15 -3560 ((-3 (-782 |#2|) "failed") $)) (-15 -3970 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1157 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1073))) "failed") $)))) (-13 (-789) (-967 (-525)) (-588 (-525)) (-429)) (-13 (-27) (-1112) (-408 |#1|)) (-1090) |#2|) (T -1158))
-((-3560 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-789) (-967 (-525)) (-588 (-525)) (-429))) (-5 *2 (-782 *4)) (-5 *1 (-1158 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1112) (-408 *3))) (-14 *5 (-1090)) (-14 *6 *4))) (-3970 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-789) (-967 (-525)) (-588 (-525)) (-429))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1157 *4 *5 *6)) (|:| |%expon| (-297 *4 *5 *6)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4)))))) (|:| |%type| (-1073)))) (-5 *1 (-1158 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1112) (-408 *3))) (-14 *5 (-1090)) (-14 *6 *4))))
-(-13 (-304 (-1157 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) (-517) (-10 -8 (-15 -3560 ((-3 (-782 |#2|) "failed") $)) (-15 -3970 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1157 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1073))) "failed") $))))
-((-3871 ((|#2| $) 29)) (-1899 ((|#2| $) 18)) (-1614 (($ $) 36)) (-3035 (($ $ (-525)) 64)) (-3410 (((-108) $ (-713)) 33)) (-2822 ((|#2| $ |#2|) 61)) (-2813 ((|#2| $ |#2|) 59)) (-2109 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-3675 (($ $ (-592 $)) 60)) (-1882 ((|#2| $) 17)) (-3145 (($ $) NIL) (($ $ (-713)) 42)) (-4125 (((-592 $) $) 26)) (-3106 (((-108) $ $) 50)) (-3100 (((-108) $ (-713)) 32)) (-3017 (((-108) $ (-713)) 31)) (-3723 (((-108) $) 28)) (-2292 ((|#2| $) 24) (($ $ (-713)) 46)) (-3928 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1810 (((-108) $) 22)) (-1350 (($ $) 39)) (-2027 (($ $) 65)) (-1290 (((-713) $) 41)) (-3080 (($ $) 40)) (-2664 (($ $ $) 58) (($ |#2| $) NIL)) (-2021 (((-592 $) $) 27)) (-3961 (((-108) $ $) 48)) (-4140 (((-713) $) 35)))
-(((-1159 |#1| |#2|) (-10 -8 (-15 -3035 (|#1| |#1| (-525))) (-15 -2109 (|#2| |#1| "last" |#2|)) (-15 -2813 (|#2| |#1| |#2|)) (-15 -2109 (|#1| |#1| "rest" |#1|)) (-15 -2109 (|#2| |#1| "first" |#2|)) (-15 -2027 (|#1| |#1|)) (-15 -1350 (|#1| |#1|)) (-15 -1290 ((-713) |#1|)) (-15 -3080 (|#1| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -1882 (|#2| |#1|)) (-15 -1614 (|#1| |#1|)) (-15 -2292 (|#1| |#1| (-713))) (-15 -3928 (|#2| |#1| "last")) (-15 -2292 (|#2| |#1|)) (-15 -3145 (|#1| |#1| (-713))) (-15 -3928 (|#1| |#1| "rest")) (-15 -3145 (|#1| |#1|)) (-15 -3928 (|#2| |#1| "first")) (-15 -2664 (|#1| |#2| |#1|)) (-15 -2664 (|#1| |#1| |#1|)) (-15 -2822 (|#2| |#1| |#2|)) (-15 -2109 (|#2| |#1| "value" |#2|)) (-15 -3675 (|#1| |#1| (-592 |#1|))) (-15 -3106 ((-108) |#1| |#1|)) (-15 -1810 ((-108) |#1|)) (-15 -3928 (|#2| |#1| "value")) (-15 -3871 (|#2| |#1|)) (-15 -3723 ((-108) |#1|)) (-15 -4125 ((-592 |#1|) |#1|)) (-15 -2021 ((-592 |#1|) |#1|)) (-15 -3961 ((-108) |#1| |#1|)) (-15 -4140 ((-713) |#1|)) (-15 -3410 ((-108) |#1| (-713))) (-15 -3100 ((-108) |#1| (-713))) (-15 -3017 ((-108) |#1| (-713)))) (-1160 |#2|) (-1126)) (T -1159))
-NIL
-(-10 -8 (-15 -3035 (|#1| |#1| (-525))) (-15 -2109 (|#2| |#1| "last" |#2|)) (-15 -2813 (|#2| |#1| |#2|)) (-15 -2109 (|#1| |#1| "rest" |#1|)) (-15 -2109 (|#2| |#1| "first" |#2|)) (-15 -2027 (|#1| |#1|)) (-15 -1350 (|#1| |#1|)) (-15 -1290 ((-713) |#1|)) (-15 -3080 (|#1| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -1882 (|#2| |#1|)) (-15 -1614 (|#1| |#1|)) (-15 -2292 (|#1| |#1| (-713))) (-15 -3928 (|#2| |#1| "last")) (-15 -2292 (|#2| |#1|)) (-15 -3145 (|#1| |#1| (-713))) (-15 -3928 (|#1| |#1| "rest")) (-15 -3145 (|#1| |#1|)) (-15 -3928 (|#2| |#1| "first")) (-15 -2664 (|#1| |#2| |#1|)) (-15 -2664 (|#1| |#1| |#1|)) (-15 -2822 (|#2| |#1| |#2|)) (-15 -2109 (|#2| |#1| "value" |#2|)) (-15 -3675 (|#1| |#1| (-592 |#1|))) (-15 -3106 ((-108) |#1| |#1|)) (-15 -1810 ((-108) |#1|)) (-15 -3928 (|#2| |#1| "value")) (-15 -3871 (|#2| |#1|)) (-15 -3723 ((-108) |#1|)) (-15 -4125 ((-592 |#1|) |#1|)) (-15 -2021 ((-592 |#1|) |#1|)) (-15 -3961 ((-108) |#1| |#1|)) (-15 -4140 ((-713) |#1|)) (-15 -3410 ((-108) |#1| (-713))) (-15 -3100 ((-108) |#1| (-713))) (-15 -3017 ((-108) |#1| (-713))))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-3871 ((|#1| $) 48)) (-1899 ((|#1| $) 65)) (-1614 (($ $) 67)) (-3035 (($ $ (-525)) 52 (|has| $ (-6 -4255)))) (-3410 (((-108) $ (-713)) 8)) (-2822 ((|#1| $ |#1|) 39 (|has| $ (-6 -4255)))) (-3795 (($ $ $) 56 (|has| $ (-6 -4255)))) (-2813 ((|#1| $ |#1|) 54 (|has| $ (-6 -4255)))) (-1517 ((|#1| $ |#1|) 58 (|has| $ (-6 -4255)))) (-2109 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4255))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4255))) (($ $ "rest" $) 55 (|has| $ (-6 -4255))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4255)))) (-3675 (($ $ (-592 $)) 41 (|has| $ (-6 -4255)))) (-1882 ((|#1| $) 66)) (-1505 (($) 7 T CONST)) (-3145 (($ $) 73) (($ $ (-713)) 71)) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-4125 (((-592 $) $) 50)) (-3106 (((-108) $ $) 42 (|has| |#1| (-1019)))) (-3100 (((-108) $ (-713)) 9)) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35)) (-3017 (((-108) $ (-713)) 10)) (-1564 (((-592 |#1|) $) 45)) (-3723 (((-108) $) 49)) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-2292 ((|#1| $) 70) (($ $ (-713)) 68)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3135 ((|#1| $) 76) (($ $ (-713)) 74)) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-4068 (((-525) $ $) 44)) (-1810 (((-108) $) 46)) (-1350 (($ $) 62)) (-2027 (($ $) 59 (|has| $ (-6 -4255)))) (-1290 (((-713) $) 63)) (-3080 (($ $) 64)) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2135 (($ $) 13)) (-1497 (($ $ $) 61 (|has| $ (-6 -4255))) (($ $ |#1|) 60 (|has| $ (-6 -4255)))) (-2664 (($ $ $) 78) (($ |#1| $) 77)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2021 (((-592 $) $) 51)) (-1519 (((-108) $ $) 43 (|has| |#1| (-1019)))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-1160 |#1|) (-131) (-1126)) (T -1160))
-((-2664 (*1 *1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-2664 (*1 *1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-3928 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-3135 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1160 *3)) (-4 *3 (-1126)))) (-3145 (*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-3928 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1160 *3)) (-4 *3 (-1126)))) (-3145 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1160 *3)) (-4 *3 (-1126)))) (-2292 (*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-3928 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-2292 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1160 *3)) (-4 *3 (-1126)))) (-1614 (*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-1882 (*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-3080 (*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-1290 (*1 *2 *1) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-1126)) (-5 *2 (-713)))) (-1350 (*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-1497 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-1497 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-2027 (*1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-1517 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-2109 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-3795 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-2109 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4255)) (-4 *1 (-1160 *3)) (-4 *3 (-1126)))) (-2813 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-2109 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))) (-3035 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (|has| *1 (-6 -4255)) (-4 *1 (-1160 *3)) (-4 *3 (-1126)))))
-(-13 (-941 |t#1|) (-10 -8 (-15 -2664 ($ $ $)) (-15 -2664 ($ |t#1| $)) (-15 -3135 (|t#1| $)) (-15 -3928 (|t#1| $ "first")) (-15 -3135 ($ $ (-713))) (-15 -3145 ($ $)) (-15 -3928 ($ $ "rest")) (-15 -3145 ($ $ (-713))) (-15 -2292 (|t#1| $)) (-15 -3928 (|t#1| $ "last")) (-15 -2292 ($ $ (-713))) (-15 -1614 ($ $)) (-15 -1882 (|t#1| $)) (-15 -1899 (|t#1| $)) (-15 -3080 ($ $)) (-15 -1290 ((-713) $)) (-15 -1350 ($ $)) (IF (|has| $ (-6 -4255)) (PROGN (-15 -1497 ($ $ $)) (-15 -1497 ($ $ |t#1|)) (-15 -2027 ($ $)) (-15 -1517 (|t#1| $ |t#1|)) (-15 -2109 (|t#1| $ "first" |t#1|)) (-15 -3795 ($ $ $)) (-15 -2109 ($ $ "rest" $)) (-15 -2813 (|t#1| $ |t#1|)) (-15 -2109 (|t#1| $ "last" |t#1|)) (-15 -3035 ($ $ (-525)))) |%noBranch|)))
-(((-33) . T) ((-97) |has| |#1| (-1019)) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-566 (-797)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-941 |#1|) . T) ((-1019) |has| |#1| (-1019)) ((-1126) . T))
-((-1370 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1161 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1370 (|#4| (-1 |#2| |#1|) |#3|))) (-976) (-976) (-1163 |#1|) (-1163 |#2|)) (T -1161))
-((-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-976)) (-4 *6 (-976)) (-4 *2 (-1163 *6)) (-5 *1 (-1161 *5 *6 *4 *2)) (-4 *4 (-1163 *5)))))
-(-10 -7 (-15 -1370 (|#4| (-1 |#2| |#1|) |#3|)))
-((-1611 (((-108) $) 15)) (-4049 (($ $) 92)) (-3911 (($ $) 68)) (-4026 (($ $) 88)) (-3434 (($ $) 64)) (-4072 (($ $) 96)) (-3931 (($ $) 72)) (-2091 (($ $) 62)) (-1982 (($ $) 60)) (-4084 (($ $) 98)) (-3942 (($ $) 74)) (-4061 (($ $) 94)) (-3919 (($ $) 70)) (-4038 (($ $) 90)) (-3455 (($ $) 66)) (-1908 (((-797) $) 48) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-4121 (($ $) 104)) (-3974 (($ $) 80)) (-4096 (($ $) 100)) (-3951 (($ $) 76)) (-4147 (($ $) 108)) (-3999 (($ $) 84)) (-2929 (($ $) 110)) (-4013 (($ $) 86)) (-4133 (($ $) 106)) (-3985 (($ $) 82)) (-4110 (($ $) 102)) (-3963 (($ $) 78)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-385 (-525))) 58)))
-(((-1162 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -3911 (|#1| |#1|)) (-15 -3434 (|#1| |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -3985 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3951 (|#1| |#1|)) (-15 -3974 (|#1| |#1|)) (-15 -4038 (|#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 -4084 (|#1| |#1|)) (-15 -4072 (|#1| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -4133 (|#1| |#1|)) (-15 -2929 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -4096 (|#1| |#1|)) (-15 -4121 (|#1| |#1|)) (-15 -2091 (|#1| |#1|)) (-15 -1982 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1908 (|#1| |#2|)) (-15 -1908 (|#1| |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1908 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-855))) (-15 -1611 ((-108) |#1|)) (-15 -1908 ((-797) |#1|))) (-1163 |#2|) (-976)) (T -1162))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -3911 (|#1| |#1|)) (-15 -3434 (|#1| |#1|)) (-15 -3931 (|#1| |#1|)) (-15 -3942 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -3963 (|#1| |#1|)) (-15 -3985 (|#1| |#1|)) (-15 -4013 (|#1| |#1|)) (-15 -3999 (|#1| |#1|)) (-15 -3951 (|#1| |#1|)) (-15 -3974 (|#1| |#1|)) (-15 -4038 (|#1| |#1|)) (-15 -4061 (|#1| |#1|)) (-15 -4084 (|#1| |#1|)) (-15 -4072 (|#1| |#1|)) (-15 -4026 (|#1| |#1|)) (-15 -4049 (|#1| |#1|)) (-15 -4110 (|#1| |#1|)) (-15 -4133 (|#1| |#1|)) (-15 -2929 (|#1| |#1|)) (-15 -4147 (|#1| |#1|)) (-15 -4096 (|#1| |#1|)) (-15 -4121 (|#1| |#1|)) (-15 -2091 (|#1| |#1|)) (-15 -1982 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1908 (|#1| |#2|)) (-15 -1908 (|#1| |#1|)) (-15 -1908 (|#1| (-385 (-525)))) (-15 -1908 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-855))) (-15 -1611 ((-108) |#1|)) (-15 -1908 ((-797) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-4104 (((-592 (-1004)) $) 74)) (-1251 (((-1090) $) 103)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3635 (($ $) 52 (|has| |#1| (-517)))) (-2950 (((-108) $) 54 (|has| |#1| (-517)))) (-4114 (($ $ (-713)) 98) (($ $ (-713) (-713)) 97)) (-2911 (((-1071 (-2 (|:| |k| (-713)) (|:| |c| |#1|))) $) 105)) (-4049 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) 19)) (-3969 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-4026 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-3483 (($ (-1071 (-2 (|:| |k| (-713)) (|:| |c| |#1|)))) 155) (($ (-1071 |#1|)) 153)) (-4072 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) 17 T CONST)) (-1247 (($ $) 60)) (-2866 (((-3 $ "failed") $) 34)) (-4188 (($ $) 152)) (-2467 (((-886 |#1|) $ (-713)) 150) (((-886 |#1|) $ (-713) (-713)) 149)) (-4150 (((-108) $) 73)) (-1335 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-1737 (((-713) $) 100) (((-713) $ (-713)) 99)) (-2133 (((-108) $) 31)) (-3391 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-3817 (($ $ (-855)) 101)) (-3445 (($ (-1 |#1| (-525)) $) 151)) (-1819 (((-108) $) 62)) (-4079 (($ |#1| (-713)) 61) (($ $ (-1004) (-713)) 76) (($ $ (-592 (-1004)) (-592 (-713))) 75)) (-1370 (($ (-1 |#1| |#1|) $) 63)) (-2091 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) 65)) (-1224 ((|#1| $) 66)) (-2337 (((-1073) $) 9)) (-3766 (($ $) 147 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 146 (-3309 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-892)) (|has| |#1| (-1112)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -4104 ((-592 (-1090)) |#1|))) (|has| |#1| (-15 -3766 (|#1| |#1| (-1090)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2663 (((-1037) $) 10)) (-3538 (($ $ (-713)) 95)) (-2338 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-1982 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-3092 (((-1071 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-713)))))) (-3928 ((|#1| $ (-713)) 104) (($ $ $) 81 (|has| (-713) (-1031)))) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) 89 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1090) (-713)) 88 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-592 (-1090))) 87 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1090)) 86 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-2513 (((-713) $) 64)) (-4084 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-1801 (($ $) 72)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-3600 (((-1071 |#1|) $) 154)) (-1657 ((|#1| $ (-713)) 59)) (-3421 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2093 (((-713)) 29)) (-2563 ((|#1| $) 102)) (-4121 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) 53 (|has| |#1| (-517)))) (-4096 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-2038 ((|#1| $ (-713)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-713)))) (|has| |#1| (-15 -1908 (|#1| (-1090))))))) (-2929 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-1424 (($ $ (-592 (-1090)) (-592 (-713))) 93 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1090) (-713)) 92 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-592 (-1090))) 91 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1090)) 90 (-12 (|has| |#1| (-834 (-1090))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-3961 (((-108) $ $) 6)) (-4082 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ |#1|) 148 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
-(((-1163 |#1|) (-131) (-976)) (T -1163))
-((-3483 (*1 *1 *2) (-12 (-5 *2 (-1071 (-2 (|:| |k| (-713)) (|:| |c| *3)))) (-4 *3 (-976)) (-4 *1 (-1163 *3)))) (-3600 (*1 *2 *1) (-12 (-4 *1 (-1163 *3)) (-4 *3 (-976)) (-5 *2 (-1071 *3)))) (-3483 (*1 *1 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-4 *1 (-1163 *3)))) (-4188 (*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-976)))) (-3445 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1163 *3)) (-4 *3 (-976)))) (-2467 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-1163 *4)) (-4 *4 (-976)) (-5 *2 (-886 *4)))) (-2467 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-4 *1 (-1163 *4)) (-4 *4 (-976)) (-5 *2 (-886 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-976)) (-4 *2 (-341)))) (-3766 (*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-976)) (-4 *2 (-37 (-385 (-525)))))) (-3766 (*1 *1 *1 *2) (-3309 (-12 (-5 *2 (-1090)) (-4 *1 (-1163 *3)) (-4 *3 (-976)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-892)) (-4 *3 (-1112)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1090)) (-4 *1 (-1163 *3)) (-4 *3 (-976)) (-12 (|has| *3 (-15 -4104 ((-592 (-1090)) *3))) (|has| *3 (-15 -3766 (*3 *3 (-1090)))) (-4 *3 (-37 (-385 (-525)))))))))
-(-13 (-1150 |t#1| (-713)) (-10 -8 (-15 -3483 ($ (-1071 (-2 (|:| |k| (-713)) (|:| |c| |t#1|))))) (-15 -3600 ((-1071 |t#1|) $)) (-15 -3483 ($ (-1071 |t#1|))) (-15 -4188 ($ $)) (-15 -3445 ($ (-1 |t#1| (-525)) $)) (-15 -2467 ((-886 |t#1|) $ (-713))) (-15 -2467 ((-886 |t#1|) $ (-713) (-713))) (IF (|has| |t#1| (-341)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -3766 ($ $)) (IF (|has| |t#1| (-15 -3766 (|t#1| |t#1| (-1090)))) (IF (|has| |t#1| (-15 -4104 ((-592 (-1090)) |t#1|))) (-15 -3766 ($ $ (-1090))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1112)) (IF (|has| |t#1| (-892)) (IF (|has| |t#1| (-29 (-525))) (-15 -3766 ($ $ (-1090))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-933)) (-6 (-1112))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-713)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-713) |#1|))) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-713) (-1031)) ((-269) |has| |#1| (-517)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) |has| |#1| (-517)) ((-594 #1#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-834 (-1090)) -12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090)))) ((-905 |#1| #0# (-1004)) . T) ((-933) |has| |#1| (-37 (-385 (-525)))) ((-982 #1#) |has| |#1| (-37 (-385 (-525)))) ((-982 |#1|) . T) ((-982 $) -3309 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1112) |has| |#1| (-37 (-385 (-525)))) ((-1115) |has| |#1| (-37 (-385 (-525)))) ((-1150 |#1| #0#) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-4104 (((-592 (-1004)) $) NIL)) (-1251 (((-1090) $) 87)) (-1495 (((-1145 |#2| |#1|) $ (-713)) 73)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3635 (($ $) NIL (|has| |#1| (-517)))) (-2950 (((-108) $) 137 (|has| |#1| (-517)))) (-4114 (($ $ (-713)) 122) (($ $ (-713) (-713)) 124)) (-2911 (((-1071 (-2 (|:| |k| (-713)) (|:| |c| |#1|))) $) 42)) (-4049 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3911 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3263 (((-3 $ "failed") $ $) NIL)) (-3969 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4026 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3434 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3483 (($ (-1071 (-2 (|:| |k| (-713)) (|:| |c| |#1|)))) 53) (($ (-1071 |#1|)) NIL)) (-4072 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3931 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1505 (($) NIL T CONST)) (-4173 (($ $) 128)) (-1247 (($ $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-4188 (($ $) 135)) (-2467 (((-886 |#1|) $ (-713)) 63) (((-886 |#1|) $ (-713) (-713)) 65)) (-4150 (((-108) $) NIL)) (-1335 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1737 (((-713) $) NIL) (((-713) $ (-713)) NIL)) (-2133 (((-108) $) NIL)) (-3948 (($ $) 112)) (-3391 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4115 (($ (-525) (-525) $) 130)) (-3817 (($ $ (-855)) 134)) (-3445 (($ (-1 |#1| (-525)) $) 106)) (-1819 (((-108) $) NIL)) (-4079 (($ |#1| (-713)) 15) (($ $ (-1004) (-713)) NIL) (($ $ (-592 (-1004)) (-592 (-713))) NIL)) (-1370 (($ (-1 |#1| |#1|) $) 94)) (-2091 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1212 (($ $) NIL)) (-1224 ((|#1| $) NIL)) (-2337 (((-1073) $) NIL)) (-4044 (($ $) 110)) (-3267 (($ $) 108)) (-3890 (($ (-525) (-525) $) 132)) (-3766 (($ $) 145 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1090)) 151 (-3309 (-12 (|has| |#1| (-15 -3766 (|#1| |#1| (-1090)))) (|has| |#1| (-15 -4104 ((-592 (-1090)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-892)) (|has| |#1| (-1112))))) (($ $ (-1168 |#2|)) 146 (|has| |#1| (-37 (-385 (-525)))))) (-2663 (((-1037) $) NIL)) (-2741 (($ $ (-525) (-525)) 116)) (-3538 (($ $ (-713)) 118)) (-2338 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1982 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2363 (($ $) 114)) (-3092 (((-1071 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-713)))))) (-3928 ((|#1| $ (-713)) 91) (($ $ $) 126 (|has| (-713) (-1031)))) (-3013 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) 103 (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $ (-1168 |#2|)) 99)) (-2513 (((-713) $) NIL)) (-4084 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3942 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4061 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3919 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4038 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3455 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1801 (($ $) 120)) (-1908 (((-797) $) NIL) (($ (-525)) 24) (($ (-385 (-525))) 143 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 23 (|has| |#1| (-160))) (($ (-1145 |#2| |#1|)) 80) (($ (-1168 |#2|)) 20)) (-3600 (((-1071 |#1|) $) NIL)) (-1657 ((|#1| $ (-713)) 90)) (-3421 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2093 (((-713)) NIL)) (-2563 ((|#1| $) 88)) (-4121 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3974 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2262 (((-108) $ $) NIL (|has| |#1| (-517)))) (-4096 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3951 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4147 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3999 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2038 ((|#1| $ (-713)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-713)))) (|has| |#1| (-15 -1908 (|#1| (-1090))))))) (-2929 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4013 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4133 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3985 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-4110 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3963 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 17 T CONST)) (-3882 (($) 13 T CONST)) (-1424 (($ $ (-592 (-1090)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-592 (-1090))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-1090)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-834 (-1090))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-3961 (((-108) $ $) NIL)) (-4082 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) 102)) (-4059 (($ $ $) 18)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL) (($ $ |#1|) 140 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
-(((-1164 |#1| |#2| |#3|) (-13 (-1163 |#1|) (-10 -8 (-15 -1908 ($ (-1145 |#2| |#1|))) (-15 -1495 ((-1145 |#2| |#1|) $ (-713))) (-15 -1908 ($ (-1168 |#2|))) (-15 -3013 ($ $ (-1168 |#2|))) (-15 -3267 ($ $)) (-15 -4044 ($ $)) (-15 -3948 ($ $)) (-15 -2363 ($ $)) (-15 -2741 ($ $ (-525) (-525))) (-15 -4173 ($ $)) (-15 -4115 ($ (-525) (-525) $)) (-15 -3890 ($ (-525) (-525) $)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3766 ($ $ (-1168 |#2|))) |%noBranch|))) (-976) (-1090) |#1|) (T -1164))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-1145 *4 *3)) (-4 *3 (-976)) (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-1164 *3 *4 *5)))) (-1495 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1145 *5 *4)) (-5 *1 (-1164 *4 *5 *6)) (-4 *4 (-976)) (-14 *5 (-1090)) (-14 *6 *4))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-976)) (-14 *5 *3))) (-3267 (*1 *1 *1) (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090)) (-14 *4 *2))) (-4044 (*1 *1 *1) (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090)) (-14 *4 *2))) (-3948 (*1 *1 *1) (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090)) (-14 *4 *2))) (-2363 (*1 *1 *1) (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090)) (-14 *4 *2))) (-2741 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-976)) (-14 *4 (-1090)) (-14 *5 *3))) (-4173 (*1 *1 *1) (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090)) (-14 *4 *2))) (-4115 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-976)) (-14 *4 (-1090)) (-14 *5 *3))) (-3890 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-976)) (-14 *4 (-1090)) (-14 *5 *3))) (-3766 (*1 *1 *1 *2) (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3))))
-(-13 (-1163 |#1|) (-10 -8 (-15 -1908 ($ (-1145 |#2| |#1|))) (-15 -1495 ((-1145 |#2| |#1|) $ (-713))) (-15 -1908 ($ (-1168 |#2|))) (-15 -3013 ($ $ (-1168 |#2|))) (-15 -3267 ($ $)) (-15 -4044 ($ $)) (-15 -3948 ($ $)) (-15 -2363 ($ $)) (-15 -2741 ($ $ (-525) (-525))) (-15 -4173 ($ $)) (-15 -4115 ($ (-525) (-525) $)) (-15 -3890 ($ (-525) (-525) $)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -3766 ($ $ (-1168 |#2|))) |%noBranch|)))
-((-1970 (((-1 (-1071 |#1|) (-592 (-1071 |#1|))) (-1 |#2| (-592 |#2|))) 24)) (-3094 (((-1 (-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3353 (((-1 (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2|)) 13)) (-2846 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3040 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3050 ((|#2| (-1 |#2| (-592 |#2|)) (-592 |#1|)) 54)) (-2068 (((-592 |#2|) (-592 |#1|) (-592 (-1 |#2| (-592 |#2|)))) 61)) (-2933 ((|#2| |#2| |#2|) 43)))
-(((-1165 |#1| |#2|) (-10 -7 (-15 -3353 ((-1 (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2|))) (-15 -3094 ((-1 (-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1970 ((-1 (-1071 |#1|) (-592 (-1071 |#1|))) (-1 |#2| (-592 |#2|)))) (-15 -2933 (|#2| |#2| |#2|)) (-15 -3040 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2846 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3050 (|#2| (-1 |#2| (-592 |#2|)) (-592 |#1|))) (-15 -2068 ((-592 |#2|) (-592 |#1|) (-592 (-1 |#2| (-592 |#2|)))))) (-37 (-385 (-525))) (-1163 |#1|)) (T -1165))
-((-2068 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 (-1 *6 (-592 *6)))) (-4 *5 (-37 (-385 (-525)))) (-4 *6 (-1163 *5)) (-5 *2 (-592 *6)) (-5 *1 (-1165 *5 *6)))) (-3050 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-592 *2))) (-5 *4 (-592 *5)) (-4 *5 (-37 (-385 (-525)))) (-4 *2 (-1163 *5)) (-5 *1 (-1165 *5 *2)))) (-2846 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1163 *4)) (-5 *1 (-1165 *4 *2)) (-4 *4 (-37 (-385 (-525)))))) (-3040 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1163 *4)) (-5 *1 (-1165 *4 *2)) (-4 *4 (-37 (-385 (-525)))))) (-2933 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1165 *3 *2)) (-4 *2 (-1163 *3)))) (-1970 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-592 *5))) (-4 *5 (-1163 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1071 *4) (-592 (-1071 *4)))) (-5 *1 (-1165 *4 *5)))) (-3094 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1163 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1071 *4) (-1071 *4) (-1071 *4))) (-5 *1 (-1165 *4 *5)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1163 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1071 *4) (-1071 *4))) (-5 *1 (-1165 *4 *5)))))
-(-10 -7 (-15 -3353 ((-1 (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2|))) (-15 -3094 ((-1 (-1071 |#1|) (-1071 |#1|) (-1071 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1970 ((-1 (-1071 |#1|) (-592 (-1071 |#1|))) (-1 |#2| (-592 |#2|)))) (-15 -2933 (|#2| |#2| |#2|)) (-15 -3040 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2846 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3050 (|#2| (-1 |#2| (-592 |#2|)) (-592 |#1|))) (-15 -2068 ((-592 |#2|) (-592 |#1|) (-592 (-1 |#2| (-592 |#2|))))))
-((-3266 ((|#2| |#4| (-713)) 30)) (-1577 ((|#4| |#2|) 25)) (-4120 ((|#4| (-385 |#2|)) 52 (|has| |#1| (-517)))) (-2190 (((-1 |#4| (-592 |#4|)) |#3|) 46)))
-(((-1166 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1577 (|#4| |#2|)) (-15 -3266 (|#2| |#4| (-713))) (-15 -2190 ((-1 |#4| (-592 |#4|)) |#3|)) (IF (|has| |#1| (-517)) (-15 -4120 (|#4| (-385 |#2|))) |%noBranch|)) (-976) (-1148 |#1|) (-602 |#2|) (-1163 |#1|)) (T -1166))
-((-4120 (*1 *2 *3) (-12 (-5 *3 (-385 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-517)) (-4 *4 (-976)) (-4 *2 (-1163 *4)) (-5 *1 (-1166 *4 *5 *6 *2)) (-4 *6 (-602 *5)))) (-2190 (*1 *2 *3) (-12 (-4 *4 (-976)) (-4 *5 (-1148 *4)) (-5 *2 (-1 *6 (-592 *6))) (-5 *1 (-1166 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-1163 *4)))) (-3266 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-976)) (-4 *2 (-1148 *5)) (-5 *1 (-1166 *5 *2 *6 *3)) (-4 *6 (-602 *2)) (-4 *3 (-1163 *5)))) (-1577 (*1 *2 *3) (-12 (-4 *4 (-976)) (-4 *3 (-1148 *4)) (-4 *2 (-1163 *4)) (-5 *1 (-1166 *4 *3 *5 *2)) (-4 *5 (-602 *3)))))
-(-10 -7 (-15 -1577 (|#4| |#2|)) (-15 -3266 (|#2| |#4| (-713))) (-15 -2190 ((-1 |#4| (-592 |#4|)) |#3|)) (IF (|has| |#1| (-517)) (-15 -4120 (|#4| (-385 |#2|))) |%noBranch|))
-NIL
-(((-1167) (-131)) (T -1167))
-NIL
-(-13 (-10 -7 (-6 -1996)))
-((-1893 (((-108) $ $) NIL)) (-1251 (((-1090)) 12)) (-2337 (((-1073) $) 17)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 11) (((-1090) $) 8)) (-3961 (((-108) $ $) 14)))
-(((-1168 |#1|) (-13 (-1019) (-566 (-1090)) (-10 -8 (-15 -1908 ((-1090) $)) (-15 -1251 ((-1090))))) (-1090)) (T -1168))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1168 *3)) (-14 *3 (-1090)))) (-1251 (*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1168 *3)) (-14 *3 (-1090)))))
-(-13 (-1019) (-566 (-1090)) (-10 -8 (-15 -1908 ((-1090) $)) (-15 -1251 ((-1090)))))
-((-1383 (($ (-713)) 18)) (-3307 (((-632 |#2|) $ $) 40)) (-3898 ((|#2| $) 48)) (-1722 ((|#2| $) 47)) (-1595 ((|#2| $ $) 35)) (-2873 (($ $ $) 44)) (-4070 (($ $) 22) (($ $ $) 28)) (-4059 (($ $ $) 15)) (* (($ (-525) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
-(((-1169 |#1| |#2|) (-10 -8 (-15 -3898 (|#2| |#1|)) (-15 -1722 (|#2| |#1|)) (-15 -2873 (|#1| |#1| |#1|)) (-15 -3307 ((-632 |#2|) |#1| |#1|)) (-15 -1595 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4070 (|#1| |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -1383 (|#1| (-713))) (-15 -4059 (|#1| |#1| |#1|))) (-1170 |#2|) (-1126)) (T -1169))
-NIL
-(-10 -8 (-15 -3898 (|#2| |#1|)) (-15 -1722 (|#2| |#1|)) (-15 -2873 (|#1| |#1| |#1|)) (-15 -3307 ((-632 |#2|) |#1| |#1|)) (-15 -1595 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4070 (|#1| |#1| |#1|)) (-15 -4070 (|#1| |#1|)) (-15 -1383 (|#1| (-713))) (-15 -4059 (|#1| |#1| |#1|)))
-((-1893 (((-108) $ $) 19 (|has| |#1| (-1019)))) (-1383 (($ (-713)) 112 (|has| |#1| (-23)))) (-1840 (((-1177) $ (-525) (-525)) 40 (|has| $ (-6 -4255)))) (-3072 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-1356 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4255))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4255))))) (-3327 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-3410 (((-108) $ (-713)) 8)) (-2109 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) 58 (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4254)))) (-1505 (($) 7 T CONST)) (-4103 (($ $) 90 (|has| $ (-6 -4255)))) (-1693 (($ $) 100)) (-3163 (($ $) 78 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-2273 (($ |#1| $) 77 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4254)))) (-2870 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) 51)) (-3763 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1019)))) (-2026 (((-592 |#1|) $) 30 (|has| $ (-6 -4254)))) (-3307 (((-632 |#1|) $ $) 105 (|has| |#1| (-976)))) (-4018 (($ (-713) |#1|) 69)) (-3100 (((-108) $ (-713)) 9)) (-2009 (((-525) $) 43 (|has| (-525) (-789)))) (-3525 (($ $ $) 87 (|has| |#1| (-789)))) (-1932 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-3168 (((-592 |#1|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-1792 (((-525) $) 44 (|has| (-525) (-789)))) (-3630 (($ $ $) 86 (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3898 ((|#1| $) 102 (-12 (|has| |#1| (-976)) (|has| |#1| (-933))))) (-3017 (((-108) $ (-713)) 10)) (-1722 ((|#1| $) 103 (-12 (|has| |#1| (-976)) (|has| |#1| (-933))))) (-2337 (((-1073) $) 22 (|has| |#1| (-1019)))) (-3167 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-3222 (((-592 (-525)) $) 46)) (-1548 (((-108) (-525) $) 47)) (-2663 (((-1037) $) 21 (|has| |#1| (-1019)))) (-3135 ((|#1| $) 42 (|has| (-525) (-789)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-1911 (($ $ |#1|) 41 (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) 14)) (-3218 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) 48)) (-1613 (((-108) $) 11)) (-3773 (($) 12)) (-3928 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1139 (-525))) 63)) (-1595 ((|#1| $ $) 106 (|has| |#1| (-976)))) (-3653 (($ $ (-525)) 62) (($ $ (-1139 (-525))) 61)) (-2873 (($ $ $) 104 (|has| |#1| (-976)))) (-2686 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4254))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1019)) (|has| $ (-6 -4254))))) (-3703 (($ $ $ (-525)) 91 (|has| $ (-6 -4255)))) (-2135 (($ $) 13)) (-1427 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 70)) (-2664 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1908 (((-797) $) 18 (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) 84 (|has| |#1| (-789)))) (-3995 (((-108) $ $) 83 (|has| |#1| (-789)))) (-3961 (((-108) $ $) 20 (|has| |#1| (-1019)))) (-4010 (((-108) $ $) 85 (|has| |#1| (-789)))) (-3983 (((-108) $ $) 82 (|has| |#1| (-789)))) (-4070 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4059 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-525) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-669))) (($ $ |#1|) 107 (|has| |#1| (-669)))) (-4140 (((-713) $) 6 (|has| $ (-6 -4254)))))
-(((-1170 |#1|) (-131) (-1126)) (T -1170))
-((-4059 (*1 *1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-25)))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1170 *3)) (-4 *3 (-23)) (-4 *3 (-1126)))) (-4070 (*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-21)))) (-4070 (*1 *1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-1170 *3)) (-4 *3 (-1126)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-669)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-669)))) (-1595 (*1 *2 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-976)))) (-3307 (*1 *2 *1 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1126)) (-4 *3 (-976)) (-5 *2 (-632 *3)))) (-2873 (*1 *1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-976)))) (-1722 (*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-933)) (-4 *2 (-976)))) (-3898 (*1 *2 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-933)) (-4 *2 (-976)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4059 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1383 ($ (-713))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4070 ($ $)) (-15 -4070 ($ $ $)) (-15 * ($ (-525) $))) |%noBranch|) (IF (|has| |t#1| (-669)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-976)) (PROGN (-15 -1595 (|t#1| $ $)) (-15 -3307 ((-632 |t#1|) $ $)) (-15 -2873 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-933)) (IF (|has| |t#1| (-976)) (PROGN (-15 -1722 (|t#1| $)) (-15 -3898 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-33) . T) ((-97) -3309 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-566 (-797)) -3309 (|has| |#1| (-1019)) (|has| |#1| (-789)) (|has| |#1| (-566 (-797)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))) ((-597 |#1|) . T) ((-19 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1019) -3309 (|has| |#1| (-1019)) (|has| |#1| (-789))) ((-1126) . T))
-((-4186 (((-1172 |#2|) (-1 |#2| |#1| |#2|) (-1172 |#1|) |#2|) 13)) (-4004 ((|#2| (-1 |#2| |#1| |#2|) (-1172 |#1|) |#2|) 15)) (-1370 (((-3 (-1172 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1172 |#1|)) 28) (((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|)) 18)))
-(((-1171 |#1| |#2|) (-10 -7 (-15 -4186 ((-1172 |#2|) (-1 |#2| |#1| |#2|) (-1172 |#1|) |#2|)) (-15 -4004 (|#2| (-1 |#2| |#1| |#2|) (-1172 |#1|) |#2|)) (-15 -1370 ((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|))) (-15 -1370 ((-3 (-1172 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1172 |#1|)))) (-1126) (-1126)) (T -1171))
-((-1370 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1172 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1172 *6)) (-5 *1 (-1171 *5 *6)))) (-1370 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1172 *6)) (-5 *1 (-1171 *5 *6)))) (-4004 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1172 *5)) (-4 *5 (-1126)) (-4 *2 (-1126)) (-5 *1 (-1171 *5 *2)))) (-4186 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1172 *6)) (-4 *6 (-1126)) (-4 *5 (-1126)) (-5 *2 (-1172 *5)) (-5 *1 (-1171 *6 *5)))))
-(-10 -7 (-15 -4186 ((-1172 |#2|) (-1 |#2| |#1| |#2|) (-1172 |#1|) |#2|)) (-15 -4004 (|#2| (-1 |#2| |#1| |#2|) (-1172 |#1|) |#2|)) (-15 -1370 ((-1172 |#2|) (-1 |#2| |#1|) (-1172 |#1|))) (-15 -1370 ((-3 (-1172 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1172 |#1|))))
-((-1893 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-1383 (($ (-713)) NIL (|has| |#1| (-23)))) (-3004 (($ (-592 |#1|)) 9)) (-1840 (((-1177) $ (-525) (-525)) NIL (|has| $ (-6 -4255)))) (-3072 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-1356 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4255))) (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-789))))) (-3327 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3410 (((-108) $ (-713)) NIL)) (-2109 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255))) ((|#1| $ (-1139 (-525)) |#1|) NIL (|has| $ (-6 -4255)))) (-2724 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-1505 (($) NIL T CONST)) (-4103 (($ $) NIL (|has| $ (-6 -4255)))) (-1693 (($ $) NIL)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-2273 (($ |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4004 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4254))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4254)))) (-2870 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4255)))) (-2796 ((|#1| $ (-525)) NIL)) (-3763 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1019))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1019)))) (-2026 (((-592 |#1|) $) 15 (|has| $ (-6 -4254)))) (-3307 (((-632 |#1|) $ $) NIL (|has| |#1| (-976)))) (-4018 (($ (-713) |#1|) NIL)) (-3100 (((-108) $ (-713)) NIL)) (-2009 (((-525) $) NIL (|has| (-525) (-789)))) (-3525 (($ $ $) NIL (|has| |#1| (-789)))) (-1932 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-3168 (((-592 |#1|) $) NIL (|has| $ (-6 -4254)))) (-4132 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-1792 (((-525) $) NIL (|has| (-525) (-789)))) (-3630 (($ $ $) NIL (|has| |#1| (-789)))) (-2857 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3898 ((|#1| $) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-976))))) (-3017 (((-108) $ (-713)) NIL)) (-1722 ((|#1| $) NIL (-12 (|has| |#1| (-933)) (|has| |#1| (-976))))) (-2337 (((-1073) $) NIL (|has| |#1| (-1019)))) (-3167 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-3222 (((-592 (-525)) $) NIL)) (-1548 (((-108) (-525) $) NIL)) (-2663 (((-1037) $) NIL (|has| |#1| (-1019)))) (-3135 ((|#1| $) NIL (|has| (-525) (-789)))) (-4054 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-1911 (($ $ |#1|) NIL (|has| $ (-6 -4255)))) (-3494 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1019))))) (-2642 (((-108) $ $) NIL)) (-3218 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3171 (((-592 |#1|) $) NIL)) (-1613 (((-108) $) NIL)) (-3773 (($) NIL)) (-3928 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-1595 ((|#1| $ $) NIL (|has| |#1| (-976)))) (-3653 (($ $ (-525)) NIL) (($ $ (-1139 (-525))) NIL)) (-2873 (($ $ $) NIL (|has| |#1| (-976)))) (-2686 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#1| (-1019))))) (-3703 (($ $ $ (-525)) NIL (|has| $ (-6 -4255)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) 19 (|has| |#1| (-567 (-501))))) (-1922 (($ (-592 |#1|)) 8)) (-2664 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1908 (((-797) $) NIL (|has| |#1| (-566 (-797))))) (-2667 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4254)))) (-4024 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3995 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3961 (((-108) $ $) NIL (|has| |#1| (-1019)))) (-4010 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3983 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4070 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4059 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-669))) (($ $ |#1|) NIL (|has| |#1| (-669)))) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-1172 |#1|) (-13 (-1170 |#1|) (-10 -8 (-15 -3004 ($ (-592 |#1|))))) (-1126)) (T -1172))
-((-3004 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-1172 *3)))))
-(-13 (-1170 |#1|) (-10 -8 (-15 -3004 ($ (-592 |#1|)))))
-((-1893 (((-108) $ $) NIL)) (-2694 (((-1073) $ (-1073)) 90) (((-1073) $ (-1073) (-1073)) 88) (((-1073) $ (-1073) (-592 (-1073))) 87)) (-2328 (($) 59)) (-3709 (((-1177) $ (-445) (-855)) 45)) (-2915 (((-1177) $ (-855) (-1073)) 73) (((-1177) $ (-855) (-808)) 74)) (-4022 (((-1177) $ (-855) (-357) (-357)) 48)) (-3282 (((-1177) $ (-1073)) 69)) (-3492 (((-1177) $ (-855) (-1073)) 78)) (-2349 (((-1177) $ (-855) (-357) (-357)) 49)) (-4217 (((-1177) $ (-855) (-855)) 46)) (-2668 (((-1177) $) 70)) (-2204 (((-1177) $ (-855) (-1073)) 77)) (-1314 (((-1177) $ (-445) (-855)) 31)) (-3156 (((-1177) $ (-855) (-1073)) 76)) (-3955 (((-592 (-242)) $) 23) (($ $ (-592 (-242))) 24)) (-2209 (((-1177) $ (-713) (-713)) 43)) (-3799 (($ $) 60) (($ (-445) (-592 (-242))) 61)) (-2337 (((-1073) $) NIL)) (-3946 (((-525) $) 38)) (-2663 (((-1037) $) NIL)) (-1779 (((-1172 (-3 (-445) "undefined")) $) 37)) (-3186 (((-1172 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -3156 (-525)) (|:| -2395 (-525)) (|:| |spline| (-525)) (|:| -3182 (-525)) (|:| |axesColor| (-808)) (|:| -2915 (-525)) (|:| |unitsColor| (-808)) (|:| |showing| (-525)))) $) 36)) (-3323 (((-1177) $ (-855) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-808) (-525) (-808) (-525)) 68)) (-1469 (((-592 (-877 (-205))) $) NIL)) (-2906 (((-445) $ (-855)) 33)) (-1394 (((-1177) $ (-713) (-713) (-855) (-855)) 40)) (-3823 (((-1177) $ (-1073)) 79)) (-2395 (((-1177) $ (-855) (-1073)) 75)) (-1908 (((-797) $) 85)) (-3286 (((-1177) $) 80)) (-3182 (((-1177) $ (-855) (-1073)) 71) (((-1177) $ (-855) (-808)) 72)) (-3961 (((-108) $ $) NIL)))
-(((-1173) (-13 (-1019) (-10 -8 (-15 -1469 ((-592 (-877 (-205))) $)) (-15 -2328 ($)) (-15 -3799 ($ $)) (-15 -3955 ((-592 (-242)) $)) (-15 -3955 ($ $ (-592 (-242)))) (-15 -3799 ($ (-445) (-592 (-242)))) (-15 -3323 ((-1177) $ (-855) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-808) (-525) (-808) (-525))) (-15 -3186 ((-1172 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -3156 (-525)) (|:| -2395 (-525)) (|:| |spline| (-525)) (|:| -3182 (-525)) (|:| |axesColor| (-808)) (|:| -2915 (-525)) (|:| |unitsColor| (-808)) (|:| |showing| (-525)))) $)) (-15 -1779 ((-1172 (-3 (-445) "undefined")) $)) (-15 -3282 ((-1177) $ (-1073))) (-15 -1314 ((-1177) $ (-445) (-855))) (-15 -2906 ((-445) $ (-855))) (-15 -3182 ((-1177) $ (-855) (-1073))) (-15 -3182 ((-1177) $ (-855) (-808))) (-15 -2915 ((-1177) $ (-855) (-1073))) (-15 -2915 ((-1177) $ (-855) (-808))) (-15 -3156 ((-1177) $ (-855) (-1073))) (-15 -2204 ((-1177) $ (-855) (-1073))) (-15 -2395 ((-1177) $ (-855) (-1073))) (-15 -3823 ((-1177) $ (-1073))) (-15 -3286 ((-1177) $)) (-15 -1394 ((-1177) $ (-713) (-713) (-855) (-855))) (-15 -2349 ((-1177) $ (-855) (-357) (-357))) (-15 -4022 ((-1177) $ (-855) (-357) (-357))) (-15 -3492 ((-1177) $ (-855) (-1073))) (-15 -2209 ((-1177) $ (-713) (-713))) (-15 -3709 ((-1177) $ (-445) (-855))) (-15 -4217 ((-1177) $ (-855) (-855))) (-15 -2694 ((-1073) $ (-1073))) (-15 -2694 ((-1073) $ (-1073) (-1073))) (-15 -2694 ((-1073) $ (-1073) (-592 (-1073)))) (-15 -2668 ((-1177) $)) (-15 -3946 ((-525) $)) (-15 -1908 ((-797) $))))) (T -1173))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1173)))) (-1469 (*1 *2 *1) (-12 (-5 *2 (-592 (-877 (-205)))) (-5 *1 (-1173)))) (-2328 (*1 *1) (-5 *1 (-1173))) (-3799 (*1 *1 *1) (-5 *1 (-1173))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1173)))) (-3955 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1173)))) (-3799 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-592 (-242))) (-5 *1 (-1173)))) (-3323 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-855)) (-5 *4 (-205)) (-5 *5 (-525)) (-5 *6 (-808)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-3186 (*1 *2 *1) (-12 (-5 *2 (-1172 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -3156 (-525)) (|:| -2395 (-525)) (|:| |spline| (-525)) (|:| -3182 (-525)) (|:| |axesColor| (-808)) (|:| -2915 (-525)) (|:| |unitsColor| (-808)) (|:| |showing| (-525))))) (-5 *1 (-1173)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-1172 (-3 (-445) "undefined"))) (-5 *1 (-1173)))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-1314 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-445)) (-5 *4 (-855)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-2906 (*1 *2 *1 *3) (-12 (-5 *3 (-855)) (-5 *2 (-445)) (-5 *1 (-1173)))) (-3182 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-3182 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-808)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-2915 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-2915 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-808)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-3156 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-2204 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-2395 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-3823 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-3286 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1173)))) (-1394 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-713)) (-5 *4 (-855)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-2349 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-855)) (-5 *4 (-357)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-4022 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-855)) (-5 *4 (-357)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-3492 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-2209 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-3709 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-445)) (-5 *4 (-855)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-4217 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1177)) (-5 *1 (-1173)))) (-2694 (*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1173)))) (-2694 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1173)))) (-2694 (*1 *2 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-592 (-1073))) (-5 *1 (-1173)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1173)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1173)))))
-(-13 (-1019) (-10 -8 (-15 -1469 ((-592 (-877 (-205))) $)) (-15 -2328 ($)) (-15 -3799 ($ $)) (-15 -3955 ((-592 (-242)) $)) (-15 -3955 ($ $ (-592 (-242)))) (-15 -3799 ($ (-445) (-592 (-242)))) (-15 -3323 ((-1177) $ (-855) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-808) (-525) (-808) (-525))) (-15 -3186 ((-1172 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -3156 (-525)) (|:| -2395 (-525)) (|:| |spline| (-525)) (|:| -3182 (-525)) (|:| |axesColor| (-808)) (|:| -2915 (-525)) (|:| |unitsColor| (-808)) (|:| |showing| (-525)))) $)) (-15 -1779 ((-1172 (-3 (-445) "undefined")) $)) (-15 -3282 ((-1177) $ (-1073))) (-15 -1314 ((-1177) $ (-445) (-855))) (-15 -2906 ((-445) $ (-855))) (-15 -3182 ((-1177) $ (-855) (-1073))) (-15 -3182 ((-1177) $ (-855) (-808))) (-15 -2915 ((-1177) $ (-855) (-1073))) (-15 -2915 ((-1177) $ (-855) (-808))) (-15 -3156 ((-1177) $ (-855) (-1073))) (-15 -2204 ((-1177) $ (-855) (-1073))) (-15 -2395 ((-1177) $ (-855) (-1073))) (-15 -3823 ((-1177) $ (-1073))) (-15 -3286 ((-1177) $)) (-15 -1394 ((-1177) $ (-713) (-713) (-855) (-855))) (-15 -2349 ((-1177) $ (-855) (-357) (-357))) (-15 -4022 ((-1177) $ (-855) (-357) (-357))) (-15 -3492 ((-1177) $ (-855) (-1073))) (-15 -2209 ((-1177) $ (-713) (-713))) (-15 -3709 ((-1177) $ (-445) (-855))) (-15 -4217 ((-1177) $ (-855) (-855))) (-15 -2694 ((-1073) $ (-1073))) (-15 -2694 ((-1073) $ (-1073) (-1073))) (-15 -2694 ((-1073) $ (-1073) (-592 (-1073)))) (-15 -2668 ((-1177) $)) (-15 -3946 ((-525) $)) (-15 -1908 ((-797) $))))
-((-1893 (((-108) $ $) NIL)) (-3742 (((-1177) $ (-357)) 140) (((-1177) $ (-357) (-357) (-357)) 141)) (-2694 (((-1073) $ (-1073)) 148) (((-1073) $ (-1073) (-1073)) 146) (((-1073) $ (-1073) (-592 (-1073))) 145)) (-2907 (($) 50)) (-1668 (((-1177) $ (-357) (-357) (-357) (-357) (-357)) 116) (((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $) 114) (((-1177) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 115) (((-1177) $ (-525) (-525) (-357) (-357) (-357)) 117) (((-1177) $ (-357) (-357)) 118) (((-1177) $ (-357) (-357) (-357)) 125)) (-2024 (((-357)) 97) (((-357) (-357)) 98)) (-3044 (((-357)) 92) (((-357) (-357)) 94)) (-2805 (((-357)) 95) (((-357) (-357)) 96)) (-2827 (((-357)) 101) (((-357) (-357)) 102)) (-3098 (((-357)) 99) (((-357) (-357)) 100)) (-4022 (((-1177) $ (-357) (-357)) 142)) (-3282 (((-1177) $ (-1073)) 126)) (-3221 (((-1050 (-205)) $) 51) (($ $ (-1050 (-205))) 52)) (-3326 (((-1177) $ (-1073)) 154)) (-3841 (((-1177) $ (-1073)) 155)) (-1588 (((-1177) $ (-357) (-357)) 124) (((-1177) $ (-525) (-525)) 139)) (-4217 (((-1177) $ (-855) (-855)) 132)) (-2668 (((-1177) $) 112)) (-2263 (((-1177) $ (-1073)) 153)) (-1691 (((-1177) $ (-1073)) 109)) (-3955 (((-592 (-242)) $) 53) (($ $ (-592 (-242))) 54)) (-2209 (((-1177) $ (-713) (-713)) 131)) (-3889 (((-1177) $ (-713) (-877 (-205))) 160)) (-2659 (($ $) 56) (($ (-1050 (-205)) (-1073)) 57) (($ (-1050 (-205)) (-592 (-242))) 58)) (-3671 (((-1177) $ (-357) (-357) (-357)) 106)) (-2337 (((-1073) $) NIL)) (-3946 (((-525) $) 103)) (-3246 (((-1177) $ (-357)) 143)) (-3398 (((-1177) $ (-357)) 158)) (-2663 (((-1037) $) NIL)) (-2094 (((-1177) $ (-357)) 157)) (-1936 (((-1177) $ (-1073)) 111)) (-1394 (((-1177) $ (-713) (-713) (-855) (-855)) 130)) (-1778 (((-1177) $ (-1073)) 108)) (-3823 (((-1177) $ (-1073)) 110)) (-3121 (((-1177) $ (-146) (-146)) 129)) (-1908 (((-797) $) 137)) (-3286 (((-1177) $) 113)) (-1599 (((-1177) $ (-1073)) 156)) (-3182 (((-1177) $ (-1073)) 107)) (-3961 (((-108) $ $) NIL)))
-(((-1174) (-13 (-1019) (-10 -8 (-15 -3044 ((-357))) (-15 -3044 ((-357) (-357))) (-15 -2805 ((-357))) (-15 -2805 ((-357) (-357))) (-15 -2024 ((-357))) (-15 -2024 ((-357) (-357))) (-15 -3098 ((-357))) (-15 -3098 ((-357) (-357))) (-15 -2827 ((-357))) (-15 -2827 ((-357) (-357))) (-15 -2907 ($)) (-15 -2659 ($ $)) (-15 -2659 ($ (-1050 (-205)) (-1073))) (-15 -2659 ($ (-1050 (-205)) (-592 (-242)))) (-15 -3221 ((-1050 (-205)) $)) (-15 -3221 ($ $ (-1050 (-205)))) (-15 -3889 ((-1177) $ (-713) (-877 (-205)))) (-15 -3955 ((-592 (-242)) $)) (-15 -3955 ($ $ (-592 (-242)))) (-15 -2209 ((-1177) $ (-713) (-713))) (-15 -4217 ((-1177) $ (-855) (-855))) (-15 -3282 ((-1177) $ (-1073))) (-15 -1394 ((-1177) $ (-713) (-713) (-855) (-855))) (-15 -1668 ((-1177) $ (-357) (-357) (-357) (-357) (-357))) (-15 -1668 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $)) (-15 -1668 ((-1177) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -1668 ((-1177) $ (-525) (-525) (-357) (-357) (-357))) (-15 -1668 ((-1177) $ (-357) (-357))) (-15 -1668 ((-1177) $ (-357) (-357) (-357))) (-15 -3823 ((-1177) $ (-1073))) (-15 -3182 ((-1177) $ (-1073))) (-15 -1778 ((-1177) $ (-1073))) (-15 -1691 ((-1177) $ (-1073))) (-15 -1936 ((-1177) $ (-1073))) (-15 -1588 ((-1177) $ (-357) (-357))) (-15 -1588 ((-1177) $ (-525) (-525))) (-15 -3742 ((-1177) $ (-357))) (-15 -3742 ((-1177) $ (-357) (-357) (-357))) (-15 -4022 ((-1177) $ (-357) (-357))) (-15 -2263 ((-1177) $ (-1073))) (-15 -2094 ((-1177) $ (-357))) (-15 -3398 ((-1177) $ (-357))) (-15 -3326 ((-1177) $ (-1073))) (-15 -3841 ((-1177) $ (-1073))) (-15 -1599 ((-1177) $ (-1073))) (-15 -3671 ((-1177) $ (-357) (-357) (-357))) (-15 -3246 ((-1177) $ (-357))) (-15 -2668 ((-1177) $)) (-15 -3121 ((-1177) $ (-146) (-146))) (-15 -2694 ((-1073) $ (-1073))) (-15 -2694 ((-1073) $ (-1073) (-1073))) (-15 -2694 ((-1073) $ (-1073) (-592 (-1073)))) (-15 -3286 ((-1177) $)) (-15 -3946 ((-525) $))))) (T -1174))
-((-3044 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-3044 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-2805 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-2805 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-2024 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-2024 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-3098 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-2827 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-2827 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))) (-2907 (*1 *1) (-5 *1 (-1174))) (-2659 (*1 *1 *1) (-5 *1 (-1174))) (-2659 (*1 *1 *2 *3) (-12 (-5 *2 (-1050 (-205))) (-5 *3 (-1073)) (-5 *1 (-1174)))) (-2659 (*1 *1 *2 *3) (-12 (-5 *2 (-1050 (-205))) (-5 *3 (-592 (-242))) (-5 *1 (-1174)))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-1050 (-205))) (-5 *1 (-1174)))) (-3221 (*1 *1 *1 *2) (-12 (-5 *2 (-1050 (-205))) (-5 *1 (-1174)))) (-3889 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-877 (-205))) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1174)))) (-3955 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1174)))) (-2209 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-4217 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3282 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-1394 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-713)) (-5 *4 (-855)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-1668 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *1 (-1174)))) (-1668 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-1668 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-525)) (-5 *4 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-1668 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-1668 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3823 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3182 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-1778 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-1691 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-1936 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-1588 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-1588 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3742 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3742 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-4022 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2263 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2094 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3398 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3326 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3841 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-1599 (*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3671 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3246 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3121 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-146)) (-5 *2 (-1177)) (-5 *1 (-1174)))) (-2694 (*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1174)))) (-2694 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1174)))) (-2694 (*1 *2 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-592 (-1073))) (-5 *1 (-1174)))) (-3286 (*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1174)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1174)))))
-(-13 (-1019) (-10 -8 (-15 -3044 ((-357))) (-15 -3044 ((-357) (-357))) (-15 -2805 ((-357))) (-15 -2805 ((-357) (-357))) (-15 -2024 ((-357))) (-15 -2024 ((-357) (-357))) (-15 -3098 ((-357))) (-15 -3098 ((-357) (-357))) (-15 -2827 ((-357))) (-15 -2827 ((-357) (-357))) (-15 -2907 ($)) (-15 -2659 ($ $)) (-15 -2659 ($ (-1050 (-205)) (-1073))) (-15 -2659 ($ (-1050 (-205)) (-592 (-242)))) (-15 -3221 ((-1050 (-205)) $)) (-15 -3221 ($ $ (-1050 (-205)))) (-15 -3889 ((-1177) $ (-713) (-877 (-205)))) (-15 -3955 ((-592 (-242)) $)) (-15 -3955 ($ $ (-592 (-242)))) (-15 -2209 ((-1177) $ (-713) (-713))) (-15 -4217 ((-1177) $ (-855) (-855))) (-15 -3282 ((-1177) $ (-1073))) (-15 -1394 ((-1177) $ (-713) (-713) (-855) (-855))) (-15 -1668 ((-1177) $ (-357) (-357) (-357) (-357) (-357))) (-15 -1668 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $)) (-15 -1668 ((-1177) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -1668 ((-1177) $ (-525) (-525) (-357) (-357) (-357))) (-15 -1668 ((-1177) $ (-357) (-357))) (-15 -1668 ((-1177) $ (-357) (-357) (-357))) (-15 -3823 ((-1177) $ (-1073))) (-15 -3182 ((-1177) $ (-1073))) (-15 -1778 ((-1177) $ (-1073))) (-15 -1691 ((-1177) $ (-1073))) (-15 -1936 ((-1177) $ (-1073))) (-15 -1588 ((-1177) $ (-357) (-357))) (-15 -1588 ((-1177) $ (-525) (-525))) (-15 -3742 ((-1177) $ (-357))) (-15 -3742 ((-1177) $ (-357) (-357) (-357))) (-15 -4022 ((-1177) $ (-357) (-357))) (-15 -2263 ((-1177) $ (-1073))) (-15 -2094 ((-1177) $ (-357))) (-15 -3398 ((-1177) $ (-357))) (-15 -3326 ((-1177) $ (-1073))) (-15 -3841 ((-1177) $ (-1073))) (-15 -1599 ((-1177) $ (-1073))) (-15 -3671 ((-1177) $ (-357) (-357) (-357))) (-15 -3246 ((-1177) $ (-357))) (-15 -2668 ((-1177) $)) (-15 -3121 ((-1177) $ (-146) (-146))) (-15 -2694 ((-1073) $ (-1073))) (-15 -2694 ((-1073) $ (-1073) (-1073))) (-15 -2694 ((-1073) $ (-1073) (-592 (-1073)))) (-15 -3286 ((-1177) $)) (-15 -3946 ((-525) $))))
-((-1357 (((-592 (-1073)) (-592 (-1073))) 94) (((-592 (-1073))) 90)) (-1859 (((-592 (-1073))) 88)) (-1992 (((-592 (-855)) (-592 (-855))) 63) (((-592 (-855))) 60)) (-2193 (((-592 (-713)) (-592 (-713))) 57) (((-592 (-713))) 53)) (-3322 (((-1177)) 65)) (-1576 (((-855) (-855)) 81) (((-855)) 80)) (-1708 (((-855) (-855)) 79) (((-855)) 78)) (-3240 (((-808) (-808)) 75) (((-808)) 74)) (-3842 (((-205)) 85) (((-205) (-357)) 87)) (-2770 (((-855)) 82) (((-855) (-855)) 83)) (-3858 (((-855) (-855)) 77) (((-855)) 76)) (-1844 (((-808) (-808)) 69) (((-808)) 67)) (-1883 (((-808) (-808)) 71) (((-808)) 70)) (-2898 (((-808) (-808)) 73) (((-808)) 72)))
-(((-1175) (-10 -7 (-15 -1844 ((-808))) (-15 -1844 ((-808) (-808))) (-15 -1883 ((-808))) (-15 -1883 ((-808) (-808))) (-15 -2898 ((-808))) (-15 -2898 ((-808) (-808))) (-15 -3240 ((-808))) (-15 -3240 ((-808) (-808))) (-15 -3858 ((-855))) (-15 -3858 ((-855) (-855))) (-15 -2193 ((-592 (-713)))) (-15 -2193 ((-592 (-713)) (-592 (-713)))) (-15 -1992 ((-592 (-855)))) (-15 -1992 ((-592 (-855)) (-592 (-855)))) (-15 -3322 ((-1177))) (-15 -1357 ((-592 (-1073)))) (-15 -1357 ((-592 (-1073)) (-592 (-1073)))) (-15 -1859 ((-592 (-1073)))) (-15 -1708 ((-855))) (-15 -1576 ((-855))) (-15 -1708 ((-855) (-855))) (-15 -1576 ((-855) (-855))) (-15 -2770 ((-855) (-855))) (-15 -2770 ((-855))) (-15 -3842 ((-205) (-357))) (-15 -3842 ((-205))))) (T -1175))
-((-3842 (*1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1175)))) (-3842 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-1175)))) (-2770 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) (-1576 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) (-1708 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) (-1576 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) (-1708 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) (-1859 (*1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1175)))) (-1357 (*1 *2 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1175)))) (-1357 (*1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1175)))) (-3322 (*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1175)))) (-1992 (*1 *2 *2) (-12 (-5 *2 (-592 (-855))) (-5 *1 (-1175)))) (-1992 (*1 *2) (-12 (-5 *2 (-592 (-855))) (-5 *1 (-1175)))) (-2193 (*1 *2 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1175)))) (-2193 (*1 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1175)))) (-3858 (*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) (-3858 (*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))) (-3240 (*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) (-3240 (*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) (-2898 (*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) (-2898 (*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) (-1883 (*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) (-1883 (*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) (-1844 (*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))) (-1844 (*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))))
-(-10 -7 (-15 -1844 ((-808))) (-15 -1844 ((-808) (-808))) (-15 -1883 ((-808))) (-15 -1883 ((-808) (-808))) (-15 -2898 ((-808))) (-15 -2898 ((-808) (-808))) (-15 -3240 ((-808))) (-15 -3240 ((-808) (-808))) (-15 -3858 ((-855))) (-15 -3858 ((-855) (-855))) (-15 -2193 ((-592 (-713)))) (-15 -2193 ((-592 (-713)) (-592 (-713)))) (-15 -1992 ((-592 (-855)))) (-15 -1992 ((-592 (-855)) (-592 (-855)))) (-15 -3322 ((-1177))) (-15 -1357 ((-592 (-1073)))) (-15 -1357 ((-592 (-1073)) (-592 (-1073)))) (-15 -1859 ((-592 (-1073)))) (-15 -1708 ((-855))) (-15 -1576 ((-855))) (-15 -1708 ((-855) (-855))) (-15 -1576 ((-855) (-855))) (-15 -2770 ((-855) (-855))) (-15 -2770 ((-855))) (-15 -3842 ((-205) (-357))) (-15 -3842 ((-205))))
-((-1265 (((-445) (-592 (-592 (-877 (-205)))) (-592 (-242))) 21) (((-445) (-592 (-592 (-877 (-205))))) 20) (((-445) (-592 (-592 (-877 (-205)))) (-808) (-808) (-855) (-592 (-242))) 19)) (-4045 (((-1173) (-592 (-592 (-877 (-205)))) (-592 (-242))) 27) (((-1173) (-592 (-592 (-877 (-205)))) (-808) (-808) (-855) (-592 (-242))) 26)) (-1908 (((-1173) (-445)) 38)))
-(((-1176) (-10 -7 (-15 -1265 ((-445) (-592 (-592 (-877 (-205)))) (-808) (-808) (-855) (-592 (-242)))) (-15 -1265 ((-445) (-592 (-592 (-877 (-205)))))) (-15 -1265 ((-445) (-592 (-592 (-877 (-205)))) (-592 (-242)))) (-15 -4045 ((-1173) (-592 (-592 (-877 (-205)))) (-808) (-808) (-855) (-592 (-242)))) (-15 -4045 ((-1173) (-592 (-592 (-877 (-205)))) (-592 (-242)))) (-15 -1908 ((-1173) (-445))))) (T -1176))
-((-1908 (*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-1173)) (-5 *1 (-1176)))) (-4045 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-1176)))) (-4045 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-808)) (-5 *5 (-855)) (-5 *6 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-1176)))) (-1265 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-592 (-242))) (-5 *2 (-445)) (-5 *1 (-1176)))) (-1265 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *2 (-445)) (-5 *1 (-1176)))) (-1265 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-808)) (-5 *5 (-855)) (-5 *6 (-592 (-242))) (-5 *2 (-445)) (-5 *1 (-1176)))))
-(-10 -7 (-15 -1265 ((-445) (-592 (-592 (-877 (-205)))) (-808) (-808) (-855) (-592 (-242)))) (-15 -1265 ((-445) (-592 (-592 (-877 (-205)))))) (-15 -1265 ((-445) (-592 (-592 (-877 (-205)))) (-592 (-242)))) (-15 -4045 ((-1173) (-592 (-592 (-877 (-205)))) (-808) (-808) (-855) (-592 (-242)))) (-15 -4045 ((-1173) (-592 (-592 (-877 (-205)))) (-592 (-242)))) (-15 -1908 ((-1173) (-445))))
-((-3190 (($) 7)) (-1908 (((-797) $) 10)))
-(((-1177) (-10 -8 (-15 -3190 ($)) (-15 -1908 ((-797) $)))) (T -1177))
-((-1908 (*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1177)))) (-3190 (*1 *1) (-5 *1 (-1177))))
-(-10 -8 (-15 -3190 ($)) (-15 -1908 ((-797) $)))
-((-4082 (($ $ |#2|) 10)))
-(((-1178 |#1| |#2|) (-10 -8 (-15 -4082 (|#1| |#1| |#2|))) (-1179 |#2|) (-341)) (T -1178))
-NIL
-(-10 -8 (-15 -4082 (|#1| |#1| |#2|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-3191 (((-128)) 28)) (-1908 (((-797) $) 11)) (-3875 (($) 18 T CONST)) (-3961 (((-108) $ $) 6)) (-4082 (($ $ |#1|) 29)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-1179 |#1|) (-131) (-341)) (T -1179))
-((-4082 (*1 *1 *1 *2) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-341)))) (-3191 (*1 *2) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-341)) (-5 *2 (-128)))))
-(-13 (-660 |t#1|) (-10 -8 (-15 -4082 ($ $ |t#1|)) (-15 -3191 ((-128)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-982 |#1|) . T) ((-1019) . T))
-((-2962 (((-592 (-1121 |#1|)) (-1090) (-1121 |#1|)) 78)) (-2320 (((-1071 (-1071 (-886 |#1|))) (-1090) (-1071 (-886 |#1|))) 57)) (-1432 (((-1 (-1071 (-1121 |#1|)) (-1071 (-1121 |#1|))) (-713) (-1121 |#1|) (-1071 (-1121 |#1|))) 68)) (-2067 (((-1 (-1071 (-886 |#1|)) (-1071 (-886 |#1|))) (-713)) 59)) (-3649 (((-1 (-1086 (-886 |#1|)) (-886 |#1|)) (-1090)) 29)) (-4053 (((-1 (-1071 (-886 |#1|)) (-1071 (-886 |#1|))) (-713)) 58)))
-(((-1180 |#1|) (-10 -7 (-15 -2067 ((-1 (-1071 (-886 |#1|)) (-1071 (-886 |#1|))) (-713))) (-15 -4053 ((-1 (-1071 (-886 |#1|)) (-1071 (-886 |#1|))) (-713))) (-15 -2320 ((-1071 (-1071 (-886 |#1|))) (-1090) (-1071 (-886 |#1|)))) (-15 -3649 ((-1 (-1086 (-886 |#1|)) (-886 |#1|)) (-1090))) (-15 -2962 ((-592 (-1121 |#1|)) (-1090) (-1121 |#1|))) (-15 -1432 ((-1 (-1071 (-1121 |#1|)) (-1071 (-1121 |#1|))) (-713) (-1121 |#1|) (-1071 (-1121 |#1|))))) (-341)) (T -1180))
-((-1432 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-713)) (-5 *4 (-1121 *6)) (-4 *6 (-341)) (-5 *2 (-1 (-1071 (-1121 *6)) (-1071 (-1121 *6)))) (-5 *1 (-1180 *6)) (-5 *5 (-1071 (-1121 *6))))) (-2962 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-4 *5 (-341)) (-5 *2 (-592 (-1121 *5))) (-5 *1 (-1180 *5)) (-5 *4 (-1121 *5)))) (-3649 (*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1 (-1086 (-886 *4)) (-886 *4))) (-5 *1 (-1180 *4)) (-4 *4 (-341)))) (-2320 (*1 *2 *3 *4) (-12 (-5 *3 (-1090)) (-4 *5 (-341)) (-5 *2 (-1071 (-1071 (-886 *5)))) (-5 *1 (-1180 *5)) (-5 *4 (-1071 (-886 *5))))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1071 (-886 *4)) (-1071 (-886 *4)))) (-5 *1 (-1180 *4)) (-4 *4 (-341)))) (-2067 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1071 (-886 *4)) (-1071 (-886 *4)))) (-5 *1 (-1180 *4)) (-4 *4 (-341)))))
-(-10 -7 (-15 -2067 ((-1 (-1071 (-886 |#1|)) (-1071 (-886 |#1|))) (-713))) (-15 -4053 ((-1 (-1071 (-886 |#1|)) (-1071 (-886 |#1|))) (-713))) (-15 -2320 ((-1071 (-1071 (-886 |#1|))) (-1090) (-1071 (-886 |#1|)))) (-15 -3649 ((-1 (-1086 (-886 |#1|)) (-886 |#1|)) (-1090))) (-15 -2962 ((-592 (-1121 |#1|)) (-1090) (-1121 |#1|))) (-15 -1432 ((-1 (-1071 (-1121 |#1|)) (-1071 (-1121 |#1|))) (-713) (-1121 |#1|) (-1071 (-1121 |#1|)))))
-((-1776 (((-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|) 75)) (-2780 (((-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) 74)))
-(((-1181 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2780 ((-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -1776 ((-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|))) (-327) (-1148 |#1|) (-1148 |#2|) (-387 |#2| |#3|)) (T -1181))
-((-1776 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 *3)) (-5 *2 (-2 (|:| -2499 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-1181 *4 *3 *5 *6)) (-4 *6 (-387 *3 *5)))) (-2780 (*1 *2) (-12 (-4 *3 (-327)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 *4)) (-5 *2 (-2 (|:| -2499 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) (-5 *1 (-1181 *3 *4 *5 *6)) (-4 *6 (-387 *4 *5)))))
-(-10 -7 (-15 -2780 ((-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -1776 ((-2 (|:| -2499 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 43)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-2866 (((-3 $ "failed") $) NIL)) (-2133 (((-108) $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1908 (((-797) $) 64) (($ (-525)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-160)))) (-2093 (((-713)) NIL)) (-3965 (((-1177) (-713)) 16)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 27 T CONST)) (-3882 (($) 67 T CONST)) (-3961 (((-108) $ $) 69)) (-4082 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4070 (($ $) 71) (($ $ $) NIL)) (-4059 (($ $ $) 47)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160)))))
-(((-1182 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-976) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1908 (|#4| $)) (IF (|has| |#1| (-341)) (-15 -4082 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1908 ($ |#4|)) (-15 -3965 ((-1177) (-713))))) (-976) (-789) (-735) (-883 |#1| |#3| |#2|) (-592 |#2|) (-592 (-713)) (-713)) (T -1182))
-((-1908 (*1 *2 *1) (-12 (-4 *2 (-883 *3 *5 *4)) (-5 *1 (-1182 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4)) (-14 *7 (-592 (-713))) (-14 *8 (-713)))) (-4082 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-341)) (-4 *2 (-976)) (-4 *3 (-789)) (-4 *4 (-735)) (-14 *6 (-592 *3)) (-5 *1 (-1182 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-883 *2 *4 *3)) (-14 *7 (-592 (-713))) (-14 *8 (-713)))) (-1908 (*1 *1 *2) (-12 (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4)) (-5 *1 (-1182 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-883 *3 *5 *4)) (-14 *7 (-592 (-713))) (-14 *8 (-713)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-976)) (-4 *5 (-789)) (-4 *6 (-735)) (-14 *8 (-592 *5)) (-5 *2 (-1177)) (-5 *1 (-1182 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-883 *4 *6 *5)) (-14 *9 (-592 (-713))) (-14 *10 (-713)))))
-(-13 (-976) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1908 (|#4| $)) (IF (|has| |#1| (-341)) (-15 -4082 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1908 ($ |#4|)) (-15 -3965 ((-1177) (-713)))))
-((-1893 (((-108) $ $) NIL)) (-2894 (((-592 (-2 (|:| -3286 $) (|:| -2396 (-592 |#4|)))) (-592 |#4|)) NIL)) (-2308 (((-592 $) (-592 |#4|)) 88)) (-4104 (((-592 |#3|) $) NIL)) (-3696 (((-108) $) NIL)) (-3810 (((-108) $) NIL (|has| |#1| (-517)))) (-1466 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3833 ((|#4| |#4| $) NIL)) (-3327 (((-2 (|:| |under| $) (|:| -1720 $) (|:| |upper| $)) $ |#3|) NIL)) (-3410 (((-108) $ (-713)) NIL)) (-2724 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254))) (((-3 |#4| "failed") $ |#3|) NIL)) (-1505 (($) NIL T CONST)) (-2637 (((-108) $) NIL (|has| |#1| (-517)))) (-2643 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2494 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3405 (((-108) $) NIL (|has| |#1| (-517)))) (-2895 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 28)) (-3937 (((-592 |#4|) (-592 |#4|) $) 25 (|has| |#1| (-517)))) (-3144 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1264 (((-3 $ "failed") (-592 |#4|)) NIL)) (-2831 (($ (-592 |#4|)) NIL)) (-3145 (((-3 $ "failed") $) 70)) (-3096 ((|#4| |#4| $) 75)) (-3163 (($ $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-2273 (($ |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-1632 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-1954 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-2295 ((|#4| |#4| $) NIL)) (-4004 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4254))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4254))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1426 (((-2 (|:| -3286 (-592 |#4|)) (|:| -2396 (-592 |#4|))) $) NIL)) (-2026 (((-592 |#4|) $) NIL (|has| $ (-6 -4254)))) (-2267 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1257 ((|#3| $) 76)) (-3100 (((-108) $ (-713)) NIL)) (-3168 (((-592 |#4|) $) 29 (|has| $ (-6 -4254)))) (-4132 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019))))) (-4223 (((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-592 |#4|)) 35)) (-2857 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4255)))) (-1370 (($ (-1 |#4| |#4|) $) NIL)) (-1835 (((-592 |#3|) $) NIL)) (-1913 (((-108) |#3| $) NIL)) (-3017 (((-108) $ (-713)) NIL)) (-2337 (((-1073) $) NIL)) (-2292 (((-3 |#4| "failed") $) NIL)) (-2931 (((-592 |#4|) $) 50)) (-3691 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-4189 ((|#4| |#4| $) 74)) (-2491 (((-108) $ $) 85)) (-2809 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2469 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-2954 ((|#4| |#4| $) NIL)) (-2663 (((-1037) $) NIL)) (-3135 (((-3 |#4| "failed") $) 69)) (-4054 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-2662 (((-3 $ "failed") $ |#4|) NIL)) (-3538 (($ $ |#4|) NIL)) (-3494 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-3092 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1019))))) (-2642 (((-108) $ $) NIL)) (-1613 (((-108) $) 67)) (-3773 (($) 42)) (-2513 (((-713) $) NIL)) (-2686 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4254)) (|has| |#4| (-1019)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2135 (($ $) NIL)) (-1427 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-1922 (($ (-592 |#4|)) NIL)) (-1861 (($ $ |#3|) NIL)) (-3570 (($ $ |#3|) NIL)) (-2031 (($ $) NIL)) (-1263 (($ $ |#3|) NIL)) (-1908 (((-797) $) NIL) (((-592 |#4|) $) 57)) (-3056 (((-713) $) NIL (|has| |#3| (-346)))) (-3686 (((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-592 |#4|)) 41)) (-2164 (((-592 $) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-592 $) (-592 |#4|)) 66)) (-3480 (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -1649 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1971 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-2667 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4254)))) (-2241 (((-592 |#3|) $) NIL)) (-1252 (((-108) |#3| $) NIL)) (-3961 (((-108) $ $) NIL)) (-4140 (((-713) $) NIL (|has| $ (-6 -4254)))))
-(((-1183 |#1| |#2| |#3| |#4|) (-13 (-1120 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4223 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4223 ((-3 $ "failed") (-592 |#4|))) (-15 -3686 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3686 ((-3 $ "failed") (-592 |#4|))) (-15 -2164 ((-592 $) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2164 ((-592 $) (-592 |#4|))))) (-517) (-735) (-789) (-990 |#1| |#2| |#3|)) (T -1183))
-((-4223 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1183 *5 *6 *7 *8)))) (-4223 (*1 *1 *2) (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1183 *3 *4 *5 *6)))) (-3686 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1183 *5 *6 *7 *8)))) (-3686 (*1 *1 *2) (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1183 *3 *4 *5 *6)))) (-2164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-990 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-592 (-1183 *6 *7 *8 *9))) (-5 *1 (-1183 *6 *7 *8 *9)))) (-2164 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-1183 *4 *5 *6 *7))) (-5 *1 (-1183 *4 *5 *6 *7)))))
-(-13 (-1120 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4223 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4223 ((-3 $ "failed") (-592 |#4|))) (-15 -3686 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3686 ((-3 $ "failed") (-592 |#4|))) (-15 -2164 ((-592 $) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2164 ((-592 $) (-592 |#4|)))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3263 (((-3 $ "failed") $ $) 19)) (-1505 (($) 17 T CONST)) (-2866 (((-3 $ "failed") $) 34)) (-2133 (((-108) $) 31)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#1|) 38)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
-(((-1184 |#1|) (-131) (-976)) (T -1184))
-((-1908 (*1 *1 *2) (-12 (-4 *1 (-1184 *2)) (-4 *2 (-976)))))
-(-13 (-976) (-107 |t#1| |t#1|) (-10 -8 (-15 -1908 ($ |t#1|)) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) |has| |#1| (-160)) ((-669) . T) ((-982 |#1|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T))
-((-1893 (((-108) $ $) 60)) (-1611 (((-108) $) NIL)) (-3908 (((-592 |#1|) $) 45)) (-2005 (($ $ (-713)) 39)) (-3263 (((-3 $ "failed") $ $) NIL)) (-4083 (($ $ (-713)) 18 (|has| |#2| (-160))) (($ $ $) 19 (|has| |#2| (-160)))) (-1505 (($) NIL T CONST)) (-1225 (($ $ $) 63) (($ $ (-761 |#1|)) 49) (($ $ |#1|) 53)) (-1264 (((-3 (-761 |#1|) "failed") $) NIL)) (-2831 (((-761 |#1|) $) NIL)) (-1247 (($ $) 32)) (-2866 (((-3 $ "failed") $) NIL)) (-2810 (((-108) $) NIL)) (-2955 (($ $) NIL)) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) NIL)) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) NIL)) (-4157 (($ (-761 |#1|) |#2|) 31)) (-2387 (($ $) 33)) (-3854 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) 12)) (-3387 (((-761 |#1|) $) NIL)) (-2030 (((-761 |#1|) $) 34)) (-1370 (($ (-1 |#2| |#2|) $) NIL)) (-1475 (($ $ $) 62) (($ $ (-761 |#1|)) 51) (($ $ |#1|) 55)) (-2614 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1212 (((-761 |#1|) $) 28)) (-1224 ((|#2| $) 30)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2513 (((-713) $) 36)) (-2802 (((-108) $) 40)) (-3359 ((|#2| $) NIL)) (-1908 (((-797) $) NIL) (($ (-761 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-525)) NIL)) (-3600 (((-592 |#2|) $) NIL)) (-1657 ((|#2| $ (-761 |#1|)) NIL)) (-1459 ((|#2| $ $) 65) ((|#2| $ (-761 |#1|)) NIL)) (-2093 (((-713)) NIL)) (-3465 (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (-3875 (($) 13 T CONST)) (-3882 (($) 15 T CONST)) (-3415 (((-592 (-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3961 (((-108) $ $) 38)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) 22)) (** (($ $ (-713)) NIL) (($ $ (-855)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-761 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
-(((-1185 |#1| |#2|) (-13 (-360 |#2| (-761 |#1|)) (-1191 |#1| |#2|)) (-789) (-976)) (T -1185))
-NIL
-(-13 (-360 |#2| (-761 |#1|)) (-1191 |#1| |#2|))
-((-2091 ((|#3| |#3| (-713)) 23)) (-1982 ((|#3| |#3| (-713)) 28)) (-4017 ((|#3| |#3| |#3| (-713)) 29)))
-(((-1186 |#1| |#2| |#3|) (-10 -7 (-15 -1982 (|#3| |#3| (-713))) (-15 -2091 (|#3| |#3| (-713))) (-15 -4017 (|#3| |#3| |#3| (-713)))) (-13 (-976) (-660 (-385 (-525)))) (-789) (-1191 |#2| |#1|)) (T -1186))
-((-4017 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-13 (-976) (-660 (-385 (-525))))) (-4 *5 (-789)) (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1191 *5 *4)))) (-2091 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-13 (-976) (-660 (-385 (-525))))) (-4 *5 (-789)) (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1191 *5 *4)))) (-1982 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-13 (-976) (-660 (-385 (-525))))) (-4 *5 (-789)) (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1191 *5 *4)))))
-(-10 -7 (-15 -1982 (|#3| |#3| (-713))) (-15 -2091 (|#3| |#3| (-713))) (-15 -4017 (|#3| |#3| |#3| (-713))))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3908 (((-592 |#1|) $) 40)) (-3263 (((-3 $ "failed") $ $) 19)) (-4083 (($ $ $) 43 (|has| |#2| (-160))) (($ $ (-713)) 42 (|has| |#2| (-160)))) (-1505 (($) 17 T CONST)) (-1225 (($ $ |#1|) 54) (($ $ (-761 |#1|)) 53) (($ $ $) 52)) (-1264 (((-3 (-761 |#1|) "failed") $) 64)) (-2831 (((-761 |#1|) $) 63)) (-2866 (((-3 $ "failed") $) 34)) (-2810 (((-108) $) 45)) (-2955 (($ $) 44)) (-2133 (((-108) $) 31)) (-1819 (((-108) $) 50)) (-4157 (($ (-761 |#1|) |#2|) 51)) (-2387 (($ $) 49)) (-3854 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) 60)) (-3387 (((-761 |#1|) $) 61)) (-1370 (($ (-1 |#2| |#2|) $) 41)) (-1475 (($ $ |#1|) 57) (($ $ (-761 |#1|)) 56) (($ $ $) 55)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-2802 (((-108) $) 47)) (-3359 ((|#2| $) 46)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#2|) 68) (($ (-761 |#1|)) 65) (($ |#1|) 48)) (-1459 ((|#2| $ (-761 |#1|)) 59) ((|#2| $ $) 58)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
-(((-1187 |#1| |#2|) (-131) (-789) (-976)) (T -1187))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-789)) (-4 *2 (-976)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) (-3387 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *2 (-761 *3)))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *2 (-2 (|:| |k| (-761 *3)) (|:| |c| *4))))) (-1459 (*1 *2 *1 *3) (-12 (-5 *3 (-761 *4)) (-4 *1 (-1187 *4 *2)) (-4 *4 (-789)) (-4 *2 (-976)))) (-1459 (*1 *2 *1 *1) (-12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-789)) (-4 *2 (-976)))) (-1475 (*1 *1 *1 *2) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) (-1475 (*1 *1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)))) (-1475 (*1 *1 *1 *1) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) (-1225 (*1 *1 *1 *2) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) (-1225 (*1 *1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)))) (-1225 (*1 *1 *1 *1) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) (-4157 (*1 *1 *2 *3) (-12 (-5 *2 (-761 *4)) (-4 *4 (-789)) (-4 *1 (-1187 *4 *3)) (-4 *3 (-976)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *2 (-108)))) (-2387 (*1 *1 *1) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) (-1908 (*1 *1 *2) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) (-2802 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *2 (-108)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-789)) (-4 *2 (-976)))) (-2810 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *2 (-108)))) (-2955 (*1 *1 *1) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))) (-4083 (*1 *1 *1 *1) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)) (-4 *3 (-160)))) (-4083 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-4 *4 (-160)))) (-1370 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)))) (-3908 (*1 *2 *1) (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *2 (-592 *3)))))
-(-13 (-976) (-1184 |t#2|) (-967 (-761 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3387 ((-761 |t#1|) $)) (-15 -3854 ((-2 (|:| |k| (-761 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1459 (|t#2| $ (-761 |t#1|))) (-15 -1459 (|t#2| $ $)) (-15 -1475 ($ $ |t#1|)) (-15 -1475 ($ $ (-761 |t#1|))) (-15 -1475 ($ $ $)) (-15 -1225 ($ $ |t#1|)) (-15 -1225 ($ $ (-761 |t#1|))) (-15 -1225 ($ $ $)) (-15 -4157 ($ (-761 |t#1|) |t#2|)) (-15 -1819 ((-108) $)) (-15 -2387 ($ $)) (-15 -1908 ($ |t#1|)) (-15 -2802 ((-108) $)) (-15 -3359 (|t#2| $)) (-15 -2810 ((-108) $)) (-15 -2955 ($ $)) (IF (|has| |t#2| (-160)) (PROGN (-15 -4083 ($ $ $)) (-15 -4083 ($ $ (-713)))) |%noBranch|) (-15 -1370 ($ (-1 |t#2| |t#2|) $)) (-15 -3908 ((-592 |t#1|) $)) (IF (|has| |t#2| (-6 -4247)) (-6 -4247) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-160)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#2|) . T) ((-594 $) . T) ((-660 |#2|) |has| |#2| (-160)) ((-669) . T) ((-967 (-761 |#1|)) . T) ((-982 |#2|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1184 |#2|) . T))
-((-1831 (((-108) $) 15)) (-1252 (((-108) $) 14)) (-3192 (($ $) 19) (($ $ (-713)) 20)))
-(((-1188 |#1| |#2|) (-10 -8 (-15 -3192 (|#1| |#1| (-713))) (-15 -3192 (|#1| |#1|)) (-15 -1831 ((-108) |#1|)) (-15 -1252 ((-108) |#1|))) (-1189 |#2|) (-341)) (T -1188))
-NIL
-(-10 -8 (-15 -3192 (|#1| |#1| (-713))) (-15 -3192 (|#1| |#1|)) (-15 -1831 ((-108) |#1|)) (-15 -1252 ((-108) |#1|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-1214 (((-2 (|:| -3957 $) (|:| -4241 $) (|:| |associate| $)) $) 41)) (-3635 (($ $) 40)) (-2950 (((-108) $) 38)) (-1831 (((-108) $) 94)) (-3425 (((-713)) 90)) (-3263 (((-3 $ "failed") $ $) 19)) (-3321 (($ $) 73)) (-1510 (((-396 $) $) 72)) (-2305 (((-108) $ $) 59)) (-1505 (($) 17 T CONST)) (-1264 (((-3 |#1| "failed") $) 101)) (-2831 ((|#1| $) 100)) (-2373 (($ $ $) 55)) (-2866 (((-3 $ "failed") $) 34)) (-2356 (($ $ $) 56)) (-2946 (((-2 (|:| -1459 (-592 $)) (|:| -1669 $)) (-592 $)) 51)) (-1410 (($ $ (-713)) 87 (-3309 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) 86 (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2250 (((-108) $) 71)) (-1737 (((-775 (-855)) $) 84 (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2133 (((-108) $) 31)) (-3658 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-3216 (($ $ $) 46) (($ (-592 $)) 45)) (-2337 (((-1073) $) 9)) (-4211 (($ $) 70)) (-2325 (((-108) $) 93)) (-2663 (((-1037) $) 10)) (-1763 (((-1086 $) (-1086 $) (-1086 $)) 44)) (-3244 (($ $ $) 48) (($ (-592 $)) 47)) (-3959 (((-396 $) $) 74)) (-2864 (((-775 (-855))) 91)) (-2982 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1669 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-2338 (((-3 $ "failed") $ $) 42)) (-1705 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-2183 (((-713) $) 58)) (-1760 (((-2 (|:| -1338 $) (|:| -1632 $)) $ $) 57)) (-2443 (((-3 (-713) "failed") $ $) 85 (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3191 (((-128)) 99)) (-2513 (((-775 (-855)) $) 92)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 102)) (-3421 (((-3 $ "failed") $) 83 (-3309 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2093 (((-713)) 29)) (-2262 (((-108) $ $) 39)) (-1252 (((-108) $) 95)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3192 (($ $) 89 (|has| |#1| (-346))) (($ $ (-713)) 88 (|has| |#1| (-346)))) (-3961 (((-108) $ $) 6)) (-4082 (($ $ $) 64) (($ $ |#1|) 98)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
-(((-1189 |#1|) (-131) (-341)) (T -1189))
-((-1252 (*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-1831 (*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-855))))) (-2864 (*1 *2) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-855))))) (-3425 (*1 *2) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-713)))) (-3192 (*1 *1 *1) (-12 (-4 *1 (-1189 *2)) (-4 *2 (-341)) (-4 *2 (-346)))) (-3192 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-4 *3 (-346)))))
-(-13 (-341) (-967 |t#1|) (-1179 |t#1|) (-10 -8 (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-380)) |%noBranch|) (-15 -1252 ((-108) $)) (-15 -1831 ((-108) $)) (-15 -2325 ((-108) $)) (-15 -2513 ((-775 (-855)) $)) (-15 -2864 ((-775 (-855)))) (-15 -3425 ((-713))) (IF (|has| |t#1| (-346)) (PROGN (-6 (-380)) (-15 -3192 ($ $)) (-15 -3192 ($ $ (-713)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3309 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-797)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-380) -3309 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-669) . T) ((-854) . T) ((-967 |#1|) . T) ((-982 #0#) . T) ((-982 |#1|) . T) ((-982 $) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1130) . T) ((-1179 |#1|) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3908 (((-592 |#1|) $) 86)) (-2005 (($ $ (-713)) 89)) (-3263 (((-3 $ "failed") $ $) NIL)) (-4083 (($ $ $) NIL (|has| |#2| (-160))) (($ $ (-713)) NIL (|has| |#2| (-160)))) (-1505 (($) NIL T CONST)) (-1225 (($ $ |#1|) NIL) (($ $ (-761 |#1|)) NIL) (($ $ $) NIL)) (-1264 (((-3 (-761 |#1|) "failed") $) NIL) (((-3 (-827 |#1|) "failed") $) NIL)) (-2831 (((-761 |#1|) $) NIL) (((-827 |#1|) $) NIL)) (-1247 (($ $) 88)) (-2866 (((-3 $ "failed") $) NIL)) (-2810 (((-108) $) 77)) (-2955 (($ $) 81)) (-3893 (($ $ $ (-713)) 90)) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) NIL)) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) NIL)) (-4157 (($ (-761 |#1|) |#2|) NIL) (($ (-827 |#1|) |#2|) 26)) (-2387 (($ $) 103)) (-3854 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3387 (((-761 |#1|) $) NIL)) (-2030 (((-761 |#1|) $) NIL)) (-1370 (($ (-1 |#2| |#2|) $) NIL)) (-1475 (($ $ |#1|) NIL) (($ $ (-761 |#1|)) NIL) (($ $ $) NIL)) (-2091 (($ $ (-713)) 97 (|has| |#2| (-660 (-385 (-525)))))) (-2614 (((-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1212 (((-827 |#1|) $) 70)) (-1224 ((|#2| $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-1982 (($ $ (-713)) 94 (|has| |#2| (-660 (-385 (-525)))))) (-2513 (((-713) $) 87)) (-2802 (((-108) $) 71)) (-3359 ((|#2| $) 75)) (-1908 (((-797) $) 57) (($ (-525)) NIL) (($ |#2|) 51) (($ (-761 |#1|)) NIL) (($ |#1|) 59) (($ (-827 |#1|)) NIL) (($ (-610 |#1| |#2|)) 43) (((-1185 |#1| |#2|) $) 64) (((-1194 |#1| |#2|) $) 69)) (-3600 (((-592 |#2|) $) NIL)) (-1657 ((|#2| $ (-827 |#1|)) NIL)) (-1459 ((|#2| $ (-761 |#1|)) NIL) ((|#2| $ $) NIL)) (-2093 (((-713)) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 21 T CONST)) (-3882 (($) 25 T CONST)) (-3415 (((-592 (-2 (|:| |k| (-827 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2605 (((-3 (-610 |#1| |#2|) "failed") $) 102)) (-3961 (((-108) $ $) 65)) (-4070 (($ $) 96) (($ $ $) 95)) (-4059 (($ $ $) 20)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-827 |#1|)) NIL)))
-(((-1190 |#1| |#2|) (-13 (-1191 |#1| |#2|) (-360 |#2| (-827 |#1|)) (-10 -8 (-15 -1908 ($ (-610 |#1| |#2|))) (-15 -1908 ((-1185 |#1| |#2|) $)) (-15 -1908 ((-1194 |#1| |#2|) $)) (-15 -2605 ((-3 (-610 |#1| |#2|) "failed") $)) (-15 -3893 ($ $ $ (-713))) (IF (|has| |#2| (-660 (-385 (-525)))) (PROGN (-15 -1982 ($ $ (-713))) (-15 -2091 ($ $ (-713)))) |%noBranch|))) (-789) (-160)) (T -1190))
-((-1908 (*1 *1 *2) (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *1 (-1190 *3 *4)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-2605 (*1 *2 *1) (|partial| -12 (-5 *2 (-610 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-3893 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-1982 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1190 *3 *4)) (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160)))) (-2091 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1190 *3 *4)) (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160)))))
-(-13 (-1191 |#1| |#2|) (-360 |#2| (-827 |#1|)) (-10 -8 (-15 -1908 ($ (-610 |#1| |#2|))) (-15 -1908 ((-1185 |#1| |#2|) $)) (-15 -1908 ((-1194 |#1| |#2|) $)) (-15 -2605 ((-3 (-610 |#1| |#2|) "failed") $)) (-15 -3893 ($ $ $ (-713))) (IF (|has| |#2| (-660 (-385 (-525)))) (PROGN (-15 -1982 ($ $ (-713))) (-15 -2091 ($ $ (-713)))) |%noBranch|)))
-((-1893 (((-108) $ $) 7)) (-1611 (((-108) $) 16)) (-3908 (((-592 |#1|) $) 40)) (-2005 (($ $ (-713)) 73)) (-3263 (((-3 $ "failed") $ $) 19)) (-4083 (($ $ $) 43 (|has| |#2| (-160))) (($ $ (-713)) 42 (|has| |#2| (-160)))) (-1505 (($) 17 T CONST)) (-1225 (($ $ |#1|) 54) (($ $ (-761 |#1|)) 53) (($ $ $) 52)) (-1264 (((-3 (-761 |#1|) "failed") $) 64)) (-2831 (((-761 |#1|) $) 63)) (-2866 (((-3 $ "failed") $) 34)) (-2810 (((-108) $) 45)) (-2955 (($ $) 44)) (-2133 (((-108) $) 31)) (-1819 (((-108) $) 50)) (-4157 (($ (-761 |#1|) |#2|) 51)) (-2387 (($ $) 49)) (-3854 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) 60)) (-3387 (((-761 |#1|) $) 61)) (-2030 (((-761 |#1|) $) 75)) (-1370 (($ (-1 |#2| |#2|) $) 41)) (-1475 (($ $ |#1|) 57) (($ $ (-761 |#1|)) 56) (($ $ $) 55)) (-2337 (((-1073) $) 9)) (-2663 (((-1037) $) 10)) (-2513 (((-713) $) 74)) (-2802 (((-108) $) 47)) (-3359 ((|#2| $) 46)) (-1908 (((-797) $) 11) (($ (-525)) 28) (($ |#2|) 68) (($ (-761 |#1|)) 65) (($ |#1|) 48)) (-1459 ((|#2| $ (-761 |#1|)) 59) ((|#2| $ $) 58)) (-2093 (((-713)) 29)) (-3465 (($ $ (-855)) 26) (($ $ (-713)) 33)) (-3875 (($) 18 T CONST)) (-3882 (($) 30 T CONST)) (-3961 (((-108) $ $) 6)) (-4070 (($ $) 22) (($ $ $) 21)) (-4059 (($ $ $) 14)) (** (($ $ (-855)) 25) (($ $ (-713)) 32)) (* (($ (-855) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
-(((-1191 |#1| |#2|) (-131) (-789) (-976)) (T -1191))
-((-2030 (*1 *2 *1) (-12 (-4 *1 (-1191 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *2 (-761 *3)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-1191 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *2 (-713)))) (-2005 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1191 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)))))
-(-13 (-1187 |t#1| |t#2|) (-10 -8 (-15 -2030 ((-761 |t#1|) $)) (-15 -2513 ((-713) $)) (-15 -2005 ($ $ (-713)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-160)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-566 (-797)) . T) ((-594 |#2|) . T) ((-594 $) . T) ((-660 |#2|) |has| |#2| (-160)) ((-669) . T) ((-967 (-761 |#1|)) . T) ((-982 |#2|) . T) ((-976) . T) ((-983) . T) ((-1031) . T) ((-1019) . T) ((-1184 |#2|) . T) ((-1187 |#1| |#2|) . T))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3908 (((-592 (-1090)) $) NIL)) (-3786 (($ (-1185 (-1090) |#1|)) NIL)) (-2005 (($ $ (-713)) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-4083 (($ $ $) NIL (|has| |#1| (-160))) (($ $ (-713)) NIL (|has| |#1| (-160)))) (-1505 (($) NIL T CONST)) (-1225 (($ $ (-1090)) NIL) (($ $ (-761 (-1090))) NIL) (($ $ $) NIL)) (-1264 (((-3 (-761 (-1090)) "failed") $) NIL)) (-2831 (((-761 (-1090)) $) NIL)) (-2866 (((-3 $ "failed") $) NIL)) (-2810 (((-108) $) NIL)) (-2955 (($ $) NIL)) (-2133 (((-108) $) NIL)) (-1819 (((-108) $) NIL)) (-4157 (($ (-761 (-1090)) |#1|) NIL)) (-2387 (($ $) NIL)) (-3854 (((-2 (|:| |k| (-761 (-1090))) (|:| |c| |#1|)) $) NIL)) (-3387 (((-761 (-1090)) $) NIL)) (-2030 (((-761 (-1090)) $) NIL)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-1475 (($ $ (-1090)) NIL) (($ $ (-761 (-1090))) NIL) (($ $ $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2692 (((-1185 (-1090) |#1|) $) NIL)) (-2513 (((-713) $) NIL)) (-2802 (((-108) $) NIL)) (-3359 ((|#1| $) NIL)) (-1908 (((-797) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-761 (-1090))) NIL) (($ (-1090)) NIL)) (-1459 ((|#1| $ (-761 (-1090))) NIL) ((|#1| $ $) NIL)) (-2093 (((-713)) NIL)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) NIL T CONST)) (-2342 (((-592 (-2 (|:| |k| (-1090)) (|:| |c| $))) $) NIL)) (-3882 (($) NIL T CONST)) (-3961 (((-108) $ $) NIL)) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) NIL)) (** (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1090) $) NIL)))
-(((-1192 |#1|) (-13 (-1191 (-1090) |#1|) (-10 -8 (-15 -2692 ((-1185 (-1090) |#1|) $)) (-15 -3786 ($ (-1185 (-1090) |#1|))) (-15 -2342 ((-592 (-2 (|:| |k| (-1090)) (|:| |c| $))) $)))) (-976)) (T -1192))
-((-2692 (*1 *2 *1) (-12 (-5 *2 (-1185 (-1090) *3)) (-5 *1 (-1192 *3)) (-4 *3 (-976)))) (-3786 (*1 *1 *2) (-12 (-5 *2 (-1185 (-1090) *3)) (-4 *3 (-976)) (-5 *1 (-1192 *3)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| (-1090)) (|:| |c| (-1192 *3))))) (-5 *1 (-1192 *3)) (-4 *3 (-976)))))
-(-13 (-1191 (-1090) |#1|) (-10 -8 (-15 -2692 ((-1185 (-1090) |#1|) $)) (-15 -3786 ($ (-1185 (-1090) |#1|))) (-15 -2342 ((-592 (-2 (|:| |k| (-1090)) (|:| |c| $))) $))))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) NIL)) (-3263 (((-3 $ "failed") $ $) NIL)) (-1505 (($) NIL T CONST)) (-1264 (((-3 |#2| "failed") $) NIL)) (-2831 ((|#2| $) NIL)) (-1247 (($ $) NIL)) (-2866 (((-3 $ "failed") $) 36)) (-2810 (((-108) $) 30)) (-2955 (($ $) 32)) (-2133 (((-108) $) NIL)) (-3610 (((-713) $) NIL)) (-1986 (((-592 $) $) NIL)) (-1819 (((-108) $) NIL)) (-4157 (($ |#2| |#1|) NIL)) (-3387 ((|#2| $) 19)) (-2030 ((|#2| $) 16)) (-1370 (($ (-1 |#1| |#1|) $) NIL)) (-2614 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1212 ((|#2| $) NIL)) (-1224 ((|#1| $) NIL)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2802 (((-108) $) 27)) (-3359 ((|#1| $) 28)) (-1908 (((-797) $) 55) (($ (-525)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-3600 (((-592 |#1|) $) NIL)) (-1657 ((|#1| $ |#2|) NIL)) (-1459 ((|#1| $ |#2|) 24)) (-2093 (((-713)) 14)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 25 T CONST)) (-3882 (($) 11 T CONST)) (-3415 (((-592 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3961 (((-108) $ $) 26)) (-4082 (($ $ |#1|) 57 (|has| |#1| (-341)))) (-4070 (($ $) NIL) (($ $ $) NIL)) (-4059 (($ $ $) 44)) (** (($ $ (-855)) NIL) (($ $ (-713)) 46)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-4140 (((-713) $) 15)))
-(((-1193 |#1| |#2|) (-13 (-976) (-1184 |#1|) (-360 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4140 ((-713) $)) (-15 -1908 ($ |#2|)) (-15 -2030 (|#2| $)) (-15 -3387 (|#2| $)) (-15 -1247 ($ $)) (-15 -1459 (|#1| $ |#2|)) (-15 -2802 ((-108) $)) (-15 -3359 (|#1| $)) (-15 -2810 ((-108) $)) (-15 -2955 ($ $)) (-15 -1370 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-341)) (-15 -4082 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4247)) (-6 -4247) |%noBranch|) (IF (|has| |#1| (-6 -4251)) (-6 -4251) |%noBranch|) (IF (|has| |#1| (-6 -4252)) (-6 -4252) |%noBranch|))) (-976) (-785)) (T -1193))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-976)) (-4 *3 (-785)))) (-1247 (*1 *1 *1) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-976)) (-4 *3 (-785)))) (-1370 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-1193 *3 *4)) (-4 *4 (-785)))) (-1908 (*1 *1 *2) (-12 (-5 *1 (-1193 *3 *2)) (-4 *3 (-976)) (-4 *2 (-785)))) (-4140 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-976)) (-4 *4 (-785)))) (-2030 (*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1193 *3 *2)) (-4 *3 (-976)))) (-3387 (*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1193 *3 *2)) (-4 *3 (-976)))) (-1459 (*1 *2 *1 *3) (-12 (-4 *2 (-976)) (-5 *1 (-1193 *2 *3)) (-4 *3 (-785)))) (-2802 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-976)) (-4 *4 (-785)))) (-3359 (*1 *2 *1) (-12 (-4 *2 (-976)) (-5 *1 (-1193 *2 *3)) (-4 *3 (-785)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-976)) (-4 *4 (-785)))) (-2955 (*1 *1 *1) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-976)) (-4 *3 (-785)))) (-4082 (*1 *1 *1 *2) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-341)) (-4 *2 (-976)) (-4 *3 (-785)))))
-(-13 (-976) (-1184 |#1|) (-360 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4140 ((-713) $)) (-15 -1908 ($ |#2|)) (-15 -2030 (|#2| $)) (-15 -3387 (|#2| $)) (-15 -1247 ($ $)) (-15 -1459 (|#1| $ |#2|)) (-15 -2802 ((-108) $)) (-15 -3359 (|#1| $)) (-15 -2810 ((-108) $)) (-15 -2955 ($ $)) (-15 -1370 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-341)) (-15 -4082 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4247)) (-6 -4247) |%noBranch|) (IF (|has| |#1| (-6 -4251)) (-6 -4251) |%noBranch|) (IF (|has| |#1| (-6 -4252)) (-6 -4252) |%noBranch|)))
-((-1893 (((-108) $ $) 26)) (-1611 (((-108) $) NIL)) (-3908 (((-592 |#1|) $) 120)) (-3786 (($ (-1185 |#1| |#2|)) 44)) (-2005 (($ $ (-713)) 32)) (-3263 (((-3 $ "failed") $ $) NIL)) (-4083 (($ $ $) 48 (|has| |#2| (-160))) (($ $ (-713)) 46 (|has| |#2| (-160)))) (-1505 (($) NIL T CONST)) (-1225 (($ $ |#1|) 102) (($ $ (-761 |#1|)) 103) (($ $ $) 25)) (-1264 (((-3 (-761 |#1|) "failed") $) NIL)) (-2831 (((-761 |#1|) $) NIL)) (-2866 (((-3 $ "failed") $) 110)) (-2810 (((-108) $) 105)) (-2955 (($ $) 106)) (-2133 (((-108) $) NIL)) (-1819 (((-108) $) NIL)) (-4157 (($ (-761 |#1|) |#2|) 19)) (-2387 (($ $) NIL)) (-3854 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3387 (((-761 |#1|) $) 111)) (-2030 (((-761 |#1|) $) 114)) (-1370 (($ (-1 |#2| |#2|) $) 119)) (-1475 (($ $ |#1|) 100) (($ $ (-761 |#1|)) 101) (($ $ $) 56)) (-2337 (((-1073) $) NIL)) (-2663 (((-1037) $) NIL)) (-2692 (((-1185 |#1| |#2|) $) 84)) (-2513 (((-713) $) 117)) (-2802 (((-108) $) 70)) (-3359 ((|#2| $) 28)) (-1908 (((-797) $) 63) (($ (-525)) 77) (($ |#2|) 74) (($ (-761 |#1|)) 17) (($ |#1|) 73)) (-1459 ((|#2| $ (-761 |#1|)) 104) ((|#2| $ $) 27)) (-2093 (((-713)) 108)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 14 T CONST)) (-2342 (((-592 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3882 (($) 29 T CONST)) (-3961 (((-108) $ $) 13)) (-4070 (($ $) 88) (($ $ $) 91)) (-4059 (($ $ $) 55)) (** (($ $ (-855)) NIL) (($ $ (-713)) 49)) (* (($ (-855) $) NIL) (($ (-713) $) 47) (($ (-525) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
-(((-1194 |#1| |#2|) (-13 (-1191 |#1| |#2|) (-10 -8 (-15 -2692 ((-1185 |#1| |#2|) $)) (-15 -3786 ($ (-1185 |#1| |#2|))) (-15 -2342 ((-592 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-789) (-976)) (T -1194))
-((-2692 (*1 *2 *1) (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)))) (-3786 (*1 *1 *2) (-12 (-5 *2 (-1185 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)) (-5 *1 (-1194 *3 *4)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| *3) (|:| |c| (-1194 *3 *4))))) (-5 *1 (-1194 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)))))
-(-13 (-1191 |#1| |#2|) (-10 -8 (-15 -2692 ((-1185 |#1| |#2|) $)) (-15 -3786 ($ (-1185 |#1| |#2|))) (-15 -2342 ((-592 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-3938 (((-592 (-1071 |#1|)) (-1 (-592 (-1071 |#1|)) (-592 (-1071 |#1|))) (-525)) 15) (((-1071 |#1|) (-1 (-1071 |#1|) (-1071 |#1|))) 11)))
-(((-1195 |#1|) (-10 -7 (-15 -3938 ((-1071 |#1|) (-1 (-1071 |#1|) (-1071 |#1|)))) (-15 -3938 ((-592 (-1071 |#1|)) (-1 (-592 (-1071 |#1|)) (-592 (-1071 |#1|))) (-525)))) (-1126)) (T -1195))
-((-3938 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-592 (-1071 *5)) (-592 (-1071 *5)))) (-5 *4 (-525)) (-4 *5 (-1126)) (-5 *2 (-592 (-1071 *5))) (-5 *1 (-1195 *5)))) (-3938 (*1 *2 *3) (-12 (-5 *3 (-1 (-1071 *4) (-1071 *4))) (-4 *4 (-1126)) (-5 *2 (-1071 *4)) (-5 *1 (-1195 *4)))))
-(-10 -7 (-15 -3938 ((-1071 |#1|) (-1 (-1071 |#1|) (-1071 |#1|)))) (-15 -3938 ((-592 (-1071 |#1|)) (-1 (-592 (-1071 |#1|)) (-592 (-1071 |#1|))) (-525))))
-((-3136 (((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|))) 148) (((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108)) 147) (((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108)) 146) (((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108) (-108)) 145) (((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-973 |#1| |#2|)) 130)) (-1374 (((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|))) 72) (((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|)) (-108)) 71) (((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|)) (-108) (-108)) 70)) (-1510 (((-592 (-1061 |#1| (-497 (-799 |#3|)) (-799 |#3|) (-722 |#1| (-799 |#3|)))) (-973 |#1| |#2|)) 61)) (-2507 (((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|))) 115) (((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108)) 114) (((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108)) 113) (((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108) (-108)) 112) (((-592 (-592 (-954 (-385 |#1|)))) (-973 |#1| |#2|)) 107)) (-3347 (((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|))) 120) (((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108)) 119) (((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108)) 118) (((-592 (-592 (-954 (-385 |#1|)))) (-973 |#1| |#2|)) 117)) (-1427 (((-592 (-722 |#1| (-799 |#3|))) (-1061 |#1| (-497 (-799 |#3|)) (-799 |#3|) (-722 |#1| (-799 |#3|)))) 98) (((-1086 (-954 (-385 |#1|))) (-1086 |#1|)) 89) (((-886 (-954 (-385 |#1|))) (-722 |#1| (-799 |#3|))) 96) (((-886 (-954 (-385 |#1|))) (-886 |#1|)) 94) (((-722 |#1| (-799 |#3|)) (-722 |#1| (-799 |#2|))) 33)))
-(((-1196 |#1| |#2| |#3|) (-10 -7 (-15 -1374 ((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|)) (-108) (-108))) (-15 -1374 ((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|)) (-108))) (-15 -1374 ((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|)))) (-15 -3136 ((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-973 |#1| |#2|))) (-15 -3136 ((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108) (-108))) (-15 -3136 ((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108))) (-15 -3136 ((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108))) (-15 -3136 ((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)))) (-15 -2507 ((-592 (-592 (-954 (-385 |#1|)))) (-973 |#1| |#2|))) (-15 -2507 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108) (-108))) (-15 -2507 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108))) (-15 -2507 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108))) (-15 -2507 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)))) (-15 -3347 ((-592 (-592 (-954 (-385 |#1|)))) (-973 |#1| |#2|))) (-15 -3347 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108))) (-15 -3347 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108))) (-15 -3347 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)))) (-15 -1510 ((-592 (-1061 |#1| (-497 (-799 |#3|)) (-799 |#3|) (-722 |#1| (-799 |#3|)))) (-973 |#1| |#2|))) (-15 -1427 ((-722 |#1| (-799 |#3|)) (-722 |#1| (-799 |#2|)))) (-15 -1427 ((-886 (-954 (-385 |#1|))) (-886 |#1|))) (-15 -1427 ((-886 (-954 (-385 |#1|))) (-722 |#1| (-799 |#3|)))) (-15 -1427 ((-1086 (-954 (-385 |#1|))) (-1086 |#1|))) (-15 -1427 ((-592 (-722 |#1| (-799 |#3|))) (-1061 |#1| (-497 (-799 |#3|)) (-799 |#3|) (-722 |#1| (-799 |#3|)))))) (-13 (-787) (-286) (-138) (-952)) (-592 (-1090)) (-592 (-1090))) (T -1196))
-((-1427 (*1 *2 *3) (-12 (-5 *3 (-1061 *4 (-497 (-799 *6)) (-799 *6) (-722 *4 (-799 *6)))) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-722 *4 (-799 *6)))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-592 (-1090))))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-1086 *4)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-1086 (-954 (-385 *4)))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-722 *4 (-799 *6))) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *6 (-592 (-1090))) (-5 *2 (-886 (-954 (-385 *4)))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-592 (-1090))))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-886 *4)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-886 (-954 (-385 *4)))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))) (-1427 (*1 *2 *3) (-12 (-5 *3 (-722 *4 (-799 *5))) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *5 (-592 (-1090))) (-5 *2 (-722 *4 (-799 *6))) (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090))))) (-1510 (*1 *2 *3) (-12 (-5 *3 (-973 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *5 (-592 (-1090))) (-5 *2 (-592 (-1061 *4 (-497 (-799 *6)) (-799 *6) (-722 *4 (-799 *6))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090))))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-592 (-954 (-385 *4))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))) (-3347 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-3347 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-973 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *5 (-592 (-1090))) (-5 *2 (-592 (-592 (-954 (-385 *4))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090))))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-592 (-954 (-385 *4))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))) (-2507 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-2507 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-2507 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-973 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *5 (-592 (-1090))) (-5 *2 (-592 (-592 (-954 (-385 *4))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090))))) (-3136 (*1 *2 *3) (-12 (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-2 (|:| -4107 (-1086 *4)) (|:| -4093 (-592 (-886 *4)))))) (-5 *1 (-1196 *4 *5 *6)) (-5 *3 (-592 (-886 *4))) (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))) (-3136 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-2 (|:| -4107 (-1086 *5)) (|:| -4093 (-592 (-886 *5)))))) (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-592 (-886 *5))) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-3136 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-2 (|:| -4107 (-1086 *5)) (|:| -4093 (-592 (-886 *5)))))) (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-592 (-886 *5))) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-3136 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-2 (|:| -4107 (-1086 *5)) (|:| -4093 (-592 (-886 *5)))))) (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-592 (-886 *5))) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-973 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *5 (-592 (-1090))) (-5 *2 (-592 (-2 (|:| -4107 (-1086 *4)) (|:| -4093 (-592 (-886 *4)))))) (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090))))) (-1374 (*1 *2 *3) (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-973 *4 *5))) (-5 *1 (-1196 *4 *5 *6)) (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))) (-1374 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-973 *5 *6))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))) (-1374 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952))) (-5 *2 (-592 (-973 *5 *6))) (-5 *1 (-1196 *5 *6 *7)) (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090))))))
-(-10 -7 (-15 -1374 ((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|)) (-108) (-108))) (-15 -1374 ((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|)) (-108))) (-15 -1374 ((-592 (-973 |#1| |#2|)) (-592 (-886 |#1|)))) (-15 -3136 ((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-973 |#1| |#2|))) (-15 -3136 ((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108) (-108))) (-15 -3136 ((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108) (-108))) (-15 -3136 ((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)) (-108))) (-15 -3136 ((-592 (-2 (|:| -4107 (-1086 |#1|)) (|:| -4093 (-592 (-886 |#1|))))) (-592 (-886 |#1|)))) (-15 -2507 ((-592 (-592 (-954 (-385 |#1|)))) (-973 |#1| |#2|))) (-15 -2507 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108) (-108))) (-15 -2507 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108))) (-15 -2507 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108))) (-15 -2507 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)))) (-15 -3347 ((-592 (-592 (-954 (-385 |#1|)))) (-973 |#1| |#2|))) (-15 -3347 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108) (-108))) (-15 -3347 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)) (-108))) (-15 -3347 ((-592 (-592 (-954 (-385 |#1|)))) (-592 (-886 |#1|)))) (-15 -1510 ((-592 (-1061 |#1| (-497 (-799 |#3|)) (-799 |#3|) (-722 |#1| (-799 |#3|)))) (-973 |#1| |#2|))) (-15 -1427 ((-722 |#1| (-799 |#3|)) (-722 |#1| (-799 |#2|)))) (-15 -1427 ((-886 (-954 (-385 |#1|))) (-886 |#1|))) (-15 -1427 ((-886 (-954 (-385 |#1|))) (-722 |#1| (-799 |#3|)))) (-15 -1427 ((-1086 (-954 (-385 |#1|))) (-1086 |#1|))) (-15 -1427 ((-592 (-722 |#1| (-799 |#3|))) (-1061 |#1| (-497 (-799 |#3|)) (-799 |#3|) (-722 |#1| (-799 |#3|))))))
-((-2549 (((-3 (-1172 (-385 (-525))) "failed") (-1172 |#1|) |#1|) 21)) (-2299 (((-108) (-1172 |#1|)) 12)) (-1413 (((-3 (-1172 (-525)) "failed") (-1172 |#1|)) 16)))
-(((-1197 |#1|) (-10 -7 (-15 -2299 ((-108) (-1172 |#1|))) (-15 -1413 ((-3 (-1172 (-525)) "failed") (-1172 |#1|))) (-15 -2549 ((-3 (-1172 (-385 (-525))) "failed") (-1172 |#1|) |#1|))) (-588 (-525))) (T -1197))
-((-2549 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1172 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-1172 (-385 (-525)))) (-5 *1 (-1197 *4)))) (-1413 (*1 *2 *3) (|partial| -12 (-5 *3 (-1172 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-1172 (-525))) (-5 *1 (-1197 *4)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-1172 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-108)) (-5 *1 (-1197 *4)))))
-(-10 -7 (-15 -2299 ((-108) (-1172 |#1|))) (-15 -1413 ((-3 (-1172 (-525)) "failed") (-1172 |#1|))) (-15 -2549 ((-3 (-1172 (-385 (-525))) "failed") (-1172 |#1|) |#1|)))
-((-1893 (((-108) $ $) NIL)) (-1611 (((-108) $) 11)) (-3263 (((-3 $ "failed") $ $) NIL)) (-3107 (((-713)) 8)) (-1505 (($) NIL T CONST)) (-2866 (((-3 $ "failed") $) 43)) (-3375 (($) 36)) (-2133 (((-108) $) NIL)) (-1816 (((-3 $ "failed") $) 29)) (-1780 (((-855) $) 15)) (-2337 (((-1073) $) NIL)) (-2279 (($) 25 T CONST)) (-4185 (($ (-855)) 37)) (-2663 (((-1037) $) NIL)) (-1427 (((-525) $) 13)) (-1908 (((-797) $) 22) (($ (-525)) 19)) (-2093 (((-713)) 9)) (-3465 (($ $ (-855)) NIL) (($ $ (-713)) NIL)) (-3875 (($) 23 T CONST)) (-3882 (($) 24 T CONST)) (-3961 (((-108) $ $) 27)) (-4070 (($ $) 38) (($ $ $) 35)) (-4059 (($ $ $) 26)) (** (($ $ (-855)) NIL) (($ $ (-713)) 40)) (* (($ (-855) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 32) (($ $ $) 31)))
-(((-1198 |#1|) (-13 (-160) (-346) (-567 (-525)) (-1066)) (-855)) (T -1198))
-NIL
-(-13 (-160) (-346) (-567 (-525)) (-1066))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3146376 3146381 3146386 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3146361 3146366 3146371 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3146346 3146351 3146356 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3146331 3146336 3146341 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1198 3145461 3146206 3146283 "ZMOD" 3146288 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1197 3144571 3144735 3144944 "ZLINDEP" 3145293 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1196 3133975 3135720 3137672 "ZDSOLVE" 3142720 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1195 3133221 3133362 3133551 "YSTREAM" 3133821 NIL YSTREAM (NIL T) -7 NIL NIL) (-1194 3130990 3132526 3132729 "XRPOLY" 3133064 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1193 3127452 3128781 3129363 "XPR" 3130454 NIL XPR (NIL T T) -8 NIL NIL) (-1192 3125166 3126787 3126990 "XPOLY" 3127283 NIL XPOLY (NIL T) -8 NIL NIL) (-1191 3122980 3124358 3124412 "XPOLYC" 3124697 NIL XPOLYC (NIL T T) -9 NIL 3124810) (-1190 3119352 3121497 3121885 "XPBWPOLY" 3122638 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1189 3115280 3117593 3117635 "XF" 3118256 NIL XF (NIL T) -9 NIL 3118655) (-1188 3114901 3114989 3115158 "XF-" 3115163 NIL XF- (NIL T T) -8 NIL NIL) (-1187 3110281 3111580 3111634 "XFALG" 3113782 NIL XFALG (NIL T T) -9 NIL 3114569) (-1186 3109418 3109522 3109726 "XEXPPKG" 3110173 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1185 3107517 3109269 3109364 "XDPOLY" 3109369 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1184 3106396 3107006 3107048 "XALG" 3107110 NIL XALG (NIL T) -9 NIL 3107229) (-1183 3099872 3104380 3104873 "WUTSET" 3105988 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1182 3097676 3098483 3098834 "WP" 3099654 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1181 3096562 3096760 3097055 "WFFINTBS" 3097473 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1180 3094442 3094869 3095331 "WEIER" 3096134 NIL WEIER (NIL T) -7 NIL NIL) (-1179 3093591 3094015 3094057 "VSPACE" 3094193 NIL VSPACE (NIL T) -9 NIL 3094267) (-1178 3093429 3093456 3093547 "VSPACE-" 3093552 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1177 3093175 3093218 3093289 "VOID" 3093380 T VOID (NIL) -8 NIL NIL) (-1176 3091311 3091670 3092076 "VIEW" 3092791 T VIEW (NIL) -7 NIL NIL) (-1175 3087736 3088374 3089111 "VIEWDEF" 3090596 T VIEWDEF (NIL) -7 NIL NIL) (-1174 3077074 3079284 3081457 "VIEW3D" 3085585 T VIEW3D (NIL) -8 NIL NIL) (-1173 3069356 3070985 3072564 "VIEW2D" 3075517 T VIEW2D (NIL) -8 NIL NIL) (-1172 3064765 3069126 3069218 "VECTOR" 3069299 NIL VECTOR (NIL T) -8 NIL NIL) (-1171 3063342 3063601 3063919 "VECTOR2" 3064495 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1170 3056882 3061134 3061177 "VECTCAT" 3062165 NIL VECTCAT (NIL T) -9 NIL 3062749) (-1169 3055896 3056150 3056540 "VECTCAT-" 3056545 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1168 3055367 3055537 3055657 "VARIABLE" 3055811 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1167 3055300 3055305 3055335 "UTYPE" 3055340 T UTYPE (NIL) -9 NIL NIL) (-1166 3054135 3054289 3054550 "UTSODETL" 3055126 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1165 3051575 3052035 3052559 "UTSODE" 3053676 NIL UTSODE (NIL T T) -7 NIL NIL) (-1164 3043419 3049215 3049703 "UTS" 3051144 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1163 3034754 3040119 3040161 "UTSCAT" 3041272 NIL UTSCAT (NIL T) -9 NIL 3042029) (-1162 3032109 3032825 3033813 "UTSCAT-" 3033818 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1161 3031740 3031783 3031914 "UTS2" 3032060 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1160 3026016 3028581 3028624 "URAGG" 3030694 NIL URAGG (NIL T) -9 NIL 3031416) (-1159 3022955 3023818 3024941 "URAGG-" 3024946 NIL URAGG- (NIL T T) -8 NIL NIL) (-1158 3018641 3021572 3022043 "UPXSSING" 3022619 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1157 3010532 3017762 3018042 "UPXS" 3018418 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1156 3003561 3010437 3010508 "UPXSCONS" 3010513 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1155 2993850 3000680 3000741 "UPXSCCA" 3001390 NIL UPXSCCA (NIL T T) -9 NIL 3001631) (-1154 2993489 2993574 2993747 "UPXSCCA-" 2993752 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1153 2983690 2990293 2990335 "UPXSCAT" 2990988 NIL UPXSCAT (NIL T) -9 NIL 2991596) (-1152 2983124 2983203 2983380 "UPXS2" 2983605 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1151 2981778 2982031 2982382 "UPSQFREE" 2982867 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1150 2975669 2978724 2978778 "UPSCAT" 2979927 NIL UPSCAT (NIL T T) -9 NIL 2980701) (-1149 2974874 2975081 2975407 "UPSCAT-" 2975412 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1148 2960960 2968997 2969039 "UPOLYC" 2971117 NIL UPOLYC (NIL T) -9 NIL 2972338) (-1147 2952290 2954715 2957861 "UPOLYC-" 2957866 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1146 2951921 2951964 2952095 "UPOLYC2" 2952241 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1145 2943340 2951490 2951627 "UP" 2951831 NIL UP (NIL NIL T) -8 NIL NIL) (-1144 2942683 2942790 2942953 "UPMP" 2943229 NIL UPMP (NIL T T) -7 NIL NIL) (-1143 2942236 2942317 2942456 "UPDIVP" 2942596 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1142 2940804 2941053 2941369 "UPDECOMP" 2941985 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1141 2940039 2940151 2940336 "UPCDEN" 2940688 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1140 2939562 2939631 2939778 "UP2" 2939964 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1139 2938079 2938766 2939043 "UNISEG" 2939320 NIL UNISEG (NIL T) -8 NIL NIL) (-1138 2937294 2937421 2937626 "UNISEG2" 2937922 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1137 2936354 2936534 2936760 "UNIFACT" 2937110 NIL UNIFACT (NIL T) -7 NIL NIL) (-1136 2920250 2935535 2935785 "ULS" 2936161 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1135 2908215 2920155 2920226 "ULSCONS" 2920231 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1134 2890965 2902978 2903039 "ULSCCAT" 2903751 NIL ULSCCAT (NIL T T) -9 NIL 2904047) (-1133 2890016 2890261 2890648 "ULSCCAT-" 2890653 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1132 2879996 2886513 2886555 "ULSCAT" 2887421 NIL ULSCAT (NIL T) -9 NIL 2888151) (-1131 2879430 2879509 2879686 "ULS2" 2879911 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1130 2877828 2878795 2878825 "UFD" 2879037 T UFD (NIL) -9 NIL 2879151) (-1129 2877622 2877668 2877763 "UFD-" 2877768 NIL UFD- (NIL T) -8 NIL NIL) (-1128 2876704 2876887 2877103 "UDVO" 2877428 T UDVO (NIL) -7 NIL NIL) (-1127 2874520 2874929 2875400 "UDPO" 2876268 NIL UDPO (NIL T) -7 NIL NIL) (-1126 2874453 2874458 2874488 "TYPE" 2874493 T TYPE (NIL) -9 NIL NIL) (-1125 2873424 2873626 2873866 "TWOFACT" 2874247 NIL TWOFACT (NIL T) -7 NIL NIL) (-1124 2872362 2872699 2872962 "TUPLE" 2873196 NIL TUPLE (NIL T) -8 NIL NIL) (-1123 2870053 2870572 2871111 "TUBETOOL" 2871845 T TUBETOOL (NIL) -7 NIL NIL) (-1122 2868902 2869107 2869348 "TUBE" 2869846 NIL TUBE (NIL T) -8 NIL NIL) (-1121 2863626 2867880 2868162 "TS" 2868654 NIL TS (NIL T) -8 NIL NIL) (-1120 2852330 2856422 2856518 "TSETCAT" 2861752 NIL TSETCAT (NIL T T T T) -9 NIL 2863283) (-1119 2847065 2848663 2850553 "TSETCAT-" 2850558 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1118 2841328 2842174 2843116 "TRMANIP" 2846201 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1117 2840769 2840832 2840995 "TRIMAT" 2841260 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1116 2838575 2838812 2839175 "TRIGMNIP" 2840518 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1115 2838095 2838208 2838238 "TRIGCAT" 2838451 T TRIGCAT (NIL) -9 NIL NIL) (-1114 2837764 2837843 2837984 "TRIGCAT-" 2837989 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1113 2834663 2836624 2836904 "TREE" 2837519 NIL TREE (NIL T) -8 NIL NIL) (-1112 2833937 2834465 2834495 "TRANFUN" 2834530 T TRANFUN (NIL) -9 NIL 2834596) (-1111 2833216 2833407 2833687 "TRANFUN-" 2833692 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1110 2833020 2833052 2833113 "TOPSP" 2833177 T TOPSP (NIL) -7 NIL NIL) (-1109 2832372 2832487 2832640 "TOOLSIGN" 2832901 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1108 2831033 2831549 2831788 "TEXTFILE" 2832155 T TEXTFILE (NIL) -8 NIL NIL) (-1107 2828898 2829412 2829850 "TEX" 2830617 T TEX (NIL) -8 NIL NIL) (-1106 2828679 2828710 2828782 "TEX1" 2828861 NIL TEX1 (NIL T) -7 NIL NIL) (-1105 2828327 2828390 2828480 "TEMUTL" 2828611 T TEMUTL (NIL) -7 NIL NIL) (-1104 2826481 2826761 2827086 "TBCMPPK" 2828050 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1103 2818370 2824642 2824698 "TBAGG" 2825098 NIL TBAGG (NIL T T) -9 NIL 2825309) (-1102 2813440 2814928 2816682 "TBAGG-" 2816687 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1101 2812824 2812931 2813076 "TANEXP" 2813329 NIL TANEXP (NIL T) -7 NIL NIL) (-1100 2806325 2812681 2812774 "TABLE" 2812779 NIL TABLE (NIL T T) -8 NIL NIL) (-1099 2805737 2805836 2805974 "TABLEAU" 2806222 NIL TABLEAU (NIL T) -8 NIL NIL) (-1098 2800310 2801530 2802778 "TABLBUMP" 2804523 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1097 2799738 2799838 2799966 "SYSTEM" 2800204 T SYSTEM (NIL) -7 NIL NIL) (-1096 2796201 2796896 2797679 "SYSSOLP" 2798989 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1095 2792492 2793200 2793934 "SYNTAX" 2795489 T SYNTAX (NIL) -8 NIL NIL) (-1094 2789626 2790234 2790872 "SYMTAB" 2791876 T SYMTAB (NIL) -8 NIL NIL) (-1093 2784875 2785777 2786760 "SYMS" 2788665 T SYMS (NIL) -8 NIL NIL) (-1092 2782104 2784331 2784560 "SYMPOLY" 2784680 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1091 2781624 2781699 2781821 "SYMFUNC" 2782016 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1090 2777601 2778861 2779683 "SYMBOL" 2780824 T SYMBOL (NIL) -8 NIL NIL) (-1089 2771140 2772829 2774549 "SWITCH" 2775903 T SWITCH (NIL) -8 NIL NIL) (-1088 2764370 2769967 2770269 "SUTS" 2770895 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1087 2756260 2763491 2763771 "SUPXS" 2764147 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1086 2747752 2755881 2756006 "SUP" 2756169 NIL SUP (NIL T) -8 NIL NIL) (-1085 2746911 2747038 2747255 "SUPFRACF" 2747620 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1084 2746536 2746595 2746706 "SUP2" 2746846 NIL SUP2 (NIL T T) -7 NIL NIL) (-1083 2744933 2745207 2745569 "SUMRF" 2746235 NIL SUMRF (NIL T) -7 NIL NIL) (-1082 2744250 2744316 2744514 "SUMFS" 2744854 NIL SUMFS (NIL T T) -7 NIL NIL) (-1081 2728186 2743431 2743681 "SULS" 2744057 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1080 2727508 2727711 2727851 "SUCH" 2728094 NIL SUCH (NIL T T) -8 NIL NIL) (-1079 2721435 2722447 2723405 "SUBSPACE" 2726596 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1078 2720865 2720955 2721119 "SUBRESP" 2721323 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1077 2714234 2715530 2716841 "STTF" 2719601 NIL STTF (NIL T) -7 NIL NIL) (-1076 2708407 2709527 2710674 "STTFNC" 2713134 NIL STTFNC (NIL T) -7 NIL NIL) (-1075 2699747 2701614 2703407 "STTAYLOR" 2706648 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1074 2692991 2699611 2699694 "STRTBL" 2699699 NIL STRTBL (NIL T) -8 NIL NIL) (-1073 2688382 2692946 2692977 "STRING" 2692982 T STRING (NIL) -8 NIL NIL) (-1072 2683271 2687756 2687786 "STRICAT" 2687845 T STRICAT (NIL) -9 NIL 2687907) (-1071 2675985 2680794 2681414 "STREAM" 2682686 NIL STREAM (NIL T) -8 NIL NIL) (-1070 2675495 2675572 2675716 "STREAM3" 2675902 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1069 2674477 2674660 2674895 "STREAM2" 2675308 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1068 2674165 2674217 2674310 "STREAM1" 2674419 NIL STREAM1 (NIL T) -7 NIL NIL) (-1067 2673181 2673362 2673593 "STINPROD" 2673981 NIL STINPROD (NIL T) -7 NIL NIL) (-1066 2672760 2672944 2672974 "STEP" 2673054 T STEP (NIL) -9 NIL 2673132) (-1065 2666303 2672659 2672736 "STBL" 2672741 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1064 2661479 2665526 2665569 "STAGG" 2665722 NIL STAGG (NIL T) -9 NIL 2665811) (-1063 2659181 2659783 2660655 "STAGG-" 2660660 NIL STAGG- (NIL T T) -8 NIL NIL) (-1062 2657376 2658951 2659043 "STACK" 2659124 NIL STACK (NIL T) -8 NIL NIL) (-1061 2650107 2655523 2655978 "SREGSET" 2657006 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1060 2642539 2643907 2645419 "SRDCMPK" 2648713 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1059 2635507 2639980 2640010 "SRAGG" 2641313 T SRAGG (NIL) -9 NIL 2641921) (-1058 2634524 2634779 2635158 "SRAGG-" 2635163 NIL SRAGG- (NIL T) -8 NIL NIL) (-1057 2628973 2633443 2633870 "SQMATRIX" 2634143 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1056 2622725 2625693 2626419 "SPLTREE" 2628319 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1055 2618715 2619381 2620027 "SPLNODE" 2622151 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1054 2617762 2617995 2618025 "SPFCAT" 2618469 T SPFCAT (NIL) -9 NIL NIL) (-1053 2616499 2616709 2616973 "SPECOUT" 2617520 T SPECOUT (NIL) -7 NIL NIL) (-1052 2616260 2616300 2616369 "SPADPRSR" 2616452 T SPADPRSR (NIL) -7 NIL NIL) (-1051 2608283 2610030 2610072 "SPACEC" 2614395 NIL SPACEC (NIL T) -9 NIL 2616211) (-1050 2606454 2608216 2608264 "SPACE3" 2608269 NIL SPACE3 (NIL T) -8 NIL NIL) (-1049 2605206 2605377 2605668 "SORTPAK" 2606259 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1048 2603262 2603565 2603983 "SOLVETRA" 2604870 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1047 2602273 2602495 2602769 "SOLVESER" 2603035 NIL SOLVESER (NIL T) -7 NIL NIL) (-1046 2597493 2598374 2599376 "SOLVERAD" 2601325 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1045 2593308 2593917 2594646 "SOLVEFOR" 2596860 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1044 2587608 2592660 2592756 "SNTSCAT" 2592761 NIL SNTSCAT (NIL T T T T) -9 NIL 2592831) (-1043 2581712 2585939 2586329 "SMTS" 2587298 NIL SMTS (NIL T T T) -8 NIL NIL) (-1042 2576122 2581601 2581677 "SMP" 2581682 NIL SMP (NIL T T) -8 NIL NIL) (-1041 2574281 2574582 2574980 "SMITH" 2575819 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1040 2567246 2571442 2571544 "SMATCAT" 2572884 NIL SMATCAT (NIL NIL T T T) -9 NIL 2573433) (-1039 2564187 2565010 2566187 "SMATCAT-" 2566192 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1038 2561901 2563424 2563467 "SKAGG" 2563728 NIL SKAGG (NIL T) -9 NIL 2563863) (-1037 2557959 2561005 2561283 "SINT" 2561645 T SINT (NIL) -8 NIL NIL) (-1036 2557731 2557769 2557835 "SIMPAN" 2557915 T SIMPAN (NIL) -7 NIL NIL) (-1035 2556569 2556790 2557065 "SIGNRF" 2557490 NIL SIGNRF (NIL T) -7 NIL NIL) (-1034 2555354 2555505 2555795 "SIGNEF" 2556398 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1033 2553044 2553498 2554004 "SHP" 2554895 NIL SHP (NIL T NIL) -7 NIL NIL) (-1032 2546897 2552945 2553021 "SHDP" 2553026 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1031 2546387 2546579 2546609 "SGROUP" 2546761 T SGROUP (NIL) -9 NIL 2546848) (-1030 2546157 2546209 2546313 "SGROUP-" 2546318 NIL SGROUP- (NIL T) -8 NIL NIL) (-1029 2542993 2543690 2544413 "SGCF" 2545456 T SGCF (NIL) -7 NIL NIL) (-1028 2537392 2542444 2542540 "SFRTCAT" 2542545 NIL SFRTCAT (NIL T T T T) -9 NIL 2542583) (-1027 2530852 2531867 2533001 "SFRGCD" 2536375 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1026 2524018 2525089 2526273 "SFQCMPK" 2529785 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1025 2523640 2523729 2523839 "SFORT" 2523959 NIL SFORT (NIL T T) -8 NIL NIL) (-1024 2522785 2523480 2523601 "SEXOF" 2523606 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1023 2521919 2522666 2522734 "SEX" 2522739 T SEX (NIL) -8 NIL NIL) (-1022 2516696 2517385 2517480 "SEXCAT" 2521251 NIL SEXCAT (NIL T T T T T) -9 NIL 2521870) (-1021 2513876 2516630 2516678 "SET" 2516683 NIL SET (NIL T) -8 NIL NIL) (-1020 2512095 2512557 2512862 "SETMN" 2513617 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1019 2511703 2511829 2511859 "SETCAT" 2511976 T SETCAT (NIL) -9 NIL 2512060) (-1018 2511483 2511535 2511634 "SETCAT-" 2511639 NIL SETCAT- (NIL T) -8 NIL NIL) (-1017 2507871 2509945 2509988 "SETAGG" 2510858 NIL SETAGG (NIL T) -9 NIL 2511198) (-1016 2507329 2507445 2507682 "SETAGG-" 2507687 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1015 2506533 2506826 2506887 "SEGXCAT" 2507173 NIL SEGXCAT (NIL T T) -9 NIL 2507293) (-1014 2505589 2506199 2506381 "SEG" 2506386 NIL SEG (NIL T) -8 NIL NIL) (-1013 2504496 2504709 2504752 "SEGCAT" 2505334 NIL SEGCAT (NIL T) -9 NIL 2505572) (-1012 2503545 2503875 2504075 "SEGBIND" 2504331 NIL SEGBIND (NIL T) -8 NIL NIL) (-1011 2503166 2503225 2503338 "SEGBIND2" 2503480 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1010 2502385 2502511 2502715 "SEG2" 2503010 NIL SEG2 (NIL T T) -7 NIL NIL) (-1009 2501822 2502320 2502367 "SDVAR" 2502372 NIL SDVAR (NIL T) -8 NIL NIL) (-1008 2494074 2501595 2501723 "SDPOL" 2501728 NIL SDPOL (NIL T) -8 NIL NIL) (-1007 2492667 2492933 2493252 "SCPKG" 2493789 NIL SCPKG (NIL T) -7 NIL NIL) (-1006 2491804 2491983 2492183 "SCOPE" 2492489 T SCOPE (NIL) -8 NIL NIL) (-1005 2491025 2491158 2491337 "SCACHE" 2491659 NIL SCACHE (NIL T) -7 NIL NIL) (-1004 2490464 2490785 2490870 "SAOS" 2490962 T SAOS (NIL) -8 NIL NIL) (-1003 2490029 2490064 2490237 "SAERFFC" 2490423 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1002 2483923 2489926 2490006 "SAE" 2490011 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1001 2483516 2483551 2483710 "SAEFACT" 2483882 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1000 2481837 2482151 2482552 "RURPK" 2483182 NIL RURPK (NIL T NIL) -7 NIL NIL) (-999 2480490 2480767 2481074 "RULESET" 2481673 NIL RULESET (NIL T T T) -8 NIL NIL) (-998 2477684 2478187 2478648 "RULE" 2480172 NIL RULE (NIL T T T) -8 NIL NIL) (-997 2477321 2477476 2477557 "RULECOLD" 2477636 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-996 2472213 2473007 2473923 "RSETGCD" 2476520 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-995 2461528 2466580 2466674 "RSETCAT" 2470739 NIL RSETCAT (NIL T T T T) -9 NIL 2471836) (-994 2459459 2459998 2460818 "RSETCAT-" 2460823 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-993 2451881 2453256 2454772 "RSDCMPK" 2458058 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-992 2449899 2450340 2450412 "RRCC" 2451488 NIL RRCC (NIL T T) -9 NIL 2451832) (-991 2449253 2449427 2449703 "RRCC-" 2449708 NIL RRCC- (NIL T T T) -8 NIL NIL) (-990 2423620 2433245 2433309 "RPOLCAT" 2443811 NIL RPOLCAT (NIL T T T) -9 NIL 2446969) (-989 2415124 2417462 2420580 "RPOLCAT-" 2420585 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-988 2406190 2413354 2413834 "ROUTINE" 2414664 T ROUTINE (NIL) -8 NIL NIL) (-987 2402895 2405746 2405893 "ROMAN" 2406063 T ROMAN (NIL) -8 NIL NIL) (-986 2401181 2401766 2402023 "ROIRC" 2402701 NIL ROIRC (NIL T T) -8 NIL NIL) (-985 2397586 2399890 2399918 "RNS" 2400214 T RNS (NIL) -9 NIL 2400484) (-984 2396100 2396483 2397014 "RNS-" 2397087 NIL RNS- (NIL T) -8 NIL NIL) (-983 2395526 2395934 2395962 "RNG" 2395967 T RNG (NIL) -9 NIL 2395988) (-982 2394924 2395286 2395326 "RMODULE" 2395386 NIL RMODULE (NIL T) -9 NIL 2395428) (-981 2393776 2393870 2394200 "RMCAT2" 2394825 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-980 2390490 2392959 2393280 "RMATRIX" 2393511 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-979 2383487 2385721 2385833 "RMATCAT" 2389142 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2390124) (-978 2382866 2383013 2383316 "RMATCAT-" 2383321 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-977 2382436 2382511 2382637 "RINTERP" 2382785 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-976 2381487 2382051 2382079 "RING" 2382189 T RING (NIL) -9 NIL 2382283) (-975 2381282 2381326 2381420 "RING-" 2381425 NIL RING- (NIL T) -8 NIL NIL) (-974 2380130 2380367 2380623 "RIDIST" 2381046 T RIDIST (NIL) -7 NIL NIL) (-973 2371452 2379604 2379807 "RGCHAIN" 2379979 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-972 2368457 2369071 2369739 "RF" 2370816 NIL RF (NIL T) -7 NIL NIL) (-971 2368106 2368169 2368270 "RFFACTOR" 2368388 NIL RFFACTOR (NIL T) -7 NIL NIL) (-970 2367834 2367869 2367964 "RFFACT" 2368065 NIL RFFACT (NIL T) -7 NIL NIL) (-969 2365964 2366328 2366708 "RFDIST" 2367474 T RFDIST (NIL) -7 NIL NIL) (-968 2365422 2365514 2365674 "RETSOL" 2365866 NIL RETSOL (NIL T T) -7 NIL NIL) (-967 2365015 2365095 2365136 "RETRACT" 2365326 NIL RETRACT (NIL T) -9 NIL NIL) (-966 2364867 2364892 2364976 "RETRACT-" 2364981 NIL RETRACT- (NIL T T) -8 NIL NIL) (-965 2357725 2364524 2364649 "RESULT" 2364762 T RESULT (NIL) -8 NIL NIL) (-964 2356310 2356999 2357196 "RESRING" 2357628 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-963 2355950 2355999 2356095 "RESLATC" 2356247 NIL RESLATC (NIL T) -7 NIL NIL) (-962 2355659 2355693 2355798 "REPSQ" 2355909 NIL REPSQ (NIL T) -7 NIL NIL) (-961 2353090 2353670 2354270 "REP" 2355079 T REP (NIL) -7 NIL NIL) (-960 2352791 2352825 2352934 "REPDB" 2353049 NIL REPDB (NIL T) -7 NIL NIL) (-959 2346736 2348115 2349335 "REP2" 2351603 NIL REP2 (NIL T) -7 NIL NIL) (-958 2343142 2343823 2344628 "REP1" 2345963 NIL REP1 (NIL T) -7 NIL NIL) (-957 2335888 2341303 2341755 "REGSET" 2342773 NIL REGSET (NIL T T T T) -8 NIL NIL) (-956 2334709 2335044 2335292 "REF" 2335673 NIL REF (NIL T) -8 NIL NIL) (-955 2334090 2334193 2334358 "REDORDER" 2334593 NIL REDORDER (NIL T T) -7 NIL NIL) (-954 2330059 2333324 2333545 "RECLOS" 2333921 NIL RECLOS (NIL T) -8 NIL NIL) (-953 2329116 2329297 2329510 "REALSOLV" 2329866 T REALSOLV (NIL) -7 NIL NIL) (-952 2328964 2329005 2329033 "REAL" 2329038 T REAL (NIL) -9 NIL 2329073) (-951 2325400 2326202 2327084 "REAL0Q" 2328129 NIL REAL0Q (NIL T) -7 NIL NIL) (-950 2321011 2321999 2323058 "REAL0" 2324381 NIL REAL0 (NIL T) -7 NIL NIL) (-949 2320419 2320491 2320696 "RDIV" 2320933 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-948 2319492 2319666 2319877 "RDIST" 2320241 NIL RDIST (NIL T) -7 NIL NIL) (-947 2318096 2318383 2318752 "RDETRS" 2319200 NIL RDETRS (NIL T T) -7 NIL NIL) (-946 2315909 2316363 2316898 "RDETR" 2317638 NIL RDETR (NIL T T) -7 NIL NIL) (-945 2314517 2314795 2315196 "RDEEFS" 2315625 NIL RDEEFS (NIL T T) -7 NIL NIL) (-944 2313009 2313315 2313744 "RDEEF" 2314205 NIL RDEEF (NIL T T) -7 NIL NIL) (-943 2307294 2310226 2310254 "RCFIELD" 2311531 T RCFIELD (NIL) -9 NIL 2312261) (-942 2305363 2305867 2306560 "RCFIELD-" 2306633 NIL RCFIELD- (NIL T) -8 NIL NIL) (-941 2301695 2303480 2303521 "RCAGG" 2304592 NIL RCAGG (NIL T) -9 NIL 2305057) (-940 2301326 2301420 2301580 "RCAGG-" 2301585 NIL RCAGG- (NIL T T) -8 NIL NIL) (-939 2300648 2300760 2300922 "RATRET" 2301210 NIL RATRET (NIL T) -7 NIL NIL) (-938 2300205 2300272 2300391 "RATFACT" 2300576 NIL RATFACT (NIL T) -7 NIL NIL) (-937 2299520 2299640 2299790 "RANDSRC" 2300075 T RANDSRC (NIL) -7 NIL NIL) (-936 2299257 2299301 2299372 "RADUTIL" 2299469 T RADUTIL (NIL) -7 NIL NIL) (-935 2292264 2298000 2298317 "RADIX" 2298972 NIL RADIX (NIL NIL) -8 NIL NIL) (-934 2283834 2292108 2292236 "RADFF" 2292241 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-933 2283486 2283561 2283589 "RADCAT" 2283746 T RADCAT (NIL) -9 NIL NIL) (-932 2283271 2283319 2283416 "RADCAT-" 2283421 NIL RADCAT- (NIL T) -8 NIL NIL) (-931 2281422 2283046 2283135 "QUEUE" 2283215 NIL QUEUE (NIL T) -8 NIL NIL) (-930 2277919 2281359 2281404 "QUAT" 2281409 NIL QUAT (NIL T) -8 NIL NIL) (-929 2277557 2277600 2277727 "QUATCT2" 2277870 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-928 2271351 2274731 2274771 "QUATCAT" 2275550 NIL QUATCAT (NIL T) -9 NIL 2276315) (-927 2267495 2268532 2269919 "QUATCAT-" 2270013 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-926 2265016 2266580 2266621 "QUAGG" 2266996 NIL QUAGG (NIL T) -9 NIL 2267171) (-925 2263941 2264414 2264586 "QFORM" 2264888 NIL QFORM (NIL NIL T) -8 NIL NIL) (-924 2255238 2260496 2260536 "QFCAT" 2261194 NIL QFCAT (NIL T) -9 NIL 2262187) (-923 2250810 2252011 2253602 "QFCAT-" 2253696 NIL QFCAT- (NIL T T) -8 NIL NIL) (-922 2250448 2250491 2250618 "QFCAT2" 2250761 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-921 2249908 2250018 2250148 "QEQUAT" 2250338 T QEQUAT (NIL) -8 NIL NIL) (-920 2243094 2244165 2245347 "QCMPACK" 2248841 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-919 2240670 2241091 2241519 "QALGSET" 2242749 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-918 2239915 2240089 2240321 "QALGSET2" 2240490 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-917 2238606 2238829 2239146 "PWFFINTB" 2239688 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-916 2236794 2236962 2237315 "PUSHVAR" 2238420 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-915 2232712 2233766 2233807 "PTRANFN" 2235691 NIL PTRANFN (NIL T) -9 NIL NIL) (-914 2231124 2231415 2231736 "PTPACK" 2232423 NIL PTPACK (NIL T) -7 NIL NIL) (-913 2230760 2230817 2230924 "PTFUNC2" 2231061 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-912 2225237 2229578 2229618 "PTCAT" 2229986 NIL PTCAT (NIL T) -9 NIL 2230148) (-911 2224895 2224930 2225054 "PSQFR" 2225196 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-910 2223490 2223788 2224122 "PSEUDLIN" 2224593 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-909 2210297 2212662 2214985 "PSETPK" 2221250 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-908 2203384 2206098 2206192 "PSETCAT" 2209173 NIL PSETCAT (NIL T T T T) -9 NIL 2209987) (-907 2201222 2201856 2202675 "PSETCAT-" 2202680 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-906 2200571 2200736 2200764 "PSCURVE" 2201032 T PSCURVE (NIL) -9 NIL 2201199) (-905 2197023 2198549 2198613 "PSCAT" 2199449 NIL PSCAT (NIL T T T) -9 NIL 2199689) (-904 2196087 2196303 2196702 "PSCAT-" 2196707 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-903 2194739 2195372 2195586 "PRTITION" 2195893 T PRTITION (NIL) -8 NIL NIL) (-902 2183837 2186043 2188231 "PRS" 2192601 NIL PRS (NIL T T) -7 NIL NIL) (-901 2181696 2183188 2183228 "PRQAGG" 2183411 NIL PRQAGG (NIL T) -9 NIL 2183513) (-900 2181267 2181369 2181397 "PROPLOG" 2181582 T PROPLOG (NIL) -9 NIL NIL) (-899 2178390 2178955 2179482 "PROPFRML" 2180772 NIL PROPFRML (NIL T) -8 NIL NIL) (-898 2177850 2177960 2178090 "PROPERTY" 2178280 T PROPERTY (NIL) -8 NIL NIL) (-897 2171624 2176016 2176836 "PRODUCT" 2177076 NIL PRODUCT (NIL T T) -8 NIL NIL) (-896 2168900 2171084 2171317 "PR" 2171435 NIL PR (NIL T T) -8 NIL NIL) (-895 2168696 2168728 2168787 "PRINT" 2168861 T PRINT (NIL) -7 NIL NIL) (-894 2168036 2168153 2168305 "PRIMES" 2168576 NIL PRIMES (NIL T) -7 NIL NIL) (-893 2166101 2166502 2166968 "PRIMELT" 2167615 NIL PRIMELT (NIL T) -7 NIL NIL) (-892 2165830 2165879 2165907 "PRIMCAT" 2166031 T PRIMCAT (NIL) -9 NIL NIL) (-891 2161991 2165768 2165813 "PRIMARR" 2165818 NIL PRIMARR (NIL T) -8 NIL NIL) (-890 2160998 2161176 2161404 "PRIMARR2" 2161809 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-889 2160641 2160697 2160808 "PREASSOC" 2160936 NIL PREASSOC (NIL T T) -7 NIL NIL) (-888 2160116 2160249 2160277 "PPCURVE" 2160482 T PPCURVE (NIL) -9 NIL 2160618) (-887 2157475 2157874 2158466 "POLYROOT" 2159697 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-886 2151381 2157081 2157240 "POLY" 2157348 NIL POLY (NIL T) -8 NIL NIL) (-885 2150766 2150824 2151057 "POLYLIFT" 2151317 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-884 2147051 2147500 2148128 "POLYCATQ" 2150311 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-883 2134092 2139489 2139553 "POLYCAT" 2143038 NIL POLYCAT (NIL T T T) -9 NIL 2144965) (-882 2127543 2129404 2131787 "POLYCAT-" 2131792 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-881 2127132 2127200 2127319 "POLY2UP" 2127469 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-880 2126768 2126825 2126932 "POLY2" 2127069 NIL POLY2 (NIL T T) -7 NIL NIL) (-879 2125453 2125692 2125968 "POLUTIL" 2126542 NIL POLUTIL (NIL T T) -7 NIL NIL) (-878 2123815 2124092 2124422 "POLTOPOL" 2125175 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-877 2119338 2123752 2123797 "POINT" 2123802 NIL POINT (NIL T) -8 NIL NIL) (-876 2117525 2117882 2118257 "PNTHEORY" 2118983 T PNTHEORY (NIL) -7 NIL NIL) (-875 2115953 2116250 2116659 "PMTOOLS" 2117223 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-874 2115546 2115624 2115741 "PMSYM" 2115869 NIL PMSYM (NIL T) -7 NIL NIL) (-873 2115049 2115118 2115292 "PMQFCAT" 2115471 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-872 2114404 2114514 2114670 "PMPRED" 2114926 NIL PMPRED (NIL T) -7 NIL NIL) (-871 2113800 2113886 2114047 "PMPREDFS" 2114305 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-870 2112432 2112640 2113024 "PMPLCAT" 2113562 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-869 2111964 2112043 2112195 "PMLSAGG" 2112347 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-868 2111434 2111510 2111690 "PMKERNEL" 2111882 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-867 2111051 2111126 2111239 "PMINS" 2111353 NIL PMINS (NIL T) -7 NIL NIL) (-866 2110474 2110543 2110758 "PMFS" 2110976 NIL PMFS (NIL T T T) -7 NIL NIL) (-865 2109705 2109823 2110027 "PMDOWN" 2110351 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-864 2108868 2109027 2109209 "PMASS" 2109543 T PMASS (NIL) -7 NIL NIL) (-863 2108142 2108253 2108416 "PMASSFS" 2108754 NIL PMASSFS (NIL T T) -7 NIL NIL) (-862 2107797 2107865 2107959 "PLOTTOOL" 2108068 T PLOTTOOL (NIL) -7 NIL NIL) (-861 2102419 2103608 2104756 "PLOT" 2106669 T PLOT (NIL) -8 NIL NIL) (-860 2098233 2099267 2100188 "PLOT3D" 2101518 T PLOT3D (NIL) -8 NIL NIL) (-859 2097145 2097322 2097557 "PLOT1" 2098037 NIL PLOT1 (NIL T) -7 NIL NIL) (-858 2072539 2077211 2082062 "PLEQN" 2092411 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-857 2071857 2071979 2072159 "PINTERP" 2072404 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-856 2071550 2071597 2071700 "PINTERPA" 2071804 NIL PINTERPA (NIL T T) -7 NIL NIL) (-855 2070789 2071356 2071443 "PI" 2071483 T PI (NIL) -8 NIL NIL) (-854 2069181 2070166 2070194 "PID" 2070376 T PID (NIL) -9 NIL 2070510) (-853 2068906 2068943 2069031 "PICOERCE" 2069138 NIL PICOERCE (NIL T) -7 NIL NIL) (-852 2068226 2068365 2068541 "PGROEB" 2068762 NIL PGROEB (NIL T) -7 NIL NIL) (-851 2063813 2064627 2065532 "PGE" 2067341 T PGE (NIL) -7 NIL NIL) (-850 2061937 2062183 2062549 "PGCD" 2063530 NIL PGCD (NIL T T T T) -7 NIL NIL) (-849 2061275 2061378 2061539 "PFRPAC" 2061821 NIL PFRPAC (NIL T) -7 NIL NIL) (-848 2057890 2059823 2060176 "PFR" 2060954 NIL PFR (NIL T) -8 NIL NIL) (-847 2056263 2056507 2056832 "PFOTOOLS" 2057637 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-846 2054796 2055035 2055386 "PFOQ" 2056020 NIL PFOQ (NIL T T T) -7 NIL NIL) (-845 2053273 2053485 2053847 "PFO" 2054580 NIL PFO (NIL T T T T T) -7 NIL NIL) (-844 2049796 2053162 2053231 "PF" 2053236 NIL PF (NIL NIL) -8 NIL NIL) (-843 2047225 2048506 2048534 "PFECAT" 2049119 T PFECAT (NIL) -9 NIL 2049503) (-842 2046670 2046824 2047038 "PFECAT-" 2047043 NIL PFECAT- (NIL T) -8 NIL NIL) (-841 2045274 2045525 2045826 "PFBRU" 2046419 NIL PFBRU (NIL T T) -7 NIL NIL) (-840 2043141 2043492 2043924 "PFBR" 2044925 NIL PFBR (NIL T T T T) -7 NIL NIL) (-839 2038992 2040517 2041193 "PERM" 2042498 NIL PERM (NIL T) -8 NIL NIL) (-838 2034257 2035199 2036069 "PERMGRP" 2038155 NIL PERMGRP (NIL T) -8 NIL NIL) (-837 2032328 2033321 2033362 "PERMCAT" 2033808 NIL PERMCAT (NIL T) -9 NIL 2034113) (-836 2031983 2032024 2032147 "PERMAN" 2032281 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-835 2029423 2031552 2031683 "PENDTREE" 2031885 NIL PENDTREE (NIL T) -8 NIL NIL) (-834 2027496 2028274 2028315 "PDRING" 2028972 NIL PDRING (NIL T) -9 NIL 2029257) (-833 2026599 2026817 2027179 "PDRING-" 2027184 NIL PDRING- (NIL T T) -8 NIL NIL) (-832 2023740 2024491 2025182 "PDEPROB" 2025928 T PDEPROB (NIL) -8 NIL NIL) (-831 2021303 2021799 2022348 "PDEPACK" 2023211 T PDEPACK (NIL) -7 NIL NIL) (-830 2020215 2020405 2020656 "PDECOMP" 2021102 NIL PDECOMP (NIL T T) -7 NIL NIL) (-829 2017827 2018642 2018670 "PDECAT" 2019455 T PDECAT (NIL) -9 NIL 2020166) (-828 2017580 2017613 2017702 "PCOMP" 2017788 NIL PCOMP (NIL T T) -7 NIL NIL) (-827 2015787 2016383 2016679 "PBWLB" 2017310 NIL PBWLB (NIL T) -8 NIL NIL) (-826 2008295 2009864 2011200 "PATTERN" 2014472 NIL PATTERN (NIL T) -8 NIL NIL) (-825 2007927 2007984 2008093 "PATTERN2" 2008232 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-824 2005684 2006072 2006529 "PATTERN1" 2007516 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-823 2003079 2003633 2004114 "PATRES" 2005249 NIL PATRES (NIL T T) -8 NIL NIL) (-822 2002643 2002710 2002842 "PATRES2" 2003006 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-821 2000540 2000940 2001345 "PATMATCH" 2002312 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-820 2000077 2000260 2000301 "PATMAB" 2000408 NIL PATMAB (NIL T) -9 NIL 2000491) (-819 1998622 1998931 1999189 "PATLRES" 1999882 NIL PATLRES (NIL T T T) -8 NIL NIL) (-818 1998168 1998291 1998332 "PATAB" 1998337 NIL PATAB (NIL T) -9 NIL 1998509) (-817 1995649 1996181 1996754 "PARTPERM" 1997615 T PARTPERM (NIL) -7 NIL NIL) (-816 1995270 1995333 1995435 "PARSURF" 1995580 NIL PARSURF (NIL T) -8 NIL NIL) (-815 1994902 1994959 1995068 "PARSU2" 1995207 NIL PARSU2 (NIL T T) -7 NIL NIL) (-814 1994666 1994706 1994773 "PARSER" 1994855 T PARSER (NIL) -7 NIL NIL) (-813 1994287 1994350 1994452 "PARSCURV" 1994597 NIL PARSCURV (NIL T) -8 NIL NIL) (-812 1993919 1993976 1994085 "PARSC2" 1994224 NIL PARSC2 (NIL T T) -7 NIL NIL) (-811 1993558 1993616 1993713 "PARPCURV" 1993855 NIL PARPCURV (NIL T) -8 NIL NIL) (-810 1993190 1993247 1993356 "PARPC2" 1993495 NIL PARPC2 (NIL T T) -7 NIL NIL) (-809 1992710 1992796 1992915 "PAN2EXPR" 1993091 T PAN2EXPR (NIL) -7 NIL NIL) (-808 1991516 1991831 1992059 "PALETTE" 1992502 T PALETTE (NIL) -8 NIL NIL) (-807 1989984 1990521 1990881 "PAIR" 1991202 NIL PAIR (NIL T T) -8 NIL NIL) (-806 1983826 1989235 1989429 "PADICRC" 1989839 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-805 1977026 1983164 1983348 "PADICRAT" 1983674 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-804 1975330 1976963 1977008 "PADIC" 1977013 NIL PADIC (NIL NIL) -8 NIL NIL) (-803 1972535 1974109 1974149 "PADICCT" 1974730 NIL PADICCT (NIL NIL) -9 NIL 1975012) (-802 1971492 1971692 1971960 "PADEPAC" 1972322 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-801 1970704 1970837 1971043 "PADE" 1971354 NIL PADE (NIL T T T) -7 NIL NIL) (-800 1968707 1969539 1969854 "OWP" 1970472 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-799 1967811 1968307 1968479 "OVAR" 1968575 NIL OVAR (NIL NIL) -8 NIL NIL) (-798 1967075 1967196 1967357 "OUT" 1967670 T OUT (NIL) -7 NIL NIL) (-797 1956129 1958300 1960470 "OUTFORM" 1964925 T OUTFORM (NIL) -8 NIL NIL) (-796 1955537 1955858 1955947 "OSI" 1956060 T OSI (NIL) -8 NIL NIL) (-795 1954282 1954509 1954794 "ORTHPOL" 1955284 NIL ORTHPOL (NIL T) -7 NIL NIL) (-794 1951653 1953943 1954081 "OREUP" 1954225 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-793 1949049 1951346 1951472 "ORESUP" 1951595 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-792 1946584 1947084 1947644 "OREPCTO" 1948538 NIL OREPCTO (NIL T T) -7 NIL NIL) (-791 1940494 1942700 1942740 "OREPCAT" 1945061 NIL OREPCAT (NIL T) -9 NIL 1946164) (-790 1937642 1938424 1939481 "OREPCAT-" 1939486 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-789 1936820 1937092 1937120 "ORDSET" 1937429 T ORDSET (NIL) -9 NIL 1937593) (-788 1936339 1936461 1936654 "ORDSET-" 1936659 NIL ORDSET- (NIL T) -8 NIL NIL) (-787 1934953 1935754 1935782 "ORDRING" 1935984 T ORDRING (NIL) -9 NIL 1936108) (-786 1934598 1934692 1934836 "ORDRING-" 1934841 NIL ORDRING- (NIL T) -8 NIL NIL) (-785 1933974 1934455 1934483 "ORDMON" 1934488 T ORDMON (NIL) -9 NIL 1934509) (-784 1933136 1933283 1933478 "ORDFUNS" 1933823 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-783 1932648 1933007 1933035 "ORDFIN" 1933040 T ORDFIN (NIL) -9 NIL 1933061) (-782 1929160 1931234 1931643 "ORDCOMP" 1932272 NIL ORDCOMP (NIL T) -8 NIL NIL) (-781 1928426 1928553 1928739 "ORDCOMP2" 1929020 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-780 1924933 1925816 1926653 "OPTPROB" 1927609 T OPTPROB (NIL) -8 NIL NIL) (-779 1921775 1922404 1923098 "OPTPACK" 1924259 T OPTPACK (NIL) -7 NIL NIL) (-778 1919501 1920237 1920265 "OPTCAT" 1921080 T OPTCAT (NIL) -9 NIL 1921726) (-777 1919269 1919308 1919374 "OPQUERY" 1919455 T OPQUERY (NIL) -7 NIL NIL) (-776 1916405 1917596 1918096 "OP" 1918801 NIL OP (NIL T) -8 NIL NIL) (-775 1913170 1915202 1915571 "ONECOMP" 1916069 NIL ONECOMP (NIL T) -8 NIL NIL) (-774 1912475 1912590 1912764 "ONECOMP2" 1913042 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-773 1911894 1912000 1912130 "OMSERVER" 1912365 T OMSERVER (NIL) -7 NIL NIL) (-772 1908783 1911335 1911375 "OMSAGG" 1911436 NIL OMSAGG (NIL T) -9 NIL 1911500) (-771 1907406 1907669 1907951 "OMPKG" 1908521 T OMPKG (NIL) -7 NIL NIL) (-770 1906836 1906939 1906967 "OM" 1907266 T OM (NIL) -9 NIL NIL) (-769 1905375 1906388 1906556 "OMLO" 1906717 NIL OMLO (NIL T T) -8 NIL NIL) (-768 1904305 1904452 1904678 "OMEXPR" 1905201 NIL OMEXPR (NIL T) -7 NIL NIL) (-767 1903623 1903851 1903987 "OMERR" 1904189 T OMERR (NIL) -8 NIL NIL) (-766 1902801 1903044 1903204 "OMERRK" 1903483 T OMERRK (NIL) -8 NIL NIL) (-765 1902279 1902478 1902586 "OMENC" 1902713 T OMENC (NIL) -8 NIL NIL) (-764 1896174 1897359 1898530 "OMDEV" 1901128 T OMDEV (NIL) -8 NIL NIL) (-763 1895243 1895414 1895608 "OMCONN" 1896000 T OMCONN (NIL) -8 NIL NIL) (-762 1893859 1894845 1894873 "OINTDOM" 1894878 T OINTDOM (NIL) -9 NIL 1894899) (-761 1889621 1890851 1891566 "OFMONOID" 1893176 NIL OFMONOID (NIL T) -8 NIL NIL) (-760 1889059 1889558 1889603 "ODVAR" 1889608 NIL ODVAR (NIL T) -8 NIL NIL) (-759 1886184 1888556 1888741 "ODR" 1888934 NIL ODR (NIL T T NIL) -8 NIL NIL) (-758 1878490 1885963 1886087 "ODPOL" 1886092 NIL ODPOL (NIL T) -8 NIL NIL) (-757 1872313 1878362 1878467 "ODP" 1878472 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-756 1871079 1871294 1871569 "ODETOOLS" 1872087 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-755 1868048 1868704 1869420 "ODESYS" 1870412 NIL ODESYS (NIL T T) -7 NIL NIL) (-754 1862952 1863860 1864883 "ODERTRIC" 1867123 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-753 1862378 1862460 1862654 "ODERED" 1862864 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-752 1859280 1859828 1860503 "ODERAT" 1861801 NIL ODERAT (NIL T T) -7 NIL NIL) (-751 1856241 1856705 1857301 "ODEPRRIC" 1858809 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-750 1854110 1854679 1855188 "ODEPROB" 1855752 T ODEPROB (NIL) -8 NIL NIL) (-749 1850635 1851118 1851764 "ODEPRIM" 1853589 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-748 1849888 1849990 1850248 "ODEPAL" 1850527 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-747 1846066 1846847 1847701 "ODEPACK" 1849054 T ODEPACK (NIL) -7 NIL NIL) (-746 1845103 1845210 1845438 "ODEINT" 1845955 NIL ODEINT (NIL T T) -7 NIL NIL) (-745 1839204 1840629 1842076 "ODEIFTBL" 1843676 T ODEIFTBL (NIL) -8 NIL NIL) (-744 1834548 1835334 1836292 "ODEEF" 1838363 NIL ODEEF (NIL T T) -7 NIL NIL) (-743 1833885 1833974 1834203 "ODECONST" 1834453 NIL ODECONST (NIL T T T) -7 NIL NIL) (-742 1832043 1832676 1832704 "ODECAT" 1833307 T ODECAT (NIL) -9 NIL 1833836) (-741 1828915 1831755 1831874 "OCT" 1831956 NIL OCT (NIL T) -8 NIL NIL) (-740 1828553 1828596 1828723 "OCTCT2" 1828866 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-739 1823387 1825825 1825865 "OC" 1826961 NIL OC (NIL T) -9 NIL 1827818) (-738 1820614 1821362 1822352 "OC-" 1822446 NIL OC- (NIL T T) -8 NIL NIL) (-737 1819993 1820435 1820463 "OCAMON" 1820468 T OCAMON (NIL) -9 NIL 1820489) (-736 1819551 1819866 1819894 "OASGP" 1819899 T OASGP (NIL) -9 NIL 1819919) (-735 1818839 1819302 1819330 "OAMONS" 1819370 T OAMONS (NIL) -9 NIL 1819413) (-734 1818280 1818687 1818715 "OAMON" 1818720 T OAMON (NIL) -9 NIL 1818740) (-733 1817585 1818077 1818105 "OAGROUP" 1818110 T OAGROUP (NIL) -9 NIL 1818130) (-732 1817275 1817325 1817413 "NUMTUBE" 1817529 NIL NUMTUBE (NIL T) -7 NIL NIL) (-731 1810848 1812366 1813902 "NUMQUAD" 1815759 T NUMQUAD (NIL) -7 NIL NIL) (-730 1806556 1807544 1808569 "NUMODE" 1809843 T NUMODE (NIL) -7 NIL NIL) (-729 1803960 1804806 1804834 "NUMINT" 1805751 T NUMINT (NIL) -9 NIL 1806507) (-728 1802908 1803105 1803323 "NUMFMT" 1803762 T NUMFMT (NIL) -7 NIL NIL) (-727 1789231 1792168 1794698 "NUMERIC" 1800417 NIL NUMERIC (NIL T) -7 NIL NIL) (-726 1783632 1788684 1788778 "NTSCAT" 1788783 NIL NTSCAT (NIL T T T T) -9 NIL 1788821) (-725 1782826 1782991 1783184 "NTPOLFN" 1783471 NIL NTPOLFN (NIL T) -7 NIL NIL) (-724 1770642 1779668 1780478 "NSUP" 1782048 NIL NSUP (NIL T) -8 NIL NIL) (-723 1770278 1770335 1770442 "NSUP2" 1770579 NIL NSUP2 (NIL T T) -7 NIL NIL) (-722 1760240 1770057 1770187 "NSMP" 1770192 NIL NSMP (NIL T T) -8 NIL NIL) (-721 1758672 1758973 1759330 "NREP" 1759928 NIL NREP (NIL T) -7 NIL NIL) (-720 1757263 1757515 1757873 "NPCOEF" 1758415 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-719 1756329 1756444 1756660 "NORMRETR" 1757144 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-718 1754382 1754672 1755079 "NORMPK" 1756037 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-717 1754067 1754095 1754219 "NORMMA" 1754348 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-716 1753894 1754024 1754053 "NONE" 1754058 T NONE (NIL) -8 NIL NIL) (-715 1753683 1753712 1753781 "NONE1" 1753858 NIL NONE1 (NIL T) -7 NIL NIL) (-714 1753168 1753230 1753415 "NODE1" 1753615 NIL NODE1 (NIL T T) -7 NIL NIL) (-713 1751461 1752331 1752586 "NNI" 1752933 T NNI (NIL) -8 NIL NIL) (-712 1749881 1750194 1750558 "NLINSOL" 1751129 NIL NLINSOL (NIL T) -7 NIL NIL) (-711 1746048 1747016 1747938 "NIPROB" 1748979 T NIPROB (NIL) -8 NIL NIL) (-710 1744777 1745011 1745313 "NFINTBAS" 1745810 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-709 1743485 1743716 1743997 "NCODIV" 1744545 NIL NCODIV (NIL T T) -7 NIL NIL) (-708 1743247 1743284 1743359 "NCNTFRAC" 1743442 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-707 1741427 1741791 1742211 "NCEP" 1742872 NIL NCEP (NIL T) -7 NIL NIL) (-706 1740339 1741078 1741106 "NASRING" 1741216 T NASRING (NIL) -9 NIL 1741290) (-705 1740134 1740178 1740272 "NASRING-" 1740277 NIL NASRING- (NIL T) -8 NIL NIL) (-704 1739288 1739787 1739815 "NARNG" 1739932 T NARNG (NIL) -9 NIL 1740023) (-703 1738980 1739047 1739181 "NARNG-" 1739186 NIL NARNG- (NIL T) -8 NIL NIL) (-702 1737859 1738066 1738301 "NAGSP" 1738765 T NAGSP (NIL) -7 NIL NIL) (-701 1729283 1730929 1732564 "NAGS" 1736244 T NAGS (NIL) -7 NIL NIL) (-700 1727847 1728151 1728478 "NAGF07" 1728976 T NAGF07 (NIL) -7 NIL NIL) (-699 1722429 1723709 1725005 "NAGF04" 1726571 T NAGF04 (NIL) -7 NIL NIL) (-698 1715461 1717059 1718676 "NAGF02" 1720832 T NAGF02 (NIL) -7 NIL NIL) (-697 1710725 1711815 1712922 "NAGF01" 1714374 T NAGF01 (NIL) -7 NIL NIL) (-696 1704385 1705943 1707520 "NAGE04" 1709168 T NAGE04 (NIL) -7 NIL NIL) (-695 1695626 1697729 1699841 "NAGE02" 1702293 T NAGE02 (NIL) -7 NIL NIL) (-694 1691619 1692556 1693510 "NAGE01" 1694692 T NAGE01 (NIL) -7 NIL NIL) (-693 1689426 1689957 1690512 "NAGD03" 1691084 T NAGD03 (NIL) -7 NIL NIL) (-692 1681212 1683131 1685076 "NAGD02" 1687501 T NAGD02 (NIL) -7 NIL NIL) (-691 1675071 1676484 1677912 "NAGD01" 1679804 T NAGD01 (NIL) -7 NIL NIL) (-690 1671328 1672138 1672963 "NAGC06" 1674266 T NAGC06 (NIL) -7 NIL NIL) (-689 1669805 1670134 1670487 "NAGC05" 1670995 T NAGC05 (NIL) -7 NIL NIL) (-688 1669189 1669306 1669448 "NAGC02" 1669683 T NAGC02 (NIL) -7 NIL NIL) (-687 1668251 1668808 1668848 "NAALG" 1668927 NIL NAALG (NIL T) -9 NIL 1668988) (-686 1668086 1668115 1668205 "NAALG-" 1668210 NIL NAALG- (NIL T T) -8 NIL NIL) (-685 1662036 1663144 1664331 "MULTSQFR" 1666982 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-684 1661355 1661430 1661614 "MULTFACT" 1661948 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-683 1654549 1658460 1658512 "MTSCAT" 1659572 NIL MTSCAT (NIL T T) -9 NIL 1660086) (-682 1654261 1654315 1654407 "MTHING" 1654489 NIL MTHING (NIL T) -7 NIL NIL) (-681 1654053 1654086 1654146 "MSYSCMD" 1654221 T MSYSCMD (NIL) -7 NIL NIL) (-680 1650165 1652808 1653128 "MSET" 1653766 NIL MSET (NIL T) -8 NIL NIL) (-679 1647261 1649727 1649768 "MSETAGG" 1649773 NIL MSETAGG (NIL T) -9 NIL 1649807) (-678 1643117 1644659 1645400 "MRING" 1646564 NIL MRING (NIL T T) -8 NIL NIL) (-677 1642687 1642754 1642883 "MRF2" 1643044 NIL MRF2 (NIL T T T) -7 NIL NIL) (-676 1642305 1642340 1642484 "MRATFAC" 1642646 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-675 1639903 1640198 1640629 "MPRFF" 1642010 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-674 1633923 1639758 1639854 "MPOLY" 1639859 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-673 1633413 1633448 1633656 "MPCPF" 1633882 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-672 1632929 1632972 1633155 "MPC3" 1633364 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-671 1632130 1632211 1632430 "MPC2" 1632844 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-670 1630431 1630768 1631158 "MONOTOOL" 1631790 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-669 1629556 1629891 1629919 "MONOID" 1630196 T MONOID (NIL) -9 NIL 1630368) (-668 1628934 1629097 1629340 "MONOID-" 1629345 NIL MONOID- (NIL T) -8 NIL NIL) (-667 1619915 1625901 1625960 "MONOGEN" 1626634 NIL MONOGEN (NIL T T) -9 NIL 1627090) (-666 1617133 1617868 1618868 "MONOGEN-" 1618987 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-665 1615993 1616413 1616441 "MONADWU" 1616833 T MONADWU (NIL) -9 NIL 1617071) (-664 1615365 1615524 1615772 "MONADWU-" 1615777 NIL MONADWU- (NIL T) -8 NIL NIL) (-663 1614751 1614969 1614997 "MONAD" 1615204 T MONAD (NIL) -9 NIL 1615316) (-662 1614436 1614514 1614646 "MONAD-" 1614651 NIL MONAD- (NIL T) -8 NIL NIL) (-661 1612687 1613349 1613628 "MOEBIUS" 1614189 NIL MOEBIUS (NIL T) -8 NIL NIL) (-660 1612081 1612459 1612499 "MODULE" 1612504 NIL MODULE (NIL T) -9 NIL 1612530) (-659 1611649 1611745 1611935 "MODULE-" 1611940 NIL MODULE- (NIL T T) -8 NIL NIL) (-658 1609320 1610015 1610341 "MODRING" 1611474 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-657 1606276 1607441 1607958 "MODOP" 1608852 NIL MODOP (NIL T T) -8 NIL NIL) (-656 1604335 1604787 1605128 "MODMONOM" 1606075 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-655 1594014 1602539 1602961 "MODMON" 1603963 NIL MODMON (NIL T T) -8 NIL NIL) (-654 1591140 1592858 1593134 "MODFIELD" 1593889 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-653 1590144 1590421 1590611 "MMLFORM" 1590970 T MMLFORM (NIL) -8 NIL NIL) (-652 1589670 1589713 1589892 "MMAP" 1590095 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-651 1587907 1588684 1588724 "MLO" 1589141 NIL MLO (NIL T) -9 NIL 1589382) (-650 1585274 1585789 1586391 "MLIFT" 1587388 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-649 1584665 1584749 1584903 "MKUCFUNC" 1585185 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-648 1584264 1584334 1584457 "MKRECORD" 1584588 NIL MKRECORD (NIL T T) -7 NIL NIL) (-647 1583312 1583473 1583701 "MKFUNC" 1584075 NIL MKFUNC (NIL T) -7 NIL NIL) (-646 1582700 1582804 1582960 "MKFLCFN" 1583195 NIL MKFLCFN (NIL T) -7 NIL NIL) (-645 1582126 1582493 1582582 "MKCHSET" 1582644 NIL MKCHSET (NIL T) -8 NIL NIL) (-644 1581403 1581505 1581690 "MKBCFUNC" 1582019 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-643 1578087 1580957 1581093 "MINT" 1581287 T MINT (NIL) -8 NIL NIL) (-642 1576899 1577142 1577419 "MHROWRED" 1577842 NIL MHROWRED (NIL T) -7 NIL NIL) (-641 1572170 1575344 1575768 "MFLOAT" 1576495 T MFLOAT (NIL) -8 NIL NIL) (-640 1571527 1571603 1571774 "MFINFACT" 1572082 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-639 1567842 1568690 1569574 "MESH" 1570663 T MESH (NIL) -7 NIL NIL) (-638 1566204 1566516 1566869 "MDDFACT" 1567529 NIL MDDFACT (NIL T) -7 NIL NIL) (-637 1563047 1565364 1565405 "MDAGG" 1565660 NIL MDAGG (NIL T) -9 NIL 1565803) (-636 1552745 1562340 1562547 "MCMPLX" 1562860 T MCMPLX (NIL) -8 NIL NIL) (-635 1551886 1552032 1552232 "MCDEN" 1552594 NIL MCDEN (NIL T T) -7 NIL NIL) (-634 1549776 1550046 1550426 "MCALCFN" 1551616 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-633 1547398 1547921 1548482 "MATSTOR" 1549247 NIL MATSTOR (NIL T) -7 NIL NIL) (-632 1543407 1546773 1547020 "MATRIX" 1547183 NIL MATRIX (NIL T) -8 NIL NIL) (-631 1539176 1539880 1540616 "MATLIN" 1542764 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-630 1529374 1532512 1532588 "MATCAT" 1537426 NIL MATCAT (NIL T T T) -9 NIL 1538843) (-629 1525739 1526752 1528107 "MATCAT-" 1528112 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-628 1524341 1524494 1524825 "MATCAT2" 1525574 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-627 1522453 1522777 1523161 "MAPPKG3" 1524016 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-626 1521434 1521607 1521829 "MAPPKG2" 1522277 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-625 1519933 1520217 1520544 "MAPPKG1" 1521140 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-624 1519544 1519602 1519725 "MAPHACK3" 1519869 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-623 1519136 1519197 1519311 "MAPHACK2" 1519476 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-622 1518574 1518677 1518819 "MAPHACK1" 1519027 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-621 1516682 1517276 1517579 "MAGMA" 1518303 NIL MAGMA (NIL T) -8 NIL NIL) (-620 1513156 1514926 1515386 "M3D" 1516255 NIL M3D (NIL T) -8 NIL NIL) (-619 1507312 1511527 1511568 "LZSTAGG" 1512350 NIL LZSTAGG (NIL T) -9 NIL 1512645) (-618 1503285 1504443 1505900 "LZSTAGG-" 1505905 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-617 1500401 1501178 1501664 "LWORD" 1502831 NIL LWORD (NIL T) -8 NIL NIL) (-616 1493561 1500172 1500306 "LSQM" 1500311 NIL LSQM (NIL NIL T) -8 NIL NIL) (-615 1492785 1492924 1493152 "LSPP" 1493416 NIL LSPP (NIL T T T T) -7 NIL NIL) (-614 1490597 1490898 1491354 "LSMP" 1492474 NIL LSMP (NIL T T T T) -7 NIL NIL) (-613 1487376 1488050 1488780 "LSMP1" 1489899 NIL LSMP1 (NIL T) -7 NIL NIL) (-612 1481303 1486545 1486586 "LSAGG" 1486648 NIL LSAGG (NIL T) -9 NIL 1486726) (-611 1477998 1478922 1480135 "LSAGG-" 1480140 NIL LSAGG- (NIL T T) -8 NIL NIL) (-610 1475624 1477142 1477391 "LPOLY" 1477793 NIL LPOLY (NIL T T) -8 NIL NIL) (-609 1475206 1475291 1475414 "LPEFRAC" 1475533 NIL LPEFRAC (NIL T) -7 NIL NIL) (-608 1473553 1474300 1474553 "LO" 1475038 NIL LO (NIL T T T) -8 NIL NIL) (-607 1473207 1473319 1473347 "LOGIC" 1473458 T LOGIC (NIL) -9 NIL 1473538) (-606 1473069 1473092 1473163 "LOGIC-" 1473168 NIL LOGIC- (NIL T) -8 NIL NIL) (-605 1472262 1472402 1472595 "LODOOPS" 1472925 NIL LODOOPS (NIL T T) -7 NIL NIL) (-604 1469680 1472179 1472244 "LODO" 1472249 NIL LODO (NIL T NIL) -8 NIL NIL) (-603 1468226 1468461 1468812 "LODOF" 1469427 NIL LODOF (NIL T T) -7 NIL NIL) (-602 1464646 1467082 1467122 "LODOCAT" 1467554 NIL LODOCAT (NIL T) -9 NIL 1467765) (-601 1464380 1464438 1464564 "LODOCAT-" 1464569 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-600 1461694 1464221 1464339 "LODO2" 1464344 NIL LODO2 (NIL T T) -8 NIL NIL) (-599 1459123 1461631 1461676 "LODO1" 1461681 NIL LODO1 (NIL T) -8 NIL NIL) (-598 1457986 1458151 1458462 "LODEEF" 1458946 NIL LODEEF (NIL T T T) -7 NIL NIL) (-597 1453273 1456117 1456158 "LNAGG" 1457105 NIL LNAGG (NIL T) -9 NIL 1457549) (-596 1452420 1452634 1452976 "LNAGG-" 1452981 NIL LNAGG- (NIL T T) -8 NIL NIL) (-595 1448585 1449347 1449985 "LMOPS" 1451836 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-594 1447983 1448345 1448385 "LMODULE" 1448445 NIL LMODULE (NIL T) -9 NIL 1448487) (-593 1445229 1447628 1447751 "LMDICT" 1447893 NIL LMDICT (NIL T) -8 NIL NIL) (-592 1438456 1444175 1444473 "LIST" 1444964 NIL LIST (NIL T) -8 NIL NIL) (-591 1437981 1438055 1438194 "LIST3" 1438376 NIL LIST3 (NIL T T T) -7 NIL NIL) (-590 1436988 1437166 1437394 "LIST2" 1437799 NIL LIST2 (NIL T T) -7 NIL NIL) (-589 1435122 1435434 1435833 "LIST2MAP" 1436635 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-588 1433835 1434515 1434555 "LINEXP" 1434808 NIL LINEXP (NIL T) -9 NIL 1434956) (-587 1432482 1432742 1433039 "LINDEP" 1433587 NIL LINDEP (NIL T T) -7 NIL NIL) (-586 1429179 1429898 1430675 "LIMITRF" 1431737 NIL LIMITRF (NIL T) -7 NIL NIL) (-585 1427459 1427754 1428169 "LIMITPS" 1428874 NIL LIMITPS (NIL T T) -7 NIL NIL) (-584 1421914 1426970 1427198 "LIE" 1427280 NIL LIE (NIL T T) -8 NIL NIL) (-583 1420965 1421408 1421448 "LIECAT" 1421588 NIL LIECAT (NIL T) -9 NIL 1421739) (-582 1420806 1420833 1420921 "LIECAT-" 1420926 NIL LIECAT- (NIL T T) -8 NIL NIL) (-581 1413418 1420255 1420420 "LIB" 1420661 T LIB (NIL) -8 NIL NIL) (-580 1409055 1409936 1410871 "LGROBP" 1412535 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-579 1406921 1407195 1407557 "LF" 1408776 NIL LF (NIL T T) -7 NIL NIL) (-578 1405761 1406453 1406481 "LFCAT" 1406688 T LFCAT (NIL) -9 NIL 1406827) (-577 1402673 1403299 1403985 "LEXTRIPK" 1405127 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-576 1399379 1400243 1400746 "LEXP" 1402253 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-575 1397777 1398090 1398491 "LEADCDET" 1399061 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-574 1396973 1397047 1397274 "LAZM3PK" 1397698 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-573 1391890 1395052 1395589 "LAUPOL" 1396486 NIL LAUPOL (NIL T T) -8 NIL NIL) (-572 1391457 1391501 1391668 "LAPLACE" 1391840 NIL LAPLACE (NIL T T) -7 NIL NIL) (-571 1389385 1390558 1390809 "LA" 1391290 NIL LA (NIL T T T) -8 NIL NIL) (-570 1388448 1389042 1389082 "LALG" 1389143 NIL LALG (NIL T) -9 NIL 1389201) (-569 1388163 1388222 1388357 "LALG-" 1388362 NIL LALG- (NIL T T) -8 NIL NIL) (-568 1387073 1387260 1387557 "KOVACIC" 1387963 NIL KOVACIC (NIL T T) -7 NIL NIL) (-567 1386908 1386932 1386973 "KONVERT" 1387035 NIL KONVERT (NIL T) -9 NIL NIL) (-566 1386743 1386767 1386808 "KOERCE" 1386870 NIL KOERCE (NIL T) -9 NIL NIL) (-565 1384477 1385237 1385630 "KERNEL" 1386382 NIL KERNEL (NIL T) -8 NIL NIL) (-564 1383979 1384060 1384190 "KERNEL2" 1384391 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-563 1377831 1382519 1382573 "KDAGG" 1382950 NIL KDAGG (NIL T T) -9 NIL 1383156) (-562 1377360 1377484 1377689 "KDAGG-" 1377694 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-561 1370535 1377021 1377176 "KAFILE" 1377238 NIL KAFILE (NIL T) -8 NIL NIL) (-560 1364990 1370046 1370274 "JORDAN" 1370356 NIL JORDAN (NIL T T) -8 NIL NIL) (-559 1364719 1364778 1364865 "JAVACODE" 1364923 T JAVACODE (NIL) -8 NIL NIL) (-558 1361019 1362925 1362979 "IXAGG" 1363908 NIL IXAGG (NIL T T) -9 NIL 1364367) (-557 1359938 1360244 1360663 "IXAGG-" 1360668 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-556 1355523 1359860 1359919 "IVECTOR" 1359924 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-555 1354289 1354526 1354792 "ITUPLE" 1355290 NIL ITUPLE (NIL T) -8 NIL NIL) (-554 1352725 1352902 1353208 "ITRIGMNP" 1354111 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-553 1351470 1351674 1351957 "ITFUN3" 1352501 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-552 1351102 1351159 1351268 "ITFUN2" 1351407 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-551 1348904 1349975 1350272 "ITAYLOR" 1350837 NIL ITAYLOR (NIL T) -8 NIL NIL) (-550 1337881 1343079 1344238 "ISUPS" 1347777 NIL ISUPS (NIL T) -8 NIL NIL) (-549 1336985 1337125 1337361 "ISUMP" 1337728 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-548 1332245 1336782 1336861 "ISTRING" 1336938 NIL ISTRING (NIL NIL) -8 NIL NIL) (-547 1331458 1331539 1331754 "IRURPK" 1332159 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-546 1330394 1330595 1330835 "IRSN" 1331238 T IRSN (NIL) -7 NIL NIL) (-545 1328429 1328784 1329219 "IRRF2F" 1330032 NIL IRRF2F (NIL T) -7 NIL NIL) (-544 1328176 1328214 1328290 "IRREDFFX" 1328385 NIL IRREDFFX (NIL T) -7 NIL NIL) (-543 1326791 1327050 1327349 "IROOT" 1327909 NIL IROOT (NIL T) -7 NIL NIL) (-542 1323419 1324470 1325160 "IR" 1326133 NIL IR (NIL T) -8 NIL NIL) (-541 1321032 1321527 1322093 "IR2" 1322897 NIL IR2 (NIL T T) -7 NIL NIL) (-540 1320108 1320221 1320441 "IR2F" 1320915 NIL IR2F (NIL T T) -7 NIL NIL) (-539 1319899 1319933 1319993 "IPRNTPK" 1320068 T IPRNTPK (NIL) -7 NIL NIL) (-538 1316453 1319788 1319857 "IPF" 1319862 NIL IPF (NIL NIL) -8 NIL NIL) (-537 1314770 1316378 1316435 "IPADIC" 1316440 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-536 1314269 1314327 1314516 "INVLAPLA" 1314706 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-535 1303855 1306208 1308594 "INTTR" 1311933 NIL INTTR (NIL T T) -7 NIL NIL) (-534 1300198 1300939 1301802 "INTTOOLS" 1303041 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-533 1299784 1299875 1299992 "INTSLPE" 1300101 T INTSLPE (NIL) -7 NIL NIL) (-532 1297734 1299707 1299766 "INTRVL" 1299771 NIL INTRVL (NIL T) -8 NIL NIL) (-531 1295299 1295811 1296385 "INTRF" 1297219 NIL INTRF (NIL T) -7 NIL NIL) (-530 1294706 1294803 1294944 "INTRET" 1295197 NIL INTRET (NIL T) -7 NIL NIL) (-529 1292687 1293076 1293545 "INTRAT" 1294314 NIL INTRAT (NIL T T) -7 NIL NIL) (-528 1289920 1290503 1291128 "INTPM" 1292172 NIL INTPM (NIL T T) -7 NIL NIL) (-527 1286629 1287228 1287972 "INTPAF" 1289306 NIL INTPAF (NIL T T T) -7 NIL NIL) (-526 1281872 1282818 1283853 "INTPACK" 1285614 T INTPACK (NIL) -7 NIL NIL) (-525 1278726 1281601 1281728 "INT" 1281765 T INT (NIL) -8 NIL NIL) (-524 1277978 1278130 1278338 "INTHERTR" 1278568 NIL INTHERTR (NIL T T) -7 NIL NIL) (-523 1277417 1277497 1277685 "INTHERAL" 1277892 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-522 1275263 1275706 1276163 "INTHEORY" 1276980 T INTHEORY (NIL) -7 NIL NIL) (-521 1266585 1268206 1269984 "INTG0" 1273615 NIL INTG0 (NIL T T T) -7 NIL NIL) (-520 1247158 1251948 1256758 "INTFTBL" 1261795 T INTFTBL (NIL) -8 NIL NIL) (-519 1246407 1246545 1246718 "INTFACT" 1247017 NIL INTFACT (NIL T) -7 NIL NIL) (-518 1243798 1244244 1244807 "INTEF" 1245961 NIL INTEF (NIL T T) -7 NIL NIL) (-517 1242260 1243009 1243037 "INTDOM" 1243338 T INTDOM (NIL) -9 NIL 1243545) (-516 1241629 1241803 1242045 "INTDOM-" 1242050 NIL INTDOM- (NIL T) -8 NIL NIL) (-515 1238122 1240054 1240108 "INTCAT" 1240907 NIL INTCAT (NIL T) -9 NIL 1241226) (-514 1237595 1237697 1237825 "INTBIT" 1238014 T INTBIT (NIL) -7 NIL NIL) (-513 1236270 1236424 1236737 "INTALG" 1237440 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-512 1235727 1235817 1235987 "INTAF" 1236174 NIL INTAF (NIL T T) -7 NIL NIL) (-511 1229181 1235537 1235677 "INTABL" 1235682 NIL INTABL (NIL T T T) -8 NIL NIL) (-510 1224132 1226861 1226889 "INS" 1227857 T INS (NIL) -9 NIL 1228538) (-509 1221372 1222143 1223117 "INS-" 1223190 NIL INS- (NIL T) -8 NIL NIL) (-508 1220151 1220378 1220675 "INPSIGN" 1221125 NIL INPSIGN (NIL T T) -7 NIL NIL) (-507 1219265 1219382 1219579 "INPRODPF" 1220031 NIL INPRODPF (NIL T T) -7 NIL NIL) (-506 1218155 1218272 1218509 "INPRODFF" 1219145 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-505 1217155 1217307 1217567 "INNMFACT" 1217991 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-504 1216352 1216449 1216637 "INMODGCD" 1217054 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-503 1214861 1215105 1215429 "INFSP" 1216097 NIL INFSP (NIL T T T) -7 NIL NIL) (-502 1214045 1214162 1214345 "INFPROD0" 1214741 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-501 1211056 1212214 1212705 "INFORM" 1213562 T INFORM (NIL) -8 NIL NIL) (-500 1210666 1210726 1210824 "INFORM1" 1210991 NIL INFORM1 (NIL T) -7 NIL NIL) (-499 1210189 1210278 1210392 "INFINITY" 1210572 T INFINITY (NIL) -7 NIL NIL) (-498 1208806 1209055 1209376 "INEP" 1209937 NIL INEP (NIL T T T) -7 NIL NIL) (-497 1208082 1208703 1208768 "INDE" 1208773 NIL INDE (NIL T) -8 NIL NIL) (-496 1207646 1207714 1207831 "INCRMAPS" 1208009 NIL INCRMAPS (NIL T) -7 NIL NIL) (-495 1202957 1203882 1204826 "INBFF" 1206734 NIL INBFF (NIL T) -7 NIL NIL) (-494 1199452 1202802 1202905 "IMATRIX" 1202910 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-493 1198164 1198287 1198602 "IMATQF" 1199308 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-492 1196384 1196611 1196948 "IMATLIN" 1197920 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-491 1191010 1196308 1196366 "ILIST" 1196371 NIL ILIST (NIL T NIL) -8 NIL NIL) (-490 1188963 1190870 1190983 "IIARRAY2" 1190988 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-489 1184331 1188874 1188938 "IFF" 1188943 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-488 1179370 1183619 1183807 "IFARRAY" 1184188 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-487 1178577 1179274 1179347 "IFAMON" 1179352 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-486 1178161 1178226 1178280 "IEVALAB" 1178487 NIL IEVALAB (NIL T T) -9 NIL NIL) (-485 1177836 1177904 1178064 "IEVALAB-" 1178069 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-484 1177494 1177750 1177813 "IDPO" 1177818 NIL IDPO (NIL T T) -8 NIL NIL) (-483 1176771 1177383 1177458 "IDPOAMS" 1177463 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-482 1176105 1176660 1176735 "IDPOAM" 1176740 NIL IDPOAM (NIL T T) -8 NIL NIL) (-481 1175191 1175441 1175494 "IDPC" 1175907 NIL IDPC (NIL T T) -9 NIL 1176056) (-480 1174687 1175083 1175156 "IDPAM" 1175161 NIL IDPAM (NIL T T) -8 NIL NIL) (-479 1174090 1174579 1174652 "IDPAG" 1174657 NIL IDPAG (NIL T T) -8 NIL NIL) (-478 1170345 1171193 1172088 "IDECOMP" 1173247 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-477 1163218 1164268 1165315 "IDEAL" 1169381 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-476 1162382 1162494 1162693 "ICDEN" 1163102 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-475 1161481 1161862 1162009 "ICARD" 1162255 T ICARD (NIL) -8 NIL NIL) (-474 1159553 1159866 1160269 "IBPTOOLS" 1161158 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-473 1155167 1159173 1159286 "IBITS" 1159472 NIL IBITS (NIL NIL) -8 NIL NIL) (-472 1151890 1152466 1153161 "IBATOOL" 1154584 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-471 1149670 1150131 1150664 "IBACHIN" 1151425 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-470 1147547 1149516 1149619 "IARRAY2" 1149624 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-469 1143700 1147473 1147530 "IARRAY1" 1147535 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-468 1137638 1142118 1142596 "IAN" 1143242 T IAN (NIL) -8 NIL NIL) (-467 1137149 1137206 1137379 "IALGFACT" 1137575 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-466 1136677 1136790 1136818 "HYPCAT" 1137025 T HYPCAT (NIL) -9 NIL NIL) (-465 1136215 1136332 1136518 "HYPCAT-" 1136523 NIL HYPCAT- (NIL T) -8 NIL NIL) (-464 1132895 1134226 1134267 "HOAGG" 1135248 NIL HOAGG (NIL T) -9 NIL 1135927) (-463 1131489 1131888 1132414 "HOAGG-" 1132419 NIL HOAGG- (NIL T T) -8 NIL NIL) (-462 1125319 1130930 1131096 "HEXADEC" 1131343 T HEXADEC (NIL) -8 NIL NIL) (-461 1124063 1124285 1124548 "HEUGCD" 1125096 NIL HEUGCD (NIL T) -7 NIL NIL) (-460 1123166 1123900 1124030 "HELLFDIV" 1124035 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-459 1121394 1122943 1123031 "HEAP" 1123110 NIL HEAP (NIL T) -8 NIL NIL) (-458 1115261 1121309 1121371 "HDP" 1121376 NIL HDP (NIL NIL T) -8 NIL NIL) (-457 1108973 1114898 1115049 "HDMP" 1115162 NIL HDMP (NIL NIL T) -8 NIL NIL) (-456 1108298 1108437 1108601 "HB" 1108829 T HB (NIL) -7 NIL NIL) (-455 1101795 1108144 1108248 "HASHTBL" 1108253 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-454 1099548 1101423 1101602 "HACKPI" 1101636 T HACKPI (NIL) -8 NIL NIL) (-453 1095244 1099402 1099514 "GTSET" 1099519 NIL GTSET (NIL T T T T) -8 NIL NIL) (-452 1088770 1095122 1095220 "GSTBL" 1095225 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-451 1081003 1087806 1088070 "GSERIES" 1088561 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-450 1080026 1080479 1080507 "GROUP" 1080768 T GROUP (NIL) -9 NIL 1080927) (-449 1079142 1079365 1079709 "GROUP-" 1079714 NIL GROUP- (NIL T) -8 NIL NIL) (-448 1077511 1077830 1078217 "GROEBSOL" 1078819 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-447 1076452 1076714 1076765 "GRMOD" 1077294 NIL GRMOD (NIL T T) -9 NIL 1077462) (-446 1076220 1076256 1076384 "GRMOD-" 1076389 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-445 1071546 1072574 1073574 "GRIMAGE" 1075240 T GRIMAGE (NIL) -8 NIL NIL) (-444 1070013 1070273 1070597 "GRDEF" 1071242 T GRDEF (NIL) -7 NIL NIL) (-443 1069457 1069573 1069714 "GRAY" 1069892 T GRAY (NIL) -7 NIL NIL) (-442 1068691 1069071 1069122 "GRALG" 1069275 NIL GRALG (NIL T T) -9 NIL 1069367) (-441 1068352 1068425 1068588 "GRALG-" 1068593 NIL GRALG- (NIL T T T) -8 NIL NIL) (-440 1065160 1067941 1068117 "GPOLSET" 1068259 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-439 1064516 1064573 1064830 "GOSPER" 1065097 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-438 1060275 1060954 1061480 "GMODPOL" 1064215 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-437 1059280 1059464 1059702 "GHENSEL" 1060087 NIL GHENSEL (NIL T T) -7 NIL NIL) (-436 1053346 1054189 1055215 "GENUPS" 1058364 NIL GENUPS (NIL T T) -7 NIL NIL) (-435 1053043 1053094 1053183 "GENUFACT" 1053289 NIL GENUFACT (NIL T) -7 NIL NIL) (-434 1052455 1052532 1052697 "GENPGCD" 1052961 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-433 1051929 1051964 1052177 "GENMFACT" 1052414 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-432 1050497 1050752 1051059 "GENEEZ" 1051672 NIL GENEEZ (NIL T T) -7 NIL NIL) (-431 1044371 1050110 1050271 "GDMP" 1050420 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-430 1033738 1038132 1039238 "GCNAALG" 1043354 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-429 1032160 1033032 1033060 "GCDDOM" 1033315 T GCDDOM (NIL) -9 NIL 1033472) (-428 1031630 1031757 1031972 "GCDDOM-" 1031977 NIL GCDDOM- (NIL T) -8 NIL NIL) (-427 1030302 1030487 1030791 "GB" 1031409 NIL GB (NIL T T T T) -7 NIL NIL) (-426 1018922 1021248 1023640 "GBINTERN" 1027993 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-425 1016759 1017051 1017472 "GBF" 1018597 NIL GBF (NIL T T T T) -7 NIL NIL) (-424 1015540 1015705 1015972 "GBEUCLID" 1016575 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-423 1014889 1015014 1015163 "GAUSSFAC" 1015411 T GAUSSFAC (NIL) -7 NIL NIL) (-422 1013266 1013568 1013881 "GALUTIL" 1014608 NIL GALUTIL (NIL T) -7 NIL NIL) (-421 1011583 1011857 1012180 "GALPOLYU" 1012993 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-420 1008972 1009262 1009667 "GALFACTU" 1011280 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-419 1000778 1002277 1003885 "GALFACT" 1007404 NIL GALFACT (NIL T) -7 NIL NIL) (-418 998166 998824 998852 "FVFUN" 1000008 T FVFUN (NIL) -9 NIL 1000728) (-417 997432 997614 997642 "FVC" 997933 T FVC (NIL) -9 NIL 998116) (-416 997069 997224 997305 "FUNCTION" 997384 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-415 994739 995290 995779 "FT" 996600 T FT (NIL) -8 NIL NIL) (-414 993557 994040 994243 "FTEM" 994556 T FTEM (NIL) -8 NIL NIL) (-413 991822 992110 992512 "FSUPFACT" 993249 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-412 990219 990508 990840 "FST" 991510 T FST (NIL) -8 NIL NIL) (-411 989394 989500 989694 "FSRED" 990101 NIL FSRED (NIL T T) -7 NIL NIL) (-410 988073 988328 988682 "FSPRMELT" 989109 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-409 985158 985596 986095 "FSPECF" 987636 NIL FSPECF (NIL T T) -7 NIL NIL) (-408 967532 976089 976129 "FS" 979967 NIL FS (NIL T) -9 NIL 982249) (-407 956182 959172 963228 "FS-" 963525 NIL FS- (NIL T T) -8 NIL NIL) (-406 955698 955752 955928 "FSINT" 956123 NIL FSINT (NIL T T) -7 NIL NIL) (-405 953979 954691 954994 "FSERIES" 955477 NIL FSERIES (NIL T T) -8 NIL NIL) (-404 952997 953113 953343 "FSCINT" 953859 NIL FSCINT (NIL T T) -7 NIL NIL) (-403 949232 951942 951983 "FSAGG" 952353 NIL FSAGG (NIL T) -9 NIL 952612) (-402 946994 947595 948391 "FSAGG-" 948486 NIL FSAGG- (NIL T T) -8 NIL NIL) (-401 946036 946179 946406 "FSAGG2" 946847 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-400 943695 943974 944527 "FS2UPS" 945754 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-399 943281 943324 943477 "FS2" 943646 NIL FS2 (NIL T T T T) -7 NIL NIL) (-398 942141 942312 942620 "FS2EXPXP" 943106 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-397 941567 941682 941834 "FRUTIL" 942021 NIL FRUTIL (NIL T) -7 NIL NIL) (-396 932987 937066 938422 "FR" 940243 NIL FR (NIL T) -8 NIL NIL) (-395 928064 930707 930747 "FRNAALG" 932143 NIL FRNAALG (NIL T) -9 NIL 932750) (-394 923742 924813 926088 "FRNAALG-" 926838 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-393 923380 923423 923550 "FRNAAF2" 923693 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-392 921729 922221 922515 "FRMOD" 923193 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-391 919451 920120 920436 "FRIDEAL" 921520 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-390 918650 918737 919024 "FRIDEAL2" 919358 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-389 917908 918316 918357 "FRETRCT" 918362 NIL FRETRCT (NIL T) -9 NIL 918533) (-388 917020 917251 917602 "FRETRCT-" 917607 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-387 914230 915450 915509 "FRAMALG" 916391 NIL FRAMALG (NIL T T) -9 NIL 916683) (-386 912363 912819 913449 "FRAMALG-" 913672 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-385 906265 911838 912114 "FRAC" 912119 NIL FRAC (NIL T) -8 NIL NIL) (-384 905901 905958 906065 "FRAC2" 906202 NIL FRAC2 (NIL T T) -7 NIL NIL) (-383 905537 905594 905701 "FR2" 905838 NIL FR2 (NIL T T) -7 NIL NIL) (-382 900211 903124 903152 "FPS" 904271 T FPS (NIL) -9 NIL 904827) (-381 899660 899769 899933 "FPS-" 900079 NIL FPS- (NIL T) -8 NIL NIL) (-380 897109 898806 898834 "FPC" 899059 T FPC (NIL) -9 NIL 899201) (-379 896902 896942 897039 "FPC-" 897044 NIL FPC- (NIL T) -8 NIL NIL) (-378 895781 896391 896432 "FPATMAB" 896437 NIL FPATMAB (NIL T) -9 NIL 896589) (-377 893481 893957 894383 "FPARFRAC" 895418 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-376 888874 889373 890055 "FORTRAN" 892913 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-375 886546 887046 887585 "FORT" 888355 T FORT (NIL) -7 NIL NIL) (-374 884222 884784 884812 "FORTFN" 885872 T FORTFN (NIL) -9 NIL 886496) (-373 883986 884036 884064 "FORTCAT" 884123 T FORTCAT (NIL) -9 NIL 884185) (-372 882046 882529 882928 "FORMULA" 883607 T FORMULA (NIL) -8 NIL NIL) (-371 881834 881864 881933 "FORMULA1" 882010 NIL FORMULA1 (NIL T) -7 NIL NIL) (-370 881357 881409 881582 "FORDER" 881776 NIL FORDER (NIL T T T T) -7 NIL NIL) (-369 880453 880617 880810 "FOP" 881184 T FOP (NIL) -7 NIL NIL) (-368 879045 879717 879891 "FNLA" 880335 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-367 877714 878103 878131 "FNCAT" 878703 T FNCAT (NIL) -9 NIL 878996) (-366 877280 877673 877701 "FNAME" 877706 T FNAME (NIL) -8 NIL NIL) (-365 875940 876913 876941 "FMTC" 876946 T FMTC (NIL) -9 NIL 876981) (-364 872258 873465 874093 "FMONOID" 875345 NIL FMONOID (NIL T) -8 NIL NIL) (-363 871478 872001 872149 "FM" 872154 NIL FM (NIL T T) -8 NIL NIL) (-362 868902 869548 869576 "FMFUN" 870720 T FMFUN (NIL) -9 NIL 871428) (-361 868171 868352 868380 "FMC" 868670 T FMC (NIL) -9 NIL 868852) (-360 865401 866235 866288 "FMCAT" 867470 NIL FMCAT (NIL T T) -9 NIL 867964) (-359 864296 865169 865268 "FM1" 865346 NIL FM1 (NIL T T) -8 NIL NIL) (-358 862070 862486 862980 "FLOATRP" 863847 NIL FLOATRP (NIL T) -7 NIL NIL) (-357 855556 859726 860356 "FLOAT" 861460 T FLOAT (NIL) -8 NIL NIL) (-356 852994 853494 854072 "FLOATCP" 855023 NIL FLOATCP (NIL T) -7 NIL NIL) (-355 851783 852631 852671 "FLINEXP" 852676 NIL FLINEXP (NIL T) -9 NIL 852769) (-354 850938 851173 851500 "FLINEXP-" 851505 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-353 850014 850158 850382 "FLASORT" 850790 NIL FLASORT (NIL T T) -7 NIL NIL) (-352 847233 848075 848127 "FLALG" 849354 NIL FLALG (NIL T T) -9 NIL 849821) (-351 841018 844720 844761 "FLAGG" 846023 NIL FLAGG (NIL T) -9 NIL 846675) (-350 839744 840083 840573 "FLAGG-" 840578 NIL FLAGG- (NIL T T) -8 NIL NIL) (-349 838786 838929 839156 "FLAGG2" 839597 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-348 835759 836777 836836 "FINRALG" 837964 NIL FINRALG (NIL T T) -9 NIL 838472) (-347 834919 835148 835487 "FINRALG-" 835492 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-346 834326 834539 834567 "FINITE" 834763 T FINITE (NIL) -9 NIL 834870) (-345 826786 828947 828987 "FINAALG" 832654 NIL FINAALG (NIL T) -9 NIL 834107) (-344 822127 823168 824312 "FINAALG-" 825691 NIL FINAALG- (NIL T T) -8 NIL NIL) (-343 821522 821882 821985 "FILE" 822057 NIL FILE (NIL T) -8 NIL NIL) (-342 820207 820519 820573 "FILECAT" 821257 NIL FILECAT (NIL T T) -9 NIL 821473) (-341 818070 819626 819654 "FIELD" 819694 T FIELD (NIL) -9 NIL 819774) (-340 816690 817075 817586 "FIELD-" 817591 NIL FIELD- (NIL T) -8 NIL NIL) (-339 814505 815327 815673 "FGROUP" 816377 NIL FGROUP (NIL T) -8 NIL NIL) (-338 813595 813759 813979 "FGLMICPK" 814337 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-337 809397 813520 813577 "FFX" 813582 NIL FFX (NIL T NIL) -8 NIL NIL) (-336 808998 809059 809194 "FFSLPE" 809330 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-335 804991 805770 806566 "FFPOLY" 808234 NIL FFPOLY (NIL T) -7 NIL NIL) (-334 804495 804531 804740 "FFPOLY2" 804949 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-333 800316 804414 804477 "FFP" 804482 NIL FFP (NIL T NIL) -8 NIL NIL) (-332 795684 800227 800291 "FF" 800296 NIL FF (NIL NIL NIL) -8 NIL NIL) (-331 790780 795027 795217 "FFNBX" 795538 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-330 785637 789863 790121 "FFNBP" 790634 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-329 780240 784921 785132 "FFNB" 785470 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-328 779072 779270 779585 "FFINTBAS" 780037 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-327 775296 777536 777564 "FFIELDC" 778184 T FFIELDC (NIL) -9 NIL 778560) (-326 773959 774329 774826 "FFIELDC-" 774831 NIL FFIELDC- (NIL T) -8 NIL NIL) (-325 773529 773574 773698 "FFHOM" 773901 NIL FFHOM (NIL T T T) -7 NIL NIL) (-324 771227 771711 772228 "FFF" 773044 NIL FFF (NIL T) -7 NIL NIL) (-323 766815 770969 771070 "FFCGX" 771170 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-322 762417 766547 766654 "FFCGP" 766758 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-321 757570 762144 762252 "FFCG" 762353 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-320 739516 748639 748725 "FFCAT" 753890 NIL FFCAT (NIL T T T) -9 NIL 755377) (-319 734714 735761 737075 "FFCAT-" 738305 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-318 734125 734168 734403 "FFCAT2" 734665 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-317 723281 727071 728288 "FEXPR" 732980 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-316 722281 722716 722757 "FEVALAB" 722841 NIL FEVALAB (NIL T) -9 NIL 723102) (-315 721440 721650 721988 "FEVALAB-" 721993 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-314 720033 720823 721026 "FDIV" 721339 NIL FDIV (NIL T T T T) -8 NIL NIL) (-313 717100 717815 717930 "FDIVCAT" 719498 NIL FDIVCAT (NIL T T T T) -9 NIL 719935) (-312 716862 716889 717059 "FDIVCAT-" 717064 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-311 716082 716169 716446 "FDIV2" 716769 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-310 714768 715027 715316 "FCPAK1" 715813 T FCPAK1 (NIL) -7 NIL NIL) (-309 713896 714268 714409 "FCOMP" 714659 NIL FCOMP (NIL T) -8 NIL NIL) (-308 697531 700945 704506 "FC" 710355 T FC (NIL) -8 NIL NIL) (-307 690127 694173 694213 "FAXF" 696015 NIL FAXF (NIL T) -9 NIL 696706) (-306 687406 688061 688886 "FAXF-" 689351 NIL FAXF- (NIL T T) -8 NIL NIL) (-305 682506 686782 686958 "FARRAY" 687263 NIL FARRAY (NIL T) -8 NIL NIL) (-304 677897 679968 680020 "FAMR" 681032 NIL FAMR (NIL T T) -9 NIL 681492) (-303 676788 677090 677524 "FAMR-" 677529 NIL FAMR- (NIL T T T) -8 NIL NIL) (-302 675984 676710 676763 "FAMONOID" 676768 NIL FAMONOID (NIL T) -8 NIL NIL) (-301 673817 674501 674554 "FAMONC" 675495 NIL FAMONC (NIL T T) -9 NIL 675880) (-300 672509 673571 673708 "FAGROUP" 673713 NIL FAGROUP (NIL T) -8 NIL NIL) (-299 670312 670631 671033 "FACUTIL" 672190 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-298 669411 669596 669818 "FACTFUNC" 670122 NIL FACTFUNC (NIL T) -7 NIL NIL) (-297 661731 668662 668874 "EXPUPXS" 669267 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-296 659214 659754 660340 "EXPRTUBE" 661165 T EXPRTUBE (NIL) -7 NIL NIL) (-295 655408 656000 656737 "EXPRODE" 658553 NIL EXPRODE (NIL T T) -7 NIL NIL) (-294 640539 654039 654465 "EXPR" 655014 NIL EXPR (NIL T) -8 NIL NIL) (-293 634951 635538 636350 "EXPR2UPS" 639837 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-292 634587 634644 634751 "EXPR2" 634888 NIL EXPR2 (NIL T T) -7 NIL NIL) (-291 625941 633724 634019 "EXPEXPAN" 634425 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-290 625768 625898 625927 "EXIT" 625932 T EXIT (NIL) -8 NIL NIL) (-289 625395 625457 625570 "EVALCYC" 625700 NIL EVALCYC (NIL T) -7 NIL NIL) (-288 624936 625054 625095 "EVALAB" 625265 NIL EVALAB (NIL T) -9 NIL 625369) (-287 624417 624539 624760 "EVALAB-" 624765 NIL EVALAB- (NIL T T) -8 NIL NIL) (-286 621880 623192 623220 "EUCDOM" 623775 T EUCDOM (NIL) -9 NIL 624125) (-285 620285 620727 621317 "EUCDOM-" 621322 NIL EUCDOM- (NIL T) -8 NIL NIL) (-284 607863 610611 613351 "ESTOOLS" 617565 T ESTOOLS (NIL) -7 NIL NIL) (-283 607499 607556 607663 "ESTOOLS2" 607800 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-282 607250 607292 607372 "ESTOOLS1" 607451 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-281 601188 602912 602940 "ES" 605704 T ES (NIL) -9 NIL 607110) (-280 596135 597422 599239 "ES-" 599403 NIL ES- (NIL T) -8 NIL NIL) (-279 592510 593270 594050 "ESCONT" 595375 T ESCONT (NIL) -7 NIL NIL) (-278 592247 592279 592361 "ESCONT1" 592472 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-277 591922 591972 592072 "ES2" 592191 NIL ES2 (NIL T T) -7 NIL NIL) (-276 591552 591610 591719 "ES1" 591858 NIL ES1 (NIL T T) -7 NIL NIL) (-275 590768 590897 591073 "ERROR" 591396 T ERROR (NIL) -7 NIL NIL) (-274 584271 590627 590718 "EQTBL" 590723 NIL EQTBL (NIL T T) -8 NIL NIL) (-273 576708 579589 581036 "EQ" 582857 NIL -2675 (NIL T) -8 NIL NIL) (-272 576340 576397 576506 "EQ2" 576645 NIL EQ2 (NIL T T) -7 NIL NIL) (-271 571632 572678 573771 "EP" 575279 NIL EP (NIL T) -7 NIL NIL) (-270 570215 570515 570832 "ENV" 571335 T ENV (NIL) -8 NIL NIL) (-269 569375 569939 569967 "ENTIRER" 569972 T ENTIRER (NIL) -9 NIL 570017) (-268 565831 567330 567700 "EMR" 569174 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-267 564975 565160 565214 "ELTAGG" 565594 NIL ELTAGG (NIL T T) -9 NIL 565805) (-266 564694 564756 564897 "ELTAGG-" 564902 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-265 564483 564512 564566 "ELTAB" 564650 NIL ELTAB (NIL T T) -9 NIL NIL) (-264 563609 563755 563954 "ELFUTS" 564334 NIL ELFUTS (NIL T T) -7 NIL NIL) (-263 563351 563407 563435 "ELEMFUN" 563540 T ELEMFUN (NIL) -9 NIL NIL) (-262 563221 563242 563310 "ELEMFUN-" 563315 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-261 558113 561322 561363 "ELAGG" 562303 NIL ELAGG (NIL T) -9 NIL 562766) (-260 556398 556832 557495 "ELAGG-" 557500 NIL ELAGG- (NIL T T) -8 NIL NIL) (-259 555055 555335 555630 "ELABEXPR" 556123 T ELABEXPR (NIL) -8 NIL NIL) (-258 547912 549711 550538 "EFUPXS" 554331 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-257 541351 543152 543962 "EFULS" 547188 NIL EFULS (NIL T T T) -8 NIL NIL) (-256 538782 539140 539618 "EFSTRUC" 540983 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-255 527854 529419 530979 "EF" 537297 NIL EF (NIL T T) -7 NIL NIL) (-254 526955 527339 527488 "EAB" 527725 T EAB (NIL) -8 NIL NIL) (-253 526168 526914 526942 "E04UCFA" 526947 T E04UCFA (NIL) -8 NIL NIL) (-252 525381 526127 526155 "E04NAFA" 526160 T E04NAFA (NIL) -8 NIL NIL) (-251 524594 525340 525368 "E04MBFA" 525373 T E04MBFA (NIL) -8 NIL NIL) (-250 523807 524553 524581 "E04JAFA" 524586 T E04JAFA (NIL) -8 NIL NIL) (-249 523022 523766 523794 "E04GCFA" 523799 T E04GCFA (NIL) -8 NIL NIL) (-248 522237 522981 523009 "E04FDFA" 523014 T E04FDFA (NIL) -8 NIL NIL) (-247 521450 522196 522224 "E04DGFA" 522229 T E04DGFA (NIL) -8 NIL NIL) (-246 515635 516980 518342 "E04AGNT" 520108 T E04AGNT (NIL) -7 NIL NIL) (-245 514362 514842 514882 "DVARCAT" 515357 NIL DVARCAT (NIL T) -9 NIL 515555) (-244 513566 513778 514092 "DVARCAT-" 514097 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-243 506428 513368 513495 "DSMP" 513500 NIL DSMP (NIL T T T) -8 NIL NIL) (-242 501238 502373 503441 "DROPT" 505380 T DROPT (NIL) -8 NIL NIL) (-241 500903 500962 501060 "DROPT1" 501173 NIL DROPT1 (NIL T) -7 NIL NIL) (-240 496018 497144 498281 "DROPT0" 499786 T DROPT0 (NIL) -7 NIL NIL) (-239 494363 494688 495074 "DRAWPT" 495652 T DRAWPT (NIL) -7 NIL NIL) (-238 488950 489873 490952 "DRAW" 493337 NIL DRAW (NIL T) -7 NIL NIL) (-237 488583 488636 488754 "DRAWHACK" 488891 NIL DRAWHACK (NIL T) -7 NIL NIL) (-236 487314 487583 487874 "DRAWCX" 488312 T DRAWCX (NIL) -7 NIL NIL) (-235 486832 486900 487050 "DRAWCURV" 487240 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-234 477303 479262 481377 "DRAWCFUN" 484737 T DRAWCFUN (NIL) -7 NIL NIL) (-233 474117 475999 476040 "DQAGG" 476669 NIL DQAGG (NIL T) -9 NIL 476942) (-232 462624 469362 469444 "DPOLCAT" 471282 NIL DPOLCAT (NIL T T T T) -9 NIL 471826) (-231 457464 458810 460767 "DPOLCAT-" 460772 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-230 451548 457326 457423 "DPMO" 457428 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-229 445535 451329 451495 "DPMM" 451500 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-228 445048 445146 445266 "DOMAIN" 445435 T DOMAIN (NIL) -8 NIL NIL) (-227 438760 444685 444836 "DMP" 444949 NIL DMP (NIL NIL T) -8 NIL NIL) (-226 438360 438416 438560 "DLP" 438698 NIL DLP (NIL T) -7 NIL NIL) (-225 432004 437461 437688 "DLIST" 438165 NIL DLIST (NIL T) -8 NIL NIL) (-224 428851 430860 430901 "DLAGG" 431451 NIL DLAGG (NIL T) -9 NIL 431680) (-223 427561 428253 428281 "DIVRING" 428431 T DIVRING (NIL) -9 NIL 428539) (-222 426549 426802 427195 "DIVRING-" 427200 NIL DIVRING- (NIL T) -8 NIL NIL) (-221 424651 425008 425414 "DISPLAY" 426163 T DISPLAY (NIL) -7 NIL NIL) (-220 418540 424565 424628 "DIRPROD" 424633 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-219 417388 417591 417856 "DIRPROD2" 418333 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-218 407019 413024 413077 "DIRPCAT" 413485 NIL DIRPCAT (NIL NIL T) -9 NIL 414312) (-217 404337 404979 405860 "DIRPCAT-" 406205 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-216 403624 403784 403970 "DIOSP" 404171 T DIOSP (NIL) -7 NIL NIL) (-215 400327 402537 402578 "DIOPS" 403012 NIL DIOPS (NIL T) -9 NIL 403241) (-214 399876 399990 400181 "DIOPS-" 400186 NIL DIOPS- (NIL T T) -8 NIL NIL) (-213 398748 399386 399414 "DIFRING" 399601 T DIFRING (NIL) -9 NIL 399710) (-212 398394 398471 398623 "DIFRING-" 398628 NIL DIFRING- (NIL T) -8 NIL NIL) (-211 396184 397466 397506 "DIFEXT" 397865 NIL DIFEXT (NIL T) -9 NIL 398158) (-210 394470 394898 395563 "DIFEXT-" 395568 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-209 391793 394003 394044 "DIAGG" 394049 NIL DIAGG (NIL T) -9 NIL 394069) (-208 391177 391334 391586 "DIAGG-" 391591 NIL DIAGG- (NIL T T) -8 NIL NIL) (-207 386642 390136 390413 "DHMATRIX" 390946 NIL DHMATRIX (NIL T) -8 NIL NIL) (-206 382254 383163 384173 "DFSFUN" 385652 T DFSFUN (NIL) -7 NIL NIL) (-205 377040 380968 381333 "DFLOAT" 381909 T DFLOAT (NIL) -8 NIL NIL) (-204 375273 375554 375949 "DFINTTLS" 376748 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-203 372306 373308 373706 "DERHAM" 374940 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-202 370155 372081 372170 "DEQUEUE" 372250 NIL DEQUEUE (NIL T) -8 NIL NIL) (-201 369373 369506 369701 "DEGRED" 370017 NIL DEGRED (NIL T T) -7 NIL NIL) (-200 365773 366518 367370 "DEFINTRF" 368601 NIL DEFINTRF (NIL T) -7 NIL NIL) (-199 363304 363773 364371 "DEFINTEF" 365292 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-198 357134 362745 362911 "DECIMAL" 363158 T DECIMAL (NIL) -8 NIL NIL) (-197 354646 355104 355610 "DDFACT" 356678 NIL DDFACT (NIL T T) -7 NIL NIL) (-196 354242 354285 354436 "DBLRESP" 354597 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-195 351917 352251 352620 "DBASE" 354000 NIL DBASE (NIL T) -8 NIL NIL) (-194 351052 351876 351904 "D03FAFA" 351909 T D03FAFA (NIL) -8 NIL NIL) (-193 350188 351011 351039 "D03EEFA" 351044 T D03EEFA (NIL) -8 NIL NIL) (-192 348138 348604 349093 "D03AGNT" 349719 T D03AGNT (NIL) -7 NIL NIL) (-191 347456 348097 348125 "D02EJFA" 348130 T D02EJFA (NIL) -8 NIL NIL) (-190 346774 347415 347443 "D02CJFA" 347448 T D02CJFA (NIL) -8 NIL NIL) (-189 346092 346733 346761 "D02BHFA" 346766 T D02BHFA (NIL) -8 NIL NIL) (-188 345410 346051 346079 "D02BBFA" 346084 T D02BBFA (NIL) -8 NIL NIL) (-187 338608 340196 341802 "D02AGNT" 343824 T D02AGNT (NIL) -7 NIL NIL) (-186 336377 336899 337445 "D01WGTS" 338082 T D01WGTS (NIL) -7 NIL NIL) (-185 335480 336336 336364 "D01TRNS" 336369 T D01TRNS (NIL) -8 NIL NIL) (-184 334583 335439 335467 "D01GBFA" 335472 T D01GBFA (NIL) -8 NIL NIL) (-183 333686 334542 334570 "D01FCFA" 334575 T D01FCFA (NIL) -8 NIL NIL) (-182 332789 333645 333673 "D01ASFA" 333678 T D01ASFA (NIL) -8 NIL NIL) (-181 331892 332748 332776 "D01AQFA" 332781 T D01AQFA (NIL) -8 NIL NIL) (-180 330995 331851 331879 "D01APFA" 331884 T D01APFA (NIL) -8 NIL NIL) (-179 330098 330954 330982 "D01ANFA" 330987 T D01ANFA (NIL) -8 NIL NIL) (-178 329201 330057 330085 "D01AMFA" 330090 T D01AMFA (NIL) -8 NIL NIL) (-177 328304 329160 329188 "D01ALFA" 329193 T D01ALFA (NIL) -8 NIL NIL) (-176 327407 328263 328291 "D01AKFA" 328296 T D01AKFA (NIL) -8 NIL NIL) (-175 326510 327366 327394 "D01AJFA" 327399 T D01AJFA (NIL) -8 NIL NIL) (-174 319814 321363 322922 "D01AGNT" 324971 T D01AGNT (NIL) -7 NIL NIL) (-173 319151 319279 319431 "CYCLOTOM" 319682 T CYCLOTOM (NIL) -7 NIL NIL) (-172 315886 316599 317326 "CYCLES" 318444 T CYCLES (NIL) -7 NIL NIL) (-171 315198 315332 315503 "CVMP" 315747 NIL CVMP (NIL T) -7 NIL NIL) (-170 312979 313237 313612 "CTRIGMNP" 314926 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-169 312584 312667 312772 "CTORCALL" 312894 T CTORCALL (NIL) -8 NIL NIL) (-168 311958 312057 312210 "CSTTOOLS" 312481 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-167 307750 308407 309165 "CRFP" 311270 NIL CRFP (NIL T T) -7 NIL NIL) (-166 306797 306982 307210 "CRAPACK" 307554 NIL CRAPACK (NIL T) -7 NIL NIL) (-165 306181 306282 306486 "CPMATCH" 306673 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-164 305906 305934 306040 "CPIMA" 306147 NIL CPIMA (NIL T T T) -7 NIL NIL) (-163 302270 302942 303660 "COORDSYS" 305241 NIL COORDSYS (NIL T) -7 NIL NIL) (-162 301654 301783 301933 "CONTOUR" 302140 T CONTOUR (NIL) -8 NIL NIL) (-161 297515 299657 300149 "CONTFRAC" 301194 NIL CONTFRAC (NIL T) -8 NIL NIL) (-160 296669 297233 297261 "COMRING" 297266 T COMRING (NIL) -9 NIL 297317) (-159 295750 296027 296211 "COMPPROP" 296505 T COMPPROP (NIL) -8 NIL NIL) (-158 295404 295439 295567 "COMPLPAT" 295709 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-157 285385 295213 295322 "COMPLEX" 295327 NIL COMPLEX (NIL T) -8 NIL NIL) (-156 285021 285078 285185 "COMPLEX2" 285322 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-155 284739 284774 284872 "COMPFACT" 284980 NIL COMPFACT (NIL T T) -7 NIL NIL) (-154 269074 279368 279408 "COMPCAT" 280410 NIL COMPCAT (NIL T) -9 NIL 281803) (-153 258589 261513 265140 "COMPCAT-" 265496 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-152 258320 258348 258450 "COMMUPC" 258555 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-151 258115 258148 258207 "COMMONOP" 258281 T COMMONOP (NIL) -7 NIL NIL) (-150 257698 257866 257953 "COMM" 258048 T COMM (NIL) -8 NIL NIL) (-149 256947 257141 257169 "COMBOPC" 257507 T COMBOPC (NIL) -9 NIL 257682) (-148 255843 256053 256295 "COMBINAT" 256737 NIL COMBINAT (NIL T) -7 NIL NIL) (-147 252041 252614 253254 "COMBF" 255265 NIL COMBF (NIL T T) -7 NIL NIL) (-146 250827 251157 251392 "COLOR" 251826 T COLOR (NIL) -8 NIL NIL) (-145 250467 250514 250639 "CMPLXRT" 250774 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-144 245969 246997 248077 "CLIP" 249407 T CLIP (NIL) -7 NIL NIL) (-143 244303 245073 245311 "CLIF" 245797 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-142 240526 242450 242491 "CLAGG" 243420 NIL CLAGG (NIL T) -9 NIL 243956) (-141 238948 239405 239988 "CLAGG-" 239993 NIL CLAGG- (NIL T T) -8 NIL NIL) (-140 238492 238577 238717 "CINTSLPE" 238857 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-139 235972 236443 236991 "CHVAR" 238020 NIL CHVAR (NIL T T T) -7 NIL NIL) (-138 235195 235759 235787 "CHARZ" 235792 T CHARZ (NIL) -9 NIL 235806) (-137 234949 234989 235067 "CHARPOL" 235149 NIL CHARPOL (NIL T) -7 NIL NIL) (-136 234056 234653 234681 "CHARNZ" 234728 T CHARNZ (NIL) -9 NIL 234783) (-135 232081 232746 233081 "CHAR" 233741 T CHAR (NIL) -8 NIL NIL) (-134 231807 231868 231896 "CFCAT" 232007 T CFCAT (NIL) -9 NIL NIL) (-133 231052 231163 231345 "CDEN" 231691 NIL CDEN (NIL T T T) -7 NIL NIL) (-132 227044 230205 230485 "CCLASS" 230792 T CCLASS (NIL) -8 NIL NIL) (-131 226963 226989 227024 "CATEGORY" 227029 T -10 (NIL) -8 NIL NIL) (-130 221983 222960 223713 "CARTEN" 226266 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-129 221091 221239 221460 "CARTEN2" 221830 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-128 219389 220243 220499 "CARD" 220855 T CARD (NIL) -8 NIL NIL) (-127 218762 219090 219118 "CACHSET" 219250 T CACHSET (NIL) -9 NIL 219327) (-126 218259 218555 218583 "CABMON" 218633 T CABMON (NIL) -9 NIL 218689) (-125 217427 217806 217949 "BYTE" 218136 T BYTE (NIL) -8 NIL NIL) (-124 213375 217374 217408 "BYTEARY" 217413 T BYTEARY (NIL) -8 NIL NIL) (-123 210932 213067 213174 "BTREE" 213301 NIL BTREE (NIL T) -8 NIL NIL) (-122 208430 210580 210702 "BTOURN" 210842 NIL BTOURN (NIL T) -8 NIL NIL) (-121 205849 207902 207943 "BTCAT" 208011 NIL BTCAT (NIL T) -9 NIL 208088) (-120 205516 205596 205745 "BTCAT-" 205750 NIL BTCAT- (NIL T T) -8 NIL NIL) (-119 200737 204608 204636 "BTAGG" 204892 T BTAGG (NIL) -9 NIL 205071) (-118 200160 200304 200534 "BTAGG-" 200539 NIL BTAGG- (NIL T) -8 NIL NIL) (-117 197204 199438 199653 "BSTREE" 199977 NIL BSTREE (NIL T) -8 NIL NIL) (-116 196342 196468 196652 "BRILL" 197060 NIL BRILL (NIL T) -7 NIL NIL) (-115 193044 195071 195112 "BRAGG" 195761 NIL BRAGG (NIL T) -9 NIL 196018) (-114 191573 191979 192534 "BRAGG-" 192539 NIL BRAGG- (NIL T T) -8 NIL NIL) (-113 184773 190911 191095 "BPADICRT" 191421 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-112 183077 184710 184755 "BPADIC" 184760 NIL BPADIC (NIL NIL) -8 NIL NIL) (-111 182773 182803 182916 "BOUNDZRO" 183041 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-110 178288 179379 180246 "BOP" 181926 T BOP (NIL) -8 NIL NIL) (-109 175909 176353 176873 "BOP1" 177801 NIL BOP1 (NIL T) -7 NIL NIL) (-108 174544 175249 175467 "BOOLEAN" 175711 T BOOLEAN (NIL) -8 NIL NIL) (-107 173911 174289 174341 "BMODULE" 174346 NIL BMODULE (NIL T T) -9 NIL 174410) (-106 169721 173709 173782 "BITS" 173858 T BITS (NIL) -8 NIL NIL) (-105 168818 169253 169405 "BINFILE" 169589 T BINFILE (NIL) -8 NIL NIL) (-104 168230 168352 168494 "BINDING" 168696 T BINDING (NIL) -8 NIL NIL) (-103 162064 167674 167839 "BINARY" 168085 T BINARY (NIL) -8 NIL NIL) (-102 159892 161320 161361 "BGAGG" 161621 NIL BGAGG (NIL T) -9 NIL 161758) (-101 159723 159755 159846 "BGAGG-" 159851 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158821 159107 159312 "BFUNCT" 159538 T BFUNCT (NIL) -8 NIL NIL) (-99 157522 157700 157985 "BEZOUT" 158645 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 154047 156382 156710 "BBTREE" 157225 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153785 153838 153864 "BASTYPE" 153981 T BASTYPE (NIL) -9 NIL NIL) (-96 153640 153669 153739 "BASTYPE-" 153744 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 153078 153154 153304 "BALFACT" 153551 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151900 152497 152682 "AUTOMOR" 152923 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151626 151631 151657 "ATTREG" 151662 T ATTREG (NIL) -9 NIL NIL) (-92 149905 150323 150675 "ATTRBUT" 151292 T ATTRBUT (NIL) -8 NIL NIL) (-91 149441 149554 149580 "ATRIG" 149781 T ATRIG (NIL) -9 NIL NIL) (-90 149250 149291 149378 "ATRIG-" 149383 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147447 149026 149114 "ASTACK" 149193 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145952 146249 146614 "ASSOCEQ" 147129 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144984 145611 145735 "ASP9" 145859 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144748 144932 144971 "ASP8" 144976 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143617 144353 144495 "ASP80" 144637 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142516 143252 143384 "ASP7" 143516 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141470 142193 142311 "ASP78" 142429 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140439 141150 141267 "ASP77" 141384 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139351 140077 140208 "ASP74" 140339 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 138251 138986 139118 "ASP73" 139250 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 137206 137928 138046 "ASP6" 138164 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136154 136883 137001 "ASP55" 137119 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135104 135828 135947 "ASP50" 136066 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134192 134805 134915 "ASP4" 135025 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 133280 133893 134003 "ASP49" 134113 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 132065 132819 132987 "ASP42" 133169 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130842 131598 131768 "ASP41" 131952 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129792 130519 130637 "ASP35" 130755 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129557 129740 129779 "ASP34" 129784 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129294 129361 129437 "ASP33" 129512 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128189 128929 129061 "ASP31" 129193 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127954 128137 128176 "ASP30" 128181 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127689 127758 127834 "ASP29" 127909 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127454 127637 127676 "ASP28" 127681 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127219 127402 127441 "ASP27" 127446 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126303 126917 127028 "ASP24" 127139 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125219 125944 126074 "ASP20" 126204 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124307 124920 125030 "ASP1" 125140 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 123251 123981 124100 "ASP19" 124219 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122988 123055 123131 "ASP12" 123206 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121840 122587 122731 "ASP10" 122875 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119739 121684 121775 "ARRAY2" 121780 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115555 119387 119501 "ARRAY1" 119656 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114587 114760 114981 "ARRAY12" 115378 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108947 110818 110893 "ARR2CAT" 113523 NIL ARR2CAT (NIL T T T) -9 NIL 114281) (-54 106381 107125 108079 "ARR2CAT-" 108084 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105141 105291 105594 "APPRULE" 106219 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104794 104842 104960 "APPLYORE" 105087 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103768 104059 104254 "ANY" 104617 T ANY (NIL) -8 NIL NIL) (-50 103046 103169 103326 "ANY1" 103642 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100578 101496 101821 "ANTISYM" 102771 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100093 100282 100379 "ANON" 100499 T ANON (NIL) -8 NIL NIL) (-47 94170 98638 99089 "AN" 99660 T AN (NIL) -8 NIL NIL) (-46 90524 91922 91972 "AMR" 92711 NIL AMR (NIL T T) -9 NIL 93310) (-45 89637 89858 90220 "AMR-" 90225 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74187 89554 89615 "ALIST" 89620 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71024 73781 73950 "ALGSC" 74105 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67580 68134 68741 "ALGPKG" 70464 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66857 66958 67142 "ALGMFACT" 67466 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62606 63287 63941 "ALGMANIP" 66381 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53925 62232 62382 "ALGFF" 62539 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53121 53252 53431 "ALGFACT" 53783 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52112 52722 52760 "ALGEBRA" 52820 NIL ALGEBRA (NIL T) -9 NIL 52878) (-36 51830 51889 52021 "ALGEBRA-" 52026 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34091 49834 49886 "ALAGG" 50022 NIL ALAGG (NIL T T) -9 NIL 50183) (-34 33627 33740 33766 "AHYP" 33967 T AHYP (NIL) -9 NIL NIL) (-33 32558 32806 32832 "AGG" 33331 T AGG (NIL) -9 NIL 33610) (-32 31992 32154 32368 "AGG-" 32373 NIL AGG- (NIL T) -8 NIL NIL) (-31 29675 30093 30510 "AF" 31635 NIL AF (NIL T T) -7 NIL NIL) (-30 28944 29202 29358 "ACPLOT" 29537 T ACPLOT (NIL) -8 NIL NIL) (-29 18411 26357 26408 "ACFS" 27119 NIL ACFS (NIL T) -9 NIL 27358) (-28 16425 16915 17690 "ACFS-" 17695 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12693 14649 14675 "ACF" 15554 T ACF (NIL) -9 NIL 15966) (-26 11397 11731 12224 "ACF-" 12229 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11191 "ABELSG" 11283 T ABELSG (NIL) -9 NIL 11348) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10233 10494 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9897 9981 10119 "ABELMON-" 10124 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9232 9578 9604 "ABELGRP" 9729 T ABELGRP (NIL) -9 NIL 9811) (-20 8695 8824 9040 "ABELGRP-" 9045 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
+((-2419 (((-592 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 37)) (-1739 (((-525) (-1146 |#2| |#1|)) 69 (|has| |#1| (-429)))) (-4116 (((-525) (-1146 |#2| |#1|)) 54)) (-1298 (((-592 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 45)) (-2081 (((-525) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 68 (|has| |#1| (-429)))) (-1386 (((-592 |#1|) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 48)) (-1710 (((-525) (-1146 |#2| |#1|) (-1146 |#2| |#1|)) 53)))
+(((-1034 |#1| |#2|) (-10 -7 (-15 -2419 ((-592 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -1298 ((-592 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -1386 ((-592 |#1|) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -1710 ((-525) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -4116 ((-525) (-1146 |#2| |#1|))) (IF (|has| |#1| (-429)) (PROGN (-15 -2081 ((-525) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -1739 ((-525) (-1146 |#2| |#1|)))) |%noBranch|)) (-762) (-1091)) (T -1034))
+((-1739 (*1 *2 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762)) (-14 *5 (-1091)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))) (-2081 (*1 *2 *3 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762)) (-14 *5 (-1091)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1091)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))) (-1710 (*1 *2 *3 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1091)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))) (-1386 (*1 *2 *3 *3) (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1091)) (-5 *2 (-592 *4)) (-5 *1 (-1034 *4 *5)))) (-1298 (*1 *2 *3 *3) (-12 (-4 *4 (-762)) (-14 *5 (-1091)) (-5 *2 (-592 (-1146 *5 *4))) (-5 *1 (-1034 *4 *5)) (-5 *3 (-1146 *5 *4)))) (-2419 (*1 *2 *3 *3) (-12 (-4 *4 (-762)) (-14 *5 (-1091)) (-5 *2 (-592 (-1146 *5 *4))) (-5 *1 (-1034 *4 *5)) (-5 *3 (-1146 *5 *4)))))
+(-10 -7 (-15 -2419 ((-592 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -1298 ((-592 (-1146 |#2| |#1|)) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -1386 ((-592 |#1|) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -1710 ((-525) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -4116 ((-525) (-1146 |#2| |#1|))) (IF (|has| |#1| (-429)) (PROGN (-15 -2081 ((-525) (-1146 |#2| |#1|) (-1146 |#2| |#1|))) (-15 -1739 ((-525) (-1146 |#2| |#1|)))) |%noBranch|))
+((-1436 (((-3 (-525) "failed") |#2| (-1091) |#2| (-1074)) 17) (((-3 (-525) "failed") |#2| (-1091) (-782 |#2|)) 15) (((-3 (-525) "failed") |#2|) 54)))
+(((-1035 |#1| |#2|) (-10 -7 (-15 -1436 ((-3 (-525) "failed") |#2|)) (-15 -1436 ((-3 (-525) "failed") |#2| (-1091) (-782 |#2|))) (-15 -1436 ((-3 (-525) "failed") |#2| (-1091) |#2| (-1074)))) (-13 (-517) (-789) (-968 (-525)) (-588 (-525)) (-429)) (-13 (-27) (-1113) (-408 |#1|))) (T -1035))
+((-1436 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-1074)) (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)) (-429))) (-5 *2 (-525)) (-5 *1 (-1035 *6 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *6))))) (-1436 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-782 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *6))) (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)) (-429))) (-5 *2 (-525)) (-5 *1 (-1035 *6 *3)))) (-1436 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)) (-429))) (-5 *2 (-525)) (-5 *1 (-1035 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *4))))))
+(-10 -7 (-15 -1436 ((-3 (-525) "failed") |#2|)) (-15 -1436 ((-3 (-525) "failed") |#2| (-1091) (-782 |#2|))) (-15 -1436 ((-3 (-525) "failed") |#2| (-1091) |#2| (-1074))))
+((-1436 (((-3 (-525) "failed") (-385 (-887 |#1|)) (-1091) (-385 (-887 |#1|)) (-1074)) 35) (((-3 (-525) "failed") (-385 (-887 |#1|)) (-1091) (-782 (-385 (-887 |#1|)))) 30) (((-3 (-525) "failed") (-385 (-887 |#1|))) 13)))
+(((-1036 |#1|) (-10 -7 (-15 -1436 ((-3 (-525) "failed") (-385 (-887 |#1|)))) (-15 -1436 ((-3 (-525) "failed") (-385 (-887 |#1|)) (-1091) (-782 (-385 (-887 |#1|))))) (-15 -1436 ((-3 (-525) "failed") (-385 (-887 |#1|)) (-1091) (-385 (-887 |#1|)) (-1074)))) (-429)) (T -1036))
+((-1436 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-385 (-887 *6))) (-5 *4 (-1091)) (-5 *5 (-1074)) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1036 *6)))) (-1436 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-385 (-887 *6))) (-5 *4 (-1091)) (-5 *5 (-782 (-385 (-887 *6)))) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1036 *6)))) (-1436 (*1 *2 *3) (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-429)) (-5 *2 (-525)) (-5 *1 (-1036 *4)))))
+(-10 -7 (-15 -1436 ((-3 (-525) "failed") (-385 (-887 |#1|)))) (-15 -1436 ((-3 (-525) "failed") (-385 (-887 |#1|)) (-1091) (-782 (-385 (-887 |#1|))))) (-15 -1436 ((-3 (-525) "failed") (-385 (-887 |#1|)) (-1091) (-385 (-887 |#1|)) (-1074))))
+((-1434 (((-294 (-525)) (-47)) 12)))
+(((-1037) (-10 -7 (-15 -1434 ((-294 (-525)) (-47))))) (T -1037))
+((-1434 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-294 (-525))) (-5 *1 (-1037)))))
+(-10 -7 (-15 -1434 ((-294 (-525)) (-47))))
+((-1260 (((-108) $ $) NIL)) (-3411 (($ $) 41)) (-1989 (((-108) $) 65)) (-4144 (($ $ $) 48)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 85)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1530 (($ $ $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-1381 (($ $ $ $) 74)) (-3706 (($ $) NIL)) (-2100 (((-396 $) $) NIL)) (-3197 (((-108) $ $) NIL)) (-1436 (((-525) $) NIL)) (-4177 (($ $ $) 71)) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL)) (-3898 (((-525) $) NIL)) (-1726 (($ $ $) 59)) (-3416 (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 79) (((-632 (-525)) (-632 $)) 28)) (-3762 (((-3 $ "failed") $) NIL)) (-2251 (((-3 (-385 (-525)) "failed") $) NIL)) (-2265 (((-108) $) NIL)) (-2178 (((-385 (-525)) $) NIL)) (-2899 (($) 82) (($ $) 83)) (-1704 (($ $ $) 58)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL)) (-3836 (((-108) $) NIL)) (-3926 (($ $ $ $) NIL)) (-3963 (($ $ $) 80)) (-3017 (((-108) $) NIL)) (-1962 (($ $ $) NIL)) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL)) (-1985 (((-108) $) 66)) (-2126 (((-108) $) 64)) (-1825 (($ $) 42)) (-1760 (((-3 $ "failed") $) NIL)) (-3912 (((-108) $) 75)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3224 (($ $ $ $) 72)) (-2371 (($ $ $) 68) (($) 39)) (-2535 (($ $ $) 67) (($) 38)) (-1634 (($ $) NIL)) (-2023 (($ $) 70)) (-2756 (($ $ $) NIL) (($ (-592 $)) NIL)) (-3451 (((-1074) $) NIL)) (-3461 (($ $ $) NIL)) (-3940 (($) NIL T CONST)) (-4058 (($ $) 50)) (-2012 (((-1038) $) NIL) (($ $) 69)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL)) (-2794 (($ $ $) 62) (($ (-592 $)) NIL)) (-2075 (($ $) NIL)) (-2195 (((-396 $) $) NIL)) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL)) (-1680 (((-3 $ "failed") $ $) NIL)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL)) (-3545 (((-108) $) NIL)) (-1290 (((-713) $) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 61)) (-2523 (($ $ (-713)) NIL) (($ $) NIL)) (-3881 (($ $) 51)) (-1451 (($ $) NIL)) (-2749 (((-525) $) 32) (((-501) $) NIL) (((-827 (-525)) $) NIL) (((-357) $) NIL) (((-205) $) NIL)) (-1270 (((-798) $) 31) (($ (-525)) 81) (($ $) NIL) (($ (-525)) 81)) (-2104 (((-713)) NIL)) (-3975 (((-108) $ $) NIL)) (-2938 (($ $ $) NIL)) (-3200 (($) 37)) (-3959 (((-108) $ $) NIL)) (-2372 (($ $ $ $) 73)) (-2086 (($ $) 63)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3236 (($ $ $) 44)) (-3355 (($) 35 T CONST)) (-2739 (($ $ $) 47)) (-3363 (($) 36 T CONST)) (-2255 (((-1074) $) 21) (((-1074) $ (-108)) 23) (((-1178) (-764) $) 24) (((-1178) (-764) $ (-108)) 25)) (-2754 (($ $) 45)) (-2093 (($ $ (-713)) NIL) (($ $) NIL)) (-2729 (($ $ $) 46)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 40)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 49)) (-3227 (($ $ $) 43)) (-4090 (($ $) 52) (($ $ $) 54)) (-4080 (($ $ $) 53)) (** (($ $ (-856)) NIL) (($ $ (-713)) 57)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 34) (($ $ $) 55)))
+(((-1038) (-13 (-510) (-607) (-770) (-10 -8 (-6 -4242) (-6 -4247) (-6 -4243) (-15 -2535 ($)) (-15 -2371 ($)) (-15 -1825 ($ $)) (-15 -3411 ($ $)) (-15 -3227 ($ $ $)) (-15 -3236 ($ $ $)) (-15 -4144 ($ $ $)) (-15 -2754 ($ $)) (-15 -2729 ($ $ $)) (-15 -2739 ($ $ $))))) (T -1038))
+((-3236 (*1 *1 *1 *1) (-5 *1 (-1038))) (-3227 (*1 *1 *1 *1) (-5 *1 (-1038))) (-3411 (*1 *1 *1) (-5 *1 (-1038))) (-2535 (*1 *1) (-5 *1 (-1038))) (-2371 (*1 *1) (-5 *1 (-1038))) (-1825 (*1 *1 *1) (-5 *1 (-1038))) (-4144 (*1 *1 *1 *1) (-5 *1 (-1038))) (-2754 (*1 *1 *1) (-5 *1 (-1038))) (-2729 (*1 *1 *1 *1) (-5 *1 (-1038))) (-2739 (*1 *1 *1 *1) (-5 *1 (-1038))))
+(-13 (-510) (-607) (-770) (-10 -8 (-6 -4242) (-6 -4247) (-6 -4243) (-15 -2535 ($)) (-15 -2371 ($)) (-15 -1825 ($ $)) (-15 -3411 ($ $)) (-15 -3227 ($ $ $)) (-15 -3236 ($ $ $)) (-15 -4144 ($ $ $)) (-15 -2754 ($ $)) (-15 -2729 ($ $ $)) (-15 -2739 ($ $ $))))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2936 ((|#1| $) 44)) (-3330 (((-108) $ (-713)) 8)) (-2305 (($) 7 T CONST)) (-3158 ((|#1| |#1| $) 46)) (-4081 ((|#1| $) 45)) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) 9)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-3955 ((|#1| $) 39)) (-3985 (($ |#1| $) 40)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-1881 ((|#1| $) 41)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-4064 (((-713) $) 43)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-1665 (($ (-592 |#1|)) 42)) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-1039 |#1|) (-131) (-1127)) (T -1039))
+((-3158 (*1 *2 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1127)))) (-4081 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1127)))) (-2936 (*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1127)))) (-4064 (*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-1127)) (-5 *2 (-713)))))
+(-13 (-102 |t#1|) (-10 -8 (-6 -4255) (-15 -3158 (|t#1| |t#1| $)) (-15 -4081 (|t#1| $)) (-15 -2936 (|t#1| $)) (-15 -4064 ((-713) $))))
+(((-33) . T) ((-102 |#1|) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-1020) |has| |#1| (-1020)) ((-1127) . T))
+((-3029 ((|#3| $) 76)) (-2591 (((-3 (-525) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-3898 (((-525) $) NIL) (((-385 (-525)) $) NIL) ((|#3| $) 37)) (-3416 (((-632 (-525)) (-632 $)) NIL) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL) (((-2 (|:| -1484 (-632 |#3|)) (|:| |vec| (-1173 |#3|))) (-632 $) (-1173 $)) 73) (((-632 |#3|) (-632 $)) 65)) (-2523 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091)) NIL) (($ $ (-713)) NIL) (($ $) NIL)) (-2212 ((|#3| $) 78)) (-1444 ((|#4| $) 32)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ |#3|) 16)) (** (($ $ (-856)) NIL) (($ $ (-713)) 15) (($ $ (-525)) 82)))
+(((-1040 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-525))) (-15 -2212 (|#3| |#1|)) (-15 -3029 (|#3| |#1|)) (-15 -1444 (|#4| |#1|)) (-15 -3416 ((-632 |#3|) (-632 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 |#3|)) (|:| |vec| (-1173 |#3|))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-632 (-525)) (-632 |#1|))) (-15 -3898 (|#3| |#1|)) (-15 -2591 ((-3 |#3| "failed") |#1|)) (-15 -1270 (|#1| |#3|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -2523 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -2523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1270 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856))) (-15 -1270 ((-798) |#1|))) (-1041 |#2| |#3| |#4| |#5|) (-713) (-977) (-218 |#2| |#3|) (-218 |#2| |#3|)) (T -1040))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-525))) (-15 -2212 (|#3| |#1|)) (-15 -3029 (|#3| |#1|)) (-15 -1444 (|#4| |#1|)) (-15 -3416 ((-632 |#3|) (-632 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 |#3|)) (|:| |vec| (-1173 |#3|))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 |#1|) (-1173 |#1|))) (-15 -3416 ((-632 (-525)) (-632 |#1|))) (-15 -3898 (|#3| |#1|)) (-15 -2591 ((-3 |#3| "failed") |#1|)) (-15 -1270 (|#1| |#3|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-525) |#1|)) (-15 -2523 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -2523 (|#1| |#1| (-1 |#3| |#3|) (-713))) (-15 -2523 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1270 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856))) (-15 -1270 ((-798) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-3029 ((|#2| $) 72)) (-2079 (((-108) $) 112)) (-1342 (((-3 $ "failed") $ $) 19)) (-2077 (((-108) $) 110)) (-3330 (((-108) $ (-713)) 102)) (-2975 (($ |#2|) 75)) (-2305 (($) 17 T CONST)) (-1333 (($ $) 129 (|has| |#2| (-286)))) (-1616 ((|#3| $ (-525)) 124)) (-2591 (((-3 (-525) "failed") $) 86 (|has| |#2| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) 84 (|has| |#2| (-968 (-385 (-525))))) (((-3 |#2| "failed") $) 81)) (-3898 (((-525) $) 87 (|has| |#2| (-968 (-525)))) (((-385 (-525)) $) 85 (|has| |#2| (-968 (-385 (-525))))) ((|#2| $) 80)) (-3416 (((-632 (-525)) (-632 $)) 79 (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 78 (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) 77) (((-632 |#2|) (-632 $)) 76)) (-3762 (((-3 $ "failed") $) 34)) (-3318 (((-713) $) 130 (|has| |#2| (-517)))) (-2570 ((|#2| $ (-525) (-525)) 122)) (-3702 (((-592 |#2|) $) 95 (|has| $ (-6 -4255)))) (-1985 (((-108) $) 31)) (-1841 (((-713) $) 131 (|has| |#2| (-517)))) (-1615 (((-592 |#4|) $) 132 (|has| |#2| (-517)))) (-1857 (((-713) $) 118)) (-1869 (((-713) $) 119)) (-2482 (((-108) $ (-713)) 103)) (-1641 ((|#2| $) 67 (|has| |#2| (-6 (-4257 "*"))))) (-1964 (((-525) $) 114)) (-3779 (((-525) $) 116)) (-1749 (((-592 |#2|) $) 94 (|has| $ (-6 -4255)))) (-2783 (((-108) |#2| $) 92 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4255))))) (-1987 (((-525) $) 115)) (-3948 (((-525) $) 117)) (-1660 (($ (-592 (-592 |#2|))) 109)) (-2622 (($ (-1 |#2| |#2|) $) 99 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#2| |#2| |#2|) $ $) 126) (($ (-1 |#2| |#2|) $) 100)) (-2973 (((-592 (-592 |#2|)) $) 120)) (-2957 (((-108) $ (-713)) 104)) (-3451 (((-1074) $) 9)) (-2933 (((-3 $ "failed") $) 66 (|has| |#2| (-341)))) (-2012 (((-1038) $) 10)) (-1680 (((-3 $ "failed") $ |#2|) 127 (|has| |#2| (-517)))) (-3006 (((-108) (-1 (-108) |#2|) $) 97 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#2|))) 91 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) 90 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) 89 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) 88 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-3428 (((-108) $ $) 108)) (-2013 (((-108) $) 105)) (-2718 (($) 106)) (-3410 ((|#2| $ (-525) (-525) |#2|) 123) ((|#2| $ (-525) (-525)) 121)) (-2523 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-713)) 51) (($ $ (-592 (-1091)) (-592 (-713))) 44 (|has| |#2| (-835 (-1091)))) (($ $ (-1091) (-713)) 43 (|has| |#2| (-835 (-1091)))) (($ $ (-592 (-1091))) 42 (|has| |#2| (-835 (-1091)))) (($ $ (-1091)) 41 (|has| |#2| (-835 (-1091)))) (($ $ (-713)) 39 (|has| |#2| (-213))) (($ $) 37 (|has| |#2| (-213)))) (-2212 ((|#2| $) 71)) (-3675 (($ (-592 |#2|)) 74)) (-2559 (((-108) $) 111)) (-1444 ((|#3| $) 73)) (-3176 ((|#2| $) 68 (|has| |#2| (-6 (-4257 "*"))))) (-2040 (((-713) (-1 (-108) |#2|) $) 96 (|has| $ (-6 -4255))) (((-713) |#2| $) 93 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 107)) (-3701 ((|#4| $ (-525)) 125)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 83 (|has| |#2| (-968 (-385 (-525))))) (($ |#2|) 82)) (-2104 (((-713)) 29)) (-3633 (((-108) (-1 (-108) |#2|) $) 98 (|has| $ (-6 -4255)))) (-1366 (((-108) $) 113)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-713)) 49) (($ $ (-592 (-1091)) (-592 (-713))) 48 (|has| |#2| (-835 (-1091)))) (($ $ (-1091) (-713)) 47 (|has| |#2| (-835 (-1091)))) (($ $ (-592 (-1091))) 46 (|has| |#2| (-835 (-1091)))) (($ $ (-1091)) 45 (|has| |#2| (-835 (-1091)))) (($ $ (-713)) 40 (|has| |#2| (-213))) (($ $) 38 (|has| |#2| (-213)))) (-3994 (((-108) $ $) 6)) (-4100 (($ $ |#2|) 128 (|has| |#2| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 65 (|has| |#2| (-341)))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#2|) 134) (($ |#2| $) 133) ((|#4| $ |#4|) 70) ((|#3| |#3| $) 69)) (-3596 (((-713) $) 101 (|has| $ (-6 -4255)))))
+(((-1041 |#1| |#2| |#3| |#4|) (-131) (-713) (-977) (-218 |t#1| |t#2|) (-218 |t#1| |t#2|)) (T -1041))
+((-2975 (*1 *1 *2) (-12 (-4 *2 (-977)) (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)))) (-3675 (*1 *1 *2) (-12 (-5 *2 (-592 *4)) (-4 *4 (-977)) (-4 *1 (-1041 *3 *4 *5 *6)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)))) (-1444 (*1 *2 *1) (-12 (-4 *1 (-1041 *3 *4 *2 *5)) (-4 *4 (-977)) (-4 *5 (-218 *3 *4)) (-4 *2 (-218 *3 *4)))) (-3029 (*1 *2 *1) (-12 (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (-4 *2 (-977)))) (-2212 (*1 *2 *1) (-12 (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (-4 *2 (-977)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1041 *3 *4 *5 *2)) (-4 *4 (-977)) (-4 *5 (-218 *3 *4)) (-4 *2 (-218 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1041 *3 *4 *2 *5)) (-4 *4 (-977)) (-4 *2 (-218 *3 *4)) (-4 *5 (-218 *3 *4)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4257 "*"))) (-4 *2 (-977)))) (-1641 (*1 *2 *1) (-12 (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2)) (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4257 "*"))) (-4 *2 (-977)))) (-2933 (*1 *1 *1) (|partial| -12 (-4 *1 (-1041 *2 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-218 *2 *3)) (-4 *5 (-218 *2 *3)) (-4 *3 (-341)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1041 *3 *4 *5 *6)) (-4 *4 (-977)) (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)) (-4 *4 (-341)))))
+(-13 (-211 |t#2|) (-107 |t#2| |t#2|) (-980 |t#1| |t#1| |t#2| |t#3| |t#4|) (-389 |t#2|) (-355 |t#2|) (-10 -8 (IF (|has| |t#2| (-160)) (-6 (-660 |t#2|)) |%noBranch|) (-15 -2975 ($ |t#2|)) (-15 -3675 ($ (-592 |t#2|))) (-15 -1444 (|t#3| $)) (-15 -3029 (|t#2| $)) (-15 -2212 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4257 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3176 (|t#2| $)) (-15 -1641 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-341)) (PROGN (-15 -2933 ((-3 $ "failed") $)) (-15 ** ($ $ (-525)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4257 "*"))) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-566 (-798)) . T) ((-211 |#2|) . T) ((-213) |has| |#2| (-213)) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-355 |#2|) . T) ((-389 |#2|) . T) ((-464 |#2|) . T) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-594 |#2|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#2| (-588 (-525))) ((-588 |#2|) . T) ((-660 |#2|) -3279 (|has| |#2| (-160)) (|has| |#2| (-6 (-4257 "*")))) ((-669) . T) ((-835 (-1091)) |has| |#2| (-835 (-1091))) ((-980 |#1| |#1| |#2| |#3| |#4|) . T) ((-968 (-385 (-525))) |has| |#2| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#2| (-968 (-525))) ((-968 |#2|) . T) ((-983 |#2|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1127) . T))
+((-2459 ((|#4| |#4|) 70)) (-2199 ((|#4| |#4|) 65)) (-3265 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1449 (-592 |#3|))) |#4| |#3|) 78)) (-3300 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-1360 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
+(((-1042 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2199 (|#4| |#4|)) (-15 -1360 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2459 (|#4| |#4|)) (-15 -3300 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3265 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1449 (-592 |#3|))) |#4| |#3|))) (-286) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -1042))
+((-3265 (*1 *2 *3 *4) (-12 (-4 *5 (-286)) (-4 *6 (-351 *5)) (-4 *4 (-351 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1449 (-592 *4)))) (-5 *1 (-1042 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))) (-3300 (*1 *2 *3) (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1042 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1042 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-1360 (*1 *2 *3) (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1042 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))) (-2199 (*1 *2 *2) (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1042 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
+(-10 -7 (-15 -2199 (|#4| |#4|)) (-15 -1360 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2459 (|#4| |#4|)) (-15 -3300 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3265 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1449 (-592 |#3|))) |#4| |#3|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 17)) (-2383 (((-592 |#2|) $) 161)) (-2146 (((-1087 $) $ |#2|) 54) (((-1087 |#1|) $) 43)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 110 (|has| |#1| (-517)))) (-3711 (($ $) 112 (|has| |#1| (-517)))) (-3380 (((-108) $) 114 (|has| |#1| (-517)))) (-3848 (((-713) $) NIL) (((-713) $ (-592 |#2|)) 194)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-3706 (($ $) NIL (|has| |#1| (-429)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) 158) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 |#2| "failed") $) NIL)) (-3898 ((|#1| $) 156) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) ((|#2| $) NIL)) (-1516 (($ $ $ |#2|) NIL (|has| |#1| (-160)))) (-2571 (($ $) 198)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) 82)) (-3026 (($ $) NIL (|has| |#1| (-429))) (($ $ |#2|) NIL (|has| |#1| (-429)))) (-2558 (((-592 $) $) NIL)) (-3836 (((-108) $) NIL (|has| |#1| (-844)))) (-2192 (($ $ |#1| (-497 |#2|) $) NIL)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| |#1| (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| |#1| (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-1985 (((-108) $) 19)) (-1647 (((-713) $) 26)) (-2368 (($ (-1087 |#1|) |#2|) 48) (($ (-1087 $) |#2|) 64)) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) 32)) (-2352 (($ |#1| (-497 |#2|)) 71) (($ $ |#2| (-713)) 52) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ |#2|) NIL)) (-3724 (((-497 |#2|) $) 188) (((-713) $ |#2|) 189) (((-592 (-713)) $ (-592 |#2|)) 190)) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-3922 (($ (-1 (-497 |#2|) (-497 |#2|)) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) 122)) (-3567 (((-3 |#2| "failed") $) 163)) (-2538 (($ $) 197)) (-2548 ((|#1| $) 37)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3451 (((-1074) $) NIL)) (-4228 (((-3 (-592 $) "failed") $) NIL)) (-3852 (((-3 (-592 $) "failed") $) NIL)) (-1553 (((-3 (-2 (|:| |var| |#2|) (|:| -1864 (-713))) "failed") $) NIL)) (-2012 (((-1038) $) NIL)) (-2513 (((-108) $) 33)) (-2525 ((|#1| $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 140 (|has| |#1| (-429)))) (-2794 (($ (-592 $)) 145 (|has| |#1| (-429))) (($ $ $) 132 (|has| |#1| (-429)))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#1| (-844)))) (-2195 (((-396 $) $) NIL (|has| |#1| (-844)))) (-1680 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ $) 120 (|has| |#1| (-517)))) (-2602 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ |#2| |#1|) 166) (($ $ (-592 |#2|) (-592 |#1|)) 179) (($ $ |#2| $) 165) (($ $ (-592 |#2|) (-592 $)) 178)) (-2094 (($ $ |#2|) NIL (|has| |#1| (-160)))) (-2523 (($ $ |#2|) 196) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-1587 (((-497 |#2|) $) 184) (((-713) $ |#2|) 180) (((-592 (-713)) $ (-592 |#2|)) 182)) (-2749 (((-827 (-357)) $) NIL (-12 (|has| |#1| (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| |#1| (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| |#1| (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2026 ((|#1| $) 128 (|has| |#1| (-429))) (($ $ |#2|) 131 (|has| |#1| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-1270 (((-798) $) 151) (($ (-525)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (-3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-1562 (((-592 |#1|) $) 154)) (-3468 ((|#1| $ (-497 |#2|)) 73) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2104 (((-713)) 79)) (-3658 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3959 (((-108) $ $) 117 (|has| |#1| (-517)))) (-1576 (($ $ (-856)) 102) (($ $ (-713)) 104)) (-3355 (($) 12 T CONST)) (-3363 (($) 14 T CONST)) (-2093 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) 97)) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4100 (($ $ |#1|) 126 (|has| |#1| (-341)))) (-4090 (($ $) 85) (($ $ $) 95)) (-4080 (($ $ $) 49)) (** (($ $ (-856)) 103) (($ $ (-713)) 100)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 88) (($ $ $) 65) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
+(((-1043 |#1| |#2|) (-884 |#1| (-497 |#2|) |#2|) (-977) (-789)) (T -1043))
+NIL
+(-884 |#1| (-497 |#2|) |#2|)
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2383 (((-592 |#2|) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-2351 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) NIL)) (-2211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2320 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) 115 (|has| |#1| (-37 (-385 (-525)))))) (-2382 (($ $) 147 (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) NIL T CONST)) (-2571 (($ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-4161 (((-887 |#1|) $ (-713)) NIL) (((-887 |#1|) $ (-713) (-713)) NIL)) (-2911 (((-108) $) NIL)) (-1535 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3973 (((-713) $ |#2|) NIL) (((-713) $ |#2| (-713)) NIL)) (-1985 (((-108) $) NIL)) (-3220 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1788 (((-108) $) NIL)) (-2352 (($ $ (-592 |#2|) (-592 (-497 |#2|))) NIL) (($ $ |#2| (-497 |#2|)) NIL) (($ |#1| (-497 |#2|)) NIL) (($ $ |#2| (-713)) 58) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-1415 (($ $) 113 (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-3451 (((-1074) $) NIL)) (-2650 (($ $ |#2|) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-385 (-525)))))) (-2012 (((-1038) $) NIL)) (-2843 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-385 (-525)))))) (-2182 (($ $ (-713)) 15)) (-1680 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1250 (($ $) 111 (|has| |#1| (-37 (-385 (-525)))))) (-2602 (($ $ |#2| $) 97) (($ $ (-592 |#2|) (-592 $)) 90) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL)) (-2523 (($ $ |#2|) 100) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-1587 (((-497 |#2|) $) NIL)) (-3870 (((-1 (-1072 |#3|) |#3|) (-592 |#2|) (-592 (-1072 |#3|))) 79)) (-2396 (($ $) 149 (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) 145 (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-3577 (($ $) 17)) (-1270 (((-798) $) 182) (($ (-525)) NIL) (($ |#1|) 44 (|has| |#1| (-160))) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#2|) 65) (($ |#3|) 63)) (-3468 ((|#1| $ (-497 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL) ((|#3| $ (-713)) 42)) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) NIL)) (-2438 (($ $) 155 (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2410 (($ $) 151 (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) 159 (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-2687 (($ $) 161 (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) 157 (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) 153 (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 18 T CONST)) (-3363 (($) 10 T CONST)) (-2093 (($ $ |#2|) NIL) (($ $ (-592 |#2|)) NIL) (($ $ |#2| (-713)) NIL) (($ $ (-592 |#2|) (-592 (-713))) NIL)) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ |#1|) 184 (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) 61)) (** (($ $ (-856)) NIL) (($ $ (-713)) 70) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 103 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 60) (($ $ (-385 (-525))) 108 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 106 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
+(((-1044 |#1| |#2| |#3|) (-13 (-683 |#1| |#2|) (-10 -8 (-15 -3468 (|#3| $ (-713))) (-15 -1270 ($ |#2|)) (-15 -1270 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3870 ((-1 (-1072 |#3|) |#3|) (-592 |#2|) (-592 (-1072 |#3|)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2650 ($ $ |#2| |#1|)) (-15 -2843 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-977) (-789) (-884 |#1| (-497 |#2|) |#2|)) (T -1044))
+((-3468 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *2 (-884 *4 (-497 *5) *5)) (-5 *1 (-1044 *4 *5 *2)) (-4 *4 (-977)) (-4 *5 (-789)))) (-1270 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *2 (-789)) (-5 *1 (-1044 *3 *2 *4)) (-4 *4 (-884 *3 (-497 *2) *2)))) (-1270 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *4 (-789)) (-5 *1 (-1044 *3 *4 *2)) (-4 *2 (-884 *3 (-497 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-977)) (-4 *4 (-789)) (-5 *1 (-1044 *3 *4 *2)) (-4 *2 (-884 *3 (-497 *4) *4)))) (-3870 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1072 *7))) (-4 *6 (-789)) (-4 *7 (-884 *5 (-497 *6) *6)) (-4 *5 (-977)) (-5 *2 (-1 (-1072 *7) *7)) (-5 *1 (-1044 *5 *6 *7)))) (-2650 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-4 *2 (-789)) (-5 *1 (-1044 *3 *2 *4)) (-4 *4 (-884 *3 (-497 *2) *2)))) (-2843 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1044 *4 *3 *5))) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-884 *4 (-497 *3) *3)) (-5 *1 (-1044 *4 *3 *5)))))
+(-13 (-683 |#1| |#2|) (-10 -8 (-15 -3468 (|#3| $ (-713))) (-15 -1270 ($ |#2|)) (-15 -1270 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3870 ((-1 (-1072 |#3|) |#3|) (-592 |#2|) (-592 (-1072 |#3|)))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2650 ($ $ |#2| |#1|)) (-15 -2843 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-1260 (((-108) $ $) 7)) (-4022 (((-592 (-2 (|:| -2849 $) (|:| -2409 (-592 |#4|)))) (-592 |#4|)) 85)) (-3221 (((-592 $) (-592 |#4|)) 86) (((-592 $) (-592 |#4|) (-108)) 111)) (-2383 (((-592 |#3|) $) 33)) (-3163 (((-108) $) 26)) (-3018 (((-108) $) 17 (|has| |#1| (-517)))) (-2220 (((-108) |#4| $) 101) (((-108) $) 97)) (-1952 ((|#4| |#4| $) 92)) (-3706 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 $))) |#4| $) 126)) (-2855 (((-2 (|:| |under| $) (|:| -2793 $) (|:| |upper| $)) $ |#3|) 27)) (-3330 (((-108) $ (-713)) 44)) (-3826 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4255))) (((-3 |#4| "failed") $ |#3|) 79)) (-2305 (($) 45 T CONST)) (-3393 (((-108) $) 22 (|has| |#1| (-517)))) (-3438 (((-108) $ $) 24 (|has| |#1| (-517)))) (-1396 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3291 (((-108) $) 25 (|has| |#1| (-517)))) (-4032 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1653 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1551 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-2591 (((-3 $ "failed") (-592 |#4|)) 36)) (-3898 (($ (-592 |#4|)) 35)) (-3121 (((-3 $ "failed") $) 82)) (-2457 ((|#4| |#4| $) 89)) (-3137 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4255)))) (-3496 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-4047 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-3129 ((|#4| |#4| $) 87)) (-3503 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4255))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4255))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2520 (((-2 (|:| -2849 (-592 |#4|)) (|:| -2409 (-592 |#4|))) $) 105)) (-3859 (((-108) |#4| $) 136)) (-2671 (((-108) |#4| $) 133)) (-2259 (((-108) |#4| $) 137) (((-108) $) 134)) (-3702 (((-592 |#4|) $) 52 (|has| $ (-6 -4255)))) (-4008 (((-108) |#4| $) 104) (((-108) $) 103)) (-1776 ((|#3| $) 34)) (-2482 (((-108) $ (-713)) 43)) (-1749 (((-592 |#4|) $) 53 (|has| $ (-6 -4255)))) (-2783 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#4| |#4|) $) 47)) (-2723 (((-592 |#3|) $) 32)) (-2069 (((-108) |#3| $) 31)) (-2957 (((-108) $ (-713)) 42)) (-3451 (((-1074) $) 9)) (-4038 (((-3 |#4| (-592 $)) |#4| |#4| $) 128)) (-3488 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 $))) |#4| |#4| $) 127)) (-1636 (((-3 |#4| "failed") $) 83)) (-1502 (((-592 $) |#4| $) 129)) (-4030 (((-3 (-108) (-592 $)) |#4| $) 132)) (-1521 (((-592 (-2 (|:| |val| (-108)) (|:| -1895 $))) |#4| $) 131) (((-108) |#4| $) 130)) (-3792 (((-592 $) |#4| $) 125) (((-592 $) (-592 |#4|) $) 124) (((-592 $) (-592 |#4|) (-592 $)) 123) (((-592 $) |#4| (-592 $)) 122)) (-2964 (($ |#4| $) 117) (($ (-592 |#4|) $) 116)) (-3231 (((-592 |#4|) $) 107)) (-3134 (((-108) |#4| $) 99) (((-108) $) 95)) (-3149 ((|#4| |#4| $) 90)) (-1363 (((-108) $ $) 110)) (-1410 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2505 (((-108) |#4| $) 100) (((-108) $) 96)) (-3417 ((|#4| |#4| $) 91)) (-2012 (((-1038) $) 10)) (-3110 (((-3 |#4| "failed") $) 84)) (-3207 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3599 (((-3 $ "failed") $ |#4|) 78)) (-2182 (($ $ |#4|) 77) (((-592 $) |#4| $) 115) (((-592 $) |#4| (-592 $)) 114) (((-592 $) (-592 |#4|) $) 113) (((-592 $) (-592 |#4|) (-592 $)) 112)) (-3006 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-3428 (((-108) $ $) 38)) (-2013 (((-108) $) 41)) (-2718 (($) 40)) (-1587 (((-713) $) 106)) (-2040 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4255)))) (-1451 (($ $) 39)) (-2749 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1279 (($ (-592 |#4|)) 60)) (-3422 (($ $ |#3|) 28)) (-1248 (($ $ |#3|) 30)) (-1963 (($ $) 88)) (-1847 (($ $ |#3|) 29)) (-1270 (((-798) $) 11) (((-592 |#4|) $) 37)) (-1970 (((-713) $) 76 (|has| |#3| (-346)))) (-2927 (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4213 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-3552 (((-592 $) |#4| $) 121) (((-592 $) |#4| (-592 $)) 120) (((-592 $) (-592 |#4|) $) 119) (((-592 $) (-592 |#4|) (-592 $)) 118)) (-3633 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4255)))) (-3726 (((-592 |#3|) $) 81)) (-4079 (((-108) |#4| $) 135)) (-1728 (((-108) |#3| $) 80)) (-3994 (((-108) $ $) 6)) (-3596 (((-713) $) 46 (|has| $ (-6 -4255)))))
+(((-1045 |#1| |#2| |#3| |#4|) (-131) (-429) (-735) (-789) (-991 |t#1| |t#2| |t#3|)) (T -1045))
+NIL
+(-13 (-1029 |t#1| |t#2| |t#3| |t#4|) (-726 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-798)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-726 |#1| |#2| |#3| |#4|) . T) ((-909 |#1| |#2| |#3| |#4|) . T) ((-996 |#1| |#2| |#3| |#4|) . T) ((-1020) . T) ((-1029 |#1| |#2| |#3| |#4|) . T) ((-1121 |#1| |#2| |#3| |#4|) . T) ((-1127) . T))
+((-3193 (((-592 |#2|) |#1|) 12)) (-2143 (((-592 |#2|) |#2| |#2| |#2| |#2| |#2|) 38) (((-592 |#2|) |#1|) 49)) (-3426 (((-592 |#2|) |#2| |#2| |#2|) 36) (((-592 |#2|) |#1|) 47)) (-4156 ((|#2| |#1|) 43)) (-3266 (((-2 (|:| |solns| (-592 |#2|)) (|:| |maps| (-592 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-4140 (((-592 |#2|) |#2| |#2|) 35) (((-592 |#2|) |#1|) 46)) (-3284 (((-592 |#2|) |#2| |#2| |#2| |#2|) 37) (((-592 |#2|) |#1|) 48)) (-3301 ((|#2| |#2| |#2| |#2| |#2| |#2|) 42)) (-3901 ((|#2| |#2| |#2| |#2|) 40)) (-2909 ((|#2| |#2| |#2|) 39)) (-2331 ((|#2| |#2| |#2| |#2| |#2|) 41)))
+(((-1046 |#1| |#2|) (-10 -7 (-15 -3193 ((-592 |#2|) |#1|)) (-15 -4156 (|#2| |#1|)) (-15 -3266 ((-2 (|:| |solns| (-592 |#2|)) (|:| |maps| (-592 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4140 ((-592 |#2|) |#1|)) (-15 -3426 ((-592 |#2|) |#1|)) (-15 -3284 ((-592 |#2|) |#1|)) (-15 -2143 ((-592 |#2|) |#1|)) (-15 -4140 ((-592 |#2|) |#2| |#2|)) (-15 -3426 ((-592 |#2|) |#2| |#2| |#2|)) (-15 -3284 ((-592 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2143 ((-592 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2909 (|#2| |#2| |#2|)) (-15 -3901 (|#2| |#2| |#2| |#2|)) (-15 -2331 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3301 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1149 |#2|) (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (T -1046))
+((-3301 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1046 *3 *2)) (-4 *3 (-1149 *2)))) (-2331 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1046 *3 *2)) (-4 *3 (-1149 *2)))) (-3901 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1046 *3 *2)) (-4 *3 (-1149 *2)))) (-2909 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1046 *3 *2)) (-4 *3 (-1149 *2)))) (-2143 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1046 *4 *3)) (-4 *4 (-1149 *3)))) (-3284 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1046 *4 *3)) (-4 *4 (-1149 *3)))) (-3426 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1046 *4 *3)) (-4 *4 (-1149 *3)))) (-4140 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *3)) (-5 *1 (-1046 *4 *3)) (-4 *4 (-1149 *3)))) (-2143 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1149 *4)))) (-3284 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1149 *4)))) (-3426 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1149 *4)))) (-4140 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1149 *4)))) (-3266 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-2 (|:| |solns| (-592 *5)) (|:| |maps| (-592 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1046 *3 *5)) (-4 *3 (-1149 *5)))) (-4156 (*1 *2 *3) (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *1 (-1046 *3 *2)) (-4 *3 (-1149 *2)))) (-3193 (*1 *2 *3) (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525))))))) (-5 *2 (-592 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1149 *4)))))
+(-10 -7 (-15 -3193 ((-592 |#2|) |#1|)) (-15 -4156 (|#2| |#1|)) (-15 -3266 ((-2 (|:| |solns| (-592 |#2|)) (|:| |maps| (-592 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4140 ((-592 |#2|) |#1|)) (-15 -3426 ((-592 |#2|) |#1|)) (-15 -3284 ((-592 |#2|) |#1|)) (-15 -2143 ((-592 |#2|) |#1|)) (-15 -4140 ((-592 |#2|) |#2| |#2|)) (-15 -3426 ((-592 |#2|) |#2| |#2| |#2|)) (-15 -3284 ((-592 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2143 ((-592 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2909 (|#2| |#2| |#2|)) (-15 -3901 (|#2| |#2| |#2| |#2|)) (-15 -2331 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3301 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-3609 (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|))))) 95) (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1091))) 94) (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|)))) 92) (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|))) (-592 (-1091))) 90) (((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|)))) 75) (((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|))) (-1091)) 76) (((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|))) 70) (((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|)) (-1091)) 59)) (-2074 (((-592 (-592 (-294 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1091))) 88) (((-592 (-294 |#1|)) (-385 (-887 |#1|)) (-1091)) 43)) (-1497 (((-1081 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-385 (-887 |#1|)) (-1091)) 98) (((-1081 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-273 (-385 (-887 |#1|))) (-1091)) 97)))
+(((-1047 |#1|) (-10 -7 (-15 -3609 ((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|)) (-1091))) (-15 -3609 ((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|)))) (-15 -3609 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|))) (-1091))) (-15 -3609 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|))))) (-15 -3609 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|))) (-592 (-1091)))) (-15 -3609 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|))))) (-15 -3609 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1091)))) (-15 -3609 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -2074 ((-592 (-294 |#1|)) (-385 (-887 |#1|)) (-1091))) (-15 -2074 ((-592 (-592 (-294 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1091)))) (-15 -1497 ((-1081 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-273 (-385 (-887 |#1|))) (-1091))) (-15 -1497 ((-1081 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-385 (-887 |#1|)) (-1091)))) (-13 (-286) (-789) (-138))) (T -1047))
+((-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-1081 (-592 (-294 *5)) (-592 (-273 (-294 *5))))) (-5 *1 (-1047 *5)))) (-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-887 *5)))) (-5 *4 (-1091)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-1081 (-592 (-294 *5)) (-592 (-273 (-294 *5))))) (-5 *1 (-1047 *5)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1091))) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-294 *5)))) (-5 *1 (-1047 *5)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-294 *5))) (-5 *1 (-1047 *5)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-592 (-273 (-385 (-887 *4))))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1047 *4)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-273 (-385 (-887 *5))))) (-5 *4 (-592 (-1091))) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1047 *5)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-592 (-385 (-887 *4)))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1047 *4)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1091))) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1047 *5)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-273 (-385 (-887 *4)))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1047 *4)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-273 (-385 (-887 *5)))) (-5 *4 (-1091)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1047 *5)))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1047 *4)))) (-3609 (*1 *2 *3 *4) (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1091)) (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1047 *5)))))
+(-10 -7 (-15 -3609 ((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|)) (-1091))) (-15 -3609 ((-592 (-273 (-294 |#1|))) (-385 (-887 |#1|)))) (-15 -3609 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|))) (-1091))) (-15 -3609 ((-592 (-273 (-294 |#1|))) (-273 (-385 (-887 |#1|))))) (-15 -3609 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|))) (-592 (-1091)))) (-15 -3609 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-385 (-887 |#1|))))) (-15 -3609 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1091)))) (-15 -3609 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -2074 ((-592 (-294 |#1|)) (-385 (-887 |#1|)) (-1091))) (-15 -2074 ((-592 (-592 (-294 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1091)))) (-15 -1497 ((-1081 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-273 (-385 (-887 |#1|))) (-1091))) (-15 -1497 ((-1081 (-592 (-294 |#1|)) (-592 (-273 (-294 |#1|)))) (-385 (-887 |#1|)) (-1091))))
+((-1886 (((-385 (-1087 (-294 |#1|))) (-1173 (-294 |#1|)) (-385 (-1087 (-294 |#1|))) (-525)) 29)) (-2576 (((-385 (-1087 (-294 |#1|))) (-385 (-1087 (-294 |#1|))) (-385 (-1087 (-294 |#1|))) (-385 (-1087 (-294 |#1|)))) 40)))
+(((-1048 |#1|) (-10 -7 (-15 -2576 ((-385 (-1087 (-294 |#1|))) (-385 (-1087 (-294 |#1|))) (-385 (-1087 (-294 |#1|))) (-385 (-1087 (-294 |#1|))))) (-15 -1886 ((-385 (-1087 (-294 |#1|))) (-1173 (-294 |#1|)) (-385 (-1087 (-294 |#1|))) (-525)))) (-13 (-517) (-789))) (T -1048))
+((-1886 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-385 (-1087 (-294 *5)))) (-5 *3 (-1173 (-294 *5))) (-5 *4 (-525)) (-4 *5 (-13 (-517) (-789))) (-5 *1 (-1048 *5)))) (-2576 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-385 (-1087 (-294 *3)))) (-4 *3 (-13 (-517) (-789))) (-5 *1 (-1048 *3)))))
+(-10 -7 (-15 -2576 ((-385 (-1087 (-294 |#1|))) (-385 (-1087 (-294 |#1|))) (-385 (-1087 (-294 |#1|))) (-385 (-1087 (-294 |#1|))))) (-15 -1886 ((-385 (-1087 (-294 |#1|))) (-1173 (-294 |#1|)) (-385 (-1087 (-294 |#1|))) (-525))))
+((-3193 (((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-294 |#1|))) (-592 (-1091))) 222) (((-592 (-273 (-294 |#1|))) (-294 |#1|) (-1091)) 20) (((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1091)) 26) (((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|))) 25) (((-592 (-273 (-294 |#1|))) (-294 |#1|)) 21)))
+(((-1049 |#1|) (-10 -7 (-15 -3193 ((-592 (-273 (-294 |#1|))) (-294 |#1|))) (-15 -3193 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)))) (-15 -3193 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1091))) (-15 -3193 ((-592 (-273 (-294 |#1|))) (-294 |#1|) (-1091))) (-15 -3193 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-294 |#1|))) (-592 (-1091))))) (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (T -1049))
+((-3193 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-1091))) (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1049 *5)) (-5 *3 (-592 (-273 (-294 *5)))))) (-3193 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1049 *5)) (-5 *3 (-294 *5)))) (-3193 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1049 *5)) (-5 *3 (-273 (-294 *5))))) (-3193 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1049 *4)) (-5 *3 (-273 (-294 *4))))) (-3193 (*1 *2 *3) (-12 (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138))) (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1049 *4)) (-5 *3 (-294 *4)))))
+(-10 -7 (-15 -3193 ((-592 (-273 (-294 |#1|))) (-294 |#1|))) (-15 -3193 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)))) (-15 -3193 ((-592 (-273 (-294 |#1|))) (-273 (-294 |#1|)) (-1091))) (-15 -3193 ((-592 (-273 (-294 |#1|))) (-294 |#1|) (-1091))) (-15 -3193 ((-592 (-592 (-273 (-294 |#1|)))) (-592 (-273 (-294 |#1|))) (-592 (-1091)))))
+((-2765 ((|#2| |#2|) 20 (|has| |#1| (-789))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 17)) (-2302 ((|#2| |#2|) 19 (|has| |#1| (-789))) ((|#2| |#2| (-1 (-108) |#1| |#1|)) 16)))
+(((-1050 |#1| |#2|) (-10 -7 (-15 -2302 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2765 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-789)) (PROGN (-15 -2302 (|#2| |#2|)) (-15 -2765 (|#2| |#2|))) |%noBranch|)) (-1127) (-13 (-558 (-525) |#1|) (-10 -7 (-6 -4255) (-6 -4256)))) (T -1050))
+((-2765 (*1 *2 *2) (-12 (-4 *3 (-789)) (-4 *3 (-1127)) (-5 *1 (-1050 *3 *2)) (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4255) (-6 -4256)))))) (-2302 (*1 *2 *2) (-12 (-4 *3 (-789)) (-4 *3 (-1127)) (-5 *1 (-1050 *3 *2)) (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4255) (-6 -4256)))))) (-2765 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-1050 *4 *2)) (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4255) (-6 -4256)))))) (-2302 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-1050 *4 *2)) (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4255) (-6 -4256)))))))
+(-10 -7 (-15 -2302 (|#2| |#2| (-1 (-108) |#1| |#1|))) (-15 -2765 (|#2| |#2| (-1 (-108) |#1| |#1|))) (IF (|has| |#1| (-789)) (PROGN (-15 -2302 (|#2| |#2|)) (-15 -2765 (|#2| |#2|))) |%noBranch|))
+((-1260 (((-108) $ $) NIL)) (-4130 (((-1080 3 |#1|) $) 108)) (-2989 (((-108) $) 72)) (-2530 (($ $ (-592 (-878 |#1|))) 20) (($ $ (-592 (-592 |#1|))) 75) (($ (-592 (-878 |#1|))) 74) (((-592 (-878 |#1|)) $) 73)) (-4184 (((-108) $) 41)) (-2261 (($ $ (-878 |#1|)) 46) (($ $ (-592 |#1|)) 51) (($ $ (-713)) 53) (($ (-878 |#1|)) 47) (((-878 |#1|) $) 45)) (-3192 (((-2 (|:| -1649 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713))) $) 106)) (-3381 (((-713) $) 26)) (-3332 (((-713) $) 25)) (-2593 (($ $ (-713) (-878 |#1|)) 39)) (-3749 (((-108) $) 82)) (-3558 (($ $ (-592 (-592 (-878 |#1|))) (-592 (-159)) (-159)) 89) (($ $ (-592 (-592 (-592 |#1|))) (-592 (-159)) (-159)) 91) (($ $ (-592 (-592 (-878 |#1|))) (-108) (-108)) 85) (($ $ (-592 (-592 (-592 |#1|))) (-108) (-108)) 93) (($ (-592 (-592 (-878 |#1|)))) 86) (($ (-592 (-592 (-878 |#1|))) (-108) (-108)) 87) (((-592 (-592 (-878 |#1|))) $) 84)) (-3743 (($ (-592 $)) 28) (($ $ $) 29)) (-1300 (((-592 (-159)) $) 103)) (-2589 (((-592 (-878 |#1|)) $) 97)) (-1475 (((-592 (-592 (-159))) $) 102)) (-3923 (((-592 (-592 (-592 (-878 |#1|)))) $) NIL)) (-2826 (((-592 (-592 (-592 (-713)))) $) 100)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3370 (((-713) $ (-592 (-878 |#1|))) 37)) (-3671 (((-108) $) 54)) (-3725 (($ $ (-592 (-878 |#1|))) 56) (($ $ (-592 (-592 |#1|))) 62) (($ (-592 (-878 |#1|))) 57) (((-592 (-878 |#1|)) $) 55)) (-3063 (($) 23) (($ (-1080 3 |#1|)) 24)) (-1451 (($ $) 35)) (-2947 (((-592 $) $) 34)) (-3682 (($ (-592 $)) 31)) (-4089 (((-592 $) $) 33)) (-1270 (((-798) $) 112)) (-3349 (((-108) $) 64)) (-4157 (($ $ (-592 (-878 |#1|))) 66) (($ $ (-592 (-592 |#1|))) 69) (($ (-592 (-878 |#1|))) 67) (((-592 (-878 |#1|)) $) 65)) (-2848 (($ $) 107)) (-3994 (((-108) $ $) NIL)))
+(((-1051 |#1|) (-1052 |#1|) (-977)) (T -1051))
+NIL
+(-1052 |#1|)
+((-1260 (((-108) $ $) 7)) (-4130 (((-1080 3 |#1|) $) 13)) (-2989 (((-108) $) 29)) (-2530 (($ $ (-592 (-878 |#1|))) 33) (($ $ (-592 (-592 |#1|))) 32) (($ (-592 (-878 |#1|))) 31) (((-592 (-878 |#1|)) $) 30)) (-4184 (((-108) $) 44)) (-2261 (($ $ (-878 |#1|)) 49) (($ $ (-592 |#1|)) 48) (($ $ (-713)) 47) (($ (-878 |#1|)) 46) (((-878 |#1|) $) 45)) (-3192 (((-2 (|:| -1649 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713))) $) 15)) (-3381 (((-713) $) 58)) (-3332 (((-713) $) 59)) (-2593 (($ $ (-713) (-878 |#1|)) 50)) (-3749 (((-108) $) 21)) (-3558 (($ $ (-592 (-592 (-878 |#1|))) (-592 (-159)) (-159)) 28) (($ $ (-592 (-592 (-592 |#1|))) (-592 (-159)) (-159)) 27) (($ $ (-592 (-592 (-878 |#1|))) (-108) (-108)) 26) (($ $ (-592 (-592 (-592 |#1|))) (-108) (-108)) 25) (($ (-592 (-592 (-878 |#1|)))) 24) (($ (-592 (-592 (-878 |#1|))) (-108) (-108)) 23) (((-592 (-592 (-878 |#1|))) $) 22)) (-3743 (($ (-592 $)) 57) (($ $ $) 56)) (-1300 (((-592 (-159)) $) 16)) (-2589 (((-592 (-878 |#1|)) $) 20)) (-1475 (((-592 (-592 (-159))) $) 17)) (-3923 (((-592 (-592 (-592 (-878 |#1|)))) $) 18)) (-2826 (((-592 (-592 (-592 (-713)))) $) 19)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-3370 (((-713) $ (-592 (-878 |#1|))) 51)) (-3671 (((-108) $) 39)) (-3725 (($ $ (-592 (-878 |#1|))) 43) (($ $ (-592 (-592 |#1|))) 42) (($ (-592 (-878 |#1|))) 41) (((-592 (-878 |#1|)) $) 40)) (-3063 (($) 61) (($ (-1080 3 |#1|)) 60)) (-1451 (($ $) 52)) (-2947 (((-592 $) $) 53)) (-3682 (($ (-592 $)) 55)) (-4089 (((-592 $) $) 54)) (-1270 (((-798) $) 11)) (-3349 (((-108) $) 34)) (-4157 (($ $ (-592 (-878 |#1|))) 38) (($ $ (-592 (-592 |#1|))) 37) (($ (-592 (-878 |#1|))) 36) (((-592 (-878 |#1|)) $) 35)) (-2848 (($ $) 14)) (-3994 (((-108) $ $) 6)))
+(((-1052 |#1|) (-131) (-977)) (T -1052))
+((-1270 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-798)))) (-3063 (*1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-977)))) (-3063 (*1 *1 *2) (-12 (-5 *2 (-1080 3 *3)) (-4 *3 (-977)) (-4 *1 (-1052 *3)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-3381 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-713)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1052 *3)) (-4 *3 (-977)))) (-3743 (*1 *1 *1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-977)))) (-3682 (*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1052 *3)) (-4 *3 (-977)))) (-4089 (*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-592 *1)) (-4 *1 (-1052 *3)))) (-2947 (*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-592 *1)) (-4 *1 (-1052 *3)))) (-1451 (*1 *1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-977)))) (-3370 (*1 *2 *1 *3) (-12 (-5 *3 (-592 (-878 *4))) (-4 *1 (-1052 *4)) (-4 *4 (-977)) (-5 *2 (-713)))) (-2593 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-878 *4)) (-4 *1 (-1052 *4)) (-4 *4 (-977)))) (-2261 (*1 *1 *1 *2) (-12 (-5 *2 (-878 *3)) (-4 *1 (-1052 *3)) (-4 *3 (-977)))) (-2261 (*1 *1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *1 (-1052 *3)) (-4 *3 (-977)))) (-2261 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1052 *3)) (-4 *3 (-977)))) (-2261 (*1 *1 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-977)) (-4 *1 (-1052 *3)))) (-2261 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-878 *3)))) (-4184 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-108)))) (-3725 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-977)))) (-3725 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-977)))) (-3725 (*1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1052 *3)))) (-3725 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3))))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-108)))) (-4157 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-977)))) (-4157 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-977)))) (-4157 (*1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1052 *3)))) (-4157 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3))))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-108)))) (-2530 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-977)))) (-2530 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-977)))) (-2530 (*1 *1 *2) (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1052 *3)))) (-2530 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3))))) (-2989 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-108)))) (-3558 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-592 (-878 *5)))) (-5 *3 (-592 (-159))) (-5 *4 (-159)) (-4 *1 (-1052 *5)) (-4 *5 (-977)))) (-3558 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-592 (-159))) (-5 *4 (-159)) (-4 *1 (-1052 *5)) (-4 *5 (-977)))) (-3558 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-592 (-878 *4)))) (-5 *3 (-108)) (-4 *1 (-1052 *4)) (-4 *4 (-977)))) (-3558 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-108)) (-4 *1 (-1052 *4)) (-4 *4 (-977)))) (-3558 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-878 *3)))) (-4 *3 (-977)) (-4 *1 (-1052 *3)))) (-3558 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-592 (-592 (-878 *4)))) (-5 *3 (-108)) (-4 *4 (-977)) (-4 *1 (-1052 *4)))) (-3558 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-592 (-878 *3)))))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-108)))) (-2589 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3))))) (-2826 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-592 (-592 (-713))))))) (-3923 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-592 (-592 (-878 *3))))))) (-1475 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-592 (-159)))))) (-1300 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-159))))) (-3192 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -1649 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713)))))) (-2848 (*1 *1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-977)))) (-4130 (*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-1080 3 *3)))))
+(-13 (-1020) (-10 -8 (-15 -3063 ($)) (-15 -3063 ($ (-1080 3 |t#1|))) (-15 -3332 ((-713) $)) (-15 -3381 ((-713) $)) (-15 -3743 ($ (-592 $))) (-15 -3743 ($ $ $)) (-15 -3682 ($ (-592 $))) (-15 -4089 ((-592 $) $)) (-15 -2947 ((-592 $) $)) (-15 -1451 ($ $)) (-15 -3370 ((-713) $ (-592 (-878 |t#1|)))) (-15 -2593 ($ $ (-713) (-878 |t#1|))) (-15 -2261 ($ $ (-878 |t#1|))) (-15 -2261 ($ $ (-592 |t#1|))) (-15 -2261 ($ $ (-713))) (-15 -2261 ($ (-878 |t#1|))) (-15 -2261 ((-878 |t#1|) $)) (-15 -4184 ((-108) $)) (-15 -3725 ($ $ (-592 (-878 |t#1|)))) (-15 -3725 ($ $ (-592 (-592 |t#1|)))) (-15 -3725 ($ (-592 (-878 |t#1|)))) (-15 -3725 ((-592 (-878 |t#1|)) $)) (-15 -3671 ((-108) $)) (-15 -4157 ($ $ (-592 (-878 |t#1|)))) (-15 -4157 ($ $ (-592 (-592 |t#1|)))) (-15 -4157 ($ (-592 (-878 |t#1|)))) (-15 -4157 ((-592 (-878 |t#1|)) $)) (-15 -3349 ((-108) $)) (-15 -2530 ($ $ (-592 (-878 |t#1|)))) (-15 -2530 ($ $ (-592 (-592 |t#1|)))) (-15 -2530 ($ (-592 (-878 |t#1|)))) (-15 -2530 ((-592 (-878 |t#1|)) $)) (-15 -2989 ((-108) $)) (-15 -3558 ($ $ (-592 (-592 (-878 |t#1|))) (-592 (-159)) (-159))) (-15 -3558 ($ $ (-592 (-592 (-592 |t#1|))) (-592 (-159)) (-159))) (-15 -3558 ($ $ (-592 (-592 (-878 |t#1|))) (-108) (-108))) (-15 -3558 ($ $ (-592 (-592 (-592 |t#1|))) (-108) (-108))) (-15 -3558 ($ (-592 (-592 (-878 |t#1|))))) (-15 -3558 ($ (-592 (-592 (-878 |t#1|))) (-108) (-108))) (-15 -3558 ((-592 (-592 (-878 |t#1|))) $)) (-15 -3749 ((-108) $)) (-15 -2589 ((-592 (-878 |t#1|)) $)) (-15 -2826 ((-592 (-592 (-592 (-713)))) $)) (-15 -3923 ((-592 (-592 (-592 (-878 |t#1|)))) $)) (-15 -1475 ((-592 (-592 (-159))) $)) (-15 -1300 ((-592 (-159)) $)) (-15 -3192 ((-2 (|:| -1649 (-713)) (|:| |curves| (-713)) (|:| |polygons| (-713)) (|:| |constructs| (-713))) $)) (-15 -2848 ($ $)) (-15 -4130 ((-1080 3 |t#1|) $)) (-15 -1270 ((-798) $))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-3487 (((-592 (-1096)) (-1074)) 9)))
+(((-1053) (-10 -7 (-15 -3487 ((-592 (-1096)) (-1074))))) (T -1053))
+((-3487 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-592 (-1096))) (-5 *1 (-1053)))))
+(-10 -7 (-15 -3487 ((-592 (-1096)) (-1074))))
+((-1714 (((-1178) (-592 (-798))) 23) (((-1178) (-798)) 22)) (-1492 (((-1178) (-592 (-798))) 21) (((-1178) (-798)) 20)) (-2350 (((-1178) (-592 (-798))) 19) (((-1178) (-798)) 11) (((-1178) (-1074) (-798)) 17)))
+(((-1054) (-10 -7 (-15 -2350 ((-1178) (-1074) (-798))) (-15 -2350 ((-1178) (-798))) (-15 -1492 ((-1178) (-798))) (-15 -1714 ((-1178) (-798))) (-15 -2350 ((-1178) (-592 (-798)))) (-15 -1492 ((-1178) (-592 (-798)))) (-15 -1714 ((-1178) (-592 (-798)))))) (T -1054))
+((-1714 (*1 *2 *3) (-12 (-5 *3 (-592 (-798))) (-5 *2 (-1178)) (-5 *1 (-1054)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-592 (-798))) (-5 *2 (-1178)) (-5 *1 (-1054)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-592 (-798))) (-5 *2 (-1178)) (-5 *1 (-1054)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1178)) (-5 *1 (-1054)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1178)) (-5 *1 (-1054)))) (-2350 (*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1178)) (-5 *1 (-1054)))) (-2350 (*1 *2 *3 *4) (-12 (-5 *3 (-1074)) (-5 *4 (-798)) (-5 *2 (-1178)) (-5 *1 (-1054)))))
+(-10 -7 (-15 -2350 ((-1178) (-1074) (-798))) (-15 -2350 ((-1178) (-798))) (-15 -1492 ((-1178) (-798))) (-15 -1714 ((-1178) (-798))) (-15 -2350 ((-1178) (-592 (-798)))) (-15 -1492 ((-1178) (-592 (-798)))) (-15 -1714 ((-1178) (-592 (-798)))))
+((-3998 (($ $ $) 10)) (-3161 (($ $) 9)) (-2585 (($ $ $) 13)) (-2839 (($ $ $) 15)) (-2390 (($ $ $) 12)) (-1368 (($ $ $) 14)) (-2391 (($ $) 17)) (-2979 (($ $) 16)) (-2086 (($ $) 6)) (-1908 (($ $ $) 11) (($ $) 7)) (-1791 (($ $ $) 8)))
+(((-1055) (-131)) (T -1055))
+((-2391 (*1 *1 *1) (-4 *1 (-1055))) (-2979 (*1 *1 *1) (-4 *1 (-1055))) (-2839 (*1 *1 *1 *1) (-4 *1 (-1055))) (-1368 (*1 *1 *1 *1) (-4 *1 (-1055))) (-2585 (*1 *1 *1 *1) (-4 *1 (-1055))) (-2390 (*1 *1 *1 *1) (-4 *1 (-1055))) (-1908 (*1 *1 *1 *1) (-4 *1 (-1055))) (-3998 (*1 *1 *1 *1) (-4 *1 (-1055))) (-3161 (*1 *1 *1) (-4 *1 (-1055))) (-1791 (*1 *1 *1 *1) (-4 *1 (-1055))) (-1908 (*1 *1 *1) (-4 *1 (-1055))) (-2086 (*1 *1 *1) (-4 *1 (-1055))))
+(-13 (-10 -8 (-15 -2086 ($ $)) (-15 -1908 ($ $)) (-15 -1791 ($ $ $)) (-15 -3161 ($ $)) (-15 -3998 ($ $ $)) (-15 -1908 ($ $ $)) (-15 -2390 ($ $ $)) (-15 -2585 ($ $ $)) (-15 -1368 ($ $ $)) (-15 -2839 ($ $ $)) (-15 -2979 ($ $)) (-15 -2391 ($ $))))
+((-1260 (((-108) $ $) 41)) (-3352 ((|#1| $) 15)) (-1667 (((-108) $ $ (-1 (-108) |#2| |#2|)) 36)) (-1583 (((-108) $) 17)) (-3512 (($ $ |#1|) 28)) (-4077 (($ $ (-108)) 30)) (-1556 (($ $) 31)) (-2704 (($ $ |#2|) 29)) (-3451 (((-1074) $) NIL)) (-3239 (((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|)) 35)) (-2012 (((-1038) $) NIL)) (-2013 (((-108) $) 14)) (-2718 (($) 10)) (-1451 (($ $) 27)) (-1279 (($ |#1| |#2| (-108)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -1895 |#2|))) 21) (((-592 $) (-592 (-2 (|:| |val| |#1|) (|:| -1895 |#2|)))) 24) (((-592 $) |#1| (-592 |#2|)) 26)) (-1347 ((|#2| $) 16)) (-1270 (((-798) $) 50)) (-3994 (((-108) $ $) 39)))
+(((-1056 |#1| |#2|) (-13 (-1020) (-10 -8 (-15 -2718 ($)) (-15 -2013 ((-108) $)) (-15 -3352 (|#1| $)) (-15 -1347 (|#2| $)) (-15 -1583 ((-108) $)) (-15 -1279 ($ |#1| |#2| (-108))) (-15 -1279 ($ |#1| |#2|)) (-15 -1279 ($ (-2 (|:| |val| |#1|) (|:| -1895 |#2|)))) (-15 -1279 ((-592 $) (-592 (-2 (|:| |val| |#1|) (|:| -1895 |#2|))))) (-15 -1279 ((-592 $) |#1| (-592 |#2|))) (-15 -1451 ($ $)) (-15 -3512 ($ $ |#1|)) (-15 -2704 ($ $ |#2|)) (-15 -4077 ($ $ (-108))) (-15 -1556 ($ $)) (-15 -3239 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -1667 ((-108) $ $ (-1 (-108) |#2| |#2|))))) (-13 (-1020) (-33)) (-13 (-1020) (-33))) (T -1056))
+((-2718 (*1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-2013 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))) (-3352 (*1 *2 *1) (-12 (-4 *2 (-13 (-1020) (-33))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-13 (-1020) (-33))))) (-1347 (*1 *2 *1) (-12 (-4 *2 (-13 (-1020) (-33))) (-5 *1 (-1056 *3 *2)) (-4 *3 (-13 (-1020) (-33))))) (-1583 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))) (-1279 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-1279 (*1 *1 *2 *3) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-1279 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1895 *4))) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1056 *3 *4)))) (-1279 (*1 *2 *3) (-12 (-5 *3 (-592 (-2 (|:| |val| *4) (|:| -1895 *5)))) (-4 *4 (-13 (-1020) (-33))) (-4 *5 (-13 (-1020) (-33))) (-5 *2 (-592 (-1056 *4 *5))) (-5 *1 (-1056 *4 *5)))) (-1279 (*1 *2 *3 *4) (-12 (-5 *4 (-592 *5)) (-4 *5 (-13 (-1020) (-33))) (-5 *2 (-592 (-1056 *3 *5))) (-5 *1 (-1056 *3 *5)) (-4 *3 (-13 (-1020) (-33))))) (-1451 (*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-3512 (*1 *1 *1 *2) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-2704 (*1 *1 *1 *2) (-12 (-5 *1 (-1056 *3 *2)) (-4 *3 (-13 (-1020) (-33))) (-4 *2 (-13 (-1020) (-33))))) (-4077 (*1 *1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))) (-1556 (*1 *1 *1) (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-3239 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1020) (-33))) (-4 *6 (-13 (-1020) (-33))) (-5 *2 (-108)) (-5 *1 (-1056 *5 *6)))) (-1667 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1020) (-33))) (-5 *2 (-108)) (-5 *1 (-1056 *4 *5)) (-4 *4 (-13 (-1020) (-33))))))
+(-13 (-1020) (-10 -8 (-15 -2718 ($)) (-15 -2013 ((-108) $)) (-15 -3352 (|#1| $)) (-15 -1347 (|#2| $)) (-15 -1583 ((-108) $)) (-15 -1279 ($ |#1| |#2| (-108))) (-15 -1279 ($ |#1| |#2|)) (-15 -1279 ($ (-2 (|:| |val| |#1|) (|:| -1895 |#2|)))) (-15 -1279 ((-592 $) (-592 (-2 (|:| |val| |#1|) (|:| -1895 |#2|))))) (-15 -1279 ((-592 $) |#1| (-592 |#2|))) (-15 -1451 ($ $)) (-15 -3512 ($ $ |#1|)) (-15 -2704 ($ $ |#2|)) (-15 -4077 ($ $ (-108))) (-15 -1556 ($ $)) (-15 -3239 ((-108) $ $ (-1 (-108) |#1| |#1|) (-1 (-108) |#2| |#2|))) (-15 -1667 ((-108) $ $ (-1 (-108) |#2| |#2|)))))
+((-1260 (((-108) $ $) NIL (|has| (-1056 |#1| |#2|) (-1020)))) (-3352 (((-1056 |#1| |#2|) $) 25)) (-1878 (($ $) 76)) (-2035 (((-108) (-1056 |#1| |#2|) $ (-1 (-108) |#2| |#2|)) 85)) (-2360 (($ $ $ (-592 (-1056 |#1| |#2|))) 90) (($ $ $ (-592 (-1056 |#1| |#2|)) (-1 (-108) |#2| |#2|)) 91)) (-3330 (((-108) $ (-713)) NIL)) (-1545 (((-1056 |#1| |#2|) $ (-1056 |#1| |#2|)) 43 (|has| $ (-6 -4256)))) (-1429 (((-1056 |#1| |#2|) $ "value" (-1056 |#1| |#2|)) NIL (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) 41 (|has| $ (-6 -4256)))) (-2305 (($) NIL T CONST)) (-1354 (((-592 (-2 (|:| |val| |#1|) (|:| -1895 |#2|))) $) 80)) (-2592 (($ (-1056 |#1| |#2|) $) 39)) (-1614 (($ (-1056 |#1| |#2|) $) 31)) (-3702 (((-592 (-1056 |#1| |#2|)) $) NIL (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) 51)) (-3240 (((-108) (-1056 |#1| |#2|) $) 82)) (-2553 (((-108) $ $) NIL (|has| (-1056 |#1| |#2|) (-1020)))) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 (-1056 |#1| |#2|)) $) 55 (|has| $ (-6 -4255)))) (-2783 (((-108) (-1056 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-1056 |#1| |#2|) (-1020))))) (-2622 (($ (-1 (-1056 |#1| |#2|) (-1056 |#1| |#2|)) $) 47 (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-1056 |#1| |#2|) (-1056 |#1| |#2|)) $) 46)) (-2957 (((-108) $ (-713)) NIL)) (-2647 (((-592 (-1056 |#1| |#2|)) $) 53)) (-3365 (((-108) $) 42)) (-3451 (((-1074) $) NIL (|has| (-1056 |#1| |#2|) (-1020)))) (-2012 (((-1038) $) NIL (|has| (-1056 |#1| |#2|) (-1020)))) (-2469 (((-3 $ "failed") $) 75)) (-3006 (((-108) (-1 (-108) (-1056 |#1| |#2|)) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-1056 |#1| |#2|)))) NIL (-12 (|has| (-1056 |#1| |#2|) (-288 (-1056 |#1| |#2|))) (|has| (-1056 |#1| |#2|) (-1020)))) (($ $ (-273 (-1056 |#1| |#2|))) NIL (-12 (|has| (-1056 |#1| |#2|) (-288 (-1056 |#1| |#2|))) (|has| (-1056 |#1| |#2|) (-1020)))) (($ $ (-1056 |#1| |#2|) (-1056 |#1| |#2|)) NIL (-12 (|has| (-1056 |#1| |#2|) (-288 (-1056 |#1| |#2|))) (|has| (-1056 |#1| |#2|) (-1020)))) (($ $ (-592 (-1056 |#1| |#2|)) (-592 (-1056 |#1| |#2|))) NIL (-12 (|has| (-1056 |#1| |#2|) (-288 (-1056 |#1| |#2|))) (|has| (-1056 |#1| |#2|) (-1020))))) (-3428 (((-108) $ $) 50)) (-2013 (((-108) $) 22)) (-2718 (($) 24)) (-3410 (((-1056 |#1| |#2|) $ "value") NIL)) (-3294 (((-525) $ $) NIL)) (-1698 (((-108) $) 44)) (-2040 (((-713) (-1 (-108) (-1056 |#1| |#2|)) $) NIL (|has| $ (-6 -4255))) (((-713) (-1056 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-1056 |#1| |#2|) (-1020))))) (-1451 (($ $) 49)) (-1279 (($ (-1056 |#1| |#2|)) 9) (($ |#1| |#2| (-592 $)) 12) (($ |#1| |#2| (-592 (-1056 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-592 |#2|)) 17)) (-3539 (((-592 |#2|) $) 81)) (-1270 (((-798) $) 73 (|has| (-1056 |#1| |#2|) (-566 (-798))))) (-3320 (((-592 $) $) 28)) (-2240 (((-108) $ $) NIL (|has| (-1056 |#1| |#2|) (-1020)))) (-3633 (((-108) (-1 (-108) (-1056 |#1| |#2|)) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 64 (|has| (-1056 |#1| |#2|) (-1020)))) (-3596 (((-713) $) 58 (|has| $ (-6 -4255)))))
+(((-1057 |#1| |#2|) (-13 (-942 (-1056 |#1| |#2|)) (-10 -8 (-6 -4256) (-6 -4255) (-15 -2469 ((-3 $ "failed") $)) (-15 -1878 ($ $)) (-15 -1279 ($ (-1056 |#1| |#2|))) (-15 -1279 ($ |#1| |#2| (-592 $))) (-15 -1279 ($ |#1| |#2| (-592 (-1056 |#1| |#2|)))) (-15 -1279 ($ |#1| |#2| |#1| (-592 |#2|))) (-15 -3539 ((-592 |#2|) $)) (-15 -1354 ((-592 (-2 (|:| |val| |#1|) (|:| -1895 |#2|))) $)) (-15 -3240 ((-108) (-1056 |#1| |#2|) $)) (-15 -2035 ((-108) (-1056 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -1614 ($ (-1056 |#1| |#2|) $)) (-15 -2592 ($ (-1056 |#1| |#2|) $)) (-15 -2360 ($ $ $ (-592 (-1056 |#1| |#2|)))) (-15 -2360 ($ $ $ (-592 (-1056 |#1| |#2|)) (-1 (-108) |#2| |#2|))))) (-13 (-1020) (-33)) (-13 (-1020) (-33))) (T -1057))
+((-2469 (*1 *1 *1) (|partial| -12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-1878 (*1 *1 *1) (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))))) (-1279 (*1 *1 *2) (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1057 *3 *4)))) (-1279 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-592 (-1057 *2 *3))) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))) (-5 *1 (-1057 *2 *3)))) (-1279 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-592 (-1056 *2 *3))) (-4 *2 (-13 (-1020) (-33))) (-4 *3 (-13 (-1020) (-33))) (-5 *1 (-1057 *2 *3)))) (-1279 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-1020) (-33))) (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33))))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-592 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))) (-1354 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4)))) (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))) (-3240 (*1 *2 *3 *1) (-12 (-5 *3 (-1056 *4 *5)) (-4 *4 (-13 (-1020) (-33))) (-4 *5 (-13 (-1020) (-33))) (-5 *2 (-108)) (-5 *1 (-1057 *4 *5)))) (-2035 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1056 *5 *6)) (-5 *4 (-1 (-108) *6 *6)) (-4 *5 (-13 (-1020) (-33))) (-4 *6 (-13 (-1020) (-33))) (-5 *2 (-108)) (-5 *1 (-1057 *5 *6)))) (-1614 (*1 *1 *2 *1) (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1057 *3 *4)))) (-2592 (*1 *1 *2 *1) (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1057 *3 *4)))) (-2360 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-592 (-1056 *3 *4))) (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1057 *3 *4)))) (-2360 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-1056 *4 *5))) (-5 *3 (-1 (-108) *5 *5)) (-4 *4 (-13 (-1020) (-33))) (-4 *5 (-13 (-1020) (-33))) (-5 *1 (-1057 *4 *5)))))
+(-13 (-942 (-1056 |#1| |#2|)) (-10 -8 (-6 -4256) (-6 -4255) (-15 -2469 ((-3 $ "failed") $)) (-15 -1878 ($ $)) (-15 -1279 ($ (-1056 |#1| |#2|))) (-15 -1279 ($ |#1| |#2| (-592 $))) (-15 -1279 ($ |#1| |#2| (-592 (-1056 |#1| |#2|)))) (-15 -1279 ($ |#1| |#2| |#1| (-592 |#2|))) (-15 -3539 ((-592 |#2|) $)) (-15 -1354 ((-592 (-2 (|:| |val| |#1|) (|:| -1895 |#2|))) $)) (-15 -3240 ((-108) (-1056 |#1| |#2|) $)) (-15 -2035 ((-108) (-1056 |#1| |#2|) $ (-1 (-108) |#2| |#2|))) (-15 -1614 ($ (-1056 |#1| |#2|) $)) (-15 -2592 ($ (-1056 |#1| |#2|) $)) (-15 -2360 ($ $ $ (-592 (-1056 |#1| |#2|)))) (-15 -2360 ($ $ $ (-592 (-1056 |#1| |#2|)) (-1 (-108) |#2| |#2|)))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-3106 (($ $) NIL)) (-3029 ((|#2| $) NIL)) (-2079 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2942 (($ (-632 |#2|)) 47)) (-2077 (((-108) $) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-2975 (($ |#2|) 9)) (-2305 (($) NIL T CONST)) (-1333 (($ $) 60 (|has| |#2| (-286)))) (-1616 (((-220 |#1| |#2|) $ (-525)) 34)) (-2591 (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 |#2| "failed") $) NIL)) (-3898 (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) ((|#2| $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) 74)) (-3318 (((-713) $) 62 (|has| |#2| (-517)))) (-2570 ((|#2| $ (-525) (-525)) NIL)) (-3702 (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-1985 (((-108) $) NIL)) (-1841 (((-713) $) 64 (|has| |#2| (-517)))) (-1615 (((-592 (-220 |#1| |#2|)) $) 68 (|has| |#2| (-517)))) (-1857 (((-713) $) NIL)) (-1869 (((-713) $) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-1641 ((|#2| $) 58 (|has| |#2| (-6 (-4257 "*"))))) (-1964 (((-525) $) NIL)) (-3779 (((-525) $) NIL)) (-1749 (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1987 (((-525) $) NIL)) (-3948 (((-525) $) NIL)) (-1660 (($ (-592 (-592 |#2|))) 29)) (-2622 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2973 (((-592 (-592 |#2|)) $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL)) (-2933 (((-3 $ "failed") $) 71 (|has| |#2| (-341)))) (-2012 (((-1038) $) NIL)) (-1680 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517)))) (-3006 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#2| $ (-525) (-525) |#2|) NIL) ((|#2| $ (-525) (-525)) NIL)) (-2523 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1091)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-2212 ((|#2| $) NIL)) (-3675 (($ (-592 |#2|)) 42)) (-2559 (((-108) $) NIL)) (-1444 (((-220 |#1| |#2|) $) NIL)) (-3176 ((|#2| $) 56 (|has| |#2| (-6 (-4257 "*"))))) (-2040 (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1451 (($ $) NIL)) (-2749 (((-501) $) 83 (|has| |#2| (-567 (-501))))) (-3701 (((-220 |#1| |#2|) $ (-525)) 36)) (-1270 (((-798) $) 39) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#2| (-968 (-385 (-525))))) (($ |#2|) NIL) (((-632 |#2|) $) 44)) (-2104 (((-713)) 17)) (-3633 (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-1366 (((-108) $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 11 T CONST)) (-3363 (($) 14 T CONST)) (-2093 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1091)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-713)) NIL (|has| |#2| (-213))) (($ $) NIL (|has| |#2| (-213)))) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) 54) (($ $ (-525)) 73 (|has| |#2| (-341)))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-220 |#1| |#2|) $ (-220 |#1| |#2|)) 50) (((-220 |#1| |#2|) (-220 |#1| |#2|) $) 52)) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-1058 |#1| |#2|) (-13 (-1041 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-10 -8 (-15 -3106 ($ $)) (-15 -2942 ($ (-632 |#2|))) (-15 -1270 ((-632 |#2|) $)) (IF (|has| |#2| (-6 (-4257 "*"))) (-6 -4244) |%noBranch|) (IF (|has| |#2| (-6 (-4257 "*"))) (IF (|has| |#2| (-6 -4252)) (-6 -4252) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|))) (-713) (-977)) (T -1058))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-632 *4)) (-5 *1 (-1058 *3 *4)) (-14 *3 (-713)) (-4 *4 (-977)))) (-3106 (*1 *1 *1) (-12 (-5 *1 (-1058 *2 *3)) (-14 *2 (-713)) (-4 *3 (-977)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-632 *4)) (-4 *4 (-977)) (-5 *1 (-1058 *3 *4)) (-14 *3 (-713)))))
+(-13 (-1041 |#1| |#2| (-220 |#1| |#2|) (-220 |#1| |#2|)) (-566 (-632 |#2|)) (-10 -8 (-15 -3106 ($ $)) (-15 -2942 ($ (-632 |#2|))) (-15 -1270 ((-632 |#2|) $)) (IF (|has| |#2| (-6 (-4257 "*"))) (-6 -4244) |%noBranch|) (IF (|has| |#2| (-6 (-4257 "*"))) (IF (|has| |#2| (-6 -4252)) (-6 -4252) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-567 (-501))) (-6 (-567 (-501))) |%noBranch|)))
+((-2374 (($ $) 19)) (-3446 (($ $ (-135)) 10) (($ $ (-132)) 14)) (-1559 (((-108) $ $) 24)) (-2630 (($ $) 17)) (-3410 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) NIL) (($ $ (-1140 (-525))) NIL) (($ $ $) 29)) (-1270 (($ (-135)) 27) (((-798) $) NIL)))
+(((-1059 |#1|) (-10 -8 (-15 -1270 ((-798) |#1|)) (-15 -3410 (|#1| |#1| |#1|)) (-15 -3446 (|#1| |#1| (-132))) (-15 -3446 (|#1| |#1| (-135))) (-15 -1270 (|#1| (-135))) (-15 -1559 ((-108) |#1| |#1|)) (-15 -2374 (|#1| |#1|)) (-15 -2630 (|#1| |#1|)) (-15 -3410 (|#1| |#1| (-1140 (-525)))) (-15 -3410 ((-135) |#1| (-525))) (-15 -3410 ((-135) |#1| (-525) (-135)))) (-1060)) (T -1059))
+NIL
+(-10 -8 (-15 -1270 ((-798) |#1|)) (-15 -3410 (|#1| |#1| |#1|)) (-15 -3446 (|#1| |#1| (-132))) (-15 -3446 (|#1| |#1| (-135))) (-15 -1270 (|#1| (-135))) (-15 -1559 ((-108) |#1| |#1|)) (-15 -2374 (|#1| |#1|)) (-15 -2630 (|#1| |#1|)) (-15 -3410 (|#1| |#1| (-1140 (-525)))) (-15 -3410 ((-135) |#1| (-525))) (-15 -3410 ((-135) |#1| (-525) (-135))))
+((-1260 (((-108) $ $) 19 (|has| (-135) (-1020)))) (-1329 (($ $) 120)) (-2374 (($ $) 121)) (-3446 (($ $ (-135)) 108) (($ $ (-132)) 107)) (-2782 (((-1178) $ (-525) (-525)) 40 (|has| $ (-6 -4256)))) (-1537 (((-108) $ $) 118)) (-1514 (((-108) $ $ (-525)) 117)) (-2223 (((-592 $) $ (-135)) 110) (((-592 $) $ (-132)) 109)) (-2151 (((-108) (-1 (-108) (-135) (-135)) $) 98) (((-108) $) 92 (|has| (-135) (-789)))) (-2549 (($ (-1 (-108) (-135) (-135)) $) 89 (|has| $ (-6 -4256))) (($ $) 88 (-12 (|has| (-135) (-789)) (|has| $ (-6 -4256))))) (-2855 (($ (-1 (-108) (-135) (-135)) $) 99) (($ $) 93 (|has| (-135) (-789)))) (-3330 (((-108) $ (-713)) 8)) (-1429 (((-135) $ (-525) (-135)) 52 (|has| $ (-6 -4256))) (((-135) $ (-1140 (-525)) (-135)) 58 (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) (-135)) $) 75 (|has| $ (-6 -4255)))) (-2305 (($) 7 T CONST)) (-2871 (($ $ (-135)) 104) (($ $ (-132)) 103)) (-3559 (($ $) 90 (|has| $ (-6 -4256)))) (-3620 (($ $) 100)) (-3329 (($ $ (-1140 (-525)) $) 114)) (-3137 (($ $) 78 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ (-135) $) 77 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) (-135)) $) 74 (|has| $ (-6 -4255)))) (-3503 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) 76 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4255)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) 73 (|has| $ (-6 -4255))) (((-135) (-1 (-135) (-135) (-135)) $) 72 (|has| $ (-6 -4255)))) (-2632 (((-135) $ (-525) (-135)) 53 (|has| $ (-6 -4256)))) (-2570 (((-135) $ (-525)) 51)) (-1559 (((-108) $ $) 119)) (-1916 (((-525) (-1 (-108) (-135)) $) 97) (((-525) (-135) $) 96 (|has| (-135) (-1020))) (((-525) (-135) $ (-525)) 95 (|has| (-135) (-1020))) (((-525) $ $ (-525)) 113) (((-525) (-132) $ (-525)) 112)) (-3702 (((-592 (-135)) $) 30 (|has| $ (-6 -4255)))) (-3489 (($ (-713) (-135)) 69)) (-2482 (((-108) $ (-713)) 9)) (-2710 (((-525) $) 43 (|has| (-525) (-789)))) (-2371 (($ $ $) 87 (|has| (-135) (-789)))) (-3743 (($ (-1 (-108) (-135) (-135)) $ $) 101) (($ $ $) 94 (|has| (-135) (-789)))) (-1749 (((-592 (-135)) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) (-135) $) 27 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4255))))) (-3478 (((-525) $) 44 (|has| (-525) (-789)))) (-2535 (($ $ $) 86 (|has| (-135) (-789)))) (-2393 (((-108) $ $ (-135)) 115)) (-3549 (((-713) $ $ (-135)) 116)) (-2622 (($ (-1 (-135) (-135)) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-135) (-135)) $) 35) (($ (-1 (-135) (-135) (-135)) $ $) 64)) (-2365 (($ $) 122)) (-2630 (($ $) 123)) (-2957 (((-108) $ (-713)) 10)) (-2880 (($ $ (-135)) 106) (($ $ (-132)) 105)) (-3451 (((-1074) $) 22 (|has| (-135) (-1020)))) (-2683 (($ (-135) $ (-525)) 60) (($ $ $ (-525)) 59)) (-4142 (((-592 (-525)) $) 46)) (-3845 (((-108) (-525) $) 47)) (-2012 (((-1038) $) 21 (|has| (-135) (-1020)))) (-3110 (((-135) $) 42 (|has| (-525) (-789)))) (-3207 (((-3 (-135) "failed") (-1 (-108) (-135)) $) 71)) (-2042 (($ $ (-135)) 41 (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) (-135)) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-135)))) 26 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-273 (-135))) 25 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-135) (-135)) 24 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-592 (-135)) (-592 (-135))) 23 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))))) (-3428 (((-108) $ $) 14)) (-4101 (((-108) (-135) $) 45 (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020))))) (-1777 (((-592 (-135)) $) 48)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 (((-135) $ (-525) (-135)) 50) (((-135) $ (-525)) 49) (($ $ (-1140 (-525))) 63) (($ $ $) 102)) (-3157 (($ $ (-525)) 62) (($ $ (-1140 (-525))) 61)) (-2040 (((-713) (-1 (-108) (-135)) $) 31 (|has| $ (-6 -4255))) (((-713) (-135) $) 28 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4255))))) (-3216 (($ $ $ (-525)) 91 (|has| $ (-6 -4256)))) (-1451 (($ $) 13)) (-2749 (((-501) $) 79 (|has| (-135) (-567 (-501))))) (-1279 (($ (-592 (-135))) 70)) (-2014 (($ $ (-135)) 68) (($ (-135) $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1270 (($ (-135)) 111) (((-798) $) 18 (|has| (-135) (-566 (-798))))) (-3633 (((-108) (-1 (-108) (-135)) $) 33 (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) 84 (|has| (-135) (-789)))) (-4026 (((-108) $ $) 83 (|has| (-135) (-789)))) (-3994 (((-108) $ $) 20 (|has| (-135) (-1020)))) (-4037 (((-108) $ $) 85 (|has| (-135) (-789)))) (-4017 (((-108) $ $) 82 (|has| (-135) (-789)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-1060) (-131)) (T -1060))
+((-2630 (*1 *1 *1) (-4 *1 (-1060))) (-2365 (*1 *1 *1) (-4 *1 (-1060))) (-2374 (*1 *1 *1) (-4 *1 (-1060))) (-1329 (*1 *1 *1) (-4 *1 (-1060))) (-1559 (*1 *2 *1 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-108)))) (-1537 (*1 *2 *1 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-108)))) (-1514 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-525)) (-5 *2 (-108)))) (-3549 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-135)) (-5 *2 (-713)))) (-2393 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-135)) (-5 *2 (-108)))) (-3329 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-1140 (-525))))) (-1916 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-525)))) (-1916 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-525)) (-5 *3 (-132)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-135)) (-4 *1 (-1060)))) (-2223 (*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-592 *1)) (-4 *1 (-1060)))) (-2223 (*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-592 *1)) (-4 *1 (-1060)))) (-3446 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-135)))) (-3446 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-132)))) (-2880 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-135)))) (-2880 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-132)))) (-2871 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-135)))) (-2871 (*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-132)))) (-3410 (*1 *1 *1 *1) (-4 *1 (-1060))))
+(-13 (-19 (-135)) (-10 -8 (-15 -2630 ($ $)) (-15 -2365 ($ $)) (-15 -2374 ($ $)) (-15 -1329 ($ $)) (-15 -1559 ((-108) $ $)) (-15 -1537 ((-108) $ $)) (-15 -1514 ((-108) $ $ (-525))) (-15 -3549 ((-713) $ $ (-135))) (-15 -2393 ((-108) $ $ (-135))) (-15 -3329 ($ $ (-1140 (-525)) $)) (-15 -1916 ((-525) $ $ (-525))) (-15 -1916 ((-525) (-132) $ (-525))) (-15 -1270 ($ (-135))) (-15 -2223 ((-592 $) $ (-135))) (-15 -2223 ((-592 $) $ (-132))) (-15 -3446 ($ $ (-135))) (-15 -3446 ($ $ (-132))) (-15 -2880 ($ $ (-135))) (-15 -2880 ($ $ (-132))) (-15 -2871 ($ $ (-135))) (-15 -2871 ($ $ (-132))) (-15 -3410 ($ $ $))))
+(((-33) . T) ((-97) -3279 (|has| (-135) (-1020)) (|has| (-135) (-789))) ((-566 (-798)) -3279 (|has| (-135) (-1020)) (|has| (-135) (-789)) (|has| (-135) (-566 (-798)))) ((-142 #0=(-135)) . T) ((-567 (-501)) |has| (-135) (-567 (-501))) ((-265 #1=(-525) #0#) . T) ((-267 #1# #0#) . T) ((-288 #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))) ((-351 #0#) . T) ((-464 #0#) . T) ((-558 #1# #0#) . T) ((-486 #0# #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))) ((-597 #0#) . T) ((-19 #0#) . T) ((-789) |has| (-135) (-789)) ((-1020) -3279 (|has| (-135) (-1020)) (|has| (-135) (-789))) ((-1127) . T))
+((-3835 (((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) (-713)) 94)) (-3757 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713)) 54)) (-3730 (((-1178) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-713)) 85)) (-3257 (((-713) (-592 |#4|) (-592 |#5|)) 27)) (-3474 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713)) 56) (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713) (-108)) 58)) (-1588 (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108)) 76) (((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108)) 77)) (-2749 (((-1074) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) 80)) (-4218 (((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5|) 53)) (-1862 (((-713) (-592 |#4|) (-592 |#5|)) 19)))
+(((-1061 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1862 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -3257 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -4218 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5|)) (-15 -3757 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713))) (-15 -3757 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5|)) (-15 -3474 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -3474 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713))) (-15 -3474 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5|)) (-15 -1588 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -1588 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3835 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) (-713))) (-15 -2749 ((-1074) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|)))) (-15 -3730 ((-1178) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-713)))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|) (-1029 |#1| |#2| |#3| |#4|)) (T -1061))
+((-3730 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -1895 *9)))) (-5 *4 (-713)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1178)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -1895 *8))) (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-1029 *4 *5 *6 *7)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1074)) (-5 *1 (-1061 *4 *5 *6 *7 *8)))) (-3835 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -1895 *11)))) (-5 *3 (-592 *10)) (-5 *4 (-592 *11)) (-5 *5 (-2 (|:| |done| (-592 *11)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *10)) (|:| -1895 *11)))))) (-5 *6 (-713)) (-4 *10 (-991 *7 *8 *9)) (-4 *11 (-1029 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-5 *1 (-1061 *7 *8 *9 *10 *11)))) (-1588 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))) (-1588 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))) (-3474 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4)))))) (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1029 *5 *6 *7 *3)))) (-3474 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4)))))) (-5 *1 (-1061 *6 *7 *8 *3 *4)) (-4 *4 (-1029 *6 *7 *8 *3)))) (-3474 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789)) (-4 *3 (-991 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4)))))) (-5 *1 (-1061 *7 *8 *9 *3 *4)) (-4 *4 (-1029 *7 *8 *9 *3)))) (-3757 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4)))))) (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1029 *5 *6 *7 *3)))) (-3757 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *3 (-991 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4)))))) (-5 *1 (-1061 *6 *7 *8 *3 *4)) (-4 *4 (-1029 *6 *7 *8 *3)))) (-4218 (*1 *2 *3 *4) (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-592 *4)) (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4)))))) (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1029 *5 *6 *7 *3)))) (-3257 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))) (-1862 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1862 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -3257 ((-713) (-592 |#4|) (-592 |#5|))) (-15 -4218 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5|)) (-15 -3757 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713))) (-15 -3757 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5|)) (-15 -3474 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713) (-108))) (-15 -3474 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5| (-713))) (-15 -3474 ((-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) |#4| |#5|)) (-15 -1588 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108))) (-15 -1588 ((-592 |#5|) (-592 |#4|) (-592 |#5|) (-108) (-108) (-108) (-108) (-108))) (-15 -3835 ((-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-592 |#4|) (-592 |#5|) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-2 (|:| |done| (-592 |#5|)) (|:| |todo| (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))))) (-713))) (-15 -2749 ((-1074) (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|)))) (-15 -3730 ((-1178) (-592 (-2 (|:| |val| (-592 |#4|)) (|:| -1895 |#5|))) (-713))))
+((-1260 (((-108) $ $) NIL)) (-4022 (((-592 (-2 (|:| -2849 $) (|:| -2409 (-592 |#4|)))) (-592 |#4|)) NIL)) (-3221 (((-592 $) (-592 |#4|)) 110) (((-592 $) (-592 |#4|) (-108)) 111) (((-592 $) (-592 |#4|) (-108) (-108)) 109) (((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108)) 112)) (-2383 (((-592 |#3|) $) NIL)) (-3163 (((-108) $) NIL)) (-3018 (((-108) $) NIL (|has| |#1| (-517)))) (-2220 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1952 ((|#4| |#4| $) NIL)) (-3706 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 $))) |#4| $) 84)) (-2855 (((-2 (|:| |under| $) (|:| -2793 $) (|:| |upper| $)) $ |#3|) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-3826 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255))) (((-3 |#4| "failed") $ |#3|) 62)) (-2305 (($) NIL T CONST)) (-3393 (((-108) $) 26 (|has| |#1| (-517)))) (-3438 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1396 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3291 (((-108) $) NIL (|has| |#1| (-517)))) (-4032 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-1653 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-1551 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-2591 (((-3 $ "failed") (-592 |#4|)) NIL)) (-3898 (($ (-592 |#4|)) NIL)) (-3121 (((-3 $ "failed") $) 39)) (-2457 ((|#4| |#4| $) 65)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020))))) (-1614 (($ |#4| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-3496 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-517)))) (-4047 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-3129 ((|#4| |#4| $) NIL)) (-3503 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4255))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4255))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2520 (((-2 (|:| -2849 (-592 |#4|)) (|:| -2409 (-592 |#4|))) $) NIL)) (-3859 (((-108) |#4| $) NIL)) (-2671 (((-108) |#4| $) NIL)) (-2259 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3873 (((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)) 124)) (-3702 (((-592 |#4|) $) 16 (|has| $ (-6 -4255)))) (-4008 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1776 ((|#3| $) 33)) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 |#4|) $) 17 (|has| $ (-6 -4255)))) (-2783 (((-108) |#4| $) 25 (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020))))) (-2622 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#4| |#4|) $) 21)) (-2723 (((-592 |#3|) $) NIL)) (-2069 (((-108) |#3| $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL)) (-4038 (((-3 |#4| (-592 $)) |#4| |#4| $) NIL)) (-3488 (((-592 (-2 (|:| |val| |#4|) (|:| -1895 $))) |#4| |#4| $) 103)) (-1636 (((-3 |#4| "failed") $) 37)) (-1502 (((-592 $) |#4| $) 88)) (-4030 (((-3 (-108) (-592 $)) |#4| $) NIL)) (-1521 (((-592 (-2 (|:| |val| (-108)) (|:| -1895 $))) |#4| $) 98) (((-108) |#4| $) 53)) (-3792 (((-592 $) |#4| $) 107) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 108) (((-592 $) |#4| (-592 $)) NIL)) (-3913 (((-592 $) (-592 |#4|) (-108) (-108) (-108)) 119)) (-2964 (($ |#4| $) 75) (($ (-592 |#4|) $) 76) (((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108)) 74)) (-3231 (((-592 |#4|) $) NIL)) (-3134 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3149 ((|#4| |#4| $) NIL)) (-1363 (((-108) $ $) NIL)) (-1410 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2505 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3417 ((|#4| |#4| $) NIL)) (-2012 (((-1038) $) NIL)) (-3110 (((-3 |#4| "failed") $) 35)) (-3207 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3599 (((-3 $ "failed") $ |#4|) 48)) (-2182 (($ $ |#4|) NIL) (((-592 $) |#4| $) 90) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) 86)) (-3006 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) 15)) (-2718 (($) 13)) (-1587 (((-713) $) NIL)) (-2040 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) 12)) (-2749 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-1279 (($ (-592 |#4|)) 20)) (-3422 (($ $ |#3|) 42)) (-1248 (($ $ |#3|) 44)) (-1963 (($ $) NIL)) (-1847 (($ $ |#3|) NIL)) (-1270 (((-798) $) 31) (((-592 |#4|) $) 40)) (-1970 (((-713) $) NIL (|has| |#3| (-346)))) (-2927 (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4213 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-3552 (((-592 $) |#4| $) 54) (((-592 $) |#4| (-592 $)) NIL) (((-592 $) (-592 |#4|) $) NIL) (((-592 $) (-592 |#4|) (-592 $)) NIL)) (-3633 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-3726 (((-592 |#3|) $) NIL)) (-4079 (((-108) |#4| $) NIL)) (-1728 (((-108) |#3| $) 61)) (-3994 (((-108) $ $) NIL)) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-1062 |#1| |#2| |#3| |#4|) (-13 (-1029 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2964 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3221 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -3221 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -3913 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -3873 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108))))) (-429) (-735) (-789) (-991 |#1| |#2| |#3|)) (T -1062))
+((-2964 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1062 *5 *6 *7 *3))) (-5 *1 (-1062 *5 *6 *7 *3)) (-4 *3 (-991 *5 *6 *7)))) (-3221 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1062 *5 *6 *7 *8))) (-5 *1 (-1062 *5 *6 *7 *8)))) (-3221 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1062 *5 *6 *7 *8))) (-5 *1 (-1062 *5 *6 *7 *8)))) (-3913 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 (-1062 *5 *6 *7 *8))) (-5 *1 (-1062 *5 *6 *7 *8)))) (-3873 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-592 *8)) (|:| |towers| (-592 (-1062 *5 *6 *7 *8))))) (-5 *1 (-1062 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
+(-13 (-1029 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2964 ((-592 $) |#4| $ (-108) (-108) (-108) (-108) (-108))) (-15 -3221 ((-592 $) (-592 |#4|) (-108) (-108))) (-15 -3221 ((-592 $) (-592 |#4|) (-108) (-108) (-108) (-108))) (-15 -3913 ((-592 $) (-592 |#4|) (-108) (-108) (-108))) (-15 -3873 ((-2 (|:| |val| (-592 |#4|)) (|:| |towers| (-592 $))) (-592 |#4|) (-108) (-108)))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2936 ((|#1| $) 34)) (-3015 (($ (-592 |#1|)) 39)) (-3330 (((-108) $ (-713)) NIL)) (-2305 (($) NIL T CONST)) (-3158 ((|#1| |#1| $) 36)) (-4081 ((|#1| $) 32)) (-3702 (((-592 |#1|) $) 18 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2622 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 22)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-3955 ((|#1| $) 35)) (-3985 (($ |#1| $) 37)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-1881 ((|#1| $) 33)) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) 31)) (-2718 (($) 38)) (-4064 (((-713) $) 29)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) 27)) (-1270 (((-798) $) 14 (|has| |#1| (-566 (-798))))) (-1665 (($ (-592 |#1|)) NIL)) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 17 (|has| |#1| (-1020)))) (-3596 (((-713) $) 30 (|has| $ (-6 -4255)))))
+(((-1063 |#1|) (-13 (-1039 |#1|) (-10 -8 (-15 -3015 ($ (-592 |#1|))))) (-1127)) (T -1063))
+((-3015 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-5 *1 (-1063 *3)))))
+(-13 (-1039 |#1|) (-10 -8 (-15 -3015 ($ (-592 |#1|)))))
+((-1429 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1140 (-525)) |#2|) 44) ((|#2| $ (-525) |#2|) 41)) (-1406 (((-108) $) 12)) (-2622 (($ (-1 |#2| |#2|) $) 39)) (-3110 ((|#2| $) NIL) (($ $ (-713)) 17)) (-2042 (($ $ |#2|) 40)) (-1626 (((-108) $) 11)) (-3410 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1140 (-525))) 31) ((|#2| $ (-525)) 23) ((|#2| $ (-525) |#2|) NIL)) (-2162 (($ $ $) 47) (($ $ |#2|) NIL)) (-2014 (($ $ $) 33) (($ |#2| $) NIL) (($ (-592 $)) 36) (($ $ |#2|) NIL)))
+(((-1064 |#1| |#2|) (-10 -8 (-15 -1406 ((-108) |#1|)) (-15 -1626 ((-108) |#1|)) (-15 -1429 (|#2| |#1| (-525) |#2|)) (-15 -3410 (|#2| |#1| (-525) |#2|)) (-15 -3410 (|#2| |#1| (-525))) (-15 -2042 (|#1| |#1| |#2|)) (-15 -2014 (|#1| |#1| |#2|)) (-15 -2014 (|#1| (-592 |#1|))) (-15 -3410 (|#1| |#1| (-1140 (-525)))) (-15 -1429 (|#2| |#1| (-1140 (-525)) |#2|)) (-15 -1429 (|#2| |#1| "last" |#2|)) (-15 -1429 (|#1| |#1| "rest" |#1|)) (-15 -1429 (|#2| |#1| "first" |#2|)) (-15 -2162 (|#1| |#1| |#2|)) (-15 -2162 (|#1| |#1| |#1|)) (-15 -3410 (|#2| |#1| "last")) (-15 -3410 (|#1| |#1| "rest")) (-15 -3110 (|#1| |#1| (-713))) (-15 -3410 (|#2| |#1| "first")) (-15 -3110 (|#2| |#1|)) (-15 -2014 (|#1| |#2| |#1|)) (-15 -2014 (|#1| |#1| |#1|)) (-15 -1429 (|#2| |#1| "value" |#2|)) (-15 -3410 (|#2| |#1| "value")) (-15 -2622 (|#1| (-1 |#2| |#2|) |#1|))) (-1065 |#2|) (-1127)) (T -1064))
+NIL
+(-10 -8 (-15 -1406 ((-108) |#1|)) (-15 -1626 ((-108) |#1|)) (-15 -1429 (|#2| |#1| (-525) |#2|)) (-15 -3410 (|#2| |#1| (-525) |#2|)) (-15 -3410 (|#2| |#1| (-525))) (-15 -2042 (|#1| |#1| |#2|)) (-15 -2014 (|#1| |#1| |#2|)) (-15 -2014 (|#1| (-592 |#1|))) (-15 -3410 (|#1| |#1| (-1140 (-525)))) (-15 -1429 (|#2| |#1| (-1140 (-525)) |#2|)) (-15 -1429 (|#2| |#1| "last" |#2|)) (-15 -1429 (|#1| |#1| "rest" |#1|)) (-15 -1429 (|#2| |#1| "first" |#2|)) (-15 -2162 (|#1| |#1| |#2|)) (-15 -2162 (|#1| |#1| |#1|)) (-15 -3410 (|#2| |#1| "last")) (-15 -3410 (|#1| |#1| "rest")) (-15 -3110 (|#1| |#1| (-713))) (-15 -3410 (|#2| |#1| "first")) (-15 -3110 (|#2| |#1|)) (-15 -2014 (|#1| |#2| |#1|)) (-15 -2014 (|#1| |#1| |#1|)) (-15 -1429 (|#2| |#1| "value" |#2|)) (-15 -3410 (|#2| |#1| "value")) (-15 -2622 (|#1| (-1 |#2| |#2|) |#1|)))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3352 ((|#1| $) 48)) (-2029 ((|#1| $) 65)) (-2941 (($ $) 67)) (-2782 (((-1178) $ (-525) (-525)) 97 (|has| $ (-6 -4256)))) (-3078 (($ $ (-525)) 52 (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) 8)) (-1545 ((|#1| $ |#1|) 39 (|has| $ (-6 -4256)))) (-2914 (($ $ $) 56 (|has| $ (-6 -4256)))) (-1455 ((|#1| $ |#1|) 54 (|has| $ (-6 -4256)))) (-2207 ((|#1| $ |#1|) 58 (|has| $ (-6 -4256)))) (-1429 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4256))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4256))) (($ $ "rest" $) 55 (|has| $ (-6 -4256))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) 117 (|has| $ (-6 -4256))) ((|#1| $ (-525) |#1|) 86 (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) 41 (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) |#1|) $) 102 (|has| $ (-6 -4255)))) (-2016 ((|#1| $) 66)) (-2305 (($) 7 T CONST)) (-3121 (($ $) 73) (($ $ (-713)) 71)) (-3137 (($ $) 99 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ (-1 (-108) |#1|) $) 103 (|has| $ (-6 -4255))) (($ |#1| $) 100 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2632 ((|#1| $ (-525) |#1|) 85 (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) 87)) (-1406 (((-108) $) 83)) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) 50)) (-2553 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-3489 (($ (-713) |#1|) 108)) (-2482 (((-108) $ (-713)) 9)) (-2710 (((-525) $) 95 (|has| (-525) (-789)))) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3478 (((-525) $) 94 (|has| (-525) (-789)))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2957 (((-108) $ (-713)) 10)) (-2647 (((-592 |#1|) $) 45)) (-3365 (((-108) $) 49)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-1636 ((|#1| $) 70) (($ $ (-713)) 68)) (-2683 (($ $ $ (-525)) 116) (($ |#1| $ (-525)) 115)) (-4142 (((-592 (-525)) $) 92)) (-3845 (((-108) (-525) $) 91)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3110 ((|#1| $) 76) (($ $ (-713)) 74)) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 106)) (-2042 (($ $ |#1|) 96 (|has| $ (-6 -4256)))) (-1626 (((-108) $) 84)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-4101 (((-108) |#1| $) 93 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) 90)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1140 (-525))) 112) ((|#1| $ (-525)) 89) ((|#1| $ (-525) |#1|) 88)) (-3294 (((-525) $ $) 44)) (-3157 (($ $ (-1140 (-525))) 114) (($ $ (-525)) 113)) (-1698 (((-108) $) 46)) (-2491 (($ $) 62)) (-3385 (($ $) 59 (|has| $ (-6 -4256)))) (-2389 (((-713) $) 63)) (-2249 (($ $) 64)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-2749 (((-501) $) 98 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 107)) (-2162 (($ $ $) 61 (|has| $ (-6 -4256))) (($ $ |#1|) 60 (|has| $ (-6 -4256)))) (-2014 (($ $ $) 78) (($ |#1| $) 77) (($ (-592 $)) 110) (($ $ |#1|) 109)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) 51)) (-2240 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-1065 |#1|) (-131) (-1127)) (T -1065))
+((-1626 (*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1127)) (-5 *2 (-108)))) (-1406 (*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1127)) (-5 *2 (-108)))))
+(-13 (-1161 |t#1|) (-597 |t#1|) (-10 -8 (-15 -1626 ((-108) $)) (-15 -1406 ((-108) $))))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1127) . T) ((-1161 |#1|) . T))
+((-1260 (((-108) $ $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3476 (($) NIL) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-2782 (((-1178) $ |#1| |#1|) NIL (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 ((|#2| $ |#1| |#2|) NIL)) (-1608 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2772 (((-3 |#2| "failed") |#1| $) NIL)) (-2305 (($) NIL T CONST)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-2592 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-3 |#2| "failed") |#1| $) NIL)) (-1614 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-3503 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#2| $ |#1|) NIL)) (-3702 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-2710 ((|#1| $) NIL (|has| |#1| (-789)))) (-1749 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-3478 ((|#1| $) NIL (|has| |#1| (-789)))) (-2622 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4256))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-4076 (((-592 |#1|) $) NIL)) (-1522 (((-108) |#1| $) NIL)) (-3955 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-3985 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-4142 (((-592 |#1|) $) NIL)) (-3845 (((-108) |#1| $) NIL)) (-2012 (((-1038) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3110 ((|#2| $) NIL (|has| |#1| (-789)))) (-3207 (((-3 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) "failed") (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL)) (-2042 (($ $ |#2|) NIL (|has| $ (-6 -4256)))) (-1881 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-3006 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1777 (((-592 |#2|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3981 (($) NIL) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-2040 (((-713) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-713) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-567 (-501))))) (-1279 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-1270 (((-798) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-1665 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-3633 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-1066 |#1| |#2| |#3|) (-1104 |#1| |#2|) (-1020) (-1020) |#2|) (T -1066))
+NIL
+(-1104 |#1| |#2|)
+((-1260 (((-108) $ $) 7)) (-1760 (((-3 $ "failed") $) 13)) (-3451 (((-1074) $) 9)) (-3940 (($) 14 T CONST)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11)) (-3994 (((-108) $ $) 6)))
+(((-1067) (-131)) (T -1067))
+((-3940 (*1 *1) (-4 *1 (-1067))) (-1760 (*1 *1 *1) (|partial| -4 *1 (-1067))))
+(-13 (-1020) (-10 -8 (-15 -3940 ($) -1479) (-15 -1760 ((-3 $ "failed") $))))
+(((-97) . T) ((-566 (-798)) . T) ((-1020) . T))
+((-1819 (((-1072 |#1|) (-1072 |#1|)) 17)) (-3307 (((-1072 |#1|) (-1072 |#1|)) 13)) (-3604 (((-1072 |#1|) (-1072 |#1|) (-525) (-525)) 20)) (-2230 (((-1072 |#1|) (-1072 |#1|)) 15)))
+(((-1068 |#1|) (-10 -7 (-15 -3307 ((-1072 |#1|) (-1072 |#1|))) (-15 -2230 ((-1072 |#1|) (-1072 |#1|))) (-15 -1819 ((-1072 |#1|) (-1072 |#1|))) (-15 -3604 ((-1072 |#1|) (-1072 |#1|) (-525) (-525)))) (-13 (-517) (-138))) (T -1068))
+((-3604 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1072 *4)) (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1068 *4)))) (-1819 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1068 *3)))) (-2230 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1068 *3)))) (-3307 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1068 *3)))))
+(-10 -7 (-15 -3307 ((-1072 |#1|) (-1072 |#1|))) (-15 -2230 ((-1072 |#1|) (-1072 |#1|))) (-15 -1819 ((-1072 |#1|) (-1072 |#1|))) (-15 -3604 ((-1072 |#1|) (-1072 |#1|) (-525) (-525))))
+((-2014 (((-1072 |#1|) (-1072 (-1072 |#1|))) 15)))
+(((-1069 |#1|) (-10 -7 (-15 -2014 ((-1072 |#1|) (-1072 (-1072 |#1|))))) (-1127)) (T -1069))
+((-2014 (*1 *2 *3) (-12 (-5 *3 (-1072 (-1072 *4))) (-4 *4 (-1127)) (-5 *2 (-1072 *4)) (-5 *1 (-1069 *4)))))
+(-10 -7 (-15 -2014 ((-1072 |#1|) (-1072 (-1072 |#1|)))))
+((-3123 (((-1072 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1072 |#1|)) 25)) (-3503 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1072 |#1|)) 26)) (-2694 (((-1072 |#2|) (-1 |#2| |#1|) (-1072 |#1|)) 16)))
+(((-1070 |#1| |#2|) (-10 -7 (-15 -2694 ((-1072 |#2|) (-1 |#2| |#1|) (-1072 |#1|))) (-15 -3123 ((-1072 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1072 |#1|))) (-15 -3503 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1072 |#1|)))) (-1127) (-1127)) (T -1070))
+((-3503 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1072 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-1070 *5 *2)))) (-3123 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1072 *6)) (-4 *6 (-1127)) (-4 *3 (-1127)) (-5 *2 (-1072 *3)) (-5 *1 (-1070 *6 *3)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1072 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1072 *6)) (-5 *1 (-1070 *5 *6)))))
+(-10 -7 (-15 -2694 ((-1072 |#2|) (-1 |#2| |#1|) (-1072 |#1|))) (-15 -3123 ((-1072 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1072 |#1|))) (-15 -3503 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1072 |#1|))))
+((-2694 (((-1072 |#3|) (-1 |#3| |#1| |#2|) (-1072 |#1|) (-1072 |#2|)) 21)))
+(((-1071 |#1| |#2| |#3|) (-10 -7 (-15 -2694 ((-1072 |#3|) (-1 |#3| |#1| |#2|) (-1072 |#1|) (-1072 |#2|)))) (-1127) (-1127) (-1127)) (T -1071))
+((-2694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1072 *6)) (-5 *5 (-1072 *7)) (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1072 *8)) (-5 *1 (-1071 *6 *7 *8)))))
+(-10 -7 (-15 -2694 ((-1072 |#3|) (-1 |#3| |#1| |#2|) (-1072 |#1|) (-1072 |#2|))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3352 ((|#1| $) NIL)) (-2029 ((|#1| $) NIL)) (-2941 (($ $) 51)) (-2782 (((-1178) $ (-525) (-525)) 76 (|has| $ (-6 -4256)))) (-3078 (($ $ (-525)) 110 (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) NIL)) (-3351 (((-798) $) 41 (|has| |#1| (-1020)))) (-3064 (((-108)) 40 (|has| |#1| (-1020)))) (-1545 ((|#1| $ |#1|) NIL (|has| $ (-6 -4256)))) (-2914 (($ $ $) 98 (|has| $ (-6 -4256))) (($ $ (-525) $) 122)) (-1455 ((|#1| $ |#1|) 107 (|has| $ (-6 -4256)))) (-2207 ((|#1| $ |#1|) 102 (|has| $ (-6 -4256)))) (-1429 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4256))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4256))) (($ $ "rest" $) 106 (|has| $ (-6 -4256))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) 89 (|has| $ (-6 -4256))) ((|#1| $ (-525) |#1|) 55 (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) NIL (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) |#1|) $) 58)) (-2016 ((|#1| $) NIL)) (-2305 (($) NIL T CONST)) (-3736 (($ $) 14)) (-3121 (($ $) 29) (($ $ (-713)) 88)) (-1423 (((-108) (-592 |#1|) $) 116 (|has| |#1| (-1020)))) (-4126 (($ (-592 |#1|)) 112)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1614 (($ |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) 57)) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2632 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) NIL)) (-1406 (((-108) $) NIL)) (-3702 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2940 (((-1178) (-525) $) 121 (|has| |#1| (-1020)))) (-3050 (((-713) $) 118)) (-2714 (((-592 $) $) NIL)) (-2553 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3489 (($ (-713) |#1|) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) NIL (|has| (-525) (-789)))) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2622 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-2957 (((-108) $ (-713)) NIL)) (-2647 (((-592 |#1|) $) NIL)) (-3365 (((-108) $) NIL)) (-1899 (($ $) 90)) (-3138 (((-108) $) 13)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-1636 ((|#1| $) NIL) (($ $ (-713)) NIL)) (-2683 (($ $ $ (-525)) NIL) (($ |#1| $ (-525)) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) 74)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3752 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-2308 ((|#1| $) 10)) (-3110 ((|#1| $) 28) (($ $ (-713)) 49)) (-3493 (((-2 (|:| |cycle?| (-108)) (|:| -1950 (-713)) (|:| |period| (-713))) (-713) $) 25)) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-3801 (($ (-1 (-108) |#1|) $) 126)) (-3813 (($ (-1 (-108) |#1|) $) 127)) (-2042 (($ $ |#1|) 68 (|has| $ (-6 -4256)))) (-2182 (($ $ (-525)) 32)) (-1626 (((-108) $) 72)) (-1757 (((-108) $) 12)) (-3471 (((-108) $) 117)) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 20)) (-4101 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) NIL)) (-2013 (((-108) $) 15)) (-2718 (($) 43)) (-3410 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1140 (-525))) NIL) ((|#1| $ (-525)) 54) ((|#1| $ (-525) |#1|) NIL)) (-3294 (((-525) $ $) 48)) (-3157 (($ $ (-1140 (-525))) NIL) (($ $ (-525)) NIL)) (-1485 (($ (-1 $)) 47)) (-1698 (((-108) $) 69)) (-2491 (($ $) 70)) (-3385 (($ $) 99 (|has| $ (-6 -4256)))) (-2389 (((-713) $) NIL)) (-2249 (($ $) NIL)) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) 44)) (-2749 (((-501) $) NIL (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 53)) (-3211 (($ |#1| $) 97)) (-2162 (($ $ $) 100 (|has| $ (-6 -4256))) (($ $ |#1|) 101 (|has| $ (-6 -4256)))) (-2014 (($ $ $) 78) (($ |#1| $) 45) (($ (-592 $)) 83) (($ $ |#1|) 77)) (-3577 (($ $) 50)) (-1270 (($ (-592 |#1|)) 111) (((-798) $) 42 (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) NIL)) (-2240 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 114 (|has| |#1| (-1020)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-1072 |#1|) (-13 (-619 |#1|) (-10 -8 (-6 -4256) (-15 -1270 ($ (-592 |#1|))) (-15 -4126 ($ (-592 |#1|))) (IF (|has| |#1| (-1020)) (-15 -1423 ((-108) (-592 |#1|) $)) |%noBranch|) (-15 -3493 ((-2 (|:| |cycle?| (-108)) (|:| -1950 (-713)) (|:| |period| (-713))) (-713) $)) (-15 -1485 ($ (-1 $))) (-15 -3211 ($ |#1| $)) (IF (|has| |#1| (-1020)) (PROGN (-15 -2940 ((-1178) (-525) $)) (-15 -3351 ((-798) $)) (-15 -3064 ((-108)))) |%noBranch|) (-15 -2914 ($ $ (-525) $)) (-15 -3752 ($ (-1 |#1|))) (-15 -3752 ($ (-1 |#1| |#1|) |#1|)) (-15 -3801 ($ (-1 (-108) |#1|) $)) (-15 -3813 ($ (-1 (-108) |#1|) $)))) (-1127)) (T -1072))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-5 *1 (-1072 *3)))) (-4126 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-5 *1 (-1072 *3)))) (-1423 (*1 *2 *3 *1) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-4 *4 (-1127)) (-5 *2 (-108)) (-5 *1 (-1072 *4)))) (-3493 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-108)) (|:| -1950 (-713)) (|:| |period| (-713)))) (-5 *1 (-1072 *4)) (-4 *4 (-1127)) (-5 *3 (-713)))) (-1485 (*1 *1 *2) (-12 (-5 *2 (-1 (-1072 *3))) (-4 *3 (-1127)) (-5 *1 (-1072 *3)))) (-3211 (*1 *1 *2 *1) (-12 (-5 *1 (-1072 *2)) (-4 *2 (-1127)))) (-2940 (*1 *2 *3 *1) (-12 (-5 *3 (-525)) (-5 *2 (-1178)) (-5 *1 (-1072 *4)) (-4 *4 (-1020)) (-4 *4 (-1127)))) (-3351 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1072 *3)) (-4 *3 (-1020)) (-4 *3 (-1127)))) (-3064 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1072 *3)) (-4 *3 (-1020)) (-4 *3 (-1127)))) (-2914 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1072 *3)) (-4 *3 (-1127)))) (-3752 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1127)) (-5 *1 (-1072 *3)))) (-3752 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-1072 *3)))) (-3801 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1127)) (-5 *1 (-1072 *3)))) (-3813 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1127)) (-5 *1 (-1072 *3)))))
+(-13 (-619 |#1|) (-10 -8 (-6 -4256) (-15 -1270 ($ (-592 |#1|))) (-15 -4126 ($ (-592 |#1|))) (IF (|has| |#1| (-1020)) (-15 -1423 ((-108) (-592 |#1|) $)) |%noBranch|) (-15 -3493 ((-2 (|:| |cycle?| (-108)) (|:| -1950 (-713)) (|:| |period| (-713))) (-713) $)) (-15 -1485 ($ (-1 $))) (-15 -3211 ($ |#1| $)) (IF (|has| |#1| (-1020)) (PROGN (-15 -2940 ((-1178) (-525) $)) (-15 -3351 ((-798) $)) (-15 -3064 ((-108)))) |%noBranch|) (-15 -2914 ($ $ (-525) $)) (-15 -3752 ($ (-1 |#1|))) (-15 -3752 ($ (-1 |#1| |#1|) |#1|)) (-15 -3801 ($ (-1 (-108) |#1|) $)) (-15 -3813 ($ (-1 (-108) |#1|) $))))
+((-1260 (((-108) $ $) 19)) (-1329 (($ $) 120)) (-2374 (($ $) 121)) (-3446 (($ $ (-135)) 108) (($ $ (-132)) 107)) (-2782 (((-1178) $ (-525) (-525)) 40 (|has| $ (-6 -4256)))) (-1537 (((-108) $ $) 118)) (-1514 (((-108) $ $ (-525)) 117)) (-3111 (($ (-525)) 127)) (-2223 (((-592 $) $ (-135)) 110) (((-592 $) $ (-132)) 109)) (-2151 (((-108) (-1 (-108) (-135) (-135)) $) 98) (((-108) $) 92 (|has| (-135) (-789)))) (-2549 (($ (-1 (-108) (-135) (-135)) $) 89 (|has| $ (-6 -4256))) (($ $) 88 (-12 (|has| (-135) (-789)) (|has| $ (-6 -4256))))) (-2855 (($ (-1 (-108) (-135) (-135)) $) 99) (($ $) 93 (|has| (-135) (-789)))) (-3330 (((-108) $ (-713)) 8)) (-1429 (((-135) $ (-525) (-135)) 52 (|has| $ (-6 -4256))) (((-135) $ (-1140 (-525)) (-135)) 58 (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) (-135)) $) 75 (|has| $ (-6 -4255)))) (-2305 (($) 7 T CONST)) (-2871 (($ $ (-135)) 104) (($ $ (-132)) 103)) (-3559 (($ $) 90 (|has| $ (-6 -4256)))) (-3620 (($ $) 100)) (-3329 (($ $ (-1140 (-525)) $) 114)) (-3137 (($ $) 78 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ (-135) $) 77 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) (-135)) $) 74 (|has| $ (-6 -4255)))) (-3503 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) 76 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4255)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) 73 (|has| $ (-6 -4255))) (((-135) (-1 (-135) (-135) (-135)) $) 72 (|has| $ (-6 -4255)))) (-2632 (((-135) $ (-525) (-135)) 53 (|has| $ (-6 -4256)))) (-2570 (((-135) $ (-525)) 51)) (-1559 (((-108) $ $) 119)) (-1916 (((-525) (-1 (-108) (-135)) $) 97) (((-525) (-135) $) 96 (|has| (-135) (-1020))) (((-525) (-135) $ (-525)) 95 (|has| (-135) (-1020))) (((-525) $ $ (-525)) 113) (((-525) (-132) $ (-525)) 112)) (-3702 (((-592 (-135)) $) 30 (|has| $ (-6 -4255)))) (-3489 (($ (-713) (-135)) 69)) (-2482 (((-108) $ (-713)) 9)) (-2710 (((-525) $) 43 (|has| (-525) (-789)))) (-2371 (($ $ $) 87 (|has| (-135) (-789)))) (-3743 (($ (-1 (-108) (-135) (-135)) $ $) 101) (($ $ $) 94 (|has| (-135) (-789)))) (-1749 (((-592 (-135)) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) (-135) $) 27 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4255))))) (-3478 (((-525) $) 44 (|has| (-525) (-789)))) (-2535 (($ $ $) 86 (|has| (-135) (-789)))) (-2393 (((-108) $ $ (-135)) 115)) (-3549 (((-713) $ $ (-135)) 116)) (-2622 (($ (-1 (-135) (-135)) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-135) (-135)) $) 35) (($ (-1 (-135) (-135) (-135)) $ $) 64)) (-2365 (($ $) 122)) (-2630 (($ $) 123)) (-2957 (((-108) $ (-713)) 10)) (-2880 (($ $ (-135)) 106) (($ $ (-132)) 105)) (-3451 (((-1074) $) 22)) (-2683 (($ (-135) $ (-525)) 60) (($ $ $ (-525)) 59)) (-4142 (((-592 (-525)) $) 46)) (-3845 (((-108) (-525) $) 47)) (-2012 (((-1038) $) 21)) (-3110 (((-135) $) 42 (|has| (-525) (-789)))) (-3207 (((-3 (-135) "failed") (-1 (-108) (-135)) $) 71)) (-2042 (($ $ (-135)) 41 (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) (-135)) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-135)))) 26 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-273 (-135))) 25 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-135) (-135)) 24 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-592 (-135)) (-592 (-135))) 23 (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))))) (-3428 (((-108) $ $) 14)) (-4101 (((-108) (-135) $) 45 (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020))))) (-1777 (((-592 (-135)) $) 48)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 (((-135) $ (-525) (-135)) 50) (((-135) $ (-525)) 49) (($ $ (-1140 (-525))) 63) (($ $ $) 102)) (-3157 (($ $ (-525)) 62) (($ $ (-1140 (-525))) 61)) (-2040 (((-713) (-1 (-108) (-135)) $) 31 (|has| $ (-6 -4255))) (((-713) (-135) $) 28 (-12 (|has| (-135) (-1020)) (|has| $ (-6 -4255))))) (-3216 (($ $ $ (-525)) 91 (|has| $ (-6 -4256)))) (-1451 (($ $) 13)) (-2749 (((-501) $) 79 (|has| (-135) (-567 (-501))))) (-1279 (($ (-592 (-135))) 70)) (-2014 (($ $ (-135)) 68) (($ (-135) $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1270 (($ (-135)) 111) (((-798) $) 18)) (-3633 (((-108) (-1 (-108) (-135)) $) 33 (|has| $ (-6 -4255)))) (-2255 (((-1074) $) 131) (((-1074) $ (-108)) 130) (((-1178) (-764) $) 129) (((-1178) (-764) $ (-108)) 128)) (-4045 (((-108) $ $) 84 (|has| (-135) (-789)))) (-4026 (((-108) $ $) 83 (|has| (-135) (-789)))) (-3994 (((-108) $ $) 20)) (-4037 (((-108) $ $) 85 (|has| (-135) (-789)))) (-4017 (((-108) $ $) 82 (|has| (-135) (-789)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-1073) (-131)) (T -1073))
+((-3111 (*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1073)))))
+(-13 (-1060) (-1020) (-770) (-10 -8 (-15 -3111 ($ (-525)))))
+(((-33) . T) ((-97) . T) ((-566 (-798)) . T) ((-142 #0=(-135)) . T) ((-567 (-501)) |has| (-135) (-567 (-501))) ((-265 #1=(-525) #0#) . T) ((-267 #1# #0#) . T) ((-288 #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))) ((-351 #0#) . T) ((-464 #0#) . T) ((-558 #1# #0#) . T) ((-486 #0# #0#) -12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))) ((-597 #0#) . T) ((-19 #0#) . T) ((-770) . T) ((-789) |has| (-135) (-789)) ((-1020) . T) ((-1060) . T) ((-1127) . T))
+((-1260 (((-108) $ $) NIL)) (-1329 (($ $) NIL)) (-2374 (($ $) NIL)) (-3446 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-1537 (((-108) $ $) NIL)) (-1514 (((-108) $ $ (-525)) NIL)) (-3111 (($ (-525)) 7)) (-2223 (((-592 $) $ (-135)) NIL) (((-592 $) $ (-132)) NIL)) (-2151 (((-108) (-1 (-108) (-135) (-135)) $) NIL) (((-108) $) NIL (|has| (-135) (-789)))) (-2549 (($ (-1 (-108) (-135) (-135)) $) NIL (|has| $ (-6 -4256))) (($ $) NIL (-12 (|has| $ (-6 -4256)) (|has| (-135) (-789))))) (-2855 (($ (-1 (-108) (-135) (-135)) $) NIL) (($ $) NIL (|has| (-135) (-789)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4256))) (((-135) $ (-1140 (-525)) (-135)) NIL (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-2871 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-3559 (($ $) NIL (|has| $ (-6 -4256)))) (-3620 (($ $) NIL)) (-3329 (($ $ (-1140 (-525)) $) NIL)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020))))) (-1614 (($ (-135) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020)))) (($ (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4255)))) (-3503 (((-135) (-1 (-135) (-135) (-135)) $ (-135) (-135)) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020)))) (((-135) (-1 (-135) (-135) (-135)) $ (-135)) NIL (|has| $ (-6 -4255))) (((-135) (-1 (-135) (-135) (-135)) $) NIL (|has| $ (-6 -4255)))) (-2632 (((-135) $ (-525) (-135)) NIL (|has| $ (-6 -4256)))) (-2570 (((-135) $ (-525)) NIL)) (-1559 (((-108) $ $) NIL)) (-1916 (((-525) (-1 (-108) (-135)) $) NIL) (((-525) (-135) $) NIL (|has| (-135) (-1020))) (((-525) (-135) $ (-525)) NIL (|has| (-135) (-1020))) (((-525) $ $ (-525)) NIL) (((-525) (-132) $ (-525)) NIL)) (-3702 (((-592 (-135)) $) NIL (|has| $ (-6 -4255)))) (-3489 (($ (-713) (-135)) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) NIL (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (|has| (-135) (-789)))) (-3743 (($ (-1 (-108) (-135) (-135)) $ $) NIL) (($ $ $) NIL (|has| (-135) (-789)))) (-1749 (((-592 (-135)) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| (-135) (-789)))) (-2393 (((-108) $ $ (-135)) NIL)) (-3549 (((-713) $ $ (-135)) NIL)) (-2622 (($ (-1 (-135) (-135)) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-135) (-135)) $) NIL) (($ (-1 (-135) (-135) (-135)) $ $) NIL)) (-2365 (($ $) NIL)) (-2630 (($ $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-2880 (($ $ (-135)) NIL) (($ $ (-132)) NIL)) (-3451 (((-1074) $) NIL)) (-2683 (($ (-135) $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-2012 (((-1038) $) NIL)) (-3110 (((-135) $) NIL (|has| (-525) (-789)))) (-3207 (((-3 (-135) "failed") (-1 (-108) (-135)) $) NIL)) (-2042 (($ $ (-135)) NIL (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-135)))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-273 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-135) (-135)) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020)))) (($ $ (-592 (-135)) (-592 (-135))) NIL (-12 (|has| (-135) (-288 (-135))) (|has| (-135) (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) (-135) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020))))) (-1777 (((-592 (-135)) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 (((-135) $ (-525) (-135)) NIL) (((-135) $ (-525)) NIL) (($ $ (-1140 (-525))) NIL) (($ $ $) NIL)) (-3157 (($ $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-2040 (((-713) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4255))) (((-713) (-135) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-135) (-1020))))) (-3216 (($ $ $ (-525)) NIL (|has| $ (-6 -4256)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| (-135) (-567 (-501))))) (-1279 (($ (-592 (-135))) NIL)) (-2014 (($ $ (-135)) NIL) (($ (-135) $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1270 (($ (-135)) NIL) (((-798) $) NIL)) (-3633 (((-108) (-1 (-108) (-135)) $) NIL (|has| $ (-6 -4255)))) (-2255 (((-1074) $) 18) (((-1074) $ (-108)) 20) (((-1178) (-764) $) 21) (((-1178) (-764) $ (-108)) 22)) (-4045 (((-108) $ $) NIL (|has| (-135) (-789)))) (-4026 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| (-135) (-789)))) (-4017 (((-108) $ $) NIL (|has| (-135) (-789)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-1074) (-1073)) (T -1074))
+NIL
+(-1073)
+((-1260 (((-108) $ $) NIL (-3279 (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020)) (|has| |#1| (-1020))))) (-3476 (($) NIL) (($ (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) NIL)) (-2782 (((-1178) $ (-1074) (-1074)) NIL (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 ((|#1| $ (-1074) |#1|) NIL)) (-1608 (($ (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255)))) (-2772 (((-3 |#1| "failed") (-1074) $) NIL)) (-2305 (($) NIL T CONST)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020))))) (-2592 (($ (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255))) (((-3 |#1| "failed") (-1074) $) NIL)) (-1614 (($ (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255)))) (-3503 (((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $ (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020)))) (((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $ (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255)))) (-2632 ((|#1| $ (-1074) |#1|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-1074)) NIL)) (-3702 (((-592 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255))) (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-1074) $) NIL (|has| (-1074) (-789)))) (-1749 (((-592 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255))) (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020)))) (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3478 (((-1074) $) NIL (|has| (-1074) (-789)))) (-2622 (($ (-1 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4256))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (-3279 (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020)) (|has| |#1| (-1020))))) (-4076 (((-592 (-1074)) $) NIL)) (-1522 (((-108) (-1074) $) NIL)) (-3955 (((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) $) NIL)) (-3985 (($ (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) $) NIL)) (-4142 (((-592 (-1074)) $) NIL)) (-3845 (((-108) (-1074) $) NIL)) (-2012 (((-1038) $) NIL (-3279 (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020)) (|has| |#1| (-1020))))) (-3110 ((|#1| $) NIL (|has| (-1074) (-789)))) (-3207 (((-3 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) "failed") (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL)) (-2042 (($ $ |#1|) NIL (|has| $ (-6 -4256)))) (-1881 (((-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) $) NIL)) (-3006 (((-108) (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))))) NIL (-12 (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020)))) (($ $ (-273 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) NIL (-12 (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020)))) (($ $ (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) NIL (-12 (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020)))) (($ $ (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) NIL (-12 (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-288 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#1| $ (-1074)) NIL) ((|#1| $ (-1074) |#1|) NIL)) (-3981 (($) NIL) (($ (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) NIL)) (-2040 (((-713) (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255))) (((-713) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020)))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-567 (-501))))) (-1279 (($ (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) NIL)) (-1270 (((-798) $) NIL (-3279 (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-566 (-798))) (|has| |#1| (-566 (-798)))))) (-1665 (($ (-592 (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)))) NIL)) (-3633 (((-108) (-1 (-108) (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (-3279 (|has| (-2 (|:| -3423 (-1074)) (|:| -2544 |#1|)) (-1020)) (|has| |#1| (-1020))))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-1075 |#1|) (-13 (-1104 (-1074) |#1|) (-10 -7 (-6 -4255))) (-1020)) (T -1075))
+NIL
+(-13 (-1104 (-1074) |#1|) (-10 -7 (-6 -4255)))
+((-3045 (((-1072 |#1|) (-1072 |#1|)) 77)) (-3762 (((-3 (-1072 |#1|) "failed") (-1072 |#1|)) 37)) (-2619 (((-1072 |#1|) (-385 (-525)) (-1072 |#1|)) 121 (|has| |#1| (-37 (-385 (-525)))))) (-4011 (((-1072 |#1|) |#1| (-1072 |#1|)) 127 (|has| |#1| (-341)))) (-1735 (((-1072 |#1|) (-1072 |#1|)) 90)) (-4085 (((-1072 (-525)) (-525)) 57)) (-3613 (((-1072 |#1|) (-1072 (-1072 |#1|))) 109 (|has| |#1| (-37 (-385 (-525)))))) (-3650 (((-1072 |#1|) (-525) (-525) (-1072 |#1|)) 95)) (-3219 (((-1072 |#1|) |#1| (-525)) 45)) (-1457 (((-1072 |#1|) (-1072 |#1|) (-1072 |#1|)) 60)) (-1208 (((-1072 |#1|) (-1072 |#1|) (-1072 |#1|)) 124 (|has| |#1| (-341)))) (-3892 (((-1072 |#1|) |#1| (-1 (-1072 |#1|))) 108 (|has| |#1| (-37 (-385 (-525)))))) (-3747 (((-1072 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1072 |#1|))) 125 (|has| |#1| (-341)))) (-1225 (((-1072 |#1|) (-1072 |#1|)) 89)) (-1389 (((-1072 |#1|) (-1072 |#1|)) 76)) (-1254 (((-1072 |#1|) (-525) (-525) (-1072 |#1|)) 96)) (-2650 (((-1072 |#1|) |#1| (-1072 |#1|)) 105 (|has| |#1| (-37 (-385 (-525)))))) (-3554 (((-1072 (-525)) (-525)) 56)) (-3060 (((-1072 |#1|) |#1|) 59)) (-1909 (((-1072 |#1|) (-1072 |#1|) (-525) (-525)) 92)) (-1539 (((-1072 |#1|) (-1 |#1| (-525)) (-1072 |#1|)) 66)) (-1680 (((-3 (-1072 |#1|) "failed") (-1072 |#1|) (-1072 |#1|)) 35)) (-2655 (((-1072 |#1|) (-1072 |#1|)) 91)) (-2602 (((-1072 |#1|) (-1072 |#1|) |#1|) 71)) (-3319 (((-1072 |#1|) (-1072 |#1|)) 62)) (-3532 (((-1072 |#1|) (-1072 |#1|) (-1072 |#1|)) 72)) (-1270 (((-1072 |#1|) |#1|) 67)) (-3621 (((-1072 |#1|) (-1072 (-1072 |#1|))) 82)) (-4100 (((-1072 |#1|) (-1072 |#1|) (-1072 |#1|)) 36)) (-4090 (((-1072 |#1|) (-1072 |#1|)) 21) (((-1072 |#1|) (-1072 |#1|) (-1072 |#1|)) 23)) (-4080 (((-1072 |#1|) (-1072 |#1|) (-1072 |#1|)) 17)) (* (((-1072 |#1|) (-1072 |#1|) |#1|) 29) (((-1072 |#1|) |#1| (-1072 |#1|)) 26) (((-1072 |#1|) (-1072 |#1|) (-1072 |#1|)) 27)))
+(((-1076 |#1|) (-10 -7 (-15 -4080 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -4090 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -4090 ((-1072 |#1|) (-1072 |#1|))) (-15 * ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 * ((-1072 |#1|) |#1| (-1072 |#1|))) (-15 * ((-1072 |#1|) (-1072 |#1|) |#1|)) (-15 -1680 ((-3 (-1072 |#1|) "failed") (-1072 |#1|) (-1072 |#1|))) (-15 -4100 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -3762 ((-3 (-1072 |#1|) "failed") (-1072 |#1|))) (-15 -3219 ((-1072 |#1|) |#1| (-525))) (-15 -3554 ((-1072 (-525)) (-525))) (-15 -4085 ((-1072 (-525)) (-525))) (-15 -3060 ((-1072 |#1|) |#1|)) (-15 -1457 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -3319 ((-1072 |#1|) (-1072 |#1|))) (-15 -1539 ((-1072 |#1|) (-1 |#1| (-525)) (-1072 |#1|))) (-15 -1270 ((-1072 |#1|) |#1|)) (-15 -2602 ((-1072 |#1|) (-1072 |#1|) |#1|)) (-15 -3532 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -1389 ((-1072 |#1|) (-1072 |#1|))) (-15 -3045 ((-1072 |#1|) (-1072 |#1|))) (-15 -3621 ((-1072 |#1|) (-1072 (-1072 |#1|)))) (-15 -1225 ((-1072 |#1|) (-1072 |#1|))) (-15 -1735 ((-1072 |#1|) (-1072 |#1|))) (-15 -2655 ((-1072 |#1|) (-1072 |#1|))) (-15 -1909 ((-1072 |#1|) (-1072 |#1|) (-525) (-525))) (-15 -3650 ((-1072 |#1|) (-525) (-525) (-1072 |#1|))) (-15 -1254 ((-1072 |#1|) (-525) (-525) (-1072 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2650 ((-1072 |#1|) |#1| (-1072 |#1|))) (-15 -3892 ((-1072 |#1|) |#1| (-1 (-1072 |#1|)))) (-15 -3613 ((-1072 |#1|) (-1072 (-1072 |#1|)))) (-15 -2619 ((-1072 |#1|) (-385 (-525)) (-1072 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -1208 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -3747 ((-1072 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1072 |#1|)))) (-15 -4011 ((-1072 |#1|) |#1| (-1072 |#1|)))) |%noBranch|)) (-977)) (T -1076))
+((-4011 (*1 *2 *3 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-341)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (-3747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-525))) (-5 *5 (-1 (-1072 *4))) (-4 *4 (-341)) (-4 *4 (-977)) (-5 *2 (-1072 *4)) (-5 *1 (-1076 *4)))) (-1208 (*1 *2 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-341)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (-2619 (*1 *2 *3 *2) (-12 (-5 *2 (-1072 *4)) (-5 *3 (-385 (-525))) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-977)) (-5 *1 (-1076 *4)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-1072 (-1072 *4))) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-977)) (-5 *2 (-1072 *4)) (-5 *1 (-1076 *4)))) (-3892 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1072 *3))) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-5 *2 (-1072 *3)) (-5 *1 (-1076 *3)))) (-2650 (*1 *2 *3 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (-1254 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1072 *4)) (-5 *3 (-525)) (-4 *4 (-977)) (-5 *1 (-1076 *4)))) (-3650 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1072 *4)) (-5 *3 (-525)) (-4 *4 (-977)) (-5 *1 (-1076 *4)))) (-1909 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1072 *4)) (-5 *3 (-525)) (-4 *4 (-977)) (-5 *1 (-1076 *4)))) (-2655 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (-1735 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (-1225 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (-3621 (*1 *2 *3) (-12 (-5 *3 (-1072 (-1072 *4))) (-4 *4 (-977)) (-5 *2 (-1072 *4)) (-5 *1 (-1076 *4)))) (-3045 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (-1389 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (-3532 (*1 *2 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (-2602 (*1 *2 *2 *3) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (-1270 (*1 *2 *3) (-12 (-5 *2 (-1072 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-977)))) (-1539 (*1 *2 *3 *2) (-12 (-5 *2 (-1072 *4)) (-5 *3 (-1 *4 (-525))) (-4 *4 (-977)) (-5 *1 (-1076 *4)))) (-3319 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (-1457 (*1 *2 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (-3060 (*1 *2 *3) (-12 (-5 *2 (-1072 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-977)))) (-4085 (*1 *2 *3) (-12 (-5 *2 (-1072 (-525))) (-5 *1 (-1076 *4)) (-4 *4 (-977)) (-5 *3 (-525)))) (-3554 (*1 *2 *3) (-12 (-5 *2 (-1072 (-525))) (-5 *1 (-1076 *4)) (-4 *4 (-977)) (-5 *3 (-525)))) (-3219 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-5 *2 (-1072 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-977)))) (-3762 (*1 *2 *2) (|partial| -12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (-4100 (*1 *2 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (-1680 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (-4090 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (-4090 (*1 *2 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))) (-4080 (*1 *2 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))))
+(-10 -7 (-15 -4080 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -4090 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -4090 ((-1072 |#1|) (-1072 |#1|))) (-15 * ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 * ((-1072 |#1|) |#1| (-1072 |#1|))) (-15 * ((-1072 |#1|) (-1072 |#1|) |#1|)) (-15 -1680 ((-3 (-1072 |#1|) "failed") (-1072 |#1|) (-1072 |#1|))) (-15 -4100 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -3762 ((-3 (-1072 |#1|) "failed") (-1072 |#1|))) (-15 -3219 ((-1072 |#1|) |#1| (-525))) (-15 -3554 ((-1072 (-525)) (-525))) (-15 -4085 ((-1072 (-525)) (-525))) (-15 -3060 ((-1072 |#1|) |#1|)) (-15 -1457 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -3319 ((-1072 |#1|) (-1072 |#1|))) (-15 -1539 ((-1072 |#1|) (-1 |#1| (-525)) (-1072 |#1|))) (-15 -1270 ((-1072 |#1|) |#1|)) (-15 -2602 ((-1072 |#1|) (-1072 |#1|) |#1|)) (-15 -3532 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -1389 ((-1072 |#1|) (-1072 |#1|))) (-15 -3045 ((-1072 |#1|) (-1072 |#1|))) (-15 -3621 ((-1072 |#1|) (-1072 (-1072 |#1|)))) (-15 -1225 ((-1072 |#1|) (-1072 |#1|))) (-15 -1735 ((-1072 |#1|) (-1072 |#1|))) (-15 -2655 ((-1072 |#1|) (-1072 |#1|))) (-15 -1909 ((-1072 |#1|) (-1072 |#1|) (-525) (-525))) (-15 -3650 ((-1072 |#1|) (-525) (-525) (-1072 |#1|))) (-15 -1254 ((-1072 |#1|) (-525) (-525) (-1072 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2650 ((-1072 |#1|) |#1| (-1072 |#1|))) (-15 -3892 ((-1072 |#1|) |#1| (-1 (-1072 |#1|)))) (-15 -3613 ((-1072 |#1|) (-1072 (-1072 |#1|)))) (-15 -2619 ((-1072 |#1|) (-385 (-525)) (-1072 |#1|)))) |%noBranch|) (IF (|has| |#1| (-341)) (PROGN (-15 -1208 ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -3747 ((-1072 |#1|) (-1 |#1| (-525)) |#1| (-1 (-1072 |#1|)))) (-15 -4011 ((-1072 |#1|) |#1| (-1072 |#1|)))) |%noBranch|))
+((-2351 (((-1072 |#1|) (-1072 |#1|)) 57)) (-1603 (((-1072 |#1|) (-1072 |#1|)) 39)) (-2320 (((-1072 |#1|) (-1072 |#1|)) 53)) (-1569 (((-1072 |#1|) (-1072 |#1|)) 35)) (-2382 (((-1072 |#1|) (-1072 |#1|)) 60)) (-2193 (((-1072 |#1|) (-1072 |#1|)) 42)) (-1415 (((-1072 |#1|) (-1072 |#1|)) 31)) (-1250 (((-1072 |#1|) (-1072 |#1|)) 27)) (-2396 (((-1072 |#1|) (-1072 |#1|)) 61)) (-2209 (((-1072 |#1|) (-1072 |#1|)) 43)) (-2367 (((-1072 |#1|) (-1072 |#1|)) 58)) (-2176 (((-1072 |#1|) (-1072 |#1|)) 40)) (-2335 (((-1072 |#1|) (-1072 |#1|)) 55)) (-1584 (((-1072 |#1|) (-1072 |#1|)) 37)) (-2438 (((-1072 |#1|) (-1072 |#1|)) 65)) (-2257 (((-1072 |#1|) (-1072 |#1|)) 47)) (-2410 (((-1072 |#1|) (-1072 |#1|)) 63)) (-2226 (((-1072 |#1|) (-1072 |#1|)) 45)) (-2464 (((-1072 |#1|) (-1072 |#1|)) 68)) (-2287 (((-1072 |#1|) (-1072 |#1|)) 50)) (-2687 (((-1072 |#1|) (-1072 |#1|)) 69)) (-2303 (((-1072 |#1|) (-1072 |#1|)) 51)) (-2450 (((-1072 |#1|) (-1072 |#1|)) 67)) (-2273 (((-1072 |#1|) (-1072 |#1|)) 49)) (-2424 (((-1072 |#1|) (-1072 |#1|)) 66)) (-2242 (((-1072 |#1|) (-1072 |#1|)) 48)) (** (((-1072 |#1|) (-1072 |#1|) (-1072 |#1|)) 33)))
+(((-1077 |#1|) (-10 -7 (-15 -1250 ((-1072 |#1|) (-1072 |#1|))) (-15 -1415 ((-1072 |#1|) (-1072 |#1|))) (-15 ** ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -1569 ((-1072 |#1|) (-1072 |#1|))) (-15 -1584 ((-1072 |#1|) (-1072 |#1|))) (-15 -1603 ((-1072 |#1|) (-1072 |#1|))) (-15 -2176 ((-1072 |#1|) (-1072 |#1|))) (-15 -2193 ((-1072 |#1|) (-1072 |#1|))) (-15 -2209 ((-1072 |#1|) (-1072 |#1|))) (-15 -2226 ((-1072 |#1|) (-1072 |#1|))) (-15 -2242 ((-1072 |#1|) (-1072 |#1|))) (-15 -2257 ((-1072 |#1|) (-1072 |#1|))) (-15 -2273 ((-1072 |#1|) (-1072 |#1|))) (-15 -2287 ((-1072 |#1|) (-1072 |#1|))) (-15 -2303 ((-1072 |#1|) (-1072 |#1|))) (-15 -2320 ((-1072 |#1|) (-1072 |#1|))) (-15 -2335 ((-1072 |#1|) (-1072 |#1|))) (-15 -2351 ((-1072 |#1|) (-1072 |#1|))) (-15 -2367 ((-1072 |#1|) (-1072 |#1|))) (-15 -2382 ((-1072 |#1|) (-1072 |#1|))) (-15 -2396 ((-1072 |#1|) (-1072 |#1|))) (-15 -2410 ((-1072 |#1|) (-1072 |#1|))) (-15 -2424 ((-1072 |#1|) (-1072 |#1|))) (-15 -2438 ((-1072 |#1|) (-1072 |#1|))) (-15 -2450 ((-1072 |#1|) (-1072 |#1|))) (-15 -2464 ((-1072 |#1|) (-1072 |#1|))) (-15 -2687 ((-1072 |#1|) (-1072 |#1|)))) (-37 (-385 (-525)))) (T -1077))
+((-2687 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2464 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2450 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2438 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2424 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2410 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2396 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2382 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2351 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2335 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2320 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2303 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2287 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2273 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2257 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2242 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2226 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2209 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2193 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-2176 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-1603 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-1569 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-1415 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))) (-1250 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1077 *3)))))
+(-10 -7 (-15 -1250 ((-1072 |#1|) (-1072 |#1|))) (-15 -1415 ((-1072 |#1|) (-1072 |#1|))) (-15 ** ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -1569 ((-1072 |#1|) (-1072 |#1|))) (-15 -1584 ((-1072 |#1|) (-1072 |#1|))) (-15 -1603 ((-1072 |#1|) (-1072 |#1|))) (-15 -2176 ((-1072 |#1|) (-1072 |#1|))) (-15 -2193 ((-1072 |#1|) (-1072 |#1|))) (-15 -2209 ((-1072 |#1|) (-1072 |#1|))) (-15 -2226 ((-1072 |#1|) (-1072 |#1|))) (-15 -2242 ((-1072 |#1|) (-1072 |#1|))) (-15 -2257 ((-1072 |#1|) (-1072 |#1|))) (-15 -2273 ((-1072 |#1|) (-1072 |#1|))) (-15 -2287 ((-1072 |#1|) (-1072 |#1|))) (-15 -2303 ((-1072 |#1|) (-1072 |#1|))) (-15 -2320 ((-1072 |#1|) (-1072 |#1|))) (-15 -2335 ((-1072 |#1|) (-1072 |#1|))) (-15 -2351 ((-1072 |#1|) (-1072 |#1|))) (-15 -2367 ((-1072 |#1|) (-1072 |#1|))) (-15 -2382 ((-1072 |#1|) (-1072 |#1|))) (-15 -2396 ((-1072 |#1|) (-1072 |#1|))) (-15 -2410 ((-1072 |#1|) (-1072 |#1|))) (-15 -2424 ((-1072 |#1|) (-1072 |#1|))) (-15 -2438 ((-1072 |#1|) (-1072 |#1|))) (-15 -2450 ((-1072 |#1|) (-1072 |#1|))) (-15 -2464 ((-1072 |#1|) (-1072 |#1|))) (-15 -2687 ((-1072 |#1|) (-1072 |#1|))))
+((-2351 (((-1072 |#1|) (-1072 |#1|)) 100)) (-1603 (((-1072 |#1|) (-1072 |#1|)) 64)) (-2827 (((-2 (|:| -2320 (-1072 |#1|)) (|:| -2335 (-1072 |#1|))) (-1072 |#1|)) 96)) (-2320 (((-1072 |#1|) (-1072 |#1|)) 97)) (-3396 (((-2 (|:| -1569 (-1072 |#1|)) (|:| -1584 (-1072 |#1|))) (-1072 |#1|)) 53)) (-1569 (((-1072 |#1|) (-1072 |#1|)) 54)) (-2382 (((-1072 |#1|) (-1072 |#1|)) 102)) (-2193 (((-1072 |#1|) (-1072 |#1|)) 71)) (-1415 (((-1072 |#1|) (-1072 |#1|)) 39)) (-1250 (((-1072 |#1|) (-1072 |#1|)) 36)) (-2396 (((-1072 |#1|) (-1072 |#1|)) 103)) (-2209 (((-1072 |#1|) (-1072 |#1|)) 72)) (-2367 (((-1072 |#1|) (-1072 |#1|)) 101)) (-2176 (((-1072 |#1|) (-1072 |#1|)) 67)) (-2335 (((-1072 |#1|) (-1072 |#1|)) 98)) (-1584 (((-1072 |#1|) (-1072 |#1|)) 55)) (-2438 (((-1072 |#1|) (-1072 |#1|)) 111)) (-2257 (((-1072 |#1|) (-1072 |#1|)) 86)) (-2410 (((-1072 |#1|) (-1072 |#1|)) 105)) (-2226 (((-1072 |#1|) (-1072 |#1|)) 82)) (-2464 (((-1072 |#1|) (-1072 |#1|)) 115)) (-2287 (((-1072 |#1|) (-1072 |#1|)) 90)) (-2687 (((-1072 |#1|) (-1072 |#1|)) 117)) (-2303 (((-1072 |#1|) (-1072 |#1|)) 92)) (-2450 (((-1072 |#1|) (-1072 |#1|)) 113)) (-2273 (((-1072 |#1|) (-1072 |#1|)) 88)) (-2424 (((-1072 |#1|) (-1072 |#1|)) 107)) (-2242 (((-1072 |#1|) (-1072 |#1|)) 84)) (** (((-1072 |#1|) (-1072 |#1|) (-1072 |#1|)) 40)))
+(((-1078 |#1|) (-10 -7 (-15 -1250 ((-1072 |#1|) (-1072 |#1|))) (-15 -1415 ((-1072 |#1|) (-1072 |#1|))) (-15 ** ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -3396 ((-2 (|:| -1569 (-1072 |#1|)) (|:| -1584 (-1072 |#1|))) (-1072 |#1|))) (-15 -1569 ((-1072 |#1|) (-1072 |#1|))) (-15 -1584 ((-1072 |#1|) (-1072 |#1|))) (-15 -1603 ((-1072 |#1|) (-1072 |#1|))) (-15 -2176 ((-1072 |#1|) (-1072 |#1|))) (-15 -2193 ((-1072 |#1|) (-1072 |#1|))) (-15 -2209 ((-1072 |#1|) (-1072 |#1|))) (-15 -2226 ((-1072 |#1|) (-1072 |#1|))) (-15 -2242 ((-1072 |#1|) (-1072 |#1|))) (-15 -2257 ((-1072 |#1|) (-1072 |#1|))) (-15 -2273 ((-1072 |#1|) (-1072 |#1|))) (-15 -2287 ((-1072 |#1|) (-1072 |#1|))) (-15 -2303 ((-1072 |#1|) (-1072 |#1|))) (-15 -2827 ((-2 (|:| -2320 (-1072 |#1|)) (|:| -2335 (-1072 |#1|))) (-1072 |#1|))) (-15 -2320 ((-1072 |#1|) (-1072 |#1|))) (-15 -2335 ((-1072 |#1|) (-1072 |#1|))) (-15 -2351 ((-1072 |#1|) (-1072 |#1|))) (-15 -2367 ((-1072 |#1|) (-1072 |#1|))) (-15 -2382 ((-1072 |#1|) (-1072 |#1|))) (-15 -2396 ((-1072 |#1|) (-1072 |#1|))) (-15 -2410 ((-1072 |#1|) (-1072 |#1|))) (-15 -2424 ((-1072 |#1|) (-1072 |#1|))) (-15 -2438 ((-1072 |#1|) (-1072 |#1|))) (-15 -2450 ((-1072 |#1|) (-1072 |#1|))) (-15 -2464 ((-1072 |#1|) (-1072 |#1|))) (-15 -2687 ((-1072 |#1|) (-1072 |#1|)))) (-37 (-385 (-525)))) (T -1078))
+((-2687 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2464 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2450 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2438 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2424 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2410 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2396 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2382 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2351 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2335 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2320 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2827 (*1 *2 *3) (-12 (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-2 (|:| -2320 (-1072 *4)) (|:| -2335 (-1072 *4)))) (-5 *1 (-1078 *4)) (-5 *3 (-1072 *4)))) (-2303 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2287 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2273 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2257 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2242 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2226 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2209 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2193 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-2176 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1603 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1584 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1569 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-3396 (*1 *2 *3) (-12 (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-2 (|:| -1569 (-1072 *4)) (|:| -1584 (-1072 *4)))) (-5 *1 (-1078 *4)) (-5 *3 (-1072 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1415 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))) (-1250 (*1 *2 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1078 *3)))))
+(-10 -7 (-15 -1250 ((-1072 |#1|) (-1072 |#1|))) (-15 -1415 ((-1072 |#1|) (-1072 |#1|))) (-15 ** ((-1072 |#1|) (-1072 |#1|) (-1072 |#1|))) (-15 -3396 ((-2 (|:| -1569 (-1072 |#1|)) (|:| -1584 (-1072 |#1|))) (-1072 |#1|))) (-15 -1569 ((-1072 |#1|) (-1072 |#1|))) (-15 -1584 ((-1072 |#1|) (-1072 |#1|))) (-15 -1603 ((-1072 |#1|) (-1072 |#1|))) (-15 -2176 ((-1072 |#1|) (-1072 |#1|))) (-15 -2193 ((-1072 |#1|) (-1072 |#1|))) (-15 -2209 ((-1072 |#1|) (-1072 |#1|))) (-15 -2226 ((-1072 |#1|) (-1072 |#1|))) (-15 -2242 ((-1072 |#1|) (-1072 |#1|))) (-15 -2257 ((-1072 |#1|) (-1072 |#1|))) (-15 -2273 ((-1072 |#1|) (-1072 |#1|))) (-15 -2287 ((-1072 |#1|) (-1072 |#1|))) (-15 -2303 ((-1072 |#1|) (-1072 |#1|))) (-15 -2827 ((-2 (|:| -2320 (-1072 |#1|)) (|:| -2335 (-1072 |#1|))) (-1072 |#1|))) (-15 -2320 ((-1072 |#1|) (-1072 |#1|))) (-15 -2335 ((-1072 |#1|) (-1072 |#1|))) (-15 -2351 ((-1072 |#1|) (-1072 |#1|))) (-15 -2367 ((-1072 |#1|) (-1072 |#1|))) (-15 -2382 ((-1072 |#1|) (-1072 |#1|))) (-15 -2396 ((-1072 |#1|) (-1072 |#1|))) (-15 -2410 ((-1072 |#1|) (-1072 |#1|))) (-15 -2424 ((-1072 |#1|) (-1072 |#1|))) (-15 -2438 ((-1072 |#1|) (-1072 |#1|))) (-15 -2450 ((-1072 |#1|) (-1072 |#1|))) (-15 -2464 ((-1072 |#1|) (-1072 |#1|))) (-15 -2687 ((-1072 |#1|) (-1072 |#1|))))
+((-1902 (((-892 |#2|) |#2| |#2|) 35)) (-3026 ((|#2| |#2| |#1|) 19 (|has| |#1| (-286)))))
+(((-1079 |#1| |#2|) (-10 -7 (-15 -1902 ((-892 |#2|) |#2| |#2|)) (IF (|has| |#1| (-286)) (-15 -3026 (|#2| |#2| |#1|)) |%noBranch|)) (-517) (-1149 |#1|)) (T -1079))
+((-3026 (*1 *2 *2 *3) (-12 (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-1079 *3 *2)) (-4 *2 (-1149 *3)))) (-1902 (*1 *2 *3 *3) (-12 (-4 *4 (-517)) (-5 *2 (-892 *3)) (-5 *1 (-1079 *4 *3)) (-4 *3 (-1149 *4)))))
+(-10 -7 (-15 -1902 ((-892 |#2|) |#2| |#2|)) (IF (|has| |#1| (-286)) (-15 -3026 (|#2| |#2| |#1|)) |%noBranch|))
+((-1260 (((-108) $ $) NIL)) (-1287 (($ $ (-592 (-713))) 67)) (-4130 (($) 26)) (-3203 (($ $) 42)) (-3787 (((-592 $) $) 51)) (-1951 (((-108) $) 16)) (-1684 (((-592 (-878 |#2|)) $) 74)) (-3968 (($ $) 68)) (-3308 (((-713) $) 37)) (-3489 (($) 25)) (-1631 (($ $ (-592 (-713)) (-878 |#2|)) 60) (($ $ (-592 (-713)) (-713)) 61) (($ $ (-713) (-878 |#2|)) 63)) (-3743 (($ $ $) 48) (($ (-592 $)) 50)) (-1984 (((-713) $) 75)) (-3365 (((-108) $) 15)) (-3451 (((-1074) $) NIL)) (-2851 (((-108) $) 18)) (-2012 (((-1038) $) NIL)) (-2943 (((-159) $) 73)) (-2785 (((-878 |#2|) $) 69)) (-2648 (((-713) $) 70)) (-1278 (((-108) $) 72)) (-1231 (($ $ (-592 (-713)) (-159)) 66)) (-2404 (($ $) 43)) (-1270 (((-798) $) 86)) (-4174 (($ $ (-592 (-713)) (-108)) 65)) (-3320 (((-592 $) $) 11)) (-3574 (($ $ (-713)) 36)) (-2610 (($ $) 32)) (-1755 (($ $ $ (-878 |#2|) (-713)) 56)) (-2167 (($ $ (-878 |#2|)) 55)) (-1778 (($ $ (-592 (-713)) (-878 |#2|)) 54) (($ $ (-592 (-713)) (-713)) 58) (((-713) $ (-878 |#2|)) 59)) (-3994 (((-108) $ $) 80)))
+(((-1080 |#1| |#2|) (-13 (-1020) (-10 -8 (-15 -3365 ((-108) $)) (-15 -1951 ((-108) $)) (-15 -2851 ((-108) $)) (-15 -3489 ($)) (-15 -4130 ($)) (-15 -2610 ($ $)) (-15 -3574 ($ $ (-713))) (-15 -3320 ((-592 $) $)) (-15 -3308 ((-713) $)) (-15 -3203 ($ $)) (-15 -2404 ($ $)) (-15 -3743 ($ $ $)) (-15 -3743 ($ (-592 $))) (-15 -3787 ((-592 $) $)) (-15 -1778 ($ $ (-592 (-713)) (-878 |#2|))) (-15 -2167 ($ $ (-878 |#2|))) (-15 -1755 ($ $ $ (-878 |#2|) (-713))) (-15 -1631 ($ $ (-592 (-713)) (-878 |#2|))) (-15 -1778 ($ $ (-592 (-713)) (-713))) (-15 -1631 ($ $ (-592 (-713)) (-713))) (-15 -1778 ((-713) $ (-878 |#2|))) (-15 -1631 ($ $ (-713) (-878 |#2|))) (-15 -4174 ($ $ (-592 (-713)) (-108))) (-15 -1231 ($ $ (-592 (-713)) (-159))) (-15 -1287 ($ $ (-592 (-713)))) (-15 -2785 ((-878 |#2|) $)) (-15 -2648 ((-713) $)) (-15 -1278 ((-108) $)) (-15 -2943 ((-159) $)) (-15 -1984 ((-713) $)) (-15 -3968 ($ $)) (-15 -1684 ((-592 (-878 |#2|)) $)))) (-856) (-977)) (T -1080))
+((-3365 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-1951 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-3489 (*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-4130 (*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-2610 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-3574 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-592 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-3308 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-3203 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-2404 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-3743 (*1 *1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-592 (-1080 *3 *4))) (-14 *3 (-856)) (-4 *4 (-977)) (-5 *1 (-1080 *3 *4)))) (-3787 (*1 *2 *1) (-12 (-5 *2 (-592 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-1778 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-878 *5)) (-4 *5 (-977)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-856)))) (-2167 (*1 *1 *1 *2) (-12 (-5 *2 (-878 *4)) (-4 *4 (-977)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856)))) (-1755 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-878 *5)) (-5 *3 (-713)) (-4 *5 (-977)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-856)))) (-1631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-878 *5)) (-4 *5 (-977)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-856)))) (-1778 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-856)) (-4 *5 (-977)))) (-1631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-856)) (-4 *5 (-977)))) (-1778 (*1 *2 *1 *3) (-12 (-5 *3 (-878 *5)) (-4 *5 (-977)) (-5 *2 (-713)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-856)))) (-1631 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-878 *5)) (-4 *5 (-977)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-856)))) (-4174 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-108)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-856)) (-4 *5 (-977)))) (-1231 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-592 (-713))) (-5 *3 (-159)) (-5 *1 (-1080 *4 *5)) (-14 *4 (-856)) (-4 *5 (-977)))) (-1287 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-878 *4)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-1278 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-2943 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))) (-3968 (*1 *1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-592 (-878 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856)) (-4 *4 (-977)))))
+(-13 (-1020) (-10 -8 (-15 -3365 ((-108) $)) (-15 -1951 ((-108) $)) (-15 -2851 ((-108) $)) (-15 -3489 ($)) (-15 -4130 ($)) (-15 -2610 ($ $)) (-15 -3574 ($ $ (-713))) (-15 -3320 ((-592 $) $)) (-15 -3308 ((-713) $)) (-15 -3203 ($ $)) (-15 -2404 ($ $)) (-15 -3743 ($ $ $)) (-15 -3743 ($ (-592 $))) (-15 -3787 ((-592 $) $)) (-15 -1778 ($ $ (-592 (-713)) (-878 |#2|))) (-15 -2167 ($ $ (-878 |#2|))) (-15 -1755 ($ $ $ (-878 |#2|) (-713))) (-15 -1631 ($ $ (-592 (-713)) (-878 |#2|))) (-15 -1778 ($ $ (-592 (-713)) (-713))) (-15 -1631 ($ $ (-592 (-713)) (-713))) (-15 -1778 ((-713) $ (-878 |#2|))) (-15 -1631 ($ $ (-713) (-878 |#2|))) (-15 -4174 ($ $ (-592 (-713)) (-108))) (-15 -1231 ($ $ (-592 (-713)) (-159))) (-15 -1287 ($ $ (-592 (-713)))) (-15 -2785 ((-878 |#2|) $)) (-15 -2648 ((-713) $)) (-15 -1278 ((-108) $)) (-15 -2943 ((-159) $)) (-15 -1984 ((-713) $)) (-15 -3968 ($ $)) (-15 -1684 ((-592 (-878 |#2|)) $))))
+((-1260 (((-108) $ $) NIL)) (-1314 ((|#2| $) 11)) (-1303 ((|#1| $) 10)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1279 (($ |#1| |#2|) 9)) (-1270 (((-798) $) 16)) (-3994 (((-108) $ $) NIL)))
+(((-1081 |#1| |#2|) (-13 (-1020) (-10 -8 (-15 -1279 ($ |#1| |#2|)) (-15 -1303 (|#1| $)) (-15 -1314 (|#2| $)))) (-1020) (-1020)) (T -1081))
+((-1279 (*1 *1 *2 *3) (-12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-1303 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1020)))) (-1314 (*1 *2 *1) (-12 (-4 *2 (-1020)) (-5 *1 (-1081 *3 *2)) (-4 *3 (-1020)))))
+(-13 (-1020) (-10 -8 (-15 -1279 ($ |#1| |#2|)) (-15 -1303 (|#1| $)) (-15 -1314 (|#2| $))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2628 (((-1089 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-2383 (((-592 (-1005)) $) NIL)) (-2577 (((-1091) $) 11)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3711 (($ $) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3380 (((-108) $) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3642 (($ $ (-525)) NIL) (($ $ (-525) (-525)) 66)) (-4192 (((-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) NIL)) (-1893 (((-1089 |#1| |#2| |#3|) $) 36)) (-3003 (((-3 (-1089 |#1| |#2| |#3|) "failed") $) 29)) (-2451 (((-1089 |#1| |#2| |#3|) $) 30)) (-2351 (($ $) 107 (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) 83 (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-3706 (($ $) NIL (|has| |#1| (-341)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-3197 (((-108) $ $) NIL (|has| |#1| (-341)))) (-2320 (($ $) 103 (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) 79 (|has| |#1| (-37 (-385 (-525)))))) (-1436 (((-525) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-2307 (($ (-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) NIL)) (-2382 (($ $) 111 (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) 87 (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-1089 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1091) "failed") $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-968 (-1091))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-525) "failed") $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))))) (-3898 (((-1089 |#1| |#2| |#3|) $) 131) (((-1091) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-968 (-1091))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341)))) (((-525) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))))) (-1786 (($ $) 34) (($ (-525) $) 35)) (-1726 (($ $ $) NIL (|has| |#1| (-341)))) (-2571 (($ $) NIL)) (-3416 (((-632 (-1089 |#1| |#2| |#3|)) (-632 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -1484 (-632 (-1089 |#1| |#2| |#3|))) (|:| |vec| (-1173 (-1089 |#1| |#2| |#3|)))) (-632 $) (-1173 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341))))) (-3762 (((-3 $ "failed") $) 48)) (-2341 (((-385 (-887 |#1|)) $ (-525)) 65 (|has| |#1| (-517))) (((-385 (-887 |#1|)) $ (-525) (-525)) 67 (|has| |#1| (-517)))) (-2899 (($) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-1704 (($ $ $) NIL (|has| |#1| (-341)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3836 (((-108) $) NIL (|has| |#1| (-341)))) (-3017 (((-108) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-2911 (((-108) $) 25)) (-1535 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-821 (-525))) (|has| |#1| (-341)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-821 (-357))) (|has| |#1| (-341))))) (-3973 (((-525) $) NIL) (((-525) $ (-525)) 24)) (-1985 (((-108) $) NIL)) (-1931 (($ $) NIL (|has| |#1| (-341)))) (-1498 (((-1089 |#1| |#2| |#3|) $) 38 (|has| |#1| (-341)))) (-3220 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1760 (((-3 $ "failed") $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-341))))) (-3912 (((-108) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-3073 (($ $ (-856)) NIL)) (-2615 (($ (-1 |#1| (-525)) $) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-525)) 18) (($ $ (-1005) (-525)) NIL) (($ $ (-592 (-1005)) (-592 (-525))) NIL)) (-2371 (($ $ $) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2535 (($ $ $) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-341)))) (-1415 (($ $) 72 (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2465 (($ (-525) (-1089 |#1| |#2| |#3|)) 33)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL (|has| |#1| (-341)))) (-2650 (($ $) 70 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1091)) NIL (-3279 (-12 (|has| |#1| (-15 -2650 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -2383 ((-592 (-1091)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1113))))) (($ $ (-1169 |#2|)) 71 (|has| |#1| (-37 (-385 (-525)))))) (-3940 (($) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-341))) CONST)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-341)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3025 (($ $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-2793 (((-1089 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-2195 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-2182 (($ $ (-525)) 145)) (-1680 (((-3 $ "failed") $ $) 49 (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1250 (($ $) 73 (|has| |#1| (-37 (-385 (-525)))))) (-2602 (((-1072 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1091) (-1089 |#1| |#2| |#3|)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-486 (-1091) (-1089 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1091)) (-592 (-1089 |#1| |#2| |#3|))) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-486 (-1091) (-1089 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-273 (-1089 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-288 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-273 (-1089 |#1| |#2| |#3|))) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-288 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-288 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1089 |#1| |#2| |#3|)) (-592 (-1089 |#1| |#2| |#3|))) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-288 (-1089 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-1290 (((-713) $) NIL (|has| |#1| (-341)))) (-3410 ((|#1| $ (-525)) NIL) (($ $ $) 54 (|has| (-525) (-1032))) (($ $ (-1089 |#1| |#2| |#3|)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-265 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-341)))) (-2523 (($ $ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1169 |#2|)) 51) (($ $ (-713)) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 50 (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-1091) (-713)) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-592 (-1091))) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-1091)) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091))))))) (-2097 (($ $) NIL (|has| |#1| (-341)))) (-1512 (((-1089 |#1| |#2| |#3|) $) 41 (|has| |#1| (-341)))) (-1587 (((-525) $) 37)) (-2396 (($ $) 113 (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) 89 (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) 109 (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) 85 (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) 105 (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) 81 (|has| |#1| (-37 (-385 (-525)))))) (-2749 (((-501) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-567 (-501))) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-953)) (|has| |#1| (-341)))) (((-205) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-953)) (|has| |#1| (-341)))) (((-827 (-357)) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-567 (-827 (-357)))) (|has| |#1| (-341)))) (((-827 (-525)) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-567 (-827 (-525)))) (|has| |#1| (-341))))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-1089 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-3577 (($ $) NIL)) (-1270 (((-798) $) 149) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1089 |#1| |#2| |#3|)) 27) (($ (-1169 |#2|)) 23) (($ (-1091)) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-968 (-1091))) (|has| |#1| (-341)))) (($ $) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517)))) (($ (-385 (-525))) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))) (|has| |#1| (-37 (-385 (-525))))))) (-3468 ((|#1| $ (-525)) 68)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| (-1089 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-2104 (((-713)) NIL)) (-3144 ((|#1| $) 12)) (-1438 (((-1089 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-2438 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) 95 (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-2410 (($ $) 115 (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) 91 (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) 99 (|has| |#1| (-37 (-385 (-525)))))) (-1369 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1270 (|#1| (-1091))))))) (-2687 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) 101 (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) 97 (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) 93 (|has| |#1| (-37 (-385 (-525)))))) (-2086 (($ $) NIL (-12 (|has| (-1089 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3355 (($) 20 T CONST)) (-3363 (($) 16 T CONST)) (-2093 (($ $ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-1091) (-713)) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-592 (-1091))) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-1091)) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091))))))) (-4045 (((-108) $ $) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-4026 (((-108) $ $) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-4017 (((-108) $ $) NIL (-3279 (-12 (|has| (-1089 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1089 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 44 (|has| |#1| (-341))) (($ (-1089 |#1| |#2| |#3|) (-1089 |#1| |#2| |#3|)) 45 (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) 21)) (** (($ $ (-856)) NIL) (($ $ (-713)) 53) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) 74 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 128 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1089 |#1| |#2| |#3|)) 43 (|has| |#1| (-341))) (($ (-1089 |#1| |#2| |#3|) $) 42 (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-1082 |#1| |#2| |#3|) (-13 (-1135 |#1| (-1089 |#1| |#2| |#3|)) (-10 -8 (-15 -1270 ($ (-1169 |#2|))) (-15 -2523 ($ $ (-1169 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2650 ($ $ (-1169 |#2|))) |%noBranch|))) (-977) (-1091) |#1|) (T -1082))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2650 (*1 *1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1082 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
+(-13 (-1135 |#1| (-1089 |#1| |#2| |#3|)) (-10 -8 (-15 -1270 ($ (-1169 |#2|))) (-15 -2523 ($ $ (-1169 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2650 ($ $ (-1169 |#2|))) |%noBranch|)))
+((-2971 ((|#2| |#2| (-1013 |#2|)) 26) ((|#2| |#2| (-1091)) 28)))
+(((-1083 |#1| |#2|) (-10 -7 (-15 -2971 (|#2| |#2| (-1091))) (-15 -2971 (|#2| |#2| (-1013 |#2|)))) (-13 (-517) (-789) (-968 (-525)) (-588 (-525))) (-13 (-408 |#1|) (-149) (-27) (-1113))) (T -1083))
+((-2971 (*1 *2 *2 *3) (-12 (-5 *3 (-1013 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1113))) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1083 *4 *2)))) (-2971 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1083 *4 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1113))))))
+(-10 -7 (-15 -2971 (|#2| |#2| (-1091))) (-15 -2971 (|#2| |#2| (-1013 |#2|))))
+((-2971 (((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1013 (-385 (-887 |#1|)))) 31) (((-385 (-887 |#1|)) (-887 |#1|) (-1013 (-887 |#1|))) 44) (((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1091)) 33) (((-385 (-887 |#1|)) (-887 |#1|) (-1091)) 36)))
+(((-1084 |#1|) (-10 -7 (-15 -2971 ((-385 (-887 |#1|)) (-887 |#1|) (-1091))) (-15 -2971 ((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1091))) (-15 -2971 ((-385 (-887 |#1|)) (-887 |#1|) (-1013 (-887 |#1|)))) (-15 -2971 ((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1013 (-385 (-887 |#1|)))))) (-13 (-517) (-789) (-968 (-525)))) (T -1084))
+((-2971 (*1 *2 *3 *4) (-12 (-5 *4 (-1013 (-385 (-887 *5)))) (-4 *5 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-3 (-385 (-887 *5)) (-294 *5))) (-5 *1 (-1084 *5)) (-5 *3 (-385 (-887 *5))))) (-2971 (*1 *2 *3 *4) (-12 (-5 *4 (-1013 (-887 *5))) (-4 *5 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-385 (-887 *5))) (-5 *1 (-1084 *5)) (-5 *3 (-887 *5)))) (-2971 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-3 (-385 (-887 *5)) (-294 *5))) (-5 *1 (-1084 *5)) (-5 *3 (-385 (-887 *5))))) (-2971 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-385 (-887 *5))) (-5 *1 (-1084 *5)) (-5 *3 (-887 *5)))))
+(-10 -7 (-15 -2971 ((-385 (-887 |#1|)) (-887 |#1|) (-1091))) (-15 -2971 ((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1091))) (-15 -2971 ((-385 (-887 |#1|)) (-887 |#1|) (-1013 (-887 |#1|)))) (-15 -2971 ((-3 (-385 (-887 |#1|)) (-294 |#1|)) (-385 (-887 |#1|)) (-1013 (-385 (-887 |#1|))))))
+((-2694 (((-1087 |#2|) (-1 |#2| |#1|) (-1087 |#1|)) 13)))
+(((-1085 |#1| |#2|) (-10 -7 (-15 -2694 ((-1087 |#2|) (-1 |#2| |#1|) (-1087 |#1|)))) (-977) (-977)) (T -1085))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-5 *2 (-1087 *6)) (-5 *1 (-1085 *5 *6)))))
+(-10 -7 (-15 -2694 ((-1087 |#2|) (-1 |#2| |#1|) (-1087 |#1|))))
+((-2100 (((-396 (-1087 (-385 |#4|))) (-1087 (-385 |#4|))) 51)) (-2195 (((-396 (-1087 (-385 |#4|))) (-1087 (-385 |#4|))) 52)))
+(((-1086 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2195 ((-396 (-1087 (-385 |#4|))) (-1087 (-385 |#4|)))) (-15 -2100 ((-396 (-1087 (-385 |#4|))) (-1087 (-385 |#4|))))) (-735) (-789) (-429) (-884 |#3| |#1| |#2|)) (T -1086))
+((-2100 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1087 (-385 *7)))) (-5 *1 (-1086 *4 *5 *6 *7)) (-5 *3 (-1087 (-385 *7))))) (-2195 (*1 *2 *3) (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429)) (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1087 (-385 *7)))) (-5 *1 (-1086 *4 *5 *6 *7)) (-5 *3 (-1087 (-385 *7))))))
+(-10 -7 (-15 -2195 ((-396 (-1087 (-385 |#4|))) (-1087 (-385 |#4|)))) (-15 -2100 ((-396 (-1087 (-385 |#4|))) (-1087 (-385 |#4|)))))
+((-1260 (((-108) $ $) 139)) (-1989 (((-108) $) 30)) (-2122 (((-1173 |#1|) $ (-713)) NIL)) (-2383 (((-592 (-1005)) $) NIL)) (-2612 (($ (-1087 |#1|)) NIL)) (-2146 (((-1087 $) $ (-1005)) 60) (((-1087 |#1|) $) 49)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) 134 (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-3848 (((-713) $) NIL) (((-713) $ (-592 (-1005))) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $ $) 128 (|has| |#1| (-517)))) (-4050 (((-396 (-1087 $)) (-1087 $)) 73 (|has| |#1| (-844)))) (-3706 (($ $) NIL (|has| |#1| (-429)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) 93 (|has| |#1| (-844)))) (-3197 (((-108) $ $) NIL (|has| |#1| (-341)))) (-3626 (($ $ (-713)) 42)) (-1807 (($ $ (-713)) 43)) (-3787 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-429)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#1| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-1005) "failed") $) NIL)) (-3898 ((|#1| $) NIL) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-1005) $) NIL)) (-1516 (($ $ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $ $) 130 (|has| |#1| (-160)))) (-1726 (($ $ $) NIL (|has| |#1| (-341)))) (-2571 (($ $) 58)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) NIL) (((-632 |#1|) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-1704 (($ $ $) NIL (|has| |#1| (-341)))) (-1570 (($ $ $) 106)) (-3546 (($ $ $) NIL (|has| |#1| (-517)))) (-3886 (((-2 (|:| -1655 |#1|) (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-517)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3026 (($ $) 135 (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-2558 (((-592 $) $) NIL)) (-3836 (((-108) $) NIL (|has| |#1| (-844)))) (-2192 (($ $ |#1| (-713) $) 47)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1005) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1005) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-3169 (((-798) $ (-798)) 119)) (-3973 (((-713) $ $) NIL (|has| |#1| (-517)))) (-1985 (((-108) $) 32)) (-1647 (((-713) $) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| |#1| (-1067)))) (-2368 (($ (-1087 |#1|) (-1005)) 51) (($ (-1087 $) (-1005)) 67)) (-3073 (($ $ (-713)) 34)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-713)) 65) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ (-1005)) NIL) (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 123)) (-3724 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-3922 (($ (-1 (-713) (-713)) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-1263 (((-1087 |#1|) $) NIL)) (-3567 (((-3 (-1005) "failed") $) NIL)) (-2538 (($ $) NIL)) (-2548 ((|#1| $) 54)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) NIL (|has| |#1| (-429)))) (-3451 (((-1074) $) NIL)) (-2799 (((-2 (|:| -2370 $) (|:| -3496 $)) $ (-713)) 41)) (-4228 (((-3 (-592 $) "failed") $) NIL)) (-3852 (((-3 (-592 $) "failed") $) NIL)) (-1553 (((-3 (-2 (|:| |var| (-1005)) (|:| -1864 (-713))) "failed") $) NIL)) (-2650 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3940 (($) NIL (|has| |#1| (-1067)) CONST)) (-2012 (((-1038) $) NIL)) (-2513 (((-108) $) 33)) (-2525 ((|#1| $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 81 (|has| |#1| (-429)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-429))) (($ $ $) 137 (|has| |#1| (-429)))) (-3485 (($ $ (-713) |#1| $) 101)) (-1215 (((-396 (-1087 $)) (-1087 $)) 79 (|has| |#1| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) 78 (|has| |#1| (-844)))) (-2195 (((-396 $) $) 86 (|has| |#1| (-844)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-1680 (((-3 $ "failed") $ |#1|) 133 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 102 (|has| |#1| (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-2602 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1005) |#1|) NIL) (($ $ (-592 (-1005)) (-592 |#1|)) NIL) (($ $ (-1005) $) NIL) (($ $ (-592 (-1005)) (-592 $)) NIL)) (-1290 (((-713) $) NIL (|has| |#1| (-341)))) (-3410 ((|#1| $ |#1|) 121) (($ $ $) 122) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) NIL (|has| |#1| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#1| (-517)))) (-1782 (((-3 $ "failed") $ (-713)) 37)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 140 (|has| |#1| (-341)))) (-2094 (($ $ (-1005)) NIL (|has| |#1| (-160))) ((|#1| $) 126 (|has| |#1| (-160)))) (-2523 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1587 (((-713) $) 56) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-2749 (((-827 (-357)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1005) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2026 ((|#1| $) 132 (|has| |#1| (-429))) (($ $ (-1005)) NIL (|has| |#1| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#1| (-844))))) (-3682 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#1| (-517)))) (-1270 (((-798) $) 120) (($ (-525)) NIL) (($ |#1|) 55) (($ (-1005)) NIL) (($ (-385 (-525))) NIL (-3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#1| (-517)))) (-1562 (((-592 |#1|) $) NIL)) (-3468 ((|#1| $ (-713)) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2104 (((-713)) NIL)) (-3658 (($ $ $ (-713)) 28 (|has| |#1| (-160)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1576 (($ $ (-856)) 15) (($ $ (-713)) 16)) (-3355 (($) 17 T CONST)) (-3363 (($) 18 T CONST)) (-2093 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1091)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) 98)) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4100 (($ $ |#1|) 141 (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) 68)) (** (($ $ (-856)) 14) (($ $ (-713)) 12)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 27) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 104) (($ $ |#1|) NIL)))
+(((-1087 |#1|) (-13 (-1149 |#1|) (-10 -8 (-15 -3169 ((-798) $ (-798))) (-15 -3485 ($ $ (-713) |#1| $)))) (-977)) (T -1087))
+((-3169 (*1 *2 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1087 *3)) (-4 *3 (-977)))) (-3485 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1087 *3)) (-4 *3 (-977)))))
+(-13 (-1149 |#1|) (-10 -8 (-15 -3169 ((-798) $ (-798))) (-15 -3485 ($ $ (-713) |#1| $))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2383 (((-592 (-1005)) $) NIL)) (-2577 (((-1091) $) 11)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-3642 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-4192 (((-1072 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-2351 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL (|has| |#1| (-341)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3197 (((-108) $ $) NIL (|has| |#1| (-341)))) (-2320 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2307 (($ (-713) (-1072 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-2382 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-1082 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1089 |#1| |#2| |#3|) "failed") $) 36)) (-3898 (((-1082 |#1| |#2| |#3|) $) NIL) (((-1089 |#1| |#2| |#3|) $) NIL)) (-1726 (($ $ $) NIL (|has| |#1| (-341)))) (-2571 (($ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2279 (((-385 (-525)) $) 55)) (-1704 (($ $ $) NIL (|has| |#1| (-341)))) (-2477 (($ (-385 (-525)) (-1082 |#1| |#2| |#3|)) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3836 (((-108) $) NIL (|has| |#1| (-341)))) (-2911 (((-108) $) NIL)) (-1535 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3973 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-1985 (((-108) $) NIL)) (-3220 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3073 (($ $ (-856)) NIL) (($ $ (-385 (-525))) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-385 (-525))) 20) (($ $ (-1005) (-385 (-525))) NIL) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-1415 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2247 (((-1082 |#1| |#2| |#3|) $) 41)) (-1586 (((-3 (-1082 |#1| |#2| |#3|) "failed") $) NIL)) (-2465 (((-1082 |#1| |#2| |#3|) $) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL (|has| |#1| (-341)))) (-2650 (($ $) 39 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1091)) NIL (-3279 (-12 (|has| |#1| (-15 -2650 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -2383 ((-592 (-1091)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1113))))) (($ $ (-1169 |#2|)) 40 (|has| |#1| (-37 (-385 (-525)))))) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-341)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2195 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-2182 (($ $ (-385 (-525))) NIL)) (-1680 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1250 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2602 (((-1072 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-1290 (((-713) $) NIL (|has| |#1| (-341)))) (-3410 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1032)))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-341)))) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1169 |#2|)) 38)) (-1587 (((-385 (-525)) $) NIL)) (-2396 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3577 (($ $) NIL)) (-1270 (((-798) $) 58) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1082 |#1| |#2| |#3|)) 30) (($ (-1089 |#1| |#2| |#3|)) 31) (($ (-1169 |#2|)) 26) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-3468 ((|#1| $ (-385 (-525))) NIL)) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) NIL)) (-3144 ((|#1| $) 12)) (-2438 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2410 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1369 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1270 (|#1| (-1091))))))) (-2687 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3355 (($) 22 T CONST)) (-3363 (($) 16 T CONST)) (-2093 (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) 24)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-1088 |#1| |#2| |#3|) (-13 (-1156 |#1| (-1082 |#1| |#2| |#3|)) (-968 (-1089 |#1| |#2| |#3|)) (-10 -8 (-15 -1270 ($ (-1169 |#2|))) (-15 -2523 ($ $ (-1169 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2650 ($ $ (-1169 |#2|))) |%noBranch|))) (-977) (-1091) |#1|) (T -1088))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2650 (*1 *1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1088 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
+(-13 (-1156 |#1| (-1082 |#1| |#2| |#3|)) (-968 (-1089 |#1| |#2| |#3|)) (-10 -8 (-15 -1270 ($ (-1169 |#2|))) (-15 -2523 ($ $ (-1169 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2650 ($ $ (-1169 |#2|))) |%noBranch|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 125)) (-2383 (((-592 (-1005)) $) NIL)) (-2577 (((-1091) $) 116)) (-2131 (((-1146 |#2| |#1|) $ (-713)) 63)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-3642 (($ $ (-713)) 79) (($ $ (-713) (-713)) 76)) (-4192 (((-1072 (-2 (|:| |k| (-713)) (|:| |c| |#1|))) $) 102)) (-2351 (($ $) 169 (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) 145 (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) NIL)) (-2211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2320 (($ $) 165 (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-2307 (($ (-1072 (-2 (|:| |k| (-713)) (|:| |c| |#1|)))) 115) (($ (-1072 |#1|)) 110)) (-2382 (($ $) 173 (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) 149 (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) NIL T CONST)) (-2571 (($ $) NIL)) (-3762 (((-3 $ "failed") $) 23)) (-3140 (($ $) 26)) (-4161 (((-887 |#1|) $ (-713)) 75) (((-887 |#1|) $ (-713) (-713)) 77)) (-2911 (((-108) $) 120)) (-1535 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3973 (((-713) $) 122) (((-713) $ (-713)) 124)) (-1985 (((-108) $) NIL)) (-3220 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3073 (($ $ (-856)) NIL)) (-2615 (($ (-1 |#1| (-525)) $) NIL)) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-713)) 13) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-1415 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-3451 (((-1074) $) NIL)) (-2650 (($ $) 129 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1091)) NIL (-3279 (-12 (|has| |#1| (-15 -2650 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -2383 ((-592 (-1091)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1113))))) (($ $ (-1169 |#2|)) 130 (|has| |#1| (-37 (-385 (-525)))))) (-2012 (((-1038) $) NIL)) (-2182 (($ $ (-713)) 15)) (-1680 (((-3 $ "failed") $ $) 24 (|has| |#1| (-517)))) (-1250 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2602 (((-1072 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-713)))))) (-3410 ((|#1| $ (-713)) 119) (($ $ $) 128 (|has| (-713) (-1032)))) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $ (-1169 |#2|)) 29)) (-1587 (((-713) $) NIL)) (-2396 (($ $) 175 (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) 151 (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) 171 (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) 147 (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) 167 (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-3577 (($ $) NIL)) (-1270 (((-798) $) 201) (($ (-525)) NIL) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 126 (|has| |#1| (-160))) (($ (-1146 |#2| |#1|)) 51) (($ (-1169 |#2|)) 32)) (-1562 (((-1072 |#1|) $) 98)) (-3468 ((|#1| $ (-713)) 118)) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) NIL)) (-3144 ((|#1| $) 54)) (-2438 (($ $) 181 (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) 157 (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2410 (($ $) 177 (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) 153 (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) 185 (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) 161 (|has| |#1| (-37 (-385 (-525)))))) (-1369 ((|#1| $ (-713)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-713)))) (|has| |#1| (-15 -1270 (|#1| (-1091))))))) (-2687 (($ $) 187 (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) 163 (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) 183 (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) 159 (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) 179 (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) 155 (|has| |#1| (-37 (-385 (-525)))))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 17 T CONST)) (-3363 (($) 19 T CONST)) (-2093 (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) 194)) (-4080 (($ $ $) 31)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ |#1|) 198 (|has| |#1| (-341))) (($ $ $) 134 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 137 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-1089 |#1| |#2| |#3|) (-13 (-1164 |#1|) (-10 -8 (-15 -1270 ($ (-1146 |#2| |#1|))) (-15 -2131 ((-1146 |#2| |#1|) $ (-713))) (-15 -1270 ($ (-1169 |#2|))) (-15 -2523 ($ $ (-1169 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2650 ($ $ (-1169 |#2|))) |%noBranch|))) (-977) (-1091) |#1|) (T -1089))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1146 *4 *3)) (-4 *3 (-977)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-1089 *3 *4 *5)))) (-2131 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1146 *5 *4)) (-5 *1 (-1089 *4 *5 *6)) (-4 *4 (-977)) (-14 *5 (-1091)) (-14 *6 *4))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2650 (*1 *1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1089 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
+(-13 (-1164 |#1|) (-10 -8 (-15 -1270 ($ (-1146 |#2| |#1|))) (-15 -2131 ((-1146 |#2| |#1|) $ (-713))) (-15 -1270 ($ (-1169 |#2|))) (-15 -2523 ($ $ (-1169 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2650 ($ $ (-1169 |#2|))) |%noBranch|)))
+((-1270 (((-798) $) 27) (($ (-1091)) 29)) (-3279 (($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 40)) (-3271 (($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 33) (($ $) 34)) (-2454 (($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 35)) (-2441 (($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 37)) (-2429 (($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 36)) (-2415 (($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 38)) (-2716 (($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $))) 39)))
+(((-1090) (-13 (-566 (-798)) (-10 -8 (-15 -1270 ($ (-1091))) (-15 -2454 ($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2429 ($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2441 ($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2415 ($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3279 ($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2716 ($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3271 ($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3271 ($ $))))) (T -1090))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1090)))) (-2454 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1090)))) (-5 *1 (-1090)))) (-2429 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1090)))) (-5 *1 (-1090)))) (-2441 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1090)))) (-5 *1 (-1090)))) (-2415 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1090)))) (-5 *1 (-1090)))) (-3279 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1090)))) (-5 *1 (-1090)))) (-2716 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1090)))) (-5 *1 (-1090)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1090)))) (-5 *1 (-1090)))) (-3271 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1090)))) (-5 *1 (-1090)))) (-3271 (*1 *1 *1) (-5 *1 (-1090))))
+(-13 (-566 (-798)) (-10 -8 (-15 -1270 ($ (-1091))) (-15 -2454 ($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2429 ($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2441 ($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2415 ($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3279 ($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -2716 ($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)) (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3271 ($ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357))) (|:| CF (-294 (-157 (-357)))) (|:| |switch| $)))) (-15 -3271 ($ $))))
+((-1260 (((-108) $ $) NIL)) (-2684 (($ $ (-592 (-798))) 59)) (-3841 (($ $ (-592 (-798))) 57)) (-3111 (((-1074) $) 84)) (-2036 (((-2 (|:| -2968 (-592 (-798))) (|:| -2017 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -1391 (-592 (-798))) (|:| |args| (-592 (-798)))) $) 87)) (-2231 (((-108) $) 22)) (-4136 (($ $ (-592 (-592 (-798)))) 56) (($ $ (-2 (|:| -2968 (-592 (-798))) (|:| -2017 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -1391 (-592 (-798))) (|:| |args| (-592 (-798))))) 82)) (-2305 (($) 124 T CONST)) (-3644 (((-1178)) 106)) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 66) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 73)) (-3489 (($) 95) (($ $) 101)) (-3800 (($ $) 83)) (-2371 (($ $ $) NIL)) (-2535 (($ $ $) NIL)) (-4104 (((-592 $) $) 107)) (-3451 (((-1074) $) 90)) (-2012 (((-1038) $) NIL)) (-3410 (($ $ (-592 (-798))) 58)) (-2749 (((-501) $) 46) (((-1091) $) 47) (((-827 (-525)) $) 77) (((-827 (-357)) $) 75)) (-1270 (((-798) $) 53) (($ (-1074)) 48)) (-2832 (($ $ (-592 (-798))) 60)) (-2255 (((-1074) $) 33) (((-1074) $ (-108)) 34) (((-1178) (-764) $) 35) (((-1178) (-764) $ (-108)) 36)) (-4045 (((-108) $ $) NIL)) (-4026 (((-108) $ $) NIL)) (-3994 (((-108) $ $) 49)) (-4037 (((-108) $ $) NIL)) (-4017 (((-108) $ $) 50)))
+(((-1091) (-13 (-789) (-567 (-501)) (-770) (-567 (-1091)) (-567 (-827 (-525))) (-567 (-827 (-357))) (-821 (-525)) (-821 (-357)) (-10 -8 (-15 -3489 ($)) (-15 -3489 ($ $)) (-15 -3644 ((-1178))) (-15 -1270 ($ (-1074))) (-15 -3800 ($ $)) (-15 -2231 ((-108) $)) (-15 -2036 ((-2 (|:| -2968 (-592 (-798))) (|:| -2017 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -1391 (-592 (-798))) (|:| |args| (-592 (-798)))) $)) (-15 -4136 ($ $ (-592 (-592 (-798))))) (-15 -4136 ($ $ (-2 (|:| -2968 (-592 (-798))) (|:| -2017 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -1391 (-592 (-798))) (|:| |args| (-592 (-798)))))) (-15 -3841 ($ $ (-592 (-798)))) (-15 -2684 ($ $ (-592 (-798)))) (-15 -2832 ($ $ (-592 (-798)))) (-15 -3410 ($ $ (-592 (-798)))) (-15 -3111 ((-1074) $)) (-15 -4104 ((-592 $) $)) (-15 -2305 ($) -1479)))) (T -1091))
+((-3489 (*1 *1) (-5 *1 (-1091))) (-3489 (*1 *1 *1) (-5 *1 (-1091))) (-3644 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1091)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1091)))) (-3800 (*1 *1 *1) (-5 *1 (-1091))) (-2231 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1091)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2968 (-592 (-798))) (|:| -2017 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -1391 (-592 (-798))) (|:| |args| (-592 (-798))))) (-5 *1 (-1091)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 (-798)))) (-5 *1 (-1091)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2968 (-592 (-798))) (|:| -2017 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -1391 (-592 (-798))) (|:| |args| (-592 (-798))))) (-5 *1 (-1091)))) (-3841 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1091)))) (-2684 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1091)))) (-2832 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1091)))) (-3410 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1091)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1091)))) (-4104 (*1 *2 *1) (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-1091)))) (-2305 (*1 *1) (-5 *1 (-1091))))
+(-13 (-789) (-567 (-501)) (-770) (-567 (-1091)) (-567 (-827 (-525))) (-567 (-827 (-357))) (-821 (-525)) (-821 (-357)) (-10 -8 (-15 -3489 ($)) (-15 -3489 ($ $)) (-15 -3644 ((-1178))) (-15 -1270 ($ (-1074))) (-15 -3800 ($ $)) (-15 -2231 ((-108) $)) (-15 -2036 ((-2 (|:| -2968 (-592 (-798))) (|:| -2017 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -1391 (-592 (-798))) (|:| |args| (-592 (-798)))) $)) (-15 -4136 ($ $ (-592 (-592 (-798))))) (-15 -4136 ($ $ (-2 (|:| -2968 (-592 (-798))) (|:| -2017 (-592 (-798))) (|:| |presup| (-592 (-798))) (|:| -1391 (-592 (-798))) (|:| |args| (-592 (-798)))))) (-15 -3841 ($ $ (-592 (-798)))) (-15 -2684 ($ $ (-592 (-798)))) (-15 -2832 ($ $ (-592 (-798)))) (-15 -3410 ($ $ (-592 (-798)))) (-15 -3111 ((-1074) $)) (-15 -4104 ((-592 $) $)) (-15 -2305 ($) -1479)))
+((-1517 (((-1173 |#1|) |#1| (-856)) 16) (((-1173 |#1|) (-592 |#1|)) 20)))
+(((-1092 |#1|) (-10 -7 (-15 -1517 ((-1173 |#1|) (-592 |#1|))) (-15 -1517 ((-1173 |#1|) |#1| (-856)))) (-977)) (T -1092))
+((-1517 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-5 *2 (-1173 *3)) (-5 *1 (-1092 *3)) (-4 *3 (-977)))) (-1517 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-977)) (-5 *2 (-1173 *4)) (-5 *1 (-1092 *4)))))
+(-10 -7 (-15 -1517 ((-1173 |#1|) (-592 |#1|))) (-15 -1517 ((-1173 |#1|) |#1| (-856))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL (|has| |#1| (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#1| (-968 (-385 (-525))))) (((-3 |#1| "failed") $) NIL)) (-3898 (((-525) $) NIL (|has| |#1| (-968 (-525)))) (((-385 (-525)) $) NIL (|has| |#1| (-968 (-385 (-525))))) ((|#1| $) NIL)) (-2571 (($ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3026 (($ $) NIL (|has| |#1| (-429)))) (-2192 (($ $ |#1| (-904) $) NIL)) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) NIL)) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-904)) NIL)) (-3724 (((-904) $) NIL)) (-3922 (($ (-1 (-904) (-904)) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2513 (((-108) $) NIL)) (-2525 ((|#1| $) NIL)) (-3485 (($ $ (-904) |#1| $) NIL (-12 (|has| (-904) (-126)) (|has| |#1| (-517))))) (-1680 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-517)))) (-1587 (((-904) $) NIL)) (-2026 ((|#1| $) NIL (|has| |#1| (-429)))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) NIL) (($ (-385 (-525))) NIL (-3279 (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-968 (-385 (-525))))))) (-1562 (((-592 |#1|) $) NIL)) (-3468 ((|#1| $ (-904)) NIL)) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) NIL)) (-3658 (($ $ $ (-713)) NIL (|has| |#1| (-160)))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 9 T CONST)) (-3363 (($) 14 T CONST)) (-3994 (((-108) $ $) 16)) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) 19)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-1093 |#1|) (-13 (-304 |#1| (-904)) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| (-904) (-126)) (-15 -3485 ($ $ (-904) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4253)) (-6 -4253) |%noBranch|))) (-977)) (T -1093))
+((-3485 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-904)) (-4 (-904) (-126)) (-5 *1 (-1093 *3)) (-4 *3 (-517)) (-4 *3 (-977)))))
+(-13 (-304 |#1| (-904)) (-10 -8 (IF (|has| |#1| (-517)) (IF (|has| (-904) (-126)) (-15 -3485 ($ $ (-904) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4253)) (-6 -4253) |%noBranch|)))
+((-1470 (((-1095) (-1091) $) 25)) (-3705 (($) 29)) (-1388 (((-3 (|:| |fst| (-412)) (|:| -3326 "void")) (-1091) $) 22)) (-3681 (((-1178) (-1091) (-3 (|:| |fst| (-412)) (|:| -3326 "void")) $) 41) (((-1178) (-1091) (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) 42) (((-1178) (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) 43)) (-1903 (((-1178) (-1091)) 58)) (-1273 (((-1178) (-1091) $) 55) (((-1178) (-1091)) 56) (((-1178)) 57)) (-1741 (((-1178) (-1091)) 37)) (-3295 (((-1091)) 36)) (-2718 (($) 34)) (-2841 (((-415) (-1091) (-415) (-1091) $) 45) (((-415) (-592 (-1091)) (-415) (-1091) $) 49) (((-415) (-1091) (-415)) 46) (((-415) (-1091) (-415) (-1091)) 50)) (-3990 (((-1091)) 35)) (-1270 (((-798) $) 28)) (-1536 (((-1178)) 30) (((-1178) (-1091)) 33)) (-2381 (((-592 (-1091)) (-1091) $) 24)) (-3570 (((-1178) (-1091) (-592 (-1091)) $) 38) (((-1178) (-1091) (-592 (-1091))) 39) (((-1178) (-592 (-1091))) 40)))
+(((-1094) (-13 (-566 (-798)) (-10 -8 (-15 -3705 ($)) (-15 -1536 ((-1178))) (-15 -1536 ((-1178) (-1091))) (-15 -2841 ((-415) (-1091) (-415) (-1091) $)) (-15 -2841 ((-415) (-592 (-1091)) (-415) (-1091) $)) (-15 -2841 ((-415) (-1091) (-415))) (-15 -2841 ((-415) (-1091) (-415) (-1091))) (-15 -1741 ((-1178) (-1091))) (-15 -3990 ((-1091))) (-15 -3295 ((-1091))) (-15 -3570 ((-1178) (-1091) (-592 (-1091)) $)) (-15 -3570 ((-1178) (-1091) (-592 (-1091)))) (-15 -3570 ((-1178) (-592 (-1091)))) (-15 -3681 ((-1178) (-1091) (-3 (|:| |fst| (-412)) (|:| -3326 "void")) $)) (-15 -3681 ((-1178) (-1091) (-3 (|:| |fst| (-412)) (|:| -3326 "void")))) (-15 -3681 ((-1178) (-3 (|:| |fst| (-412)) (|:| -3326 "void")))) (-15 -1273 ((-1178) (-1091) $)) (-15 -1273 ((-1178) (-1091))) (-15 -1273 ((-1178))) (-15 -1903 ((-1178) (-1091))) (-15 -2718 ($)) (-15 -1388 ((-3 (|:| |fst| (-412)) (|:| -3326 "void")) (-1091) $)) (-15 -2381 ((-592 (-1091)) (-1091) $)) (-15 -1470 ((-1095) (-1091) $))))) (T -1094))
+((-3705 (*1 *1) (-5 *1 (-1094))) (-1536 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1094)))) (-1536 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1178)) (-5 *1 (-1094)))) (-2841 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-415)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-2841 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1091))) (-5 *4 (-1091)) (-5 *1 (-1094)))) (-2841 (*1 *2 *3 *2) (-12 (-5 *2 (-415)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-2841 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-415)) (-5 *3 (-1091)) (-5 *1 (-1094)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1178)) (-5 *1 (-1094)))) (-3990 (*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094)))) (-3295 (*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094)))) (-3570 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1091)) (-5 *4 (-592 (-1091))) (-5 *2 (-1178)) (-5 *1 (-1094)))) (-3570 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-592 (-1091))) (-5 *2 (-1178)) (-5 *1 (-1094)))) (-3570 (*1 *2 *3) (-12 (-5 *3 (-592 (-1091))) (-5 *2 (-1178)) (-5 *1 (-1094)))) (-3681 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-5 *2 (-1178)) (-5 *1 (-1094)))) (-3681 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-5 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-5 *2 (-1178)) (-5 *1 (-1094)))) (-3681 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-5 *2 (-1178)) (-5 *1 (-1094)))) (-1273 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1178)) (-5 *1 (-1094)))) (-1273 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1178)) (-5 *1 (-1094)))) (-1273 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1094)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1178)) (-5 *1 (-1094)))) (-2718 (*1 *1) (-5 *1 (-1094))) (-1388 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-5 *1 (-1094)))) (-2381 (*1 *2 *3 *1) (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-1094)) (-5 *3 (-1091)))) (-1470 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1095)) (-5 *1 (-1094)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -3705 ($)) (-15 -1536 ((-1178))) (-15 -1536 ((-1178) (-1091))) (-15 -2841 ((-415) (-1091) (-415) (-1091) $)) (-15 -2841 ((-415) (-592 (-1091)) (-415) (-1091) $)) (-15 -2841 ((-415) (-1091) (-415))) (-15 -2841 ((-415) (-1091) (-415) (-1091))) (-15 -1741 ((-1178) (-1091))) (-15 -3990 ((-1091))) (-15 -3295 ((-1091))) (-15 -3570 ((-1178) (-1091) (-592 (-1091)) $)) (-15 -3570 ((-1178) (-1091) (-592 (-1091)))) (-15 -3570 ((-1178) (-592 (-1091)))) (-15 -3681 ((-1178) (-1091) (-3 (|:| |fst| (-412)) (|:| -3326 "void")) $)) (-15 -3681 ((-1178) (-1091) (-3 (|:| |fst| (-412)) (|:| -3326 "void")))) (-15 -3681 ((-1178) (-3 (|:| |fst| (-412)) (|:| -3326 "void")))) (-15 -1273 ((-1178) (-1091) $)) (-15 -1273 ((-1178) (-1091))) (-15 -1273 ((-1178))) (-15 -1903 ((-1178) (-1091))) (-15 -2718 ($)) (-15 -1388 ((-3 (|:| |fst| (-412)) (|:| -3326 "void")) (-1091) $)) (-15 -2381 ((-592 (-1091)) (-1091) $)) (-15 -1470 ((-1095) (-1091) $))))
+((-1317 (((-592 (-592 (-3 (|:| -3800 (-1091)) (|:| |bounds| (-592 (-3 (|:| S (-1091)) (|:| P (-887 (-525))))))))) $) 59)) (-3400 (((-592 (-3 (|:| -3800 (-1091)) (|:| |bounds| (-592 (-3 (|:| S (-1091)) (|:| P (-887 (-525)))))))) (-412) $) 43)) (-2288 (($ (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-415))))) 17)) (-1903 (((-1178) $) 67)) (-1844 (((-592 (-1091)) $) 22)) (-2517 (((-1024) $) 55)) (-3458 (((-415) (-1091) $) 27)) (-2486 (((-592 (-1091)) $) 30)) (-2718 (($) 19)) (-2841 (((-415) (-592 (-1091)) (-415) $) 25) (((-415) (-1091) (-415) $) 24)) (-1270 (((-798) $) 9) (((-1101 (-1091) (-415)) $) 13)))
+(((-1095) (-13 (-566 (-798)) (-10 -8 (-15 -1270 ((-1101 (-1091) (-415)) $)) (-15 -2718 ($)) (-15 -2841 ((-415) (-592 (-1091)) (-415) $)) (-15 -2841 ((-415) (-1091) (-415) $)) (-15 -3458 ((-415) (-1091) $)) (-15 -1844 ((-592 (-1091)) $)) (-15 -3400 ((-592 (-3 (|:| -3800 (-1091)) (|:| |bounds| (-592 (-3 (|:| S (-1091)) (|:| P (-887 (-525)))))))) (-412) $)) (-15 -2486 ((-592 (-1091)) $)) (-15 -1317 ((-592 (-592 (-3 (|:| -3800 (-1091)) (|:| |bounds| (-592 (-3 (|:| S (-1091)) (|:| P (-887 (-525))))))))) $)) (-15 -2517 ((-1024) $)) (-15 -1903 ((-1178) $)) (-15 -2288 ($ (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-415))))))))) (T -1095))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-1101 (-1091) (-415))) (-5 *1 (-1095)))) (-2718 (*1 *1) (-5 *1 (-1095))) (-2841 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1091))) (-5 *1 (-1095)))) (-2841 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-415)) (-5 *3 (-1091)) (-5 *1 (-1095)))) (-3458 (*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-415)) (-5 *1 (-1095)))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-1095)))) (-3400 (*1 *2 *3 *1) (-12 (-5 *3 (-412)) (-5 *2 (-592 (-3 (|:| -3800 (-1091)) (|:| |bounds| (-592 (-3 (|:| S (-1091)) (|:| P (-887 (-525))))))))) (-5 *1 (-1095)))) (-2486 (*1 *2 *1) (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-1095)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-3 (|:| -3800 (-1091)) (|:| |bounds| (-592 (-3 (|:| S (-1091)) (|:| P (-887 (-525)))))))))) (-5 *1 (-1095)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-1095)))) (-1903 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1095)))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-415))))) (-5 *1 (-1095)))))
+(-13 (-566 (-798)) (-10 -8 (-15 -1270 ((-1101 (-1091) (-415)) $)) (-15 -2718 ($)) (-15 -2841 ((-415) (-592 (-1091)) (-415) $)) (-15 -2841 ((-415) (-1091) (-415) $)) (-15 -3458 ((-415) (-1091) $)) (-15 -1844 ((-592 (-1091)) $)) (-15 -3400 ((-592 (-3 (|:| -3800 (-1091)) (|:| |bounds| (-592 (-3 (|:| S (-1091)) (|:| P (-887 (-525)))))))) (-412) $)) (-15 -2486 ((-592 (-1091)) $)) (-15 -1317 ((-592 (-592 (-3 (|:| -3800 (-1091)) (|:| |bounds| (-592 (-3 (|:| S (-1091)) (|:| P (-887 (-525))))))))) $)) (-15 -2517 ((-1024) $)) (-15 -1903 ((-1178) $)) (-15 -2288 ($ (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-415))))))))
+((-1260 (((-108) $ $) NIL)) (-4163 (((-108) $) 42)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1219 (((-3 (-525) (-205) (-1091) (-1074) $) $) 50)) (-1770 (((-592 $) $) 55)) (-2749 (((-1024) $) 24) (($ (-1024)) 25)) (-1433 (((-108) $) 52)) (-1270 (((-798) $) NIL) (($ (-525)) 26) (((-525) $) 28) (($ (-205)) 29) (((-205) $) 31) (($ (-1091)) 32) (((-1091) $) 34) (($ (-1074)) 35) (((-1074) $) 37)) (-3346 (((-108) $ (|[\|\|]| (-525))) 11) (((-108) $ (|[\|\|]| (-205))) 15) (((-108) $ (|[\|\|]| (-1091))) 23) (((-108) $ (|[\|\|]| (-1074))) 19)) (-1779 (($ (-1091) (-592 $)) 39) (($ $ (-592 $)) 40)) (-1472 (((-525) $) 27) (((-205) $) 30) (((-1091) $) 33) (((-1074) $) 36)) (-3994 (((-108) $ $) 7)))
+(((-1096) (-13 (-1168) (-1020) (-10 -8 (-15 -2749 ((-1024) $)) (-15 -2749 ($ (-1024))) (-15 -1270 ($ (-525))) (-15 -1270 ((-525) $)) (-15 -1472 ((-525) $)) (-15 -1270 ($ (-205))) (-15 -1270 ((-205) $)) (-15 -1472 ((-205) $)) (-15 -1270 ($ (-1091))) (-15 -1270 ((-1091) $)) (-15 -1472 ((-1091) $)) (-15 -1270 ($ (-1074))) (-15 -1270 ((-1074) $)) (-15 -1472 ((-1074) $)) (-15 -1779 ($ (-1091) (-592 $))) (-15 -1779 ($ $ (-592 $))) (-15 -4163 ((-108) $)) (-15 -1219 ((-3 (-525) (-205) (-1091) (-1074) $) $)) (-15 -1770 ((-592 $) $)) (-15 -1433 ((-108) $)) (-15 -3346 ((-108) $ (|[\|\|]| (-525)))) (-15 -3346 ((-108) $ (|[\|\|]| (-205)))) (-15 -3346 ((-108) $ (|[\|\|]| (-1091)))) (-15 -3346 ((-108) $ (|[\|\|]| (-1074))))))) (T -1096))
+((-2749 (*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-1096)))) (-2749 (*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-1096)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1096)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1096)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1096)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1096)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1096)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1096)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1096)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1096)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1096)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1096)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096)))) (-1779 (*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-1096))) (-5 *1 (-1096)))) (-1779 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1096))) (-5 *1 (-1096)))) (-4163 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1096)))) (-1219 (*1 *2 *1) (-12 (-5 *2 (-3 (-525) (-205) (-1091) (-1074) (-1096))) (-5 *1 (-1096)))) (-1770 (*1 *2 *1) (-12 (-5 *2 (-592 (-1096))) (-5 *1 (-1096)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1096)))) (-3346 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-108)) (-5 *1 (-1096)))) (-3346 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-205))) (-5 *2 (-108)) (-5 *1 (-1096)))) (-3346 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1091))) (-5 *2 (-108)) (-5 *1 (-1096)))) (-3346 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-108)) (-5 *1 (-1096)))))
+(-13 (-1168) (-1020) (-10 -8 (-15 -2749 ((-1024) $)) (-15 -2749 ($ (-1024))) (-15 -1270 ($ (-525))) (-15 -1270 ((-525) $)) (-15 -1472 ((-525) $)) (-15 -1270 ($ (-205))) (-15 -1270 ((-205) $)) (-15 -1472 ((-205) $)) (-15 -1270 ($ (-1091))) (-15 -1270 ((-1091) $)) (-15 -1472 ((-1091) $)) (-15 -1270 ($ (-1074))) (-15 -1270 ((-1074) $)) (-15 -1472 ((-1074) $)) (-15 -1779 ($ (-1091) (-592 $))) (-15 -1779 ($ $ (-592 $))) (-15 -4163 ((-108) $)) (-15 -1219 ((-3 (-525) (-205) (-1091) (-1074) $) $)) (-15 -1770 ((-592 $) $)) (-15 -1433 ((-108) $)) (-15 -3346 ((-108) $ (|[\|\|]| (-525)))) (-15 -3346 ((-108) $ (|[\|\|]| (-205)))) (-15 -3346 ((-108) $ (|[\|\|]| (-1091)))) (-15 -3346 ((-108) $ (|[\|\|]| (-1074))))))
+((-1920 (((-592 (-592 (-887 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1091))) 57)) (-3193 (((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|)))) 69) (((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|))) 65) (((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|))) (-1091)) 70) (((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1091)) 64) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|))))) 93) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|)))) 92) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1091))) 94) (((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|))) (-592 (-1091))) 91)))
+(((-1097 |#1|) (-10 -7 (-15 -3193 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|))) (-592 (-1091)))) (-15 -3193 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1091)))) (-15 -3193 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|))))) (-15 -3193 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -3193 ((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1091))) (-15 -3193 ((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|))) (-1091))) (-15 -3193 ((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|)))) (-15 -3193 ((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|))))) (-15 -1920 ((-592 (-592 (-887 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1091))))) (-517)) (T -1097))
+((-1920 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1091))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-887 *5)))) (-5 *1 (-1097 *5)))) (-3193 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-273 (-385 (-887 *4))))) (-5 *1 (-1097 *4)) (-5 *3 (-273 (-385 (-887 *4)))))) (-3193 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-273 (-385 (-887 *4))))) (-5 *1 (-1097 *4)) (-5 *3 (-385 (-887 *4))))) (-3193 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-517)) (-5 *2 (-592 (-273 (-385 (-887 *5))))) (-5 *1 (-1097 *5)) (-5 *3 (-273 (-385 (-887 *5)))))) (-3193 (*1 *2 *3 *4) (-12 (-5 *4 (-1091)) (-4 *5 (-517)) (-5 *2 (-592 (-273 (-385 (-887 *5))))) (-5 *1 (-1097 *5)) (-5 *3 (-385 (-887 *5))))) (-3193 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *4)))))) (-5 *1 (-1097 *4)) (-5 *3 (-592 (-273 (-385 (-887 *4))))))) (-3193 (*1 *2 *3) (-12 (-5 *3 (-592 (-385 (-887 *4)))) (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *4)))))) (-5 *1 (-1097 *4)))) (-3193 (*1 *2 *3 *4) (-12 (-5 *4 (-592 (-1091))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *5)))))) (-5 *1 (-1097 *5)) (-5 *3 (-592 (-273 (-385 (-887 *5))))))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1091))) (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *5)))))) (-5 *1 (-1097 *5)))))
+(-10 -7 (-15 -3193 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|))) (-592 (-1091)))) (-15 -3193 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|)))) (-592 (-1091)))) (-15 -3193 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-385 (-887 |#1|))))) (-15 -3193 ((-592 (-592 (-273 (-385 (-887 |#1|))))) (-592 (-273 (-385 (-887 |#1|)))))) (-15 -3193 ((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|)) (-1091))) (-15 -3193 ((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|))) (-1091))) (-15 -3193 ((-592 (-273 (-385 (-887 |#1|)))) (-385 (-887 |#1|)))) (-15 -3193 ((-592 (-273 (-385 (-887 |#1|)))) (-273 (-385 (-887 |#1|))))) (-15 -1920 ((-592 (-592 (-887 |#1|))) (-592 (-385 (-887 |#1|))) (-592 (-1091)))))
+((-3013 (((-1074)) 7)) (-1460 (((-1074)) 9)) (-3772 (((-1178) (-1074)) 11)) (-3215 (((-1074)) 8)))
+(((-1098) (-10 -7 (-15 -3013 ((-1074))) (-15 -3215 ((-1074))) (-15 -1460 ((-1074))) (-15 -3772 ((-1178) (-1074))))) (T -1098))
+((-3772 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1098)))) (-1460 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1098)))) (-3215 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1098)))) (-3013 (*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1098)))))
+(-10 -7 (-15 -3013 ((-1074))) (-15 -3215 ((-1074))) (-15 -1460 ((-1074))) (-15 -3772 ((-1178) (-1074))))
+((-2620 (((-592 (-592 |#1|)) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|)))) 38)) (-2771 (((-592 (-592 (-592 |#1|))) (-592 (-592 |#1|))) 24)) (-1669 (((-1100 (-592 |#1|)) (-592 |#1|)) 34)) (-1320 (((-592 (-592 |#1|)) (-592 |#1|)) 30)) (-1612 (((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 (-592 (-592 |#1|)))) 37)) (-1744 (((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 |#1|) (-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|)))) 36)) (-1601 (((-592 (-592 |#1|)) (-592 (-592 |#1|))) 28)) (-2933 (((-592 |#1|) (-592 |#1|)) 31)) (-1445 (((-592 (-592 (-592 |#1|))) (-592 |#1|) (-592 (-592 (-592 |#1|)))) 18)) (-2147 (((-592 (-592 (-592 |#1|))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 (-592 |#1|)))) 16)) (-1658 (((-2 (|:| |fs| (-108)) (|:| |sd| (-592 |#1|)) (|:| |td| (-592 (-592 |#1|)))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 |#1|))) 14)) (-2645 (((-592 (-592 |#1|)) (-592 (-592 (-592 |#1|)))) 39)) (-3713 (((-592 (-592 |#1|)) (-1100 (-592 |#1|))) 41)))
+(((-1099 |#1|) (-10 -7 (-15 -1658 ((-2 (|:| |fs| (-108)) (|:| |sd| (-592 |#1|)) (|:| |td| (-592 (-592 |#1|)))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 |#1|)))) (-15 -2147 ((-592 (-592 (-592 |#1|))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -1445 ((-592 (-592 (-592 |#1|))) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -2620 ((-592 (-592 |#1|)) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -2645 ((-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -3713 ((-592 (-592 |#1|)) (-1100 (-592 |#1|)))) (-15 -2771 ((-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)))) (-15 -1669 ((-1100 (-592 |#1|)) (-592 |#1|))) (-15 -1601 ((-592 (-592 |#1|)) (-592 (-592 |#1|)))) (-15 -1320 ((-592 (-592 |#1|)) (-592 |#1|))) (-15 -2933 ((-592 |#1|) (-592 |#1|))) (-15 -1744 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 |#1|) (-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))))) (-15 -1612 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 (-592 (-592 |#1|)))))) (-789)) (T -1099))
+((-1612 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-2 (|:| |f1| (-592 *4)) (|:| |f2| (-592 (-592 (-592 *4)))) (|:| |f3| (-592 (-592 *4))) (|:| |f4| (-592 (-592 (-592 *4)))))) (-5 *1 (-1099 *4)) (-5 *3 (-592 (-592 (-592 *4)))))) (-1744 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-789)) (-5 *5 (-592 (-592 *6))) (-5 *2 (-2 (|:| |f1| (-592 *6)) (|:| |f2| (-592 *5)) (|:| |f3| *5) (|:| |f4| (-592 *5)))) (-5 *1 (-1099 *6)) (-5 *3 (-592 *6)) (-5 *4 (-592 *5)))) (-2933 (*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-1099 *3)))) (-1320 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1099 *4)) (-5 *3 (-592 *4)))) (-1601 (*1 *2 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-789)) (-5 *1 (-1099 *3)))) (-1669 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-1100 (-592 *4))) (-5 *1 (-1099 *4)) (-5 *3 (-592 *4)))) (-2771 (*1 *2 *3) (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 (-592 *4)))) (-5 *1 (-1099 *4)) (-5 *3 (-592 (-592 *4))))) (-3713 (*1 *2 *3) (-12 (-5 *3 (-1100 (-592 *4))) (-4 *4 (-789)) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1099 *4)))) (-2645 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-592 *4)))) (-4 *4 (-789)) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1099 *4)))) (-2620 (*1 *2 *2 *3) (-12 (-5 *2 (-592 (-592 *4))) (-5 *3 (-592 (-592 (-592 *4)))) (-4 *4 (-789)) (-5 *1 (-1099 *4)))) (-1445 (*1 *2 *3 *2) (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-592 *4)) (-4 *4 (-789)) (-5 *1 (-1099 *4)))) (-2147 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-592 *5)) (-4 *5 (-789)) (-5 *1 (-1099 *5)))) (-1658 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-789)) (-5 *2 (-2 (|:| |fs| (-108)) (|:| |sd| (-592 *6)) (|:| |td| (-592 (-592 *6))))) (-5 *1 (-1099 *6)) (-5 *4 (-592 *6)) (-5 *5 (-592 (-592 *6))))))
+(-10 -7 (-15 -1658 ((-2 (|:| |fs| (-108)) (|:| |sd| (-592 |#1|)) (|:| |td| (-592 (-592 |#1|)))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 |#1|)))) (-15 -2147 ((-592 (-592 (-592 |#1|))) (-1 (-108) |#1| |#1|) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -1445 ((-592 (-592 (-592 |#1|))) (-592 |#1|) (-592 (-592 (-592 |#1|))))) (-15 -2620 ((-592 (-592 |#1|)) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -2645 ((-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))))) (-15 -3713 ((-592 (-592 |#1|)) (-1100 (-592 |#1|)))) (-15 -2771 ((-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)))) (-15 -1669 ((-1100 (-592 |#1|)) (-592 |#1|))) (-15 -1601 ((-592 (-592 |#1|)) (-592 (-592 |#1|)))) (-15 -1320 ((-592 (-592 |#1|)) (-592 |#1|))) (-15 -2933 ((-592 |#1|) (-592 |#1|))) (-15 -1744 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 |#1|) (-592 (-592 (-592 |#1|))) (-592 (-592 |#1|)) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))) (-592 (-592 (-592 |#1|))))) (-15 -1612 ((-2 (|:| |f1| (-592 |#1|)) (|:| |f2| (-592 (-592 (-592 |#1|)))) (|:| |f3| (-592 (-592 |#1|))) (|:| |f4| (-592 (-592 (-592 |#1|))))) (-592 (-592 (-592 |#1|))))))
+((-2034 (($ (-592 (-592 |#1|))) 10)) (-2973 (((-592 (-592 |#1|)) $) 11)) (-1270 (((-798) $) 26)))
+(((-1100 |#1|) (-10 -8 (-15 -2034 ($ (-592 (-592 |#1|)))) (-15 -2973 ((-592 (-592 |#1|)) $)) (-15 -1270 ((-798) $))) (-1020)) (T -1100))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1100 *3)) (-4 *3 (-1020)))) (-2973 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 *3))) (-5 *1 (-1100 *3)) (-4 *3 (-1020)))) (-2034 (*1 *1 *2) (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-1100 *3)))))
+(-10 -8 (-15 -2034 ($ (-592 (-592 |#1|)))) (-15 -2973 ((-592 (-592 |#1|)) $)) (-15 -1270 ((-798) $)))
+((-1260 (((-108) $ $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3476 (($) NIL) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-2782 (((-1178) $ |#1| |#1|) NIL (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 ((|#2| $ |#1| |#2|) NIL)) (-1608 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2772 (((-3 |#2| "failed") |#1| $) NIL)) (-2305 (($) NIL T CONST)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-2592 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-3 |#2| "failed") |#1| $) NIL)) (-1614 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-3503 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (|has| $ (-6 -4255))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255)))) (-2632 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#2| $ |#1|) NIL)) (-3702 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) NIL)) (-2710 ((|#1| $) NIL (|has| |#1| (-789)))) (-1749 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-592 |#2|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-3478 ((|#1| $) NIL (|has| |#1| (-789)))) (-2622 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4256))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-4076 (((-592 |#1|) $) NIL)) (-1522 (((-108) |#1| $) NIL)) (-3955 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-3985 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-4142 (((-592 |#1|) $) NIL)) (-3845 (((-108) |#1| $) NIL)) (-2012 (((-1038) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3110 ((|#2| $) NIL (|has| |#1| (-789)))) (-3207 (((-3 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) "failed") (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL)) (-2042 (($ $ |#2|) NIL (|has| $ (-6 -4256)))) (-1881 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL)) (-3006 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1777 (((-592 |#2|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3981 (($) NIL) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-2040 (((-713) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-713) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) NIL (-12 (|has| $ (-6 -4255)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (((-713) |#2| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020)))) (((-713) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-567 (-501))))) (-1279 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-1270 (((-798) $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-566 (-798))) (|has| |#2| (-566 (-798)))))) (-1665 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) NIL)) (-3633 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) NIL (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) NIL (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) NIL (-3279 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| |#2| (-1020))))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-1101 |#1| |#2|) (-13 (-1104 |#1| |#2|) (-10 -7 (-6 -4255))) (-1020) (-1020)) (T -1101))
+NIL
+(-13 (-1104 |#1| |#2|) (-10 -7 (-6 -4255)))
+((-4206 ((|#1| (-592 |#1|)) 32)) (-1988 ((|#1| |#1| (-525)) 18)) (-2375 (((-1087 |#1|) |#1| (-856)) 15)))
+(((-1102 |#1|) (-10 -7 (-15 -4206 (|#1| (-592 |#1|))) (-15 -2375 ((-1087 |#1|) |#1| (-856))) (-15 -1988 (|#1| |#1| (-525)))) (-341)) (T -1102))
+((-1988 (*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-1102 *2)) (-4 *2 (-341)))) (-2375 (*1 *2 *3 *4) (-12 (-5 *4 (-856)) (-5 *2 (-1087 *3)) (-5 *1 (-1102 *3)) (-4 *3 (-341)))) (-4206 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-1102 *2)) (-4 *2 (-341)))))
+(-10 -7 (-15 -4206 (|#1| (-592 |#1|))) (-15 -2375 ((-1087 |#1|) |#1| (-856))) (-15 -1988 (|#1| |#1| (-525))))
+((-3476 (($) 10) (($ (-592 (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)))) 14)) (-2592 (($ (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) $) 61) (($ (-1 (-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3702 (((-592 (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) $) 39) (((-592 |#3|) $) 41)) (-2622 (($ (-1 (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-2694 (($ (-1 (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3955 (((-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) $) 54)) (-3985 (($ (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) $) 16)) (-4142 (((-592 |#2|) $) 19)) (-3845 (((-108) |#2| $) 59)) (-3207 (((-3 (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) "failed") (-1 (-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) $) 58)) (-1881 (((-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) $) 63)) (-3006 (((-108) (-1 (-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 67)) (-1777 (((-592 |#3|) $) 43)) (-3410 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2040 (((-713) (-1 (-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) $) NIL) (((-713) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) $) NIL) (((-713) |#3| $) NIL) (((-713) (-1 (-108) |#3|) $) 68)) (-1270 (((-798) $) 27)) (-3633 (((-108) (-1 (-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) $) NIL) (((-108) (-1 (-108) |#3|) $) 65)) (-3994 (((-108) $ $) 49)))
+(((-1103 |#1| |#2| |#3|) (-10 -8 (-15 -1270 ((-798) |#1|)) (-15 -3994 ((-108) |#1| |#1|)) (-15 -2694 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3476 (|#1| (-592 (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))))) (-15 -3476 (|#1|)) (-15 -2694 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2622 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3633 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3006 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -2040 ((-713) (-1 (-108) |#3|) |#1|)) (-15 -3702 ((-592 |#3|) |#1|)) (-15 -2040 ((-713) |#3| |#1|)) (-15 -3410 (|#3| |#1| |#2| |#3|)) (-15 -3410 (|#3| |#1| |#2|)) (-15 -1777 ((-592 |#3|) |#1|)) (-15 -3845 ((-108) |#2| |#1|)) (-15 -4142 ((-592 |#2|) |#1|)) (-15 -2592 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2592 (|#1| (-1 (-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) |#1|)) (-15 -2592 (|#1| (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) |#1|)) (-15 -3207 ((-3 (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) "failed") (-1 (-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) |#1|)) (-15 -3955 ((-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) |#1|)) (-15 -3985 (|#1| (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) |#1|)) (-15 -1881 ((-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) |#1|)) (-15 -2040 ((-713) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) |#1|)) (-15 -3702 ((-592 (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) |#1|)) (-15 -2040 ((-713) (-1 (-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) |#1|)) (-15 -3006 ((-108) (-1 (-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) |#1|)) (-15 -3633 ((-108) (-1 (-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) |#1|)) (-15 -2622 (|#1| (-1 (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) |#1|)) (-15 -2694 (|#1| (-1 (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) |#1|))) (-1104 |#2| |#3|) (-1020) (-1020)) (T -1103))
+NIL
+(-10 -8 (-15 -1270 ((-798) |#1|)) (-15 -3994 ((-108) |#1| |#1|)) (-15 -2694 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3476 (|#1| (-592 (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))))) (-15 -3476 (|#1|)) (-15 -2694 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2622 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3633 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -3006 ((-108) (-1 (-108) |#3|) |#1|)) (-15 -2040 ((-713) (-1 (-108) |#3|) |#1|)) (-15 -3702 ((-592 |#3|) |#1|)) (-15 -2040 ((-713) |#3| |#1|)) (-15 -3410 (|#3| |#1| |#2| |#3|)) (-15 -3410 (|#3| |#1| |#2|)) (-15 -1777 ((-592 |#3|) |#1|)) (-15 -3845 ((-108) |#2| |#1|)) (-15 -4142 ((-592 |#2|) |#1|)) (-15 -2592 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2592 (|#1| (-1 (-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) |#1|)) (-15 -2592 (|#1| (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) |#1|)) (-15 -3207 ((-3 (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) "failed") (-1 (-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) |#1|)) (-15 -3955 ((-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) |#1|)) (-15 -3985 (|#1| (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) |#1|)) (-15 -1881 ((-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) |#1|)) (-15 -2040 ((-713) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) |#1|)) (-15 -3702 ((-592 (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) |#1|)) (-15 -2040 ((-713) (-1 (-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) |#1|)) (-15 -3006 ((-108) (-1 (-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) |#1|)) (-15 -3633 ((-108) (-1 (-108) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) |#1|)) (-15 -2622 (|#1| (-1 (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) |#1|)) (-15 -2694 (|#1| (-1 (-2 (|:| -3423 |#2|) (|:| -2544 |#3|)) (-2 (|:| -3423 |#2|) (|:| -2544 |#3|))) |#1|)))
+((-1260 (((-108) $ $) 19 (-3279 (|has| |#2| (-1020)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-3476 (($) 72) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 71)) (-2782 (((-1178) $ |#1| |#1|) 99 (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) 8)) (-1429 ((|#2| $ |#1| |#2|) 73)) (-1608 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 45 (|has| $ (-6 -4255)))) (-3826 (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 55 (|has| $ (-6 -4255)))) (-2772 (((-3 |#2| "failed") |#1| $) 61)) (-2305 (($) 7 T CONST)) (-3137 (($ $) 58 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255))))) (-2592 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 47 (|has| $ (-6 -4255))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 46 (|has| $ (-6 -4255))) (((-3 |#2| "failed") |#1| $) 62)) (-1614 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 54 (|has| $ (-6 -4255)))) (-3503 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 56 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255)))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 53 (|has| $ (-6 -4255))) (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 52 (|has| $ (-6 -4255)))) (-2632 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4256)))) (-2570 ((|#2| $ |#1|) 88)) (-3702 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 30 (|has| $ (-6 -4255))) (((-592 |#2|) $) 79 (|has| $ (-6 -4255)))) (-2482 (((-108) $ (-713)) 9)) (-2710 ((|#1| $) 96 (|has| |#1| (-789)))) (-1749 (((-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 29 (|has| $ (-6 -4255))) (((-592 |#2|) $) 80 (|has| $ (-6 -4255)))) (-2783 (((-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255)))) (((-108) |#2| $) 82 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4255))))) (-3478 ((|#1| $) 95 (|has| |#1| (-789)))) (-2622 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 34 (|has| $ (-6 -4256))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4256)))) (-2694 (($ (-1 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2957 (((-108) $ (-713)) 10)) (-3451 (((-1074) $) 22 (-3279 (|has| |#2| (-1020)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-4076 (((-592 |#1|) $) 63)) (-1522 (((-108) |#1| $) 64)) (-3955 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 39)) (-3985 (($ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 40)) (-4142 (((-592 |#1|) $) 93)) (-3845 (((-108) |#1| $) 92)) (-2012 (((-1038) $) 21 (-3279 (|has| |#2| (-1020)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-3110 ((|#2| $) 97 (|has| |#1| (-789)))) (-3207 (((-3 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) "failed") (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 51)) (-2042 (($ $ |#2|) 98 (|has| $ (-6 -4256)))) (-1881 (((-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 41)) (-3006 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 32 (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) 77 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))))) 26 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-273 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 25 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) 24 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 23 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)))) (($ $ (-592 |#2|) (-592 |#2|)) 86 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-273 |#2|)) 84 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020)))) (($ $ (-592 (-273 |#2|))) 83 (-12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))))) (-3428 (((-108) $ $) 14)) (-4101 (((-108) |#2| $) 94 (-12 (|has| $ (-6 -4255)) (|has| |#2| (-1020))))) (-1777 (((-592 |#2|) $) 91)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3981 (($) 49) (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 48)) (-2040 (((-713) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 31 (|has| $ (-6 -4255))) (((-713) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| $ (-6 -4255)))) (((-713) |#2| $) 81 (-12 (|has| |#2| (-1020)) (|has| $ (-6 -4255)))) (((-713) (-1 (-108) |#2|) $) 78 (|has| $ (-6 -4255)))) (-1451 (($ $) 13)) (-2749 (((-501) $) 59 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-567 (-501))))) (-1279 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 50)) (-1270 (((-798) $) 18 (-3279 (|has| |#2| (-566 (-798))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-566 (-798)))))) (-1665 (($ (-592 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) 42)) (-3633 (((-108) (-1 (-108) (-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) $) 33 (|has| $ (-6 -4255))) (((-108) (-1 (-108) |#2|) $) 76 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (-3279 (|has| |#2| (-1020)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-1104 |#1| |#2|) (-131) (-1020) (-1020)) (T -1104))
+((-1429 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1104 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))) (-3476 (*1 *1) (-12 (-4 *1 (-1104 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))) (-3476 (*1 *1 *2) (-12 (-5 *2 (-592 (-2 (|:| -3423 *3) (|:| -2544 *4)))) (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *1 (-1104 *3 *4)))) (-2694 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1104 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))))
+(-13 (-563 |t#1| |t#2|) (-558 |t#1| |t#2|) (-10 -8 (-15 -1429 (|t#2| $ |t#1| |t#2|)) (-15 -3476 ($)) (-15 -3476 ($ (-592 (-2 (|:| -3423 |t#1|) (|:| -2544 |t#2|))))) (-15 -2694 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-33) . T) ((-102 #0=(-2 (|:| -3423 |#1|) (|:| -2544 |#2|))) . T) ((-97) -3279 (|has| |#2| (-1020)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))) ((-566 (-798)) -3279 (|has| |#2| (-1020)) (|has| |#2| (-566 (-798))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-566 (-798)))) ((-142 #0#) . T) ((-567 (-501)) |has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-567 (-501))) ((-209 #0#) . T) ((-215 #0#) . T) ((-265 |#1| |#2|) . T) ((-267 |#1| |#2|) . T) ((-288 #0#) -12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))) ((-288 |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-464 #0#) . T) ((-464 |#2|) . T) ((-558 |#1| |#2|) . T) ((-486 #0# #0#) -12 (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-288 (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)))) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))) ((-486 |#2| |#2|) -12 (|has| |#2| (-288 |#2|)) (|has| |#2| (-1020))) ((-563 |#1| |#2|) . T) ((-1020) -3279 (|has| |#2| (-1020)) (|has| (-2 (|:| -3423 |#1|) (|:| -2544 |#2|)) (-1020))) ((-1127) . T))
+((-3686 (((-108)) 24)) (-2833 (((-1178) (-1074)) 26)) (-3867 (((-108)) 36)) (-3371 (((-1178)) 34)) (-3225 (((-1178) (-1074) (-1074)) 25)) (-1605 (((-108)) 37)) (-3985 (((-1178) |#1| |#2|) 44)) (-3292 (((-1178)) 20)) (-3799 (((-3 |#2| "failed") |#1|) 42)) (-3767 (((-1178)) 35)))
+(((-1105 |#1| |#2|) (-10 -7 (-15 -3292 ((-1178))) (-15 -3225 ((-1178) (-1074) (-1074))) (-15 -2833 ((-1178) (-1074))) (-15 -3371 ((-1178))) (-15 -3767 ((-1178))) (-15 -3686 ((-108))) (-15 -3867 ((-108))) (-15 -1605 ((-108))) (-15 -3799 ((-3 |#2| "failed") |#1|)) (-15 -3985 ((-1178) |#1| |#2|))) (-1020) (-1020)) (T -1105))
+((-3985 (*1 *2 *3 *4) (-12 (-5 *2 (-1178)) (-5 *1 (-1105 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-3799 (*1 *2 *3) (|partial| -12 (-4 *2 (-1020)) (-5 *1 (-1105 *3 *2)) (-4 *3 (-1020)))) (-1605 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1105 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-3867 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1105 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-3686 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1105 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-3767 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1105 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-3371 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1105 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1105 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020)))) (-3225 (*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1105 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020)))) (-3292 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1105 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020)))))
+(-10 -7 (-15 -3292 ((-1178))) (-15 -3225 ((-1178) (-1074) (-1074))) (-15 -2833 ((-1178) (-1074))) (-15 -3371 ((-1178))) (-15 -3767 ((-1178))) (-15 -3686 ((-108))) (-15 -3867 ((-108))) (-15 -1605 ((-108))) (-15 -3799 ((-3 |#2| "failed") |#1|)) (-15 -3985 ((-1178) |#1| |#2|)))
+((-2132 (((-1074) (-1074)) 18)) (-3755 (((-51) (-1074)) 21)))
+(((-1106) (-10 -7 (-15 -3755 ((-51) (-1074))) (-15 -2132 ((-1074) (-1074))))) (T -1106))
+((-2132 (*1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1106)))) (-3755 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-51)) (-5 *1 (-1106)))))
+(-10 -7 (-15 -3755 ((-51) (-1074))) (-15 -2132 ((-1074) (-1074))))
+((-1270 (((-1108) |#1|) 11)))
+(((-1107 |#1|) (-10 -7 (-15 -1270 ((-1108) |#1|))) (-1020)) (T -1107))
+((-1270 (*1 *2 *3) (-12 (-5 *2 (-1108)) (-5 *1 (-1107 *3)) (-4 *3 (-1020)))))
+(-10 -7 (-15 -1270 ((-1108) |#1|)))
+((-1260 (((-108) $ $) NIL)) (-4170 (((-592 (-1074)) $) 34)) (-1942 (((-592 (-1074)) $ (-592 (-1074))) 37)) (-1372 (((-592 (-1074)) $ (-592 (-1074))) 36)) (-2298 (((-592 (-1074)) $ (-592 (-1074))) 38)) (-2508 (((-592 (-1074)) $) 33)) (-3489 (($) 22)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1340 (((-592 (-1074)) $) 35)) (-2868 (((-1178) $ (-525)) 29) (((-1178) $) 30)) (-2749 (($ (-798) (-525)) 26) (($ (-798) (-525) (-798)) NIL)) (-1270 (((-798) $) 40) (($ (-798)) 24)) (-3994 (((-108) $ $) NIL)))
+(((-1108) (-13 (-1020) (-10 -8 (-15 -1270 ($ (-798))) (-15 -2749 ($ (-798) (-525))) (-15 -2749 ($ (-798) (-525) (-798))) (-15 -2868 ((-1178) $ (-525))) (-15 -2868 ((-1178) $)) (-15 -1340 ((-592 (-1074)) $)) (-15 -4170 ((-592 (-1074)) $)) (-15 -3489 ($)) (-15 -2508 ((-592 (-1074)) $)) (-15 -2298 ((-592 (-1074)) $ (-592 (-1074)))) (-15 -1942 ((-592 (-1074)) $ (-592 (-1074)))) (-15 -1372 ((-592 (-1074)) $ (-592 (-1074))))))) (T -1108))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1108)))) (-2749 (*1 *1 *2 *3) (-12 (-5 *2 (-798)) (-5 *3 (-525)) (-5 *1 (-1108)))) (-2749 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-798)) (-5 *3 (-525)) (-5 *1 (-1108)))) (-2868 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1178)) (-5 *1 (-1108)))) (-2868 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1108)))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1108)))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1108)))) (-3489 (*1 *1) (-5 *1 (-1108))) (-2508 (*1 *2 *1) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1108)))) (-2298 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1108)))) (-1942 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1108)))) (-1372 (*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1108)))))
+(-13 (-1020) (-10 -8 (-15 -1270 ($ (-798))) (-15 -2749 ($ (-798) (-525))) (-15 -2749 ($ (-798) (-525) (-798))) (-15 -2868 ((-1178) $ (-525))) (-15 -2868 ((-1178) $)) (-15 -1340 ((-592 (-1074)) $)) (-15 -4170 ((-592 (-1074)) $)) (-15 -3489 ($)) (-15 -2508 ((-592 (-1074)) $)) (-15 -2298 ((-592 (-1074)) $ (-592 (-1074)))) (-15 -1942 ((-592 (-1074)) $ (-592 (-1074)))) (-15 -1372 ((-592 (-1074)) $ (-592 (-1074))))))
+((-1260 (((-108) $ $) NIL)) (-1447 (((-1074) $ (-1074)) 17) (((-1074) $) 16)) (-2336 (((-1074) $ (-1074)) 15)) (-3933 (($ $ (-1074)) NIL)) (-2191 (((-3 (-1074) "failed") $) 11)) (-2270 (((-1074) $) 8)) (-3338 (((-3 (-1074) "failed") $) 12)) (-2506 (((-1074) $) 9)) (-2409 (($ (-366)) NIL) (($ (-366) (-1074)) NIL)) (-3800 (((-366) $) NIL)) (-3451 (((-1074) $) NIL)) (-2908 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2487 (((-108) $) 18)) (-1270 (((-798) $) NIL)) (-2881 (($ $) NIL)) (-3994 (((-108) $ $) NIL)))
+(((-1109) (-13 (-342 (-366) (-1074)) (-10 -8 (-15 -1447 ((-1074) $ (-1074))) (-15 -1447 ((-1074) $)) (-15 -2270 ((-1074) $)) (-15 -2191 ((-3 (-1074) "failed") $)) (-15 -3338 ((-3 (-1074) "failed") $)) (-15 -2487 ((-108) $))))) (T -1109))
+((-1447 (*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1109)))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1109)))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1109)))) (-2191 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1109)))) (-3338 (*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1109)))) (-2487 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1109)))))
+(-13 (-342 (-366) (-1074)) (-10 -8 (-15 -1447 ((-1074) $ (-1074))) (-15 -1447 ((-1074) $)) (-15 -2270 ((-1074) $)) (-15 -2191 ((-3 (-1074) "failed") $)) (-15 -3338 ((-3 (-1074) "failed") $)) (-15 -2487 ((-108) $))))
+((-1436 (((-3 (-525) "failed") |#1|) 19)) (-1237 (((-3 (-525) "failed") |#1|) 14)) (-1375 (((-525) (-1074)) 28)))
+(((-1110 |#1|) (-10 -7 (-15 -1436 ((-3 (-525) "failed") |#1|)) (-15 -1237 ((-3 (-525) "failed") |#1|)) (-15 -1375 ((-525) (-1074)))) (-977)) (T -1110))
+((-1375 (*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-525)) (-5 *1 (-1110 *4)) (-4 *4 (-977)))) (-1237 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1110 *3)) (-4 *3 (-977)))) (-1436 (*1 *2 *3) (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1110 *3)) (-4 *3 (-977)))))
+(-10 -7 (-15 -1436 ((-3 (-525) "failed") |#1|)) (-15 -1237 ((-3 (-525) "failed") |#1|)) (-15 -1375 ((-525) (-1074))))
+((-1295 (((-1051 (-205))) 9)))
+(((-1111) (-10 -7 (-15 -1295 ((-1051 (-205)))))) (T -1111))
+((-1295 (*1 *2) (-12 (-5 *2 (-1051 (-205))) (-5 *1 (-1111)))))
+(-10 -7 (-15 -1295 ((-1051 (-205)))))
+((-1535 (($) 11)) (-2438 (($ $) 35)) (-2410 (($ $) 33)) (-2226 (($ $) 25)) (-2464 (($ $) 17)) (-2687 (($ $) 15)) (-2450 (($ $) 19)) (-2273 (($ $) 30)) (-2424 (($ $) 34)) (-2242 (($ $) 29)))
+(((-1112 |#1|) (-10 -8 (-15 -1535 (|#1|)) (-15 -2438 (|#1| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -2687 (|#1| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -2226 (|#1| |#1|)) (-15 -2273 (|#1| |#1|)) (-15 -2242 (|#1| |#1|))) (-1113)) (T -1112))
+NIL
+(-10 -8 (-15 -1535 (|#1|)) (-15 -2438 (|#1| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -2687 (|#1| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -2226 (|#1| |#1|)) (-15 -2273 (|#1| |#1|)) (-15 -2242 (|#1| |#1|)))
+((-2351 (($ $) 26)) (-1603 (($ $) 11)) (-2320 (($ $) 27)) (-1569 (($ $) 10)) (-2382 (($ $) 28)) (-2193 (($ $) 9)) (-1535 (($) 16)) (-1415 (($ $) 19)) (-1250 (($ $) 18)) (-2396 (($ $) 29)) (-2209 (($ $) 8)) (-2367 (($ $) 30)) (-2176 (($ $) 7)) (-2335 (($ $) 31)) (-1584 (($ $) 6)) (-2438 (($ $) 20)) (-2257 (($ $) 32)) (-2410 (($ $) 21)) (-2226 (($ $) 33)) (-2464 (($ $) 22)) (-2287 (($ $) 34)) (-2687 (($ $) 23)) (-2303 (($ $) 35)) (-2450 (($ $) 24)) (-2273 (($ $) 36)) (-2424 (($ $) 25)) (-2242 (($ $) 37)) (** (($ $ $) 17)))
+(((-1113) (-131)) (T -1113))
+((-1535 (*1 *1) (-4 *1 (-1113))))
+(-13 (-1116) (-91) (-466) (-34) (-263) (-10 -8 (-15 -1535 ($))))
+(((-34) . T) ((-91) . T) ((-263) . T) ((-466) . T) ((-1116) . T))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3352 ((|#1| $) 17)) (-4225 (($ |#1| (-592 $)) 23) (($ (-592 |#1|)) 27) (($ |#1|) 25)) (-3330 (((-108) $ (-713)) 48)) (-1545 ((|#1| $ |#1|) 14 (|has| $ (-6 -4256)))) (-1429 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) 13 (|has| $ (-6 -4256)))) (-2305 (($) NIL T CONST)) (-3702 (((-592 |#1|) $) 52 (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) 43)) (-2553 (((-108) $ $) 33 (|has| |#1| (-1020)))) (-2482 (((-108) $ (-713)) 41)) (-1749 (((-592 |#1|) $) 53 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 51 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-2622 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 22)) (-2957 (((-108) $ (-713)) 40)) (-2647 (((-592 |#1|) $) 37)) (-3365 (((-108) $) 36)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3006 (((-108) (-1 (-108) |#1|) $) 50 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 74)) (-2013 (((-108) $) 9)) (-2718 (($) 10)) (-3410 ((|#1| $ "value") NIL)) (-3294 (((-525) $ $) 32)) (-1334 (((-592 $) $) 59)) (-1729 (((-108) $ $) 77)) (-1350 (((-592 $) $) 72)) (-3756 (($ $) 73)) (-1698 (((-108) $) 56)) (-2040 (((-713) (-1 (-108) |#1|) $) 20 (|has| $ (-6 -4255))) (((-713) |#1| $) 16 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1451 (($ $) 58)) (-1270 (((-798) $) 61 (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) 12)) (-2240 (((-108) $ $) 29 (|has| |#1| (-1020)))) (-3633 (((-108) (-1 (-108) |#1|) $) 49 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 28 (|has| |#1| (-1020)))) (-3596 (((-713) $) 39 (|has| $ (-6 -4255)))))
+(((-1114 |#1|) (-13 (-942 |#1|) (-10 -8 (-6 -4255) (-6 -4256) (-15 -4225 ($ |#1| (-592 $))) (-15 -4225 ($ (-592 |#1|))) (-15 -4225 ($ |#1|)) (-15 -1698 ((-108) $)) (-15 -3756 ($ $)) (-15 -1350 ((-592 $) $)) (-15 -1729 ((-108) $ $)) (-15 -1334 ((-592 $) $)))) (-1020)) (T -1114))
+((-1698 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1114 *3)) (-4 *3 (-1020)))) (-4225 (*1 *1 *2 *3) (-12 (-5 *3 (-592 (-1114 *2))) (-4 *2 (-1020)) (-5 *1 (-1114 *2)))) (-4225 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-1114 *3)))) (-4225 (*1 *1 *2) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-1020)))) (-3756 (*1 *1 *1) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-1020)))) (-1350 (*1 *2 *1) (-12 (-5 *2 (-592 (-1114 *3))) (-5 *1 (-1114 *3)) (-4 *3 (-1020)))) (-1729 (*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1114 *3)) (-4 *3 (-1020)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-592 (-1114 *3))) (-5 *1 (-1114 *3)) (-4 *3 (-1020)))))
+(-13 (-942 |#1|) (-10 -8 (-6 -4255) (-6 -4256) (-15 -4225 ($ |#1| (-592 $))) (-15 -4225 ($ (-592 |#1|))) (-15 -4225 ($ |#1|)) (-15 -1698 ((-108) $)) (-15 -3756 ($ $)) (-15 -1350 ((-592 $) $)) (-15 -1729 ((-108) $ $)) (-15 -1334 ((-592 $) $))))
+((-1603 (($ $) 15)) (-2193 (($ $) 12)) (-2209 (($ $) 10)) (-2176 (($ $) 17)))
+(((-1115 |#1|) (-10 -8 (-15 -2176 (|#1| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2193 (|#1| |#1|)) (-15 -1603 (|#1| |#1|))) (-1116)) (T -1115))
+NIL
+(-10 -8 (-15 -2176 (|#1| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2193 (|#1| |#1|)) (-15 -1603 (|#1| |#1|)))
+((-1603 (($ $) 11)) (-1569 (($ $) 10)) (-2193 (($ $) 9)) (-2209 (($ $) 8)) (-2176 (($ $) 7)) (-1584 (($ $) 6)))
+(((-1116) (-131)) (T -1116))
+((-1603 (*1 *1 *1) (-4 *1 (-1116))) (-1569 (*1 *1 *1) (-4 *1 (-1116))) (-2193 (*1 *1 *1) (-4 *1 (-1116))) (-2209 (*1 *1 *1) (-4 *1 (-1116))) (-2176 (*1 *1 *1) (-4 *1 (-1116))) (-1584 (*1 *1 *1) (-4 *1 (-1116))))
+(-13 (-10 -8 (-15 -1584 ($ $)) (-15 -2176 ($ $)) (-15 -2209 ($ $)) (-15 -2193 ($ $)) (-15 -1569 ($ $)) (-15 -1603 ($ $))))
+((-3995 ((|#2| |#2|) 88)) (-2478 (((-108) |#2|) 26)) (-2227 ((|#2| |#2|) 30)) (-2243 ((|#2| |#2|) 32)) (-2004 ((|#2| |#2| (-1091)) 83) ((|#2| |#2|) 84)) (-2532 (((-157 |#2|) |#2|) 28)) (-3210 ((|#2| |#2| (-1091)) 85) ((|#2| |#2|) 86)))
+(((-1117 |#1| |#2|) (-10 -7 (-15 -2004 (|#2| |#2|)) (-15 -2004 (|#2| |#2| (-1091))) (-15 -3210 (|#2| |#2|)) (-15 -3210 (|#2| |#2| (-1091))) (-15 -3995 (|#2| |#2|)) (-15 -2227 (|#2| |#2|)) (-15 -2243 (|#2| |#2|)) (-15 -2478 ((-108) |#2|)) (-15 -2532 ((-157 |#2|) |#2|))) (-13 (-429) (-789) (-968 (-525)) (-588 (-525))) (-13 (-27) (-1113) (-408 |#1|))) (T -1117))
+((-2532 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-157 *3)) (-5 *1 (-1117 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *4))))) (-2478 (*1 *2 *3) (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *2 (-108)) (-5 *1 (-1117 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *4))))) (-2243 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *3))))) (-2227 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *3))))) (-3995 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *3))))) (-3210 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1117 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *4))))) (-3210 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *3))))) (-2004 (*1 *2 *2 *3) (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1117 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *4))))) (-2004 (*1 *2 *2) (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525)))) (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *3))))))
+(-10 -7 (-15 -2004 (|#2| |#2|)) (-15 -2004 (|#2| |#2| (-1091))) (-15 -3210 (|#2| |#2|)) (-15 -3210 (|#2| |#2| (-1091))) (-15 -3995 (|#2| |#2|)) (-15 -2227 (|#2| |#2|)) (-15 -2243 (|#2| |#2|)) (-15 -2478 ((-108) |#2|)) (-15 -2532 ((-157 |#2|) |#2|)))
+((-3306 ((|#4| |#4| |#1|) 27)) (-3456 ((|#4| |#4| |#1|) 28)))
+(((-1118 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3306 (|#4| |#4| |#1|)) (-15 -3456 (|#4| |#4| |#1|))) (-517) (-351 |#1|) (-351 |#1|) (-630 |#1| |#2| |#3|)) (T -1118))
+((-3456 (*1 *2 *2 *3) (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))) (-3306 (*1 *2 *2 *3) (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
+(-10 -7 (-15 -3306 (|#4| |#4| |#1|)) (-15 -3456 (|#4| |#4| |#1|)))
+((-3533 ((|#2| |#2|) 134)) (-1800 ((|#2| |#2|) 131)) (-1442 ((|#2| |#2|) 122)) (-3070 ((|#2| |#2|) 119)) (-2983 ((|#2| |#2|) 127)) (-2895 ((|#2| |#2|) 115)) (-3520 ((|#2| |#2|) 43)) (-3315 ((|#2| |#2|) 95)) (-1434 ((|#2| |#2|) 75)) (-3906 ((|#2| |#2|) 129)) (-2000 ((|#2| |#2|) 117)) (-4042 ((|#2| |#2|) 139)) (-2316 ((|#2| |#2|) 137)) (-1725 ((|#2| |#2|) 138)) (-1411 ((|#2| |#2|) 136)) (-2924 ((|#2| |#2|) 149)) (-1907 ((|#2| |#2|) 30 (-12 (|has| |#2| (-567 (-827 |#1|))) (|has| |#2| (-821 |#1|)) (|has| |#1| (-567 (-827 |#1|))) (|has| |#1| (-821 |#1|))))) (-2187 ((|#2| |#2|) 76)) (-1376 ((|#2| |#2|) 140)) (-3788 ((|#2| |#2|) 141)) (-2692 ((|#2| |#2|) 128)) (-3190 ((|#2| |#2|) 116)) (-1495 ((|#2| |#2|) 135)) (-1266 ((|#2| |#2|) 133)) (-3565 ((|#2| |#2|) 123)) (-2567 ((|#2| |#2|) 121)) (-4114 ((|#2| |#2|) 125)) (-3325 ((|#2| |#2|) 113)))
+(((-1119 |#1| |#2|) (-10 -7 (-15 -3788 (|#2| |#2|)) (-15 -1434 (|#2| |#2|)) (-15 -2924 (|#2| |#2|)) (-15 -3315 (|#2| |#2|)) (-15 -3520 (|#2| |#2|)) (-15 -2187 (|#2| |#2|)) (-15 -1376 (|#2| |#2|)) (-15 -3325 (|#2| |#2|)) (-15 -4114 (|#2| |#2|)) (-15 -3565 (|#2| |#2|)) (-15 -1495 (|#2| |#2|)) (-15 -3190 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -2000 (|#2| |#2|)) (-15 -3906 (|#2| |#2|)) (-15 -2895 (|#2| |#2|)) (-15 -2983 (|#2| |#2|)) (-15 -1442 (|#2| |#2|)) (-15 -3533 (|#2| |#2|)) (-15 -3070 (|#2| |#2|)) (-15 -1800 (|#2| |#2|)) (-15 -2567 (|#2| |#2|)) (-15 -1266 (|#2| |#2|)) (-15 -1411 (|#2| |#2|)) (-15 -2316 (|#2| |#2|)) (-15 -1725 (|#2| |#2|)) (-15 -4042 (|#2| |#2|)) (IF (|has| |#1| (-821 |#1|)) (IF (|has| |#1| (-567 (-827 |#1|))) (IF (|has| |#2| (-567 (-827 |#1|))) (IF (|has| |#2| (-821 |#1|)) (-15 -1907 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-789) (-429)) (-13 (-408 |#1|) (-1113))) (T -1119))
+((-1907 (*1 *2 *2) (-12 (-4 *3 (-567 (-827 *3))) (-4 *3 (-821 *3)) (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-567 (-827 *3))) (-4 *2 (-821 *3)) (-4 *2 (-13 (-408 *3) (-1113))))) (-4042 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-1725 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-2316 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-1411 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-1266 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-2567 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-1800 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-3070 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-3533 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-1442 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-2983 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-2895 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-2000 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-2692 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-3190 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-1495 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-3565 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-4114 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-3325 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-1376 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-2187 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-3520 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-3315 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-2924 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-1434 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2)) (-4 *2 (-13 (-408 *3) (-1113))))))
+(-10 -7 (-15 -3788 (|#2| |#2|)) (-15 -1434 (|#2| |#2|)) (-15 -2924 (|#2| |#2|)) (-15 -3315 (|#2| |#2|)) (-15 -3520 (|#2| |#2|)) (-15 -2187 (|#2| |#2|)) (-15 -1376 (|#2| |#2|)) (-15 -3325 (|#2| |#2|)) (-15 -4114 (|#2| |#2|)) (-15 -3565 (|#2| |#2|)) (-15 -1495 (|#2| |#2|)) (-15 -3190 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -2000 (|#2| |#2|)) (-15 -3906 (|#2| |#2|)) (-15 -2895 (|#2| |#2|)) (-15 -2983 (|#2| |#2|)) (-15 -1442 (|#2| |#2|)) (-15 -3533 (|#2| |#2|)) (-15 -3070 (|#2| |#2|)) (-15 -1800 (|#2| |#2|)) (-15 -2567 (|#2| |#2|)) (-15 -1266 (|#2| |#2|)) (-15 -1411 (|#2| |#2|)) (-15 -2316 (|#2| |#2|)) (-15 -1725 (|#2| |#2|)) (-15 -4042 (|#2| |#2|)) (IF (|has| |#1| (-821 |#1|)) (IF (|has| |#1| (-567 (-827 |#1|))) (IF (|has| |#2| (-567 (-827 |#1|))) (IF (|has| |#2| (-821 |#1|)) (-15 -1907 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-2220 (((-108) |#5| $) 60) (((-108) $) 102)) (-1952 ((|#5| |#5| $) 75)) (-3826 (($ (-1 (-108) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-4032 (((-592 |#5|) (-592 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 73)) (-2591 (((-3 $ "failed") (-592 |#5|)) 126)) (-3121 (((-3 $ "failed") $) 112)) (-2457 ((|#5| |#5| $) 94)) (-4047 (((-108) |#5| $ (-1 (-108) |#5| |#5|)) 31)) (-3129 ((|#5| |#5| $) 98)) (-3503 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|)) 69)) (-2520 (((-2 (|:| -2849 (-592 |#5|)) (|:| -2409 (-592 |#5|))) $) 55)) (-4008 (((-108) |#5| $) 58) (((-108) $) 103)) (-1776 ((|#4| $) 108)) (-1636 (((-3 |#5| "failed") $) 110)) (-3231 (((-592 |#5|) $) 49)) (-3134 (((-108) |#5| $) 67) (((-108) $) 107)) (-3149 ((|#5| |#5| $) 81)) (-1363 (((-108) $ $) 27)) (-2505 (((-108) |#5| $) 63) (((-108) $) 105)) (-3417 ((|#5| |#5| $) 78)) (-3110 (((-3 |#5| "failed") $) 109)) (-2182 (($ $ |#5|) 127)) (-1587 (((-713) $) 52)) (-1279 (($ (-592 |#5|)) 124)) (-3422 (($ $ |#4|) 122)) (-1248 (($ $ |#4|) 121)) (-1963 (($ $) 120)) (-1270 (((-798) $) NIL) (((-592 |#5|) $) 113)) (-1970 (((-713) $) 130)) (-2927 (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|)) 45)) (-4213 (((-108) $ (-1 (-108) |#5| (-592 |#5|))) 100)) (-3726 (((-592 |#4|) $) 115)) (-1728 (((-108) |#4| $) 118)) (-3994 (((-108) $ $) 19)))
+(((-1120 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1970 ((-713) |#1|)) (-15 -2182 (|#1| |#1| |#5|)) (-15 -3826 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1728 ((-108) |#4| |#1|)) (-15 -3726 ((-592 |#4|) |#1|)) (-15 -3121 ((-3 |#1| "failed") |#1|)) (-15 -1636 ((-3 |#5| "failed") |#1|)) (-15 -3110 ((-3 |#5| "failed") |#1|)) (-15 -3129 (|#5| |#5| |#1|)) (-15 -1963 (|#1| |#1|)) (-15 -2457 (|#5| |#5| |#1|)) (-15 -3149 (|#5| |#5| |#1|)) (-15 -3417 (|#5| |#5| |#1|)) (-15 -1952 (|#5| |#5| |#1|)) (-15 -4032 ((-592 |#5|) (-592 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3503 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3134 ((-108) |#1|)) (-15 -2505 ((-108) |#1|)) (-15 -2220 ((-108) |#1|)) (-15 -4213 ((-108) |#1| (-1 (-108) |#5| (-592 |#5|)))) (-15 -3134 ((-108) |#5| |#1|)) (-15 -2505 ((-108) |#5| |#1|)) (-15 -2220 ((-108) |#5| |#1|)) (-15 -4047 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -4008 ((-108) |#1|)) (-15 -4008 ((-108) |#5| |#1|)) (-15 -2520 ((-2 (|:| -2849 (-592 |#5|)) (|:| -2409 (-592 |#5|))) |#1|)) (-15 -1587 ((-713) |#1|)) (-15 -3231 ((-592 |#5|) |#1|)) (-15 -2927 ((-3 (-2 (|:| |bas| |#1|) (|:| -2936 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -2927 ((-3 (-2 (|:| |bas| |#1|) (|:| -2936 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5| |#5|))) (-15 -1363 ((-108) |#1| |#1|)) (-15 -3422 (|#1| |#1| |#4|)) (-15 -1248 (|#1| |#1| |#4|)) (-15 -1776 (|#4| |#1|)) (-15 -2591 ((-3 |#1| "failed") (-592 |#5|))) (-15 -1270 ((-592 |#5|) |#1|)) (-15 -1279 (|#1| (-592 |#5|))) (-15 -3503 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3503 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3826 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3503 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1270 ((-798) |#1|)) (-15 -3994 ((-108) |#1| |#1|))) (-1121 |#2| |#3| |#4| |#5|) (-517) (-735) (-789) (-991 |#2| |#3| |#4|)) (T -1120))
+NIL
+(-10 -8 (-15 -1970 ((-713) |#1|)) (-15 -2182 (|#1| |#1| |#5|)) (-15 -3826 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1728 ((-108) |#4| |#1|)) (-15 -3726 ((-592 |#4|) |#1|)) (-15 -3121 ((-3 |#1| "failed") |#1|)) (-15 -1636 ((-3 |#5| "failed") |#1|)) (-15 -3110 ((-3 |#5| "failed") |#1|)) (-15 -3129 (|#5| |#5| |#1|)) (-15 -1963 (|#1| |#1|)) (-15 -2457 (|#5| |#5| |#1|)) (-15 -3149 (|#5| |#5| |#1|)) (-15 -3417 (|#5| |#5| |#1|)) (-15 -1952 (|#5| |#5| |#1|)) (-15 -4032 ((-592 |#5|) (-592 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3503 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-108) |#5| |#5|))) (-15 -3134 ((-108) |#1|)) (-15 -2505 ((-108) |#1|)) (-15 -2220 ((-108) |#1|)) (-15 -4213 ((-108) |#1| (-1 (-108) |#5| (-592 |#5|)))) (-15 -3134 ((-108) |#5| |#1|)) (-15 -2505 ((-108) |#5| |#1|)) (-15 -2220 ((-108) |#5| |#1|)) (-15 -4047 ((-108) |#5| |#1| (-1 (-108) |#5| |#5|))) (-15 -4008 ((-108) |#1|)) (-15 -4008 ((-108) |#5| |#1|)) (-15 -2520 ((-2 (|:| -2849 (-592 |#5|)) (|:| -2409 (-592 |#5|))) |#1|)) (-15 -1587 ((-713) |#1|)) (-15 -3231 ((-592 |#5|) |#1|)) (-15 -2927 ((-3 (-2 (|:| |bas| |#1|) (|:| -2936 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5|) (-1 (-108) |#5| |#5|))) (-15 -2927 ((-3 (-2 (|:| |bas| |#1|) (|:| -2936 (-592 |#5|))) "failed") (-592 |#5|) (-1 (-108) |#5| |#5|))) (-15 -1363 ((-108) |#1| |#1|)) (-15 -3422 (|#1| |#1| |#4|)) (-15 -1248 (|#1| |#1| |#4|)) (-15 -1776 (|#4| |#1|)) (-15 -2591 ((-3 |#1| "failed") (-592 |#5|))) (-15 -1270 ((-592 |#5|) |#1|)) (-15 -1279 (|#1| (-592 |#5|))) (-15 -3503 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -3503 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3826 (|#1| (-1 (-108) |#5|) |#1|)) (-15 -3503 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1270 ((-798) |#1|)) (-15 -3994 ((-108) |#1| |#1|)))
+((-1260 (((-108) $ $) 7)) (-4022 (((-592 (-2 (|:| -2849 $) (|:| -2409 (-592 |#4|)))) (-592 |#4|)) 85)) (-3221 (((-592 $) (-592 |#4|)) 86)) (-2383 (((-592 |#3|) $) 33)) (-3163 (((-108) $) 26)) (-3018 (((-108) $) 17 (|has| |#1| (-517)))) (-2220 (((-108) |#4| $) 101) (((-108) $) 97)) (-1952 ((|#4| |#4| $) 92)) (-2855 (((-2 (|:| |under| $) (|:| -2793 $) (|:| |upper| $)) $ |#3|) 27)) (-3330 (((-108) $ (-713)) 44)) (-3826 (($ (-1 (-108) |#4|) $) 65 (|has| $ (-6 -4255))) (((-3 |#4| "failed") $ |#3|) 79)) (-2305 (($) 45 T CONST)) (-3393 (((-108) $) 22 (|has| |#1| (-517)))) (-3438 (((-108) $ $) 24 (|has| |#1| (-517)))) (-1396 (((-108) $ $) 23 (|has| |#1| (-517)))) (-3291 (((-108) $) 25 (|has| |#1| (-517)))) (-4032 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 93)) (-1653 (((-592 |#4|) (-592 |#4|) $) 18 (|has| |#1| (-517)))) (-1551 (((-592 |#4|) (-592 |#4|) $) 19 (|has| |#1| (-517)))) (-2591 (((-3 $ "failed") (-592 |#4|)) 36)) (-3898 (($ (-592 |#4|)) 35)) (-3121 (((-3 $ "failed") $) 82)) (-2457 ((|#4| |#4| $) 89)) (-3137 (($ $) 68 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ |#4| $) 67 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#4|) $) 64 (|has| $ (-6 -4255)))) (-3496 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-517)))) (-4047 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) 102)) (-3129 ((|#4| |#4| $) 87)) (-3503 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4255))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4255))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 94)) (-2520 (((-2 (|:| -2849 (-592 |#4|)) (|:| -2409 (-592 |#4|))) $) 105)) (-3702 (((-592 |#4|) $) 52 (|has| $ (-6 -4255)))) (-4008 (((-108) |#4| $) 104) (((-108) $) 103)) (-1776 ((|#3| $) 34)) (-2482 (((-108) $ (-713)) 43)) (-1749 (((-592 |#4|) $) 53 (|has| $ (-6 -4255)))) (-2783 (((-108) |#4| $) 55 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#4| |#4|) $) 47)) (-2723 (((-592 |#3|) $) 32)) (-2069 (((-108) |#3| $) 31)) (-2957 (((-108) $ (-713)) 42)) (-3451 (((-1074) $) 9)) (-1636 (((-3 |#4| "failed") $) 83)) (-3231 (((-592 |#4|) $) 107)) (-3134 (((-108) |#4| $) 99) (((-108) $) 95)) (-3149 ((|#4| |#4| $) 90)) (-1363 (((-108) $ $) 110)) (-1410 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-517)))) (-2505 (((-108) |#4| $) 100) (((-108) $) 96)) (-3417 ((|#4| |#4| $) 91)) (-2012 (((-1038) $) 10)) (-3110 (((-3 |#4| "failed") $) 84)) (-3207 (((-3 |#4| "failed") (-1 (-108) |#4|) $) 61)) (-3599 (((-3 $ "failed") $ |#4|) 78)) (-2182 (($ $ |#4|) 77)) (-3006 (((-108) (-1 (-108) |#4|) $) 50 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 |#4|) (-592 |#4|)) 59 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) 57 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) 56 (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-3428 (((-108) $ $) 38)) (-2013 (((-108) $) 41)) (-2718 (($) 40)) (-1587 (((-713) $) 106)) (-2040 (((-713) |#4| $) 54 (-12 (|has| |#4| (-1020)) (|has| $ (-6 -4255)))) (((-713) (-1 (-108) |#4|) $) 51 (|has| $ (-6 -4255)))) (-1451 (($ $) 39)) (-2749 (((-501) $) 69 (|has| |#4| (-567 (-501))))) (-1279 (($ (-592 |#4|)) 60)) (-3422 (($ $ |#3|) 28)) (-1248 (($ $ |#3|) 30)) (-1963 (($ $) 88)) (-1847 (($ $ |#3|) 29)) (-1270 (((-798) $) 11) (((-592 |#4|) $) 37)) (-1970 (((-713) $) 76 (|has| |#3| (-346)))) (-2927 (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) 108)) (-4213 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) 98)) (-3633 (((-108) (-1 (-108) |#4|) $) 49 (|has| $ (-6 -4255)))) (-3726 (((-592 |#3|) $) 81)) (-1728 (((-108) |#3| $) 80)) (-3994 (((-108) $ $) 6)) (-3596 (((-713) $) 46 (|has| $ (-6 -4255)))))
+(((-1121 |#1| |#2| |#3| |#4|) (-131) (-517) (-735) (-789) (-991 |t#1| |t#2| |t#3|)) (T -1121))
+((-1363 (*1 *2 *1 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-2927 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2936 (-592 *8)))) (-5 *3 (-592 *8)) (-4 *1 (-1121 *5 *6 *7 *8)))) (-2927 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9)) (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2936 (-592 *9)))) (-5 *3 (-592 *9)) (-4 *1 (-1121 *6 *7 *8 *9)))) (-3231 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *6)))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-713)))) (-2520 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-2 (|:| -2849 (-592 *6)) (|:| -2409 (-592 *6)))))) (-4008 (*1 *2 *3 *1) (-12 (-4 *1 (-1121 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-4008 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-4047 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1121 *5 *6 *7 *3)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-108)))) (-2220 (*1 *2 *3 *1) (-12 (-4 *1 (-1121 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-2505 (*1 *2 *3 *1) (-12 (-4 *1 (-1121 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-3134 (*1 *2 *3 *1) (-12 (-4 *1 (-1121 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-4213 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-108) *7 (-592 *7))) (-4 *1 (-1121 *4 *5 *6 *7)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)))) (-2220 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-3134 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))) (-3503 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2)) (-4 *1 (-1121 *5 *6 *7 *2)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *2 (-991 *5 *6 *7)))) (-4032 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1121 *5 *6 *7 *8)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)))) (-1952 (*1 *2 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-3417 (*1 *2 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-3149 (*1 *2 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-2457 (*1 *2 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-1963 (*1 *1 *1) (-12 (-4 *1 (-1121 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-991 *2 *3 *4)))) (-3129 (*1 *2 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1)) (-4 *1 (-1121 *4 *5 *6 *7)))) (-4022 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-592 (-2 (|:| -2849 *1) (|:| -2409 (-592 *7))))) (-5 *3 (-592 *7)) (-4 *1 (-1121 *4 *5 *6 *7)))) (-3110 (*1 *2 *1) (|partial| -12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-1636 (*1 *2 *1) (|partial| -12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-3121 (*1 *1 *1) (|partial| -12 (-4 *1 (-1121 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-991 *2 *3 *4)))) (-3726 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5)))) (-1728 (*1 *2 *3 *1) (-12 (-4 *1 (-1121 *4 *5 *3 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *6 (-991 *4 *5 *3)) (-5 *2 (-108)))) (-3826 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1121 *4 *5 *3 *2)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *3 (-789)) (-4 *2 (-991 *4 *5 *3)))) (-3599 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-2182 (*1 *1 *1 *2) (-12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))) (-1970 (*1 *2 *1) (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *5 (-346)) (-5 *2 (-713)))))
+(-13 (-909 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4255) (-6 -4256) (-15 -1363 ((-108) $ $)) (-15 -2927 ((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |t#4|))) "failed") (-592 |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -2927 ((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |t#4|))) "failed") (-592 |t#4|) (-1 (-108) |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -3231 ((-592 |t#4|) $)) (-15 -1587 ((-713) $)) (-15 -2520 ((-2 (|:| -2849 (-592 |t#4|)) (|:| -2409 (-592 |t#4|))) $)) (-15 -4008 ((-108) |t#4| $)) (-15 -4008 ((-108) $)) (-15 -4047 ((-108) |t#4| $ (-1 (-108) |t#4| |t#4|))) (-15 -2220 ((-108) |t#4| $)) (-15 -2505 ((-108) |t#4| $)) (-15 -3134 ((-108) |t#4| $)) (-15 -4213 ((-108) $ (-1 (-108) |t#4| (-592 |t#4|)))) (-15 -2220 ((-108) $)) (-15 -2505 ((-108) $)) (-15 -3134 ((-108) $)) (-15 -3503 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -4032 ((-592 |t#4|) (-592 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-108) |t#4| |t#4|))) (-15 -1952 (|t#4| |t#4| $)) (-15 -3417 (|t#4| |t#4| $)) (-15 -3149 (|t#4| |t#4| $)) (-15 -2457 (|t#4| |t#4| $)) (-15 -1963 ($ $)) (-15 -3129 (|t#4| |t#4| $)) (-15 -3221 ((-592 $) (-592 |t#4|))) (-15 -4022 ((-592 (-2 (|:| -2849 $) (|:| -2409 (-592 |t#4|)))) (-592 |t#4|))) (-15 -3110 ((-3 |t#4| "failed") $)) (-15 -1636 ((-3 |t#4| "failed") $)) (-15 -3121 ((-3 $ "failed") $)) (-15 -3726 ((-592 |t#3|) $)) (-15 -1728 ((-108) |t#3| $)) (-15 -3826 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3599 ((-3 $ "failed") $ |t#4|)) (-15 -2182 ($ $ |t#4|)) (IF (|has| |t#3| (-346)) (-15 -1970 ((-713) $)) |%noBranch|)))
+(((-33) . T) ((-97) . T) ((-566 (-592 |#4|)) . T) ((-566 (-798)) . T) ((-142 |#4|) . T) ((-567 (-501)) |has| |#4| (-567 (-501))) ((-288 |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-464 |#4|) . T) ((-486 |#4| |#4|) -12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))) ((-909 |#1| |#2| |#3| |#4|) . T) ((-1020) . T) ((-1127) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2383 (((-592 (-1091)) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-2351 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) NIL)) (-2211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2320 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2382 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) NIL T CONST)) (-2571 (($ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-4161 (((-887 |#1|) $ (-713)) 17) (((-887 |#1|) $ (-713) (-713)) NIL)) (-2911 (((-108) $) NIL)) (-1535 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3973 (((-713) $ (-1091)) NIL) (((-713) $ (-1091) (-713)) NIL)) (-1985 (((-108) $) NIL)) (-3220 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1788 (((-108) $) NIL)) (-2352 (($ $ (-592 (-1091)) (-592 (-497 (-1091)))) NIL) (($ $ (-1091) (-497 (-1091))) NIL) (($ |#1| (-497 (-1091))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-1415 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-3451 (((-1074) $) NIL)) (-2650 (($ $ (-1091)) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1091) |#1|) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2012 (((-1038) $) NIL)) (-2843 (($ (-1 $) (-1091) |#1|) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2182 (($ $ (-713)) NIL)) (-1680 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1250 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2602 (($ $ (-1091) $) NIL) (($ $ (-592 (-1091)) (-592 $)) NIL) (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL)) (-2523 (($ $ (-1091)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL)) (-1587 (((-497 (-1091)) $) NIL)) (-2396 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3577 (($ $) NIL)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ $) NIL (|has| |#1| (-517))) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-1091)) NIL) (($ (-887 |#1|)) NIL)) (-3468 ((|#1| $ (-497 (-1091))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL) (((-887 |#1|) $ (-713)) NIL)) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) NIL)) (-2438 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2410 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2687 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) NIL T CONST)) (-2093 (($ $ (-1091)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL)) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1122 |#1|) (-13 (-683 |#1| (-1091)) (-10 -8 (-15 -3468 ((-887 |#1|) $ (-713))) (-15 -1270 ($ (-1091))) (-15 -1270 ($ (-887 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2650 ($ $ (-1091) |#1|)) (-15 -2843 ($ (-1 $) (-1091) |#1|))) |%noBranch|))) (-977)) (T -1122))
+((-3468 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-887 *4)) (-5 *1 (-1122 *4)) (-4 *4 (-977)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1122 *3)) (-4 *3 (-977)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-887 *3)) (-4 *3 (-977)) (-5 *1 (-1122 *3)))) (-2650 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *1 (-1122 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)))) (-2843 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1122 *4))) (-5 *3 (-1091)) (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-977)) (-5 *1 (-1122 *4)))))
+(-13 (-683 |#1| (-1091)) (-10 -8 (-15 -3468 ((-887 |#1|) $ (-713))) (-15 -1270 ($ (-1091))) (-15 -1270 ($ (-887 |#1|))) (IF (|has| |#1| (-37 (-385 (-525)))) (PROGN (-15 -2650 ($ $ (-1091) |#1|)) (-15 -2843 ($ (-1 $) (-1091) |#1|))) |%noBranch|)))
+((-2584 (($ |#1| (-592 (-592 (-878 (-205)))) (-108)) 19)) (-3156 (((-108) $ (-108)) 18)) (-1712 (((-108) $) 17)) (-1701 (((-592 (-592 (-878 (-205)))) $) 13)) (-3162 ((|#1| $) 8)) (-3653 (((-108) $) 15)))
+(((-1123 |#1|) (-10 -8 (-15 -3162 (|#1| $)) (-15 -1701 ((-592 (-592 (-878 (-205)))) $)) (-15 -3653 ((-108) $)) (-15 -1712 ((-108) $)) (-15 -3156 ((-108) $ (-108))) (-15 -2584 ($ |#1| (-592 (-592 (-878 (-205)))) (-108)))) (-907)) (T -1123))
+((-2584 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-108)) (-5 *1 (-1123 *2)) (-4 *2 (-907)))) (-3156 (*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-907)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-907)))) (-3653 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-907)))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-1123 *3)) (-4 *3 (-907)))) (-3162 (*1 *2 *1) (-12 (-5 *1 (-1123 *2)) (-4 *2 (-907)))))
+(-10 -8 (-15 -3162 (|#1| $)) (-15 -1701 ((-592 (-592 (-878 (-205)))) $)) (-15 -3653 ((-108) $)) (-15 -1712 ((-108) $)) (-15 -3156 ((-108) $ (-108))) (-15 -2584 ($ |#1| (-592 (-592 (-878 (-205)))) (-108))))
+((-1606 (((-878 (-205)) (-878 (-205))) 25)) (-2261 (((-878 (-205)) (-205) (-205) (-205) (-205)) 10)) (-2099 (((-592 (-878 (-205))) (-878 (-205)) (-878 (-205)) (-878 (-205)) (-205) (-592 (-592 (-205)))) 37)) (-1809 (((-205) (-878 (-205)) (-878 (-205))) 21)) (-3838 (((-878 (-205)) (-878 (-205)) (-878 (-205))) 22)) (-2165 (((-592 (-592 (-205))) (-525)) 31)) (-4090 (((-878 (-205)) (-878 (-205)) (-878 (-205))) 20)) (-4080 (((-878 (-205)) (-878 (-205)) (-878 (-205))) 19)) (* (((-878 (-205)) (-205) (-878 (-205))) 18)))
+(((-1124) (-10 -7 (-15 -2261 ((-878 (-205)) (-205) (-205) (-205) (-205))) (-15 * ((-878 (-205)) (-205) (-878 (-205)))) (-15 -4080 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -4090 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -1809 ((-205) (-878 (-205)) (-878 (-205)))) (-15 -3838 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -1606 ((-878 (-205)) (-878 (-205)))) (-15 -2165 ((-592 (-592 (-205))) (-525))) (-15 -2099 ((-592 (-878 (-205))) (-878 (-205)) (-878 (-205)) (-878 (-205)) (-205) (-592 (-592 (-205))))))) (T -1124))
+((-2099 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-592 (-592 (-205)))) (-5 *4 (-205)) (-5 *2 (-592 (-878 *4))) (-5 *1 (-1124)) (-5 *3 (-878 *4)))) (-2165 (*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-1124)))) (-1606 (*1 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1124)))) (-3838 (*1 *2 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1124)))) (-1809 (*1 *2 *3 *3) (-12 (-5 *3 (-878 (-205))) (-5 *2 (-205)) (-5 *1 (-1124)))) (-4090 (*1 *2 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1124)))) (-4080 (*1 *2 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1124)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-878 (-205))) (-5 *3 (-205)) (-5 *1 (-1124)))) (-2261 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1124)) (-5 *3 (-205)))))
+(-10 -7 (-15 -2261 ((-878 (-205)) (-205) (-205) (-205) (-205))) (-15 * ((-878 (-205)) (-205) (-878 (-205)))) (-15 -4080 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -4090 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -1809 ((-205) (-878 (-205)) (-878 (-205)))) (-15 -3838 ((-878 (-205)) (-878 (-205)) (-878 (-205)))) (-15 -1606 ((-878 (-205)) (-878 (-205)))) (-15 -2165 ((-592 (-592 (-205))) (-525))) (-15 -2099 ((-592 (-878 (-205))) (-878 (-205)) (-878 (-205)) (-878 (-205)) (-205) (-592 (-592 (-205))))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-3826 ((|#1| $ (-713)) 13)) (-2023 (((-713) $) 12)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-1270 (((-892 |#1|) $) 10) (($ (-892 |#1|)) 9) (((-798) $) 23 (|has| |#1| (-566 (-798))))) (-3994 (((-108) $ $) 16 (|has| |#1| (-1020)))))
+(((-1125 |#1|) (-13 (-566 (-892 |#1|)) (-10 -8 (-15 -1270 ($ (-892 |#1|))) (-15 -3826 (|#1| $ (-713))) (-15 -2023 ((-713) $)) (IF (|has| |#1| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|))) (-1127)) (T -1125))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-892 *3)) (-4 *3 (-1127)) (-5 *1 (-1125 *3)))) (-3826 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-1125 *2)) (-4 *2 (-1127)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1125 *3)) (-4 *3 (-1127)))))
+(-13 (-566 (-892 |#1|)) (-10 -8 (-15 -1270 ($ (-892 |#1|))) (-15 -3826 (|#1| $ (-713))) (-15 -2023 ((-713) $)) (IF (|has| |#1| (-566 (-798))) (-6 (-566 (-798))) |%noBranch|) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|)))
+((-1830 (((-396 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|)) (-525)) 80)) (-2748 (((-396 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|))) 74)) (-2790 (((-396 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|))) 59)))
+(((-1126 |#1|) (-10 -7 (-15 -2748 ((-396 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|)))) (-15 -2790 ((-396 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|)))) (-15 -1830 ((-396 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|)) (-525)))) (-327)) (T -1126))
+((-1830 (*1 *2 *3 *4) (-12 (-5 *4 (-525)) (-4 *5 (-327)) (-5 *2 (-396 (-1087 (-1087 *5)))) (-5 *1 (-1126 *5)) (-5 *3 (-1087 (-1087 *5))))) (-2790 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1087 (-1087 *4)))) (-5 *1 (-1126 *4)) (-5 *3 (-1087 (-1087 *4))))) (-2748 (*1 *2 *3) (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1087 (-1087 *4)))) (-5 *1 (-1126 *4)) (-5 *3 (-1087 (-1087 *4))))))
+(-10 -7 (-15 -2748 ((-396 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|)))) (-15 -2790 ((-396 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|)))) (-15 -1830 ((-396 (-1087 (-1087 |#1|))) (-1087 (-1087 |#1|)) (-525))))
+NIL
+(((-1127) (-131)) (T -1127))
+NIL
+(-13 (-10 -7 (-6 -1332)))
+((-2583 (((-108)) 15)) (-4005 (((-1178) (-592 |#1|) (-592 |#1|)) 19) (((-1178) (-592 |#1|)) 20)) (-2482 (((-108) |#1| |#1|) 32 (|has| |#1| (-789)))) (-2957 (((-108) |#1| |#1| (-1 (-108) |#1| |#1|)) 27) (((-3 (-108) "failed") |#1| |#1|) 25)) (-1953 ((|#1| (-592 |#1|)) 33 (|has| |#1| (-789))) ((|#1| (-592 |#1|) (-1 (-108) |#1| |#1|)) 28)) (-3454 (((-2 (|:| -2913 (-592 |#1|)) (|:| -3716 (-592 |#1|)))) 17)))
+(((-1128 |#1|) (-10 -7 (-15 -4005 ((-1178) (-592 |#1|))) (-15 -4005 ((-1178) (-592 |#1|) (-592 |#1|))) (-15 -3454 ((-2 (|:| -2913 (-592 |#1|)) (|:| -3716 (-592 |#1|))))) (-15 -2957 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2957 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -1953 (|#1| (-592 |#1|) (-1 (-108) |#1| |#1|))) (-15 -2583 ((-108))) (IF (|has| |#1| (-789)) (PROGN (-15 -1953 (|#1| (-592 |#1|))) (-15 -2482 ((-108) |#1| |#1|))) |%noBranch|)) (-1020)) (T -1128))
+((-2482 (*1 *2 *3 *3) (-12 (-5 *2 (-108)) (-5 *1 (-1128 *3)) (-4 *3 (-789)) (-4 *3 (-1020)))) (-1953 (*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-789)) (-5 *1 (-1128 *2)))) (-2583 (*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1128 *3)) (-4 *3 (-1020)))) (-1953 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1128 *2)) (-4 *2 (-1020)))) (-2957 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1020)) (-5 *2 (-108)) (-5 *1 (-1128 *3)))) (-2957 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1128 *3)) (-4 *3 (-1020)))) (-3454 (*1 *2) (-12 (-5 *2 (-2 (|:| -2913 (-592 *3)) (|:| -3716 (-592 *3)))) (-5 *1 (-1128 *3)) (-4 *3 (-1020)))) (-4005 (*1 *2 *3 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-5 *2 (-1178)) (-5 *1 (-1128 *4)))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-5 *2 (-1178)) (-5 *1 (-1128 *4)))))
+(-10 -7 (-15 -4005 ((-1178) (-592 |#1|))) (-15 -4005 ((-1178) (-592 |#1|) (-592 |#1|))) (-15 -3454 ((-2 (|:| -2913 (-592 |#1|)) (|:| -3716 (-592 |#1|))))) (-15 -2957 ((-3 (-108) "failed") |#1| |#1|)) (-15 -2957 ((-108) |#1| |#1| (-1 (-108) |#1| |#1|))) (-15 -1953 (|#1| (-592 |#1|) (-1 (-108) |#1| |#1|))) (-15 -2583 ((-108))) (IF (|has| |#1| (-789)) (PROGN (-15 -1953 (|#1| (-592 |#1|))) (-15 -2482 ((-108) |#1| |#1|))) |%noBranch|))
+((-3204 (((-1178) (-592 (-1091)) (-592 (-1091))) 13) (((-1178) (-592 (-1091))) 11)) (-1439 (((-1178)) 14)) (-2159 (((-2 (|:| -3716 (-592 (-1091))) (|:| -2913 (-592 (-1091))))) 18)))
+(((-1129) (-10 -7 (-15 -3204 ((-1178) (-592 (-1091)))) (-15 -3204 ((-1178) (-592 (-1091)) (-592 (-1091)))) (-15 -2159 ((-2 (|:| -3716 (-592 (-1091))) (|:| -2913 (-592 (-1091)))))) (-15 -1439 ((-1178))))) (T -1129))
+((-1439 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1129)))) (-2159 (*1 *2) (-12 (-5 *2 (-2 (|:| -3716 (-592 (-1091))) (|:| -2913 (-592 (-1091))))) (-5 *1 (-1129)))) (-3204 (*1 *2 *3 *3) (-12 (-5 *3 (-592 (-1091))) (-5 *2 (-1178)) (-5 *1 (-1129)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-592 (-1091))) (-5 *2 (-1178)) (-5 *1 (-1129)))))
+(-10 -7 (-15 -3204 ((-1178) (-592 (-1091)))) (-15 -3204 ((-1178) (-592 (-1091)) (-592 (-1091)))) (-15 -2159 ((-2 (|:| -3716 (-592 (-1091))) (|:| -2913 (-592 (-1091)))))) (-15 -1439 ((-1178))))
+((-3706 (($ $) 17)) (-3836 (((-108) $) 24)))
+(((-1130 |#1|) (-10 -8 (-15 -3706 (|#1| |#1|)) (-15 -3836 ((-108) |#1|))) (-1131)) (T -1130))
+NIL
+(-10 -8 (-15 -3706 (|#1| |#1|)) (-15 -3836 ((-108) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-1342 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 51)) (-2100 (((-396 $) $) 52)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-3836 (((-108) $) 53)) (-1985 (((-108) $) 31)) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-2195 (((-396 $) $) 50)) (-1680 (((-3 $ "failed") $ $) 42)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43)) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) 39)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24)))
+(((-1131) (-131)) (T -1131))
+((-3836 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-108)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1131)))) (-3706 (*1 *1 *1) (-4 *1 (-1131))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1131)))))
+(-13 (-429) (-10 -8 (-15 -3836 ((-108) $)) (-15 -2100 ((-396 $) $)) (-15 -3706 ($ $)) (-15 -2195 ((-396 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-97) . T) ((-107 $ $) . T) ((-126) . T) ((-566 (-798)) . T) ((-160) . T) ((-269) . T) ((-429) . T) ((-517) . T) ((-594 $) . T) ((-660 $) . T) ((-669) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-2694 (((-1137 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1137 |#1| |#3| |#5|)) 23)))
+(((-1132 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2694 ((-1137 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1137 |#1| |#3| |#5|)))) (-977) (-977) (-1091) (-1091) |#1| |#2|) (T -1132))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1137 *5 *7 *9)) (-4 *5 (-977)) (-4 *6 (-977)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1137 *6 *8 *10)) (-5 *1 (-1132 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1091)))))
+(-10 -7 (-15 -2694 ((-1137 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1137 |#1| |#3| |#5|))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2383 (((-592 (-1005)) $) 74)) (-2577 (((-1091) $) 103)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3711 (($ $) 52 (|has| |#1| (-517)))) (-3380 (((-108) $) 54 (|has| |#1| (-517)))) (-3642 (($ $ (-525)) 98) (($ $ (-525) (-525)) 97)) (-4192 (((-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 105)) (-2351 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 162 (|has| |#1| (-341)))) (-2100 (((-396 $) $) 163 (|has| |#1| (-341)))) (-2211 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-3197 (((-108) $ $) 153 (|has| |#1| (-341)))) (-2320 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-2307 (($ (-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 174)) (-2382 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) 17 T CONST)) (-1726 (($ $ $) 157 (|has| |#1| (-341)))) (-2571 (($ $) 60)) (-3762 (((-3 $ "failed") $) 34)) (-2341 (((-385 (-887 |#1|)) $ (-525)) 172 (|has| |#1| (-517))) (((-385 (-887 |#1|)) $ (-525) (-525)) 171 (|has| |#1| (-517)))) (-1704 (($ $ $) 156 (|has| |#1| (-341)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-3836 (((-108) $) 164 (|has| |#1| (-341)))) (-2911 (((-108) $) 73)) (-1535 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-3973 (((-525) $) 100) (((-525) $ (-525)) 99)) (-1985 (((-108) $) 31)) (-3220 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-3073 (($ $ (-856)) 101)) (-2615 (($ (-1 |#1| (-525)) $) 173)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-1788 (((-108) $) 62)) (-2352 (($ |#1| (-525)) 61) (($ $ (-1005) (-525)) 76) (($ $ (-592 (-1005)) (-592 (-525))) 75)) (-2694 (($ (-1 |#1| |#1|) $) 63)) (-1415 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) 65)) (-2548 ((|#1| $) 66)) (-2756 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-3451 (((-1074) $) 9)) (-2502 (($ $) 165 (|has| |#1| (-341)))) (-2650 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1091)) 169 (-3279 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-893)) (|has| |#1| (-1113)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -2383 ((-592 (-1091)) |#1|))) (|has| |#1| (-15 -2650 (|#1| |#1| (-1091)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 150 (|has| |#1| (-341)))) (-2794 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-2195 (((-396 $) $) 161 (|has| |#1| (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 158 (|has| |#1| (-341)))) (-2182 (($ $ (-525)) 95)) (-1680 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-1250 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2602 (((-1072 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-525)))))) (-1290 (((-713) $) 154 (|has| |#1| (-341)))) (-3410 ((|#1| $ (-525)) 104) (($ $ $) 81 (|has| (-525) (-1032)))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 155 (|has| |#1| (-341)))) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) 89 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1091) (-713)) 88 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1091))) 87 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1091)) 86 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-1587 (((-525) $) 64)) (-2396 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-3577 (($ $) 72)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-3468 ((|#1| $ (-525)) 59)) (-3425 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2104 (((-713)) 29)) (-3144 ((|#1| $) 102)) (-2438 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) 53 (|has| |#1| (-517)))) (-2410 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-1369 ((|#1| $ (-525)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1270 (|#1| (-1091))))))) (-2687 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ (-592 (-1091)) (-592 (-713))) 93 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1091) (-713)) 92 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1091))) 91 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-1091)) 90 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-525) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (-3994 (((-108) $ $) 6)) (-4100 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+(((-1133 |#1|) (-131) (-977)) (T -1133))
+((-2307 (*1 *1 *2) (-12 (-5 *2 (-1072 (-2 (|:| |k| (-525)) (|:| |c| *3)))) (-4 *3 (-977)) (-4 *1 (-1133 *3)))) (-2615 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1133 *3)) (-4 *3 (-977)))) (-2341 (*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-1133 *4)) (-4 *4 (-977)) (-4 *4 (-517)) (-5 *2 (-385 (-887 *4))))) (-2341 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-4 *1 (-1133 *4)) (-4 *4 (-977)) (-4 *4 (-517)) (-5 *2 (-385 (-887 *4))))) (-2650 (*1 *1 *1) (-12 (-4 *1 (-1133 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525)))))) (-2650 (*1 *1 *1 *2) (-3279 (-12 (-5 *2 (-1091)) (-4 *1 (-1133 *3)) (-4 *3 (-977)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1113)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1091)) (-4 *1 (-1133 *3)) (-4 *3 (-977)) (-12 (|has| *3 (-15 -2383 ((-592 (-1091)) *3))) (|has| *3 (-15 -2650 (*3 *3 (-1091)))) (-4 *3 (-37 (-385 (-525)))))))))
+(-13 (-1151 |t#1| (-525)) (-10 -8 (-15 -2307 ($ (-1072 (-2 (|:| |k| (-525)) (|:| |c| |t#1|))))) (-15 -2615 ($ (-1 |t#1| (-525)) $)) (IF (|has| |t#1| (-517)) (PROGN (-15 -2341 ((-385 (-887 |t#1|)) $ (-525))) (-15 -2341 ((-385 (-887 |t#1|)) $ (-525) (-525)))) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2650 ($ $)) (IF (|has| |t#1| (-15 -2650 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-15 -2383 ((-592 (-1091)) |t#1|))) (-15 -2650 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1113)) (IF (|has| |t#1| (-893)) (IF (|has| |t#1| (-29 (-525))) (-15 -2650 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-934)) (-6 (-1113))) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-525)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3279 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3279 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-525) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-525) (-1032)) ((-269) -3279 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -3279 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-835 (-1091)) -12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))) ((-906 |#1| #0# (-1005)) . T) ((-855) |has| |#1| (-341)) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-983 #1#) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-983 |#1|) . T) ((-983 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1113) |has| |#1| (-37 (-385 (-525)))) ((-1116) |has| |#1| (-37 (-385 (-525)))) ((-1131) |has| |#1| (-341)) ((-1151 |#1| #0#) . T))
+((-1989 (((-108) $) 12)) (-2591 (((-3 |#3| "failed") $) 17) (((-3 (-1091) "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL)) (-3898 ((|#3| $) 14) (((-1091) $) NIL) (((-385 (-525)) $) NIL) (((-525) $) NIL)))
+(((-1134 |#1| |#2| |#3|) (-10 -8 (-15 -3898 ((-525) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3898 ((-1091) |#1|)) (-15 -2591 ((-3 (-1091) "failed") |#1|)) (-15 -3898 (|#3| |#1|)) (-15 -2591 ((-3 |#3| "failed") |#1|)) (-15 -1989 ((-108) |#1|))) (-1135 |#2| |#3|) (-977) (-1164 |#2|)) (T -1134))
+NIL
+(-10 -8 (-15 -3898 ((-525) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -3898 ((-1091) |#1|)) (-15 -2591 ((-3 (-1091) "failed") |#1|)) (-15 -3898 (|#3| |#1|)) (-15 -2591 ((-3 |#3| "failed") |#1|)) (-15 -1989 ((-108) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2628 ((|#2| $) 231 (-3830 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-2383 (((-592 (-1005)) $) 74)) (-2577 (((-1091) $) 103)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3711 (($ $) 52 (|has| |#1| (-517)))) (-3380 (((-108) $) 54 (|has| |#1| (-517)))) (-3642 (($ $ (-525)) 98) (($ $ (-525) (-525)) 97)) (-4192 (((-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 105)) (-1893 ((|#2| $) 267)) (-3003 (((-3 |#2| "failed") $) 263)) (-2451 ((|#2| $) 264)) (-2351 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) 19)) (-4050 (((-396 (-1087 $)) (-1087 $)) 240 (-3830 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-3706 (($ $) 162 (|has| |#1| (-341)))) (-2100 (((-396 $) $) 163 (|has| |#1| (-341)))) (-2211 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) 237 (-3830 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-3197 (((-108) $ $) 153 (|has| |#1| (-341)))) (-2320 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-1436 (((-525) $) 249 (-3830 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-2307 (($ (-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 174)) (-2382 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) 17 T CONST)) (-2591 (((-3 |#2| "failed") $) 270) (((-3 (-525) "failed") $) 259 (-3830 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) 257 (-3830 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-1091) "failed") $) 242 (-3830 (|has| |#2| (-968 (-1091))) (|has| |#1| (-341))))) (-3898 ((|#2| $) 269) (((-525) $) 260 (-3830 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-385 (-525)) $) 258 (-3830 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-1091) $) 243 (-3830 (|has| |#2| (-968 (-1091))) (|has| |#1| (-341))))) (-1786 (($ $) 266) (($ (-525) $) 265)) (-1726 (($ $ $) 157 (|has| |#1| (-341)))) (-2571 (($ $) 60)) (-3416 (((-632 |#2|) (-632 $)) 221 (|has| |#1| (-341))) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) 220 (|has| |#1| (-341))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 219 (-3830 (|has| |#2| (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) 218 (-3830 (|has| |#2| (-588 (-525))) (|has| |#1| (-341))))) (-3762 (((-3 $ "failed") $) 34)) (-2341 (((-385 (-887 |#1|)) $ (-525)) 172 (|has| |#1| (-517))) (((-385 (-887 |#1|)) $ (-525) (-525)) 171 (|has| |#1| (-517)))) (-2899 (($) 233 (-3830 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-1704 (($ $ $) 156 (|has| |#1| (-341)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-3836 (((-108) $) 164 (|has| |#1| (-341)))) (-3017 (((-108) $) 247 (-3830 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-2911 (((-108) $) 73)) (-1535 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 225 (-3830 (|has| |#2| (-821 (-357))) (|has| |#1| (-341)))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 224 (-3830 (|has| |#2| (-821 (-525))) (|has| |#1| (-341))))) (-3973 (((-525) $) 100) (((-525) $ (-525)) 99)) (-1985 (((-108) $) 31)) (-1931 (($ $) 229 (|has| |#1| (-341)))) (-1498 ((|#2| $) 227 (|has| |#1| (-341)))) (-3220 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-1760 (((-3 $ "failed") $) 261 (-3830 (|has| |#2| (-1067)) (|has| |#1| (-341))))) (-3912 (((-108) $) 248 (-3830 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-3073 (($ $ (-856)) 101)) (-2615 (($ (-1 |#1| (-525)) $) 173)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-1788 (((-108) $) 62)) (-2352 (($ |#1| (-525)) 61) (($ $ (-1005) (-525)) 76) (($ $ (-592 (-1005)) (-592 (-525))) 75)) (-2371 (($ $ $) 251 (-3830 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2535 (($ $ $) 252 (-3830 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2694 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-341)))) (-1415 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) 65)) (-2548 ((|#1| $) 66)) (-2756 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-2465 (($ (-525) |#2|) 268)) (-3451 (((-1074) $) 9)) (-2502 (($ $) 165 (|has| |#1| (-341)))) (-2650 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1091)) 169 (-3279 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-893)) (|has| |#1| (-1113)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -2383 ((-592 (-1091)) |#1|))) (|has| |#1| (-15 -2650 (|#1| |#1| (-1091)))) (|has| |#1| (-37 (-385 (-525)))))))) (-3940 (($) 262 (-3830 (|has| |#2| (-1067)) (|has| |#1| (-341))) CONST)) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 150 (|has| |#1| (-341)))) (-2794 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-3025 (($ $) 232 (-3830 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-2793 ((|#2| $) 235 (-3830 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-1215 (((-396 (-1087 $)) (-1087 $)) 238 (-3830 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-2802 (((-396 (-1087 $)) (-1087 $)) 239 (-3830 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-2195 (((-396 $) $) 161 (|has| |#1| (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 158 (|has| |#1| (-341)))) (-2182 (($ $ (-525)) 95)) (-1680 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-1250 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2602 (((-1072 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1091) |#2|) 212 (-3830 (|has| |#2| (-486 (-1091) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-1091)) (-592 |#2|)) 211 (-3830 (|has| |#2| (-486 (-1091) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-273 |#2|))) 210 (-3830 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-273 |#2|)) 209 (-3830 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ |#2| |#2|) 208 (-3830 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-592 |#2|) (-592 |#2|)) 207 (-3830 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341))))) (-1290 (((-713) $) 154 (|has| |#1| (-341)))) (-3410 ((|#1| $ (-525)) 104) (($ $ $) 81 (|has| (-525) (-1032))) (($ $ |#2|) 206 (-3830 (|has| |#2| (-265 |#2| |#2|)) (|has| |#1| (-341))))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 155 (|has| |#1| (-341)))) (-2523 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) 216 (|has| |#1| (-341))) (($ $ (-713)) 84 (-3279 (-3830 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 82 (-3279 (-3830 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1091)) (-592 (-713))) 89 (-3279 (-3830 (|has| |#2| (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1091) (-713)) 88 (-3279 (-3830 (|has| |#2| (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-592 (-1091))) 87 (-3279 (-3830 (|has| |#2| (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1091)) 86 (-3279 (-3830 (|has| |#2| (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))))) (-2097 (($ $) 230 (|has| |#1| (-341)))) (-1512 ((|#2| $) 228 (|has| |#1| (-341)))) (-1587 (((-525) $) 64)) (-2396 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-2749 (((-205) $) 246 (-3830 (|has| |#2| (-953)) (|has| |#1| (-341)))) (((-357) $) 245 (-3830 (|has| |#2| (-953)) (|has| |#1| (-341)))) (((-501) $) 244 (-3830 (|has| |#2| (-567 (-501))) (|has| |#1| (-341)))) (((-827 (-357)) $) 223 (-3830 (|has| |#2| (-567 (-827 (-357)))) (|has| |#1| (-341)))) (((-827 (-525)) $) 222 (-3830 (|has| |#2| (-567 (-827 (-525)))) (|has| |#1| (-341))))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) 236 (-3830 (-3830 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#1| (-341))))) (-3577 (($ $) 72)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ |#2|) 271) (($ (-1091)) 241 (-3830 (|has| |#2| (-968 (-1091))) (|has| |#1| (-341)))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-3468 ((|#1| $ (-525)) 59)) (-3425 (((-3 $ "failed") $) 48 (-3279 (-3830 (-3279 (|has| |#2| (-136)) (-3830 (|has| $ (-136)) (|has| |#2| (-844)))) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-2104 (((-713)) 29)) (-3144 ((|#1| $) 102)) (-1438 ((|#2| $) 234 (-3830 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-2438 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) 53 (|has| |#1| (-517)))) (-2410 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-1369 ((|#1| $ (-525)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1270 (|#1| (-1091))))))) (-2687 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-2086 (($ $) 250 (-3830 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) 214 (|has| |#1| (-341))) (($ $ (-713)) 85 (-3279 (-3830 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 83 (-3279 (-3830 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1091)) (-592 (-713))) 93 (-3279 (-3830 (|has| |#2| (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1091) (-713)) 92 (-3279 (-3830 (|has| |#2| (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-592 (-1091))) 91 (-3279 (-3830 (|has| |#2| (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))))) (($ $ (-1091)) 90 (-3279 (-3830 (|has| |#2| (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))))) (-4045 (((-108) $ $) 254 (-3830 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-4026 (((-108) $ $) 255 (-3830 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 253 (-3830 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-4017 (((-108) $ $) 256 (-3830 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-4100 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341))) (($ |#2| |#2|) 226 (|has| |#1| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ |#2|) 205 (|has| |#1| (-341))) (($ |#2| $) 204 (|has| |#1| (-341))) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+(((-1135 |#1| |#2|) (-131) (-977) (-1164 |t#1|)) (T -1135))
+((-1587 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1164 *3)) (-5 *2 (-525)))) (-1270 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *1 (-1135 *3 *2)) (-4 *2 (-1164 *3)))) (-2465 (*1 *1 *2 *3) (-12 (-5 *2 (-525)) (-4 *4 (-977)) (-4 *1 (-1135 *4 *3)) (-4 *3 (-1164 *4)))) (-1893 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1164 *3)))) (-1786 (*1 *1 *1) (-12 (-4 *1 (-1135 *2 *3)) (-4 *2 (-977)) (-4 *3 (-1164 *2)))) (-1786 (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-1135 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1164 *3)))) (-2451 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1164 *3)))) (-3003 (*1 *2 *1) (|partial| -12 (-4 *1 (-1135 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1164 *3)))))
+(-13 (-1133 |t#1|) (-968 |t#2|) (-10 -8 (-15 -2465 ($ (-525) |t#2|)) (-15 -1587 ((-525) $)) (-15 -1893 (|t#2| $)) (-15 -1786 ($ $)) (-15 -1786 ($ (-525) $)) (-15 -1270 ($ |t#2|)) (-15 -2451 (|t#2| $)) (-15 -3003 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-341)) (-6 (-925 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-525)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 |#2|) |has| |#1| (-341)) ((-37 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 |#2| |#2|) |has| |#1| (-341)) ((-107 $ $) -3279 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) -3279 (-12 (|has| |#1| (-341)) (|has| |#2| (-136))) (|has| |#1| (-136))) ((-138) -3279 (-12 (|has| |#1| (-341)) (|has| |#2| (-138))) (|has| |#1| (-138))) ((-566 (-798)) . T) ((-160) -3279 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-567 (-205)) -12 (|has| |#1| (-341)) (|has| |#2| (-953))) ((-567 (-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-953))) ((-567 (-501)) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-501)))) ((-567 (-827 (-357))) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-827 (-357))))) ((-567 (-827 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-567 (-827 (-525))))) ((-211 |#2|) |has| |#1| (-341)) ((-213) -3279 (-12 (|has| |#1| (-341)) (|has| |#2| (-213))) (|has| |#1| (-15 * (|#1| (-525) |#1|)))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 |#2| $) -12 (|has| |#1| (-341)) (|has| |#2| (-265 |#2| |#2|))) ((-265 $ $) |has| (-525) (-1032)) ((-269) -3279 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-288 |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-288 |#2|))) ((-341) |has| |#1| (-341)) ((-316 |#2|) |has| |#1| (-341)) ((-355 |#2|) |has| |#1| (-341)) ((-378 |#2|) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-486 (-1091) |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-486 (-1091) |#2|))) ((-486 |#2| |#2|) -12 (|has| |#1| (-341)) (|has| |#2| (-288 |#2|))) ((-517) -3279 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 |#2|) |has| |#1| (-341)) ((-594 $) . T) ((-588 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-588 (-525)))) ((-588 |#2|) |has| |#1| (-341)) ((-660 #1#) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 |#2|) |has| |#1| (-341)) ((-660 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-733) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-734) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-736) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-737) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-762) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-787) -12 (|has| |#1| (-341)) (|has| |#2| (-762))) ((-789) -3279 (-12 (|has| |#1| (-341)) (|has| |#2| (-789))) (-12 (|has| |#1| (-341)) (|has| |#2| (-762)))) ((-835 (-1091)) -3279 (-12 (|has| |#1| (-341)) (|has| |#2| (-835 (-1091)))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091))))) ((-821 (-357)) -12 (|has| |#1| (-341)) (|has| |#2| (-821 (-357)))) ((-821 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-821 (-525)))) ((-819 |#2|) |has| |#1| (-341)) ((-844) -12 (|has| |#1| (-341)) (|has| |#2| (-844))) ((-906 |#1| #0# (-1005)) . T) ((-855) |has| |#1| (-341)) ((-925 |#2|) |has| |#1| (-341)) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-953) -12 (|has| |#1| (-341)) (|has| |#2| (-953))) ((-968 (-385 (-525))) -12 (|has| |#1| (-341)) (|has| |#2| (-968 (-525)))) ((-968 (-525)) -12 (|has| |#1| (-341)) (|has| |#2| (-968 (-525)))) ((-968 (-1091)) -12 (|has| |#1| (-341)) (|has| |#2| (-968 (-1091)))) ((-968 |#2|) . T) ((-983 #1#) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-983 |#1|) . T) ((-983 |#2|) |has| |#1| (-341)) ((-983 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1067) -12 (|has| |#1| (-341)) (|has| |#2| (-1067))) ((-1113) |has| |#1| (-37 (-385 (-525)))) ((-1116) |has| |#1| (-37 (-385 (-525)))) ((-1127) |has| |#1| (-341)) ((-1131) |has| |#1| (-341)) ((-1133 |#1|) . T) ((-1151 |#1| #0#) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 70)) (-2628 ((|#2| $) NIL (-12 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-2383 (((-592 (-1005)) $) NIL)) (-2577 (((-1091) $) 88)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-3642 (($ $ (-525)) 97) (($ $ (-525) (-525)) 99)) (-4192 (((-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) 47)) (-1893 ((|#2| $) 11)) (-3003 (((-3 |#2| "failed") $) 30)) (-2451 ((|#2| $) 31)) (-2351 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-3706 (($ $) NIL (|has| |#1| (-341)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-3197 (((-108) $ $) NIL (|has| |#1| (-341)))) (-2320 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) 164 (|has| |#1| (-37 (-385 (-525)))))) (-1436 (((-525) $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-2307 (($ (-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) 57)) (-2382 (($ $) 196 (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) 172 (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#2| "failed") $) 144) (((-3 (-525) "failed") $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-1091) "failed") $) NIL (-12 (|has| |#2| (-968 (-1091))) (|has| |#1| (-341))))) (-3898 ((|#2| $) 143) (((-525) $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| |#2| (-968 (-525))) (|has| |#1| (-341)))) (((-1091) $) NIL (-12 (|has| |#2| (-968 (-1091))) (|has| |#1| (-341))))) (-1786 (($ $) 61) (($ (-525) $) 24)) (-1726 (($ $ $) NIL (|has| |#1| (-341)))) (-2571 (($ $) NIL)) (-3416 (((-632 |#2|) (-632 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| |#2| (-588 (-525))) (|has| |#1| (-341))))) (-3762 (((-3 $ "failed") $) 77)) (-2341 (((-385 (-887 |#1|)) $ (-525)) 112 (|has| |#1| (-517))) (((-385 (-887 |#1|)) $ (-525) (-525)) 114 (|has| |#1| (-517)))) (-2899 (($) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-1704 (($ $ $) NIL (|has| |#1| (-341)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3836 (((-108) $) NIL (|has| |#1| (-341)))) (-3017 (((-108) $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-2911 (((-108) $) 64)) (-1535 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| |#2| (-821 (-357))) (|has| |#1| (-341)))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| |#2| (-821 (-525))) (|has| |#1| (-341))))) (-3973 (((-525) $) 93) (((-525) $ (-525)) 95)) (-1985 (((-108) $) NIL)) (-1931 (($ $) NIL (|has| |#1| (-341)))) (-1498 ((|#2| $) 151 (|has| |#1| (-341)))) (-3220 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1760 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1067)) (|has| |#1| (-341))))) (-3912 (((-108) $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-3073 (($ $ (-856)) 136)) (-2615 (($ (-1 |#1| (-525)) $) 132)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-525)) 19) (($ $ (-1005) (-525)) NIL) (($ $ (-592 (-1005)) (-592 (-525))) NIL)) (-2371 (($ $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2535 (($ $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-2694 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-341)))) (-1415 (($ $) 162 (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2465 (($ (-525) |#2|) 10)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 145 (|has| |#1| (-341)))) (-2650 (($ $) 214 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1091)) 219 (-3279 (-12 (|has| |#1| (-15 -2650 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -2383 ((-592 (-1091)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1113)))))) (-3940 (($) NIL (-12 (|has| |#2| (-1067)) (|has| |#1| (-341))) CONST)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-341)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3025 (($ $) NIL (-12 (|has| |#2| (-286)) (|has| |#1| (-341))))) (-2793 ((|#2| $) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (-12 (|has| |#2| (-844)) (|has| |#1| (-341))))) (-2195 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-2182 (($ $ (-525)) 126)) (-1680 (((-3 $ "failed") $ $) 116 (|has| |#1| (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1250 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-2602 (((-1072 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1091) |#2|) NIL (-12 (|has| |#2| (-486 (-1091) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-1091)) (-592 |#2|)) NIL (-12 (|has| |#2| (-486 (-1091) |#2|)) (|has| |#1| (-341)))) (($ $ (-592 (-273 |#2|))) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-273 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341)))) (($ $ (-592 |#2|) (-592 |#2|)) NIL (-12 (|has| |#2| (-288 |#2|)) (|has| |#1| (-341))))) (-1290 (((-713) $) NIL (|has| |#1| (-341)))) (-3410 ((|#1| $ (-525)) 91) (($ $ $) 79 (|has| (-525) (-1032))) (($ $ |#2|) NIL (-12 (|has| |#2| (-265 |#2| |#2|)) (|has| |#1| (-341))))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-341)))) (-2523 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-3279 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 137 (-3279 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-3279 (-12 (|has| |#2| (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-1091) (-713)) NIL (-3279 (-12 (|has| |#2| (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-592 (-1091))) NIL (-3279 (-12 (|has| |#2| (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-1091)) 140 (-3279 (-12 (|has| |#2| (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091))))))) (-2097 (($ $) NIL (|has| |#1| (-341)))) (-1512 ((|#2| $) 152 (|has| |#1| (-341)))) (-1587 (((-525) $) 12)) (-2396 (($ $) 198 (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) 174 (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) 170 (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) 166 (|has| |#1| (-37 (-385 (-525)))))) (-2749 (((-205) $) NIL (-12 (|has| |#2| (-953)) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| |#2| (-953)) (|has| |#1| (-341)))) (((-501) $) NIL (-12 (|has| |#2| (-567 (-501))) (|has| |#1| (-341)))) (((-827 (-357)) $) NIL (-12 (|has| |#2| (-567 (-827 (-357)))) (|has| |#1| (-341)))) (((-827 (-525)) $) NIL (-12 (|has| |#2| (-567 (-827 (-525)))) (|has| |#1| (-341))))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844)) (|has| |#1| (-341))))) (-3577 (($ $) 124)) (-1270 (((-798) $) 245) (($ (-525)) 23) (($ |#1|) 21 (|has| |#1| (-160))) (($ |#2|) 20) (($ (-1091)) NIL (-12 (|has| |#2| (-968 (-1091))) (|has| |#1| (-341)))) (($ (-385 (-525))) 155 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-3468 ((|#1| $ (-525)) 74)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#2| (-844)) (|has| |#1| (-341))) (-12 (|has| |#2| (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-2104 (((-713)) 142)) (-3144 ((|#1| $) 90)) (-1438 ((|#2| $) NIL (-12 (|has| |#2| (-510)) (|has| |#1| (-341))))) (-2438 (($ $) 204 (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) 180 (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2410 (($ $) 200 (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) 176 (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) 208 (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) 184 (|has| |#1| (-37 (-385 (-525)))))) (-1369 ((|#1| $ (-525)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1270 (|#1| (-1091))))))) (-2687 (($ $) 210 (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) 186 (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) 206 (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) 182 (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) 202 (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) 178 (|has| |#1| (-37 (-385 (-525)))))) (-2086 (($ $) NIL (-12 (|has| |#2| (-762)) (|has| |#1| (-341))))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3355 (($) 13 T CONST)) (-3363 (($) 17 T CONST)) (-2093 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-341))) (($ $ (-1 |#2| |#2|) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-3279 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-3279 (-12 (|has| |#2| (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-3279 (-12 (|has| |#2| (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-1091) (-713)) NIL (-3279 (-12 (|has| |#2| (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-592 (-1091))) NIL (-3279 (-12 (|has| |#2| (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-1091)) NIL (-3279 (-12 (|has| |#2| (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091))))))) (-4045 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-4026 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-3994 (((-108) $ $) 63)) (-4037 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-4017 (((-108) $ $) NIL (-12 (|has| |#2| (-789)) (|has| |#1| (-341))))) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 149 (|has| |#1| (-341))) (($ |#2| |#2|) 150 (|has| |#1| (-341)))) (-4090 (($ $) 213) (($ $ $) 68)) (-4080 (($ $ $) 66)) (** (($ $ (-856)) NIL) (($ $ (-713)) 73) (($ $ (-525)) 146 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-341))) (($ |#2| $) 147 (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-1136 |#1| |#2|) (-1135 |#1| |#2|) (-977) (-1164 |#1|)) (T -1136))
+NIL
+(-1135 |#1| |#2|)
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2628 (((-1165 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-2383 (((-592 (-1005)) $) NIL)) (-2577 (((-1091) $) 10)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1165 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3711 (($ $) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1165 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3380 (((-108) $) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1165 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3642 (($ $ (-525)) NIL) (($ $ (-525) (-525)) NIL)) (-4192 (((-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|))) $) NIL)) (-1893 (((-1165 |#1| |#2| |#3|) $) NIL)) (-3003 (((-3 (-1165 |#1| |#2| |#3|) "failed") $) NIL)) (-2451 (((-1165 |#1| |#2| |#3|) $) NIL)) (-2351 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) NIL)) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-3706 (($ $) NIL (|has| |#1| (-341)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-3197 (((-108) $ $) NIL (|has| |#1| (-341)))) (-2320 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1436 (((-525) $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-2307 (($ (-1072 (-2 (|:| |k| (-525)) (|:| |c| |#1|)))) NIL)) (-2382 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-1165 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1091) "failed") $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-968 (-1091))) (|has| |#1| (-341)))) (((-3 (-385 (-525)) "failed") $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341)))) (((-3 (-525) "failed") $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))))) (-3898 (((-1165 |#1| |#2| |#3|) $) NIL) (((-1091) $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-968 (-1091))) (|has| |#1| (-341)))) (((-385 (-525)) $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341)))) (((-525) $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))))) (-1786 (($ $) NIL) (($ (-525) $) NIL)) (-1726 (($ $ $) NIL (|has| |#1| (-341)))) (-2571 (($ $) NIL)) (-3416 (((-632 (-1165 |#1| |#2| |#3|)) (-632 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -1484 (-632 (-1165 |#1| |#2| |#3|))) (|:| |vec| (-1173 (-1165 |#1| |#2| |#3|)))) (-632 $) (-1173 $)) NIL (|has| |#1| (-341))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341)))) (((-632 (-525)) (-632 $)) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-588 (-525))) (|has| |#1| (-341))))) (-3762 (((-3 $ "failed") $) NIL)) (-2341 (((-385 (-887 |#1|)) $ (-525)) NIL (|has| |#1| (-517))) (((-385 (-887 |#1|)) $ (-525) (-525)) NIL (|has| |#1| (-517)))) (-2899 (($) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-1704 (($ $ $) NIL (|has| |#1| (-341)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3836 (((-108) $) NIL (|has| |#1| (-341)))) (-3017 (((-108) $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-2911 (((-108) $) NIL)) (-1535 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2317 (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-821 (-525))) (|has| |#1| (-341)))) (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-821 (-357))) (|has| |#1| (-341))))) (-3973 (((-525) $) NIL) (((-525) $ (-525)) NIL)) (-1985 (((-108) $) NIL)) (-1931 (($ $) NIL (|has| |#1| (-341)))) (-1498 (((-1165 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341)))) (-3220 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1760 (((-3 $ "failed") $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-341))))) (-3912 (((-108) $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-3073 (($ $ (-856)) NIL)) (-2615 (($ (-1 |#1| (-525)) $) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-525)) 17) (($ $ (-1005) (-525)) NIL) (($ $ (-592 (-1005)) (-592 (-525))) NIL)) (-2371 (($ $ $) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1165 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2535 (($ $ $) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1165 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1165 |#1| |#2| |#3|) (-1165 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-341)))) (-1415 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2465 (($ (-525) (-1165 |#1| |#2| |#3|)) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL (|has| |#1| (-341)))) (-2650 (($ $) 25 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1091)) NIL (-3279 (-12 (|has| |#1| (-15 -2650 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -2383 ((-592 (-1091)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1113))))) (($ $ (-1169 |#2|)) 26 (|has| |#1| (-37 (-385 (-525)))))) (-3940 (($) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-1067)) (|has| |#1| (-341))) CONST)) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-341)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-3025 (($ $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-286)) (|has| |#1| (-341))))) (-2793 (((-1165 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-2195 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-2182 (($ $ (-525)) NIL)) (-1680 (((-3 $ "failed") $ $) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1165 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1250 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2602 (((-1072 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-525))))) (($ $ (-1091) (-1165 |#1| |#2| |#3|)) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-486 (-1091) (-1165 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1091)) (-592 (-1165 |#1| |#2| |#3|))) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-486 (-1091) (-1165 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-273 (-1165 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-288 (-1165 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-273 (-1165 |#1| |#2| |#3|))) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-288 (-1165 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-1165 |#1| |#2| |#3|) (-1165 |#1| |#2| |#3|)) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-288 (-1165 |#1| |#2| |#3|))) (|has| |#1| (-341)))) (($ $ (-592 (-1165 |#1| |#2| |#3|)) (-592 (-1165 |#1| |#2| |#3|))) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-288 (-1165 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-1290 (((-713) $) NIL (|has| |#1| (-341)))) (-3410 ((|#1| $ (-525)) NIL) (($ $ $) NIL (|has| (-525) (-1032))) (($ $ (-1165 |#1| |#2| |#3|)) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-265 (-1165 |#1| |#2| |#3|) (-1165 |#1| |#2| |#3|))) (|has| |#1| (-341))))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-341)))) (-2523 (($ $ (-1 (-1165 |#1| |#2| |#3|) (-1165 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1165 |#1| |#2| |#3|) (-1165 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-1169 |#2|)) 24) (($ $ (-713)) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) 23 (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-1091) (-713)) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-592 (-1091))) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-1091)) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091))))))) (-2097 (($ $) NIL (|has| |#1| (-341)))) (-1512 (((-1165 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341)))) (-1587 (((-525) $) NIL)) (-2396 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2749 (((-501) $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-567 (-501))) (|has| |#1| (-341)))) (((-357) $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-953)) (|has| |#1| (-341)))) (((-205) $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-953)) (|has| |#1| (-341)))) (((-827 (-357)) $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-567 (-827 (-357)))) (|has| |#1| (-341)))) (((-827 (-525)) $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-567 (-827 (-525)))) (|has| |#1| (-341))))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| (-1165 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))))) (-3577 (($ $) NIL)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1165 |#1| |#2| |#3|)) NIL) (($ (-1169 |#2|)) 22) (($ (-1091)) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-968 (-1091))) (|has| |#1| (-341)))) (($ $) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1165 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517)))) (($ (-385 (-525))) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-968 (-525))) (|has| |#1| (-341))) (|has| |#1| (-37 (-385 (-525))))))) (-3468 ((|#1| $ (-525)) NIL)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| (-1165 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (-12 (|has| (-1165 |#1| |#2| |#3|) (-136)) (|has| |#1| (-341))) (|has| |#1| (-136))))) (-2104 (((-713)) NIL)) (-3144 ((|#1| $) 11)) (-1438 (((-1165 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-510)) (|has| |#1| (-341))))) (-2438 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1165 |#1| |#2| |#3|) (-844)) (|has| |#1| (-341))) (|has| |#1| (-517))))) (-2410 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1369 ((|#1| $ (-525)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-525)))) (|has| |#1| (-15 -1270 (|#1| (-1091))))))) (-2687 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2086 (($ $) NIL (-12 (|has| (-1165 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3355 (($) 19 T CONST)) (-3363 (($) 15 T CONST)) (-2093 (($ $ (-1 (-1165 |#1| |#2| |#3|) (-1165 |#1| |#2| |#3|))) NIL (|has| |#1| (-341))) (($ $ (-1 (-1165 |#1| |#2| |#3|) (-1165 |#1| |#2| |#3|)) (-713)) NIL (|has| |#1| (-341))) (($ $ (-713)) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-213)) (|has| |#1| (-341))) (|has| |#1| (-15 * (|#1| (-525) |#1|))))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-1091) (-713)) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-592 (-1091))) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091)))))) (($ $ (-1091)) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-835 (-1091))) (|has| |#1| (-341))) (-12 (|has| |#1| (-15 * (|#1| (-525) |#1|))) (|has| |#1| (-835 (-1091))))))) (-4045 (((-108) $ $) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1165 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-4026 (((-108) $ $) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1165 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1165 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-4017 (((-108) $ $) NIL (-3279 (-12 (|has| (-1165 |#1| |#2| |#3|) (-762)) (|has| |#1| (-341))) (-12 (|has| (-1165 |#1| |#2| |#3|) (-789)) (|has| |#1| (-341)))))) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341))) (($ (-1165 |#1| |#2| |#3|) (-1165 |#1| |#2| |#3|)) NIL (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) 20)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1165 |#1| |#2| |#3|)) NIL (|has| |#1| (-341))) (($ (-1165 |#1| |#2| |#3|) $) NIL (|has| |#1| (-341))) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-1137 |#1| |#2| |#3|) (-13 (-1135 |#1| (-1165 |#1| |#2| |#3|)) (-10 -8 (-15 -1270 ($ (-1169 |#2|))) (-15 -2523 ($ $ (-1169 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2650 ($ $ (-1169 |#2|))) |%noBranch|))) (-977) (-1091) |#1|) (T -1137))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1137 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1137 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2650 (*1 *1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1137 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
+(-13 (-1135 |#1| (-1165 |#1| |#2| |#3|)) (-10 -8 (-15 -1270 ($ (-1169 |#2|))) (-15 -2523 ($ $ (-1169 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2650 ($ $ (-1169 |#2|))) |%noBranch|)))
+((-2997 (((-2 (|:| |contp| (-525)) (|:| -1494 (-592 (-2 (|:| |irr| |#1|) (|:| -1623 (-525)))))) |#1| (-108)) 12)) (-3024 (((-396 |#1|) |#1|) 22)) (-2195 (((-396 |#1|) |#1|) 21)))
+(((-1138 |#1|) (-10 -7 (-15 -2195 ((-396 |#1|) |#1|)) (-15 -3024 ((-396 |#1|) |#1|)) (-15 -2997 ((-2 (|:| |contp| (-525)) (|:| -1494 (-592 (-2 (|:| |irr| |#1|) (|:| -1623 (-525)))))) |#1| (-108)))) (-1149 (-525))) (T -1138))
+((-2997 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-5 *2 (-2 (|:| |contp| (-525)) (|:| -1494 (-592 (-2 (|:| |irr| *3) (|:| -1623 (-525))))))) (-5 *1 (-1138 *3)) (-4 *3 (-1149 (-525))))) (-3024 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-1138 *3)) (-4 *3 (-1149 (-525))))) (-2195 (*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-1138 *3)) (-4 *3 (-1149 (-525))))))
+(-10 -7 (-15 -2195 ((-396 |#1|) |#1|)) (-15 -3024 ((-396 |#1|) |#1|)) (-15 -2997 ((-2 (|:| |contp| (-525)) (|:| -1494 (-592 (-2 (|:| |irr| |#1|) (|:| -1623 (-525)))))) |#1| (-108))))
+((-2694 (((-1072 |#2|) (-1 |#2| |#1|) (-1140 |#1|)) 23 (|has| |#1| (-787))) (((-1140 |#2|) (-1 |#2| |#1|) (-1140 |#1|)) 17)))
+(((-1139 |#1| |#2|) (-10 -7 (-15 -2694 ((-1140 |#2|) (-1 |#2| |#1|) (-1140 |#1|))) (IF (|has| |#1| (-787)) (-15 -2694 ((-1072 |#2|) (-1 |#2| |#1|) (-1140 |#1|))) |%noBranch|)) (-1127) (-1127)) (T -1139))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5)) (-4 *5 (-787)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1072 *6)) (-5 *1 (-1139 *5 *6)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1140 *6)) (-5 *1 (-1139 *5 *6)))))
+(-10 -7 (-15 -2694 ((-1140 |#2|) (-1 |#2| |#1|) (-1140 |#1|))) (IF (|has| |#1| (-787)) (-15 -2694 ((-1072 |#2|) (-1 |#2| |#1|) (-1140 |#1|))) |%noBranch|))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2959 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-2694 (((-1072 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-787)))) (-2913 ((|#1| $) 14)) (-3606 ((|#1| $) 10)) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-3619 (((-525) $) 18)) (-3716 ((|#1| $) 17)) (-3631 ((|#1| $) 11)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-4191 (((-108) $) 16)) (-3788 (((-1072 |#1|) $) 38 (|has| |#1| (-787))) (((-1072 |#1|) (-592 $)) 37 (|has| |#1| (-787)))) (-2749 (($ |#1|) 25)) (-1270 (($ (-1015 |#1|)) 24) (((-798) $) 34 (|has| |#1| (-1020)))) (-2728 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-3771 (($ $ (-525)) 13)) (-3994 (((-108) $ $) 27 (|has| |#1| (-1020)))))
+(((-1140 |#1|) (-13 (-1014 |#1|) (-10 -8 (-15 -2728 ($ |#1|)) (-15 -2959 ($ |#1|)) (-15 -1270 ($ (-1015 |#1|))) (-15 -4191 ((-108) $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1016 |#1| (-1072 |#1|))) |%noBranch|))) (-1127)) (T -1140))
+((-2728 (*1 *1 *2) (-12 (-5 *1 (-1140 *2)) (-4 *2 (-1127)))) (-2959 (*1 *1 *2) (-12 (-5 *1 (-1140 *2)) (-4 *2 (-1127)))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1015 *3)) (-4 *3 (-1127)) (-5 *1 (-1140 *3)))) (-4191 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1140 *3)) (-4 *3 (-1127)))))
+(-13 (-1014 |#1|) (-10 -8 (-15 -2728 ($ |#1|)) (-15 -2959 ($ |#1|)) (-15 -1270 ($ (-1015 |#1|))) (-15 -4191 ((-108) $)) (IF (|has| |#1| (-1020)) (-6 (-1020)) |%noBranch|) (IF (|has| |#1| (-787)) (-6 (-1016 |#1| (-1072 |#1|))) |%noBranch|)))
+((-2694 (((-1146 |#3| |#4|) (-1 |#4| |#2|) (-1146 |#1| |#2|)) 15)))
+(((-1141 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2694 ((-1146 |#3| |#4|) (-1 |#4| |#2|) (-1146 |#1| |#2|)))) (-1091) (-977) (-1091) (-977)) (T -1141))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1146 *5 *6)) (-14 *5 (-1091)) (-4 *6 (-977)) (-4 *8 (-977)) (-5 *2 (-1146 *7 *8)) (-5 *1 (-1141 *5 *6 *7 *8)) (-14 *7 (-1091)))))
+(-10 -7 (-15 -2694 ((-1146 |#3| |#4|) (-1 |#4| |#2|) (-1146 |#1| |#2|))))
+((-3722 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2987 ((|#1| |#3|) 13)) (-3384 ((|#3| |#3|) 19)))
+(((-1142 |#1| |#2| |#3|) (-10 -7 (-15 -2987 (|#1| |#3|)) (-15 -3384 (|#3| |#3|)) (-15 -3722 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-517) (-925 |#1|) (-1149 |#2|)) (T -1142))
+((-3722 (*1 *2 *3) (-12 (-4 *4 (-517)) (-4 *5 (-925 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1142 *4 *5 *3)) (-4 *3 (-1149 *5)))) (-3384 (*1 *2 *2) (-12 (-4 *3 (-517)) (-4 *4 (-925 *3)) (-5 *1 (-1142 *3 *4 *2)) (-4 *2 (-1149 *4)))) (-2987 (*1 *2 *3) (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-1142 *2 *4 *3)) (-4 *3 (-1149 *4)))))
+(-10 -7 (-15 -2987 (|#1| |#3|)) (-15 -3384 (|#3| |#3|)) (-15 -3722 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3413 (((-3 |#2| "failed") |#2| (-713) |#1|) 29)) (-2234 (((-3 |#2| "failed") |#2| (-713)) 30)) (-2027 (((-3 (-2 (|:| -3593 |#2|) (|:| -3602 |#2|)) "failed") |#2|) 43)) (-2114 (((-592 |#2|) |#2|) 45)) (-1651 (((-3 |#2| "failed") |#2| |#2|) 40)))
+(((-1143 |#1| |#2|) (-10 -7 (-15 -2234 ((-3 |#2| "failed") |#2| (-713))) (-15 -3413 ((-3 |#2| "failed") |#2| (-713) |#1|)) (-15 -1651 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2027 ((-3 (-2 (|:| -3593 |#2|) (|:| -3602 |#2|)) "failed") |#2|)) (-15 -2114 ((-592 |#2|) |#2|))) (-13 (-517) (-138)) (-1149 |#1|)) (T -1143))
+((-2114 (*1 *2 *3) (-12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-592 *3)) (-5 *1 (-1143 *4 *3)) (-4 *3 (-1149 *4)))) (-2027 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-2 (|:| -3593 *3) (|:| -3602 *3))) (-5 *1 (-1143 *4 *3)) (-4 *3 (-1149 *4)))) (-1651 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1143 *3 *2)) (-4 *2 (-1149 *3)))) (-3413 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1143 *4 *2)) (-4 *2 (-1149 *4)))) (-2234 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-1143 *4 *2)) (-4 *2 (-1149 *4)))))
+(-10 -7 (-15 -2234 ((-3 |#2| "failed") |#2| (-713))) (-15 -3413 ((-3 |#2| "failed") |#2| (-713) |#1|)) (-15 -1651 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2027 ((-3 (-2 (|:| -3593 |#2|) (|:| -3602 |#2|)) "failed") |#2|)) (-15 -2114 ((-592 |#2|) |#2|)))
+((-3296 (((-3 (-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) "failed") |#2| |#2|) 32)))
+(((-1144 |#1| |#2|) (-10 -7 (-15 -3296 ((-3 (-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) "failed") |#2| |#2|))) (-517) (-1149 |#1|)) (T -1144))
+((-3296 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3))) (-5 *1 (-1144 *4 *3)) (-4 *3 (-1149 *4)))))
+(-10 -7 (-15 -3296 ((-3 (-2 (|:| -2370 |#2|) (|:| -3496 |#2|)) "failed") |#2| |#2|)))
+((-3632 ((|#2| |#2| |#2|) 19)) (-4220 ((|#2| |#2| |#2|) 30)) (-2025 ((|#2| |#2| |#2| (-713) (-713)) 36)))
+(((-1145 |#1| |#2|) (-10 -7 (-15 -3632 (|#2| |#2| |#2|)) (-15 -4220 (|#2| |#2| |#2|)) (-15 -2025 (|#2| |#2| |#2| (-713) (-713)))) (-977) (-1149 |#1|)) (T -1145))
+((-2025 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-713)) (-4 *4 (-977)) (-5 *1 (-1145 *4 *2)) (-4 *2 (-1149 *4)))) (-4220 (*1 *2 *2 *2) (-12 (-4 *3 (-977)) (-5 *1 (-1145 *3 *2)) (-4 *2 (-1149 *3)))) (-3632 (*1 *2 *2 *2) (-12 (-4 *3 (-977)) (-5 *1 (-1145 *3 *2)) (-4 *2 (-1149 *3)))))
+(-10 -7 (-15 -3632 (|#2| |#2| |#2|)) (-15 -4220 (|#2| |#2| |#2|)) (-15 -2025 (|#2| |#2| |#2| (-713) (-713))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2122 (((-1173 |#2|) $ (-713)) NIL)) (-2383 (((-592 (-1005)) $) NIL)) (-2612 (($ (-1087 |#2|)) NIL)) (-2146 (((-1087 $) $ (-1005)) NIL) (((-1087 |#2|) $) NIL)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#2| (-517)))) (-3711 (($ $) NIL (|has| |#2| (-517)))) (-3380 (((-108) $) NIL (|has| |#2| (-517)))) (-3848 (((-713) $) NIL) (((-713) $ (-592 (-1005))) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-1798 (($ $ $) NIL (|has| |#2| (-517)))) (-4050 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-3706 (($ $) NIL (|has| |#2| (-429)))) (-2100 (((-396 $) $) NIL (|has| |#2| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-3197 (((-108) $ $) NIL (|has| |#2| (-341)))) (-3626 (($ $ (-713)) NIL)) (-1807 (($ $ (-713)) NIL)) (-3787 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-429)))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#2| "failed") $) NIL) (((-3 (-385 (-525)) "failed") $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) NIL (|has| |#2| (-968 (-525)))) (((-3 (-1005) "failed") $) NIL)) (-3898 ((|#2| $) NIL) (((-385 (-525)) $) NIL (|has| |#2| (-968 (-385 (-525))))) (((-525) $) NIL (|has| |#2| (-968 (-525)))) (((-1005) $) NIL)) (-1516 (($ $ $ (-1005)) NIL (|has| |#2| (-160))) ((|#2| $ $) NIL (|has| |#2| (-160)))) (-1726 (($ $ $) NIL (|has| |#2| (-341)))) (-2571 (($ $) NIL)) (-3416 (((-632 (-525)) (-632 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) NIL (|has| |#2| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#2|)) (|:| |vec| (-1173 |#2|))) (-632 $) (-1173 $)) NIL) (((-632 |#2|) (-632 $)) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-1704 (($ $ $) NIL (|has| |#2| (-341)))) (-1570 (($ $ $) NIL)) (-3546 (($ $ $) NIL (|has| |#2| (-517)))) (-3886 (((-2 (|:| -1655 |#2|) (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#2| (-517)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| |#2| (-341)))) (-3026 (($ $) NIL (|has| |#2| (-429))) (($ $ (-1005)) NIL (|has| |#2| (-429)))) (-2558 (((-592 $) $) NIL)) (-3836 (((-108) $) NIL (|has| |#2| (-844)))) (-2192 (($ $ |#2| (-713) $) NIL)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) NIL (-12 (|has| (-1005) (-821 (-357))) (|has| |#2| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) NIL (-12 (|has| (-1005) (-821 (-525))) (|has| |#2| (-821 (-525)))))) (-3973 (((-713) $ $) NIL (|has| |#2| (-517)))) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) NIL)) (-1760 (((-3 $ "failed") $) NIL (|has| |#2| (-1067)))) (-2368 (($ (-1087 |#2|) (-1005)) NIL) (($ (-1087 $) (-1005)) NIL)) (-3073 (($ $ (-713)) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) NIL)) (-2352 (($ |#2| (-713)) 17) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ (-1005)) NIL) (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL)) (-3724 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-2371 (($ $ $) NIL (|has| |#2| (-789)))) (-2535 (($ $ $) NIL (|has| |#2| (-789)))) (-3922 (($ (-1 (-713) (-713)) $) NIL)) (-2694 (($ (-1 |#2| |#2|) $) NIL)) (-1263 (((-1087 |#2|) $) NIL)) (-3567 (((-3 (-1005) "failed") $) NIL)) (-2538 (($ $) NIL)) (-2548 ((|#2| $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3451 (((-1074) $) NIL)) (-2799 (((-2 (|:| -2370 $) (|:| -3496 $)) $ (-713)) NIL)) (-4228 (((-3 (-592 $) "failed") $) NIL)) (-3852 (((-3 (-592 $) "failed") $) NIL)) (-1553 (((-3 (-2 (|:| |var| (-1005)) (|:| -1864 (-713))) "failed") $) NIL)) (-2650 (($ $) NIL (|has| |#2| (-37 (-385 (-525)))))) (-3940 (($) NIL (|has| |#2| (-1067)) CONST)) (-2012 (((-1038) $) NIL)) (-2513 (((-108) $) NIL)) (-2525 ((|#2| $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#2| (-429)))) (-2794 (($ (-592 $)) NIL (|has| |#2| (-429))) (($ $ $) NIL (|has| |#2| (-429)))) (-3485 (($ $ (-713) |#2| $) NIL)) (-1215 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) NIL (|has| |#2| (-844)))) (-2195 (((-396 $) $) NIL (|has| |#2| (-844)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#2| (-341)))) (-1680 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-517))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#2| (-341)))) (-2602 (($ $ (-592 (-273 $))) NIL) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1005) |#2|) NIL) (($ $ (-592 (-1005)) (-592 |#2|)) NIL) (($ $ (-1005) $) NIL) (($ $ (-592 (-1005)) (-592 $)) NIL)) (-1290 (((-713) $) NIL (|has| |#2| (-341)))) (-3410 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) NIL (|has| |#2| (-517))) ((|#2| (-385 $) |#2|) NIL (|has| |#2| (-341))) (((-385 $) $ (-385 $)) NIL (|has| |#2| (-517)))) (-1782 (((-3 $ "failed") $ (-713)) NIL)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#2| (-341)))) (-2094 (($ $ (-1005)) NIL (|has| |#2| (-160))) ((|#2| $) NIL (|has| |#2| (-160)))) (-2523 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1091)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-1587 (((-713) $) NIL) (((-713) $ (-1005)) NIL) (((-592 (-713)) $ (-592 (-1005))) NIL)) (-2749 (((-827 (-357)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#2| (-567 (-827 (-357)))))) (((-827 (-525)) $) NIL (-12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#2| (-567 (-827 (-525)))))) (((-501) $) NIL (-12 (|has| (-1005) (-567 (-501))) (|has| |#2| (-567 (-501)))))) (-2026 ((|#2| $) NIL (|has| |#2| (-429))) (($ $ (-1005)) NIL (|has| |#2| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) NIL (-12 (|has| $ (-136)) (|has| |#2| (-844))))) (-3682 (((-3 $ "failed") $ $) NIL (|has| |#2| (-517))) (((-3 (-385 $) "failed") (-385 $) $) NIL (|has| |#2| (-517)))) (-1270 (((-798) $) 13) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-1005)) NIL) (($ (-1169 |#1|)) 19) (($ (-385 (-525))) NIL (-3279 (|has| |#2| (-37 (-385 (-525)))) (|has| |#2| (-968 (-385 (-525)))))) (($ $) NIL (|has| |#2| (-517)))) (-1562 (((-592 |#2|) $) NIL)) (-3468 ((|#2| $ (-713)) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-3425 (((-3 $ "failed") $) NIL (-3279 (-12 (|has| $ (-136)) (|has| |#2| (-844))) (|has| |#2| (-136))))) (-2104 (((-713)) NIL)) (-3658 (($ $ $ (-713)) NIL (|has| |#2| (-160)))) (-3959 (((-108) $ $) NIL (|has| |#2| (-517)))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3363 (($) 14 T CONST)) (-2093 (($ $ (-1005)) NIL) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) NIL) (($ $ (-1091)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-592 (-1091))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1091) (-713)) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) NIL (|has| |#2| (-835 (-1091)))) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4045 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#2| (-789)))) (-3994 (((-108) $ $) NIL)) (-4037 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#2| (-789)))) (-4100 (($ $ |#2|) NIL (|has| |#2| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-385 (-525))) NIL (|has| |#2| (-37 (-385 (-525))))) (($ (-385 (-525)) $) NIL (|has| |#2| (-37 (-385 (-525))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1146 |#1| |#2|) (-13 (-1149 |#2|) (-10 -8 (-15 -1270 ($ (-1169 |#1|))) (-15 -3485 ($ $ (-713) |#2| $)))) (-1091) (-977)) (T -1146))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1169 *3)) (-14 *3 (-1091)) (-5 *1 (-1146 *3 *4)) (-4 *4 (-977)))) (-3485 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1146 *4 *3)) (-14 *4 (-1091)) (-4 *3 (-977)))))
+(-13 (-1149 |#2|) (-10 -8 (-15 -1270 ($ (-1169 |#1|))) (-15 -3485 ($ $ (-713) |#2| $))))
+((-2694 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1147 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2694 (|#4| (-1 |#3| |#1|) |#2|))) (-977) (-1149 |#1|) (-977) (-1149 |#3|)) (T -1147))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-4 *2 (-1149 *6)) (-5 *1 (-1147 *5 *4 *6 *2)) (-4 *4 (-1149 *5)))))
+(-10 -7 (-15 -2694 (|#4| (-1 |#3| |#1|) |#2|)))
+((-2122 (((-1173 |#2|) $ (-713)) 114)) (-2383 (((-592 (-1005)) $) 15)) (-2612 (($ (-1087 |#2|)) 67)) (-3848 (((-713) $) NIL) (((-713) $ (-592 (-1005))) 18)) (-4050 (((-396 (-1087 $)) (-1087 $)) 185)) (-3706 (($ $) 175)) (-2100 (((-396 $) $) 173)) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) 82)) (-3626 (($ $ (-713)) 71)) (-1807 (($ $ (-713)) 73)) (-3787 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-2591 (((-3 |#2| "failed") $) 117) (((-3 (-385 (-525)) "failed") $) NIL) (((-3 (-525) "failed") $) NIL) (((-3 (-1005) "failed") $) NIL)) (-3898 ((|#2| $) 115) (((-385 (-525)) $) NIL) (((-525) $) NIL) (((-1005) $) NIL)) (-3546 (($ $ $) 151)) (-3886 (((-2 (|:| -1655 |#2|) (|:| -2370 $) (|:| -3496 $)) $ $) 153)) (-3973 (((-713) $ $) 170)) (-1760 (((-3 $ "failed") $) 123)) (-2352 (($ |#2| (-713)) NIL) (($ $ (-1005) (-713)) 47) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-3724 (((-713) $) NIL) (((-713) $ (-1005)) 42) (((-592 (-713)) $ (-592 (-1005))) 43)) (-1263 (((-1087 |#2|) $) 59)) (-3567 (((-3 (-1005) "failed") $) 40)) (-2799 (((-2 (|:| -2370 $) (|:| -3496 $)) $ (-713)) 70)) (-2650 (($ $) 197)) (-3940 (($) 119)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 182)) (-1215 (((-396 (-1087 $)) (-1087 $)) 88)) (-2802 (((-396 (-1087 $)) (-1087 $)) 86)) (-2195 (((-396 $) $) 107)) (-2602 (($ $ (-592 (-273 $))) 39) (($ $ (-273 $)) NIL) (($ $ $ $) NIL) (($ $ (-592 $) (-592 $)) NIL) (($ $ (-1005) |#2|) 31) (($ $ (-592 (-1005)) (-592 |#2|)) 28) (($ $ (-1005) $) 25) (($ $ (-592 (-1005)) (-592 $)) 23)) (-1290 (((-713) $) 188)) (-3410 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-385 $) (-385 $) (-385 $)) 147) ((|#2| (-385 $) |#2|) 187) (((-385 $) $ (-385 $)) 169)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 191)) (-2523 (($ $ (-1005)) 140) (($ $ (-592 (-1005))) NIL) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL) (($ $ (-713)) NIL) (($ $) 138) (($ $ (-1091)) NIL) (($ $ (-592 (-1091))) NIL) (($ $ (-1091) (-713)) NIL) (($ $ (-592 (-1091)) (-592 (-713))) NIL) (($ $ (-1 |#2| |#2|) (-713)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-1587 (((-713) $) NIL) (((-713) $ (-1005)) 16) (((-592 (-713)) $ (-592 (-1005))) 20)) (-2026 ((|#2| $) NIL) (($ $ (-1005)) 125)) (-3682 (((-3 $ "failed") $ $) 161) (((-3 (-385 $) "failed") (-385 $) $) 157)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#2|) NIL) (($ (-1005)) 51) (($ (-385 (-525))) NIL) (($ $) NIL)))
+(((-1148 |#1| |#2|) (-10 -8 (-15 -1270 (|#1| |#1|)) (-15 -1534 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|))) (-15 -2100 ((-396 |#1|) |#1|)) (-15 -3706 (|#1| |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -3940 (|#1|)) (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -3410 ((-385 |#1|) |#1| (-385 |#1|))) (-15 -1290 ((-713) |#1|)) (-15 -1496 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|)) (-15 -2650 (|#1| |#1|)) (-15 -3410 (|#2| (-385 |#1|) |#2|)) (-15 -3787 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3886 ((-2 (|:| -1655 |#2|) (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|)) (-15 -3546 (|#1| |#1| |#1|)) (-15 -3682 ((-3 (-385 |#1|) "failed") (-385 |#1|) |#1|)) (-15 -3682 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3973 ((-713) |#1| |#1|)) (-15 -3410 ((-385 |#1|) (-385 |#1|) (-385 |#1|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1807 (|#1| |#1| (-713))) (-15 -3626 (|#1| |#1| (-713))) (-15 -2799 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| (-713))) (-15 -2612 (|#1| (-1087 |#2|))) (-15 -1263 ((-1087 |#2|) |#1|)) (-15 -2122 ((-1173 |#2|) |#1| (-713))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -3410 (|#1| |#1| |#1|)) (-15 -3410 (|#2| |#1| |#2|)) (-15 -2195 ((-396 |#1|) |#1|)) (-15 -4050 ((-396 (-1087 |#1|)) (-1087 |#1|))) (-15 -2802 ((-396 (-1087 |#1|)) (-1087 |#1|))) (-15 -1215 ((-396 (-1087 |#1|)) (-1087 |#1|))) (-15 -3259 ((-3 (-592 (-1087 |#1|)) "failed") (-592 (-1087 |#1|)) (-1087 |#1|))) (-15 -2026 (|#1| |#1| (-1005))) (-15 -2383 ((-592 (-1005)) |#1|)) (-15 -3848 ((-713) |#1| (-592 (-1005)))) (-15 -3848 ((-713) |#1|)) (-15 -2352 (|#1| |#1| (-592 (-1005)) (-592 (-713)))) (-15 -2352 (|#1| |#1| (-1005) (-713))) (-15 -3724 ((-592 (-713)) |#1| (-592 (-1005)))) (-15 -3724 ((-713) |#1| (-1005))) (-15 -3567 ((-3 (-1005) "failed") |#1|)) (-15 -1587 ((-592 (-713)) |#1| (-592 (-1005)))) (-15 -1587 ((-713) |#1| (-1005))) (-15 -3898 ((-1005) |#1|)) (-15 -2591 ((-3 (-1005) "failed") |#1|)) (-15 -1270 (|#1| (-1005))) (-15 -2602 (|#1| |#1| (-592 (-1005)) (-592 |#1|))) (-15 -2602 (|#1| |#1| (-1005) |#1|)) (-15 -2602 (|#1| |#1| (-592 (-1005)) (-592 |#2|))) (-15 -2602 (|#1| |#1| (-1005) |#2|)) (-15 -2602 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2602 (|#1| |#1| |#1| |#1|)) (-15 -2602 (|#1| |#1| (-273 |#1|))) (-15 -2602 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1587 ((-713) |#1|)) (-15 -2352 (|#1| |#2| (-713))) (-15 -3898 ((-525) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1270 (|#1| |#2|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -3898 (|#2| |#1|)) (-15 -3724 ((-713) |#1|)) (-15 -2026 (|#2| |#1|)) (-15 -2523 (|#1| |#1| (-592 (-1005)) (-592 (-713)))) (-15 -2523 (|#1| |#1| (-1005) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1005)))) (-15 -2523 (|#1| |#1| (-1005))) (-15 -1270 (|#1| (-525))) (-15 -1270 ((-798) |#1|))) (-1149 |#2|) (-977)) (T -1148))
+NIL
+(-10 -8 (-15 -1270 (|#1| |#1|)) (-15 -1534 ((-1087 |#1|) (-1087 |#1|) (-1087 |#1|))) (-15 -2100 ((-396 |#1|) |#1|)) (-15 -3706 (|#1| |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -3940 (|#1|)) (-15 -1760 ((-3 |#1| "failed") |#1|)) (-15 -3410 ((-385 |#1|) |#1| (-385 |#1|))) (-15 -1290 ((-713) |#1|)) (-15 -1496 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|)) (-15 -2650 (|#1| |#1|)) (-15 -3410 (|#2| (-385 |#1|) |#2|)) (-15 -3787 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3886 ((-2 (|:| -1655 |#2|) (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| |#1|)) (-15 -3546 (|#1| |#1| |#1|)) (-15 -3682 ((-3 (-385 |#1|) "failed") (-385 |#1|) |#1|)) (-15 -3682 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3973 ((-713) |#1| |#1|)) (-15 -3410 ((-385 |#1|) (-385 |#1|) (-385 |#1|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1807 (|#1| |#1| (-713))) (-15 -3626 (|#1| |#1| (-713))) (-15 -2799 ((-2 (|:| -2370 |#1|) (|:| -3496 |#1|)) |#1| (-713))) (-15 -2612 (|#1| (-1087 |#2|))) (-15 -1263 ((-1087 |#2|) |#1|)) (-15 -2122 ((-1173 |#2|) |#1| (-713))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2523 (|#1| |#1| (-1 |#2| |#2|) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)) (-592 (-713)))) (-15 -2523 (|#1| |#1| (-1091) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1091)))) (-15 -2523 (|#1| |#1| (-1091))) (-15 -2523 (|#1| |#1|)) (-15 -2523 (|#1| |#1| (-713))) (-15 -3410 (|#1| |#1| |#1|)) (-15 -3410 (|#2| |#1| |#2|)) (-15 -2195 ((-396 |#1|) |#1|)) (-15 -4050 ((-396 (-1087 |#1|)) (-1087 |#1|))) (-15 -2802 ((-396 (-1087 |#1|)) (-1087 |#1|))) (-15 -1215 ((-396 (-1087 |#1|)) (-1087 |#1|))) (-15 -3259 ((-3 (-592 (-1087 |#1|)) "failed") (-592 (-1087 |#1|)) (-1087 |#1|))) (-15 -2026 (|#1| |#1| (-1005))) (-15 -2383 ((-592 (-1005)) |#1|)) (-15 -3848 ((-713) |#1| (-592 (-1005)))) (-15 -3848 ((-713) |#1|)) (-15 -2352 (|#1| |#1| (-592 (-1005)) (-592 (-713)))) (-15 -2352 (|#1| |#1| (-1005) (-713))) (-15 -3724 ((-592 (-713)) |#1| (-592 (-1005)))) (-15 -3724 ((-713) |#1| (-1005))) (-15 -3567 ((-3 (-1005) "failed") |#1|)) (-15 -1587 ((-592 (-713)) |#1| (-592 (-1005)))) (-15 -1587 ((-713) |#1| (-1005))) (-15 -3898 ((-1005) |#1|)) (-15 -2591 ((-3 (-1005) "failed") |#1|)) (-15 -1270 (|#1| (-1005))) (-15 -2602 (|#1| |#1| (-592 (-1005)) (-592 |#1|))) (-15 -2602 (|#1| |#1| (-1005) |#1|)) (-15 -2602 (|#1| |#1| (-592 (-1005)) (-592 |#2|))) (-15 -2602 (|#1| |#1| (-1005) |#2|)) (-15 -2602 (|#1| |#1| (-592 |#1|) (-592 |#1|))) (-15 -2602 (|#1| |#1| |#1| |#1|)) (-15 -2602 (|#1| |#1| (-273 |#1|))) (-15 -2602 (|#1| |#1| (-592 (-273 |#1|)))) (-15 -1587 ((-713) |#1|)) (-15 -2352 (|#1| |#2| (-713))) (-15 -3898 ((-525) |#1|)) (-15 -2591 ((-3 (-525) "failed") |#1|)) (-15 -3898 ((-385 (-525)) |#1|)) (-15 -2591 ((-3 (-385 (-525)) "failed") |#1|)) (-15 -1270 (|#1| |#2|)) (-15 -2591 ((-3 |#2| "failed") |#1|)) (-15 -3898 (|#2| |#1|)) (-15 -3724 ((-713) |#1|)) (-15 -2026 (|#2| |#1|)) (-15 -2523 (|#1| |#1| (-592 (-1005)) (-592 (-713)))) (-15 -2523 (|#1| |#1| (-1005) (-713))) (-15 -2523 (|#1| |#1| (-592 (-1005)))) (-15 -2523 (|#1| |#1| (-1005))) (-15 -1270 (|#1| (-525))) (-15 -1270 ((-798) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2122 (((-1173 |#1|) $ (-713)) 238)) (-2383 (((-592 (-1005)) $) 110)) (-2612 (($ (-1087 |#1|)) 236)) (-2146 (((-1087 $) $ (-1005)) 125) (((-1087 |#1|) $) 124)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 87 (|has| |#1| (-517)))) (-3711 (($ $) 88 (|has| |#1| (-517)))) (-3380 (((-108) $) 90 (|has| |#1| (-517)))) (-3848 (((-713) $) 112) (((-713) $ (-592 (-1005))) 111)) (-1342 (((-3 $ "failed") $ $) 19)) (-1798 (($ $ $) 223 (|has| |#1| (-517)))) (-4050 (((-396 (-1087 $)) (-1087 $)) 100 (|has| |#1| (-844)))) (-3706 (($ $) 98 (|has| |#1| (-429)))) (-2100 (((-396 $) $) 97 (|has| |#1| (-429)))) (-3259 (((-3 (-592 (-1087 $)) "failed") (-592 (-1087 $)) (-1087 $)) 103 (|has| |#1| (-844)))) (-3197 (((-108) $ $) 208 (|has| |#1| (-341)))) (-3626 (($ $ (-713)) 231)) (-1807 (($ $ (-713)) 230)) (-3787 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-429)))) (-2305 (($) 17 T CONST)) (-2591 (((-3 |#1| "failed") $) 164) (((-3 (-385 (-525)) "failed") $) 162 (|has| |#1| (-968 (-385 (-525))))) (((-3 (-525) "failed") $) 160 (|has| |#1| (-968 (-525)))) (((-3 (-1005) "failed") $) 136)) (-3898 ((|#1| $) 165) (((-385 (-525)) $) 161 (|has| |#1| (-968 (-385 (-525))))) (((-525) $) 159 (|has| |#1| (-968 (-525)))) (((-1005) $) 135)) (-1516 (($ $ $ (-1005)) 108 (|has| |#1| (-160))) ((|#1| $ $) 226 (|has| |#1| (-160)))) (-1726 (($ $ $) 212 (|has| |#1| (-341)))) (-2571 (($ $) 154)) (-3416 (((-632 (-525)) (-632 $)) 134 (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 (-525))) (|:| |vec| (-1173 (-525)))) (-632 $) (-1173 $)) 133 (|has| |#1| (-588 (-525)))) (((-2 (|:| -1484 (-632 |#1|)) (|:| |vec| (-1173 |#1|))) (-632 $) (-1173 $)) 132) (((-632 |#1|) (-632 $)) 131)) (-3762 (((-3 $ "failed") $) 34)) (-1704 (($ $ $) 211 (|has| |#1| (-341)))) (-1570 (($ $ $) 229)) (-3546 (($ $ $) 220 (|has| |#1| (-517)))) (-3886 (((-2 (|:| -1655 |#1|) (|:| -2370 $) (|:| -3496 $)) $ $) 219 (|has| |#1| (-517)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 206 (|has| |#1| (-341)))) (-3026 (($ $) 176 (|has| |#1| (-429))) (($ $ (-1005)) 105 (|has| |#1| (-429)))) (-2558 (((-592 $) $) 109)) (-3836 (((-108) $) 96 (|has| |#1| (-844)))) (-2192 (($ $ |#1| (-713) $) 172)) (-2317 (((-824 (-357) $) $ (-827 (-357)) (-824 (-357) $)) 84 (-12 (|has| (-1005) (-821 (-357))) (|has| |#1| (-821 (-357))))) (((-824 (-525) $) $ (-827 (-525)) (-824 (-525) $)) 83 (-12 (|has| (-1005) (-821 (-525))) (|has| |#1| (-821 (-525)))))) (-3973 (((-713) $ $) 224 (|has| |#1| (-517)))) (-1985 (((-108) $) 31)) (-1647 (((-713) $) 169)) (-1760 (((-3 $ "failed") $) 204 (|has| |#1| (-1067)))) (-2368 (($ (-1087 |#1|) (-1005)) 117) (($ (-1087 $) (-1005)) 116)) (-3073 (($ $ (-713)) 235)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 215 (|has| |#1| (-341)))) (-2177 (((-592 $) $) 126)) (-1788 (((-108) $) 152)) (-2352 (($ |#1| (-713)) 153) (($ $ (-1005) (-713)) 119) (($ $ (-592 (-1005)) (-592 (-713))) 118)) (-3863 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $ (-1005)) 120) (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 233)) (-3724 (((-713) $) 170) (((-713) $ (-1005)) 122) (((-592 (-713)) $ (-592 (-1005))) 121)) (-2371 (($ $ $) 79 (|has| |#1| (-789)))) (-2535 (($ $ $) 78 (|has| |#1| (-789)))) (-3922 (($ (-1 (-713) (-713)) $) 171)) (-2694 (($ (-1 |#1| |#1|) $) 151)) (-1263 (((-1087 |#1|) $) 237)) (-3567 (((-3 (-1005) "failed") $) 123)) (-2538 (($ $) 149)) (-2548 ((|#1| $) 148)) (-2756 (($ (-592 $)) 94 (|has| |#1| (-429))) (($ $ $) 93 (|has| |#1| (-429)))) (-3451 (((-1074) $) 9)) (-2799 (((-2 (|:| -2370 $) (|:| -3496 $)) $ (-713)) 232)) (-4228 (((-3 (-592 $) "failed") $) 114)) (-3852 (((-3 (-592 $) "failed") $) 115)) (-1553 (((-3 (-2 (|:| |var| (-1005)) (|:| -1864 (-713))) "failed") $) 113)) (-2650 (($ $) 216 (|has| |#1| (-37 (-385 (-525)))))) (-3940 (($) 203 (|has| |#1| (-1067)) CONST)) (-2012 (((-1038) $) 10)) (-2513 (((-108) $) 166)) (-2525 ((|#1| $) 167)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 95 (|has| |#1| (-429)))) (-2794 (($ (-592 $)) 92 (|has| |#1| (-429))) (($ $ $) 91 (|has| |#1| (-429)))) (-1215 (((-396 (-1087 $)) (-1087 $)) 102 (|has| |#1| (-844)))) (-2802 (((-396 (-1087 $)) (-1087 $)) 101 (|has| |#1| (-844)))) (-2195 (((-396 $) $) 99 (|has| |#1| (-844)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 213 (|has| |#1| (-341)))) (-1680 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-517))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 207 (|has| |#1| (-341)))) (-2602 (($ $ (-592 (-273 $))) 145) (($ $ (-273 $)) 144) (($ $ $ $) 143) (($ $ (-592 $) (-592 $)) 142) (($ $ (-1005) |#1|) 141) (($ $ (-592 (-1005)) (-592 |#1|)) 140) (($ $ (-1005) $) 139) (($ $ (-592 (-1005)) (-592 $)) 138)) (-1290 (((-713) $) 209 (|has| |#1| (-341)))) (-3410 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-385 $) (-385 $) (-385 $)) 225 (|has| |#1| (-517))) ((|#1| (-385 $) |#1|) 217 (|has| |#1| (-341))) (((-385 $) $ (-385 $)) 205 (|has| |#1| (-517)))) (-1782 (((-3 $ "failed") $ (-713)) 234)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 210 (|has| |#1| (-341)))) (-2094 (($ $ (-1005)) 107 (|has| |#1| (-160))) ((|#1| $) 227 (|has| |#1| (-160)))) (-2523 (($ $ (-1005)) 42) (($ $ (-592 (-1005))) 41) (($ $ (-1005) (-713)) 40) (($ $ (-592 (-1005)) (-592 (-713))) 39) (($ $ (-713)) 253) (($ $) 251) (($ $ (-1091)) 250 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) 249 (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) 248 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) 247 (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-1587 (((-713) $) 150) (((-713) $ (-1005)) 130) (((-592 (-713)) $ (-592 (-1005))) 129)) (-2749 (((-827 (-357)) $) 82 (-12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357)))))) (((-827 (-525)) $) 81 (-12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525)))))) (((-501) $) 80 (-12 (|has| (-1005) (-567 (-501))) (|has| |#1| (-567 (-501)))))) (-2026 ((|#1| $) 175 (|has| |#1| (-429))) (($ $ (-1005)) 106 (|has| |#1| (-429)))) (-2105 (((-3 (-1173 $) "failed") (-632 $)) 104 (-3830 (|has| $ (-136)) (|has| |#1| (-844))))) (-3682 (((-3 $ "failed") $ $) 222 (|has| |#1| (-517))) (((-3 (-385 $) "failed") (-385 $) $) 221 (|has| |#1| (-517)))) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 163) (($ (-1005)) 137) (($ (-385 (-525))) 72 (-3279 (|has| |#1| (-968 (-385 (-525)))) (|has| |#1| (-37 (-385 (-525)))))) (($ $) 85 (|has| |#1| (-517)))) (-1562 (((-592 |#1|) $) 168)) (-3468 ((|#1| $ (-713)) 155) (($ $ (-1005) (-713)) 128) (($ $ (-592 (-1005)) (-592 (-713))) 127)) (-3425 (((-3 $ "failed") $) 73 (-3279 (-3830 (|has| $ (-136)) (|has| |#1| (-844))) (|has| |#1| (-136))))) (-2104 (((-713)) 29)) (-3658 (($ $ $ (-713)) 173 (|has| |#1| (-160)))) (-3959 (((-108) $ $) 89 (|has| |#1| (-517)))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ (-1005)) 38) (($ $ (-592 (-1005))) 37) (($ $ (-1005) (-713)) 36) (($ $ (-592 (-1005)) (-592 (-713))) 35) (($ $ (-713)) 254) (($ $) 252) (($ $ (-1091)) 246 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091))) 245 (|has| |#1| (-835 (-1091)))) (($ $ (-1091) (-713)) 244 (|has| |#1| (-835 (-1091)))) (($ $ (-592 (-1091)) (-592 (-713))) 243 (|has| |#1| (-835 (-1091)))) (($ $ (-1 |#1| |#1|) (-713)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-4045 (((-108) $ $) 76 (|has| |#1| (-789)))) (-4026 (((-108) $ $) 75 (|has| |#1| (-789)))) (-3994 (((-108) $ $) 6)) (-4037 (((-108) $ $) 77 (|has| |#1| (-789)))) (-4017 (((-108) $ $) 74 (|has| |#1| (-789)))) (-4100 (($ $ |#1|) 156 (|has| |#1| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 158 (|has| |#1| (-37 (-385 (-525))))) (($ (-385 (-525)) $) 157 (|has| |#1| (-37 (-385 (-525))))) (($ |#1| $) 147) (($ $ |#1|) 146)))
+(((-1149 |#1|) (-131) (-977)) (T -1149))
+((-2122 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-1149 *4)) (-4 *4 (-977)) (-5 *2 (-1173 *4)))) (-1263 (*1 *2 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-977)) (-5 *2 (-1087 *3)))) (-2612 (*1 *1 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-977)) (-4 *1 (-1149 *3)))) (-3073 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1149 *3)) (-4 *3 (-977)))) (-1782 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-713)) (-4 *1 (-1149 *3)) (-4 *3 (-977)))) (-3863 (*1 *2 *1 *1) (-12 (-4 *3 (-977)) (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-1149 *3)))) (-2799 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *4 (-977)) (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-1149 *4)))) (-3626 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1149 *3)) (-4 *3 (-977)))) (-1807 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1149 *3)) (-4 *3 (-977)))) (-1570 (*1 *1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-977)))) (-2523 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1149 *3)) (-4 *3 (-977)))) (-2094 (*1 *2 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-977)) (-4 *2 (-160)))) (-1516 (*1 *2 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-977)) (-4 *2 (-160)))) (-3410 (*1 *2 *2 *2) (-12 (-5 *2 (-385 *1)) (-4 *1 (-1149 *3)) (-4 *3 (-977)) (-4 *3 (-517)))) (-3973 (*1 *2 *1 *1) (-12 (-4 *1 (-1149 *3)) (-4 *3 (-977)) (-4 *3 (-517)) (-5 *2 (-713)))) (-1798 (*1 *1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-977)) (-4 *2 (-517)))) (-3682 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1149 *2)) (-4 *2 (-977)) (-4 *2 (-517)))) (-3682 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-385 *1)) (-4 *1 (-1149 *3)) (-4 *3 (-977)) (-4 *3 (-517)))) (-3546 (*1 *1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-977)) (-4 *2 (-517)))) (-3886 (*1 *2 *1 *1) (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-5 *2 (-2 (|:| -1655 *3) (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-1149 *3)))) (-3787 (*1 *2 *1 *1) (-12 (-4 *3 (-429)) (-4 *3 (-977)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1149 *3)))) (-3410 (*1 *2 *3 *2) (-12 (-5 *3 (-385 *1)) (-4 *1 (-1149 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-2650 (*1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525)))))))
+(-13 (-884 |t#1| (-713) (-1005)) (-265 |t#1| |t#1|) (-265 $ $) (-213) (-211 |t#1|) (-10 -8 (-15 -2122 ((-1173 |t#1|) $ (-713))) (-15 -1263 ((-1087 |t#1|) $)) (-15 -2612 ($ (-1087 |t#1|))) (-15 -3073 ($ $ (-713))) (-15 -1782 ((-3 $ "failed") $ (-713))) (-15 -3863 ((-2 (|:| -2370 $) (|:| -3496 $)) $ $)) (-15 -2799 ((-2 (|:| -2370 $) (|:| -3496 $)) $ (-713))) (-15 -3626 ($ $ (-713))) (-15 -1807 ($ $ (-713))) (-15 -1570 ($ $ $)) (-15 -2523 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1067)) (-6 (-1067)) |%noBranch|) (IF (|has| |t#1| (-160)) (PROGN (-15 -2094 (|t#1| $)) (-15 -1516 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-517)) (PROGN (-6 (-265 (-385 $) (-385 $))) (-15 -3410 ((-385 $) (-385 $) (-385 $))) (-15 -3973 ((-713) $ $)) (-15 -1798 ($ $ $)) (-15 -3682 ((-3 $ "failed") $ $)) (-15 -3682 ((-3 (-385 $) "failed") (-385 $) $)) (-15 -3546 ($ $ $)) (-15 -3886 ((-2 (|:| -1655 |t#1|) (|:| -2370 $) (|:| -3496 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-429)) (-15 -3787 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-341)) (PROGN (-6 (-286)) (-6 -4251) (-15 -3410 (|t#1| (-385 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (-15 -2650 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-713)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-567 (-501)) -12 (|has| (-1005) (-567 (-501))) (|has| |#1| (-567 (-501)))) ((-567 (-827 (-357))) -12 (|has| (-1005) (-567 (-827 (-357)))) (|has| |#1| (-567 (-827 (-357))))) ((-567 (-827 (-525))) -12 (|has| (-1005) (-567 (-827 (-525)))) (|has| |#1| (-567 (-827 (-525))))) ((-211 |#1|) . T) ((-213) . T) ((-265 (-385 $) (-385 $)) |has| |#1| (-517)) ((-265 |#1| |#1|) . T) ((-265 $ $) . T) ((-269) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-288 $) . T) ((-304 |#1| #0#) . T) ((-355 |#1|) . T) ((-389 |#1|) . T) ((-429) -3279 (|has| |#1| (-844)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-486 #2=(-1005) |#1|) . T) ((-486 #2# $) . T) ((-486 $ $) . T) ((-517) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-594 #1#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-588 (-525)) |has| |#1| (-588 (-525))) ((-588 |#1|) . T) ((-660 #1#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341))) ((-669) . T) ((-789) |has| |#1| (-789)) ((-835 #2#) . T) ((-835 (-1091)) |has| |#1| (-835 (-1091))) ((-821 (-357)) -12 (|has| (-1005) (-821 (-357))) (|has| |#1| (-821 (-357)))) ((-821 (-525)) -12 (|has| (-1005) (-821 (-525))) (|has| |#1| (-821 (-525)))) ((-884 |#1| #0# #2#) . T) ((-844) |has| |#1| (-844)) ((-855) |has| |#1| (-341)) ((-968 (-385 (-525))) |has| |#1| (-968 (-385 (-525)))) ((-968 (-525)) |has| |#1| (-968 (-525))) ((-968 #2#) . T) ((-968 |#1|) . T) ((-983 #1#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3279 (|has| |#1| (-844)) (|has| |#1| (-517)) (|has| |#1| (-429)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1067) |has| |#1| (-1067)) ((-1131) |has| |#1| (-844)))
+((-2383 (((-592 (-1005)) $) 28)) (-2571 (($ $) 25)) (-2352 (($ |#2| |#3|) NIL) (($ $ (-1005) |#3|) 22) (($ $ (-592 (-1005)) (-592 |#3|)) 21)) (-2538 (($ $) 14)) (-2548 ((|#2| $) 12)) (-1587 ((|#3| $) 10)))
+(((-1150 |#1| |#2| |#3|) (-10 -8 (-15 -2383 ((-592 (-1005)) |#1|)) (-15 -2352 (|#1| |#1| (-592 (-1005)) (-592 |#3|))) (-15 -2352 (|#1| |#1| (-1005) |#3|)) (-15 -2571 (|#1| |#1|)) (-15 -2352 (|#1| |#2| |#3|)) (-15 -1587 (|#3| |#1|)) (-15 -2538 (|#1| |#1|)) (-15 -2548 (|#2| |#1|))) (-1151 |#2| |#3|) (-977) (-734)) (T -1150))
+NIL
+(-10 -8 (-15 -2383 ((-592 (-1005)) |#1|)) (-15 -2352 (|#1| |#1| (-592 (-1005)) (-592 |#3|))) (-15 -2352 (|#1| |#1| (-1005) |#3|)) (-15 -2571 (|#1| |#1|)) (-15 -2352 (|#1| |#2| |#3|)) (-15 -1587 (|#3| |#1|)) (-15 -2538 (|#1| |#1|)) (-15 -2548 (|#2| |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2383 (((-592 (-1005)) $) 74)) (-2577 (((-1091) $) 103)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3711 (($ $) 52 (|has| |#1| (-517)))) (-3380 (((-108) $) 54 (|has| |#1| (-517)))) (-3642 (($ $ |#2|) 98) (($ $ |#2| |#2|) 97)) (-4192 (((-1072 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 105)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-2571 (($ $) 60)) (-3762 (((-3 $ "failed") $) 34)) (-2911 (((-108) $) 73)) (-3973 ((|#2| $) 100) ((|#2| $ |#2|) 99)) (-1985 (((-108) $) 31)) (-3073 (($ $ (-856)) 101)) (-1788 (((-108) $) 62)) (-2352 (($ |#1| |#2|) 61) (($ $ (-1005) |#2|) 76) (($ $ (-592 (-1005)) (-592 |#2|)) 75)) (-2694 (($ (-1 |#1| |#1|) $) 63)) (-2538 (($ $) 65)) (-2548 ((|#1| $) 66)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-2182 (($ $ |#2|) 95)) (-1680 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-2602 (((-1072 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-3410 ((|#1| $ |#2|) 104) (($ $ $) 81 (|has| |#2| (-1032)))) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) 89 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1091) (-713)) 88 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-592 (-1091))) 87 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1091)) 86 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1587 ((|#2| $) 64)) (-3577 (($ $) 72)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-3468 ((|#1| $ |#2|) 59)) (-3425 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2104 (((-713)) 29)) (-3144 ((|#1| $) 102)) (-3959 (((-108) $ $) 53 (|has| |#1| (-517)))) (-1369 ((|#1| $ |#2|) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -1270 (|#1| (-1091))))))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ (-592 (-1091)) (-592 (-713))) 93 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1091) (-713)) 92 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-592 (-1091))) 91 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1091)) 90 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-3994 (((-108) $ $) 6)) (-4100 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+(((-1151 |#1| |#2|) (-131) (-977) (-734)) (T -1151))
+((-4192 (*1 *2 *1) (-12 (-4 *1 (-1151 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-1072 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3410 (*1 *2 *1 *3) (-12 (-4 *1 (-1151 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-1151 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (-5 *2 (-1091)))) (-3144 (*1 *2 *1) (-12 (-4 *1 (-1151 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))) (-3073 (*1 *1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-1151 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)))) (-3973 (*1 *2 *1) (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-3973 (*1 *2 *1 *2) (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-3642 (*1 *1 *1 *2) (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-3642 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-1369 (*1 *2 *1 *3) (-12 (-4 *1 (-1151 *2 *3)) (-4 *3 (-734)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1270 (*2 (-1091)))) (-4 *2 (-977)))) (-2182 (*1 *1 *1 *2) (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))) (-2602 (*1 *2 *1 *3) (-12 (-4 *1 (-1151 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1072 *3)))))
+(-13 (-906 |t#1| |t#2| (-1005)) (-10 -8 (-15 -4192 ((-1072 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3410 (|t#1| $ |t#2|)) (-15 -2577 ((-1091) $)) (-15 -3144 (|t#1| $)) (-15 -3073 ($ $ (-856))) (-15 -3973 (|t#2| $)) (-15 -3973 (|t#2| $ |t#2|)) (-15 -3642 ($ $ |t#2|)) (-15 -3642 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -1270 (|t#1| (-1091)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1369 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2182 ($ $ |t#2|)) (IF (|has| |t#2| (-1032)) (-6 (-265 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-213)) (IF (|has| |t#1| (-835 (-1091))) (-6 (-835 (-1091))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2602 ((-1072 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-97) . T) ((-107 #0# #0#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-265 $ $) |has| |#2| (-1032)) ((-269) |has| |#1| (-517)) ((-517) |has| |#1| (-517)) ((-594 #0#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-835 (-1091)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-835 (-1091)))) ((-906 |#1| |#2| (-1005)) . T) ((-983 #0#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-3706 ((|#2| |#2|) 12)) (-2100 (((-396 |#2|) |#2|) 14)) (-4180 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525)))) 30)))
+(((-1152 |#1| |#2|) (-10 -7 (-15 -2100 ((-396 |#2|) |#2|)) (-15 -3706 (|#2| |#2|)) (-15 -4180 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525)))))) (-517) (-13 (-1149 |#1|) (-517) (-10 -8 (-15 -2794 ($ $ $))))) (T -1152))
+((-4180 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-525)))) (-4 *4 (-13 (-1149 *3) (-517) (-10 -8 (-15 -2794 ($ $ $))))) (-4 *3 (-517)) (-5 *1 (-1152 *3 *4)))) (-3706 (*1 *2 *2) (-12 (-4 *3 (-517)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-13 (-1149 *3) (-517) (-10 -8 (-15 -2794 ($ $ $))))))) (-2100 (*1 *2 *3) (-12 (-4 *4 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-1152 *4 *3)) (-4 *3 (-13 (-1149 *4) (-517) (-10 -8 (-15 -2794 ($ $ $))))))))
+(-10 -7 (-15 -2100 ((-396 |#2|) |#2|)) (-15 -3706 (|#2| |#2|)) (-15 -4180 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-525))))))
+((-2694 (((-1158 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1158 |#1| |#3| |#5|)) 24)))
+(((-1153 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2694 ((-1158 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1158 |#1| |#3| |#5|)))) (-977) (-977) (-1091) (-1091) |#1| |#2|) (T -1153))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5 *7 *9)) (-4 *5 (-977)) (-4 *6 (-977)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1158 *6 *8 *10)) (-5 *1 (-1153 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1091)))))
+(-10 -7 (-15 -2694 ((-1158 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1158 |#1| |#3| |#5|))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2383 (((-592 (-1005)) $) 74)) (-2577 (((-1091) $) 103)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3711 (($ $) 52 (|has| |#1| (-517)))) (-3380 (((-108) $) 54 (|has| |#1| (-517)))) (-3642 (($ $ (-385 (-525))) 98) (($ $ (-385 (-525)) (-385 (-525))) 97)) (-4192 (((-1072 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 105)) (-2351 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 162 (|has| |#1| (-341)))) (-2100 (((-396 $) $) 163 (|has| |#1| (-341)))) (-2211 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-3197 (((-108) $ $) 153 (|has| |#1| (-341)))) (-2320 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-2307 (($ (-713) (-1072 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 172)) (-2382 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) 17 T CONST)) (-1726 (($ $ $) 157 (|has| |#1| (-341)))) (-2571 (($ $) 60)) (-3762 (((-3 $ "failed") $) 34)) (-1704 (($ $ $) 156 (|has| |#1| (-341)))) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-3836 (((-108) $) 164 (|has| |#1| (-341)))) (-2911 (((-108) $) 73)) (-1535 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-3973 (((-385 (-525)) $) 100) (((-385 (-525)) $ (-385 (-525))) 99)) (-1985 (((-108) $) 31)) (-3220 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-3073 (($ $ (-856)) 101) (($ $ (-385 (-525))) 171)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-1788 (((-108) $) 62)) (-2352 (($ |#1| (-385 (-525))) 61) (($ $ (-1005) (-385 (-525))) 76) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) 75)) (-2694 (($ (-1 |#1| |#1|) $) 63)) (-1415 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) 65)) (-2548 ((|#1| $) 66)) (-2756 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-3451 (((-1074) $) 9)) (-2502 (($ $) 165 (|has| |#1| (-341)))) (-2650 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1091)) 169 (-3279 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-893)) (|has| |#1| (-1113)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -2383 ((-592 (-1091)) |#1|))) (|has| |#1| (-15 -2650 (|#1| |#1| (-1091)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 150 (|has| |#1| (-341)))) (-2794 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-2195 (((-396 $) $) 161 (|has| |#1| (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 158 (|has| |#1| (-341)))) (-2182 (($ $ (-385 (-525))) 95)) (-1680 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-1250 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2602 (((-1072 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-1290 (((-713) $) 154 (|has| |#1| (-341)))) (-3410 ((|#1| $ (-385 (-525))) 104) (($ $ $) 81 (|has| (-385 (-525)) (-1032)))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 155 (|has| |#1| (-341)))) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) 89 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1091) (-713)) 88 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1091))) 87 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1091)) 86 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-1587 (((-385 (-525)) $) 64)) (-2396 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-3577 (($ $) 72)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-3468 ((|#1| $ (-385 (-525))) 59)) (-3425 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2104 (((-713)) 29)) (-3144 ((|#1| $) 102)) (-2438 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) 53 (|has| |#1| (-517)))) (-2410 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-1369 ((|#1| $ (-385 (-525))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1270 (|#1| (-1091))))))) (-2687 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ (-592 (-1091)) (-592 (-713))) 93 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1091) (-713)) 92 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1091))) 91 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1091)) 90 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3994 (((-108) $ $) 6)) (-4100 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+(((-1154 |#1|) (-131) (-977)) (T -1154))
+((-2307 (*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-1072 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4)))) (-4 *4 (-977)) (-4 *1 (-1154 *4)))) (-3073 (*1 *1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-1154 *3)) (-4 *3 (-977)))) (-2650 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525)))))) (-2650 (*1 *1 *1 *2) (-3279 (-12 (-5 *2 (-1091)) (-4 *1 (-1154 *3)) (-4 *3 (-977)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1113)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1091)) (-4 *1 (-1154 *3)) (-4 *3 (-977)) (-12 (|has| *3 (-15 -2383 ((-592 (-1091)) *3))) (|has| *3 (-15 -2650 (*3 *3 (-1091)))) (-4 *3 (-37 (-385 (-525)))))))))
+(-13 (-1151 |t#1| (-385 (-525))) (-10 -8 (-15 -2307 ($ (-713) (-1072 (-2 (|:| |k| (-385 (-525))) (|:| |c| |t#1|))))) (-15 -3073 ($ $ (-385 (-525)))) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2650 ($ $)) (IF (|has| |t#1| (-15 -2650 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-15 -2383 ((-592 (-1091)) |t#1|))) (-15 -2650 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1113)) (IF (|has| |t#1| (-893)) (IF (|has| |t#1| (-29 (-525))) (-15 -2650 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-934)) (-6 (-1113))) |%noBranch|) (IF (|has| |t#1| (-341)) (-6 (-341)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-385 (-525))) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3279 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3279 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-385 (-525)) (-1032)) ((-269) -3279 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -3279 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-835 (-1091)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091)))) ((-906 |#1| #0# (-1005)) . T) ((-855) |has| |#1| (-341)) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-983 #1#) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-983 |#1|) . T) ((-983 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1113) |has| |#1| (-37 (-385 (-525)))) ((-1116) |has| |#1| (-37 (-385 (-525)))) ((-1131) |has| |#1| (-341)) ((-1151 |#1| #0#) . T))
+((-1989 (((-108) $) 12)) (-2591 (((-3 |#3| "failed") $) 17)) (-3898 ((|#3| $) 14)))
+(((-1155 |#1| |#2| |#3|) (-10 -8 (-15 -3898 (|#3| |#1|)) (-15 -2591 ((-3 |#3| "failed") |#1|)) (-15 -1989 ((-108) |#1|))) (-1156 |#2| |#3|) (-977) (-1133 |#2|)) (T -1155))
+NIL
+(-10 -8 (-15 -3898 (|#3| |#1|)) (-15 -2591 ((-3 |#3| "failed") |#1|)) (-15 -1989 ((-108) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2383 (((-592 (-1005)) $) 74)) (-2577 (((-1091) $) 103)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3711 (($ $) 52 (|has| |#1| (-517)))) (-3380 (((-108) $) 54 (|has| |#1| (-517)))) (-3642 (($ $ (-385 (-525))) 98) (($ $ (-385 (-525)) (-385 (-525))) 97)) (-4192 (((-1072 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 105)) (-2351 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 162 (|has| |#1| (-341)))) (-2100 (((-396 $) $) 163 (|has| |#1| (-341)))) (-2211 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-3197 (((-108) $ $) 153 (|has| |#1| (-341)))) (-2320 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-2307 (($ (-713) (-1072 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 172)) (-2382 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) 17 T CONST)) (-2591 (((-3 |#2| "failed") $) 183)) (-3898 ((|#2| $) 182)) (-1726 (($ $ $) 157 (|has| |#1| (-341)))) (-2571 (($ $) 60)) (-3762 (((-3 $ "failed") $) 34)) (-2279 (((-385 (-525)) $) 180)) (-1704 (($ $ $) 156 (|has| |#1| (-341)))) (-2477 (($ (-385 (-525)) |#2|) 181)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 151 (|has| |#1| (-341)))) (-3836 (((-108) $) 164 (|has| |#1| (-341)))) (-2911 (((-108) $) 73)) (-1535 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-3973 (((-385 (-525)) $) 100) (((-385 (-525)) $ (-385 (-525))) 99)) (-1985 (((-108) $) 31)) (-3220 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-3073 (($ $ (-856)) 101) (($ $ (-385 (-525))) 171)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 160 (|has| |#1| (-341)))) (-1788 (((-108) $) 62)) (-2352 (($ |#1| (-385 (-525))) 61) (($ $ (-1005) (-385 (-525))) 76) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) 75)) (-2694 (($ (-1 |#1| |#1|) $) 63)) (-1415 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) 65)) (-2548 ((|#1| $) 66)) (-2756 (($ (-592 $)) 149 (|has| |#1| (-341))) (($ $ $) 148 (|has| |#1| (-341)))) (-2247 ((|#2| $) 179)) (-1586 (((-3 |#2| "failed") $) 177)) (-2465 ((|#2| $) 178)) (-3451 (((-1074) $) 9)) (-2502 (($ $) 165 (|has| |#1| (-341)))) (-2650 (($ $) 170 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1091)) 169 (-3279 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-893)) (|has| |#1| (-1113)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -2383 ((-592 (-1091)) |#1|))) (|has| |#1| (-15 -2650 (|#1| |#1| (-1091)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 150 (|has| |#1| (-341)))) (-2794 (($ (-592 $)) 147 (|has| |#1| (-341))) (($ $ $) 146 (|has| |#1| (-341)))) (-2195 (((-396 $) $) 161 (|has| |#1| (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 159 (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 158 (|has| |#1| (-341)))) (-2182 (($ $ (-385 (-525))) 95)) (-1680 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 152 (|has| |#1| (-341)))) (-1250 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2602 (((-1072 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-1290 (((-713) $) 154 (|has| |#1| (-341)))) (-3410 ((|#1| $ (-385 (-525))) 104) (($ $ $) 81 (|has| (-385 (-525)) (-1032)))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 155 (|has| |#1| (-341)))) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) 89 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1091) (-713)) 88 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1091))) 87 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1091)) 86 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-1587 (((-385 (-525)) $) 64)) (-2396 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-3577 (($ $) 72)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 47 (|has| |#1| (-160))) (($ |#2|) 184) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517)))) (-3468 ((|#1| $ (-385 (-525))) 59)) (-3425 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2104 (((-713)) 29)) (-3144 ((|#1| $) 102)) (-2438 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) 53 (|has| |#1| (-517)))) (-2410 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-1369 ((|#1| $ (-385 (-525))) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1270 (|#1| (-1091))))))) (-2687 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 166 (|has| |#1| (-341)))) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ (-592 (-1091)) (-592 (-713))) 93 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1091) (-713)) 92 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-592 (-1091))) 91 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-1091)) 90 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3994 (((-108) $ $) 6)) (-4100 (($ $ |#1|) 58 (|has| |#1| (-341))) (($ $ $) 168 (|has| |#1| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 167 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+(((-1156 |#1| |#2|) (-131) (-977) (-1133 |t#1|)) (T -1156))
+((-1587 (*1 *2 *1) (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1133 *3)) (-5 *2 (-385 (-525))))) (-1270 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *1 (-1156 *3 *2)) (-4 *2 (-1133 *3)))) (-2477 (*1 *1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-4 *4 (-977)) (-4 *1 (-1156 *4 *3)) (-4 *3 (-1133 *4)))) (-2279 (*1 *2 *1) (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1133 *3)) (-5 *2 (-385 (-525))))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1133 *3)))) (-2465 (*1 *2 *1) (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1133 *3)))) (-1586 (*1 *2 *1) (|partial| -12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1133 *3)))))
+(-13 (-1154 |t#1|) (-968 |t#2|) (-10 -8 (-15 -2477 ($ (-385 (-525)) |t#2|)) (-15 -2279 ((-385 (-525)) $)) (-15 -2247 (|t#2| $)) (-15 -1587 ((-385 (-525)) $)) (-15 -1270 ($ |t#2|)) (-15 -2465 (|t#2| $)) (-15 -1586 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-385 (-525))) . T) ((-25) . T) ((-37 #1=(-385 (-525))) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3279 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3279 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) ((-223) |has| |#1| (-341)) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-385 (-525)) (-1032)) ((-269) -3279 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-286) |has| |#1| (-341)) ((-341) |has| |#1| (-341)) ((-429) |has| |#1| (-341)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) -3279 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-594 #1#) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-341))) ((-669) . T) ((-835 (-1091)) -12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091)))) ((-906 |#1| #0# (-1005)) . T) ((-855) |has| |#1| (-341)) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-968 |#2|) . T) ((-983 #1#) -3279 (|has| |#1| (-341)) (|has| |#1| (-37 (-385 (-525))))) ((-983 |#1|) . T) ((-983 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-341)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1113) |has| |#1| (-37 (-385 (-525)))) ((-1116) |has| |#1| (-37 (-385 (-525)))) ((-1131) |has| |#1| (-341)) ((-1151 |#1| #0#) . T) ((-1154 |#1|) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2383 (((-592 (-1005)) $) NIL)) (-2577 (((-1091) $) 96)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-3642 (($ $ (-385 (-525))) 106) (($ $ (-385 (-525)) (-385 (-525))) 108)) (-4192 (((-1072 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) 51)) (-2351 (($ $) 180 (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) 156 (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL (|has| |#1| (-341)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3197 (((-108) $ $) NIL (|has| |#1| (-341)))) (-2320 (($ $) 176 (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) 152 (|has| |#1| (-37 (-385 (-525)))))) (-2307 (($ (-713) (-1072 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) 61)) (-2382 (($ $) 184 (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) 160 (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#2| "failed") $) NIL)) (-3898 ((|#2| $) NIL)) (-1726 (($ $ $) NIL (|has| |#1| (-341)))) (-2571 (($ $) NIL)) (-3762 (((-3 $ "failed") $) 79)) (-2279 (((-385 (-525)) $) 13)) (-1704 (($ $ $) NIL (|has| |#1| (-341)))) (-2477 (($ (-385 (-525)) |#2|) 11)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3836 (((-108) $) NIL (|has| |#1| (-341)))) (-2911 (((-108) $) 68)) (-1535 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3973 (((-385 (-525)) $) 103) (((-385 (-525)) $ (-385 (-525))) 104)) (-1985 (((-108) $) NIL)) (-3220 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3073 (($ $ (-856)) 120) (($ $ (-385 (-525))) 118)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-385 (-525))) 31) (($ $ (-1005) (-385 (-525))) NIL) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) NIL)) (-2694 (($ (-1 |#1| |#1|) $) 115)) (-1415 (($ $) 150 (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2247 ((|#2| $) 12)) (-1586 (((-3 |#2| "failed") $) 41)) (-2465 ((|#2| $) 42)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) 93 (|has| |#1| (-341)))) (-2650 (($ $) 135 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1091)) 140 (-3279 (-12 (|has| |#1| (-15 -2650 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -2383 ((-592 (-1091)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1113)))))) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-341)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2195 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-2182 (($ $ (-385 (-525))) 112)) (-1680 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1250 (($ $) 148 (|has| |#1| (-37 (-385 (-525)))))) (-2602 (((-1072 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-1290 (((-713) $) NIL (|has| |#1| (-341)))) (-3410 ((|#1| $ (-385 (-525))) 100) (($ $ $) 86 (|has| (-385 (-525)) (-1032)))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-341)))) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091)) 127 (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-1587 (((-385 (-525)) $) 16)) (-2396 (($ $) 186 (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) 162 (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) 182 (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) 158 (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) 178 (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) 154 (|has| |#1| (-37 (-385 (-525)))))) (-3577 (($ $) 110)) (-1270 (((-798) $) NIL) (($ (-525)) 35) (($ |#1|) 27 (|has| |#1| (-160))) (($ |#2|) 32) (($ (-385 (-525))) 128 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-3468 ((|#1| $ (-385 (-525))) 99)) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) 117)) (-3144 ((|#1| $) 98)) (-2438 (($ $) 192 (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) 168 (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2410 (($ $) 188 (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) 164 (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) 196 (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) 172 (|has| |#1| (-37 (-385 (-525)))))) (-1369 ((|#1| $ (-385 (-525))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1270 (|#1| (-1091))))))) (-2687 (($ $) 198 (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) 174 (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) 194 (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) 170 (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) 190 (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) 166 (|has| |#1| (-37 (-385 (-525)))))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3355 (($) 21 T CONST)) (-3363 (($) 17 T CONST)) (-2093 (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3994 (((-108) $ $) 66)) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) 92 (|has| |#1| (-341)))) (-4090 (($ $) 131) (($ $ $) 72)) (-4080 (($ $ $) 70)) (** (($ $ (-856)) NIL) (($ $ (-713)) 76) (($ $ (-525)) 145 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 146 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-1157 |#1| |#2|) (-1156 |#1| |#2|) (-977) (-1133 |#1|)) (T -1157))
+NIL
+(-1156 |#1| |#2|)
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2383 (((-592 (-1005)) $) NIL)) (-2577 (((-1091) $) 11)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) NIL (|has| |#1| (-517)))) (-3642 (($ $ (-385 (-525))) NIL) (($ $ (-385 (-525)) (-385 (-525))) NIL)) (-4192 (((-1072 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|))) $) NIL)) (-2351 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) NIL)) (-3706 (($ $) NIL (|has| |#1| (-341)))) (-2100 (((-396 $) $) NIL (|has| |#1| (-341)))) (-2211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3197 (((-108) $ $) NIL (|has| |#1| (-341)))) (-2320 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2307 (($ (-713) (-1072 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#1|)))) NIL)) (-2382 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-1137 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1165 |#1| |#2| |#3|) "failed") $) 22)) (-3898 (((-1137 |#1| |#2| |#3|) $) NIL) (((-1165 |#1| |#2| |#3|) $) NIL)) (-1726 (($ $ $) NIL (|has| |#1| (-341)))) (-2571 (($ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-2279 (((-385 (-525)) $) 57)) (-1704 (($ $ $) NIL (|has| |#1| (-341)))) (-2477 (($ (-385 (-525)) (-1137 |#1| |#2| |#3|)) NIL)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) NIL (|has| |#1| (-341)))) (-3836 (((-108) $) NIL (|has| |#1| (-341)))) (-2911 (((-108) $) NIL)) (-1535 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3973 (((-385 (-525)) $) NIL) (((-385 (-525)) $ (-385 (-525))) NIL)) (-1985 (((-108) $) NIL)) (-3220 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3073 (($ $ (-856)) NIL) (($ $ (-385 (-525))) NIL)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-385 (-525))) 30) (($ $ (-1005) (-385 (-525))) NIL) (($ $ (-592 (-1005)) (-592 (-385 (-525)))) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-1415 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-2756 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2247 (((-1137 |#1| |#2| |#3|) $) 60)) (-1586 (((-3 (-1137 |#1| |#2| |#3|) "failed") $) NIL)) (-2465 (((-1137 |#1| |#2| |#3|) $) NIL)) (-3451 (((-1074) $) NIL)) (-2502 (($ $) NIL (|has| |#1| (-341)))) (-2650 (($ $) 39 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1091)) NIL (-3279 (-12 (|has| |#1| (-15 -2650 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -2383 ((-592 (-1091)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1113))))) (($ $ (-1169 |#2|)) 40 (|has| |#1| (-37 (-385 (-525)))))) (-2012 (((-1038) $) NIL)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) NIL (|has| |#1| (-341)))) (-2794 (($ (-592 $)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-2195 (((-396 $) $) NIL (|has| |#1| (-341)))) (-3657 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-341))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) NIL (|has| |#1| (-341)))) (-2182 (($ $ (-385 (-525))) NIL)) (-1680 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-3993 (((-3 (-592 $) "failed") (-592 $) $) NIL (|has| |#1| (-341)))) (-1250 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2602 (((-1072 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))))) (-1290 (((-713) $) NIL (|has| |#1| (-341)))) (-3410 ((|#1| $ (-385 (-525))) NIL) (($ $ $) NIL (|has| (-385 (-525)) (-1032)))) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) NIL (|has| |#1| (-341)))) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $ (-1169 |#2|)) 38)) (-1587 (((-385 (-525)) $) NIL)) (-2396 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3577 (($ $) NIL)) (-1270 (((-798) $) 89) (($ (-525)) NIL) (($ |#1|) NIL (|has| |#1| (-160))) (($ (-1137 |#1| |#2| |#3|)) 16) (($ (-1165 |#1| |#2| |#3|)) 17) (($ (-1169 |#2|)) 36) (($ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517)))) (-3468 ((|#1| $ (-385 (-525))) NIL)) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) NIL)) (-3144 ((|#1| $) 12)) (-2438 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2410 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1369 ((|#1| $ (-385 (-525))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-385 (-525))))) (|has| |#1| (-15 -1270 (|#1| (-1091))))))) (-2687 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341)))) (-3355 (($) 32 T CONST)) (-3363 (($) 26 T CONST)) (-2093 (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091)) NIL (-12 (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-385 (-525)) |#1|))))) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) 34)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ (-525)) NIL (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-1158 |#1| |#2| |#3|) (-13 (-1156 |#1| (-1137 |#1| |#2| |#3|)) (-968 (-1165 |#1| |#2| |#3|)) (-10 -8 (-15 -1270 ($ (-1169 |#2|))) (-15 -2523 ($ $ (-1169 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2650 ($ $ (-1169 |#2|))) |%noBranch|))) (-977) (-1091) |#1|) (T -1158))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2650 (*1 *1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1158 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
+(-13 (-1156 |#1| (-1137 |#1| |#2| |#3|)) (-968 (-1165 |#1| |#2| |#3|)) (-10 -8 (-15 -1270 ($ (-1169 |#2|))) (-15 -2523 ($ $ (-1169 |#2|))) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2650 ($ $ (-1169 |#2|))) |%noBranch|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 34)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL)) (-3711 (($ $) NIL)) (-3380 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 (-525) "failed") $) NIL (|has| (-1158 |#2| |#3| |#4|) (-968 (-525)))) (((-3 (-385 (-525)) "failed") $) NIL (|has| (-1158 |#2| |#3| |#4|) (-968 (-385 (-525))))) (((-3 (-1158 |#2| |#3| |#4|) "failed") $) 20)) (-3898 (((-525) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-968 (-525)))) (((-385 (-525)) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-968 (-385 (-525))))) (((-1158 |#2| |#3| |#4|) $) NIL)) (-2571 (($ $) 35)) (-3762 (((-3 $ "failed") $) 25)) (-3026 (($ $) NIL (|has| (-1158 |#2| |#3| |#4|) (-429)))) (-2192 (($ $ (-1158 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|) $) NIL)) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) 11)) (-1788 (((-108) $) NIL)) (-2352 (($ (-1158 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) 23)) (-3724 (((-297 |#2| |#3| |#4|) $) NIL)) (-3922 (($ (-1 (-297 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) $) NIL)) (-2694 (($ (-1 (-1158 |#2| |#3| |#4|) (-1158 |#2| |#3| |#4|)) $) NIL)) (-2480 (((-3 (-782 |#2|) "failed") $) 75)) (-2538 (($ $) NIL)) (-2548 (((-1158 |#2| |#3| |#4|) $) 18)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-2513 (((-108) $) NIL)) (-2525 (((-1158 |#2| |#3| |#4|) $) NIL)) (-1680 (((-3 $ "failed") $ (-1158 |#2| |#3| |#4|)) NIL (|has| (-1158 |#2| |#3| |#4|) (-517))) (((-3 $ "failed") $ $) NIL)) (-3729 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1158 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1074))) "failed") $) 58)) (-1587 (((-297 |#2| |#3| |#4|) $) 14)) (-2026 (((-1158 |#2| |#3| |#4|) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-429)))) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ (-1158 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-385 (-525))) NIL (-3279 (|has| (-1158 |#2| |#3| |#4|) (-37 (-385 (-525)))) (|has| (-1158 |#2| |#3| |#4|) (-968 (-385 (-525))))))) (-1562 (((-592 (-1158 |#2| |#3| |#4|)) $) NIL)) (-3468 (((-1158 |#2| |#3| |#4|) $ (-297 |#2| |#3| |#4|)) NIL)) (-3425 (((-3 $ "failed") $) NIL (|has| (-1158 |#2| |#3| |#4|) (-136)))) (-2104 (((-713)) NIL)) (-3658 (($ $ $ (-713)) NIL (|has| (-1158 |#2| |#3| |#4|) (-160)))) (-3959 (((-108) $ $) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 63 T CONST)) (-3363 (($) NIL T CONST)) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ (-1158 |#2| |#3| |#4|)) NIL (|has| (-1158 |#2| |#3| |#4|) (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ (-1158 |#2| |#3| |#4|)) NIL) (($ (-1158 |#2| |#3| |#4|) $) NIL) (($ (-385 (-525)) $) NIL (|has| (-1158 |#2| |#3| |#4|) (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| (-1158 |#2| |#3| |#4|) (-37 (-385 (-525)))))))
+(((-1159 |#1| |#2| |#3| |#4|) (-13 (-304 (-1158 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) (-517) (-10 -8 (-15 -2480 ((-3 (-782 |#2|) "failed") $)) (-15 -3729 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1158 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1074))) "failed") $)))) (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)) (-13 (-27) (-1113) (-408 |#1|)) (-1091) |#2|) (T -1159))
+((-2480 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429))) (-5 *2 (-782 *4)) (-5 *1 (-1159 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-408 *3))) (-14 *5 (-1091)) (-14 *6 *4))) (-3729 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1158 *4 *5 *6)) (|:| |%expon| (-297 *4 *5 *6)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4)))))) (|:| |%type| (-1074)))) (-5 *1 (-1159 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-408 *3))) (-14 *5 (-1091)) (-14 *6 *4))))
+(-13 (-304 (-1158 |#2| |#3| |#4|) (-297 |#2| |#3| |#4|)) (-517) (-10 -8 (-15 -2480 ((-3 (-782 |#2|) "failed") $)) (-15 -3729 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1158 |#2| |#3| |#4|)) (|:| |%expon| (-297 |#2| |#3| |#4|)) (|:| |%expTerms| (-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| |#2|)))))) (|:| |%type| (-1074))) "failed") $))))
+((-3352 ((|#2| $) 29)) (-2029 ((|#2| $) 18)) (-2941 (($ $) 36)) (-3078 (($ $ (-525)) 64)) (-3330 (((-108) $ (-713)) 33)) (-1545 ((|#2| $ |#2|) 61)) (-1455 ((|#2| $ |#2|) 59)) (-1429 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-4099 (($ $ (-592 $)) 60)) (-2016 ((|#2| $) 17)) (-3121 (($ $) NIL) (($ $ (-713)) 42)) (-2714 (((-592 $) $) 26)) (-2553 (((-108) $ $) 50)) (-2482 (((-108) $ (-713)) 32)) (-2957 (((-108) $ (-713)) 31)) (-3365 (((-108) $) 28)) (-1636 ((|#2| $) 24) (($ $ (-713)) 46)) (-3410 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-1698 (((-108) $) 22)) (-2491 (($ $) 39)) (-3385 (($ $) 65)) (-2389 (((-713) $) 41)) (-2249 (($ $) 40)) (-2014 (($ $ $) 58) (($ |#2| $) NIL)) (-3320 (((-592 $) $) 27)) (-3994 (((-108) $ $) 48)) (-3596 (((-713) $) 35)))
+(((-1160 |#1| |#2|) (-10 -8 (-15 -3078 (|#1| |#1| (-525))) (-15 -1429 (|#2| |#1| "last" |#2|)) (-15 -1455 (|#2| |#1| |#2|)) (-15 -1429 (|#1| |#1| "rest" |#1|)) (-15 -1429 (|#2| |#1| "first" |#2|)) (-15 -3385 (|#1| |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -2389 ((-713) |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -2029 (|#2| |#1|)) (-15 -2016 (|#2| |#1|)) (-15 -2941 (|#1| |#1|)) (-15 -1636 (|#1| |#1| (-713))) (-15 -3410 (|#2| |#1| "last")) (-15 -1636 (|#2| |#1|)) (-15 -3121 (|#1| |#1| (-713))) (-15 -3410 (|#1| |#1| "rest")) (-15 -3121 (|#1| |#1|)) (-15 -3410 (|#2| |#1| "first")) (-15 -2014 (|#1| |#2| |#1|)) (-15 -2014 (|#1| |#1| |#1|)) (-15 -1545 (|#2| |#1| |#2|)) (-15 -1429 (|#2| |#1| "value" |#2|)) (-15 -4099 (|#1| |#1| (-592 |#1|))) (-15 -2553 ((-108) |#1| |#1|)) (-15 -1698 ((-108) |#1|)) (-15 -3410 (|#2| |#1| "value")) (-15 -3352 (|#2| |#1|)) (-15 -3365 ((-108) |#1|)) (-15 -2714 ((-592 |#1|) |#1|)) (-15 -3320 ((-592 |#1|) |#1|)) (-15 -3994 ((-108) |#1| |#1|)) (-15 -3596 ((-713) |#1|)) (-15 -3330 ((-108) |#1| (-713))) (-15 -2482 ((-108) |#1| (-713))) (-15 -2957 ((-108) |#1| (-713)))) (-1161 |#2|) (-1127)) (T -1160))
+NIL
+(-10 -8 (-15 -3078 (|#1| |#1| (-525))) (-15 -1429 (|#2| |#1| "last" |#2|)) (-15 -1455 (|#2| |#1| |#2|)) (-15 -1429 (|#1| |#1| "rest" |#1|)) (-15 -1429 (|#2| |#1| "first" |#2|)) (-15 -3385 (|#1| |#1|)) (-15 -2491 (|#1| |#1|)) (-15 -2389 ((-713) |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -2029 (|#2| |#1|)) (-15 -2016 (|#2| |#1|)) (-15 -2941 (|#1| |#1|)) (-15 -1636 (|#1| |#1| (-713))) (-15 -3410 (|#2| |#1| "last")) (-15 -1636 (|#2| |#1|)) (-15 -3121 (|#1| |#1| (-713))) (-15 -3410 (|#1| |#1| "rest")) (-15 -3121 (|#1| |#1|)) (-15 -3410 (|#2| |#1| "first")) (-15 -2014 (|#1| |#2| |#1|)) (-15 -2014 (|#1| |#1| |#1|)) (-15 -1545 (|#2| |#1| |#2|)) (-15 -1429 (|#2| |#1| "value" |#2|)) (-15 -4099 (|#1| |#1| (-592 |#1|))) (-15 -2553 ((-108) |#1| |#1|)) (-15 -1698 ((-108) |#1|)) (-15 -3410 (|#2| |#1| "value")) (-15 -3352 (|#2| |#1|)) (-15 -3365 ((-108) |#1|)) (-15 -2714 ((-592 |#1|) |#1|)) (-15 -3320 ((-592 |#1|) |#1|)) (-15 -3994 ((-108) |#1| |#1|)) (-15 -3596 ((-713) |#1|)) (-15 -3330 ((-108) |#1| (-713))) (-15 -2482 ((-108) |#1| (-713))) (-15 -2957 ((-108) |#1| (-713))))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-3352 ((|#1| $) 48)) (-2029 ((|#1| $) 65)) (-2941 (($ $) 67)) (-3078 (($ $ (-525)) 52 (|has| $ (-6 -4256)))) (-3330 (((-108) $ (-713)) 8)) (-1545 ((|#1| $ |#1|) 39 (|has| $ (-6 -4256)))) (-2914 (($ $ $) 56 (|has| $ (-6 -4256)))) (-1455 ((|#1| $ |#1|) 54 (|has| $ (-6 -4256)))) (-2207 ((|#1| $ |#1|) 58 (|has| $ (-6 -4256)))) (-1429 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4256))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4256))) (($ $ "rest" $) 55 (|has| $ (-6 -4256))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4256)))) (-4099 (($ $ (-592 $)) 41 (|has| $ (-6 -4256)))) (-2016 ((|#1| $) 66)) (-2305 (($) 7 T CONST)) (-3121 (($ $) 73) (($ $ (-713)) 71)) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-2714 (((-592 $) $) 50)) (-2553 (((-108) $ $) 42 (|has| |#1| (-1020)))) (-2482 (((-108) $ (-713)) 9)) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35)) (-2957 (((-108) $ (-713)) 10)) (-2647 (((-592 |#1|) $) 45)) (-3365 (((-108) $) 49)) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-1636 ((|#1| $) 70) (($ $ (-713)) 68)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3110 ((|#1| $) 76) (($ $ (-713)) 74)) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3294 (((-525) $ $) 44)) (-1698 (((-108) $) 46)) (-2491 (($ $) 62)) (-3385 (($ $) 59 (|has| $ (-6 -4256)))) (-2389 (((-713) $) 63)) (-2249 (($ $) 64)) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1451 (($ $) 13)) (-2162 (($ $ $) 61 (|has| $ (-6 -4256))) (($ $ |#1|) 60 (|has| $ (-6 -4256)))) (-2014 (($ $ $) 78) (($ |#1| $) 77)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3320 (((-592 $) $) 51)) (-2240 (((-108) $ $) 43 (|has| |#1| (-1020)))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-1161 |#1|) (-131) (-1127)) (T -1161))
+((-2014 (*1 *1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-2014 (*1 *1 *2 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-3410 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-3110 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1161 *3)) (-4 *3 (-1127)))) (-3121 (*1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-3410 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1161 *3)) (-4 *3 (-1127)))) (-3121 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1161 *3)) (-4 *3 (-1127)))) (-1636 (*1 *2 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-3410 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-1636 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1161 *3)) (-4 *3 (-1127)))) (-2941 (*1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-2249 (*1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-2389 (*1 *2 *1) (-12 (-4 *1 (-1161 *3)) (-4 *3 (-1127)) (-5 *2 (-713)))) (-2491 (*1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-2162 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-2162 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-3385 (*1 *1 *1) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-2207 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-1429 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4256)) (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-2914 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-1429 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4256)) (-4 *1 (-1161 *3)) (-4 *3 (-1127)))) (-1455 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4256)) (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-1429 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4256)) (-4 *1 (-1161 *2)) (-4 *2 (-1127)))) (-3078 (*1 *1 *1 *2) (-12 (-5 *2 (-525)) (|has| *1 (-6 -4256)) (-4 *1 (-1161 *3)) (-4 *3 (-1127)))))
+(-13 (-942 |t#1|) (-10 -8 (-15 -2014 ($ $ $)) (-15 -2014 ($ |t#1| $)) (-15 -3110 (|t#1| $)) (-15 -3410 (|t#1| $ "first")) (-15 -3110 ($ $ (-713))) (-15 -3121 ($ $)) (-15 -3410 ($ $ "rest")) (-15 -3121 ($ $ (-713))) (-15 -1636 (|t#1| $)) (-15 -3410 (|t#1| $ "last")) (-15 -1636 ($ $ (-713))) (-15 -2941 ($ $)) (-15 -2016 (|t#1| $)) (-15 -2029 (|t#1| $)) (-15 -2249 ($ $)) (-15 -2389 ((-713) $)) (-15 -2491 ($ $)) (IF (|has| $ (-6 -4256)) (PROGN (-15 -2162 ($ $ $)) (-15 -2162 ($ $ |t#1|)) (-15 -3385 ($ $)) (-15 -2207 (|t#1| $ |t#1|)) (-15 -1429 (|t#1| $ "first" |t#1|)) (-15 -2914 ($ $ $)) (-15 -1429 ($ $ "rest" $)) (-15 -1455 (|t#1| $ |t#1|)) (-15 -1429 (|t#1| $ "last" |t#1|)) (-15 -3078 ($ $ (-525)))) |%noBranch|)))
+(((-33) . T) ((-97) |has| |#1| (-1020)) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-566 (-798)))) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-464 |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-942 |#1|) . T) ((-1020) |has| |#1| (-1020)) ((-1127) . T))
+((-2694 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1162 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2694 (|#4| (-1 |#2| |#1|) |#3|))) (-977) (-977) (-1164 |#1|) (-1164 |#2|)) (T -1162))
+((-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-977)) (-4 *6 (-977)) (-4 *2 (-1164 *6)) (-5 *1 (-1162 *5 *6 *4 *2)) (-4 *4 (-1164 *5)))))
+(-10 -7 (-15 -2694 (|#4| (-1 |#2| |#1|) |#3|)))
+((-1989 (((-108) $) 15)) (-2351 (($ $) 92)) (-1603 (($ $) 68)) (-2320 (($ $) 88)) (-1569 (($ $) 64)) (-2382 (($ $) 96)) (-2193 (($ $) 72)) (-1415 (($ $) 62)) (-1250 (($ $) 60)) (-2396 (($ $) 98)) (-2209 (($ $) 74)) (-2367 (($ $) 94)) (-2176 (($ $) 70)) (-2335 (($ $) 90)) (-1584 (($ $) 66)) (-1270 (((-798) $) 48) (($ (-525)) NIL) (($ (-385 (-525))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2438 (($ $) 104)) (-2257 (($ $) 80)) (-2410 (($ $) 100)) (-2226 (($ $) 76)) (-2464 (($ $) 108)) (-2287 (($ $) 84)) (-2687 (($ $) 110)) (-2303 (($ $) 86)) (-2450 (($ $) 106)) (-2273 (($ $) 82)) (-2424 (($ $) 102)) (-2242 (($ $) 78)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-385 (-525))) 58)))
+(((-1163 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -1603 (|#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -2193 (|#1| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -2273 (|#1| |#1|)) (-15 -2303 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2226 (|#1| |#1|)) (-15 -2257 (|#1| |#1|)) (-15 -2335 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -2687 (|#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -2438 (|#1| |#1|)) (-15 -1415 (|#1| |#1|)) (-15 -1250 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1270 (|#1| |#2|)) (-15 -1270 (|#1| |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -1270 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856))) (-15 -1989 ((-108) |#1|)) (-15 -1270 ((-798) |#1|))) (-1164 |#2|) (-977)) (T -1163))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-385 (-525)))) (-15 -1603 (|#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -2193 (|#1| |#1|)) (-15 -2209 (|#1| |#1|)) (-15 -2176 (|#1| |#1|)) (-15 -1584 (|#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -2273 (|#1| |#1|)) (-15 -2303 (|#1| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2226 (|#1| |#1|)) (-15 -2257 (|#1| |#1|)) (-15 -2335 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2396 (|#1| |#1|)) (-15 -2382 (|#1| |#1|)) (-15 -2320 (|#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -2687 (|#1| |#1|)) (-15 -2464 (|#1| |#1|)) (-15 -2410 (|#1| |#1|)) (-15 -2438 (|#1| |#1|)) (-15 -1415 (|#1| |#1|)) (-15 -1250 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1270 (|#1| |#2|)) (-15 -1270 (|#1| |#1|)) (-15 -1270 (|#1| (-385 (-525)))) (-15 -1270 (|#1| (-525))) (-15 ** (|#1| |#1| (-713))) (-15 ** (|#1| |#1| (-856))) (-15 -1989 ((-108) |#1|)) (-15 -1270 ((-798) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2383 (((-592 (-1005)) $) 74)) (-2577 (((-1091) $) 103)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 51 (|has| |#1| (-517)))) (-3711 (($ $) 52 (|has| |#1| (-517)))) (-3380 (((-108) $) 54 (|has| |#1| (-517)))) (-3642 (($ $ (-713)) 98) (($ $ (-713) (-713)) 97)) (-4192 (((-1072 (-2 (|:| |k| (-713)) (|:| |c| |#1|))) $) 105)) (-2351 (($ $) 135 (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) 118 (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) 19)) (-2211 (($ $) 117 (|has| |#1| (-37 (-385 (-525)))))) (-2320 (($ $) 134 (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) 119 (|has| |#1| (-37 (-385 (-525)))))) (-2307 (($ (-1072 (-2 (|:| |k| (-713)) (|:| |c| |#1|)))) 155) (($ (-1072 |#1|)) 153)) (-2382 (($ $) 133 (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) 120 (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) 17 T CONST)) (-2571 (($ $) 60)) (-3762 (((-3 $ "failed") $) 34)) (-3140 (($ $) 152)) (-4161 (((-887 |#1|) $ (-713)) 150) (((-887 |#1|) $ (-713) (-713)) 149)) (-2911 (((-108) $) 73)) (-1535 (($) 145 (|has| |#1| (-37 (-385 (-525)))))) (-3973 (((-713) $) 100) (((-713) $ (-713)) 99)) (-1985 (((-108) $) 31)) (-3220 (($ $ (-525)) 116 (|has| |#1| (-37 (-385 (-525)))))) (-3073 (($ $ (-856)) 101)) (-2615 (($ (-1 |#1| (-525)) $) 151)) (-1788 (((-108) $) 62)) (-2352 (($ |#1| (-713)) 61) (($ $ (-1005) (-713)) 76) (($ $ (-592 (-1005)) (-592 (-713))) 75)) (-2694 (($ (-1 |#1| |#1|) $) 63)) (-1415 (($ $) 142 (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) 65)) (-2548 ((|#1| $) 66)) (-3451 (((-1074) $) 9)) (-2650 (($ $) 147 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1091)) 146 (-3279 (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-893)) (|has| |#1| (-1113)) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-15 -2383 ((-592 (-1091)) |#1|))) (|has| |#1| (-15 -2650 (|#1| |#1| (-1091)))) (|has| |#1| (-37 (-385 (-525)))))))) (-2012 (((-1038) $) 10)) (-2182 (($ $ (-713)) 95)) (-1680 (((-3 $ "failed") $ $) 50 (|has| |#1| (-517)))) (-1250 (($ $) 143 (|has| |#1| (-37 (-385 (-525)))))) (-2602 (((-1072 |#1|) $ |#1|) 94 (|has| |#1| (-15 ** (|#1| |#1| (-713)))))) (-3410 ((|#1| $ (-713)) 104) (($ $ $) 81 (|has| (-713) (-1032)))) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) 89 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1091) (-713)) 88 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-592 (-1091))) 87 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1091)) 86 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-713)) 84 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 82 (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-1587 (((-713) $) 64)) (-2396 (($ $) 132 (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) 121 (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) 131 (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) 122 (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) 130 (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) 123 (|has| |#1| (-37 (-385 (-525)))))) (-3577 (($ $) 72)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ (-385 (-525))) 57 (|has| |#1| (-37 (-385 (-525))))) (($ $) 49 (|has| |#1| (-517))) (($ |#1|) 47 (|has| |#1| (-160)))) (-1562 (((-1072 |#1|) $) 154)) (-3468 ((|#1| $ (-713)) 59)) (-3425 (((-3 $ "failed") $) 48 (|has| |#1| (-136)))) (-2104 (((-713)) 29)) (-3144 ((|#1| $) 102)) (-2438 (($ $) 141 (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) 129 (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) 53 (|has| |#1| (-517)))) (-2410 (($ $) 140 (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) 128 (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) 139 (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) 127 (|has| |#1| (-37 (-385 (-525)))))) (-1369 ((|#1| $ (-713)) 96 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-713)))) (|has| |#1| (-15 -1270 (|#1| (-1091))))))) (-2687 (($ $) 138 (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) 126 (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) 137 (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) 125 (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) 136 (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) 124 (|has| |#1| (-37 (-385 (-525)))))) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-2093 (($ $ (-592 (-1091)) (-592 (-713))) 93 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1091) (-713)) 92 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-592 (-1091))) 91 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-1091)) 90 (-12 (|has| |#1| (-835 (-1091))) (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (($ $ (-713)) 85 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 83 (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-3994 (((-108) $ $) 6)) (-4100 (($ $ |#1|) 58 (|has| |#1| (-341)))) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ |#1|) 148 (|has| |#1| (-341))) (($ $ $) 144 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 115 (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 68) (($ |#1| $) 67) (($ (-385 (-525)) $) 56 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) 55 (|has| |#1| (-37 (-385 (-525)))))))
+(((-1164 |#1|) (-131) (-977)) (T -1164))
+((-2307 (*1 *1 *2) (-12 (-5 *2 (-1072 (-2 (|:| |k| (-713)) (|:| |c| *3)))) (-4 *3 (-977)) (-4 *1 (-1164 *3)))) (-1562 (*1 *2 *1) (-12 (-4 *1 (-1164 *3)) (-4 *3 (-977)) (-5 *2 (-1072 *3)))) (-2307 (*1 *1 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-4 *1 (-1164 *3)))) (-3140 (*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-977)))) (-2615 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1164 *3)) (-4 *3 (-977)))) (-4161 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-1164 *4)) (-4 *4 (-977)) (-5 *2 (-887 *4)))) (-4161 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-4 *1 (-1164 *4)) (-4 *4 (-977)) (-5 *2 (-887 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-977)) (-4 *2 (-341)))) (-2650 (*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525)))))) (-2650 (*1 *1 *1 *2) (-3279 (-12 (-5 *2 (-1091)) (-4 *1 (-1164 *3)) (-4 *3 (-977)) (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1113)) (-4 *3 (-37 (-385 (-525)))))) (-12 (-5 *2 (-1091)) (-4 *1 (-1164 *3)) (-4 *3 (-977)) (-12 (|has| *3 (-15 -2383 ((-592 (-1091)) *3))) (|has| *3 (-15 -2650 (*3 *3 (-1091)))) (-4 *3 (-37 (-385 (-525)))))))))
+(-13 (-1151 |t#1| (-713)) (-10 -8 (-15 -2307 ($ (-1072 (-2 (|:| |k| (-713)) (|:| |c| |t#1|))))) (-15 -1562 ((-1072 |t#1|) $)) (-15 -2307 ($ (-1072 |t#1|))) (-15 -3140 ($ $)) (-15 -2615 ($ (-1 |t#1| (-525)) $)) (-15 -4161 ((-887 |t#1|) $ (-713))) (-15 -4161 ((-887 |t#1|) $ (-713) (-713))) (IF (|has| |t#1| (-341)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-385 (-525)))) (PROGN (-15 -2650 ($ $)) (IF (|has| |t#1| (-15 -2650 (|t#1| |t#1| (-1091)))) (IF (|has| |t#1| (-15 -2383 ((-592 (-1091)) |t#1|))) (-15 -2650 ($ $ (-1091))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1113)) (IF (|has| |t#1| (-893)) (IF (|has| |t#1| (-29 (-525))) (-15 -2650 ($ $ (-1091))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-934)) (-6 (-1113))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-713)) . T) ((-25) . T) ((-37 #1=(-385 (-525))) |has| |#1| (-37 (-385 (-525)))) ((-37 |#1|) |has| |#1| (-160)) ((-37 $) |has| |#1| (-517)) ((-34) |has| |#1| (-37 (-385 (-525)))) ((-91) |has| |#1| (-37 (-385 (-525)))) ((-97) . T) ((-107 #1# #1#) |has| |#1| (-37 (-385 (-525)))) ((-107 |#1| |#1|) . T) ((-107 $ $) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-126) . T) ((-136) |has| |#1| (-136)) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-213) |has| |#1| (-15 * (|#1| (-713) |#1|))) ((-263) |has| |#1| (-37 (-385 (-525)))) ((-265 $ $) |has| (-713) (-1032)) ((-269) |has| |#1| (-517)) ((-466) |has| |#1| (-37 (-385 (-525)))) ((-517) |has| |#1| (-517)) ((-594 #1#) |has| |#1| (-37 (-385 (-525)))) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #1#) |has| |#1| (-37 (-385 (-525)))) ((-660 |#1|) |has| |#1| (-160)) ((-660 $) |has| |#1| (-517)) ((-669) . T) ((-835 (-1091)) -12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091)))) ((-906 |#1| #0# (-1005)) . T) ((-934) |has| |#1| (-37 (-385 (-525)))) ((-983 #1#) |has| |#1| (-37 (-385 (-525)))) ((-983 |#1|) . T) ((-983 $) -3279 (|has| |#1| (-517)) (|has| |#1| (-160))) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1113) |has| |#1| (-37 (-385 (-525)))) ((-1116) |has| |#1| (-37 (-385 (-525)))) ((-1151 |#1| #0#) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-2383 (((-592 (-1005)) $) NIL)) (-2577 (((-1091) $) 87)) (-2131 (((-1146 |#2| |#1|) $ (-713)) 73)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) NIL (|has| |#1| (-517)))) (-3711 (($ $) NIL (|has| |#1| (-517)))) (-3380 (((-108) $) 137 (|has| |#1| (-517)))) (-3642 (($ $ (-713)) 122) (($ $ (-713) (-713)) 124)) (-4192 (((-1072 (-2 (|:| |k| (-713)) (|:| |c| |#1|))) $) 42)) (-2351 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1603 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1342 (((-3 $ "failed") $ $) NIL)) (-2211 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2320 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1569 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2307 (($ (-1072 (-2 (|:| |k| (-713)) (|:| |c| |#1|)))) 53) (($ (-1072 |#1|)) NIL)) (-2382 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2193 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2305 (($) NIL T CONST)) (-3045 (($ $) 128)) (-2571 (($ $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-3140 (($ $) 135)) (-4161 (((-887 |#1|) $ (-713)) 63) (((-887 |#1|) $ (-713) (-713)) 65)) (-2911 (((-108) $) NIL)) (-1535 (($) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3973 (((-713) $) NIL) (((-713) $ (-713)) NIL)) (-1985 (((-108) $) NIL)) (-1735 (($ $) 112)) (-3220 (($ $ (-525)) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3650 (($ (-525) (-525) $) 130)) (-3073 (($ $ (-856)) 134)) (-2615 (($ (-1 |#1| (-525)) $) 106)) (-1788 (((-108) $) NIL)) (-2352 (($ |#1| (-713)) 15) (($ $ (-1005) (-713)) NIL) (($ $ (-592 (-1005)) (-592 (-713))) NIL)) (-2694 (($ (-1 |#1| |#1|) $) 94)) (-1415 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2538 (($ $) NIL)) (-2548 ((|#1| $) NIL)) (-3451 (((-1074) $) NIL)) (-1225 (($ $) 110)) (-1389 (($ $) 108)) (-1254 (($ (-525) (-525) $) 132)) (-2650 (($ $) 145 (|has| |#1| (-37 (-385 (-525))))) (($ $ (-1091)) 151 (-3279 (-12 (|has| |#1| (-15 -2650 (|#1| |#1| (-1091)))) (|has| |#1| (-15 -2383 ((-592 (-1091)) |#1|))) (|has| |#1| (-37 (-385 (-525))))) (-12 (|has| |#1| (-29 (-525))) (|has| |#1| (-37 (-385 (-525)))) (|has| |#1| (-893)) (|has| |#1| (-1113))))) (($ $ (-1169 |#2|)) 146 (|has| |#1| (-37 (-385 (-525)))))) (-2012 (((-1038) $) NIL)) (-1909 (($ $ (-525) (-525)) 116)) (-2182 (($ $ (-713)) 118)) (-1680 (((-3 $ "failed") $ $) NIL (|has| |#1| (-517)))) (-1250 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2655 (($ $) 114)) (-2602 (((-1072 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-713)))))) (-3410 ((|#1| $ (-713)) 91) (($ $ $) 126 (|has| (-713) (-1032)))) (-2523 (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091)) 103 (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $ (-1169 |#2|)) 99)) (-1587 (((-713) $) NIL)) (-2396 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2209 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2367 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2176 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2335 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1584 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3577 (($ $) 120)) (-1270 (((-798) $) NIL) (($ (-525)) 24) (($ (-385 (-525))) 143 (|has| |#1| (-37 (-385 (-525))))) (($ $) NIL (|has| |#1| (-517))) (($ |#1|) 23 (|has| |#1| (-160))) (($ (-1146 |#2| |#1|)) 80) (($ (-1169 |#2|)) 20)) (-1562 (((-1072 |#1|) $) NIL)) (-3468 ((|#1| $ (-713)) 90)) (-3425 (((-3 $ "failed") $) NIL (|has| |#1| (-136)))) (-2104 (((-713)) NIL)) (-3144 ((|#1| $) 88)) (-2438 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2257 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-3959 (((-108) $ $) NIL (|has| |#1| (-517)))) (-2410 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2226 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2464 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2287 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1369 ((|#1| $ (-713)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-713)))) (|has| |#1| (-15 -1270 (|#1| (-1091))))))) (-2687 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2303 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2450 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2273 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2424 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-2242 (($ $) NIL (|has| |#1| (-37 (-385 (-525)))))) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 17 T CONST)) (-3363 (($) 13 T CONST)) (-2093 (($ $ (-592 (-1091)) (-592 (-713))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091) (-713)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-592 (-1091))) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-1091)) NIL (-12 (|has| |#1| (-15 * (|#1| (-713) |#1|))) (|has| |#1| (-835 (-1091))))) (($ $ (-713)) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-713) |#1|))))) (-3994 (((-108) $ $) NIL)) (-4100 (($ $ |#1|) NIL (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) 102)) (-4080 (($ $ $) 18)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL) (($ $ |#1|) 140 (|has| |#1| (-341))) (($ $ $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-385 (-525)) $) NIL (|has| |#1| (-37 (-385 (-525))))) (($ $ (-385 (-525))) NIL (|has| |#1| (-37 (-385 (-525)))))))
+(((-1165 |#1| |#2| |#3|) (-13 (-1164 |#1|) (-10 -8 (-15 -1270 ($ (-1146 |#2| |#1|))) (-15 -2131 ((-1146 |#2| |#1|) $ (-713))) (-15 -1270 ($ (-1169 |#2|))) (-15 -2523 ($ $ (-1169 |#2|))) (-15 -1389 ($ $)) (-15 -1225 ($ $)) (-15 -1735 ($ $)) (-15 -2655 ($ $)) (-15 -1909 ($ $ (-525) (-525))) (-15 -3045 ($ $)) (-15 -3650 ($ (-525) (-525) $)) (-15 -1254 ($ (-525) (-525) $)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2650 ($ $ (-1169 |#2|))) |%noBranch|))) (-977) (-1091) |#1|) (T -1165))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-1146 *4 *3)) (-4 *3 (-977)) (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-1165 *3 *4 *5)))) (-2131 (*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1146 *5 *4)) (-5 *1 (-1165 *4 *5 *6)) (-4 *4 (-977)) (-14 *5 (-1091)) (-14 *6 *4))) (-1270 (*1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-2523 (*1 *1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-977)) (-14 *5 *3))) (-1389 (*1 *1 *1) (-12 (-5 *1 (-1165 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1091)) (-14 *4 *2))) (-1225 (*1 *1 *1) (-12 (-5 *1 (-1165 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1091)) (-14 *4 *2))) (-1735 (*1 *1 *1) (-12 (-5 *1 (-1165 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1091)) (-14 *4 *2))) (-2655 (*1 *1 *1) (-12 (-5 *1 (-1165 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1091)) (-14 *4 *2))) (-1909 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-1091)) (-14 *5 *3))) (-3045 (*1 *1 *1) (-12 (-5 *1 (-1165 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1091)) (-14 *4 *2))) (-3650 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-1091)) (-14 *5 *3))) (-1254 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-1091)) (-14 *5 *3))) (-2650 (*1 *1 *1 *2) (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
+(-13 (-1164 |#1|) (-10 -8 (-15 -1270 ($ (-1146 |#2| |#1|))) (-15 -2131 ((-1146 |#2| |#1|) $ (-713))) (-15 -1270 ($ (-1169 |#2|))) (-15 -2523 ($ $ (-1169 |#2|))) (-15 -1389 ($ $)) (-15 -1225 ($ $)) (-15 -1735 ($ $)) (-15 -2655 ($ $)) (-15 -1909 ($ $ (-525) (-525))) (-15 -3045 ($ $)) (-15 -3650 ($ (-525) (-525) $)) (-15 -1254 ($ (-525) (-525) $)) (IF (|has| |#1| (-37 (-385 (-525)))) (-15 -2650 ($ $ (-1169 |#2|))) |%noBranch|)))
+((-4204 (((-1 (-1072 |#1|) (-592 (-1072 |#1|))) (-1 |#2| (-592 |#2|))) 24)) (-2431 (((-1 (-1072 |#1|) (-1072 |#1|) (-1072 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-4020 (((-1 (-1072 |#1|) (-1072 |#1|)) (-1 |#2| |#2|)) 13)) (-1745 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3092 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-1915 ((|#2| (-1 |#2| (-592 |#2|)) (-592 |#1|)) 54)) (-1835 (((-592 |#2|) (-592 |#1|) (-592 (-1 |#2| (-592 |#2|)))) 61)) (-3249 ((|#2| |#2| |#2|) 43)))
+(((-1166 |#1| |#2|) (-10 -7 (-15 -4020 ((-1 (-1072 |#1|) (-1072 |#1|)) (-1 |#2| |#2|))) (-15 -2431 ((-1 (-1072 |#1|) (-1072 |#1|) (-1072 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4204 ((-1 (-1072 |#1|) (-592 (-1072 |#1|))) (-1 |#2| (-592 |#2|)))) (-15 -3249 (|#2| |#2| |#2|)) (-15 -3092 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1745 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1915 (|#2| (-1 |#2| (-592 |#2|)) (-592 |#1|))) (-15 -1835 ((-592 |#2|) (-592 |#1|) (-592 (-1 |#2| (-592 |#2|)))))) (-37 (-385 (-525))) (-1164 |#1|)) (T -1166))
+((-1835 (*1 *2 *3 *4) (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 (-1 *6 (-592 *6)))) (-4 *5 (-37 (-385 (-525)))) (-4 *6 (-1164 *5)) (-5 *2 (-592 *6)) (-5 *1 (-1166 *5 *6)))) (-1915 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-592 *2))) (-5 *4 (-592 *5)) (-4 *5 (-37 (-385 (-525)))) (-4 *2 (-1164 *5)) (-5 *1 (-1166 *5 *2)))) (-1745 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1164 *4)) (-5 *1 (-1166 *4 *2)) (-4 *4 (-37 (-385 (-525)))))) (-3092 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1164 *4)) (-5 *1 (-1166 *4 *2)) (-4 *4 (-37 (-385 (-525)))))) (-3249 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1166 *3 *2)) (-4 *2 (-1164 *3)))) (-4204 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-592 *5))) (-4 *5 (-1164 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1072 *4) (-592 (-1072 *4)))) (-5 *1 (-1166 *4 *5)))) (-2431 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1164 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1072 *4) (-1072 *4) (-1072 *4))) (-5 *1 (-1166 *4 *5)))) (-4020 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1164 *4)) (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1072 *4) (-1072 *4))) (-5 *1 (-1166 *4 *5)))))
+(-10 -7 (-15 -4020 ((-1 (-1072 |#1|) (-1072 |#1|)) (-1 |#2| |#2|))) (-15 -2431 ((-1 (-1072 |#1|) (-1072 |#1|) (-1072 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4204 ((-1 (-1072 |#1|) (-592 (-1072 |#1|))) (-1 |#2| (-592 |#2|)))) (-15 -3249 (|#2| |#2| |#2|)) (-15 -3092 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1745 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1915 (|#2| (-1 |#2| (-592 |#2|)) (-592 |#1|))) (-15 -1835 ((-592 |#2|) (-592 |#1|) (-592 (-1 |#2| (-592 |#2|))))))
+((-1379 ((|#2| |#4| (-713)) 30)) (-4232 ((|#4| |#2|) 25)) (-2668 ((|#4| (-385 |#2|)) 52 (|has| |#1| (-517)))) (-1367 (((-1 |#4| (-592 |#4|)) |#3|) 46)))
+(((-1167 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4232 (|#4| |#2|)) (-15 -1379 (|#2| |#4| (-713))) (-15 -1367 ((-1 |#4| (-592 |#4|)) |#3|)) (IF (|has| |#1| (-517)) (-15 -2668 (|#4| (-385 |#2|))) |%noBranch|)) (-977) (-1149 |#1|) (-602 |#2|) (-1164 |#1|)) (T -1167))
+((-2668 (*1 *2 *3) (-12 (-5 *3 (-385 *5)) (-4 *5 (-1149 *4)) (-4 *4 (-517)) (-4 *4 (-977)) (-4 *2 (-1164 *4)) (-5 *1 (-1167 *4 *5 *6 *2)) (-4 *6 (-602 *5)))) (-1367 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *5 (-1149 *4)) (-5 *2 (-1 *6 (-592 *6))) (-5 *1 (-1167 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-1164 *4)))) (-1379 (*1 *2 *3 *4) (-12 (-5 *4 (-713)) (-4 *5 (-977)) (-4 *2 (-1149 *5)) (-5 *1 (-1167 *5 *2 *6 *3)) (-4 *6 (-602 *2)) (-4 *3 (-1164 *5)))) (-4232 (*1 *2 *3) (-12 (-4 *4 (-977)) (-4 *3 (-1149 *4)) (-4 *2 (-1164 *4)) (-5 *1 (-1167 *4 *3 *5 *2)) (-4 *5 (-602 *3)))))
+(-10 -7 (-15 -4232 (|#4| |#2|)) (-15 -1379 (|#2| |#4| (-713))) (-15 -1367 ((-1 |#4| (-592 |#4|)) |#3|)) (IF (|has| |#1| (-517)) (-15 -2668 (|#4| (-385 |#2|))) |%noBranch|))
+NIL
+(((-1168) (-131)) (T -1168))
+NIL
+(-13 (-10 -7 (-6 -1332)))
+((-1260 (((-108) $ $) NIL)) (-2577 (((-1091)) 12)) (-3451 (((-1074) $) 17)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 11) (((-1091) $) 8)) (-3994 (((-108) $ $) 14)))
+(((-1169 |#1|) (-13 (-1020) (-566 (-1091)) (-10 -8 (-15 -1270 ((-1091) $)) (-15 -2577 ((-1091))))) (-1091)) (T -1169))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1169 *3)) (-14 *3 (-1091)))) (-2577 (*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1169 *3)) (-14 *3 (-1091)))))
+(-13 (-1020) (-566 (-1091)) (-10 -8 (-15 -1270 ((-1091) $)) (-15 -2577 ((-1091)))))
+((-2708 (($ (-713)) 18)) (-1430 (((-632 |#2|) $ $) 40)) (-1325 ((|#2| $) 48)) (-2023 ((|#2| $) 47)) (-1809 ((|#2| $ $) 35)) (-3838 (($ $ $) 44)) (-4090 (($ $) 22) (($ $ $) 28)) (-4080 (($ $ $) 15)) (* (($ (-525) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
+(((-1170 |#1| |#2|) (-10 -8 (-15 -1325 (|#2| |#1|)) (-15 -2023 (|#2| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -1430 ((-632 |#2|) |#1| |#1|)) (-15 -1809 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 -2708 (|#1| (-713))) (-15 -4080 (|#1| |#1| |#1|))) (-1171 |#2|) (-1127)) (T -1170))
+NIL
+(-10 -8 (-15 -1325 (|#2| |#1|)) (-15 -2023 (|#2| |#1|)) (-15 -3838 (|#1| |#1| |#1|)) (-15 -1430 ((-632 |#2|) |#1| |#1|)) (-15 -1809 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-525) |#1|)) (-15 -4090 (|#1| |#1| |#1|)) (-15 -4090 (|#1| |#1|)) (-15 -2708 (|#1| (-713))) (-15 -4080 (|#1| |#1| |#1|)))
+((-1260 (((-108) $ $) 19 (|has| |#1| (-1020)))) (-2708 (($ (-713)) 112 (|has| |#1| (-23)))) (-2782 (((-1178) $ (-525) (-525)) 40 (|has| $ (-6 -4256)))) (-2151 (((-108) (-1 (-108) |#1| |#1|) $) 98) (((-108) $) 92 (|has| |#1| (-789)))) (-2549 (($ (-1 (-108) |#1| |#1|) $) 89 (|has| $ (-6 -4256))) (($ $) 88 (-12 (|has| |#1| (-789)) (|has| $ (-6 -4256))))) (-2855 (($ (-1 (-108) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-789)))) (-3330 (((-108) $ (-713)) 8)) (-1429 ((|#1| $ (-525) |#1|) 52 (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) 58 (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) |#1|) $) 75 (|has| $ (-6 -4255)))) (-2305 (($) 7 T CONST)) (-3559 (($ $) 90 (|has| $ (-6 -4256)))) (-3620 (($ $) 100)) (-3137 (($ $) 78 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-1614 (($ |#1| $) 77 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) (($ (-1 (-108) |#1|) $) 74 (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4255)))) (-2632 ((|#1| $ (-525) |#1|) 53 (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) 51)) (-1916 (((-525) (-1 (-108) |#1|) $) 97) (((-525) |#1| $) 96 (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) 95 (|has| |#1| (-1020)))) (-3702 (((-592 |#1|) $) 30 (|has| $ (-6 -4255)))) (-1430 (((-632 |#1|) $ $) 105 (|has| |#1| (-977)))) (-3489 (($ (-713) |#1|) 69)) (-2482 (((-108) $ (-713)) 9)) (-2710 (((-525) $) 43 (|has| (-525) (-789)))) (-2371 (($ $ $) 87 (|has| |#1| (-789)))) (-3743 (($ (-1 (-108) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-789)))) (-1749 (((-592 |#1|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) 27 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3478 (((-525) $) 44 (|has| (-525) (-789)))) (-2535 (($ $ $) 86 (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1325 ((|#1| $) 102 (-12 (|has| |#1| (-977)) (|has| |#1| (-934))))) (-2957 (((-108) $ (-713)) 10)) (-2023 ((|#1| $) 103 (-12 (|has| |#1| (-977)) (|has| |#1| (-934))))) (-3451 (((-1074) $) 22 (|has| |#1| (-1020)))) (-2683 (($ |#1| $ (-525)) 60) (($ $ $ (-525)) 59)) (-4142 (((-592 (-525)) $) 46)) (-3845 (((-108) (-525) $) 47)) (-2012 (((-1038) $) 21 (|has| |#1| (-1020)))) (-3110 ((|#1| $) 42 (|has| (-525) (-789)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) 71)) (-2042 (($ $ |#1|) 41 (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#1|) $) 32 (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) 26 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) 25 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) 23 (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) 14)) (-4101 (((-108) |#1| $) 45 (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) 48)) (-2013 (((-108) $) 11)) (-2718 (($) 12)) (-3410 ((|#1| $ (-525) |#1|) 50) ((|#1| $ (-525)) 49) (($ $ (-1140 (-525))) 63)) (-1809 ((|#1| $ $) 106 (|has| |#1| (-977)))) (-3157 (($ $ (-525)) 62) (($ $ (-1140 (-525))) 61)) (-3838 (($ $ $) 104 (|has| |#1| (-977)))) (-2040 (((-713) (-1 (-108) |#1|) $) 31 (|has| $ (-6 -4255))) (((-713) |#1| $) 28 (-12 (|has| |#1| (-1020)) (|has| $ (-6 -4255))))) (-3216 (($ $ $ (-525)) 91 (|has| $ (-6 -4256)))) (-1451 (($ $) 13)) (-2749 (((-501) $) 79 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 70)) (-2014 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-592 $)) 65)) (-1270 (((-798) $) 18 (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) 33 (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) 84 (|has| |#1| (-789)))) (-4026 (((-108) $ $) 83 (|has| |#1| (-789)))) (-3994 (((-108) $ $) 20 (|has| |#1| (-1020)))) (-4037 (((-108) $ $) 85 (|has| |#1| (-789)))) (-4017 (((-108) $ $) 82 (|has| |#1| (-789)))) (-4090 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-4080 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-525) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-669))) (($ $ |#1|) 107 (|has| |#1| (-669)))) (-3596 (((-713) $) 6 (|has| $ (-6 -4255)))))
+(((-1171 |#1|) (-131) (-1127)) (T -1171))
+((-4080 (*1 *1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-25)))) (-2708 (*1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1171 *3)) (-4 *3 (-23)) (-4 *3 (-1127)))) (-4090 (*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-21)))) (-4090 (*1 *1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-4 *1 (-1171 *3)) (-4 *3 (-1127)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-669)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-669)))) (-1809 (*1 *2 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-977)))) (-1430 (*1 *2 *1 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-1127)) (-4 *3 (-977)) (-5 *2 (-632 *3)))) (-3838 (*1 *1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-977)))) (-2023 (*1 *2 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-934)) (-4 *2 (-977)))) (-1325 (*1 *2 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-934)) (-4 *2 (-977)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4080 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -2708 ($ (-713))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4090 ($ $)) (-15 -4090 ($ $ $)) (-15 * ($ (-525) $))) |%noBranch|) (IF (|has| |t#1| (-669)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-977)) (PROGN (-15 -1809 (|t#1| $ $)) (-15 -1430 ((-632 |t#1|) $ $)) (-15 -3838 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-934)) (IF (|has| |t#1| (-977)) (PROGN (-15 -2023 (|t#1| $)) (-15 -1325 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-33) . T) ((-97) -3279 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-566 (-798)) -3279 (|has| |#1| (-1020)) (|has| |#1| (-789)) (|has| |#1| (-566 (-798)))) ((-142 |#1|) . T) ((-567 (-501)) |has| |#1| (-567 (-501))) ((-265 #0=(-525) |#1|) . T) ((-267 #0# |#1|) . T) ((-288 |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-351 |#1|) . T) ((-464 |#1|) . T) ((-558 #0# |#1|) . T) ((-486 |#1| |#1|) -12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))) ((-597 |#1|) . T) ((-19 |#1|) . T) ((-789) |has| |#1| (-789)) ((-1020) -3279 (|has| |#1| (-1020)) (|has| |#1| (-789))) ((-1127) . T))
+((-3123 (((-1173 |#2|) (-1 |#2| |#1| |#2|) (-1173 |#1|) |#2|) 13)) (-3503 ((|#2| (-1 |#2| |#1| |#2|) (-1173 |#1|) |#2|) 15)) (-2694 (((-3 (-1173 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1173 |#1|)) 28) (((-1173 |#2|) (-1 |#2| |#1|) (-1173 |#1|)) 18)))
+(((-1172 |#1| |#2|) (-10 -7 (-15 -3123 ((-1173 |#2|) (-1 |#2| |#1| |#2|) (-1173 |#1|) |#2|)) (-15 -3503 (|#2| (-1 |#2| |#1| |#2|) (-1173 |#1|) |#2|)) (-15 -2694 ((-1173 |#2|) (-1 |#2| |#1|) (-1173 |#1|))) (-15 -2694 ((-3 (-1173 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1173 |#1|)))) (-1127) (-1127)) (T -1172))
+((-2694 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1173 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1173 *6)) (-5 *1 (-1172 *5 *6)))) (-2694 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1173 *5)) (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1173 *6)) (-5 *1 (-1172 *5 *6)))) (-3503 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1173 *5)) (-4 *5 (-1127)) (-4 *2 (-1127)) (-5 *1 (-1172 *5 *2)))) (-3123 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1173 *6)) (-4 *6 (-1127)) (-4 *5 (-1127)) (-5 *2 (-1173 *5)) (-5 *1 (-1172 *6 *5)))))
+(-10 -7 (-15 -3123 ((-1173 |#2|) (-1 |#2| |#1| |#2|) (-1173 |#1|) |#2|)) (-15 -3503 (|#2| (-1 |#2| |#1| |#2|) (-1173 |#1|) |#2|)) (-15 -2694 ((-1173 |#2|) (-1 |#2| |#1|) (-1173 |#1|))) (-15 -2694 ((-3 (-1173 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1173 |#1|))))
+((-1260 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-2708 (($ (-713)) NIL (|has| |#1| (-23)))) (-2512 (($ (-592 |#1|)) 9)) (-2782 (((-1178) $ (-525) (-525)) NIL (|has| $ (-6 -4256)))) (-2151 (((-108) (-1 (-108) |#1| |#1|) $) NIL) (((-108) $) NIL (|has| |#1| (-789)))) (-2549 (($ (-1 (-108) |#1| |#1|) $) NIL (|has| $ (-6 -4256))) (($ $) NIL (-12 (|has| $ (-6 -4256)) (|has| |#1| (-789))))) (-2855 (($ (-1 (-108) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-789)))) (-3330 (((-108) $ (-713)) NIL)) (-1429 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4256))) ((|#1| $ (-1140 (-525)) |#1|) NIL (|has| $ (-6 -4256)))) (-3826 (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2305 (($) NIL T CONST)) (-3559 (($ $) NIL (|has| $ (-6 -4256)))) (-3620 (($ $) NIL)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1614 (($ |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) (($ (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-3503 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4255))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4255)))) (-2632 ((|#1| $ (-525) |#1|) NIL (|has| $ (-6 -4256)))) (-2570 ((|#1| $ (-525)) NIL)) (-1916 (((-525) (-1 (-108) |#1|) $) NIL) (((-525) |#1| $) NIL (|has| |#1| (-1020))) (((-525) |#1| $ (-525)) NIL (|has| |#1| (-1020)))) (-3702 (((-592 |#1|) $) 15 (|has| $ (-6 -4255)))) (-1430 (((-632 |#1|) $ $) NIL (|has| |#1| (-977)))) (-3489 (($ (-713) |#1|) NIL)) (-2482 (((-108) $ (-713)) NIL)) (-2710 (((-525) $) NIL (|has| (-525) (-789)))) (-2371 (($ $ $) NIL (|has| |#1| (-789)))) (-3743 (($ (-1 (-108) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-789)))) (-1749 (((-592 |#1|) $) NIL (|has| $ (-6 -4255)))) (-2783 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3478 (((-525) $) NIL (|has| (-525) (-789)))) (-2535 (($ $ $) NIL (|has| |#1| (-789)))) (-2622 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1325 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-2957 (((-108) $ (-713)) NIL)) (-2023 ((|#1| $) NIL (-12 (|has| |#1| (-934)) (|has| |#1| (-977))))) (-3451 (((-1074) $) NIL (|has| |#1| (-1020)))) (-2683 (($ |#1| $ (-525)) NIL) (($ $ $ (-525)) NIL)) (-4142 (((-592 (-525)) $) NIL)) (-3845 (((-108) (-525) $) NIL)) (-2012 (((-1038) $) NIL (|has| |#1| (-1020)))) (-3110 ((|#1| $) NIL (|has| (-525) (-789)))) (-3207 (((-3 |#1| "failed") (-1 (-108) |#1|) $) NIL)) (-2042 (($ $ |#1|) NIL (|has| $ (-6 -4256)))) (-3006 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 (-273 |#1|))) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-273 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020)))) (($ $ (-592 |#1|) (-592 |#1|)) NIL (-12 (|has| |#1| (-288 |#1|)) (|has| |#1| (-1020))))) (-3428 (((-108) $ $) NIL)) (-4101 (((-108) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-1777 (((-592 |#1|) $) NIL)) (-2013 (((-108) $) NIL)) (-2718 (($) NIL)) (-3410 ((|#1| $ (-525) |#1|) NIL) ((|#1| $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-1809 ((|#1| $ $) NIL (|has| |#1| (-977)))) (-3157 (($ $ (-525)) NIL) (($ $ (-1140 (-525))) NIL)) (-3838 (($ $ $) NIL (|has| |#1| (-977)))) (-2040 (((-713) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255))) (((-713) |#1| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#1| (-1020))))) (-3216 (($ $ $ (-525)) NIL (|has| $ (-6 -4256)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) 19 (|has| |#1| (-567 (-501))))) (-1279 (($ (-592 |#1|)) 8)) (-2014 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-592 $)) NIL)) (-1270 (((-798) $) NIL (|has| |#1| (-566 (-798))))) (-3633 (((-108) (-1 (-108) |#1|) $) NIL (|has| $ (-6 -4255)))) (-4045 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4026 (((-108) $ $) NIL (|has| |#1| (-789)))) (-3994 (((-108) $ $) NIL (|has| |#1| (-1020)))) (-4037 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4017 (((-108) $ $) NIL (|has| |#1| (-789)))) (-4090 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-4080 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-525) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-669))) (($ $ |#1|) NIL (|has| |#1| (-669)))) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-1173 |#1|) (-13 (-1171 |#1|) (-10 -8 (-15 -2512 ($ (-592 |#1|))))) (-1127)) (T -1173))
+((-2512 (*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-5 *1 (-1173 *3)))))
+(-13 (-1171 |#1|) (-10 -8 (-15 -2512 ($ (-592 |#1|)))))
+((-1260 (((-108) $ $) NIL)) (-3704 (((-1074) $ (-1074)) 90) (((-1074) $ (-1074) (-1074)) 88) (((-1074) $ (-1074) (-592 (-1074))) 87)) (-3369 (($) 59)) (-1850 (((-1178) $ (-445) (-856)) 45)) (-4009 (((-1178) $ (-856) (-1074)) 73) (((-1178) $ (-856) (-809)) 74)) (-4185 (((-1178) $ (-856) (-357) (-357)) 48)) (-2844 (((-1178) $ (-1074)) 69)) (-3014 (((-1178) $ (-856) (-1074)) 78)) (-3561 (((-1178) $ (-856) (-357) (-357)) 49)) (-2216 (((-1178) $ (-856) (-856)) 46)) (-3684 (((-1178) $) 70)) (-1508 (((-1178) $ (-856) (-1074)) 77)) (-2201 (((-1178) $ (-445) (-856)) 31)) (-1649 (((-1178) $ (-856) (-1074)) 76)) (-3434 (((-592 (-242)) $) 23) (($ $ (-592 (-242))) 24)) (-1566 (((-1178) $ (-713) (-713)) 43)) (-2952 (($ $) 60) (($ (-445) (-592 (-242))) 61)) (-3451 (((-1074) $) NIL)) (-3423 (((-525) $) 38)) (-2012 (((-1038) $) NIL)) (-1715 (((-1173 (-3 (-445) "undefined")) $) 37)) (-3780 (((-1173 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -1649 (-525)) (|:| -2970 (-525)) (|:| |spline| (-525)) (|:| -3735 (-525)) (|:| |axesColor| (-809)) (|:| -4009 (-525)) (|:| |unitsColor| (-809)) (|:| |showing| (-525)))) $) 36)) (-3727 (((-1178) $ (-856) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-809) (-525) (-809) (-525)) 68)) (-2268 (((-592 (-878 (-205))) $) NIL)) (-4137 (((-445) $ (-856)) 33)) (-1995 (((-1178) $ (-713) (-713) (-856) (-856)) 40)) (-1854 (((-1178) $ (-1074)) 79)) (-2970 (((-1178) $ (-856) (-1074)) 75)) (-1270 (((-798) $) 85)) (-2849 (((-1178) $) 80)) (-3735 (((-1178) $ (-856) (-1074)) 71) (((-1178) $ (-856) (-809)) 72)) (-3994 (((-108) $ $) NIL)))
+(((-1174) (-13 (-1020) (-10 -8 (-15 -2268 ((-592 (-878 (-205))) $)) (-15 -3369 ($)) (-15 -2952 ($ $)) (-15 -3434 ((-592 (-242)) $)) (-15 -3434 ($ $ (-592 (-242)))) (-15 -2952 ($ (-445) (-592 (-242)))) (-15 -3727 ((-1178) $ (-856) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-809) (-525) (-809) (-525))) (-15 -3780 ((-1173 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -1649 (-525)) (|:| -2970 (-525)) (|:| |spline| (-525)) (|:| -3735 (-525)) (|:| |axesColor| (-809)) (|:| -4009 (-525)) (|:| |unitsColor| (-809)) (|:| |showing| (-525)))) $)) (-15 -1715 ((-1173 (-3 (-445) "undefined")) $)) (-15 -2844 ((-1178) $ (-1074))) (-15 -2201 ((-1178) $ (-445) (-856))) (-15 -4137 ((-445) $ (-856))) (-15 -3735 ((-1178) $ (-856) (-1074))) (-15 -3735 ((-1178) $ (-856) (-809))) (-15 -4009 ((-1178) $ (-856) (-1074))) (-15 -4009 ((-1178) $ (-856) (-809))) (-15 -1649 ((-1178) $ (-856) (-1074))) (-15 -1508 ((-1178) $ (-856) (-1074))) (-15 -2970 ((-1178) $ (-856) (-1074))) (-15 -1854 ((-1178) $ (-1074))) (-15 -2849 ((-1178) $)) (-15 -1995 ((-1178) $ (-713) (-713) (-856) (-856))) (-15 -3561 ((-1178) $ (-856) (-357) (-357))) (-15 -4185 ((-1178) $ (-856) (-357) (-357))) (-15 -3014 ((-1178) $ (-856) (-1074))) (-15 -1566 ((-1178) $ (-713) (-713))) (-15 -1850 ((-1178) $ (-445) (-856))) (-15 -2216 ((-1178) $ (-856) (-856))) (-15 -3704 ((-1074) $ (-1074))) (-15 -3704 ((-1074) $ (-1074) (-1074))) (-15 -3704 ((-1074) $ (-1074) (-592 (-1074)))) (-15 -3684 ((-1178) $)) (-15 -3423 ((-525) $)) (-15 -1270 ((-798) $))))) (T -1174))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1174)))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-592 (-878 (-205)))) (-5 *1 (-1174)))) (-3369 (*1 *1) (-5 *1 (-1174))) (-2952 (*1 *1 *1) (-5 *1 (-1174))) (-3434 (*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1174)))) (-3434 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1174)))) (-2952 (*1 *1 *2 *3) (-12 (-5 *2 (-445)) (-5 *3 (-592 (-242))) (-5 *1 (-1174)))) (-3727 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-856)) (-5 *4 (-205)) (-5 *5 (-525)) (-5 *6 (-809)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-3780 (*1 *2 *1) (-12 (-5 *2 (-1173 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -1649 (-525)) (|:| -2970 (-525)) (|:| |spline| (-525)) (|:| -3735 (-525)) (|:| |axesColor| (-809)) (|:| -4009 (-525)) (|:| |unitsColor| (-809)) (|:| |showing| (-525))))) (-5 *1 (-1174)))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-1173 (-3 (-445) "undefined"))) (-5 *1 (-1174)))) (-2844 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-2201 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-445)) (-5 *4 (-856)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-4137 (*1 *2 *1 *3) (-12 (-5 *3 (-856)) (-5 *2 (-445)) (-5 *1 (-1174)))) (-3735 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-3735 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-809)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-4009 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-4009 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-809)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-1649 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-1508 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-2970 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-1854 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1174)))) (-1995 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-713)) (-5 *4 (-856)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-3561 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-856)) (-5 *4 (-357)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-4185 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-856)) (-5 *4 (-357)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-3014 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-856)) (-5 *4 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-1566 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-1850 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-445)) (-5 *4 (-856)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-2216 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1178)) (-5 *1 (-1174)))) (-3704 (*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1174)))) (-3704 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1174)))) (-3704 (*1 *2 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-592 (-1074))) (-5 *1 (-1174)))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1174)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1174)))))
+(-13 (-1020) (-10 -8 (-15 -2268 ((-592 (-878 (-205))) $)) (-15 -3369 ($)) (-15 -2952 ($ $)) (-15 -3434 ((-592 (-242)) $)) (-15 -3434 ($ $ (-592 (-242)))) (-15 -2952 ($ (-445) (-592 (-242)))) (-15 -3727 ((-1178) $ (-856) (-205) (-205) (-205) (-205) (-525) (-525) (-525) (-525) (-809) (-525) (-809) (-525))) (-15 -3780 ((-1173 (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -1649 (-525)) (|:| -2970 (-525)) (|:| |spline| (-525)) (|:| -3735 (-525)) (|:| |axesColor| (-809)) (|:| -4009 (-525)) (|:| |unitsColor| (-809)) (|:| |showing| (-525)))) $)) (-15 -1715 ((-1173 (-3 (-445) "undefined")) $)) (-15 -2844 ((-1178) $ (-1074))) (-15 -2201 ((-1178) $ (-445) (-856))) (-15 -4137 ((-445) $ (-856))) (-15 -3735 ((-1178) $ (-856) (-1074))) (-15 -3735 ((-1178) $ (-856) (-809))) (-15 -4009 ((-1178) $ (-856) (-1074))) (-15 -4009 ((-1178) $ (-856) (-809))) (-15 -1649 ((-1178) $ (-856) (-1074))) (-15 -1508 ((-1178) $ (-856) (-1074))) (-15 -2970 ((-1178) $ (-856) (-1074))) (-15 -1854 ((-1178) $ (-1074))) (-15 -2849 ((-1178) $)) (-15 -1995 ((-1178) $ (-713) (-713) (-856) (-856))) (-15 -3561 ((-1178) $ (-856) (-357) (-357))) (-15 -4185 ((-1178) $ (-856) (-357) (-357))) (-15 -3014 ((-1178) $ (-856) (-1074))) (-15 -1566 ((-1178) $ (-713) (-713))) (-15 -1850 ((-1178) $ (-445) (-856))) (-15 -2216 ((-1178) $ (-856) (-856))) (-15 -3704 ((-1074) $ (-1074))) (-15 -3704 ((-1074) $ (-1074) (-1074))) (-15 -3704 ((-1074) $ (-1074) (-592 (-1074)))) (-15 -3684 ((-1178) $)) (-15 -3423 ((-525) $)) (-15 -1270 ((-798) $))))
+((-1260 (((-108) $ $) NIL)) (-3526 (((-1178) $ (-357)) 140) (((-1178) $ (-357) (-357) (-357)) 141)) (-3704 (((-1074) $ (-1074)) 148) (((-1074) $ (-1074) (-1074)) 146) (((-1074) $ (-1074) (-592 (-1074))) 145)) (-4150 (($) 50)) (-1214 (((-1178) $ (-357) (-357) (-357) (-357) (-357)) 116) (((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $) 114) (((-1178) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) 115) (((-1178) $ (-525) (-525) (-357) (-357) (-357)) 117) (((-1178) $ (-357) (-357)) 118) (((-1178) $ (-357) (-357) (-357)) 125)) (-3366 (((-357)) 97) (((-357) (-357)) 98)) (-3132 (((-357)) 92) (((-357) (-357)) 94)) (-1370 (((-357)) 95) (((-357) (-357)) 96)) (-1592 (((-357)) 101) (((-357) (-357)) 102)) (-2471 (((-357)) 99) (((-357) (-357)) 100)) (-4185 (((-1178) $ (-357) (-357)) 142)) (-2844 (((-1178) $ (-1074)) 126)) (-4130 (((-1051 (-205)) $) 51) (($ $ (-1051 (-205))) 52)) (-3761 (((-1178) $ (-1074)) 154)) (-2043 (((-1178) $ (-1074)) 155)) (-1318 (((-1178) $ (-357) (-357)) 124) (((-1178) $ (-525) (-525)) 139)) (-2216 (((-1178) $ (-856) (-856)) 132)) (-3684 (((-1178) $) 112)) (-3969 (((-1178) $ (-1074)) 153)) (-1446 (((-1178) $ (-1074)) 109)) (-3434 (((-592 (-242)) $) 53) (($ $ (-592 (-242))) 54)) (-1566 (((-1178) $ (-713) (-713)) 131)) (-2593 (((-1178) $ (-713) (-878 (-205))) 160)) (-3576 (($ $) 56) (($ (-1051 (-205)) (-1074)) 57) (($ (-1051 (-205)) (-592 (-242))) 58)) (-4056 (((-1178) $ (-357) (-357) (-357)) 106)) (-3451 (((-1074) $) NIL)) (-3423 (((-525) $) 103)) (-1206 (((-1178) $ (-357)) 143)) (-3261 (((-1178) $ (-357)) 158)) (-2012 (((-1038) $) NIL)) (-2116 (((-1178) $ (-357)) 157)) (-3791 (((-1178) $ (-1074)) 111)) (-1995 (((-1178) $ (-713) (-713) (-856) (-856)) 130)) (-1705 (((-1178) $ (-1074)) 108)) (-1854 (((-1178) $ (-1074)) 110)) (-1341 (((-1178) $ (-146) (-146)) 129)) (-1270 (((-798) $) 137)) (-2849 (((-1178) $) 113)) (-1855 (((-1178) $ (-1074)) 156)) (-3735 (((-1178) $ (-1074)) 107)) (-3994 (((-108) $ $) NIL)))
+(((-1175) (-13 (-1020) (-10 -8 (-15 -3132 ((-357))) (-15 -3132 ((-357) (-357))) (-15 -1370 ((-357))) (-15 -1370 ((-357) (-357))) (-15 -3366 ((-357))) (-15 -3366 ((-357) (-357))) (-15 -2471 ((-357))) (-15 -2471 ((-357) (-357))) (-15 -1592 ((-357))) (-15 -1592 ((-357) (-357))) (-15 -4150 ($)) (-15 -3576 ($ $)) (-15 -3576 ($ (-1051 (-205)) (-1074))) (-15 -3576 ($ (-1051 (-205)) (-592 (-242)))) (-15 -4130 ((-1051 (-205)) $)) (-15 -4130 ($ $ (-1051 (-205)))) (-15 -2593 ((-1178) $ (-713) (-878 (-205)))) (-15 -3434 ((-592 (-242)) $)) (-15 -3434 ($ $ (-592 (-242)))) (-15 -1566 ((-1178) $ (-713) (-713))) (-15 -2216 ((-1178) $ (-856) (-856))) (-15 -2844 ((-1178) $ (-1074))) (-15 -1995 ((-1178) $ (-713) (-713) (-856) (-856))) (-15 -1214 ((-1178) $ (-357) (-357) (-357) (-357) (-357))) (-15 -1214 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $)) (-15 -1214 ((-1178) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -1214 ((-1178) $ (-525) (-525) (-357) (-357) (-357))) (-15 -1214 ((-1178) $ (-357) (-357))) (-15 -1214 ((-1178) $ (-357) (-357) (-357))) (-15 -1854 ((-1178) $ (-1074))) (-15 -3735 ((-1178) $ (-1074))) (-15 -1705 ((-1178) $ (-1074))) (-15 -1446 ((-1178) $ (-1074))) (-15 -3791 ((-1178) $ (-1074))) (-15 -1318 ((-1178) $ (-357) (-357))) (-15 -1318 ((-1178) $ (-525) (-525))) (-15 -3526 ((-1178) $ (-357))) (-15 -3526 ((-1178) $ (-357) (-357) (-357))) (-15 -4185 ((-1178) $ (-357) (-357))) (-15 -3969 ((-1178) $ (-1074))) (-15 -2116 ((-1178) $ (-357))) (-15 -3261 ((-1178) $ (-357))) (-15 -3761 ((-1178) $ (-1074))) (-15 -2043 ((-1178) $ (-1074))) (-15 -1855 ((-1178) $ (-1074))) (-15 -4056 ((-1178) $ (-357) (-357) (-357))) (-15 -1206 ((-1178) $ (-357))) (-15 -3684 ((-1178) $)) (-15 -1341 ((-1178) $ (-146) (-146))) (-15 -3704 ((-1074) $ (-1074))) (-15 -3704 ((-1074) $ (-1074) (-1074))) (-15 -3704 ((-1074) $ (-1074) (-592 (-1074)))) (-15 -2849 ((-1178) $)) (-15 -3423 ((-525) $))))) (T -1175))
+((-3132 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175)))) (-3132 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175)))) (-1370 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175)))) (-1370 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175)))) (-3366 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175)))) (-3366 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175)))) (-2471 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175)))) (-2471 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175)))) (-1592 (*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175)))) (-4150 (*1 *1) (-5 *1 (-1175))) (-3576 (*1 *1 *1) (-5 *1 (-1175))) (-3576 (*1 *1 *2 *3) (-12 (-5 *2 (-1051 (-205))) (-5 *3 (-1074)) (-5 *1 (-1175)))) (-3576 (*1 *1 *2 *3) (-12 (-5 *2 (-1051 (-205))) (-5 *3 (-592 (-242))) (-5 *1 (-1175)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-1051 (-205))) (-5 *1 (-1175)))) (-4130 (*1 *1 *1 *2) (-12 (-5 *2 (-1051 (-205))) (-5 *1 (-1175)))) (-2593 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-713)) (-5 *4 (-878 (-205))) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-3434 (*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1175)))) (-3434 (*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1175)))) (-1566 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-2216 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-2844 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-1995 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-713)) (-5 *4 (-856)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-1214 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-1214 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *1 (-1175)))) (-1214 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205)))) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-1214 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-525)) (-5 *4 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-1214 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-1214 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-1854 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-3735 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-1705 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-1446 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-3791 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-1318 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-1318 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-3526 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-3526 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-4185 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-3969 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-2116 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-3261 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-3761 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-2043 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-1855 (*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-4056 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-1206 (*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-3684 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1175)))) (-1341 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-146)) (-5 *2 (-1178)) (-5 *1 (-1175)))) (-3704 (*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1175)))) (-3704 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1175)))) (-3704 (*1 *2 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-592 (-1074))) (-5 *1 (-1175)))) (-2849 (*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1175)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1175)))))
+(-13 (-1020) (-10 -8 (-15 -3132 ((-357))) (-15 -3132 ((-357) (-357))) (-15 -1370 ((-357))) (-15 -1370 ((-357) (-357))) (-15 -3366 ((-357))) (-15 -3366 ((-357) (-357))) (-15 -2471 ((-357))) (-15 -2471 ((-357) (-357))) (-15 -1592 ((-357))) (-15 -1592 ((-357) (-357))) (-15 -4150 ($)) (-15 -3576 ($ $)) (-15 -3576 ($ (-1051 (-205)) (-1074))) (-15 -3576 ($ (-1051 (-205)) (-592 (-242)))) (-15 -4130 ((-1051 (-205)) $)) (-15 -4130 ($ $ (-1051 (-205)))) (-15 -2593 ((-1178) $ (-713) (-878 (-205)))) (-15 -3434 ((-592 (-242)) $)) (-15 -3434 ($ $ (-592 (-242)))) (-15 -1566 ((-1178) $ (-713) (-713))) (-15 -2216 ((-1178) $ (-856) (-856))) (-15 -2844 ((-1178) $ (-1074))) (-15 -1995 ((-1178) $ (-713) (-713) (-856) (-856))) (-15 -1214 ((-1178) $ (-357) (-357) (-357) (-357) (-357))) (-15 -1214 ((-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))) $)) (-15 -1214 ((-1178) $ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205)) (|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205)) (|:| |deltaX| (-205)) (|:| |deltaY| (-205))))) (-15 -1214 ((-1178) $ (-525) (-525) (-357) (-357) (-357))) (-15 -1214 ((-1178) $ (-357) (-357))) (-15 -1214 ((-1178) $ (-357) (-357) (-357))) (-15 -1854 ((-1178) $ (-1074))) (-15 -3735 ((-1178) $ (-1074))) (-15 -1705 ((-1178) $ (-1074))) (-15 -1446 ((-1178) $ (-1074))) (-15 -3791 ((-1178) $ (-1074))) (-15 -1318 ((-1178) $ (-357) (-357))) (-15 -1318 ((-1178) $ (-525) (-525))) (-15 -3526 ((-1178) $ (-357))) (-15 -3526 ((-1178) $ (-357) (-357) (-357))) (-15 -4185 ((-1178) $ (-357) (-357))) (-15 -3969 ((-1178) $ (-1074))) (-15 -2116 ((-1178) $ (-357))) (-15 -3261 ((-1178) $ (-357))) (-15 -3761 ((-1178) $ (-1074))) (-15 -2043 ((-1178) $ (-1074))) (-15 -1855 ((-1178) $ (-1074))) (-15 -4056 ((-1178) $ (-357) (-357) (-357))) (-15 -1206 ((-1178) $ (-357))) (-15 -3684 ((-1178) $)) (-15 -1341 ((-1178) $ (-146) (-146))) (-15 -3704 ((-1074) $ (-1074))) (-15 -3704 ((-1074) $ (-1074) (-1074))) (-15 -3704 ((-1074) $ (-1074) (-592 (-1074)))) (-15 -2849 ((-1178) $)) (-15 -3423 ((-525) $))))
+((-2560 (((-592 (-1074)) (-592 (-1074))) 94) (((-592 (-1074))) 90)) (-3406 (((-592 (-1074))) 88)) (-2514 (((-592 (-856)) (-592 (-856))) 63) (((-592 (-856))) 60)) (-1399 (((-592 (-713)) (-592 (-713))) 57) (((-592 (-713))) 53)) (-3717 (((-1178)) 65)) (-4221 (((-856) (-856)) 81) (((-856)) 80)) (-4025 (((-856) (-856)) 79) (((-856)) 78)) (-1261 (((-809) (-809)) 75) (((-809)) 74)) (-2056 (((-205)) 85) (((-205) (-357)) 87)) (-2318 (((-856)) 82) (((-856) (-856)) 83)) (-2286 (((-856) (-856)) 77) (((-856)) 76)) (-2819 (((-809) (-809)) 69) (((-809)) 67)) (-3605 (((-809) (-809)) 71) (((-809)) 70)) (-4051 (((-809) (-809)) 73) (((-809)) 72)))
+(((-1176) (-10 -7 (-15 -2819 ((-809))) (-15 -2819 ((-809) (-809))) (-15 -3605 ((-809))) (-15 -3605 ((-809) (-809))) (-15 -4051 ((-809))) (-15 -4051 ((-809) (-809))) (-15 -1261 ((-809))) (-15 -1261 ((-809) (-809))) (-15 -2286 ((-856))) (-15 -2286 ((-856) (-856))) (-15 -1399 ((-592 (-713)))) (-15 -1399 ((-592 (-713)) (-592 (-713)))) (-15 -2514 ((-592 (-856)))) (-15 -2514 ((-592 (-856)) (-592 (-856)))) (-15 -3717 ((-1178))) (-15 -2560 ((-592 (-1074)))) (-15 -2560 ((-592 (-1074)) (-592 (-1074)))) (-15 -3406 ((-592 (-1074)))) (-15 -4025 ((-856))) (-15 -4221 ((-856))) (-15 -4025 ((-856) (-856))) (-15 -4221 ((-856) (-856))) (-15 -2318 ((-856) (-856))) (-15 -2318 ((-856))) (-15 -2056 ((-205) (-357))) (-15 -2056 ((-205))))) (T -1176))
+((-2056 (*1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1176)))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-1176)))) (-2318 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1176)))) (-2318 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1176)))) (-4221 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1176)))) (-4025 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1176)))) (-4221 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1176)))) (-4025 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1176)))) (-3406 (*1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1176)))) (-2560 (*1 *2 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1176)))) (-2560 (*1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1176)))) (-3717 (*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1176)))) (-2514 (*1 *2 *2) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1176)))) (-2514 (*1 *2) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1176)))) (-1399 (*1 *2 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1176)))) (-1399 (*1 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1176)))) (-2286 (*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1176)))) (-2286 (*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1176)))) (-1261 (*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1176)))) (-1261 (*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1176)))) (-4051 (*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1176)))) (-4051 (*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1176)))) (-3605 (*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1176)))) (-3605 (*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1176)))) (-2819 (*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1176)))) (-2819 (*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1176)))))
+(-10 -7 (-15 -2819 ((-809))) (-15 -2819 ((-809) (-809))) (-15 -3605 ((-809))) (-15 -3605 ((-809) (-809))) (-15 -4051 ((-809))) (-15 -4051 ((-809) (-809))) (-15 -1261 ((-809))) (-15 -1261 ((-809) (-809))) (-15 -2286 ((-856))) (-15 -2286 ((-856) (-856))) (-15 -1399 ((-592 (-713)))) (-15 -1399 ((-592 (-713)) (-592 (-713)))) (-15 -2514 ((-592 (-856)))) (-15 -2514 ((-592 (-856)) (-592 (-856)))) (-15 -3717 ((-1178))) (-15 -2560 ((-592 (-1074)))) (-15 -2560 ((-592 (-1074)) (-592 (-1074)))) (-15 -3406 ((-592 (-1074)))) (-15 -4025 ((-856))) (-15 -4221 ((-856))) (-15 -4025 ((-856) (-856))) (-15 -4221 ((-856) (-856))) (-15 -2318 ((-856) (-856))) (-15 -2318 ((-856))) (-15 -2056 ((-205) (-357))) (-15 -2056 ((-205))))
+((-1860 (((-445) (-592 (-592 (-878 (-205)))) (-592 (-242))) 21) (((-445) (-592 (-592 (-878 (-205))))) 20) (((-445) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242))) 19)) (-1234 (((-1174) (-592 (-592 (-878 (-205)))) (-592 (-242))) 27) (((-1174) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242))) 26)) (-1270 (((-1174) (-445)) 38)))
+(((-1177) (-10 -7 (-15 -1860 ((-445) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242)))) (-15 -1860 ((-445) (-592 (-592 (-878 (-205)))))) (-15 -1860 ((-445) (-592 (-592 (-878 (-205)))) (-592 (-242)))) (-15 -1234 ((-1174) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242)))) (-15 -1234 ((-1174) (-592 (-592 (-878 (-205)))) (-592 (-242)))) (-15 -1270 ((-1174) (-445))))) (T -1177))
+((-1270 (*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-1174)) (-5 *1 (-1177)))) (-1234 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-1177)))) (-1234 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-809)) (-5 *5 (-856)) (-5 *6 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-1177)))) (-1860 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-592 (-242))) (-5 *2 (-445)) (-5 *1 (-1177)))) (-1860 (*1 *2 *3) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *2 (-445)) (-5 *1 (-1177)))) (-1860 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-809)) (-5 *5 (-856)) (-5 *6 (-592 (-242))) (-5 *2 (-445)) (-5 *1 (-1177)))))
+(-10 -7 (-15 -1860 ((-445) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242)))) (-15 -1860 ((-445) (-592 (-592 (-878 (-205)))))) (-15 -1860 ((-445) (-592 (-592 (-878 (-205)))) (-592 (-242)))) (-15 -1234 ((-1174) (-592 (-592 (-878 (-205)))) (-809) (-809) (-856) (-592 (-242)))) (-15 -1234 ((-1174) (-592 (-592 (-878 (-205)))) (-592 (-242)))) (-15 -1270 ((-1174) (-445))))
+((-3326 (($) 7)) (-1270 (((-798) $) 10)))
+(((-1178) (-10 -8 (-15 -3326 ($)) (-15 -1270 ((-798) $)))) (T -1178))
+((-1270 (*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1178)))) (-3326 (*1 *1) (-5 *1 (-1178))))
+(-10 -8 (-15 -3326 ($)) (-15 -1270 ((-798) $)))
+((-4100 (($ $ |#2|) 10)))
+(((-1179 |#1| |#2|) (-10 -8 (-15 -4100 (|#1| |#1| |#2|))) (-1180 |#2|) (-341)) (T -1179))
+NIL
+(-10 -8 (-15 -4100 (|#1| |#1| |#2|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-3831 (((-128)) 28)) (-1270 (((-798) $) 11)) (-3355 (($) 18 T CONST)) (-3994 (((-108) $ $) 6)) (-4100 (($ $ |#1|) 29)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-1180 |#1|) (-131) (-341)) (T -1180))
+((-4100 (*1 *1 *1 *2) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-341)))) (-3831 (*1 *2) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-341)) (-5 *2 (-128)))))
+(-13 (-660 |t#1|) (-10 -8 (-15 -4100 ($ $ |t#1|)) (-15 -3831 ((-128)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-660 |#1|) . T) ((-983 |#1|) . T) ((-1020) . T))
+((-3475 (((-592 (-1122 |#1|)) (-1091) (-1122 |#1|)) 78)) (-3299 (((-1072 (-1072 (-887 |#1|))) (-1091) (-1072 (-887 |#1|))) 57)) (-2578 (((-1 (-1072 (-1122 |#1|)) (-1072 (-1122 |#1|))) (-713) (-1122 |#1|) (-1072 (-1122 |#1|))) 68)) (-1824 (((-1 (-1072 (-887 |#1|)) (-1072 (-887 |#1|))) (-713)) 59)) (-3862 (((-1 (-1087 (-887 |#1|)) (-887 |#1|)) (-1091)) 29)) (-3201 (((-1 (-1072 (-887 |#1|)) (-1072 (-887 |#1|))) (-713)) 58)))
+(((-1181 |#1|) (-10 -7 (-15 -1824 ((-1 (-1072 (-887 |#1|)) (-1072 (-887 |#1|))) (-713))) (-15 -3201 ((-1 (-1072 (-887 |#1|)) (-1072 (-887 |#1|))) (-713))) (-15 -3299 ((-1072 (-1072 (-887 |#1|))) (-1091) (-1072 (-887 |#1|)))) (-15 -3862 ((-1 (-1087 (-887 |#1|)) (-887 |#1|)) (-1091))) (-15 -3475 ((-592 (-1122 |#1|)) (-1091) (-1122 |#1|))) (-15 -2578 ((-1 (-1072 (-1122 |#1|)) (-1072 (-1122 |#1|))) (-713) (-1122 |#1|) (-1072 (-1122 |#1|))))) (-341)) (T -1181))
+((-2578 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-713)) (-5 *4 (-1122 *6)) (-4 *6 (-341)) (-5 *2 (-1 (-1072 (-1122 *6)) (-1072 (-1122 *6)))) (-5 *1 (-1181 *6)) (-5 *5 (-1072 (-1122 *6))))) (-3475 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-4 *5 (-341)) (-5 *2 (-592 (-1122 *5))) (-5 *1 (-1181 *5)) (-5 *4 (-1122 *5)))) (-3862 (*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1 (-1087 (-887 *4)) (-887 *4))) (-5 *1 (-1181 *4)) (-4 *4 (-341)))) (-3299 (*1 *2 *3 *4) (-12 (-5 *3 (-1091)) (-4 *5 (-341)) (-5 *2 (-1072 (-1072 (-887 *5)))) (-5 *1 (-1181 *5)) (-5 *4 (-1072 (-887 *5))))) (-3201 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1072 (-887 *4)) (-1072 (-887 *4)))) (-5 *1 (-1181 *4)) (-4 *4 (-341)))) (-1824 (*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1072 (-887 *4)) (-1072 (-887 *4)))) (-5 *1 (-1181 *4)) (-4 *4 (-341)))))
+(-10 -7 (-15 -1824 ((-1 (-1072 (-887 |#1|)) (-1072 (-887 |#1|))) (-713))) (-15 -3201 ((-1 (-1072 (-887 |#1|)) (-1072 (-887 |#1|))) (-713))) (-15 -3299 ((-1072 (-1072 (-887 |#1|))) (-1091) (-1072 (-887 |#1|)))) (-15 -3862 ((-1 (-1087 (-887 |#1|)) (-887 |#1|)) (-1091))) (-15 -3475 ((-592 (-1122 |#1|)) (-1091) (-1122 |#1|))) (-15 -2578 ((-1 (-1072 (-1122 |#1|)) (-1072 (-1122 |#1|))) (-713) (-1122 |#1|) (-1072 (-1122 |#1|)))))
+((-1681 (((-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|) 75)) (-2463 (((-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|)))) 74)))
+(((-1182 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2463 ((-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -1681 ((-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|))) (-327) (-1149 |#1|) (-1149 |#2|) (-387 |#2| |#3|)) (T -1182))
+((-1681 (*1 *2 *3) (-12 (-4 *4 (-327)) (-4 *3 (-1149 *4)) (-4 *5 (-1149 *3)) (-5 *2 (-2 (|:| -1449 (-632 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-632 *3)))) (-5 *1 (-1182 *4 *3 *5 *6)) (-4 *6 (-387 *3 *5)))) (-2463 (*1 *2) (-12 (-4 *3 (-327)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 *4)) (-5 *2 (-2 (|:| -1449 (-632 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-632 *4)))) (-5 *1 (-1182 *3 *4 *5 *6)) (-4 *6 (-387 *4 *5)))))
+(-10 -7 (-15 -2463 ((-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))))) (-15 -1681 ((-2 (|:| -1449 (-632 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-632 |#2|))) |#2|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 43)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-3762 (((-3 $ "failed") $) NIL)) (-1985 (((-108) $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1270 (((-798) $) 64) (($ (-525)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-160)))) (-2104 (((-713)) NIL)) (-3688 (((-1178) (-713)) 16)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 27 T CONST)) (-3363 (($) 67 T CONST)) (-3994 (((-108) $ $) 69)) (-4100 (((-3 $ "failed") $ $) NIL (|has| |#1| (-341)))) (-4090 (($ $) 71) (($ $ $) NIL)) (-4080 (($ $ $) 47)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-160))) (($ $ |#1|) NIL (|has| |#1| (-160)))))
+(((-1183 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-977) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1270 (|#4| $)) (IF (|has| |#1| (-341)) (-15 -4100 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1270 ($ |#4|)) (-15 -3688 ((-1178) (-713))))) (-977) (-789) (-735) (-884 |#1| |#3| |#2|) (-592 |#2|) (-592 (-713)) (-713)) (T -1183))
+((-1270 (*1 *2 *1) (-12 (-4 *2 (-884 *3 *5 *4)) (-5 *1 (-1183 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4)) (-14 *7 (-592 (-713))) (-14 *8 (-713)))) (-4100 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-341)) (-4 *2 (-977)) (-4 *3 (-789)) (-4 *4 (-735)) (-14 *6 (-592 *3)) (-5 *1 (-1183 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-884 *2 *4 *3)) (-14 *7 (-592 (-713))) (-14 *8 (-713)))) (-1270 (*1 *1 *2) (-12 (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4)) (-5 *1 (-1183 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-884 *3 *5 *4)) (-14 *7 (-592 (-713))) (-14 *8 (-713)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-977)) (-4 *5 (-789)) (-4 *6 (-735)) (-14 *8 (-592 *5)) (-5 *2 (-1178)) (-5 *1 (-1183 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-884 *4 *6 *5)) (-14 *9 (-592 (-713))) (-14 *10 (-713)))))
+(-13 (-977) (-10 -8 (IF (|has| |#1| (-160)) (-6 (-37 |#1|)) |%noBranch|) (-15 -1270 (|#4| $)) (IF (|has| |#1| (-341)) (-15 -4100 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1270 ($ |#4|)) (-15 -3688 ((-1178) (-713)))))
+((-1260 (((-108) $ $) NIL)) (-4022 (((-592 (-2 (|:| -2849 $) (|:| -2409 (-592 |#4|)))) (-592 |#4|)) NIL)) (-3221 (((-592 $) (-592 |#4|)) 88)) (-2383 (((-592 |#3|) $) NIL)) (-3163 (((-108) $) NIL)) (-3018 (((-108) $) NIL (|has| |#1| (-517)))) (-2220 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1952 ((|#4| |#4| $) NIL)) (-2855 (((-2 (|:| |under| $) (|:| -2793 $) (|:| |upper| $)) $ |#3|) NIL)) (-3330 (((-108) $ (-713)) NIL)) (-3826 (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2305 (($) NIL T CONST)) (-3393 (((-108) $) NIL (|has| |#1| (-517)))) (-3438 (((-108) $ $) NIL (|has| |#1| (-517)))) (-1396 (((-108) $ $) NIL (|has| |#1| (-517)))) (-3291 (((-108) $) NIL (|has| |#1| (-517)))) (-4032 (((-592 |#4|) (-592 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) 28)) (-1653 (((-592 |#4|) (-592 |#4|) $) 25 (|has| |#1| (-517)))) (-1551 (((-592 |#4|) (-592 |#4|) $) NIL (|has| |#1| (-517)))) (-2591 (((-3 $ "failed") (-592 |#4|)) NIL)) (-3898 (($ (-592 |#4|)) NIL)) (-3121 (((-3 $ "failed") $) 70)) (-2457 ((|#4| |#4| $) 75)) (-3137 (($ $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020))))) (-1614 (($ |#4| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020)))) (($ (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-3496 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-4047 (((-108) |#4| $ (-1 (-108) |#4| |#4|)) NIL)) (-3129 ((|#4| |#4| $) NIL)) (-3503 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4255))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4255))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-2520 (((-2 (|:| -2849 (-592 |#4|)) (|:| -2409 (-592 |#4|))) $) NIL)) (-3702 (((-592 |#4|) $) NIL (|has| $ (-6 -4255)))) (-4008 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-1776 ((|#3| $) 76)) (-2482 (((-108) $ (-713)) NIL)) (-1749 (((-592 |#4|) $) 29 (|has| $ (-6 -4255)))) (-2783 (((-108) |#4| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020))))) (-2280 (((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-592 |#4|)) 35)) (-2622 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4256)))) (-2694 (($ (-1 |#4| |#4|) $) NIL)) (-2723 (((-592 |#3|) $) NIL)) (-2069 (((-108) |#3| $) NIL)) (-2957 (((-108) $ (-713)) NIL)) (-3451 (((-1074) $) NIL)) (-1636 (((-3 |#4| "failed") $) NIL)) (-3231 (((-592 |#4|) $) 50)) (-3134 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3149 ((|#4| |#4| $) 74)) (-1363 (((-108) $ $) 85)) (-1410 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-517)))) (-2505 (((-108) |#4| $) NIL) (((-108) $) NIL)) (-3417 ((|#4| |#4| $) NIL)) (-2012 (((-1038) $) NIL)) (-3110 (((-3 |#4| "failed") $) 69)) (-3207 (((-3 |#4| "failed") (-1 (-108) |#4|) $) NIL)) (-3599 (((-3 $ "failed") $ |#4|) NIL)) (-2182 (($ $ |#4|) NIL)) (-3006 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-2602 (($ $ (-592 |#4|) (-592 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-273 |#4|)) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020)))) (($ $ (-592 (-273 |#4|))) NIL (-12 (|has| |#4| (-288 |#4|)) (|has| |#4| (-1020))))) (-3428 (((-108) $ $) NIL)) (-2013 (((-108) $) 67)) (-2718 (($) 42)) (-1587 (((-713) $) NIL)) (-2040 (((-713) |#4| $) NIL (-12 (|has| $ (-6 -4255)) (|has| |#4| (-1020)))) (((-713) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-1451 (($ $) NIL)) (-2749 (((-501) $) NIL (|has| |#4| (-567 (-501))))) (-1279 (($ (-592 |#4|)) NIL)) (-3422 (($ $ |#3|) NIL)) (-1248 (($ $ |#3|) NIL)) (-1963 (($ $) NIL)) (-1847 (($ $ |#3|) NIL)) (-1270 (((-798) $) NIL) (((-592 |#4|) $) 57)) (-1970 (((-713) $) NIL (|has| |#3| (-346)))) (-4205 (((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-592 |#4|)) 41)) (-2421 (((-592 $) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-592 $) (-592 |#4|)) 66)) (-2927 (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -2936 (-592 |#4|))) "failed") (-592 |#4|) (-1 (-108) |#4|) (-1 (-108) |#4| |#4|)) NIL)) (-4213 (((-108) $ (-1 (-108) |#4| (-592 |#4|))) NIL)) (-3633 (((-108) (-1 (-108) |#4|) $) NIL (|has| $ (-6 -4255)))) (-3726 (((-592 |#3|) $) NIL)) (-1728 (((-108) |#3| $) NIL)) (-3994 (((-108) $ $) NIL)) (-3596 (((-713) $) NIL (|has| $ (-6 -4255)))))
+(((-1184 |#1| |#2| |#3| |#4|) (-13 (-1121 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2280 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2280 ((-3 $ "failed") (-592 |#4|))) (-15 -4205 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4205 ((-3 $ "failed") (-592 |#4|))) (-15 -2421 ((-592 $) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2421 ((-592 $) (-592 |#4|))))) (-517) (-735) (-789) (-991 |#1| |#2| |#3|)) (T -1184))
+((-2280 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1184 *5 *6 *7 *8)))) (-2280 (*1 *1 *2) (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1184 *3 *4 *5 *6)))) (-4205 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1184 *5 *6 *7 *8)))) (-4205 (*1 *1 *2) (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1184 *3 *4 *5 *6)))) (-2421 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-592 *9)) (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-592 (-1184 *6 *7 *8 *9))) (-5 *1 (-1184 *6 *7 *8 *9)))) (-2421 (*1 *2 *3) (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-1184 *4 *5 *6 *7))) (-5 *1 (-1184 *4 *5 *6 *7)))))
+(-13 (-1121 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2280 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2280 ((-3 $ "failed") (-592 |#4|))) (-15 -4205 ((-3 $ "failed") (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4205 ((-3 $ "failed") (-592 |#4|))) (-15 -2421 ((-592 $) (-592 |#4|) (-1 (-108) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2421 ((-592 $) (-592 |#4|)))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-1342 (((-3 $ "failed") $ $) 19)) (-2305 (($) 17 T CONST)) (-3762 (((-3 $ "failed") $) 34)) (-1985 (((-108) $) 31)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#1|) 38)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39)))
+(((-1185 |#1|) (-131) (-977)) (T -1185))
+((-1270 (*1 *1 *2) (-12 (-4 *1 (-1185 *2)) (-4 *2 (-977)))))
+(-13 (-977) (-107 |t#1| |t#1|) (-10 -8 (-15 -1270 ($ |t#1|)) (IF (|has| |t#1| (-160)) (-6 (-37 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-160)) ((-97) . T) ((-107 |#1| |#1|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 |#1|) |has| |#1| (-160)) ((-669) . T) ((-983 |#1|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T))
+((-1260 (((-108) $ $) 60)) (-1989 (((-108) $) NIL)) (-4143 (((-592 |#1|) $) 45)) (-2653 (($ $ (-713)) 39)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3390 (($ $ (-713)) 18 (|has| |#2| (-160))) (($ $ $) 19 (|has| |#2| (-160)))) (-2305 (($) NIL T CONST)) (-2747 (($ $ $) 63) (($ $ (-761 |#1|)) 49) (($ $ |#1|) 53)) (-2591 (((-3 (-761 |#1|) "failed") $) NIL)) (-3898 (((-761 |#1|) $) NIL)) (-2571 (($ $) 32)) (-3762 (((-3 $ "failed") $) NIL)) (-1422 (((-108) $) NIL)) (-3427 (($ $) NIL)) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) NIL)) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) NIL)) (-3219 (($ (-761 |#1|) |#2|) 31)) (-2901 (($ $) 33)) (-2224 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) 12)) (-3191 (((-761 |#1|) $) NIL)) (-1940 (((-761 |#1|) $) 34)) (-2694 (($ (-1 |#2| |#2|) $) NIL)) (-2377 (($ $ $) 62) (($ $ (-761 |#1|)) 51) (($ $ |#1|) 55)) (-3217 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2538 (((-761 |#1|) $) 28)) (-2548 ((|#2| $) 30)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1587 (((-713) $) 36)) (-1336 (((-108) $) 40)) (-1479 ((|#2| $) NIL)) (-1270 (((-798) $) NIL) (($ (-761 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-525)) NIL)) (-1562 (((-592 |#2|) $) NIL)) (-3468 ((|#2| $ (-761 |#1|)) NIL)) (-1655 ((|#2| $ $) 65) ((|#2| $ (-761 |#1|)) NIL)) (-2104 (((-713)) NIL)) (-1576 (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (-3355 (($) 13 T CONST)) (-3363 (($) 15 T CONST)) (-3379 (((-592 (-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3994 (((-108) $ $) 38)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) 22)) (** (($ $ (-713)) NIL) (($ $ (-856)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-761 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+(((-1186 |#1| |#2|) (-13 (-360 |#2| (-761 |#1|)) (-1192 |#1| |#2|)) (-789) (-977)) (T -1186))
+NIL
+(-13 (-360 |#2| (-761 |#1|)) (-1192 |#1| |#2|))
+((-1415 ((|#3| |#3| (-713)) 23)) (-1250 ((|#3| |#3| (-713)) 28)) (-4052 ((|#3| |#3| |#3| (-713)) 29)))
+(((-1187 |#1| |#2| |#3|) (-10 -7 (-15 -1250 (|#3| |#3| (-713))) (-15 -1415 (|#3| |#3| (-713))) (-15 -4052 (|#3| |#3| |#3| (-713)))) (-13 (-977) (-660 (-385 (-525)))) (-789) (-1192 |#2| |#1|)) (T -1187))
+((-4052 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525))))) (-4 *5 (-789)) (-5 *1 (-1187 *4 *5 *2)) (-4 *2 (-1192 *5 *4)))) (-1415 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525))))) (-4 *5 (-789)) (-5 *1 (-1187 *4 *5 *2)) (-4 *2 (-1192 *5 *4)))) (-1250 (*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525))))) (-4 *5 (-789)) (-5 *1 (-1187 *4 *5 *2)) (-4 *2 (-1192 *5 *4)))))
+(-10 -7 (-15 -1250 (|#3| |#3| (-713))) (-15 -1415 (|#3| |#3| (-713))) (-15 -4052 (|#3| |#3| |#3| (-713))))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-4143 (((-592 |#1|) $) 40)) (-1342 (((-3 $ "failed") $ $) 19)) (-3390 (($ $ $) 43 (|has| |#2| (-160))) (($ $ (-713)) 42 (|has| |#2| (-160)))) (-2305 (($) 17 T CONST)) (-2747 (($ $ |#1|) 54) (($ $ (-761 |#1|)) 53) (($ $ $) 52)) (-2591 (((-3 (-761 |#1|) "failed") $) 64)) (-3898 (((-761 |#1|) $) 63)) (-3762 (((-3 $ "failed") $) 34)) (-1422 (((-108) $) 45)) (-3427 (($ $) 44)) (-1985 (((-108) $) 31)) (-1788 (((-108) $) 50)) (-3219 (($ (-761 |#1|) |#2|) 51)) (-2901 (($ $) 49)) (-2224 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) 60)) (-3191 (((-761 |#1|) $) 61)) (-2694 (($ (-1 |#2| |#2|) $) 41)) (-2377 (($ $ |#1|) 57) (($ $ (-761 |#1|)) 56) (($ $ $) 55)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1336 (((-108) $) 47)) (-1479 ((|#2| $) 46)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#2|) 68) (($ (-761 |#1|)) 65) (($ |#1|) 48)) (-1655 ((|#2| $ (-761 |#1|)) 59) ((|#2| $ $) 58)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+(((-1188 |#1| |#2|) (-131) (-789) (-977)) (T -1188))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-789)) (-4 *2 (-977)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-3191 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-761 *3)))) (-2224 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-2 (|:| |k| (-761 *3)) (|:| |c| *4))))) (-1655 (*1 *2 *1 *3) (-12 (-5 *3 (-761 *4)) (-4 *1 (-1188 *4 *2)) (-4 *4 (-789)) (-4 *2 (-977)))) (-1655 (*1 *2 *1 *1) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-789)) (-4 *2 (-977)))) (-2377 (*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-2377 (*1 *1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))) (-2377 (*1 *1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-2747 (*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))) (-2747 (*1 *1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-3219 (*1 *1 *2 *3) (-12 (-5 *2 (-761 *4)) (-4 *4 (-789)) (-4 *1 (-1188 *4 *3)) (-4 *3 (-977)))) (-1788 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-108)))) (-2901 (*1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-1270 (*1 *1 *2) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-1336 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-108)))) (-1479 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-789)) (-4 *2 (-977)))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-108)))) (-3427 (*1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))) (-3390 (*1 *1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)) (-4 *3 (-160)))) (-3390 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-4 *4 (-160)))) (-2694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))) (-4143 (*1 *2 *1) (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-592 *3)))))
+(-13 (-977) (-1185 |t#2|) (-968 (-761 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3191 ((-761 |t#1|) $)) (-15 -2224 ((-2 (|:| |k| (-761 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1655 (|t#2| $ (-761 |t#1|))) (-15 -1655 (|t#2| $ $)) (-15 -2377 ($ $ |t#1|)) (-15 -2377 ($ $ (-761 |t#1|))) (-15 -2377 ($ $ $)) (-15 -2747 ($ $ |t#1|)) (-15 -2747 ($ $ (-761 |t#1|))) (-15 -2747 ($ $ $)) (-15 -3219 ($ (-761 |t#1|) |t#2|)) (-15 -1788 ((-108) $)) (-15 -2901 ($ $)) (-15 -1270 ($ |t#1|)) (-15 -1336 ((-108) $)) (-15 -1479 (|t#2| $)) (-15 -1422 ((-108) $)) (-15 -3427 ($ $)) (IF (|has| |t#2| (-160)) (PROGN (-15 -3390 ($ $ $)) (-15 -3390 ($ $ (-713)))) |%noBranch|) (-15 -2694 ($ (-1 |t#2| |t#2|) $)) (-15 -4143 ((-592 |t#1|) $)) (IF (|has| |t#2| (-6 -4248)) (-6 -4248) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-160)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#2|) . T) ((-594 $) . T) ((-660 |#2|) |has| |#2| (-160)) ((-669) . T) ((-968 (-761 |#1|)) . T) ((-983 |#2|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1185 |#2|) . T))
+((-2679 (((-108) $) 15)) (-1728 (((-108) $) 14)) (-3842 (($ $) 19) (($ $ (-713)) 20)))
+(((-1189 |#1| |#2|) (-10 -8 (-15 -3842 (|#1| |#1| (-713))) (-15 -3842 (|#1| |#1|)) (-15 -2679 ((-108) |#1|)) (-15 -1728 ((-108) |#1|))) (-1190 |#2|) (-341)) (T -1189))
+NIL
+(-10 -8 (-15 -3842 (|#1| |#1| (-713))) (-15 -3842 (|#1| |#1|)) (-15 -2679 ((-108) |#1|)) (-15 -1728 ((-108) |#1|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-2658 (((-2 (|:| -1790 $) (|:| -4242 $) (|:| |associate| $)) $) 41)) (-3711 (($ $) 40)) (-3380 (((-108) $) 38)) (-2679 (((-108) $) 94)) (-3452 (((-713)) 90)) (-1342 (((-3 $ "failed") $ $) 19)) (-3706 (($ $) 73)) (-2100 (((-396 $) $) 72)) (-3197 (((-108) $ $) 59)) (-2305 (($) 17 T CONST)) (-2591 (((-3 |#1| "failed") $) 101)) (-3898 ((|#1| $) 100)) (-1726 (($ $ $) 55)) (-3762 (((-3 $ "failed") $) 34)) (-1704 (($ $ $) 56)) (-3343 (((-2 (|:| -1655 (-592 $)) (|:| -3523 $)) (-592 $)) 51)) (-2327 (($ $ (-713)) 87 (-3279 (|has| |#1| (-136)) (|has| |#1| (-346)))) (($ $) 86 (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3836 (((-108) $) 71)) (-3973 (((-775 (-856)) $) 84 (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-1985 (((-108) $) 31)) (-3946 (((-3 (-592 $) "failed") (-592 $) $) 52)) (-2756 (($ $ $) 46) (($ (-592 $)) 45)) (-3451 (((-1074) $) 9)) (-2502 (($ $) 70)) (-3341 (((-108) $) 93)) (-2012 (((-1038) $) 10)) (-1534 (((-1087 $) (-1087 $) (-1087 $)) 44)) (-2794 (($ $ $) 48) (($ (-592 $)) 47)) (-2195 (((-396 $) $) 74)) (-3748 (((-775 (-856))) 91)) (-3657 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3523 $)) $ $) 54) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 53)) (-1680 (((-3 $ "failed") $ $) 42)) (-3993 (((-3 (-592 $) "failed") (-592 $) $) 50)) (-1290 (((-713) $) 58)) (-1496 (((-2 (|:| -2370 $) (|:| -3496 $)) $ $) 57)) (-2181 (((-3 (-713) "failed") $ $) 85 (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-3831 (((-128)) 99)) (-1587 (((-775 (-856)) $) 92)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ $) 43) (($ (-385 (-525))) 65) (($ |#1|) 102)) (-3425 (((-3 $ "failed") $) 83 (-3279 (|has| |#1| (-136)) (|has| |#1| (-346))))) (-2104 (((-713)) 29)) (-3959 (((-108) $ $) 39)) (-1728 (((-108) $) 95)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33) (($ $ (-525)) 69)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3842 (($ $) 89 (|has| |#1| (-346))) (($ $ (-713)) 88 (|has| |#1| (-346)))) (-3994 (((-108) $ $) 6)) (-4100 (($ $ $) 64) (($ $ |#1|) 98)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32) (($ $ (-525)) 68)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ $ (-385 (-525))) 67) (($ (-385 (-525)) $) 66) (($ $ |#1|) 97) (($ |#1| $) 96)))
+(((-1190 |#1|) (-131) (-341)) (T -1190))
+((-1728 (*1 *2 *1) (-12 (-4 *1 (-1190 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-2679 (*1 *2 *1) (-12 (-4 *1 (-1190 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-3341 (*1 *2 *1) (-12 (-4 *1 (-1190 *3)) (-4 *3 (-341)) (-5 *2 (-108)))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-1190 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-856))))) (-3748 (*1 *2) (-12 (-4 *1 (-1190 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-856))))) (-3452 (*1 *2) (-12 (-4 *1 (-1190 *3)) (-4 *3 (-341)) (-5 *2 (-713)))) (-3842 (*1 *1 *1) (-12 (-4 *1 (-1190 *2)) (-4 *2 (-341)) (-4 *2 (-346)))) (-3842 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1190 *3)) (-4 *3 (-341)) (-4 *3 (-346)))))
+(-13 (-341) (-968 |t#1|) (-1180 |t#1|) (-10 -8 (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-136)) (-6 (-380)) |%noBranch|) (-15 -1728 ((-108) $)) (-15 -2679 ((-108) $)) (-15 -3341 ((-108) $)) (-15 -1587 ((-775 (-856)) $)) (-15 -3748 ((-775 (-856)))) (-15 -3452 ((-713))) (IF (|has| |t#1| (-346)) (PROGN (-6 (-380)) (-15 -3842 ($ $)) (-15 -3842 ($ $ (-713)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-385 (-525))) . T) ((-37 $) . T) ((-97) . T) ((-107 #0# #0#) . T) ((-107 |#1| |#1|) . T) ((-107 $ $) . T) ((-126) . T) ((-136) -3279 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-138) |has| |#1| (-138)) ((-566 (-798)) . T) ((-160) . T) ((-223) . T) ((-269) . T) ((-286) . T) ((-341) . T) ((-380) -3279 (|has| |#1| (-346)) (|has| |#1| (-136))) ((-429) . T) ((-517) . T) ((-594 #0#) . T) ((-594 |#1|) . T) ((-594 $) . T) ((-660 #0#) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-669) . T) ((-855) . T) ((-968 |#1|) . T) ((-983 #0#) . T) ((-983 |#1|) . T) ((-983 $) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1131) . T) ((-1180 |#1|) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-4143 (((-592 |#1|) $) 86)) (-2653 (($ $ (-713)) 89)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3390 (($ $ $) NIL (|has| |#2| (-160))) (($ $ (-713)) NIL (|has| |#2| (-160)))) (-2305 (($) NIL T CONST)) (-2747 (($ $ |#1|) NIL) (($ $ (-761 |#1|)) NIL) (($ $ $) NIL)) (-2591 (((-3 (-761 |#1|) "failed") $) NIL) (((-3 (-828 |#1|) "failed") $) NIL)) (-3898 (((-761 |#1|) $) NIL) (((-828 |#1|) $) NIL)) (-2571 (($ $) 88)) (-3762 (((-3 $ "failed") $) NIL)) (-1422 (((-108) $) 77)) (-3427 (($ $) 81)) (-1283 (($ $ $ (-713)) 90)) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) NIL)) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) NIL)) (-3219 (($ (-761 |#1|) |#2|) NIL) (($ (-828 |#1|) |#2|) 26)) (-2901 (($ $) 103)) (-2224 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3191 (((-761 |#1|) $) NIL)) (-1940 (((-761 |#1|) $) NIL)) (-2694 (($ (-1 |#2| |#2|) $) NIL)) (-2377 (($ $ |#1|) NIL) (($ $ (-761 |#1|)) NIL) (($ $ $) NIL)) (-1415 (($ $ (-713)) 97 (|has| |#2| (-660 (-385 (-525)))))) (-3217 (((-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2538 (((-828 |#1|) $) 70)) (-2548 ((|#2| $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1250 (($ $ (-713)) 94 (|has| |#2| (-660 (-385 (-525)))))) (-1587 (((-713) $) 87)) (-1336 (((-108) $) 71)) (-1479 ((|#2| $) 75)) (-1270 (((-798) $) 57) (($ (-525)) NIL) (($ |#2|) 51) (($ (-761 |#1|)) NIL) (($ |#1|) 59) (($ (-828 |#1|)) NIL) (($ (-610 |#1| |#2|)) 43) (((-1186 |#1| |#2|) $) 64) (((-1195 |#1| |#2|) $) 69)) (-1562 (((-592 |#2|) $) NIL)) (-3468 ((|#2| $ (-828 |#1|)) NIL)) (-1655 ((|#2| $ (-761 |#1|)) NIL) ((|#2| $ $) NIL)) (-2104 (((-713)) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 21 T CONST)) (-3363 (($) 25 T CONST)) (-3379 (((-592 (-2 (|:| |k| (-828 |#1|)) (|:| |c| |#2|))) $) NIL)) (-3170 (((-3 (-610 |#1| |#2|) "failed") $) 102)) (-3994 (((-108) $ $) 65)) (-4090 (($ $) 96) (($ $ $) 95)) (-4080 (($ $ $) 20)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-828 |#1|)) NIL)))
+(((-1191 |#1| |#2|) (-13 (-1192 |#1| |#2|) (-360 |#2| (-828 |#1|)) (-10 -8 (-15 -1270 ($ (-610 |#1| |#2|))) (-15 -1270 ((-1186 |#1| |#2|) $)) (-15 -1270 ((-1195 |#1| |#2|) $)) (-15 -3170 ((-3 (-610 |#1| |#2|) "failed") $)) (-15 -1283 ($ $ $ (-713))) (IF (|has| |#2| (-660 (-385 (-525)))) (PROGN (-15 -1250 ($ $ (-713))) (-15 -1415 ($ $ (-713)))) |%noBranch|))) (-789) (-160)) (T -1191))
+((-1270 (*1 *1 *2) (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)) (-5 *1 (-1191 *3 *4)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-3170 (*1 *2 *1) (|partial| -12 (-5 *2 (-610 *3 *4)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-1283 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160)))) (-1250 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1191 *3 *4)) (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160)))) (-1415 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-1191 *3 *4)) (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160)))))
+(-13 (-1192 |#1| |#2|) (-360 |#2| (-828 |#1|)) (-10 -8 (-15 -1270 ($ (-610 |#1| |#2|))) (-15 -1270 ((-1186 |#1| |#2|) $)) (-15 -1270 ((-1195 |#1| |#2|) $)) (-15 -3170 ((-3 (-610 |#1| |#2|) "failed") $)) (-15 -1283 ($ $ $ (-713))) (IF (|has| |#2| (-660 (-385 (-525)))) (PROGN (-15 -1250 ($ $ (-713))) (-15 -1415 ($ $ (-713)))) |%noBranch|)))
+((-1260 (((-108) $ $) 7)) (-1989 (((-108) $) 16)) (-4143 (((-592 |#1|) $) 40)) (-2653 (($ $ (-713)) 73)) (-1342 (((-3 $ "failed") $ $) 19)) (-3390 (($ $ $) 43 (|has| |#2| (-160))) (($ $ (-713)) 42 (|has| |#2| (-160)))) (-2305 (($) 17 T CONST)) (-2747 (($ $ |#1|) 54) (($ $ (-761 |#1|)) 53) (($ $ $) 52)) (-2591 (((-3 (-761 |#1|) "failed") $) 64)) (-3898 (((-761 |#1|) $) 63)) (-3762 (((-3 $ "failed") $) 34)) (-1422 (((-108) $) 45)) (-3427 (($ $) 44)) (-1985 (((-108) $) 31)) (-1788 (((-108) $) 50)) (-3219 (($ (-761 |#1|) |#2|) 51)) (-2901 (($ $) 49)) (-2224 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) 60)) (-3191 (((-761 |#1|) $) 61)) (-1940 (((-761 |#1|) $) 75)) (-2694 (($ (-1 |#2| |#2|) $) 41)) (-2377 (($ $ |#1|) 57) (($ $ (-761 |#1|)) 56) (($ $ $) 55)) (-3451 (((-1074) $) 9)) (-2012 (((-1038) $) 10)) (-1587 (((-713) $) 74)) (-1336 (((-108) $) 47)) (-1479 ((|#2| $) 46)) (-1270 (((-798) $) 11) (($ (-525)) 28) (($ |#2|) 68) (($ (-761 |#1|)) 65) (($ |#1|) 48)) (-1655 ((|#2| $ (-761 |#1|)) 59) ((|#2| $ $) 58)) (-2104 (((-713)) 29)) (-1576 (($ $ (-856)) 26) (($ $ (-713)) 33)) (-3355 (($) 18 T CONST)) (-3363 (($) 30 T CONST)) (-3994 (((-108) $ $) 6)) (-4090 (($ $) 22) (($ $ $) 21)) (-4080 (($ $ $) 14)) (** (($ $ (-856)) 25) (($ $ (-713)) 32)) (* (($ (-856) $) 13) (($ (-713) $) 15) (($ (-525) $) 20) (($ $ $) 24) (($ |#2| $) 67) (($ $ |#2|) 66) (($ |#1| $) 62)))
+(((-1192 |#1| |#2|) (-131) (-789) (-977)) (T -1192))
+((-1940 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-761 *3)))) (-1587 (*1 *2 *1) (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *2 (-713)))) (-2653 (*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1192 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))))
+(-13 (-1188 |t#1| |t#2|) (-10 -8 (-15 -1940 ((-761 |t#1|) $)) (-15 -1587 ((-713) $)) (-15 -2653 ($ $ (-713)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-160)) ((-97) . T) ((-107 |#2| |#2|) . T) ((-126) . T) ((-566 (-798)) . T) ((-594 |#2|) . T) ((-594 $) . T) ((-660 |#2|) |has| |#2| (-160)) ((-669) . T) ((-968 (-761 |#1|)) . T) ((-983 |#2|) . T) ((-977) . T) ((-984) . T) ((-1032) . T) ((-1020) . T) ((-1185 |#2|) . T) ((-1188 |#1| |#2|) . T))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-4143 (((-592 (-1091)) $) NIL)) (-2854 (($ (-1186 (-1091) |#1|)) NIL)) (-2653 (($ $ (-713)) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3390 (($ $ $) NIL (|has| |#1| (-160))) (($ $ (-713)) NIL (|has| |#1| (-160)))) (-2305 (($) NIL T CONST)) (-2747 (($ $ (-1091)) NIL) (($ $ (-761 (-1091))) NIL) (($ $ $) NIL)) (-2591 (((-3 (-761 (-1091)) "failed") $) NIL)) (-3898 (((-761 (-1091)) $) NIL)) (-3762 (((-3 $ "failed") $) NIL)) (-1422 (((-108) $) NIL)) (-3427 (($ $) NIL)) (-1985 (((-108) $) NIL)) (-1788 (((-108) $) NIL)) (-3219 (($ (-761 (-1091)) |#1|) NIL)) (-2901 (($ $) NIL)) (-2224 (((-2 (|:| |k| (-761 (-1091))) (|:| |c| |#1|)) $) NIL)) (-3191 (((-761 (-1091)) $) NIL)) (-1940 (((-761 (-1091)) $) NIL)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-2377 (($ $ (-1091)) NIL) (($ $ (-761 (-1091))) NIL) (($ $ $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3788 (((-1186 (-1091) |#1|) $) NIL)) (-1587 (((-713) $) NIL)) (-1336 (((-108) $) NIL)) (-1479 ((|#1| $) NIL)) (-1270 (((-798) $) NIL) (($ (-525)) NIL) (($ |#1|) NIL) (($ (-761 (-1091))) NIL) (($ (-1091)) NIL)) (-1655 ((|#1| $ (-761 (-1091))) NIL) ((|#1| $ $) NIL)) (-2104 (((-713)) NIL)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) NIL T CONST)) (-3498 (((-592 (-2 (|:| |k| (-1091)) (|:| |c| $))) $) NIL)) (-3363 (($) NIL T CONST)) (-3994 (((-108) $ $) NIL)) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) NIL)) (** (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1091) $) NIL)))
+(((-1193 |#1|) (-13 (-1192 (-1091) |#1|) (-10 -8 (-15 -3788 ((-1186 (-1091) |#1|) $)) (-15 -2854 ($ (-1186 (-1091) |#1|))) (-15 -3498 ((-592 (-2 (|:| |k| (-1091)) (|:| |c| $))) $)))) (-977)) (T -1193))
+((-3788 (*1 *2 *1) (-12 (-5 *2 (-1186 (-1091) *3)) (-5 *1 (-1193 *3)) (-4 *3 (-977)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-1186 (-1091) *3)) (-4 *3 (-977)) (-5 *1 (-1193 *3)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| (-1091)) (|:| |c| (-1193 *3))))) (-5 *1 (-1193 *3)) (-4 *3 (-977)))))
+(-13 (-1192 (-1091) |#1|) (-10 -8 (-15 -3788 ((-1186 (-1091) |#1|) $)) (-15 -2854 ($ (-1186 (-1091) |#1|))) (-15 -3498 ((-592 (-2 (|:| |k| (-1091)) (|:| |c| $))) $))))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) NIL)) (-1342 (((-3 $ "failed") $ $) NIL)) (-2305 (($) NIL T CONST)) (-2591 (((-3 |#2| "failed") $) NIL)) (-3898 ((|#2| $) NIL)) (-2571 (($ $) NIL)) (-3762 (((-3 $ "failed") $) 36)) (-1422 (((-108) $) 30)) (-3427 (($ $) 32)) (-1985 (((-108) $) NIL)) (-1647 (((-713) $) NIL)) (-2177 (((-592 $) $) NIL)) (-1788 (((-108) $) NIL)) (-3219 (($ |#2| |#1|) NIL)) (-3191 ((|#2| $) 19)) (-1940 ((|#2| $) 16)) (-2694 (($ (-1 |#1| |#1|) $) NIL)) (-3217 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2538 ((|#2| $) NIL)) (-2548 ((|#1| $) NIL)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-1336 (((-108) $) 27)) (-1479 ((|#1| $) 28)) (-1270 (((-798) $) 55) (($ (-525)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-1562 (((-592 |#1|) $) NIL)) (-3468 ((|#1| $ |#2|) NIL)) (-1655 ((|#1| $ |#2|) 24)) (-2104 (((-713)) 14)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 25 T CONST)) (-3363 (($) 11 T CONST)) (-3379 (((-592 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-3994 (((-108) $ $) 26)) (-4100 (($ $ |#1|) 57 (|has| |#1| (-341)))) (-4090 (($ $) NIL) (($ $ $) NIL)) (-4080 (($ $ $) 44)) (** (($ $ (-856)) NIL) (($ $ (-713)) 46)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-3596 (((-713) $) 15)))
+(((-1194 |#1| |#2|) (-13 (-977) (-1185 |#1|) (-360 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3596 ((-713) $)) (-15 -1270 ($ |#2|)) (-15 -1940 (|#2| $)) (-15 -3191 (|#2| $)) (-15 -2571 ($ $)) (-15 -1655 (|#1| $ |#2|)) (-15 -1336 ((-108) $)) (-15 -1479 (|#1| $)) (-15 -1422 ((-108) $)) (-15 -3427 ($ $)) (-15 -2694 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-341)) (-15 -4100 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4248)) (-6 -4248) |%noBranch|) (IF (|has| |#1| (-6 -4252)) (-6 -4252) |%noBranch|) (IF (|has| |#1| (-6 -4253)) (-6 -4253) |%noBranch|))) (-977) (-785)) (T -1194))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1194 *2 *3)) (-4 *2 (-977)) (-4 *3 (-785)))) (-2571 (*1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-4 *2 (-977)) (-4 *3 (-785)))) (-2694 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-1194 *3 *4)) (-4 *4 (-785)))) (-1270 (*1 *1 *2) (-12 (-5 *1 (-1194 *3 *2)) (-4 *3 (-977)) (-4 *2 (-785)))) (-3596 (*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-977)) (-4 *4 (-785)))) (-1940 (*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1194 *3 *2)) (-4 *3 (-977)))) (-3191 (*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1194 *3 *2)) (-4 *3 (-977)))) (-1655 (*1 *2 *1 *3) (-12 (-4 *2 (-977)) (-5 *1 (-1194 *2 *3)) (-4 *3 (-785)))) (-1336 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-977)) (-4 *4 (-785)))) (-1479 (*1 *2 *1) (-12 (-4 *2 (-977)) (-5 *1 (-1194 *2 *3)) (-4 *3 (-785)))) (-1422 (*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-977)) (-4 *4 (-785)))) (-3427 (*1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-4 *2 (-977)) (-4 *3 (-785)))) (-4100 (*1 *1 *1 *2) (-12 (-5 *1 (-1194 *2 *3)) (-4 *2 (-341)) (-4 *2 (-977)) (-4 *3 (-785)))))
+(-13 (-977) (-1185 |#1|) (-360 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -3596 ((-713) $)) (-15 -1270 ($ |#2|)) (-15 -1940 (|#2| $)) (-15 -3191 (|#2| $)) (-15 -2571 ($ $)) (-15 -1655 (|#1| $ |#2|)) (-15 -1336 ((-108) $)) (-15 -1479 (|#1| $)) (-15 -1422 ((-108) $)) (-15 -3427 ($ $)) (-15 -2694 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-341)) (-15 -4100 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4248)) (-6 -4248) |%noBranch|) (IF (|has| |#1| (-6 -4252)) (-6 -4252) |%noBranch|) (IF (|has| |#1| (-6 -4253)) (-6 -4253) |%noBranch|)))
+((-1260 (((-108) $ $) 26)) (-1989 (((-108) $) NIL)) (-4143 (((-592 |#1|) $) 120)) (-2854 (($ (-1186 |#1| |#2|)) 44)) (-2653 (($ $ (-713)) 32)) (-1342 (((-3 $ "failed") $ $) NIL)) (-3390 (($ $ $) 48 (|has| |#2| (-160))) (($ $ (-713)) 46 (|has| |#2| (-160)))) (-2305 (($) NIL T CONST)) (-2747 (($ $ |#1|) 102) (($ $ (-761 |#1|)) 103) (($ $ $) 25)) (-2591 (((-3 (-761 |#1|) "failed") $) NIL)) (-3898 (((-761 |#1|) $) NIL)) (-3762 (((-3 $ "failed") $) 110)) (-1422 (((-108) $) 105)) (-3427 (($ $) 106)) (-1985 (((-108) $) NIL)) (-1788 (((-108) $) NIL)) (-3219 (($ (-761 |#1|) |#2|) 19)) (-2901 (($ $) NIL)) (-2224 (((-2 (|:| |k| (-761 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3191 (((-761 |#1|) $) 111)) (-1940 (((-761 |#1|) $) 114)) (-2694 (($ (-1 |#2| |#2|) $) 119)) (-2377 (($ $ |#1|) 100) (($ $ (-761 |#1|)) 101) (($ $ $) 56)) (-3451 (((-1074) $) NIL)) (-2012 (((-1038) $) NIL)) (-3788 (((-1186 |#1| |#2|) $) 84)) (-1587 (((-713) $) 117)) (-1336 (((-108) $) 70)) (-1479 ((|#2| $) 28)) (-1270 (((-798) $) 63) (($ (-525)) 77) (($ |#2|) 74) (($ (-761 |#1|)) 17) (($ |#1|) 73)) (-1655 ((|#2| $ (-761 |#1|)) 104) ((|#2| $ $) 27)) (-2104 (((-713)) 108)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 14 T CONST)) (-3498 (((-592 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3363 (($) 29 T CONST)) (-3994 (((-108) $ $) 13)) (-4090 (($ $) 88) (($ $ $) 91)) (-4080 (($ $ $) 55)) (** (($ $ (-856)) NIL) (($ $ (-713)) 49)) (* (($ (-856) $) NIL) (($ (-713) $) 47) (($ (-525) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
+(((-1195 |#1| |#2|) (-13 (-1192 |#1| |#2|) (-10 -8 (-15 -3788 ((-1186 |#1| |#2|) $)) (-15 -2854 ($ (-1186 |#1| |#2|))) (-15 -3498 ((-592 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-789) (-977)) (T -1195))
+((-3788 (*1 *2 *1) (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-1186 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)) (-5 *1 (-1195 *3 *4)))) (-3498 (*1 *2 *1) (-12 (-5 *2 (-592 (-2 (|:| |k| *3) (|:| |c| (-1195 *3 *4))))) (-5 *1 (-1195 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))))
+(-13 (-1192 |#1| |#2|) (-10 -8 (-15 -3788 ((-1186 |#1| |#2|) $)) (-15 -2854 ($ (-1186 |#1| |#2|))) (-15 -3498 ((-592 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-3418 (((-592 (-1072 |#1|)) (-1 (-592 (-1072 |#1|)) (-592 (-1072 |#1|))) (-525)) 15) (((-1072 |#1|) (-1 (-1072 |#1|) (-1072 |#1|))) 11)))
+(((-1196 |#1|) (-10 -7 (-15 -3418 ((-1072 |#1|) (-1 (-1072 |#1|) (-1072 |#1|)))) (-15 -3418 ((-592 (-1072 |#1|)) (-1 (-592 (-1072 |#1|)) (-592 (-1072 |#1|))) (-525)))) (-1127)) (T -1196))
+((-3418 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-592 (-1072 *5)) (-592 (-1072 *5)))) (-5 *4 (-525)) (-4 *5 (-1127)) (-5 *2 (-592 (-1072 *5))) (-5 *1 (-1196 *5)))) (-3418 (*1 *2 *3) (-12 (-5 *3 (-1 (-1072 *4) (-1072 *4))) (-4 *4 (-1127)) (-5 *2 (-1072 *4)) (-5 *1 (-1196 *4)))))
+(-10 -7 (-15 -3418 ((-1072 |#1|) (-1 (-1072 |#1|) (-1072 |#1|)))) (-15 -3418 ((-592 (-1072 |#1|)) (-1 (-592 (-1072 |#1|)) (-592 (-1072 |#1|))) (-525))))
+((-1471 (((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|))) 148) (((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108)) 147) (((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108)) 146) (((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108) (-108)) 145) (((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-974 |#1| |#2|)) 130)) (-2834 (((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|))) 72) (((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108)) 71) (((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108) (-108)) 70)) (-2100 (((-592 (-1062 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|)))) (-974 |#1| |#2|)) 61)) (-1526 (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|))) 115) (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108)) 114) (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108)) 113) (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108) (-108)) 112) (((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|)) 107)) (-3960 (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|))) 120) (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108)) 119) (((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108)) 118) (((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|)) 117)) (-2749 (((-592 (-722 |#1| (-800 |#3|))) (-1062 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|)))) 98) (((-1087 (-955 (-385 |#1|))) (-1087 |#1|)) 89) (((-887 (-955 (-385 |#1|))) (-722 |#1| (-800 |#3|))) 96) (((-887 (-955 (-385 |#1|))) (-887 |#1|)) 94) (((-722 |#1| (-800 |#3|)) (-722 |#1| (-800 |#2|))) 33)))
+(((-1197 |#1| |#2| |#3|) (-10 -7 (-15 -2834 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108) (-108))) (-15 -2834 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108))) (-15 -2834 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)))) (-15 -1471 ((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-974 |#1| |#2|))) (-15 -1471 ((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108) (-108))) (-15 -1471 ((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -1471 ((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108))) (-15 -1471 ((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -1526 ((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|))) (-15 -1526 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108) (-108))) (-15 -1526 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -1526 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108))) (-15 -1526 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)))) (-15 -3960 ((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|))) (-15 -3960 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -3960 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108))) (-15 -3960 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)))) (-15 -2100 ((-592 (-1062 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|)))) (-974 |#1| |#2|))) (-15 -2749 ((-722 |#1| (-800 |#3|)) (-722 |#1| (-800 |#2|)))) (-15 -2749 ((-887 (-955 (-385 |#1|))) (-887 |#1|))) (-15 -2749 ((-887 (-955 (-385 |#1|))) (-722 |#1| (-800 |#3|)))) (-15 -2749 ((-1087 (-955 (-385 |#1|))) (-1087 |#1|))) (-15 -2749 ((-592 (-722 |#1| (-800 |#3|))) (-1062 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|)))))) (-13 (-787) (-286) (-138) (-953)) (-592 (-1091)) (-592 (-1091))) (T -1197))
+((-2749 (*1 *2 *3) (-12 (-5 *3 (-1062 *4 (-497 (-800 *6)) (-800 *6) (-722 *4 (-800 *6)))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *6 (-592 (-1091))) (-5 *2 (-592 (-722 *4 (-800 *6)))) (-5 *1 (-1197 *4 *5 *6)) (-14 *5 (-592 (-1091))))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-1087 *4)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-1087 (-955 (-385 *4)))) (-5 *1 (-1197 *4 *5 *6)) (-14 *5 (-592 (-1091))) (-14 *6 (-592 (-1091))))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-722 *4 (-800 *6))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *6 (-592 (-1091))) (-5 *2 (-887 (-955 (-385 *4)))) (-5 *1 (-1197 *4 *5 *6)) (-14 *5 (-592 (-1091))))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-887 *4)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-887 (-955 (-385 *4)))) (-5 *1 (-1197 *4 *5 *6)) (-14 *5 (-592 (-1091))) (-14 *6 (-592 (-1091))))) (-2749 (*1 *2 *3) (-12 (-5 *3 (-722 *4 (-800 *5))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *5 (-592 (-1091))) (-5 *2 (-722 *4 (-800 *6))) (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-592 (-1091))))) (-2100 (*1 *2 *3) (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *5 (-592 (-1091))) (-5 *2 (-592 (-1062 *4 (-497 (-800 *6)) (-800 *6) (-722 *4 (-800 *6))))) (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-592 (-1091))))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *4))))) (-5 *1 (-1197 *4 *5 *6)) (-14 *5 (-592 (-1091))) (-14 *6 (-592 (-1091))))) (-3960 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1197 *5 *6 *7)) (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091))))) (-3960 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1197 *5 *6 *7)) (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091))))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *5 (-592 (-1091))) (-5 *2 (-592 (-592 (-955 (-385 *4))))) (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-592 (-1091))))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *4))))) (-5 *1 (-1197 *4 *5 *6)) (-14 *5 (-592 (-1091))) (-14 *6 (-592 (-1091))))) (-1526 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1197 *5 *6 *7)) (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091))))) (-1526 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1197 *5 *6 *7)) (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091))))) (-1526 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1197 *5 *6 *7)) (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091))))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *5 (-592 (-1091))) (-5 *2 (-592 (-592 (-955 (-385 *4))))) (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-592 (-1091))))) (-1471 (*1 *2 *3) (-12 (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-2 (|:| -3582 (-1087 *4)) (|:| -3464 (-592 (-887 *4)))))) (-5 *1 (-1197 *4 *5 *6)) (-5 *3 (-592 (-887 *4))) (-14 *5 (-592 (-1091))) (-14 *6 (-592 (-1091))))) (-1471 (*1 *2 *3 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-2 (|:| -3582 (-1087 *5)) (|:| -3464 (-592 (-887 *5)))))) (-5 *1 (-1197 *5 *6 *7)) (-5 *3 (-592 (-887 *5))) (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091))))) (-1471 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-2 (|:| -3582 (-1087 *5)) (|:| -3464 (-592 (-887 *5)))))) (-5 *1 (-1197 *5 *6 *7)) (-5 *3 (-592 (-887 *5))) (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091))))) (-1471 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-2 (|:| -3582 (-1087 *5)) (|:| -3464 (-592 (-887 *5)))))) (-5 *1 (-1197 *5 *6 *7)) (-5 *3 (-592 (-887 *5))) (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091))))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *5 (-592 (-1091))) (-5 *2 (-592 (-2 (|:| -3582 (-1087 *4)) (|:| -3464 (-592 (-887 *4)))))) (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-592 (-1091))))) (-2834 (*1 *2 *3) (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-974 *4 *5))) (-5 *1 (-1197 *4 *5 *6)) (-14 *5 (-592 (-1091))) (-14 *6 (-592 (-1091))))) (-2834 (*1 *2 *3 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-1197 *5 *6 *7)) (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091))))) (-2834 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953))) (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-1197 *5 *6 *7)) (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091))))))
+(-10 -7 (-15 -2834 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108) (-108))) (-15 -2834 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)) (-108))) (-15 -2834 ((-592 (-974 |#1| |#2|)) (-592 (-887 |#1|)))) (-15 -1471 ((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-974 |#1| |#2|))) (-15 -1471 ((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108) (-108))) (-15 -1471 ((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -1471 ((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)) (-108))) (-15 -1471 ((-592 (-2 (|:| -3582 (-1087 |#1|)) (|:| -3464 (-592 (-887 |#1|))))) (-592 (-887 |#1|)))) (-15 -1526 ((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|))) (-15 -1526 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108) (-108))) (-15 -1526 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -1526 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108))) (-15 -1526 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)))) (-15 -3960 ((-592 (-592 (-955 (-385 |#1|)))) (-974 |#1| |#2|))) (-15 -3960 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108) (-108))) (-15 -3960 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)) (-108))) (-15 -3960 ((-592 (-592 (-955 (-385 |#1|)))) (-592 (-887 |#1|)))) (-15 -2100 ((-592 (-1062 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|)))) (-974 |#1| |#2|))) (-15 -2749 ((-722 |#1| (-800 |#3|)) (-722 |#1| (-800 |#2|)))) (-15 -2749 ((-887 (-955 (-385 |#1|))) (-887 |#1|))) (-15 -2749 ((-887 (-955 (-385 |#1|))) (-722 |#1| (-800 |#3|)))) (-15 -2749 ((-1087 (-955 (-385 |#1|))) (-1087 |#1|))) (-15 -2749 ((-592 (-722 |#1| (-800 |#3|))) (-1062 |#1| (-497 (-800 |#3|)) (-800 |#3|) (-722 |#1| (-800 |#3|))))))
+((-3766 (((-3 (-1173 (-385 (-525))) "failed") (-1173 |#1|) |#1|) 21)) (-3160 (((-108) (-1173 |#1|)) 12)) (-2376 (((-3 (-1173 (-525)) "failed") (-1173 |#1|)) 16)))
+(((-1198 |#1|) (-10 -7 (-15 -3160 ((-108) (-1173 |#1|))) (-15 -2376 ((-3 (-1173 (-525)) "failed") (-1173 |#1|))) (-15 -3766 ((-3 (-1173 (-385 (-525))) "failed") (-1173 |#1|) |#1|))) (-588 (-525))) (T -1198))
+((-3766 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1173 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-1173 (-385 (-525)))) (-5 *1 (-1198 *4)))) (-2376 (*1 *2 *3) (|partial| -12 (-5 *3 (-1173 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-1173 (-525))) (-5 *1 (-1198 *4)))) (-3160 (*1 *2 *3) (-12 (-5 *3 (-1173 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-108)) (-5 *1 (-1198 *4)))))
+(-10 -7 (-15 -3160 ((-108) (-1173 |#1|))) (-15 -2376 ((-3 (-1173 (-525)) "failed") (-1173 |#1|))) (-15 -3766 ((-3 (-1173 (-385 (-525))) "failed") (-1173 |#1|) |#1|)))
+((-1260 (((-108) $ $) NIL)) (-1989 (((-108) $) 11)) (-1342 (((-3 $ "failed") $ $) NIL)) (-4190 (((-713)) 8)) (-2305 (($) NIL T CONST)) (-3762 (((-3 $ "failed") $) 43)) (-2899 (($) 36)) (-1985 (((-108) $) NIL)) (-1760 (((-3 $ "failed") $) 29)) (-1736 (((-856) $) 15)) (-3451 (((-1074) $) NIL)) (-3940 (($) 25 T CONST)) (-3640 (($ (-856)) 37)) (-2012 (((-1038) $) NIL)) (-2749 (((-525) $) 13)) (-1270 (((-798) $) 22) (($ (-525)) 19)) (-2104 (((-713)) 9)) (-1576 (($ $ (-856)) NIL) (($ $ (-713)) NIL)) (-3355 (($) 23 T CONST)) (-3363 (($) 24 T CONST)) (-3994 (((-108) $ $) 27)) (-4090 (($ $) 38) (($ $ $) 35)) (-4080 (($ $ $) 26)) (** (($ $ (-856)) NIL) (($ $ (-713)) 40)) (* (($ (-856) $) NIL) (($ (-713) $) NIL) (($ (-525) $) 32) (($ $ $) 31)))
+(((-1199 |#1|) (-13 (-160) (-346) (-567 (-525)) (-1067)) (-856)) (T -1199))
+NIL
+(-13 (-160) (-346) (-567 (-525)) (-1067))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3149538 3149543 3149548 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3149523 3149528 3149533 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3149508 3149513 3149518 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3149493 3149498 3149503 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1199 3148623 3149368 3149445 "ZMOD" 3149450 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1198 3147733 3147897 3148106 "ZLINDEP" 3148455 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1197 3137137 3138882 3140834 "ZDSOLVE" 3145882 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1196 3136383 3136524 3136713 "YSTREAM" 3136983 NIL YSTREAM (NIL T) -7 NIL NIL) (-1195 3134152 3135688 3135891 "XRPOLY" 3136226 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1194 3130614 3131943 3132525 "XPR" 3133616 NIL XPR (NIL T T) -8 NIL NIL) (-1193 3128328 3129949 3130152 "XPOLY" 3130445 NIL XPOLY (NIL T) -8 NIL NIL) (-1192 3126142 3127520 3127574 "XPOLYC" 3127859 NIL XPOLYC (NIL T T) -9 NIL 3127972) (-1191 3122514 3124659 3125047 "XPBWPOLY" 3125800 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1190 3118442 3120755 3120797 "XF" 3121418 NIL XF (NIL T) -9 NIL 3121817) (-1189 3118063 3118151 3118320 "XF-" 3118325 NIL XF- (NIL T T) -8 NIL NIL) (-1188 3113443 3114742 3114796 "XFALG" 3116944 NIL XFALG (NIL T T) -9 NIL 3117731) (-1187 3112580 3112684 3112888 "XEXPPKG" 3113335 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1186 3110679 3112431 3112526 "XDPOLY" 3112531 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1185 3109558 3110168 3110210 "XALG" 3110272 NIL XALG (NIL T) -9 NIL 3110391) (-1184 3103034 3107542 3108035 "WUTSET" 3109150 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1183 3100838 3101645 3101996 "WP" 3102816 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1182 3099724 3099922 3100217 "WFFINTBS" 3100635 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1181 3097604 3098031 3098493 "WEIER" 3099296 NIL WEIER (NIL T) -7 NIL NIL) (-1180 3096753 3097177 3097219 "VSPACE" 3097355 NIL VSPACE (NIL T) -9 NIL 3097429) (-1179 3096591 3096618 3096709 "VSPACE-" 3096714 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1178 3096337 3096380 3096451 "VOID" 3096542 T VOID (NIL) -8 NIL NIL) (-1177 3094473 3094832 3095238 "VIEW" 3095953 T VIEW (NIL) -7 NIL NIL) (-1176 3090898 3091536 3092273 "VIEWDEF" 3093758 T VIEWDEF (NIL) -7 NIL NIL) (-1175 3080236 3082446 3084619 "VIEW3D" 3088747 T VIEW3D (NIL) -8 NIL NIL) (-1174 3072518 3074147 3075726 "VIEW2D" 3078679 T VIEW2D (NIL) -8 NIL NIL) (-1173 3067927 3072288 3072380 "VECTOR" 3072461 NIL VECTOR (NIL T) -8 NIL NIL) (-1172 3066504 3066763 3067081 "VECTOR2" 3067657 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1171 3060044 3064296 3064339 "VECTCAT" 3065327 NIL VECTCAT (NIL T) -9 NIL 3065911) (-1170 3059058 3059312 3059702 "VECTCAT-" 3059707 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1169 3058529 3058699 3058819 "VARIABLE" 3058973 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1168 3058462 3058467 3058497 "UTYPE" 3058502 T UTYPE (NIL) -9 NIL NIL) (-1167 3057297 3057451 3057712 "UTSODETL" 3058288 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1166 3054737 3055197 3055721 "UTSODE" 3056838 NIL UTSODE (NIL T T) -7 NIL NIL) (-1165 3046581 3052377 3052865 "UTS" 3054306 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1164 3037916 3043281 3043323 "UTSCAT" 3044434 NIL UTSCAT (NIL T) -9 NIL 3045191) (-1163 3035271 3035987 3036975 "UTSCAT-" 3036980 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1162 3034902 3034945 3035076 "UTS2" 3035222 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1161 3029178 3031743 3031786 "URAGG" 3033856 NIL URAGG (NIL T) -9 NIL 3034578) (-1160 3026117 3026980 3028103 "URAGG-" 3028108 NIL URAGG- (NIL T T) -8 NIL NIL) (-1159 3021803 3024734 3025205 "UPXSSING" 3025781 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1158 3013694 3020924 3021204 "UPXS" 3021580 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1157 3006723 3013599 3013670 "UPXSCONS" 3013675 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1156 2997012 3003842 3003903 "UPXSCCA" 3004552 NIL UPXSCCA (NIL T T) -9 NIL 3004793) (-1155 2996651 2996736 2996909 "UPXSCCA-" 2996914 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1154 2986852 2993455 2993497 "UPXSCAT" 2994150 NIL UPXSCAT (NIL T) -9 NIL 2994758) (-1153 2986286 2986365 2986542 "UPXS2" 2986767 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1152 2984940 2985193 2985544 "UPSQFREE" 2986029 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1151 2978831 2981886 2981940 "UPSCAT" 2983089 NIL UPSCAT (NIL T T) -9 NIL 2983863) (-1150 2978036 2978243 2978569 "UPSCAT-" 2978574 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1149 2964122 2972159 2972201 "UPOLYC" 2974279 NIL UPOLYC (NIL T) -9 NIL 2975500) (-1148 2955452 2957877 2961023 "UPOLYC-" 2961028 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1147 2955083 2955126 2955257 "UPOLYC2" 2955403 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1146 2946502 2954652 2954789 "UP" 2954993 NIL UP (NIL NIL T) -8 NIL NIL) (-1145 2945845 2945952 2946115 "UPMP" 2946391 NIL UPMP (NIL T T) -7 NIL NIL) (-1144 2945398 2945479 2945618 "UPDIVP" 2945758 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1143 2943966 2944215 2944531 "UPDECOMP" 2945147 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1142 2943201 2943313 2943498 "UPCDEN" 2943850 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1141 2942724 2942793 2942940 "UP2" 2943126 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1140 2941241 2941928 2942205 "UNISEG" 2942482 NIL UNISEG (NIL T) -8 NIL NIL) (-1139 2940456 2940583 2940788 "UNISEG2" 2941084 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1138 2939516 2939696 2939922 "UNIFACT" 2940272 NIL UNIFACT (NIL T) -7 NIL NIL) (-1137 2923412 2938697 2938947 "ULS" 2939323 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1136 2911377 2923317 2923388 "ULSCONS" 2923393 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1135 2894127 2906140 2906201 "ULSCCAT" 2906913 NIL ULSCCAT (NIL T T) -9 NIL 2907209) (-1134 2893178 2893423 2893810 "ULSCCAT-" 2893815 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1133 2883158 2889675 2889717 "ULSCAT" 2890583 NIL ULSCAT (NIL T) -9 NIL 2891313) (-1132 2882592 2882671 2882848 "ULS2" 2883073 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1131 2880990 2881957 2881987 "UFD" 2882199 T UFD (NIL) -9 NIL 2882313) (-1130 2880784 2880830 2880925 "UFD-" 2880930 NIL UFD- (NIL T) -8 NIL NIL) (-1129 2879866 2880049 2880265 "UDVO" 2880590 T UDVO (NIL) -7 NIL NIL) (-1128 2877682 2878091 2878562 "UDPO" 2879430 NIL UDPO (NIL T) -7 NIL NIL) (-1127 2877615 2877620 2877650 "TYPE" 2877655 T TYPE (NIL) -9 NIL NIL) (-1126 2876586 2876788 2877028 "TWOFACT" 2877409 NIL TWOFACT (NIL T) -7 NIL NIL) (-1125 2875524 2875861 2876124 "TUPLE" 2876358 NIL TUPLE (NIL T) -8 NIL NIL) (-1124 2873215 2873734 2874273 "TUBETOOL" 2875007 T TUBETOOL (NIL) -7 NIL NIL) (-1123 2872064 2872269 2872510 "TUBE" 2873008 NIL TUBE (NIL T) -8 NIL NIL) (-1122 2866788 2871042 2871324 "TS" 2871816 NIL TS (NIL T) -8 NIL NIL) (-1121 2855492 2859584 2859680 "TSETCAT" 2864914 NIL TSETCAT (NIL T T T T) -9 NIL 2866445) (-1120 2850227 2851825 2853715 "TSETCAT-" 2853720 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1119 2844490 2845336 2846278 "TRMANIP" 2849363 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1118 2843931 2843994 2844157 "TRIMAT" 2844422 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1117 2841737 2841974 2842337 "TRIGMNIP" 2843680 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1116 2841257 2841370 2841400 "TRIGCAT" 2841613 T TRIGCAT (NIL) -9 NIL NIL) (-1115 2840926 2841005 2841146 "TRIGCAT-" 2841151 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1114 2837825 2839786 2840066 "TREE" 2840681 NIL TREE (NIL T) -8 NIL NIL) (-1113 2837099 2837627 2837657 "TRANFUN" 2837692 T TRANFUN (NIL) -9 NIL 2837758) (-1112 2836378 2836569 2836849 "TRANFUN-" 2836854 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1111 2836182 2836214 2836275 "TOPSP" 2836339 T TOPSP (NIL) -7 NIL NIL) (-1110 2835534 2835649 2835802 "TOOLSIGN" 2836063 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1109 2834195 2834711 2834950 "TEXTFILE" 2835317 T TEXTFILE (NIL) -8 NIL NIL) (-1108 2832060 2832574 2833012 "TEX" 2833779 T TEX (NIL) -8 NIL NIL) (-1107 2831841 2831872 2831944 "TEX1" 2832023 NIL TEX1 (NIL T) -7 NIL NIL) (-1106 2831489 2831552 2831642 "TEMUTL" 2831773 T TEMUTL (NIL) -7 NIL NIL) (-1105 2829643 2829923 2830248 "TBCMPPK" 2831212 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1104 2821532 2827804 2827860 "TBAGG" 2828260 NIL TBAGG (NIL T T) -9 NIL 2828471) (-1103 2816602 2818090 2819844 "TBAGG-" 2819849 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1102 2815986 2816093 2816238 "TANEXP" 2816491 NIL TANEXP (NIL T) -7 NIL NIL) (-1101 2809487 2815843 2815936 "TABLE" 2815941 NIL TABLE (NIL T T) -8 NIL NIL) (-1100 2808899 2808998 2809136 "TABLEAU" 2809384 NIL TABLEAU (NIL T) -8 NIL NIL) (-1099 2803472 2804692 2805940 "TABLBUMP" 2807685 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1098 2802900 2803000 2803128 "SYSTEM" 2803366 T SYSTEM (NIL) -7 NIL NIL) (-1097 2799363 2800058 2800841 "SYSSOLP" 2802151 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1096 2795654 2796362 2797096 "SYNTAX" 2798651 T SYNTAX (NIL) -8 NIL NIL) (-1095 2792788 2793396 2794034 "SYMTAB" 2795038 T SYMTAB (NIL) -8 NIL NIL) (-1094 2788037 2788939 2789922 "SYMS" 2791827 T SYMS (NIL) -8 NIL NIL) (-1093 2785266 2787493 2787722 "SYMPOLY" 2787842 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1092 2784786 2784861 2784983 "SYMFUNC" 2785178 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1091 2780763 2782023 2782845 "SYMBOL" 2783986 T SYMBOL (NIL) -8 NIL NIL) (-1090 2774302 2775991 2777711 "SWITCH" 2779065 T SWITCH (NIL) -8 NIL NIL) (-1089 2767532 2773129 2773431 "SUTS" 2774057 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1088 2759422 2766653 2766933 "SUPXS" 2767309 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1087 2750914 2759043 2759168 "SUP" 2759331 NIL SUP (NIL T) -8 NIL NIL) (-1086 2750073 2750200 2750417 "SUPFRACF" 2750782 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1085 2749698 2749757 2749868 "SUP2" 2750008 NIL SUP2 (NIL T T) -7 NIL NIL) (-1084 2748095 2748369 2748731 "SUMRF" 2749397 NIL SUMRF (NIL T) -7 NIL NIL) (-1083 2747412 2747478 2747676 "SUMFS" 2748016 NIL SUMFS (NIL T T) -7 NIL NIL) (-1082 2731348 2746593 2746843 "SULS" 2747219 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1081 2730670 2730873 2731013 "SUCH" 2731256 NIL SUCH (NIL T T) -8 NIL NIL) (-1080 2724597 2725609 2726567 "SUBSPACE" 2729758 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1079 2724027 2724117 2724281 "SUBRESP" 2724485 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1078 2717396 2718692 2720003 "STTF" 2722763 NIL STTF (NIL T) -7 NIL NIL) (-1077 2711569 2712689 2713836 "STTFNC" 2716296 NIL STTFNC (NIL T) -7 NIL NIL) (-1076 2702909 2704776 2706569 "STTAYLOR" 2709810 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1075 2696153 2702773 2702856 "STRTBL" 2702861 NIL STRTBL (NIL T) -8 NIL NIL) (-1074 2691544 2696108 2696139 "STRING" 2696144 T STRING (NIL) -8 NIL NIL) (-1073 2686433 2690918 2690948 "STRICAT" 2691007 T STRICAT (NIL) -9 NIL 2691069) (-1072 2679147 2683956 2684576 "STREAM" 2685848 NIL STREAM (NIL T) -8 NIL NIL) (-1071 2678657 2678734 2678878 "STREAM3" 2679064 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1070 2677639 2677822 2678057 "STREAM2" 2678470 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1069 2677327 2677379 2677472 "STREAM1" 2677581 NIL STREAM1 (NIL T) -7 NIL NIL) (-1068 2676343 2676524 2676755 "STINPROD" 2677143 NIL STINPROD (NIL T) -7 NIL NIL) (-1067 2675922 2676106 2676136 "STEP" 2676216 T STEP (NIL) -9 NIL 2676294) (-1066 2669465 2675821 2675898 "STBL" 2675903 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1065 2664641 2668688 2668731 "STAGG" 2668884 NIL STAGG (NIL T) -9 NIL 2668973) (-1064 2662343 2662945 2663817 "STAGG-" 2663822 NIL STAGG- (NIL T T) -8 NIL NIL) (-1063 2660538 2662113 2662205 "STACK" 2662286 NIL STACK (NIL T) -8 NIL NIL) (-1062 2653269 2658685 2659140 "SREGSET" 2660168 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1061 2645701 2647069 2648581 "SRDCMPK" 2651875 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1060 2638669 2643142 2643172 "SRAGG" 2644475 T SRAGG (NIL) -9 NIL 2645083) (-1059 2637686 2637941 2638320 "SRAGG-" 2638325 NIL SRAGG- (NIL T) -8 NIL NIL) (-1058 2632135 2636605 2637032 "SQMATRIX" 2637305 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1057 2625887 2628855 2629581 "SPLTREE" 2631481 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1056 2621877 2622543 2623189 "SPLNODE" 2625313 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1055 2620924 2621157 2621187 "SPFCAT" 2621631 T SPFCAT (NIL) -9 NIL NIL) (-1054 2619661 2619871 2620135 "SPECOUT" 2620682 T SPECOUT (NIL) -7 NIL NIL) (-1053 2619422 2619462 2619531 "SPADPRSR" 2619614 T SPADPRSR (NIL) -7 NIL NIL) (-1052 2611445 2613192 2613234 "SPACEC" 2617557 NIL SPACEC (NIL T) -9 NIL 2619373) (-1051 2609616 2611378 2611426 "SPACE3" 2611431 NIL SPACE3 (NIL T) -8 NIL NIL) (-1050 2608368 2608539 2608830 "SORTPAK" 2609421 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1049 2606424 2606727 2607145 "SOLVETRA" 2608032 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1048 2605435 2605657 2605931 "SOLVESER" 2606197 NIL SOLVESER (NIL T) -7 NIL NIL) (-1047 2600655 2601536 2602538 "SOLVERAD" 2604487 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1046 2596470 2597079 2597808 "SOLVEFOR" 2600022 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1045 2590770 2595822 2595918 "SNTSCAT" 2595923 NIL SNTSCAT (NIL T T T T) -9 NIL 2595993) (-1044 2584874 2589101 2589491 "SMTS" 2590460 NIL SMTS (NIL T T T) -8 NIL NIL) (-1043 2579284 2584763 2584839 "SMP" 2584844 NIL SMP (NIL T T) -8 NIL NIL) (-1042 2577443 2577744 2578142 "SMITH" 2578981 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1041 2570408 2574604 2574706 "SMATCAT" 2576046 NIL SMATCAT (NIL NIL T T T) -9 NIL 2576595) (-1040 2567349 2568172 2569349 "SMATCAT-" 2569354 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1039 2565063 2566586 2566629 "SKAGG" 2566890 NIL SKAGG (NIL T) -9 NIL 2567025) (-1038 2561121 2564167 2564445 "SINT" 2564807 T SINT (NIL) -8 NIL NIL) (-1037 2560893 2560931 2560997 "SIMPAN" 2561077 T SIMPAN (NIL) -7 NIL NIL) (-1036 2559731 2559952 2560227 "SIGNRF" 2560652 NIL SIGNRF (NIL T) -7 NIL NIL) (-1035 2558516 2558667 2558957 "SIGNEF" 2559560 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1034 2556206 2556660 2557166 "SHP" 2558057 NIL SHP (NIL T NIL) -7 NIL NIL) (-1033 2550059 2556107 2556183 "SHDP" 2556188 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1032 2549549 2549741 2549771 "SGROUP" 2549923 T SGROUP (NIL) -9 NIL 2550010) (-1031 2549319 2549371 2549475 "SGROUP-" 2549480 NIL SGROUP- (NIL T) -8 NIL NIL) (-1030 2546155 2546852 2547575 "SGCF" 2548618 T SGCF (NIL) -7 NIL NIL) (-1029 2540554 2545606 2545702 "SFRTCAT" 2545707 NIL SFRTCAT (NIL T T T T) -9 NIL 2545745) (-1028 2534014 2535029 2536163 "SFRGCD" 2539537 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1027 2527180 2528251 2529435 "SFQCMPK" 2532947 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1026 2526802 2526891 2527001 "SFORT" 2527121 NIL SFORT (NIL T T) -8 NIL NIL) (-1025 2525947 2526642 2526763 "SEXOF" 2526768 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1024 2525081 2525828 2525896 "SEX" 2525901 T SEX (NIL) -8 NIL NIL) (-1023 2519858 2520547 2520642 "SEXCAT" 2524413 NIL SEXCAT (NIL T T T T T) -9 NIL 2525032) (-1022 2517038 2519792 2519840 "SET" 2519845 NIL SET (NIL T) -8 NIL NIL) (-1021 2515257 2515719 2516024 "SETMN" 2516779 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1020 2514865 2514991 2515021 "SETCAT" 2515138 T SETCAT (NIL) -9 NIL 2515222) (-1019 2514645 2514697 2514796 "SETCAT-" 2514801 NIL SETCAT- (NIL T) -8 NIL NIL) (-1018 2511033 2513107 2513150 "SETAGG" 2514020 NIL SETAGG (NIL T) -9 NIL 2514360) (-1017 2510491 2510607 2510844 "SETAGG-" 2510849 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1016 2509695 2509988 2510049 "SEGXCAT" 2510335 NIL SEGXCAT (NIL T T) -9 NIL 2510455) (-1015 2508751 2509361 2509543 "SEG" 2509548 NIL SEG (NIL T) -8 NIL NIL) (-1014 2507658 2507871 2507914 "SEGCAT" 2508496 NIL SEGCAT (NIL T) -9 NIL 2508734) (-1013 2506707 2507037 2507237 "SEGBIND" 2507493 NIL SEGBIND (NIL T) -8 NIL NIL) (-1012 2506328 2506387 2506500 "SEGBIND2" 2506642 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1011 2505547 2505673 2505877 "SEG2" 2506172 NIL SEG2 (NIL T T) -7 NIL NIL) (-1010 2504984 2505482 2505529 "SDVAR" 2505534 NIL SDVAR (NIL T) -8 NIL NIL) (-1009 2497236 2504757 2504885 "SDPOL" 2504890 NIL SDPOL (NIL T) -8 NIL NIL) (-1008 2495829 2496095 2496414 "SCPKG" 2496951 NIL SCPKG (NIL T) -7 NIL NIL) (-1007 2494966 2495145 2495345 "SCOPE" 2495651 T SCOPE (NIL) -8 NIL NIL) (-1006 2494187 2494320 2494499 "SCACHE" 2494821 NIL SCACHE (NIL T) -7 NIL NIL) (-1005 2493626 2493947 2494032 "SAOS" 2494124 T SAOS (NIL) -8 NIL NIL) (-1004 2493191 2493226 2493399 "SAERFFC" 2493585 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1003 2487085 2493088 2493168 "SAE" 2493173 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1002 2486678 2486713 2486872 "SAEFACT" 2487044 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1001 2484999 2485313 2485714 "RURPK" 2486344 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1000 2483647 2483924 2484233 "RULESET" 2484835 NIL RULESET (NIL T T T) -8 NIL NIL) (-999 2480841 2481344 2481805 "RULE" 2483329 NIL RULE (NIL T T T) -8 NIL NIL) (-998 2480478 2480633 2480714 "RULECOLD" 2480793 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-997 2475370 2476164 2477080 "RSETGCD" 2479677 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-996 2464685 2469737 2469831 "RSETCAT" 2473896 NIL RSETCAT (NIL T T T T) -9 NIL 2474993) (-995 2462616 2463155 2463975 "RSETCAT-" 2463980 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-994 2455038 2456413 2457929 "RSDCMPK" 2461215 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-993 2453056 2453497 2453569 "RRCC" 2454645 NIL RRCC (NIL T T) -9 NIL 2454989) (-992 2452410 2452584 2452860 "RRCC-" 2452865 NIL RRCC- (NIL T T T) -8 NIL NIL) (-991 2426777 2436402 2436466 "RPOLCAT" 2446968 NIL RPOLCAT (NIL T T T) -9 NIL 2450126) (-990 2418281 2420619 2423737 "RPOLCAT-" 2423742 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-989 2409347 2416511 2416991 "ROUTINE" 2417821 T ROUTINE (NIL) -8 NIL NIL) (-988 2406052 2408903 2409050 "ROMAN" 2409220 T ROMAN (NIL) -8 NIL NIL) (-987 2404338 2404923 2405180 "ROIRC" 2405858 NIL ROIRC (NIL T T) -8 NIL NIL) (-986 2400743 2403047 2403075 "RNS" 2403371 T RNS (NIL) -9 NIL 2403641) (-985 2399257 2399640 2400171 "RNS-" 2400244 NIL RNS- (NIL T) -8 NIL NIL) (-984 2398683 2399091 2399119 "RNG" 2399124 T RNG (NIL) -9 NIL 2399145) (-983 2398081 2398443 2398483 "RMODULE" 2398543 NIL RMODULE (NIL T) -9 NIL 2398585) (-982 2396933 2397027 2397357 "RMCAT2" 2397982 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-981 2393647 2396116 2396437 "RMATRIX" 2396668 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-980 2386644 2388878 2388990 "RMATCAT" 2392299 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2393281) (-979 2386023 2386170 2386473 "RMATCAT-" 2386478 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-978 2385593 2385668 2385794 "RINTERP" 2385942 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-977 2384644 2385208 2385236 "RING" 2385346 T RING (NIL) -9 NIL 2385440) (-976 2384439 2384483 2384577 "RING-" 2384582 NIL RING- (NIL T) -8 NIL NIL) (-975 2383287 2383524 2383780 "RIDIST" 2384203 T RIDIST (NIL) -7 NIL NIL) (-974 2374609 2382761 2382964 "RGCHAIN" 2383136 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-973 2371614 2372228 2372896 "RF" 2373973 NIL RF (NIL T) -7 NIL NIL) (-972 2371263 2371326 2371427 "RFFACTOR" 2371545 NIL RFFACTOR (NIL T) -7 NIL NIL) (-971 2370991 2371026 2371121 "RFFACT" 2371222 NIL RFFACT (NIL T) -7 NIL NIL) (-970 2369121 2369485 2369865 "RFDIST" 2370631 T RFDIST (NIL) -7 NIL NIL) (-969 2368579 2368671 2368831 "RETSOL" 2369023 NIL RETSOL (NIL T T) -7 NIL NIL) (-968 2368172 2368252 2368293 "RETRACT" 2368483 NIL RETRACT (NIL T) -9 NIL NIL) (-967 2368024 2368049 2368133 "RETRACT-" 2368138 NIL RETRACT- (NIL T T) -8 NIL NIL) (-966 2360882 2367681 2367806 "RESULT" 2367919 T RESULT (NIL) -8 NIL NIL) (-965 2359467 2360156 2360353 "RESRING" 2360785 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-964 2359107 2359156 2359252 "RESLATC" 2359404 NIL RESLATC (NIL T) -7 NIL NIL) (-963 2358816 2358850 2358955 "REPSQ" 2359066 NIL REPSQ (NIL T) -7 NIL NIL) (-962 2356247 2356827 2357427 "REP" 2358236 T REP (NIL) -7 NIL NIL) (-961 2355948 2355982 2356091 "REPDB" 2356206 NIL REPDB (NIL T) -7 NIL NIL) (-960 2349893 2351272 2352492 "REP2" 2354760 NIL REP2 (NIL T) -7 NIL NIL) (-959 2346299 2346980 2347785 "REP1" 2349120 NIL REP1 (NIL T) -7 NIL NIL) (-958 2339045 2344460 2344912 "REGSET" 2345930 NIL REGSET (NIL T T T T) -8 NIL NIL) (-957 2337866 2338201 2338449 "REF" 2338830 NIL REF (NIL T) -8 NIL NIL) (-956 2337247 2337350 2337515 "REDORDER" 2337750 NIL REDORDER (NIL T T) -7 NIL NIL) (-955 2333216 2336481 2336702 "RECLOS" 2337078 NIL RECLOS (NIL T) -8 NIL NIL) (-954 2332273 2332454 2332667 "REALSOLV" 2333023 T REALSOLV (NIL) -7 NIL NIL) (-953 2332121 2332162 2332190 "REAL" 2332195 T REAL (NIL) -9 NIL 2332230) (-952 2328557 2329359 2330241 "REAL0Q" 2331286 NIL REAL0Q (NIL T) -7 NIL NIL) (-951 2324168 2325156 2326215 "REAL0" 2327538 NIL REAL0 (NIL T) -7 NIL NIL) (-950 2323576 2323648 2323853 "RDIV" 2324090 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-949 2322649 2322823 2323034 "RDIST" 2323398 NIL RDIST (NIL T) -7 NIL NIL) (-948 2321253 2321540 2321909 "RDETRS" 2322357 NIL RDETRS (NIL T T) -7 NIL NIL) (-947 2319066 2319520 2320055 "RDETR" 2320795 NIL RDETR (NIL T T) -7 NIL NIL) (-946 2317674 2317952 2318353 "RDEEFS" 2318782 NIL RDEEFS (NIL T T) -7 NIL NIL) (-945 2316166 2316472 2316901 "RDEEF" 2317362 NIL RDEEF (NIL T T) -7 NIL NIL) (-944 2310451 2313383 2313411 "RCFIELD" 2314688 T RCFIELD (NIL) -9 NIL 2315418) (-943 2308520 2309024 2309717 "RCFIELD-" 2309790 NIL RCFIELD- (NIL T) -8 NIL NIL) (-942 2304852 2306637 2306678 "RCAGG" 2307749 NIL RCAGG (NIL T) -9 NIL 2308214) (-941 2304483 2304577 2304737 "RCAGG-" 2304742 NIL RCAGG- (NIL T T) -8 NIL NIL) (-940 2303805 2303917 2304079 "RATRET" 2304367 NIL RATRET (NIL T) -7 NIL NIL) (-939 2303362 2303429 2303548 "RATFACT" 2303733 NIL RATFACT (NIL T) -7 NIL NIL) (-938 2302677 2302797 2302947 "RANDSRC" 2303232 T RANDSRC (NIL) -7 NIL NIL) (-937 2302414 2302458 2302529 "RADUTIL" 2302626 T RADUTIL (NIL) -7 NIL NIL) (-936 2295421 2301157 2301474 "RADIX" 2302129 NIL RADIX (NIL NIL) -8 NIL NIL) (-935 2286991 2295265 2295393 "RADFF" 2295398 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-934 2286643 2286718 2286746 "RADCAT" 2286903 T RADCAT (NIL) -9 NIL NIL) (-933 2286428 2286476 2286573 "RADCAT-" 2286578 NIL RADCAT- (NIL T) -8 NIL NIL) (-932 2284579 2286203 2286292 "QUEUE" 2286372 NIL QUEUE (NIL T) -8 NIL NIL) (-931 2281076 2284516 2284561 "QUAT" 2284566 NIL QUAT (NIL T) -8 NIL NIL) (-930 2280714 2280757 2280884 "QUATCT2" 2281027 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-929 2274508 2277888 2277928 "QUATCAT" 2278707 NIL QUATCAT (NIL T) -9 NIL 2279472) (-928 2270652 2271689 2273076 "QUATCAT-" 2273170 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-927 2268173 2269737 2269778 "QUAGG" 2270153 NIL QUAGG (NIL T) -9 NIL 2270328) (-926 2267098 2267571 2267743 "QFORM" 2268045 NIL QFORM (NIL NIL T) -8 NIL NIL) (-925 2258395 2263653 2263693 "QFCAT" 2264351 NIL QFCAT (NIL T) -9 NIL 2265344) (-924 2253967 2255168 2256759 "QFCAT-" 2256853 NIL QFCAT- (NIL T T) -8 NIL NIL) (-923 2253605 2253648 2253775 "QFCAT2" 2253918 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-922 2253065 2253175 2253305 "QEQUAT" 2253495 T QEQUAT (NIL) -8 NIL NIL) (-921 2246251 2247322 2248504 "QCMPACK" 2251998 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-920 2243827 2244248 2244676 "QALGSET" 2245906 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-919 2243072 2243246 2243478 "QALGSET2" 2243647 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-918 2241763 2241986 2242303 "PWFFINTB" 2242845 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-917 2239951 2240119 2240472 "PUSHVAR" 2241577 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-916 2235869 2236923 2236964 "PTRANFN" 2238848 NIL PTRANFN (NIL T) -9 NIL NIL) (-915 2234281 2234572 2234893 "PTPACK" 2235580 NIL PTPACK (NIL T) -7 NIL NIL) (-914 2233917 2233974 2234081 "PTFUNC2" 2234218 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-913 2228394 2232735 2232775 "PTCAT" 2233143 NIL PTCAT (NIL T) -9 NIL 2233305) (-912 2228052 2228087 2228211 "PSQFR" 2228353 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-911 2226647 2226945 2227279 "PSEUDLIN" 2227750 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-910 2213454 2215819 2218142 "PSETPK" 2224407 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-909 2206541 2209255 2209349 "PSETCAT" 2212330 NIL PSETCAT (NIL T T T T) -9 NIL 2213144) (-908 2204379 2205013 2205832 "PSETCAT-" 2205837 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-907 2203728 2203893 2203921 "PSCURVE" 2204189 T PSCURVE (NIL) -9 NIL 2204356) (-906 2200180 2201706 2201770 "PSCAT" 2202606 NIL PSCAT (NIL T T T) -9 NIL 2202846) (-905 2199244 2199460 2199859 "PSCAT-" 2199864 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-904 2197896 2198529 2198743 "PRTITION" 2199050 T PRTITION (NIL) -8 NIL NIL) (-903 2186994 2189200 2191388 "PRS" 2195758 NIL PRS (NIL T T) -7 NIL NIL) (-902 2184853 2186345 2186385 "PRQAGG" 2186568 NIL PRQAGG (NIL T) -9 NIL 2186670) (-901 2184424 2184526 2184554 "PROPLOG" 2184739 T PROPLOG (NIL) -9 NIL NIL) (-900 2181547 2182112 2182639 "PROPFRML" 2183929 NIL PROPFRML (NIL T) -8 NIL NIL) (-899 2181007 2181117 2181247 "PROPERTY" 2181437 T PROPERTY (NIL) -8 NIL NIL) (-898 2174781 2179173 2179993 "PRODUCT" 2180233 NIL PRODUCT (NIL T T) -8 NIL NIL) (-897 2172057 2174241 2174474 "PR" 2174592 NIL PR (NIL T T) -8 NIL NIL) (-896 2171853 2171885 2171944 "PRINT" 2172018 T PRINT (NIL) -7 NIL NIL) (-895 2171193 2171310 2171462 "PRIMES" 2171733 NIL PRIMES (NIL T) -7 NIL NIL) (-894 2169258 2169659 2170125 "PRIMELT" 2170772 NIL PRIMELT (NIL T) -7 NIL NIL) (-893 2168987 2169036 2169064 "PRIMCAT" 2169188 T PRIMCAT (NIL) -9 NIL NIL) (-892 2165148 2168925 2168970 "PRIMARR" 2168975 NIL PRIMARR (NIL T) -8 NIL NIL) (-891 2164155 2164333 2164561 "PRIMARR2" 2164966 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-890 2163798 2163854 2163965 "PREASSOC" 2164093 NIL PREASSOC (NIL T T) -7 NIL NIL) (-889 2163273 2163406 2163434 "PPCURVE" 2163639 T PPCURVE (NIL) -9 NIL 2163775) (-888 2160632 2161031 2161623 "POLYROOT" 2162854 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-887 2154538 2160238 2160397 "POLY" 2160505 NIL POLY (NIL T) -8 NIL NIL) (-886 2153923 2153981 2154214 "POLYLIFT" 2154474 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-885 2150208 2150657 2151285 "POLYCATQ" 2153468 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-884 2137249 2142646 2142710 "POLYCAT" 2146195 NIL POLYCAT (NIL T T T) -9 NIL 2148122) (-883 2130700 2132561 2134944 "POLYCAT-" 2134949 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-882 2130289 2130357 2130476 "POLY2UP" 2130626 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-881 2129925 2129982 2130089 "POLY2" 2130226 NIL POLY2 (NIL T T) -7 NIL NIL) (-880 2128610 2128849 2129125 "POLUTIL" 2129699 NIL POLUTIL (NIL T T) -7 NIL NIL) (-879 2126972 2127249 2127579 "POLTOPOL" 2128332 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-878 2122495 2126909 2126954 "POINT" 2126959 NIL POINT (NIL T) -8 NIL NIL) (-877 2120682 2121039 2121414 "PNTHEORY" 2122140 T PNTHEORY (NIL) -7 NIL NIL) (-876 2119110 2119407 2119816 "PMTOOLS" 2120380 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-875 2118703 2118781 2118898 "PMSYM" 2119026 NIL PMSYM (NIL T) -7 NIL NIL) (-874 2118206 2118275 2118449 "PMQFCAT" 2118628 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-873 2117561 2117671 2117827 "PMPRED" 2118083 NIL PMPRED (NIL T) -7 NIL NIL) (-872 2116957 2117043 2117204 "PMPREDFS" 2117462 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-871 2115589 2115797 2116181 "PMPLCAT" 2116719 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-870 2115121 2115200 2115352 "PMLSAGG" 2115504 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-869 2114591 2114667 2114847 "PMKERNEL" 2115039 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-868 2114208 2114283 2114396 "PMINS" 2114510 NIL PMINS (NIL T) -7 NIL NIL) (-867 2113631 2113700 2113915 "PMFS" 2114133 NIL PMFS (NIL T T T) -7 NIL NIL) (-866 2112862 2112980 2113184 "PMDOWN" 2113508 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-865 2112025 2112184 2112366 "PMASS" 2112700 T PMASS (NIL) -7 NIL NIL) (-864 2111299 2111410 2111573 "PMASSFS" 2111911 NIL PMASSFS (NIL T T) -7 NIL NIL) (-863 2110954 2111022 2111116 "PLOTTOOL" 2111225 T PLOTTOOL (NIL) -7 NIL NIL) (-862 2105576 2106765 2107913 "PLOT" 2109826 T PLOT (NIL) -8 NIL NIL) (-861 2101390 2102424 2103345 "PLOT3D" 2104675 T PLOT3D (NIL) -8 NIL NIL) (-860 2100302 2100479 2100714 "PLOT1" 2101194 NIL PLOT1 (NIL T) -7 NIL NIL) (-859 2075696 2080368 2085219 "PLEQN" 2095568 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-858 2075014 2075136 2075316 "PINTERP" 2075561 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-857 2074707 2074754 2074857 "PINTERPA" 2074961 NIL PINTERPA (NIL T T) -7 NIL NIL) (-856 2073946 2074513 2074600 "PI" 2074640 T PI (NIL) -8 NIL NIL) (-855 2072338 2073323 2073351 "PID" 2073533 T PID (NIL) -9 NIL 2073667) (-854 2072063 2072100 2072188 "PICOERCE" 2072295 NIL PICOERCE (NIL T) -7 NIL NIL) (-853 2071383 2071522 2071698 "PGROEB" 2071919 NIL PGROEB (NIL T) -7 NIL NIL) (-852 2066970 2067784 2068689 "PGE" 2070498 T PGE (NIL) -7 NIL NIL) (-851 2065094 2065340 2065706 "PGCD" 2066687 NIL PGCD (NIL T T T T) -7 NIL NIL) (-850 2064432 2064535 2064696 "PFRPAC" 2064978 NIL PFRPAC (NIL T) -7 NIL NIL) (-849 2061047 2062980 2063333 "PFR" 2064111 NIL PFR (NIL T) -8 NIL NIL) (-848 2059420 2059664 2059989 "PFOTOOLS" 2060794 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-847 2057953 2058192 2058543 "PFOQ" 2059177 NIL PFOQ (NIL T T T) -7 NIL NIL) (-846 2056430 2056642 2057004 "PFO" 2057737 NIL PFO (NIL T T T T T) -7 NIL NIL) (-845 2052953 2056319 2056388 "PF" 2056393 NIL PF (NIL NIL) -8 NIL NIL) (-844 2050382 2051663 2051691 "PFECAT" 2052276 T PFECAT (NIL) -9 NIL 2052660) (-843 2049827 2049981 2050195 "PFECAT-" 2050200 NIL PFECAT- (NIL T) -8 NIL NIL) (-842 2048431 2048682 2048983 "PFBRU" 2049576 NIL PFBRU (NIL T T) -7 NIL NIL) (-841 2046298 2046649 2047081 "PFBR" 2048082 NIL PFBR (NIL T T T T) -7 NIL NIL) (-840 2042149 2043674 2044350 "PERM" 2045655 NIL PERM (NIL T) -8 NIL NIL) (-839 2037414 2038356 2039226 "PERMGRP" 2041312 NIL PERMGRP (NIL T) -8 NIL NIL) (-838 2035485 2036478 2036519 "PERMCAT" 2036965 NIL PERMCAT (NIL T) -9 NIL 2037270) (-837 2035140 2035181 2035304 "PERMAN" 2035438 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-836 2032580 2034709 2034840 "PENDTREE" 2035042 NIL PENDTREE (NIL T) -8 NIL NIL) (-835 2030653 2031431 2031472 "PDRING" 2032129 NIL PDRING (NIL T) -9 NIL 2032414) (-834 2029756 2029974 2030336 "PDRING-" 2030341 NIL PDRING- (NIL T T) -8 NIL NIL) (-833 2026897 2027648 2028339 "PDEPROB" 2029085 T PDEPROB (NIL) -8 NIL NIL) (-832 2024460 2024956 2025505 "PDEPACK" 2026368 T PDEPACK (NIL) -7 NIL NIL) (-831 2023372 2023562 2023813 "PDECOMP" 2024259 NIL PDECOMP (NIL T T) -7 NIL NIL) (-830 2020984 2021799 2021827 "PDECAT" 2022612 T PDECAT (NIL) -9 NIL 2023323) (-829 2020737 2020770 2020859 "PCOMP" 2020945 NIL PCOMP (NIL T T) -7 NIL NIL) (-828 2018944 2019540 2019836 "PBWLB" 2020467 NIL PBWLB (NIL T) -8 NIL NIL) (-827 2011452 2013021 2014357 "PATTERN" 2017629 NIL PATTERN (NIL T) -8 NIL NIL) (-826 2011084 2011141 2011250 "PATTERN2" 2011389 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-825 2008841 2009229 2009686 "PATTERN1" 2010673 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-824 2006236 2006790 2007271 "PATRES" 2008406 NIL PATRES (NIL T T) -8 NIL NIL) (-823 2005800 2005867 2005999 "PATRES2" 2006163 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-822 2003697 2004097 2004502 "PATMATCH" 2005469 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-821 2003234 2003417 2003458 "PATMAB" 2003565 NIL PATMAB (NIL T) -9 NIL 2003648) (-820 2001779 2002088 2002346 "PATLRES" 2003039 NIL PATLRES (NIL T T T) -8 NIL NIL) (-819 2001325 2001448 2001489 "PATAB" 2001494 NIL PATAB (NIL T) -9 NIL 2001666) (-818 1998806 1999338 1999911 "PARTPERM" 2000772 T PARTPERM (NIL) -7 NIL NIL) (-817 1998427 1998490 1998592 "PARSURF" 1998737 NIL PARSURF (NIL T) -8 NIL NIL) (-816 1998059 1998116 1998225 "PARSU2" 1998364 NIL PARSU2 (NIL T T) -7 NIL NIL) (-815 1997823 1997863 1997930 "PARSER" 1998012 T PARSER (NIL) -7 NIL NIL) (-814 1997444 1997507 1997609 "PARSCURV" 1997754 NIL PARSCURV (NIL T) -8 NIL NIL) (-813 1997076 1997133 1997242 "PARSC2" 1997381 NIL PARSC2 (NIL T T) -7 NIL NIL) (-812 1996715 1996773 1996870 "PARPCURV" 1997012 NIL PARPCURV (NIL T) -8 NIL NIL) (-811 1996347 1996404 1996513 "PARPC2" 1996652 NIL PARPC2 (NIL T T) -7 NIL NIL) (-810 1995867 1995953 1996072 "PAN2EXPR" 1996248 T PAN2EXPR (NIL) -7 NIL NIL) (-809 1994673 1994988 1995216 "PALETTE" 1995659 T PALETTE (NIL) -8 NIL NIL) (-808 1993141 1993678 1994038 "PAIR" 1994359 NIL PAIR (NIL T T) -8 NIL NIL) (-807 1986983 1992392 1992586 "PADICRC" 1992996 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-806 1980183 1986321 1986505 "PADICRAT" 1986831 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-805 1978487 1980120 1980165 "PADIC" 1980170 NIL PADIC (NIL NIL) -8 NIL NIL) (-804 1975692 1977266 1977306 "PADICCT" 1977887 NIL PADICCT (NIL NIL) -9 NIL 1978169) (-803 1974649 1974849 1975117 "PADEPAC" 1975479 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-802 1973861 1973994 1974200 "PADE" 1974511 NIL PADE (NIL T T T) -7 NIL NIL) (-801 1971864 1972696 1973011 "OWP" 1973629 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-800 1970968 1971464 1971636 "OVAR" 1971732 NIL OVAR (NIL NIL) -8 NIL NIL) (-799 1970232 1970353 1970514 "OUT" 1970827 T OUT (NIL) -7 NIL NIL) (-798 1959286 1961457 1963627 "OUTFORM" 1968082 T OUTFORM (NIL) -8 NIL NIL) (-797 1958694 1959015 1959104 "OSI" 1959217 T OSI (NIL) -8 NIL NIL) (-796 1958225 1958563 1958591 "OSGROUP" 1958596 T OSGROUP (NIL) -9 NIL 1958618) (-795 1956970 1957197 1957482 "ORTHPOL" 1957972 NIL ORTHPOL (NIL T) -7 NIL NIL) (-794 1954341 1956631 1956769 "OREUP" 1956913 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-793 1951737 1954034 1954160 "ORESUP" 1954283 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-792 1949272 1949772 1950332 "OREPCTO" 1951226 NIL OREPCTO (NIL T T) -7 NIL NIL) (-791 1943182 1945388 1945428 "OREPCAT" 1947749 NIL OREPCAT (NIL T) -9 NIL 1948852) (-790 1940330 1941112 1942169 "OREPCAT-" 1942174 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-789 1939508 1939780 1939808 "ORDSET" 1940117 T ORDSET (NIL) -9 NIL 1940281) (-788 1939027 1939149 1939342 "ORDSET-" 1939347 NIL ORDSET- (NIL T) -8 NIL NIL) (-787 1937641 1938442 1938470 "ORDRING" 1938672 T ORDRING (NIL) -9 NIL 1938796) (-786 1937286 1937380 1937524 "ORDRING-" 1937529 NIL ORDRING- (NIL T) -8 NIL NIL) (-785 1936662 1937143 1937171 "ORDMON" 1937176 T ORDMON (NIL) -9 NIL 1937197) (-784 1935824 1935971 1936166 "ORDFUNS" 1936511 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-783 1935336 1935695 1935723 "ORDFIN" 1935728 T ORDFIN (NIL) -9 NIL 1935749) (-782 1931848 1933922 1934331 "ORDCOMP" 1934960 NIL ORDCOMP (NIL T) -8 NIL NIL) (-781 1931114 1931241 1931427 "ORDCOMP2" 1931708 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-780 1927621 1928504 1929341 "OPTPROB" 1930297 T OPTPROB (NIL) -8 NIL NIL) (-779 1924463 1925092 1925786 "OPTPACK" 1926947 T OPTPACK (NIL) -7 NIL NIL) (-778 1922189 1922925 1922953 "OPTCAT" 1923768 T OPTCAT (NIL) -9 NIL 1924414) (-777 1921957 1921996 1922062 "OPQUERY" 1922143 T OPQUERY (NIL) -7 NIL NIL) (-776 1919093 1920284 1920784 "OP" 1921489 NIL OP (NIL T) -8 NIL NIL) (-775 1915858 1917890 1918259 "ONECOMP" 1918757 NIL ONECOMP (NIL T) -8 NIL NIL) (-774 1915163 1915278 1915452 "ONECOMP2" 1915730 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-773 1914582 1914688 1914818 "OMSERVER" 1915053 T OMSERVER (NIL) -7 NIL NIL) (-772 1911471 1914023 1914063 "OMSAGG" 1914124 NIL OMSAGG (NIL T) -9 NIL 1914188) (-771 1910094 1910357 1910639 "OMPKG" 1911209 T OMPKG (NIL) -7 NIL NIL) (-770 1909524 1909627 1909655 "OM" 1909954 T OM (NIL) -9 NIL NIL) (-769 1908063 1909076 1909244 "OMLO" 1909405 NIL OMLO (NIL T T) -8 NIL NIL) (-768 1906993 1907140 1907366 "OMEXPR" 1907889 NIL OMEXPR (NIL T) -7 NIL NIL) (-767 1906311 1906539 1906675 "OMERR" 1906877 T OMERR (NIL) -8 NIL NIL) (-766 1905489 1905732 1905892 "OMERRK" 1906171 T OMERRK (NIL) -8 NIL NIL) (-765 1904967 1905166 1905274 "OMENC" 1905401 T OMENC (NIL) -8 NIL NIL) (-764 1898862 1900047 1901218 "OMDEV" 1903816 T OMDEV (NIL) -8 NIL NIL) (-763 1897931 1898102 1898296 "OMCONN" 1898688 T OMCONN (NIL) -8 NIL NIL) (-762 1896547 1897533 1897561 "OINTDOM" 1897566 T OINTDOM (NIL) -9 NIL 1897587) (-761 1892309 1893539 1894254 "OFMONOID" 1895864 NIL OFMONOID (NIL T) -8 NIL NIL) (-760 1891747 1892246 1892291 "ODVAR" 1892296 NIL ODVAR (NIL T) -8 NIL NIL) (-759 1888872 1891244 1891429 "ODR" 1891622 NIL ODR (NIL T T NIL) -8 NIL NIL) (-758 1881178 1888651 1888775 "ODPOL" 1888780 NIL ODPOL (NIL T) -8 NIL NIL) (-757 1875001 1881050 1881155 "ODP" 1881160 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-756 1873767 1873982 1874257 "ODETOOLS" 1874775 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-755 1870736 1871392 1872108 "ODESYS" 1873100 NIL ODESYS (NIL T T) -7 NIL NIL) (-754 1865640 1866548 1867571 "ODERTRIC" 1869811 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-753 1865066 1865148 1865342 "ODERED" 1865552 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-752 1861968 1862516 1863191 "ODERAT" 1864489 NIL ODERAT (NIL T T) -7 NIL NIL) (-751 1858929 1859393 1859989 "ODEPRRIC" 1861497 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-750 1856798 1857367 1857876 "ODEPROB" 1858440 T ODEPROB (NIL) -8 NIL NIL) (-749 1853323 1853806 1854452 "ODEPRIM" 1856277 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-748 1852576 1852678 1852936 "ODEPAL" 1853215 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-747 1848754 1849535 1850389 "ODEPACK" 1851742 T ODEPACK (NIL) -7 NIL NIL) (-746 1847791 1847898 1848126 "ODEINT" 1848643 NIL ODEINT (NIL T T) -7 NIL NIL) (-745 1841892 1843317 1844764 "ODEIFTBL" 1846364 T ODEIFTBL (NIL) -8 NIL NIL) (-744 1837236 1838022 1838980 "ODEEF" 1841051 NIL ODEEF (NIL T T) -7 NIL NIL) (-743 1836573 1836662 1836891 "ODECONST" 1837141 NIL ODECONST (NIL T T T) -7 NIL NIL) (-742 1834731 1835364 1835392 "ODECAT" 1835995 T ODECAT (NIL) -9 NIL 1836524) (-741 1831603 1834443 1834562 "OCT" 1834644 NIL OCT (NIL T) -8 NIL NIL) (-740 1831241 1831284 1831411 "OCTCT2" 1831554 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-739 1826075 1828513 1828553 "OC" 1829649 NIL OC (NIL T) -9 NIL 1830506) (-738 1823302 1824050 1825040 "OC-" 1825134 NIL OC- (NIL T T) -8 NIL NIL) (-737 1822681 1823123 1823151 "OCAMON" 1823156 T OCAMON (NIL) -9 NIL 1823177) (-736 1822239 1822554 1822582 "OASGP" 1822587 T OASGP (NIL) -9 NIL 1822607) (-735 1821527 1821990 1822018 "OAMONS" 1822058 T OAMONS (NIL) -9 NIL 1822101) (-734 1820968 1821375 1821403 "OAMON" 1821408 T OAMON (NIL) -9 NIL 1821428) (-733 1820273 1820765 1820793 "OAGROUP" 1820798 T OAGROUP (NIL) -9 NIL 1820818) (-732 1819963 1820013 1820101 "NUMTUBE" 1820217 NIL NUMTUBE (NIL T) -7 NIL NIL) (-731 1813536 1815054 1816590 "NUMQUAD" 1818447 T NUMQUAD (NIL) -7 NIL NIL) (-730 1809244 1810232 1811257 "NUMODE" 1812531 T NUMODE (NIL) -7 NIL NIL) (-729 1806648 1807494 1807522 "NUMINT" 1808439 T NUMINT (NIL) -9 NIL 1809195) (-728 1805596 1805793 1806011 "NUMFMT" 1806450 T NUMFMT (NIL) -7 NIL NIL) (-727 1791919 1794856 1797386 "NUMERIC" 1803105 NIL NUMERIC (NIL T) -7 NIL NIL) (-726 1786320 1791372 1791466 "NTSCAT" 1791471 NIL NTSCAT (NIL T T T T) -9 NIL 1791509) (-725 1785514 1785679 1785872 "NTPOLFN" 1786159 NIL NTPOLFN (NIL T) -7 NIL NIL) (-724 1773330 1782356 1783166 "NSUP" 1784736 NIL NSUP (NIL T) -8 NIL NIL) (-723 1772966 1773023 1773130 "NSUP2" 1773267 NIL NSUP2 (NIL T T) -7 NIL NIL) (-722 1762928 1772745 1772875 "NSMP" 1772880 NIL NSMP (NIL T T) -8 NIL NIL) (-721 1761360 1761661 1762018 "NREP" 1762616 NIL NREP (NIL T) -7 NIL NIL) (-720 1759951 1760203 1760561 "NPCOEF" 1761103 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-719 1759017 1759132 1759348 "NORMRETR" 1759832 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-718 1757070 1757360 1757767 "NORMPK" 1758725 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-717 1756755 1756783 1756907 "NORMMA" 1757036 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-716 1756582 1756712 1756741 "NONE" 1756746 T NONE (NIL) -8 NIL NIL) (-715 1756371 1756400 1756469 "NONE1" 1756546 NIL NONE1 (NIL T) -7 NIL NIL) (-714 1755856 1755918 1756103 "NODE1" 1756303 NIL NODE1 (NIL T T) -7 NIL NIL) (-713 1754149 1755019 1755274 "NNI" 1755621 T NNI (NIL) -8 NIL NIL) (-712 1752569 1752882 1753246 "NLINSOL" 1753817 NIL NLINSOL (NIL T) -7 NIL NIL) (-711 1748736 1749704 1750626 "NIPROB" 1751667 T NIPROB (NIL) -8 NIL NIL) (-710 1747465 1747699 1748001 "NFINTBAS" 1748498 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-709 1746173 1746404 1746685 "NCODIV" 1747233 NIL NCODIV (NIL T T) -7 NIL NIL) (-708 1745935 1745972 1746047 "NCNTFRAC" 1746130 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-707 1744115 1744479 1744899 "NCEP" 1745560 NIL NCEP (NIL T) -7 NIL NIL) (-706 1743027 1743766 1743794 "NASRING" 1743904 T NASRING (NIL) -9 NIL 1743978) (-705 1742822 1742866 1742960 "NASRING-" 1742965 NIL NASRING- (NIL T) -8 NIL NIL) (-704 1741976 1742475 1742503 "NARNG" 1742620 T NARNG (NIL) -9 NIL 1742711) (-703 1741668 1741735 1741869 "NARNG-" 1741874 NIL NARNG- (NIL T) -8 NIL NIL) (-702 1740547 1740754 1740989 "NAGSP" 1741453 T NAGSP (NIL) -7 NIL NIL) (-701 1731971 1733617 1735252 "NAGS" 1738932 T NAGS (NIL) -7 NIL NIL) (-700 1730535 1730839 1731166 "NAGF07" 1731664 T NAGF07 (NIL) -7 NIL NIL) (-699 1725117 1726397 1727693 "NAGF04" 1729259 T NAGF04 (NIL) -7 NIL NIL) (-698 1718149 1719747 1721364 "NAGF02" 1723520 T NAGF02 (NIL) -7 NIL NIL) (-697 1713413 1714503 1715610 "NAGF01" 1717062 T NAGF01 (NIL) -7 NIL NIL) (-696 1707073 1708631 1710208 "NAGE04" 1711856 T NAGE04 (NIL) -7 NIL NIL) (-695 1698314 1700417 1702529 "NAGE02" 1704981 T NAGE02 (NIL) -7 NIL NIL) (-694 1694307 1695244 1696198 "NAGE01" 1697380 T NAGE01 (NIL) -7 NIL NIL) (-693 1692114 1692645 1693200 "NAGD03" 1693772 T NAGD03 (NIL) -7 NIL NIL) (-692 1683900 1685819 1687764 "NAGD02" 1690189 T NAGD02 (NIL) -7 NIL NIL) (-691 1677759 1679172 1680600 "NAGD01" 1682492 T NAGD01 (NIL) -7 NIL NIL) (-690 1674016 1674826 1675651 "NAGC06" 1676954 T NAGC06 (NIL) -7 NIL NIL) (-689 1672493 1672822 1673175 "NAGC05" 1673683 T NAGC05 (NIL) -7 NIL NIL) (-688 1671877 1671994 1672136 "NAGC02" 1672371 T NAGC02 (NIL) -7 NIL NIL) (-687 1670939 1671496 1671536 "NAALG" 1671615 NIL NAALG (NIL T) -9 NIL 1671676) (-686 1670774 1670803 1670893 "NAALG-" 1670898 NIL NAALG- (NIL T T) -8 NIL NIL) (-685 1664724 1665832 1667019 "MULTSQFR" 1669670 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-684 1664043 1664118 1664302 "MULTFACT" 1664636 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-683 1657237 1661148 1661200 "MTSCAT" 1662260 NIL MTSCAT (NIL T T) -9 NIL 1662774) (-682 1656949 1657003 1657095 "MTHING" 1657177 NIL MTHING (NIL T) -7 NIL NIL) (-681 1656741 1656774 1656834 "MSYSCMD" 1656909 T MSYSCMD (NIL) -7 NIL NIL) (-680 1652853 1655496 1655816 "MSET" 1656454 NIL MSET (NIL T) -8 NIL NIL) (-679 1649949 1652415 1652456 "MSETAGG" 1652461 NIL MSETAGG (NIL T) -9 NIL 1652495) (-678 1645805 1647347 1648088 "MRING" 1649252 NIL MRING (NIL T T) -8 NIL NIL) (-677 1645375 1645442 1645571 "MRF2" 1645732 NIL MRF2 (NIL T T T) -7 NIL NIL) (-676 1644993 1645028 1645172 "MRATFAC" 1645334 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-675 1642591 1642886 1643317 "MPRFF" 1644698 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-674 1636611 1642446 1642542 "MPOLY" 1642547 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-673 1636101 1636136 1636344 "MPCPF" 1636570 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-672 1635617 1635660 1635843 "MPC3" 1636052 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-671 1634818 1634899 1635118 "MPC2" 1635532 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-670 1633119 1633456 1633846 "MONOTOOL" 1634478 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-669 1632244 1632579 1632607 "MONOID" 1632884 T MONOID (NIL) -9 NIL 1633056) (-668 1631622 1631785 1632028 "MONOID-" 1632033 NIL MONOID- (NIL T) -8 NIL NIL) (-667 1622603 1628589 1628648 "MONOGEN" 1629322 NIL MONOGEN (NIL T T) -9 NIL 1629778) (-666 1619821 1620556 1621556 "MONOGEN-" 1621675 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-665 1618681 1619101 1619129 "MONADWU" 1619521 T MONADWU (NIL) -9 NIL 1619759) (-664 1618053 1618212 1618460 "MONADWU-" 1618465 NIL MONADWU- (NIL T) -8 NIL NIL) (-663 1617439 1617657 1617685 "MONAD" 1617892 T MONAD (NIL) -9 NIL 1618004) (-662 1617124 1617202 1617334 "MONAD-" 1617339 NIL MONAD- (NIL T) -8 NIL NIL) (-661 1615375 1616037 1616316 "MOEBIUS" 1616877 NIL MOEBIUS (NIL T) -8 NIL NIL) (-660 1614769 1615147 1615187 "MODULE" 1615192 NIL MODULE (NIL T) -9 NIL 1615218) (-659 1614337 1614433 1614623 "MODULE-" 1614628 NIL MODULE- (NIL T T) -8 NIL NIL) (-658 1612008 1612703 1613029 "MODRING" 1614162 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-657 1608964 1610129 1610646 "MODOP" 1611540 NIL MODOP (NIL T T) -8 NIL NIL) (-656 1607023 1607475 1607816 "MODMONOM" 1608763 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-655 1596702 1605227 1605649 "MODMON" 1606651 NIL MODMON (NIL T T) -8 NIL NIL) (-654 1593828 1595546 1595822 "MODFIELD" 1596577 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-653 1592832 1593109 1593299 "MMLFORM" 1593658 T MMLFORM (NIL) -8 NIL NIL) (-652 1592358 1592401 1592580 "MMAP" 1592783 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-651 1590595 1591372 1591412 "MLO" 1591829 NIL MLO (NIL T) -9 NIL 1592070) (-650 1587962 1588477 1589079 "MLIFT" 1590076 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-649 1587353 1587437 1587591 "MKUCFUNC" 1587873 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-648 1586952 1587022 1587145 "MKRECORD" 1587276 NIL MKRECORD (NIL T T) -7 NIL NIL) (-647 1586000 1586161 1586389 "MKFUNC" 1586763 NIL MKFUNC (NIL T) -7 NIL NIL) (-646 1585388 1585492 1585648 "MKFLCFN" 1585883 NIL MKFLCFN (NIL T) -7 NIL NIL) (-645 1584814 1585181 1585270 "MKCHSET" 1585332 NIL MKCHSET (NIL T) -8 NIL NIL) (-644 1584091 1584193 1584378 "MKBCFUNC" 1584707 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-643 1580775 1583645 1583781 "MINT" 1583975 T MINT (NIL) -8 NIL NIL) (-642 1579587 1579830 1580107 "MHROWRED" 1580530 NIL MHROWRED (NIL T) -7 NIL NIL) (-641 1574858 1578032 1578456 "MFLOAT" 1579183 T MFLOAT (NIL) -8 NIL NIL) (-640 1574215 1574291 1574462 "MFINFACT" 1574770 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-639 1570530 1571378 1572262 "MESH" 1573351 T MESH (NIL) -7 NIL NIL) (-638 1568892 1569204 1569557 "MDDFACT" 1570217 NIL MDDFACT (NIL T) -7 NIL NIL) (-637 1565735 1568052 1568093 "MDAGG" 1568348 NIL MDAGG (NIL T) -9 NIL 1568491) (-636 1555433 1565028 1565235 "MCMPLX" 1565548 T MCMPLX (NIL) -8 NIL NIL) (-635 1554574 1554720 1554920 "MCDEN" 1555282 NIL MCDEN (NIL T T) -7 NIL NIL) (-634 1552464 1552734 1553114 "MCALCFN" 1554304 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-633 1550086 1550609 1551170 "MATSTOR" 1551935 NIL MATSTOR (NIL T) -7 NIL NIL) (-632 1546095 1549461 1549708 "MATRIX" 1549871 NIL MATRIX (NIL T) -8 NIL NIL) (-631 1541864 1542568 1543304 "MATLIN" 1545452 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-630 1532062 1535200 1535276 "MATCAT" 1540114 NIL MATCAT (NIL T T T) -9 NIL 1541531) (-629 1528427 1529440 1530795 "MATCAT-" 1530800 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-628 1527029 1527182 1527513 "MATCAT2" 1528262 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-627 1525141 1525465 1525849 "MAPPKG3" 1526704 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-626 1524122 1524295 1524517 "MAPPKG2" 1524965 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-625 1522621 1522905 1523232 "MAPPKG1" 1523828 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-624 1522232 1522290 1522413 "MAPHACK3" 1522557 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-623 1521824 1521885 1521999 "MAPHACK2" 1522164 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-622 1521262 1521365 1521507 "MAPHACK1" 1521715 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-621 1519370 1519964 1520267 "MAGMA" 1520991 NIL MAGMA (NIL T) -8 NIL NIL) (-620 1515844 1517614 1518074 "M3D" 1518943 NIL M3D (NIL T) -8 NIL NIL) (-619 1510000 1514215 1514256 "LZSTAGG" 1515038 NIL LZSTAGG (NIL T) -9 NIL 1515333) (-618 1505973 1507131 1508588 "LZSTAGG-" 1508593 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-617 1503089 1503866 1504352 "LWORD" 1505519 NIL LWORD (NIL T) -8 NIL NIL) (-616 1496249 1502860 1502994 "LSQM" 1502999 NIL LSQM (NIL NIL T) -8 NIL NIL) (-615 1495473 1495612 1495840 "LSPP" 1496104 NIL LSPP (NIL T T T T) -7 NIL NIL) (-614 1493285 1493586 1494042 "LSMP" 1495162 NIL LSMP (NIL T T T T) -7 NIL NIL) (-613 1490064 1490738 1491468 "LSMP1" 1492587 NIL LSMP1 (NIL T) -7 NIL NIL) (-612 1483991 1489233 1489274 "LSAGG" 1489336 NIL LSAGG (NIL T) -9 NIL 1489414) (-611 1480686 1481610 1482823 "LSAGG-" 1482828 NIL LSAGG- (NIL T T) -8 NIL NIL) (-610 1478312 1479830 1480079 "LPOLY" 1480481 NIL LPOLY (NIL T T) -8 NIL NIL) (-609 1477894 1477979 1478102 "LPEFRAC" 1478221 NIL LPEFRAC (NIL T) -7 NIL NIL) (-608 1476241 1476988 1477241 "LO" 1477726 NIL LO (NIL T T T) -8 NIL NIL) (-607 1475895 1476007 1476035 "LOGIC" 1476146 T LOGIC (NIL) -9 NIL 1476226) (-606 1475757 1475780 1475851 "LOGIC-" 1475856 NIL LOGIC- (NIL T) -8 NIL NIL) (-605 1474950 1475090 1475283 "LODOOPS" 1475613 NIL LODOOPS (NIL T T) -7 NIL NIL) (-604 1472368 1474867 1474932 "LODO" 1474937 NIL LODO (NIL T NIL) -8 NIL NIL) (-603 1470914 1471149 1471500 "LODOF" 1472115 NIL LODOF (NIL T T) -7 NIL NIL) (-602 1467334 1469770 1469810 "LODOCAT" 1470242 NIL LODOCAT (NIL T) -9 NIL 1470453) (-601 1467068 1467126 1467252 "LODOCAT-" 1467257 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-600 1464382 1466909 1467027 "LODO2" 1467032 NIL LODO2 (NIL T T) -8 NIL NIL) (-599 1461811 1464319 1464364 "LODO1" 1464369 NIL LODO1 (NIL T) -8 NIL NIL) (-598 1460674 1460839 1461150 "LODEEF" 1461634 NIL LODEEF (NIL T T T) -7 NIL NIL) (-597 1455961 1458805 1458846 "LNAGG" 1459793 NIL LNAGG (NIL T) -9 NIL 1460237) (-596 1455108 1455322 1455664 "LNAGG-" 1455669 NIL LNAGG- (NIL T T) -8 NIL NIL) (-595 1451273 1452035 1452673 "LMOPS" 1454524 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-594 1450671 1451033 1451073 "LMODULE" 1451133 NIL LMODULE (NIL T) -9 NIL 1451175) (-593 1447917 1450316 1450439 "LMDICT" 1450581 NIL LMDICT (NIL T) -8 NIL NIL) (-592 1441144 1446863 1447161 "LIST" 1447652 NIL LIST (NIL T) -8 NIL NIL) (-591 1440669 1440743 1440882 "LIST3" 1441064 NIL LIST3 (NIL T T T) -7 NIL NIL) (-590 1439676 1439854 1440082 "LIST2" 1440487 NIL LIST2 (NIL T T) -7 NIL NIL) (-589 1437810 1438122 1438521 "LIST2MAP" 1439323 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-588 1436523 1437203 1437243 "LINEXP" 1437496 NIL LINEXP (NIL T) -9 NIL 1437644) (-587 1435170 1435430 1435727 "LINDEP" 1436275 NIL LINDEP (NIL T T) -7 NIL NIL) (-586 1431867 1432586 1433363 "LIMITRF" 1434425 NIL LIMITRF (NIL T) -7 NIL NIL) (-585 1430147 1430442 1430857 "LIMITPS" 1431562 NIL LIMITPS (NIL T T) -7 NIL NIL) (-584 1424602 1429658 1429886 "LIE" 1429968 NIL LIE (NIL T T) -8 NIL NIL) (-583 1423653 1424096 1424136 "LIECAT" 1424276 NIL LIECAT (NIL T) -9 NIL 1424427) (-582 1423494 1423521 1423609 "LIECAT-" 1423614 NIL LIECAT- (NIL T T) -8 NIL NIL) (-581 1416106 1422943 1423108 "LIB" 1423349 T LIB (NIL) -8 NIL NIL) (-580 1411743 1412624 1413559 "LGROBP" 1415223 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-579 1409609 1409883 1410245 "LF" 1411464 NIL LF (NIL T T) -7 NIL NIL) (-578 1408449 1409141 1409169 "LFCAT" 1409376 T LFCAT (NIL) -9 NIL 1409515) (-577 1405361 1405987 1406673 "LEXTRIPK" 1407815 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-576 1402067 1402931 1403434 "LEXP" 1404941 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-575 1400465 1400778 1401179 "LEADCDET" 1401749 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-574 1399661 1399735 1399962 "LAZM3PK" 1400386 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-573 1394578 1397740 1398277 "LAUPOL" 1399174 NIL LAUPOL (NIL T T) -8 NIL NIL) (-572 1394145 1394189 1394356 "LAPLACE" 1394528 NIL LAPLACE (NIL T T) -7 NIL NIL) (-571 1392073 1393246 1393497 "LA" 1393978 NIL LA (NIL T T T) -8 NIL NIL) (-570 1391136 1391730 1391770 "LALG" 1391831 NIL LALG (NIL T) -9 NIL 1391889) (-569 1390851 1390910 1391045 "LALG-" 1391050 NIL LALG- (NIL T T) -8 NIL NIL) (-568 1389761 1389948 1390245 "KOVACIC" 1390651 NIL KOVACIC (NIL T T) -7 NIL NIL) (-567 1389596 1389620 1389661 "KONVERT" 1389723 NIL KONVERT (NIL T) -9 NIL NIL) (-566 1389431 1389455 1389496 "KOERCE" 1389558 NIL KOERCE (NIL T) -9 NIL NIL) (-565 1387165 1387925 1388318 "KERNEL" 1389070 NIL KERNEL (NIL T) -8 NIL NIL) (-564 1386667 1386748 1386878 "KERNEL2" 1387079 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-563 1380519 1385207 1385261 "KDAGG" 1385638 NIL KDAGG (NIL T T) -9 NIL 1385844) (-562 1380048 1380172 1380377 "KDAGG-" 1380382 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-561 1373223 1379709 1379864 "KAFILE" 1379926 NIL KAFILE (NIL T) -8 NIL NIL) (-560 1367678 1372734 1372962 "JORDAN" 1373044 NIL JORDAN (NIL T T) -8 NIL NIL) (-559 1367407 1367466 1367553 "JAVACODE" 1367611 T JAVACODE (NIL) -8 NIL NIL) (-558 1363707 1365613 1365667 "IXAGG" 1366596 NIL IXAGG (NIL T T) -9 NIL 1367055) (-557 1362626 1362932 1363351 "IXAGG-" 1363356 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-556 1358211 1362548 1362607 "IVECTOR" 1362612 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-555 1356977 1357214 1357480 "ITUPLE" 1357978 NIL ITUPLE (NIL T) -8 NIL NIL) (-554 1355413 1355590 1355896 "ITRIGMNP" 1356799 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-553 1354158 1354362 1354645 "ITFUN3" 1355189 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-552 1353790 1353847 1353956 "ITFUN2" 1354095 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-551 1351592 1352663 1352960 "ITAYLOR" 1353525 NIL ITAYLOR (NIL T) -8 NIL NIL) (-550 1340569 1345767 1346926 "ISUPS" 1350465 NIL ISUPS (NIL T) -8 NIL NIL) (-549 1339673 1339813 1340049 "ISUMP" 1340416 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-548 1334933 1339470 1339549 "ISTRING" 1339626 NIL ISTRING (NIL NIL) -8 NIL NIL) (-547 1334146 1334227 1334442 "IRURPK" 1334847 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-546 1333082 1333283 1333523 "IRSN" 1333926 T IRSN (NIL) -7 NIL NIL) (-545 1331117 1331472 1331907 "IRRF2F" 1332720 NIL IRRF2F (NIL T) -7 NIL NIL) (-544 1330864 1330902 1330978 "IRREDFFX" 1331073 NIL IRREDFFX (NIL T) -7 NIL NIL) (-543 1329479 1329738 1330037 "IROOT" 1330597 NIL IROOT (NIL T) -7 NIL NIL) (-542 1326107 1327158 1327848 "IR" 1328821 NIL IR (NIL T) -8 NIL NIL) (-541 1323720 1324215 1324781 "IR2" 1325585 NIL IR2 (NIL T T) -7 NIL NIL) (-540 1322796 1322909 1323129 "IR2F" 1323603 NIL IR2F (NIL T T) -7 NIL NIL) (-539 1322587 1322621 1322681 "IPRNTPK" 1322756 T IPRNTPK (NIL) -7 NIL NIL) (-538 1319141 1322476 1322545 "IPF" 1322550 NIL IPF (NIL NIL) -8 NIL NIL) (-537 1317458 1319066 1319123 "IPADIC" 1319128 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-536 1316957 1317015 1317204 "INVLAPLA" 1317394 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-535 1306543 1308896 1311282 "INTTR" 1314621 NIL INTTR (NIL T T) -7 NIL NIL) (-534 1302886 1303627 1304490 "INTTOOLS" 1305729 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-533 1302472 1302563 1302680 "INTSLPE" 1302789 T INTSLPE (NIL) -7 NIL NIL) (-532 1300422 1302395 1302454 "INTRVL" 1302459 NIL INTRVL (NIL T) -8 NIL NIL) (-531 1297987 1298499 1299073 "INTRF" 1299907 NIL INTRF (NIL T) -7 NIL NIL) (-530 1297394 1297491 1297632 "INTRET" 1297885 NIL INTRET (NIL T) -7 NIL NIL) (-529 1295375 1295764 1296233 "INTRAT" 1297002 NIL INTRAT (NIL T T) -7 NIL NIL) (-528 1292608 1293191 1293816 "INTPM" 1294860 NIL INTPM (NIL T T) -7 NIL NIL) (-527 1289317 1289916 1290660 "INTPAF" 1291994 NIL INTPAF (NIL T T T) -7 NIL NIL) (-526 1284560 1285506 1286541 "INTPACK" 1288302 T INTPACK (NIL) -7 NIL NIL) (-525 1281414 1284289 1284416 "INT" 1284453 T INT (NIL) -8 NIL NIL) (-524 1280666 1280818 1281026 "INTHERTR" 1281256 NIL INTHERTR (NIL T T) -7 NIL NIL) (-523 1280105 1280185 1280373 "INTHERAL" 1280580 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-522 1277951 1278394 1278851 "INTHEORY" 1279668 T INTHEORY (NIL) -7 NIL NIL) (-521 1269273 1270894 1272672 "INTG0" 1276303 NIL INTG0 (NIL T T T) -7 NIL NIL) (-520 1249846 1254636 1259446 "INTFTBL" 1264483 T INTFTBL (NIL) -8 NIL NIL) (-519 1249095 1249233 1249406 "INTFACT" 1249705 NIL INTFACT (NIL T) -7 NIL NIL) (-518 1246486 1246932 1247495 "INTEF" 1248649 NIL INTEF (NIL T T) -7 NIL NIL) (-517 1244948 1245697 1245725 "INTDOM" 1246026 T INTDOM (NIL) -9 NIL 1246233) (-516 1244317 1244491 1244733 "INTDOM-" 1244738 NIL INTDOM- (NIL T) -8 NIL NIL) (-515 1240810 1242742 1242796 "INTCAT" 1243595 NIL INTCAT (NIL T) -9 NIL 1243914) (-514 1240283 1240385 1240513 "INTBIT" 1240702 T INTBIT (NIL) -7 NIL NIL) (-513 1238958 1239112 1239425 "INTALG" 1240128 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-512 1238415 1238505 1238675 "INTAF" 1238862 NIL INTAF (NIL T T) -7 NIL NIL) (-511 1231869 1238225 1238365 "INTABL" 1238370 NIL INTABL (NIL T T T) -8 NIL NIL) (-510 1226820 1229549 1229577 "INS" 1230545 T INS (NIL) -9 NIL 1231226) (-509 1224060 1224831 1225805 "INS-" 1225878 NIL INS- (NIL T) -8 NIL NIL) (-508 1222839 1223066 1223363 "INPSIGN" 1223813 NIL INPSIGN (NIL T T) -7 NIL NIL) (-507 1221953 1222070 1222267 "INPRODPF" 1222719 NIL INPRODPF (NIL T T) -7 NIL NIL) (-506 1220843 1220960 1221197 "INPRODFF" 1221833 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-505 1219843 1219995 1220255 "INNMFACT" 1220679 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-504 1219040 1219137 1219325 "INMODGCD" 1219742 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-503 1217549 1217793 1218117 "INFSP" 1218785 NIL INFSP (NIL T T T) -7 NIL NIL) (-502 1216733 1216850 1217033 "INFPROD0" 1217429 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-501 1213744 1214902 1215393 "INFORM" 1216250 T INFORM (NIL) -8 NIL NIL) (-500 1213354 1213414 1213512 "INFORM1" 1213679 NIL INFORM1 (NIL T) -7 NIL NIL) (-499 1212877 1212966 1213080 "INFINITY" 1213260 T INFINITY (NIL) -7 NIL NIL) (-498 1211494 1211743 1212064 "INEP" 1212625 NIL INEP (NIL T T T) -7 NIL NIL) (-497 1210770 1211391 1211456 "INDE" 1211461 NIL INDE (NIL T) -8 NIL NIL) (-496 1210334 1210402 1210519 "INCRMAPS" 1210697 NIL INCRMAPS (NIL T) -7 NIL NIL) (-495 1205645 1206570 1207514 "INBFF" 1209422 NIL INBFF (NIL T) -7 NIL NIL) (-494 1202140 1205490 1205593 "IMATRIX" 1205598 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-493 1200852 1200975 1201290 "IMATQF" 1201996 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-492 1199072 1199299 1199636 "IMATLIN" 1200608 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-491 1193698 1198996 1199054 "ILIST" 1199059 NIL ILIST (NIL T NIL) -8 NIL NIL) (-490 1191651 1193558 1193671 "IIARRAY2" 1193676 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-489 1187019 1191562 1191626 "IFF" 1191631 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-488 1182058 1186307 1186495 "IFARRAY" 1186876 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-487 1181265 1181962 1182035 "IFAMON" 1182040 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-486 1180849 1180914 1180968 "IEVALAB" 1181175 NIL IEVALAB (NIL T T) -9 NIL NIL) (-485 1180524 1180592 1180752 "IEVALAB-" 1180757 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-484 1180182 1180438 1180501 "IDPO" 1180506 NIL IDPO (NIL T T) -8 NIL NIL) (-483 1179459 1180071 1180146 "IDPOAMS" 1180151 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-482 1178793 1179348 1179423 "IDPOAM" 1179428 NIL IDPOAM (NIL T T) -8 NIL NIL) (-481 1177879 1178129 1178182 "IDPC" 1178595 NIL IDPC (NIL T T) -9 NIL 1178744) (-480 1177375 1177771 1177844 "IDPAM" 1177849 NIL IDPAM (NIL T T) -8 NIL NIL) (-479 1176778 1177267 1177340 "IDPAG" 1177345 NIL IDPAG (NIL T T) -8 NIL NIL) (-478 1173033 1173881 1174776 "IDECOMP" 1175935 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-477 1165906 1166956 1168003 "IDEAL" 1172069 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-476 1165070 1165182 1165381 "ICDEN" 1165790 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-475 1164169 1164550 1164697 "ICARD" 1164943 T ICARD (NIL) -8 NIL NIL) (-474 1162241 1162554 1162957 "IBPTOOLS" 1163846 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-473 1157855 1161861 1161974 "IBITS" 1162160 NIL IBITS (NIL NIL) -8 NIL NIL) (-472 1154578 1155154 1155849 "IBATOOL" 1157272 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-471 1152358 1152819 1153352 "IBACHIN" 1154113 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-470 1150235 1152204 1152307 "IARRAY2" 1152312 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-469 1146388 1150161 1150218 "IARRAY1" 1150223 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-468 1140326 1144806 1145284 "IAN" 1145930 T IAN (NIL) -8 NIL NIL) (-467 1139837 1139894 1140067 "IALGFACT" 1140263 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-466 1139365 1139478 1139506 "HYPCAT" 1139713 T HYPCAT (NIL) -9 NIL NIL) (-465 1138903 1139020 1139206 "HYPCAT-" 1139211 NIL HYPCAT- (NIL T) -8 NIL NIL) (-464 1135583 1136914 1136955 "HOAGG" 1137936 NIL HOAGG (NIL T) -9 NIL 1138615) (-463 1134177 1134576 1135102 "HOAGG-" 1135107 NIL HOAGG- (NIL T T) -8 NIL NIL) (-462 1128007 1133618 1133784 "HEXADEC" 1134031 T HEXADEC (NIL) -8 NIL NIL) (-461 1126751 1126973 1127236 "HEUGCD" 1127784 NIL HEUGCD (NIL T) -7 NIL NIL) (-460 1125854 1126588 1126718 "HELLFDIV" 1126723 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-459 1124082 1125631 1125719 "HEAP" 1125798 NIL HEAP (NIL T) -8 NIL NIL) (-458 1117949 1123997 1124059 "HDP" 1124064 NIL HDP (NIL NIL T) -8 NIL NIL) (-457 1111661 1117586 1117737 "HDMP" 1117850 NIL HDMP (NIL NIL T) -8 NIL NIL) (-456 1110986 1111125 1111289 "HB" 1111517 T HB (NIL) -7 NIL NIL) (-455 1104483 1110832 1110936 "HASHTBL" 1110941 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-454 1102236 1104111 1104290 "HACKPI" 1104324 T HACKPI (NIL) -8 NIL NIL) (-453 1097932 1102090 1102202 "GTSET" 1102207 NIL GTSET (NIL T T T T) -8 NIL NIL) (-452 1091458 1097810 1097908 "GSTBL" 1097913 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-451 1083691 1090494 1090758 "GSERIES" 1091249 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-450 1082714 1083167 1083195 "GROUP" 1083456 T GROUP (NIL) -9 NIL 1083615) (-449 1081830 1082053 1082397 "GROUP-" 1082402 NIL GROUP- (NIL T) -8 NIL NIL) (-448 1080199 1080518 1080905 "GROEBSOL" 1081507 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-447 1079140 1079402 1079453 "GRMOD" 1079982 NIL GRMOD (NIL T T) -9 NIL 1080150) (-446 1078908 1078944 1079072 "GRMOD-" 1079077 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-445 1074234 1075262 1076262 "GRIMAGE" 1077928 T GRIMAGE (NIL) -8 NIL NIL) (-444 1072701 1072961 1073285 "GRDEF" 1073930 T GRDEF (NIL) -7 NIL NIL) (-443 1072145 1072261 1072402 "GRAY" 1072580 T GRAY (NIL) -7 NIL NIL) (-442 1071379 1071759 1071810 "GRALG" 1071963 NIL GRALG (NIL T T) -9 NIL 1072055) (-441 1071040 1071113 1071276 "GRALG-" 1071281 NIL GRALG- (NIL T T T) -8 NIL NIL) (-440 1067848 1070629 1070805 "GPOLSET" 1070947 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-439 1067204 1067261 1067518 "GOSPER" 1067785 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-438 1062963 1063642 1064168 "GMODPOL" 1066903 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-437 1061968 1062152 1062390 "GHENSEL" 1062775 NIL GHENSEL (NIL T T) -7 NIL NIL) (-436 1056034 1056877 1057903 "GENUPS" 1061052 NIL GENUPS (NIL T T) -7 NIL NIL) (-435 1055731 1055782 1055871 "GENUFACT" 1055977 NIL GENUFACT (NIL T) -7 NIL NIL) (-434 1055143 1055220 1055385 "GENPGCD" 1055649 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-433 1054617 1054652 1054865 "GENMFACT" 1055102 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-432 1053185 1053440 1053747 "GENEEZ" 1054360 NIL GENEEZ (NIL T T) -7 NIL NIL) (-431 1047059 1052798 1052959 "GDMP" 1053108 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-430 1036426 1040820 1041926 "GCNAALG" 1046042 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-429 1034848 1035720 1035748 "GCDDOM" 1036003 T GCDDOM (NIL) -9 NIL 1036160) (-428 1034318 1034445 1034660 "GCDDOM-" 1034665 NIL GCDDOM- (NIL T) -8 NIL NIL) (-427 1032990 1033175 1033479 "GB" 1034097 NIL GB (NIL T T T T) -7 NIL NIL) (-426 1021610 1023936 1026328 "GBINTERN" 1030681 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-425 1019447 1019739 1020160 "GBF" 1021285 NIL GBF (NIL T T T T) -7 NIL NIL) (-424 1018228 1018393 1018660 "GBEUCLID" 1019263 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-423 1017577 1017702 1017851 "GAUSSFAC" 1018099 T GAUSSFAC (NIL) -7 NIL NIL) (-422 1015954 1016256 1016569 "GALUTIL" 1017296 NIL GALUTIL (NIL T) -7 NIL NIL) (-421 1014271 1014545 1014868 "GALPOLYU" 1015681 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-420 1011660 1011950 1012355 "GALFACTU" 1013968 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-419 1003466 1004965 1006573 "GALFACT" 1010092 NIL GALFACT (NIL T) -7 NIL NIL) (-418 1000854 1001512 1001540 "FVFUN" 1002696 T FVFUN (NIL) -9 NIL 1003416) (-417 1000120 1000302 1000330 "FVC" 1000621 T FVC (NIL) -9 NIL 1000804) (-416 999757 999912 999993 "FUNCTION" 1000072 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-415 997427 997978 998467 "FT" 999288 T FT (NIL) -8 NIL NIL) (-414 996245 996728 996931 "FTEM" 997244 T FTEM (NIL) -8 NIL NIL) (-413 994510 994798 995200 "FSUPFACT" 995937 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-412 992907 993196 993528 "FST" 994198 T FST (NIL) -8 NIL NIL) (-411 992082 992188 992382 "FSRED" 992789 NIL FSRED (NIL T T) -7 NIL NIL) (-410 990761 991016 991370 "FSPRMELT" 991797 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-409 987846 988284 988783 "FSPECF" 990324 NIL FSPECF (NIL T T) -7 NIL NIL) (-408 970220 978777 978817 "FS" 982655 NIL FS (NIL T) -9 NIL 984937) (-407 958870 961860 965916 "FS-" 966213 NIL FS- (NIL T T) -8 NIL NIL) (-406 958386 958440 958616 "FSINT" 958811 NIL FSINT (NIL T T) -7 NIL NIL) (-405 956667 957379 957682 "FSERIES" 958165 NIL FSERIES (NIL T T) -8 NIL NIL) (-404 955685 955801 956031 "FSCINT" 956547 NIL FSCINT (NIL T T) -7 NIL NIL) (-403 951920 954630 954671 "FSAGG" 955041 NIL FSAGG (NIL T) -9 NIL 955300) (-402 949682 950283 951079 "FSAGG-" 951174 NIL FSAGG- (NIL T T) -8 NIL NIL) (-401 948724 948867 949094 "FSAGG2" 949535 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-400 946383 946662 947215 "FS2UPS" 948442 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-399 945969 946012 946165 "FS2" 946334 NIL FS2 (NIL T T T T) -7 NIL NIL) (-398 944829 945000 945308 "FS2EXPXP" 945794 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-397 944255 944370 944522 "FRUTIL" 944709 NIL FRUTIL (NIL T) -7 NIL NIL) (-396 935675 939754 941110 "FR" 942931 NIL FR (NIL T) -8 NIL NIL) (-395 930752 933395 933435 "FRNAALG" 934831 NIL FRNAALG (NIL T) -9 NIL 935438) (-394 926430 927501 928776 "FRNAALG-" 929526 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-393 926068 926111 926238 "FRNAAF2" 926381 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-392 924417 924909 925203 "FRMOD" 925881 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-391 922139 922808 923124 "FRIDEAL" 924208 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-390 921338 921425 921712 "FRIDEAL2" 922046 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-389 920596 921004 921045 "FRETRCT" 921050 NIL FRETRCT (NIL T) -9 NIL 921221) (-388 919708 919939 920290 "FRETRCT-" 920295 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-387 916918 918138 918197 "FRAMALG" 919079 NIL FRAMALG (NIL T T) -9 NIL 919371) (-386 915051 915507 916137 "FRAMALG-" 916360 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-385 908953 914526 914802 "FRAC" 914807 NIL FRAC (NIL T) -8 NIL NIL) (-384 908589 908646 908753 "FRAC2" 908890 NIL FRAC2 (NIL T T) -7 NIL NIL) (-383 908225 908282 908389 "FR2" 908526 NIL FR2 (NIL T T) -7 NIL NIL) (-382 902899 905812 905840 "FPS" 906959 T FPS (NIL) -9 NIL 907515) (-381 902348 902457 902621 "FPS-" 902767 NIL FPS- (NIL T) -8 NIL NIL) (-380 899797 901494 901522 "FPC" 901747 T FPC (NIL) -9 NIL 901889) (-379 899590 899630 899727 "FPC-" 899732 NIL FPC- (NIL T) -8 NIL NIL) (-378 898469 899079 899120 "FPATMAB" 899125 NIL FPATMAB (NIL T) -9 NIL 899277) (-377 896169 896645 897071 "FPARFRAC" 898106 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-376 891562 892061 892743 "FORTRAN" 895601 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-375 889234 889734 890273 "FORT" 891043 T FORT (NIL) -7 NIL NIL) (-374 886910 887472 887500 "FORTFN" 888560 T FORTFN (NIL) -9 NIL 889184) (-373 886674 886724 886752 "FORTCAT" 886811 T FORTCAT (NIL) -9 NIL 886873) (-372 884734 885217 885616 "FORMULA" 886295 T FORMULA (NIL) -8 NIL NIL) (-371 884522 884552 884621 "FORMULA1" 884698 NIL FORMULA1 (NIL T) -7 NIL NIL) (-370 884045 884097 884270 "FORDER" 884464 NIL FORDER (NIL T T T T) -7 NIL NIL) (-369 883141 883305 883498 "FOP" 883872 T FOP (NIL) -7 NIL NIL) (-368 881733 882405 882579 "FNLA" 883023 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-367 880402 880791 880819 "FNCAT" 881391 T FNCAT (NIL) -9 NIL 881684) (-366 879968 880361 880389 "FNAME" 880394 T FNAME (NIL) -8 NIL NIL) (-365 878628 879601 879629 "FMTC" 879634 T FMTC (NIL) -9 NIL 879669) (-364 874946 876153 876781 "FMONOID" 878033 NIL FMONOID (NIL T) -8 NIL NIL) (-363 874166 874689 874837 "FM" 874842 NIL FM (NIL T T) -8 NIL NIL) (-362 871590 872236 872264 "FMFUN" 873408 T FMFUN (NIL) -9 NIL 874116) (-361 870859 871040 871068 "FMC" 871358 T FMC (NIL) -9 NIL 871540) (-360 868089 868923 868976 "FMCAT" 870158 NIL FMCAT (NIL T T) -9 NIL 870652) (-359 866984 867857 867956 "FM1" 868034 NIL FM1 (NIL T T) -8 NIL NIL) (-358 864758 865174 865668 "FLOATRP" 866535 NIL FLOATRP (NIL T) -7 NIL NIL) (-357 858244 862414 863044 "FLOAT" 864148 T FLOAT (NIL) -8 NIL NIL) (-356 855682 856182 856760 "FLOATCP" 857711 NIL FLOATCP (NIL T) -7 NIL NIL) (-355 854471 855319 855359 "FLINEXP" 855364 NIL FLINEXP (NIL T) -9 NIL 855457) (-354 853626 853861 854188 "FLINEXP-" 854193 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-353 852702 852846 853070 "FLASORT" 853478 NIL FLASORT (NIL T T) -7 NIL NIL) (-352 849921 850763 850815 "FLALG" 852042 NIL FLALG (NIL T T) -9 NIL 852509) (-351 843706 847408 847449 "FLAGG" 848711 NIL FLAGG (NIL T) -9 NIL 849363) (-350 842432 842771 843261 "FLAGG-" 843266 NIL FLAGG- (NIL T T) -8 NIL NIL) (-349 841474 841617 841844 "FLAGG2" 842285 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-348 838447 839465 839524 "FINRALG" 840652 NIL FINRALG (NIL T T) -9 NIL 841160) (-347 837607 837836 838175 "FINRALG-" 838180 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-346 837014 837227 837255 "FINITE" 837451 T FINITE (NIL) -9 NIL 837558) (-345 829474 831635 831675 "FINAALG" 835342 NIL FINAALG (NIL T) -9 NIL 836795) (-344 824815 825856 827000 "FINAALG-" 828379 NIL FINAALG- (NIL T T) -8 NIL NIL) (-343 824210 824570 824673 "FILE" 824745 NIL FILE (NIL T) -8 NIL NIL) (-342 822895 823207 823261 "FILECAT" 823945 NIL FILECAT (NIL T T) -9 NIL 824161) (-341 820758 822314 822342 "FIELD" 822382 T FIELD (NIL) -9 NIL 822462) (-340 819378 819763 820274 "FIELD-" 820279 NIL FIELD- (NIL T) -8 NIL NIL) (-339 817193 818015 818361 "FGROUP" 819065 NIL FGROUP (NIL T) -8 NIL NIL) (-338 816283 816447 816667 "FGLMICPK" 817025 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-337 812085 816208 816265 "FFX" 816270 NIL FFX (NIL T NIL) -8 NIL NIL) (-336 811686 811747 811882 "FFSLPE" 812018 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-335 807679 808458 809254 "FFPOLY" 810922 NIL FFPOLY (NIL T) -7 NIL NIL) (-334 807183 807219 807428 "FFPOLY2" 807637 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-333 803004 807102 807165 "FFP" 807170 NIL FFP (NIL T NIL) -8 NIL NIL) (-332 798372 802915 802979 "FF" 802984 NIL FF (NIL NIL NIL) -8 NIL NIL) (-331 793468 797715 797905 "FFNBX" 798226 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-330 788325 792551 792809 "FFNBP" 793322 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-329 782928 787609 787820 "FFNB" 788158 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-328 781760 781958 782273 "FFINTBAS" 782725 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-327 777984 780224 780252 "FFIELDC" 780872 T FFIELDC (NIL) -9 NIL 781248) (-326 776647 777017 777514 "FFIELDC-" 777519 NIL FFIELDC- (NIL T) -8 NIL NIL) (-325 776217 776262 776386 "FFHOM" 776589 NIL FFHOM (NIL T T T) -7 NIL NIL) (-324 773915 774399 774916 "FFF" 775732 NIL FFF (NIL T) -7 NIL NIL) (-323 769503 773657 773758 "FFCGX" 773858 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-322 765105 769235 769342 "FFCGP" 769446 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-321 760258 764832 764940 "FFCG" 765041 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-320 742204 751327 751413 "FFCAT" 756578 NIL FFCAT (NIL T T T) -9 NIL 758065) (-319 737402 738449 739763 "FFCAT-" 740993 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-318 736813 736856 737091 "FFCAT2" 737353 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-317 725969 729759 730976 "FEXPR" 735668 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-316 724969 725404 725445 "FEVALAB" 725529 NIL FEVALAB (NIL T) -9 NIL 725790) (-315 724128 724338 724676 "FEVALAB-" 724681 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-314 722721 723511 723714 "FDIV" 724027 NIL FDIV (NIL T T T T) -8 NIL NIL) (-313 719788 720503 720618 "FDIVCAT" 722186 NIL FDIVCAT (NIL T T T T) -9 NIL 722623) (-312 719550 719577 719747 "FDIVCAT-" 719752 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-311 718770 718857 719134 "FDIV2" 719457 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-310 717456 717715 718004 "FCPAK1" 718501 T FCPAK1 (NIL) -7 NIL NIL) (-309 716584 716956 717097 "FCOMP" 717347 NIL FCOMP (NIL T) -8 NIL NIL) (-308 700219 703633 707194 "FC" 713043 T FC (NIL) -8 NIL NIL) (-307 692815 696861 696901 "FAXF" 698703 NIL FAXF (NIL T) -9 NIL 699394) (-306 690094 690749 691574 "FAXF-" 692039 NIL FAXF- (NIL T T) -8 NIL NIL) (-305 685194 689470 689646 "FARRAY" 689951 NIL FARRAY (NIL T) -8 NIL NIL) (-304 680585 682656 682708 "FAMR" 683720 NIL FAMR (NIL T T) -9 NIL 684180) (-303 679476 679778 680212 "FAMR-" 680217 NIL FAMR- (NIL T T T) -8 NIL NIL) (-302 678672 679398 679451 "FAMONOID" 679456 NIL FAMONOID (NIL T) -8 NIL NIL) (-301 676505 677189 677242 "FAMONC" 678183 NIL FAMONC (NIL T T) -9 NIL 678568) (-300 675197 676259 676396 "FAGROUP" 676401 NIL FAGROUP (NIL T) -8 NIL NIL) (-299 673000 673319 673721 "FACUTIL" 674878 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-298 672099 672284 672506 "FACTFUNC" 672810 NIL FACTFUNC (NIL T) -7 NIL NIL) (-297 664419 671350 671562 "EXPUPXS" 671955 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-296 661902 662442 663028 "EXPRTUBE" 663853 T EXPRTUBE (NIL) -7 NIL NIL) (-295 658096 658688 659425 "EXPRODE" 661241 NIL EXPRODE (NIL T T) -7 NIL NIL) (-294 643227 656727 657153 "EXPR" 657702 NIL EXPR (NIL T) -8 NIL NIL) (-293 637639 638226 639038 "EXPR2UPS" 642525 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-292 637275 637332 637439 "EXPR2" 637576 NIL EXPR2 (NIL T T) -7 NIL NIL) (-291 628629 636412 636707 "EXPEXPAN" 637113 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-290 628456 628586 628615 "EXIT" 628620 T EXIT (NIL) -8 NIL NIL) (-289 628083 628145 628258 "EVALCYC" 628388 NIL EVALCYC (NIL T) -7 NIL NIL) (-288 627624 627742 627783 "EVALAB" 627953 NIL EVALAB (NIL T) -9 NIL 628057) (-287 627105 627227 627448 "EVALAB-" 627453 NIL EVALAB- (NIL T T) -8 NIL NIL) (-286 624568 625880 625908 "EUCDOM" 626463 T EUCDOM (NIL) -9 NIL 626813) (-285 622973 623415 624005 "EUCDOM-" 624010 NIL EUCDOM- (NIL T) -8 NIL NIL) (-284 610551 613299 616039 "ESTOOLS" 620253 T ESTOOLS (NIL) -7 NIL NIL) (-283 610187 610244 610351 "ESTOOLS2" 610488 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-282 609938 609980 610060 "ESTOOLS1" 610139 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-281 603876 605600 605628 "ES" 608392 T ES (NIL) -9 NIL 609798) (-280 598823 600110 601927 "ES-" 602091 NIL ES- (NIL T) -8 NIL NIL) (-279 595198 595958 596738 "ESCONT" 598063 T ESCONT (NIL) -7 NIL NIL) (-278 594935 594967 595049 "ESCONT1" 595160 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-277 594610 594660 594760 "ES2" 594879 NIL ES2 (NIL T T) -7 NIL NIL) (-276 594240 594298 594407 "ES1" 594546 NIL ES1 (NIL T T) -7 NIL NIL) (-275 593456 593585 593761 "ERROR" 594084 T ERROR (NIL) -7 NIL NIL) (-274 586959 593315 593406 "EQTBL" 593411 NIL EQTBL (NIL T T) -8 NIL NIL) (-273 579396 582277 583724 "EQ" 585545 NIL -2716 (NIL T) -8 NIL NIL) (-272 579028 579085 579194 "EQ2" 579333 NIL EQ2 (NIL T T) -7 NIL NIL) (-271 574320 575366 576459 "EP" 577967 NIL EP (NIL T) -7 NIL NIL) (-270 572903 573203 573520 "ENV" 574023 T ENV (NIL) -8 NIL NIL) (-269 572063 572627 572655 "ENTIRER" 572660 T ENTIRER (NIL) -9 NIL 572705) (-268 568519 570018 570388 "EMR" 571862 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-267 567663 567848 567902 "ELTAGG" 568282 NIL ELTAGG (NIL T T) -9 NIL 568493) (-266 567382 567444 567585 "ELTAGG-" 567590 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-265 567171 567200 567254 "ELTAB" 567338 NIL ELTAB (NIL T T) -9 NIL NIL) (-264 566297 566443 566642 "ELFUTS" 567022 NIL ELFUTS (NIL T T) -7 NIL NIL) (-263 566039 566095 566123 "ELEMFUN" 566228 T ELEMFUN (NIL) -9 NIL NIL) (-262 565909 565930 565998 "ELEMFUN-" 566003 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-261 560801 564010 564051 "ELAGG" 564991 NIL ELAGG (NIL T) -9 NIL 565454) (-260 559086 559520 560183 "ELAGG-" 560188 NIL ELAGG- (NIL T T) -8 NIL NIL) (-259 557743 558023 558318 "ELABEXPR" 558811 T ELABEXPR (NIL) -8 NIL NIL) (-258 550600 552399 553226 "EFUPXS" 557019 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-257 544039 545840 546650 "EFULS" 549876 NIL EFULS (NIL T T T) -8 NIL NIL) (-256 541470 541828 542306 "EFSTRUC" 543671 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-255 530542 532107 533667 "EF" 539985 NIL EF (NIL T T) -7 NIL NIL) (-254 529643 530027 530176 "EAB" 530413 T EAB (NIL) -8 NIL NIL) (-253 528856 529602 529630 "E04UCFA" 529635 T E04UCFA (NIL) -8 NIL NIL) (-252 528069 528815 528843 "E04NAFA" 528848 T E04NAFA (NIL) -8 NIL NIL) (-251 527282 528028 528056 "E04MBFA" 528061 T E04MBFA (NIL) -8 NIL NIL) (-250 526495 527241 527269 "E04JAFA" 527274 T E04JAFA (NIL) -8 NIL NIL) (-249 525710 526454 526482 "E04GCFA" 526487 T E04GCFA (NIL) -8 NIL NIL) (-248 524925 525669 525697 "E04FDFA" 525702 T E04FDFA (NIL) -8 NIL NIL) (-247 524138 524884 524912 "E04DGFA" 524917 T E04DGFA (NIL) -8 NIL NIL) (-246 518323 519668 521030 "E04AGNT" 522796 T E04AGNT (NIL) -7 NIL NIL) (-245 517050 517530 517570 "DVARCAT" 518045 NIL DVARCAT (NIL T) -9 NIL 518243) (-244 516254 516466 516780 "DVARCAT-" 516785 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-243 509116 516056 516183 "DSMP" 516188 NIL DSMP (NIL T T T) -8 NIL NIL) (-242 503926 505061 506129 "DROPT" 508068 T DROPT (NIL) -8 NIL NIL) (-241 503591 503650 503748 "DROPT1" 503861 NIL DROPT1 (NIL T) -7 NIL NIL) (-240 498706 499832 500969 "DROPT0" 502474 T DROPT0 (NIL) -7 NIL NIL) (-239 497051 497376 497762 "DRAWPT" 498340 T DRAWPT (NIL) -7 NIL NIL) (-238 491638 492561 493640 "DRAW" 496025 NIL DRAW (NIL T) -7 NIL NIL) (-237 491271 491324 491442 "DRAWHACK" 491579 NIL DRAWHACK (NIL T) -7 NIL NIL) (-236 490002 490271 490562 "DRAWCX" 491000 T DRAWCX (NIL) -7 NIL NIL) (-235 489520 489588 489738 "DRAWCURV" 489928 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-234 479991 481950 484065 "DRAWCFUN" 487425 T DRAWCFUN (NIL) -7 NIL NIL) (-233 476805 478687 478728 "DQAGG" 479357 NIL DQAGG (NIL T) -9 NIL 479630) (-232 465312 472050 472132 "DPOLCAT" 473970 NIL DPOLCAT (NIL T T T T) -9 NIL 474514) (-231 460152 461498 463455 "DPOLCAT-" 463460 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-230 452948 460014 460111 "DPMO" 460116 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-229 445647 452729 452895 "DPMM" 452900 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-228 445160 445258 445378 "DOMAIN" 445547 T DOMAIN (NIL) -8 NIL NIL) (-227 438872 444797 444948 "DMP" 445061 NIL DMP (NIL NIL T) -8 NIL NIL) (-226 438472 438528 438672 "DLP" 438810 NIL DLP (NIL T) -7 NIL NIL) (-225 432116 437573 437800 "DLIST" 438277 NIL DLIST (NIL T) -8 NIL NIL) (-224 428963 430972 431013 "DLAGG" 431563 NIL DLAGG (NIL T) -9 NIL 431792) (-223 427673 428365 428393 "DIVRING" 428543 T DIVRING (NIL) -9 NIL 428651) (-222 426661 426914 427307 "DIVRING-" 427312 NIL DIVRING- (NIL T) -8 NIL NIL) (-221 424763 425120 425526 "DISPLAY" 426275 T DISPLAY (NIL) -7 NIL NIL) (-220 418652 424677 424740 "DIRPROD" 424745 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-219 417500 417703 417968 "DIRPROD2" 418445 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-218 407019 413024 413077 "DIRPCAT" 413485 NIL DIRPCAT (NIL NIL T) -9 NIL 414324) (-217 404337 404979 405860 "DIRPCAT-" 406205 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-216 403624 403784 403970 "DIOSP" 404171 T DIOSP (NIL) -7 NIL NIL) (-215 400327 402537 402578 "DIOPS" 403012 NIL DIOPS (NIL T) -9 NIL 403241) (-214 399876 399990 400181 "DIOPS-" 400186 NIL DIOPS- (NIL T T) -8 NIL NIL) (-213 398748 399386 399414 "DIFRING" 399601 T DIFRING (NIL) -9 NIL 399710) (-212 398394 398471 398623 "DIFRING-" 398628 NIL DIFRING- (NIL T) -8 NIL NIL) (-211 396184 397466 397506 "DIFEXT" 397865 NIL DIFEXT (NIL T) -9 NIL 398158) (-210 394470 394898 395563 "DIFEXT-" 395568 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-209 391793 394003 394044 "DIAGG" 394049 NIL DIAGG (NIL T) -9 NIL 394069) (-208 391177 391334 391586 "DIAGG-" 391591 NIL DIAGG- (NIL T T) -8 NIL NIL) (-207 386642 390136 390413 "DHMATRIX" 390946 NIL DHMATRIX (NIL T) -8 NIL NIL) (-206 382254 383163 384173 "DFSFUN" 385652 T DFSFUN (NIL) -7 NIL NIL) (-205 377040 380968 381333 "DFLOAT" 381909 T DFLOAT (NIL) -8 NIL NIL) (-204 375273 375554 375949 "DFINTTLS" 376748 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-203 372306 373308 373706 "DERHAM" 374940 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-202 370155 372081 372170 "DEQUEUE" 372250 NIL DEQUEUE (NIL T) -8 NIL NIL) (-201 369373 369506 369701 "DEGRED" 370017 NIL DEGRED (NIL T T) -7 NIL NIL) (-200 365773 366518 367370 "DEFINTRF" 368601 NIL DEFINTRF (NIL T) -7 NIL NIL) (-199 363304 363773 364371 "DEFINTEF" 365292 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-198 357134 362745 362911 "DECIMAL" 363158 T DECIMAL (NIL) -8 NIL NIL) (-197 354646 355104 355610 "DDFACT" 356678 NIL DDFACT (NIL T T) -7 NIL NIL) (-196 354242 354285 354436 "DBLRESP" 354597 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-195 351917 352251 352620 "DBASE" 354000 NIL DBASE (NIL T) -8 NIL NIL) (-194 351052 351876 351904 "D03FAFA" 351909 T D03FAFA (NIL) -8 NIL NIL) (-193 350188 351011 351039 "D03EEFA" 351044 T D03EEFA (NIL) -8 NIL NIL) (-192 348138 348604 349093 "D03AGNT" 349719 T D03AGNT (NIL) -7 NIL NIL) (-191 347456 348097 348125 "D02EJFA" 348130 T D02EJFA (NIL) -8 NIL NIL) (-190 346774 347415 347443 "D02CJFA" 347448 T D02CJFA (NIL) -8 NIL NIL) (-189 346092 346733 346761 "D02BHFA" 346766 T D02BHFA (NIL) -8 NIL NIL) (-188 345410 346051 346079 "D02BBFA" 346084 T D02BBFA (NIL) -8 NIL NIL) (-187 338608 340196 341802 "D02AGNT" 343824 T D02AGNT (NIL) -7 NIL NIL) (-186 336377 336899 337445 "D01WGTS" 338082 T D01WGTS (NIL) -7 NIL NIL) (-185 335480 336336 336364 "D01TRNS" 336369 T D01TRNS (NIL) -8 NIL NIL) (-184 334583 335439 335467 "D01GBFA" 335472 T D01GBFA (NIL) -8 NIL NIL) (-183 333686 334542 334570 "D01FCFA" 334575 T D01FCFA (NIL) -8 NIL NIL) (-182 332789 333645 333673 "D01ASFA" 333678 T D01ASFA (NIL) -8 NIL NIL) (-181 331892 332748 332776 "D01AQFA" 332781 T D01AQFA (NIL) -8 NIL NIL) (-180 330995 331851 331879 "D01APFA" 331884 T D01APFA (NIL) -8 NIL NIL) (-179 330098 330954 330982 "D01ANFA" 330987 T D01ANFA (NIL) -8 NIL NIL) (-178 329201 330057 330085 "D01AMFA" 330090 T D01AMFA (NIL) -8 NIL NIL) (-177 328304 329160 329188 "D01ALFA" 329193 T D01ALFA (NIL) -8 NIL NIL) (-176 327407 328263 328291 "D01AKFA" 328296 T D01AKFA (NIL) -8 NIL NIL) (-175 326510 327366 327394 "D01AJFA" 327399 T D01AJFA (NIL) -8 NIL NIL) (-174 319814 321363 322922 "D01AGNT" 324971 T D01AGNT (NIL) -7 NIL NIL) (-173 319151 319279 319431 "CYCLOTOM" 319682 T CYCLOTOM (NIL) -7 NIL NIL) (-172 315886 316599 317326 "CYCLES" 318444 T CYCLES (NIL) -7 NIL NIL) (-171 315198 315332 315503 "CVMP" 315747 NIL CVMP (NIL T) -7 NIL NIL) (-170 312979 313237 313612 "CTRIGMNP" 314926 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-169 312584 312667 312772 "CTORCALL" 312894 T CTORCALL (NIL) -8 NIL NIL) (-168 311958 312057 312210 "CSTTOOLS" 312481 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-167 307750 308407 309165 "CRFP" 311270 NIL CRFP (NIL T T) -7 NIL NIL) (-166 306797 306982 307210 "CRAPACK" 307554 NIL CRAPACK (NIL T) -7 NIL NIL) (-165 306181 306282 306486 "CPMATCH" 306673 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-164 305906 305934 306040 "CPIMA" 306147 NIL CPIMA (NIL T T T) -7 NIL NIL) (-163 302270 302942 303660 "COORDSYS" 305241 NIL COORDSYS (NIL T) -7 NIL NIL) (-162 301654 301783 301933 "CONTOUR" 302140 T CONTOUR (NIL) -8 NIL NIL) (-161 297515 299657 300149 "CONTFRAC" 301194 NIL CONTFRAC (NIL T) -8 NIL NIL) (-160 296669 297233 297261 "COMRING" 297266 T COMRING (NIL) -9 NIL 297317) (-159 295750 296027 296211 "COMPPROP" 296505 T COMPPROP (NIL) -8 NIL NIL) (-158 295404 295439 295567 "COMPLPAT" 295709 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-157 285385 295213 295322 "COMPLEX" 295327 NIL COMPLEX (NIL T) -8 NIL NIL) (-156 285021 285078 285185 "COMPLEX2" 285322 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-155 284739 284774 284872 "COMPFACT" 284980 NIL COMPFACT (NIL T T) -7 NIL NIL) (-154 269074 279368 279408 "COMPCAT" 280410 NIL COMPCAT (NIL T) -9 NIL 281803) (-153 258589 261513 265140 "COMPCAT-" 265496 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-152 258320 258348 258450 "COMMUPC" 258555 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-151 258115 258148 258207 "COMMONOP" 258281 T COMMONOP (NIL) -7 NIL NIL) (-150 257698 257866 257953 "COMM" 258048 T COMM (NIL) -8 NIL NIL) (-149 256947 257141 257169 "COMBOPC" 257507 T COMBOPC (NIL) -9 NIL 257682) (-148 255843 256053 256295 "COMBINAT" 256737 NIL COMBINAT (NIL T) -7 NIL NIL) (-147 252041 252614 253254 "COMBF" 255265 NIL COMBF (NIL T T) -7 NIL NIL) (-146 250827 251157 251392 "COLOR" 251826 T COLOR (NIL) -8 NIL NIL) (-145 250467 250514 250639 "CMPLXRT" 250774 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-144 245969 246997 248077 "CLIP" 249407 T CLIP (NIL) -7 NIL NIL) (-143 244303 245073 245311 "CLIF" 245797 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-142 240526 242450 242491 "CLAGG" 243420 NIL CLAGG (NIL T) -9 NIL 243956) (-141 238948 239405 239988 "CLAGG-" 239993 NIL CLAGG- (NIL T T) -8 NIL NIL) (-140 238492 238577 238717 "CINTSLPE" 238857 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-139 235972 236443 236991 "CHVAR" 238020 NIL CHVAR (NIL T T T) -7 NIL NIL) (-138 235195 235759 235787 "CHARZ" 235792 T CHARZ (NIL) -9 NIL 235806) (-137 234949 234989 235067 "CHARPOL" 235149 NIL CHARPOL (NIL T) -7 NIL NIL) (-136 234056 234653 234681 "CHARNZ" 234728 T CHARNZ (NIL) -9 NIL 234783) (-135 232081 232746 233081 "CHAR" 233741 T CHAR (NIL) -8 NIL NIL) (-134 231807 231868 231896 "CFCAT" 232007 T CFCAT (NIL) -9 NIL NIL) (-133 231052 231163 231345 "CDEN" 231691 NIL CDEN (NIL T T T) -7 NIL NIL) (-132 227044 230205 230485 "CCLASS" 230792 T CCLASS (NIL) -8 NIL NIL) (-131 226963 226989 227024 "CATEGORY" 227029 T -10 (NIL) -8 NIL NIL) (-130 221983 222960 223713 "CARTEN" 226266 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-129 221091 221239 221460 "CARTEN2" 221830 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-128 219389 220243 220499 "CARD" 220855 T CARD (NIL) -8 NIL NIL) (-127 218762 219090 219118 "CACHSET" 219250 T CACHSET (NIL) -9 NIL 219327) (-126 218259 218555 218583 "CABMON" 218633 T CABMON (NIL) -9 NIL 218689) (-125 217427 217806 217949 "BYTE" 218136 T BYTE (NIL) -8 NIL NIL) (-124 213375 217374 217408 "BYTEARY" 217413 T BYTEARY (NIL) -8 NIL NIL) (-123 210932 213067 213174 "BTREE" 213301 NIL BTREE (NIL T) -8 NIL NIL) (-122 208430 210580 210702 "BTOURN" 210842 NIL BTOURN (NIL T) -8 NIL NIL) (-121 205849 207902 207943 "BTCAT" 208011 NIL BTCAT (NIL T) -9 NIL 208088) (-120 205516 205596 205745 "BTCAT-" 205750 NIL BTCAT- (NIL T T) -8 NIL NIL) (-119 200737 204608 204636 "BTAGG" 204892 T BTAGG (NIL) -9 NIL 205071) (-118 200160 200304 200534 "BTAGG-" 200539 NIL BTAGG- (NIL T) -8 NIL NIL) (-117 197204 199438 199653 "BSTREE" 199977 NIL BSTREE (NIL T) -8 NIL NIL) (-116 196342 196468 196652 "BRILL" 197060 NIL BRILL (NIL T) -7 NIL NIL) (-115 193044 195071 195112 "BRAGG" 195761 NIL BRAGG (NIL T) -9 NIL 196018) (-114 191573 191979 192534 "BRAGG-" 192539 NIL BRAGG- (NIL T T) -8 NIL NIL) (-113 184773 190911 191095 "BPADICRT" 191421 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-112 183077 184710 184755 "BPADIC" 184760 NIL BPADIC (NIL NIL) -8 NIL NIL) (-111 182773 182803 182916 "BOUNDZRO" 183041 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-110 178288 179379 180246 "BOP" 181926 T BOP (NIL) -8 NIL NIL) (-109 175909 176353 176873 "BOP1" 177801 NIL BOP1 (NIL T) -7 NIL NIL) (-108 174544 175249 175467 "BOOLEAN" 175711 T BOOLEAN (NIL) -8 NIL NIL) (-107 173911 174289 174341 "BMODULE" 174346 NIL BMODULE (NIL T T) -9 NIL 174410) (-106 169721 173709 173782 "BITS" 173858 T BITS (NIL) -8 NIL NIL) (-105 168818 169253 169405 "BINFILE" 169589 T BINFILE (NIL) -8 NIL NIL) (-104 168230 168352 168494 "BINDING" 168696 T BINDING (NIL) -8 NIL NIL) (-103 162064 167674 167839 "BINARY" 168085 T BINARY (NIL) -8 NIL NIL) (-102 159892 161320 161361 "BGAGG" 161621 NIL BGAGG (NIL T) -9 NIL 161758) (-101 159723 159755 159846 "BGAGG-" 159851 NIL BGAGG- (NIL T T) -8 NIL NIL) (-100 158821 159107 159312 "BFUNCT" 159538 T BFUNCT (NIL) -8 NIL NIL) (-99 157522 157700 157985 "BEZOUT" 158645 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-98 154047 156382 156710 "BBTREE" 157225 NIL BBTREE (NIL T) -8 NIL NIL) (-97 153785 153838 153864 "BASTYPE" 153981 T BASTYPE (NIL) -9 NIL NIL) (-96 153640 153669 153739 "BASTYPE-" 153744 NIL BASTYPE- (NIL T) -8 NIL NIL) (-95 153078 153154 153304 "BALFACT" 153551 NIL BALFACT (NIL T T) -7 NIL NIL) (-94 151900 152497 152682 "AUTOMOR" 152923 NIL AUTOMOR (NIL T) -8 NIL NIL) (-93 151626 151631 151657 "ATTREG" 151662 T ATTREG (NIL) -9 NIL NIL) (-92 149905 150323 150675 "ATTRBUT" 151292 T ATTRBUT (NIL) -8 NIL NIL) (-91 149441 149554 149580 "ATRIG" 149781 T ATRIG (NIL) -9 NIL NIL) (-90 149250 149291 149378 "ATRIG-" 149383 NIL ATRIG- (NIL T) -8 NIL NIL) (-89 147447 149026 149114 "ASTACK" 149193 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145952 146249 146614 "ASSOCEQ" 147129 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144984 145611 145735 "ASP9" 145859 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144748 144932 144971 "ASP8" 144976 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143617 144353 144495 "ASP80" 144637 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142516 143252 143384 "ASP7" 143516 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141470 142193 142311 "ASP78" 142429 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140439 141150 141267 "ASP77" 141384 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 139351 140077 140208 "ASP74" 140339 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 138251 138986 139118 "ASP73" 139250 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 137206 137928 138046 "ASP6" 138164 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 136154 136883 137001 "ASP55" 137119 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 135104 135828 135947 "ASP50" 136066 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 134192 134805 134915 "ASP4" 135025 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 133280 133893 134003 "ASP49" 134113 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 132065 132819 132987 "ASP42" 133169 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130842 131598 131768 "ASP41" 131952 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129792 130519 130637 "ASP35" 130755 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129557 129740 129779 "ASP34" 129784 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 129294 129361 129437 "ASP33" 129512 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 128189 128929 129061 "ASP31" 129193 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127954 128137 128176 "ASP30" 128181 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127689 127758 127834 "ASP29" 127909 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127454 127637 127676 "ASP28" 127681 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 127219 127402 127441 "ASP27" 127446 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 126303 126917 127028 "ASP24" 127139 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 125219 125944 126074 "ASP20" 126204 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 124307 124920 125030 "ASP1" 125140 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 123251 123981 124100 "ASP19" 124219 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122988 123055 123131 "ASP12" 123206 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121840 122587 122731 "ASP10" 122875 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119739 121684 121775 "ARRAY2" 121780 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115555 119387 119501 "ARRAY1" 119656 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114587 114760 114981 "ARRAY12" 115378 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108947 110818 110893 "ARR2CAT" 113523 NIL ARR2CAT (NIL T T T) -9 NIL 114281) (-54 106381 107125 108079 "ARR2CAT-" 108084 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 105141 105291 105594 "APPRULE" 106219 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104794 104842 104960 "APPLYORE" 105087 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103768 104059 104254 "ANY" 104617 T ANY (NIL) -8 NIL NIL) (-50 103046 103169 103326 "ANY1" 103642 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100578 101496 101821 "ANTISYM" 102771 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 100093 100282 100379 "ANON" 100499 T ANON (NIL) -8 NIL NIL) (-47 94170 98638 99089 "AN" 99660 T AN (NIL) -8 NIL NIL) (-46 90524 91922 91972 "AMR" 92711 NIL AMR (NIL T T) -9 NIL 93310) (-45 89637 89858 90220 "AMR-" 90225 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 74187 89554 89615 "ALIST" 89620 NIL ALIST (NIL T T) -8 NIL NIL) (-43 71024 73781 73950 "ALGSC" 74105 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67580 68134 68741 "ALGPKG" 70464 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66857 66958 67142 "ALGMFACT" 67466 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62606 63287 63941 "ALGMANIP" 66381 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53925 62232 62382 "ALGFF" 62539 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 53121 53252 53431 "ALGFACT" 53783 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 52112 52722 52760 "ALGEBRA" 52820 NIL ALGEBRA (NIL T) -9 NIL 52878) (-36 51830 51889 52021 "ALGEBRA-" 52026 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 34091 49834 49886 "ALAGG" 50022 NIL ALAGG (NIL T T) -9 NIL 50183) (-34 33627 33740 33766 "AHYP" 33967 T AHYP (NIL) -9 NIL NIL) (-33 32558 32806 32832 "AGG" 33331 T AGG (NIL) -9 NIL 33610) (-32 31992 32154 32368 "AGG-" 32373 NIL AGG- (NIL T) -8 NIL NIL) (-31 29675 30093 30510 "AF" 31635 NIL AF (NIL T T) -7 NIL NIL) (-30 28944 29202 29358 "ACPLOT" 29537 T ACPLOT (NIL) -8 NIL NIL) (-29 18411 26357 26408 "ACFS" 27119 NIL ACFS (NIL T) -9 NIL 27358) (-28 16425 16915 17690 "ACFS-" 17695 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12693 14649 14675 "ACF" 15554 T ACF (NIL) -9 NIL 15966) (-26 11397 11731 12224 "ACF-" 12229 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11191 "ABELSG" 11283 T ABELSG (NIL) -9 NIL 11348) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10233 10494 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9897 9981 10119 "ABELMON-" 10124 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9232 9578 9604 "ABELGRP" 9729 T ABELGRP (NIL) -9 NIL 9811) (-20 8695 8824 9040 "ABELGRP-" 9045 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index cb4249ae..164f4c79 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,1055 +1,705 @@
-(728078 . 3420122814)
+(728081 . 3420735372)
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2794 *3)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2 (-357)) (-5 *1 (-174)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-104))) (-5 *1 (-162)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-977)) (-4 *3 (-1149 *4)) (-4 *2 (-1164 *4))
+ (-5 *1 (-1167 *4 *3 *5 *2)) (-4 *5 (-602 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-767)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1113) (-934)))
+ (-5 *1 (-163 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1032)) (-4 *3 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-408 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3))
+ (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
+ (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *3))
+ (-5 *1 (-885 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $))
+ (-15 -1512 (*7 $))))))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-713)) (-4 *2 (-1020))
+ (-5 *1 (-622 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-977)) (-4 *2 (-630 *4 *5 *6))
+ (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1149 *4)) (-4 *5 (-351 *4))
+ (-4 *6 (-351 *4)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-1114 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-592 (-1114 *2))) (-4 *2 (-1020)) (-5 *1 (-1114 *2)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1131)) (-4 *5 (-1149 (-385 *2)))
+ (-4 *2 (-1149 *4)) (-5 *1 (-319 *3 *4 *2 *5))
+ (-4 *3 (-320 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1131))
+ (-4 *4 (-1149 (-385 *2))) (-4 *2 (-1149 *3)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2))
+ (-4 *2 (-1149 *4)))))
+(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1176))))
+ ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1176)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-977)) (-5 *1 (-1145 *3 *2)) (-4 *2 (-1149 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-108))
- (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-4 *3 (-13 (-27) (-1112) (-408 *6) (-10 -8 (-15 -1908 ($ *7)))))
- (-4 *7 (-787))
- (-4 *8
- (-13 (-1150 *3 *7) (-341) (-1112)
- (-10 -8 (-15 -3013 ($ $)) (-15 -3766 ($ $)))))
+ (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
+ (-4 *3 (-991 *6 *7 *8))
(-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))))
- (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-915 *8))
- (-14 *10 (-1090)))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-937)))))
-(((*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976))))
- ((*1 *2 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-592 (-108))) (-5 *5 (-632 (-205)))
- (-5 *6 (-632 (-525))) (-5 *7 (-205)) (-5 *2 (-965)) (-5 *1 (-697)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-855)) (-5 *2 (-1086 *3)) (-5 *1 (-1101 *3))
- (-4 *3 (-341)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1172 *4)) (-4 *4 (-588 *5)) (-4 *5 (-341))
- (-4 *5 (-517)) (-5 *2 (-1172 *5)) (-5 *1 (-587 *5 *4))))
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4))))))
+ (-5 *1 (-994 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1172 *4)) (-4 *4 (-588 *5))
- (-2480 (-4 *5 (-341))) (-4 *5 (-517)) (-5 *2 (-1172 (-385 *5)))
- (-5 *1 (-587 *5 *4)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-51)) (-5 *1 (-826 *4))
- (-4 *4 (-1019)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2))
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4))))))
+ (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1029 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-968 (-525)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *2 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-966))
+ (-5 *1 (-697)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-110)) (-5 *4 (-713)) (-4 *5 (-429)) (-4 *5 (-789))
+ (-4 *5 (-968 (-525))) (-4 *5 (-517)) (-5 *1 (-40 *5 *2))
+ (-4 *2 (-408 *5))
(-4 *2
(-13 (-341) (-281)
- (-10 -8 (-15 -1303 ((-1042 *3 (-565 $)) $))
- (-15 -1312 ((-1042 *3 (-565 $)) $))
- (-15 -1908 ($ (-1042 *3 (-565 $))))))))))
-(((*1 *1) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1092 (-385 (-525))))
- (-5 *1 (-172)))))
+ (-10 -8 (-15 -1498 ((-1043 *5 (-565 $)) $))
+ (-15 -1512 ((-1043 *5 (-565 $)) $))
+ (-15 -1270 ($ (-1043 *5 (-565 $))))))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-108) *7 (-592 *7))) (-4 *1 (-1121 *4 *5 *6 *7))
+ (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-991 *4 *5 *6))
+ (-5 *2 (-108)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *1) (-5 *1 (-132))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-887 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-944))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-887 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-944))))
+ ((*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-944)) (-5 *2 (-592 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1087 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-944))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1087 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-944))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-944)) (-5 *2 (-592 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1149 *4)) (-5 *2 (-592 *1))
+ (-4 *1 (-993 *4 *3)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357))
+ (|:| |expense| (-357)) (|:| |accuracy| (-357))
+ (|:| |intermediateResults| (-357))))
+ (-5 *1 (-745)))))
+(((*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-1102 *2)) (-4 *2 (-341)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5))
+ (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5))
(-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-1183 *3 *4 *5 *6))))
+ (-5 *1 (-1184 *3 *4 *5 *6))))
((*1 *1 *2 *3 *4)
(|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517))
- (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1183 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-886 (-525)))) (-5 *1 (-415))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1090)) (-5 *4 (-632 (-205))) (-5 *2 (-1023))
- (-5 *1 (-702))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1090)) (-5 *4 (-632 (-525))) (-5 *2 (-1023))
- (-5 *1 (-702)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734))
- (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-108)))))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1184 *5 *6 *7 *8)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-296)) (-5 *3 (-205)))))
+ (-12 (-5 *3 (-1 *5 (-592 *5))) (-4 *5 (-1164 *4))
+ (-4 *4 (-37 (-385 (-525))))
+ (-5 *2 (-1 (-1072 *4) (-592 (-1072 *4)))) (-5 *1 (-1166 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-284)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-713)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-807 *2 *3)) (-4 *2 (-1126)) (-4 *3 (-1126)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-855)) (-5 *2 (-1177)) (-5 *1 (-1173))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-855)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1090))
- (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4)))))
- ((*1 *1 *1) (-5 *1 (-357)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4))))
- (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-998 *3 *4 *5))) (-4 *3 (-1019))
- (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3))))
- (-4 *5 (-13 (-408 *4) (-820 *3) (-567 (-826 *3))))
- (-5 *1 (-999 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-1148 *4))
- (-4 *5 (-1148 (-385 *3))) (-5 *2 (-108))))
+ (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-108))))
((*1 *2 *3)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761 *3)) (-4 *3 (-789)))))
+ (-12 (-5 *3 (-1087 *4)) (-4 *4 (-327)) (-5 *2 (-108))
+ (-5 *1 (-335 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1173 *4)) (-4 *4 (-327)) (-5 *2 (-108))
+ (-5 *1 (-495 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525)))))
-(((*1 *1 *1) (-4 *1 (-223)))
- ((*1 *1 *1)
- (-12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1148 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (-3309 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1126)))
- (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1126)))))
- ((*1 *1 *1) (-4 *1 (-450)))
- ((*1 *2 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-341)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-592 (-1086 *11))) (-5 *3 (-1086 *11))
- (-5 *4 (-592 *10)) (-5 *5 (-592 *8)) (-5 *6 (-592 (-713)))
- (-5 *7 (-1172 (-592 (-1086 *8)))) (-4 *10 (-789))
- (-4 *8 (-286)) (-4 *11 (-883 *8 *9 *10)) (-4 *9 (-735))
- (-5 *1 (-650 *9 *10 *8 *11)))))
+ (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286))
+ (-5 *2 (-592 (-713))) (-5 *1 (-720 *3 *4 *5 *6 *7))
+ (-4 *3 (-1149 *6)) (-4 *7 (-884 *6 *4 *5)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-878 (-205))) (-5 *4 (-809)) (-5 *5 (-856))
+ (-5 *2 (-1178)) (-5 *1 (-445))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-878 (-205))) (-5 *2 (-1178)) (-5 *1 (-445))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *4 (-809)) (-5 *5 (-856))
+ (-5 *2 (-1178)) (-5 *1 (-445)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1090))
- (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3))
- (-4 *3 (-13 (-1112) (-29 *5))))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-273 *6)) (-5 *4 (-110)) (-4 *6 (-408 *5))
- (-4 *5 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
- (-5 *1 (-295 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-592 *7))
- (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501))))
- (-5 *2 (-51)) (-5 *1 (-295 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7))
- (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501))))
- (-5 *2 (-51)) (-5 *1 (-295 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-592 (-273 *8))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *8))
- (-5 *6 (-592 *8)) (-4 *8 (-408 *7))
- (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
- (-5 *1 (-295 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7))
- (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501))))
- (-5 *2 (-51)) (-5 *1 (-295 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-110))) (-5 *5 (-273 *8))
- (-5 *6 (-592 (-273 *8))) (-4 *8 (-408 *7))
- (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
- (-5 *1 (-295 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-273 *5)) (-5 *4 (-110)) (-4 *5 (-408 *6))
- (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
- (-5 *1 (-295 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6))
- (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
- (-5 *1 (-295 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6))
- (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
- (-5 *1 (-295 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-5 *6 (-592 *3))
- (-4 *3 (-408 *7)) (-4 *7 (-13 (-789) (-517) (-567 (-501))))
- (-5 *2 (-51)) (-5 *1 (-295 *7 *3)))))
+ (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8))))
+ (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1038)) (-5 *2 (-1178)) (-5 *1 (-773)))))
+(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))))
+(((*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-126))
+ (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1250 *4))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-2 (|:| -1655 *3) (|:| -3219 *4))))
+ (-5 *1 (-678 *3 *4)) (-4 *3 (-977)) (-4 *4 (-669))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1151 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
+ (-5 *2 (-1072 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1140 *3)) (-4 *3 (-1127)))))
+(((*1 *2)
+ (-12 (-14 *4 (-713)) (-4 *5 (-1127)) (-5 *2 (-713))
+ (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-126))
+ (-5 *2 (-713))))
+ ((*1 *2)
+ (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4))
+ (-4 *3 (-307 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-339 *3)) (-4 *3 (-1020))))
+ ((*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-364 *3)) (-4 *3 (-1020))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1020)) (-5 *2 (-713)) (-5 *1 (-402 *3 *4))
+ (-4 *3 (-403 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2)
+ (-12 (-4 *4 (-160)) (-4 *5 (-1149 *4)) (-5 *2 (-713))
+ (-5 *1 (-666 *3 *4 *5)) (-4 *3 (-667 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-761 *3)) (-4 *3 (-789))))
+ ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3))
+ (-4 *3 (-1149 *2)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -4151 (-357)) (|:| -3800 (-1074))
+ (|:| |explanations| (-592 (-1074)))))
+ (-5 *2 (-966)) (-5 *1 (-284))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -4151 (-357)) (|:| -3800 (-1074))
+ (|:| |explanations| (-592 (-1074))) (|:| |extra| (-966))))
+ (-5 *2 (-966)) (-5 *1 (-284)))))
+(((*1 *1)
+ (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
+ (-4 *4 (-160)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-592 (-1091))) (-4 *4 (-1020))
+ (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
+ (-5 *1 (-999 *4 *5 *2))
+ (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1020))
+ (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))
+ (-5 *1 (-999 *3 *4 *2))
+ (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1113)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-357)) (-5 *2 (-1178)) (-5 *1 (-1174))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-108)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1019)) (-4 *3 (-834 *5)) (-5 *2 (-632 *3))
- (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3))
- (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4254)))))))
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-525)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-976))
- (-5 *1 (-299 *4 *5 *2 *6)) (-4 *6 (-883 *2 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))
- (-5 *2 (-965)) (-5 *1 (-692))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))
- (-5 *8 (-366)) (-5 *2 (-965)) (-5 *1 (-692)))))
+ (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-157 *4))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4))))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *7)) (-4 *7 (-789))
- (-4 *8 (-883 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735))
+ (-12
(-5 *2
- (-2 (|:| |particular| (-3 (-1172 (-385 *8)) "failed"))
- (|:| -2499 (-592 (-1172 (-385 *8))))))
- (-5 *1 (-615 *5 *6 *7 *8)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-902 *4 *2))
- (-4 *2 (-1148 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808)))))
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-525))))
+ (-4 *4 (-13 (-1149 *3) (-517) (-10 -8 (-15 -2794 ($ $ $)))))
+ (-4 *3 (-517)) (-5 *1 (-1152 *3 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2))
+ (-4 *2 (-408 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1013 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517)))
+ (-5 *1 (-147 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-149))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1091)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-862)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357))))
+ ((*1 *1 *1 *1) (-4 *1 (-510)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
+ ((*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-713)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))))
-(((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *2 (-525)) (-5 *4 (-1 (-3 (-525) "failed") *5))
- (-4 *5 (-976)) (-5 *1 (-508 *5 *3)) (-4 *3 (-1148 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *2 (-525)) (-5 *5 (-1 (-3 (-525) "failed") *4))
- (-4 *4 (-976)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1148 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-976))
- (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1148 *4)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-713)) (-4 *5 (-327)) (-4 *6 (-1148 *5))
- (-5 *2
- (-592
- (-2 (|:| -2499 (-632 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-632 *6)))))
- (-5 *1 (-471 *5 *6 *7))
- (-5 *3
- (-2 (|:| -2499 (-632 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-632 *6))))
- (-4 *7 (-1148 *6)))))
+ (-12 (-4 *3 (-977)) (-5 *2 (-1173 *3)) (-5 *1 (-655 *3 *4))
+ (-4 *4 (-1149 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-713))) (-5 *3 (-108)) (-5 *1 (-1080 *4 *5))
+ (-14 *4 (-856)) (-4 *5 (-977)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))))
+(((*1 *1)
+ (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
+ (-4 *4 (-160)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138))
+ (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-910 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1108)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-594 *5)) (-4 *5 (-977))
+ (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-791 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-632 *3)) (-4 *1 (-395 *3)) (-4 *3 (-160))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977))))
+ ((*1 *2 *3 *2 *2 *4 *5)
+ (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-977))
+ (-5 *1 (-792 *2 *3)) (-4 *3 (-791 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-525)) (-5 *4 (-396 *2)) (-4 *2 (-884 *7 *5 *6))
+ (-5 *1 (-685 *5 *6 *7 *2)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-286)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -1449 (-592 *1))))
+ (-4 *1 (-345 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-430 *3 *4 *5 *6))
+ (|:| -1449 (-592 (-430 *3 *4 *5 *6)))))
+ (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))))
(((*1 *2 *3)
- (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-1148 *4))
- (-4 *5 (-1148 (-385 *3))) (-5 *2 (-108))))
+ (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174))))
((*1 *2 *3)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1090))
- (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *4 *5))
- (-4 *5 (-13 (-27) (-1112) (-408 *4)))))
+ (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *4 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-385 (-525)))
- (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *5 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5)))
- (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525)))
- (-4 *3 (-13 (-27) (-1112) (-408 *6)))
- (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8))
- (-5 *5 (-1139 (-385 (-525)))) (-5 *6 (-385 (-525)))
- (-4 *8 (-13 (-27) (-1112) (-408 *7)))
- (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-385 (-525))))
- (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1112) (-408 *8)))
- (-4 *8 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *8 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-385 (-525))) (-4 *4 (-976)) (-4 *1 (-1155 *4 *3))
- (-4 *3 (-1132 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-771)) (-5 *3 (-1073)))))
+ (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))))
+(((*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-899))) (-5 *1 (-104))))
+ ((*1 *2 *1) (-12 (-5 *2 (-44 (-1074) (-716))) (-5 *1 (-110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1096)))))
+(((*1 *1 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-977))
+ (-4 *5 (-789)) (-5 *2 (-887 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-977))
+ (-4 *5 (-789)) (-5 *2 (-887 *4))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-1164 *4)) (-4 *4 (-977))
+ (-5 *2 (-887 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-1164 *4)) (-4 *4 (-977))
+ (-5 *2 (-887 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1149 *6))
+ (-4 *6 (-13 (-27) (-408 *5)))
+ (-4 *5 (-13 (-789) (-517) (-968 (-525)))) (-4 *8 (-1149 (-385 *7)))
+ (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3))
+ (-4 *3 (-320 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1087 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-976)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5))
- (-4 *3 (-1148 *4))
- (-4 *5 (-13 (-382) (-967 *4) (-341) (-1112) (-263))))))
+ (-12 (-5 *3 (-856)) (-5 *2 (-1087 *4)) (-5 *1 (-335 *4))
+ (-4 *4 (-327)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1052 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-977)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1173 *4)) (-5 *3 (-632 *4)) (-4 *4 (-341))
+ (-5 *1 (-613 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-341))
+ (-4 *5 (-13 (-351 *4) (-10 -7 (-6 -4256))))
+ (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4256))))
+ (-5 *1 (-614 *4 *5 *2 *3)) (-4 *3 (-630 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-592 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-341))
+ (-5 *1 (-756 *2 *3)) (-4 *3 (-602 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *1 (-1046 *3 *2)) (-4 *3 (-1149 *2)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-976)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-4 *1 (-837 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1126))
- (-4 *5 (-1126)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-220 *6 *7)) (-14 *6 (-713))
- (-4 *7 (-1126)) (-4 *5 (-1126)) (-5 *2 (-220 *6 *5))
- (-5 *1 (-219 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1126)) (-4 *5 (-1126))
- (-4 *2 (-351 *5)) (-5 *1 (-349 *6 *4 *5 *2)) (-4 *4 (-351 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1019)) (-4 *5 (-1019))
- (-4 *2 (-403 *5)) (-5 *1 (-401 *6 *4 *5 *2)) (-4 *4 (-403 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-592 *6)) (-4 *6 (-1126))
- (-4 *5 (-1126)) (-5 *2 (-592 *5)) (-5 *1 (-590 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-891 *6)) (-4 *6 (-1126))
- (-4 *5 (-1126)) (-5 *2 (-891 *5)) (-5 *1 (-890 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1071 *6)) (-4 *6 (-1126))
- (-4 *3 (-1126)) (-5 *2 (-1071 *3)) (-5 *1 (-1069 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1172 *6)) (-4 *6 (-1126))
- (-4 *5 (-1126)) (-5 *2 (-1172 *5)) (-5 *1 (-1171 *6 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-855)) (-4 *1 (-346))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-855)) (-5 *2 (-1172 *4)) (-5 *1 (-495 *4))
- (-4 *4 (-327))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-789)) (-5 *1 (-656 *2 *3 *4)) (-4 *3 (-1019))
- (-14 *4
- (-1 (-108) (-2 (|:| -4185 *2) (|:| -1600 *3))
- (-2 (|:| -4185 *2) (|:| -1600 *3)))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-592 *1)) (-4 *1 (-408 *4))
- (-4 *4 (-789))))
- ((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789))))
- ((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-5 *2 (-891 (-1086 *4))) (-5 *1 (-335 *4))
- (-5 *3 (-1086 *4)))))
+ (-12 (-5 *1 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-1127)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-108)) (-5 *1 (-771)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856))
+ (-14 *4 (-856)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3))
- (-4 *3 (-13 (-341) (-1112) (-933)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1130)) (-4 *5 (-1148 (-385 *2)))
- (-4 *2 (-1148 *4)) (-5 *1 (-319 *3 *4 *2 *5))
- (-4 *3 (-320 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1130))
- (-4 *4 (-1148 (-385 *2))) (-4 *2 (-1148 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-308)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))))
+ (-12
+ (-5 *3
+ (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))))
+ (-5 *2 (-592 (-385 (-525)))) (-5 *1 (-951 *4))
+ (-4 *4 (-1149 (-525))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1090))
- (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *4 *5))
- (-4 *5 (-13 (-27) (-1112) (-408 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *4 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *4)))))
+ (-12 (-5 *3 (-711))
+ (-5 *2
+ (-2 (|:| -4151 (-357)) (|:| -3800 (-1074))
+ (|:| |explanations| (-592 (-1074))) (|:| |extra| (-966))))
+ (-5 *1 (-526))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-525))
- (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *5 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *5)))))
+ (-12 (-5 *3 (-711)) (-5 *4 (-989))
+ (-5 *2
+ (-2 (|:| -4151 (-357)) (|:| -3800 (-1074))
+ (|:| |explanations| (-592 (-1074))) (|:| |extra| (-966))))
+ (-5 *1 (-526))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5)))
- (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-273 *3)) (-5 *5 (-525))
- (-4 *3 (-13 (-27) (-1112) (-408 *6)))
- (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1139 (-525)))
- (-4 *7 (-13 (-27) (-1112) (-408 *6)))
- (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-525)))
- (-4 *3 (-13 (-27) (-1112) (-408 *7)))
- (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *7 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-525)) (-4 *4 (-976)) (-4 *1 (-1134 *4 *3))
- (-4 *3 (-1163 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1132 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-811 *2)) (-4 *2 (-1126))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-813 *2)) (-4 *2 (-1126))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-816 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1073)) (-5 *1 (-92))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1073)) (-5 *1 (-92)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1073))
- (-5 *6 (-632 (-205)))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))))
- (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))
- (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))
- (-5 *2 (-965)) (-5 *1 (-692)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1148 *5))
- (-4 *7 (-1148 (-385 *6))) (-4 *8 (-320 *5 *6 *7))
- (-4 *4 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-108))
- (-5 *1 (-845 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6))
- (-4 *4 (-1148 (-385 (-525)))) (-4 *5 (-1148 (-385 *4)))
- (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-108))
- (-5 *1 (-846 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-799 *5))) (-14 *5 (-592 (-1090))) (-4 *6 (-429))
- (-5 *2 (-592 (-592 (-227 *5 *6)))) (-5 *1 (-448 *5 *6 *7))
- (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090))
- (-14 *4 *2))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3))
- (-4 *3 (-13 (-341) (-1112) (-933))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-789)) (-5 *1 (-863 *3 *2)) (-4 *2 (-408 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1090)) (-5 *2 (-294 (-525))) (-5 *1 (-864)))))
-(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3))
- (-4 *3 (-1148 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))
+ (-12 (-4 *1 (-729)) (-5 *3 (-989))
+ (-5 *4
+ (-2 (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2
+ (-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))
+ (|:| |extra| (-966))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
- (-4 *3 (-1148 (-525)))))
+ (-12 (-4 *1 (-729)) (-5 *3 (-989))
+ (-5 *4
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2
+ (-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))
+ (|:| |extra| (-966))))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
- (-4 *3 (-1148 (-525)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3))
- (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
- (-4 *3 (-1148 (-525)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-938 *3))
- (-4 *3 (-1148 (-385 (-525))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-1137 *3)) (-4 *3 (-1148 (-525))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1090))
- (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *4 *5))
- (-4 *5 (-13 (-27) (-1112) (-408 *4)))))
+ (-12 (-4 *1 (-742)) (-5 *3 (-989))
+ (-5 *4
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (-5 *2 (-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *4 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *4)))))
+ (-12 (-5 *3 (-750))
+ (-5 *2
+ (-2 (|:| -4151 (-357)) (|:| -3800 (-1074))
+ (|:| |explanations| (-592 (-1074)))))
+ (-5 *1 (-747))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-713))
- (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *5 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *5)))))
+ (-12 (-5 *3 (-750)) (-5 *4 (-989))
+ (-5 *2
+ (-2 (|:| -4151 (-357)) (|:| -3800 (-1074))
+ (|:| |explanations| (-592 (-1074)))))
+ (-5 *1 (-747))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5)))
- (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-273 *3)) (-5 *5 (-713))
- (-4 *3 (-13 (-27) (-1112) (-408 *6)))
- (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *6 *3))))
+ (-12 (-4 *1 (-778)) (-5 *3 (-989))
+ (-5 *4
+ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))
+ (-5 *2 (-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6))
- (-4 *6 (-13 (-27) (-1112) (-408 *5)))
- (-4 *5 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *6)))
- (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1139 (-713)))
- (-4 *7 (-13 (-27) (-1112) (-408 *6)))
- (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-713)))
- (-4 *3 (-13 (-27) (-1112) (-408 *7)))
- (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *7 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1163 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1019))
- (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3))))
- (-5 *2 (-592 (-998 *3 *4 *5))) (-5 *1 (-999 *3 *4 *5))
- (-4 *5 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-976)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-976))
- (-4 *2 (-1163 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-108))
+ (-12 (-4 *1 (-778)) (-5 *3 (-989))
+ (-5 *4
+ (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205)))
+ (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205))))
+ (|:| |ub| (-592 (-782 (-205))))))
+ (-5 *2 (-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-780))
(-5 *2
- (-2 (|:| |contp| (-525))
- (|:| -2203 (-592 (-2 (|:| |irr| *3) (|:| -1591 (-525)))))))
- (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))
+ (-2 (|:| -4151 (-357)) (|:| -3800 (-1074))
+ (|:| |explanations| (-592 (-1074)))))
+ (-5 *1 (-779))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-108))
+ (-12 (-5 *3 (-780)) (-5 *4 (-989))
(-5 *2
- (-2 (|:| |contp| (-525))
- (|:| -2203 (-592 (-2 (|:| |irr| *3) (|:| -1591 (-525)))))))
- (-5 *1 (-1137 *3)) (-4 *3 (-1148 (-525))))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-1014 (-385 (-525))))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-242)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -3740 *4))))
- (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-900))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-31 *3 *4))
- (-4 *4 (-408 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-713)) (-5 *1 (-110))))
- ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-110))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *4))
- (-4 *4 (-408 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-110)) (-5 *1 (-151))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *4))
- (-4 *4 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-280 *3)) (-4 *3 (-281))))
- ((*1 *2 *2) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *4 (-789)) (-5 *1 (-407 *3 *4))
- (-4 *3 (-408 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *4))
- (-4 *4 (-408 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-565 *3)) (-4 *3 (-789))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *4))
- (-4 *4 (-13 (-408 *3) (-933) (-1112))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-986 (-954 *4) (-1086 (-954 *4)))) (-5 *3 (-797))
- (-4 *4 (-13 (-787) (-341) (-952))) (-5 *1 (-954 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1019))))
+ (-2 (|:| -4151 (-357)) (|:| -3800 (-1074))
+ (|:| |explanations| (-592 (-1074)))))
+ (-5 *1 (-779))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-525)) (-5 *2 (-1071 *3)) (-5 *1 (-1075 *3))
- (-4 *3 (-976))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-761 *4)) (-4 *4 (-789)) (-4 *1 (-1187 *4 *3))
- (-4 *3 (-976)))))
-(((*1 *2 *1 *1)
- (-12
+ (-12 (-4 *1 (-830)) (-5 *3 (-989))
+ (-5 *4
+ (-2 (|:| |pde| (-592 (-294 (-205))))
+ (|:| |constraints|
+ (-592
+ (-2 (|:| |start| (-205)) (|:| |finish| (-205))
+ (|:| |grid| (-713)) (|:| |boundaryType| (-525))
+ (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
+ (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074))
+ (|:| |tol| (-205))))
+ (-5 *2 (-2 (|:| -4151 (-357)) (|:| |explanations| (-1074))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-833))
(-5 *2
- (-2 (|:| |polnum| (-724 *3)) (|:| |polden| *3) (|:| -4011 (-713))))
- (-5 *1 (-724 *3)) (-4 *3 (-976))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4011 (-713))))
- (-4 *1 (-990 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-341)) (-4 *7 (-1148 *5)) (-4 *4 (-667 *5 *7))
- (-5 *2 (-2 (|:| -3276 (-632 *6)) (|:| |vec| (-1172 *5))))
- (-5 *1 (-753 *5 *6 *7 *4 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4)
- (-227 *4 (-385 (-525)))))
- (-14 *4 (-592 (-1090))) (-14 *5 (-713)) (-5 *2 (-108))
- (-5 *1 (-478 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1126))))
- ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789))))
- ((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
- ((*1 *1 *1) (-5 *1 (-797)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3))
- (-4 *3 (-1148 *2)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1029)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-551 *3)) (-4 *3 (-976))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-905 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-734))
- (-4 *5 (-789)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-565 *3)) (-5 *5 (-1 (-1086 *3) (-1086 *3)))
- (-4 *3 (-13 (-27) (-408 *6))) (-4 *6 (-13 (-789) (-517)))
- (-5 *2 (-542 *3)) (-5 *1 (-512 *6 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-1177))
- (-5 *1 (-411 *3 *4)) (-4 *4 (-408 *3)))))
-(((*1 *1 *1) (-4 *1 (-34)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933)))
- (-5 *1 (-163 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-632 *6)) (-5 *5 (-1 (-396 (-1086 *6)) (-1086 *6)))
- (-4 *6 (-341))
+ (-2 (|:| -4151 (-357)) (|:| -3800 (-1074))
+ (|:| |explanations| (-592 (-1074)))))
+ (-5 *1 (-832))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-833)) (-5 *4 (-989))
(-5 *2
- (-592
- (-2 (|:| |outval| *7) (|:| |outmult| (-525))
- (|:| |outvect| (-592 (-632 *7))))))
- (-5 *1 (-498 *6 *7 *4)) (-4 *7 (-341)) (-4 *4 (-13 (-341) (-787))))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-456)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4254)) (-4 *1 (-33)) (-5 *2 (-713))))
+ (-2 (|:| -4151 (-357)) (|:| -3800 (-1074))
+ (|:| |explanations| (-592 (-1074)))))
+ (-5 *1 (-832)))))
+(((*1 *1) (-5 *1 (-1175))))
+(((*1 *1)
+ (-12 (-4 *3 (-1020)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1020))
+ (-4 *4 (-612 *3))))
+ ((*1 *1) (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1007)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *1 (-818))
+ (-5 *3 (-592 (-525)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *1 (-818))
+ (-5 *3 (-592 (-525))))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-698)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-1127)))))
+(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))
+ ((*1 *1 *1 *1) (-5 *1 (-1038))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-713)) (-5 *2 (-592 (-1091))) (-5 *1 (-192))
+ (-5 *3 (-1091))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 (-205))) (-5 *4 (-713)) (-5 *2 (-592 (-1091)))
+ (-5 *1 (-246))))
((*1 *2 *1)
- (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-525))))
+ (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
+ (-5 *2 (-592 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-976))
- (-4 *4 (-785)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1090)) (-4 *4 (-429)) (-4 *4 (-789))
- (-5 *1 (-534 *4 *2)) (-4 *2 (-263)) (-4 *2 (-408 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1126))))
- ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789))))
- ((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
- ((*1 *1 *1) (-5 *1 (-797)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797))))
+ (-12 (-5 *2 (-592 *3)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
+ (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-761 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-828 *3)) (-4 *3 (-789))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3))
- (-4 *3 (-1148 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-592 (-1086 *7))) (-5 *3 (-1086 *7))
- (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-843)) (-4 *5 (-735))
- (-4 *6 (-789)) (-5 *1 (-840 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-592 (-1086 *5))) (-5 *3 (-1086 *5))
- (-4 *5 (-1148 *4)) (-4 *4 (-843)) (-5 *1 (-841 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1019))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1019)))))
-(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112))))))
-(((*1 *1 *1) (-4 *1 (-34)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4254)) (-4 *1 (-464 *3)) (-4 *3 (-1126))
- (-4 *3 (-1019)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-839 *4)) (-4 *4 (-1019)) (-5 *2 (-108))
- (-5 *1 (-838 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-855)) (-5 *2 (-108)) (-5 *1 (-1020 *4 *5))
- (-14 *4 (-855)) (-14 *5 (-855)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-539)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *3 (-592 (-242)))
- (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-242))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-445))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-445)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1073)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))))
-(((*1 *1)
- (-12 (-4 *3 (-1019)) (-5 *1 (-819 *2 *3 *4)) (-4 *2 (-1019))
- (-4 *4 (-612 *3))))
- ((*1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1126)) (-5 *2 (-592 *1)) (-4 *1 (-941 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4)))
- (-5 *2 (-2 (|:| |num| (-1172 *4)) (|:| |den| *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
+ (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *2 (-592 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-592 *6))
- (-5 *1 (-919 *3 *4 *5 *6)) (-4 *6 (-883 *3 *5 *4)))))
-(((*1 *1 *1) (-4 *1 (-34)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
+ (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1127))
+ (-5 *2 (-592 *3)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
+ (-5 *2
+ (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525))
+ (|:| |success| (-108))))
+ (-5 *1 (-731)) (-5 *5 (-525)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-385 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-517))
- (-4 *4 (-976)) (-4 *2 (-1163 *4)) (-5 *1 (-1166 *4 *5 *6 *2))
- (-4 *6 (-602 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1982 *4))))
- (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1019)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-592 *8)))
- (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-108)) (-5 *1 (-909 *5 *6 *7 *8)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-304 *3 *4)) (-4 *3 (-976))
- (-4 *4 (-734)) (-4 *3 (-160)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1071 *4)) (-5 *3 (-525)) (-4 *4 (-976))
- (-5 *1 (-1075 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-525)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-976))
- (-14 *4 (-1090)) (-14 *5 *3))))
-(((*1 *1 *1) (-4 *1 (-985)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-592 (-1090))) (-4 *4 (-1019))
- (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4))))
- (-5 *1 (-998 *4 *5 *2))
- (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4))))))
- ((*1 *1 *2 *2)
- (-12 (-4 *3 (-1019))
- (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3))))
- (-5 *1 (-998 *3 *4 *2))
- (-4 *2 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3))
- (-4 *3 (-995 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *3)) (-4 *3 (-995 *5 *6 *7 *8)) (-4 *5 (-429))
- (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-108))
- (-5 *1 (-920 *5 *6 *7 *8 *3))))
+ (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2 (-592 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1149 *4))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *3)) (-4 *3 (-995 *5 *6 *7 *8)) (-4 *5 (-429))
- (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-108))
- (-5 *1 (-1026 *5 *6 *7 *8 *3)))))
-(((*1 *1 *1) (-4 *1 (-34)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
+ (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2 (-592 *3)) (-5 *1 (-1046 *4 *3)) (-4 *4 (-1149 *3)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1126)) (-5 *1 (-168 *3 *2))
- (-4 *2 (-619 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1172 (-1090))) (-5 *3 (-1172 (-430 *4 *5 *6 *7)))
- (-4 *4 (-160)) (-14 *5 (-855)) (-14 *6 (-592 (-1090)))
- (-14 *7 (-1172 (-632 *4))) (-5 *1 (-430 *4 *5 *6 *7))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-430 *4 *5 *6 *7)))
- (-4 *4 (-160)) (-14 *5 (-855)) (-14 *6 (-592 (-1090)))
- (-14 *7 (-1172 (-632 *4))) (-5 *1 (-430 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1172 (-430 *3 *4 *5 *6))) (-4 *3 (-160))
- (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))
- (-5 *1 (-430 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1172 (-1090))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-160)) (-14 *4 (-855)) (-14 *5 (-592 (-1090)))
- (-14 *6 (-1172 (-632 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1090)) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160))
- (-14 *4 (-855)) (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-430 *2 *3 *4 *5)) (-4 *2 (-160)) (-14 *3 (-855))
- (-14 *4 (-592 (-1090))) (-14 *5 (-1172 (-632 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-886 (-157 (-525))))) (-5 *2 (-592 (-157 *4)))
- (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 (-385 (-886 (-157 (-525))))))
- (-5 *4 (-592 (-1090))) (-5 *2 (-592 (-592 (-157 *5))))
- (-5 *1 (-356 *5)) (-4 *5 (-13 (-341) (-787))))))
-(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-976))
- (-5 *1 (-792 *5 *2)) (-4 *2 (-791 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1090)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-886 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1086 *2)) (-5 *4 (-1090)) (-4 *2 (-408 *5))
- (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-789) (-517)))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-855)) (-4 *1 (-943))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1086 *1)) (-5 *3 (-855)) (-5 *4 (-797))
- (-4 *1 (-943))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-855)) (-4 *4 (-13 (-787) (-341)))
- (-4 *1 (-992 *4 *2)) (-4 *2 (-1148 *4)))))
+ (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
(((*1 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-789)) (-4 *3 (-1020)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-856)) (-5 *2 (-445)) (-5 *1 (-1174)))))
+(((*1 *1 *1 *2)
(-12
- (-5 *3
- (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))
- (-5 *2 (-592 (-1090))) (-5 *1 (-246))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1086 *7)) (-4 *7 (-883 *6 *4 *5)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-976)) (-5 *2 (-592 *5))
- (-5 *1 (-299 *4 *5 *6 *7))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-317 *3 *4 *5))
- (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-592 (-1090)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3)) (-4 *3 (-1019))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-883 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-592 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976))
- (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-592 *5))
- (-5 *1 (-884 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $)) (-15 -1312 (*7 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1021 (-1090))) (-5 *1 (-899 *3)) (-4 *3 (-900))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-905 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-734))
- (-4 *5 (-789)) (-5 *2 (-592 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-592 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-1090)))
- (-5 *1 (-972 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-351 *2)) (-4 *2 (-1126))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-391 *3 *4 *5 *6)) (-4 *6 (-967 *4)) (-4 *3 (-286))
- (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) (-4 *6 (-387 *4 *5))
- (-14 *7 (-1172 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1172 *6)) (-4 *6 (-387 *4 *5)) (-14 *7 (-1172 *6))
- (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) (-4 *3 (-286))
- (-5 *1 (-392 *3 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-976)) (-5 *1 (-828 *2 *3)) (-4 *2 (-1148 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))))
-(((*1 *1) (-5 *1 (-415))))
+ (-5 *2
+ (-2 (|:| -2968 (-592 (-798))) (|:| -2017 (-592 (-798)))
+ (|:| |presup| (-592 (-798))) (|:| -1391 (-592 (-798)))
+ (|:| |args| (-592 (-798)))))
+ (-5 *1 (-1091))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 (-798)))) (-5 *1 (-1091)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4))))
+ (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-1127)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))))
- (-4 *4 (-1148 (-385 (-525)))) (-5 *2 (-525)) (-5 *1 (-847 *4 *5))
- (-4 *5 (-1148 (-385 *4))))))
+ (|partial| -12 (-4 *5 (-968 (-47)))
+ (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4))
+ (-5 *2 (-396 (-1087 (-47)))) (-5 *1 (-413 *4 *5 *3))
+ (-4 *3 (-1149 *5)))))
+(((*1 *1 *1 *1) (-4 *1 (-901))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-1080 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1051 (-205))) (-5 *1 (-1175))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1051 (-205))) (-5 *1 (-1175)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-395 *4)))))
-(((*1 *1 *1) (-4 *1 (-34)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1006))) (-5 *1 (-270)))))
+ (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *2 (-592 *3)) (-5 *1 (-910 *4 *5 *6 *3))
+ (-4 *3 (-991 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-877 (-205)) (-877 (-205)))) (-5 *1 (-242))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1172 *1)) (-4 *1 (-307 *4)) (-4 *4 (-341))
- (-5 *2 (-632 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1172 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
- (-5 *2 (-632 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
- (-5 *2 (-1172 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160))
- (-4 *5 (-1148 *4)) (-5 *2 (-632 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160))
- (-4 *5 (-1148 *4)) (-5 *2 (-1172 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1172 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-160))
- (-4 *5 (-1148 *4)) (-5 *2 (-632 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3))
- (-5 *2 (-1172 *3))))
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-5 *1 (-1072 *3)))))
+(((*1 *2 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *2 (-1020)) (-4 *3 (-1020))
+ (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-213)) (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-245 *4))
+ (-4 *6 (-735)) (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-1172 *1)) (-4 *1 (-395 *4)) (-4 *4 (-160))
- (-5 *2 (-632 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1172 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 *5)) (-5 *4 (-592 (-632 *5))) (-4 *5 (-341))
- (-5 *2 (-1172 *5)) (-5 *1 (-1007 *5)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1086 (-385 (-1086 *2)))) (-5 *4 (-565 *2))
- (-4 *2 (-13 (-408 *5) (-27) (-1112)))
- (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *1 (-521 *5 *2 *6)) (-4 *6 (-1019))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1086 *1)) (-4 *1 (-883 *4 *5 *3)) (-4 *4 (-976))
- (-4 *5 (-735)) (-4 *3 (-789))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1086 *4)) (-4 *4 (-976)) (-4 *1 (-883 *4 *5 *3))
- (-4 *5 (-735)) (-4 *3 (-789))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-1086 *2))) (-4 *5 (-735)) (-4 *4 (-789))
- (-4 *6 (-976))
- (-4 *2
- (-13 (-341)
- (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $)) (-15 -1312 (*7 $)))))
- (-5 *1 (-884 *5 *4 *6 *7 *2)) (-4 *7 (-883 *6 *5 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-1086 (-385 (-886 *5))))) (-5 *4 (-1090))
- (-4 *5 (-517)) (-5 *2 (-385 (-886 *5))) (-5 *1 (-972 *5)))))
+ (-12 (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735))
+ (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-245 *2)) (-4 *2 (-789)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-789) (-517)))
+ (-5 *2 (-798)) (-5 *1 (-31 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1020)) (-5 *1 (-898 *3 *2)) (-4 *3 (-1020)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525)))))
- (-4 *3 (-1148 *4)) (-5 *1 (-751 *4 *3 *2 *5)) (-4 *2 (-602 *3))
- (-4 *5 (-602 (-385 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-385 *5)) (-4 *5 (-1148 *4))
- (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525)))))
- (-5 *1 (-751 *4 *5 *2 *6)) (-4 *2 (-602 *5))
- (-4 *6 (-602 (-385 *5))))))
-(((*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))))
-(((*1 *1 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-900)))))
+ (|partial| -12 (-5 *2 (-573 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -3602 *4) (|:| |sol?| (-108)))
+ (-525) *4))
+ (-4 *4 (-341)) (-4 *5 (-1149 *4)) (-5 *1 (-535 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 (-1091))) (-4 *4 (-1020))
+ (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
+ (-5 *1 (-53 *4 *5 *2))
+ (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2 (-592 *3)) (-5 *1 (-1045 *4 *3)) (-4 *4 (-1148 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-641)) (-5 *1 (-284)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))))
-(((*1 *1 *1 *1) (-5 *1 (-797))))
+ (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1091))
+ (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-157 (-205)))
+ (-5 *6 (-1074)) (-5 *2 (-966)) (-5 *1 (-701)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *1 *1) (-4 *1 (-466)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-976)) (-4 *4 (-160))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976))
- (-4 *3 (-160)))))
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *2 (-1020)) (-4 *3 (-1020))
+ (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *4 (-160)) (-4 *5 (-351 *4))
+ (-4 *6 (-351 *4)) (-5 *1 (-631 *4 *5 *6 *2))
+ (-4 *2 (-630 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment")
+ (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
+ (|:| |Repeat| "repeat") (|:| |Goto| "goto")
+ (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-308)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-110)) (-5 *4 (-592 *2)) (-5 *1 (-109 *2))
+ (-4 *2 (-1020))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-592 *4))) (-4 *4 (-1020))
+ (-5 *1 (-109 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1020))
+ (-5 *1 (-109 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-592 *4)))
+ (-5 *1 (-109 *4)) (-4 *4 (-1020))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-977))
+ (-5 *1 (-657 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-776 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-542 *3)) (-4 *3 (-341)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-592 (-2 (|:| |totdeg| (-713)) (|:| -3696 *3))))
+ (-5 *4 (-713)) (-4 *3 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735))
+ (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1127))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-1091)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856))
+ (-14 *4 (-856)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4255)) (-4 *1 (-558 *4 *3)) (-4 *4 (-1020))
+ (-4 *3 (-1127)) (-4 *3 (-1020)) (-5 *2 (-108)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734))
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734))
(-4 *2 (-341))))
((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-205))))
((*1 *1 *1 *1)
- (-3309 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1126)))
- (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1126)))))
+ (-3279 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1127)))
+ (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1127)))))
((*1 *1 *1 *1) (-4 *1 (-341)))
((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-1042 *3 (-565 *1))) (-4 *3 (-517)) (-4 *3 (-789))
+ (-12 (-5 *2 (-1043 *3 (-565 *1))) (-4 *3 (-517)) (-4 *3 (-789))
(-4 *1 (-408 *3))))
((*1 *1 *1 *1) (-4 *1 (-450)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1172 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3))))
+ (-12 (-5 *2 (-1173 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3))))
((*1 *1 *1 *1) (-5 *1 (-501)))
((*1 *1 *2 *3)
(-12 (-4 *4 (-160)) (-5 *1 (-571 *2 *4 *3)) (-4 *2 (-37 *4))
@@ -1065,1177 +715,3530 @@
(-12 (-4 *4 (-160)) (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-660 *4))
(-4 *2 (|SubsetCategory| (-669) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2))
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
(-4 *4 (-351 *2)) (-4 *2 (-341))))
- ((*1 *1 *1 *1) (-5 *1 (-797)))
+ ((*1 *1 *1 *1) (-5 *1 (-798)))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-800 *2 *3 *4 *5)) (-4 *2 (-341))
- (-4 *2 (-976)) (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-713)))
+ (|partial| -12 (-5 *1 (-801 *2 *3 *4 *5)) (-4 *2 (-341))
+ (-4 *2 (-977)) (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-713)))
(-14 *5 (-713))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-979 *3 *4 *2 *5 *6)) (-4 *2 (-976))
+ (-12 (-4 *1 (-980 *3 *4 *2 *5 *6)) (-4 *2 (-977))
(-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-341))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-341))))
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1180 *2)) (-4 *2 (-341))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-341)) (-4 *2 (-976)) (-4 *3 (-789))
+ (|partial| -12 (-4 *2 (-341)) (-4 *2 (-977)) (-4 *3 (-789))
(-4 *4 (-735)) (-14 *6 (-592 *3))
- (-5 *1 (-1182 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-883 *2 *4 *3))
+ (-5 *1 (-1183 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-884 *2 *4 *3))
(-14 *7 (-592 (-713))) (-14 *8 (-713))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-341)) (-4 *2 (-976))
+ (-12 (-5 *1 (-1194 *2 *3)) (-4 *2 (-341)) (-4 *2 (-977))
(-4 *3 (-785)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-713)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 (-877 *4))) (-4 *1 (-1051 *4)) (-4 *4 (-976))
- (-5 *2 (-713)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-592 (-855))) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-855))
- (-4 *2 (-341)) (-14 *5 (-925 *4 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-656 *5 *6 *7)) (-4 *5 (-789))
- (-4 *6 (-218 (-4140 *4) (-713)))
- (-14 *7
- (-1 (-108) (-2 (|:| -4185 *5) (|:| -1600 *6))
- (-2 (|:| -4185 *5) (|:| -1600 *6))))
- (-14 *4 (-592 (-1090))) (-4 *2 (-160))
- (-5 *1 (-438 *4 *2 *5 *6 *7 *8)) (-4 *8 (-883 *2 *6 (-799 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-789))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4))
- (-4 *4 (-1148 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-976))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-678 *2 *3)) (-4 *2 (-976)) (-4 *3 (-669))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5))
- (-4 *4 (-976)) (-4 *5 (-789))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-976))
- (-4 *2 (-789))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-976))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-883 *4 *5 *6))
- (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-883 *4 *5 *2)) (-4 *4 (-976))
- (-4 *5 (-735)) (-4 *2 (-789))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 *5)) (-4 *1 (-905 *4 *5 *6))
- (-4 *4 (-976)) (-4 *5 (-734)) (-4 *6 (-789))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-905 *4 *3 *2)) (-4 *4 (-976)) (-4 *3 (-734))
- (-4 *2 (-789)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 (-157 (-385 (-525)))))
- (-5 *2
- (-592
- (-2 (|:| |outval| (-157 *4)) (|:| |outmult| (-525))
- (|:| |outvect| (-592 (-632 (-157 *4)))))))
- (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))))
-(((*1 *1) (-5 *1 (-415))))
-(((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-381 *3)) (-4 *3 (-382))))
- ((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-381 *3)) (-4 *3 (-382))))
- ((*1 *2 *2) (-12 (-5 *2 (-855)) (|has| *1 (-6 -4245)) (-4 *1 (-382))))
- ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-855))))
- ((*1 *2 *1) (-12 (-4 *1 (-803 *3)) (-5 *2 (-1071 (-525))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 *1)) (|has| *1 (-6 -4256)) (-4 *1 (-942 *3))
+ (-4 *3 (-1127)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-294 (-205))) (-5 *2 (-385 (-525))) (-5 *1 (-284)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
+ (-12 (-5 *3 (-592 (-1091))) (-4 *4 (-13 (-286) (-138)))
+ (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735))
+ (-5 *2 (-592 (-385 (-887 *4)))) (-5 *1 (-859 *4 *5 *6 *7))
+ (-4 *7 (-884 *4 *6 *5)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-525))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-735)) (-4 *4 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789))
+ (-5 *1 (-426 *5 *6 *7 *4)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2))
+ (-4 *3 (-13 (-789) (-517))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1086 *7)) (-4 *5 (-976))
- (-4 *7 (-976)) (-4 *2 (-1148 *5)) (-5 *1 (-474 *5 *2 *6 *7))
- (-4 *6 (-1148 *2))))
+ (-12 (-5 *3 (-632 *5)) (-5 *4 (-1173 *5)) (-4 *5 (-341))
+ (-5 *2 (-108)) (-5 *1 (-613 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-976)) (-4 *7 (-976))
- (-4 *4 (-1148 *5)) (-5 *2 (-1086 *7)) (-5 *1 (-474 *5 *4 *6 *7))
- (-4 *6 (-1148 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *1 *1) (-4 *1 (-466)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
+ (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4256))))
+ (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4256)))) (-5 *2 (-108))
+ (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-423)) (-5 *3 (-525)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-809)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2))
- (-4 *2 (-1163 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1148 *3))
- (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1163 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2))
- (-4 *2 (-1163 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-517) (-138)))
- (-5 *1 (-1067 *3)))))
+ (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1113) (-934)))
+ (-5 *1 (-163 *3)))))
+(((*1 *1)
+ (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-128)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-195 *2))
(-4 *2
(-13 (-789)
- (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $))
- (-15 -1558 ((-1177) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1126))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1126))))
+ (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $))
+ (-15 -3065 ((-1178) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1127))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1127))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))
((*1 *1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))
((*1 *1 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2))
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
(-4 *4 (-351 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2))
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
(-4 *4 (-351 *2))))
- ((*1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797)))
+ ((*1 *1 *1) (-5 *1 (-798))) ((*1 *1 *1 *1) (-5 *1 (-798)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-21)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-5 *2 (-525)))))
-(((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-764)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-286))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-424 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 *7)) (-5 *3 (-1073)) (-4 *7 (-883 *4 *5 *6))
- (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *1 (-424 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-592 *7)) (-5 *3 (-1073)) (-4 *7 (-883 *4 *5 *6))
- (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *1 (-424 *4 *5 *6 *7)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-897 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-593 *3)) (-4 *3 (-1019)))))
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1124))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-21)))))
+(((*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-592 *1)) (-4 *1 (-1052 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-990 *5 *6 *7))
- (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735))
- (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-993 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-990 *5 *6 *7))
- (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735))
- (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *1 *1) (-4 *1 (-466)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1055 *4 *5)) (-4 *4 (-13 (-1019) (-33)))
- (-4 *5 (-13 (-1019) (-33))) (-5 *2 (-108)) (-5 *1 (-1056 *4 *5)))))
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020))
+ (-4 *6 (-1020)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *4 *5 *6)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-592 *7)) (-5 *3 (-525)) (-4 *7 (-884 *4 *5 *6))
+ (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *1 (-426 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1072 (-525))) (-5 *1 (-1076 *4)) (-4 *4 (-977))
+ (-5 *3 (-525)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1087 *9)) (-5 *4 (-592 *7)) (-4 *7 (-789))
+ (-4 *9 (-884 *8 *6 *7)) (-4 *6 (-735)) (-4 *8 (-286))
+ (-5 *2 (-592 (-713))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *5 (-713)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1131)) (-4 *6 (-1149 *5))
+ (-5 *2
+ (-2 (|:| -1864 (-713)) (|:| -1655 (-385 *6)) (|:| |radicand| *6)))
+ (-5 *1 (-139 *5 *6 *7)) (-5 *3 (-385 *6)) (-5 *4 (-713))
+ (-4 *7 (-1149 (-385 *6))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1127)))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-146)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-195 *2))
(-4 *2
(-13 (-789)
- (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $))
- (-15 -1558 ((-1177) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1126))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1126))))
+ (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $))
+ (-15 -3065 ((-1178) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1127))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-25)) (-4 *2 (-1127))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-126))))
+ (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-126))))
((*1 *1 *2 *1)
(-12 (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *2))
- (-4 *2 (-1148 *3))))
+ (-4 *2 (-1149 *3))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))
((*1 *1 *1 *1)
(-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
- (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4))))
+ (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4))))
((*1 *1 *1 *1) (-5 *1 (-501)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2))
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
(-4 *4 (-351 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-797)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019))))
+ ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-25)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-976))
- (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263)))
- (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-855)) (-4 *5 (-976))
- (-4 *2 (-13 (-382) (-967 *5) (-341) (-1112) (-263)))
- (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1148 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-902 *4 *3))
- (-4 *3 (-1148 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1097)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-976)) (-4 *2 (-1019)))))
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1124))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-25)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-142 *2))
- (-4 *2 (-1126)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1071 (-886 *4)) (-1071 (-886 *4))))
- (-5 *1 (-1180 *4)) (-4 *4 (-341)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *2 (-1172 (-294 (-357))))
- (-5 *1 (-284)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-592 *3)) (-5 *1 (-894 *3)) (-4 *3 (-510)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-273 (-886 (-525))))
- (-5 *2
- (-2 (|:| |varOrder| (-592 (-1090)))
- (|:| |inhom| (-3 (-592 (-1172 (-713))) "failed"))
- (|:| |hom| (-592 (-1172 (-713))))))
- (-5 *1 (-216)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090)))
- (-14 *3 (-592 (-1090))) (-4 *4 (-365))))
- ((*1 *1 *1) (-4 *1 (-466)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-826 *4)) (-4 *4 (-1019)) (-5 *2 (-1 (-108) *5))
- (-5 *1 (-824 *4 *5)) (-4 *5 (-1126)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))
- (-5 *2 (-965)) (-5 *1 (-691)))))
-(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-808))
- (-5 *5 (-855)) (-5 *6 (-592 (-242))) (-5 *2 (-1173))
- (-5 *1 (-1176))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-592 (-242)))
- (-5 *2 (-1173)) (-5 *1 (-1176)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090))
- (-14 *4 *2))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-713)) (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-341)) (-4 *3 (-976))
- (-5 *1 (-1075 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-767)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-976)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-1148 *3)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *2
- (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357))
- (|:| |expense| (-357)) (|:| |accuracy| (-357))
- (|:| |intermediateResults| (-357))))
- (-5 *1 (-745)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090)))
- (-14 *3 (-592 (-1090))) (-4 *4 (-365))))
- ((*1 *1 *1) (-4 *1 (-466)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
+ (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-108)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
+ (-4 *4 (-13 (-1020) (-33))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346)) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) (-5 *2 (-108))
- (-5 *1 (-335 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1172 *4)) (-4 *4 (-327)) (-5 *2 (-108))
- (-5 *1 (-495 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1139 *3)) (-4 *3 (-1126)))))
-(((*1 *2 *2)
(-12
(-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-525))))
- (-4 *4 (-13 (-1148 *3) (-517) (-10 -8 (-15 -3244 ($ $ $)))))
- (-4 *3 (-517)) (-5 *1 (-1151 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 *4))))
- (-5 *1 (-823 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019))))
+ (-592
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205)))))
+ (-5 *1 (-520))))
((*1 *2 *1)
- (-12 (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019))
- (-4 *7 (-1019)) (-5 *2 (-592 *1)) (-4 *1 (-1022 *3 *4 *5 *6 *7)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2499 (-592 *1))))
- (-4 *1 (-345 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-430 *3 *4 *5 *6))
- (|:| -2499 (-592 (-430 *3 *4 *5 *6)))))
- (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-855))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4))
- (-4 *4 (-327)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1095))) (-5 *1 (-169)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-698)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-157 (-205)))
- (-5 *6 (-1073)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090)))
- (-14 *3 (-592 (-1090))) (-4 *4 (-365))))
- ((*1 *1 *1) (-4 *1 (-466)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-542 *3)) (-4 *3 (-341)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108))))
- ((*1 *1 *1 *1) (-5 *1 (-797))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-341))
- (-5 *2 (-108)) (-5 *1 (-613 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4255))))
- (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-5 *2 (-108))
- (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-855)) (-5 *4 (-357)) (-5 *2 (-1177)) (-5 *1 (-1173))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1071 (-525))) (-5 *1 (-1075 *4)) (-4 *4 (-976))
- (-5 *3 (-525)))))
+ (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-5 *2 (-592 *3))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-592
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205)))))
+ (-5 *1 (-745)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3602 *6) (|:| |sol?| (-108))) (-525)
+ *6))
+ (-4 *6 (-341)) (-4 *7 (-1149 *6))
+ (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6)))
+ (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1149 *5)) (-4 *5 (-341))
(-5 *2
(-2 (|:| |ir| (-542 (-385 *6))) (|:| |specpart| (-385 *6))
(|:| |polypart| *6)))
(-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517))
+ (-5 *2 (-1087 *3)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *2 (-966)) (-5 *1 (-692)))))
+(((*1 *1) (-5 *1 (-445))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3 (|:| |nullBranch| "null")
+ (|:| |assignmentBranch|
+ (-2 (|:| |var| (-1091))
+ (|:| |arrayIndex| (-592 (-887 (-525))))
+ (|:| |rand|
+ (-2 (|:| |ints2Floats?| (-108)) (|:| -2531 (-798))))))
+ (|:| |arrayAssignmentBranch|
+ (-2 (|:| |var| (-1091)) (|:| |rand| (-798))
+ (|:| |ints2Floats?| (-108))))
+ (|:| |conditionalBranch|
+ (-2 (|:| |switch| (-1090)) (|:| |thenClause| (-308))
+ (|:| |elseClause| (-308))))
+ (|:| |returnBranch|
+ (-2 (|:| -2013 (-108))
+ (|:| -3352
+ (-2 (|:| |ints2Floats?| (-108)) (|:| -2531 (-798))))))
+ (|:| |blockBranch| (-592 (-308)))
+ (|:| |commentBranch| (-592 (-1074))) (|:| |callBranch| (-1074))
+ (|:| |forBranch|
+ (-2 (|:| -2990 (-1013 (-887 (-525))))
+ (|:| |span| (-887 (-525))) (|:| -3102 (-308))))
+ (|:| |labelBranch| (-1038))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1090)) (|:| -3102 (-308))))
+ (|:| |commonBranch|
+ (-2 (|:| -3800 (-1091)) (|:| |contents| (-592 (-1091)))))
+ (|:| |printBranch| (-592 (-798)))))
+ (-5 *1 (-308)))))
+(((*1 *2)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-5 *2 (-632 (-385 *4))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1030)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108))
+ (-5 *6 (-592 (-108))) (-5 *7 (-632 (-205))) (-5 *8 (-632 (-525)))
+ (-5 *2 (-966)) (-5 *1 (-697)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-385 (-525))) (-4 *1 (-515 *3))
+ (-4 *3 (-13 (-382) (-1113)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1113)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1113))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5))
+ (-14 *3 (-525)) (-14 *4 (-713)))))
+(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-827 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1039 *3)) (-4 *3 (-1127)) (-5 *2 (-713)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-713)) (-4 *5 (-976)) (-5 *2 (-525))
- (-5 *1 (-420 *5 *3 *6)) (-4 *3 (-1148 *5))
- (-4 *6 (-13 (-382) (-967 *5) (-341) (-1112) (-263)))))
+ (-12 (-5 *4 (-713)) (-4 *5 (-977)) (-5 *2 (-525))
+ (-5 *1 (-420 *5 *3 *6)) (-4 *3 (-1149 *5))
+ (-4 *6 (-13 (-382) (-968 *5) (-341) (-1113) (-263)))))
((*1 *2 *3)
- (-12 (-4 *4 (-976)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5))
- (-4 *3 (-1148 *4))
- (-4 *5 (-13 (-382) (-967 *4) (-341) (-1112) (-263))))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-713)) (-4 *3 (-1126)) (-4 *1 (-55 *3 *4 *5))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1) (-5 *1 (-159)))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-367))))
- ((*1 *1) (-5 *1 (-372)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-4 *1 (-597 *3)) (-4 *3 (-1126))))
- ((*1 *1)
- (-12 (-4 *3 (-1019)) (-5 *1 (-819 *2 *3 *4)) (-4 *2 (-1019))
- (-4 *4 (-612 *3))))
- ((*1 *1) (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019))))
- ((*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976))))
- ((*1 *1 *1) (-5 *1 (-1090))) ((*1 *1) (-5 *1 (-1090)))
- ((*1 *1) (-5 *1 (-1107))))
+ (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5))
+ (-4 *3 (-1149 *4))
+ (-4 *5 (-13 (-382) (-968 *4) (-341) (-1113) (-263))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-525) (-525))) (-5 *1 (-339 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-713) (-713))) (-5 *1 (-364 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
+ (-5 *2 (-592 (-887 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-592 (-887 *4))) (-5 *1 (-394 *3 *4))
+ (-4 *3 (-395 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-592 (-887 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-592 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1173 (-430 *4 *5 *6 *7))) (-4 *4 (-517)) (-4 *4 (-160))
+ (-14 *5 (-856)) (-14 *6 (-592 (-1091))) (-14 *7 (-1173 (-632 *4)))
+ (-5 *2 (-592 (-887 *4))) (-5 *1 (-430 *4 *5 *6 *7)))))
+(((*1 *1 *1) (-4 *1 (-510))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-115 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
+ ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
+ ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966))
+ (-5 *1 (-691)))))
+(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-221)))))
(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-13 (-976) (-660 (-385 (-525)))))
- (-4 *5 (-789)) (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1191 *5 *4)))))
+ (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525)))))
+ (-4 *5 (-789)) (-5 *1 (-1187 *4 *5 *2)) (-4 *2 (-1192 *5 *4)))))
+(((*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1176))))
+ ((*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1176)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789))
+ (-5 *2 (-396 (-1087 (-294 *4)))) (-5 *1 (-294 *4))
+ (-5 *3 (-1087 (-294 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-844)) (-5 *2 (-396 (-1087 *1))) (-5 *3 (-1087 *1)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP))))
+ (-5 *2 (-966)) (-5 *1 (-692)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1127)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1121 *5 *6 *7 *3))
+ (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1073)) (-5 *2 (-592 (-1095))) (-5 *1 (-1052)))))
+ (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1091))) (-4 *5 (-977))
+ (-5 *2 (-887 *5)) (-5 *1 (-879 *4 *5)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108))))
+ ((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-1087 (-887 *4))) (-5 *1 (-394 *3 *4))
+ (-4 *3 (-395 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341))
+ (-5 *2 (-1087 (-887 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1087 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-127)) (-5 *1 (-1005 *2))))
+ (-12 (-5 *3 (-1 (-108) *2)) (-4 *2 (-127)) (-5 *1 (-1006 *2))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-525) *2 *2)) (-4 *2 (-127)) (-5 *1 (-1005 *2)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-765)) (-5 *1 (-764)))))
-(((*1 *1 *1) (-4 *1 (-91)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
+ (-12 (-5 *3 (-1 (-525) *2 *2)) (-4 *2 (-127)) (-5 *1 (-1006 *2)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))) ((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1087 (-525))) (-5 *3 (-525)) (-4 *1 (-804 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1149 *2)) (-4 *2 (-1131)) (-5 *1 (-139 *2 *4 *3))
+ (-4 *3 (-1149 (-385 *4))))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-3 *3 (-592 *1)))
+ (-4 *1 (-996 *4 *5 *6 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108))))
+ ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-800 *5))
+ (-14 *5 (-592 (-1091))) (-4 *6 (-429)) (-5 *2 (-457 *5 *6))
+ (-5 *1 (-580 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-800 *5))
+ (-14 *5 (-592 (-1091))) (-4 *6 (-429)) (-5 *2 (-457 *5 *6))
+ (-5 *1 (-580 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-305 *3)) (-4 *3 (-1127))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1127))
+ (-14 *4 (-525)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *5 (-1149 *4)) (-5 *2 (-592 (-599 (-385 *5))))
+ (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5))))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1121 *5 *6 *7 *8)) (-4 *5 (-517))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-765)) (-5 *1 (-764)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-3 (-108) (-592 *1)))
+ (-4 *1 (-996 *4 *5 *6 *3)))))
+(((*1 *1) (-5 *1 (-415))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7))))
+ (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108))))
+ ((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1176))))
+ ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1176)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))
+ (-5 *2 (-592 (-2 (|:| -2849 *1) (|:| -2409 (-592 *7)))))
+ (-5 *3 (-592 *7)) (-4 *1 (-1121 *4 *5 *6 *7)))))
(((*1 *2 *3 *4)
(-12 (-4 *5 (-517))
- (-5 *2 (-2 (|:| -3276 (-632 *5)) (|:| |vec| (-1172 (-592 (-855))))))
- (-5 *1 (-88 *5 *3)) (-5 *4 (-855)) (-4 *3 (-602 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-341)) (-4 *3 (-976))
- (-5 *1 (-1075 *3)))))
+ (-5 *2 (-2 (|:| -1484 (-632 *5)) (|:| |vec| (-1173 (-592 (-856))))))
+ (-5 *1 (-88 *5 *3)) (-5 *4 (-856)) (-4 *3 (-602 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1164 *4))
+ (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1072 *4) (-1072 *4)))
+ (-5 *1 (-1166 *4 *5)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-695)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1087 *4)) (-5 *1 (-544 *4))
+ (-4 *4 (-327)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108))))
- ((*1 *1 *1 *1) (-5 *1 (-797)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))))
+ ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-838 *3)) (-4 *3 (-1020)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1020)) (-5 *2 (-108)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-765)) (-5 *1 (-764)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-4 *6 (-320 *3 *4 *5))
+ (-5 *2 (-391 *4 (-385 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1173 *6)) (-4 *6 (-13 (-387 *4 *5) (-968 *4)))
+ (-4 *4 (-925 *3)) (-4 *5 (-1149 *4)) (-4 *3 (-286))
+ (-5 *1 (-391 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-341)) (-4 *3 (-1149 *4)) (-4 *5 (-1149 (-385 *3)))
+ (-4 *1 (-313 *4 *3 *5 *2)) (-4 *2 (-320 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-525)) (-4 *2 (-341)) (-4 *4 (-1149 *2))
+ (-4 *5 (-1149 (-385 *4))) (-4 *1 (-313 *2 *4 *5 *6))
+ (-4 *6 (-320 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-341)) (-4 *3 (-1149 *2)) (-4 *4 (-1149 (-385 *3)))
+ (-4 *1 (-313 *2 *3 *4 *5)) (-4 *5 (-320 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-341)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4)))
+ (-4 *1 (-313 *3 *4 *5 *2)) (-4 *2 (-320 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-391 *4 (-385 *4) *5 *6)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-4 *3 (-341))
+ (-4 *1 (-313 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1091))
+ (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-592 (-565 *3)))
+ (|:| |vals| (-592 *3))))
+ (-5 *1 (-256 *5 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *5))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-341)) (-4 *3 (-977))
+ (-5 *1 (-1076 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8))) (-4 *7 (-789))
+ (-4 *8 (-286)) (-4 *6 (-735)) (-4 *9 (-884 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-592 (-2 (|:| -2195 (-1087 *9)) (|:| -1864 (-525)))))))
+ (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1087 *9)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-592 (-357))) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-809)) (-5 *2 (-1178)) (-5 *1 (-1174))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1174)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1121 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-5 *2 (-1178))
+ (-5 *1 (-1128 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-5 *2 (-1178))
+ (-5 *1 (-1128 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-395 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1063 (-1074))) (-5 *1 (-369)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1020)) (-4 *6 (-1020))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-1020)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1112)))
- (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2 (-542 *3)) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1019)))))
+ (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *5) (-27) (-1113)))
+ (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2 (-542 *3)) (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1020)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-205)) (-5 *3 (-713)) (-5 *1 (-206))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-157 (-205))) (-5 *3 (-713)) (-5 *1 (-206))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1055))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1020)) (-4 *6 (-821 *5)) (-5 *2 (-820 *5 *6 (-592 *6)))
+ (-5 *1 (-822 *5 *6 *4)) (-5 *3 (-592 *6)) (-4 *4 (-567 (-827 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1020)) (-5 *2 (-592 (-273 *3))) (-5 *1 (-822 *5 *3 *4))
+ (-4 *3 (-968 (-1091))) (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1020)) (-5 *2 (-592 (-273 (-887 *3))))
+ (-5 *1 (-822 *5 *3 *4)) (-4 *3 (-977))
+ (-1825 (-4 *3 (-968 (-1091)))) (-4 *3 (-821 *5))
+ (-4 *4 (-567 (-827 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1020)) (-5 *2 (-824 *5 *3)) (-5 *1 (-822 *5 *3 *4))
+ (-1825 (-4 *3 (-968 (-1091)))) (-1825 (-4 *3 (-977)))
+ (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2))
+ (-4 *2 (-13 (-27) (-1113) (-408 (-157 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *3))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1127))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))
+ ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-957 *3)) (-4 *3 (-1127)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-855)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))))
+(((*1 *1) (-5 *1 (-765))))
+(((*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094)))))
(((*1 *2 *3 *3 *4 *5 *5)
(-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
- (-4 *3 (-990 *6 *7 *8))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4))))
- (-5 *1 (-1027 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3))))
+ (-4 *3 (-991 *6 *7 *8))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4))))
+ (-5 *1 (-1028 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -3740 *9))))
- (-5 *5 (-108)) (-4 *8 (-990 *6 *7 *4)) (-4 *9 (-995 *6 *7 *4 *8))
+ (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -1895 *9))))
+ (-5 *5 (-108)) (-4 *8 (-991 *6 *7 *4)) (-4 *9 (-996 *6 *7 *4 *8))
(-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789))
- (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -3740 *9))))
- (-5 *1 (-1027 *6 *7 *4 *8 *9)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1172 *4)) (-4 *4 (-1126)) (-4 *1 (-218 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-4 *1 (-215 *3))))
- ((*1 *1) (-12 (-4 *1 (-215 *2)) (-4 *2 (-1019)))))
-(((*1 *2 *1)
+ (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -1895 *9))))
+ (-5 *1 (-1028 *6 *7 *4 *8 *9)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-632 (-525))) (-5 *3 (-592 (-525))) (-5 *1 (-1030)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-944)) (-5 *2 (-798)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-856)) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856))
+ (-14 *4 (-856)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1127))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-261 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-592
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205)))))
+ (-2
+ (|:| -3423
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (|:| -2544
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1072 (-205)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2990
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
(-5 *1 (-520))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-5 *2 (-592 *3))))
- ((*1 *2 *1)
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-637 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-592
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205)))))
- (-5 *1 (-745)))))
-(((*1 *1 *1) (-5 *1 (-47)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1126))
- (-4 *2 (-1126)) (-5 *1 (-56 *5 *2))))
- ((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1019)) (|has| *1 (-6 -4254))
- (-4 *1 (-142 *2)) (-4 *2 (-1126))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *2))
- (-4 *2 (-1126))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *2))
- (-4 *2 (-1126))))
+ (-2
+ (|:| -3423
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (|:| -2544
+ (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357))
+ (|:| |expense| (-357)) (|:| |accuracy| (-357))
+ (|:| |intermediateResults| (-357))))))
+ (-5 *1 (-745))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-1178)) (-5 *1 (-1105 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 (-357)))
+ (-5 *2 (-357)) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977))
+ (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-976))
- (-5 *2 (-2 (|:| -3966 (-1086 *4)) (|:| |deg| (-855))))
- (-5 *1 (-201 *4 *5)) (-5 *3 (-1086 *4)) (-4 *5 (-13 (-517) (-789)))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713))
- (-4 *6 (-1126)) (-4 *2 (-1126)) (-5 *1 (-219 *5 *6 *2))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-160)) (-5 *1 (-268 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1148 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-517)) (-4 *2 (-789))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-313 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *3 (-1148 *2))
- (-4 *4 (-1148 (-385 *3))) (-4 *5 (-320 *2 *3 *4))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1126)) (-4 *2 (-1126))
- (-5 *1 (-349 *5 *4 *2 *6)) (-4 *4 (-351 *5)) (-4 *6 (-351 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1019)) (-4 *2 (-1019))
- (-5 *1 (-401 *5 *4 *2 *6)) (-4 *4 (-403 *5)) (-4 *6 (-403 *2))))
- ((*1 *1 *1) (-5 *1 (-468)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-592 *5)) (-4 *5 (-1126))
- (-4 *2 (-1126)) (-5 *1 (-590 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-976)) (-4 *2 (-976))
- (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *8 (-351 *2))
- (-4 *9 (-351 *2)) (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-630 *5 *6 *7)) (-4 *10 (-630 *2 *8 *9))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-976)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1148 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-341))
- (-4 *3 (-160)) (-4 *1 (-667 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1148 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-891 *5)) (-4 *5 (-1126))
- (-4 *2 (-1126)) (-5 *1 (-890 *5 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-964 *3 *4 *5 *2 *6)) (-4 *2 (-883 *3 *4 *5))
- (-14 *6 (-592 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-976)) (-4 *2 (-976))
- (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7))
- (-4 *9 (-218 *5 *7)) (-4 *10 (-218 *6 *2)) (-4 *11 (-218 *5 *2))
- (-5 *1 (-981 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-979 *5 *6 *7 *8 *9)) (-4 *12 (-979 *5 *6 *2 *10 *11))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1071 *5)) (-4 *5 (-1126))
- (-4 *2 (-1126)) (-5 *1 (-1069 *5 *2))))
- ((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2))
- (-4 *1 (-1120 *5 *6 *7 *2)) (-4 *5 (-517)) (-4 *6 (-735))
- (-4 *7 (-789)) (-4 *2 (-990 *5 *6 *7))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1172 *5)) (-4 *5 (-1126))
- (-4 *2 (-1126)) (-5 *1 (-1171 *5 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-839 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-2 (|:| -3946 *3) (|:| -2511 *4))))
- (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *1 (-1103 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1103 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))))
+ (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517))
+ (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789))
+ (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-357))
+ (-5 *1 (-727 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1149 *9)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-286))
+ (-4 *10 (-884 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-592 (-1087 *10)))
+ (|:| |dterm|
+ (-592 (-592 (-2 (|:| -1356 (-713)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-592 *6)) (|:| |nlead| (-592 *10))))
+ (-5 *1 (-720 *6 *7 *8 *9 *10)) (-5 *3 (-1087 *10)) (-5 *4 (-592 *6))
+ (-5 *5 (-592 *10)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-215 *3))))
+ ((*1 *1) (-12 (-4 *1 (-215 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-716)) (-5 *1 (-110))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1024)) (-5 *1 (-899)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *6 (-991 *3 *4 *5)) (-5 *1 (-574 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-996 *3 *4 *5 *6)) (-4 *2 (-1029 *3 *4 *5 *6)))))
+(((*1 *1) (-4 *1 (-327)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4))
+ (-4 *4 (-13 (-517) (-789) (-138)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-592 (-1087 *5)))
+ (|:| |prim| (-1087 *5))))
+ (-5 *1 (-410 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-517) (-789) (-138)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1087 *3))
+ (|:| |pol2| (-1087 *3)) (|:| |prim| (-1087 *3))))
+ (-5 *1 (-410 *4 *3)) (-4 *3 (-27)) (-4 *3 (-408 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-887 *5)) (-5 *4 (-1091)) (-4 *5 (-13 (-341) (-138)))
+ (-5 *2
+ (-2 (|:| |coef1| (-525)) (|:| |coef2| (-525))
+ (|:| |prim| (-1087 *5))))
+ (-5 *1 (-894 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-592 (-1091)))
+ (-4 *5 (-13 (-341) (-138)))
+ (-5 *2
+ (-2 (|:| -1655 (-592 (-525))) (|:| |poly| (-592 (-1087 *5)))
+ (|:| |prim| (-1087 *5))))
+ (-5 *1 (-894 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1091))) (-5 *5 (-1091))
+ (-4 *6 (-13 (-341) (-138)))
+ (-5 *2
+ (-2 (|:| -1655 (-592 (-525))) (|:| |poly| (-592 (-1087 *6)))
+ (|:| |prim| (-1087 *6))))
+ (-5 *1 (-894 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-357)) (-5 *1 (-92))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-357)) (-5 *1 (-92)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789))
+ (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789))
+ (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-856))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-314 *4 *5 *6 *7)) (-4 *4 (-13 (-346) (-341)))
+ (-4 *5 (-1149 *4)) (-4 *6 (-1149 (-385 *5))) (-4 *7 (-320 *4 *5 *6))
+ (-5 *2 (-713)) (-5 *1 (-370 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-775 (-856)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-977))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-977))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4))
+ (-4 *4 (-1149 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-683 *4 *3)) (-4 *4 (-977))
+ (-4 *3 (-789))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-683 *4 *3)) (-4 *4 (-977)) (-4 *3 (-789))
+ (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4))
+ (-4 *6 (-1149 *5)) (-4 *7 (-1149 (-385 *6)))
+ (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-968 (-525))))
+ (-5 *2 (-713)) (-5 *1 (-846 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6))
+ (-4 *4 (-1149 (-385 (-525)))) (-4 *5 (-1149 (-385 *4)))
+ (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-713))
+ (-5 *1 (-847 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-314 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-341))
+ (-4 *7 (-1149 *6)) (-4 *4 (-1149 (-385 *7))) (-4 *8 (-320 *6 *7 *4))
+ (-4 *9 (-13 (-346) (-341))) (-5 *2 (-713))
+ (-5 *1 (-950 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1149 *3)) (-4 *3 (-977)) (-4 *3 (-517)) (-5 *2 (-713))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-840 *3)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108))
+ (-5 *2 (-966)) (-5 *1 (-688)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))))
+(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1113))))))
+(((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-341) (-787)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -1494 (-396 *3))))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1164 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-510))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
(((*1 *2 *3)
(|partial| -12 (-5 *3 (-565 *4)) (-4 *4 (-789)) (-4 *2 (-789))
(-5 *1 (-564 *2 *4)))))
-(((*1 *1 *1) (-4 *1 (-91)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953)))
+ (-14 *5 (-592 (-1091))) (-5 *2 (-592 (-592 (-955 (-385 *4)))))
+ (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-592 (-1091)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1197 *5 *6 *7))
+ (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1197 *5 *6 *7))
+ (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-887 *4)))
+ (-4 *4 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-592 (-592 (-955 (-385 *4))))) (-5 *1 (-1197 *4 *5 *6))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-592 (-1091))))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-543 *2)) (-4 *2 (-510)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-698)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-691)))))
+(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1127)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
+ (-4 *3 (-991 *6 *7 *8))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4))))
+ (-5 *1 (-997 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -1895 *9))))
+ (-5 *5 (-108)) (-4 *8 (-991 *6 *7 *4)) (-4 *9 (-996 *6 *7 *4 *8))
+ (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789))
+ (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -1895 *9))))
+ (-5 *1 (-997 *6 *7 *4 *8 *9)))))
(((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-5 *2 (-632 (-385 *4))))))
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-5 *2 (-632 (-385 *4))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-880 *4 *3))
+ (-4 *3 (-1149 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-4 *1 (-352 *3 *4))
+ (-4 *4 (-160)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-525))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-286)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
(-12 (-5 *3 (-525)) (-5 *4 (-632 (-205)))
(-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-64 FUNCT1))))
- (-5 *2 (-965)) (-5 *1 (-696)))))
+ (-5 *2 (-966)) (-5 *1 (-696)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-625 *2)) (-4 *2 (-1020))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-592 *5) (-592 *5))) (-5 *4 (-525)) (-4 *5 (-1020))
+ (-5 *2 (-592 *5)) (-5 *1 (-625 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-704))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789))))
+ ((*1 *1) (-4 *1 (-1067))))
+(((*1 *2 *3 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-735)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789))
+ (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *3 (-525)) (-5 *5 (-1091))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-592 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -1679 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1113) (-27) (-408 *8)))
+ (-4 *8 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3602 *4) (|:| |sol?| (-108))))
+ (-5 *1 (-945 *8 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-713)) (-4 *5 (-517))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-903 *5 *3)) (-4 *3 (-1149 *5)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-1087 (-887 *4))) (-5 *1 (-394 *3 *4))
+ (-4 *3 (-395 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341))
+ (-5 *2 (-1087 (-887 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1087 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1149 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1074)) (-4 *1 (-342 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205)))
+ (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205)))
(|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205))))
(|:| |ub| (-592 (-782 (-205))))))
(-5 *1 (-246)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108))))
- ((*1 *1 *1 *1) (-5 *1 (-797))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-592 (-713))) (-5 *1 (-903 *4 *3))
+ (-4 *3 (-1149 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-966)) (-5 *3 (-1091)) (-5 *1 (-174)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *1 *1) (-5 *1 (-989))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-510))))
+(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-294 (-357))) (-5 *1 (-284)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1020)) (-4 *5 (-1020))
+ (-4 *6 (-1020)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-627 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976))
- (-5 *2 (-592 (-592 (-592 (-877 *3))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-294 *4))
- (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 (-157 *4))))))
+ (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977))
+ (-5 *2 (-592 (-592 (-592 (-878 *3))))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-734)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1018 *3)) (-4 *3 (-1020)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834)))) (-5 *2 (-966))
+ (-5 *1 (-691)))))
+(((*1 *1) (-5 *1 (-146))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *1) (-4 *1 (-578)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934) (-1113))))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-294 *3)) (-4 *3 (-13 (-977) (-789)))
+ (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1091))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-977)) (-4 *3 (-1020)))))
(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7))
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
(-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-592 (-957 *5 *6 *7 *8))) (-5 *1 (-957 *5 *6 *7 *8))))
+ (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7))
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
(-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-592 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8)))))
+ (-5 *2 (-592 (-1062 *5 *6 *7 *8))) (-5 *1 (-1062 *5 *6 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1113))) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341)))
+ (-4 *3 (-1149 *4)) (-5 *2 (-108)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091))))
+ (-4 *6 (-735)) (-5 *2 (-592 (-592 (-525))))
+ (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-525)) (-4 *7 (-884 *4 *6 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-273 (-782 *3))) (-4 *3 (-13 (-27) (-1113) (-408 *5)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2
+ (-3 (-782 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-782 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-782 *3) "failed")))
+ "failed"))
+ (-5 *1 (-585 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-273 *3)) (-5 *5 (-1074))
+ (-4 *3 (-13 (-27) (-1113) (-408 *6)))
+ (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-782 *3)) (-5 *1 (-585 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-273 (-782 (-887 *5)))) (-4 *5 (-429))
+ (-5 *2
+ (-3 (-782 (-385 (-887 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-782 (-385 (-887 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-586 *5)) (-5 *3 (-385 (-887 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-273 (-385 (-887 *5)))) (-4 *5 (-429))
+ (-5 *2
+ (-3 (-782 (-385 (-887 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-887 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-782 (-385 (-887 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-586 *5)) (-5 *3 (-385 (-887 *5)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-273 (-385 (-887 *6)))) (-5 *5 (-1074))
+ (-4 *6 (-429)) (-5 *2 (-782 (-385 (-887 *6)))) (-5 *1 (-586 *6))
+ (-5 *3 (-385 (-887 *6))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1091))
+ (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1113) (-893))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-108)))))
+(((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-699)))))
(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-898))) (-5 *1 (-104))))
- ((*1 *2 *1) (-12 (-5 *2 (-44 (-1073) (-716))) (-5 *1 (-110)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *1 (-1046 *3 *2)) (-4 *3 (-1149 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-592 *5) *6))
+ (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *6 (-1149 *5))
+ (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -4216 *3))))
+ (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6))
+ (-4 *7 (-602 (-385 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-592 *5) *6))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *6 (-1149 *5))
+ (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -4216 (-600 *6 (-385 *6))))))
+ (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-197 *4 *3))
+ (-4 *3 (-1149 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-887 (-357))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1091)))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-385 (-887 (-357)))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1091)))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1091)))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-887 (-525))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1091)))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-385 (-887 (-525)))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1091)))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1091)))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1091)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1091)))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5))
+ (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-887 (-525))))) (-4 *1 (-362))))
+ ((*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-887 (-357))))) (-4 *1 (-362))))
+ ((*1 *1 *2) (-12 (-5 *2 (-632 (-887 (-525)))) (-4 *1 (-362))))
+ ((*1 *1 *2) (-12 (-5 *2 (-632 (-887 (-357)))) (-4 *1 (-362))))
+ ((*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362))))
+ ((*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362))))
+ ((*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-525)))) (-4 *1 (-374))))
+ ((*1 *1 *2) (-12 (-5 *2 (-385 (-887 (-357)))) (-4 *1 (-374))))
+ ((*1 *1 *2) (-12 (-5 *2 (-887 (-525))) (-4 *1 (-374))))
+ ((*1 *1 *2) (-12 (-5 *2 (-887 (-357))) (-4 *1 (-374))))
+ ((*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-4 *1 (-374))))
+ ((*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-4 *1 (-374))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173 (-385 (-887 (-525))))) (-4 *1 (-418))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173 (-385 (-887 (-357))))) (-4 *1 (-418))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173 (-887 (-525)))) (-4 *1 (-418))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173 (-887 (-357)))) (-4 *1 (-418))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173 (-294 (-525)))) (-4 *1 (-418))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173 (-294 (-357)))) (-4 *1 (-418))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-592 (-1015 (-782 (-205)))))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
+ (-5 *1 (-711))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (-5 *1 (-750))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205)))
+ (|:| |lb| (-592 (-782 (-205))))
+ (|:| |cf| (-592 (-294 (-205))))
+ (|:| |ub| (-592 (-782 (-205))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-592 (-294 (-205))))
+ (|:| -3940 (-592 (-205)))))))
+ (-5 *1 (-780))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |pde| (-592 (-294 (-205))))
+ (|:| |constraints|
+ (-592
+ (-2 (|:| |start| (-205)) (|:| |finish| (-205))
+ (|:| |grid| (-713)) (|:| |boundaryType| (-525))
+ (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
+ (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074))
+ (|:| |tol| (-205))))
+ (-5 *1 (-833))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *1 (-909 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *2)
+ (-3279
+ (-12 (-5 *2 (-887 *3))
+ (-12 (-1825 (-4 *3 (-37 (-385 (-525)))))
+ (-1825 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1091))))
+ (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735))
+ (-4 *5 (-789)))
+ (-12 (-5 *2 (-887 *3))
+ (-12 (-1825 (-4 *3 (-510))) (-1825 (-4 *3 (-37 (-385 (-525)))))
+ (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1091))))
+ (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735))
+ (-4 *5 (-789)))
+ (-12 (-5 *2 (-887 *3))
+ (-12 (-1825 (-4 *3 (-925 (-525)))) (-4 *3 (-37 (-385 (-525))))
+ (-4 *5 (-567 (-1091))))
+ (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735))
+ (-4 *5 (-789)))))
+ ((*1 *1 *2)
+ (-3279
+ (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5))
+ (-12 (-1825 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525)))
+ (-4 *5 (-567 (-1091))))
+ (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))
+ (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1091))))
+ (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-887 (-385 (-525)))) (-4 *1 (-991 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1091))) (-4 *3 (-977))
+ (-4 *4 (-735)) (-4 *5 (-789)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-884 *4 *6 *5)) (-4 *4 (-429))
+ (-4 *5 (-789)) (-4 *6 (-735)) (-5 *1 (-920 *4 *5 *6 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789))
+ (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1074)) (-5 *1 (-51)))))
+(((*1 *1) (-5 *1 (-1005))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
+ (-5 *1 (-648 *3 *4)) (-4 *3 (-1127)) (-4 *4 (-1127)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1072 *3))) (-4 *3 (-37 (-385 (-525))))
+ (-4 *3 (-977)) (-5 *2 (-1072 *3)) (-5 *1 (-1076 *3)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
(-4 *4 (-789)) (-4 *2 (-429)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
+ (-5 *2
+ (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525))
+ (|:| |success| (-108))))
+ (-5 *1 (-731)) (-5 *5 (-525)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-254)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517))
+ (-5 *2 (-2 (|:| -1655 *4) (|:| -2370 *3) (|:| -3496 *3)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-991 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-517)) (-4 *3 (-977))
+ (-5 *2 (-2 (|:| -1655 *3) (|:| -2370 *1) (|:| -3496 *1)))
+ (-4 *1 (-1149 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3))
+ (-4 *3 (-594 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3))
+ (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-884 *6 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-92)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))))
+(((*1 *1 *1) (-4 *1 (-510))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-286)) (-5 *1 (-432 *3 *2)) (-4 *2 (-1148 *3))))
+ (|partial| -12 (-5 *3 (-1091))
+ (-4 *4 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-518 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *4))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-286)) (-5 *1 (-432 *3 *2)) (-4 *2 (-1149 *3))))
((*1 *2 *2 *3)
- (-12 (-4 *3 (-286)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1148 *3))))
+ (-12 (-4 *3 (-286)) (-5 *1 (-437 *3 *2)) (-4 *2 (-1149 *3))))
((*1 *2 *2 *3)
(-12 (-4 *3 (-286)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-713)))
- (-5 *1 (-504 *3 *2 *4 *5)) (-4 *2 (-1148 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1037)) (-5 *1 (-782 *3)) (-4 *3 (-1019)))))
+ (-5 *1 (-504 *3 *2 *4 *5)) (-4 *2 (-1149 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-592 (-887 *4))) (-5 *3 (-592 (-1091))) (-4 *4 (-429))
+ (-5 *1 (-853 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-5 *1 (-415)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-205)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1038)) (-5 *1 (-105)))))
+(((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-128)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *8 (-991 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-592 *8)) (|:| |towers| (-592 (-958 *5 *6 *7 *8)))))
+ (-5 *1 (-958 *5 *6 *7 *8)) (-5 *3 (-592 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *8 (-991 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-592 *8))
+ (|:| |towers| (-592 (-1062 *5 *6 *7 *8)))))
+ (-5 *1 (-1062 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-592 (-1091))) (-4 *5 (-429))
+ (-5 *2
+ (-2 (|:| |glbase| (-592 (-227 *4 *5))) (|:| |glval| (-592 (-525)))))
+ (-5 *1 (-580 *4 *5)) (-5 *3 (-592 (-227 *4 *5))))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1173 *5)) (-5 *3 (-713)) (-5 *4 (-1038)) (-4 *5 (-327))
+ (-5 *1 (-495 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1072 *7))) (-4 *6 (-789))
+ (-4 *7 (-884 *5 (-497 *6) *6)) (-4 *5 (-977))
+ (-5 *2 (-1 (-1072 *7) *7)) (-5 *1 (-1044 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-1007))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-849 *3)) (-4 *3 (-286)))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1105 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-565 *3)) (-5 *5 (-1087 *3))
+ (-4 *3 (-13 (-408 *6) (-27) (-1113)))
+ (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1087 *3)))
+ (-4 *3 (-13 (-408 *6) (-27) (-1113)))
+ (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789))
+ (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-884 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-977)) (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1)))
+ (-4 *1 (-1149 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1091)) (-5 *2 (-1 (-1087 (-887 *4)) (-887 *4)))
+ (-5 *1 (-1181 *4)) (-4 *4 (-341)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1074)) (-5 *2 (-592 (-1096))) (-5 *1 (-815)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))))
+(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-702)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1149 *2)))))
(((*1 *2 *2)
(-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3))
- (-4 *3 (-1148 (-157 *2))))))
-(((*1 *1 *1) (-4 *1 (-91)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
+ (-4 *3 (-1149 (-157 *2))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-408 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3))
+ (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-592 *1)) (-4 *1 (-884 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
+ (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *3))
+ (-5 *1 (-885 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $))
+ (-15 -1512 (*7 $))))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-887 (-385 (-525)))) (-5 *4 (-1091))
+ (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-713)))))
(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735))
+ (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
(-4 *2 (-789))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
(-4 *4 (-789)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-789)) (-5 *2 (-108))))
- ((*1 *1 *1 *1) (-5 *1 (-797)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-837 *3)) (-4 *3 (-1019)) (-5 *2 (-108))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-838 *3)) (-4 *3 (-1019))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1017 *3)) (-4 *3 (-1019)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091))))
+ (-4 *6 (-735)) (-5 *2 (-592 *3)) (-5 *1 (-859 *4 *5 *6 *3))
+ (-4 *3 (-884 *4 *6 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1127))
+ (-5 *2 (-108)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-291 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))))
+ (-5 *1 (-398 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1113) (-408 *5)))
+ (-14 *6 (-1091)) (-14 *7 *3))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1074))
+ (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-108)) (-5 *1 (-204 *4 *5)) (-4 *5 (-13 (-1113) (-29 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-327)) (-4 *4 (-307 *3)) (-4 *5 (-1149 *4))
+ (-5 *1 (-719 *3 *4 *5 *2 *6)) (-4 *2 (-1149 *5)) (-14 *6 (-856))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-1190 *3)) (-4 *3 (-341)) (-4 *3 (-346))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1190 *2)) (-4 *2 (-341)) (-4 *2 (-346)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1091)))))
+(((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-592
+ (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8))
+ (|:| |wcond| (-592 (-887 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1173 (-385 (-887 *5))))
+ (|:| -1449 (-592 (-1173 (-385 (-887 *5))))))))))
+ (-5 *4 (-1074)) (-4 *5 (-13 (-286) (-138))) (-4 *8 (-884 *5 *7 *6))
+ (-4 *6 (-13 (-789) (-567 (-1091)))) (-4 *7 (-735)) (-5 *2 (-525))
+ (-5 *1 (-859 *5 *6 *7 *8)))))
+(((*1 *1) (-5 *1 (-415))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-913 *2)) (-4 *2 (-977))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1124))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-977)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1087 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-157 (-525))) (-5 *2 (-108)) (-5 *1 (-423))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
+ (-227 *4 (-385 (-525)))))
+ (-14 *4 (-592 (-1091))) (-14 *5 (-713)) (-5 *2 (-108))
+ (-5 *1 (-478 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-895 *3)) (-4 *3 (-510))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -1895 *11))))
+ (-5 *3 (-592 *10)) (-5 *4 (-592 *11))
+ (-5 *5
+ (-2 (|:| |done| (-592 *11))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *10)) (|:| -1895 *11))))))
+ (-5 *6 (-713)) (-4 *10 (-991 *7 *8 *9)) (-4 *11 (-996 *7 *8 *9 *10))
+ (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789))
+ (-5 *1 (-994 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -1895 *11))))
+ (-5 *3 (-592 *10)) (-5 *4 (-592 *11))
+ (-5 *5
+ (-2 (|:| |done| (-592 *11))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *10)) (|:| -1895 *11))))))
+ (-5 *6 (-713)) (-4 *10 (-991 *7 *8 *9))
+ (-4 *11 (-1029 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735))
+ (-4 *9 (-789)) (-5 *1 (-1061 *7 *8 *9 *10 *11)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
(-4 *2 (-408 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-294 *4))
- (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 (-157 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
- ((*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4)))
+ (-5 *2 (-2 (|:| |num| (-1173 *4)) (|:| |den| *4))))))
+(((*1 *2)
+ (-12 (-14 *4 (-713)) (-4 *5 (-1127)) (-5 *2 (-128))
+ (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-341)) (-5 *2 (-128)) (-5 *1 (-306 *3 *4))
+ (-4 *3 (-307 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713))
+ (-14 *4 (-713)) (-4 *5 (-160))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525))
+ (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735))
+ (-5 *2 (-525)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-913 *3)) (-4 *3 (-977)) (-5 *2 (-856))))
+ ((*1 *2) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-341)) (-5 *2 (-128)))))
+(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1 *1) (-4 *1 (-901))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-899))) (-5 *1 (-270)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1020)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4255)) (-4 *1 (-142 *3))
+ (-4 *3 (-1127))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1127)) (-5 *1 (-555 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1127))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-4 *1 (-1121 *4 *5 *3 *2)) (-4 *4 (-517))
+ (-4 *5 (-735)) (-4 *3 (-789)) (-4 *2 (-991 *4 *5 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-5 *1 (-1125 *2)) (-4 *2 (-1127)))))
(((*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-903)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-904)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-849 *3)) (-4 *3 (-286)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3))
+ (-4 *3 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8))))
+ (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-1091))
+ (-4 *2 (-13 (-27) (-1113) (-408 *5)))
+ (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-256 *5 *2)))))
+(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1 *1) (-4 *1 (-901))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-861))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-861))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-862))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-878 (-205)) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-862)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-525)) (-4 *4 (-1149 (-385 (-525)))) (-5 *2 (-856))
+ (-5 *1 (-848 *4 *5)) (-4 *5 (-1149 (-385 *4))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1127)) (-5 *1 (-555 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1127)) (-5 *1 (-1072 *3)))))
(((*1 *2 *2 *2)
(-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286))
- (-5 *1 (-850 *3 *4 *5 *2)) (-4 *2 (-883 *5 *3 *4))))
+ (-5 *1 (-851 *3 *4 *5 *2)) (-4 *2 (-884 *5 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1086 *6)) (-4 *6 (-883 *5 *3 *4)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-850 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1087 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *6 *4 *5))
- (-5 *1 (-850 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *6 *4 *5))
+ (-5 *1 (-851 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789))
(-4 *6 (-286)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-367)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-525)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-286))
+ (-4 *9 (-884 *8 *6 *7))
+ (-5 *2 (-2 (|:| -3696 (-1087 *9)) (|:| |polval| (-1087 *8))))
+ (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1087 *9)) (-5 *4 (-1087 *8)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-592 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *6)))
+ (-4 *6 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-518 *6 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-192)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1072 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-157 (-205))) (-5 *5 (-525))
+ (-5 *6 (-1074)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *1) (-5 *1 (-989))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-565 *5))) (-4 *5 (-408 *4)) (-4 *4 (-789))
+ (-5 *2 (-565 *5)) (-5 *1 (-534 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-3 (-385 (-887 *5)) (-1081 (-1091) (-887 *5))))
+ (-4 *5 (-429)) (-5 *2 (-592 (-632 (-385 (-887 *5)))))
+ (-5 *1 (-271 *5)) (-5 *4 (-632 (-385 (-887 *5)))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1127)) (-5 *1 (-555 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1127)) (-5 *1 (-1072 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-104))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-342 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-1020))))
+ ((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1074))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-416 *3)) (-14 *3 (-1091))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-565 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-899))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-998 *3)) (-14 *3 (-1091))))
+ ((*1 *1 *1) (-5 *1 (-1091))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *2 (-1020)) (-5 *1 (-1105 *3 *2)) (-4 *3 (-1020)))))
+(((*1 *1 *1) (-4 *1 (-804 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-592 (-1091))) (-4 *2 (-160))
+ (-4 *4 (-218 (-3596 *5) (-713)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -3640 *3) (|:| -1864 *4))
+ (-2 (|:| -3640 *3) (|:| -1864 *4))))
+ (-5 *1 (-438 *5 *2 *3 *4 *6 *7)) (-4 *3 (-789))
+ (-4 *7 (-884 *2 *4 (-800 *5))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1139 (-525))) (-4 *1 (-261 *3)) (-4 *3 (-1126))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1126)))))
+ (-12 (-5 *2 (-1140 (-525))) (-4 *1 (-261 *3)) (-4 *3 (-1127))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1127)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-477 *3 *4 *5 *6))) (-4 *3 (-341)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-884 *3 *4 *5)) (-5 *1 (-477 *3 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
+ (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7))
+ (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1))
+ (-4 *1 (-996 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-414)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-395 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-856)) (-4 *6 (-13 (-517) (-789)))
+ (-5 *2 (-592 (-294 *6))) (-5 *1 (-201 *5 *6)) (-5 *3 (-294 *6))
+ (-4 *5 (-977))))
+ ((*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-542 *5)) (-4 *5 (-13 (-29 *4) (-1113)))
+ (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))
+ (-5 *2 (-592 *5)) (-5 *1 (-540 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-542 (-385 (-887 *4))))
+ (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))
+ (-5 *2 (-592 (-294 *4))) (-5 *1 (-545 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1016 *3 *2)) (-4 *3 (-787)) (-4 *2 (-1065 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 *1)) (-4 *1 (-1016 *4 *2)) (-4 *4 (-787))
+ (-4 *2 (-1065 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1186 (-1091) *3)) (-5 *1 (-1193 *3)) (-4 *3 (-977))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-1195 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-977)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-341)) (-4 *4 (-517)) (-4 *5 (-1148 *4))
- (-5 *2 (-2 (|:| -1889 (-573 *4 *5)) (|:| -1407 (-385 *5))))
+ (-12 (-4 *4 (-341)) (-4 *4 (-517)) (-4 *5 (-1149 *4))
+ (-5 *2 (-2 (|:| -3659 (-573 *4 *5)) (|:| -2281 (-385 *5))))
(-5 *1 (-573 *4 *5)) (-5 *3 (-385 *5))))
((*1 *2 *1)
- (-12 (-5 *2 (-592 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4))
- (-14 *3 (-855)) (-4 *4 (-976))))
+ (-12 (-5 *2 (-592 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4))
+ (-14 *3 (-856)) (-4 *4 (-977))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-429)) (-4 *3 (-976))
+ (-12 (-4 *3 (-429)) (-4 *3 (-977))
(-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1148 *3)))))
+ (-4 *1 (-1149 *3)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108))
+ (-5 *2 (-966)) (-5 *1 (-696)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-798))))
+ ((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1178)) (-5 *1 (-896)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-385 *2)) (-4 *2 (-1149 *5))
+ (-5 *1 (-749 *5 *2 *3 *6))
+ (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-4 *3 (-602 *2)) (-4 *6 (-602 (-385 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-385 *2))) (-4 *2 (-1149 *5))
+ (-5 *1 (-749 *5 *2 *3 *6))
+ (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2))
+ (-4 *6 (-602 (-385 *2))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-592 (-1091))) (-4 *4 (-160))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -3640 *5) (|:| -1864 *2))
+ (-2 (|:| -3640 *5) (|:| -1864 *2))))
+ (-4 *2 (-218 (-3596 *3) (-713))) (-5 *1 (-438 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-789)) (-4 *7 (-884 *4 *2 (-800 *3))))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-162)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-1173
+ (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205))
+ (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -1649 (-525))
+ (|:| -2970 (-525)) (|:| |spline| (-525)) (|:| -3735 (-525))
+ (|:| |axesColor| (-809)) (|:| -4009 (-525))
+ (|:| |unitsColor| (-809)) (|:| |showing| (-525)))))
+ (-5 *1 (-1174)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-525))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1173 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131))
+ (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-798)))))
(((*1 *1) (-5 *1 (-270))))
-(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-205)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1087 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1098)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-1014 *3)) (-4 *3 (-1127)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -1679 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-341)) (-5 *1 (-535 *4 *2)) (-4 *2 (-1149 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-89 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-395 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1178)) (-5 *1 (-1105 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1173 *4)) (-4 *4 (-588 (-525)))
+ (-5 *2 (-1173 (-385 (-525)))) (-5 *1 (-1198 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1516 *4)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-385 (-525)))
+ (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1178)) (-5 *1 (-938)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-143 *2 *3 *4)) (-14 *2 (-856)) (-4 *3 (-341))
+ (-14 *4 (-926 *2 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090)))
- (-14 *3 (-592 (-1090))) (-4 *4 (-365))))
- ((*1 *1 *1 *1) (-5 *1 (-357)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
+ (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1149 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
+ ((*1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
+ ((*1 *1 *1) (|partial| -4 *1 (-665)))
+ ((*1 *1 *1) (|partial| -4 *1 (-669)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-993 *3 *2)) (-4 *3 (-13 (-787) (-341)))
+ (-4 *2 (-1149 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
+ (|partial| -12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-592 (-713)))
+ (-5 *1 (-839 *4)))))
(((*1 *2 *3)
(-12
(-5 *3
(-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
(|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
(|:| |abserr| (-205)) (|:| |relerr| (-205))))
(-5 *2 (-357)) (-5 *1 (-187)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1127))
+ (-4 *3 (-351 *4)) (-4 *5 (-351 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
+ (-4 *3 (-991 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4))))))
+ (-5 *1 (-994 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4))))))
+ (-5 *1 (-994 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
+ (-4 *3 (-991 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4))))))
+ (-5 *1 (-1061 *6 *7 *8 *3 *4)) (-4 *4 (-1029 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4))))))
+ (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1029 *5 *6 *7 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1114 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-51)) (-5 *1 (-1106)))))
+(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-713)) (|:| -3696 *4))) (-5 *5 (-713))
+ (-4 *4 (-884 *6 *7 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
+ (-5 *2
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-426 *6 *7 *8 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-1173 (-592 (-525)))) (-5 *1 (-456))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-555 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-1072 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1127)) (-5 *1 (-1072 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-798)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-108)))))
+(((*1 *2)
+ (-12 (-4 *4 (-341)) (-5 *2 (-856)) (-5 *1 (-306 *3 *4))
+ (-4 *3 (-307 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-341)) (-5 *2 (-775 (-856))) (-5 *1 (-306 *3 *4))
+ (-4 *3 (-307 *4))))
+ ((*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-856))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1190 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-856))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-525))) (-5 *5 (-1 (-1071 *4))) (-4 *4 (-341))
- (-4 *4 (-976)) (-5 *2 (-1071 *4)) (-5 *1 (-1075 *4)))))
+ (-12 (-5 *3 (-1 *4 (-525))) (-5 *5 (-1 (-1072 *4))) (-4 *4 (-341))
+ (-4 *4 (-977)) (-5 *2 (-1072 *4)) (-5 *1 (-1076 *4)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-567 (-827 (-525))))
+ (-4 *5 (-821 (-525)))
+ (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-528 *5 *3)) (-4 *3 (-578))
+ (-4 *3 (-13 (-27) (-1113) (-408 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1091)) (-5 *4 (-782 *2)) (-4 *2 (-1055))
+ (-4 *2 (-13 (-27) (-1113) (-408 *5)))
+ (-4 *5 (-567 (-827 (-525)))) (-4 *5 (-821 (-525)))
+ (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525))))
+ (-5 *1 (-528 *5 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-398 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1113) (-408 *3)))
+ (-14 *4 (-1091)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-4 *2 (-13 (-27) (-1113) (-408 *3) (-10 -8 (-15 -1270 ($ *4)))))
+ (-4 *4 (-787))
+ (-4 *5
+ (-13 (-1151 *2 *4) (-341) (-1113)
+ (-10 -8 (-15 -2523 ($ $)) (-15 -2650 ($ $)))))
+ (-5 *1 (-400 *3 *2 *4 *5 *6 *7)) (-4 *6 (-916 *5)) (-14 *7 (-1091)))))
+(((*1 *1) (-5 *1 (-1007))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1127)) (-4 *2 (-789))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1127))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-977))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1052 *3)) (-4 *3 (-977))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-1080 *3 *4))) (-14 *3 (-856)) (-4 *4 (-977))
+ (-5 *1 (-1080 *3 *4))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-632 *7)) (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *6 *5))
+ (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091))))
+ (-4 *6 (-735)) (-5 *1 (-859 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-620 (-205))) (-5 *2 (-966)) (-5 *1 (-693)))))
+(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-966)) (-5 *1 (-779))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357)))
+ (-5 *2 (-966)) (-5 *1 (-779)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1172 (-294 (-205))))
+ (-12 (-5 *3 (-1173 (-294 (-205))))
(-5 *2
(-2 (|:| |additions| (-525)) (|:| |multiplications| (-525))
(|:| |exponentiations| (-525)) (|:| |functionCalls| (-525))))
(-5 *1 (-284)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-357)) (-5 *1 (-989)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-632 *4)) (-5 *3 (-856)) (|has| *4 (-6 (-4257 "*")))
+ (-4 *4 (-977)) (-5 *1 (-959 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-856))
+ (|has| *4 (-6 (-4257 "*"))) (-4 *4 (-977)) (-5 *1 (-959 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-809)) (-5 *2 (-1178)) (-5 *1 (-1174))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1174))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) (-5 *2 (-966))
+ (-5 *1 (-689)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -1895 *9))))
+ (-5 *4 (-713)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1178))
+ (-5 *1 (-994 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -1895 *9))))
+ (-5 *4 (-713)) (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1178))
+ (-5 *1 (-1061 *5 *6 *7 *8 *9)))))
(((*1 *2 *1)
(|partial| -12
- (-4 *3 (-13 (-789) (-967 (-525)) (-588 (-525)) (-429)))
+ (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)))
(-5 *2
(-2
(|:| |%term|
- (-2 (|:| |%coef| (-1157 *4 *5 *6))
+ (-2 (|:| |%coef| (-1158 *4 *5 *6))
(|:| |%expon| (-297 *4 *5 *6))
(|:| |%expTerms|
(-592 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4))))))
- (|:| |%type| (-1073))))
- (-5 *1 (-1158 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1112) (-408 *3)))
- (-14 *5 (-1090)) (-14 *6 *4))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090)))
- (-14 *3 (-592 (-1090))) (-4 *4 (-365))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525))))
- ((*1 *1 *1) (-4 *1 (-933)))
- ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-943))))
- ((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-943))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-855))))
- ((*1 *1 *1) (-4 *1 (-943))))
+ (|:| |%type| (-1074))))
+ (-5 *1 (-1159 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-408 *3)))
+ (-14 *5 (-1091)) (-14 *6 *4))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-713) *2)) (-5 *4 (-713)) (-4 *2 (-1020))
+ (-5 *1 (-622 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-713) *3)) (-4 *3 (-1020)) (-5 *1 (-625 *3)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-856)) (-5 *4 (-205)) (-5 *5 (-525)) (-5 *6 (-809))
+ (-5 *2 (-1178)) (-5 *1 (-1174)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-812 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-814 *2)) (-4 *2 (-1127))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1052 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-977)))))
+(((*1 *2 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734))))
+ ((*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-977)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-713))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977)) (-4 *5 (-735))
+ (-4 *3 (-789)) (-5 *2 (-713)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1030)) (-5 *3 (-525)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-925 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-133 *4 *5 *3))
+ (-4 *3 (-351 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-925 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-476 *4 *5 *6 *3)) (-4 *6 (-351 *4)) (-4 *3 (-351 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 *5)) (-4 *5 (-925 *4)) (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |num| (-632 *4)) (|:| |den| *4)))
+ (-5 *1 (-635 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-4 *6 (-1149 *5))
+ (-5 *2 (-2 (|:| -4216 *7) (|:| |rh| (-592 (-385 *6)))))
+ (-5 *1 (-749 *5 *6 *7 *3)) (-5 *4 (-592 (-385 *6)))
+ (-4 *7 (-602 *6)) (-4 *3 (-602 (-385 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-925 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1142 *4 *5 *3))
+ (-4 *3 (-1149 *5)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-695)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-632 *2)) (-5 *4 (-713))
+ (-4 *2 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $)))))
+ (-4 *5 (-1149 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *3)) (-4 *3 (-1028 *5 *6 *7 *8))
+ (-12 (-5 *4 (-592 *3)) (-4 *3 (-1029 *5 *6 *7 *8))
(-4 *5 (-13 (-286) (-138))) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-108))
+ (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108))
(-5 *1 (-547 *5 *6 *7 *8 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-385 (-887 *4))) (-5 *3 (-1091))
+ (-4 *4 (-13 (-517) (-968 (-525)) (-138))) (-5 *1 (-531 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1176)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517))
+ (-4 *8 (-884 *7 *5 *6))
+ (-5 *2 (-2 (|:| -1864 (-713)) (|:| -1655 *3) (|:| |radicand| *3)))
+ (-5 *1 (-888 *5 *6 *7 *8 *3)) (-5 *4 (-713))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -1498 (*8 $)) (-15 -1512 (*8 $)) (-15 -1270 ($ *8))))))))
+(((*1 *1) (-5 *1 (-308))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1100 (-592 *4))) (-4 *4 (-789))
+ (-5 *2 (-592 (-592 *4))) (-5 *1 (-1099 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-681)))))
+(((*1 *1 *1) (-4 *1 (-517))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-986)) (-4 *3 (-1113))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-764)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-884 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-429))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *1))))
+ (-4 *1 (-996 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1131)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-517)) (-5 *1 (-1152 *3 *2))
+ (-4 *2 (-13 (-1149 *3) (-517) (-10 -8 (-15 -2794 ($ $ $))))))))
+(((*1 *1) (-5 *1 (-1094))))
+(((*1 *2 *1 *2 *3)
+ (-12 (-5 *2 (-1074)) (-5 *3 (-592 (-1074))) (-5 *1 (-1174))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1174))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1174))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *2 (-1074)) (-5 *3 (-592 (-1074))) (-5 *1 (-1175))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1175))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1175)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-160)) (-4 *2 (-23)) (-5 *1 (-268 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1149 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-654 *3 *2 *4 *5 *6)) (-4 *3 (-160))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *2 (-1149 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-977))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-658 *3 *2 *4 *5 *6)) (-4 *3 (-160))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-592 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4255)) (-4 *1 (-464 *3)) (-4 *3 (-1127))
+ (-5 *2 (-592 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1127))
+ (-4 *5 (-351 *4)) (-4 *2 (-351 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *6 *7 *2)) (-4 *6 (-977))
+ (-4 *7 (-218 *5 *6)) (-4 *2 (-218 *4 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))
+ ((*1 *1 *1 *1) (-4 *1 (-450)))
+ ((*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
+ ((*1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-818))))
+ ((*1 *1 *1) (-5 *1 (-904)))
+ ((*1 *1 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1149 (-525))) (-5 *1 (-461 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-1173 (-632 *4))) (-5 *1 (-88 *4 *5))
+ (-5 *3 (-632 *4)) (-4 *5 (-602 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1091))) (-4 *6 (-341))
+ (-5 *2 (-592 (-273 (-887 *6)))) (-5 *1 (-503 *5 *6 *7))
+ (-4 *5 (-429)) (-4 *7 (-13 (-341) (-787))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1172 *4)) (-4 *4 (-327)) (-5 *2 (-1086 *4))
+ (-12 (-5 *3 (-1173 *4)) (-4 *4 (-327)) (-5 *2 (-1087 *4))
(-5 *1 (-495 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-592 *8)))
+ (-4 *8 (-884 *5 *7 *6)) (-4 *5 (-13 (-286) (-138)))
+ (-4 *6 (-13 (-789) (-567 (-1091)))) (-4 *7 (-735)) (-5 *2 (-108))
+ (-5 *1 (-859 *5 *6 *7 *8)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281))))
+ ((*1 *1 *1) (-4 *1 (-281)))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
+ ((*1 *1 *1) (-5 *1 (-798))))
+(((*1 *1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-242))))
+ ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))))
+(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
+(((*1 *1) (-5 *1 (-745))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
+ (-5 *2
+ (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525))
+ (|:| |success| (-108))))
+ (-5 *1 (-731)) (-5 *5 (-525)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-341)) (-5 *2 (-592 (-1072 *4))) (-5 *1 (-264 *4 *5))
+ (-5 *3 (-1072 *4)) (-4 *5 (-1164 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-800 *4 *5 *6 *7))
- (-4 *4 (-976)) (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-713)))
+ (-12 (-5 *3 (-713)) (-5 *2 (-1178)) (-5 *1 (-801 *4 *5 *6 *7))
+ (-4 *4 (-977)) (-14 *5 (-592 (-1091))) (-14 *6 (-592 (-713)))
(-14 *7 (-713))))
((*1 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-976)) (-4 *5 (-789)) (-4 *6 (-735))
- (-14 *8 (-592 *5)) (-5 *2 (-1177))
- (-5 *1 (-1182 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-883 *4 *6 *5))
+ (-12 (-5 *3 (-713)) (-4 *4 (-977)) (-4 *5 (-789)) (-4 *6 (-735))
+ (-14 *8 (-592 *5)) (-5 *2 (-1178))
+ (-5 *1 (-1183 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-884 *4 *6 *5))
(-14 *9 (-592 (-713))) (-14 *10 (-713)))))
-(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-422 *3)) (-4 *3 (-976)))))
-(((*1 *1 *1) (-4 *1 (-91)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1105 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-110)) (-4 *4 (-977)) (-5 *1 (-657 *4 *2))
+ (-4 *2 (-594 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-776 *2)) (-4 *2 (-977)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1174))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *2 (-592 (-205)))
+ (-5 *1 (-445)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1052 *3)) (-4 *3 (-977))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-385 *1)) (-4 *1 (-1149 *3)) (-4 *3 (-977))
+ (-4 *3 (-517))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1149 *2)) (-4 *2 (-977)) (-4 *2 (-517)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-5 *2 (-1178)) (-5 *1 (-1094))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1091))
+ (-5 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-5 *2 (-1178))
+ (-5 *1 (-1094))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1091))
+ (-5 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-5 *2 (-1178))
+ (-5 *1 (-1094)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1074)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-242)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1164 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-735)) (-4 *2 (-884 *4 *5 *6)) (-5 *1 (-426 *4 *5 *6 *2))
+ (-4 *4 (-429)) (-4 *6 (-789)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-396 *4)) (-5 *3 (-1 (-396 *4) *4)) (-4 *4 (-517))
+ (-5 *1 (-397 *4))))
+ ((*1 *1 *1) (-5 *1 (-861)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861))))
+ ((*1 *1 *1) (-5 *1 (-862)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))
+ (-5 *4 (-385 (-525))) (-5 *1 (-951 *3)) (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))
+ (-5 *1 (-951 *3)) (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))
+ (-5 *4 (-385 (-525))) (-5 *1 (-952 *3))
+ (-4 *3 (-1149 (-385 (-525))))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))
+ (-5 *1 (-952 *3)) (-4 *3 (-1149 (-385 (-525))))))
((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090)))
- (-14 *3 (-592 (-1090))) (-4 *4 (-365))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
+ (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3))
+ (-4 *3 (-1149 *2)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1172 *3)) (-4 *3 (-976)) (-5 *1 (-655 *3 *4))
- (-4 *4 (-1148 *3)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))
- ((*1 *1 *1 *1) (-5 *1 (-797)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-956 *3)) (-4 *3 (-1126)))))
+ (-12 (-5 *2 (-592 *1)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-977)) (-5 *1 (-632 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *4)) (-4 *4 (-977)) (-4 *1 (-1041 *3 *4 *5 *6))
+ (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2794 (-724 *3)) (|:| |coef1| (-724 *3))
+ (|:| |coef2| (-724 *3))))
+ (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-2 (|:| -2794 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-991 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1149 (-525))) (-5 *1 (-461 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
+ (-12 (-5 *4 (-592 *3)) (-4 *3 (-1149 *5)) (-4 *5 (-286))
+ (-5 *2 (-713)) (-5 *1 (-432 *5 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-108)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1127)) (-4 *3 (-1127)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-910 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3))
+ (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-146))))
+ ((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-37 (-385 (-525))))
+ (-4 *2 (-160)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-396 *4)) (-4 *4 (-517)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1127)) (-5 *2 (-713)) (-5 *1 (-168 *4 *3))
+ (-4 *3 (-619 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1149 *3)) (-5 *1 (-377 *3 *2))
+ (-4 *3 (-13 (-341) (-138))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-304 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-734)) (-4 *3 (-160)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-286))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3523 *1)))
+ (-4 *1 (-286)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1058 *4 *2)) (-14 *4 (-856))
+ (-4 *2 (-13 (-977) (-10 -7 (-6 (-4257 "*"))))) (-5 *1 (-837 *4 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-632 *3))
+ (-4 *3 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $)))))
+ (-4 *4 (-1149 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-632 *3))
+ (-4 *3 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $)))))
+ (-4 *4 (-1149 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-907)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
+ (-4 *4 (-351 *2)))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1072 *4)) (-5 *3 (-525)) (-4 *4 (-977))
+ (-5 *1 (-1076 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-525)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-977))
+ (-14 *4 (-1091)) (-14 *5 *3))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-592 *2) *2 *2 *2)) (-4 *2 (-1020))
+ (-5 *1 (-98 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1020)) (-5 *1 (-98 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1087 *4)) (-5 *1 (-335 *4))
+ (-4 *4 (-327)))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1091)))))
+(((*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525)))))
+(((*1 *1 *1) (-4 *1 (-986)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-47))) (-5 *2 (-396 *3)) (-5 *1 (-38 *3))
- (-4 *3 (-1148 (-47)))))
+ (-12 (-5 *3 (-632 *8)) (-4 *8 (-884 *5 *7 *6))
+ (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1091))))
+ (-4 *7 (-735))
+ (-5 *2
+ (-592
+ (-2 (|:| -3318 (-713))
+ (|:| |eqns|
+ (-592
+ (-2 (|:| |det| *8) (|:| |rows| (-592 (-525)))
+ (|:| |cols| (-592 (-525))))))
+ (|:| |fgb| (-592 *8)))))
+ (-5 *1 (-859 *5 *6 *7 *8)) (-5 *4 (-713)))))
+(((*1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-346))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1173 *4)) (-5 *1 (-495 *4))
+ (-4 *4 (-327))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-789)) (-5 *1 (-656 *2 *3 *4)) (-4 *3 (-1020))
+ (-14 *4
+ (-1 (-108) (-2 (|:| -3640 *2) (|:| -1864 *3))
+ (-2 (|:| -3640 *2) (|:| -1864 *3)))))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
+ ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))
+ (-5 *2 (-357)) (-5 *1 (-246))))
((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1148 (-47)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735))
- (-5 *2 (-396 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-883 (-47) *6 *5))))
+ (-12 (-5 *3 (-1173 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-284)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-1087 *3)) (-5 *1 (-40 *4 *3))
+ (-4 *3
+ (-13 (-341) (-281)
+ (-10 -8 (-15 -1498 ((-1043 *4 (-565 $)) $))
+ (-15 -1512 ((-1043 *4 (-565 $)) $))
+ (-15 -1270 ($ (-1043 *4 (-565 $))))))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-977))
+ (-4 *2 (-13 (-382) (-968 *4) (-341) (-1113) (-263)))
+ (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1149 *4)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4255)) (-4 *1 (-464 *4))
+ (-4 *4 (-1127)) (-5 *2 (-108)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-977)) (-5 *1 (-1145 *3 *2)) (-4 *2 (-1149 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-385 *6))
+ (-5 *1 (-802 *5 *4 *6)) (-4 *4 (-1164 *5)) (-4 *6 (-1149 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1165 *5 *6 *7)) (-4 *5 (-341))
+ (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-385 (-1146 *6 *5)))
+ (-5 *1 (-803 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1165 *5 *6 *7)) (-4 *5 (-341))
+ (-14 *6 (-1091)) (-14 *7 *5) (-5 *2 (-385 (-1146 *6 *5)))
+ (-5 *1 (-803 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966))
+ (-5 *1 (-698)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1149 *3)) (-4 *3 (-977)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-98 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-838 *3)) (-4 *3 (-1020)) (-5 *2 (-1022 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1020)) (-5 *2 (-1022 (-592 *4))) (-5 *1 (-839 *4))
+ (-5 *3 (-592 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1020)) (-5 *2 (-1022 (-1022 *4))) (-5 *1 (-839 *4))
+ (-5 *3 (-1022 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1022 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
+ (-4 *4 (-351 *2)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1072 (-1072 *4))) (-4 *4 (-977)) (-5 *2 (-1072 *4))
+ (-5 *1 (-1076 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1127))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-977)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1149 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1) (-12 (-4 *1 (-1014 *3)) (-4 *3 (-1127)) (-5 *2 (-525)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3))
+ (-4 *3 (-996 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735))
- (-4 *7 (-883 (-47) *6 *5)) (-5 *2 (-396 (-1086 *7)))
- (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1086 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-155 *4 *3))
- (-4 *3 (-1148 (-157 *4)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4)))))
+ (-12 (-5 *4 (-592 *3)) (-4 *3 (-996 *5 *6 *7 *8)) (-4 *5 (-429))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108))
+ (-5 *1 (-921 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3))
- (-4 *3 (-1148 *4))))
+ (-12 (-5 *4 (-592 *3)) (-4 *3 (-996 *5 *6 *7 *8)) (-4 *5 (-429))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-108))
+ (-5 *1 (-1027 *5 *6 *7 *8 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1013 (-887 (-525)))) (-5 *3 (-887 (-525)))
+ (-5 *1 (-308))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1013 (-887 (-525)))) (-5 *1 (-308)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1072 (-1072 *4))) (-4 *4 (-37 (-385 (-525))))
+ (-4 *4 (-977)) (-5 *2 (-1072 *4)) (-5 *1 (-1076 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-341)) (-4 *1 (-307 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1149 *4)) (-4 *4 (-1131))
+ (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1149 (-385 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173 *4)) (-5 *3 (-1173 *1)) (-4 *4 (-160))
+ (-4 *1 (-345 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173 *4)) (-5 *3 (-1173 *1)) (-4 *4 (-160))
+ (-4 *1 (-348 *4 *5)) (-4 *5 (-1149 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1173 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4))
+ (-4 *4 (-1149 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1091))
+ (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1091))
+ (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5))))
+ (-5 *1 (-1047 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))
+ (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-13 (-286) (-789) (-138)))
+ (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1047 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
- (-4 *3 (-1148 (-525)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
- (-4 *3 (-1148 (-525)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3))
- (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
- (-4 *3 (-1148 (-525)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-396 (-157 (-525)))) (-5 *1 (-423))
- (-5 *3 (-157 (-525)))))
- ((*1 *2 *3)
- (-12
- (-4 *4
- (-13 (-789)
- (-10 -8 (-15 -1427 ((-1090) $))
- (-15 -1251 ((-3 $ "failed") (-1090))))))
- (-4 *5 (-735)) (-4 *7 (-517)) (-5 *2 (-396 *3))
- (-5 *1 (-433 *4 *5 *6 *7 *3)) (-4 *6 (-517))
- (-4 *3 (-883 *7 *5 *4))))
+ (-12 (-5 *3 (-273 (-385 (-887 *5)))) (-5 *4 (-1091))
+ (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5))))
+ (-5 *1 (-1047 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-286)) (-5 *2 (-396 (-1086 *4))) (-5 *1 (-435 *4))
- (-5 *3 (-1086 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341))
- (-4 *7 (-13 (-341) (-138) (-667 *5 *6))) (-5 *2 (-396 *3))
- (-5 *1 (-467 *5 *6 *7 *3)) (-4 *3 (-1148 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-396 (-1086 *7)) (-1086 *7)))
- (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735))
- (-5 *2 (-396 *3)) (-5 *1 (-505 *5 *6 *7 *3))
- (-4 *3 (-883 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-396 (-1086 *7)) (-1086 *7)))
- (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735))
- (-4 *8 (-883 *7 *6 *5)) (-5 *2 (-396 (-1086 *8)))
- (-5 *1 (-505 *5 *6 *7 *8)) (-5 *3 (-1086 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510))))
+ (-12 (-5 *3 (-273 (-385 (-887 *4))))
+ (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *4))))
+ (-5 *1 (-1047 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-592 *5) *6))
- (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
- (-4 *6 (-1148 *5)) (-5 *2 (-592 (-599 (-385 *6))))
- (-5 *1 (-603 *5 *6)) (-5 *3 (-599 (-385 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
- (-4 *5 (-1148 *4)) (-5 *2 (-592 (-599 (-385 *5))))
- (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5)))))
+ (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1091)))
+ (-4 *5 (-13 (-286) (-789) (-138)))
+ (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1047 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-617 *4)))
- (-5 *1 (-617 *4))))
+ (-12 (-5 *3 (-592 (-385 (-887 *4))))
+ (-4 *4 (-13 (-286) (-789) (-138)))
+ (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1047 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-525)) (-5 *2 (-592 *3)) (-5 *1 (-638 *3))
- (-4 *3 (-1148 (-525)))))
+ (-12 (-5 *3 (-592 (-273 (-385 (-887 *5))))) (-5 *4 (-592 (-1091)))
+ (-4 *5 (-13 (-286) (-789) (-138)))
+ (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1047 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327)) (-5 *2 (-396 *3))
- (-5 *1 (-640 *4 *5 *6 *3)) (-4 *3 (-883 *6 *5 *4))))
+ (-12 (-5 *3 (-592 (-273 (-385 (-887 *4)))))
+ (-4 *4 (-13 (-286) (-789) (-138)))
+ (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1047 *4)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-565 *6)) (-5 *3 (-592 (-565 *6))) (-5 *4 (-1091))
+ (-4 *6 (-408 *5)) (-4 *5 (-789)) (-5 *1 (-534 *5 *6)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2))
+ (-4 *2 (-602 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1127)))))
+(((*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1176))))
+ ((*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1176)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-502 *4 *2))
+ (-4 *2 (-1164 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 (-525))))
+ (-4 *5 (-1149 *4)) (-4 *6 (-667 *4 *5)) (-5 *1 (-506 *4 *5 *6 *2))
+ (-4 *2 (-1164 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 (-525))))
+ (-5 *1 (-507 *4 *2)) (-4 *2 (-1164 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1072 *4)) (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138)))
+ (-5 *1 (-1068 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798))))
+ ((*1 *1 *1) (-5 *1 (-798))))
+(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3))
+ (-4 *3 (-1149 *2)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1127)) (-5 *1 (-168 *3 *2))
+ (-4 *2 (-619 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-977)) (-4 *3 (-789))
+ (-4 *4 (-245 *3)) (-4 *5 (-735)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 *5)) (-4 *5 (-1149 *3)) (-4 *3 (-286))
+ (-5 *2 (-108)) (-5 *1 (-432 *3 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-242))) (-5 *4 (-1091)) (-5 *2 (-108))
+ (-5 *1 (-242)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4255)) (-4 *1 (-33)) (-5 *2 (-713))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-525))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-785)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-1173 *5)) (-4 *5 (-286))
+ (-4 *5 (-977)) (-5 *2 (-632 *5)) (-5 *1 (-960 *5)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-592 (-1087 *7))) (-5 *3 (-1087 *7))
+ (-4 *7 (-884 *5 *6 *4)) (-4 *5 (-844)) (-4 *6 (-735))
+ (-4 *4 (-789)) (-5 *1 (-841 *5 *6 *4 *7)))))
+(((*1 *1 *1) (-12 (-4 *1 (-115 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *1) (-12 (-5 *1 (-617 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3))
+ (-4 *3 (-1149 *2)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173 (-1091))) (-5 *3 (-1173 (-430 *4 *5 *6 *7)))
+ (-4 *4 (-160)) (-14 *5 (-856)) (-14 *6 (-592 (-1091)))
+ (-14 *7 (-1173 (-632 *4))) (-5 *1 (-430 *4 *5 *6 *7))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-430 *4 *5 *6 *7)))
+ (-4 *4 (-160)) (-14 *5 (-856)) (-14 *6 (-592 (-1091)))
+ (-14 *7 (-1173 (-632 *4))) (-5 *1 (-430 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1173 (-430 *3 *4 *5 *6))) (-4 *3 (-160))
+ (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3)))
+ (-5 *1 (-430 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1173 (-1091))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-160)) (-14 *4 (-856)) (-14 *5 (-592 (-1091)))
+ (-14 *6 (-1173 (-632 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1091)) (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160))
+ (-14 *4 (-856)) (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-430 *2 *3 *4 *5)) (-4 *2 (-160)) (-14 *3 (-856))
+ (-14 *4 (-592 (-1091))) (-14 *5 (-1173 (-632 *2))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
+ (-5 *2 (-632 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1072 (-205))) (-5 *2 (-592 (-1074))) (-5 *1 (-174))))
((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327))
- (-4 *7 (-883 *6 *5 *4)) (-5 *2 (-396 (-1086 *7)))
- (-5 *1 (-640 *4 *5 *6 *7)) (-5 *3 (-1086 *7))))
+ (-12 (-5 *3 (-1072 (-205))) (-5 *2 (-592 (-1074))) (-5 *1 (-279))))
((*1 *2 *3)
- (-12 (-4 *4 (-735))
- (-4 *5
- (-13 (-789)
- (-10 -8 (-15 -1427 ((-1090) $))
- (-15 -1251 ((-3 $ "failed") (-1090))))))
- (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-673 *4 *5 *6 *3))
- (-4 *3 (-883 (-886 *6) *4 *5))))
+ (-12 (-5 *3 (-1072 (-205))) (-5 *2 (-592 (-1074))) (-5 *1 (-284)))))
+(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1516 *4)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-565 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1091)))
+ (-4 *2 (-13 (-408 *5) (-27) (-1113)))
+ (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1020)))))
+(((*1 *1 *1) (-5 *1 (-798))))
+(((*1 *2)
+ (-12 (-4 *1 (-327))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-962)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 (-157 (-525))))) (-5 *2 (-592 (-157 *4)))
+ (-5 *1 (-356 *4)) (-4 *4 (-13 (-341) (-787)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 (-385 (-887 (-157 (-525))))))
+ (-5 *4 (-592 (-1091))) (-5 *2 (-592 (-592 (-157 *5))))
+ (-5 *1 (-356 *5)) (-4 *5 (-13 (-341) (-787))))))
+(((*1 *1) (-5 *1 (-135))) ((*1 *1 *1) (-5 *1 (-798))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1127)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))))
+(((*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286))))
((*1 *2 *3)
- (-12 (-4 *4 (-735))
- (-4 *5 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $))))) (-4 *6 (-517))
- (-5 *2 (-396 *3)) (-5 *1 (-675 *4 *5 *6 *3))
- (-4 *3 (-883 (-385 (-886 *6)) *4 *5))))
+ (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))
+ ((*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *1) (-4 *1 (-804 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-734))
+ (-4 *4 (-789)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1051 (-205))) (-5 *3 (-592 (-242))) (-5 *1 (-1175))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1051 (-205))) (-5 *3 (-1074)) (-5 *1 (-1175))))
+ ((*1 *1 *1) (-5 *1 (-1175))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *1 *1) (-5 *1 (-108))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1087 *1)) (-5 *3 (-1091)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-887 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1087 *2)) (-5 *4 (-1091)) (-4 *2 (-408 *5))
+ (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-789) (-517)))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1087 *1)) (-5 *3 (-856)) (-4 *1 (-944))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1087 *1)) (-5 *3 (-856)) (-5 *4 (-798))
+ (-4 *1 (-944))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-856)) (-4 *4 (-13 (-787) (-341)))
+ (-4 *1 (-993 *4 *2)) (-4 *2 (-1149 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-861)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-1091))) (-5 *2 (-1178)) (-5 *1 (-1094))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1091)) (-5 *4 (-592 (-1091))) (-5 *2 (-1178))
+ (-5 *1 (-1094))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1091)) (-5 *4 (-592 (-1091))) (-5 *2 (-1178))
+ (-5 *1 (-1094)))))
+(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1113))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-396 (-1087 (-525)))) (-5 *1 (-173)) (-5 *3 (-525)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789))))
((*1 *2 *3)
- (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-13 (-286) (-138)))
- (-5 *2 (-396 *3)) (-5 *1 (-676 *4 *5 *6 *3))
- (-4 *3 (-883 (-385 *6) *4 *5))))
+ (|partial| -12 (-4 *4 (-735)) (-4 *5 (-977)) (-4 *6 (-884 *5 *4 *2))
+ (-4 *2 (-789)) (-5 *1 (-885 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -1270 ($ *6)) (-15 -1498 (*6 $))
+ (-15 -1512 (*6 $)))))))
((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138)))
- (-5 *2 (-396 *3)) (-5 *1 (-684 *4 *5 *6 *3))
- (-4 *3 (-883 *6 *5 *4))))
+ (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517))
+ (-5 *2 (-1091)) (-5 *1 (-973 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3))
+ (-4 *3 (-901)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-108))))
((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138)))
- (-4 *7 (-883 *6 *5 *4)) (-5 *2 (-396 (-1086 *7)))
- (-5 *1 (-684 *4 *5 *6 *7)) (-5 *3 (-1086 *7))))
+ (-12 (-5 *3 (-1087 *4)) (-4 *4 (-327)) (-5 *2 (-108))
+ (-5 *1 (-335 *4)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -1655 *3) (|:| |gap| (-713)) (|:| -2370 (-724 *3))
+ (|:| -3496 (-724 *3))))
+ (-5 *1 (-724 *3)) (-4 *3 (-977))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789))
+ (-5 *2
+ (-2 (|:| -1655 *1) (|:| |gap| (-713)) (|:| -2370 *1)
+ (|:| -3496 *1)))
+ (-4 *1 (-991 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2
+ (-2 (|:| -1655 *1) (|:| |gap| (-713)) (|:| -2370 *1)
+ (|:| -3496 *1)))
+ (-4 *1 (-991 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1127)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1113)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
+ ((*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-357)) (-5 *2 (-1178)) (-5 *1 (-1174)))))
+(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1074)) (-5 *1 (-653)))))
+(((*1 *1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-351 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977))
+ (-5 *2 (-592 (-592 (-878 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-592 (-592 (-878 *4)))) (-5 *3 (-108)) (-4 *4 (-977))
+ (-4 *1 (-1052 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 (-878 *3)))) (-4 *3 (-977))
+ (-4 *1 (-1052 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-108))
+ (-4 *1 (-1052 *4)) (-4 *4 (-977))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-592 (-592 (-878 *4)))) (-5 *3 (-108))
+ (-4 *1 (-1052 *4)) (-4 *4 (-977))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-592 (-159)))
+ (-5 *4 (-159)) (-4 *1 (-1052 *5)) (-4 *5 (-977))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-592 (-592 (-878 *5)))) (-5 *3 (-592 (-159)))
+ (-5 *4 (-159)) (-4 *1 (-1052 *5)) (-4 *5 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *6 *5))
+ (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091))))
+ (-4 *6 (-735)) (-5 *2 (-108)) (-5 *1 (-859 *4 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-938 *3))
- (-4 *3 (-1148 (-385 (-525))))))
+ (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-13 (-286) (-138)))
+ (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *2 (-108))
+ (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-887 *5)) (-4 *5 (-977)) (-5 *2 (-227 *4 *5))
+ (-5 *1 (-879 *4 *5)) (-14 *4 (-592 (-1091))))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-308)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1072 (-525))) (-5 *1 (-1076 *4)) (-4 *4 (-977))
+ (-5 *3 (-525)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *3 (-592 (-525)))
+ (-5 *1 (-818)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7))
+ (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1))
+ (-4 *1 (-996 *4 *5 *6 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-966))
+ (-5 *1 (-699)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *6)) (-4 *5 (-1020))
+ (-4 *6 (-1127)) (-5 *2 (-1 *6 *5)) (-5 *1 (-589 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1020))
+ (-4 *2 (-1127)) (-5 *1 (-589 *5 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 *5)) (-4 *6 (-1020))
+ (-4 *5 (-1127)) (-5 *2 (-1 *5 *6)) (-5 *1 (-589 *6 *5))))
+ ((*1 *2 *3 *4 *5 *2)
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1020))
+ (-4 *2 (-1127)) (-5 *1 (-589 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-592 *5)) (-5 *4 (-592 *6))
+ (-4 *5 (-1020)) (-4 *6 (-1127)) (-5 *1 (-589 *5 *6))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1020)) (-4 *2 (-1127)) (-5 *1 (-589 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-135)) (-5 *2 (-713)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2))
+ (-4 *2 (-602 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1131))
+ (-4 *5 (-1149 *4)) (-4 *6 (-1149 (-385 *5)))
+ (-5 *2 (-2 (|:| |num| (-632 *5)) (|:| |den| *5))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-977)) (-4 *2 (-517)))))
+(((*1 *2 *1) (-12 (-4 *1 (-968 (-525))) (-4 *1 (-281)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-5 *1 (-305 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-5 *1 (-488 *3 *4))
+ (-14 *4 (-525)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-391 *3 *4 *5 *6)) (-4 *6 (-968 *4)) (-4 *3 (-286))
+ (-4 *4 (-925 *3)) (-4 *5 (-1149 *4)) (-4 *6 (-387 *4 *5))
+ (-14 *7 (-1173 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1173 *6)) (-4 *6 (-387 *4 *5)) (-14 *7 (-1173 *6))
+ (-4 *4 (-925 *3)) (-4 *5 (-1149 *4)) (-4 *3 (-286))
+ (-5 *1 (-392 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1087 *1)) (-5 *4 (-1091)) (-4 *1 (-27))
+ (-5 *2 (-592 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1091)))
+ (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1072 (-205))) (-5 *1 (-279)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 *4)) (-5 *1 (-1057 *3 *4))
+ (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33))))))
+(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-1113))))
+ ((*1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-565 *3)) (-4 *3 (-789)))))
+(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1074)) (-5 *1 (-284)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-713)) (-5 *5 (-592 *3)) (-4 *3 (-286)) (-4 *6 (-789))
+ (-4 *7 (-735)) (-5 *2 (-108)) (-5 *1 (-575 *6 *7 *3 *8))
+ (-4 *8 (-884 *3 *7 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1131)) (-4 *5 (-1149 *4)) (-4 *6 (-1149 (-385 *5)))
+ (-5 *2 (-592 (-592 *4))) (-5 *1 (-319 *3 *4 *5 *6))
+ (-4 *3 (-320 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-4 *3 (-346)) (-5 *2 (-592 (-592 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-1 (-108) *5))
+ (-5 *1 (-825 *4 *5)) (-4 *5 (-1127)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-977)) (-5 *1 (-829 *2 *3)) (-4 *2 (-1149 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108))
+ (-5 *6 (-205)) (-5 *7 (-632 (-525)))
+ (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))
+ (-5 *2 (-966)) (-5 *1 (-696)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-920 (-385 (-525)) (-800 *3) (-220 *4 (-713))
+ (-227 *3 (-385 (-525)))))
+ (-14 *3 (-592 (-1091))) (-14 *4 (-713)) (-5 *1 (-919 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-51)))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1096))) (-5 *1 (-169)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-592 (-1 *4 (-592 *4)))) (-4 *4 (-1020))
+ (-5 *1 (-109 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1020))
+ (-5 *1 (-109 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-970 *3))
- (-4 *3 (-1148 (-385 (-886 (-525)))))))
+ (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-1 *4 (-592 *4))))
+ (-5 *1 (-109 *4)) (-4 *4 (-1020)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977))
+ (-14 *4 (-592 (-1091)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789)))
+ (-14 *4 (-592 (-1091)))))
+ ((*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-313 *3 *4 *5 *2)) (-4 *3 (-341))
+ (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4)))
+ (-4 *2 (-320 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713))
+ (-14 *4 (-713)) (-4 *5 (-160))))
+ ((*1 *1) (-12 (-4 *2 (-160)) (-4 *1 (-667 *2 *3)) (-4 *3 (-1149 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1020)) (-4 *2 (-835 *5)) (-5 *1 (-634 *5 *2 *3 *4))
+ (-4 *3 (-351 *2)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *1) (-5 *1 (-415))))
+(((*1 *1 *2) (-12 (-5 *2 (-169)) (-5 *1 (-228)))))
+(((*1 *1) (-5 *1 (-146))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *1 (-623 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-592 (-1091))) (-14 *5 (-713))
+ (-5 *2
+ (-592
+ (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
+ (-227 *4 (-385 (-525))))))
+ (-5 *1 (-478 *4 *5))
+ (-5 *3
+ (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
+ (-227 *4 (-385 (-525))))))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525)))
+ (-5 *2 (-966)) (-5 *1 (-699)))))
+(((*1 *2)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525)))))
+ (-4 *4 (-1149 (-385 (-525)))) (-5 *2 (-525)) (-5 *1 (-848 *4 *5))
+ (-4 *5 (-1149 (-385 *4))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1173 (-525))) (-5 *3 (-525)) (-5 *1 (-1030))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1173 (-525))) (-5 *3 (-592 (-525))) (-5 *4 (-525))
+ (-5 *1 (-1030)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-651 *3)) (-5 *1 (-769 *2 *3)) (-4 *3 (-977)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-840 (-525))) (-5 *4 (-525)) (-5 *2 (-632 *4))
+ (-5 *1 (-959 *5)) (-4 *5 (-977))))
((*1 *2 *3)
- (-12 (-4 *4 (-1148 (-385 (-525))))
- (-4 *5 (-13 (-341) (-138) (-667 (-385 (-525)) *4)))
- (-5 *2 (-396 *3)) (-5 *1 (-1001 *4 *5 *3)) (-4 *3 (-1148 *5))))
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-959 *4))
+ (-4 *4 (-977))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-840 (-525)))) (-5 *4 (-525))
+ (-5 *2 (-592 (-632 *4))) (-5 *1 (-959 *5)) (-4 *5 (-977))))
((*1 *2 *3)
- (-12 (-4 *4 (-1148 (-385 (-886 (-525)))))
- (-4 *5 (-13 (-341) (-138) (-667 (-385 (-886 (-525))) *4)))
- (-5 *2 (-396 *3)) (-5 *1 (-1003 *4 *5 *3)) (-4 *3 (-1148 *5))))
+ (-12 (-5 *3 (-592 (-592 (-525)))) (-5 *2 (-592 (-632 (-525))))
+ (-5 *1 (-959 *4)) (-4 *4 (-977)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-763)) (-5 *4 (-51)) (-5 *2 (-1178)) (-5 *1 (-773)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *1 (-623 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-592 (-385 *6))) (-4 *6 (-1149 *5))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525))))
+ (-5 *2
+ (-2 (|:| |mainpart| (-385 *6))
+ (|:| |limitedlogs|
+ (-592
+ (-2 (|:| |coeff| (-385 *6)) (|:| |logand| (-385 *6)))))))
+ (-5 *1 (-529 *5 *6)) (-5 *3 (-385 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
+ (-4 *3 (-13 (-341) (-1113) (-934))))))
+(((*1 *1 *1) (-5 *1 (-47)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1127))
+ (-4 *2 (-1127)) (-5 *1 (-56 *5 *2))))
+ ((*1 *2 *3 *1 *2 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1020)) (|has| *1 (-6 -4255))
+ (-4 *1 (-142 *2)) (-4 *2 (-1127))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4255)) (-4 *1 (-142 *2))
+ (-4 *2 (-1127))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4255)) (-4 *1 (-142 *2))
+ (-4 *2 (-1127))))
((*1 *2 *3)
- (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429))
- (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-396 (-1086 (-385 *7))))
- (-5 *1 (-1085 *4 *5 *6 *7)) (-5 *3 (-1086 (-385 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1130))))
+ (-12 (-4 *4 (-977))
+ (-5 *2 (-2 (|:| -3696 (-1087 *4)) (|:| |deg| (-856))))
+ (-5 *1 (-201 *4 *5)) (-5 *3 (-1087 *4)) (-4 *5 (-13 (-517) (-789)))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713))
+ (-4 *6 (-1127)) (-4 *2 (-1127)) (-5 *1 (-219 *5 *6 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-160)) (-5 *1 (-268 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1149 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-517)) (-4 *2 (-789))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-313 *2 *3 *4 *5)) (-4 *2 (-341)) (-4 *3 (-1149 *2))
+ (-4 *4 (-1149 (-385 *3))) (-4 *5 (-320 *2 *3 *4))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1127)) (-4 *2 (-1127))
+ (-5 *1 (-349 *5 *4 *2 *6)) (-4 *4 (-351 *5)) (-4 *6 (-351 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1020)) (-4 *2 (-1020))
+ (-5 *1 (-401 *5 *4 *2 *6)) (-4 *4 (-403 *5)) (-4 *6 (-403 *2))))
+ ((*1 *1 *1) (-5 *1 (-468)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-592 *5)) (-4 *5 (-1127))
+ (-4 *2 (-1127)) (-5 *1 (-590 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-977)) (-4 *2 (-977))
+ (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *8 (-351 *2))
+ (-4 *9 (-351 *2)) (-5 *1 (-628 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-630 *5 *6 *7)) (-4 *10 (-630 *2 *8 *9))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1149 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1149 *3)) (-4 *3 (-341))
+ (-4 *3 (-160)) (-4 *1 (-667 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1149 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-892 *5)) (-4 *5 (-1127))
+ (-4 *2 (-1127)) (-5 *1 (-891 *5 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-965 *3 *4 *5 *2 *6)) (-4 *2 (-884 *3 *4 *5))
+ (-14 *6 (-592 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-977)) (-4 *2 (-977))
+ (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7))
+ (-4 *9 (-218 *5 *7)) (-4 *10 (-218 *6 *2)) (-4 *11 (-218 *5 *2))
+ (-5 *1 (-982 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-980 *5 *6 *7 *8 *9)) (-4 *12 (-980 *5 *6 *2 *10 *11))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1072 *5)) (-4 *5 (-1127))
+ (-4 *2 (-1127)) (-5 *1 (-1070 *5 *2))))
+ ((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-108) *2 *2))
+ (-4 *1 (-1121 *5 *6 *7 *2)) (-4 *5 (-517)) (-4 *6 (-735))
+ (-4 *7 (-789)) (-4 *2 (-991 *5 *6 *7))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1173 *5)) (-4 *5 (-1127))
+ (-4 *2 (-1127)) (-5 *1 (-1172 *5 *2)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108))
+ (-5 *6 (-632 (-205)))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))
+ (-5 *2 (-966)) (-5 *1 (-696)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-1149 *4)) (-5 *1 (-504 *4 *2 *5 *6))
+ (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-599 (-385 *2))) (-4 *2 (-1149 *4)) (-5 *1 (-752 *4 *2))
+ (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))))
((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-1137 *3)) (-4 *3 (-1148 (-525))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-996 *5 *6 *7 *3 *4))
- (-4 *4 (-995 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -3740 *4))))
- (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-242))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160))))
- ((*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))))
-(((*1 *1) (-5 *1 (-308))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1173))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1173))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1174))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1174)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))))
+ (-12 (-5 *3 (-600 *2 (-385 *2))) (-4 *2 (-1149 *4))
+ (-5 *1 (-752 *4 *2))
+ (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525))))))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205)))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2))))
+ (-5 *2 (-966)) (-5 *1 (-696)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-797)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713))
- (-14 *4 (-713)) (-4 *5 (-160)))))
-(((*1 *1 *1) (-5 *1 (-205))) ((*1 *1 *1) (-5 *1 (-357)))
- ((*1 *1) (-5 *1 (-357))))
-(((*1 *1 *1) (-4 *1 (-91)))
- ((*1 *2 *2)
+ (-12 (-5 *2 (-592 (-2 (|:| |k| (-1091)) (|:| |c| (-1193 *3)))))
+ (-5 *1 (-1193 *3)) (-4 *3 (-977))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-2 (|:| |k| *3) (|:| |c| (-1195 *3 *4)))))
+ (-5 *1 (-1195 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977)))))
+(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090)))
- (-14 *3 (-592 (-1090))) (-4 *4 (-365))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4)))
- (-5 *2 (-1172 *6)) (-5 *1 (-314 *3 *4 *5 *6))
- (-4 *6 (-320 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-789)) (-5 *5 (-592 (-592 *6)))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-909 *4 *5 *6 *3)) (-4 *4 (-977)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-395 *4)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
+(((*1 *2 *3 *1)
+ (-12
(-5 *2
- (-2 (|:| |f1| (-592 *6)) (|:| |f2| (-592 *5)) (|:| |f3| *5)
- (|:| |f4| (-592 *5))))
- (-5 *1 (-1098 *6)) (-5 *3 (-592 *6)) (-5 *4 (-592 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090))
- (-14 *4 *2))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-445))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1173))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1174)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-771)))))
-(((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-592 (-592 (-877 (-205)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-906)) (-5 *2 (-592 (-592 (-877 (-205))))))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-695)))))
+ (-2 (|:| |cycle?| (-108)) (|:| -1950 (-713)) (|:| |period| (-713))))
+ (-5 *1 (-1072 *4)) (-4 *4 (-1127)) (-5 *3 (-713)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-565 *6)) (-4 *6 (-13 (-408 *5) (-27) (-1113)))
+ (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2 (-1087 (-385 (-1087 *6)))) (-5 *1 (-521 *5 *6 *7))
+ (-5 *3 (-1087 *6)) (-4 *7 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1149 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-977))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1149 *3))))
+ ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
+ (|partial| -12 (-5 *4 (-1087 *11)) (-5 *6 (-592 *10))
+ (-5 *7 (-592 (-713))) (-5 *8 (-592 *11)) (-4 *10 (-789))
+ (-4 *11 (-286)) (-4 *9 (-735)) (-4 *5 (-884 *11 *9 *10))
+ (-5 *2 (-592 (-1087 *5))) (-5 *1 (-685 *9 *10 *11 *5))
+ (-5 *3 (-1087 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-884 *3 *4 *5)) (-5 *1 (-965 *3 *4 *5 *2 *6))
+ (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-14 *6 (-592 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1173 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517))
+ (-5 *2 (-108)) (-5 *1 (-587 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-429))
+ (-5 *2
+ (-592
+ (-2 (|:| |eigval| (-3 (-385 (-887 *4)) (-1081 (-1091) (-887 *4))))
+ (|:| |geneigvec| (-592 (-632 (-385 (-887 *4))))))))
+ (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-887 *4)))))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-713)) (-4 *3 (-1127)) (-4 *1 (-55 *3 *4 *5))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *1) (-5 *1 (-159)))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-367))))
+ ((*1 *1) (-5 *1 (-372)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-4 *1 (-597 *3)) (-4 *3 (-1127))))
+ ((*1 *1)
+ (-12 (-4 *3 (-1020)) (-5 *1 (-820 *2 *3 *4)) (-4 *2 (-1020))
+ (-4 *4 (-612 *3))))
+ ((*1 *1) (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020))))
+ ((*1 *1) (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977))))
+ ((*1 *1 *1) (-5 *1 (-1091))) ((*1 *1) (-5 *1 (-1091)))
+ ((*1 *1) (-5 *1 (-1108))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-517)) (-4 *2 (-977))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1149 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *1))))
+ (-4 *1 (-996 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1074)) (-5 *2 (-592 (-1096))) (-5 *1 (-1053)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-724 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-897 *3 *2)) (-4 *2 (-126)) (-4 *3 (-517))
+ (-4 *3 (-977)) (-4 *2 (-734))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-1087 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-904)) (-4 (-904) (-126)) (-5 *1 (-1093 *3))
+ (-4 *3 (-517)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-1146 *4 *3)) (-14 *4 (-1091))
+ (-4 *3 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1087 *4)) (-5 *1 (-335 *4))
+ (-4 *4 (-327)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3))))
- ((*1 *1 *1) (-4 *1 (-1115))))
-(((*1 *2 *3 *3 *1)
- (|partial| -12 (-5 *3 (-1090)) (-5 *2 (-1023)) (-5 *1 (-270)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-146)))))
+ (-4 *2 (-13 (-408 *3) (-934))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1071 *4) (-1071 *4))) (-4 *4 (-1126))
- (-5 *2 (-1071 *4)) (-5 *1 (-1195 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-592 (-1071 *5)) (-592 (-1071 *5)))) (-5 *4 (-525))
- (-4 *5 (-1126)) (-5 *2 (-592 (-1071 *5))) (-5 *1 (-1195 *5)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-592 *6)) (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5))
- (-4 *3 (-517)))))
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
+ (-4 *4 (-13 (-789) (-517))))))
+(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-525))) (-5 *5 (-108))
+ (-5 *6 (-205)) (-5 *7 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-697)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-989)) (-5 *3 (-1074)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1020))
+ (-4 *2 (-789)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-877 (-205)) (-877 (-205)))) (-5 *3 (-592 (-242)))
- (-5 *1 (-240))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1 (-877 (-205)) (-877 (-205)))) (-5 *1 (-242))))
+ (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-2 (|:| -3423 *3) (|:| -2544 *4))))
+ (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *1 (-1104 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1104 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1091)) (-4 *5 (-341)) (-5 *2 (-592 (-1122 *5)))
+ (-5 *1 (-1181 *5)) (-5 *4 (-1122 *5)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735))
+ (-4 *9 (-789)) (-4 *3 (-991 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4))))))
+ (-5 *1 (-994 *7 *8 *9 *3 *4)) (-4 *4 (-996 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
+ (-4 *3 (-991 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4))))))
+ (-5 *1 (-994 *6 *7 *8 *3 *4)) (-4 *4 (-996 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-457 *5 *6)) (-5 *4 (-592 (-457 *5 *6)))
- (-14 *5 (-592 (-1090))) (-4 *6 (-429)) (-5 *2 (-1172 *6))
- (-5 *1 (-580 *5 *6)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-713)) (-5 *3 (-877 *5)) (-4 *5 (-976))
- (-5 *1 (-1079 *4 *5)) (-14 *4 (-855))))
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4))))))
+ (-5 *1 (-994 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735))
+ (-4 *9 (-789)) (-4 *3 (-991 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4))))))
+ (-5 *1 (-1061 *7 *8 *9 *3 *4)) (-4 *4 (-1029 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
+ (-4 *3 (-991 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4))))))
+ (-5 *1 (-1061 *6 *7 *8 *3 *4)) (-4 *4 (-1029 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-592 *4))
+ (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4))))))
+ (-5 *1 (-1061 *5 *6 *7 *3 *4)) (-4 *4 (-1029 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1127)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1007))) (-5 *1 (-270)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-977)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1091)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 (-856))) (-4 *2 (-341)) (-5 *1 (-143 *4 *2 *5))
+ (-14 *4 (-856)) (-14 *5 (-926 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4))
+ (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1091)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-126))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-977))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4))
+ (-4 *4 (-1149 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-977))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-977)) (-5 *1 (-678 *2 *3)) (-4 *3 (-669))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1079 *4 *5))
- (-14 *4 (-855)) (-4 *5 (-976))))
+ (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5))
+ (-4 *4 (-977)) (-4 *5 (-789))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-713))) (-5 *3 (-877 *5)) (-4 *5 (-976))
- (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-698)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *2 (-965)) (-5 *1 (-700)))))
+ (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-977))
+ (-4 *2 (-789))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-977))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-884 *4 *5 *6))
+ (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-884 *4 *5 *2)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *2 (-789))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-4 *2 (-884 *4 (-497 *5) *5))
+ (-5 *1 (-1044 *4 *5 *2)) (-4 *4 (-977)) (-4 *5 (-789))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-887 *4)) (-5 *1 (-1122 *4))
+ (-4 *4 (-977)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-713)) (-5 *4 (-525)) (-5 *1 (-422 *2)) (-4 *2 (-977)))))
(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1090)) (-5 *5 (-1 (-542 *3) *3 (-1090)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1090)))
- (-4 *3 (-263)) (-4 *3 (-578)) (-4 *3 (-967 (-1090)))
- (-4 *3 (-408 *7)) (-4 *7 (-567 (-826 (-525)))) (-4 *7 (-429))
- (-4 *7 (-820 (-525))) (-4 *7 (-789)) (-5 *2 (-542 *3))
- (-5 *1 (-534 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3))))
- ((*1 *1 *1) (-4 *1 (-1115))))
+ (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-565 *3))
+ (-5 *6 (-592 (-565 *3))) (-4 *3 (-13 (-27) (-1113) (-408 *7)))
+ (-4 *7 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-2 (|:| -1679 *3) (|:| |coeff| *3)))
+ (-5 *1 (-518 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977))))
+ ((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *1 (-242))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1173 *1)) (-4 *1 (-307 *4)) (-4 *4 (-341))
+ (-5 *2 (-632 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1173 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
+ (-5 *2 (-632 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
+ (-5 *2 (-1173 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1173 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160))
+ (-4 *5 (-1149 *4)) (-5 *2 (-632 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1173 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160))
+ (-4 *5 (-1149 *4)) (-5 *2 (-1173 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1173 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-160))
+ (-4 *5 (-1149 *4)) (-5 *2 (-632 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1149 *3))
+ (-5 *2 (-1173 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1173 *1)) (-4 *1 (-395 *4)) (-4 *4 (-160))
+ (-5 *2 (-632 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1173 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 *5)) (-5 *4 (-592 (-632 *5))) (-4 *5 (-341))
+ (-5 *2 (-1173 *5)) (-5 *1 (-1008 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-702)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))))
+(((*1 *1 *1 *1) (-4 *1 (-510))))
+(((*1 *2) (-12 (-5 *2 (-1063 (-1074))) (-5 *1 (-369)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1093 (-385 (-525)))) (-5 *2 (-385 (-525)))
+ (-5 *1 (-172)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-415)) (-5 *1 (-1095)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
+ (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-224 *2)) (-4 *2 (-1127)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -2913 (-592 *3)) (|:| -3716 (-592 *3))))
+ (-5 *1 (-1128 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-4 *3 (-1149 *4)) (-5 *1 (-751 *4 *3 *2 *5)) (-4 *2 (-602 *3))
+ (-4 *5 (-602 (-385 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-385 *5)) (-4 *5 (-1149 *4))
+ (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-5 *1 (-751 *4 *5 *2 *6)) (-4 *2 (-602 *5))
+ (-4 *6 (-602 (-385 *5))))))
+(((*1 *2)
+ (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4))
+ (-4 *3 (-307 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1190 *3)) (-4 *3 (-341)) (-5 *2 (-713)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1020)) (-5 *2 (-1074)))))
+(((*1 *2 *2) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1020)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-367)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-110))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789))
+ (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789))
+ (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-357)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-132))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-135)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
+(((*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))))
+(((*1 *1 *1) (-5 *1 (-989))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-966)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-341)) (-4 *6 (-1149 (-385 *2)))
+ (-4 *2 (-1149 *5)) (-5 *1 (-196 *5 *2 *6 *3))
+ (-4 *3 (-320 *5 *2 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1086 (-385 (-886 *3)))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-991 *3 *4 *5)))))
+(((*1 *1) (-5 *1 (-989))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1174))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1174))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1175))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-242))) (-5 *1 (-1175)))))
+(((*1 *1 *1) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-742))
+ (-5 *3
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (-5 *2 (-966)))))
+(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1074)) (-5 *1 (-653)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-856))
+ (-5 *2 (-1173 (-592 (-2 (|:| -3352 *4) (|:| -3640 (-1038))))))
+ (-5 *1 (-324 *4)) (-4 *4 (-327)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1074) (-716))) (-5 *1 (-110)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-4 *2 (-977)) (-4 *3 (-785)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2 (-592 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1149 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2 (-592 *3)) (-5 *1 (-1046 *4 *3)) (-4 *4 (-1149 *3)))))
+(((*1 *1 *1) (|partial| -4 *1 (-136))) ((*1 *1 *1) (-4 *1 (-327)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-136)) (-4 *1 (-844)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *3 (-1173 (-357))) (-5 *4 (-525)) (-5 *5 (-357))
+ (-5 *6 (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)))
+ (-5 *2 (-1178)) (-5 *1 (-730)))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-445))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1174))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1175)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-224 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-632 (-385 (-887 (-525))))) (-5 *2 (-592 (-294 (-525))))
+ (-5 *1 (-962)))))
+(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-1072 *4) (-1072 *4))) (-4 *4 (-1127))
+ (-5 *2 (-1072 *4)) (-5 *1 (-1196 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-592 (-1072 *5)) (-592 (-1072 *5)))) (-5 *4 (-525))
+ (-4 *5 (-1127)) (-5 *2 (-592 (-1072 *5))) (-5 *1 (-1196 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 *1)) (-5 *4 (-1173 *1)) (-4 *1 (-588 *5))
+ (-4 *5 (-977))
+ (-5 *2 (-2 (|:| -1484 (-632 *5)) (|:| |vec| (-1173 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 *1)) (-4 *1 (-588 *4)) (-4 *4 (-977))
+ (-5 *2 (-632 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-4 *5 (-341))
+ (-4 *5 (-977)) (-5 *2 (-108)) (-5 *1 (-960 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-4 *4 (-977))
+ (-5 *2 (-108)) (-5 *1 (-960 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138)))
+ (-5 *1 (-1143 *4 *2)) (-4 *2 (-1149 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-641)) (-5 *1 (-284)))))
+(((*1 *1 *1) (-4 *1 (-607))) ((*1 *1 *1) (-5 *1 (-1038))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1126))
+ (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1127))
(-4 *4 (-351 *2)) (-4 *5 (-351 *2))))
((*1 *2 *1 *3 *3)
(-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2))
- (-4 *5 (-351 *2)) (-4 *2 (-1126))))
+ (-4 *5 (-351 *2)) (-4 *2 (-1127))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1126))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1126))))
+ (-12 (-5 *2 "right") (-4 *1 (-115 *3)) (-4 *3 (-1127))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-115 *3)) (-4 *3 (-1127))))
((*1 *2 *1 *3)
(-12 (-5 *3 (-592 (-525))) (-4 *2 (-160)) (-5 *1 (-130 *4 *5 *2))
(-14 *4 (-525)) (-14 *5 (-713))))
@@ -2255,29 +4258,29 @@
(-12 (-4 *2 (-160)) (-5 *1 (-130 *3 *4 *2)) (-14 *3 (-525))
(-14 *4 (-713))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1090)) (-5 *2 (-225 (-1073))) (-5 *1 (-195 *4))
+ (-12 (-5 *3 (-1091)) (-5 *2 (-225 (-1074))) (-5 *1 (-195 *4))
(-4 *4
(-13 (-789)
- (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $))
- (-15 -1558 ((-1177) $)))))))
+ (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $))
+ (-15 -3065 ((-1178) $)))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-921)) (-5 *1 (-195 *3))
+ (-12 (-5 *2 (-922)) (-5 *1 (-195 *3))
(-4 *3
(-13 (-789)
- (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $))
- (-15 -1558 ((-1177) $)))))))
+ (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $))
+ (-15 -3065 ((-1178) $)))))))
((*1 *2 *1 *3)
(-12 (-5 *3 "count") (-5 *2 (-713)) (-5 *1 (-225 *4)) (-4 *4 (-789))))
((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-225 *3)) (-4 *3 (-789))))
((*1 *1 *1 *2)
(-12 (-5 *2 "unique") (-5 *1 (-225 *3)) (-4 *3 (-789))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126))))
+ (-12 (-4 *1 (-265 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1127))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126))))
+ (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1127))))
((*1 *2 *1 *2)
(-12 (-4 *3 (-160)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7))
- (-4 *2 (-1148 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-4 *2 (-1149 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281))))
@@ -2286,1285 +4289,1573 @@
((*1 *1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
((*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-1148 *2))
- (-4 *4 (-1148 (-385 *3)))))
+ (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-1149 *2))
+ (-4 *4 (-1149 (-385 *3)))))
((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-4 *1 (-395 *2)) (-4 *2 (-160))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1073)) (-5 *1 (-475))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-51)) (-5 *1 (-581))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1074)) (-5 *1 (-475))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-51)) (-5 *1 (-581))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1139 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1126))))
+ (-12 (-5 *2 (-1140 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1127))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1019))))
+ (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1020))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976))
+ (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
(-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-592 (-826 *4))) (-4 *4 (-1019))
- (-5 *1 (-826 *4))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-837 *2)) (-4 *2 (-1019))))
+ (-12 (-5 *2 (-110)) (-5 *3 (-592 (-827 *4))) (-4 *4 (-1020))
+ (-5 *1 (-827 *4))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1020))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-839 *4)) (-5 *1 (-838 *4))
- (-4 *4 (-1019))))
+ (-12 (-5 *3 (-713)) (-5 *2 (-840 *4)) (-5 *1 (-839 *4))
+ (-4 *4 (-1020))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-220 *4 *2)) (-14 *4 (-855)) (-4 *2 (-341))
- (-5 *1 (-925 *4 *2))))
+ (-12 (-5 *3 (-220 *4 *2)) (-14 *4 (-856)) (-4 *2 (-341))
+ (-5 *1 (-926 *4 *2))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-941 *2)) (-4 *2 (-1126))))
- ((*1 *2 *1) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126))))
+ (-12 (-5 *3 "value") (-4 *1 (-942 *2)) (-4 *2 (-1127))))
+ ((*1 *2 *1) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1127))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *2 *6 *7)) (-4 *2 (-976))
+ (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7)) (-4 *2 (-977))
(-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *2 *6 *7))
- (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-976))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-855)) (-4 *4 (-1019))
- (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4))))
- (-5 *1 (-998 *4 *5 *2))
- (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4))))))
+ (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7))
+ (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-977))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-855)) (-4 *4 (-1019))
- (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4))))
+ (-12 (-5 *3 (-856)) (-4 *4 (-1020))
+ (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
(-5 *1 (-999 *4 *5 *2))
- (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4))))))
+ (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4))))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-856)) (-4 *4 (-1020))
+ (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
+ (-5 *1 (-1000 *4 *5 *2))
+ (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-525))) (-4 *1 (-1022 *3 *4 *5 *6 *7))
- (-4 *3 (-1019)) (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019))
- (-4 *7 (-1019))))
+ (-12 (-5 *2 (-592 (-525))) (-4 *1 (-1023 *3 *4 *5 *6 *7))
+ (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020))
+ (-4 *7 (-1020))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019))
- (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019))))
- ((*1 *1 *1 *1) (-4 *1 (-1059)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-1090))))
+ (-12 (-5 *2 (-525)) (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020))
+ (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020))))
+ ((*1 *1 *1 *1) (-4 *1 (-1060)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1091))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-385 *1)) (-4 *1 (-1148 *2)) (-4 *2 (-976))
+ (-12 (-5 *3 (-385 *1)) (-4 *1 (-1149 *2)) (-4 *2 (-977))
(-4 *2 (-341))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-385 *1)) (-4 *1 (-1148 *3)) (-4 *3 (-976))
+ (-12 (-5 *2 (-385 *1)) (-4 *1 (-1149 *3)) (-4 *3 (-977))
(-4 *3 (-517))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1150 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976))))
+ (-12 (-4 *1 (-1151 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1160 *2)) (-4 *2 (-1126))))
+ (-12 (-5 *3 "last") (-4 *1 (-1161 *2)) (-4 *2 (-1127))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1160 *3)) (-4 *3 (-1126))))
+ (-12 (-5 *2 "rest") (-4 *1 (-1161 *3)) (-4 *3 (-1127))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1160 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-565 *1)) (-4 *1 (-408 *4)) (-4 *4 (-789))
- (-4 *4 (-517)) (-5 *2 (-385 (-1086 *1)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1112)))
- (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2 (-1086 (-385 (-1086 *3)))) (-5 *1 (-521 *6 *3 *7))
- (-5 *5 (-1086 *3)) (-4 *7 (-1019))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1168 *5)) (-14 *5 (-1090)) (-4 *6 (-976))
- (-5 *2 (-1145 *5 (-886 *6))) (-5 *1 (-881 *5 *6)) (-5 *3 (-886 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-883 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-1086 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-1086 *1))
- (-4 *1 (-883 *4 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-976))
- (-4 *7 (-883 *6 *5 *4)) (-5 *2 (-385 (-1086 *3)))
- (-5 *1 (-884 *5 *4 *6 *7 *3))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $)) (-15 -1312 (*7 $)))))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1086 *3))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $)) (-15 -1312 (*7 $)))))
- (-4 *7 (-883 *6 *5 *4)) (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-976))
- (-5 *1 (-884 *5 *4 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1090)) (-4 *5 (-517))
- (-5 *2 (-385 (-1086 (-385 (-886 *5))))) (-5 *1 (-972 *5))
- (-5 *3 (-385 (-886 *5))))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *2 (-965)) (-5 *1 (-697)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1090)) (-5 *4 (-886 (-525))) (-5 *2 (-308))
- (-5 *1 (-310)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-1139 (-525))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-713)) (-5 *4 (-1172 *2)) (-4 *5 (-286))
- (-4 *6 (-924 *5)) (-4 *2 (-13 (-387 *6 *7) (-967 *6)))
- (-5 *1 (-391 *5 *6 *7 *2)) (-4 *7 (-1148 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3))
- (-4 *3 (-13 (-341) (-1112) (-933))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-592 (-1090))) (-4 *5 (-517))
- (-5 *2 (-592 (-592 (-273 (-385 (-886 *5)))))) (-5 *1 (-712 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-517))
- (-5 *2 (-592 (-592 (-273 (-385 (-886 *4)))))) (-5 *1 (-712 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-632 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2499 (-592 *6)))
- *7 *6))
- (-4 *6 (-341)) (-4 *7 (-602 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1172 *6) "failed"))
- (|:| -2499 (-592 (-1172 *6)))))
- (-5 *1 (-755 *6 *7)) (-5 *4 (-1172 *6)))))
-(((*1 *2)
- (-12
- (-5 *2
- (-1172 (-592 (-2 (|:| -3871 (-844 *3)) (|:| -4185 (-1037))))))
- (-5 *1 (-329 *3 *4)) (-14 *3 (-855)) (-14 *4 (-855))))
- ((*1 *2)
- (-12 (-5 *2 (-1172 (-592 (-2 (|:| -3871 *3) (|:| -4185 (-1037))))))
- (-5 *1 (-330 *3 *4)) (-4 *3 (-327))
- (-14 *4
- (-3 (-1086 *3)
- (-1172 (-592 (-2 (|:| -3871 *3) (|:| -4185 (-1037)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-1172 (-592 (-2 (|:| -3871 *3) (|:| -4185 (-1037))))))
- (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-855)))))
+ (-12 (-5 *3 "first") (-4 *1 (-1161 *2)) (-4 *2 (-1127)))))
+(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
+(((*1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1176)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1038)) (-5 *1 (-308)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3))))
- ((*1 *1 *1) (-4 *1 (-1115))))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2)
+ (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1178))
+ (-5 *1 (-921 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1178))
+ (-5 *1 (-1027 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-977)) (-14 *3 (-592 (-1091)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789)))
+ (-14 *3 (-592 (-1091))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-412))
+ (-5 *2
+ (-592
+ (-3 (|:| -3800 (-1091))
+ (|:| |bounds| (-592 (-3 (|:| S (-1091)) (|:| P (-887 (-525)))))))))
+ (-5 *1 (-1095)))))
+(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-357)) (-5 *1 (-970)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-273 (-385 (-886 *5)))) (-5 *4 (-1090))
- (-4 *5 (-13 (-286) (-789) (-138)))
- (-5 *2 (-1080 (-592 (-294 *5)) (-592 (-273 (-294 *5)))))
- (-5 *1 (-1046 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090))
- (-4 *5 (-13 (-286) (-789) (-138)))
- (-5 *2 (-1080 (-592 (-294 *5)) (-592 (-273 (-294 *5)))))
- (-5 *1 (-1046 *5)))))
+ (-12 (-5 *2 (-592 (-2 (|:| -2195 *3) (|:| -1587 (-525)))))
+ (-5 *1 (-638 *3)) (-4 *3 (-1149 (-525))) (-5 *4 (-525)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-4 *5 (-1148 *4)) (-5 *2 (-1177))
- (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1148 (-385 *5))) (-14 *7 *6))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735))
- (-4 *8 (-789)) (-4 *9 (-990 *6 *7 *8))
- (-5 *2
- (-2 (|:| -1881 (-592 *9)) (|:| -3740 *4) (|:| |ineq| (-592 *9))))
- (-5 *1 (-920 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9))
- (-4 *4 (-995 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735))
- (-4 *8 (-789)) (-4 *9 (-990 *6 *7 *8))
- (-5 *2
- (-2 (|:| -1881 (-592 *9)) (|:| -3740 *4) (|:| |ineq| (-592 *9))))
- (-5 *1 (-1026 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9))
- (-4 *4 (-995 *6 *7 *8 *9)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242))))
- ((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))
- ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-592 (-525)))
- (|:| |cols| (-592 (-525)))))
- (-5 *4 (-632 *12)) (-5 *5 (-592 (-385 (-886 *9))))
- (-5 *6 (-592 (-592 *12))) (-5 *7 (-713)) (-5 *8 (-525))
- (-4 *9 (-13 (-286) (-138))) (-4 *12 (-883 *9 *11 *10))
- (-4 *10 (-13 (-789) (-567 (-1090)))) (-4 *11 (-735))
- (-5 *2
- (-2 (|:| |eqzro| (-592 *12)) (|:| |neqzro| (-592 *12))
- (|:| |wcond| (-592 (-886 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1172 (-385 (-886 *9))))
- (|:| -2499 (-592 (-1172 (-385 (-886 *9)))))))))
- (-5 *1 (-858 *9 *10 *11 *12)))))
+ (-12 (-4 *4 (-37 (-385 (-525))))
+ (-5 *2 (-2 (|:| -1569 (-1072 *4)) (|:| -1584 (-1072 *4))))
+ (-5 *1 (-1078 *4)) (-5 *3 (-1072 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-704))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1087 *4)) (-5 *1 (-335 *4))
+ (-4 *4 (-327)))))
(((*1 *2 *1)
- (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160))
- (-4 *5 (-218 (-4140 *3) (-713)))
- (-14 *6
- (-1 (-108) (-2 (|:| -4185 *2) (|:| -1600 *5))
- (-2 (|:| -4185 *2) (|:| -1600 *5))))
- (-4 *2 (-789)) (-5 *1 (-438 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-883 *4 *5 (-799 *3))))))
+ (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1178)) (-5 *1 (-357))))
+ ((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-357)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-977)) (-4 *4 (-160))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977))
+ (-4 *3 (-160)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1173 (-1173 (-525)))) (-5 *3 (-856)) (-5 *1 (-443)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713))
+ (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-327))
+ (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -2693 *3))))
+ (-5 *1 (-197 *4 *3)) (-4 *3 (-1149 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-122 *3)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-1161 *2)) (-4 *2 (-1127)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090)))
- (-14 *3 (-592 (-1090))) (-4 *4 (-365))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
+ (-12 (-4 *3 (-517)) (-4 *4 (-925 *3)) (-5 *1 (-133 *3 *4 *2))
+ (-4 *2 (-351 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-925 *4)) (-4 *2 (-351 *4))
+ (-5 *1 (-476 *4 *5 *2 *3)) (-4 *3 (-351 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 *5)) (-4 *5 (-925 *4)) (-4 *4 (-517))
+ (-5 *2 (-632 *4)) (-5 *1 (-635 *4 *5))))
((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3))))
- ((*1 *1 *1) (-4 *1 (-1115))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1095)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1172 (-1172 *4))) (-4 *4 (-976)) (-5 *2 (-632 *4))
- (-5 *1 (-959 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-713)) (-5 *2 (-592 (-1090))) (-5 *1 (-192))
- (-5 *3 (-1090))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-205))) (-5 *4 (-713)) (-5 *2 (-592 (-1090)))
- (-5 *1 (-246))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
- (-5 *2 (-592 *3))))
+ (-12 (-4 *3 (-517)) (-4 *4 (-925 *3)) (-5 *1 (-1142 *3 *4 *2))
+ (-4 *2 (-1149 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-764)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-713)))))
+(((*1 *2 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020))
+ (-5 *2 (-592 (-2 (|:| |k| *4) (|:| |c| *3))))))
((*1 *2 *1)
- (-12 (-5 *2 (-592 *3)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
- (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-761 *3)) (-4 *3 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-827 *3)) (-4 *3 (-789))))
+ (-12 (-5 *2 (-592 (-2 (|:| |k| (-828 *3)) (|:| |c| *4))))
+ (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
+ (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856))))
((*1 *2 *1)
- (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976))
- (-5 *2 (-592 *3)))))
+ (-12 (-5 *2 (-592 (-617 *3))) (-5 *1 (-828 *3)) (-4 *3 (-789)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *1 *1) (-5 *1 (-988))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-855)) (-4 *1 (-382))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-382))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1022 *3 *4 *5 *2 *6)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-976)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-510))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-357)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-341) (-138) (-967 (-525))))
- (-4 *5 (-1148 *4)) (-5 *2 (-592 (-385 *5))) (-5 *1 (-947 *4 *5))
- (-5 *3 (-385 *5)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1072 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
+ (-4 *4 (-13 (-789) (-517))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-933))
- (-4 *2 (-976)))))
+ (-12 (-4 *4 (-1020)) (-5 *2 (-824 *3 *5)) (-5 *1 (-820 *3 *4 *5))
+ (-4 *3 (-1020)) (-4 *5 (-612 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-157 (-357))) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-855)) (-5 *2 (-157 (-357))) (-5 *1 (-727 *3))
- (-4 *3 (-567 (-357)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-157 *4)) (-4 *4 (-160)) (-4 *4 (-567 (-357)))
- (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-157 *5)) (-5 *4 (-855)) (-4 *5 (-160))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-886 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-567 (-357)))
- (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-886 (-157 *5))) (-5 *4 (-855)) (-4 *5 (-160))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-886 *4)) (-4 *4 (-976)) (-4 *4 (-567 (-357)))
- (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-886 *5)) (-5 *4 (-855)) (-4 *5 (-976))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357)))
- (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-855)) (-4 *5 (-517))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-385 (-886 (-157 *4)))) (-4 *4 (-517))
- (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-886 (-157 *5)))) (-5 *4 (-855)) (-4 *5 (-517))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789))
- (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 *5)) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-789))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789))
- (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-855)) (-4 *5 (-517))
- (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357)))
- (-5 *1 (-727 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *2 (-965)) (-5 *1 (-700)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-273 (-775 *3)))
- (-4 *3 (-13 (-27) (-1112) (-408 *5)))
- (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-775 *3)) (-5 *1 (-585 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 (-775 (-886 *5)))) (-4 *5 (-429))
- (-5 *2 (-775 (-385 (-886 *5)))) (-5 *1 (-586 *5))
- (-5 *3 (-385 (-886 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 (-385 (-886 *5)))) (-4 *5 (-429))
- (-5 *2 (-775 (-385 (-886 *5)))) (-5 *1 (-586 *5))
- (-5 *3 (-385 (-886 *5))))))
-(((*1 *1 *1 *1)
+ (-12 (|has| *2 (-6 (-4257 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2))
+ (-4 *2 (-977)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1149 *2))
+ (-4 *4 (-630 *2 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-501))) (-5 *2 (-1091)) (-5 *1 (-501)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1178)) (-5 *1 (-1105 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 (-878 *4))) (-4 *1 (-1052 *4)) (-4 *4 (-977))
+ (-5 *2 (-713)))))
+(((*1 *1) (-5 *1 (-1174))))
+(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
+(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175))))
+ ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175)))))
+(((*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1127)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-525))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-713))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-856))))
+ ((*1 *1 *1 *1)
(-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
(-4 *4 (-160))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2))
- (-4 *2 (-408 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1012 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517)))
- (-5 *1 (-147 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1012 *1)) (-4 *1 (-149))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1090))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-146))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-146))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1113)))
+ (-5 *1 (-207 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1127)) (-4 *2 (-669))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1127)) (-4 *2 (-669))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *1 (-273 *2)) (-4 *2 (-1032)) (-4 *2 (-1127))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-273 *2)) (-4 *2 (-1032)) (-4 *2 (-1127))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-126))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-359 *3 *2)) (-4 *3 (-977)) (-4 *2 (-789))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-977)) (-4 *3 (-1020))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2 *1)
+ (-12 (-14 *3 (-592 (-1091))) (-4 *4 (-160))
+ (-4 *6 (-218 (-3596 *3) (-713)))
+ (-14 *7
+ (-1 (-108) (-2 (|:| -3640 *5) (|:| -1864 *6))
+ (-2 (|:| -3640 *5) (|:| -1864 *6))))
+ (-5 *1 (-438 *3 *4 *5 *6 *7 *2)) (-4 *5 (-789))
+ (-4 *2 (-884 *4 *6 (-800 *3)))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-160)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-954 *3))
- (-4 *3 (-13 (-787) (-341) (-952)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3))
- (-4 *3 (-1148 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-992 *2 *3)) (-4 *2 (-13 (-787) (-341)))
- (-4 *3 (-1148 *2)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1071 *4)) (-5 *3 (-525)) (-4 *4 (-976))
- (-5 *1 (-1075 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-525)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-976))
- (-14 *4 (-1090)) (-14 *5 *3))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-713)) (-5 *3 (-877 *4)) (-4 *1 (-1051 *4))
- (-4 *4 (-976))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-713)) (-5 *4 (-877 (-205))) (-5 *2 (-1177))
- (-5 *1 (-1174)))))
-(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)))))
-(((*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1090)))
- (-4 *5 (-429))
- (-5 *2
- (-2 (|:| |gblist| (-592 (-227 *4 *5)))
- (|:| |gvlist| (-592 (-525)))))
- (-5 *1 (-580 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1090)) (-4 *1 (-27))
- (-5 *2 (-592 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-886 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126)))))
+ (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
+ (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1173 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-501)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-551 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-551 *2)) (-4 *2 (-977))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-551 *2)) (-4 *2 (-977))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-984))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1020))
+ (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-627 *5 *6 *7))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-630 *3 *2 *4)) (-4 *3 (-977)) (-4 *2 (-351 *3))
+ (-4 *4 (-351 *3))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-630 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-351 *3))
+ (-4 *2 (-351 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
+ (-4 *4 (-351 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
+ (-4 *4 (-351 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
+ (-4 *4 (-351 *2))))
+ ((*1 *1 *1 *1) (-4 *1 (-663)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1173 *4)) (-4 *4 (-1149 *3)) (-4 *3 (-517))
+ (-5 *1 (-903 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-983 *2)) (-4 *2 (-984))))
+ ((*1 *1 *1 *1) (-4 *1 (-1032)))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1041 *3 *4 *2 *5)) (-4 *4 (-977)) (-4 *2 (-218 *3 *4))
+ (-4 *5 (-218 *3 *4))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1041 *3 *4 *5 *2)) (-4 *4 (-977)) (-4 *5 (-218 *3 *4))
+ (-4 *2 (-218 *3 *4))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *3 (-977)) (-4 *4 (-789)) (-5 *1 (-1044 *3 *4 *2))
+ (-4 *2 (-884 *3 (-497 *4) *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-878 (-205))) (-5 *3 (-205)) (-5 *1 (-1124))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-669))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-669))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-525)) (-4 *1 (-1171 *3)) (-4 *3 (-1127)) (-4 *3 (-21))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-789)) (-4 *2 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1194 *2 *3)) (-4 *2 (-977)) (-4 *3 (-785)))))
(((*1 *1) (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))
((*1 *1) (-5 *1 (-501))) ((*1 *1) (-4 *1 (-665)))
((*1 *1) (-4 *1 (-669)))
- ((*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019))))
- ((*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-789)))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-146))))
- ((*1 *2 *1) (-12 (-5 *2 (-146)) (-5 *1 (-808))))
- ((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))))
+ ((*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020))))
+ ((*1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-789)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1091))
+ (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525))))
+ (-5 *2 (-2 (|:| -1639 *3) (|:| |nconst| *3))) (-5 *1 (-528 *5 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *5))))))
(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-1094)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-592 (-294 (-205)))) (-5 *2 (-108))
- (-5 *1 (-192)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-5 *6 (-1086 *3))
- (-4 *3 (-13 (-408 *7) (-27) (-1112)))
- (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1019))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3))
- (-5 *6 (-385 (-1086 *3))) (-4 *3 (-13 (-408 *7) (-27) (-1112)))
- (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1019)))))
-(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126)))))
+ (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1178))
+ (-5 *1 (-997 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1178))
+ (-5 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1038)) (-5 *2 (-108)) (-5 *1 (-763)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-778))
+ (-5 *3
+ (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205)))
+ (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205))))
+ (|:| |ub| (-592 (-782 (-205))))))
+ (-5 *2 (-966))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-778))
+ (-5 *3
+ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))
+ (-5 *2 (-966)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 (-157 (-385 (-525)))))
+ (-5 *2
+ (-592
+ (-2 (|:| |outval| (-157 *4)) (|:| |outmult| (-525))
+ (|:| |outvect| (-592 (-632 (-157 *4)))))))
+ (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966))
+ (-5 *1 (-691)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3))
+ (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-592 *7)) (-5 *3 (-1 (-592 *7) (-592 *7)))
+ (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *1 (-910 *4 *5 *6 *7)))))
(((*1 *1) (-4 *1 (-23)))
((*1 *1) (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))
((*1 *1) (-5 *1 (-501)))
- ((*1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1148 *6))
- (-4 *6 (-13 (-341) (-138) (-967 (-525))))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108))))
- (|:| -1881
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| (-525))
- (|:| |alpha| *3) (|:| |beta| *3)))))
- (-5 *1 (-946 *6 *3)) (-5 *4 (-525)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-855)) (-5 *1 (-728)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *1 (-445)))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-796))))
- ((*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-898))))
- ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-921))))
- ((*1 *2 *1) (-12 (-4 *1 (-941 *2)) (-4 *2 (-1126))))
+ ((*1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-385 (-887 *6)) (-1081 (-1091) (-887 *6))))
+ (-5 *5 (-713)) (-4 *6 (-429)) (-5 *2 (-592 (-632 (-385 (-887 *6)))))
+ (-5 *1 (-271 *6)) (-5 *4 (-632 (-385 (-887 *6))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-385 (-887 *5)) (-1081 (-1091) (-887 *5))))
+ (|:| |eigmult| (-713))
+ (|:| |eigvec| (-592 (-632 (-385 (-887 *5)))))))
+ (-5 *4 (-632 (-385 (-887 *5)))) (-4 *5 (-429)) (-5 *2 (-592 *4))
+ (-5 *1 (-271 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *4 (-713))
+ (-5 *2 (-632 (-205))) (-5 *1 (-246)))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-899))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-922))))
+ ((*1 *2 *1) (-12 (-4 *1 (-942 *2)) (-4 *2 (-1127))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1019) (-33))) (-5 *1 (-1055 *2 *3))
- (-4 *3 (-13 (-1019) (-33))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-161 *6))
- (-5 *1 (-801 *5 *4 *6)) (-4 *4 (-1163 *5)) (-4 *6 (-1148 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-135))))
- ((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-135)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-1093)) (-5 *3 (-1090)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3244 *3)))
- (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92)))))
+ (-12 (-4 *2 (-13 (-1020) (-33))) (-5 *1 (-1056 *2 *3))
+ (-4 *3 (-13 (-1020) (-33))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-798)) (-5 *1 (-1072 *3)) (-4 *3 (-1020))
+ (-4 *3 (-1127)))))
+(((*1 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-510)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-1074))) (-5 *2 (-1074)) (-5 *1 (-174))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
+(((*1 *1) (-5 *1 (-415))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1073))) (-5 *2 (-108)) (-5 *1 (-1095))))
+ (-12 (-5 *3 (|[\|\|]| (-1074))) (-5 *2 (-108)) (-5 *1 (-1096))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-108)) (-5 *1 (-1095))))
+ (-12 (-5 *3 (|[\|\|]| (-1091))) (-5 *2 (-108)) (-5 *1 (-1096))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-205))) (-5 *2 (-108)) (-5 *1 (-1095))))
+ (-12 (-5 *3 (|[\|\|]| (-205))) (-5 *2 (-108)) (-5 *1 (-1096))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-108)) (-5 *1 (-1095)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-702)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-341))
- (-5 *2 (-2 (|:| -3837 (-396 *3)) (|:| |special| (-396 *3))))
- (-5 *1 (-670 *5 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
-(((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175))))
- ((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))))
+ (-12 (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-108)) (-5 *1 (-1096)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-782 (-357))) (-5 *2 (-782 (-205))) (-5 *1 (-284)))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641))))
- ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976))
- (-5 *2 (-2 (|:| |k| (-761 *3)) (|:| |c| *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797))))
- ((*1 *1 *1 *1) (-5 *1 (-797))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1019)) (-4 *3 (-834 *5)) (-5 *2 (-1172 *3))
- (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3))
- (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4254)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-592 *3)) (-4 *3 (-1126)))))
+ (-12 (-5 *2 (-592 (-1087 (-525)))) (-5 *1 (-173)) (-5 *3 (-525)))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-610 *4 *5)))
- (-5 *1 (-576 *4 *5 *6)) (-4 *5 (-13 (-160) (-660 (-385 (-525)))))
- (-14 *6 (-855)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-51))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1021 (-1021 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1019)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-976)) (-4 *3 (-789))
- (-4 *4 (-245 *3)) (-4 *5 (-735)))))
+ (-12 (-4 *1 (-855)) (-5 *2 (-2 (|:| -1655 (-592 *1)) (|:| -3523 *1)))
+ (-5 *3 (-592 *1)))))
+(((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-381 *3)) (-4 *3 (-382))))
+ ((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-381 *3)) (-4 *3 (-382))))
+ ((*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4246)) (-4 *1 (-382))))
+ ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856))))
+ ((*1 *2 *1) (-12 (-4 *1 (-804 *3)) (-5 *2 (-1072 (-525))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1190 *3)) (-4 *3 (-341)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1020)) (-4 *5 (-1020))
+ (-5 *2 (-1 *5)) (-5 *1 (-626 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-592 *3))
- (-5 *1 (-1142 *4 *3)) (-4 *3 (-1148 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -3740 *8)))
- (-4 *7 (-990 *4 *5 *6)) (-4 *8 (-995 *4 *5 *6 *7)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-920 *4 *5 *6 *7 *8))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -3740 *8)))
- (-4 *7 (-990 *4 *5 *6)) (-4 *8 (-995 *4 *5 *6 *7)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-1026 *4 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1090)) (-5 *6 (-108))
- (-4 *7 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))))
- (-4 *3 (-13 (-1112) (-892) (-29 *7)))
+ (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-429)) (-5 *2 (-108))
+ (-5 *1 (-338 *4 *5)) (-14 *5 (-592 (-1091)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-722 *4 (-800 *5)))) (-4 *4 (-429))
+ (-14 *5 (-592 (-1091))) (-5 *2 (-108)) (-5 *1 (-577 *4 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1038)) (-5 *1 (-105))))
+ ((*1 *2 *1) (|partial| -12 (-5 *1 (-343 *2)) (-4 *2 (-1020))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1109)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
(-5 *2
- (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-199 *7 *3)) (-5 *5 (-782 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-1175))))
- ((*1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1175)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
+ (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525))
+ (|:| |success| (-108))))
+ (-5 *1 (-731)) (-5 *5 (-525)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-592 *3)) (-4 *3 (-1127)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-110)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-680 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1020))))
+ ((*1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1020)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1131)) (-4 *5 (-1149 *4)) (-4 *6 (-1149 (-385 *5)))
+ (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-713)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-517) (-138)))
- (-5 *2 (-2 (|:| -4138 *3) (|:| -4152 *3))) (-5 *1 (-1142 *4 *3))
- (-4 *3 (-1148 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-353 *4 *2))
- (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4255)))))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-357))) (-5 *1 (-969)) (-5 *3 (-357)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-1101 *2)) (-4 *2 (-341)))))
-(((*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-1019)) (-5 *2 (-713)))))
-(((*1 *1 *1 *1) (-4 *1 (-134)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797))))
- ((*1 *1 *1) (-5 *1 (-797)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-4 *1 (-1017 *3))))
- ((*1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107)))))
-(((*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-976))))
- ((*1 *1 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-385 (-886 *5)))) (-5 *4 (-592 (-1090)))
- (-4 *5 (-517)) (-5 *2 (-592 (-592 (-886 *5)))) (-5 *1 (-1096 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-335 *3)) (-4 *3 (-327)))))
-(((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-976)))))
+ (-12 (-5 *3 (-294 (-205))) (-5 *2 (-385 (-525))) (-5 *1 (-284)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-1140 (-525))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1149 (-385 (-525)))) (-5 *1 (-848 *3 *2))
+ (-4 *2 (-1149 (-385 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1172 *4)) (-4 *4 (-976)) (-4 *2 (-1148 *4))
- (-5 *1 (-421 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-385 (-1086 (-294 *5)))) (-5 *3 (-1172 (-294 *5)))
- (-5 *4 (-525)) (-4 *5 (-13 (-517) (-789))) (-5 *1 (-1047 *5)))))
+ (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-395 *4)))))
+(((*1 *1) (-5 *1 (-1178))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))))
+(((*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-592 (-110))))))
+(((*1 *2 *1) (-12 (-4 *3 (-1127)) (-5 *2 (-592 *1)) (-4 *1 (-942 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-1080 *3 *4))) (-5 *1 (-1080 *3 *4))
+ (-14 *3 (-856)) (-4 *4 (-977)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-976))
- (-14 *4 (-592 (-1090)))))
+ (-12 (-5 *2 (-713)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
+ (-14 *4 (-713)) (-4 *5 (-160))))
+ ((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-856)) (-5 *1 (-153 *3 *4))
+ (-4 *3 (-154 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-856))))
+ ((*1 *2)
+ (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1149 *3))
+ (-5 *2 (-856))))
((*1 *2 *3)
- (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1126))))
+ (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
+ (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 *5)) (-5 *4 (-1173 *5)) (-4 *5 (-341))
+ (-5 *2 (-713)) (-5 *1 (-613 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4256))))
+ (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4256)))) (-5 *2 (-713))
+ (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789)))
- (-14 *4 (-592 (-1090)))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-789)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
- (-5 *1 (-31 *4 *5)) (-4 *5 (-408 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
- (-5 *1 (-147 *4 *5)) (-4 *5 (-408 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
- (-5 *1 (-255 *4 *5)) (-4 *5 (-13 (-408 *4) (-933)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-280 *4)) (-4 *4 (-281))))
- ((*1 *2 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-407 *4 *5)) (-4 *4 (-408 *5))))
+ (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713))))
((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
- (-5 *1 (-409 *4 *5)) (-4 *5 (-408 *4))))
+ (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4))
+ (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3))
+ (-4 *3 (-630 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517))
+ (-5 *2 (-713)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-517))
+ (-4 *7 (-884 *3 *5 *6))
+ (-5 *2 (-2 (|:| -1864 (-713)) (|:| -1655 *8) (|:| |radicand| *8)))
+ (-5 *1 (-888 *5 *6 *3 *7 *8)) (-5 *4 (-713))
+ (-4 *8
+ (-13 (-341)
+ (-10 -8 (-15 -1498 (*7 $)) (-15 -1512 (*7 $)) (-15 -1270 ($ *7))))))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
+ ((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-1018 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-830))
+ (-5 *3
+ (-2 (|:| |pde| (-592 (-294 (-205))))
+ (|:| |constraints|
+ (-592
+ (-2 (|:| |start| (-205)) (|:| |finish| (-205))
+ (|:| |grid| (-713)) (|:| |boundaryType| (-525))
+ (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
+ (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074))
+ (|:| |tol| (-205))))
+ (-5 *2 (-966)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-632 (-1087 *8))) (-4 *5 (-977)) (-4 *8 (-977))
+ (-4 *6 (-1149 *5)) (-5 *2 (-632 *6)) (-5 *1 (-474 *5 *6 *7 *8))
+ (-4 *7 (-1149 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1087 *7)) (-4 *5 (-977))
+ (-4 *7 (-977)) (-4 *2 (-1149 *5)) (-5 *1 (-474 *5 *2 *6 *7))
+ (-4 *6 (-1149 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-977)) (-4 *7 (-977))
+ (-4 *4 (-1149 *5)) (-5 *2 (-1087 *7)) (-5 *1 (-474 *5 *4 *6 *7))
+ (-4 *6 (-1149 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-525)) (-5 *1 (-221))))
((*1 *2 *3)
- (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
- (-5 *1 (-579 *4 *5)) (-4 *5 (-13 (-408 *4) (-933) (-1112))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
+ (-12 (-5 *3 (-592 (-1074))) (-5 *2 (-525)) (-5 *1 (-221)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1149 (-385 (-525)))) (-5 *2 (-525))
+ (-5 *1 (-848 *4 *3)) (-4 *3 (-1149 (-385 *4))))))
+(((*1 *2)
+ (-12 (-4 *4 (-1131)) (-4 *5 (-1149 *4)) (-4 *6 (-1149 (-385 *5)))
+ (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-5 *2 (-713)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))))
+ (-12 (-5 *2 (-713)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2))
+ (-4 *2 (-1164 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1149 *3))
+ (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1164 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2))
+ (-4 *2 (-1164 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-13 (-517) (-138)))
+ (-5 *1 (-1068 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
+ (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-959 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-977)) (-5 *1 (-959 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-959 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-977)) (-5 *1 (-959 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-242))))
+ ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-339 (-110))) (-4 *2 (-977)) (-5 *1 (-657 *2 *4))
+ (-4 *4 (-594 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-339 (-110))) (-5 *1 (-776 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-699)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *1 (-1046 *3 *2)) (-4 *3 (-1149 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
+ (-5 *2
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1042 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-855)) (-4 *5 (-789))
- (-5 *2 (-57 (-592 (-617 *5)))) (-5 *1 (-617 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1172 *6)) (-5 *4 (-1172 (-525))) (-5 *5 (-525))
- (-4 *6 (-1019)) (-5 *2 (-1 *6)) (-5 *1 (-948 *6)))))
+ (-12 (-5 *3 (-1091)) (-4 *5 (-341)) (-5 *2 (-1072 (-1072 (-887 *5))))
+ (-5 *1 (-1181 *5)) (-5 *4 (-1072 (-887 *5))))))
+(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-517))
+ (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3))) (-5 *1 (-1144 *4 *3))
+ (-4 *3 (-1149 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1094)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1127)) (-5 *2 (-525)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2965 *4)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1178)) (-5 *1 (-1105 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-976)) (-5 *2 (-1172 *3)) (-5 *1 (-655 *3 *4))
- (-4 *4 (-1148 *3)))))
+ (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-5 *2 (-108)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735))
+ (-4 *7 (-789)) (-4 *8 (-991 *5 *6 *7)) (-5 *2 (-592 *3))
+ (-5 *1 (-547 *5 *6 *7 *8 *3)) (-4 *3 (-1029 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138)))
+ (-5 *2
+ (-592 (-2 (|:| -3582 (-1087 *5)) (|:| -3464 (-592 (-887 *5))))))
+ (-5 *1 (-1001 *5 *6)) (-5 *3 (-592 (-887 *5)))
+ (-14 *6 (-592 (-1091)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-286) (-138)))
+ (-5 *2
+ (-592 (-2 (|:| -3582 (-1087 *4)) (|:| -3464 (-592 (-887 *4))))))
+ (-5 *1 (-1001 *4 *5)) (-5 *3 (-592 (-887 *4)))
+ (-14 *5 (-592 (-1091)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138)))
+ (-5 *2
+ (-592 (-2 (|:| -3582 (-1087 *5)) (|:| -3464 (-592 (-887 *5))))))
+ (-5 *1 (-1001 *5 *6)) (-5 *3 (-592 (-887 *5)))
+ (-14 *6 (-592 (-1091))))))
+(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
+ ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357)))
+ (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1090))))
+ (-5 *1 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-48)))))
+(((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-764)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-301 *2 *4)) (-4 *4 (-126))
+ (-4 *2 (-1020))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1020))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-364 *2)) (-4 *2 (-1020))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *2 (-1020)) (-5 *1 (-595 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-761 *2)) (-4 *2 (-789)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2 (-592 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1149 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2 (-592 *3)) (-5 *1 (-1046 *4 *3)) (-4 *4 (-1149 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-530 *3)) (-4 *3 (-968 (-525)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1127)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1038)) (-5 *1 (-763)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-632 (-525))) (-5 *2 (-966)) (-5 *1 (-700)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357)))
+ (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1090))))
+ (-5 *1 (-1090)))))
+(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1091)) (-5 *2 (-501)) (-5 *1 (-500 *4))
+ (-4 *4 (-1127)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1148 *3)) (-4 *3 (-976))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-855)) (-4 *1 (-1150 *3 *4)) (-4 *3 (-976))
- (-4 *4 (-734))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-385 (-525))) (-4 *1 (-1153 *3)) (-4 *3 (-976)))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1071 *3)) (-4 *3 (-1019))
- (-4 *3 (-1126)))))
-(((*1 *2 *3) (-12 (-5 *3 (-385 (-525))) (-5 *2 (-205)) (-5 *1 (-284)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1073))
- (-5 *6 (-632 (-205)))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))))
- (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))
- (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))
- (-5 *2 (-965)) (-5 *1 (-692)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734))
- (-4 *2 (-429))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1130)) (-4 *3 (-1148 *2))
- (-4 *4 (-1148 (-385 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-429))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *2 (-789)) (-4 *3 (-429))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-883 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-429))))
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-286))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-424 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (-12 (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-1078 *3 *2))
- (-4 *2 (-1148 *3)))))
+ (-12 (-5 *2 (-592 *7)) (-5 *3 (-1074)) (-4 *7 (-884 *4 *5 *6))
+ (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *1 (-424 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-592 *7)) (-5 *3 (-1074)) (-4 *7 (-884 *4 *5 *6))
+ (-4 *4 (-286)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *1 (-424 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517))
- (-5 *2 (-108)))))
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-991 *3 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *4 *5 *6 *7))
+ (-4 *4 (-567 (-501))) (-4 *5 (-1127)) (-4 *6 (-1127))
+ (-4 *7 (-1127)))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-520)))))
+(((*1 *1 *1) (-5 *1 (-1090)))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357)))
+ (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1090))))
+ (-5 *1 (-1090)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-898 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-2 (|:| -2195 *4) (|:| -1587 (-525)))))
+ (-4 *4 (-1149 (-525))) (-5 *2 (-680 (-713))) (-5 *1 (-419 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-396 *5)) (-4 *5 (-1149 *4)) (-4 *4 (-977))
+ (-5 *2 (-680 (-713))) (-5 *1 (-421 *4 *5)))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-1024)) (-5 *1 (-270)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-713)) (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) (-4 *2 (-1148 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
- (-5 *2 (-965)) (-5 *1 (-696)))))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-592 *5))
+ (|:| |maps| (-592 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1046 *3 *5)) (-4 *3 (-1149 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-286)) (-4 *6 (-351 *5)) (-4 *4 (-351 *5))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1449 (-592 *4))))
+ (-5 *1 (-1042 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-974)))))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1149 *5))
+ (-5 *1 (-670 *5 *2)) (-4 *5 (-341)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-593 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1149 *4))
+ (-5 *2 (-2 (|:| |ans| (-385 *5)) (|:| |nosol| (-108))))
+ (-5 *1 (-947 *4 *5)) (-5 *3 (-385 *5)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-592 (-1087 *5))) (-5 *3 (-1087 *5))
+ (-4 *5 (-154 *4)) (-4 *4 (-510)) (-5 *1 (-140 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-592 *3)) (-4 *3 (-1149 *5))
+ (-4 *5 (-1149 *4)) (-4 *4 (-327)) (-5 *1 (-336 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-592 (-1087 (-525)))) (-5 *3 (-1087 (-525)))
+ (-5 *1 (-533))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-592 (-1087 *1))) (-5 *3 (-1087 *1))
+ (-4 *1 (-844)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-856)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-242)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735))
+ (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-994 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735))
+ (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3) (-12 (-5 *3 (-764)) (-5 *2 (-51)) (-5 *1 (-771)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1149 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1148 (-525))))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-1148 *4))
- (-4 *5 (-1148 (-385 *3))) (-5 *2 (-108))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))))
-(((*1 *1 *1 *1) (-4 *1 (-607))) ((*1 *1 *1 *1) (-5 *1 (-1037))))
+ (-12 (-4 *3 (-1149 (-385 (-525))))
+ (-5 *2 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))
+ (-5 *1 (-848 *3 *4)) (-4 *4 (-1149 (-385 *3)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1149 (-385 (-525)))) (-5 *2 (-525))
+ (-5 *1 (-848 *4 *3)) (-4 *3 (-1149 (-385 *4))))))
+(((*1 *1 *1 *1) (-5 *1 (-125))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1166 *3 *2))
+ (-4 *2 (-1164 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
+ (-5 *2
+ (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525))
+ (|:| |success| (-108))))
+ (-5 *1 (-731)) (-5 *5 (-525)))))
+(((*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1149 (-525))))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-445)) (-5 *3 (-592 (-242))) (-5 *1 (-1173))))
- ((*1 *1 *1) (-5 *1 (-1173))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-159)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855))
- (-4 *4 (-976)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *2 (-789))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)))))
+ (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-1091))) (-5 *1 (-308)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-592 (-1087 *13))) (-5 *3 (-1087 *13))
+ (-5 *4 (-592 *12)) (-5 *5 (-592 *10)) (-5 *6 (-592 *13))
+ (-5 *7 (-592 (-592 (-2 (|:| -1356 (-713)) (|:| |pcoef| *13)))))
+ (-5 *8 (-592 (-713))) (-5 *9 (-1173 (-592 (-1087 *10))))
+ (-4 *12 (-789)) (-4 *10 (-286)) (-4 *13 (-884 *10 *11 *12))
+ (-4 *11 (-735)) (-5 *1 (-650 *11 *12 *10 *13)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))))
+(((*1 *1 *1 *1) (-5 *1 (-125))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1056 *4 *5)) (-4 *4 (-13 (-1020) (-33)))
+ (-4 *5 (-13 (-1020) (-33))) (-5 *2 (-108)) (-5 *1 (-1057 *4 *5)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6))
+ (-4 *5 (-13 (-1020) (-33))) (-4 *6 (-13 (-1020) (-33)))
+ (-5 *2 (-108)) (-5 *1 (-1056 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-205) (-205))) (-5 *1 (-646 *3))
- (-4 *3 (-567 (-501)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1090)) (-5 *2 (-1 (-205) (-205) (-205)))
- (-5 *1 (-646 *3)) (-4 *3 (-567 (-501))))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-525)) (-5 *1 (-1071 *3)) (-4 *3 (-1126))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))))
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))))
+(((*1 *1 *1 *1) (-4 *1 (-607))) ((*1 *1 *1 *1) (-5 *1 (-1038))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
+(((*1 *1 *1) (-5 *1 (-205)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091)))
+ (-14 *3 (-592 (-1091))) (-4 *4 (-365))))
+ ((*1 *1 *1) (-5 *1 (-357))) ((*1 *1) (-5 *1 (-357))))
(((*1 *2 *3)
- (-12
+ (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4))
(-5 *2
- (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))))
- (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525)))))
+ (-3 (|:| |overq| (-1087 (-385 (-525))))
+ (|:| |overan| (-1087 (-47))) (|:| -4149 (-108))))
+ (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1149 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-977))
+ (-4 *2 (-13 (-382) (-968 *4) (-341) (-1113) (-263)))
+ (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1149 *4))))
((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))))
- (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525)))
- (-5 *4 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))))
+ (-12 (-5 *4 (-856)) (-4 *5 (-977))
+ (-4 *2 (-13 (-382) (-968 *5) (-341) (-1113) (-263)))
+ (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1149 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1895 *4))))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
+(((*1 *1 *1 *1) (-4 *1 (-607))) ((*1 *1 *1 *1) (-5 *1 (-1038))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-887 (-525))))
+ (-5 *4 (-294 (-157 (-357)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-887 (-525))))
+ (-5 *4 (-294 (-357))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-887 (-525))))
+ (-5 *4 (-294 (-525))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-294 (-157 (-357)))))
+ (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-294 (-357)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-294 (-525)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-294 (-157 (-357)))))
+ (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-294 (-357)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-294 (-525)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-294 (-157 (-357)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-294 (-357))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-294 (-525))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-887 (-525))))
+ (-5 *4 (-294 (-636))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-887 (-525))))
+ (-5 *4 (-294 (-641))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-887 (-525))))
+ (-5 *4 (-294 (-643))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-294 (-636)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-294 (-641)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-294 (-643)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-294 (-636)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-294 (-641)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-294 (-643)))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-636))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-641))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-1173 (-643))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-636))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-641))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-632 (-643))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-294 (-636))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-294 (-641))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-294 (-643))) (-5 *1 (-308))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1074)) (-5 *1 (-308))))
+ ((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1105 *4 *5))
+ (-4 *4 (-1020)) (-4 *5 (-1020)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-510))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-903 *4 *3))
+ (-4 *3 (-1149 *4)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2))
+ (-4 *2 (-1149 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1149 (-525))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *10))
+ (-5 *1 (-574 *5 *6 *7 *8 *9 *10)) (-4 *9 (-996 *5 *6 *7 *8))
+ (-4 *10 (-1029 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12
+ (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
+ (-14 *6 (-592 (-1091))) (-5 *2 (-592 (-974 *5 *6)))
+ (-5 *1 (-577 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
+ (-14 *6 (-592 (-1091)))
(-5 *2
- (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))))
- (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525))) (-5 *4 (-385 (-525)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-385 (-525)))
- (-5 *2 (-592 (-2 (|:| -4138 *5) (|:| -4152 *5)))) (-5 *1 (-950 *3))
- (-4 *3 (-1148 (-525))) (-5 *4 (-2 (|:| -4138 *5) (|:| -4152 *5)))))
+ (-592 (-1062 *5 (-497 (-800 *6)) (-800 *6) (-722 *5 (-800 *6)))))
+ (-5 *1 (-577 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-592 (-958 *5 *6 *7 *8))) (-5 *1 (-958 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
+ (-14 *6 (-592 (-1091))) (-5 *2 (-592 (-974 *5 *6)))
+ (-5 *1 (-974 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-996 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-592 (-1062 *5 *6 *7 *8))) (-5 *1 (-1062 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-592 (-1062 *5 *6 *7 *8))) (-5 *1 (-1062 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-1121 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-396 *5)) (-4 *5 (-517))
(-5 *2
- (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))))
- (-5 *1 (-951 *3)) (-4 *3 (-1148 (-385 (-525))))))
+ (-2 (|:| -1864 (-713)) (|:| -1655 *5) (|:| |radicand| (-592 *5))))
+ (-5 *1 (-298 *5)) (-5 *4 (-713))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-934)) (-5 *2 (-525)))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1020))))
((*1 *2 *3 *4)
- (-12
+ (-12 (-5 *4 (-525)) (-5 *2 (-1072 *3)) (-5 *1 (-1076 *3))
+ (-4 *3 (-977))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-761 *4)) (-4 *4 (-789)) (-4 *1 (-1188 *4 *3))
+ (-4 *3 (-977)))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-592 (-2 (|:| |func| *2) (|:| |pole| (-108)))))
+ (-4 *2 (-13 (-408 *4) (-934))) (-4 *4 (-13 (-789) (-517)))
+ (-5 *1 (-255 *4 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (|has| *1 (-6 -4256)) (-4 *1 (-351 *3))
+ (-4 *3 (-1127)))))
+(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1098)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2794 *3)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-694)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-98 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1020)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1072 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2))
+ (-4 *2 (-13 (-27) (-1113) (-408 (-157 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-517) (-789) (-968 (-525))))
+ (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-408 (-157 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1091))
+ (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1117 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-862))
(-5 *2
- (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))))
- (-5 *1 (-951 *3)) (-4 *3 (-1148 (-385 (-525))))
- (-5 *4 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))))
- ((*1 *2 *3 *4)
+ (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
+ (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
+ (-5 *1 (-144))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-862)) (-5 *4 (-385 (-525)))
+ (-5 *2
+ (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
+ (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
+ (-5 *1 (-144))))
+ ((*1 *2 *3)
(-12
(-5 *2
- (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))))
- (-5 *1 (-951 *3)) (-4 *3 (-1148 (-385 (-525))))
- (-5 *4 (-385 (-525)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-385 (-525)))
- (-5 *2 (-592 (-2 (|:| -4138 *5) (|:| -4152 *5)))) (-5 *1 (-951 *3))
- (-4 *3 (-1148 (-385 (-525))))
- (-5 *4 (-2 (|:| -4138 *5) (|:| -4152 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1073)) (-5 *1 (-174))))
- ((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1073)) (-5 *1 (-279))))
- ((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1073)) (-5 *1 (-284)))))
-(((*1 *1 *1 *1) (-4 *1 (-607))) ((*1 *1 *1 *1) (-5 *1 (-1037))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-909 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525)))
- (-5 *2 (-965)) (-5 *1 (-699)))))
-(((*1 *2 *2 *2)
+ (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
+ (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
+ (-5 *1 (-144)) (-5 *3 (-592 (-878 (-205))))))
+ ((*1 *2 *3)
(-12
(-5 *2
- (-592
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-735)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789))
- (-5 *1 (-426 *3 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-969)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1185 (-1090) *3)) (-4 *3 (-976)) (-5 *1 (-1192 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1185 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976))
- (-5 *1 (-1194 *3 *4)))))
+ (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
+ (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
+ (-5 *1 (-144)) (-5 *3 (-592 (-592 (-878 (-205)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242))))
+ ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-108) *2)) (-4 *1 (-142 *2))
+ (-4 *2 (-1127)))))
+(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *1 (-818)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1400 *4)))
- (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-1090)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514)))))
-(((*1 *1 *1 *1) (-5 *1 (-797))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-976))
- (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-1148 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789))
- (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-335 *3)) (-4 *3 (-327)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-592 (-799 *4)))
- (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *1 (-448 *4 *5 *6))
- (-4 *6 (-429)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1014 (-205)))
- (-5 *5 (-108)) (-5 *2 (-1174)) (-5 *1 (-236)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))))
-(((*1 *1) (-4 *1 (-327))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-565 *6)) (-4 *6 (-13 (-408 *5) (-27) (-1112)))
- (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2 (-1086 (-385 (-1086 *6)))) (-5 *1 (-521 *5 *6 *7))
- (-5 *3 (-1086 *6)) (-4 *7 (-1019))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1148 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-976))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1148 *3))))
- ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1086 *11)) (-5 *6 (-592 *10))
- (-5 *7 (-592 (-713))) (-5 *8 (-592 *11)) (-4 *10 (-789))
- (-4 *11 (-286)) (-4 *9 (-735)) (-4 *5 (-883 *11 *9 *10))
- (-5 *2 (-592 (-1086 *5))) (-5 *1 (-685 *9 *10 *11 *5))
- (-5 *3 (-1086 *5))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-883 *3 *4 *5)) (-5 *1 (-964 *3 *4 *5 *2 *6))
- (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-14 *6 (-592 *2)))))
-(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-270)))
- ((*1 *1) (-5 *1 (-797)))
- ((*1 *1)
- (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735))
- (-5 *1 (-919 *2 *3 *4 *5)) (-4 *5 (-883 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1006)))
- ((*1 *1)
- (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33)))
- (-4 *3 (-13 (-1019) (-33)))))
- ((*1 *1) (-5 *1 (-1093))) ((*1 *1) (-5 *1 (-1094))))
-(((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-855)))) ((*1 *1) (-4 *1 (-510)))
- ((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-641))))
- ((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-641))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851))))
- ((*1 *2 *3) (-12 (-5 *3 (-903)) (-5 *2 (-838 (-525))) (-5 *1 (-851)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1019))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-1090)))))
+ (-12 (-5 *3 (-592 (-1091))) (-5 *2 (-1178)) (-5 *1 (-1129))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 (-1091))) (-5 *2 (-1178)) (-5 *1 (-1129)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2))
+ (-4 *3 (-13 (-789) (-517))))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-453 *4 *5 *6 *7)) (|:| -1649 (-592 *7))))
- (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1090)) (-5 *4 (-886 (-525))) (-5 *2 (-308))
- (-5 *1 (-310))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1090)) (-5 *4 (-1012 (-886 (-525)))) (-5 *2 (-308))
- (-5 *1 (-310))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-976)) (-4 *3 (-1019)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1012 (-782 *3))) (-4 *3 (-13 (-1112) (-892) (-29 *5)))
- (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))))
+ (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1072 (-887 *4)) (-1072 (-887 *4))))
+ (-5 *1 (-1181 *4)) (-4 *4 (-341)))))
+(((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))) ((*1 *1) (-4 *1 (-510)))
+ ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641))))
+ ((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-700)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735))
(-5 *2
- (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-199 *5 *3))))
+ (-2 (|:| |mval| (-632 *4)) (|:| |invmval| (-632 *4))
+ (|:| |genIdeal| (-477 *4 *5 *6 *7))))
+ (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-108)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-921 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-592 (-385 (-887 *6))))
+ (-4 *6 (-13 (-517) (-968 (-525)) (-138)))
+ (-5 *2
+ (-2 (|:| |mainpart| (-385 (-887 *6)))
+ (|:| |limitedlogs|
+ (-592
+ (-2 (|:| |coeff| (-385 (-887 *6)))
+ (|:| |logand| (-385 (-887 *6))))))))
+ (-5 *1 (-531 *6)) (-5 *3 (-385 (-887 *6))))))
+(((*1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1149 (-525))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-385 (-887 (-525)))))
+ (-5 *2 (-592 (-592 (-273 (-887 *4))))) (-5 *1 (-358 *4))
+ (-4 *4 (-13 (-787) (-341)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-273 (-385 (-887 (-525))))))
+ (-5 *2 (-592 (-592 (-273 (-887 *4))))) (-5 *1 (-358 *4))
+ (-4 *4 (-13 (-787) (-341)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 (-525)))) (-5 *2 (-592 (-273 (-887 *4))))
+ (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-273 (-385 (-887 (-525)))))
+ (-5 *2 (-592 (-273 (-887 *4)))) (-5 *1 (-358 *4))
+ (-4 *4 (-13 (-787) (-341)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1012 (-782 *3))) (-5 *5 (-1073))
- (-4 *3 (-13 (-1112) (-892) (-29 *6)))
- (-4 *6 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))))
+ (|partial| -12 (-5 *5 (-1091))
+ (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-4 *4 (-13 (-29 *6) (-1113) (-893)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -1449 (-592 *4))))
+ (-5 *1 (-598 *6 *4 *3)) (-4 *3 (-602 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-592 *2))
+ (-4 *2 (-13 (-29 *6) (-1113) (-893)))
+ (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *1 (-598 *6 *2 *3)) (-4 *3 (-602 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 *5)) (-4 *5 (-341))
(-5 *2
- (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-199 *6 *3))))
+ (-2 (|:| |particular| (-3 (-1173 *5) "failed"))
+ (|:| -1449 (-592 (-1173 *5)))))
+ (-5 *1 (-613 *5)) (-5 *4 (-1173 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1012 (-782 (-294 *5))))
- (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))))
+ (-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341))
(-5 *2
- (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-200 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-385 (-886 *6))) (-5 *4 (-1012 (-782 (-294 *6))))
- (-5 *5 (-1073))
- (-4 *6 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))))
+ (-2 (|:| |particular| (-3 (-1173 *5) "failed"))
+ (|:| -1449 (-592 (-1173 *5)))))
+ (-5 *1 (-613 *5)) (-5 *4 (-1173 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 *5)) (-4 *5 (-341))
(-5 *2
- (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-200 *6))))
+ (-592
+ (-2 (|:| |particular| (-3 (-1173 *5) "failed"))
+ (|:| -1449 (-592 (-1173 *5))))))
+ (-5 *1 (-613 *5)) (-5 *4 (-592 (-1173 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1012 (-782 (-385 (-886 *5)))))
- (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))))
+ (-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341))
(-5 *2
- (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-200 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-385 (-886 *6))) (-5 *4 (-1012 (-782 (-385 (-886 *6)))))
- (-5 *5 (-1073))
- (-4 *6 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))))
+ (-592
+ (-2 (|:| |particular| (-3 (-1173 *5) "failed"))
+ (|:| -1449 (-592 (-1173 *5))))))
+ (-5 *1 (-613 *5)) (-5 *4 (-592 (-1173 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4256))))
+ (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4256))))
(-5 *2
- (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-200 *6))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1449 (-592 *4))))
+ (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1090))
- (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-3 *3 (-592 *3))) (-5 *1 (-406 *5 *3))
- (-4 *3 (-13 (-1112) (-892) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-451 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1014 (-782 (-357))))
- (-5 *5 (-357)) (-5 *6 (-988)) (-5 *2 (-965)) (-5 *1 (-526))))
- ((*1 *2 *3) (-12 (-5 *3 (-711)) (-5 *2 (-965)) (-5 *1 (-526))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1014 (-782 (-357))))
- (-5 *5 (-357)) (-5 *2 (-965)) (-5 *1 (-526))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1014 (-782 (-357))))
- (-5 *5 (-357)) (-5 *2 (-965)) (-5 *1 (-526))))
+ (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4256))))
+ (-4 *7 (-13 (-351 *5) (-10 -7 (-6 -4256))))
+ (-5 *2
+ (-592
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1449 (-592 *7)))))
+ (-5 *1 (-614 *5 *6 *7 *3)) (-5 *4 (-592 *7))
+ (-4 *3 (-630 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1014 (-782 (-357))))
- (-5 *2 (-965)) (-5 *1 (-526))))
+ (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-592 (-1091))) (-4 *5 (-517))
+ (-5 *2 (-592 (-592 (-273 (-385 (-887 *5)))))) (-5 *1 (-712 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-517))
+ (-5 *2 (-592 (-592 (-273 (-385 (-887 *4)))))) (-5 *1 (-712 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1091))
+ (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *1 (-714 *5 *2)) (-4 *2 (-13 (-29 *5) (-1113) (-893)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-632 *7)) (-5 *5 (-1091))
+ (-4 *7 (-13 (-29 *6) (-1113) (-893)))
+ (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *2
+ (-2 (|:| |particular| (-1173 *7)) (|:| -1449 (-592 (-1173 *7)))))
+ (-5 *1 (-744 *6 *7)) (-5 *4 (-1173 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1014 (-782 (-357)))))
- (-5 *2 (-965)) (-5 *1 (-526))))
+ (|partial| -12 (-5 *3 (-632 *6)) (-5 *4 (-1091))
+ (-4 *6 (-13 (-29 *5) (-1113) (-893)))
+ (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *2 (-592 (-1173 *6))) (-5 *1 (-744 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1014 (-782 (-357)))))
- (-5 *5 (-357)) (-5 *2 (-965)) (-5 *1 (-526))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1014 (-782 (-357)))))
- (-5 *5 (-357)) (-5 *2 (-965)) (-5 *1 (-526))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1014 (-782 (-357)))))
- (-5 *5 (-357)) (-5 *6 (-988)) (-5 *2 (-965)) (-5 *1 (-526))))
+ (|partial| -12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110)))
+ (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1113) (-893)))
+ (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *2
+ (-2 (|:| |particular| (-1173 *7)) (|:| -1449 (-592 (-1173 *7)))))
+ (-5 *1 (-744 *6 *7))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1012 (-782 (-357))))
- (-5 *5 (-1073)) (-5 *2 (-965)) (-5 *1 (-526))))
+ (|partial| -12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110)))
+ (-5 *5 (-1091)) (-4 *7 (-13 (-29 *6) (-1113) (-893)))
+ (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *2
+ (-2 (|:| |particular| (-1173 *7)) (|:| -1449 (-592 (-1173 *7)))))
+ (-5 *1 (-744 *6 *7))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1012 (-782 (-357))))
- (-5 *5 (-1090)) (-5 *2 (-965)) (-5 *1 (-526))))
+ (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-1091))
+ (-4 *7 (-13 (-29 *6) (-1113) (-893)))
+ (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *7) (|:| -1449 (-592 *7))) *7 "failed"))
+ (-5 *1 (-744 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-110)) (-5 *5 (-1091))
+ (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *3) (|:| -1449 (-592 *3))) *3 "failed"))
+ (-5 *1 (-744 *6 *3)) (-4 *3 (-13 (-29 *6) (-1113) (-893)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-273 *2)) (-5 *4 (-110)) (-5 *5 (-592 *2))
+ (-4 *2 (-13 (-29 *6) (-1113) (-893))) (-5 *1 (-744 *6 *2))
+ (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-110)) (-5 *4 (-273 *2)) (-5 *5 (-592 *2))
+ (-4 *2 (-13 (-29 *6) (-1113) (-893)))
+ (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *1 (-744 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-750)) (-5 *2 (-966)) (-5 *1 (-747))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-750)) (-5 *4 (-989)) (-5 *2 (-966)) (-5 *1 (-747))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1173 (-294 (-357)))) (-5 *4 (-357))
+ (-5 *5 (-592 (-357))) (-5 *2 (-966)) (-5 *1 (-747))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1173 (-294 (-357)))) (-5 *4 (-357))
+ (-5 *5 (-592 (-357))) (-5 *2 (-966)) (-5 *1 (-747))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1173 (-294 (-357)))) (-5 *4 (-357))
+ (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *2 (-966))
+ (-5 *1 (-747))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1173 (-294 (-357)))) (-5 *4 (-357))
+ (-5 *5 (-592 (-357))) (-5 *2 (-966)) (-5 *1 (-747))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1173 (-294 (-357)))) (-5 *4 (-357))
+ (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *2 (-966))
+ (-5 *1 (-747))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1173 (-294 (-357)))) (-5 *4 (-357))
+ (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *2 (-966))
+ (-5 *1 (-747))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12
+ (-5 *5
+ (-1
+ (-3 (-2 (|:| |particular| *6) (|:| -1449 (-592 *6))) "failed")
+ *7 *6))
+ (-4 *6 (-341)) (-4 *7 (-602 *6))
+ (-5 *2 (-2 (|:| |particular| (-1173 *6)) (|:| -1449 (-632 *6))))
+ (-5 *1 (-755 *6 *7)) (-5 *3 (-632 *6)) (-5 *4 (-1173 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-833)) (-5 *2 (-966)) (-5 *1 (-832))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-833)) (-5 *4 (-989)) (-5 *2 (-966)) (-5 *1 (-832))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-357)) (-5 *4 (-713)) (-5 *5 (-592 (-294 (-357))))
+ (-5 *6 (-592 (-592 (-294 (-357))))) (-5 *7 (-1074)) (-5 *8 (-205))
+ (-5 *2 (-966)) (-5 *1 (-832))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *3 (-357)) (-5 *4 (-713)) (-5 *5 (-592 (-294 (-357))))
+ (-5 *6 (-592 (-592 (-294 (-357))))) (-5 *7 (-1074)) (-5 *2 (-966))
+ (-5 *1 (-832))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-887 (-385 (-525)))) (-5 *2 (-592 (-357)))
+ (-5 *1 (-954)) (-5 *4 (-357))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-887 (-525))) (-5 *2 (-592 (-357))) (-5 *1 (-954))
+ (-5 *4 (-357))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-138) (-967 (-525)))) (-4 *5 (-1148 *4))
- (-5 *2 (-542 (-385 *5))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5))))
+ (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2 (-592 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1149 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1049 *4))
+ (-5 *3 (-294 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1049 *4))
+ (-5 *3 (-273 (-294 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) (-4 *5 (-138))
- (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-588 (-525))))
- (-5 *2 (-3 (-294 *5) (-592 (-294 *5)))) (-5 *1 (-545 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-683 *3 *2)) (-4 *3 (-976)) (-4 *2 (-789))
- (-4 *3 (-37 (-385 (-525))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1090)) (-5 *1 (-886 *3)) (-4 *3 (-37 (-385 (-525))))
- (-4 *3 (-976))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-4 *2 (-789))
- (-5 *1 (-1043 *3 *2 *4)) (-4 *4 (-883 *3 (-497 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976))
- (-5 *1 (-1075 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1081 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1087 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *1 (-1121 *3)) (-4 *3 (-37 (-385 (-525))))
- (-4 *3 (-976))))
- ((*1 *1 *1 *2)
- (-3309
- (-12 (-5 *2 (-1090)) (-4 *1 (-1132 *3)) (-4 *3 (-976))
- (-12 (-4 *3 (-29 (-525))) (-4 *3 (-892)) (-4 *3 (-1112))
- (-4 *3 (-37 (-385 (-525))))))
- (-12 (-5 *2 (-1090)) (-4 *1 (-1132 *3)) (-4 *3 (-976))
- (-12 (|has| *3 (-15 -4104 ((-592 (-1090)) *3)))
- (|has| *3 (-15 -3766 (*3 *3 (-1090))))
- (-4 *3 (-37 (-385 (-525))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1132 *2)) (-4 *2 (-976)) (-4 *2 (-37 (-385 (-525))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1136 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-37 (-385 (-525))))))
- ((*1 *1 *1 *2)
- (-3309
- (-12 (-5 *2 (-1090)) (-4 *1 (-1153 *3)) (-4 *3 (-976))
- (-12 (-4 *3 (-29 (-525))) (-4 *3 (-892)) (-4 *3 (-1112))
- (-4 *3 (-37 (-385 (-525))))))
- (-12 (-5 *2 (-1090)) (-4 *1 (-1153 *3)) (-4 *3 (-976))
- (-12 (|has| *3 (-15 -4104 ((-592 (-1090)) *3)))
- (|has| *3 (-15 -3766 (*3 *3 (-1090))))
- (-4 *3 (-37 (-385 (-525))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1153 *2)) (-4 *2 (-976)) (-4 *2 (-37 (-385 (-525))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1157 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-3309
- (-12 (-5 *2 (-1090)) (-4 *1 (-1163 *3)) (-4 *3 (-976))
- (-12 (-4 *3 (-29 (-525))) (-4 *3 (-892)) (-4 *3 (-1112))
- (-4 *3 (-37 (-385 (-525))))))
- (-12 (-5 *2 (-1090)) (-4 *1 (-1163 *3)) (-4 *3 (-976))
- (-12 (|has| *3 (-15 -4104 ((-592 (-1090)) *3)))
- (|has| *3 (-15 -3766 (*3 *3 (-1090))))
- (-4 *3 (-37 (-385 (-525))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1163 *2)) (-4 *2 (-976)) (-4 *2 (-37 (-385 (-525))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1164 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)) (-14 *5 *3))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-525)) (-4 *5 (-787)) (-4 *5 (-341))
- (-5 *2 (-713)) (-5 *1 (-879 *5 *6)) (-4 *6 (-1148 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-1013 *3)) (-4 *3 (-1126)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1037)) (-5 *1 (-105))))
- ((*1 *2 *1) (-12 (-4 *1 (-127)) (-5 *2 (-713))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-351 *3)) (-4 *3 (-1126))
- (-4 *3 (-1019))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-351 *3)) (-4 *3 (-1126)) (-4 *3 (-1019))
- (-5 *2 (-525))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-351 *4)) (-4 *4 (-1126))
- (-5 *2 (-525))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-525)) (-5 *3 (-132))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-525)))))
-(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-135)))
- ((*1 *1 *1) (-4 *1 (-1059))))
+ (-12 (-5 *4 (-1091))
+ (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1049 *5))
+ (-5 *3 (-273 (-294 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1091))
+ (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1049 *5))
+ (-5 *3 (-294 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-1091)))
+ (-4 *5 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1049 *5))
+ (-5 *3 (-592 (-273 (-294 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1091)))
+ (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *5))))))
+ (-5 *1 (-1097 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-1091))) (-4 *5 (-517))
+ (-5 *2 (-592 (-592 (-273 (-385 (-887 *5)))))) (-5 *1 (-1097 *5))
+ (-5 *3 (-592 (-273 (-385 (-887 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-385 (-887 *4)))) (-4 *4 (-517))
+ (-5 *2 (-592 (-592 (-273 (-385 (-887 *4)))))) (-5 *1 (-1097 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-887 *4))))))
+ (-5 *1 (-1097 *4)) (-5 *3 (-592 (-273 (-385 (-887 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1091)) (-4 *5 (-517))
+ (-5 *2 (-592 (-273 (-385 (-887 *5))))) (-5 *1 (-1097 *5))
+ (-5 *3 (-385 (-887 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1091)) (-4 *5 (-517))
+ (-5 *2 (-592 (-273 (-385 (-887 *5))))) (-5 *1 (-1097 *5))
+ (-5 *3 (-273 (-385 (-887 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-592 (-273 (-385 (-887 *4)))))
+ (-5 *1 (-1097 *4)) (-5 *3 (-385 (-887 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-592 (-273 (-385 (-887 *4)))))
+ (-5 *1 (-1097 *4)) (-5 *3 (-273 (-385 (-887 *4)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976))
+ (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977))
(-5 *2
- (-2 (|:| -3156 (-713)) (|:| |curves| (-713))
+ (-2 (|:| -1649 (-713)) (|:| |curves| (-713))
(|:| |polygons| (-713)) (|:| |constructs| (-713)))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1071 *4)) (-5 *3 (-385 (-525)))
- (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-976)) (-5 *1 (-1075 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-883 *4 *3 *5)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
- (|:| |Conditional| "conditional") (|:| |Return| "return")
- (|:| |Block| "block") (|:| |Comment| "comment")
- (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
- (|:| |Repeat| "repeat") (|:| |Goto| "goto")
- (|:| |Continue| "continue")
- (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
- (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-308)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1073)) (-5 *1 (-921))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-1014 *4)) (-4 *4 (-1126))
- (-5 *1 (-1012 *4)))))
+ (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *2 (-761 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1194 *3 *2)) (-4 *3 (-977)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1173 (-294 (-205)))) (-5 *2 (-1173 (-294 (-357))))
+ (-5 *1 (-284)))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-977))
+ (-5 *1 (-792 *5 *2)) (-4 *2 (-791 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-135)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) (-5 *2 (-966))
+ (-5 *1 (-692)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-592 (-273 *4))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
+ (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))))
+(((*1 *2) (-12 (-5 *2 (-592 *3)) (-5 *1 (-1006 *3)) (-4 *3 (-127)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-592 *3)) (-5 *1 (-895 *3)) (-4 *3 (-510)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2))
- (-4 *4 (-351 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1097)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-565 *6)) (-5 *3 (-592 (-565 *6))) (-5 *4 (-1090))
- (-4 *6 (-408 *5)) (-4 *5 (-789)) (-5 *1 (-534 *5 *6)))))
+ (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-126))
+ (-4 *3 (-734)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *5)) (-4 *5 (-1148 *3)) (-4 *3 (-286))
- (-5 *2 (-108)) (-5 *1 (-432 *3 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1073)))))
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
(((*1 *2)
- (-12 (-4 *1 (-327))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860)))))
-(((*1 *1 *1 *1) (-5 *1 (-125))))
-(((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) (-5 *2 (-108))
- (-5 *1 (-335 *4)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-308)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-517)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-713)) (-5 *5 (-592 *3)) (-4 *3 (-286)) (-4 *6 (-789))
- (-4 *7 (-735)) (-5 *2 (-108)) (-5 *1 (-575 *6 *7 *3 *8))
- (-4 *8 (-883 *3 *7 *6)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-860))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-504 *4 *2 *5 *6))
- (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713))))))
-(((*1 *1 *1 *1) (-5 *1 (-125))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1172 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517))
- (-5 *2 (-108)) (-5 *1 (-587 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-855)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-242)))))
-(((*1 *2 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-976))))
- ((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-976)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-224 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851))))
- ((*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))))
-(((*1 *1 *1) (-5 *1 (-205)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090)))
- (-14 *3 (-592 (-1090))) (-4 *4 (-365))))
- ((*1 *1 *1) (-5 *1 (-357))) ((*1 *1) (-5 *1 (-357))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1073) (-716))) (-5 *1 (-110)))))
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-632 (-385 (-886 (-525))))) (-5 *2 (-592 (-294 (-525))))
- (-5 *1 (-961)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-357)) (-5 *1 (-969)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
- (-5 *2 (-965)) (-5 *1 (-695)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-764)))))
+ (-12 (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-278 *4 *5))
+ (-14 *4 (-205)) (-14 *5 (-205))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-1015 (-782 (-205)))) (-5 *2 (-108))
+ (-5 *1 (-284))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-126)))))
+(((*1 *2 *1) (-12 (-5 *2 (-716)) (-5 *1 (-51)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
- (-4 *4 (-13 (-789) (-517))))))
-(((*1 *2 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-5 *2 (-108))))
+ (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-341))
+ (-5 *1 (-492 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855))
- (-4 *4 (-976)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *4 (-713))
- (-5 *2 (-632 (-205))) (-5 *1 (-246)))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1037)) (-5 *1 (-105))))
- ((*1 *2 *1) (|partial| -12 (-5 *1 (-343 *2)) (-4 *2 (-1019))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1108)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1148 (-385 (-525)))) (-5 *1 (-847 *3 *2))
- (-4 *2 (-1148 (-385 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-517))
- (-4 *7 (-883 *3 *5 *6))
- (-5 *2 (-2 (|:| -1600 (-713)) (|:| -1459 *8) (|:| |radicand| *8)))
- (-5 *1 (-887 *5 *6 *3 *7 *8)) (-5 *4 (-713))
- (-4 *8
- (-13 (-341)
- (-10 -8 (-15 -1303 (*7 $)) (-15 -1312 (*7 $)) (-15 -1908 ($ *7))))))))
-(((*1 *2)
- (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5)))
- (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-5 *2 (-713)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-339 (-110))) (-4 *2 (-976)) (-5 *1 (-657 *2 *4))
- (-4 *4 (-594 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-339 (-110))) (-5 *1 (-776 *2)) (-4 *2 (-976)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-517))
- (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3))) (-5 *1 (-1143 *4 *3))
- (-4 *3 (-1148 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
- ((*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-632 (-525))) (-5 *2 (-965)) (-5 *1 (-700)))))
-(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-520)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-855)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-242)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-445)) (-5 *4 (-855)) (-5 *2 (-1177)) (-5 *1 (-1173)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1126))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1071 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1104 *4 *5))
- (-4 *4 (-1019)) (-4 *5 (-1019)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (|has| *1 (-6 -4255)) (-4 *1 (-351 *3))
- (-4 *3 (-1126)))))
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2))
+ (|has| *2 (-6 (-4257 "*"))) (-4 *2 (-977))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160))
+ (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
+ (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4257 "*"))) (-4 *2 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-273 (-887 (-525))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-592 (-1091)))
+ (|:| |inhom| (-3 (-592 (-1173 (-713))) "failed"))
+ (|:| |hom| (-592 (-1173 (-713))))))
+ (-5 *1 (-216)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)))) (-5 *1 (-170 *3 *2))
- (-4 *2 (-13 (-27) (-1112) (-408 (-157 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-517) (-789) (-967 (-525))))
- (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 (-157 *4))))))
+ (|partial| -12 (-5 *2 (-592 (-887 *3))) (-4 *3 (-429))
+ (-5 *1 (-338 *3 *4)) (-14 *4 (-592 (-1091)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3)))))
+ (|partial| -12 (-5 *2 (-592 (-722 *3 (-800 *4)))) (-4 *3 (-429))
+ (-14 *4 (-592 (-1091))) (-5 *1 (-577 *3 *4)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
+ (-14 *4 (-713)) (-4 *5 (-160))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
+ (-14 *4 (-713)) (-4 *5 (-160))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1090))
- (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-1116 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))))
+ (-12
+ (-5 *2
+ (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
+ (-227 *4 (-385 (-525)))))
+ (-5 *3 (-592 (-800 *4))) (-14 *4 (-592 (-1091))) (-14 *5 (-713))
+ (-5 *1 (-478 *4 *5)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -1679 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1149 *7))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| (-385 *8))
+ (|:| |limitedlogs|
+ (-592
+ (-2 (|:| |coeff| (-385 *8))
+ (|:| |logand| (-385 *8)))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-535 *7 *8)) (-5 *3 (-385 *8)))))
(((*1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-592 (-273 *4))) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
- (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1019))
- (-4 *4 (-126)))))
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1186 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
+ (-5 *1 (-610 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-610 *3 *4)) (-5 *1 (-1191 *3 *4))
+ (-4 *3 (-789)) (-4 *4 (-160)))))
(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-797) (-797) (-797))) (-5 *4 (-525)) (-5 *2 (-797))
- (-5 *1 (-595 *5 *6 *7)) (-4 *5 (-1019)) (-4 *6 (-23)) (-14 *7 *6)))
+ (-12 (-5 *3 (-1 (-798) (-798) (-798))) (-5 *4 (-525)) (-5 *2 (-798))
+ (-5 *1 (-595 *5 *6 *7)) (-4 *5 (-1020)) (-4 *6 (-23)) (-14 *7 *6)))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-797)) (-5 *1 (-793 *3 *4 *5)) (-4 *3 (-976))
+ (-12 (-5 *2 (-798)) (-5 *1 (-793 *3 *4 *5)) (-4 *3 (-977))
(-14 *4 (-94 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-797))))
- ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-797))))
- ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-797))))
- ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1086 *3)) (-4 *3 (-976)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-798))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-798))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-798))))
+ ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1087 *3)) (-4 *3 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-632 *4))
+ (-5 *1 (-756 *4 *5)) (-4 *5 (-602 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-341))
+ (-5 *2 (-632 *5)) (-5 *1 (-756 *5 *6)) (-4 *6 (-602 *5)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))
+ (-5 *2 (-966)) (-5 *1 (-691)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4))))
+ (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
+ (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1123 *2)) (-4 *2 (-907)))))
+(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *1 *1) (-4 *1 (-1055))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1173 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-108))
+ (-5 *1 (-1198 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1127)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1140 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1127))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1127)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-907)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1091)) (-5 *5 (-1015 (-205))) (-5 *2 (-862))
+ (-5 *1 (-860 *3)) (-4 *3 (-567 (-501)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1091)) (-5 *5 (-1015 (-205))) (-5 *2 (-862))
+ (-5 *1 (-860 *3)) (-4 *3 (-567 (-501)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-861))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-861))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-861))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1015 (-205))) (-5 *1 (-862))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-862))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-862))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-862))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-862))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-862))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-862)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4)))
+ (-5 *2 (-1173 *1)) (-4 *1 (-320 *3 *4 *5)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834)))) (-5 *2 (-966))
+ (-5 *1 (-691)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-632 (-385 (-887 (-525)))))
+ (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962)))))
(((*1 *1 *2) (-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-308))))
((*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-5 *1 (-308))))
((*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-5 *1 (-308))))
@@ -3572,872 +5863,923 @@
((*1 *1 *2) (-12 (-5 *2 (-294 (-643))) (-5 *1 (-308))))
((*1 *1 *2) (-12 (-5 *2 (-294 (-641))) (-5 *1 (-308))))
((*1 *1) (-5 *1 (-308))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-681)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-517)) (-4 *3 (-977))
+ (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-791 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-977))
+ (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3))) (-5 *1 (-792 *5 *3))
+ (-4 *3 (-791 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-798)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-694)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-592 *5) *6))
+ (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *6 (-1149 *5))
+ (-5 *2 (-592 (-2 (|:| -1479 *5) (|:| -4216 *3))))
+ (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6))
+ (-4 *7 (-602 (-385 *6))))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-525)) (-5 *1 (-221))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-592 (-1074))) (-5 *3 (-525)) (-5 *4 (-1074))
+ (-5 *1 (-221))))
+ ((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1151 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977)))))
(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177))
- (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1074)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1178))
+ (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177))
- (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-1074)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1178))
+ (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2794 (-724 *3)) (|:| |coef2| (-724 *3))))
+ (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-2 (|:| -2794 *1) (|:| |coef2| *1)))
+ (-4 *1 (-991 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4))
+ (-4 *6 (-1149 *5)) (-4 *7 (-1149 (-385 *6)))
+ (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-968 (-525))))
+ (-5 *2 (-2 (|:| -3973 (-713)) (|:| -2626 *8)))
+ (-5 *1 (-846 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6))
+ (-4 *4 (-1149 (-385 (-525)))) (-4 *5 (-1149 (-385 *4)))
+ (-4 *6 (-320 (-385 (-525)) *4 *5))
+ (-5 *2 (-2 (|:| -3973 (-713)) (|:| -2626 *6)))
+ (-5 *1 (-847 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1127)) (-5 *2 (-108)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4255)) (-4 *1 (-142 *2)) (-4 *2 (-1127))
+ (-4 *2 (-1020)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1091))
+ (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-174))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1091))
+ (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *1)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-976))
+ (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977))
(-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))))
((*1 *2 *1 *1)
- (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735))
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
(-4 *5 (-789)) (-5 *2 (-108))))
((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108))))
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-1120 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-104))) (-5 *1 (-162)))))
-(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5))
- (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-1183 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517))
- (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1183 *5 *6 *7 *8)))))
-(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-713))) (-5 *3 (-108)) (-5 *1 (-1079 *4 *5))
- (-14 *4 (-855)) (-4 *5 (-976)))))
-(((*1 *1 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-501)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))))
- (-5 *2 (-592 (-385 (-525)))) (-5 *1 (-950 *4))
- (-4 *4 (-1148 (-525))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *2 (-592 *3)) (-5 *1 (-909 *4 *5 *6 *3))
- (-4 *3 (-990 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-573 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -4152 *4) (|:| |sol?| (-108)))
- (-525) *4))
- (-4 *4 (-341)) (-4 *5 (-1148 *4)) (-5 *1 (-535 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 *1)) (|has| *1 (-6 -4255)) (-4 *1 (-941 *3))
- (-4 *3 (-1126)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1019)) (-4 *5 (-1019))
- (-4 *6 (-1019)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *4 *5 *6)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5))
- (-14 *3 (-525)) (-14 *4 (-713)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-976))
- (-5 *2 (-886 *5)) (-5 *1 (-878 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525))
- (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160))
- (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *9)) (-4 *9 (-976)) (-4 *5 (-789)) (-4 *6 (-735))
- (-4 *8 (-976)) (-4 *2 (-883 *9 *7 *5))
- (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735))
- (-4 *4 (-883 *8 *6 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 *3 *4 *5))
- (-5 *2 (-391 *4 (-385 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1172 *6)) (-4 *6 (-13 (-387 *4 *5) (-967 *4)))
- (-4 *4 (-924 *3)) (-4 *5 (-1148 *4)) (-4 *3 (-286))
- (-5 *1 (-391 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-341))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-1019)) (-5 *2 (-1177))
- (-5 *1 (-1127 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-1019)) (-5 *2 (-1177))
- (-5 *1 (-1127 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-886 *4)) (-4 *4 (-976)) (-4 *4 (-567 (-357)))
- (-5 *2 (-357)) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-886 *5)) (-5 *4 (-855)) (-4 *5 (-976))
- (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517))
- (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-855)) (-4 *5 (-517))
- (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789))
- (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-855)) (-4 *5 (-517))
- (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-357))
- (-5 *1 (-727 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 *5)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
- (-14 *4 (-713)) (-4 *5 (-160)))))
-(((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-691)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-286)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *3 (-525)) (-5 *5 (-1090))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-592 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2838 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1112) (-27) (-408 *8)))
- (-4 *8 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -4152 *4) (|:| |sol?| (-108))))
- (-5 *1 (-944 *8 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-294 (-357))) (-5 *1 (-284)))))
-(((*1 *1 *1) (-4 *1 (-578)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933) (-1112))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-5 *2 (-108)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1139 (-525))) (-4 *1 (-597 *3)) (-4 *3 (-1126))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1126)))))
-(((*1 *2 *3) (-12 (-5 *3 (-108)) (-5 *2 (-1073)) (-5 *1 (-51)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3))
- (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-883 *6 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-592 (-1090))) (-4 *5 (-429))
- (-5 *2
- (-2 (|:| |glbase| (-592 (-227 *4 *5))) (|:| |glval| (-592 (-525)))))
- (-5 *1 (-580 *4 *5)) (-5 *3 (-592 (-227 *4 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1090)) (-5 *2 (-1 (-1086 (-886 *4)) (-886 *4)))
- (-5 *1 (-1180 *4)) (-4 *4 (-341)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1029)) (-5 *3 (-525)))))
-(((*1 *2 *3) (-12 (-5 *3 (-592 (-51))) (-5 *2 (-1177)) (-5 *1 (-798)))))
-(((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-592
- (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8))
- (|:| |wcond| (-592 (-886 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1172 (-385 (-886 *5))))
- (|:| -2499 (-592 (-1172 (-385 (-886 *5))))))))))
- (-5 *4 (-1073)) (-4 *5 (-13 (-286) (-138))) (-4 *8 (-883 *5 *7 *6))
- (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-525))
- (-5 *1 (-858 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-525)) (-4 *4 (-1148 (-385 (-525)))) (-5 *2 (-855))
- (-5 *1 (-847 *4 *5)) (-4 *5 (-1148 (-385 *4))))))
-(((*1 *1 *1) (-5 *1 (-988))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-395 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130))
- (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-385 (-525)))
- (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))))
-(((*1 *1 *1) (-12 (-5 *1 (-1113 *2)) (-4 *2 (-1019)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-632 *7)) (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *6 *5))
- (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090))))
- (-4 *6 (-735)) (-5 *1 (-858 *4 *5 *6 *7)))))
+ (-12 (-4 *1 (-1121 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3))
+ (-4 *3 (-996 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1029)) (-5 *3 (-525)))))
-(((*1 *1 *1) (-4 *1 (-517))))
-(((*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))
- ((*1 *1 *1 *1) (-4 *1 (-450)))
- ((*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
- ((*1 *2 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-817))))
- ((*1 *1 *1) (-5 *1 (-903)))
- ((*1 *1 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))))
-(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))))
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175))))
+ ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-838 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-221))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-1074))) (-5 *2 (-1178)) (-5 *1 (-221)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
+ (-5 *1 (-921 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
+ (-5 *1 (-1027 *3 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1020)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-5 *2 (-1177)) (-5 *1 (-1093))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1090))
- (-5 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-5 *2 (-1177))
- (-5 *1 (-1093))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1090))
- (-5 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-5 *2 (-1177))
- (-5 *1 (-1093)))))
+ (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-221)) (-5 *3 (-1074))))
+ ((*1 *2 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-221))))
+ ((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1148 (-525))) (-5 *1 (-461 *3)))))
-(((*1 *1)
- (-12 (-4 *1 (-382)) (-2480 (|has| *1 (-6 -4245)))
- (-2480 (|has| *1 (-6 -4237)))))
- ((*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1019)) (-4 *2 (-789))))
- ((*1 *1 *1 *1) (-4 *1 (-789)))
- ((*1 *2 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-789))))
- ((*1 *1) (-5 *1 (-1037))))
-(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-146))))
- ((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-159))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1122 *3)) (-4 *3 (-906)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-567 (-826 (-525))))
- (-4 *5 (-820 (-525)))
- (-4 *5 (-13 (-789) (-967 (-525)) (-429) (-588 (-525))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-528 *5 *3)) (-4 *3 (-578))
- (-4 *3 (-13 (-27) (-1112) (-408 *5))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-855)) (-5 *2 (-713)) (-5 *1 (-1020 *4 *5))
- (-14 *4 (-855)) (-14 *5 (-855)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797))))
- ((*1 *1 *1 *1) (-5 *1 (-797))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1090))
- (-4 *5 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-542 *3)) (-5 *1 (-518 *5 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *5))))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-459 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-414)))))
+ (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1149 *3))
+ (-4 *3 (-13 (-341) (-138) (-968 (-525)))) (-5 *1 (-529 *3 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1127))
+ (-4 *5 (-1127)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-220 *6 *7)) (-14 *6 (-713))
+ (-4 *7 (-1127)) (-4 *5 (-1127)) (-5 *2 (-220 *6 *5))
+ (-5 *1 (-219 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1127)) (-4 *5 (-1127))
+ (-4 *2 (-351 *5)) (-5 *1 (-349 *6 *4 *5 *2)) (-4 *4 (-351 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1020)) (-4 *5 (-1020))
+ (-4 *2 (-403 *5)) (-5 *1 (-401 *6 *4 *5 *2)) (-4 *4 (-403 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-592 *6)) (-4 *6 (-1127))
+ (-4 *5 (-1127)) (-5 *2 (-592 *5)) (-5 *1 (-590 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-892 *6)) (-4 *6 (-1127))
+ (-4 *5 (-1127)) (-5 *2 (-892 *5)) (-5 *1 (-891 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1072 *6)) (-4 *6 (-1127))
+ (-4 *3 (-1127)) (-5 *2 (-1072 *3)) (-5 *1 (-1070 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1173 *6)) (-4 *6 (-1127))
+ (-4 *5 (-1127)) (-5 *2 (-1173 *5)) (-5 *1 (-1172 *6 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-221)) (-5 *3 (-1073))))
- ((*1 *2 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-221))))
- ((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1130)) (-4 *5 (-1148 *3)) (-4 *6 (-1148 (-385 *5)))
- (-5 *2 (-108)) (-5 *1 (-319 *4 *3 *5 *6)) (-4 *4 (-320 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1113 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-838 (-525))) (-5 *1 (-851))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))))
-(((*1 *1 *1) (-5 *1 (-988))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1086 *7))
- (-4 *5 (-976)) (-4 *7 (-976)) (-4 *2 (-1148 *5))
- (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1148 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-4 *1 (-102 *3)))))
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1) (-12 (-5 *1 (-828 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1121 *2 *3 *4 *5)) (-4 *2 (-517))
+ (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-991 *2 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-1161 *3)) (-4 *3 (-1127))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-341))
+ (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *1 (-427 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-341))
+ (-5 *2
+ (-2 (|:| R (-632 *6)) (|:| A (-632 *6)) (|:| |Ainv| (-632 *6))))
+ (-5 *1 (-911 *6)) (-5 *3 (-632 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734))
- (-5 *2 (-713))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019))
- (-5 *2 (-713))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-678 *3 *4)) (-4 *3 (-976))
- (-4 *4 (-669)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-565 *5)) (-4 *5 (-408 *4)) (-4 *4 (-967 (-525)))
- (-4 *4 (-13 (-789) (-517))) (-5 *2 (-1086 *5)) (-5 *1 (-31 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-565 *1)) (-4 *1 (-976)) (-4 *1 (-281))
- (-5 *2 (-1086 *1)))))
-(((*1 *1 *1) (-4 *1 (-985))))
-(((*1 *1 *1) (-5 *1 (-797)))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1022 *2 *3 *4 *5 *6)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019))))
- ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1072))))
- ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1090)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1126))
- (-4 *5 (-351 *4)) (-4 *2 (-351 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *6 *2 *7)) (-4 *6 (-976))
- (-4 *7 (-218 *4 *6)) (-4 *2 (-218 *5 *6)))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019))
- (-4 *4 (-1019)))))
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1895 *4))))
+ (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-501)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1019))
- (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3))))
- (-5 *2 (-592 (-1090))) (-5 *1 (-998 *3 *4 *5))
- (-4 *5 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))))))
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809)))
+ (-5 *4 (-592 (-856))) (-5 *5 (-592 (-242))) (-5 *1 (-445))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809)))
+ (-5 *4 (-592 (-856))) (-5 *1 (-445))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445))))
+ ((*1 *1 *1) (-5 *1 (-445))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-632 *3))
- (-4 *3 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $)))))
- (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-308))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-308)))))
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429))
+ (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-910 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1091))) (-4 *6 (-429))
+ (-5 *2 (-592 (-592 *7))) (-5 *1 (-503 *6 *7 *5)) (-4 *7 (-341))
+ (-4 *5 (-13 (-341) (-787))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2 (-1071 (-205))) (-5 *1 (-174))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1090)))
- (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-1071 (-205))) (-5 *1 (-279))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *4 (-592 (-1090)))
- (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-1071 (-205))) (-5 *1 (-279)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734))
- (-5 *2 (-592 *3))))
+ (-12 (-4 *4 (-327)) (-5 *2 (-892 (-1087 *4))) (-5 *1 (-335 *4))
+ (-5 *3 (-1087 *4)))))
+(((*1 *1 *1) (-5 *1 (-798)))
((*1 *2 *1)
- (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019))
- (-5 *2 (-592 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-551 *3)) (-4 *3 (-976))))
+ (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020))))
+ ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-1073))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1091)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1020)) (-4 *3 (-789))
+ (-4 *2 (-1127))))
+ ((*1 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
+ ((*1 *2 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
((*1 *2 *1)
- (-12 (-5 *2 (-592 *3)) (-5 *1 (-678 *3 *4)) (-4 *3 (-976))
- (-4 *4 (-669))))
- ((*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-976)) (-5 *2 (-592 *3))))
+ (-12 (-4 *2 (-1127)) (-5 *1 (-808 *2 *3)) (-4 *3 (-1127))))
+ ((*1 *2 *1) (-12 (-5 *2 (-617 *3)) (-5 *1 (-828 *3)) (-4 *3 (-789))))
((*1 *2 *1)
- (-12 (-4 *1 (-1163 *3)) (-4 *3 (-976)) (-5 *2 (-1071 *3)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *1) (-12 (-4 *1 (-233 *3)) (-4 *3 (-1126)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-713))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-976))
- (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263)))
- (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-565 *3)) (-4 *3 (-789))))
- ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525)))
- (-5 *2 (-965)) (-5 *1 (-699)))))
-(((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-5 *2 (-632 (-385 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-903)))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-456)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1094)) (-5 *1 (-1093)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *4 (-592 (-1090)))
- (-5 *2 (-632 (-294 (-205)))) (-5 *1 (-187))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1019)) (-4 *6 (-834 *5)) (-5 *2 (-632 *6))
- (-5 *1 (-634 *5 *6 *3 *4)) (-4 *3 (-351 *6))
- (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4254)))))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))
- ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))))
-(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1128)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-855)) (-5 *1 (-728)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1086 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8)))
- (-4 *7 (-789)) (-4 *8 (-286)) (-4 *9 (-883 *8 *6 *7)) (-4 *6 (-735))
- (-5 *2
- (-2 (|:| |upol| (-1086 *8)) (|:| |Lval| (-592 *8))
- (|:| |Lfact|
- (-592 (-2 (|:| -3959 (-1086 *8)) (|:| -1600 (-525)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-685 *6 *7 *8 *9)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-385 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-13 (-341) (-138)))
- (-5 *1 (-377 *3 *4)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *2 (-965)) (-5 *1 (-694)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1090))
- (-5 *2 (-592 *4)) (-5 *1 (-1033 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1073)) (-5 *2 (-525)) (-5 *1 (-1109 *4))
- (-4 *4 (-976)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-565 *4)) (-5 *6 (-1090))
- (-4 *4 (-13 (-408 *7) (-27) (-1112)))
- (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
+ (|partial| -12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-1161 *3)) (-4 *3 (-1127))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-996 *6 *7 *8 *9))
+ (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2499 (-592 *4))))
- (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1019)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
+ (-592
+ (-2 (|:| -4216 (-592 *9)) (|:| -1895 *10) (|:| |ineq| (-592 *9)))))
+ (-5 *1 (-921 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-996 *6 *7 *8 *9))
+ (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8))
(-5 *2
- (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525))
- (|:| |success| (-108))))
- (-5 *1 (-731)) (-5 *5 (-525)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107)))))
-(((*1 *1 *1) (-4 *1 (-1059))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-986 (-954 *3) (-1086 (-954 *3))))
- (-5 *1 (-954 *3)) (-4 *3 (-13 (-787) (-341) (-952))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-789)) (-4 *5 (-735))
- (-4 *6 (-517)) (-4 *7 (-883 *6 *5 *3))
- (-5 *1 (-439 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-967 (-385 (-525))) (-341)
- (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $))
- (-15 -1312 (*7 $))))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855))
- (-4 *4 (-976)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205))))
- (-5 *2 (-965)) (-5 *1 (-697)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
-(((*1 *1 *1) (-5 *1 (-988))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-908 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *2 (-789)) (-4 *5 (-990 *3 *4 *2)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1109 *3)) (-4 *3 (-976)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-525))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346)))) (-5 *2 (-965))
- (-5 *1 (-691)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-2 (|:| -3959 (-1086 *6)) (|:| -1600 (-525)))))
- (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525))
- (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-883 *6 *4 *5)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1019)))))
-(((*1 *1) (-5 *1 (-146))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-259)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-1094)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 (-457 *3 *4))) (-14 *3 (-592 (-1090)))
- (-4 *4 (-429)) (-5 *1 (-580 *3 *4)))))
+ (-592
+ (-2 (|:| -4216 (-592 *9)) (|:| -1895 *10) (|:| |ineq| (-592 *9)))))
+ (-5 *1 (-1027 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1074)) (-5 *3 (-525)) (-5 *1 (-221)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
+ (-14 *4 (-713)) (-4 *5 (-160))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
+ (-4 *4 (-160))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
+ (-4 *4 (-351 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-977)) (-4 *1 (-630 *3 *2 *4)) (-4 *2 (-351 *3))
+ (-4 *4 (-351 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1058 *2 *3)) (-14 *2 (-713)) (-4 *3 (-977)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-856)) (-4 *5 (-789))
+ (-5 *2 (-57 (-592 (-617 *5)))) (-5 *1 (-617 *5)))))
+(((*1 *2 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-510)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-169)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1096)) (-5 *1 (-48)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-372)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090))))
- (-4 *6 (-735)) (-5 *2 (-385 (-886 *4))) (-5 *1 (-858 *4 *5 *6 *3))
- (-4 *3 (-883 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-632 *7)) (-4 *7 (-883 *4 *6 *5))
- (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090))))
- (-4 *6 (-735)) (-5 *2 (-632 (-385 (-886 *4))))
- (-5 *1 (-858 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *6 *5))
- (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090))))
- (-4 *6 (-735)) (-5 *2 (-592 (-385 (-886 *4))))
- (-5 *1 (-858 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-789) (-967 (-525)) (-588 (-525)) (-429)))
- (-5 *2 (-782 *4)) (-5 *1 (-291 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1112) (-408 *3))) (-14 *5 (-1090))
- (-14 *6 *4)))
- ((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-789) (-967 (-525)) (-588 (-525)) (-429)))
- (-5 *2 (-782 *4)) (-5 *1 (-1158 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1112) (-408 *3))) (-14 *5 (-1090))
- (-14 *6 *4))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1019) (-33)))
- (-4 *3 (-13 (-1019) (-33))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-943)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *2 (-965)) (-5 *1 (-694)))))
-(((*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-637 *3)) (-4 *3 (-1019))
- (-5 *2 (-592 (-2 (|:| -2511 *3) (|:| -2686 (-713))))))))
-(((*1 *2)
- (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5)))
- (-5 *2 (-108)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6))))
+ (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
+ (-4 *3 (-13 (-341) (-1113) (-934)))))
((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-284))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |num| (-826 *3)) (|:| |den| (-826 *3))))
- (-5 *1 (-826 *3)) (-4 *3 (-1019)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-976)))))
-(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-501))) (-5 *1 (-501)))))
+ (|partial| -12 (-4 *4 (-1131)) (-4 *5 (-1149 (-385 *2)))
+ (-4 *2 (-1149 *4)) (-5 *1 (-319 *3 *4 *2 *5))
+ (-4 *3 (-320 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1131))
+ (-4 *4 (-1149 (-385 *2))) (-4 *2 (-1149 *3)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2506 *3) (|:| |coef1| (-724 *3))))
- (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))))
-(((*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-976)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1148 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1132 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1090)))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-353 *4 *2))
+ (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4256)))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1014 *3)) (-4 *3 (-883 *7 *6 *4)) (-4 *6 (-735))
- (-4 *4 (-789)) (-4 *7 (-517))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525))))
- (-5 *1 (-549 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-517))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525))))
- (-5 *1 (-549 *5 *4 *6 *3)) (-4 *3 (-883 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797)))
- ((*1 *1 *1) (-5 *1 (-797)))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1090))
- (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-1082 *4 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1112)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1012 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1112)))
- (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-1082 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-517) (-789) (-967 (-525))))
- (-5 *2 (-385 (-886 *5))) (-5 *1 (-1083 *5)) (-5 *3 (-886 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-517) (-789) (-967 (-525))))
- (-5 *2 (-3 (-385 (-886 *5)) (-294 *5))) (-5 *1 (-1083 *5))
- (-5 *3 (-385 (-886 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1012 (-886 *5)))
- (-4 *5 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-385 (-886 *5)))
- (-5 *1 (-1083 *5)) (-5 *3 (-886 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1012 (-385 (-886 *5))))
- (-4 *5 (-13 (-517) (-789) (-967 (-525))))
- (-5 *2 (-3 (-385 (-886 *5)) (-294 *5))) (-5 *1 (-1083 *5))
- (-5 *3 (-385 (-886 *5))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-599 *4)) (-4 *4 (-320 *5 *6 *7))
- (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
- (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6)))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2499 (-592 *4))))
- (-5 *1 (-748 *5 *6 *7 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
- (-5 *1 (-1041 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-161 *3)) (-4 *3 (-286))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-619 *3)) (-4 *3 (-1126))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-683 *3 *4)) (-4 *3 (-976))
- (-4 *4 (-789))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *1 (-912 *3)) (-4 *3 (-976))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-995 *4 *5 *6 *7))
- (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-995 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 *1))
- (-4 *1 (-995 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))))
+ (-12 (-5 *3 (-1173 *6)) (-5 *4 (-1173 (-525))) (-5 *5 (-525))
+ (-4 *6 (-1020)) (-5 *2 (-1 *6)) (-5 *1 (-949 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-525)) (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-1123)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-839 *4)) (-4 *4 (-1019)) (-5 *2 (-592 (-713)))
- (-5 *1 (-838 *4)))))
+ (-12 (-5 *3 (-856))
+ (-5 *2
+ (-3 (-1087 *4)
+ (-1173 (-592 (-2 (|:| -3352 *4) (|:| -3640 (-1038)))))))
+ (-5 *1 (-324 *4)) (-4 *4 (-327)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1086 *7)) (-5 *3 (-525)) (-4 *7 (-883 *6 *4 *5))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976))
- (-5 *1 (-299 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090))
- (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-294 *5)))
- (-5 *1 (-1046 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-385 (-886 *5)))) (-5 *4 (-592 (-1090)))
- (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-294 *5))))
- (-5 *1 (-1046 *5)))))
+ (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-395 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517))
- (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8))))
- (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-592 *8)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2 (-525)) (-5 *1 (-186)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933)))
- (-5 *1 (-163 *3)))))
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1164 *4)) (-5 *1 (-1166 *4 *2))
+ (-4 *4 (-37 (-385 (-525)))))))
(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-855)) (-5 *1 (-419 *2))
- (-4 *2 (-1148 (-525)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-855)) (-5 *4 (-713)) (-5 *1 (-419 *2))
- (-4 *2 (-1148 (-525)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-855)) (-5 *4 (-592 (-713))) (-5 *1 (-419 *2))
- (-4 *2 (-1148 (-525)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-855)) (-5 *4 (-592 (-713))) (-5 *5 (-713))
- (-5 *1 (-419 *2)) (-4 *2 (-1148 (-525)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-855)) (-5 *4 (-592 (-713))) (-5 *5 (-713))
- (-5 *6 (-108)) (-5 *1 (-419 *2)) (-4 *2 (-1148 (-525)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-855)) (-5 *4 (-396 *2)) (-4 *2 (-1148 *5))
- (-5 *1 (-421 *5 *2)) (-4 *5 (-976)))))
-(((*1 *1)
- (-12 (-4 *1 (-382)) (-2480 (|has| *1 (-6 -4245)))
- (-2480 (|has| *1 (-6 -4237)))))
- ((*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1019)) (-4 *2 (-789))))
- ((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *1) (-4 *1 (-789))) ((*1 *1) (-5 *1 (-1037))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-525)) (-5 *1 (-357)))))
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-98 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-977)) (-5 *2 (-1173 *3)) (-5 *1 (-655 *3 *4))
+ (-4 *4 (-1149 *3)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-174)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-695)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1086 *5)) (-4 *5 (-341)) (-5 *2 (-592 *6))
- (-5 *1 (-498 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))))
+ (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-699)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1019)) (-5 *2 (-823 *3 *4)) (-5 *1 (-819 *3 *4 *5))
- (-4 *3 (-1019)) (-4 *5 (-612 *4)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
- (-5 *2
- (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525))
- (|:| |success| (-108))))
- (-5 *1 (-731)) (-5 *5 (-525)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2))
- (-4 *2 (-408 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1090))))
- ((*1 *1 *1) (-4 *1 (-149))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-341)) (-4 *5 (-517))
- (-5 *2
- (-2 (|:| |minor| (-592 (-855))) (|:| -1881 *3)
- (|:| |minors| (-592 (-592 (-855)))) (|:| |ops| (-592 *3))))
- (-5 *1 (-88 *5 *3)) (-5 *4 (-855)) (-4 *3 (-602 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-891 *3)) (-5 *1 (-1078 *4 *3))
- (-4 *3 (-1148 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-797)))) (-5 *1 (-797))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1057 *3 *4)) (-5 *1 (-925 *3 *4)) (-14 *3 (-855))
- (-4 *4 (-341))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *5))) (-4 *5 (-976))
- (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *6 (-218 *4 *5))
- (-4 *7 (-218 *3 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-766)) (-5 *3 (-592 (-1090))) (-5 *1 (-767)))))
-(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1126)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-855)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))))
- ((*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1148 *2)) (-4 *2 (-160))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1172 *4)) (-5 *3 (-855)) (-4 *4 (-327))
- (-5 *1 (-495 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
- (-4 *5 (-218 *3 *2)) (-4 *2 (-976)))))
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-826 *4)) (-4 *4 (-1019)) (-5 *1 (-823 *4 *3))
- (-4 *3 (-1019)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))))
-(((*1 *1 *1) (-5 *1 (-988))))
-(((*1 *1) (-5 *1 (-415))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130))
- (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))))))
-(((*1 *1) (-5 *1 (-132))))
+ (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3))
+ (-4 *3 (-1020)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-812 *2)) (-4 *2 (-1127))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-814 *2)) (-4 *2 (-1127))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-5 *1 (-817 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-695)))))
(((*1 *2 *2)
(-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2))
(-4 *2
(-13 (-341) (-281)
- (-10 -8 (-15 -1303 ((-1042 *3 (-565 $)) $))
- (-15 -1312 ((-1042 *3 (-565 $)) $))
- (-15 -1908 ($ (-1042 *3 (-565 $)))))))))
+ (-10 -8 (-15 -1498 ((-1043 *3 (-565 $)) $))
+ (-15 -1512 ((-1043 *3 (-565 $)) $))
+ (-15 -1270 ($ (-1043 *3 (-565 $)))))))))
((*1 *2 *2 *2)
(-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2))
(-4 *2
(-13 (-341) (-281)
- (-10 -8 (-15 -1303 ((-1042 *3 (-565 $)) $))
- (-15 -1312 ((-1042 *3 (-565 $)) $))
- (-15 -1908 ($ (-1042 *3 (-565 $)))))))))
+ (-10 -8 (-15 -1498 ((-1043 *3 (-565 $)) $))
+ (-15 -1512 ((-1043 *3 (-565 $)) $))
+ (-15 -1270 ($ (-1043 *3 (-565 $)))))))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-592 *2))
(-4 *2
(-13 (-341) (-281)
- (-10 -8 (-15 -1303 ((-1042 *4 (-565 $)) $))
- (-15 -1312 ((-1042 *4 (-565 $)) $))
- (-15 -1908 ($ (-1042 *4 (-565 $)))))))
+ (-10 -8 (-15 -1498 ((-1043 *4 (-565 $)) $))
+ (-15 -1512 ((-1043 *4 (-565 $)) $))
+ (-15 -1270 ($ (-1043 *4 (-565 $)))))))
(-4 *4 (-517)) (-5 *1 (-40 *4 *2))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-592 (-565 *2)))
(-4 *2
(-13 (-341) (-281)
- (-10 -8 (-15 -1303 ((-1042 *4 (-565 $)) $))
- (-15 -1312 ((-1042 *4 (-565 $)) $))
- (-15 -1908 ($ (-1042 *4 (-565 $)))))))
+ (-10 -8 (-15 -1498 ((-1043 *4 (-565 $)) $))
+ (-15 -1512 ((-1043 *4 (-565 $)) $))
+ (-15 -1270 ($ (-1043 *4 (-565 $)))))))
(-4 *4 (-517)) (-5 *1 (-40 *4 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-542 *2)) (-4 *2 (-13 (-29 *4) (-1113)))
+ (-5 *1 (-540 *4 *2))
+ (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-542 (-385 (-887 *4))))
+ (-4 *4 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))
+ (-5 *2 (-294 *4)) (-5 *1 (-545 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-735))
+ (-4 *3 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $))))) (-4 *5 (-517))
+ (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-884 (-385 (-887 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-977)) (-4 *5 (-735))
+ (-4 *3
+ (-13 (-789)
+ (-10 -8 (-15 -2749 ((-1091) $))
+ (-15 -2577 ((-3 $ "failed") (-1091))))))
+ (-5 *1 (-917 *4 *5 *3 *2)) (-4 *2 (-884 (-887 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 *6))
+ (-4 *6
+ (-13 (-789)
+ (-10 -8 (-15 -2749 ((-1091) $))
+ (-15 -2577 ((-3 $ "failed") (-1091))))))
+ (-4 *4 (-977)) (-4 *5 (-735)) (-5 *1 (-917 *4 *5 *6 *2))
+ (-4 *2 (-884 (-887 *4) *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (|has| *1 (-6 -4256)) (-4 *1 (-1161 *3))
+ (-4 *3 (-1127)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1074)) (-5 *1 (-92))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-357)) (-5 *3 (-1074)) (-5 *1 (-92)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1019)) (-5 *2 (-108)) (-5 *1 (-819 *3 *4 *5))
- (-4 *3 (-1019)) (-4 *5 (-612 *4))))
+ (-12 (-4 *4 (-1020)) (-5 *2 (-108)) (-5 *1 (-820 *3 *4 *5))
+ (-4 *3 (-1020)) (-4 *5 (-612 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-823 *3 *4)) (-4 *3 (-1019))
- (-4 *4 (-1019)))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-824 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
+(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-369)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1149 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-856)) (-4 *1 (-1151 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-734))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-385 (-525))) (-4 *1 (-1154 *3)) (-4 *3 (-977)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-910 *4 *5 *6 *7)))))
+(((*1 *1 *1) (-4 *1 (-578)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934) (-1113))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-108)) (-5 *1 (-110))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1091)) (-5 *2 (-108))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1091)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1020)) (-5 *2 (-108)) (-5 *1 (-822 *5 *3 *4))
+ (-4 *3 (-821 *5)) (-4 *4 (-567 (-827 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *6)) (-4 *6 (-821 *5)) (-4 *5 (-1020))
+ (-5 *2 (-108)) (-5 *1 (-822 *5 *6 *4)) (-4 *4 (-567 (-827 *5))))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1074))
+ (-5 *6 (-632 (-205)))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-69 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *2 (-966)) (-5 *1 (-692)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)))))
(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1178)) (-5 *1 (-195 *4))
+ (-4 *4
+ (-13 (-789)
+ (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $))
+ (-15 -3065 ((-1178) $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1178)) (-5 *1 (-195 *3))
+ (-4 *3
+ (-13 (-789)
+ (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $))
+ (-15 -3065 ((-1178) $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-475)))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1072 *3)) (-4 *3 (-1020))
+ (-4 *3 (-1127)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1080 3 *3)) (-4 *3 (-977)) (-4 *1 (-1052 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4)) (-4 *6 (-1149 *5))
+ (-4 *7 (-1149 (-385 *6))) (-4 *8 (-320 *5 *6 *7))
+ (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-108))
+ (-5 *1 (-846 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6))
+ (-4 *4 (-1149 (-385 (-525)))) (-4 *5 (-1149 (-385 *4)))
+ (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-108))
+ (-5 *1 (-847 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1173 *5)) (-4 *5 (-734)) (-5 *2 (-108))
+ (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1091))
+ (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1113) (-893)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-798))) ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1072 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-977)))))
+(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-713)) (-5 *1 (-1021 *4 *5))
+ (-14 *4 (-856)) (-14 *5 (-856)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *2 (-517)) (-5 *1 (-903 *2 *4))
+ (-4 *4 (-1149 *2)))))
+(((*1 *1) (-5 *1 (-989))))
+(((*1 *2 *3) (-12 (-5 *3 (-385 (-525))) (-5 *2 (-205)) (-5 *1 (-284)))))
+(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-643))))
+ ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-643)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-800 *5))) (-14 *5 (-592 (-1091))) (-4 *6 (-429))
+ (-5 *2 (-592 (-592 (-227 *5 *6)))) (-5 *1 (-448 *5 *6 *7))
+ (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1149 *5))
+ (-5 *2 (-592 *3)) (-5 *1 (-719 *4 *5 *6 *3 *7)) (-4 *3 (-1149 *6))
+ (-14 *7 (-856)))))
+(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1127)) (-5 *2 (-713)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1173 *4)) (-5 *3 (-525)) (-4 *4 (-327))
+ (-5 *1 (-495 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-2 (|:| -3352 *4) (|:| -3448 (-525)))))
+ (-4 *4 (-1020)) (-5 *2 (-1 *4)) (-5 *1 (-949 *4)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1074))
+ (-5 *6 (-632 (-205)))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *2 (-966)) (-5 *1 (-692)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1019))
- (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3))))
- (-5 *2 (-826 *3)) (-5 *1 (-998 *3 *4 *5))
- (-4 *5 (-13 (-408 *4) (-820 *3) (-567 (-826 *3)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-969)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1148 *5))
- (-5 *2 (-592 *3)) (-5 *1 (-719 *4 *5 *6 *3 *7)) (-4 *3 (-1148 *6))
- (-14 *7 (-855)))))
+ (-12 (-4 *1 (-1023 *3 *2 *4 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1165 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1091))
+ (-14 *4 *2))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-592 (-1087 *4))) (-5 *3 (-1087 *4))
+ (-4 *4 (-844)) (-5 *1 (-609 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-632 *5)) (-4 *5 (-976)) (-5 *1 (-980 *3 *4 *5))
+ (-12 (-5 *2 (-632 *5)) (-4 *5 (-977)) (-5 *1 (-981 *3 *4 *5))
(-14 *3 (-713)) (-14 *4 (-713)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-305 *3)) (-4 *3 (-1127))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1127))
+ (-14 *4 (-525)))))
+(((*1 *2 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1091))
+ (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3))
+ (-4 *3 (-13 (-1113) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-517) (-968 (-525)) (-138)))
+ (-5 *2 (-542 (-385 (-887 *5)))) (-5 *1 (-531 *5))
+ (-5 *3 (-385 (-887 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
+ (-4 *3 (-13 (-341) (-1113) (-934))))))
(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1087 *4)) (-5 *1 (-335 *4))
+ (-4 *4 (-327)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1087 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-856)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))))
+ ((*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1149 *2)) (-4 *2 (-160))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1173 *4)) (-5 *3 (-856)) (-4 *4 (-327))
+ (-5 *1 (-495 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
+ (-4 *5 (-218 *3 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-632 *11)) (-5 *4 (-592 (-385 (-887 *8))))
+ (-5 *5 (-713)) (-5 *6 (-1074)) (-4 *8 (-13 (-286) (-138)))
+ (-4 *11 (-884 *8 *10 *9)) (-4 *9 (-13 (-789) (-567 (-1091))))
+ (-4 *10 (-735))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-592
+ (-2 (|:| |eqzro| (-592 *11)) (|:| |neqzro| (-592 *11))
+ (|:| |wcond| (-592 (-887 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1173 (-385 (-887 *8))))
+ (|:| -1449 (-592 (-1173 (-385 (-887 *8))))))))))
+ (|:| |rgsz| (-525))))
+ (-5 *1 (-859 *8 *9 *10 *11)) (-5 *7 (-525)))))
(((*1 *1 *2 *3 *4)
(-12 (-5 *3 (-525)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
(-5 *1 (-396 *2)) (-4 *2 (-517)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734))
+ (-4 *2 (-429))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-320 *2 *3 *4)) (-4 *2 (-1131)) (-4 *3 (-1149 *2))
+ (-4 *4 (-1149 (-385 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-429))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)) (-4 *3 (-429))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-884 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-429))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-286)) (-4 *3 (-517)) (-5 *1 (-1079 *3 *2))
+ (-4 *2 (-1149 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103))))
+ ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198))))
+ ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462))))
+ ((*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-286))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525))))
+ ((*1 *1 *1) (-4 *1 (-986))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3))
+ (-4 *3 (-1149 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
+ (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
+ (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3))
+ (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
+ (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-939 *3))
+ (-4 *3 (-1149 (-385 (-525))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-1138 *3)) (-4 *3 (-1149 (-525))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1020))
+ (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))
+ (-5 *2 (-827 *3)) (-5 *1 (-999 *3 *4 *5))
+ (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-353 *4 *2))
+ (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4256)))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1038)) (-5 *1 (-308)))))
(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
+ (-5 *2 (-1173 (-632 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-1173 (-632 *4))) (-5 *1 (-394 *3 *4))
+ (-4 *3 (-395 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1173 (-632 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-1091))) (-4 *5 (-341))
+ (-5 *2 (-1173 (-632 (-385 (-887 *5))))) (-5 *1 (-1008 *5))
+ (-5 *4 (-632 (-385 (-887 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-1091))) (-4 *5 (-341))
+ (-5 *2 (-1173 (-632 (-887 *5)))) (-5 *1 (-1008 *5))
+ (-5 *4 (-632 (-887 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341))
+ (-5 *2 (-1173 (-632 *4))) (-5 *1 (-1008 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1113))) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341)))
+ (-4 *3 (-1149 *4)) (-5 *2 (-108)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-5 *1 (-1063 *3)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1174)))))
+(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1098)))))
(((*1 *2 *3 *3 *4 *5)
(-12 (-5 *3 (-592 (-632 *6))) (-5 *4 (-108)) (-5 *5 (-525))
- (-4 *6 (-341)) (-4 *6 (-976)) (-5 *2 (-632 *6)) (-5 *1 (-959 *6))))
+ (-4 *6 (-341)) (-4 *6 (-977)) (-5 *2 (-632 *6)) (-5 *1 (-960 *6))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-4 *4 (-976))
- (-5 *2 (-632 *4)) (-5 *1 (-959 *4))))
+ (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-4 *4 (-977))
+ (-5 *2 (-632 *4)) (-5 *1 (-960 *4))))
((*1 *2 *3 *3 *4)
(-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-4 *5 (-341))
- (-4 *5 (-976)) (-5 *2 (-632 *5)) (-5 *1 (-959 *5)))))
+ (-4 *5 (-977)) (-5 *2 (-632 *5)) (-5 *1 (-960 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1164 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-108)) (-5 *5 (-525)) (-4 *6 (-341)) (-4 *6 (-346))
+ (-4 *6 (-977)) (-5 *2 (-592 (-592 (-632 *6)))) (-5 *1 (-960 *6))
+ (-5 *3 (-592 (-632 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-341)) (-4 *4 (-346)) (-4 *4 (-977))
+ (-5 *2 (-592 (-592 (-632 *4)))) (-5 *1 (-960 *4))
+ (-5 *3 (-592 (-632 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-977))
+ (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5))
+ (-5 *3 (-592 (-632 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-856)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-977))
+ (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5))
+ (-5 *3 (-592 (-632 *5))))))
+(((*1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-977)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4254)) (-4 *1 (-464 *4))
- (-4 *4 (-1126)) (-5 *2 (-108)))))
+ (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4255)) (-4 *1 (-464 *4))
+ (-4 *4 (-1127)) (-5 *2 (-108)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-877 (-205)) (-205) (-205)))
+ (|partial| -12 (-5 *3 (-713)) (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1022 *3)) (-5 *1 (-840 *3)) (-4 *3 (-346))
+ (-4 *3 (-1020)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1135 *3 *2)) (-4 *3 (-977))
+ (-4 *2 (-1164 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -1895 *7))))
+ (-4 *6 (-991 *3 *4 *5)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-921 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -1895 *7))))
+ (-4 *6 (-991 *3 *4 *5)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1027 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1087 *6)) (-4 *6 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-1087 *7)) (-5 *1 (-299 *4 *5 *6 *7))
+ (-4 *7 (-884 *6 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-878 (-205)) (-205) (-205)))
(-5 *3 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-234)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1149 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
+ (-4 *4 (-351 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108))
+ (-5 *2
+ (-2 (|:| |contp| (-525))
+ (|:| -1494 (-592 (-2 (|:| |irr| *3) (|:| -1623 (-525)))))))
+ (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108))
+ (-5 *2
+ (-2 (|:| |contp| (-525))
+ (|:| -1494 (-592 (-2 (|:| |irr| *3) (|:| -1623 (-525)))))))
+ (-5 *1 (-1138 *3)) (-4 *3 (-1149 (-525))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1173 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517))
+ (-5 *2 (-1173 *4)) (-5 *1 (-587 *4 *5)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-341) (-138) (-967 (-525))))
- (-4 *5 (-1148 *4))
- (-5 *2 (-2 (|:| -2838 (-385 *5)) (|:| |coeff| (-385 *5))))
+ (|partial| -12 (-4 *4 (-13 (-341) (-138) (-968 (-525))))
+ (-4 *5 (-1149 *4))
+ (-5 *2 (-2 (|:| -1679 (-385 *5)) (|:| |coeff| (-385 *5))))
(-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1146 *4 *5)) (-5 *3 (-592 *5)) (-14 *4 (-1091))
+ (-4 *5 (-341)) (-5 *1 (-858 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *5)) (-4 *5 (-341)) (-5 *2 (-1087 *5))
+ (-5 *1 (-858 *4 *5)) (-14 *4 (-1091))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-592 *6)) (-5 *4 (-713)) (-4 *6 (-341))
+ (-5 *2 (-385 (-887 *6))) (-5 *1 (-978 *5 *6)) (-14 *5 (-1091)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-696)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4))))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-385 (-525))))) (-5 *1 (-242))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-887 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-133 *2 *4 *3))
+ (-4 *3 (-351 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-476 *2 *4 *5 *3))
+ (-4 *5 (-351 *2)) (-4 *3 (-351 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 *4)) (-4 *4 (-925 *2)) (-4 *2 (-517))
+ (-5 *1 (-635 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-925 *2)) (-4 *2 (-517)) (-5 *1 (-1142 *2 *4 *3))
+ (-4 *3 (-1149 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1895 *4))))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
(((*1 *2 *3 *3 *4)
(-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4))))
- (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4))))
+ (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-975)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517))
+ (-4 *3 (-884 *7 *5 *6))
+ (-5 *2
+ (-2 (|:| -1864 (-713)) (|:| -1655 *3) (|:| |radicand| (-592 *3))))
+ (-5 *1 (-888 *5 *6 *7 *3 *8)) (-5 *4 (-713))
+ (-4 *8
+ (-13 (-341)
+ (-10 -8 (-15 -1498 (*3 $)) (-15 -1512 (*3 $)) (-15 -1270 ($ *3))))))))
+(((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
+ ((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *1 *1) (-4 *1 (-1055))))
+(((*1 *1 *1 *1) (-4 *1 (-901))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-713)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-977)) (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
+ (-4 *5 (-218 *3 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1149 (-525))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-592 (-592 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-592 (-592 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-592 *3))) (-5 *1 (-1100 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-31 *3 *4))
+ (-4 *4 (-408 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-713)) (-5 *1 (-110))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-110))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *4))
+ (-4 *4 (-408 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-110)) (-5 *1 (-151))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *4))
+ (-4 *4 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-280 *3)) (-4 *3 (-281))))
+ ((*1 *2 *2) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-4 *4 (-789)) (-5 *1 (-407 *3 *4))
+ (-4 *3 (-408 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *4))
+ (-4 *4 (-408 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-565 *3)) (-4 *3 (-789))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *4))
+ (-4 *4 (-13 (-408 *3) (-934) (-1113))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1015 *3)) (-4 *3 (-884 *7 *6 *4)) (-4 *6 (-735))
+ (-4 *4 (-789)) (-4 *7 (-517))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525))))
+ (-5 *1 (-549 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-517))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-525))))
+ (-5 *1 (-549 *5 *4 *6 *3)) (-4 *3 (-884 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-798))) ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1091))
+ (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1083 *4 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1113)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1013 *2)) (-4 *2 (-13 (-408 *4) (-149) (-27) (-1113)))
+ (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1083 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-517) (-789) (-968 (-525))))
+ (-5 *2 (-385 (-887 *5))) (-5 *1 (-1084 *5)) (-5 *3 (-887 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1091)) (-4 *5 (-13 (-517) (-789) (-968 (-525))))
+ (-5 *2 (-3 (-385 (-887 *5)) (-294 *5))) (-5 *1 (-1084 *5))
+ (-5 *3 (-385 (-887 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1013 (-887 *5)))
+ (-4 *5 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-385 (-887 *5)))
+ (-5 *1 (-1084 *5)) (-5 *3 (-887 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1013 (-385 (-887 *5))))
+ (-4 *5 (-13 (-517) (-789) (-968 (-525))))
+ (-5 *2 (-3 (-385 (-887 *5)) (-294 *5))) (-5 *1 (-1084 *5))
+ (-5 *3 (-385 (-887 *5))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1174)))))
(((*1 *1 *2)
(-12
(-5 *2
(-592
(-2
- (|:| -3946
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| -3423
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
(|:| |relerr| (-205))))
- (|:| -2511
+ (|:| -2544
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -4450,10 +6792,10 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1071 (-205)))
+ (-3 (|:| |str| (-1072 (-205)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -4162
+ (|:| -2990
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite|
"The bottom of range is infinite")
@@ -4462,2132 +6804,2117 @@
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated"))))))))
(-5 *1 (-520)))))
-(((*1 *1 *1) (-4 *1 (-510))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-987 (-955 *4) (-1087 (-955 *4)))) (-5 *3 (-798))
+ (-4 *4 (-13 (-787) (-341) (-953))) (-5 *1 (-955 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-517)) (-4 *2 (-429)) (-5 *1 (-903 *2 *3))
+ (-4 *3 (-1149 *2)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-592 (-958 *5 *6 *7 *3))) (-5 *1 (-958 *5 *6 *7 *3))
+ (-4 *3 (-991 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-592 *6)) (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-996 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-592 (-1062 *5 *6 *7 *3))) (-5 *1 (-1062 *5 *6 *7 *3))
+ (-4 *3 (-991 *5 *6 *7)))))
(((*1 *2 *3)
(-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
(-4 *4 (-13 (-789) (-517))))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517))))
+ ((*1 *1 *1) (|partial| -4 *1 (-665))))
+(((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1131)) (-4 *3 (-1149 *4))
+ (-4 *5 (-1149 (-385 *3))) (-5 *2 (-108))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1015 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-1127))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1140 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-856)) (-4 *5 (-789))
+ (-5 *2 (-592 (-617 *5))) (-5 *1 (-617 *5)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1128 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1020)) (-5 *2 (-108))
+ (-5 *1 (-1128 *3)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |polnum| (-724 *3)) (|:| |polden| *3) (|:| -4011 (-713))))
+ (-5 *1 (-724 *3)) (-4 *3 (-977))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4011 (-713))))
+ (-4 *1 (-991 *3 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-4 *1 (-1018 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1178)) (-5 *1 (-764)))))
(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-445)) (-5 *3 (-592 (-242))) (-5 *1 (-1174))))
+ ((*1 *1 *1) (-5 *1 (-1174))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1090))
- (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *4 *5))
- (-4 *5 (-13 (-27) (-1112) (-408 *4)))))
+ (-12 (-5 *3 (-294 (-357))) (-5 *2 (-294 (-205))) (-5 *1 (-284)))))
+(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-385 (-525))) (-5 *1 (-284)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-341)) (-4 *7 (-1149 *5)) (-4 *4 (-667 *5 *7))
+ (-5 *2 (-2 (|:| -1484 (-632 *6)) (|:| |vec| (-1173 *5))))
+ (-5 *1 (-753 *5 *6 *7 *4 *3)) (-4 *6 (-602 *5)) (-4 *3 (-602 *4)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1091)) (-5 *2 (-592 (-899))) (-5 *1 (-270)))))
+(((*1 *2 *1) (-12 (-4 *3 (-977)) (-5 *2 (-592 *1)) (-4 *1 (-1052 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-396 (-1087 *7)))
+ (-5 *1 (-841 *4 *5 *6 *7)) (-5 *3 (-1087 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *4 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-385 (-525)))
- (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *5 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *5)))))
+ (-12 (-4 *4 (-844)) (-4 *5 (-1149 *4)) (-5 *2 (-396 (-1087 *5)))
+ (-5 *1 (-842 *4 *5)) (-5 *3 (-1087 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1038)) (-5 *1 (-308)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-396 *3)) (-4 *3 (-517)) (-5 *1 (-397 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-159)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-632 *4)) (-4 *4 (-977)) (-5 *1 (-1058 *3 *4))
+ (-14 *3 (-713)))))
+(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-799))))
+ ((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1178)) (-5 *1 (-799))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5)))
- (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525)))
- (-4 *3 (-13 (-27) (-1112) (-408 *6)))
- (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-293 *6 *3))))
+ (-12 (-5 *3 (-1074)) (-5 *4 (-798)) (-5 *2 (-1178)) (-5 *1 (-799))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-525)) (-5 *2 (-1178)) (-5 *1 (-1072 *4))
+ (-4 *4 (-1020)) (-4 *4 (-1127)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *5 *6)) (-4 *6 (-567 (-1091)))
+ (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *2 (-1081 (-592 (-887 *4)) (-592 (-273 (-887 *4)))))
+ (-5 *1 (-477 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-4 *1 (-134)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510))))
+ ((*1 *1 *1 *1) (-5 *1 (-798)))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6))
- (-4 *6 (-13 (-27) (-1112) (-408 *5)))
- (-4 *5 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *6)))
- (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1139 (-525)))
- (-4 *7 (-13 (-27) (-1112) (-408 *6)))
- (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-525)))
- (-4 *3 (-13 (-27) (-1112) (-408 *7)))
- (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8))
- (-5 *5 (-1139 (-385 (-525)))) (-5 *6 (-385 (-525)))
- (-4 *8 (-13 (-27) (-1112) (-408 *7)))
- (-4 *7 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1090)) (-5 *5 (-273 *3)) (-5 *6 (-1139 (-385 (-525))))
- (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1112) (-408 *8)))
- (-4 *8 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-51)) (-5 *1 (-436 *8 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *3))))
- (-4 *3 (-976)) (-5 *1 (-550 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-551 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *3))))
- (-4 *3 (-976)) (-4 *1 (-1132 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-713))
- (-5 *3 (-1071 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4))))
- (-4 *4 (-976)) (-4 *1 (-1153 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-4 *1 (-1163 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1071 (-2 (|:| |k| (-713)) (|:| |c| *3))))
- (-4 *3 (-976)) (-4 *1 (-1163 *3)))))
-(((*1 *2 *1) (-12 (-4 *3 (-976)) (-5 *2 (-592 *1)) (-4 *1 (-1051 *3)))))
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975))
+ (-5 *3 (-525)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
+ (-227 *4 (-385 (-525)))))
+ (-14 *4 (-592 (-1091))) (-14 *5 (-713)) (-5 *2 (-108))
+ (-5 *1 (-478 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1039 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3))
+ (-4 *3 (-901)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-977)) (-4 *7 (-977))
+ (-4 *6 (-1149 *5)) (-5 *2 (-1087 (-1087 *7)))
+ (-5 *1 (-474 *5 *6 *4 *7)) (-4 *4 (-1149 *6)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
+ (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
+ (-4 *7 (-925 *4)) (-4 *2 (-630 *7 *8 *9))
+ (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6))
+ (-4 *8 (-351 *7)) (-4 *9 (-351 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977))
+ (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-341)) (-4 *3 (-160)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2))
+ (-4 *2 (-630 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-632 *2)) (-4 *2 (-341)) (-4 *2 (-977))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1041 *2 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-218 *2 *3)) (-4 *5 (-218 *2 *3)) (-4 *3 (-341))))
+ ((*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-1099 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-807 (-899 *3) (-899 *3))) (-5 *1 (-899 *3))
- (-4 *3 (-900)))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977))
+ (-14 *4 (-592 (-1091)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789)))
+ (-14 *4 (-592 (-1091))))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-856)) (-4 *5 (-286)) (-4 *3 (-1149 *5))
+ (-5 *2 (-2 (|:| |plist| (-592 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-437 *5 *3)) (-5 *4 (-592 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
(((*1 *2 *3 *4 *5)
(|partial| -12 (-5 *4 (-1 (-108) *9)) (-5 *5 (-1 (-108) *9 *9))
- (-4 *9 (-990 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735))
- (-4 *8 (-789)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1649 (-592 *9))))
- (-5 *3 (-592 *9)) (-4 *1 (-1120 *6 *7 *8 *9))))
+ (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735))
+ (-4 *8 (-789)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2936 (-592 *9))))
+ (-5 *3 (-592 *9)) (-4 *1 (-1121 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-990 *5 *6 *7))
+ (|partial| -12 (-5 *4 (-1 (-108) *8 *8)) (-4 *8 (-991 *5 *6 *7))
(-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -1649 (-592 *8))))
- (-5 *3 (-592 *8)) (-4 *1 (-1120 *5 *6 *7 *8)))))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -2936 (-592 *8))))
+ (-5 *3 (-592 *8)) (-4 *1 (-1121 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *2 (-824 *6 *8)) (-5 *3 (-592 *8)) (-5 *4 (-592 (-827 *6)))
+ (-5 *5 (-1 (-824 *6 *8) *8 (-827 *6) (-824 *6 *8))) (-4 *6 (-1020))
+ (-4 *8 (-13 (-977) (-567 (-827 *6)) (-968 *7)))
+ (-4 *7 (-13 (-977) (-789))) (-5 *1 (-876 *6 *7 *8)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1113))) (-5 *2 (-108)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-205) (-205))) (-5 *1 (-646 *3))
+ (-4 *3 (-567 (-501)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1091)) (-5 *2 (-1 (-205) (-205) (-205)))
+ (-5 *1 (-646 *3)) (-4 *3 (-567 (-501))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-592 (-999 *4 *5 *2))) (-4 *4 (-1020))
+ (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
+ (-4 *2 (-13 (-408 *5) (-821 *4) (-567 (-827 *4))))
+ (-5 *1 (-53 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-592 (-999 *5 *6 *2))) (-5 *4 (-856)) (-4 *5 (-1020))
+ (-4 *6 (-13 (-977) (-821 *5) (-789) (-567 (-827 *5))))
+ (-4 *2 (-13 (-408 *6) (-821 *5) (-567 (-827 *5))))
+ (-5 *1 (-53 *5 *6 *2)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1030)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-592 *3)) (|:| |image| (-592 *3))))
+ (-5 *1 (-840 *3)) (-4 *3 (-1020)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-592 *7)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5))
- (-5 *1 (-920 *3 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
+ (-5 *1 (-921 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (-12 (-5 *2 (-592 *7)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5))
- (-5 *1 (-1026 *3 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-592 *7)) (-4 *7 (-996 *3 *4 *5 *6)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
+ (-5 *1 (-1027 *3 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-366)) (-5 *1 (-581)))))
+(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))))
+(((*1 *1) (-5 *1 (-308))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-341) (-787)))
+ (-5 *2 (-592 (-2 (|:| -1494 (-592 *3)) (|:| -1245 *5))))
+ (-5 *1 (-167 *5 *3)) (-4 *3 (-1149 (-157 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-341) (-787)))
+ (-5 *2 (-592 (-2 (|:| -1494 (-592 *3)) (|:| -1245 *4))))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4))))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-525)) (-5 *1 (-1072 *3)) (-4 *3 (-1127))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-1161 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1516 *4)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-551 *3)) (-4 *3 (-977))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-906 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-734))
+ (-4 *5 (-789)) (-5 *2 (-108)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))))
(((*1 *2 *2 *2)
(-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2)))))
+ (-5 *1 (-1046 *3 *2)) (-4 *3 (-1149 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-5 *2 (-1074)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-357)) (-5 *1 (-92))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-357)) (-5 *1 (-92)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))))
+ (-5 *1 (-951 *3)) (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))))
+ (-5 *1 (-951 *3)) (-4 *3 (-1149 (-525)))
+ (-5 *4 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))))
+ (-5 *1 (-951 *3)) (-4 *3 (-1149 (-525))) (-5 *4 (-385 (-525)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-385 (-525)))
+ (-5 *2 (-592 (-2 (|:| -3593 *5) (|:| -3602 *5)))) (-5 *1 (-951 *3))
+ (-4 *3 (-1149 (-525))) (-5 *4 (-2 (|:| -3593 *5) (|:| -3602 *5)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))))
+ (-5 *1 (-952 *3)) (-4 *3 (-1149 (-385 (-525))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))))
+ (-5 *1 (-952 *3)) (-4 *3 (-1149 (-385 (-525))))
+ (-5 *4 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))))
+ (-5 *1 (-952 *3)) (-4 *3 (-1149 (-385 (-525))))
+ (-5 *4 (-385 (-525)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-385 (-525)))
+ (-5 *2 (-592 (-2 (|:| -3593 *5) (|:| -3602 *5)))) (-5 *1 (-952 *3))
+ (-4 *3 (-1149 (-385 (-525))))
+ (-5 *4 (-2 (|:| -3593 *5) (|:| -3602 *5))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517))
+ (-5 *2 (-1087 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
+ (-14 *6 (-592 (-1091))) (-5 *2 (-592 (-974 *5 *6)))
+ (-5 *1 (-577 *5 *6)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-565 *3)) (-5 *5 (-1 (-1087 *3) (-1087 *3)))
+ (-4 *3 (-13 (-27) (-408 *6))) (-4 *6 (-13 (-789) (-517)))
+ (-5 *2 (-542 *3)) (-5 *1 (-512 *6 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-576 *2 *3 *4)) (-4 *2 (-789))
+ (-4 *3 (-13 (-160) (-660 (-385 (-525))))) (-14 *4 (-856))))
+ ((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-47)))) (-5 *1 (-47))))
((*1 *1 *1 *2) (-12 (-5 *2 (-565 (-47))) (-5 *1 (-47))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1086 (-47))) (-5 *3 (-592 (-565 (-47)))) (-5 *1 (-47))))
+ (-12 (-5 *2 (-1087 (-47))) (-5 *3 (-592 (-565 (-47)))) (-5 *1 (-47))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1086 (-47))) (-5 *3 (-565 (-47))) (-5 *1 (-47))))
+ (-12 (-5 *2 (-1087 (-47))) (-5 *3 (-565 (-47))) (-5 *1 (-47))))
((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))
((*1 *2 *3)
(-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3))
- (-4 *3 (-1148 (-157 *2)))))
+ (-4 *3 (-1149 (-157 *2)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-855)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))))
+ (-12 (-5 *2 (-856)) (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))))
((*1 *2 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-341))))
((*1 *2 *1)
- (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1148 *2)) (-4 *2 (-160))))
+ (-12 (-4 *1 (-348 *2 *3)) (-4 *3 (-1149 *2)) (-4 *2 (-160))))
((*1 *2 *1)
- (-12 (-4 *4 (-1148 *2)) (-4 *2 (-924 *3)) (-5 *1 (-391 *3 *2 *4 *5))
- (-4 *3 (-286)) (-4 *5 (-13 (-387 *2 *4) (-967 *2)))))
+ (-12 (-4 *4 (-1149 *2)) (-4 *2 (-925 *3)) (-5 *1 (-391 *3 *2 *4 *5))
+ (-4 *3 (-286)) (-4 *5 (-13 (-387 *2 *4) (-968 *2)))))
((*1 *2 *1)
- (-12 (-4 *4 (-1148 *2)) (-4 *2 (-924 *3))
+ (-12 (-4 *4 (-1149 *2)) (-4 *2 (-925 *3))
(-5 *1 (-392 *3 *2 *4 *5 *6)) (-4 *3 (-286)) (-4 *5 (-387 *2 *4))
- (-14 *6 (-1172 *5))))
+ (-14 *6 (-1173 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-855)) (-4 *5 (-976))
- (-4 *2 (-13 (-382) (-967 *5) (-341) (-1112) (-263)))
- (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1148 *5))))
+ (-12 (-5 *4 (-856)) (-4 *5 (-977))
+ (-4 *2 (-13 (-382) (-968 *5) (-341) (-1113) (-263)))
+ (-5 *1 (-420 *5 *3 *2)) (-4 *3 (-1149 *5))))
((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-565 (-468)))) (-5 *1 (-468))))
((*1 *1 *1 *2) (-12 (-5 *2 (-565 (-468))) (-5 *1 (-468))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1086 (-468))) (-5 *3 (-592 (-565 (-468))))
+ (-12 (-5 *2 (-1087 (-468))) (-5 *3 (-592 (-565 (-468))))
(-5 *1 (-468))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1086 (-468))) (-5 *3 (-565 (-468))) (-5 *1 (-468))))
+ (-12 (-5 *2 (-1087 (-468))) (-5 *3 (-565 (-468))) (-5 *1 (-468))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1172 *4)) (-5 *3 (-855)) (-4 *4 (-327))
+ (-12 (-5 *2 (-1173 *4)) (-5 *3 (-856)) (-4 *4 (-327))
(-5 *1 (-495 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-667 *4 *2)) (-4 *2 (-1148 *4))
- (-5 *1 (-717 *4 *2 *5 *3)) (-4 *3 (-1148 *5))))
+ (-12 (-4 *4 (-429)) (-4 *5 (-667 *4 *2)) (-4 *2 (-1149 *4))
+ (-5 *1 (-717 *4 *2 *5 *3)) (-4 *3 (-1149 *5))))
((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
- ((*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160))))
- ((*1 *1 *1) (-4 *1 (-985))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-797)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160))))
+ ((*1 *1 *1) (-4 *1 (-986))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1087 *4)) (-5 *1 (-335 *4))
+ (-4 *4 (-327))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1087 *4)) (-5 *1 (-335 *4))
+ (-4 *4 (-327))))
+ ((*1 *1) (-4 *1 (-346)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1173 *4)) (-5 *1 (-495 *4))
+ (-4 *4 (-327))))
+ ((*1 *1 *1) (-4 *1 (-510))) ((*1 *1) (-4 *1 (-510)))
+ ((*1 *1 *1) (-5 *1 (-525))) ((*1 *1 *1) (-5 *1 (-713)))
+ ((*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-5 *2 (-840 *4)) (-5 *1 (-839 *4))
+ (-4 *4 (-1020))))
+ ((*1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-510)) (-4 *2 (-517)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *1 *1) (-12 (-5 *1 (-561 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1) (-5 *1 (-581))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *2 (-1178)) (-5 *1 (-839 *4))
+ (-4 *4 (-1020))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-1178))
+ (-5 *1 (-411 *3 *4)) (-4 *4 (-408 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))))
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-364 *3)) (|:| |mm| (-364 *3)) (|:| |rm| (-364 *3))))
+ (-5 *1 (-364 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-761 *3)) (|:| |mm| (-761 *3)) (|:| |rm| (-761 *3))))
+ (-5 *1 (-761 *3)) (-4 *3 (-789)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510)))))
+(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1074)) (-5 *1 (-174))))
+ ((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1074)) (-5 *1 (-279))))
+ ((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1074)) (-5 *1 (-284)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-713)) (-4 *6 (-1020)) (-4 *7 (-835 *6))
+ (-5 *2 (-632 *7)) (-5 *1 (-634 *6 *7 *3 *4)) (-4 *3 (-351 *7))
+ (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4255)))))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1074)) (-5 *3 (-525)) (-5 *1 (-989)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1113) (-934)))
+ (-5 *1 (-163 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1149 *2)) (-4 *2 (-1149 *4)) (-5 *1 (-918 *4 *2 *3 *5))
+ (-4 *4 (-327)) (-4 *5 (-667 *2 *3)))))
(((*1 *2 *1)
(-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))
- (-5 *2 (-1086 *3)))))
+ (-5 *2 (-1087 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-910 *4 *5 *6 *7)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-132))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-135)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138))
+ (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-910 *3 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
(((*1 *2 *2 *3)
(-12 (-4 *4 (-735))
- (-4 *3 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $))))) (-4 *5 (-517))
- (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-883 (-385 (-886 *5)) *4 *3))))
+ (-4 *3 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $))))) (-4 *5 (-517))
+ (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-884 (-385 (-887 *5)) *4 *3))))
((*1 *2 *2 *3)
- (-12 (-4 *4 (-976)) (-4 *5 (-735))
+ (-12 (-4 *4 (-977)) (-4 *5 (-735))
(-4 *3
(-13 (-789)
- (-10 -8 (-15 -1427 ((-1090) $))
- (-15 -1251 ((-3 $ "failed") (-1090))))))
- (-5 *1 (-916 *4 *5 *3 *2)) (-4 *2 (-883 (-886 *4) *5 *3))))
+ (-10 -8 (-15 -2749 ((-1091) $))
+ (-15 -2577 ((-3 $ "failed") (-1091))))))
+ (-5 *1 (-917 *4 *5 *3 *2)) (-4 *2 (-884 (-887 *4) *5 *3))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-592 *6))
(-4 *6
(-13 (-789)
- (-10 -8 (-15 -1427 ((-1090) $))
- (-15 -1251 ((-3 $ "failed") (-1090))))))
- (-4 *4 (-976)) (-4 *5 (-735)) (-5 *1 (-916 *4 *5 *6 *2))
- (-4 *2 (-883 (-886 *4) *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-969)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 (-2 (|:| -3959 (-1086 *6)) (|:| -1600 (-525)))))
- (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-883 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-976)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1090)))
- (-4 *5 (-429)) (-5 *2 (-592 (-227 *4 *5))) (-5 *1 (-580 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-37 (-385 (-525))))
- (-5 *2 (-2 (|:| -4026 (-1071 *4)) (|:| -4038 (-1071 *4))))
- (-5 *1 (-1077 *4)) (-5 *3 (-1071 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525))))
- (-5 *1 (-1029)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-855)) (-5 *1 (-641))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-632 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-341)) (-5 *1 (-910 *5)))))
-(((*1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1) (-4 *1 (-119)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-855)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1086 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 *8))
- (-4 *7 (-789)) (-4 *8 (-976)) (-4 *9 (-883 *8 *6 *7)) (-4 *6 (-735))
- (-5 *2 (-1086 *8)) (-5 *1 (-299 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-514)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-308)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3))
- (-4 *3 (-13 (-341) (-1112) (-933))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-592 (-877 (-205)))))
- (-5 *2 (-592 (-1014 (-205)))) (-5 *1 (-862)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-632 *4)) (-5 *3 (-592 (-632 *4))) (-4 *4 (-976))
- (-5 *1 (-959 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-341)) (-4 *3 (-976))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1669 *1)))
- (-4 *1 (-791 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2506 *4)))
- (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090)))
- (-14 *3 (-592 (-1090))) (-4 *4 (-365))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3))))
- ((*1 *1 *1) (-4 *1 (-1115))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-592 (-592 *7)))
- (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735))
- (-4 *7 (-789)) (-4 *8 (-883 *5 *6 *7)) (-5 *2 (-592 (-592 *8)))
- (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-592 (-592 *7)))
- (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735))
- (-4 *7 (-789)) (-4 *8 (-883 *5 *6 *7)) (-5 *2 (-592 (-592 *8)))
- (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
+ (-10 -8 (-15 -2749 ((-1091) $))
+ (-15 -2577 ((-3 $ "failed") (-1091))))))
+ (-4 *4 (-977)) (-4 *5 (-735)) (-5 *1 (-917 *4 *5 *6 *2))
+ (-4 *2 (-884 (-887 *4) *5 *6)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-991 *4 *5 *6)) (-4 *4 (-517))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-910 *4 *5 *6 *2)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-856)) (-5 *1 (-143 *3 *4 *5)) (-14 *3 (-856))
+ (-4 *4 (-341)) (-14 *5 (-926 *3 *4)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525)))
+ (-5 *2 (-966)) (-5 *1 (-699)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-967 (-525)))
- (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3))
- (-4 *2
- (-13 (-341) (-281)
- (-10 -8 (-15 -1303 ((-1042 *3 (-565 $)) $))
- (-15 -1312 ((-1042 *3 (-565 $)) $))
- (-15 -1908 ($ (-1042 *3 (-565 $))))))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-877 (-205))) (-5 *4 (-808)) (-5 *2 (-1177))
- (-5 *1 (-445))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-976)) (-4 *1 (-912 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-877 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-877 *3)) (-4 *3 (-976)) (-4 *1 (-1051 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1051 *3)) (-4 *3 (-976))))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-132))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-135)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-632 *2)) (-5 *4 (-525))
+ (-4 *2 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $)))))
+ (-4 *5 (-1149 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-798) (-798))) (-5 *1 (-110))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-798) (-592 (-798)))) (-5 *1 (-110))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-798) (-592 (-798)))) (-5 *1 (-110))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1178)) (-5 *1 (-195 *3))
+ (-4 *3
+ (-13 (-789)
+ (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $))
+ (-15 -3065 ((-1178) $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-372))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1178)) (-5 *1 (-372))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-475))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-653))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1108))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1178)) (-5 *1 (-1108)))))
+(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-970)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-227 *3 *4))
+ (-14 *3 (-592 (-1091))) (-4 *4 (-977))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *1 (-1051 *3)) (-4 *3 (-976))))
+ (-12 (-5 *2 (-592 (-525))) (-14 *3 (-592 (-1091)))
+ (-5 *1 (-431 *3 *4 *5)) (-4 *4 (-977))
+ (-4 *5 (-218 (-3596 *3) (-713)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-877 *3)) (-4 *1 (-1051 *3)) (-4 *3 (-976))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123)) (-5 *3 (-205)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-4 *2 (-1148 *4))
- (-5 *1 (-856 *4 *2)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *5 (-632 (-205)))
- (-5 *2 (-965)) (-5 *1 (-690)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-976)) (-4 *3 (-789))
- (-4 *4 (-245 *3)) (-4 *5 (-735)))))
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-457 *3 *4))
+ (-14 *3 (-592 (-1091))) (-4 *4 (-977)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3))
+ (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2))
+ (-4 *2 (-630 *3 *5 *6)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-429))
- (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-909 *3 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-860)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-525))) (-4 *3 (-976)) (-5 *1 (-550 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1132 *3)) (-4 *3 (-976))))
+ (-12
+ (-5 *2
+ (-592
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-735)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789))
+ (-5 *1 (-426 *3 *4 *5 *6)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-286)) (-4 *3 (-925 *2)) (-4 *4 (-1149 *3))
+ (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-968 *3))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *1 (-818)) (-5 *3 (-525)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-108))
+ (-5 *1 (-617 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-632 *6)) (-5 *5 (-1 (-396 (-1087 *6)) (-1087 *6)))
+ (-4 *6 (-341))
+ (-5 *2
+ (-592
+ (-2 (|:| |outval| *7) (|:| |outmult| (-525))
+ (|:| |outvect| (-592 (-632 *7))))))
+ (-5 *1 (-498 *6 *7 *4)) (-4 *7 (-341)) (-4 *4 (-13 (-341) (-787))))))
+(((*1 *2)
+ (-12 (-4 *1 (-327))
+ (-5 *2 (-592 (-2 (|:| -2195 (-525)) (|:| -1864 (-525))))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-899))) (-5 *1 (-104)))))
+(((*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1127)) (-4 *2 (-789))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1163 *3)) (-4 *3 (-976)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-51))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))))
+ (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1127))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-592 (-840 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789))
+ (-4 *6 (-991 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -2793 *1) (|:| |upper| *1)))
+ (-4 *1 (-909 *4 *5 *3 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1186 (-1091) *3)) (-4 *3 (-977)) (-5 *1 (-1193 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1186 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *1 (-1195 *3 *4)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2 (-592 (-205))) (-5 *1 (-186)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1174))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 (-2 (|:| -2195 (-1087 *6)) (|:| -1864 (-525)))))
+ (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -1484 (-632 (-385 (-887 *4))))
+ (|:| |vec| (-592 (-385 (-887 *4)))) (|:| -3318 (-713))
+ (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))
+ (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091))))
+ (-4 *6 (-735))
+ (-5 *2
+ (-2 (|:| |partsol| (-1173 (-385 (-887 *4))))
+ (|:| -1449 (-592 (-1173 (-385 (-887 *4)))))))
+ (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-456)))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1074)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-242))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1174))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1044 *4 *3 *5))) (-4 *4 (-37 (-385 (-525))))
+ (-4 *4 (-977)) (-4 *3 (-789)) (-4 *5 (-884 *4 (-497 *3) *3))
+ (-5 *1 (-1044 *4 *3 *5))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1122 *4))) (-5 *3 (-1091))
+ (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-977)) (-5 *1 (-1122 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2094 *4)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))))
+(((*1 *2 *3 *2 *3)
+ (-12 (-5 *2 (-415)) (-5 *3 (-1091)) (-5 *1 (-1094))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-415)) (-5 *3 (-1091)) (-5 *1 (-1094))))
+ ((*1 *2 *3 *2 *4 *1)
+ (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1091))) (-5 *4 (-1091))
+ (-5 *1 (-1094))))
+ ((*1 *2 *3 *2 *3 *1)
+ (-12 (-5 *2 (-415)) (-5 *3 (-1091)) (-5 *1 (-1094))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-415)) (-5 *3 (-1091)) (-5 *1 (-1095))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1091))) (-5 *1 (-1095)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-592 (-592 (-525)))) (-5 *1 (-904))
+ (-5 *3 (-592 (-525))))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
((*1 *2 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
(-4 *2 (-408 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
-(((*1 *1 *1 *1) (-5 *1 (-797))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
- (-5 *2 (-632 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-1090))) (-5 *2 (-1177)) (-5 *1 (-1093))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1090)) (-5 *4 (-592 (-1090))) (-5 *2 (-1177))
- (-5 *1 (-1093))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1090)) (-5 *4 (-592 (-1090))) (-5 *2 (-1177))
- (-5 *1 (-1093)))))
-(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1073)) (-5 *1 (-653)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-965))
- (-5 *1 (-699)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-305 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-488 *3 *4))
- (-14 *4 (-525)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090)))
- (-14 *3 (-592 (-1090))) (-4 *4 (-365))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3))))
- ((*1 *1 *1) (-4 *1 (-1115))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735))
- (-5 *2 (-108)) (-5 *1 (-919 *3 *4 *5 *6))
- (-4 *6 (-883 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33)))
- (-4 *4 (-13 (-1019) (-33))))))
+ ((*1 *1 *1 *1) (-4 *1 (-1055))))
(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
+ (-12 (-5 *2 (-1173 (-1021 *3 *4))) (-5 *1 (-1021 *3 *4))
+ (-14 *3 (-856)) (-14 *4 (-856)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1091)) (-4 *4 (-429)) (-4 *4 (-789))
+ (-5 *1 (-534 *4 *2)) (-4 *2 (-263)) (-4 *2 (-408 *4)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-651 *3)) (-5 *1 (-769 *2 *3)) (-4 *3 (-976)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
+ (-12 (-5 *2 (-2 (|:| |var| (-592 (-1091))) (|:| |pred| (-51))))
+ (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
- (-4 *4 (-13 (-789) (-517))))))
+ (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1091)))
+ (-4 *5 (-429)) (-5 *2 (-592 (-227 *4 *5))) (-5 *1 (-580 *4 *5)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-1197 *5 *6 *7))
+ (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-592 (-974 *5 *6))) (-5 *1 (-1197 *5 *6 *7))
+ (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-887 *4)))
+ (-4 *4 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-592 (-974 *4 *5))) (-5 *1 (-1197 *4 *5 *6))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-592 (-1091))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1105 *4 *5))
+ (-4 *4 (-1020)) (-4 *5 (-1020)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1091)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1092 (-385 (-525)))) (-5 *2 (-385 (-525)))
- (-5 *1 (-172)))))
-(((*1 *2)
- (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4))
- (-4 *3 (-307 *4))))
- ((*1 *2) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-713)))))
-(((*1 *1 *1) (-5 *1 (-988))))
-(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1073)) (-5 *1 (-653)))))
-(((*1 *1 *1) (-4 *1 (-578)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933) (-1112))))))
-(((*1 *1 *1) (|partial| -4 *1 (-136))) ((*1 *1 *1) (-4 *1 (-327)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-136)) (-4 *1 (-843)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-976)) (-14 *3 (-592 (-1090)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-976) (-789)))
- (-14 *3 (-592 (-1090))))))
+ (-12 (-5 *3 (-1087 *4)) (-4 *4 (-327))
+ (-4 *2
+ (-13 (-380)
+ (-10 -7 (-15 -1270 (*2 *4)) (-15 -1736 ((-856) *2))
+ (-15 -1449 ((-1173 *2) (-856))) (-15 -3842 (*2 *2)))))
+ (-5 *1 (-334 *2 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))))
+(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-767)))))
(((*1 *2 *3)
(-12 (-4 *4 (-37 (-385 (-525))))
- (-5 *2 (-2 (|:| -3434 (-1071 *4)) (|:| -3455 (-1071 *4))))
- (-5 *1 (-1077 *4)) (-5 *3 (-1071 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713))
- (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-108)))))
+ (-5 *2 (-2 (|:| -2320 (-1072 *4)) (|:| -2335 (-1072 *4))))
+ (-5 *1 (-1078 *4)) (-5 *3 (-1072 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019))
- (-5 *2 (-592 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |k| (-827 *3)) (|:| |c| *4))))
- (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
- (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-617 *3))) (-5 *1 (-827 *3)) (-4 *3 (-789)))))
-(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977))
+ (-5 *2 (-592 (-592 (-592 (-713))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *6)) (-5 *4 (-1091)) (-4 *6 (-408 *5))
+ (-4 *5 (-789)) (-5 *2 (-592 (-565 *6))) (-5 *1 (-534 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-301 *4 *2)) (-4 *4 (-1020))
+ (-4 *2 (-126)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-592 (-1091)))
+ (-4 *2 (-13 (-408 (-157 *5)) (-934) (-1113)))
+ (-4 *5 (-13 (-517) (-789))) (-5 *1 (-554 *5 *6 *2))
+ (-4 *6 (-13 (-408 *5) (-934) (-1113))))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
(-12 (-5 *3 (-205)) (-5 *4 (-525))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-965))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966))
(-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1019)) (-4 *5 (-1019))
- (-5 *2 (-1 *5)) (-5 *1 (-626 *4 *5)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108)))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-525)) (-5 *1 (-221))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-525)) (-5 *1 (-221)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
- (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-969)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-514)))))
+(((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1176))))
+ ((*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1176)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517))
- (-5 *2 (-108)))))
-(((*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-500 *2)) (-4 *2 (-1126))))
- ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-501)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-525))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-713))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-855))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
- (-4 *4 (-160))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-146))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-855)) (-5 *1 (-146))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112)))
- (-5 *1 (-207 *3))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1126)) (-4 *2 (-669))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1126)) (-4 *2 (-669))))
- ((*1 *1 *2 *1)
- (-12 (-5 *1 (-273 *2)) (-4 *2 (-1031)) (-4 *2 (-1126))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-273 *2)) (-4 *2 (-1031)) (-4 *2 (-1126))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-126))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1019))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-339 *2)) (-4 *2 (-1019))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-359 *3 *2)) (-4 *3 (-976)) (-4 *2 (-789))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-976)) (-4 *3 (-1019))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1019))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1019))))
- ((*1 *1 *2 *1)
- (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160))
- (-4 *6 (-218 (-4140 *3) (-713)))
- (-14 *7
- (-1 (-108) (-2 (|:| -4185 *5) (|:| -1600 *6))
- (-2 (|:| -4185 *5) (|:| -1600 *6))))
- (-5 *1 (-438 *3 *4 *5 *6 *7 *2)) (-4 *5 (-789))
- (-4 *2 (-883 *4 *6 (-799 *3)))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-447 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
- (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1172 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-501)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-551 *3)) (-4 *3 (-976))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-551 *2)) (-4 *2 (-976))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-551 *2)) (-4 *2 (-976))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-594 *2)) (-4 *2 (-983))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1019))
- (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-627 *5 *6 *7))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-630 *3 *2 *4)) (-4 *3 (-976)) (-4 *2 (-351 *3))
- (-4 *4 (-351 *3))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-630 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-351 *3))
- (-4 *2 (-351 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2))
- (-4 *4 (-351 *2))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2))
- (-4 *4 (-351 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2))
- (-4 *4 (-351 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-663)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *1) (-5 *1 (-797)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1172 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-517))
- (-5 *1 (-902 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-982 *2)) (-4 *2 (-983))))
- ((*1 *1 *1 *1) (-4 *1 (-1031)))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1040 *3 *4 *2 *5)) (-4 *4 (-976)) (-4 *2 (-218 *3 *4))
- (-4 *5 (-218 *3 *4))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1040 *3 *4 *5 *2)) (-4 *4 (-976)) (-4 *5 (-218 *3 *4))
- (-4 *2 (-218 *3 *4))))
- ((*1 *1 *2 *1)
- (-12 (-4 *3 (-976)) (-4 *4 (-789)) (-5 *1 (-1043 *3 *4 *2))
- (-4 *2 (-883 *3 (-497 *4) *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-592 (-1087 *7))) (-5 *3 (-1087 *7))
+ (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-844)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-5 *1 (-841 *4 *5 *6 *7))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-877 (-205))) (-5 *3 (-205)) (-5 *1 (-1123))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-669))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-669))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-525)) (-4 *1 (-1170 *3)) (-4 *3 (-1126)) (-4 *3 (-21))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-789)) (-4 *2 (-976))))
- ((*1 *1 *1 *2)
- (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-976)) (-4 *3 (-785)))))
+ (|partial| -12 (-5 *2 (-592 (-1087 *5))) (-5 *3 (-1087 *5))
+ (-4 *5 (-1149 *4)) (-4 *4 (-844)) (-5 *1 (-842 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2 (-592 *3)) (-5 *1 (-1045 *4 *3)) (-4 *4 (-1148 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-990 *3 *4 *5)))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-1090)) (-5 *3 (-1023)) (-5 *1 (-270)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-4 *1 (-1017 *3))))
- ((*1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1059)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-517)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1148 *2)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
- (-5 *2
- (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525))
- (|:| |success| (-108))))
- (-5 *1 (-731)) (-5 *5 (-525)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *1 *1) (-4 *1 (-578)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933) (-1112))))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-396 *5)) (-4 *5 (-517))
- (-5 *2
- (-2 (|:| -1600 (-713)) (|:| -1459 *5) (|:| |radicand| (-592 *5))))
- (-5 *1 (-298 *5)) (-5 *4 (-713))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-933)) (-5 *2 (-525)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-694)))))
-(((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-969)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-700)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976))
- (-5 *2 (-761 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1193 *3 *2)) (-4 *3 (-976)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-592 (-886 *3))) (-4 *3 (-429))
- (-5 *1 (-338 *3 *4)) (-14 *4 (-592 (-1090)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-592 (-722 *3 (-799 *4)))) (-4 *3 (-429))
- (-14 *4 (-592 (-1090))) (-5 *1 (-577 *3 *4)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4))))
- (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))))
-(((*1 *2)
- (-12 (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4)))
- (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-525)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-694)))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525))))
+ (-5 *1 (-1030)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *2 (-966))
+ (-5 *1 (-692)))))
+(((*1 *1) (-5 *1 (-415))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *1) (-5 *1 (-108))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
(((*1 *2 *2)
- (-12 (-5 *2 (-592 *7)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5))
- (-5 *1 (-920 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-592 *7)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5))
- (-5 *1 (-1026 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -3740 *4))))
- (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))))
+ (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1149 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1173 *4)) (-5 *3 (-713)) (-4 *4 (-327))
+ (-5 *1 (-495 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429))
+ (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-910 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-592 (-565 *4))) (-4 *4 (-408 *3)) (-4 *3 (-789))
+ (-5 *1 (-534 *3 *4))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-824 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-856)) (-5 *1 (-641))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-632 *5)) (-5 *3 (-94 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-341)) (-5 *1 (-911 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4))
- (-4 *4 (-327))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4))
- (-4 *4 (-327))))
- ((*1 *1) (-4 *1 (-346)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-855)) (-5 *2 (-1172 *4)) (-5 *1 (-495 *4))
- (-4 *4 (-327))))
- ((*1 *1 *1) (-4 *1 (-510))) ((*1 *1) (-4 *1 (-510)))
- ((*1 *1 *1) (-5 *1 (-525))) ((*1 *1 *1) (-5 *1 (-713)))
- ((*1 *2 *1) (-12 (-5 *2 (-839 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1019))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-5 *2 (-839 *4)) (-5 *1 (-838 *4))
- (-4 *4 (-1019))))
- ((*1 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-510)) (-4 *2 (-517)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1019))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-877 (-205))) (-5 *4 (-808)) (-5 *5 (-855))
- (-5 *2 (-1177)) (-5 *1 (-445))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-877 (-205))) (-5 *2 (-1177)) (-5 *1 (-445))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-592 (-877 (-205)))) (-5 *4 (-808)) (-5 *5 (-855))
- (-5 *2 (-1177)) (-5 *1 (-445)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *4 (-1020)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1965 (-357)) (|:| -1310 (-1073))
- (|:| |explanations| (-592 (-1073)))))
- (-5 *2 (-965)) (-5 *1 (-284))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -1965 (-357)) (|:| -1310 (-1073))
- (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))))
- (-5 *2 (-965)) (-5 *1 (-284)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-861)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-525)) (-5 *4 (-396 *2)) (-4 *2 (-883 *7 *5 *6))
- (-5 *1 (-685 *5 *6 *7 *2)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-286)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-877 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-877 *3))) (-4 *3 (-976)) (-4 *1 (-1051 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-877 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817))
- (-5 *3 (-592 (-525)))))
+ (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789))
+ (-5 *2 (-396 (-1087 (-294 *4)))) (-5 *1 (-294 *4))
+ (-5 *3 (-1087 (-294 *4)))))
((*1 *2 *3)
- (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817))
- (-5 *3 (-592 (-525))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4))))
- (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4)) (-4 *4 (-13 (-789) (-517)))
- (-5 *2 (-797)) (-5 *1 (-31 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851))))
- ((*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))))
+ (-12 (-4 *1 (-844)) (-5 *2 (-396 (-1087 *1))) (-5 *3 (-1087 *1)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-839 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1019)))))
-(((*1 *1 *2) (-12 (-5 *2 (-366)) (-5 *1 (-581)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-808)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
-(((*1 *1) (-5 *1 (-445))))
+ (-12 (-5 *2 (-1173 (-713))) (-5 *1 (-620 *3)) (-4 *3 (-1020)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-308))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-308)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-4 *4 (-977))
+ (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-1149 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1074)) (-5 *1 (-728)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-4 *2 (-1020))
+ (-5 *1 (-824 *4 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1019)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-626 *4 *5)) (-4 *4 (-1019))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-789)) (-5 *1 (-863 *3 *2)) (-4 *2 (-408 *3))))
+ (|partial| -12 (-5 *3 (-632 (-385 (-887 (-525)))))
+ (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-962)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-763)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429))))
+ ((*1 *1 *1 *1) (-4 *1 (-429)))
((*1 *2 *3)
- (-12 (-5 *3 (-1090)) (-5 *2 (-294 (-525))) (-5 *1 (-864))))
- ((*1 *2 *1) (-12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-789)) (-4 *2 (-976))))
- ((*1 *2 *1) (-12 (-4 *2 (-976)) (-5 *1 (-1193 *2 *3)) (-4 *3 (-785)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-525) (-525))) (-5 *1 (-339 *3)) (-4 *3 (-1019))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-713) (-713))) (-5 *1 (-364 *3)) (-4 *3 (-1019))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1019)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789))
- (-5 *2 (-396 (-1086 (-294 *4)))) (-5 *1 (-294 *4))
- (-5 *3 (-1086 (-294 *4)))))
+ (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1149 (-525)))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1149 (-525)))))
+ ((*1 *1 *1 *1) (-5 *1 (-713)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286))
+ (-5 *1 (-851 *3 *4 *5 *2)) (-4 *2 (-884 *5 *3 *4))))
((*1 *2 *3)
- (-12 (-4 *1 (-843)) (-5 *2 (-396 (-1086 *1))) (-5 *3 (-1086 *1)))))
-(((*1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1) (-5 *1 (-797)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1086 (-525))) (-5 *3 (-525)) (-4 *1 (-803 *4)))))
-(((*1 *1) (-5 *1 (-415))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-501) (-592 (-501)))) (-5 *1 (-110)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1163 *4))
- (-4 *4 (-37 (-385 (-525)))) (-5 *2 (-1 (-1071 *4) (-1071 *4)))
- (-5 *1 (-1165 *4 *5)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *2 (-965)) (-5 *1 (-695)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-205)) (-5 *3 (-713)) (-5 *1 (-206))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-157 (-205))) (-5 *3 (-713)) (-5 *1 (-206))))
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *6 *4 *5))
+ (-5 *1 (-851 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *6 (-286))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-943)) (-5 *2 (-797)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))))
+ (-12 (-5 *2 (-1087 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-851 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-1087 *7))) (-4 *7 (-884 *6 *4 *5)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-1087 *7))
+ (-5 *1 (-851 *4 *5 *6 *7))))
+ ((*1 *1 *1 *1) (-5 *1 (-856)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-429)) (-4 *3 (-517)) (-5 *1 (-903 *3 *2))
+ (-4 *2 (-1149 *3))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-429)))))
+(((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-510))))
+ ((*1 *1 *1) (-4 *1 (-986))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1087 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 *8))
+ (-4 *7 (-789)) (-4 *8 (-977)) (-4 *9 (-884 *8 *6 *7)) (-4 *6 (-735))
+ (-5 *2 (-1087 *8)) (-5 *1 (-299 *6 *7 *8 *9)))))
+(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1113))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-973 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-952)))
- (-14 *5 (-592 (-1090))) (-5 *2 (-592 (-592 (-954 (-385 *4)))))
- (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-787) (-286) (-138) (-952)))
- (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7))
- (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-787) (-286) (-138) (-952)))
- (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7))
- (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-886 *4)))
- (-4 *4 (-13 (-787) (-286) (-138) (-952)))
- (-5 *2 (-592 (-592 (-954 (-385 *4))))) (-5 *1 (-1196 *4 *5 *6))
- (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-879 *4 *3))
- (-4 *3 (-1148 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-525))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346)))) (-5 *2 (-965))
- (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-592 *5) *6))
- (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *6 (-1148 *5))
- (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -1881 *3))))
- (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6))
- (-4 *7 (-602 (-385 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-592 *5) *6))
- (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
- (-4 *6 (-1148 *5))
- (-5 *2 (-592 (-2 (|:| |poly| *6) (|:| -1881 (-600 *6 (-385 *6))))))
- (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))))
-(((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-254)))))
-(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-105)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-702)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1073))
- (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-108)) (-5 *1 (-204 *4 *5)) (-4 *5 (-13 (-1112) (-29 *4))))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -3740 *11))))
- (-5 *3 (-592 *10)) (-5 *4 (-592 *11))
- (-5 *5
- (-2 (|:| |done| (-592 *11))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *10)) (|:| -3740 *11))))))
- (-5 *6 (-713)) (-4 *10 (-990 *7 *8 *9)) (-4 *11 (-995 *7 *8 *9 *10))
- (-4 *7 (-429)) (-4 *8 (-735)) (-4 *9 (-789))
- (-5 *1 (-993 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *10)) (|:| -3740 *11))))
- (-5 *3 (-592 *10)) (-5 *4 (-592 *11))
- (-5 *5
- (-2 (|:| |done| (-592 *11))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *10)) (|:| -3740 *11))))))
- (-5 *6 (-713)) (-4 *10 (-990 *7 *8 *9))
- (-4 *11 (-1028 *7 *8 *9 *10)) (-4 *7 (-429)) (-4 *8 (-735))
- (-4 *9 (-789)) (-5 *1 (-1060 *7 *8 *9 *10 *11)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
+ (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1087 (-1087 *4))))
+ (-5 *1 (-1126 *4)) (-5 *3 (-1087 (-1087 *4))))))
+(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))))
+(((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-51)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1113))))))
(((*1 *2 *1)
- (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160))
- (-14 *6
- (-1 (-108) (-2 (|:| -4185 *5) (|:| -1600 *2))
- (-2 (|:| -4185 *5) (|:| -1600 *2))))
- (-4 *2 (-218 (-4140 *3) (-713))) (-5 *1 (-438 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-789)) (-4 *7 (-883 *4 *2 (-799 *3))))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -2838 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-341)) (-5 *1 (-535 *4 *2)) (-4 *2 (-1148 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1126)) (-4 *2 (-789))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1126))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-592 (-839 *3))) (-4 *3 (-1019)) (-5 *1 (-839 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789))
- (-4 *6 (-990 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -1720 *1) (|:| |upper| *1)))
- (-4 *1 (-908 *4 *5 *3 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-632 *4)) (-5 *3 (-855)) (|has| *4 (-6 (-4256 "*")))
- (-4 *4 (-976)) (-5 *1 (-958 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-855))
- (|has| *4 (-6 (-4256 "*"))) (-4 *4 (-976)) (-5 *1 (-958 *4)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-855)) (-5 *4 (-205)) (-5 *5 (-525)) (-5 *6 (-808))
- (-5 *2 (-1177)) (-5 *1 (-1173)))))
-(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1175)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-883 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-429))))
+ (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789))
+ (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-878 *4)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-1074)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-690)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4255)) (-4 *1 (-464 *3)) (-4 *3 (-1127))
+ (-4 *3 (-1020)) (-5 *2 (-108))))
((*1 *2 *3 *1)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-990 *4 *5 *6))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *1))))
- (-4 *1 (-995 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1130)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-517)) (-5 *1 (-1151 *3 *2))
- (-4 *2 (-13 (-1148 *3) (-517) (-10 -8 (-15 -3244 ($ $ $))))))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357)))
- (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089))))
- (-5 *1 (-1089)))))
-(((*1 *1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019))
- (-4 *4 (-1019)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3))
- (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6)))))
+ (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-108))
+ (-5 *1 (-839 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-856)) (-5 *2 (-108)) (-5 *1 (-1021 *4 *5))
+ (-14 *4 (-856)) (-14 *5 (-856)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-558 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1127)) (-5 *2 (-1178)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-525)) (-5 *2 (-108)) (-5 *1 (-514)))))
+(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1057 *4 *2)) (-14 *4 (-855))
- (-4 *2 (-13 (-976) (-10 -7 (-6 (-4256 "*"))))) (-5 *1 (-836 *4 *2)))))
+ (-12 (-4 *4 (-1131)) (-4 *5 (-1149 *4))
+ (-5 *2 (-2 (|:| -1655 (-385 *5)) (|:| |poly| *3)))
+ (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1149 (-385 *5))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525)))))
+ (-4 *2 (-13 (-789) (-21))))))
+(((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4))
- (-4 *4 (-327)))))
+ (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
+ (-4 *3 (-13 (-341) (-1113) (-934))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-989)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))
- (-5 *2 (-357)) (-5 *1 (-246))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1172 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-284)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-855)) (-5 *1 (-143 *3 *4 *5)) (-14 *3 (-855))
- (-4 *4 (-341)) (-14 *5 (-925 *3 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1148 *3)) (-4 *3 (-976)))))
+ (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 (-592 *4))))
+ (-5 *1 (-1099 *4)) (-5 *3 (-592 (-592 *4))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-539)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1071 (-1071 *4))) (-4 *4 (-37 (-385 (-525))))
- (-4 *4 (-976)) (-5 *2 (-1071 *4)) (-5 *1 (-1075 *4)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357)))
- (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089))))
- (-5 *1 (-1089)))))
-(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-987))))
- ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-987)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1126)) (-4 *3 (-976))
- (-5 *2 (-632 *3)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108))
- (-5 *6 (-205)) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))))
- (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE))))
- (-5 *2 (-965)) (-5 *1 (-699)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341))
- (-4 *7 (-1148 (-385 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -2745 *3)))
- (-5 *1 (-523 *5 *6 *7 *3)) (-4 *3 (-320 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341))
- (-5 *2
- (-2 (|:| |answer| (-385 *6)) (|:| -2745 (-385 *6))
- (|:| |specpart| (-385 *6)) (|:| |polypart| *6)))
- (-5 *1 (-524 *5 *6)) (-5 *3 (-385 *6)))))
+ (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-4 *5 (-1149 *4))
+ (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -4216 *5))))
+ (-5 *1 (-751 *4 *5 *3 *6)) (-4 *3 (-602 *5))
+ (-4 *6 (-602 (-385 *5))))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-887 (-525))) (-5 *3 (-1091))
+ (-5 *4 (-1015 (-385 (-525)))) (-5 *1 (-30)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-1050 *4 *2))
+ (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4255) (-6 -4256))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-789)) (-4 *3 (-1127)) (-5 *1 (-1050 *3 *2))
+ (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4255) (-6 -4256)))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-592 (-800 *4)))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-429)) (-5 *1 (-448 *4 *5 *6))
+ (-4 *6 (-429)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-856)) (-5 *1 (-961 *2))
+ (-4 *2 (-13 (-1020) (-10 -8 (-15 -4080 ($ $ $))))))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-702)))))
+(((*1 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-227 *4 *5)) (-5 *3 (-592 (-227 *4 *5)))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938))))
+ ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-690)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429))))
+ ((*1 *1 *1 *1) (-4 *1 (-429))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-308)))))
+(((*1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525))))
+ ((*1 *1 *1) (-5 *1 (-1038))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1127)) (-5 *1 (-168 *3 *2)) (-4 *2 (-619 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1015 (-205)))
+ (-5 *5 (-108)) (-5 *2 (-1175)) (-5 *1 (-236)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851))))
- ((*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-797) (-797))) (-5 *1 (-110))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-797) (-592 (-797)))) (-5 *1 (-110))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-797) (-592 (-797)))) (-5 *1 (-110))))
+ (-12 (-4 *4 (-1020)) (-4 *5 (-13 (-567 (-827 *4)) (-160)))
+ (-5 *2 (-827 *4)) (-5 *1 (-158 *4 *5 *3)) (-4 *3 (-154 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-1015 (-782 (-357)))))
+ (-5 *2 (-592 (-1015 (-782 (-205))))) (-5 *1 (-284))))
+ ((*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-357))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-798)) (-5 *3 (-525)) (-5 *1 (-372))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1173 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4))
+ (-4 *4 (-1149 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-1177)) (-5 *1 (-195 *3))
- (-4 *3
- (-13 (-789)
- (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $))
- (-15 -1558 ((-1177) $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-372))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-372))))
- ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-475))))
- ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-653))))
- ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1107))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-1107)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-713))
- (-4 *3 (-13 (-669) (-346) (-10 -7 (-15 ** (*3 *3 (-525))))))
- (-5 *1 (-226 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *1 (-1122 *3))
- (-4 *3 (-906)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3)))
- (-5 *1 (-631 *3 *4 *5 *6)) (-4 *6 (-630 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3))) (-5 *1 (-642 *3))
- (-4 *3 (-286)))))
-(((*1 *1 *1) (-5 *1 (-1089)))
+ (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1149 *3))
+ (-5 *2 (-1173 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1173 *3))))
((*1 *1 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357)))
- (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089))))
- (-5 *1 (-1089)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-51))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))
+ (-12 (-5 *2 (-396 *1)) (-4 *1 (-408 *3)) (-4 *3 (-517))
+ (-4 *3 (-789))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-440 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-501))))
+ ((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1149 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-827 *3))) (-4 *3 (-1020)) (-5 *1 (-827 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-977)) (-4 *1 (-913 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-988))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-887 *3)) (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5))
+ (-4 *5 (-567 (-1091))) (-4 *4 (-735)) (-4 *5 (-789))))
+ ((*1 *1 *2)
+ (-3279
+ (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5))
+ (-12 (-1825 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525)))
+ (-4 *5 (-567 (-1091))))
+ (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))
+ (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1091))))
+ (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-887 (-385 (-525)))) (-4 *1 (-991 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1091))) (-4 *3 (-977))
+ (-4 *4 (-735)) (-4 *5 (-789))))
((*1 *2 *3)
- (-12 (-5 *2 (-1086 (-385 (-525)))) (-5 *1 (-876)) (-5 *3 (-525)))))
-(((*1 *1) (-5 *1 (-765))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789)))
- (-4 *2 (-13 (-408 *4) (-933) (-1112))) (-5 *1 (-554 *4 *2 *3))
- (-4 *3 (-13 (-408 (-157 *4)) (-933) (-1112))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1086 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517)))
- (-5 *1 (-31 *4 *2)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205)))
- (|:| |lb| (-592 (-782 (-205))))
- (|:| |cf| (-592 (-294 (-205))))
- (|:| |ub| (-592 (-782 (-205))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-592 (-294 (-205))))
- (|:| -2279 (-592 (-205)))))))
- (-5 *2 (-592 (-1073))) (-5 *1 (-246)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1148 *5))
- (-4 *5 (-13 (-27) (-408 *4)))
- (-4 *4 (-13 (-789) (-517) (-967 (-525))))
- (-4 *7 (-1148 (-385 *6))) (-5 *1 (-513 *4 *5 *6 *7 *2))
- (-4 *2 (-320 *5 *6 *7)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4254)) (-4 *1 (-215 *3))
- (-4 *3 (-1019))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1126)))))
-(((*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-787)) (-5 *1 (-282 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-202 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-4 *1 (-233 *3))))
- ((*1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-108)) (-5 *1 (-826 *4))
- (-4 *4 (-1019)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159))))
- ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1173))))
- ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-789)) (-5 *1 (-863 *3 *2)) (-4 *2 (-408 *3))))
+ (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -1895 *8)))
+ (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-996 *4 *5 *6 *7)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1074))
+ (-5 *1 (-994 *4 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1005))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *2)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *2 *6)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *2 (-1020)) (-4 *6 (-1020))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1023 *3 *4 *2 *5 *6)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *2 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1023 *3 *2 *4 *5 *6)) (-4 *3 (-1020)) (-4 *2 (-1020))
+ (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1023 *2 *3 *4 *5 *6)) (-4 *2 (-1020)) (-4 *3 (-1020))
+ (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 *1)) (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020))
+ (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -1895 *8)))
+ (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-1029 *4 *5 *6 *7)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1074))
+ (-5 *1 (-1061 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1024)) (-5 *1 (-1096))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-1096))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-798)) (-5 *3 (-525)) (-5 *1 (-1108))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-798)) (-5 *3 (-525)) (-5 *1 (-1108))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-722 *4 (-800 *5)))
+ (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *5 (-592 (-1091)))
+ (-5 *2 (-722 *4 (-800 *6))) (-5 *1 (-1197 *4 *5 *6))
+ (-14 *6 (-592 (-1091)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-887 *4)) (-4 *4 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-887 (-955 (-385 *4)))) (-5 *1 (-1197 *4 *5 *6))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-592 (-1091)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-722 *4 (-800 *6)))
+ (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *6 (-592 (-1091)))
+ (-5 *2 (-887 (-955 (-385 *4)))) (-5 *1 (-1197 *4 *5 *6))
+ (-14 *5 (-592 (-1091)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1087 *4)) (-4 *4 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-1087 (-955 (-385 *4)))) (-5 *1 (-1197 *4 *5 *6))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-592 (-1091)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1090)) (-5 *2 (-294 (-525))) (-5 *1 (-864)))))
+ (-12
+ (-5 *3 (-1062 *4 (-497 (-800 *6)) (-800 *6) (-722 *4 (-800 *6))))
+ (-4 *4 (-13 (-787) (-286) (-138) (-953))) (-14 *6 (-592 (-1091)))
+ (-5 *2 (-592 (-722 *4 (-800 *6)))) (-5 *1 (-1197 *4 *5 *6))
+ (-14 *5 (-592 (-1091))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1087 (-1087 *4))))
+ (-5 *1 (-1126 *4)) (-5 *3 (-1087 (-1087 *4))))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1195 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-160))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-761 *3)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1127)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-855)) (-5 *4 (-396 *6)) (-4 *6 (-1148 *5))
- (-4 *5 (-976)) (-5 *2 (-592 *6)) (-5 *1 (-421 *5 *6)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1090)) (-4 *4 (-976)) (-4 *4 (-789))
- (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1600 (-525))))
- (-4 *1 (-408 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-110)) (-4 *4 (-976)) (-4 *4 (-789))
- (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1600 (-525))))
- (-4 *1 (-408 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1031)) (-4 *3 (-789))
- (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1600 (-525))))
- (-4 *1 (-408 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-826 *3)) (|:| -1600 (-713))))
- (-5 *1 (-826 *3)) (-4 *3 (-1019))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-883 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-2 (|:| |var| *5) (|:| -1600 (-713))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976))
- (-4 *7 (-883 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -1600 (-525))))
- (-5 *1 (-884 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $))
- (-15 -1312 (*7 $))))))))
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1073)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-242))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-690)))))
-(((*1 *1 *1 *1) (-4 *1 (-510))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-965)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2))
- (-4 *2 (-1148 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-205))) (-5 *4 (-713)) (-5 *2 (-632 (-205)))
- (-5 *1 (-284)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-592 (-159)))))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
- (-5 *6 (-108)) (-5 *7 (-632 (-525)))
- (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS))))
- (-5 *2 (-965)) (-5 *1 (-696)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-341)) (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3)))
- (-5 *1 (-709 *3 *4)) (-4 *3 (-651 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-341)) (-4 *3 (-976))
- (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-791 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-976))
- (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3))) (-5 *1 (-792 *5 *3))
- (-4 *3 (-791 *5)))))
+ (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *3 (-592 (-242)))
+ (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-242))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-445))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-1015 (-357)))) (-5 *1 (-445)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-327))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -2203 (-592 (-2 (|:| |irr| *3) (|:| -1591 (-525)))))))
- (-5 *1 (-197 *5 *3)) (-4 *3 (-1148 *5)))))
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
+ (-4 *3 (-13 (-341) (-1113) (-934))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1020)) (-4 *2 (-789))
+ (-5 *1 (-109 *2)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525))))
+ ((*1 *1 *1 *1) (-5 *1 (-1038))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-5 *1 (-831 *2 *4))
+ (-4 *2 (-1149 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1071 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
-(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-702)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1090))
- (-4 *5 (-13 (-517) (-967 (-525)) (-138)))
- (-5 *2
- (-2 (|:| -2838 (-385 (-886 *5))) (|:| |coeff| (-385 (-886 *5)))))
- (-5 *1 (-531 *5)) (-5 *3 (-385 (-886 *5))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090))
- (-14 *4 *2))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-713)) (-4 *5 (-976)) (-4 *2 (-1148 *5))
- (-5 *1 (-1166 *5 *2 *6 *3)) (-4 *6 (-602 *2)) (-4 *3 (-1163 *5)))))
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-798)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-855)) (-5 *1 (-962 *2))
- (-4 *2 (-13 (-1019) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-126))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
- (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
- (-4 *7 (-924 *4)) (-4 *2 (-630 *7 *8 *9))
- (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6))
- (-4 *8 (-351 *7)) (-4 *9 (-351 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2))
- (-4 *4 (-351 *2)) (-4 *2 (-286))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2))
- (-4 *2 (-630 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-979 *2 *3 *4 *5 *6)) (-4 *4 (-976))
- (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *2 *4)) (-4 *4 (-286)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-341))
+ (-12
(-5 *2
- (-2 (|:| A (-632 *5))
- (|:| |eqs|
- (-592
- (-2 (|:| C (-632 *5)) (|:| |g| (-1172 *5)) (|:| -1881 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-755 *5 *6)) (-5 *3 (-632 *5)) (-5 *4 (-1172 *5))
- (-4 *6 (-602 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-341)) (-4 *6 (-602 *5))
- (-5 *2 (-2 (|:| -3276 (-632 *6)) (|:| |vec| (-1172 *5))))
- (-5 *1 (-755 *5 *6)) (-5 *3 (-632 *6)) (-5 *4 (-1172 *5)))))
-(((*1 *1) (-5 *1 (-108))))
-(((*1 *2)
- (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-694)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1090)) (-4 *5 (-1130)) (-4 *6 (-1148 *5))
- (-4 *7 (-1148 (-385 *6))) (-5 *2 (-592 (-886 *5)))
- (-5 *1 (-319 *4 *5 *6 *7)) (-4 *4 (-320 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1090)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1130))
- (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-4 *4 (-341))
- (-5 *2 (-592 (-886 *4))))))
-(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1093))))
- ((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 (-565 *4))) (-4 *4 (-408 *3)) (-4 *3 (-789))
- (-5 *1 (-534 *3 *4))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-823 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-375)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+ (-592
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-525)))))
+ (-5 *1 (-396 *3)) (-4 *3 (-517))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-713)) (-4 *3 (-327)) (-4 *5 (-1149 *3))
+ (-5 *2 (-592 (-1087 *3))) (-5 *1 (-471 *3 *5 *6))
+ (-4 *6 (-1149 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1074)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-592 (-878 (-205)))))
+ (-5 *2 (-592 (-1015 (-205)))) (-5 *1 (-863)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130))
- (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4))))))
-(((*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1019))
- (-4 *2 (-13 (-408 *4) (-820 *3) (-567 (-826 *3))))
- (-5 *1 (-998 *3 *4 *2))
- (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1019)) (-5 *1 (-1080 *3 *2)) (-4 *3 (-1019)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1031)) (-4 *3 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-408 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3))
- (-4 *3 (-1019))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-592 *1)) (-4 *1 (-883 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976))
- (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-592 *3))
- (-5 *1 (-884 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $))
- (-15 -1312 (*7 $))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429))))
- ((*1 *1 *1 *1) (-4 *1 (-429)))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1149 (-47))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525))))
+ ((*1 *1 *1 *1) (-5 *1 (-1038))))
+(((*1 *1 *1) (-5 *1 (-798))) ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1014 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1140 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-227 *5 *6)) (-5 *3 (-592 *6))
+ (-5 *4 (-592 (-227 *5 *6))) (-14 *5 (-592 (-1091))) (-4 *6 (-429))
+ (-5 *1 (-580 *5 *6)))))
+(((*1 *1) (-4 *1 (-327))))
+(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-396 *3)) (-4 *3 (-517))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-5 *1 (-461 *2)) (-4 *2 (-1148 (-525)))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1148 (-525)))))
- ((*1 *1 *1 *1) (-5 *1 (-713)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-286))
- (-5 *1 (-850 *3 *4 *5 *2)) (-4 *2 (-883 *5 *3 *4))))
+ (-12 (-5 *3 (-592 (-2 (|:| -2195 *4) (|:| -1587 (-525)))))
+ (-4 *4 (-1149 (-525))) (-5 *2 (-713)) (-5 *1 (-419 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-798)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713))
+ (-14 *4 (-713)) (-4 *5 (-160)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *6 *4 *5))
- (-5 *1 (-850 *4 *5 *6 *2)) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *6 (-286))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1086 *6)) (-4 *6 (-883 *5 *3 *4)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *5 (-286)) (-5 *1 (-850 *3 *4 *5 *6))))
+ (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 (-1086 *7))) (-4 *7 (-883 *6 *4 *5)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-1086 *7))
- (-5 *1 (-850 *4 *5 *6 *7))))
- ((*1 *1 *1 *1) (-5 *1 (-855)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-429)) (-4 *3 (-517)) (-5 *1 (-902 *3 *2))
- (-4 *2 (-1148 *3))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-429)))))
-(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112)))))
- ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-157 (-205)))) (-5 *2 (-965))
- (-5 *1 (-697)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1086 *2)) (-4 *2 (-883 (-385 (-886 *6)) *5 *4))
- (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-735))
- (-4 *4 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $)))))
- (-4 *6 (-517)))))
-(((*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175))))
- ((*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-51)))))
+ (-12 (-5 *3 (-1015 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-632 *4)) (-5 *3 (-592 (-632 *4))) (-4 *4 (-977))
+ (-5 *1 (-960 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-787)) (-4 *4 (-341)) (-5 *2 (-713))
+ (-5 *1 (-880 *4 *5)) (-4 *5 (-1149 *4)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2 (-108)) (-5 *1 (-279)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-713)) (-4 *5 (-517))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-902 *5 *3)) (-4 *3 (-1148 *5)))))
-(((*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1019))
- (-4 *2 (-13 (-408 *4) (-820 *3) (-567 (-826 *3))))
- (-5 *1 (-998 *3 *4 *2))
- (-4 *4 (-13 (-976) (-820 *3) (-789) (-567 (-826 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1019)) (-5 *1 (-1080 *2 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-259))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-525) (-205) (-1090) (-1073) (-1095)))
- (-5 *1 (-1095)))))
+ (-2 (|:| |pde| (-592 (-294 (-205))))
+ (|:| |constraints|
+ (-592
+ (-2 (|:| |start| (-205)) (|:| |finish| (-205))
+ (|:| |grid| (-713)) (|:| |boundaryType| (-525))
+ (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
+ (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074))
+ (|:| |tol| (-205))))
+ (-5 *2 (-108)) (-5 *1 (-192)))))
+(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-270)))
+ ((*1 *1) (-5 *1 (-798)))
+ ((*1 *1)
+ (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735))
+ (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1007)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33)))))
+ ((*1 *1) (-5 *1 (-1094))) ((*1 *1) (-5 *1 (-1095))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357)))
+ (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1090))))
+ (-5 *1 (-1090)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-843)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-396 (-1086 *7)))
- (-5 *1 (-840 *4 *5 *6 *7)) (-5 *3 (-1086 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-843)) (-4 *5 (-1148 *4)) (-5 *2 (-396 (-1086 *5)))
- (-5 *1 (-841 *4 *5)) (-5 *3 (-1086 *5)))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
- ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
- ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-976)) (-4 *2 (-630 *4 *5 *6))
- (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1148 *4)) (-4 *5 (-351 *4))
- (-4 *6 (-351 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-780)) (-5 *4 (-988)) (-5 *2 (-965)) (-5 *1 (-779))))
- ((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-965)) (-5 *1 (-779))))
- ((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357)))
- (-5 *5 (-592 (-782 (-357)))) (-5 *6 (-592 (-294 (-357))))
- (-5 *2 (-965)) (-5 *1 (-779))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357)))
- (-5 *5 (-592 (-782 (-357)))) (-5 *2 (-965)) (-5 *1 (-779))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) (-5 *2 (-965))
- (-5 *1 (-779))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357)))
- (-5 *2 (-965)) (-5 *1 (-779)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-110)) (-5 *4 (-713)) (-4 *5 (-429)) (-4 *5 (-789))
- (-4 *5 (-967 (-525))) (-4 *5 (-517)) (-5 *1 (-40 *5 *2))
- (-4 *2 (-408 *5))
- (-4 *2
- (-13 (-341) (-281)
- (-10 -8 (-15 -1303 ((-1042 *5 (-565 $)) $))
- (-15 -1312 ((-1042 *5 (-565 $)) $))
- (-15 -1908 ($ (-1042 *5 (-565 $))))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-592 *2)) (-5 *1 (-1101 *2)) (-4 *2 (-341)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-990 *5 *6 *7))
- (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8))))
- (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-592 *8)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7))))
+ (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1127)) (-5 *2 (-592 *1)) (-4 *1 (-942 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-976)) (-5 *2 (-1172 *3)) (-5 *1 (-655 *3 *4))
- (-4 *4 (-1148 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-108)) (-5 *1 (-771)))))
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1126))
- (-5 *2 (-592 *3)))))
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-108)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-341)) (-4 *3 (-977))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3523 *1)))
+ (-4 *1 (-791 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-1079 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1050 (-205))) (-5 *1 (-1174))))
- ((*1 *2 *1) (-12 (-5 *2 (-1050 (-205))) (-5 *1 (-1174)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-860))))
- ((*1 *2 *1) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *4 (-160)) (-4 *5 (-351 *4))
- (-4 *6 (-351 *4)) (-5 *1 (-631 *4 *5 *6 *2))
- (-4 *2 (-630 *4 *5 *6)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4254)) (-4 *1 (-558 *4 *3)) (-4 *4 (-1019))
- (-4 *3 (-1126)) (-4 *3 (-1019)) (-5 *2 (-108)))))
-(((*1 *1)
- (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-429))))
- ((*1 *1 *1 *1) (-4 *1 (-429))))
-(((*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1126)))))
-(((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-5 *2 (-632 (-385 *4))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-115 *2)) (-4 *2 (-1126)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1126)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-3 *3 (-592 *1)))
- (-4 *1 (-995 *4 *5 *6 *3)))))
+ (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1127)) (-4 *2 (-1020))
+ (-4 *2 (-789)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-713)) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-1171 *3)) (-4 *3 (-23)) (-4 *3 (-1127)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7))))
- (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
+ (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
+ (-4 *3 (-13 (-341) (-1113) (-934))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-544 *4))
- (-4 *4 (-327)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2 *3) (-12 (-5 *3 (-904)) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-525)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *2 (-1178)) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-855)) (-5 *1 (-1020 *3 *4)) (-14 *3 (-855))
- (-14 *4 (-855)))))
-(((*1 *1) (-4 *1 (-327)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 *5)) (-4 *5 (-408 *4))
- (-4 *4 (-13 (-517) (-789) (-138)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-592 (-1086 *5)))
- (|:| |prim| (-1086 *5))))
- (-5 *1 (-410 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-517) (-789) (-138)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1086 *3))
- (|:| |pol2| (-1086 *3)) (|:| |prim| (-1086 *3))))
- (-5 *1 (-410 *4 *3)) (-4 *3 (-27)) (-4 *3 (-408 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-886 *5)) (-5 *4 (-1090)) (-4 *5 (-13 (-341) (-138)))
- (-5 *2
- (-2 (|:| |coef1| (-525)) (|:| |coef2| (-525))
- (|:| |prim| (-1086 *5))))
- (-5 *1 (-893 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-592 (-1090)))
- (-4 *5 (-13 (-341) (-138)))
- (-5 *2
- (-2 (|:| -1459 (-592 (-525))) (|:| |poly| (-592 (-1086 *5)))
- (|:| |prim| (-1086 *5))))
- (-5 *1 (-893 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 (-886 *6))) (-5 *4 (-592 (-1090))) (-5 *5 (-1090))
- (-4 *6 (-13 (-341) (-138)))
- (-5 *2
- (-2 (|:| -1459 (-592 (-525))) (|:| |poly| (-592 (-1086 *6)))
- (|:| |prim| (-1086 *6))))
- (-5 *1 (-893 *6)))))
-(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112))))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-543 *2)) (-4 *2 (-510)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-4 *1 (-352 *3 *4))
- (-4 *4 (-160)))))
+ (-12 (-5 *1 (-1056 *3 *2)) (-4 *3 (-13 (-1020) (-33)))
+ (-4 *2 (-13 (-1020) (-33))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-976)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-764)))))
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1090))
- (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1112) (-892))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-5 *2 (-108)) (-5 *1 (-197 *4 *3))
- (-4 *3 (-1148 *4)))))
+ (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-721 *4))
+ (-4 *4 (-13 (-341) (-787))))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517))
- (-5 *2 (-2 (|:| -1459 *4) (|:| -1338 *3) (|:| -1632 *3)))
- (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-990 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-517)) (-4 *3 (-976))
- (-5 *2 (-2 (|:| -1459 *3) (|:| -1338 *1) (|:| -1632 *1)))
- (-4 *1 (-1148 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-128)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789))
- (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-883 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-976)) (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1)))
- (-4 *1 (-1148 *3)))))
+ (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1516 *4)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1074)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-408 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3))
- (-4 *3 (-1019))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-592 *1)) (-4 *1 (-883 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976))
- (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-592 *3))
- (-5 *1 (-884 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $))
- (-15 -1312 (*7 $))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-327)) (-4 *4 (-307 *3)) (-4 *5 (-1148 *4))
- (-5 *1 (-719 *3 *4 *5 *2 *6)) (-4 *2 (-1148 *5)) (-14 *6 (-855))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-4 *3 (-346))))
- ((*1 *1 *1) (-12 (-4 *1 (-1189 *2)) (-4 *2 (-341)) (-4 *2 (-346)))))
-(((*1 *2)
- (-12 (-14 *4 (-713)) (-4 *5 (-1126)) (-5 *2 (-128))
- (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-341)) (-5 *2 (-128)) (-5 *1 (-306 *3 *4))
- (-4 *3 (-307 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713))
- (-14 *4 (-713)) (-4 *5 (-160))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525))
- (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735))
- (-5 *2 (-525)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-883 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-912 *3)) (-4 *3 (-976)) (-5 *2 (-855))))
- ((*1 *2) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-341)) (-5 *2 (-128)))))
-(((*1 *1) (-5 *1 (-1177))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-877 (-205)) (-205))) (-5 *3 (-1014 (-205)))
- (-5 *1 (-860))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-877 (-205)) (-205))) (-5 *3 (-1014 (-205)))
- (-5 *1 (-860))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-877 (-205)) (-205))) (-5 *3 (-1014 (-205)))
- (-5 *1 (-861))))
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4)))
+ (-5 *2 (-2 (|:| |num| (-1173 *4)) (|:| |den| *4))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1173 *3)) (-4 *3 (-1149 *4)) (-4 *4 (-1131))
+ (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1149 (-385 *3))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-1149 *4)) (-5 *1 (-504 *4 *2 *5 *6))
+ (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-734))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-49 *3 *4))
+ (-14 *4 (-592 (-1091)))))
+ ((*1 *1 *2 *1 *1 *3)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1127))
+ (-4 *6 (-1127)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525))
+ (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160))
+ (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-157 *5)) (-4 *5 (-160))
+ (-4 *6 (-160)) (-5 *2 (-157 *6)) (-5 *1 (-156 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-294 *3) (-294 *3))) (-4 *3 (-13 (-977) (-789)))
+ (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1091)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713))
+ (-4 *6 (-1127)) (-4 *7 (-1127)) (-5 *2 (-220 *5 *7))
+ (-5 *1 (-219 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-273 *5)) (-4 *5 (-1127))
+ (-4 *6 (-1127)) (-5 *2 (-273 *6)) (-5 *1 (-272 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-273 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1074)) (-5 *5 (-565 *6))
+ (-4 *6 (-281)) (-4 *2 (-1127)) (-5 *1 (-276 *6 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-565 *5)) (-4 *5 (-281))
+ (-4 *2 (-281)) (-5 *1 (-277 *5 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-877 (-205)) (-205))) (-5 *3 (-1014 (-205)))
- (-5 *1 (-861)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-157 (-205))) (-5 *5 (-525))
- (-5 *6 (-1073)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-477 *3 *4 *5 *6))) (-4 *3 (-341)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-883 *3 *4 *5)) (-5 *1 (-477 *3 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
- (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-995 *4 *5 *6 *7))
- (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-995 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 *1))
- (-4 *1 (-995 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-1172
- (-2 (|:| |scaleX| (-205)) (|:| |scaleY| (-205))
- (|:| |deltaX| (-205)) (|:| |deltaY| (-205)) (|:| -3156 (-525))
- (|:| -2395 (-525)) (|:| |spline| (-525)) (|:| -3182 (-525))
- (|:| |axesColor| (-808)) (|:| -2915 (-525))
- (|:| |unitsColor| (-808)) (|:| |showing| (-525)))))
- (-5 *1 (-1173)))))
-(((*1 *2)
- (-12 (-5 *2 (-1177)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019))
- (-4 *4 (-1019)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
- (-4 *3 (-990 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4))))))
- (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3))))
+ (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-565 *1)) (-4 *1 (-281))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4))))))
- (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-632 *5)) (-4 *5 (-977))
+ (-4 *6 (-977)) (-5 *2 (-632 *6)) (-5 *1 (-283 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-789))
+ (-4 *6 (-789)) (-5 *2 (-294 *6)) (-5 *1 (-292 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-314 *5 *6 *7 *8)) (-4 *5 (-341))
+ (-4 *6 (-1149 *5)) (-4 *7 (-1149 (-385 *6))) (-4 *8 (-320 *5 *6 *7))
+ (-4 *9 (-341)) (-4 *10 (-1149 *9)) (-4 *11 (-1149 (-385 *10)))
+ (-5 *2 (-314 *9 *10 *11 *12))
+ (-5 *1 (-311 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-320 *9 *10 *11))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1131)) (-4 *8 (-1131))
+ (-4 *6 (-1149 *5)) (-4 *7 (-1149 (-385 *6))) (-4 *9 (-1149 *8))
+ (-4 *2 (-320 *8 *9 *10)) (-5 *1 (-318 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-320 *5 *6 *7)) (-4 *10 (-1149 (-385 *9)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1127)) (-4 *6 (-1127))
+ (-4 *2 (-351 *6)) (-5 *1 (-349 *5 *4 *6 *2)) (-4 *4 (-351 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-360 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-1020))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-396 *5)) (-4 *5 (-517))
+ (-4 *6 (-517)) (-5 *2 (-396 *6)) (-5 *1 (-383 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-385 *5)) (-4 *5 (-517))
+ (-4 *6 (-517)) (-5 *2 (-385 *6)) (-5 *1 (-384 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-391 *5 *6 *7 *8)) (-4 *5 (-286))
+ (-4 *6 (-925 *5)) (-4 *7 (-1149 *6))
+ (-4 *8 (-13 (-387 *6 *7) (-968 *6))) (-4 *9 (-286))
+ (-4 *10 (-925 *9)) (-4 *11 (-1149 *10))
+ (-5 *2 (-391 *9 *10 *11 *12))
+ (-5 *1 (-390 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-387 *10 *11) (-968 *10)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160))
+ (-4 *2 (-395 *6)) (-5 *1 (-393 *4 *5 *2 *6)) (-4 *4 (-395 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-517)) (-5 *1 (-396 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-977) (-789)))
+ (-4 *6 (-13 (-977) (-789))) (-4 *2 (-408 *6))
+ (-5 *1 (-399 *5 *4 *6 *2)) (-4 *4 (-408 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1020)) (-4 *6 (-1020))
+ (-4 *2 (-403 *6)) (-5 *1 (-401 *5 *4 *6 *2)) (-4 *4 (-403 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-464 *3)) (-4 *3 (-1127))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-789))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-542 *5)) (-4 *5 (-341))
+ (-4 *6 (-341)) (-5 *2 (-542 *6)) (-5 *1 (-541 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4 (-3 (-2 (|:| -1679 *5) (|:| |coeff| *5)) "failed"))
+ (-4 *5 (-341)) (-4 *6 (-341))
+ (-5 *2 (-2 (|:| -1679 *6) (|:| |coeff| *6)))
+ (-5 *1 (-541 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
+ (-4 *5 (-341)) (-4 *2 (-341)) (-5 *1 (-541 *5 *2))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4
+ (-3
+ (-2 (|:| |mainpart| *5)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ "failed"))
+ (-4 *5 (-341)) (-4 *6 (-341))
+ (-5 *2
+ (-2 (|:| |mainpart| *6)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-541 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-555 *5)) (-4 *5 (-1127))
+ (-4 *6 (-1127)) (-5 *2 (-555 *6)) (-5 *1 (-552 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
- (-4 *3 (-990 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4))))))
- (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1028 *6 *7 *8 *3))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-555 *7))
+ (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-555 *8))
+ (-5 *1 (-553 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1072 *6)) (-5 *5 (-555 *7))
+ (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1072 *8))
+ (-5 *1 (-553 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-1072 *7))
+ (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1072 *8))
+ (-5 *1 (-553 *6 *7 *8))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1127)) (-5 *1 (-555 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4))))))
- (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1028 *5 *6 *7 *3)))))
-(((*1 *1) (-5 *1 (-1006))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-855)) (-5 *4 (-808)) (-5 *2 (-1177)) (-5 *1 (-1173))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734))))
- ((*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-976)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-976)) (-5 *2 (-713))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *6)) (-4 *1 (-883 *4 *5 *6)) (-4 *4 (-976))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-883 *4 *5 *3)) (-4 *4 (-976)) (-4 *5 (-735))
- (-4 *3 (-789)) (-5 *2 (-713)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *2)) (-5 *1 (-166 *2)) (-4 *2 (-286))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-592 *5)) (-4 *5 (-1127))
+ (-4 *6 (-1127)) (-5 *2 (-592 *6)) (-5 *1 (-590 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-592 *6)) (-5 *5 (-592 *7))
+ (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-592 *8))
+ (-5 *1 (-591 *6 *7 *8))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-597 *3)) (-4 *3 (-1127))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-977)) (-4 *8 (-977))
+ (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *2 (-630 *8 *9 *10))
+ (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-630 *5 *6 *7))
+ (-4 *9 (-351 *8)) (-4 *10 (-351 *8))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-977))
+ (-4 *8 (-977)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5))
+ (-4 *2 (-630 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-630 *5 *6 *7)) (-4 *9 (-351 *8)) (-4 *10 (-351 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-517)) (-4 *7 (-517))
+ (-4 *6 (-1149 *5)) (-4 *2 (-1149 (-385 *8)))
+ (-5 *1 (-652 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1149 (-385 *6)))
+ (-4 *8 (-1149 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-977)) (-4 *9 (-977)) (-4 *5 (-789))
+ (-4 *6 (-735)) (-4 *2 (-884 *9 *7 *5))
+ (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735))
+ (-4 *4 (-884 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-789)) (-4 *6 (-789)) (-4 *7 (-735))
+ (-4 *9 (-977)) (-4 *2 (-884 *9 *8 *6))
+ (-5 *1 (-672 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-735))
+ (-4 *4 (-884 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-678 *5 *7)) (-4 *5 (-977))
+ (-4 *6 (-977)) (-4 *7 (-669)) (-5 *2 (-678 *6 *7))
+ (-5 *1 (-677 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-678 *3 *4))
+ (-4 *4 (-669))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-724 *5)) (-4 *5 (-977))
+ (-4 *6 (-977)) (-5 *2 (-724 *6)) (-5 *1 (-723 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160))
+ (-4 *2 (-739 *6)) (-5 *1 (-740 *4 *5 *2 *6)) (-4 *4 (-739 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1020))
+ (-4 *6 (-1020)) (-5 *2 (-775 *6)) (-5 *1 (-774 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-775 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *1 (-774 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1020))
+ (-4 *6 (-1020)) (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6))))
+ ((*1 *2 *3 *4 *2 *2)
+ (-12 (-5 *2 (-782 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-5 *1 (-781 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-812 *5)) (-4 *5 (-1127))
+ (-4 *6 (-1127)) (-5 *2 (-812 *6)) (-5 *1 (-811 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-814 *5)) (-4 *5 (-1127))
+ (-4 *6 (-1127)) (-5 *2 (-814 *6)) (-5 *1 (-813 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-817 *5)) (-4 *5 (-1127))
+ (-4 *6 (-1127)) (-5 *2 (-817 *6)) (-5 *1 (-816 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-824 *5 *6)) (-4 *5 (-1020))
+ (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-824 *5 *7))
+ (-5 *1 (-823 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-827 *5)) (-4 *5 (-1020))
+ (-4 *6 (-1020)) (-5 *2 (-827 *6)) (-5 *1 (-826 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-887 *5)) (-4 *5 (-977))
+ (-4 *6 (-977)) (-5 *2 (-887 *6)) (-5 *1 (-881 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-789))
+ (-4 *8 (-977)) (-4 *6 (-735))
+ (-4 *2
+ (-13 (-1020)
+ (-10 -8 (-15 -4080 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713))))))
+ (-5 *1 (-886 *6 *7 *8 *5 *2)) (-4 *5 (-884 *8 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1127))
+ (-4 *6 (-1127)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-977))
+ (-4 *6 (-977)) (-5 *2 (-878 *6)) (-5 *1 (-914 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-592 *4))) (-4 *4 (-286))
- (-5 *1 (-166 *4))))
+ (-12 (-5 *3 (-1 *2 (-887 *4))) (-4 *4 (-977))
+ (-4 *2 (-884 (-887 *4) *5 *6)) (-4 *5 (-735))
+ (-4 *6
+ (-13 (-789)
+ (-10 -8 (-15 -2749 ((-1091) $))
+ (-15 -2577 ((-3 $ "failed") (-1091))))))
+ (-5 *1 (-917 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-517)) (-4 *6 (-517))
+ (-4 *2 (-925 *6)) (-5 *1 (-923 *5 *6 *4 *2)) (-4 *4 (-925 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160))
+ (-4 *2 (-929 *6)) (-5 *1 (-930 *4 *5 *2 *6)) (-4 *4 (-929 *5))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-980 *3 *4 *5 *6 *7))
+ (-4 *5 (-977)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-977)) (-4 *10 (-977))
+ (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7))
+ (-4 *9 (-218 *5 *7)) (-4 *2 (-980 *5 *6 *10 *11 *12))
+ (-5 *1 (-982 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-980 *5 *6 *7 *8 *9)) (-4 *11 (-218 *6 *10))
+ (-4 *12 (-218 *5 *10))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1015 *5)) (-4 *5 (-1127))
+ (-4 *6 (-1127)) (-5 *2 (-1015 *6)) (-5 *1 (-1011 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1015 *5)) (-4 *5 (-787))
+ (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-592 *6))
+ (-5 *1 (-1011 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1013 *5)) (-4 *5 (-1127))
+ (-4 *6 (-1127)) (-5 *2 (-1013 *6)) (-5 *1 (-1012 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1016 *4 *2)) (-4 *4 (-787))
+ (-4 *2 (-1065 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1072 *5)) (-4 *5 (-1127))
+ (-4 *6 (-1127)) (-5 *2 (-1072 *6)) (-5 *1 (-1070 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 *8))
- (-5 *4
- (-592
- (-2 (|:| -2499 (-632 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-632 *7)))))
- (-5 *5 (-713)) (-4 *7 (-1148 *6)) (-4 *8 (-1148 *7)) (-4 *6 (-327))
- (-5 *2
- (-2 (|:| -2499 (-632 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-632 *7))))
- (-5 *1 (-471 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-990 *5 *6 *7))
- (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735))
- (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-993 *5 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1072 *6)) (-5 *5 (-1072 *7))
+ (-4 *6 (-1127)) (-4 *7 (-1127)) (-4 *8 (-1127)) (-5 *2 (-1072 *8))
+ (-5 *1 (-1071 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-990 *5 *6 *7))
- (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735))
- (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
- (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4))
- (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3))
- (-4 *3 (-630 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517))
- (-5 *2 (-713)))))
-(((*1 *2) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-100)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-698)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-977))
+ (-4 *6 (-977)) (-5 *2 (-1087 *6)) (-5 *1 (-1085 *5 *6))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1104 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1137 *5 *7 *9)) (-4 *5 (-977))
+ (-4 *6 (-977)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1137 *6 *8 *10)) (-5 *1 (-1132 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1091))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5)) (-4 *5 (-1127))
+ (-4 *6 (-1127)) (-5 *2 (-1140 *6)) (-5 *1 (-1139 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1140 *5)) (-4 *5 (-787))
+ (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1072 *6))
+ (-5 *1 (-1139 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1146 *5 *6)) (-14 *5 (-1091))
+ (-4 *6 (-977)) (-4 *8 (-977)) (-5 *2 (-1146 *7 *8))
+ (-5 *1 (-1141 *5 *6 *7 *8)) (-14 *7 (-1091))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-977)) (-4 *6 (-977))
+ (-4 *2 (-1149 *6)) (-5 *1 (-1147 *5 *4 *6 *2)) (-4 *4 (-1149 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1158 *5 *7 *9)) (-4 *5 (-977))
+ (-4 *6 (-977)) (-14 *7 (-1091)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1158 *6 *8 *10)) (-5 *1 (-1153 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1091))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-977)) (-4 *6 (-977))
+ (-4 *2 (-1164 *6)) (-5 *1 (-1162 *5 *6 *4 *2)) (-4 *4 (-1164 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1173 *5)) (-4 *5 (-1127))
+ (-4 *6 (-1127)) (-5 *2 (-1173 *6)) (-5 *1 (-1172 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1173 *5))
+ (-4 *5 (-1127)) (-4 *6 (-1127)) (-5 *2 (-1173 *6))
+ (-5 *1 (-1172 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-977))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-1194 *3 *4))
+ (-4 *4 (-785)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-798))) ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1) (-5 *1 (-798))))
(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525))))
+ (-4 *2 (-160)))))
+(((*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1173 *4)) (-5 *3 (-1038)) (-4 *4 (-327))
+ (-5 *1 (-495 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-385 (-525))) (-4 *4 (-968 (-525)))
+ (-4 *4 (-13 (-789) (-517))) (-5 *1 (-31 *4 *2)) (-4 *2 (-408 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-128)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-205)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 (-385 (-525))))
+ (-4 *5 (-1164 *4)) (-5 *1 (-257 *4 *5 *2)) (-4 *2 (-1135 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 (-385 (-525))))
+ (-4 *5 (-1133 *4)) (-5 *1 (-258 *4 *5 *2 *6)) (-4 *2 (-1156 *4 *5))
+ (-4 *6 (-916 *5))))
+ ((*1 *1 *1 *1) (-4 *1 (-263)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *1) (-5 *1 (-357)))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-364 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-1032))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1173 *4)) (-5 *3 (-525)) (-4 *4 (-327))
+ (-5 *1 (-495 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-501))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-501))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *4 (-1020))
+ (-5 *1 (-625 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-341))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-977))
+ (-5 *1 (-633 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (-4 *3 (-977)) (-5 *1 (-657 *3 *4))
+ (-4 *4 (-594 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-4 *4 (-977))
+ (-5 *1 (-657 *4 *5)) (-4 *5 (-594 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-761 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-776 *3)) (-4 *3 (-977))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-5 *1 (-776 *4)) (-4 *4 (-977))))
+ ((*1 *1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-827 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-934)) (-5 *2 (-385 (-525)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-856))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-1041 *3 *4 *5 *6)) (-4 *4 (-977))
+ (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)) (-4 *4 (-341))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1164 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-115 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |k| (-617 *3)) (|:| |c| *4))))
- (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
- (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-592
- (-2
- (|:| -3946
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (|:| -2511
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1071 (-205)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -4162
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-520))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1126))
- (-5 *2 (-592 *4)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-259))) (-5 *1 (-259))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-1095))) (-5 *1 (-1095)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-517)) (-4 *3 (-976))
- (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-791 *3))))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7)))
+ (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-976))
- (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3))) (-5 *1 (-792 *5 *3))
- (-4 *3 (-791 *5)))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4254)) (-4 *1 (-464 *3)) (-4 *3 (-1126))
- (-5 *2 (-592 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1019)))))
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735))
+ (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8)))
+ (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7)))
+ (-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735))
+ (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8)))
+ (-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-1091)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1126))))
+ (-12 (-5 *2 (-525)) (-4 *1 (-597 *3)) (-4 *3 (-1127))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-597 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093)))))
+ (-12 (-5 *3 (-525)) (-4 *1 (-597 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-632 (-294 (-205))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))))
+ (-5 *1 (-187)))))
+(((*1 *1 *1) (-5 *1 (-501))))
(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7))))
+ (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1190 *3)) (-4 *3 (-341)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-592 *6))
+ (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1087 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286)))))
+(((*1 *1 *2 *3 *4)
(-12
(-5 *3
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *2 (-357)) (-5 *1 (-187)))))
+ (-592
+ (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1087 *2))
+ (|:| |logand| (-1087 *2)))))
+ (-5 *4 (-592 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-341)) (-5 *1 (-542 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-357)) (-5 *1 (-989)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-525))) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-517)) (-4 *8 (-883 *7 *5 *6))
- (-5 *2 (-2 (|:| -1600 (-713)) (|:| -1459 *9) (|:| |radicand| *9)))
- (-5 *1 (-887 *5 *6 *7 *8 *9)) (-5 *4 (-713))
- (-4 *9
- (-13 (-341)
- (-10 -8 (-15 -1303 (*8 $)) (-15 -1312 (*8 $)) (-15 -1908 ($ *8))))))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4254)) (-4 *1 (-142 *2)) (-4 *2 (-1126))
- (-4 *2 (-1019)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1090))
- (-5 *2 (-525)) (-5 *1 (-1033 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-51)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177))
- (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177))
- (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-592 (-782 (-205)))) (-5 *4 (-205)) (-5 *2 (-592 *4))
+ (-5 *1 (-246)))))
+(((*1 *1) (-5 *1 (-146))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-429))
+ (|partial| -12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-453 *4 *5 *6 *7)) (|:| -2936 (-592 *7))))
+ (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-713)) (-4 *5 (-517))
(-5 *2
- (-592
- (-2 (|:| |eigval| (-3 (-385 (-886 *4)) (-1080 (-1090) (-886 *4))))
- (|:| |eigmult| (-713))
- (|:| |eigvec| (-592 (-632 (-385 (-886 *4))))))))
- (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-886 *4)))))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1019) (-33)))
- (-5 *2 (-108)) (-5 *1 (-1055 *4 *5)) (-4 *4 (-13 (-1019) (-33))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525))))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))))
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-903 *5 *3)) (-4 *3 (-1149 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-626 *4 *3)) (-4 *4 (-1019))
- (-4 *3 (-1019)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1019)))))
+ (-12 (-5 *3 (-385 *5)) (-4 *5 (-1149 *4)) (-4 *4 (-517))
+ (-4 *4 (-977)) (-4 *2 (-1164 *4)) (-5 *1 (-1167 *4 *5 *6 *2))
+ (-4 *6 (-602 *5)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-357)) (-5 *1 (-989)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735))
- (-5 *1 (-919 *2 *3 *4 *5)) (-4 *5 (-883 *2 *4 *3)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-976)) (-4 *3 (-789))
- (-5 *2 (-2 (|:| |val| *1) (|:| -1600 (-525)))) (-4 *1 (-408 *3))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-826 *3)) (|:| -1600 (-826 *3))))
- (-5 *1 (-826 *3)) (-4 *3 (-1019))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-976))
- (-4 *7 (-883 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -1600 (-525))))
- (-5 *1 (-884 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -1908 ($ *7)) (-15 -1303 (*7 $))
- (-15 -1312 (*7 $))))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 *3 *4 *5))
- (-5 *2
- (-2 (|:| -2281 (-391 *4 (-385 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341))
- (-5 *2
- (-2 (|:| |poly| *6) (|:| -3837 (-385 *6))
- (|:| |special| (-385 *6))))
- (-5 *1 (-670 *5 *6)) (-5 *3 (-385 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-830 *3 *4))
- (-4 *3 (-1148 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-713)) (-4 *5 (-341))
- (-5 *2 (-2 (|:| -4138 *3) (|:| -4152 *3))) (-5 *1 (-830 *3 *5))
- (-4 *3 (-1148 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108))
- (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429))
- (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-993 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108))
- (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-995 *5 *6 *7 *8)) (-4 *5 (-429))
- (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-993 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108))
- (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429))
- (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1060 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108))
- (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-1028 *5 *6 *7 *8)) (-4 *5 (-429))
- (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
+ (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517))))
+ ((*1 *1 *1) (|partial| -4 *1 (-665))))
(((*1 *2 *3)
(-12
(-5 *3
- (-592
- (-2 (|:| -2239 (-713))
- (|:| |eqns|
- (-592
- (-2 (|:| |det| *7) (|:| |rows| (-592 (-525)))
- (|:| |cols| (-592 (-525))))))
- (|:| |fgb| (-592 *7)))))
- (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138)))
- (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-713))
- (-5 *1 (-858 *4 *5 *6 *7)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525))))
- (-4 *2 (-160)))))
+ (-592 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525))))))
+ (-5 *2 (-592 (-205))) (-5 *1 (-284)))))
+(((*1 *1) (-5 *1 (-132))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-968 (-525)))
+ (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3))
+ (-4 *2
+ (-13 (-341) (-281)
+ (-10 -8 (-15 -1498 ((-1043 *3 (-565 $)) $))
+ (-15 -1512 ((-1043 *3 (-565 $)) $))
+ (-15 -1270 ($ (-1043 *3 (-565 $))))))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1091)) (-5 *4 (-887 (-525))) (-5 *2 (-308))
+ (-5 *1 (-310))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1091)) (-5 *4 (-1013 (-887 (-525)))) (-5 *2 (-308))
+ (-5 *1 (-310))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-977)) (-4 *3 (-1020)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1087 *4)) (-4 *4 (-327)) (-5 *2 (-892 (-1038)))
+ (-5 *1 (-324 *4)))))
(((*1 *1) (-5 *1 (-108))))
-(((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
- ((*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
- ((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-789))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -1790 *1) (|:| -4242 *1) (|:| |associate| *1)))
+ (-4 *1 (-517)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834)))) (-5 *2 (-966))
+ (-5 *1 (-691)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-690)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1120 *2 *3 *4 *5)) (-4 *2 (-517))
- (-4 *3 (-735)) (-4 *4 (-789)) (-4 *5 (-990 *2 *3 *4))))
+ (-12 (-5 *1 (-1165 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1091))
+ (-14 *4 *2))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-4 *2 (-1149 *4))
+ (-5 *1 (-857 *4 *2)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-160))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-1160 *3)) (-4 *3 (-1126))))
- ((*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-592 *6)) (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5))
- (-4 *3 (-517)))))
-(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)) (-4 *2 (-1019))))
- ((*1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1019)))))
-(((*1 *2)
- (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-976)) (-5 *2 (-1172 *4))
- (-5 *1 (-1091 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-855)) (-5 *2 (-1172 *3)) (-5 *1 (-1091 *3))
- (-4 *3 (-976)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-976)) (-4 *3 (-789))
- (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-592 (-713)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789))
- (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 (-713))))))
-(((*1 *1 *2) (-12 (-5 *1 (-1113 *2)) (-4 *2 (-1019))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-1113 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-592 (-1113 *2))) (-4 *2 (-1019)) (-5 *1 (-1113 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-1053))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-797))) (-5 *2 (-1177)) (-5 *1 (-1053)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-592 (-385 *7)))
- (-4 *7 (-1148 *6)) (-4 *6 (-341))
- (-5 *2
- (-2 (|:| |mainpart| (-385 *7))
- (|:| |limitedlogs|
- (-592
- (-2 (|:| |coeff| (-385 *7)) (|:| |logand| (-385 *7)))))))
- (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-973 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-952)))
- (-14 *5 (-592 (-1090)))
+ (-12 (-5 *2 (-713)) (-4 *1 (-1192 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-977)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-977))
+ (-5 *1 (-657 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-776 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1250 *4))))
+ (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1013 (-782 *3))) (-4 *3 (-13 (-1113) (-893) (-29 *5)))
+ (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
(-5 *2
- (-592 (-2 (|:| -4107 (-1086 *4)) (|:| -4093 (-592 (-886 *4))))))
- (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952)))
+ (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-199 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1013 (-782 *3))) (-5 *5 (-1074))
+ (-4 *3 (-13 (-1113) (-893) (-29 *6)))
+ (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
(-5 *2
- (-592 (-2 (|:| -4107 (-1086 *5)) (|:| -4093 (-592 (-886 *5))))))
- (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-592 (-886 *5)))
- (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952)))
+ (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-199 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1013 (-782 (-294 *5))))
+ (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
(-5 *2
- (-592 (-2 (|:| -4107 (-1086 *5)) (|:| -4093 (-592 (-886 *5))))))
- (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-592 (-886 *5)))
- (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090)))))
+ (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-200 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-385 (-887 *6))) (-5 *4 (-1013 (-782 (-294 *6))))
+ (-5 *5 (-1074))
+ (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2
+ (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-200 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-952)))
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1013 (-782 (-385 (-887 *5)))))
+ (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
(-5 *2
- (-592 (-2 (|:| -4107 (-1086 *5)) (|:| -4093 (-592 (-886 *5))))))
- (-5 *1 (-1196 *5 *6 *7)) (-5 *3 (-592 (-886 *5)))
- (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-787) (-286) (-138) (-952)))
+ (-3 (|:| |f1| (-782 (-294 *5))) (|:| |f2| (-592 (-782 (-294 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-200 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-385 (-887 *6))) (-5 *4 (-1013 (-782 (-385 (-887 *6)))))
+ (-5 *5 (-1074))
+ (-4 *6 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
(-5 *2
- (-592 (-2 (|:| -4107 (-1086 *4)) (|:| -4093 (-592 (-886 *4))))))
- (-5 *1 (-1196 *4 *5 *6)) (-5 *3 (-592 (-886 *4)))
- (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-558 *3 *2)) (-4 *3 (-1019)) (-4 *3 (-789))
- (-4 *2 (-1126))))
- ((*1 *2 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
- ((*1 *2 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1126)) (-5 *1 (-807 *2 *3)) (-4 *3 (-1126))))
- ((*1 *2 *1) (-12 (-5 *2 (-617 *3)) (-5 *1 (-827 *3)) (-4 *3 (-789))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5))))
+ (-3 (|:| |f1| (-782 (-294 *6))) (|:| |f2| (-592 (-782 (-294 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-200 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1091))
+ (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-3 *3 (-592 *3))) (-5 *1 (-406 *5 *3))
+ (-4 *3 (-13 (-1113) (-893) (-29 *5)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-1160 *3)) (-4 *3 (-1126))))
- ((*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-956 (-782 (-525))))
- (-5 *3 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *4)))) (-4 *4 (-976))
- (-5 *1 (-550 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-259)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-169)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-807 (-899 *3) (-899 *3))) (-5 *1 (-899 *3))
- (-4 *3 (-900)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1086 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6))
- (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787)))))
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-451 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357))))
+ (-5 *5 (-357)) (-5 *6 (-989)) (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3) (-12 (-5 *3 (-711)) (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357))))
+ (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357))))
+ (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-886 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6))
- (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
- ((*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))))
-(((*1 *2)
- (-12 (-5 *2 (-891 (-1037))) (-5 *1 (-321 *3 *4)) (-14 *3 (-855))
- (-14 *4 (-855))))
- ((*1 *2)
- (-12 (-5 *2 (-891 (-1037))) (-5 *1 (-322 *3 *4)) (-4 *3 (-327))
- (-14 *4 (-1086 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-891 (-1037))) (-5 *1 (-323 *3 *4)) (-4 *3 (-327))
- (-14 *4 (-855)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-146)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-174))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-279))))
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-1015 (-782 (-357))))
+ (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357)))))
+ (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357)))))
+ (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357)))))
+ (-5 *5 (-357)) (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-1015 (-782 (-357)))))
+ (-5 *5 (-357)) (-5 *6 (-989)) (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-782 (-357))))
+ (-5 *5 (-1074)) (-5 *2 (-966)) (-5 *1 (-526))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-294 (-357))) (-5 *4 (-1013 (-782 (-357))))
+ (-5 *5 (-1091)) (-5 *2 (-966)) (-5 *1 (-526))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-284)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-976)) (-4 *2 (-630 *4 *5 *6))
- (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1148 *4)) (-4 *5 (-351 *4))
- (-4 *6 (-351 *4)))))
+ (-12 (-4 *4 (-13 (-341) (-138) (-968 (-525)))) (-4 *5 (-1149 *4))
+ (-5 *2 (-542 (-385 *5))) (-5 *1 (-529 *4 *5)) (-5 *3 (-385 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1091)) (-4 *5 (-138))
+ (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))
+ (-5 *2 (-3 (-294 *5) (-592 (-294 *5)))) (-5 *1 (-545 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-683 *3 *2)) (-4 *3 (-977)) (-4 *2 (-789))
+ (-4 *3 (-37 (-385 (-525))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1091)) (-5 *1 (-887 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-4 *3 (-977))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-4 *2 (-789))
+ (-5 *1 (-1044 *3 *2 *4)) (-4 *4 (-884 *3 (-497 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977))
+ (-5 *1 (-1076 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1082 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1088 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1089 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *1 (-1122 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-3279
+ (-12 (-5 *2 (-1091)) (-4 *1 (-1133 *3)) (-4 *3 (-977))
+ (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1113))
+ (-4 *3 (-37 (-385 (-525))))))
+ (-12 (-5 *2 (-1091)) (-4 *1 (-1133 *3)) (-4 *3 (-977))
+ (-12 (|has| *3 (-15 -2383 ((-592 (-1091)) *3)))
+ (|has| *3 (-15 -2650 (*3 *3 (-1091))))
+ (-4 *3 (-37 (-385 (-525))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1133 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1137 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1149 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525))))))
+ ((*1 *1 *1 *2)
+ (-3279
+ (-12 (-5 *2 (-1091)) (-4 *1 (-1154 *3)) (-4 *3 (-977))
+ (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1113))
+ (-4 *3 (-37 (-385 (-525))))))
+ (-12 (-5 *2 (-1091)) (-4 *1 (-1154 *3)) (-4 *3 (-977))
+ (-12 (|has| *3 (-15 -2383 ((-592 (-1091)) *3)))
+ (|has| *3 (-15 -2650 (*3 *3 (-1091))))
+ (-4 *3 (-37 (-385 (-525))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1154 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1158 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-3279
+ (-12 (-5 *2 (-1091)) (-4 *1 (-1164 *3)) (-4 *3 (-977))
+ (-12 (-4 *3 (-29 (-525))) (-4 *3 (-893)) (-4 *3 (-1113))
+ (-4 *3 (-37 (-385 (-525))))))
+ (-12 (-5 *2 (-1091)) (-4 *1 (-1164 *3)) (-4 *3 (-977))
+ (-12 (|has| *3 (-15 -2383 ((-592 (-1091)) *3)))
+ (|has| *3 (-15 -2650 (*3 *3 (-1091))))
+ (-4 *3 (-37 (-385 (-525))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1164 *2)) (-4 *2 (-977)) (-4 *2 (-37 (-385 (-525))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1165 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)) (-14 *5 *3))))
+(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-159))))))
+ (-12 (-5 *2 (-713)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1127)) (-5 *2 (-592 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *3)) (-4 *3 (-883 *5 *6 *7)) (-4 *5 (-429))
- (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-426 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286))))
- ((*1 *2 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-286))))
- ((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)) (-4 *2 (-286))))
- ((*1 *2 *1) (-12 (-4 *1 (-985)) (-5 *2 (-525)))))
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-592 *8)))
+ (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-108)) (-5 *1 (-910 *5 *6 *7 *8)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))
- (-5 *2 (-385 (-525))) (-5 *1 (-950 *4)) (-4 *4 (-1148 (-525))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1090)) (-5 *1 (-542 *2)) (-4 *2 (-967 (-1090)))
- (-4 *2 (-341))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2))
- (-4 *2 (-13 (-408 *4) (-933) (-1112)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1012 *2)) (-4 *2 (-13 (-408 *4) (-933) (-1112)))
- (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-892)) (-5 *2 (-1090))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1012 *1)) (-4 *1 (-892)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 (-385 (-525))))
+ (-12 (-5 *3 (-592 (-592 (-592 *4)))) (-4 *4 (-789))
+ (-5 *2 (-592 (-592 *4))) (-5 *1 (-1099 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205)))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1))))
+ (-5 *2 (-966)) (-5 *1 (-696)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-1074)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-690)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-565 *3))
+ (-4 *3 (-13 (-408 *5) (-27) (-1113)))
+ (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2 (-2 (|:| -1679 *3) (|:| |coeff| *3)))
+ (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1020)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-856)) (-4 *4 (-346)) (-4 *4 (-341)) (-5 *2 (-1087 *1))
+ (-4 *1 (-307 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1087 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *3 (-341))
+ (-4 *2 (-1149 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1173 *4)) (-4 *4 (-327)) (-5 *2 (-1087 *4))
+ (-5 *1 (-495 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-259)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-525)) (-4 *5 (-787)) (-4 *5 (-341))
+ (-5 *2 (-713)) (-5 *1 (-880 *5 *6)) (-4 *6 (-1149 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429))
+ (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-910 *3 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-520))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-977)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1149 *3)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1127))
+ (-4 *4 (-351 *2)) (-4 *5 (-351 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1020))
+ (-4 *2 (-1127)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-501))) (-5 *1 (-501)))))
+(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-135)))
+ ((*1 *1 *1) (-4 *1 (-1060))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
(-5 *2
- (-592
- (-2 (|:| |outval| *4) (|:| |outmult| (-525))
- (|:| |outvect| (-592 (-632 *4))))))
- (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))))
+ (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525))
+ (|:| |success| (-108))))
+ (-5 *1 (-731)) (-5 *5 (-525)))))
+(((*1 *2 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286))))
+ ((*1 *2 *1) (-12 (-5 *1 (-849 *2)) (-4 *2 (-286))))
+ ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-286))))
+ ((*1 *2 *1) (-12 (-4 *1 (-986)) (-5 *2 (-525)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-517) (-789)))
+ (-4 *2 (-13 (-408 (-157 *4)) (-934) (-1113)))
+ (-5 *1 (-554 *4 *3 *2)) (-4 *3 (-13 (-408 *4) (-934) (-1113))))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-1090)) (-5 *1 (-501))))
+ (-12 (-5 *2 (-592 (-1091))) (-5 *3 (-1091)) (-5 *1 (-501))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1090)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501)))))
+ (-12 (-5 *2 (-1091)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501)))))
((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1090)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501)))))
+ (-12 (-5 *2 (-1091)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501)))))
((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1090)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501)))))
+ (-12 (-5 *2 (-1091)) (-5 *1 (-647 *3)) (-4 *3 (-567 (-501)))))
((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1090)) (-5 *4 (-592 (-1090))) (-5 *1 (-647 *3))
+ (-12 (-5 *2 (-1091)) (-5 *4 (-592 (-1091))) (-5 *1 (-647 *3))
(-4 *3 (-567 (-501))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-855)) (-4 *5 (-517)) (-5 *2 (-632 *5))
- (-5 *1 (-889 *5 *3)) (-4 *3 (-602 *5)))))
-(((*1 *2)
- (-12 (-14 *4 (-713)) (-4 *5 (-1126)) (-5 *2 (-713))
- (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-126))
- (-5 *2 (-713))))
- ((*1 *2)
- (-12 (-4 *4 (-341)) (-5 *2 (-713)) (-5 *1 (-306 *3 *4))
- (-4 *3 (-307 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-339 *3)) (-4 *3 (-1019))))
- ((*1 *2) (-12 (-4 *1 (-346)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-364 *3)) (-4 *3 (-1019))))
- ((*1 *2)
- (-12 (-4 *4 (-1019)) (-5 *2 (-713)) (-5 *1 (-402 *3 *4))
- (-4 *3 (-403 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-595 *3 *4 *5)) (-4 *3 (-1019))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2)
- (-12 (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-713))
- (-5 *1 (-666 *3 *4 *5)) (-4 *3 (-667 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-761 *3)) (-4 *3 (-789))))
- ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-937))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3))
- (-4 *3 (-1148 *2)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-4 *3 (-1019))
- (-5 *2 (-108)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-877 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-877 *3))) (-4 *3 (-976)) (-4 *1 (-1051 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-877 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))))
-(((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-525))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-965))
- (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-1127 *3)) (-4 *3 (-789))
- (-4 *3 (-1019)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-1090))) (-5 *1 (-308)))))
-(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174))))
- ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-357))))
- ((*1 *1 *1 *1) (-4 *1 (-510)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
- ((*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-713)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *6))))
- (-5 *4 (-956 (-782 (-525)))) (-5 *5 (-1090)) (-5 *7 (-385 (-525)))
- (-4 *6 (-976)) (-5 *2 (-797)) (-5 *1 (-550 *6)))))
+ (-12 (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2094 *4)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4256)) (-4 *1 (-464 *3))
+ (-4 *3 (-1127)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-108)) (-5 *1 (-110)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-592 (-592 *4))) (-5 *3 (-592 (-592 (-592 *4))))
+ (-4 *4 (-789)) (-5 *1 (-1099 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1072 *4)) (-5 *3 (-385 (-525)))
+ (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-977)) (-5 *1 (-1076 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1072 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1163 *4))
- (-4 *4 (-37 (-385 (-525))))
- (-5 *2 (-1 (-1071 *4) (-1071 *4) (-1071 *4))) (-5 *1 (-1165 *4 *5)))))
+ (-12 (-5 *3 (-2 (|:| -3593 (-385 (-525))) (|:| -3602 (-385 (-525)))))
+ (-5 *2 (-385 (-525))) (-5 *1 (-951 *4)) (-4 *4 (-1149 (-525))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1074)) (-5 *2 (-357)) (-5 *1 (-728)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-525))) (-4 *3 (-977)) (-5 *1 (-550 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1133 *3)) (-4 *3 (-977))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-525))) (-4 *1 (-1164 *3)) (-4 *3 (-977)))))
+(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1087 *3)) (-4 *3 (-977)) (-4 *1 (-1149 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-884 *4 *3 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1091)) (-5 *1 (-542 *2)) (-4 *2 (-968 (-1091)))
+ (-4 *2 (-341))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2))
+ (-4 *2 (-13 (-408 *4) (-934) (-1113)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1013 *2)) (-4 *2 (-13 (-408 *4) (-934) (-1113)))
+ (-4 *4 (-13 (-789) (-517))) (-5 *1 (-579 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-893)) (-5 *2 (-1091))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-893)))))
+(((*1 *2 *2) (-12 (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-236)))))
+(((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1015 (-205)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-632 (-886 *4))) (-5 *1 (-958 *4))
- (-4 *4 (-976)))))
+ (-12 (-5 *3 (-632 (-385 (-887 *4)))) (-4 *4 (-429))
+ (-5 *2 (-592 (-3 (-385 (-887 *4)) (-1081 (-1091) (-887 *4)))))
+ (-5 *1 (-271 *4)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-385 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-1130))
- (-5 *1 (-139 *4 *5 *2)) (-4 *2 (-1148 (-385 *5)))))
+ (-12 (-5 *3 (-385 *5)) (-4 *5 (-1149 *4)) (-4 *4 (-1131))
+ (-5 *1 (-139 *4 *5 *2)) (-4 *2 (-1149 (-385 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-1092 (-385 (-525)))) (-5 *2 (-385 (-525)))
+ (-12 (-5 *3 (-1093 (-385 (-525)))) (-5 *2 (-385 (-525)))
(-5 *1 (-172))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-632 (-294 (-205)))) (-5 *3 (-592 (-1090)))
- (-5 *4 (-1172 (-294 (-205)))) (-5 *1 (-187))))
+ (-12 (-5 *2 (-632 (-294 (-205)))) (-5 *3 (-592 (-1091)))
+ (-5 *4 (-1173 (-294 (-205)))) (-5 *1 (-187))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-273 *3))) (-4 *3 (-288 *3)) (-4 *3 (-1019))
- (-4 *3 (-1126)) (-5 *1 (-273 *3))))
+ (-12 (-5 *2 (-592 (-273 *3))) (-4 *3 (-288 *3)) (-4 *3 (-1020))
+ (-4 *3 (-1127)) (-5 *1 (-273 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-288 *2)) (-4 *2 (-1019)) (-4 *2 (-1126))
+ (-12 (-4 *2 (-288 *2)) (-4 *2 (-1020)) (-4 *2 (-1127))
(-5 *1 (-273 *2))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-110)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281))))
@@ -6599,20 +8926,20 @@
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281))))
+ (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 *1)) (-4 *1 (-281))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281))))
+ (-12 (-5 *2 (-1091)) (-5 *3 (-1 *1 (-592 *1))) (-4 *1 (-281))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-592 (-1 *1 (-592 *1))))
+ (-12 (-5 *2 (-592 (-1091))) (-5 *3 (-592 (-1 *1 (-592 *1))))
(-4 *1 (-281))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281))))
+ (-12 (-5 *2 (-592 (-1091))) (-5 *3 (-592 (-1 *1 *1))) (-4 *1 (-281))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-273 *3))) (-4 *1 (-288 *3)) (-4 *3 (-1019))))
+ (-12 (-5 *2 (-592 (-273 *3))) (-4 *1 (-288 *3)) (-4 *3 (-1020))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-273 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1019))))
+ (-12 (-5 *2 (-273 *3)) (-4 *1 (-288 *3)) (-4 *3 (-1020))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-525))) (-5 *4 (-1092 (-385 (-525))))
+ (-12 (-5 *3 (-1 *2 (-525))) (-5 *4 (-1093 (-385 (-525))))
(-5 *1 (-289 *2)) (-4 *2 (-37 (-385 (-525))))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *1)) (-4 *1 (-352 *4 *5))
@@ -6620,2572 +8947,3845 @@
((*1 *1 *1 *2 *1)
(-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1090)) (-5 *3 (-713)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-976))))
+ (-12 (-5 *2 (-1091)) (-5 *3 (-713)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1090)) (-5 *3 (-713)) (-5 *4 (-1 *1 (-592 *1)))
- (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-976))))
+ (-12 (-5 *2 (-1091)) (-5 *3 (-713)) (-5 *4 (-1 *1 (-592 *1)))
+ (-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-977))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-592 (-713)))
+ (-12 (-5 *2 (-592 (-1091))) (-5 *3 (-592 (-713)))
(-5 *4 (-592 (-1 *1 (-592 *1)))) (-4 *1 (-408 *5)) (-4 *5 (-789))
- (-4 *5 (-976))))
+ (-4 *5 (-977))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-592 (-713)))
+ (-12 (-5 *2 (-592 (-1091))) (-5 *3 (-592 (-713)))
(-5 *4 (-592 (-1 *1 *1))) (-4 *1 (-408 *5)) (-4 *5 (-789))
- (-4 *5 (-976))))
+ (-4 *5 (-977))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 *1)) (-5 *4 (-1090))
+ (-12 (-5 *2 (-592 (-110))) (-5 *3 (-592 *1)) (-5 *4 (-1091))
(-4 *1 (-408 *5)) (-4 *5 (-789)) (-4 *5 (-567 (-501)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1090)) (-4 *1 (-408 *4)) (-4 *4 (-789))
+ (-12 (-5 *2 (-110)) (-5 *3 (-1091)) (-4 *1 (-408 *4)) (-4 *4 (-789))
(-4 *4 (-567 (-501)))))
((*1 *1 *1)
(-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-567 (-501)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-1090))) (-4 *1 (-408 *3)) (-4 *3 (-789))
+ (-12 (-5 *2 (-592 (-1091))) (-4 *1 (-408 *3)) (-4 *3 (-789))
(-4 *3 (-567 (-501)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1090)) (-4 *1 (-408 *3)) (-4 *3 (-789))
+ (-12 (-5 *2 (-1091)) (-4 *1 (-408 *3)) (-4 *3 (-789))
(-4 *3 (-567 (-501)))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1126))))
+ (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1127))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-592 *4)) (-5 *3 (-592 *5)) (-4 *1 (-486 *4 *5))
- (-4 *4 (-1019)) (-4 *5 (-1126))))
+ (-4 *4 (-1020)) (-4 *5 (-1127))))
((*1 *2 *1 *2)
(-12 (-5 *2 (-775 *3)) (-4 *3 (-341)) (-5 *1 (-661 *3))))
((*1 *2 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-837 *2)) (-4 *2 (-1019))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-838 *2)) (-4 *2 (-1020))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-385 (-886 *4))) (-5 *3 (-1090)) (-4 *4 (-517))
- (-5 *1 (-972 *4))))
+ (-12 (-5 *2 (-385 (-887 *4))) (-5 *3 (-1091)) (-4 *4 (-517))
+ (-5 *1 (-973 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-385 (-886 *5))) (-5 *3 (-592 (-1090)))
- (-5 *4 (-592 (-385 (-886 *5)))) (-4 *5 (-517)) (-5 *1 (-972 *5))))
+ (-12 (-5 *2 (-385 (-887 *5))) (-5 *3 (-592 (-1091)))
+ (-5 *4 (-592 (-385 (-887 *5)))) (-4 *5 (-517)) (-5 *1 (-973 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-385 (-886 *4))) (-5 *3 (-273 (-385 (-886 *4))))
- (-4 *4 (-517)) (-5 *1 (-972 *4))))
+ (-12 (-5 *2 (-385 (-887 *4))) (-5 *3 (-273 (-385 (-887 *4))))
+ (-4 *4 (-517)) (-5 *1 (-973 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-385 (-886 *4))) (-5 *3 (-592 (-273 (-385 (-886 *4)))))
- (-4 *4 (-517)) (-5 *1 (-972 *4))))
+ (-12 (-5 *2 (-385 (-887 *4))) (-5 *3 (-592 (-273 (-385 (-887 *4)))))
+ (-4 *4 (-517)) (-5 *1 (-973 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1150 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1071 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851))))
- ((*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))))
-(((*1 *2 *2)
- (-12
+ (-12 (-4 *1 (-1151 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1072 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 (-385 (-525))))
(-5 *2
(-592
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-735)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789))
- (-5 *1 (-426 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-510))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-594 *5)) (-4 *5 (-976))
- (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-791 *5))))
+ (-2 (|:| |outval| *4) (|:| |outmult| (-525))
+ (|:| |outvect| (-592 (-632 *4))))))
+ (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-862))
+ (-5 *2
+ (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
+ (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
+ (-5 *1 (-144))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-862)) (-5 *4 (-385 (-525)))
+ (-5 *2
+ (-2 (|:| |brans| (-592 (-592 (-878 (-205)))))
+ (|:| |xValues| (-1015 (-205))) (|:| |yValues| (-1015 (-205)))))
+ (-5 *1 (-144)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-1015 (-205)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-1015 (-205))))))
+(((*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-713)) (-5 *3 (-878 *4)) (-4 *1 (-1052 *4))
+ (-4 *4 (-977))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-713)) (-5 *4 (-878 (-205))) (-5 *2 (-1178))
+ (-5 *1 (-1175)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4255)) (-4 *1 (-215 *3))
+ (-4 *3 (-1020))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-632 *3)) (-4 *1 (-395 *3)) (-4 *3 (-160))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976))))
- ((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-94 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-976))
- (-5 *1 (-792 *2 *3)) (-4 *3 (-791 *2)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) (-5 *2 (-965))
- (-5 *1 (-689)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-592 (-157 *4)))
- (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))))
-(((*1 *1 *1 *1) (-5 *1 (-150)))
- ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-150)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-339 *3)) (-4 *3 (-1019))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-364 *4)) (-4 *4 (-1019))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *2 (-23)) (-5 *1 (-595 *4 *2 *5))
- (-4 *4 (-1019)) (-14 *5 *2)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-761 *4)) (-4 *4 (-789)))))
+ (-12 (|has| *1 (-6 -4255)) (-4 *1 (-215 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-261 *2)) (-4 *2 (-1127)) (-4 *2 (-1020))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1127))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1020))
+ (-5 *1 (-680 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
+ (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1057 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-886 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1132 *3))
- (-5 *2 (-385 (-525))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517))))
- ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1019))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1019))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-928 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108))))
+ (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-887 (-357))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1091)))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-385 (-887 (-357)))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1091)))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-357))) (-14 *3 (-592 (-1091)))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-887 (-525))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1091)))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-385 (-887 (-525)))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1091)))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5))
+ (-4 *5 (-968 (-525))) (-14 *3 (-592 (-1091)))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-317 *3 *4 *5))
+ (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-294 *5)) (-4 *5 (-365))
+ (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1091)))
+ (-14 *4 (-592 (-1091)))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-632 (-385 (-887 (-525))))) (-4 *1 (-362))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-632 (-385 (-887 (-357))))) (-4 *1 (-362))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-632 (-887 (-525)))) (-4 *1 (-362))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-632 (-887 (-357)))) (-4 *1 (-362))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-385 (-887 (-525)))) (-4 *1 (-374))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-385 (-887 (-357)))) (-4 *1 (-374))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-525))) (-4 *1 (-374))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-887 (-357))) (-4 *1 (-374))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-525))) (-4 *1 (-374))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-357))) (-4 *1 (-374))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1173 (-385 (-887 (-525))))) (-4 *1 (-418))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1173 (-385 (-887 (-357))))) (-4 *1 (-418))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1173 (-887 (-525)))) (-4 *1 (-418))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1173 (-887 (-357)))) (-4 *1 (-418))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1173 (-294 (-525)))) (-4 *1 (-418))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1173 (-294 (-357)))) (-4 *1 (-418))))
((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-939 *3)) (-4 *3 (-967 (-385 (-525)))))))
-(((*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-592 *2)) (-4 *2 (-1019)) (-4 *2 (-1126)))))
-(((*1 *2 *3 *4)
+ (|partial| -12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1149 *5))
+ (-5 *2 (-1087 (-1087 *4))) (-5 *1 (-719 *4 *5 *6 *3 *7))
+ (-4 *3 (-1149 *6)) (-14 *7 (-856))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5))
+ (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *1 (-909 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-968 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *2)
+ (|partial| -3279
+ (-12 (-5 *2 (-887 *3))
+ (-12 (-1825 (-4 *3 (-37 (-385 (-525)))))
+ (-1825 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1091))))
+ (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735))
+ (-4 *5 (-789)))
+ (-12 (-5 *2 (-887 *3))
+ (-12 (-1825 (-4 *3 (-510))) (-1825 (-4 *3 (-37 (-385 (-525)))))
+ (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1091))))
+ (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735))
+ (-4 *5 (-789)))
+ (-12 (-5 *2 (-887 *3))
+ (-12 (-1825 (-4 *3 (-925 (-525)))) (-4 *3 (-37 (-385 (-525))))
+ (-4 *5 (-567 (-1091))))
+ (-4 *3 (-977)) (-4 *1 (-991 *3 *4 *5)) (-4 *4 (-735))
+ (-4 *5 (-789)))))
+ ((*1 *1 *2)
+ (|partial| -3279
+ (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5))
+ (-12 (-1825 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525)))
+ (-4 *5 (-567 (-1091))))
+ (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))
+ (-12 (-5 *2 (-887 (-525))) (-4 *1 (-991 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1091))))
+ (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-887 (-385 (-525)))) (-4 *1 (-991 *3 *4 *5))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1091))) (-4 *3 (-977))
+ (-4 *4 (-735)) (-4 *5 (-789)))))
+(((*1 *2 *3 *3 *4)
(-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 *4))
- (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-113 *3)) (-14 *3 (-525))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1071 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-286)) (-5 *1 (-161 *3))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-161 (-525))) (-5 *1 (-708 *3)) (-4 *3 (-382))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-805 *3)) (-14 *3 (-525))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-525)) (-5 *2 (-161 (-385 (-525))))
- (-5 *1 (-806 *3 *4)) (-4 *4 (-803 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1019)) (-4 *4 (-1019))
- (-4 *6 (-1019)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *4 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1148 (-525))))))
-(((*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499))))
- ((*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1019)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-877 *4)) (-4 *4 (-976)) (-5 *1 (-1079 *3 *4))
- (-14 *3 (-855)))))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -1895 *4))))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-351 *3)) (-4 *3 (-1126)) (-4 *3 (-789)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-351 *4)) (-4 *4 (-1126))
- (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1086 (-525))) (-5 *2 (-525)) (-5 *1 (-876)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-592 *2)) (-4 *2 (-1019)) (-4 *2 (-1126)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *2 (-965))
- (-5 *1 (-698))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-366))
- (-5 *2 (-965)) (-5 *1 (-698)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) (-5 *2 (-965))
- (-5 *1 (-699)))))
-(((*1 *1 *1) (-4 *1 (-134)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
+ (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1127)))))
+(((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
(-4 *2 (-408 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
+ ((*1 *1 *1 *1) (-4 *1 (-1055))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-205)) (-5 *5 (-525)) (-5 *2 (-1123 *3))
+ (-5 *1 (-732 *3)) (-4 *3 (-907))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-108))
+ (-5 *1 (-1123 *2)) (-4 *2 (-907)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1128 *3)) (-4 *3 (-1020)))))
+(((*1 *2)
+ (-12 (-5 *2 (-632 (-845 *3))) (-5 *1 (-329 *3 *4)) (-14 *3 (-856))
+ (-14 *4 (-856))))
+ ((*1 *2)
+ (-12 (-5 *2 (-632 *3)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327))
+ (-14 *4
+ (-3 (-1087 *3)
+ (-1173 (-592 (-2 (|:| -3352 *3) (|:| -3640 (-1038)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-632 *3)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327))
+ (-14 *4 (-856)))))
+(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)))))
(((*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499))))
- ((*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1019)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *4 (-517))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -3018 *4))) (-5 *1 (-902 *4 *3))
- (-4 *3 (-1148 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2506 *4)))
- (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1055 *5 *6)) (-5 *4 (-1 (-108) *6 *6))
- (-4 *5 (-13 (-1019) (-33))) (-4 *6 (-13 (-1019) (-33)))
- (-5 *2 (-108)) (-5 *1 (-1056 *5 *6)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-592 *2)) (-4 *2 (-1019)) (-4 *2 (-1126)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160))))
- ((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2))))
- ((*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4)))
- (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-256 *4 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1019))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-525))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-735)) (-4 *4 (-883 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789))
- (-5 *1 (-426 *5 *6 *7 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *5 (-346))
- (-5 *2 (-713)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1022 *2 *3 *4 *5 *6)) (-4 *2 (-1019)) (-4 *3 (-1019))
- (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 (-886 *4))) (-5 *3 (-592 (-1090))) (-4 *4 (-429))
- (-5 *1 (-852 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-632 *4)) (-5 *3 (-855)) (-4 *4 (-976))
- (-5 *1 (-958 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-855)) (-4 *4 (-976))
- (-5 *1 (-958 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
- (-14 *4 (-713)) (-4 *5 (-160)))))
+ ((*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1020)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-592 *2))) (-5 *4 (-592 *5))
- (-4 *5 (-37 (-385 (-525)))) (-4 *2 (-1163 *5))
- (-5 *1 (-1165 *5 *2)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525)))
- (-5 *6 (-205)) (-5 *2 (-965)) (-5 *1 (-695)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1134 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1163 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-517)) (-4 *3 (-976))
- (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-791 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-976))
- (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3))) (-5 *1 (-792 *5 *3))
- (-4 *3 (-791 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1022 *2 *3 *4 *5 *6)) (-4 *2 (-1019)) (-4 *3 (-1019))
- (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4))
- (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6)))
- (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-967 (-525))))
- (-5 *2 (-2 (|:| -1737 (-713)) (|:| -3111 *8)))
- (-5 *1 (-845 *4 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-385 (-887 *6))) (-4 *6 (-517))
+ (-4 *2 (-884 (-385 (-887 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2))
+ (-4 *5 (-735))
+ (-4 *4 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $))))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-713)) (-5 *4 (-1122 *6)) (-4 *6 (-341))
+ (-5 *2 (-1 (-1072 (-1122 *6)) (-1072 (-1122 *6))))
+ (-5 *1 (-1181 *6)) (-5 *5 (-1072 (-1122 *6))))))
+(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-800 *3))
+ (-14 *3 (-592 (-1091)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-900 *3)) (-4 *3 (-901))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-922))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1013 *3)) (-4 *3 (-1127))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1151 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
+ (-5 *2 (-1091))))
+ ((*1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1169 *3)) (-14 *3 (-1091)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-385 (-1087 (-294 *3)))) (-4 *3 (-13 (-517) (-789)))
+ (-5 *1 (-1048 *3)))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-592
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-525)))))
+ (-4 *2 (-517)) (-5 *1 (-396 *2))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6))
- (-4 *4 (-1148 (-385 (-525)))) (-4 *5 (-1148 (-385 *4)))
- (-4 *6 (-320 (-385 (-525)) *4 *5))
- (-5 *2 (-2 (|:| -1737 (-713)) (|:| -3111 *6)))
- (-5 *1 (-846 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174))))
- ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-525))
+ (|:| -1494 (-592 (-2 (|:| |irr| *4) (|:| -1623 (-525)))))))
+ (-4 *4 (-1149 (-525))) (-5 *2 (-396 *4)) (-5 *1 (-419 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851))))
- ((*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-592 (-886 *6))) (-5 *4 (-592 (-1090))) (-4 *6 (-429))
- (-5 *2 (-592 (-592 *7))) (-5 *1 (-503 *6 *7 *5)) (-4 *7 (-341))
- (-4 *5 (-13 (-341) (-787))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1163 *4)) (-5 *1 (-1165 *4 *2))
- (-4 *4 (-37 (-385 (-525)))))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-826 *4)) (-4 *4 (-1019)) (-5 *1 (-823 *4 *3))
- (-4 *3 (-1019)))))
-(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119)))
- ((*1 *1 *1 *1) (-5 *1 (-1037))))
-(((*1 *1 *2) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1126))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-1090)))))
+ (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1019))
- (-4 *6 (-1019)) (-4 *2 (-1019)) (-5 *1 (-624 *5 *6 *2)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (|has| *1 (-6 -4255)) (-4 *1 (-1160 *3))
- (-4 *3 (-1126)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-108)) (-5 *1 (-110))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1090)) (-5 *2 (-108))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1090)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-565 *4)) (-4 *4 (-789))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1019)) (-5 *2 (-108)) (-5 *1 (-821 *5 *3 *4))
- (-4 *3 (-820 *5)) (-4 *4 (-567 (-826 *5)))))
+ (-12 (-5 *4 (-1 (-592 *7) *7 (-1087 *7))) (-5 *5 (-1 (-396 *7) *7))
+ (-4 *7 (-1149 *6)) (-4 *6 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-5 *2 (-592 (-2 (|:| |frac| (-385 *7)) (|:| -4216 *3))))
+ (-5 *1 (-751 *6 *7 *3 *8)) (-4 *3 (-602 *7))
+ (-4 *8 (-602 (-385 *7)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *6)) (-4 *6 (-820 *5)) (-4 *5 (-1019))
- (-5 *2 (-108)) (-5 *1 (-821 *5 *6 *4)) (-4 *4 (-567 (-826 *5))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1172 *5)) (-4 *5 (-734)) (-5 *2 (-108))
- (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))))
-(((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-643))))
- ((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-643)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-592 (-1086 *4))) (-5 *3 (-1086 *4))
- (-4 *4 (-843)) (-5 *1 (-609 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
-(((*1 *1 *1 *1) (-4 *1 (-900))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-353 *4 *2))
- (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4255)))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1112))) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-992 *4 *3)) (-4 *4 (-13 (-787) (-341)))
- (-4 *3 (-1148 *4)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-108)) (-5 *5 (-525)) (-4 *6 (-341)) (-4 *6 (-346))
- (-4 *6 (-976)) (-5 *2 (-592 (-592 (-632 *6)))) (-5 *1 (-959 *6))
- (-5 *3 (-592 (-632 *6)))))
+ (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1149 *5))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-5 *2
+ (-592 (-2 (|:| |frac| (-385 *6)) (|:| -4216 (-600 *6 (-385 *6))))))
+ (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-977)) (-14 *3 (-592 (-1091)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789)))
+ (-14 *3 (-592 (-1091)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-977)) (-4 *3 (-1020))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-592 (-1091))) (-4 *3 (-160))
+ (-4 *5 (-218 (-3596 *2) (-713)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -3640 *4) (|:| -1864 *5))
+ (-2 (|:| -3640 *4) (|:| -1864 *5))))
+ (-5 *1 (-438 *2 *3 *4 *5 *6 *7)) (-4 *4 (-789))
+ (-4 *7 (-884 *3 *5 (-800 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-789))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1149 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-977))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-678 *2 *3)) (-4 *3 (-789)) (-4 *2 (-977))
+ (-4 *3 (-669))))
+ ((*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1194 *2 *3)) (-4 *2 (-977)) (-4 *3 (-785)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2))
+ (-4 *5 (-351 *2)) (-4 *2 (-1127))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1127))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *2 *6 *7))
+ (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525))))
((*1 *2 *3)
- (-12 (-4 *4 (-341)) (-4 *4 (-346)) (-4 *4 (-976))
- (-5 *2 (-592 (-592 (-632 *4)))) (-5 *1 (-959 *4))
- (-5 *3 (-592 (-632 *4)))))
+ (-12 (-5 *2 (-1087 (-385 (-525)))) (-5 *1 (-877)) (-5 *3 (-525)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-827 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1020))
+ (-4 *5 (-1127)) (-5 *1 (-825 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-827 *4)) (-5 *3 (-592 (-1 (-108) *5))) (-4 *4 (-1020))
+ (-4 *5 (-1127)) (-5 *1 (-825 *4 *5))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-827 *5)) (-5 *3 (-592 (-1091)))
+ (-5 *4 (-1 (-108) (-592 *6))) (-4 *5 (-1020)) (-4 *6 (-1127))
+ (-5 *1 (-825 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1127)) (-4 *4 (-789))
+ (-5 *1 (-872 *4 *2 *5)) (-4 *2 (-408 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 (-1 (-108) *5))) (-4 *5 (-1127)) (-4 *4 (-789))
+ (-5 *1 (-872 *4 *2 *5)) (-4 *2 (-408 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-976))
- (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-959 *5))
- (-5 *3 (-592 (-632 *5)))))
+ (-12 (-5 *3 (-1091)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1127))
+ (-5 *2 (-294 (-525))) (-5 *1 (-873 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-855)) (-4 *5 (-341)) (-4 *5 (-346)) (-4 *5 (-976))
- (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-959 *5))
- (-5 *3 (-592 (-632 *5))))))
+ (-12 (-5 *3 (-1091)) (-5 *4 (-592 (-1 (-108) *5))) (-4 *5 (-1127))
+ (-5 *2 (-294 (-525))) (-5 *1 (-873 *5))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-1091))) (-5 *3 (-1 (-108) (-592 *6)))
+ (-4 *6 (-13 (-408 *5) (-821 *4) (-567 (-827 *4)))) (-4 *4 (-1020))
+ (-4 *5 (-13 (-977) (-821 *4) (-789) (-567 (-827 *4))))
+ (-5 *1 (-999 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -3740 *7))))
- (-4 *6 (-990 *3 *4 *5)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-592 (-2 (|:| |val| (-592 *6)) (|:| -3740 *7))))
- (-4 *6 (-990 *3 *4 *5)) (-4 *7 (-995 *3 *4 *5 *6)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-1026 *3 *4 *5 *6 *7)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1127)))))
+(((*1 *2) (-12 (-5 *2 (-782 (-525))) (-5 *1 (-499))))
+ ((*1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1091)))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-365))))
+ ((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1091)))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-365)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1173 (-357))) (-5 *4 (-525)) (-5 *5 (-357))
+ (-5 *6 (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)))
+ (-5 *2 (-1178)) (-5 *1 (-730))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *3 (-1173 (-357))) (-5 *4 (-525)) (-5 *5 (-357))
+ (-5 *6 (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)))
+ (-5 *2 (-1178)) (-5 *1 (-730)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4))))
- (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))))
-(((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
- ((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *1 *1) (-4 *1 (-1054))))
+ (|partial| -12 (-5 *4 (-856)) (-4 *5 (-517)) (-5 *2 (-632 *5))
+ (-5 *1 (-890 *5 *3)) (-4 *3 (-602 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
+ (-5 *2 (-632 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))))
+(((*1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1176))))
+ ((*1 *2 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1176)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-592 (-592 *3)))))
+ (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-108))))
((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-592 (-592 *5)))))
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-884 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1020))
+ (-4 *6 (-1020)) (-4 *2 (-1020)) (-5 *1 (-624 *5 *6 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1074)) (-5 *1 (-284)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-942 *3)) (-4 *3 (-1127)) (-4 *3 (-1020))
+ (-5 *2 (-108)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1091)) (-5 *2 (-104)) (-5 *1 (-162))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1091)) (-5 *2 (-104)) (-5 *1 (-1007)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-713)) (-5 *1 (-620 *2)) (-4 *2 (-1020)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-351 *2)) (-4 *2 (-1127))
+ (-4 *2 (-789))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4256))
+ (-4 *1 (-351 *3)) (-4 *3 (-1127)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977))))
((*1 *2 *1)
- (-12 (-5 *2 (-592 (-592 *3))) (-5 *1 (-1099 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-517)) (-4 *2 (-429)) (-5 *1 (-902 *2 *3))
- (-4 *3 (-1148 *2)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-108)) (-5 *1 (-1127 *3)) (-4 *3 (-1019))))
+ (-12 (-4 *2 (-977)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1091)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4))
+ (-4 *3 (-13 (-977) (-789))) (-14 *4 (-592 (-1091)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1020)) (-4 *2 (-977))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-592 (-1091))) (-4 *5 (-218 (-3596 *3) (-713)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -3640 *4) (|:| -1864 *5))
+ (-2 (|:| -3640 *4) (|:| -1864 *5))))
+ (-4 *2 (-160)) (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *4 (-789))
+ (-4 *7 (-884 *2 *5 (-800 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1149 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-977))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-977)) (-5 *1 (-678 *2 *3)) (-4 *3 (-789))
+ (-4 *3 (-669))))
+ ((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *3 (-734)) (-4 *4 (-789))
+ (-4 *2 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-592 (-724 *3))) (-5 *1 (-724 *3)) (-4 *3 (-517))
+ (-4 *3 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-457 *4 *5))) (-14 *4 (-592 (-1091)))
+ (-4 *5 (-429))
+ (-5 *2
+ (-2 (|:| |gblist| (-592 (-227 *4 *5)))
+ (|:| |gvlist| (-592 (-525)))))
+ (-5 *1 (-580 *4 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1072 (-205)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2990
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-520)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735))
+ (-5 *1 (-477 *4 *5 *6 *2)) (-4 *2 (-884 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-341)) (-4 *3 (-977))
+ (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-791 *3))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *3 (-1019)) (-5 *2 (-108))
- (-5 *1 (-1127 *3)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1090)) (-5 *2 (-592 (-898))) (-5 *1 (-270)))))
-(((*1 *1 *1 *1) (-4 *1 (-134)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510))))
- ((*1 *1 *1 *1) (-5 *1 (-797)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-974))
- (-5 *3 (-525)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-855)) (-4 *5 (-286)) (-4 *3 (-1148 *5))
- (-5 *2 (-2 (|:| |plist| (-592 *3)) (|:| |modulo| *5)))
- (-5 *1 (-437 *5 *3)) (-5 *4 (-592 *3)))))
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-977))
+ (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3))) (-5 *1 (-792 *5 *3))
+ (-4 *3 (-791 *5)))))
+(((*1 *1) (-5 *1 (-146))))
+(((*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734))))
+ ((*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-592 (-1091))) (-4 *4 (-160))
+ (-4 *6 (-218 (-3596 *3) (-713)))
+ (-14 *7
+ (-1 (-108) (-2 (|:| -3640 *5) (|:| -1864 *6))
+ (-2 (|:| -3640 *5) (|:| -1864 *6))))
+ (-5 *2 (-656 *5 *6 *7)) (-5 *1 (-438 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-789)) (-4 *8 (-884 *4 *6 (-800 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-669)) (-4 *2 (-789)) (-5 *1 (-678 *3 *2))
+ (-4 *3 (-977))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-906 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-734))
+ (-4 *4 (-789)))))
+(((*1 *2)
+ (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-999 *3 *4 *5))) (-4 *3 (-1020))
+ (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))
+ (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3))))
+ (-5 *1 (-1000 *3 *4 *5)))))
+(((*1 *1)
+ (-12 (-4 *1 (-382)) (-1825 (|has| *1 (-6 -4246)))
+ (-1825 (|has| *1 (-6 -4238)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-789))))
+ ((*1 *1 *1 *1) (-4 *1 (-789)))
+ ((*1 *2 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789))))
+ ((*1 *1) (-5 *1 (-1038))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1072 (-592 (-525)))) (-5 *1 (-818))
+ (-5 *3 (-592 (-525))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1087 *1)) (-5 *4 (-1091)) (-4 *1 (-27))
+ (-5 *2 (-592 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1087 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-887 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525))))
+ (-5 *2 (-157 (-294 *4))) (-5 *1 (-170 *4 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 (-157 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-157 *3)) (-5 *1 (-1117 *4 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *2)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-878 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-878 *3))) (-4 *3 (-977)) (-4 *1 (-1052 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-878 *3))) (-4 *1 (-1052 *3)) (-4 *3 (-977)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-565 *3)) (-4 *3 (-789)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-429))
+ (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-910 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-991 *4 *5 *6))
+ (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *1 (-910 *4 *5 *6 *7)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-259)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
+ ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
+ ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
+(((*1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977))))
+ ((*1 *2 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)))))
+(((*1 *2)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))))
(((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4))
- (-4 *4 (-976))))
+ (-4 *4 (-977))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-976))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-977))))
((*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713))))
((*1 *1 *1) (-4 *1 (-213)))
((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-245 *3)) (-4 *3 (-789))))
((*1 *1 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130))
- (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131))
+ (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4)))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4))
- (-4 *4 (-1148 *3))))
+ (-4 *4 (-1149 *3))))
((*1 *1 *1)
(-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3))
- (-4 *3 (-1148 *2))))
+ (-4 *3 (-1149 *2))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-451 *3 *4 *5))
- (-4 *3 (-976)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-451 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1090)) (-4 *2 (-341)) (-4 *2 (-834 (-1090)))
+ (-12 (-5 *3 (-1091)) (-4 *2 (-341)) (-4 *2 (-835 (-1091)))
(-5 *1 (-542 *2))))
((*1 *2 *1 *3)
(-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-542 *2)) (-4 *2 (-341))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-797))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-834 *4))
- (-4 *4 (-1019))))
+ (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-835 *4))
+ (-4 *4 (-1020))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-834 *2)) (-4 *2 (-1019))))
+ (-12 (-5 *3 (-713)) (-4 *1 (-835 *2)) (-4 *2 (-1020))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *1 (-834 *3)) (-4 *3 (-1019))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1019))))
+ (-12 (-5 *2 (-592 *3)) (-4 *1 (-835 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1020))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1081 *3 *4 *5))
- (-4 *3 (-976)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1082 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1087 *3 *4 *5))
- (-4 *3 (-976)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1088 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5))
- (-4 *3 (-976)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1089 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1136 *3 *4 *5))
- (-4 *3 (-976)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1137 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1148 *3)) (-4 *3 (-976))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1149 *3)) (-4 *3 (-977))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1157 *3 *4 *5))
- (-4 *3 (-976)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1158 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1164 *3 *4 *5))
- (-4 *3 (-976)) (-14 *5 *3))))
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1165 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *3 (-1173 (-357))) (-5 *4 (-525)) (-5 *5 (-357))
+ (-5 *6
+ (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2489 (-357))))
+ (-5 *7 (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)))
+ (-5 *2 (-1178)) (-5 *1 (-730))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-1173 (-357))) (-5 *4 (-525)) (-5 *5 (-357))
+ (-5 *6
+ (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -2489 (-357))))
+ (-5 *7 (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)))
+ (-5 *2 (-1178)) (-5 *1 (-730)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-592 *3)) (|:| |image| (-592 *3))))
- (-5 *1 (-839 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
- (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-973 *5 *6)))
- (-5 *1 (-577 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1073)) (-5 *3 (-525)) (-5 *1 (-988)))))
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
+ (-5 *2 (-2 (|:| -2849 (-592 *6)) (|:| -2409 (-592 *6)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-138))
- (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-909 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-632 *2)) (-5 *4 (-525))
- (-4 *2 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $)))))
- (-4 *5 (-1148 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))))
-(((*1 *2)
- (-12 (-4 *1 (-327))
- (-5 *2 (-592 (-2 (|:| -3959 (-525)) (|:| -1600 (-525))))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-1172 *3)))))
+ (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977))))
+ ((*1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-977)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-1095)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1176))))
+ ((*1 *2 *2) (-12 (-5 *2 (-592 (-856))) (-5 *1 (-1176)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855))
- (-4 *4 (-976)))))
-(((*1 *2)
- (-12 (-5 *2 (-1172 (-1020 *3 *4))) (-5 *1 (-1020 *3 *4))
- (-14 *3 (-855)) (-14 *4 (-855)))))
-(((*1 *2 *1) (-12 (-5 *2 (-766)) (-5 *1 (-767)))))
+ (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
+ (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-108)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-5 *1 (-1173 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1087 *1)) (-4 *1 (-944)))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-146))))
+ ((*1 *2 *1) (-12 (-5 *2 (-146)) (-5 *1 (-809))))
+ ((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-372))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1108)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966))
+ (-5 *1 (-691)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-632 (-385 (-886 (-525)))))
- (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-961)))))
+ (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *1)) (-4 *1 (-991 *4 *5 *6)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1121 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 (-457 *3 *4))) (-14 *3 (-592 (-1091)))
+ (-4 *4 (-429)) (-5 *1 (-580 *3 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4))
- (-5 *2 (-2 (|:| -1459 (-385 *5)) (|:| |poly| *3)))
- (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1148 (-385 *5))))))
+ (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1131)) (-4 *3 (-1149 *4))
+ (-4 *5 (-1149 (-385 *3))) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *1 *1) (-4 *1 (-223)))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1149 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (-3279 (-12 (-5 *1 (-273 *2)) (-4 *2 (-341)) (-4 *2 (-1127)))
+ (-12 (-5 *1 (-273 *2)) (-4 *2 (-450)) (-4 *2 (-1127)))))
+ ((*1 *1 *1) (-4 *1 (-450)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1173 *3)) (-4 *3 (-327)) (-5 *1 (-495 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-341)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1074)) (-5 *4 (-157 (-205))) (-5 *5 (-525))
+ (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-592 *1)) (-4 *1 (-408 *4))
+ (-4 *4 (-789))))
+ ((*1 *1 *2 *1 *1 *1 *1)
+ (-12 (-5 *2 (-1091)) (-4 *1 (-408 *3)) (-4 *3 (-789))))
+ ((*1 *1 *2 *1 *1 *1)
+ (-12 (-5 *2 (-1091)) (-4 *1 (-408 *3)) (-4 *3 (-789))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1091)) (-4 *1 (-408 *3)) (-4 *3 (-789))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1091)) (-4 *1 (-408 *3)) (-4 *3 (-789)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1087 *3)) (-4 *3 (-346)) (-4 *1 (-307 *3))
+ (-4 *3 (-341)))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1173 *5)) (-4 *5 (-734)) (-5 *2 (-108))
+ (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1250 *4))))
+ (-4 *3 (-1020)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 (-592 *4))))
- (-5 *1 (-1098 *4)) (-5 *3 (-592 (-592 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-227 *4 *5)) (-5 *3 (-592 (-227 *4 *5)))
- (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
+ (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091))))
+ (-4 *6 (-735)) (-5 *2 (-385 (-887 *4))) (-5 *1 (-859 *4 *5 *6 *3))
+ (-4 *3 (-884 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 *7)) (-4 *7 (-884 *4 *6 *5))
+ (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091))))
+ (-4 *6 (-735)) (-5 *2 (-632 (-385 (-887 *4))))
+ (-5 *1 (-859 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *6 *5))
+ (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091))))
+ (-4 *6 (-735)) (-5 *2 (-592 (-385 (-887 *4))))
+ (-5 *1 (-859 *4 *5 *6 *7)))))
+(((*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-565 *4)) (-5 *6 (-1087 *4))
+ (-4 *4 (-13 (-408 *7) (-27) (-1113)))
+ (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1449 (-592 *4))))
+ (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-565 *4)) (-5 *6 (-385 (-1087 *4)))
+ (-4 *4 (-13 (-408 *7) (-27) (-1113)))
+ (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1449 (-592 *4))))
+ (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020)))))
+(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1127)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
+ (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1091)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1109)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-1095)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2794 (-724 *3)) (|:| |coef1| (-724 *3))))
+ (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-2 (|:| -2794 *1) (|:| |coef1| *1)))
+ (-4 *1 (-991 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-308)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1091))
+ (-4 *5 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-2 (|:| -1679 *3) (|:| |coeff| *3))) (-5 *1 (-518 *5 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *5))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-713)) (-5 *2 (-108))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1128 *3)) (-4 *3 (-789))
+ (-4 *3 (-1020)))))
+(((*1 *1 *1) (-12 (-4 *1 (-927 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)))
+ (-5 *2 (-782 *4)) (-5 *1 (-291 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1113) (-408 *3))) (-14 *5 (-1091))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)))
+ (-5 *2 (-782 *4)) (-5 *1 (-1159 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1113) (-408 *3))) (-14 *5 (-1091))
+ (-14 *6 *4))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-800 *4))
+ (-14 *4 (-592 (-1091))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-592 (-294 (-205))))
- (|:| |constraints|
- (-592
- (-2 (|:| |start| (-205)) (|:| |finish| (-205))
- (|:| |grid| (-713)) (|:| |boundaryType| (-525))
- (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
- (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073))
- (|:| |tol| (-205))))
- (-5 *2 (-108)) (-5 *1 (-192)))))
+ (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-108))
+ (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-408 (-157 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-108)) (-5 *1 (-1117 *4 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *4))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3))
- (-4 *3 (-13 (-341) (-1112) (-933))))))
+ (-12 (-5 *3 (-1091))
+ (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *4 *5))
+ (-4 *5 (-13 (-27) (-1113) (-408 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *4 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-385 (-525)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *5 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *5)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525)))
+ (-4 *3 (-13 (-27) (-1113) (-408 *6)))
+ (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8))
+ (-5 *5 (-1140 (-385 (-525)))) (-5 *6 (-385 (-525)))
+ (-4 *8 (-13 (-27) (-1113) (-408 *7)))
+ (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1091)) (-5 *5 (-273 *3)) (-5 *6 (-1140 (-385 (-525))))
+ (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1113) (-408 *8)))
+ (-4 *8 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *8 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-385 (-525))) (-4 *4 (-977)) (-4 *1 (-1156 *4 *3))
+ (-4 *3 (-1133 *4)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-721 *4))
- (-4 *4 (-13 (-341) (-787))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1172 *4)) (-5 *3 (-1037)) (-4 *4 (-327))
- (-5 *1 (-495 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1086 *3)) (-5 *1 (-848 *3)) (-4 *3 (-286)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357)))
- (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089))))
- (-5 *1 (-1089)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-525))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346)))) (-5 *2 (-965))
- (-5 *1 (-691)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205)))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-77 LSFUN1))))
- (-5 *2 (-965)) (-5 *1 (-696)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-286))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1669 *1)))
- (-4 *1 (-286)))))
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-592 (-294 (-205)))) (-5 *2 (-108))
+ (-5 *1 (-192)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))))
+ (-12 (-5 *2 (-1022 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1022 *3)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-1086 *3)) (-5 *1 (-40 *4 *3))
- (-4 *3
- (-13 (-341) (-281)
- (-10 -8 (-15 -1303 ((-1042 *4 (-565 $)) $))
- (-15 -1312 ((-1042 *4 (-565 $)) $))
- (-15 -1908 ($ (-1042 *4 (-565 $))))))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-855))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))))
+ (-12 (-4 *4 (-13 (-789) (-517) (-968 (-525)))) (-5 *2 (-385 (-525)))
+ (-5 *1 (-411 *4 *3)) (-4 *3 (-408 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-565 *3)) (-4 *3 (-408 *5))
+ (-4 *5 (-13 (-789) (-517) (-968 (-525))))
+ (-5 *2 (-1087 (-385 (-525)))) (-5 *1 (-411 *5 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175))))
+ ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-187))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-357)) (-5 *3 (-592 (-357))) (-5 *1 (-187)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *1 *2 *2)
- (-12
+ (|partial| -12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33))))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3602 *6) (|:| |sol?| (-108))) (-525)
+ *6))
+ (-4 *6 (-341)) (-4 *7 (-1149 *6))
(-5 *2
- (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357)))
- (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089))))
- (-5 *1 (-1089)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138))) (-5 *1 (-502 *4 *2))
- (-4 *2 (-1163 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 (-525))))
- (-4 *5 (-1148 *4)) (-4 *6 (-667 *4 *5)) (-5 *1 (-506 *4 *5 *6 *2))
- (-4 *2 (-1163 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *4 (-13 (-341) (-346) (-567 (-525))))
- (-5 *1 (-507 *4 *2)) (-4 *2 (-1163 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1071 *4)) (-5 *3 (-525)) (-4 *4 (-13 (-517) (-138)))
- (-5 *1 (-1067 *4)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-592 (-1086 *7))) (-5 *3 (-1086 *7))
- (-4 *7 (-883 *5 *6 *4)) (-4 *5 (-843)) (-4 *6 (-735))
- (-4 *4 (-789)) (-5 *1 (-840 *5 *6 *4 *7)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-273 *2)) (-4 *2 (-669)) (-4 *2 (-1126)))))
+ (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6))
+ (-2 (|:| -1679 (-385 *7)) (|:| |coeff| (-385 *7))) "failed"))
+ (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-713)) (-4 *3 (-517)) (-5 *1 (-903 *3 *2))
+ (-4 *2 (-1149 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-308)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-396 (-1086 (-525)))) (-5 *1 (-173)) (-5 *3 (-525)))))
-(((*1 *2 *1 *1)
- (-12
+ (-12 (-5 *3 (-1091))
+ (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *4 *5))
+ (-4 *5 (-13 (-27) (-1113) (-408 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *4 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-525))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *5 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *5)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-273 *3)) (-5 *5 (-525))
+ (-4 *3 (-13 (-27) (-1113) (-408 *6)))
+ (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1140 (-525)))
+ (-4 *7 (-13 (-27) (-1113) (-408 *6)))
+ (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1091)) (-5 *5 (-273 *3)) (-5 *6 (-1140 (-525)))
+ (-4 *3 (-13 (-27) (-1113) (-408 *7)))
+ (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *7 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-525)) (-4 *4 (-977)) (-4 *1 (-1135 *4 *3))
+ (-4 *3 (-1164 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1133 *3)))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1131)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4)))
+ (-5 *2 (-1173 *1)) (-4 *1 (-320 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $)))))
+ (-4 *4 (-1149 *3))
(-5 *2
- (-2 (|:| -1459 *3) (|:| |gap| (-713)) (|:| -1338 (-724 *3))
- (|:| -1632 (-724 *3))))
- (-5 *1 (-724 *3)) (-4 *3 (-976))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789))
+ (-2 (|:| -1449 (-632 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-632 *3))))
+ (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1149 (-525)))
(-5 *2
- (-2 (|:| -1459 *1) (|:| |gap| (-713)) (|:| -1338 *1)
- (|:| -1632 *1)))
- (-4 *1 (-990 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-2 (|:| -1449 (-632 (-525))) (|:| |basisDen| (-525))
+ (|:| |basisInv| (-632 (-525)))))
+ (-5 *1 (-710 *3 *4)) (-4 *4 (-387 (-525) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-327)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 *4))
(-5 *2
- (-2 (|:| -1459 *1) (|:| |gap| (-713)) (|:| -1338 *1)
- (|:| -1632 *1)))
- (-4 *1 (-990 *3 *4 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *3 (-592 (-525)))
- (-5 *1 (-817)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))))
-(((*1 *1 *1) (-4 *1 (-510))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *2 (-789))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)))))
+ (-2 (|:| -1449 (-632 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-632 *4))))
+ (-5 *1 (-918 *3 *4 *5 *6)) (-4 *6 (-667 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-327)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 *4))
+ (-5 *2
+ (-2 (|:| -1449 (-632 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-632 *4))))
+ (-5 *1 (-1182 *3 *4 *5 *6)) (-4 *6 (-387 *4 *5)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3)) (-5 *6 (-1087 *3))
+ (-4 *3 (-13 (-408 *7) (-27) (-1113)))
+ (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1020))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3))
+ (-5 *6 (-385 (-1087 *3))) (-4 *3 (-13 (-408 *7) (-27) (-1113)))
+ (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-521 *7 *3 *8)) (-4 *8 (-1020)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-735)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789))
+ (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (-5 *2 (-357)) (-5 *1 (-187)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
+ (-5 *1 (-1042 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1091))))
+ (-4 *5 (-735)) (-5 *1 (-859 *3 *4 *5 *2)) (-4 *2 (-884 *3 *5 *4)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246))))
+ ((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1087 *1)) (-4 *1 (-944)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357)))
- (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089))))
- (-5 *1 (-1089)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 *4))
- (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
+ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357)))
+ (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1090))))
+ (-5 *1 (-1090)))))
+(((*1 *1) (-5 *1 (-765))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-763)) (-5 *4 (-51)) (-5 *2 (-1177)) (-5 *1 (-773)))))
+ (-12 (-5 *3 (-1091)) (-5 *4 (-887 (-525))) (-5 *2 (-308))
+ (-5 *1 (-310)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-599 (-385 *2))) (-4 *2 (-1148 *4)) (-5 *1 (-752 *4 *2))
- (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))))
+ (-12 (-5 *3 (-1091))
+ (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *4 *5))
+ (-4 *5 (-13 (-27) (-1113) (-408 *4)))))
((*1 *2 *3)
- (-12 (-5 *3 (-600 *2 (-385 *2))) (-4 *2 (-1148 *4))
- (-5 *1 (-752 *4 *2))
- (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525))))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1090)) (-4 *5 (-341)) (-5 *2 (-592 (-1121 *5)))
- (-5 *1 (-1180 *5)) (-5 *4 (-1121 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-702)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -2707 (-592 *3)) (|:| -2240 (-592 *3))))
- (-5 *1 (-1127 *3)) (-4 *3 (-1019)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-797)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))))
-(((*1 *2 *1)
+ (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *4 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-713))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *5 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *5)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-273 *3)) (-5 *5 (-713))
+ (-4 *3 (-13 (-27) (-1113) (-408 *6)))
+ (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6))
+ (-4 *6 (-13 (-27) (-1113) (-408 *5)))
+ (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1091)) (-5 *5 (-273 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *6)))
+ (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1140 (-713)))
+ (-4 *7 (-13 (-27) (-1113) (-408 *6)))
+ (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1091)) (-5 *5 (-273 *3)) (-5 *6 (-1140 (-713)))
+ (-4 *3 (-13 (-27) (-1113) (-408 *7)))
+ (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *7 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1135 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1164 *3)))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-429)))))
+(((*1 *1 *1) (-5 *1 (-989))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1149 *6))
+ (-4 *6 (-13 (-341) (-138) (-968 (-525))))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-108))))
+ (|:| -4216
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| (-525))
+ (|:| |alpha| *3) (|:| |beta| *3)))))
+ (-5 *1 (-947 *6 *3)) (-5 *4 (-525)))))
+(((*1 *1) (-5 *1 (-135)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1051 (-205))) (-5 *1 (-242)))))
+(((*1 *2 *1 *1)
(-12
(-5 *2
- (-3 (|:| |nullBranch| "null")
- (|:| |assignmentBranch|
- (-2 (|:| |var| (-1090))
- (|:| |arrayIndex| (-592 (-886 (-525))))
- (|:| |rand|
- (-2 (|:| |ints2Floats?| (-108)) (|:| -1206 (-797))))))
- (|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1090)) (|:| |rand| (-797))
- (|:| |ints2Floats?| (-108))))
- (|:| |conditionalBranch|
- (-2 (|:| |switch| (-1089)) (|:| |thenClause| (-308))
- (|:| |elseClause| (-308))))
- (|:| |returnBranch|
- (-2 (|:| -1613 (-108))
- (|:| -3871
- (-2 (|:| |ints2Floats?| (-108)) (|:| -1206 (-797))))))
- (|:| |blockBranch| (-592 (-308)))
- (|:| |commentBranch| (-592 (-1073))) (|:| |callBranch| (-1073))
- (|:| |forBranch|
- (-2 (|:| -4162 (-1012 (-886 (-525))))
- (|:| |span| (-886 (-525))) (|:| -1938 (-308))))
- (|:| |labelBranch| (-1037))
- (|:| |loopBranch| (-2 (|:| |switch| (-1089)) (|:| -1938 (-308))))
- (|:| |commonBranch|
- (-2 (|:| -1310 (-1090)) (|:| |contents| (-592 (-1090)))))
- (|:| |printBranch| (-592 (-797)))))
- (-5 *1 (-308)))))
+ (-2 (|:| -1516 *3) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3))))
+ (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-977))
+ (-5 *1 (-633 *4)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1072 (-2 (|:| |k| (-525)) (|:| |c| *6))))
+ (-5 *4 (-957 (-782 (-525)))) (-5 *5 (-1091)) (-5 *7 (-385 (-525)))
+ (-4 *6 (-977)) (-5 *2 (-798)) (-5 *1 (-550 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357)))
- (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089))))
- (-5 *1 (-1089)))))
-(((*1 *1) (-5 *1 (-988))))
-(((*1 *1 *1) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976))))
- ((*1 *1 *1) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-976)) (-4 *3 (-785)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))))
-(((*1 *2 *2)
+ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357)))
+ (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1090))))
+ (-5 *1 (-1090)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-126))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-339 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-364 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1020)) (-5 *1 (-595 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *1 *1) (-4 *1 (-578)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934) (-1113))))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *2 (-592 (-2 (|:| -3959 *3) (|:| -2513 (-525)))))
- (-5 *1 (-638 *3)) (-4 *3 (-1148 (-525))) (-5 *4 (-525)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-122 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))))
-(((*1 *2)
- (-12 (-5 *2 (-1177)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019))
- (-4 *4 (-1019)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1037)) (-5 *2 (-108)) (-5 *1 (-763)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-797)) (-5 *1 (-1071 *3)) (-4 *3 (-1019))
- (-4 *3 (-1126)))))
+ (-12 (-5 *4 (-632 (-385 (-887 (-525)))))
+ (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-962))
+ (-5 *3 (-294 (-525))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-856)) (-5 *1 (-728)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-698)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2))
+ (-4 *2 (-1149 (-157 *3))))))
(((*1 *2 *3)
- (-12 (-4 *1 (-854)) (-5 *2 (-2 (|:| -1459 (-592 *1)) (|:| -1669 *1)))
- (-5 *3 (-592 *1)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-135)) (-5 *2 (-108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-680 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1019))))
- ((*1 *1) (-12 (-5 *1 (-680 *2)) (-4 *2 (-1019)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
+ (-4 *4 (-13 (-789) (-517))))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-782 *4)) (-5 *3 (-565 *4)) (-5 *5 (-108))
+ (-4 *4 (-13 (-1113) (-29 *6)))
+ (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-204 *6 *4)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-829))
- (-5 *3
- (-2 (|:| |pde| (-592 (-294 (-205))))
- (|:| |constraints|
- (-592
- (-2 (|:| |start| (-205)) (|:| |finish| (-205))
- (|:| |grid| (-713)) (|:| |boundaryType| (-525))
- (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
- (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073))
- (|:| |tol| (-205))))
- (-5 *2 (-965)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855))
- (-4 *4 (-976)))))
-(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1164 *4))
+ (-4 *4 (-37 (-385 (-525))))
+ (-5 *2 (-1 (-1072 *4) (-1072 *4) (-1072 *4))) (-5 *1 (-1166 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357)))
+ (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1090))))
+ (-5 *1 (-1090)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
(-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *2 (-965)) (-5 *1 (-695)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *4 (-517))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3018 *4)))
- (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-301 *2 *4)) (-4 *4 (-126))
- (-4 *2 (-1019))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1019))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-364 *2)) (-4 *2 (-1019))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *2 (-1019)) (-5 *1 (-595 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *1 (-761 *2)) (-4 *2 (-789)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1090)) (-5 *2 (-501)) (-5 *1 (-500 *4))
- (-4 *4 (-1126)))))
+ (-5 *2 (-966)) (-5 *1 (-694)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-108))
+ (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-4 *3 (-13 (-27) (-1113) (-408 *6) (-10 -8 (-15 -1270 ($ *7)))))
+ (-4 *7 (-787))
+ (-4 *8
+ (-13 (-1151 *3 *7) (-341) (-1113)
+ (-10 -8 (-15 -2523 ($ $)) (-15 -2650 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))))
+ (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-916 *8))
+ (-14 *10 (-1091)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-2 (|:| -3959 *4) (|:| -2513 (-525)))))
- (-4 *4 (-1148 (-525))) (-5 *2 (-680 (-713))) (-5 *1 (-419 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-396 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-976))
- (-5 *2 (-680 (-713))) (-5 *1 (-421 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1148 *5))
- (-5 *1 (-670 *5 *2)) (-4 *5 (-341)))))
-(((*1 *2 *3) (-12 (-5 *3 (-764)) (-5 *2 (-51)) (-5 *1 (-771)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-5 *1 (-1165 *3 *2))
- (-4 *2 (-1163 *3)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-108) *5 *5)) (-5 *4 (-1 (-108) *6 *6))
- (-4 *5 (-13 (-1019) (-33))) (-4 *6 (-13 (-1019) (-33)))
- (-5 *2 (-108)) (-5 *1 (-1055 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-592 *6)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2))
- (-4 *2 (-1148 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1148 (-525))))))
+ (-12 (-5 *3 (-525)) (|has| *1 (-6 -4246)) (-4 *1 (-382))
+ (-5 *2 (-856)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
+ (-4 *2 (-13 (-408 *3) (-934)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3)))))
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1149 *5))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |h| *6)
+ (|:| |c1| (-385 *6)) (|:| |c2| (-385 *6)) (|:| -3278 *6)))
+ (-5 *1 (-948 *5 *6)) (-5 *3 (-385 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-517))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-1184 *4 *5 *6 *7)))
+ (-5 *1 (-1184 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 *9)) (-5 *4 (-1 (-108) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517))
+ (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-592 (-1184 *6 *7 *8 *9)))
+ (-5 *1 (-1184 *6 *7 *8 *9)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-977))
+ (-4 *2 (-13 (-382) (-968 *4) (-341) (-1113) (-263)))
+ (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1149 *4)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3244 *3)))
- (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))))
+ (-12 (-4 *4 (-762)) (-14 *5 (-1091)) (-5 *2 (-592 (-1146 *5 *4)))
+ (-5 *1 (-1034 *4 *5)) (-5 *3 (-1146 *5 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1113) (-934)))
+ (-5 *1 (-163 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-861))
- (-5 *2
- (-2 (|:| |brans| (-592 (-592 (-877 (-205)))))
- (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))))
- (-5 *1 (-144))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-861)) (-5 *4 (-385 (-525)))
- (-5 *2
- (-2 (|:| |brans| (-592 (-592 (-877 (-205)))))
- (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))))
- (-5 *1 (-144))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-592 (-592 (-877 (-205)))))
- (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))))
- (-5 *1 (-144)) (-5 *3 (-592 (-877 (-205))))))
- ((*1 *2 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-632 (-887 *4))) (-5 *1 (-959 *4))
+ (-4 *4 (-977)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-938)))))
+(((*1 *1 *2 *2)
(-12
(-5 *2
- (-2 (|:| |brans| (-592 (-592 (-877 (-205)))))
- (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))))
- (-5 *1 (-144)) (-5 *3 (-592 (-592 (-877 (-205)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-1014 (-357)))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735))
- (-5 *2
- (-2 (|:| |mval| (-632 *4)) (|:| |invmval| (-632 *4))
- (|:| |genIdeal| (-477 *4 *5 *6 *7))))
- (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-883 *4 *5 *6)))))
+ (-3 (|:| I (-294 (-525))) (|:| -3834 (-294 (-357)))
+ (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1090))))
+ (-5 *1 (-1090)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-385 (-886 (-525)))))
- (-5 *2 (-592 (-592 (-273 (-886 *4))))) (-5 *1 (-358 *4))
- (-4 *4 (-13 (-787) (-341)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-273 (-385 (-886 (-525))))))
- (-5 *2 (-592 (-592 (-273 (-886 *4))))) (-5 *1 (-358 *4))
- (-4 *4 (-13 (-787) (-341)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-886 (-525)))) (-5 *2 (-592 (-273 (-886 *4))))
- (-5 *1 (-358 *4)) (-4 *4 (-13 (-787) (-341)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-273 (-385 (-886 (-525)))))
- (-5 *2 (-592 (-273 (-886 *4)))) (-5 *1 (-358 *4))
- (-4 *4 (-13 (-787) (-341)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1090))
- (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-4 *4 (-13 (-29 *6) (-1112) (-892)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2499 (-592 *4))))
- (-5 *1 (-598 *6 *4 *3)) (-4 *3 (-602 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-592 *2))
- (-4 *2 (-13 (-29 *6) (-1112) (-892)))
- (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-5 *1 (-598 *6 *2 *3)) (-4 *3 (-602 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 *5)) (-4 *5 (-341))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1172 *5) "failed"))
- (|:| -2499 (-592 (-1172 *5)))))
- (-5 *1 (-613 *5)) (-5 *4 (-1172 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1172 *5) "failed"))
- (|:| -2499 (-592 (-1172 *5)))))
- (-5 *1 (-613 *5)) (-5 *4 (-1172 *5))))
+ (-12 (-5 *3 (-592 (-525))) (-5 *4 (-840 (-525)))
+ (-5 *2 (-632 (-525))) (-5 *1 (-546))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525))))
+ (-5 *1 (-546))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 *5)) (-4 *5 (-341))
+ (-12 (-5 *3 (-592 (-525))) (-5 *4 (-592 (-840 (-525))))
+ (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-546)))))
+(((*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341)))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1074)) (-4 *1 (-342 *2 *4)) (-4 *2 (-1020))
+ (-4 *4 (-1020))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1030)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
(-5 *2
- (-592
- (-2 (|:| |particular| (-3 (-1172 *5) "failed"))
- (|:| -2499 (-592 (-1172 *5))))))
- (-5 *1 (-613 *5)) (-5 *4 (-592 (-1172 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-592 *5))) (-4 *5 (-341))
+ (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))))
+ (-5 *1 (-187)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1080 *2 *3)) (-14 *2 (-856)) (-4 *3 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1074)) (-4 *4 (-13 (-286) (-138)))
+ (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735))
(-5 *2
(-592
- (-2 (|:| |particular| (-3 (-1172 *5) "failed"))
- (|:| -2499 (-592 (-1172 *5))))))
- (-5 *1 (-613 *5)) (-5 *4 (-592 (-1172 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4255))))
- (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255))))
+ (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7))
+ (|:| |wcond| (-592 (-887 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1173 (-385 (-887 *4))))
+ (|:| -1449 (-592 (-1173 (-385 (-887 *4))))))))))
+ (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-884 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-510)) (-5 *1 (-148 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2499 (-592 *4))))
- (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4255))))
- (-4 *7 (-13 (-351 *5) (-10 -7 (-6 -4255))))
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1072 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-525))) (-5 *4 (-525)) (-5 *2 (-51))
+ (-5 *1 (-937)))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 (-632 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1) (-4 *1 (-466)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-161 *6))
+ (-5 *1 (-802 *5 *4 *6)) (-4 *4 (-1164 *5)) (-4 *6 (-1149 *5)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-135)) (-5 *2 (-108)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *1 *1) (-4 *1 (-1055))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1055))))
+(((*1 *2 *1) (-12 (-4 *1 (-1161 *3)) (-4 *3 (-1127)) (-5 *2 (-713)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-592 (-108))) (-5 *5 (-632 (-205)))
+ (-5 *6 (-632 (-525))) (-5 *7 (-205)) (-5 *2 (-966)) (-5 *1 (-697)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-517)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-592 *1)) (-4 *1 (-991 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-637 *3)) (-4 *3 (-1020))
+ (-5 *2 (-592 (-2 (|:| -2544 *3) (|:| -2040 (-713))))))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-698)))))
+(((*1 *2 *2)
+ (-12
(-5 *2
(-592
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -2499 (-592 *7)))))
- (-5 *1 (-614 *5 *6 *7 *3)) (-5 *4 (-592 *7))
- (-4 *3 (-630 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-592 (-1090))) (-4 *5 (-517))
- (-5 *2 (-592 (-592 (-273 (-385 (-886 *5)))))) (-5 *1 (-712 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-517))
- (-5 *2 (-592 (-592 (-273 (-385 (-886 *4)))))) (-5 *1 (-712 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-110)) (-5 *4 (-1090))
- (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-5 *1 (-714 *5 *2)) (-4 *2 (-13 (-29 *5) (-1112) (-892)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-632 *7)) (-5 *5 (-1090))
- (-4 *7 (-13 (-29 *6) (-1112) (-892)))
- (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-5 *2
- (-2 (|:| |particular| (-1172 *7)) (|:| -2499 (-592 (-1172 *7)))))
- (-5 *1 (-744 *6 *7)) (-5 *4 (-1172 *7))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-632 *6)) (-5 *4 (-1090))
- (-4 *6 (-13 (-29 *5) (-1112) (-892)))
- (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-5 *2 (-592 (-1172 *6))) (-5 *1 (-744 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110)))
- (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1112) (-892)))
- (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-5 *2
- (-2 (|:| |particular| (-1172 *7)) (|:| -2499 (-592 (-1172 *7)))))
- (-5 *1 (-744 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110)))
- (-5 *5 (-1090)) (-4 *7 (-13 (-29 *6) (-1112) (-892)))
- (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-5 *2
- (-2 (|:| |particular| (-1172 *7)) (|:| -2499 (-592 (-1172 *7)))))
- (-5 *1 (-744 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-1090))
- (-4 *7 (-13 (-29 *6) (-1112) (-892)))
- (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -2499 (-592 *7))) *7 "failed"))
- (-5 *1 (-744 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-110)) (-5 *5 (-1090))
- (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -2499 (-592 *3))) *3 "failed"))
- (-5 *1 (-744 *6 *3)) (-4 *3 (-13 (-29 *6) (-1112) (-892)))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-273 *2)) (-5 *4 (-110)) (-5 *5 (-592 *2))
- (-4 *2 (-13 (-29 *6) (-1112) (-892))) (-5 *1 (-744 *6 *2))
- (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-110)) (-5 *4 (-273 *2)) (-5 *5 (-592 *2))
- (-4 *2 (-13 (-29 *6) (-1112) (-892)))
- (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-5 *1 (-744 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-750)) (-5 *2 (-965)) (-5 *1 (-747))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-750)) (-5 *4 (-988)) (-5 *2 (-965)) (-5 *1 (-747))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357))
- (-5 *5 (-592 (-357))) (-5 *2 (-965)) (-5 *1 (-747))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357))
- (-5 *5 (-592 (-357))) (-5 *2 (-965)) (-5 *1 (-747))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357))
- (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *2 (-965))
- (-5 *1 (-747))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357))
- (-5 *5 (-592 (-357))) (-5 *2 (-965)) (-5 *1 (-747))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357))
- (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *2 (-965))
- (-5 *1 (-747))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1172 (-294 (-357)))) (-5 *4 (-357))
- (-5 *5 (-592 (-357))) (-5 *6 (-294 (-357))) (-5 *2 (-965))
- (-5 *1 (-747))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -2499 (-592 *6))) "failed")
- *7 *6))
- (-4 *6 (-341)) (-4 *7 (-602 *6))
- (-5 *2 (-2 (|:| |particular| (-1172 *6)) (|:| -2499 (-632 *6))))
- (-5 *1 (-755 *6 *7)) (-5 *3 (-632 *6)) (-5 *4 (-1172 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-832)) (-5 *2 (-965)) (-5 *1 (-831))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-832)) (-5 *4 (-988)) (-5 *2 (-965)) (-5 *1 (-831))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-357)) (-5 *4 (-713)) (-5 *5 (-592 (-294 (-357))))
- (-5 *6 (-592 (-592 (-294 (-357))))) (-5 *7 (-1073)) (-5 *8 (-205))
- (-5 *2 (-965)) (-5 *1 (-831))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *3 (-357)) (-5 *4 (-713)) (-5 *5 (-592 (-294 (-357))))
- (-5 *6 (-592 (-592 (-294 (-357))))) (-5 *7 (-1073)) (-5 *2 (-965))
- (-5 *1 (-831))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-886 (-385 (-525)))) (-5 *2 (-592 (-357)))
- (-5 *1 (-953)) (-5 *4 (-357))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-886 (-525))) (-5 *2 (-592 (-357))) (-5 *1 (-953))
- (-5 *4 (-357))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1048 *4))
- (-5 *3 (-294 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1048 *4))
- (-5 *3 (-273 (-294 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1090))
- (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1048 *5))
- (-5 *3 (-273 (-294 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1090))
- (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-5 *2 (-592 (-273 (-294 *5)))) (-5 *1 (-1048 *5))
- (-5 *3 (-294 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-1090)))
- (-4 *5 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1048 *5))
- (-5 *3 (-592 (-273 (-294 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-385 (-886 *5)))) (-5 *4 (-592 (-1090)))
- (-4 *5 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *5))))))
- (-5 *1 (-1096 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-1090))) (-4 *5 (-517))
- (-5 *2 (-592 (-592 (-273 (-385 (-886 *5)))))) (-5 *1 (-1096 *5))
- (-5 *3 (-592 (-273 (-385 (-886 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-385 (-886 *4)))) (-4 *4 (-517))
- (-5 *2 (-592 (-592 (-273 (-385 (-886 *4)))))) (-5 *1 (-1096 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-592 (-592 (-273 (-385 (-886 *4))))))
- (-5 *1 (-1096 *4)) (-5 *3 (-592 (-273 (-385 (-886 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1090)) (-4 *5 (-517))
- (-5 *2 (-592 (-273 (-385 (-886 *5))))) (-5 *1 (-1096 *5))
- (-5 *3 (-385 (-886 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1090)) (-4 *5 (-517))
- (-5 *2 (-592 (-273 (-385 (-886 *5))))) (-5 *1 (-1096 *5))
- (-5 *3 (-273 (-385 (-886 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-592 (-273 (-385 (-886 *4)))))
- (-5 *1 (-1096 *4)) (-5 *3 (-385 (-886 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-592 (-273 (-385 (-886 *4)))))
- (-5 *1 (-1096 *4)) (-5 *3 (-273 (-385 (-886 *4)))))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-301 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-126))
- (-4 *3 (-734)))))
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-713)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-735)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429)) (-4 *5 (-789))
+ (-5 *1 (-426 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-341))
- (-5 *1 (-492 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2))
- (|has| *2 (-6 (-4256 "*"))) (-4 *2 (-976))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))
+ (-5 *2 (-592 (-1091))) (-5 *1 (-246))))
((*1 *2 *3)
- (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160))
- (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5))))
+ (-12 (-5 *3 (-1087 *7)) (-4 *7 (-884 *6 *4 *5)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-977)) (-5 *2 (-592 *5))
+ (-5 *1 (-299 *4 *5 *6 *7))))
((*1 *2 *1)
- (-12 (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
- (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4256 "*"))) (-4 *2 (-976)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-632 *4))
- (-5 *1 (-756 *4 *5)) (-4 *5 (-602 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-341))
- (-5 *2 (-632 *5)) (-5 *1 (-756 *5 *6)) (-4 *6 (-602 *5)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-906)))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-967 (-525)))
- (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3))
- (-4 *2
- (-13 (-341) (-281)
- (-10 -8 (-15 -1303 ((-1042 *3 (-565 $)) $))
- (-15 -1312 ((-1042 *3 (-565 $)) $))
- (-15 -1908 ($ (-1042 *3 (-565 $))))))))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-843)) (-5 *2 (-396 (-1086 *1))) (-5 *3 (-1086 *1)))))
-(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-92)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933)))
- (-5 *1 (-163 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 (-357))) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-445))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-855)) (-5 *4 (-808)) (-5 *2 (-1177)) (-5 *1 (-1173))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-886 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-943))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-886 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-943))))
- ((*1 *2 *3) (-12 (-5 *3 (-886 *1)) (-4 *1 (-943)) (-5 *2 (-592 *1))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1086 (-525))) (-5 *2 (-592 *1)) (-4 *1 (-943))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1086 (-385 (-525)))) (-5 *2 (-592 *1)) (-4 *1 (-943))))
- ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-943)) (-5 *2 (-592 *1))))
+ (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-317 *3 *4 *5))
+ (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-408 *3)) (-4 *3 (-789)) (-5 *2 (-592 (-1091)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-592 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-787) (-341))) (-4 *3 (-1148 *4)) (-5 *2 (-592 *1))
- (-4 *1 (-992 *4 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-301 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-126))
- (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1982 *4))))))
+ (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
+ (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-592 *5))
+ (-5 *1 (-885 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $)) (-15 -1512 (*7 $)))))))
((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| -1459 *3) (|:| -4157 *4))))
- (-5 *1 (-678 *3 *4)) (-4 *3 (-976)) (-4 *4 (-669))))
+ (-12 (-5 *2 (-1022 (-1091))) (-5 *1 (-900 *3)) (-4 *3 (-901))))
((*1 *2 *1)
- (-12 (-4 *1 (-1150 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734))
- (-5 *2 (-1071 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2))
- (-4 *2 (-408 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1012 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517)))
- (-5 *1 (-147 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1012 *1)) (-4 *1 (-149))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1090)))))
+ (-12 (-4 *1 (-906 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-734))
+ (-4 *5 (-789)) (-5 *2 (-592 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-592 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-5 *2 (-592 (-1091)))
+ (-5 *1 (-973 *4)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-138))
- (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-909 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1086 *3)))))
-(((*1 *1) (-5 *1 (-1174))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-855)) (-5 *2 (-445)) (-5 *1 (-1173)))))
-(((*1 *2 *1) (-12 (-5 *1 (-899 *2)) (-4 *2 (-900)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1090))
- (-5 *2 (-525)) (-5 *1 (-1033 *4 *5)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-592 (-2 (|:| |totdeg| (-713)) (|:| -3966 *3))))
- (-5 *4 (-713)) (-4 *3 (-883 *5 *6 *7)) (-4 *5 (-429)) (-4 *6 (-735))
- (-4 *7 (-789)) (-5 *1 (-426 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-423)) (-5 *3 (-525)))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1) (-4 *1 (-466)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-1094)) (-5 *3 (-1091)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1091))
+ (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-1113) (-893) (-29 *4))))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1086 *9)) (-5 *4 (-592 *7)) (-4 *7 (-789))
- (-4 *9 (-883 *8 *6 *7)) (-4 *6 (-735)) (-4 *8 (-286))
- (-5 *2 (-592 (-713))) (-5 *1 (-685 *6 *7 *8 *9)) (-5 *5 (-713)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517))
- (-5 *2 (-1086 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))))
-(((*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175))))
- ((*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))))
+ (-12 (-5 *5 (-1091))
+ (-4 *6 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-4 *4 (-13 (-29 *6) (-1113) (-893)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -1449 (-592 *4))))
+ (-5 *1 (-743 *6 *4 *3)) (-4 *3 (-602 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-108) *8 *8)) (-4 *1 (-1120 *5 *6 *7 *8)) (-4 *5 (-517))
- (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6))
- (-5 *2 (-592 (-2 (|:| -3286 *1) (|:| -2396 (-592 *7)))))
- (-5 *3 (-592 *7)) (-4 *1 (-1120 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8))) (-4 *7 (-789))
- (-4 *8 (-286)) (-4 *6 (-735)) (-4 *9 (-883 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-592 (-2 (|:| -3959 (-1086 *9)) (|:| -1600 (-525)))))))
- (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1086 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1019)) (-4 *6 (-1019))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *5 (-1019)))))
-(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-60 *3)) (-14 *3 (-1090))))
- ((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-67 *3)) (-14 *3 (-1090))))
- ((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-70 *3)) (-14 *3 (-1090))))
- ((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1177))))
- ((*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1177)) (-5 *1 (-375))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1073)) (-5 *4 (-797)) (-5 *2 (-1177)) (-5 *1 (-1053))))
- ((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-1053))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-797))) (-5 *2 (-1177)) (-5 *1 (-1053)))))
-(((*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1148 *9)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-286))
- (-4 *10 (-883 *9 *7 *8))
- (-5 *2
- (-2 (|:| |deter| (-592 (-1086 *10)))
- (|:| |dterm|
- (-592 (-592 (-2 (|:| -3264 (-713)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-592 *6)) (|:| |nlead| (-592 *10))))
- (-5 *1 (-720 *6 *7 *8 *9 *10)) (-5 *3 (-1086 *10)) (-5 *4 (-592 *6))
- (-5 *5 (-592 *10)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108))
- (-5 *2 (-965)) (-5 *1 (-688)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
- (-4 *3 (-990 *6 *7 *8))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4))))
- (-5 *1 (-996 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -3740 *9))))
- (-5 *5 (-108)) (-4 *8 (-990 *6 *7 *4)) (-4 *9 (-995 *6 *7 *4 *8))
- (-4 *6 (-429)) (-4 *7 (-735)) (-4 *4 (-789))
- (-5 *2 (-592 (-2 (|:| |val| *8) (|:| -3740 *9))))
- (-5 *1 (-996 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-625 *2)) (-4 *2 (-1019))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-592 *5) (-592 *5))) (-5 *4 (-525)) (-4 *5 (-1019))
- (-5 *2 (-592 *5)) (-5 *1 (-625 *5)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-965)) (-5 *3 (-1090)) (-5 *1 (-174)))))
-(((*1 *1) (-5 *1 (-146))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1112))) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-992 *4 *3)) (-4 *4 (-13 (-787) (-341)))
- (-4 *3 (-1148 *4)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-699)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-5 *1 (-415)))))
-(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-369)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-716)) (-5 *1 (-110))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1023)) (-5 *1 (-898)))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-848 *3)) (-4 *3 (-286)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-525)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-976)))))
+ (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-426 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1195 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-160))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-761 *3)) (-4 *1 (-1188 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090))))
- (-4 *6 (-735)) (-5 *2 (-592 *3)) (-5 *1 (-858 *4 *5 *6 *3))
- (-4 *3 (-883 *4 *6 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-912 *2)) (-4 *2 (-976))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123))))
+ (|partial| -12 (-5 *3 (-1173 *4)) (-4 *4 (-588 (-525)))
+ (-5 *2 (-1173 (-525))) (-5 *1 (-1198 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-856)) (-5 *2 (-1087 *3)) (-5 *1 (-1102 *3))
+ (-4 *3 (-341)))))
+(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-135)))
+ ((*1 *1 *1) (-4 *1 (-1060))))
+(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-51)) (-5 *1 (-773)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-510))))
+(((*1 *1)
+ (-12 (-4 *1 (-382)) (-1825 (|has| *1 (-6 -4246)))
+ (-1825 (|has| *1 (-6 -4238)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-789))))
+ ((*1 *2 *1) (-12 (-4 *1 (-772 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1 *1) (-4 *1 (-789))) ((*1 *1) (-5 *1 (-1038))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-884 *3 *4 *5))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-976)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-848 *3)) (-4 *3 (-286)))))
+ (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
+ (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-525)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-286))
- (-4 *9 (-883 *8 *6 *7))
- (-5 *2 (-2 (|:| -3966 (-1086 *9)) (|:| |polval| (-1086 *8))))
- (-5 *1 (-685 *6 *7 *8 *9)) (-5 *3 (-1086 *9)) (-5 *4 (-1086 *8)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1126))
- (-4 *4 (-351 *2)) (-4 *5 (-351 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1019))
- (-4 *2 (-1126)))))
-(((*1 *2 *1) (-12 (-5 *2 (-764)) (-5 *1 (-763)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108))
- (-5 *2 (-965)) (-5 *1 (-696)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-797)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-143 *2 *3 *4)) (-14 *2 (-855)) (-4 *3 (-341))
- (-14 *4 (-925 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1148 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
- ((*1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
- ((*1 *1 *1) (|partial| -4 *1 (-665)))
- ((*1 *1 *1) (|partial| -4 *1 (-669)))
+ (-12 (-5 *4 (-1091)) (-5 *5 (-1015 (-205))) (-5 *2 (-862))
+ (-5 *1 (-860 *3)) (-4 *3 (-567 (-501)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-992 *3 *2)) (-4 *3 (-13 (-787) (-341)))
- (-4 *2 (-1148 *3))))
+ (-12 (-5 *4 (-1091)) (-5 *2 (-862)) (-5 *1 (-860 *3))
+ (-4 *3 (-567 (-501)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-862))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1015 (-205)))
+ (-5 *1 (-862)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1087 (-385 (-1087 *2)))) (-5 *4 (-565 *2))
+ (-4 *2 (-13 (-408 *5) (-27) (-1113)))
+ (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *1 (-521 *5 *2 *6)) (-4 *6 (-1020))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1087 *1)) (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *3 (-789))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1087 *4)) (-4 *4 (-977)) (-4 *1 (-884 *4 *5 *3))
+ (-4 *5 (-735)) (-4 *3 (-789))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-1087 *2))) (-4 *5 (-735)) (-4 *4 (-789))
+ (-4 *6 (-977))
+ (-4 *2
+ (-13 (-341)
+ (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $)) (-15 -1512 (*7 $)))))
+ (-5 *1 (-885 *5 *4 *6 *7 *2)) (-4 *7 (-884 *6 *5 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-1087 (-385 (-887 *5))))) (-5 *4 (-1091))
+ (-4 *5 (-517)) (-5 *2 (-385 (-887 *5))) (-5 *1 (-973 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1) (-4 *1 (-466)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1177)) (-5 *1 (-369))))
- ((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-369)))))
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
(((*1 *2)
- (-12 (-4 *4 (-341)) (-5 *2 (-855)) (-5 *1 (-306 *3 *4))
- (-4 *3 (-307 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-341)) (-5 *2 (-775 (-855))) (-5 *1 (-306 *3 *4))
- (-4 *3 (-307 *4))))
- ((*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-855))))
+ (-12 (-4 *4 (-1131)) (-4 *5 (-1149 *4)) (-4 *6 (-1149 (-385 *5)))
+ (-5 *2 (-108)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-855))))))
-(((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-965)) (-5 *1 (-779))))
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *1 *1) (-4 *1 (-1060))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-429)) (-4 *4 (-789))
+ (-4 *5 (-735)) (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2794 *3)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1173 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341))
+ (-4 *1 (-667 *5 *6)) (-4 *5 (-160)) (-4 *6 (-1149 *5))
+ (-5 *2 (-632 *5)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-1056 *4 *5))) (-5 *3 (-1 (-108) *5 *5))
+ (-4 *4 (-13 (-1020) (-33))) (-4 *5 (-13 (-1020) (-33)))
+ (-5 *1 (-1057 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-1056 *3 *4))) (-4 *3 (-13 (-1020) (-33)))
+ (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1057 *3 *4)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-79 FCN)))) (-5 *2 (-966))
+ (-5 *1 (-689)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1020)) (-4 *2 (-835 *4)) (-5 *1 (-634 *4 *2 *5 *3))
+ (-4 *5 (-351 *2)) (-4 *3 (-13 (-351 *4) (-10 -7 (-6 -4255)))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1173 *4)) (-4 *4 (-588 *5)) (-4 *5 (-341))
+ (-4 *5 (-517)) (-5 *2 (-1173 *5)) (-5 *1 (-587 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357)))
- (-5 *2 (-965)) (-5 *1 (-779)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-713) *2)) (-5 *4 (-713)) (-4 *2 (-1019))
- (-5 *1 (-622 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-713) *3)) (-4 *3 (-1019)) (-5 *1 (-625 *3)))))
+ (|partial| -12 (-5 *3 (-1173 *4)) (-4 *4 (-588 *5))
+ (-1825 (-4 *5 (-341))) (-4 *5 (-517)) (-5 *2 (-1173 (-385 *5)))
+ (-5 *1 (-587 *5 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-550 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-157 (-205))) (-5 *4 (-525)) (-5 *2 (-966))
+ (-5 *1 (-701)))))
+(((*1 *1) (-5 *1 (-415))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-385 (-886 *4))) (-5 *3 (-1090))
- (-4 *4 (-13 (-517) (-967 (-525)) (-138))) (-5 *1 (-531 *4)))))
-(((*1 *1 *1 *2)
(-12
(-5 *2
- (-2 (|:| -2714 (-592 (-797))) (|:| -1487 (-592 (-797)))
- (|:| |presup| (-592 (-797))) (|:| -2807 (-592 (-797)))
- (|:| |args| (-592 (-797)))))
- (-5 *1 (-1090))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-592 (-797)))) (-5 *1 (-1090)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-764)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1090))) (-4 *6 (-341))
- (-5 *2 (-592 (-273 (-886 *6)))) (-5 *1 (-503 *5 *6 *7))
- (-4 *5 (-429)) (-4 *7 (-13 (-341) (-787))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4255)) (-4 *1 (-464 *3))
- (-4 *3 (-1126)))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))))
+ (-2 (|:| |partsol| (-1173 (-385 (-887 *4))))
+ (|:| -1449 (-592 (-1173 (-385 (-887 *4)))))))
+ (-5 *3 (-592 *7)) (-4 *4 (-13 (-286) (-138)))
+ (-4 *7 (-884 *4 *6 *5)) (-4 *5 (-13 (-789) (-567 (-1091))))
+ (-4 *6 (-735)) (-5 *1 (-859 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-592 (-856))) (-5 *1 (-143 *4 *2 *5)) (-14 *4 (-856))
+ (-4 *2 (-341)) (-14 *5 (-926 *4 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-656 *5 *6 *7)) (-4 *5 (-789))
+ (-4 *6 (-218 (-3596 *4) (-713)))
+ (-14 *7
+ (-1 (-108) (-2 (|:| -3640 *5) (|:| -1864 *6))
+ (-2 (|:| -3640 *5) (|:| -1864 *6))))
+ (-14 *4 (-592 (-1091))) (-4 *2 (-160))
+ (-5 *1 (-438 *4 *2 *5 *6 *7 *8)) (-4 *8 (-884 *2 *6 (-800 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-789))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4))
+ (-4 *4 (-1149 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-977))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-678 *2 *3)) (-4 *2 (-977)) (-4 *3 (-669))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5))
+ (-4 *4 (-977)) (-4 *5 (-789))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-977))
+ (-4 *2 (-789))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-977))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-884 *4 *5 *6))
+ (-4 *4 (-977)) (-4 *5 (-735)) (-4 *6 (-789))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-884 *4 *5 *2)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *2 (-789))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 *5)) (-4 *1 (-906 *4 *5 *6))
+ (-4 *4 (-977)) (-4 *5 (-734)) (-4 *6 (-789))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *1 (-906 *4 *3 *2)) (-4 *4 (-977)) (-4 *3 (-734))
+ (-4 *2 (-789)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091)))
+ (-14 *3 (-592 (-1091))) (-4 *4 (-365))))
+ ((*1 *1 *1) (-4 *1 (-466)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-60 *3)) (-14 *3 (-1091))))
+ ((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-67 *3)) (-14 *3 (-1091))))
+ ((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-70 *3)) (-14 *3 (-1091))))
+ ((*1 *2 *1) (-12 (-4 *1 (-373)) (-5 *2 (-1178))))
+ ((*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1178)) (-5 *1 (-375))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1074)) (-5 *4 (-798)) (-5 *2 (-1178)) (-5 *1 (-1054))))
+ ((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1178)) (-5 *1 (-1054))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-798))) (-5 *2 (-1178)) (-5 *1 (-1054)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091))))
+ (-4 *6 (-735)) (-4 *7 (-884 *4 *6 *5))
+ (-5 *2
+ (-2 (|:| |sysok| (-108)) (|:| |z0| (-592 *7)) (|:| |n0| (-592 *7))))
+ (-5 *1 (-859 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
- (-4 *4 (-13 (-789) (-517))))))
+ (|partial| -12 (-5 *2 (-525)) (-5 *1 (-530 *3))
+ (-4 *3 (-968 (-525))))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *3 (-1173 (-357))) (-5 *4 (-525)) (-5 *5 (-357))
+ (-5 *6 (-1 (-1178) (-1173 (-357)) (-1173 (-357)) (-357)))
+ (-5 *2 (-1178)) (-5 *1 (-730)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-357)) (-5 *1 (-92)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3))
+ (-4 *3 (-901)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1149 *5)) (-4 *5 (-341))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-535 *5 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-1091))) (-5 *3 (-51)) (-5 *1 (-827 *4))
+ (-4 *4 (-1020)))))
(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *2 (-592 (-157 *4)))
+ (-5 *1 (-707 *4)) (-4 *4 (-13 (-341) (-787))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-1133 *4)) (-4 *4 (-977)) (-4 *4 (-517))
+ (-5 *2 (-385 (-887 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-1133 *4)) (-4 *4 (-977)) (-4 *4 (-517))
+ (-5 *2 (-385 (-887 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-501))) (-5 *1 (-501)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-632 (-525))) (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *3 (-592 (-809)))
+ (-5 *1 (-445)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1091))) (-4 *5 (-977))
+ (-5 *2 (-887 *5)) (-5 *1 (-879 *4 *5)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091)))
+ (-14 *3 (-592 (-1091))) (-4 *4 (-365))))
+ ((*1 *1 *1) (-4 *1 (-466)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-369)))))
+(((*1 *2 *3 *3 *4)
(-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 *4))
- (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108))
- (-5 *6 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-698)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *1 *1 *1) (-5 *1 (-205)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-969))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1172 *5)) (-4 *5 (-734)) (-5 *2 (-108))
- (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-690)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-108)) (-5 *1 (-106))))
- ((*1 *2 *2) (-12 (-5 *2 (-855)) (|has| *1 (-6 -4245)) (-4 *1 (-382))))
- ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-855)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-877 *5)) (-5 *3 (-713)) (-4 *5 (-976))
- (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1163 *4)) (-5 *1 (-1165 *4 *2))
- (-4 *4 (-37 (-385 (-525)))))))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4))))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *1 (-1046 *3 *2)) (-4 *3 (-1149 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2))
+ (-4 *2 (-630 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3))
+ (-4 *3 (-13 (-408 *6) (-27) (-1113)))
+ (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1020)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-713))))
+ ((*1 *1 *1) (-4 *1 (-380))))
+(((*1 *1 *1 *1) (-5 *1 (-150)))
+ ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-150)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-517)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-341) (-281)
+ (-10 -8 (-15 -1498 ((-1043 *3 (-565 $)) $))
+ (-15 -1512 ((-1043 *3 (-565 $)) $))
+ (-15 -1270 ($ (-1043 *3 (-565 $))))))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1516 *3) (|:| |coef1| (-724 *3))))
+ (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-341))
- (-5 *2 (-592 (-2 (|:| C (-632 *5)) (|:| |g| (-1172 *5)))))
- (-5 *1 (-910 *5)) (-5 *3 (-632 *5)) (-5 *4 (-1172 *5)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-902 *4 *2))
- (-4 *2 (-1148 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-906)) (-5 *2 (-1014 (-205))))))
-(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-1053))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-797))) (-5 *2 (-1177)) (-5 *1 (-1053)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *2 (-965)) (-5 *1 (-697)))))
+ (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3))
+ (-5 *1 (-685 *5 *4 *6 *3)) (-4 *3 (-884 *6 *5 *4)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-713)) (-4 *4 (-286)) (-4 *6 (-1149 *4))
+ (-5 *2 (-1173 (-592 *6))) (-5 *1 (-432 *4 *6)) (-5 *5 (-592 *6)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-1074)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-690)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-592 (-592 *6))) (-4 *6 (-883 *3 *5 *4))
- (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1090))))
- (-4 *5 (-735)) (-5 *1 (-858 *3 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 (-415)))))
- (-5 *1 (-1094)))))
-(((*1 *2 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-327)) (-5 *3 (-525)) (-5 *2 (-1100 (-855) (-713))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *2 (-357)) (-5 *1 (-187)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091)))
+ (-14 *3 (-592 (-1091))) (-4 *4 (-365))))
+ ((*1 *1 *1) (-4 *1 (-466)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-366)) (-5 *2 (-1178)) (-5 *1 (-369))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-369)))))
+(((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1176))))
+ ((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1176)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-824 *5 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020))
+ (-4 *3 (-154 *6)) (-4 (-887 *6) (-821 *5))
+ (-4 *6 (-13 (-821 *5) (-160))) (-5 *1 (-165 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-824 *4 *1)) (-5 *3 (-827 *4)) (-4 *1 (-821 *4))
+ (-4 *4 (-1020))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-824 *5 *6)) (-5 *4 (-827 *5)) (-4 *5 (-1020))
+ (-4 *6 (-13 (-1020) (-968 *3))) (-4 *3 (-821 *5))
+ (-5 *1 (-866 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-824 *5 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020))
+ (-4 *3 (-13 (-408 *6) (-567 (-827 *5)) (-821 *5) (-968 (-565 $))))
+ (-4 *6 (-13 (-517) (-789) (-821 *5))) (-5 *1 (-867 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-824 (-525) *3)) (-5 *4 (-827 (-525))) (-4 *3 (-510))
+ (-5 *1 (-868 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-824 *5 *6)) (-5 *3 (-565 *6)) (-5 *4 (-827 *5))
+ (-4 *5 (-1020))
+ (-4 *6 (-13 (-789) (-968 (-565 $)) (-567 (-827 *5)) (-821 *5)))
+ (-5 *1 (-869 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-820 *5 *6 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020))
+ (-4 *6 (-821 *5)) (-4 *3 (-612 *6)) (-5 *1 (-870 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *2 (-824 *6 *3)) (-5 *4 (-827 *6))
+ (-5 *5 (-1 (-824 *6 *3) *8 (-827 *6) (-824 *6 *3))) (-4 *6 (-1020))
+ (-4 *8 (-789)) (-4 *3 (-13 (-884 *9 *7 *8) (-567 (-827 *6))))
+ (-4 *7 (-735)) (-4 *9 (-13 (-977) (-789) (-821 *6)))
+ (-5 *1 (-871 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-824 *5 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020))
+ (-4 *3 (-13 (-884 *8 *6 *7) (-567 (-827 *5)))) (-4 *7 (-821 *5))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-13 (-977) (-789) (-821 *5)))
+ (-5 *1 (-871 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-824 *5 *3)) (-5 *4 (-827 *5)) (-4 *5 (-1020))
+ (-4 *3 (-925 *6)) (-4 *6 (-13 (-517) (-821 *5) (-567 (-827 *5))))
+ (-5 *1 (-874 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-824 *5 (-1091))) (-5 *3 (-1091)) (-5 *4 (-827 *5))
+ (-4 *5 (-1020)) (-5 *1 (-875 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *2 (-824 *7 *9)) (-5 *3 (-592 *9)) (-5 *4 (-592 (-827 *7)))
+ (-5 *5 (-1 *9 (-592 *9)))
+ (-5 *6 (-1 (-824 *7 *9) *9 (-827 *7) (-824 *7 *9))) (-4 *7 (-1020))
+ (-4 *9 (-13 (-977) (-567 (-827 *7)) (-968 *8)))
+ (-4 *8 (-13 (-977) (-789))) (-5 *1 (-876 *7 *8 *9)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1149 *5)) (-4 *5 (-341))
+ (-5 *2 (-2 (|:| -2003 (-396 *3)) (|:| |special| (-396 *3))))
+ (-5 *1 (-670 *5 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3))
+ (-4 *3 (-1149 *2)))))
+(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1173 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160))
+ (-4 *5 (-1149 *4)) (-5 *2 (-632 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1149 *3))
+ (-5 *2 (-632 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-339 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-364 *4)) (-4 *4 (-1020))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *2 (-23)) (-5 *1 (-595 *4 *2 *5))
+ (-4 *4 (-1020)) (-14 *5 *2)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-5 *2 (-713)) (-5 *1 (-761 *4)) (-4 *4 (-789)))))
+(((*1 *1) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1113))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-396 *2)) (-4 *2 (-286)) (-5 *1 (-849 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1091))
+ (-4 *5 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-850 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-887 *6)) (-5 *4 (-396 (-887 *6))) (-5 *5 (-1091))
+ (-4 *6 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-850 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1127)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1172 (-641))) (-5 *1 (-284)))))
-(((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1014 (-205)))))
- ((*1 *2 *1) (-12 (-4 *1 (-906)) (-5 *2 (-1014 (-205))))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-698)))))
-(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1126))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-886 (-357))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090)))
- (-14 *4 (-592 (-1090))) (-4 *5 (-365))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-385 (-886 (-357)))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090)))
- (-14 *4 (-592 (-1090))) (-4 *5 (-365))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090)))
- (-14 *4 (-592 (-1090))) (-4 *5 (-365))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-886 (-525))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090)))
- (-14 *4 (-592 (-1090))) (-4 *5 (-365))))
+ (-12 (-5 *3 (-1091))
+ (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *4 *5))
+ (-4 *5 (-13 (-27) (-1113) (-408 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *4 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-385 (-525)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *5 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-273 *3)) (-4 *3 (-13 (-27) (-1113) (-408 *5)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-273 *3)) (-5 *5 (-385 (-525)))
+ (-4 *3 (-13 (-27) (-1113) (-408 *6)))
+ (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-293 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-525))) (-5 *4 (-273 *6))
+ (-4 *6 (-13 (-27) (-1113) (-408 *5)))
+ (-4 *5 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1091)) (-5 *5 (-273 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *6)))
+ (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-525))) (-5 *4 (-273 *7)) (-5 *5 (-1140 (-525)))
+ (-4 *7 (-13 (-27) (-1113) (-408 *6)))
+ (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1091)) (-5 *5 (-273 *3)) (-5 *6 (-1140 (-525)))
+ (-4 *3 (-13 (-27) (-1113) (-408 *7)))
+ (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-385 (-525)))) (-5 *4 (-273 *8))
+ (-5 *5 (-1140 (-385 (-525)))) (-5 *6 (-385 (-525)))
+ (-4 *8 (-13 (-27) (-1113) (-408 *7)))
+ (-4 *7 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1091)) (-5 *5 (-273 *3)) (-5 *6 (-1140 (-385 (-525))))
+ (-5 *7 (-385 (-525))) (-4 *3 (-13 (-27) (-1113) (-408 *8)))
+ (-4 *8 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-51)) (-5 *1 (-436 *8 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-385 (-886 (-525)))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090)))
- (-14 *4 (-592 (-1090))) (-4 *5 (-365))))
+ (-12 (-5 *2 (-1072 (-2 (|:| |k| (-525)) (|:| |c| *3))))
+ (-4 *3 (-977)) (-5 *1 (-550 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-551 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090)))
- (-14 *4 (-592 (-1090))) (-4 *5 (-365))))
+ (-12 (-5 *2 (-1072 (-2 (|:| |k| (-525)) (|:| |c| *3))))
+ (-4 *3 (-977)) (-4 *1 (-1133 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-713))
+ (-5 *3 (-1072 (-2 (|:| |k| (-385 (-525))) (|:| |c| *4))))
+ (-4 *4 (-977)) (-4 *1 (-1154 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1090)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090)))
- (-14 *4 (-592 (-1090))) (-4 *5 (-365))))
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-4 *1 (-1164 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-294 *5)) (-4 *5 (-365)) (-5 *1 (-317 *3 *4 *5))
- (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090)))))
- ((*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-886 (-525))))) (-4 *1 (-362))))
- ((*1 *1 *2) (-12 (-5 *2 (-632 (-385 (-886 (-357))))) (-4 *1 (-362))))
- ((*1 *1 *2) (-12 (-5 *2 (-632 (-886 (-525)))) (-4 *1 (-362))))
- ((*1 *1 *2) (-12 (-5 *2 (-632 (-886 (-357)))) (-4 *1 (-362))))
- ((*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362))))
- ((*1 *1 *2) (-12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362))))
- ((*1 *1 *2) (-12 (-5 *2 (-385 (-886 (-525)))) (-4 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-385 (-886 (-357)))) (-4 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-886 (-525))) (-4 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-886 (-357))) (-4 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-294 (-525))) (-4 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-294 (-357))) (-4 *1 (-374))))
- ((*1 *1 *2) (-12 (-5 *2 (-1172 (-385 (-886 (-525))))) (-4 *1 (-418))))
- ((*1 *1 *2) (-12 (-5 *2 (-1172 (-385 (-886 (-357))))) (-4 *1 (-418))))
- ((*1 *1 *2) (-12 (-5 *2 (-1172 (-886 (-525)))) (-4 *1 (-418))))
- ((*1 *1 *2) (-12 (-5 *2 (-1172 (-886 (-357)))) (-4 *1 (-418))))
- ((*1 *1 *2) (-12 (-5 *2 (-1172 (-294 (-525)))) (-4 *1 (-418))))
- ((*1 *1 *2) (-12 (-5 *2 (-1172 (-294 (-357)))) (-4 *1 (-418))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-294 (-205)))
- (|:| -4162 (-592 (-1014 (-782 (-205)))))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))))
- (-5 *1 (-711))))
- ((*1 *2 *1)
- (-12
+ (-12 (-5 *2 (-1072 (-2 (|:| |k| (-713)) (|:| |c| *3))))
+ (-4 *3 (-977)) (-4 *1 (-1164 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
+ (-5 *2 (-632 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4))
+ (-4 *3 (-395 *4))))
+ ((*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33)))
+ ((*1 *1)
+ (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
+ (-4 *4 (-160))))
+ ((*1 *1) (-4 *1 (-669))) ((*1 *1) (-5 *1 (-1091))))
+(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1074)) (-5 *1 (-653)))))
+(((*1 *1 *1) (-4 *1 (-91)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-1050 *4 *2))
+ (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4255) (-6 -4256))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-789)) (-4 *3 (-1127)) (-5 *1 (-1050 *3 *2))
+ (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4255) (-6 -4256)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 *8)) (-5 *4 (-713)) (-4 *8 (-884 *5 *7 *6))
+ (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1091))))
+ (-4 *7 (-735))
(-5 *2
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *1 (-750))))
+ (-592
+ (-2 (|:| |det| *8) (|:| |rows| (-592 (-525)))
+ (|:| |cols| (-592 (-525))))))
+ (-5 *1 (-859 *5 *6 *7 *8)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-592 (-525))) (-5 *3 (-632 (-525))) (-5 *1 (-1030)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-372))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1108)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-887 (-205))) (-5 *2 (-294 (-357))) (-5 *1 (-284)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1093 (-385 (-525))))
+ (-5 *1 (-172)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-856)) (-4 *1 (-382))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-4 *1 (-382))))
((*1 *2 *1)
- (-12
- (-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205)))
- (|:| |lb| (-592 (-782 (-205))))
- (|:| |cf| (-592 (-294 (-205))))
- (|:| |ub| (-592 (-782 (-205))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-592 (-294 (-205))))
- (|:| -2279 (-592 (-205)))))))
- (-5 *1 (-780))))
+ (-12 (-4 *1 (-1023 *3 *4 *5 *2 *6)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *2 (-1020)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1072 (-2 (|:| |k| (-525)) (|:| |c| *3))))
+ (-5 *1 (-550 *3)) (-4 *3 (-977)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-977)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1149 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1091)) (-5 *4 (-887 (-525))) (-5 *2 (-308))
+ (-5 *1 (-310)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 *4))))
+ (-5 *1 (-824 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020))))
((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |pde| (-592 (-294 (-205))))
- (|:| |constraints|
- (-592
- (-2 (|:| |start| (-205)) (|:| |finish| (-205))
- (|:| |grid| (-713)) (|:| |boundaryType| (-525))
- (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
- (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073))
- (|:| |tol| (-205))))
- (-5 *1 (-832))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-976))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *1 (-908 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-967 *2)) (-4 *2 (-1126))))
- ((*1 *1 *2)
- (-3309
- (-12 (-5 *2 (-886 *3))
- (-12 (-2480 (-4 *3 (-37 (-385 (-525)))))
- (-2480 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1090))))
- (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735))
- (-4 *5 (-789)))
- (-12 (-5 *2 (-886 *3))
- (-12 (-2480 (-4 *3 (-510))) (-2480 (-4 *3 (-37 (-385 (-525)))))
- (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1090))))
- (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735))
- (-4 *5 (-789)))
- (-12 (-5 *2 (-886 *3))
- (-12 (-2480 (-4 *3 (-924 (-525)))) (-4 *3 (-37 (-385 (-525))))
- (-4 *5 (-567 (-1090))))
- (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735))
- (-4 *5 (-789)))))
- ((*1 *1 *2)
- (-3309
- (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5))
- (-12 (-2480 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525)))
- (-4 *5 (-567 (-1090))))
- (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)))
- (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5))
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090))))
- (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-886 (-385 (-525)))) (-4 *1 (-990 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090))) (-4 *3 (-976))
- (-4 *4 (-735)) (-4 *5 (-789)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-855)) (-5 *1 (-1020 *3 *4)) (-14 *3 (-855))
- (-14 *4 (-855)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-930 *3)) (-4 *3 (-160)) (-5 *1 (-741 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-789)) (-5 *1 (-1098 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174))))
- ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-525)) (-5 *1 (-461 *4))
- (-4 *4 (-1148 (-525))))))
-(((*1 *1 *1 *1) (-4 *1 (-281))) ((*1 *1 *1) (-4 *1 (-281))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33)))
- (-4 *3 (-13 (-1019) (-33))))))
+ (-12 (-4 *3 (-1020)) (-4 *4 (-1020)) (-4 *5 (-1020)) (-4 *6 (-1020))
+ (-4 *7 (-1020)) (-5 *2 (-592 *1)) (-4 *1 (-1023 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-205) (-205) (-205)))
+ (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined"))
+ (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1051 (-205)))
+ (-5 *1 (-639))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-205)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-639))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1051 (-205))) (-5 *3 (-1 (-878 (-205)) (-205) (-205)))
+ (-5 *4 (-1015 (-205))) (-5 *5 (-592 (-242))) (-5 *1 (-639)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-1062 *3)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-941 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *1) (-12 (-4 *1 (-888)) (-5 *2 (-1014 (-205)))))
- ((*1 *2 *1) (-12 (-4 *1 (-906)) (-5 *2 (-1014 (-205))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1148 *4)) (-4 *4 (-1130))
- (-4 *6 (-1148 (-385 *5)))
- (-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-320 *4 *5 *6)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-990 *4 *5 *6))
- (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -3740 *1))))
- (-4 *1 (-995 *4 *5 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-429))
- (-5 *2 (-457 *4 *5)) (-5 *1 (-580 *4 *5)))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-592 *11)) (-5 *5 (-592 (-1086 *9)))
- (-5 *6 (-592 *9)) (-5 *7 (-592 *12)) (-5 *8 (-592 (-713)))
- (-4 *11 (-789)) (-4 *9 (-286)) (-4 *12 (-883 *9 *10 *11))
- (-4 *10 (-735)) (-5 *2 (-592 (-1086 *12)))
- (-5 *1 (-650 *10 *11 *9 *12)) (-5 *3 (-1086 *12)))))
+ (-12 (-5 *2 (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 (-415)))))
+ (-5 *1 (-1095)))))
+(((*1 *1 *1) (-4 *1 (-91)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
+(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1176))))
+ ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-1176)))))
+(((*1 *2)
+ (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-856)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966))
+ (-5 *1 (-698)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1086 *7)) (-4 *7 (-883 *6 *4 *5)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-976)) (-5 *2 (-1086 *6))
- (-5 *1 (-299 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1093 (-385 (-525))))
+ (-5 *1 (-172)))))
+(((*1 *2 *1) (-12 (-4 *1 (-481 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-789)))))
(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -1862 (-110)) (|:| |arg| (-592 (-826 *3)))))
- (-5 *1 (-826 *3)) (-4 *3 (-1019))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-826 *4)))
- (-5 *1 (-826 *4)) (-4 *4 (-1019)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-108)) (-5 *1 (-771)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))))
+ (-12 (-4 *3 (-13 (-341) (-138)))
+ (-5 *2 (-592 (-2 (|:| -1864 (-713)) (|:| -3144 *4) (|:| |num| *4))))
+ (-5 *1 (-377 *3 *4)) (-4 *4 (-1149 *3)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5))
+ (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-1184 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1184 *5 *6 *7 *8)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1040 *3 *4 *2 *5)) (-4 *4 (-976)) (-4 *5 (-218 *3 *4))
- (-4 *2 (-218 *3 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-138)) (-4 *2 (-286)) (-4 *2 (-429)) (-4 *3 (-789))
- (-4 *4 (-735)) (-5 *1 (-919 *2 *3 *4 *5)) (-4 *5 (-883 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-294 (-525))) (-5 *1 (-1036))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
+ (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1133 *3))
+ (-5 *2 (-385 (-525))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-565 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1091))) (-5 *5 (-1087 *2))
+ (-4 *2 (-13 (-408 *6) (-27) (-1113)))
+ (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1020))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-565 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1091)))
+ (-5 *5 (-385 (-1087 *2))) (-4 *2 (-13 (-408 *6) (-27) (-1113)))
+ (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1020)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-729)) (-5 *2 (-966))
+ (-5 *3
+ (-2 (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-729)) (-5 *2 (-966))
+ (-5 *3
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976))
- (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-976))
- (-4 *4 (-785)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-908 *4 *5 *6 *3)) (-4 *4 (-976)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-4 *4 (-517))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-305 *3)) (-4 *3 (-1126))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1126))
- (-14 *4 (-525)))))
-(((*1 *1 *1 *1) (-5 *1 (-797))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789))
+ (-5 *2 (-2 (|:| -1655 (-525)) (|:| |var| (-565 *1))))
+ (-4 *1 (-408 *3)))))
+(((*1 *1 *1) (-4 *1 (-91)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))))
-(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174))))
- ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))))
+ (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-844))
+ (-5 *1 (-434 *3 *4 *2 *5)) (-4 *5 (-884 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-844))
+ (-5 *1 (-841 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-844)) (-5 *1 (-842 *2 *3)) (-4 *3 (-1149 *2)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1109)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 (-385 (-886 (-525))))) (-5 *4 (-592 (-1090)))
- (-5 *2 (-592 (-592 *5))) (-5 *1 (-358 *5))
- (-4 *5 (-13 (-787) (-341)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-886 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-358 *4))
- (-4 *4 (-13 (-787) (-341))))))
+ (|partial| -12 (-5 *5 (-1173 (-592 *3))) (-4 *3 (-1149 *4))
+ (-4 *4 (-286)) (-5 *2 (-592 *3)) (-5 *1 (-432 *4 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-878 (-205)))) (-5 *1 (-1174)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-782 (-357))) (-5 *2 (-782 (-205))) (-5 *1 (-284)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
+ (-4 *4 (-13 (-789) (-517))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1071 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019))))
+ (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108))))
((*1 *2 *1)
- (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976))
- (-5 *2 (-108))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-396 *3)) (-4 *3 (-510)) (-4 *3 (-517))))
+ ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108))))
((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1193 *3 *4)) (-4 *3 (-976))
- (-4 *4 (-785)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -2499 (-592 *1))))
- (-4 *1 (-345 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-430 *3 *4 *5 *6))
- (|:| -2499 (-592 (-430 *3 *4 *5 *6)))))
- (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-855))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))))
+ (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-510)) (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-510)) (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510)) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-940 *3)) (-4 *3 (-968 (-385 (-525)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-887 (-525)))) (-5 *1 (-415))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1091)) (-5 *4 (-632 (-205))) (-5 *2 (-1024))
+ (-5 *1 (-702))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1091)) (-5 *4 (-632 (-525))) (-5 *2 (-1024))
+ (-5 *1 (-702)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1073)) (-5 *4 (-1037)) (-5 *2 (-108)) (-5 *1 (-763)))))
+ (-12 (-5 *3 (-878 (-205))) (-5 *4 (-809)) (-5 *2 (-1178))
+ (-5 *1 (-445))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-977)) (-4 *1 (-913 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-878 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-878 *3)) (-4 *3 (-977)) (-4 *1 (-1052 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1052 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *1 (-1052 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-878 *3)) (-4 *1 (-1052 *3)) (-4 *3 (-977))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1124)) (-5 *3 (-205)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-592 (-826 *3))) (-5 *1 (-826 *3))
- (-4 *3 (-1019)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1073)) (-5 *2 (-195 (-475))) (-5 *1 (-777)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-351 *2))
- (-4 *5 (-351 *2)) (-4 *2 (-1126))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-267 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1126))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *2 *6 *7))
- (-4 *6 (-218 *5 *2)) (-4 *7 (-218 *4 *2)) (-4 *2 (-976)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160))
- (-4 *5 (-1148 *4)) (-5 *2 (-632 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-160)) (-4 *5 (-1148 *4)) (-5 *2 (-632 *4))
- (-5 *1 (-386 *3 *4 *5)) (-4 *3 (-387 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3))
- (-5 *2 (-632 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4254)) (-4 *1 (-215 *3))
- (-4 *3 (-1019))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4254)) (-4 *1 (-215 *2)) (-4 *2 (-1019))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)) (-4 *2 (-1019))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1126))))
+ (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108))))
((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1019))
- (-5 *1 (-680 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1019))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33)))
- (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1056 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-886 *6))) (-4 *6 (-517))
- (-4 *2 (-883 (-385 (-886 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2))
- (-4 *5 (-735))
- (-4 *4 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817))
- (-5 *3 (-592 (-525))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-648 *3 *4)) (-4 *3 (-1126)) (-4 *4 (-1126)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *3 (-1172 (-357))) (-5 *4 (-525)) (-5 *5 (-357))
- (-5 *6
- (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -4146 (-357))))
- (-5 *7 (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))
- (-5 *2 (-1177)) (-5 *1 (-730))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-1172 (-357))) (-5 *4 (-525)) (-5 *5 (-357))
- (-5 *6
- (-2 (|:| |try| (-357)) (|:| |did| (-357)) (|:| -4146 (-357))))
- (-5 *7 (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))
- (-5 *2 (-1177)) (-5 *1 (-730)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1086 *1)) (-4 *1 (-943)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1086 *3)) (-4 *3 (-346)) (-4 *1 (-307 *3))
- (-4 *3 (-341)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2)
- (-12 (-4 *3 (-1130)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4)))
- (-5 *2 (-1172 *1)) (-4 *1 (-320 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $)))))
- (-4 *4 (-1148 *3))
- (-5 *2
- (-2 (|:| -2499 (-632 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-632 *3))))
- (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1148 (-525)))
- (-5 *2
- (-2 (|:| -2499 (-632 (-525))) (|:| |basisDen| (-525))
- (|:| |basisInv| (-632 (-525)))))
- (-5 *1 (-710 *3 *4)) (-4 *4 (-387 (-525) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-327)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 *4))
- (-5 *2
- (-2 (|:| -2499 (-632 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-632 *4))))
- (-5 *1 (-917 *3 *4 *5 *6)) (-4 *6 (-667 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-327)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 *4))
- (-5 *2
- (-2 (|:| -2499 (-632 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-632 *4))))
- (-5 *1 (-1181 *3 *4 *5 *6)) (-4 *6 (-387 *4 *5)))))
-(((*1 *1 *1) (-5 *1 (-988))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-632 (-385 (-886 (-525)))))
- (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-961))
- (-5 *3 (-294 (-525))))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5))
- (-4 *5 (-13 (-341) (-138) (-967 (-525))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |h| *6)
- (|:| |c1| (-385 *6)) (|:| |c2| (-385 *6)) (|:| -3787 *6)))
- (-5 *1 (-947 *5 *6)) (-5 *3 (-385 *6)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1029)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-426 *3 *4 *5 *2)) (-4 *2 (-883 *3 *4 *5)))))
-(((*1 *1 *1) (-4 *1 (-1059))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-525)) (-5 *1 (-530 *3))
- (-4 *3 (-967 (-525))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4))))
- (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175))))
- ((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 *8)) (-5 *4 (-713)) (-4 *8 (-883 *5 *7 *6))
- (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090))))
- (-4 *7 (-735))
- (-5 *2
- (-592
- (-2 (|:| |det| *8) (|:| |rows| (-592 (-525)))
- (|:| |cols| (-592 (-525))))))
- (-5 *1 (-858 *5 *6 *7 *8)))))
-(((*1 *2)
- (-12 (-5 *2 (-855)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))
+ (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1127)))))
+(((*1 *1 *1) (-4 *1 (-91))) ((*1 *1 *1 *1) (-5 *1 (-205)))
((*1 *2 *2)
- (-12 (-5 *2 (-855)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))))
-(((*1 *2)
- (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-843))
- (-5 *1 (-434 *3 *4 *2 *5)) (-4 *5 (-883 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-735)) (-4 *4 (-789)) (-4 *2 (-843))
- (-5 *1 (-840 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-843)) (-5 *1 (-841 *2 *3)) (-4 *3 (-1148 *2)))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091)))
+ (-14 *3 (-592 (-1091))) (-4 *4 (-365))))
+ ((*1 *1 *1 *1) (-5 *1 (-357)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1173 *4)) (-4 *4 (-1127)) (-4 *1 (-218 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-294 *4)) (-4 *4 (-13 (-770) (-789) (-976)))
- (-5 *2 (-1073)) (-5 *1 (-768 *4))))
+ (-12 (-5 *3 (-294 *4)) (-4 *4 (-13 (-770) (-789) (-977)))
+ (-5 *2 (-1074)) (-5 *1 (-768 *4))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-294 *5)) (-5 *4 (-108))
- (-4 *5 (-13 (-770) (-789) (-976))) (-5 *2 (-1073))
+ (-4 *5 (-13 (-770) (-789) (-977))) (-5 *2 (-1074))
(-5 *1 (-768 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-764)) (-5 *4 (-294 *5))
- (-4 *5 (-13 (-770) (-789) (-976))) (-5 *2 (-1177))
+ (-4 *5 (-13 (-770) (-789) (-977))) (-5 *2 (-1178))
(-5 *1 (-768 *5))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-764)) (-5 *4 (-294 *6)) (-5 *5 (-108))
- (-4 *6 (-13 (-770) (-789) (-976))) (-5 *2 (-1177))
+ (-4 *6 (-13 (-770) (-789) (-977))) (-5 *2 (-1178))
(-5 *1 (-768 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-770)) (-5 *2 (-1073))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-108)) (-5 *2 (-1073))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *2 (-1177))))
+ ((*1 *2 *1) (-12 (-4 *1 (-770)) (-5 *2 (-1074))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-770)) (-5 *3 (-108)) (-5 *2 (-1074))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *2 (-1178))))
((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *4 (-108)) (-5 *2 (-1177)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-309 *3)) (-4 *3 (-789)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-592 (-826 *3))) (-4 *3 (-1019))
- (-5 *1 (-826 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -2240 (-592 (-1090))) (|:| -2707 (-592 (-1090)))))
- (-5 *1 (-1128)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2 (-592 *3)) (-5 *1 (-1045 *4 *3)) (-4 *4 (-1148 *3)))))
+ (-12 (-4 *1 (-770)) (-5 *3 (-764)) (-5 *4 (-108)) (-5 *2 (-1178)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641))))
+ ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
+ (-5 *2
+ (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525))
+ (|:| |success| (-108))))
+ (-5 *1 (-731)) (-5 *5 (-525)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-800 *5))) (-14 *5 (-592 (-1091))) (-4 *6 (-429))
+ (-5 *2
+ (-2 (|:| |dpolys| (-592 (-227 *5 *6)))
+ (|:| |coords| (-592 (-525)))))
+ (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510))
+ (-5 *2 (-385 (-525)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510))
+ (-4 *3 (-517))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-510)) (-5 *2 (-385 (-525)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510))
+ (-5 *2 (-385 (-525)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510))
+ (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510))
+ (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510))
+ (-5 *2 (-385 (-525)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-940 *3))
+ (-4 *3 (-968 (-385 (-525)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-789)) (-4 *5 (-844)) (-4 *6 (-735))
+ (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-396 (-1087 *8)))
+ (-5 *1 (-841 *5 *6 *7 *8)) (-5 *4 (-1087 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-844)) (-4 *5 (-1149 *4)) (-5 *2 (-396 (-1087 *5)))
+ (-5 *1 (-842 *4 *5)) (-5 *3 (-1087 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1021 *4)) (-4 *4 (-1019)) (-5 *2 (-1 *4))
- (-5 *1 (-948 *4))))
+ (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-296)) (-5 *3 (-205)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1133 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-932 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-357))) (-5 *1 (-969)) (-5 *3 (-357))))
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))
((*1 *2 *3)
- (-12 (-5 *3 (-1014 (-525))) (-5 *2 (-1 (-525))) (-5 *1 (-974)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-592 (-592 (-205)))) (-5 *4 (-205))
- (-5 *2 (-592 (-877 *4))) (-5 *1 (-1123)) (-5 *3 (-877 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-990 *4 *5 *6))
- (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *1 (-909 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
- (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))))
-(((*1 *2 *2)
+ (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-294 *4))
+ (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-408 (-157 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *3))))))
+(((*1 *1 *1) (-4 *1 (-91)))
+ ((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976))
- (-4 *2 (-429))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-1148 (-525))) (-5 *2 (-592 (-525)))
- (-5 *1 (-461 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-429))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *2 (-789)) (-4 *3 (-429)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
- (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126)) (-4 *2 (-789))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-261 *3)) (-4 *3 (-1126))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-789)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *5 (-632 (-205)))
- (-5 *2 (-965)) (-5 *1 (-690)))))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091)))
+ (-14 *3 (-592 (-1091))) (-4 *4 (-365))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1173 (-592 (-2 (|:| -3352 *4) (|:| -3640 (-1038))))))
+ (-4 *4 (-327)) (-5 *2 (-1178)) (-5 *1 (-495 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-942 *3)) (-4 *3 (-1127)) (-4 *3 (-1020))
+ (-5 *2 (-108)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-694)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-809)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4)))
- (-5 *2 (-1172 *6)) (-5 *1 (-314 *3 *4 *5 *6))
- (-4 *6 (-320 *3 *4 *5)))))
+ (-12 (-4 *2 (-1020)) (-5 *1 (-898 *2 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-236)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138)))
+ (-5 *1 (-1143 *4 *2)) (-4 *2 (-1149 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-525))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))))
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-713)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1091)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2))
+ (-4 *2 (-1164 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1149 *3))
+ (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1164 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2))
+ (-4 *2 (-1164 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-13 (-517) (-138)))
+ (-5 *1 (-1068 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-135))))
+ ((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-135)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)))))
+(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-5 *2 (-294 *4))
+ (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1113) (-408 (-157 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
+ ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *3))))))
+(((*1 *1 *1) (-4 *1 (-91)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091)))
+ (-14 *3 (-592 (-1091))) (-4 *4 (-365))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7))))
+ (-5 *1 (-910 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-592
- (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 *3))
- (|:| |logand| (-1086 *3)))))
- (-5 *1 (-542 *3)) (-4 *3 (-341)))))
-(((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-5 *2 (-632 (-385 *4))))))
+ (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *2 (-2 (|:| |k| (-761 *3)) (|:| |c| *4))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-395 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-385 (-886 (-157 (-525))))))
- (-5 *2 (-592 (-592 (-273 (-886 (-157 *4)))))) (-5 *1 (-356 *4))
- (-4 *4 (-13 (-341) (-787)))))
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1149 (-47)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3))))
+ (-5 *1 (-117 *3)) (-4 *3 (-789))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-542 *4)) (-4 *4 (-13 (-29 *3) (-1113)))
+ (-4 *3 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))
+ (-5 *1 (-540 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-542 (-385 (-887 *3))))
+ (-4 *3 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))
+ (-5 *1 (-545 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-273 (-385 (-886 (-157 (-525)))))))
- (-5 *2 (-592 (-592 (-273 (-886 (-157 *4)))))) (-5 *1 (-356 *4))
- (-4 *4 (-13 (-341) (-787)))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1149 *5)) (-4 *5 (-341))
+ (-5 *2 (-2 (|:| -2003 *3) (|:| |special| *3))) (-5 *1 (-670 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-886 (-157 (-525)))))
- (-5 *2 (-592 (-273 (-886 (-157 *4))))) (-5 *1 (-356 *4))
- (-4 *4 (-13 (-341) (-787)))))
+ (-12 (-5 *4 (-1173 *5)) (-4 *5 (-341)) (-4 *5 (-977))
+ (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5))
+ (-5 *3 (-592 (-632 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-273 (-385 (-886 (-157 (-525))))))
- (-5 *2 (-592 (-273 (-886 (-157 *4))))) (-5 *1 (-356 *4))
- (-4 *4 (-13 (-341) (-787))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1071 *4)) (-5 *3 (-525)) (-4 *4 (-976))
- (-5 *1 (-1075 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-525)) (-5 *1 (-1164 *3 *4 *5)) (-4 *3 (-976))
- (-14 *4 (-1090)) (-14 *5 *3))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -1440 (-525)) (|:| -2203 (-592 *3))))
- (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))))
+ (-12 (-5 *4 (-1173 (-1173 *5))) (-4 *5 (-341)) (-4 *5 (-977))
+ (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-960 *5))
+ (-5 *3 (-592 (-632 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-592 *1)) (-4 *1 (-1060))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-592 *1)) (-4 *1 (-1060)))))
+(((*1 *1 *1 *1) (-4 *1 (-450))) ((*1 *1 *1 *1) (-4 *1 (-704))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1091)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *3 *5 *6 *7))
+ (-4 *3 (-567 (-501))) (-4 *5 (-1127)) (-4 *6 (-1127))
+ (-4 *7 (-1127))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *3 *5 *6))
+ (-4 *3 (-567 (-501))) (-4 *5 (-1127)) (-4 *6 (-1127)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1121 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-592 *3)) (-5 *5 (-856)) (-4 *3 (-1149 *4))
+ (-4 *4 (-286)) (-5 *1 (-437 *4 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-309 *3)) (-4 *3 (-789)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-713)) (-5 *1 (-110)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1178)) (-5 *1 (-1174))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-113 *3)) (-14 *3 (-525))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1072 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-385 *3)) (-4 *3 (-286)) (-5 *1 (-161 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-161 (-525))) (-5 *1 (-708 *3)) (-4 *3 (-382))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-161 (-385 (-525)))) (-5 *1 (-806 *3)) (-14 *3 (-525))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-525)) (-5 *2 (-161 (-385 (-525))))
+ (-5 *1 (-807 *3 *4)) (-4 *4 (-804 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-599 *4)) (-4 *4 (-320 *5 *6 *7))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *6 (-1149 *5)) (-4 *7 (-1149 (-385 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1449 (-592 *4))))
+ (-5 *1 (-748 *5 *6 *7 *4)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-699)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
+ (-12 (-5 *3 (-632 *2)) (-4 *4 (-1149 *2))
+ (-4 *2 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $)))))
+ (-5 *1 (-472 *2 *4 *5)) (-4 *5 (-387 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
+ (-4 *5 (-218 *3 *2)) (-4 *2 (-977)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1019) (-33)))
- (-4 *3 (-13 (-1019) (-33))))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-157 (-205))))
- (-5 *2 (-965)) (-5 *1 (-698)))))
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091)))
+ (-14 *3 (-592 (-1091))) (-4 *4 (-365))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525))))
+ ((*1 *1 *1) (-4 *1 (-934)))
+ ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-944))))
+ ((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-4 *1 (-944))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-944)) (-5 *2 (-856))))
+ ((*1 *1 *1) (-4 *1 (-944))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1090)) (-4 *4 (-517)) (-4 *4 (-789))
- (-5 *1 (-534 *4 *2)) (-4 *2 (-408 *4)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *3 (-592 (-808)))
- (-5 *4 (-592 (-855))) (-5 *5 (-592 (-242))) (-5 *1 (-445))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *3 (-592 (-808)))
- (-5 *4 (-592 (-855))) (-5 *1 (-445))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *1 (-445))))
- ((*1 *1 *1) (-5 *1 (-445))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
- (-14 *4 (-713)) (-4 *5 (-160))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
- (-4 *4 (-160))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2))
- (-4 *4 (-351 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-976)) (-4 *1 (-630 *3 *2 *4)) (-4 *2 (-351 *3))
- (-4 *4 (-351 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1057 *2 *3)) (-14 *2 (-713)) (-4 *3 (-976)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-855))
- (-5 *2
- (-3 (-1086 *4)
- (-1172 (-592 (-2 (|:| -3871 *4) (|:| -4185 (-1037)))))))
- (-5 *1 (-324 *4)) (-4 *4 (-327)))))
+ (-12 (-5 *2 (-1087 *6)) (-5 *3 (-525)) (-4 *6 (-286)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *1 *1) (-4 *1 (-1116))))
+(((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-1161 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-592 (-827 *3))) (-4 *3 (-1020))
+ (-5 *1 (-827 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
+ ((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-519 *2)) (-4 *2 (-510)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-735))
- (-4 *3 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $))))) (-4 *5 (-517))
- (-5 *1 (-675 *4 *3 *5 *2)) (-4 *2 (-883 (-385 (-886 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-976)) (-4 *5 (-735))
- (-4 *3
- (-13 (-789)
- (-10 -8 (-15 -1427 ((-1090) $))
- (-15 -1251 ((-3 $ "failed") (-1090))))))
- (-5 *1 (-916 *4 *5 *3 *2)) (-4 *2 (-883 (-886 *4) *5 *3))))
+ (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1020) (-968 *5)))
+ (-4 *5 (-821 *4)) (-4 *4 (-1020)) (-5 *2 (-1 (-108) *5))
+ (-5 *1 (-866 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-414)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-445)) (-5 *4 (-856)) (-5 *2 (-1178)) (-5 *1 (-1174)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *3)))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 *6))
- (-4 *6
- (-13 (-789)
- (-10 -8 (-15 -1427 ((-1090) $))
- (-15 -1251 ((-3 $ "failed") (-1090))))))
- (-4 *4 (-976)) (-4 *5 (-735)) (-5 *1 (-916 *4 *5 *6 *2))
- (-4 *2 (-883 (-886 *4) *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-909 *4 *5 *6 *7)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1079 3 *3)) (-4 *3 (-976)) (-4 *1 (-1051 *3))))
- ((*1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-976)))))
-(((*1 *1) (-5 *1 (-988))))
+ (-12 (-5 *3 (-1091))
+ (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *4)))))
+ ((*1 *1 *1) (-5 *1 (-357)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4))))
+ (-5 *1 (-718 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-2 (|:| -3871 *4) (|:| -1628 (-525)))))
- (-4 *4 (-1019)) (-5 *2 (-1 *4)) (-5 *1 (-948 *4)))))
+ (-12 (-5 *2 (-1087 (-525))) (-5 *1 (-877)) (-5 *3 (-525))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
+ (-5 *1 (-1042 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108))
+ (-5 *2 (-966)) (-5 *1 (-688)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1090))
- (-4 *5 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3))
- (-4 *3 (-13 (-1112) (-29 *5)))))
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1020)) (-4 *4 (-1020))
+ (-4 *6 (-1020)) (-5 *2 (-1 *6 *5)) (-5 *1 (-627 *5 *4 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1178)) (-5 *1 (-357))))
+ ((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-357)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-47))) (-5 *2 (-396 *3)) (-5 *1 (-38 *3))
+ (-4 *3 (-1149 (-47)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1149 (-47)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1090)) (-4 *5 (-13 (-517) (-967 (-525)) (-138)))
- (-5 *2 (-542 (-385 (-886 *5)))) (-5 *1 (-531 *5))
- (-5 *3 (-385 (-886 *5))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *3))
- (-4 *3 (-1126))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1126))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1120 *4 *5 *3 *2)) (-4 *4 (-517))
- (-4 *5 (-735)) (-4 *3 (-789)) (-4 *2 (-990 *4 *5 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-5 *1 (-1124 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103))))
- ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198))))
- ((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462))))
- ((*1 *1 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)) (-4 *2 (-286))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525))))
- ((*1 *1 *1) (-4 *1 (-985))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
- (-5 *2 (-1172 (-632 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-1172 (-632 *4))) (-5 *1 (-394 *3 *4))
- (-4 *3 (-395 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1172 (-632 *3)))))
+ (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735))
+ (-5 *2 (-396 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-884 (-47) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-1090))) (-4 *5 (-341))
- (-5 *2 (-1172 (-632 (-385 (-886 *5))))) (-5 *1 (-1007 *5))
- (-5 *4 (-632 (-385 (-886 *5))))))
+ (-12 (-5 *4 (-592 (-47))) (-4 *5 (-789)) (-4 *6 (-735))
+ (-4 *7 (-884 (-47) *6 *5)) (-5 *2 (-396 (-1087 *7)))
+ (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1087 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-155 *4 *3))
+ (-4 *3 (-1149 (-157 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-1090))) (-4 *5 (-341))
- (-5 *2 (-1172 (-632 (-886 *5)))) (-5 *1 (-1007 *5))
- (-5 *4 (-632 (-886 *5)))))
+ (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4)))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341))
- (-5 *2 (-1172 (-632 *4))) (-5 *1 (-1007 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1163 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1021 *3)) (-5 *1 (-839 *3)) (-4 *3 (-346))
- (-4 *3 (-1019)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2))
- (-4 *4 (-351 *2)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1145 *4 *5)) (-5 *3 (-592 *5)) (-14 *4 (-1090))
- (-4 *5 (-341)) (-5 *1 (-857 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *5)) (-4 *5 (-341)) (-5 *2 (-1086 *5))
- (-5 *1 (-857 *4 *5)) (-14 *4 (-1090))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-592 *6)) (-5 *4 (-713)) (-4 *6 (-341))
- (-5 *2 (-385 (-886 *6))) (-5 *1 (-977 *5 *6)) (-14 *5 (-1090)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-924 *2)) (-4 *2 (-517)) (-5 *1 (-133 *2 *4 *3))
- (-4 *3 (-351 *4))))
+ (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-924 *2)) (-4 *2 (-517)) (-5 *1 (-476 *2 *4 *5 *3))
- (-4 *5 (-351 *2)) (-4 *3 (-351 *4))))
+ (-12 (-4 *4 (-327)) (-5 *2 (-396 *3)) (-5 *1 (-197 *4 *3))
+ (-4 *3 (-1149 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-632 *4)) (-4 *4 (-924 *2)) (-4 *2 (-517))
- (-5 *1 (-635 *2 *4))))
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
+ (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 (-713))) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
+ (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-592 (-713))) (-5 *5 (-713)) (-5 *2 (-396 *3))
+ (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-713)) (-5 *2 (-396 *3)) (-5 *1 (-419 *3))
+ (-4 *3 (-1149 (-525)))))
((*1 *2 *3)
- (-12 (-4 *4 (-924 *2)) (-4 *2 (-517)) (-5 *1 (-1141 *2 *4 *3))
- (-4 *3 (-1148 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517))
- (-4 *3 (-883 *7 *5 *6))
- (-5 *2
- (-2 (|:| -1600 (-713)) (|:| -1459 *3) (|:| |radicand| (-592 *3))))
- (-5 *1 (-887 *5 *6 *7 *3 *8)) (-5 *4 (-713))
- (-4 *8
- (-13 (-341)
- (-10 -8 (-15 -1303 (*3 $)) (-15 -1312 (*3 $)) (-15 -1908 ($ *3))))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-713)) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-976)) (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
- (-4 *5 (-218 *3 *2)))))
-(((*1 *1 *1 *1) (-5 *1 (-797))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-294 (-357))) (-5 *2 (-294 (-205))) (-5 *1 (-284)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-632 *4)) (-4 *4 (-976)) (-5 *1 (-1057 *3 *4))
- (-14 *3 (-713)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))))
+ (-12 (-5 *2 (-396 (-157 (-525)))) (-5 *1 (-423))
+ (-5 *3 (-157 (-525)))))
+ ((*1 *2 *3)
+ (-12
+ (-4 *4
+ (-13 (-789)
+ (-10 -8 (-15 -2749 ((-1091) $))
+ (-15 -2577 ((-3 $ "failed") (-1091))))))
+ (-4 *5 (-735)) (-4 *7 (-517)) (-5 *2 (-396 *3))
+ (-5 *1 (-433 *4 *5 *6 *7 *3)) (-4 *6 (-517))
+ (-4 *3 (-884 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-286)) (-5 *2 (-396 (-1087 *4))) (-5 *1 (-435 *4))
+ (-5 *3 (-1087 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1149 *5)) (-4 *5 (-341))
+ (-4 *7 (-13 (-341) (-138) (-667 *5 *6))) (-5 *2 (-396 *3))
+ (-5 *1 (-467 *5 *6 *7 *3)) (-4 *3 (-1149 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-396 (-1087 *7)) (-1087 *7)))
+ (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735))
+ (-5 *2 (-396 *3)) (-5 *1 (-505 *5 *6 *7 *3))
+ (-4 *3 (-884 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-396 (-1087 *7)) (-1087 *7)))
+ (-4 *7 (-13 (-286) (-138))) (-4 *5 (-789)) (-4 *6 (-735))
+ (-4 *8 (-884 *7 *6 *5)) (-5 *2 (-396 (-1087 *8)))
+ (-5 *1 (-505 *5 *6 *7 *8)) (-5 *3 (-1087 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-592 *5) *6))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *6 (-1149 *5)) (-5 *2 (-592 (-599 (-385 *6))))
+ (-5 *1 (-603 *5 *6)) (-5 *3 (-599 (-385 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *5 (-1149 *4)) (-5 *2 (-592 (-599 (-385 *5))))
+ (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-617 *4)))
+ (-5 *1 (-617 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-525)) (-5 *2 (-592 *3)) (-5 *1 (-638 *3))
+ (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327)) (-5 *2 (-396 *3))
+ (-5 *1 (-640 *4 *5 *6 *3)) (-4 *3 (-884 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-327))
+ (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-396 (-1087 *7)))
+ (-5 *1 (-640 *4 *5 *6 *7)) (-5 *3 (-1087 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-735))
+ (-4 *5
+ (-13 (-789)
+ (-10 -8 (-15 -2749 ((-1091) $))
+ (-15 -2577 ((-3 $ "failed") (-1091))))))
+ (-4 *6 (-286)) (-5 *2 (-396 *3)) (-5 *1 (-673 *4 *5 *6 *3))
+ (-4 *3 (-884 (-887 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-735))
+ (-4 *5 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $))))) (-4 *6 (-517))
+ (-5 *2 (-396 *3)) (-5 *1 (-675 *4 *5 *6 *3))
+ (-4 *3 (-884 (-385 (-887 *6)) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-13 (-286) (-138)))
+ (-5 *2 (-396 *3)) (-5 *1 (-676 *4 *5 *6 *3))
+ (-4 *3 (-884 (-385 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138)))
+ (-5 *2 (-396 *3)) (-5 *1 (-684 *4 *5 *6 *3))
+ (-4 *3 (-884 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-13 (-286) (-138)))
+ (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-396 (-1087 *7)))
+ (-5 *1 (-684 *4 *5 *6 *7)) (-5 *3 (-1087 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-939 *3))
+ (-4 *3 (-1149 (-385 (-525))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-971 *3))
+ (-4 *3 (-1149 (-385 (-887 (-525)))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1149 (-385 (-525))))
+ (-4 *5 (-13 (-341) (-138) (-667 (-385 (-525)) *4)))
+ (-5 *2 (-396 *3)) (-5 *1 (-1002 *4 *5 *3)) (-4 *3 (-1149 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1149 (-385 (-887 (-525)))))
+ (-4 *5 (-13 (-341) (-138) (-667 (-385 (-887 (-525))) *4)))
+ (-5 *2 (-396 *3)) (-5 *1 (-1004 *4 *5 *3)) (-4 *3 (-1149 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429))
+ (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1087 (-385 *7))))
+ (-5 *1 (-1086 *4 *5 *6 *7)) (-5 *3 (-1087 (-385 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1131))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-396 *3)) (-5 *1 (-1138 *3)) (-4 *3 (-1149 (-525))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517))
- (-5 *2 (-1086 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-561 *2)) (-4 *2 (-1019))))
- ((*1 *1 *1) (-5 *1 (-581))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))))
-(((*1 *1) (-5 *1 (-308))))
+ (-12 (-5 *2 (-592 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-542 *3)) (-4 *3 (-341)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-286)) (-4 *3 (-924 *2)) (-4 *4 (-1148 *3))
- (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-967 *3))))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2 (-592 (-205))) (-5 *1 (-186)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1043 *4 *3 *5))) (-4 *4 (-37 (-385 (-525))))
- (-4 *4 (-976)) (-4 *3 (-789)) (-4 *5 (-883 *4 (-497 *3) *3))
- (-5 *1 (-1043 *4 *3 *5))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1121 *4))) (-5 *3 (-1090))
- (-4 *4 (-37 (-385 (-525)))) (-4 *4 (-976)) (-5 *1 (-1121 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1104 *4 *5))
- (-4 *4 (-1019)) (-4 *5 (-1019)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-525))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-965))
- (-5 *1 (-691)))))
-(((*1 *2 *1 *2 *3)
- (-12 (-5 *2 (-1073)) (-5 *3 (-592 (-1073))) (-5 *1 (-1173))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1173))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1173))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *2 (-1073)) (-5 *3 (-592 (-1073))) (-5 *1 (-1174))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1174))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1174)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-976)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1148 *3)))))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *1 *1) (-4 *1 (-1116))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1074)) (-5 *1 (-1109)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-690)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-855)) (-4 *6 (-13 (-517) (-789)))
- (-5 *2 (-592 (-294 *6))) (-5 *1 (-201 *5 *6)) (-5 *3 (-294 *6))
- (-4 *5 (-976))))
- ((*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-542 *5)) (-4 *5 (-13 (-29 *4) (-1112)))
- (-4 *4 (-13 (-429) (-967 (-525)) (-789) (-588 (-525))))
- (-5 *2 (-592 *5)) (-5 *1 (-540 *4 *5))))
+ (-12 (-4 *5 (-1020)) (-4 *3 (-835 *5)) (-5 *2 (-1173 *3))
+ (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3))
+ (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1091)) (-5 *2 (-108))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-108)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1127))
+ (-4 *5 (-351 *4)) (-4 *3 (-351 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-840 *3))) (-4 *3 (-1020)) (-5 *1 (-839 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1131)) (-4 *3 (-1149 *4))
+ (-4 *5 (-1149 (-385 *3))) (-5 *2 (-108))))
((*1 *2 *3)
- (-12 (-5 *3 (-542 (-385 (-886 *4))))
- (-4 *4 (-13 (-429) (-967 (-525)) (-789) (-588 (-525))))
- (-5 *2 (-592 (-294 *4))) (-5 *1 (-545 *4))))
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-161 *3)) (-4 *3 (-286))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-619 *3)) (-4 *3 (-1127))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-683 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-789))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *1 (-913 *3)) (-4 *3 (-977))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-996 *4 *5 *6 *7))
+ (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-592 *1)) (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1))
+ (-4 *1 (-996 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1151 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734)))))
+(((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-713))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-380)) (-5 *2 (-713)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-341)) (-4 *2 (-787)) (-5 *1 (-880 *2 *3))
+ (-4 *3 (-1149 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1149 (-525)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1149 (-525))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510))
+ (-5 *2 (-385 (-525)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510))
+ (-4 *3 (-517))))
+ ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-385 (-525)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510))
+ (-5 *2 (-385 (-525)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510))
+ (-4 *3 (-1020))))
((*1 *2 *1)
- (-12 (-4 *1 (-1015 *3 *2)) (-4 *3 (-787)) (-4 *2 (-1064 *3))))
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510))
+ (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-929 *3)) (-4 *3 (-160)) (-4 *3 (-510))
+ (-5 *2 (-385 (-525)))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 *1)) (-4 *1 (-1015 *4 *2)) (-4 *4 (-787))
- (-4 *2 (-1064 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112)))))
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-940 *3))
+ (-4 *3 (-968 (-385 (-525)))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-977)) (-4 *4 (-1020)) (-5 *2 (-592 *1))
+ (-4 *1 (-360 *3 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-1185 (-1090) *3)) (-5 *1 (-1192 *3)) (-4 *3 (-976))))
+ (-12 (-5 *2 (-592 (-678 *3 *4))) (-5 *1 (-678 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-669))))
((*1 *2 *1)
- (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-976)))))
-(((*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1073)) (-5 *1 (-728)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3))
- (-4 *3 (-13 (-341) (-1112) (-933))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-1049 *4 *2))
- (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4254) (-6 -4255))))))
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-884 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
((*1 *2 *2)
- (-12 (-4 *3 (-789)) (-4 *3 (-1126)) (-5 *1 (-1049 *3 *2))
- (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4254) (-6 -4255)))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-205))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-385 (-525))) (-5 *1 (-357)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4254)) (-4 *1 (-464 *3)) (-4 *3 (-1126))
- (-4 *3 (-1019)) (-5 *2 (-713))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4254)) (-4 *1 (-464 *4))
- (-4 *4 (-1126)) (-5 *2 (-713)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-5 *1 (-830 *2 *4))
- (-4 *2 (-1148 *4)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-227 *5 *6)) (-5 *3 (-592 *6))
- (-5 *4 (-592 (-227 *5 *6))) (-14 *5 (-592 (-1090))) (-4 *6 (-429))
- (-5 *1 (-580 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *1 *1) (-4 *1 (-1116))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1091)) (-5 *1 (-620 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-525)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *2 (-1177)) (-5 *1 (-426 *4 *5 *6 *7)) (-4 *7 (-883 *4 *5 *6)))))
+ (-12 (-5 *3 (-592 (-2 (|:| |deg| (-713)) (|:| -2693 *5))))
+ (-4 *5 (-1149 *4)) (-4 *4 (-327)) (-5 *2 (-592 *5))
+ (-5 *1 (-197 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-2 (|:| -2195 *5) (|:| -1587 (-525)))))
+ (-5 *4 (-525)) (-4 *5 (-1149 (-525))) (-5 *2 (-592 *5))
+ (-5 *1 (-638 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-504 *4 *2 *5 *6))
- (-4 *4 (-286)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-713))))))
+ (-12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-592 *5))
+ (-5 *1 (-825 *4 *5)) (-4 *5 (-1127)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-827 *4)) (-4 *4 (-1020)) (-5 *2 (-108))
+ (-5 *1 (-824 *4 *5)) (-4 *5 (-1020))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-827 *5)) (-4 *5 (-1020)) (-5 *2 (-108))
+ (-5 *1 (-825 *5 *3)) (-4 *3 (-1127))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *6)) (-5 *4 (-827 *5)) (-4 *5 (-1020))
+ (-4 *6 (-1127)) (-5 *2 (-108)) (-5 *1 (-825 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25))))))
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-789)) (-5 *2 (-592 (-610 *4 *5)))
+ (-5 *1 (-576 *4 *5 *6)) (-4 *5 (-13 (-160) (-660 (-385 (-525)))))
+ (-14 *6 (-856)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-501)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-632 (-294 (-205))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))))
- (-5 *1 (-187)))))
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1178))
+ (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-878 *4)) (-4 *4 (-977)) (-5 *1 (-1080 *3 *4))
+ (-14 *3 (-856)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-761 *3)) (-4 *3 (-789)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-525)) (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-1124)))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4257 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2))
+ (-4 *2 (-977)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1149 *2))
+ (-4 *4 (-630 *2 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3))
+ (-4 *3 (-1149 (-157 *2)))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3))
+ (-4 *3 (-1149 (-157 *2))))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-224 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-1161 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-1161 *2)) (-4 *2 (-1127)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-856)) (-4 *1 (-687 *3)) (-4 *3 (-160)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735))
+ (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-884 *4 *5 *6)))))
+(((*1 *2)
+ (-12
+ (-5 *2 (-2 (|:| -3716 (-592 (-1091))) (|:| -2913 (-592 (-1091)))))
+ (-5 *1 (-1129)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-825 *4 *3))
+ (-4 *3 (-1127))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-682 *3)))))
+(((*1 *1) (-5 *1 (-205))) ((*1 *1) (-5 *1 (-357))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1087 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-351 *3)) (-4 *3 (-1127)) (-4 *3 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *1 (-351 *4)) (-4 *4 (-1127))
+ (-5 *2 (-108)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))))
+ (-12 (-5 *3 (-840 *4)) (-4 *4 (-1020)) (-5 *2 (-592 (-713)))
+ (-5 *1 (-839 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-550 *3))
+ (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-977)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-884 *3 *5 *4)) (-5 *1 (-920 *3 *4 *5 *2))
+ (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-1 (-108) *5 *5))
+ (-5 *4 (-592 *5)) (-4 *5 (-789)) (-5 *1 (-1099 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-565 *1)) (-4 *1 (-408 *4)) (-4 *4 (-789))
+ (-4 *4 (-517)) (-5 *2 (-385 (-1087 *1)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-565 *3)) (-4 *3 (-13 (-408 *6) (-27) (-1113)))
+ (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2 (-1087 (-385 (-1087 *3)))) (-5 *1 (-521 *6 *3 *7))
+ (-5 *5 (-1087 *3)) (-4 *7 (-1020))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1169 *5)) (-14 *5 (-1091)) (-4 *6 (-977))
+ (-5 *2 (-1146 *5 (-887 *6))) (-5 *1 (-882 *5 *6)) (-5 *3 (-887 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-1087 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789)) (-5 *2 (-1087 *1))
+ (-4 *1 (-884 *4 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-977))
+ (-4 *7 (-884 *6 *5 *4)) (-5 *2 (-385 (-1087 *3)))
+ (-5 *1 (-885 *5 *4 *6 *7 *3))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $)) (-15 -1512 (*7 $)))))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1087 *3))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $)) (-15 -1512 (*7 $)))))
+ (-4 *7 (-884 *6 *5 *4)) (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-977))
+ (-5 *1 (-885 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1091)) (-4 *5 (-517))
+ (-5 *2 (-385 (-1087 (-385 (-887 *5))))) (-5 *1 (-973 *5))
+ (-5 *3 (-385 (-887 *5))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-138))
+ (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *1 (-910 *3 *4 *5 *6)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327)) (-5 *2 (-891 (-1037)))
- (-5 *1 (-324 *4)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1090)) (-5 *3 (-412)) (-4 *5 (-789))
- (-5 *1 (-1025 *5 *4)) (-4 *4 (-408 *5)))))
-(((*1 *1 *2 *2)
+ (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2 (-592 *4)) (-5 *1 (-1046 *3 *4)) (-4 *3 (-1149 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
+ (-5 *2 (-592 *3)) (-5 *1 (-1046 *4 *3)) (-4 *4 (-1149 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1022 (-1022 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-1173 *4))
+ (-5 *1 (-756 *4 *3)) (-4 *3 (-602 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
+ ((*1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3 *2)
(-12
(-5 *2
- (-3 (|:| I (-294 (-525))) (|:| -1346 (-294 (-357)))
- (|:| CF (-294 (-157 (-357)))) (|:| |switch| (-1089))))
- (-5 *1 (-1089)))))
-(((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
- (-5 *2
- (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525))
- (|:| |success| (-108))))
- (-5 *1 (-731)) (-5 *5 (-525)))))
+ (-592
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-713)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-735)) (-4 *6 (-884 *4 *3 *5)) (-4 *4 (-429)) (-4 *5 (-789))
+ (-5 *1 (-426 *4 *3 *5 *6)))))
+(((*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1173 *1)) (-4 *1 (-345 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1087 (-525))) (-5 *2 (-525)) (-5 *1 (-877)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-592 (-1087 *11))) (-5 *3 (-1087 *11))
+ (-5 *4 (-592 *10)) (-5 *5 (-592 *8)) (-5 *6 (-592 (-713)))
+ (-5 *7 (-1173 (-592 (-1087 *8)))) (-4 *10 (-789))
+ (-4 *8 (-286)) (-4 *11 (-884 *8 *9 *10)) (-4 *9 (-735))
+ (-5 *1 (-650 *9 *10 *8 *11)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 (-592 *4))) (-5 *3 (-592 (-592 (-592 *4))))
- (-4 *4 (-789)) (-5 *1 (-1098 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-797))))
- ((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-895)))))
+ (-12 (-4 *3 (-341)) (-5 *1 (-956 *3 *2)) (-4 *2 (-602 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| -4216 *3) (|:| -1238 (-592 *5))))
+ (-5 *1 (-956 *5 *3)) (-5 *4 (-592 *5)) (-4 *3 (-602 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-565 *4)) (-5 *1 (-564 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-789)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1106)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-1146 *5 *4)) (-5 *1 (-1089 *4 *5 *6))
+ (-4 *4 (-977)) (-14 *5 (-1091)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-1146 *5 *4)) (-5 *1 (-1165 *4 *5 *6))
+ (-4 *4 (-977)) (-14 *5 (-1091)) (-14 *6 *4))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1091))) (-4 *5 (-977))
+ (-5 *2 (-227 *4 *5)) (-5 *1 (-879 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1022 *4)) (-4 *4 (-1020)) (-5 *2 (-1 *4))
+ (-5 *1 (-949 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1015 (-525))) (-5 *2 (-1 (-525))) (-5 *1 (-975)))))
+(((*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-713)) (-5 *1 (-546)))))
+(((*1 *2 *1) (-12 (-4 *1 (-968 (-525))) (-4 *1 (-281)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-108))
+ (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-4 *3 (-13 (-27) (-1113) (-408 *6) (-10 -8 (-15 -1270 ($ *7)))))
+ (-4 *7 (-787))
+ (-4 *8
+ (-13 (-1151 *3 *7) (-341) (-1113)
+ (-10 -8 (-15 -2523 ($ $)) (-15 -2650 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1074)) (|:| |prob| (-1074))))))
+ (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1074)) (-4 *9 (-916 *8))
+ (-14 *10 (-1091)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1015 (-782 (-357)))) (-5 *2 (-1015 (-782 (-205))))
+ (-5 *1 (-284)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1173))))
- ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4254)) (-4 *1 (-464 *4))
- (-4 *4 (-1126)) (-5 *2 (-108)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242)))))
+ (-12 (-4 *1 (-232 *2 *3 *4 *5)) (-4 *2 (-977)) (-4 *3 (-789))
+ (-4 *4 (-245 *3)) (-4 *5 (-735)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-1149 *4)) (-4 *4 (-977))
+ (-5 *2 (-1173 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090))
- (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5))))
- (-5 *1 (-1046 *5))))
+ (-12 (-5 *4 (-1091))
+ (-4 *5 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-542 *3)) (-5 *1 (-404 *5 *3))
+ (-4 *3 (-13 (-1113) (-29 *5))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-341) (-968 (-385 (-525))))) (-5 *2 (-525))
+ (-5 *1 (-111 *4 *3)) (-4 *3 (-1149 *4)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-592 (-1091))) (-4 *2 (-160))
+ (-4 *3 (-218 (-3596 *4) (-713)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -3640 *5) (|:| -1864 *3))
+ (-2 (|:| -3640 *5) (|:| -1864 *3))))
+ (-5 *1 (-438 *4 *2 *5 *3 *6 *7)) (-4 *5 (-789))
+ (-4 *7 (-884 *2 *3 (-800 *4))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1024)) (-5 *1 (-259)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-517) (-138))) (-5 *2 (-592 *3))
+ (-5 *1 (-1143 *4 *3)) (-4 *3 (-1149 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641))))
+ ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1015 (-205)))
+ (-5 *2 (-1175)) (-5 *1 (-236)))))
+(((*1 *1) (-5 *1 (-270))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *2 (-966))
+ (-5 *1 (-698))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-366))
+ (-5 *2 (-966)) (-5 *1 (-698)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-273 *6)) (-5 *4 (-110)) (-4 *6 (-408 *5))
+ (-4 *5 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
+ (-5 *1 (-295 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-273 *7)) (-5 *4 (-110)) (-5 *5 (-592 *7))
+ (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501))))
+ (-5 *2 (-51)) (-5 *1 (-295 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-592 (-273 *7))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7))
+ (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501))))
+ (-5 *2 (-51)) (-5 *1 (-295 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-592 (-273 *8))) (-5 *4 (-592 (-110))) (-5 *5 (-273 *8))
+ (-5 *6 (-592 *8)) (-4 *8 (-408 *7))
+ (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
+ (-5 *1 (-295 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-592 *7)) (-5 *4 (-592 (-110))) (-5 *5 (-273 *7))
+ (-4 *7 (-408 *6)) (-4 *6 (-13 (-789) (-517) (-567 (-501))))
+ (-5 *2 (-51)) (-5 *1 (-295 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-110))) (-5 *5 (-273 *8))
+ (-5 *6 (-592 (-273 *8))) (-4 *8 (-408 *7))
+ (-4 *7 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
+ (-5 *1 (-295 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-273 *5)) (-5 *4 (-110)) (-4 *5 (-408 *6))
+ (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
+ (-5 *1 (-295 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6))
+ (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
+ (-5 *1 (-295 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-4 *3 (-408 *6))
+ (-4 *6 (-13 (-789) (-517) (-567 (-501)))) (-5 *2 (-51))
+ (-5 *1 (-295 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-110)) (-5 *5 (-273 *3)) (-5 *6 (-592 *3))
+ (-4 *3 (-408 *7)) (-4 *7 (-13 (-789) (-517) (-567 (-501))))
+ (-5 *2 (-51)) (-5 *1 (-295 *7 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-327)) (-5 *2 (-1173 *1))))
((*1 *2 *3)
- (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-13 (-286) (-789) (-138)))
- (-5 *2 (-592 (-273 (-294 *4)))) (-5 *1 (-1046 *4))))
+ (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-136)) (-4 *1 (-844))
+ (-5 *2 (-1173 *1)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-153 *3 *4))
+ (-4 *3 (-154 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 (-713)) (-4 *5 (-1127)) (-5 *2 (-713))
+ (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-789)) (-5 *2 (-713)) (-5 *1 (-407 *3 *4))
+ (-4 *3 (-408 *4))))
+ ((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-509 *3)) (-4 *3 (-510))))
+ ((*1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-713))))
+ ((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-738 *3 *4))
+ (-4 *3 (-739 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-924 *3 *4))
+ (-4 *3 (-925 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-928 *3 *4))
+ (-4 *3 (-929 *4))))
+ ((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-943 *3)) (-4 *3 (-944))))
+ ((*1 *2) (-12 (-4 *1 (-977)) (-5 *2 (-713))))
+ ((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-985 *3)) (-4 *3 (-986)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-157 (-357))) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-273 (-385 (-886 *5)))) (-5 *4 (-1090))
- (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *5))))
- (-5 *1 (-1046 *5))))
+ (-12 (-5 *4 (-856)) (-5 *2 (-157 (-357))) (-5 *1 (-727 *3))
+ (-4 *3 (-567 (-357)))))
((*1 *2 *3)
- (-12 (-5 *3 (-273 (-385 (-886 *4))))
- (-4 *4 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-273 (-294 *4))))
- (-5 *1 (-1046 *4))))
+ (-12 (-5 *3 (-157 *4)) (-4 *4 (-160)) (-4 *4 (-567 (-357)))
+ (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-385 (-886 *5)))) (-5 *4 (-592 (-1090)))
- (-4 *5 (-13 (-286) (-789) (-138)))
- (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1046 *5))))
+ (-12 (-5 *3 (-157 *5)) (-5 *4 (-856)) (-4 *5 (-160))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 (-385 (-886 *4))))
- (-4 *4 (-13 (-286) (-789) (-138)))
- (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1046 *4))))
+ (-12 (-5 *3 (-887 (-157 *4))) (-4 *4 (-160)) (-4 *4 (-567 (-357)))
+ (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-273 (-385 (-886 *5))))) (-5 *4 (-592 (-1090)))
- (-4 *5 (-13 (-286) (-789) (-138)))
- (-5 *2 (-592 (-592 (-273 (-294 *5))))) (-5 *1 (-1046 *5))))
+ (-12 (-5 *3 (-887 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-160))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 (-273 (-385 (-886 *4)))))
- (-4 *4 (-13 (-286) (-789) (-138)))
- (-5 *2 (-592 (-592 (-273 (-294 *4))))) (-5 *1 (-1046 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-965)) (-5 *1 (-284))))
- ((*1 *2 *3) (-12 (-5 *3 (-592 (-965))) (-5 *2 (-965)) (-5 *1 (-284))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-597 *3)) (-4 *3 (-1126))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1126))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1126))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1126))))
- ((*1 *1 *1 *1) (-5 *1 (-988)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1071 (-1071 *4))) (-4 *4 (-1126)) (-5 *2 (-1071 *4))
- (-5 *1 (-1068 *4))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-205))))
- ((*1 *1 *1) (-4 *1 (-510)))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-548 *3)) (-14 *3 (-525))))
- ((*1 *2 *1) (-12 (-4 *1 (-1019)) (-5 *2 (-1037)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))))
-(((*1 *1 *1) (-5 *1 (-797))))
-(((*1 *1 *1) (-4 *1 (-510))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1050 (-205))) (-5 *3 (-592 (-242))) (-5 *1 (-1174))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1050 (-205))) (-5 *3 (-1073)) (-5 *1 (-1174))))
- ((*1 *1 *1) (-5 *1 (-1174))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
+ (-12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 (-357)))
+ (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357)))
+ (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-385 (-887 (-157 *4)))) (-4 *4 (-517))
+ (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 (-157 *5)))) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789))
+ (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789))
+ (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357)))
+ (-5 *1 (-727 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1020)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-886 *5)) (-4 *5 (-976)) (-5 *2 (-227 *4 *5))
- (-5 *1 (-878 *4 *5)) (-14 *4 (-592 (-1090))))))
-(((*1 *2 *1) (-12 (-4 *1 (-967 (-525))) (-4 *1 (-281)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357))
+ (|:| |expense| (-357)) (|:| |accuracy| (-357))
+ (|:| |intermediateResults| (-357))))
+ (-5 *2 (-966)) (-5 *1 (-284)))))
+(((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3))
+ (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-884 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286))
+ (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1087 *7)))
+ (-5 *1 (-685 *4 *5 *6 *7)) (-5 *3 (-1087 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-429)) (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-396 *1)) (-4 *1 (-884 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-429)) (-5 *2 (-396 *3))
+ (-5 *1 (-912 *4 *5 *6 *3)) (-4 *3 (-884 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429))
+ (-4 *7 (-884 *6 *4 *5)) (-5 *2 (-396 (-1087 (-385 *7))))
+ (-5 *1 (-1086 *4 *5 *6 *7)) (-5 *3 (-1087 (-385 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1131))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-1152 *4 *3))
+ (-4 *3 (-13 (-1149 *4) (-517) (-10 -8 (-15 -2794 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953)))
+ (-14 *5 (-592 (-1091)))
+ (-5 *2
+ (-592 (-1062 *4 (-497 (-800 *6)) (-800 *6) (-722 *4 (-800 *6)))))
+ (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-592 (-1091))))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-592 (-592 (-205)))) (-5 *4 (-205))
+ (-5 *2 (-592 (-878 *4))) (-5 *1 (-1124)) (-5 *3 (-878 *4)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1172 (-592 (-525)))) (-5 *1 (-456))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5)))
- (-5 *2 (-592 (-592 *4))) (-5 *1 (-319 *3 *4 *5 *6))
- (-4 *3 (-320 *4 *5 *6))))
+ (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -1895 *8)))
+ (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-996 *4 *5 *6 *7)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-921 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -1895 *8)))
+ (-4 *7 (-991 *4 *5 *6)) (-4 *8 (-996 *4 *5 *6 *7)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *8)))))
+(((*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-517))))
+ ((*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-702)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-157 (-205))) (-5 *5 (-525))
+ (-5 *6 (-1074)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-153 *3 *2)) (-4 *3 (-154 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1173 *1)) (-4 *1 (-348 *2 *4)) (-4 *4 (-1149 *2))
+ (-4 *2 (-160))))
((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-4 *3 (-346)) (-5 *2 (-592 (-592 *3))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-592 (-1 *4 (-592 *4)))) (-4 *4 (-1019))
- (-5 *1 (-109 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1019))
- (-5 *1 (-109 *4))))
+ (-12 (-4 *4 (-1149 *2)) (-4 *2 (-160)) (-5 *1 (-386 *3 *2 *4))
+ (-4 *3 (-387 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1149 *2)) (-4 *2 (-160))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1149 (-525))) (-5 *2 (-525)) (-5 *1 (-710 *3 *4))
+ (-4 *4 (-387 (-525) *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)) (-4 *3 (-160))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-1 *4 (-592 *4))))
- (-5 *1 (-109 *4)) (-4 *4 (-1019)))))
-(((*1 *2 *2)
+ (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1149 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-977)) (-4 *2 (-160)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4))
+ (-4 *4 (-977))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-977))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713))))
+ ((*1 *1 *1) (-4 *1 (-213)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4))
+ (-4 *4 (-1149 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3))
+ (-4 *3 (-1149 *2))))
+ ((*1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-835 *4))
+ (-4 *4 (-1020))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *1 (-835 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 *3)) (-4 *1 (-835 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-835 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-68 APROD)))) (-5 *2 (-966))
+ (-5 *1 (-699)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1020)) (-4 *3 (-835 *5)) (-5 *2 (-632 *3))
+ (-5 *1 (-634 *5 *3 *6 *4)) (-4 *6 (-351 *3))
+ (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))))))
+(((*1 *2 *3 *2)
(-12
(-5 *2
- (-477 (-385 (-525)) (-220 *4 (-713)) (-799 *3)
- (-227 *3 (-385 (-525)))))
- (-14 *3 (-592 (-1090))) (-14 *4 (-713)) (-5 *1 (-478 *3 *4)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525)))
- (-5 *2 (-965)) (-5 *1 (-699)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108))
- (-5 *6 (-632 (-205)))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))
- (-5 *2 (-965)) (-5 *1 (-696)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-429))
- (-5 *2
(-592
- (-2 (|:| |eigval| (-3 (-385 (-886 *4)) (-1080 (-1090) (-886 *4))))
- (|:| |geneigvec| (-592 (-632 (-385 (-886 *4))))))))
- (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-886 *4)))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-988)) (-5 *3 (-1073)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-565 *3))
- (-5 *6 (-592 (-565 *3))) (-4 *3 (-13 (-27) (-1112) (-408 *7)))
- (-4 *7 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-2 (|:| -2838 *3) (|:| |coeff| *3)))
- (-5 *1 (-518 *7 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-517)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
- (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-132))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-135)))))
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-735)) (-4 *3 (-884 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789))
+ (-5 *1 (-426 *4 *5 *6 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-385 (-525))) (-4 *4 (-967 (-525)))
- (-4 *4 (-13 (-789) (-517))) (-5 *1 (-31 *4 *2)) (-4 *2 (-408 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-128)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
+ (-12 (-5 *2 (-1087 *7)) (-5 *3 (-525)) (-4 *7 (-884 *6 *4 *5))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
+ (-5 *1 (-299 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-205))
+ (-5 *2
+ (-2 (|:| |brans| (-592 (-592 (-878 *4))))
+ (|:| |xValues| (-1015 *4)) (|:| |yValues| (-1015 *4))))
+ (-5 *1 (-144)) (-5 *3 (-592 (-592 (-878 *4)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
+(((*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-986))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091)))
+ (-14 *3 (-592 (-1091))) (-4 *4 (-365))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
(-4 *2 (-408 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-205)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 (-385 (-525))))
- (-4 *5 (-1163 *4)) (-5 *1 (-257 *4 *5 *2)) (-4 *2 (-1134 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-385 (-525))) (-4 *4 (-341)) (-4 *4 (-37 (-385 (-525))))
- (-4 *5 (-1132 *4)) (-5 *1 (-258 *4 *5 *2 *6)) (-4 *2 (-1155 *4 *5))
- (-4 *6 (-915 *5))))
- ((*1 *1 *1 *1) (-4 *1 (-263)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-339 *2)) (-4 *2 (-1019))))
- ((*1 *1 *1 *1) (-5 *1 (-357)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-364 *2)) (-4 *2 (-1019))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-408 *3)) (-4 *3 (-789)) (-4 *3 (-1031))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1172 *4)) (-5 *3 (-525)) (-4 *4 (-327))
- (-5 *1 (-495 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-501))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-501))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *4 (-1019))
- (-5 *1 (-625 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3)) (-4 *3 (-341))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-976))
- (-5 *1 (-633 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-4 *3 (-976)) (-5 *1 (-657 *3 *4))
- (-4 *4 (-594 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-4 *4 (-976))
- (-5 *1 (-657 *4 *5)) (-4 *5 (-594 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-855))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-5 *1 (-761 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-776 *3)) (-4 *3 (-976))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-525)) (-5 *1 (-776 *4)) (-4 *4 (-976))))
- ((*1 *1 *1 *1) (-5 *1 (-797)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-826 *3)) (-4 *3 (-1019))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-933)) (-5 *2 (-385 (-525)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1031)) (-5 *2 (-855))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-1040 *3 *4 *5 *6)) (-4 *4 (-976))
- (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)) (-4 *4 (-341))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1163 *2)) (-4 *2 (-976)) (-4 *2 (-341)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517))
- (-5 *2 (-108)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-986))))
+ ((*1 *1 *1) (-4 *1 (-787)))
+ ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)) (-4 *2 (-986))))
+ ((*1 *1 *1) (-4 *1 (-986))) ((*1 *1 *1) (-4 *1 (-1055))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-957 (-782 (-525)))) (-5 *1 (-550 *3)) (-4 *3 (-977)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2))
+ (-4 *2 (-1149 (-157 *3))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4))
+ (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762))
+ (-14 *5 (-1091)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-51)) (-5 *1 (-771)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-991 *4 *5 *6))
+ (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *1 (-910 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-357)) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-855)) (-5 *2 (-357)) (-5 *1 (-727 *3))
- (-4 *3 (-567 (-357)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-886 *4)) (-4 *4 (-976)) (-4 *4 (-567 (-357)))
- (-5 *2 (-357)) (-5 *1 (-727 *4))))
+ (-12 (-5 *3 (-525)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-977))
+ (-5 *1 (-299 *4 *5 *2 *6)) (-4 *6 (-884 *2 *4 *5)))))
+(((*1 *1 *1) (-4 *1 (-134)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1091))
+ (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-294 *5)))
+ (-5 *1 (-1047 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-886 *5)) (-5 *4 (-855)) (-4 *5 (-976))
- (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5))))
+ (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1091)))
+ (-4 *5 (-13 (-286) (-789) (-138))) (-5 *2 (-592 (-592 (-294 *5))))
+ (-5 *1 (-1047 *5)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-1087 *4)) (-5 *1 (-495 *4))
+ (-4 *4 (-327)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525)))))
+ (-4 *2 (-13 (-789) (-21))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-909 *4 *5 *3 *6)) (-4 *4 (-977)) (-4 *5 (-735))
+ (-4 *3 (-789)) (-4 *6 (-991 *4 *5 *3)) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1149 *5)) (-4 *5 (-341))
+ (-5 *2 (-2 (|:| -1679 (-385 *6)) (|:| |coeff| (-385 *6))))
+ (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1091)) (-5 *6 (-108))
+ (-4 *7 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-4 *3 (-13 (-1113) (-893) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-782 *3)) (|:| |f2| (-592 (-782 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-199 *7 *3)) (-5 *5 (-782 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-525)) (|has| *1 (-6 -4246)) (-4 *1 (-382))
+ (-5 *2 (-856)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -2965 *4))) (-5 *1 (-903 *4 *3))
+ (-4 *3 (-1149 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-592 (-525))) (-5 *3 (-108)) (-5 *1 (-1030)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-108) *8)) (-4 *8 (-991 *5 *6 *7)) (-4 *5 (-517))
+ (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8))))
+ (-5 *1 (-910 *5 *6 *7 *8)) (-5 *4 (-592 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-878 (-205))) (-5 *2 (-1178)) (-5 *1 (-445)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-632 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))))
+(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-1176))))
+ ((*1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1176)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
((*1 *2 *3)
- (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357)))
- (-5 *2 (-357)) (-5 *1 (-727 *4))))
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -3602 *7) (|:| |sol?| (-108)))
+ (-525) *7))
+ (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1149 *7))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| (-385 *8))
+ (|:| |limitedlogs|
+ (-592
+ (-2 (|:| |coeff| (-385 *8))
+ (|:| |logand| (-385 *8)))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-535 *7 *8)) (-5 *3 (-385 *8)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
+ (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-592
+ (-2
+ (|:| -3423
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1173 (-294 (-205))))
+ (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205)))
+ (|:| |g| (-294 (-205))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (|:| -2544
+ (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357))
+ (|:| |expense| (-357)) (|:| |accuracy| (-357))
+ (|:| |intermediateResults| (-357)))))))
+ (-5 *1 (-745)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1516 *4)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))
+ (-5 *2 (-966)) (-5 *1 (-692))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-59 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-85 BDYVAL))))
+ (-5 *8 (-366)) (-5 *2 (-966)) (-5 *1 (-692)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1149 *6))
+ (-4 *6 (-13 (-27) (-408 *5)))
+ (-4 *5 (-13 (-789) (-517) (-968 (-525)))) (-4 *8 (-1149 (-385 *7)))
+ (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3))
+ (-4 *3 (-320 *6 *7 *8)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-357)) (-5 *1 (-728)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-694)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-690)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1127)) (-4 *3 (-351 *2))
+ (-4 *4 (-351 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-558 *3 *2)) (-4 *3 (-1020))
+ (-4 *2 (-1127)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-468)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4255)) (-4 *1 (-464 *3)) (-4 *3 (-1127))
+ (-4 *3 (-1020)) (-5 *2 (-713))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-108) *4)) (|has| *1 (-6 -4255)) (-4 *1 (-464 *4))
+ (-4 *4 (-1127)) (-5 *2 (-713)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-286))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-722 *5 (-800 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
+ (-14 *6 (-592 (-1091)))
+ (-5 *2
+ (-592 (-1062 *5 (-497 (-800 *6)) (-800 *6) (-722 *5 (-800 *6)))))
+ (-5 *1 (-577 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2968 (-592 (-798))) (|:| -2017 (-592 (-798)))
+ (|:| |presup| (-592 (-798))) (|:| -1391 (-592 (-798)))
+ (|:| |args| (-592 (-798)))))
+ (-5 *1 (-1091)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1056 *5 *6)) (-5 *4 (-1 (-108) *6 *6))
+ (-4 *5 (-13 (-1020) (-33))) (-4 *6 (-13 (-1020) (-33)))
+ (-5 *2 (-108)) (-5 *1 (-1057 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-1100 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-426 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2 (-525)) (-5 *1 (-186)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -1679 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-341)) (-4 *7 (-1149 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6))
+ (-2 (|:| -1679 (-385 *7)) (|:| |coeff| (-385 *7))) "failed"))
+ (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-855)) (-4 *5 (-517))
- (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5))))
+ (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4))))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-517) (-138)))
+ (-5 *2 (-2 (|:| -3593 *3) (|:| -3602 *3))) (-5 *1 (-1143 *4 *3))
+ (-4 *3 (-1149 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-304 *2 *3)) (-4 *3 (-734)) (-4 *2 (-977))
+ (-4 *2 (-429))))
((*1 *2 *3)
- (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789))
- (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-294 *5)) (-5 *4 (-855)) (-4 *5 (-517)) (-4 *5 (-789))
- (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))))
-(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-412))
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-1149 (-525))) (-5 *2 (-592 (-525)))
+ (-5 *1 (-461 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-429))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)) (-4 *3 (-429)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-713)) (-4 *4 (-977)) (-5 *1 (-1145 *4 *2))
+ (-4 *2 (-1149 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1113) (-934)))
+ (-5 *1 (-163 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-977))
+ (-4 *2 (-13 (-382) (-968 *4) (-341) (-1113) (-263)))
+ (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1149 *4))))
+ ((*1 *1 *1) (-4 *1 (-510)))
+ ((*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-856)) (-5 *1 (-621 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-761 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-828 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1) (-12 (-4 *1 (-927 *3)) (-4 *3 (-1127)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1125 *3)) (-4 *3 (-1127))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-934))
+ (-4 *2 (-977)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *7)) (-4 *7 (-789))
+ (-4 *8 (-884 *5 *6 *7)) (-4 *5 (-517)) (-4 *6 (-735))
(-5 *2
- (-592
- (-3 (|:| -1310 (-1090))
- (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525)))))))))
- (-5 *1 (-1094)))))
+ (-2 (|:| |particular| (-3 (-1173 (-385 *8)) "failed"))
+ (|:| -1449 (-592 (-1173 (-385 *8))))))
+ (-5 *1 (-615 *5 *6 *7 *8)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160))))
+ ((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2))))
+ ((*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1113) (-934)))
+ (-5 *1 (-163 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1149 *5))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |c| (-385 *6))
+ (|:| -3278 *6)))
+ (-5 *1 (-947 *5 *6)) (-5 *3 (-385 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1113)))))
+ ((*1 *1 *1 *1) (-4 *1 (-735))))
(((*1 *2 *1)
- (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517))
- (-5 *2 (-108)))))
+ (-12 (-4 *2 (-1127)) (-5 *1 (-808 *3 *2)) (-4 *3 (-1127))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-517)) (-4 *4 (-924 *3)) (-5 *1 (-133 *3 *4 *2))
- (-4 *2 (-351 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-924 *4)) (-4 *2 (-351 *4))
- (-5 *1 (-476 *4 *5 *2 *3)) (-4 *3 (-351 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-632 *5)) (-4 *5 (-924 *4)) (-4 *4 (-517))
- (-5 *2 (-632 *4)) (-5 *1 (-635 *4 *5))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-966)) (-5 *1 (-284))))
+ ((*1 *2 *3) (-12 (-5 *3 (-592 (-966))) (-5 *2 (-966)) (-5 *1 (-284))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-597 *3)) (-4 *3 (-1127))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-597 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *1 *1) (-5 *1 (-989)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1072 (-1072 *4))) (-4 *4 (-1127)) (-5 *2 (-1072 *4))
+ (-5 *1 (-1069 *4))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-108))
+ (-5 *1 (-920 *3 *4 *5 *6)) (-4 *6 (-884 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
+ (-4 *4 (-13 (-1020) (-33))))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-205))))
+ ((*1 *1 *1) (-4 *1 (-510)))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-548 *3)) (-14 *3 (-525))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1020)) (-5 *2 (-1038)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-290)) (-5 *1 (-771)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
+ (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1127)) (-5 *1 (-353 *4 *2))
+ (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4256)))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-297 *3 *4 *5))
+ (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1091)) (-14 *5 *3))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-174)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-903 *4 *2))
+ (-4 *2 (-1149 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-565 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *4)))
+ (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-256 *4 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-517) (-789) (-968 (-525)))) (-5 *1 (-170 *3 *2))
+ (-4 *2 (-13 (-27) (-1113) (-408 (-157 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-517) (-789) (-968 (-525))))
+ (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-408 (-157 *4))))))
((*1 *2 *2)
- (-12 (-4 *3 (-517)) (-4 *4 (-924 *3)) (-5 *1 (-1141 *3 *4 *2))
- (-4 *2 (-1148 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
+ (-12 (-4 *3 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1117 *3 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1091))
+ (-4 *4 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-1117 *4 *2)) (-4 *2 (-13 (-27) (-1113) (-408 *4))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-856)) (-5 *1 (-419 *2))
+ (-4 *2 (-1149 (-525)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-856)) (-5 *4 (-713)) (-5 *1 (-419 *2))
+ (-4 *2 (-1149 (-525)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *1 (-419 *2))
+ (-4 *2 (-1149 (-525)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *5 (-713))
+ (-5 *1 (-419 *2)) (-4 *2 (-1149 (-525)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-856)) (-5 *4 (-592 (-713))) (-5 *5 (-713))
+ (-5 *6 (-108)) (-5 *1 (-419 *2)) (-4 *2 (-1149 (-525)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-396 *2)) (-4 *2 (-1149 *5))
+ (-5 *1 (-421 *5 *2)) (-4 *5 (-977)))))
+(((*1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-346)) (-4 *2 (-1020)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1127)) (-4 *2 (-789))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-261 *3)) (-4 *3 (-1127))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-902 *2)) (-4 *2 (-789)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-966))
+ (-5 *1 (-691)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-525))) (-4 *3 (-977)) (-5 *1 (-94 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-94 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-977)) (-5 *1 (-94 *3)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-713)) (-5 *4 (-856)) (-5 *2 (-1178)) (-5 *1 (-1174))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-713)) (-5 *4 (-856)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-775 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-782 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-108)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-525)) (-5 *1 (-357)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-273 *3))) (-5 *1 (-273 *3)) (-4 *3 (-517))
+ (-4 *3 (-1127)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341)))
+ (-4 *3 (-1149 *4)) (-5 *2 (-108)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-1102 *2)) (-4 *2 (-341)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-525))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-1074)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-690)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-665)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-669)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
(|:| |relerr| (-205))))
(-5 *2
(-2
@@ -9200,10 +12800,10 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1071 (-205)))
+ (-3 (|:| |str| (-1072 (-205)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -4162
+ (|:| -2990
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
@@ -9211,635 +12811,1104 @@
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
(-5 *1 (-520)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-525))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-735)) (-4 *4 (-884 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789))
+ (-5 *1 (-426 *5 *6 *7 *4)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1091))
+ (-5 *4
+ (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091)))))
+ (-5 *5
+ (-592
+ (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091))))))
+ (-5 *6 (-592 (-1091))) (-5 *2 (-1024)) (-5 *1 (-375))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *3 (-1091))
+ (-5 *4
+ (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091)))))
+ (-5 *5
+ (-592
+ (-592 (-3 (|:| |array| (-592 (-1091))) (|:| |scalar| (-1091))))))
+ (-5 *6 (-592 (-1091))) (-5 *2 (-1024)) (-5 *1 (-375))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-1091)) (-5 *4 (-592 (-1091))) (-5 *5 (-1094))
+ (-5 *2 (-1024)) (-5 *1 (-375)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-294 *3)) (-4 *3 (-517)) (-4 *3 (-789)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-174)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834)))) (-5 *2 (-966))
+ (-5 *1 (-689)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-884 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-403 *3)) (-4 *3 (-1020)) (-5 *2 (-713)))))
+(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-341)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4)))
+ (-5 *2 (-1173 *6)) (-5 *1 (-314 *3 *4 *5 *6))
+ (-4 *6 (-320 *3 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *5 (-346))
+ (-5 *2 (-713)))))
+(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-695)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-415)))))
+(((*1 *1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1020)) (-4 *2 (-346)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-525))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1121 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *5 (-991 *2 *3 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-134)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-117 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-395 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1090))
- (-4 *5 (-13 (-789) (-967 (-525)) (-429) (-588 (-525))))
- (-5 *2 (-2 (|:| -3155 *3) (|:| |nconst| *3))) (-5 *1 (-528 *5 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *5))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-385 (-886 *6)) (-1080 (-1090) (-886 *6))))
- (-5 *5 (-713)) (-4 *6 (-429)) (-5 *2 (-592 (-632 (-385 (-886 *6)))))
- (-5 *1 (-271 *6)) (-5 *4 (-632 (-385 (-886 *6))))))
+ (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1091))
+ (-5 *1 (-241 *2)) (-4 *2 (-1127))))
((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1091)) (-5 *2 (-51))
+ (-5 *1 (-242)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1087 *5)) (-4 *5 (-341)) (-5 *2 (-592 *6))
+ (-5 *1 (-498 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-228)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1072 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1128 *2))
+ (-4 *2 (-1020))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-1020)) (-4 *2 (-789))
+ (-5 *1 (-1128 *2)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
+(((*1 *2 *1)
(-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-385 (-886 *5)) (-1080 (-1090) (-886 *5))))
- (|:| |eigmult| (-713))
- (|:| |eigvec| (-592 (-632 (-385 (-886 *5)))))))
- (-5 *4 (-632 (-385 (-886 *5)))) (-4 *5 (-429)) (-5 *2 (-592 *4))
- (-5 *1 (-271 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-592 (-1086 (-525)))) (-5 *1 (-173)) (-5 *3 (-525)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-110)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-395 *4)))))
+ (-5 *2
+ (-592
+ (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1087 *3))
+ (|:| |logand| (-1087 *3)))))
+ (-5 *1 (-542 *3)) (-4 *3 (-341)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1148 (-385 (-525)))) (-5 *2 (-525))
- (-5 *1 (-847 *4 *3)) (-4 *3 (-1148 (-385 *4))))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-699)))))
-(((*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1093)))))
+ (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-968 (-525)))
+ (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3))
+ (-4 *2
+ (-13 (-341) (-281)
+ (-10 -8 (-15 -1498 ((-1043 *3 (-565 $)) $))
+ (-15 -1512 ((-1043 *3 (-565 $)) $))
+ (-15 -1270 ($ (-1043 *3 (-565 $))))))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-592 (-887 *4))) (-5 *3 (-592 (-1091))) (-4 *4 (-429))
+ (-5 *1 (-853 *4)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-977)) (-5 *1 (-633 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1020)) (-5 *2 (-824 *3 *4)) (-5 *1 (-820 *3 *4 *5))
+ (-4 *3 (-1020)) (-4 *5 (-612 *4)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-694)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735))
- (-4 *7 (-789)) (-4 *8 (-990 *5 *6 *7)) (-5 *2 (-592 *3))
- (-5 *1 (-547 *5 *6 *7 *8 *3)) (-4 *3 (-1028 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-632 *8)) (-4 *8 (-884 *5 *7 *6))
+ (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1091))))
+ (-4 *7 (-735))
+ (-5 *2
+ (-592
+ (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8))
+ (|:| |wcond| (-592 (-887 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1173 (-385 (-887 *5))))
+ (|:| -1449 (-592 (-1173 (-385 (-887 *5))))))))))
+ (-5 *1 (-859 *5 *6 *7 *8)) (-5 *4 (-592 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138)))
+ (-12 (-5 *3 (-632 *8)) (-5 *4 (-592 (-1091))) (-4 *8 (-884 *5 *7 *6))
+ (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1091))))
+ (-4 *7 (-735))
(-5 *2
- (-592 (-2 (|:| -4107 (-1086 *5)) (|:| -4093 (-592 (-886 *5))))))
- (-5 *1 (-1000 *5 *6)) (-5 *3 (-592 (-886 *5)))
- (-14 *6 (-592 (-1090)))))
+ (-592
+ (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8))
+ (|:| |wcond| (-592 (-887 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1173 (-385 (-887 *5))))
+ (|:| -1449 (-592 (-1173 (-385 (-887 *5))))))))))
+ (-5 *1 (-859 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-286) (-138)))
+ (-12 (-5 *3 (-632 *7)) (-4 *7 (-884 *4 *6 *5))
+ (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1091))))
+ (-4 *6 (-735))
(-5 *2
- (-592 (-2 (|:| -4107 (-1086 *4)) (|:| -4093 (-592 (-886 *4))))))
- (-5 *1 (-1000 *4 *5)) (-5 *3 (-592 (-886 *4)))
- (-14 *5 (-592 (-1090)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138)))
+ (-592
+ (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7))
+ (|:| |wcond| (-592 (-887 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1173 (-385 (-887 *4))))
+ (|:| -1449 (-592 (-1173 (-385 (-887 *4))))))))))
+ (-5 *1 (-859 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-632 *9)) (-5 *5 (-856)) (-4 *9 (-884 *6 *8 *7))
+ (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1091))))
+ (-4 *8 (-735))
(-5 *2
- (-592 (-2 (|:| -4107 (-1086 *5)) (|:| -4093 (-592 (-886 *5))))))
- (-5 *1 (-1000 *5 *6)) (-5 *3 (-592 (-886 *5)))
- (-14 *6 (-592 (-1090))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-763)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *4 *5 *6 *7))
- (-4 *4 (-567 (-501))) (-4 *5 (-1126)) (-4 *6 (-1126))
- (-4 *7 (-1126)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-286)) (-4 *6 (-351 *5)) (-4 *4 (-351 *5))
+ (-592
+ (-2 (|:| |eqzro| (-592 *9)) (|:| |neqzro| (-592 *9))
+ (|:| |wcond| (-592 (-887 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1173 (-385 (-887 *6))))
+ (|:| -1449 (-592 (-1173 (-385 (-887 *6))))))))))
+ (-5 *1 (-859 *6 *7 *8 *9)) (-5 *4 (-592 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 (-1091))) (-5 *5 (-856))
+ (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138)))
+ (-4 *7 (-13 (-789) (-567 (-1091)))) (-4 *8 (-735))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2499 (-592 *4))))
- (-5 *1 (-1041 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4)))))
+ (-592
+ (-2 (|:| |eqzro| (-592 *9)) (|:| |neqzro| (-592 *9))
+ (|:| |wcond| (-592 (-887 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1173 (-385 (-887 *6))))
+ (|:| -1449 (-592 (-1173 (-385 (-887 *6))))))))))
+ (-5 *1 (-859 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 *8)) (-5 *4 (-856)) (-4 *8 (-884 *5 *7 *6))
+ (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1091))))
+ (-4 *7 (-735))
+ (-5 *2
+ (-592
+ (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8))
+ (|:| |wcond| (-592 (-887 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1173 (-385 (-887 *5))))
+ (|:| -1449 (-592 (-1173 (-385 (-887 *5))))))))))
+ (-5 *1 (-859 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 *9)) (-5 *5 (-1074))
+ (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138)))
+ (-4 *7 (-13 (-789) (-567 (-1091)))) (-4 *8 (-735)) (-5 *2 (-525))
+ (-5 *1 (-859 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 (-1091))) (-5 *5 (-1074))
+ (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138)))
+ (-4 *7 (-13 (-789) (-567 (-1091)))) (-4 *8 (-735)) (-5 *2 (-525))
+ (-5 *1 (-859 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 *8)) (-5 *4 (-1074)) (-4 *8 (-884 *5 *7 *6))
+ (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1091))))
+ (-4 *7 (-735)) (-5 *2 (-525)) (-5 *1 (-859 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-632 *10)) (-5 *4 (-592 *10)) (-5 *5 (-856))
+ (-5 *6 (-1074)) (-4 *10 (-884 *7 *9 *8)) (-4 *7 (-13 (-286) (-138)))
+ (-4 *8 (-13 (-789) (-567 (-1091)))) (-4 *9 (-735)) (-5 *2 (-525))
+ (-5 *1 (-859 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-632 *10)) (-5 *4 (-592 (-1091))) (-5 *5 (-856))
+ (-5 *6 (-1074)) (-4 *10 (-884 *7 *9 *8)) (-4 *7 (-13 (-286) (-138)))
+ (-4 *8 (-13 (-789) (-567 (-1091)))) (-4 *9 (-735)) (-5 *2 (-525))
+ (-5 *1 (-859 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-632 *9)) (-5 *4 (-856)) (-5 *5 (-1074))
+ (-4 *9 (-884 *6 *8 *7)) (-4 *6 (-13 (-286) (-138)))
+ (-4 *7 (-13 (-789) (-567 (-1091)))) (-4 *8 (-735)) (-5 *2 (-525))
+ (-5 *1 (-859 *6 *7 *8 *9)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1108)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2))
+ (-4 *2 (-630 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *2 (-761 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1194 *3 *2)) (-4 *3 (-977)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))))
+(((*1 *2)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-5 *2 (-632 (-385 *4))))))
+(((*1 *1) (-5 *1 (-132))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-592 (-1086 *5))) (-5 *3 (-1086 *5))
- (-4 *5 (-154 *4)) (-4 *4 (-510)) (-5 *1 (-140 *4 *5))))
+ (-12 (-5 *2 (-632 *4)) (-5 *3 (-856)) (-4 *4 (-977))
+ (-5 *1 (-959 *4))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-592 *3)) (-4 *3 (-1148 *5))
- (-4 *5 (-1148 *4)) (-4 *4 (-327)) (-5 *1 (-336 *4 *5 *3))))
+ (-12 (-5 *2 (-592 (-632 *4))) (-5 *3 (-856)) (-4 *4 (-977))
+ (-5 *1 (-959 *4)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *2 (-525)) (-5 *4 (-1 (-3 (-525) "failed") *5))
+ (-4 *5 (-977)) (-5 *1 (-508 *5 *3)) (-4 *3 (-1149 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *2 (-525)) (-5 *5 (-1 (-3 (-525) "failed") *4))
+ (-4 *4 (-977)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1149 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-525) "failed") *4)) (-4 *4 (-977))
+ (-5 *2 (-525)) (-5 *1 (-508 *4 *3)) (-4 *3 (-1149 *4)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
+ (-5 *2
+ (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525))
+ (|:| |success| (-108))))
+ (-5 *1 (-731)) (-5 *5 (-525)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 (-887 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4))
+ (-14 *4 (-592 (-1091)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-429))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-427 *3 *4 *5 *6))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-592 (-1086 (-525)))) (-5 *3 (-1086 (-525)))
- (-5 *1 (-533))))
+ (-12 (-5 *2 (-592 *7)) (-5 *3 (-1074)) (-4 *7 (-884 *4 *5 *6))
+ (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *1 (-427 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-592 *7)) (-5 *3 (-1074)) (-4 *7 (-884 *4 *5 *6))
+ (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-5 *1 (-427 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
+ (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-884 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-592 (-722 *3 (-800 *4)))) (-4 *3 (-429))
+ (-14 *4 (-592 (-1091))) (-5 *1 (-577 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
+(((*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-977))))
+ ((*1 *1 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-698)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-127)) (-5 *3 (-713)) (-5 *2 (-1178)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-592 *3)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-395 *4)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-713)) (-4 *5 (-327)) (-4 *6 (-1149 *5))
+ (-5 *2
+ (-592
+ (-2 (|:| -1449 (-632 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-632 *6)))))
+ (-5 *1 (-471 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -1449 (-632 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-632 *6))))
+ (-4 *7 (-1149 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
+ (-14 *4 (-713)) (-4 *5 (-160)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1058 *3 *4)) (-14 *3 (-856)) (-4 *4 (-341))
+ (-5 *1 (-926 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
+ (-4 *2 (-408 *3))))
((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-592 (-1086 *1))) (-5 *3 (-1086 *1))
- (-4 *1 (-843)))))
+ (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2))
+ (-4 *2 (-408 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1091))))
+ ((*1 *1 *1) (-4 *1 (-149))))
+(((*1 *2 *2) (-12 (-5 *2 (-1015 (-782 (-205)))) (-5 *1 (-284)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-341)) (-5 *1 (-831 *2 *3))
+ (-4 *2 (-1149 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-385 (-887 *5)))) (-5 *4 (-592 (-1091)))
+ (-4 *5 (-517)) (-5 *2 (-592 (-592 (-887 *5)))) (-5 *1 (-1097 *5)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-690)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-592 *6) "failed") (-525) *6 *6)) (-4 *6 (-341))
+ (-4 *7 (-1149 *6))
+ (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6)))
+ (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
+ (-12 (-5 *3 (-592 (-385 (-887 (-157 (-525))))))
+ (-5 *2 (-592 (-592 (-273 (-887 (-157 *4)))))) (-5 *1 (-356 *4))
+ (-4 *4 (-13 (-341) (-787)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-273 (-385 (-887 (-157 (-525)))))))
+ (-5 *2 (-592 (-592 (-273 (-887 (-157 *4)))))) (-5 *1 (-356 *4))
+ (-4 *4 (-13 (-341) (-787)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 (-157 (-525)))))
+ (-5 *2 (-592 (-273 (-887 (-157 *4))))) (-5 *1 (-356 *4))
+ (-4 *4 (-13 (-341) (-787)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-273 (-385 (-887 (-157 (-525))))))
+ (-5 *2 (-592 (-273 (-887 (-157 *4))))) (-5 *1 (-356 *4))
+ (-4 *4 (-13 (-341) (-787))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1038)) (-5 *1 (-105))))
+ ((*1 *2 *1) (-12 (-4 *1 (-127)) (-5 *2 (-713))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-351 *3)) (-4 *3 (-1127))
+ (-4 *3 (-1020))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-351 *3)) (-4 *3 (-1127)) (-4 *3 (-1020))
+ (-5 *2 (-525))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-108) *4)) (-4 *1 (-351 *4)) (-4 *4 (-1127))
+ (-5 *2 (-525))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-525)) (-5 *3 (-132))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1060)) (-5 *2 (-525)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-592 *2))) (-5 *4 (-592 *5))
+ (-4 *5 (-37 (-385 (-525)))) (-4 *2 (-1164 *5))
+ (-5 *1 (-1166 *5 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1131)) (-4 *3 (-1149 *4))
+ (-4 *5 (-1149 (-385 *3))) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1091))
+ (-5 *2
+ (-2 (|:| |zeros| (-1072 (-205))) (|:| |ones| (-1072 (-205)))
+ (|:| |singularities| (-1072 (-205)))))
+ (-5 *1 (-100)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-341)) (-4 *5 (-517))
+ (-5 *2
+ (-2 (|:| |minor| (-592 (-856))) (|:| -4216 *3)
+ (|:| |minors| (-592 (-592 (-856)))) (|:| |ops| (-592 *3))))
+ (-5 *1 (-88 *5 *3)) (-5 *4 (-856)) (-4 *3 (-602 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-429)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1072 *4)) (-5 *3 (-525)) (-4 *4 (-977))
+ (-5 *1 (-1076 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-525)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-977))
+ (-14 *4 (-1091)) (-14 *5 *3))))
+(((*1 *1 *1) (-5 *1 (-205)))
+ ((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *1 *1) (-4 *1 (-1055))) ((*1 *1 *1 *1) (-4 *1 (-1055))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-567 (-827 *3))) (-4 *3 (-821 *3))
+ (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-567 (-827 *3))) (-4 *2 (-821 *3))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-335 *3)) (-4 *3 (-327)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-771)) (-5 *3 (-1074)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525)))
+ (-5 *6 (-205)) (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1178)) (-5 *1 (-1094))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-1095)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-892 *3)) (-5 *1 (-1079 *4 *3))
+ (-4 *3 (-1149 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-693)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-1173 *5))) (-5 *4 (-525)) (-4 *5 (-341))
+ (-4 *5 (-346)) (-4 *5 (-977)) (-5 *2 (-1173 *5)) (-5 *1 (-960 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-977)) (-5 *2 (-108)) (-5 *1 (-421 *4 *3))
+ (-4 *3 (-1149 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-108)))))
+(((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -3603 (-525)) (|:| -1494 (-592 *3))))
+ (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-565 *1))) (-4 *1 (-281)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3))
+ (-12 (-4 *1 (-1135 *3 *2)) (-4 *3 (-977)) (-4 *2 (-1164 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-766)) (-5 *3 (-592 (-1091))) (-5 *1 (-767)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-157 (-205))) (-5 *5 (-525))
+ (-5 *6 (-1074)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5))
+ (-4 *3 (-1149 *4))
+ (-4 *5 (-13 (-382) (-968 *4) (-341) (-1113) (-263))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1087 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-787) (-341))) (-5 *2 (-108)) (-5 *1 (-987 *4 *3))
+ (-4 *3 (-1149 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1173 *4)) (-4 *4 (-977)) (-4 *2 (-1149 *4))
+ (-5 *1 (-421 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-385 (-1087 (-294 *5)))) (-5 *3 (-1173 (-294 *5)))
+ (-5 *4 (-525)) (-4 *5 (-13 (-517) (-789))) (-5 *1 (-1048 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-764)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-5 *1 (-308)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
+(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1113))))))
+(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-632 *4)) (-4 *4 (-341)) (-5 *2 (-1087 *4))
+ (-5 *1 (-498 *4 *5 *6)) (-4 *5 (-341)) (-4 *6 (-13 (-341) (-787))))))
+(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-1074)) (-5 *1 (-728)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1074)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1178))
+ (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1074)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1178))
+ (-5 *1 (-1028 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977))
+ (-14 *4 (-592 (-1091)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-51)) (-5 *2 (-108)) (-5 *1 (-50 *4)) (-4 *4 (-1127))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789)))
+ (-14 *4 (-592 (-1091)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-621 *3)) (-4 *3 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-828 *3)) (-4 *3 (-789)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *2)) (-5 *1 (-166 *2)) (-4 *2 (-286))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-592 *4))) (-4 *4 (-286))
+ (-5 *1 (-166 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 *8))
+ (-5 *4
+ (-592
+ (-2 (|:| -1449 (-632 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-632 *7)))))
+ (-5 *5 (-713)) (-4 *7 (-1149 *6)) (-4 *8 (-1149 *7)) (-4 *6 (-327))
+ (-5 *2
+ (-2 (|:| -1449 (-632 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-632 *7))))
+ (-5 *1 (-471 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-4 *1 (-838 *3)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3))
+ (-4 *3 (-1020)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3))
(-4 *5 (-351 *3)) (-5 *2 (-713))))
((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976))
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
(-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-592 (-1086 *13))) (-5 *3 (-1086 *13))
- (-5 *4 (-592 *12)) (-5 *5 (-592 *10)) (-5 *6 (-592 *13))
- (-5 *7 (-592 (-592 (-2 (|:| -3264 (-713)) (|:| |pcoef| *13)))))
- (-5 *8 (-592 (-713))) (-5 *9 (-1172 (-592 (-1086 *10))))
- (-4 *12 (-789)) (-4 *10 (-286)) (-4 *13 (-883 *10 *11 *12))
- (-4 *11 (-735)) (-5 *1 (-650 *11 *12 *10 *13)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-4 *5 (-408 *4))
- (-5 *2
- (-3 (|:| |overq| (-1086 (-385 (-525))))
- (|:| |overan| (-1086 (-47))) (|:| -4126 (-108))))
- (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1148 *5)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-510))))
+ (-12 (-5 *2 (-1087 (-525))) (-5 *1 (-173)) (-5 *3 (-525))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-160))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1087 (-525))) (-5 *1 (-877)) (-5 *3 (-525)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-975)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-157 (-205))))
+ (-5 *2 (-966)) (-5 *1 (-698)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525)))
+ (-5 *6 (-205)) (-5 *2 (-966)) (-5 *1 (-694)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-408 *3) (-933))) (-5 *1 (-255 *3 *2))
- (-4 *3 (-13 (-789) (-517))))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-592 (-385 (-886 *6))))
- (-4 *6 (-13 (-517) (-967 (-525)) (-138)))
- (-5 *2
- (-2 (|:| |mainpart| (-385 (-886 *6)))
- (|:| |limitedlogs|
- (-592
- (-2 (|:| |coeff| (-385 (-886 *6)))
- (|:| |logand| (-385 (-886 *6))))))))
- (-5 *1 (-531 *6)) (-5 *3 (-385 (-886 *6))))))
+ (-12 (-5 *2 (-1158 *3 *4 *5)) (-5 *1 (-297 *3 *4 *5))
+ (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1091)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1020)) (-5 *1 (-656 *3 *2 *4)) (-4 *3 (-789))
+ (-14 *4
+ (-1 (-108) (-2 (|:| -3640 *3) (|:| -1864 *2))
+ (-2 (|:| -3640 *3) (|:| -1864 *2)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
+ (-5 *1 (-31 *4 *5)) (-4 *5 (-408 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
+ (-5 *1 (-147 *4 *5)) (-4 *5 (-408 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
+ (-5 *1 (-255 *4 *5)) (-4 *5 (-13 (-408 *4) (-934)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-5 *2 (-108)) (-5 *1 (-280 *4)) (-4 *4 (-281))))
+ ((*1 *2 *3) (-12 (-4 *1 (-281)) (-5 *3 (-110)) (-5 *2 (-108))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-407 *4 *5)) (-4 *4 (-408 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
+ (-5 *1 (-409 *4 *5)) (-4 *5 (-408 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-110)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108))
+ (-5 *1 (-579 *4 *5)) (-4 *5 (-13 (-408 *4) (-934) (-1113))))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1090))
- (-5 *1 (-241 *2)) (-4 *2 (-1126))))
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735))
+ (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-994 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-592 (-242))) (-5 *4 (-1090)) (-5 *2 (-51))
- (-5 *1 (-242)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-228)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-82 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-83 FCNG)))) (-5 *2 (-965))
- (-5 *1 (-692)))))
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 *9)) (-4 *8 (-991 *5 *6 *7))
+ (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429)) (-4 *6 (-735))
+ (-4 *7 (-789)) (-5 *2 (-713)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-205)) (-5 *2 (-108)) (-5 *1 (-278 *4 *5))
- (-14 *4 (-205)) (-14 *5 (-205))))
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1020)) (-4 *5 (-1020))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-809))
+ (-5 *5 (-856)) (-5 *6 (-592 (-242))) (-5 *2 (-445)) (-5 *1 (-1177))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *2 (-445))
+ (-5 *1 (-1177))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-1014 (-782 (-205)))) (-5 *2 (-108))
- (-5 *1 (-284))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))))
+ (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-592 (-242)))
+ (-5 *2 (-445)) (-5 *1 (-1177)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1127)) (-4 *4 (-351 *3))
(-4 *5 (-351 *3)) (-5 *2 (-713))))
((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976))
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
(-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-713)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1185 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
- (-5 *1 (-610 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-610 *3 *4)) (-5 *1 (-1190 *3 *4))
- (-4 *3 (-789)) (-4 *4 (-160)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1122 *3)) (-4 *3 (-906)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-632 (-385 (-886 (-525)))))
- (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-961)))))
-(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3))
- (-4 *3 (-995 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2 (-357)) (-5 *1 (-174)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2))
- (-4 *2 (-1148 *4)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
+ (-5 *5 (-1015 (-205))) (-5 *6 (-525)) (-5 *2 (-1123 (-861)))
+ (-5 *1 (-296))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
+ (-5 *5 (-1015 (-205))) (-5 *6 (-525)) (-5 *7 (-1074))
+ (-5 *2 (-1123 (-861))) (-5 *1 (-296))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
+ (-5 *5 (-1015 (-205))) (-5 *6 (-205)) (-5 *7 (-525))
+ (-5 *2 (-1123 (-861))) (-5 *1 (-296))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
+ (-5 *5 (-1015 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *8 (-1074))
+ (-5 *2 (-1123 (-861))) (-5 *1 (-296)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1174))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |cd| (-1074)) (|:| -3800 (-1074))))
+ (-5 *1 (-764)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1091)) (-4 *4 (-517)) (-4 *4 (-789))
+ (-5 *1 (-534 *4 *2)) (-4 *2 (-408 *4)))))
(((*1 *2)
(-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
(-4 *3 (-345 *4))))
((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-205)) (-5 *1 (-284)))))
-(((*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-445)) (-5 *4 (-856)) (-5 *2 (-1178)) (-5 *1 (-1174)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *3 (-525)) (-5 *5 (-1091))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-592 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -1679 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1113) (-27) (-408 *8)))
+ (-4 *8 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-592 *4)) (-5 *1 (-946 *8 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))))
+(((*1 *1 *1) (-5 *1 (-989))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-1095)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-157 *4))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))))
-(((*1 *1)
- (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
- (-4 *4 (-160)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1095)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-855))) (-5 *1 (-1020 *3 *4)) (-14 *3 (-855))
- (-14 *4 (-855)))))
+ (-12 (-5 *3 (-157 *5)) (-4 *5 (-13 (-408 *4) (-934) (-1113)))
+ (-4 *4 (-13 (-517) (-789)))
+ (-4 *2 (-13 (-408 (-157 *4)) (-934) (-1113)))
+ (-5 *1 (-554 *4 *5 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1087 *4)) (-4 *4 (-327))
+ (-5 *2 (-1173 (-592 (-2 (|:| -3352 *4) (|:| -3640 (-1038))))))
+ (-5 *1 (-324 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-109 *3)) (-4 *3 (-789)) (-4 *3 (-1019)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019))))
+ (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
+ (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 (-1090))) (-4 *4 (-1019))
- (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4))))
- (-5 *1 (-53 *4 *5 *2))
- (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-525))
+ (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4))
+ (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3))
+ (-4 *3 (-630 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517))
+ (-5 *2 (-713)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1173 (-1173 (-525)))) (-5 *1 (-443)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1006 *3)) (-4 *3 (-127)))))
+(((*1 *1) (-5 *1 (-415))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1173 (-632 *4))) (-4 *4 (-160))
+ (-5 *2 (-1173 (-632 (-887 *4)))) (-5 *1 (-171 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 (-1 *6 (-592 *6))))
+ (-4 *5 (-37 (-385 (-525)))) (-4 *6 (-1164 *5)) (-5 *2 (-592 *6))
+ (-5 *1 (-1166 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-422 *3)) (-4 *3 (-977)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
+ (-4 *4 (-13 (-789) (-517))))))
+(((*1 *2 *3)
+ (-12
(-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-713)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-735)) (-4 *4 (-883 *5 *6 *7)) (-4 *5 (-429)) (-4 *7 (-789))
- (-5 *1 (-426 *5 *6 *7 *4)))))
-(((*1 *2 *1) (-12 (-4 *3 (-976)) (-5 *2 (-592 *1)) (-4 *1 (-1051 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-108)))))
+ (-592
+ (-2 (|:| -3318 (-713))
+ (|:| |eqns|
+ (-592
+ (-2 (|:| |det| *7) (|:| |rows| (-592 (-525)))
+ (|:| |cols| (-592 (-525))))))
+ (|:| |fgb| (-592 *7)))))
+ (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138)))
+ (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *2 (-713))
+ (-5 *1 (-859 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-592 (-157 *4))) (-5 *1 (-145 *3 *4))
+ (-4 *3 (-1149 (-157 (-525)))) (-4 *4 (-13 (-341) (-787)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4)))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4)))
+ (-5 *1 (-167 *4 *3)) (-4 *3 (-1149 (-157 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-525)) (-4 *5 (-327)) (-5 *2 (-396 (-1087 (-1087 *5))))
+ (-5 *1 (-1126 *5)) (-5 *3 (-1087 (-1087 *5))))))
+(((*1 *2) (-12 (-5 *2 (-592 (-1091))) (-5 *1 (-100)))))
+(((*1 *2 *2) (-12 (-5 *1 (-895 *2)) (-4 *2 (-510)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-824 *4 *5)) (-5 *3 (-824 *4 *6)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-612 *5)) (-5 *1 (-820 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1173 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131))
+ (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))))))
+(((*1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *1 *1) (-4 *1 (-901))) ((*1 *1 *1) (-5 *1 (-1038))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1072 (-887 *4)) (-1072 (-887 *4))))
+ (-5 *1 (-1181 *4)) (-4 *4 (-341)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-592 *4))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-385 (-525))) (-4 *1 (-515 *3))
- (-4 *3 (-13 (-382) (-1112)))))
- ((*1 *1 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-965))
- (-5 *1 (-691)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1163 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-305 *3)) (-4 *3 (-1126))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1126))
- (-14 *4 (-525)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-246)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-341)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 (-385 *3)))
- (-4 *1 (-313 *4 *3 *5 *2)) (-4 *2 (-320 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-525)) (-4 *2 (-341)) (-4 *4 (-1148 *2))
- (-4 *5 (-1148 (-385 *4))) (-4 *1 (-313 *2 *4 *5 *6))
- (-4 *6 (-320 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-341)) (-4 *3 (-1148 *2)) (-4 *4 (-1148 (-385 *3)))
- (-4 *1 (-313 *2 *3 *4 *5)) (-4 *5 (-320 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-341)) (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4)))
- (-4 *1 (-313 *3 *4 *5 *2)) (-4 *2 (-320 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-391 *4 (-385 *4) *5 *6)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-4 *6 (-320 *3 *4 *5)) (-4 *3 (-341))
- (-4 *1 (-313 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-232 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-789))
- (-4 *5 (-735)) (-4 *2 (-245 *4)))))
+ (-12 (-5 *2 (-1173 *3)) (-4 *3 (-977)) (-5 *1 (-655 *3 *4))
+ (-4 *4 (-1149 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-395 *4)))))
+ (|partial| -12 (-5 *3 (-887 (-157 *4))) (-4 *4 (-160))
+ (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-887 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-160))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 (-357)))
+ (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517))
+ (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-385 (-887 (-157 *4)))) (-4 *4 (-517))
+ (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-385 (-887 (-157 *5)))) (-5 *4 (-856))
+ (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357)))
+ (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789))
+ (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357)))
+ (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789))
+ (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357)))
+ (-5 *1 (-727 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)))) (-5 *1 (-170 *3 *2))
- (-4 *2 (-13 (-27) (-1112) (-408 (-157 *3))))))
+ (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2))
+ (-4 *2 (-1164 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3))))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1126))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-122 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-525)) (-4 *1 (-261 *3)) (-4 *3 (-1126))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-261 *2)) (-4 *2 (-1126))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -3946
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (|:| -2511
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1071 (-205)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -4162
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-520))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-637 *2)) (-4 *2 (-1019))))
- ((*1 *1 *2)
- (-12
+ (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1149 *3))
+ (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1164 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2))
+ (-4 *2 (-1164 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-13 (-517) (-138)))
+ (-5 *1 (-1068 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-698)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-108)) (-5 *5 (-1022 (-713))) (-5 *6 (-713))
(-5 *2
- (-2
- (|:| -3946
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (|:| -2511
- (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357))
- (|:| |expense| (-357)) (|:| |accuracy| (-357))
- (|:| |intermediateResults| (-357))))))
- (-5 *1 (-745))))
- ((*1 *2 *3 *4)
- (-12 (-5 *2 (-1177)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019))
- (-4 *4 (-1019)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92)))))
+ (-2 (|:| |contp| (-525))
+ (|:| -1494 (-592 (-2 (|:| |irr| *3) (|:| -1623 (-525)))))))
+ (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1024)) (-5 *3 (-716)) (-5 *1 (-51)))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
+(((*1 *1) (-5 *1 (-132))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *2 (-966))
+ (-5 *1 (-692)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-372)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108))
+ (-5 *6 (-632 (-205))) (-5 *2 (-966)) (-5 *1 (-698)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1127)) (-4 *2 (-977))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-798))))
+ ((*1 *1 *1) (-5 *1 (-798)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-878 (-205))) (-5 *2 (-205)) (-5 *1 (-1124))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-977)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-787)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -2203 (-396 *3))))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-102 *2)) (-4 *2 (-1126)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-1086 (-886 *4))) (-5 *1 (-394 *3 *4))
- (-4 *3 (-395 *4))))
+ (-12 (-5 *3 (-1173 (-592 (-2 (|:| -3352 *4) (|:| -3640 (-1038))))))
+ (-4 *4 (-327)) (-5 *2 (-713)) (-5 *1 (-324 *4))))
((*1 *2)
- (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341))
- (-5 *2 (-1086 (-886 *3)))))
+ (-12 (-5 *2 (-713)) (-5 *1 (-329 *3 *4)) (-14 *3 (-856))
+ (-14 *4 (-856))))
((*1 *2)
- (-12 (-5 *2 (-1086 (-385 (-886 *3)))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))))
-(((*1 *1 *1) (-5 *1 (-988))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-294 *3)) (-4 *3 (-13 (-976) (-789)))
- (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1090))))))
+ (-12 (-5 *2 (-713)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327))
+ (-14 *4
+ (-3 (-1087 *3)
+ (-1173 (-592 (-2 (|:| -3352 *3) (|:| -3640 (-1038)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327))
+ (-14 *4 (-856)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1149 *3)) (-4 *3 (-977)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-525)) (-5 *1 (-221))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-592 (-1073))) (-5 *3 (-525)) (-5 *4 (-1073))
- (-5 *1 (-221))))
- ((*1 *1 *1) (-5 *1 (-797)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797))))
- ((*1 *2 *1) (-12 (-4 *1 (-1150 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-883 *4 *6 *5)) (-4 *4 (-429))
- (-4 *5 (-789)) (-4 *6 (-735)) (-5 *1 (-919 *4 *5 *6 *3)))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-632 *2)) (-4 *2 (-160)) (-5 *1 (-137 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-160)) (-4 *2 (-1149 *4)) (-5 *1 (-164 *4 *2 *3))
+ (-4 *3 (-667 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 (-385 (-887 *5)))) (-5 *4 (-1091)) (-4 *5 (-429))
+ (-5 *2 (-887 *5)) (-5 *1 (-271 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 (-385 (-887 *4)))) (-4 *4 (-429)) (-5 *2 (-887 *4))
+ (-5 *1 (-271 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1149 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 (-157 (-385 (-525)))))
+ (-5 *2 (-887 (-157 (-385 (-525))))) (-5 *1 (-707 *4))
+ (-4 *4 (-13 (-341) (-787)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *4 (-1091))
+ (-5 *2 (-887 (-157 (-385 (-525))))) (-5 *1 (-707 *5))
+ (-4 *5 (-13 (-341) (-787)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-887 (-385 (-525))))
+ (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *4 (-1091))
+ (-5 *2 (-887 (-385 (-525)))) (-5 *1 (-721 *5))
+ (-4 *5 (-13 (-341) (-787))))))
+(((*1 *2 *3) (-12 (-5 *3 (-592 (-51))) (-5 *2 (-1178)) (-5 *1 (-799)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-108)) (-5 *1 (-997 *5 *6 *7 *3 *4))
+ (-4 *4 (-996 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1895 *4))))
+ (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-160)) (-4 *2 (-976)) (-5 *1 (-657 *2 *3))
- (-4 *3 (-594 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-976)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *8 (-990 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-592 *8)) (|:| |towers| (-592 (-957 *5 *6 *7 *8)))))
- (-5 *1 (-957 *5 *6 *7 *8)) (-5 *3 (-592 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *8 (-990 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-592 *8))
- (|:| |towers| (-592 (-1061 *5 *6 *7 *8)))))
- (-5 *1 (-1061 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *1) (-5 *1 (-415))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1019))))
- ((*1 *1 *2) (-12 (-5 *1 (-123 *2)) (-4 *2 (-1019)))))
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1091)) (-5 *3 (-1074)) (-5 *1 (-922))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-1015 *4)) (-4 *4 (-1127))
+ (-5 *1 (-1013 *4)))))
(((*1 *2 *2 *2)
- (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-565 *5))) (-4 *5 (-408 *4)) (-4 *4 (-789))
- (-5 *2 (-565 *5)) (-5 *1 (-534 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))))
-(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-414)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-525))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))))
-(((*1 *1 *1 *1) (-5 *1 (-797))))
+ (-12 (-4 *3 (-517)) (-5 *1 (-903 *3 *2)) (-4 *2 (-1149 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-977)) (-4 *2 (-517)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1172 *4)) (-4 *4 (-588 (-525)))
- (-5 *2 (-1172 (-385 (-525)))) (-5 *1 (-1197 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-1105)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-620 (-205))) (-5 *2 (-965)) (-5 *1 (-693)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-72 FCN)))) (-5 *2 (-965))
- (-5 *1 (-689)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-632 *2)) (-5 *4 (-713))
- (-4 *2 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $)))))
- (-4 *5 (-1148 *2)) (-5 *1 (-472 *2 *5 *6)) (-4 *6 (-387 *2 *5)))))
+ (-12 (-5 *3 (-592 *8)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525))
+ (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160))
+ (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 *9)) (-4 *9 (-977)) (-4 *5 (-789)) (-4 *6 (-735))
+ (-4 *8 (-977)) (-4 *2 (-884 *9 *7 *5))
+ (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735))
+ (-4 *4 (-884 *8 *6 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-985)) (-4 *3 (-1112))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1126))
- (-4 *5 (-351 *4)) (-4 *2 (-351 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-979 *4 *5 *6 *7 *2)) (-4 *6 (-976))
- (-4 *7 (-218 *5 *6)) (-4 *2 (-218 *4 *6)))))
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
(((*1 *2 *3 *4)
- (-12 (-4 *4 (-341)) (-5 *2 (-592 (-1071 *4))) (-5 *1 (-264 *4 *5))
- (-5 *3 (-1071 *4)) (-4 *5 (-1163 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1073)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-242)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 *1)) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-976)) (-5 *1 (-632 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *4)) (-4 *4 (-976)) (-4 *1 (-1040 *3 *4 *5 *6))
- (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *3 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-396 *4)) (-4 *4 (-517)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-351 *2))
- (-4 *4 (-351 *2)))))
+ (|partial| -12 (-5 *4 (-1091)) (-4 *5 (-567 (-827 (-525))))
+ (-4 *5 (-821 (-525)))
+ (-4 *5 (-13 (-789) (-968 (-525)) (-429) (-588 (-525))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-528 *5 *3)) (-4 *3 (-578))
+ (-4 *3 (-13 (-27) (-1113) (-408 *5))))))
(((*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341))))
((*1 *2 *3)
- (-12 (-5 *3 (-855)) (-5 *2 (-1172 *4)) (-5 *1 (-495 *4))
+ (-12 (-5 *3 (-856)) (-5 *2 (-1173 *4)) (-5 *1 (-495 *4))
(-4 *4 (-327)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-115 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
+ (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-884 *4 *3 *5)))))
+(((*1 *1 *1 *1) (-5 *1 (-205)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
+ (-4 *2 (-408 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-970))))
+ ((*1 *1 *1 *1) (-4 *1 (-1055))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-357))) (-5 *1 (-242))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160))))
+ ((*1 *2 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-242))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-242))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-242)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
+ (-5 *2 (-108))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020))
+ (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-977))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-517)) (-5 *2 (-108)) (-5 *1 (-573 *3 *4))
+ (-4 *4 (-1149 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-669))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-2 (|:| |k| (-617 *3)) (|:| |c| *4))))
+ (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
+ (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856)))))
(((*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-113 *3)) (-14 *3 (-525))))
((*1 *1 *1) (-12 (-5 *1 (-113 *2)) (-14 *2 (-525))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-805 *3)) (-14 *3 (-525))))
- ((*1 *1 *1) (-12 (-5 *1 (-805 *2)) (-14 *2 (-525))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-806 *3)) (-14 *3 (-525))))
+ ((*1 *1 *1) (-12 (-5 *1 (-806 *2)) (-14 *2 (-525))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-525)) (-14 *3 (-525)) (-5 *1 (-806 *3 *4))
- (-4 *4 (-803 *3))))
+ (-12 (-5 *2 (-525)) (-14 *3 (-525)) (-5 *1 (-807 *3 *4))
+ (-4 *4 (-804 *3))))
((*1 *1 *1)
- (-12 (-14 *2 (-525)) (-5 *1 (-806 *2 *3)) (-4 *3 (-803 *2))))
+ (-12 (-14 *2 (-525)) (-5 *1 (-807 *2 *3)) (-4 *3 (-804 *2))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-525)) (-4 *1 (-1134 *3 *4)) (-4 *3 (-976))
- (-4 *4 (-1163 *3))))
+ (-12 (-5 *2 (-525)) (-4 *1 (-1135 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-1164 *3))))
((*1 *1 *1)
- (-12 (-4 *1 (-1134 *2 *3)) (-4 *2 (-976)) (-4 *3 (-1163 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1086 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1071 (-205)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -4162
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-965)) (-5 *1 (-284)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-429)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-690)))))
-(((*1 *1 *1) (-5 *1 (-108))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762))
- (-14 *5 (-1090)) (-5 *2 (-525)) (-5 *1 (-1033 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-327)) (-4 *2 (-976)) (-5 *1 (-655 *2 *3))
- (-4 *3 (-1148 *2)))))
-(((*1 *2 *2 *2)
+ (-12 (-4 *1 (-1135 *2 *3)) (-4 *2 (-977)) (-4 *3 (-1164 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798))))
+ ((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-977)) (-4 *5 (-735)) (-4 *3 (-789))
+ (-5 *2 (-2 (|:| -1655 *1) (|:| |gap| (-713)) (|:| -3496 *1)))
+ (-4 *1 (-991 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-5 *2 (-2 (|:| -1655 *1) (|:| |gap| (-713)) (|:| -3496 *1)))
+ (-4 *1 (-991 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 *5)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
+ (-14 *4 (-713)) (-4 *5 (-160)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-713)) (-4 *1 (-1149 *3)) (-4 *3 (-977)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-862)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1173 *5)) (-4 *5 (-734)) (-5 *2 (-108))
+ (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1096))) (-5 *1 (-1096))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-592 (-1096))) (-5 *1 (-1096)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-878 *5)) (-4 *5 (-977)) (-5 *2 (-713))
+ (-5 *1 (-1080 *4 *5)) (-14 *4 (-856))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1080 *4 *5))
+ (-14 *4 (-856)) (-4 *5 (-977))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-713))) (-5 *3 (-878 *5)) (-4 *5 (-977))
+ (-5 *1 (-1080 *4 *5)) (-14 *4 (-856)))))
+(((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| -2499 (-632 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-632 *3))))
- (-4 *3 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $)))))
- (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-797))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))))
-(((*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *4 *5 *6))
- (-4 *4 (-567 (-501))) (-4 *5 (-1126)) (-4 *6 (-1126)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-976)) (-4 *4 (-1148 *3)) (-5 *1 (-152 *3 *4 *2))
- (-4 *2 (-1148 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-789))
- (-5 *2
- (-2 (|:| |fs| (-108)) (|:| |sd| (-592 *6))
- (|:| |td| (-592 (-592 *6)))))
- (-5 *1 (-1098 *6)) (-5 *4 (-592 *6)) (-5 *5 (-592 (-592 *6))))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205))))
- (-5 *2 (-965)) (-5 *1 (-697)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160))))
- ((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2))))
- ((*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4255)) (-4 *4 (-341)) (-4 *5 (-351 *4))
- (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-492 *4 *5 *6 *3))
- (-4 *3 (-630 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4255)) (-4 *4 (-517)) (-4 *5 (-351 *4))
- (-4 *6 (-351 *4)) (-4 *7 (-924 *4)) (-4 *8 (-351 *7))
- (-4 *9 (-351 *7)) (-5 *2 (-592 *6))
- (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-630 *4 *5 *6))
- (-4 *10 (-630 *7 *8 *9))))
+ (-592
+ (-2
+ (|:| -3423
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (|:| -2544
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1072 (-205)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2990
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-520))))
((*1 *2 *1)
- (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-592 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4))
- (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-631 *4 *5 *6 *3))
- (-4 *3 (-630 *4 *5 *6))))
+ (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1127))
+ (-5 *2 (-592 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-991 *3 *4 *2)) (-4 *2 (-789))))
((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517))
- (-5 *2 (-592 *7)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-855)) (-4 *1 (-218 *3 *4)) (-4 *4 (-976))
- (-4 *4 (-1126))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160))
- (-4 *5 (-218 (-4140 *3) (-713)))
- (-14 *6
- (-1 (-108) (-2 (|:| -4185 *2) (|:| -1600 *5))
- (-2 (|:| -4185 *2) (|:| -1600 *5))))
- (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) (-4 *2 (-789))
- (-4 *7 (-883 *4 *5 (-799 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-877 (-205))) (-5 *1 (-1123)))))
+ (-12 (-4 *1 (-991 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-1087 *3)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *2 (-990 *4 *5 *6)) (-5 *1 (-718 *4 *5 *6 *2 *3))
- (-4 *3 (-995 *4 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1013 *3)) (-4 *3 (-1126)) (-5 *2 (-525)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-976))
- (-14 *4 (-592 (-1090)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-525)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789)))
- (-14 *4 (-592 (-1090)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-976)) (-4 *3 (-789))
- (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-254))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1086 *8)) (-5 *4 (-592 *6)) (-4 *6 (-789))
- (-4 *8 (-883 *7 *5 *6)) (-4 *5 (-735)) (-4 *7 (-976))
- (-5 *2 (-592 (-713))) (-5 *1 (-299 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-855))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
- (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-160)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4))
- (-4 *4 (-1148 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-976)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-976)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-838 *3)) (-4 *3 (-1019))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1019))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *6)) (-4 *1 (-883 *4 *5 *6)) (-4 *4 (-976))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-883 *4 *5 *3)) (-4 *4 (-976)) (-4 *5 (-735))
- (-4 *3 (-789)) (-5 *2 (-713))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-905 *3 *2 *4)) (-4 *3 (-976)) (-4 *4 (-789))
- (-4 *2 (-734))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-713))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1134 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1163 *3))
- (-5 *2 (-525))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1155 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1132 *3))
- (-5 *2 (-385 (-525)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-855)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1191 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976))
- (-5 *2 (-713)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1071 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))))
+ (-12 (-5 *2 (-592 (-565 *5))) (-5 *3 (-1091)) (-4 *5 (-408 *4))
+ (-4 *4 (-789)) (-5 *1 (-534 *4 *5)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-690)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-798)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713))
+ (-14 *4 (-713)) (-4 *5 (-160)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-592 (-259))) (-5 *1 (-259))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-1096))) (-5 *1 (-1096)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
+ (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1051 (-205)))
+ (-5 *1 (-639)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-977)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1091))
+ (-4 *5 (-13 (-429) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-542 *3)) (-5 *1 (-518 *5 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *5))))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -9852,2930 +13921,2578 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1071 (-205)))
+ (-3 (|:| |str| (-1072 (-205)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -4162
+ (|:| -2990
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-520)))))
-(((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))))
+ (-5 *2 (-966)) (-5 *1 (-284)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-1087 *3))
+ (-4 *3 (-13 (-408 *6) (-27) (-1113)))
+ (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2 (-2 (|:| -1679 *3) (|:| |coeff| *3)))
+ (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1087 *3)))
+ (-4 *3 (-13 (-408 *6) (-27) (-1113)))
+ (-4 *6 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
+ (-5 *2 (-2 (|:| -1679 *3) (|:| |coeff| *3)))
+ (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1020)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *3 (-108)) (-5 *1 (-106))))
+ ((*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4246)) (-4 *1 (-382))))
+ ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856)))))
+(((*1 *1 *1) (-5 *1 (-205))) ((*1 *1 *1) (-5 *1 (-357)))
+ ((*1 *1) (-5 *1 (-357))))
+(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-988))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-988)))))
+(((*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-228)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1067))))
(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))
- (-5 *2 (-1086 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))
- (-5 *2 (-1086 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1071 *4)) (-5 *3 (-1 *4 (-525))) (-4 *4 (-976))
- (-5 *1 (-1075 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-592 (-1090)))
- (-5 *2 (-592 (-592 (-357)))) (-5 *1 (-953)) (-5 *5 (-357))))
+ (-12 (-4 *3 (-517)) (-4 *3 (-977))
+ (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-791 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-517)) (-4 *5 (-977))
+ (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3))) (-5 *1 (-792 *5 *3))
+ (-4 *3 (-791 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-429)))))
+(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1127)) (-5 *2 (-108)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-459 *3)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-878 *5)) (-5 *3 (-713)) (-4 *5 (-977))
+ (-5 *1 (-1080 *4 *5)) (-14 *4 (-856)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-341)) (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4)))
+ (-5 *2 (-1173 *6)) (-5 *1 (-314 *3 *4 *5 *6))
+ (-4 *6 (-320 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108))
+ (-5 *6 (-205)) (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-66 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-71 MSOLVE))))
+ (-5 *2 (-966)) (-5 *1 (-699)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510))))
((*1 *2 *3)
- (-12 (-5 *3 (-973 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-952)))
- (-14 *5 (-592 (-1090))) (-5 *2 (-592 (-592 (-954 (-385 *4)))))
- (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-787) (-286) (-138) (-952)))
- (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7))
- (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-787) (-286) (-138) (-952)))
- (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7))
- (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-787) (-286) (-138) (-952)))
- (-5 *2 (-592 (-592 (-954 (-385 *5))))) (-5 *1 (-1196 *5 *6 *7))
- (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-886 *4)))
- (-4 *4 (-13 (-787) (-286) (-138) (-952)))
- (-5 *2 (-592 (-592 (-954 (-385 *4))))) (-5 *1 (-1196 *4 *5 *6))
- (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *2 (-789)) (-4 *3 (-160))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-517)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1148 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-160)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 *1))
- (-4 *1 (-995 *4 *5 *6 *3)))))
+ (-12 (-5 *2 (-2 (|:| -3200 *3) (|:| -1864 (-713)))) (-5 *1 (-543 *3))
+ (-4 *3 (-510)))))
+(((*1 *2 *1) (-12 (-4 *1 (-233 *3)) (-4 *3 (-1127)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-713))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-977))
+ (-4 *2 (-13 (-382) (-968 *4) (-341) (-1113) (-263)))
+ (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1149 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-565 *3)) (-4 *3 (-789))))
+ ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4255)) (-4 *1 (-464 *3)) (-4 *3 (-1127))
+ (-5 *2 (-592 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-680 *3)) (-4 *3 (-1020)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-886 *4)) (-4 *4 (-13 (-286) (-138)))
- (-4 *2 (-883 *4 *6 *5)) (-5 *1 (-858 *4 *5 *6 *2))
- (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1148 *5))
- (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
+ (-12 (-5 *3 (-1091))
+ (-4 *4 (-13 (-789) (-286) (-968 (-525)) (-588 (-525)) (-138)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-746 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1113) (-893))))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-690)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-414)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1164 *4)) (-5 *1 (-1166 *4 *2))
+ (-4 *4 (-37 (-385 (-525)))))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-789)) (-5 *5 (-592 (-592 *6)))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2499 (-592 *4))))
- (-5 *1 (-752 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-599 (-385 *6))) (-4 *6 (-1148 *5))
- (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
- (-5 *2 (-2 (|:| -2499 (-592 (-385 *6))) (|:| -3276 (-632 *5))))
- (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6)))))
+ (-2 (|:| |f1| (-592 *6)) (|:| |f2| (-592 *5)) (|:| |f3| *5)
+ (|:| |f4| (-592 *5))))
+ (-5 *1 (-1099 *6)) (-5 *3 (-592 *6)) (-5 *4 (-592 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1149 *5)) (-4 *5 (-341))
+ (-4 *7 (-1149 (-385 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -1949 *3)))
+ (-5 *1 (-523 *5 *6 *7 *3)) (-4 *3 (-320 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1148 *5))
- (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1149 *5)) (-4 *5 (-341))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2499 (-592 *4))))
- (-5 *1 (-752 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-600 *6 (-385 *6))) (-4 *6 (-1148 *5))
- (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
- (-5 *2 (-2 (|:| -2499 (-592 (-385 *6))) (|:| -3276 (-632 *5))))
- (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-525)) (-4 *2 (-408 *3)) (-5 *1 (-31 *3 *2))
- (-4 *3 (-967 (-525))) (-4 *3 (-13 (-789) (-517))))))
-(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1097)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1172 *4)) (-4 *4 (-395 *3)) (-4 *3 (-286))
- (-4 *3 (-517)) (-5 *1 (-42 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-855)) (-4 *4 (-341)) (-5 *2 (-1172 *1))
- (-4 *1 (-307 *4))))
- ((*1 *2) (-12 (-4 *3 (-341)) (-5 *2 (-1172 *1)) (-4 *1 (-307 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-160)) (-4 *4 (-1148 *3)) (-5 *2 (-1172 *1))
- (-4 *1 (-387 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-286)) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4))
- (-5 *2 (-1172 *6)) (-5 *1 (-391 *3 *4 *5 *6))
- (-4 *6 (-13 (-387 *4 *5) (-967 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-286)) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4))
- (-5 *2 (-1172 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7))
- (-4 *6 (-387 *4 *5)) (-14 *7 (-1172 *6))))
- ((*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1172 *1)) (-4 *1 (-395 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-855)) (-5 *2 (-1172 (-1172 *4))) (-5 *1 (-495 *4))
- (-4 *4 (-327)))))
-(((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)) (-4 *2 (-510))))
- ((*1 *1 *1) (-4 *1 (-985))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-286))
- (-5 *2 (-385 (-396 (-886 *4)))) (-5 *1 (-971 *4)))))
+ (-2 (|:| |answer| (-385 *6)) (|:| -1949 (-385 *6))
+ (|:| |specpart| (-385 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-524 *5 *6)) (-5 *3 (-385 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1178)) (-5 *1 (-1094)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1064 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517))
- (-5 *2 (-108)))))
+ (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762))
+ (-14 *5 (-1091)) (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-879 *4 *3))
- (-4 *3 (-1148 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-745)))))
+ (-12 (-5 *3 (-1173 (-592 (-2 (|:| -3352 *4) (|:| -3640 (-1038))))))
+ (-4 *4 (-327)) (-5 *2 (-632 *4)) (-5 *1 (-324 *4)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-108))))
+ (-12 (-4 *3 (-1131)) (-4 *5 (-1149 *3)) (-4 *6 (-1149 (-385 *5)))
+ (-5 *2 (-108)) (-5 *1 (-319 *4 *3 *5 *6)) (-4 *4 (-320 *3 *5 *6))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1177))
- (-5 *1 (-426 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-525))
- (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1090))
- (-4 *4 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-404 *4 *2)) (-4 *2 (-13 (-1112) (-29 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090)) (-4 *5 (-138))
- (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-588 (-525))))
- (-5 *2 (-294 *5)) (-5 *1 (-545 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1098 *4))
- (-5 *3 (-592 *4)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-976)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *6)) (-4 *5 (-1019))
- (-4 *6 (-1126)) (-5 *2 (-1 *6 *5)) (-5 *1 (-589 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1019))
- (-4 *2 (-1126)) (-5 *1 (-589 *5 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 *5)) (-4 *6 (-1019))
- (-4 *5 (-1126)) (-5 *2 (-1 *5 *6)) (-5 *1 (-589 *6 *5))))
- ((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-4 *5 (-1019))
- (-4 *2 (-1126)) (-5 *1 (-589 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-592 *5)) (-5 *4 (-592 *6))
- (-4 *5 (-1019)) (-4 *6 (-1126)) (-5 *1 (-589 *5 *6))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1019)) (-4 *2 (-1126)) (-5 *1 (-589 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1059)) (-5 *3 (-135)) (-5 *2 (-713)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-592 (-1145 *5 *4)))
- (-5 *1 (-1033 *4 *5)) (-5 *3 (-1145 *5 *4)))))
-(((*1 *1) (-5 *1 (-765))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855))
- (-4 *4 (-976)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-5 *1 (-839 *3)))))
-(((*1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1) (-5 *1 (-797)))
- ((*1 *1 *1) (-4 *1 (-900))) ((*1 *1 *1) (-5 *1 (-1037))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-976))
- (-5 *2 (-457 *4 *5)) (-5 *1 (-878 *4 *5)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-826 *4)) (-4 *4 (-1019)) (-5 *1 (-823 *4 *3))
- (-4 *3 (-1019)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-138) (-27) (-967 (-525)) (-967 (-385 (-525)))))
- (-4 *5 (-1148 *4)) (-5 *2 (-1086 (-385 *5))) (-5 *1 (-568 *4 *5))
- (-5 *3 (-385 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1148 *5))
- (-4 *5 (-13 (-138) (-27) (-967 (-525)) (-967 (-385 (-525)))))
- (-5 *2 (-1086 (-385 *6))) (-5 *1 (-568 *5 *6)) (-5 *3 (-385 *6)))))
-(((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-429) (-138))) (-5 *2 (-396 *3))
- (-5 *1 (-95 *4 *3)) (-4 *3 (-1148 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-13 (-429) (-138)))
- (-5 *2 (-396 *3)) (-5 *1 (-95 *5 *3)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1090)) (-5 *2 (-104)) (-5 *1 (-162))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1090)) (-5 *2 (-104)) (-5 *1 (-1006)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-341)) (-4 *3 (-976))
- (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-791 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-976))
- (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3))) (-5 *1 (-792 *5 *3))
- (-4 *3 (-791 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 *4)) (-5 *1 (-1056 *3 *4))
- (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-429))
- (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-909 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 *7)) (-5 *3 (-108)) (-4 *7 (-990 *4 *5 *6))
- (-4 *4 (-429)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *1 (-909 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *1)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-976))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1120 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-976))
- (-4 *5 (-789)) (-5 *2 (-886 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *5)) (-4 *4 (-976))
- (-4 *5 (-789)) (-5 *2 (-886 *4))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-1163 *4)) (-4 *4 (-976))
- (-5 *2 (-886 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-1163 *4)) (-4 *4 (-976))
- (-5 *2 (-886 *4)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-592 (-457 *4 *5))) (-5 *3 (-799 *4))
- (-14 *4 (-592 (-1090))) (-4 *5 (-429)) (-5 *1 (-580 *4 *5)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -4152 *6) (|:| |sol?| (-108))) (-525)
- *6))
- (-4 *6 (-341)) (-4 *7 (-1148 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6))
- (-2 (|:| -2838 (-385 *7)) (|:| |coeff| (-385 *7))) "failed"))
- (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1090)) (-5 *4 (-886 (-525))) (-5 *2 (-308))
- (-5 *1 (-310)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-301 *3 *4)) (-4 *3 (-1019))
- (-4 *4 (-126))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1019)) (-5 *1 (-339 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1019)) (-5 *1 (-364 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1019)) (-5 *1 (-595 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-525)) (|has| *1 (-6 -4245)) (-4 *1 (-382))
- (-5 *2 (-855)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-525))) (-5 *4 (-839 (-525)))
- (-5 *2 (-632 (-525))) (-5 *1 (-546))))
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-856))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-592 (-632 (-525))))
- (-5 *1 (-546))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-525))) (-5 *4 (-592 (-839 (-525))))
- (-5 *2 (-592 (-632 (-525)))) (-5 *1 (-546)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-592 *1)) (-4 *1 (-990 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-763)) (-5 *2 (-51)) (-5 *1 (-773)))))
-(((*1 *1) (-5 *1 (-415))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-1132 *4)) (-4 *4 (-976)) (-4 *4 (-517))
- (-5 *2 (-385 (-886 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-1132 *4)) (-4 *4 (-976)) (-4 *4 (-517))
- (-5 *2 (-385 (-886 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-735)) (-4 *4 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3))
- (-5 *1 (-685 *5 *4 *6 *3)) (-4 *3 (-883 *6 *5 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-396 *2)) (-4 *2 (-286)) (-5 *1 (-848 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-1090))
- (-4 *5 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-849 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-886 *6)) (-5 *4 (-396 (-886 *6))) (-5 *5 (-1090))
- (-4 *6 (-13 (-286) (-138))) (-5 *2 (-51)) (-5 *1 (-849 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1071 (-2 (|:| |k| (-525)) (|:| |c| *3))))
- (-5 *1 (-550 *3)) (-4 *3 (-976)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-931 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *1 (-623 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019)))))
+ (-12 (-5 *3 (-1173 *4)) (-4 *4 (-327)) (-5 *2 (-856))
+ (-5 *1 (-495 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2))
- (-4 *2 (-1163 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1148 *3))
- (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1163 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2))
- (-4 *2 (-1163 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-517) (-138)))
- (-5 *1 (-1067 *3)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
- (-5 *2 (-965)) (-5 *1 (-699)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2 (-592 *4)) (-5 *1 (-1045 *3 *4)) (-4 *3 (-1148 *4))))
- ((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2 (-592 *3)) (-5 *1 (-1045 *4 *3)) (-4 *4 (-1148 *3)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-108))
- (-5 *2 (-965)) (-5 *1 (-688)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-501))) (-5 *1 (-501)))))
-(((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-713))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-380)) (-5 *2 (-713)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4256 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2))
- (-4 *2 (-976)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1148 *2))
- (-4 *4 (-630 *2 *5 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-550 *3))
- (-4 *3 (-37 (-385 (-525)))) (-4 *3 (-976)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-341)) (-5 *1 (-955 *3 *2)) (-4 *2 (-602 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-341)) (-5 *2 (-2 (|:| -1881 *3) (|:| -1862 (-592 *5))))
- (-5 *1 (-955 *5 *3)) (-5 *4 (-592 *5)) (-4 *3 (-602 *5)))))
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1165 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1091))
+ (-14 *4 *2))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-341))
+ (-5 *2 (-592 (-2 (|:| C (-632 *5)) (|:| |g| (-1173 *5)))))
+ (-5 *1 (-911 *5)) (-5 *3 (-632 *5)) (-5 *4 (-1173 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-967 (-385 (-525))))) (-5 *2 (-525))
- (-5 *1 (-111 *4 *3)) (-4 *3 (-1148 *4)))))
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2) (-12 (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-108)) (-5 *3 (-887 *6)) (-5 *4 (-1091))
+ (-5 *5 (-782 *7))
+ (-4 *6 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-4 *7 (-13 (-1113) (-29 *6))) (-5 *1 (-204 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1087 *6)) (-5 *4 (-782 *6))
+ (-4 *6 (-13 (-1113) (-29 *5)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-204 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-713))
+ (-4 *3 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $)))))
+ (-4 *4 (-1149 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-327)) (-5 *2 (-1172 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-632 *1)) (-4 *1 (-136)) (-4 *1 (-843))
- (-5 *2 (-1172 *1)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *1 (-623 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))))
-(((*1 *2 *3 *2)
(-12
- (-5 *2
- (-592
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-735)) (-4 *3 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789))
- (-5 *1 (-426 *4 *5 *6 *3)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-861)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-592 (-525))) (-5 *3 (-108)) (-5 *1 (-1029)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1148 *6))
- (-4 *6 (-13 (-27) (-408 *5)))
- (-4 *5 (-13 (-789) (-517) (-967 (-525)))) (-4 *8 (-1148 (-385 *7)))
- (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3))
- (-4 *3 (-320 *6 *7 *8)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-5 *1 (-1099 *3)))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)))) (-5 *1 (-170 *3 *2))
- (-4 *2 (-13 (-27) (-1112) (-408 (-157 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-517) (-789) (-967 (-525))))
- (-5 *1 (-170 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 (-157 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-1116 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1090))
- (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-1116 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))))
+ (-5 *3
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (-5 *2 (-357)) (-5 *1 (-187)))))
(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1090))
- (-5 *4
- (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090)))))
- (-5 *5
- (-592
- (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090))))))
- (-5 *6 (-592 (-1090))) (-5 *2 (-1023)) (-5 *1 (-375))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *3 (-1090))
- (-5 *4
- (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090)))))
- (-5 *5
- (-592
- (-592 (-3 (|:| |array| (-592 (-1090))) (|:| |scalar| (-1090))))))
- (-5 *6 (-592 (-1090))) (-5 *2 (-1023)) (-5 *1 (-375))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-1090)) (-5 *4 (-592 (-1090))) (-5 *5 (-1093))
- (-5 *2 (-1023)) (-5 *1 (-375)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-415)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1071 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-694)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 (-886 *3))) (-4 *3 (-429)) (-5 *1 (-338 *3 *4))
- (-14 *4 (-592 (-1090)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-427 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 *7)) (-5 *3 (-1073)) (-4 *7 (-883 *4 *5 *6))
- (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *1 (-427 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-592 *7)) (-5 *3 (-1073)) (-4 *7 (-883 *4 *5 *6))
- (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *1 (-427 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
- (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-592 (-722 *3 (-799 *4)))) (-4 *3 (-429))
- (-14 *4 (-592 (-1090))) (-5 *1 (-577 *3 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1057 *3 *4)) (-14 *3 (-855)) (-4 *4 (-341))
- (-5 *1 (-925 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1090))
- (-5 *2
- (-2 (|:| |zeros| (-1071 (-205))) (|:| |ones| (-1071 (-205)))
- (|:| |singularities| (-1071 (-205)))))
- (-5 *1 (-100)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093))))
- ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-1094)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *1 *2) (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-4 *1 (-837 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-1114 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1121 *4 *5 *3 *6)) (-4 *4 (-517)) (-4 *5 (-735))
+ (-4 *3 (-789)) (-4 *6 (-991 *4 *5 *3)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1190 *3)) (-4 *3 (-341)) (-5 *2 (-108)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1172 (-632 *4))) (-4 *4 (-160))
- (-5 *2 (-1172 (-632 (-886 *4)))) (-5 *1 (-171 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-823 *4 *5)) (-5 *3 (-823 *4 *6)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *6 (-612 *5)) (-5 *1 (-819 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-695)))))
-(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-369)))))
+ (-12 (-4 *2 (-327)) (-4 *2 (-977)) (-5 *1 (-655 *2 *3))
+ (-4 *3 (-1149 *2)))))
+(((*1 *1 *1 *1) (-4 *1 (-286))) ((*1 *1 *1 *1) (-5 *1 (-713)))
+ ((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *4 (-517)) (-5 *1 (-903 *4 *2))
+ (-4 *2 (-1149 *4)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1090))
- (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-5 *1 (-746 *4 *2)) (-4 *2 (-13 (-29 *4) (-1112) (-892)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797)))
- ((*1 *1 *1) (-5 *1 (-797)))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1071 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-976)))))
-(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1126)) (-5 *2 (-713)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-305 *3)) (-4 *3 (-1126))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1126))
- (-14 *4 (-525)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4))
- (-4 *4 (-327)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-632 *11)) (-5 *4 (-592 (-385 (-886 *8))))
- (-5 *5 (-713)) (-5 *6 (-1073)) (-4 *8 (-13 (-286) (-138)))
- (-4 *11 (-883 *8 *10 *9)) (-4 *9 (-13 (-789) (-567 (-1090))))
- (-4 *10 (-735))
- (-5 *2
- (-2
- (|:| |rgl|
- (-592
- (-2 (|:| |eqzro| (-592 *11)) (|:| |neqzro| (-592 *11))
- (|:| |wcond| (-592 (-886 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1172 (-385 (-886 *8))))
- (|:| -2499 (-592 (-1172 (-385 (-886 *8))))))))))
- (|:| |rgsz| (-525))))
- (-5 *1 (-858 *8 *9 *10 *11)) (-5 *7 (-525)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-308)))))
-(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1097)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1086 *6)) (-4 *6 (-976)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-1086 *7)) (-5 *1 (-299 *4 *5 *6 *7))
- (-4 *7 (-883 *6 *4 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1172 *5)) (-4 *5 (-588 *4)) (-4 *4 (-517))
- (-5 *2 (-1172 *4)) (-5 *1 (-587 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-886 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))))
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1073)) (-4 *1 (-342 *2 *4)) (-4 *2 (-1019))
- (-4 *4 (-1019))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-342 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-592 (-957 *5 *6 *7 *3))) (-5 *1 (-957 *5 *6 *7 *3))
- (-4 *3 (-990 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-592 *6)) (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-429))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-995 *3 *4 *5 *2)) (-4 *3 (-429)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-592 (-1061 *5 *6 *7 *3))) (-5 *1 (-1061 *5 *6 *7 *3))
- (-4 *3 (-990 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-205)) (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-843)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-396 (-1086 *7)))
- (-5 *1 (-840 *4 *5 *6 *7)) (-5 *3 (-1086 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-843)) (-4 *5 (-1148 *4)) (-5 *2 (-396 (-1086 *5)))
- (-5 *1 (-841 *4 *5)) (-5 *3 (-1086 *5)))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
+ (-4 *2 (-408 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-976)) (-4 *7 (-976))
- (-4 *6 (-1148 *5)) (-5 *2 (-1086 (-1086 *7)))
- (-5 *1 (-474 *5 *6 *4 *7)) (-4 *4 (-1148 *6)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *2 (-823 *6 *8)) (-5 *3 (-592 *8)) (-5 *4 (-592 (-826 *6)))
- (-5 *5 (-1 (-823 *6 *8) *8 (-826 *6) (-823 *6 *8))) (-4 *6 (-1019))
- (-4 *8 (-13 (-976) (-567 (-826 *6)) (-967 *7)))
- (-4 *7 (-13 (-976) (-789))) (-5 *1 (-875 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-5 *2 (-1073)))))
-(((*1 *1 *1) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-576 *2 *3 *4)) (-4 *2 (-789))
- (-4 *3 (-13 (-160) (-660 (-385 (-525))))) (-14 *4 (-855))))
- ((*1 *1 *1) (-12 (-5 *1 (-621 *2)) (-4 *2 (-789))))
- ((*1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
- ((*1 *1 *1) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))))
-(((*1 *2 *1) (-12 (-4 *1 (-345 *2)) (-4 *2 (-160)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1148 *2)) (-4 *2 (-1148 *4)) (-5 *1 (-917 *4 *2 *3 *5))
- (-4 *4 (-327)) (-4 *5 (-667 *2 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-797))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-227 *3 *4))
- (-14 *3 (-592 (-1090))) (-4 *4 (-976))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-525))) (-14 *3 (-592 (-1090)))
- (-5 *1 (-431 *3 *4 *5)) (-4 *4 (-976))
- (-4 *5 (-218 (-4140 *3) (-713)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-457 *3 *4))
- (-14 *3 (-592 (-1090))) (-4 *4 (-976)))))
+ (-12 (-5 *3 (-385 (-525))) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-517)) (-4 *8 (-884 *7 *5 *6))
+ (-5 *2 (-2 (|:| -1864 (-713)) (|:| -1655 *9) (|:| |radicand| *9)))
+ (-5 *1 (-888 *5 *6 *7 *8 *9)) (-5 *4 (-713))
+ (-4 *9
+ (-13 (-341)
+ (-10 -8 (-15 -1498 (*8 $)) (-15 -1512 (*8 $)) (-15 -1270 ($ *8))))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))))
-(((*1 *2 *3)
+ (-12 (-5 *2 (-878 *3)) (-4 *3 (-13 (-341) (-1113) (-934)))
+ (-5 *1 (-163 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525)))
+ (-5 *2 (-966)) (-5 *1 (-697)))))
+(((*1 *2 *2 *2)
(-12
- (-5 *3
- (-2 (|:| -3276 (-632 (-385 (-886 *4))))
- (|:| |vec| (-592 (-385 (-886 *4)))) (|:| -2239 (-713))
- (|:| |rows| (-592 (-525))) (|:| |cols| (-592 (-525)))))
- (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090))))
- (-4 *6 (-735))
(-5 *2
- (-2 (|:| |partsol| (-1172 (-385 (-886 *4))))
- (|:| -2499 (-592 (-1172 (-385 (-886 *4)))))))
- (-5 *1 (-858 *4 *5 *6 *7)) (-4 *7 (-883 *4 *6 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-592 (-1090))) (|:| |pred| (-51))))
- (-5 *1 (-826 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976))
- (-5 *2 (-592 (-592 (-592 (-713))))))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-87 G))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *2 (-965))
- (-5 *1 (-692)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1172 (-713))) (-5 *1 (-620 *3)) (-4 *3 (-1019)))))
-(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
+ (-2 (|:| -1449 (-632 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-632 *3))))
+ (-4 *3 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $)))))
+ (-4 *4 (-1149 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-308))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-308)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525)))))
- (-4 *5 (-1148 *4))
- (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -1881 *5))))
- (-5 *1 (-751 *4 *5 *3 *6)) (-4 *3 (-602 *5))
- (-4 *6 (-602 (-385 *5))))))
-(((*1 *1 *1 *1) (-4 *1 (-286))) ((*1 *1 *1 *1) (-5 *1 (-713)))
- ((*1 *1 *1 *1) (-5 *1 (-797))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-690)))))
+ (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1173 (-3 (-445) "undefined"))) (-5 *1 (-1174)))))
+(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1178)) (-5 *1 (-1054))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-798))) (-5 *2 (-1178)) (-5 *1 (-1054)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-51)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1123 *3)) (-4 *3 (-907)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-713))
+ (-4 *3 (-13 (-669) (-346) (-10 -7 (-15 ** (*3 *3 (-525))))))
+ (-5 *1 (-226 *3)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1091))
+ (-5 *2 (-525)) (-5 *1 (-1034 *4 *5)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-787)) (-4 *4 (-341)) (-5 *2 (-713))
- (-5 *1 (-879 *4 *5)) (-4 *5 (-1148 *4)))))
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *1 *1) (-5 *1 (-989))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-887 *6))) (-5 *4 (-592 (-1091)))
+ (-4 *6 (-13 (-517) (-968 *5))) (-4 *5 (-517))
+ (-5 *2 (-592 (-592 (-273 (-385 (-887 *6)))))) (-5 *1 (-969 *5 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *1 *1 *1) (-4 *1 (-286))) ((*1 *1 *1 *1) (-5 *1 (-713)))
+ ((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *1) (-12 (-4 *1 (-889)) (-5 *2 (-592 (-592 (-878 (-205)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-907)) (-5 *2 (-592 (-592 (-878 (-205))))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-697)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-108)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1148 *4)) (-4 *4 (-1130))
- (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1148 (-385 *3))))))
-(((*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-286)))))
-(((*1 *1) (-5 *1 (-146))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517))))
- ((*1 *1 *1) (|partial| -4 *1 (-665))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1164 *2 *3 *4)) (-4 *2 (-976)) (-14 *3 (-1090))
- (-14 *4 *2))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-855)) (-4 *4 (-346)) (-4 *4 (-341)) (-5 *2 (-1086 *1))
- (-4 *1 (-307 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1086 *3))))
+ (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-1123 *3))
+ (-4 *3 (-907)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1158 *3 *4 *5)) (-4 *3 (-13 (-341) (-789)))
+ (-14 *4 (-1091)) (-14 *5 *3) (-5 *1 (-297 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-970)) (-5 *3 (-357)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-294 (-205))) (-5 *1 (-284))))
((*1 *2 *1)
- (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *3 (-341))
- (-4 *2 (-1148 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1172 *4)) (-4 *4 (-327)) (-5 *2 (-1086 *4))
- (-5 *1 (-495 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-976)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1148 *3)))))
+ (|partial| -12
+ (-5 *2 (-2 (|:| |num| (-827 *3)) (|:| |den| (-827 *3))))
+ (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1) (-12 (-4 *1 (-942 *3)) (-4 *3 (-1127)) (-5 *2 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1114 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-51)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-517))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1400 *4)))
- (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-838 (-525))) (-5 *1 (-851))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))))
-(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-236)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-128)))))
-(((*1 *1 *1 *1) (-4 *1 (-286))) ((*1 *1 *1 *1) (-5 *1 (-713)))
- ((*1 *1 *1 *1) (-5 *1 (-797))))
-(((*1 *2)
- (-12 (-5 *2 (-632 (-844 *3))) (-5 *1 (-329 *3 *4)) (-14 *3 (-855))
- (-14 *4 (-855))))
- ((*1 *2)
- (-12 (-5 *2 (-632 *3)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327))
- (-14 *4
- (-3 (-1086 *3)
- (-1172 (-592 (-2 (|:| -3871 *3) (|:| -4185 (-1037)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-632 *3)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327))
- (-14 *4 (-855)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090)))
- (-14 *4 (-592 (-1090))) (-4 *5 (-365))))
- ((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090)))
- (-14 *4 (-592 (-1090))) (-4 *5 (-365)))))
-(((*1 *1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1 *1) (-4 *1 (-119))))
-(((*1 *1) (-5 *1 (-135))) ((*1 *1 *1) (-5 *1 (-797))))
-(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112))))))
-(((*1 *1 *1) (-4 *1 (-607))) ((*1 *1 *1) (-5 *1 (-1037))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-207 *2)) (-4 *2 (-13 (-341) (-1112)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
- ((*1 *1 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-855)) (-5 *4 (-357)) (-5 *2 (-1177)) (-5 *1 (-1173)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 *1)) (-5 *3 (-592 *7)) (-4 *1 (-995 *4 *5 *6 *7))
- (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-995 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 *1)) (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6))))
- ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-517) (-789))) (-5 *2 (-157 *5))
+ (-5 *1 (-554 *4 *5 *3)) (-4 *5 (-13 (-408 *4) (-934) (-1113)))
+ (-4 *3 (-13 (-408 (-157 *4)) (-934) (-1113))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-921 *4 *5 *6 *7 *3))
+ (-4 *3 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
(-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-592 *1))
- (-4 *1 (-995 *4 *5 *6 *3)))))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *3)) (-4 *3 (-996 *4 *5 *6 *7)))))
(((*1 *2 *1 *1)
(|partial| -12 (-5 *2 (-2 (|:| |lm| (-761 *3)) (|:| |rm| (-761 *3))))
(-5 *1 (-761 *3)) (-4 *3 (-789))))
- ((*1 *1 *1 *1) (-5 *1 (-797))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1086 *1)) (-5 *4 (-1090)) (-4 *1 (-27))
- (-5 *2 (-592 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1086 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-886 *1)) (-4 *1 (-27)) (-5 *2 (-592 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1090)) (-4 *4 (-13 (-789) (-517))) (-5 *2 (-592 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *2 (-592 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1090)))
- (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-1071 (-205))) (-5 *1 (-279)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-108))
- (-5 *6 (-205)) (-5 *7 (-632 (-525)))
- (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-78 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-366)) (|:| |fp| (-75 OBJFUN))))
- (-5 *2 (-965)) (-5 *1 (-696)))))
-(((*1 *1) (-5 *1 (-146))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1172 (-525))) (-5 *3 (-525)) (-5 *1 (-1029))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1172 (-525))) (-5 *3 (-592 (-525))) (-5 *4 (-525))
- (-5 *1 (-1029)))))
+ ((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 (-592 *6))) (-4 *6 (-884 *3 *5 *4))
+ (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1091))))
+ (-4 *5 (-735)) (-5 *1 (-859 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-695)))))
+(((*1 *2 *3) (-12 (-5 *3 (-856)) (-5 *2 (-839 (-525))) (-5 *1 (-852))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3)))
+ (-5 *1 (-631 *3 *4 *5 *6)) (-4 *6 (-630 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3))) (-5 *1 (-642 *3))
+ (-4 *3 (-286)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1074)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1178))
+ (-5 *1 (-997 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1074)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-991 *4 *5 *6)) (-5 *2 (-1178))
+ (-5 *1 (-1028 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-887 *5)) (-4 *5 (-977)) (-5 *2 (-457 *4 *5))
+ (-5 *1 (-879 *4 *5)) (-14 *4 (-592 (-1091))))))
+(((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |k| (-1090)) (|:| |c| (-1192 *3)))))
- (-5 *1 (-1192 *3)) (-4 *3 (-976))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |k| *3) (|:| |c| (-1194 *3 *4)))))
- (-5 *1 (-1194 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976)))))
+ (-12 (-5 *2 (-592 (-878 *4))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *2 *2) (-12 (-5 *2 (-856)) (|has| *1 (-6 -4246)) (-4 *1 (-382))))
+ ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-856))))
+ ((*1 *2 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641))))
+ ((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-641)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1087 *7))
+ (-4 *5 (-977)) (-4 *7 (-977)) (-4 *2 (-1149 *5))
+ (-5 *1 (-474 *5 *2 *6 *7)) (-4 *6 (-1149 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4))
- (-4 *4 (-327)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735))
- (-4 *9 (-789)) (-4 *3 (-990 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4))))))
- (-5 *1 (-993 *7 *8 *9 *3 *4)) (-4 *4 (-995 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
- (-4 *3 (-990 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4))))))
- (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
+ (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $)))))
+ (-4 *4 (-1149 *3))
(-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4))))))
- (-5 *1 (-993 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-713)) (-5 *6 (-108)) (-4 *7 (-429)) (-4 *8 (-735))
- (-4 *9 (-789)) (-4 *3 (-990 *7 *8 *9))
+ (-2 (|:| -1449 (-632 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-632 *3))))
+ (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1149 (-525)))
(-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4))))))
- (-5 *1 (-1060 *7 *8 *9 *3 *4)) (-4 *4 (-1028 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-713)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
- (-4 *3 (-990 *6 *7 *8))
+ (-2 (|:| -1449 (-632 (-525))) (|:| |basisDen| (-525))
+ (|:| |basisInv| (-632 (-525)))))
+ (-5 *1 (-710 *4 *5)) (-5 *3 (-525)) (-4 *5 (-387 (-525) *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-327)) (-4 *3 (-1149 *4)) (-4 *5 (-1149 *3))
(-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4))))))
- (-5 *1 (-1060 *6 *7 *8 *3 *4)) (-4 *4 (-1028 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
+ (-2 (|:| -1449 (-632 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-632 *3))))
+ (-5 *1 (-918 *4 *3 *5 *6)) (-4 *6 (-667 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-327)) (-4 *3 (-1149 *4)) (-4 *5 (-1149 *3))
(-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4))))))
- (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1028 *5 *6 *7 *3)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *3 (-517)))))
+ (-2 (|:| -1449 (-632 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-632 *3))))
+ (-5 *1 (-1182 *4 *3 *5 *6)) (-4 *6 (-387 *3 *5)))))
(((*1 *1 *1 *2)
(|partial| -12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-517))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-304 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734))
+ (|partial| -12 (-4 *1 (-304 *2 *3)) (-4 *2 (-977)) (-4 *3 (-734))
(-4 *2 (-517))))
((*1 *1 *1 *1) (|partial| -4 *1 (-517)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976))
+ (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977))
(-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-517))))
((*1 *1 *1 *1) (|partial| -5 *1 (-713)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-517))))
- ((*1 *1 *1 *1) (-5 *1 (-797)))
+ (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-517))))
+ ((*1 *1 *1 *1) (-5 *1 (-798)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1172 *4)) (-4 *4 (-1148 *3)) (-4 *3 (-517))
- (-5 *1 (-902 *3 *4))))
+ (-12 (-5 *2 (-1173 *4)) (-4 *4 (-1149 *3)) (-4 *3 (-517))
+ (-5 *1 (-903 *3 *4))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-979 *3 *4 *2 *5 *6)) (-4 *2 (-976))
+ (|partial| -12 (-4 *1 (-980 *3 *4 *2 *5 *6)) (-4 *2 (-977))
(-4 *5 (-218 *4 *2)) (-4 *6 (-218 *3 *2)) (-4 *2 (-517))))
((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1019)) (-5 *2 (-1073)))))
-(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-965)))))
+ (|partial| -12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))))
+(((*1 *2 *1) (-12 (-5 *1 (-542 *2)) (-4 *2 (-341)))))
+(((*1 *2 *3 *3 *1)
+ (|partial| -12 (-5 *3 (-1091)) (-5 *2 (-1024)) (-5 *1 (-270)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-51))) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-205) (-205) (-205)))
+ (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined"))
+ (-5 *5 (-1015 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1051 (-205)))
+ (-5 *1 (-639)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-855))
- (-5 *2 (-1172 (-592 (-2 (|:| -3871 *4) (|:| -4185 (-1037))))))
- (-5 *1 (-324 *4)) (-4 *4 (-327)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *3 (-1172 (-357))) (-5 *4 (-525)) (-5 *5 (-357))
- (-5 *6 (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))
- (-5 *2 (-1177)) (-5 *1 (-730)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-525)) (-4 *5 (-341))
- (-4 *5 (-976)) (-5 *2 (-108)) (-5 *1 (-959 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-632 *4))) (-4 *4 (-341)) (-4 *4 (-976))
- (-5 *2 (-108)) (-5 *1 (-959 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-308)))))
-(((*1 *1 *1 *1) (-4 *1 (-704))))
+ (-12 (-4 *4 (-429))
+ (-5 *2
+ (-592
+ (-2 (|:| |eigval| (-3 (-385 (-887 *4)) (-1081 (-1091) (-887 *4))))
+ (|:| |eigmult| (-713))
+ (|:| |eigvec| (-592 (-632 (-385 (-887 *4))))))))
+ (-5 *1 (-271 *4)) (-5 *3 (-632 (-385 (-887 *4)))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-327))
- (-5 *2 (-592 (-2 (|:| |deg| (-713)) (|:| -1218 *3))))
- (-5 *1 (-197 *4 *3)) (-4 *3 (-1148 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *1) (-5 *1 (-1173))))
+ (-12 (-5 *3 (-1091)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *4 *5 *6))
+ (-4 *4 (-567 (-501))) (-4 *5 (-1127)) (-4 *6 (-1127)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-110)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *2 (-966)) (-5 *1 (-694)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-778))
- (-5 *3
- (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205)))
- (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205))))
- (|:| |ub| (-592 (-782 (-205))))))
- (-5 *2 (-965))))
+ (-12 (-4 *1 (-327)) (-5 *3 (-525)) (-5 *2 (-1101 (-856) (-713))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-5 *2 (-1100 (-592 *4))) (-5 *1 (-1099 *4))
+ (-5 *3 (-592 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))
((*1 *2 *3)
- (-12 (-4 *1 (-778))
+ (-12 (-5 *2 (-1087 (-385 (-525)))) (-5 *1 (-877)) (-5 *3 (-525)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-108) *5 *5)) (-4 *5 (-13 (-1020) (-33)))
+ (-5 *2 (-108)) (-5 *1 (-1056 *4 *5)) (-4 *4 (-13 (-1020) (-33))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-977)) (-4 *4 (-1149 *3)) (-5 *1 (-152 *3 *4 *2))
+ (-4 *2 (-1149 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1127)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-4 *1 (-102 *3)))))
+(((*1 *2 *3)
+ (-12
(-5 *3
- (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))
- (-5 *2 (-965)))))
+ (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
+ (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
+ (|:| |abserr| (-205)) (|:| |relerr| (-205))))
+ (-5 *2 (-357)) (-5 *1 (-187)))))
+(((*1 *2) (-12 (-5 *2 (-856)) (-5 *1 (-146)))))
+(((*1 *1) (-5 *1 (-765))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-565 *1)) (-4 *1 (-281)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *5))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-798)))) (-5 *1 (-798))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1058 *3 *4)) (-5 *1 (-926 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-341))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-592 (-592 *5))) (-4 *5 (-977))
+ (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *6 (-218 *4 *5))
+ (-4 *7 (-218 *3 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-1073)) (-5 *1 (-174))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-108)))))
-(((*1 *2)
- (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5)))
- (-5 *2 (-713)) (-5 *1 (-319 *3 *4 *5 *6)) (-4 *3 (-320 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-713)))))
-(((*1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-592 (-110))))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-632 (-1086 *8))) (-4 *5 (-976)) (-4 *8 (-976))
- (-4 *6 (-1148 *5)) (-5 *2 (-632 *6)) (-5 *1 (-474 *5 *6 *7 *8))
- (-4 *7 (-1148 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-116 *3)) (-4 *3 (-1149 (-525))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-108) *6 *6)) (-4 *6 (-789))
+ (-5 *2
+ (-2 (|:| |fs| (-108)) (|:| |sd| (-592 *6))
+ (|:| |td| (-592 (-592 *6)))))
+ (-5 *1 (-1099 *6)) (-5 *4 (-592 *6)) (-5 *5 (-592 (-592 *6))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1090)) (-4 *5 (-341)) (-5 *2 (-1071 (-1071 (-886 *5))))
- (-5 *1 (-1180 *5)) (-5 *4 (-1071 (-886 *5))))))
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1074)) (-5 *3 (-716)) (-5 *1 (-110)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1195 *4 *2)) (-4 *1 (-352 *4 *2)) (-4 *4 (-789))
+ (-4 *2 (-160))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-789)) (-4 *2 (-977))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-761 *4)) (-4 *1 (-1188 *4 *2)) (-4 *4 (-789))
+ (-4 *2 (-977))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-977)) (-5 *1 (-1194 *2 *3)) (-4 *3 (-785)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-385 (-525))))
+ (-5 *1 (-284)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-592 *6)) (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
+ (-4 *3 (-517)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-798))) (-5 *1 (-798)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1143 *3 *2))
+ (-4 *2 (-1149 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-517) (-789)))
+ (-4 *2 (-13 (-408 *4) (-934) (-1113))) (-5 *1 (-554 *4 *2 *3))
+ (-4 *3 (-13 (-408 (-157 *4)) (-934) (-1113))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1174)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205))))
+ (-5 *2 (-966)) (-5 *1 (-697)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
+ (-5 *2 (-713))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020))
+ (-5 *2 (-713))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-669)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-5 *2 (-2 (|:| -3423 *3) (|:| -2544 *4))))))
(((*1 *2)
- (-12 (-5 *2 (-1177)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019))
- (-4 *4 (-1019)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *3 (-592 (-242)))
+ (-5 *1 (-240))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-878 (-205)) (-878 (-205)))) (-5 *1 (-242))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-457 *5 *6)) (-5 *4 (-592 (-457 *5 *6)))
+ (-14 *5 (-592 (-1091))) (-4 *6 (-429)) (-5 *2 (-1173 *6))
+ (-5 *1 (-580 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1173 (-641))) (-5 *1 (-284)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2))
+ (|has| *2 (-6 (-4257 "*"))) (-4 *2 (-977))))
((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-530 *3)) (-4 *3 (-967 (-525)))))
+ (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160))
+ (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1019)))))
-(((*1 *1 *2) (-12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))))
+ (-12 (-4 *1 (-1041 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
+ (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4257 "*"))) (-4 *2 (-977)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1087 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517)))
+ (-5 *1 (-31 *4 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-626 *4 *3)) (-4 *4 (-1020))
+ (-4 *3 (-1020)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *2)) (-4 *2 (-160))))
+ ((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-394 *3 *2)) (-4 *3 (-395 *2))))
+ ((*1 *2) (-12 (-4 *1 (-395 *2)) (-4 *2 (-160)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-565 *5)) (-4 *5 (-408 *4)) (-4 *4 (-968 (-525)))
+ (-4 *4 (-13 (-789) (-517))) (-5 *2 (-1087 *5)) (-5 *1 (-31 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-565 *1)) (-4 *1 (-977)) (-4 *1 (-281))
+ (-5 *2 (-1087 *1)))))
+(((*1 *2 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1127))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1121 *3 *4 *5 *2)) (-4 *3 (-517))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-991 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-4 *1 (-1161 *3)) (-4 *3 (-1127))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1161 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7)))))
+(((*1 *1 *1) (-4 *1 (-510))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1014 *3)) (-5 *1 (-1012 *3)) (-4 *3 (-1126))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126))))
- ((*1 *1 *2) (-12 (-5 *1 (-1139 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-341) (-138) (-967 (-525)))) (-4 *5 (-1148 *4))
- (-5 *2 (-2 (|:| |ans| (-385 *5)) (|:| |nosol| (-108))))
- (-5 *1 (-946 *4 *5)) (-5 *3 (-385 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))))
-(((*1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -3740 *4))))
- (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *10))
- (-5 *1 (-574 *5 *6 *7 *8 *9 *10)) (-4 *9 (-995 *5 *6 *7 *8))
- (-4 *10 (-1028 *5 *6 *7 *8))))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-234))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
- (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-973 *5 *6)))
- (-5 *1 (-577 *5 *6))))
+ (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1051 (-205))) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-234))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
- (-14 *6 (-592 (-1090)))
- (-5 *2
- (-592 (-1061 *5 (-497 (-799 *6)) (-799 *6) (-722 *5 (-799 *6)))))
- (-5 *1 (-577 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-592 (-957 *5 *6 *7 *8))) (-5 *1 (-957 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1051 (-205))) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-234))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-592 (-957 *5 *6 *7 *8))) (-5 *1 (-957 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1051 (-205))) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1051 (-205))) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1051 (-205))) (-5 *1 (-234))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
- (-14 *6 (-592 (-1090))) (-5 *2 (-592 (-973 *5 *6)))
- (-5 *1 (-973 *5 *6))))
+ (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1051 (-205))) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-814 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
+ (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1051 (-205)))
+ (-5 *1 (-238 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-995 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-592 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-814 *5)) (-5 *4 (-1013 (-357)))
+ (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1051 (-205)))
+ (-5 *1 (-238 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
+ (-5 *2 (-1051 (-205))) (-5 *1 (-238 *3))
+ (-4 *3 (-13 (-567 (-501)) (-1020)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-108)) (-4 *8 (-990 *5 *6 *7))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-592 (-1061 *5 *6 *7 *8))) (-5 *1 (-1061 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-1120 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1019)) (-5 *1 (-98 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-98 *2)) (-4 *2 (-1019)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-286)) (-5 *2 (-108)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
- (-14 *4 (-713)) (-4 *5 (-160))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-525)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
- (-14 *4 (-713)) (-4 *5 (-160))))
- ((*1 *2 *2 *3)
+ (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1051 (-205))) (-5 *1 (-238 *3))
+ (-4 *3 (-13 (-567 (-501)) (-1020)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-817 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
+ (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1051 (-205)))
+ (-5 *1 (-238 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-817 *5)) (-5 *4 (-1013 (-357)))
+ (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1051 (-205)))
+ (-5 *1 (-238 *5)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-713)) (-5 *3 (-878 *5)) (-4 *5 (-977))
+ (-5 *1 (-1080 *4 *5)) (-14 *4 (-856))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1080 *4 *5))
+ (-14 *4 (-856)) (-4 *5 (-977))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-713))) (-5 *3 (-878 *5)) (-4 *5 (-977))
+ (-5 *1 (-1080 *4 *5)) (-14 *4 (-856)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-698)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4)
- (-227 *4 (-385 (-525)))))
- (-5 *3 (-592 (-799 *4))) (-14 *4 (-592 (-1090))) (-14 *5 (-713))
- (-5 *1 (-478 *4 *5)))))
-(((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-5 *2 (-2 (|:| -3946 *3) (|:| -2511 *4))))))
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205)))
+ (|:| |lb| (-592 (-782 (-205))))
+ (|:| |cf| (-592 (-294 (-205))))
+ (|:| |ub| (-592 (-782 (-205))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-592 (-294 (-205))))
+ (|:| -3940 (-592 (-205)))))))
+ (-5 *2 (-592 (-1074))) (-5 *1 (-246)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1172 *4)) (-4 *4 (-588 (-525))) (-5 *2 (-108))
- (-5 *1 (-1197 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1090)) (-5 *5 (-1014 (-205))) (-5 *2 (-861))
- (-5 *1 (-859 *3)) (-4 *3 (-567 (-501)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1090)) (-5 *5 (-1014 (-205))) (-5 *2 (-861))
- (-5 *1 (-859 *3)) (-4 *3 (-567 (-501)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-860))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205)))
- (-5 *1 (-860))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205)))
- (-5 *1 (-860))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205)))
- (-5 *1 (-861))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205)))
- (-5 *1 (-861))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1014 (-205)))
- (-5 *1 (-861))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-1 (-205) (-205)))) (-5 *3 (-1014 (-205)))
- (-5 *1 (-861))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205)))
- (-5 *1 (-861))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205)))
- (-5 *1 (-861)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-797)))))
-(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2 (-2 (|:| -1238 (-110)) (|:| |w| (-205)))) (-5 *1 (-186)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-429)) (-4 *3 (-789)) (-4 *4 (-735))
+ (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1127)) (-5 *2 (-108)))))
+(((*1 *1 *1) (-4 *1 (-986))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-798)))))
+(((*1 *2)
+ (-12 (-4 *3 (-977)) (-5 *2 (-892 (-655 *3 *4))) (-5 *1 (-655 *3 *4))
+ (-4 *4 (-1149 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-856)) (-5 *1 (-1021 *3 *4)) (-14 *3 (-856))
+ (-14 *4 (-856)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-698)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *4 *5 *6)) (-4 *4 (-341))
- (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *1 (-427 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-94 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-341))
- (-5 *2
- (-2 (|:| R (-632 *6)) (|:| A (-632 *6)) (|:| |Ainv| (-632 *6))))
- (-5 *1 (-910 *6)) (-5 *3 (-632 *6)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-995 *6 *7 *8 *9))
- (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-990 *6 *7 *8))
- (-5 *2
- (-592
- (-2 (|:| -1881 (-592 *9)) (|:| -3740 *10) (|:| |ineq| (-592 *9)))))
- (-5 *1 (-920 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-592 *10)) (-5 *5 (-108)) (-4 *10 (-995 *6 *7 *8 *9))
- (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789)) (-4 *9 (-990 *6 *7 *8))
- (-5 *2
- (-592
- (-2 (|:| -1881 (-592 *9)) (|:| -3740 *10) (|:| |ineq| (-592 *9)))))
- (-5 *1 (-1026 *6 *7 *8 *9 *10)) (-5 *3 (-592 *9)))))
-(((*1 *2 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1120 *3 *4 *5 *2)) (-4 *3 (-517))
- (-4 *4 (-735)) (-4 *5 (-789)) (-4 *2 (-990 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-1160 *3)) (-4 *3 (-1126))))
- ((*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-353 *4 *2))
- (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4255)))))))
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1149 *5))
+ (-4 *5 (-13 (-27) (-408 *4)))
+ (-4 *4 (-13 (-789) (-517) (-968 (-525))))
+ (-4 *7 (-1149 (-385 *6))) (-5 *1 (-513 *4 *5 *6 *7 *2))
+ (-4 *2 (-320 *5 *6 *7)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-57 *3)) (-4 *3 (-1127))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-5 *1 (-57 *3)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1019)) (-5 *2 (-823 *3 *5)) (-5 *1 (-819 *3 *4 *5))
- (-4 *3 (-1019)) (-4 *5 (-612 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286))
- (-5 *2 (-592 (-713))) (-5 *1 (-720 *3 *4 *5 *6 *7))
- (-4 *3 (-1148 *6)) (-4 *7 (-883 *6 *4 *5)))))
-(((*1 *1)
- (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
- (-4 *4 (-160)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-174))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-279))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1014 (-782 (-205)))) (-5 *2 (-205)) (-5 *1 (-284)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1172 *4)) (-5 *3 (-632 *4)) (-4 *4 (-341))
- (-5 *1 (-613 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-341))
- (-4 *5 (-13 (-351 *4) (-10 -7 (-6 -4255))))
- (-4 *2 (-13 (-351 *4) (-10 -7 (-6 -4255))))
- (-5 *1 (-614 *4 *5 *2 *3)) (-4 *3 (-630 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-592 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-341))
- (-5 *1 (-756 *2 *3)) (-4 *3 (-602 *2))))
+ (|partial| -12 (-4 *3 (-977)) (-4 *3 (-789))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -1864 (-525)))) (-4 *1 (-408 *3))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-827 *3)) (|:| -1864 (-827 *3))))
+ (-5 *1 (-827 *3)) (-4 *3 (-1020))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-1006)))))
+ (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
+ (-4 *7 (-884 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -1864 (-525))))
+ (-5 *1 (-885 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $))
+ (-15 -1512 (*7 $))))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1127))
+ (-4 *5 (-351 *4)) (-4 *2 (-351 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-525)) (-4 *1 (-980 *4 *5 *6 *2 *7)) (-4 *6 (-977))
+ (-4 *7 (-218 *4 *6)) (-4 *2 (-218 *5 *6)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-967 (-47)))
- (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-4 *5 (-408 *4))
- (-5 *2 (-396 (-1086 (-47)))) (-5 *1 (-413 *4 *5 *3))
- (-4 *3 (-1148 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-213)) (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-245 *4))
- (-4 *6 (-735)) (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *3 *4 *5 *6))))
+ (-12 (|has| *6 (-6 -4256)) (-4 *4 (-341)) (-4 *5 (-351 *4))
+ (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-492 *4 *5 *6 *3))
+ (-4 *3 (-630 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-4 *4 (-976)) (-4 *3 (-789)) (-4 *5 (-245 *3)) (-4 *6 (-735))
- (-5 *2 (-1 *1 (-713))) (-4 *1 (-232 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-713)) (-4 *1 (-245 *2)) (-4 *2 (-789)))))
-(((*1 *2 *2) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1019)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789))))
- ((*1 *1) (-4 *1 (-1066))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-855))) (-5 *1 (-1020 *3 *4)) (-14 *3 (-855))
- (-14 *4 (-855)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933)))
- (-5 *1 (-163 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1130)) (-4 *6 (-1148 *5))
- (-5 *2
- (-2 (|:| -1600 (-713)) (|:| -1459 (-385 *6)) (|:| |radicand| *6)))
- (-5 *1 (-139 *5 *6 *7)) (-5 *3 (-385 *6)) (-5 *4 (-713))
- (-4 *7 (-1148 (-385 *6))))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-86 OUTPUT))))
- (-5 *2 (-965)) (-5 *1 (-692)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
- (-5 *2 (-592 (-886 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-592 (-886 *4))) (-5 *1 (-394 *3 *4))
- (-4 *3 (-395 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-592 (-886 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-592 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3)))))
+ (-12 (|has| *9 (-6 -4256)) (-4 *4 (-517)) (-4 *5 (-351 *4))
+ (-4 *6 (-351 *4)) (-4 *7 (-925 *4)) (-4 *8 (-351 *7))
+ (-4 *9 (-351 *7)) (-5 *2 (-592 *6))
+ (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-630 *4 *5 *6))
+ (-4 *10 (-630 *7 *8 *9))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-592 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1172 (-430 *4 *5 *6 *7))) (-4 *4 (-517)) (-4 *4 (-160))
- (-14 *5 (-855)) (-14 *6 (-592 (-1090))) (-14 *7 (-1172 (-632 *4)))
- (-5 *2 (-592 (-886 *4))) (-5 *1 (-430 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4))
+ (-4 *6 (-351 *4)) (-5 *2 (-592 *6)) (-5 *1 (-631 *4 *5 *6 *3))
+ (-4 *3 (-630 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
+ (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517))
+ (-5 *2 (-592 *7)))))
(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4254)) (-4 *1 (-142 *2)) (-4 *2 (-1126))
- (-4 *2 (-1019))))
+ (-12 (|has| *1 (-6 -4255)) (-4 *1 (-142 *2)) (-4 *2 (-1127))
+ (-4 *2 (-1020))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4254)) (-4 *1 (-142 *3))
- (-4 *3 (-1126))))
+ (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4255)) (-4 *1 (-142 *3))
+ (-4 *3 (-1127))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1126))))
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-619 *3)) (-4 *3 (-1127))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1019))
+ (-12 (-5 *2 (-1 (-108) *4)) (-5 *3 (-525)) (-4 *4 (-1020))
(-5 *1 (-680 *4))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1019))))
+ (-12 (-5 *3 (-525)) (-5 *1 (-680 *2)) (-4 *2 (-1020))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33)))
- (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1056 *3 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-73 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-74 G JACOBG JACGEP))))
- (-5 *2 (-965)) (-5 *1 (-692)))))
+ (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
+ (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1057 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-501))) (-5 *2 (-1090)) (-5 *1 (-501)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1148 *2)) (-4 *2 (-1130)) (-5 *1 (-139 *2 *4 *3))
- (-4 *3 (-1148 (-385 *4))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-3 (-108) (-592 *1)))
- (-4 *1 (-995 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-695)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *1)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-976))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1120 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1019)) (-4 *6 (-820 *5)) (-5 *2 (-819 *5 *6 (-592 *6)))
- (-5 *1 (-821 *5 *6 *4)) (-5 *3 (-592 *6)) (-4 *4 (-567 (-826 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1019)) (-5 *2 (-592 (-273 *3))) (-5 *1 (-821 *5 *3 *4))
- (-4 *3 (-967 (-1090))) (-4 *3 (-820 *5)) (-4 *4 (-567 (-826 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1019)) (-5 *2 (-592 (-273 (-886 *3))))
- (-5 *1 (-821 *5 *3 *4)) (-4 *3 (-976))
- (-2480 (-4 *3 (-967 (-1090)))) (-4 *3 (-820 *5))
- (-4 *4 (-567 (-826 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1019)) (-5 *2 (-823 *5 *3)) (-5 *1 (-821 *5 *3 *4))
- (-2480 (-4 *3 (-967 (-1090)))) (-2480 (-4 *3 (-976)))
- (-4 *3 (-820 *5)) (-4 *4 (-567 (-826 *5))))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-632 (-525))) (-5 *3 (-592 (-525))) (-5 *1 (-1029)))))
+ (-12 (-4 *4 (-789))
+ (-5 *2
+ (-2 (|:| |f1| (-592 *4)) (|:| |f2| (-592 (-592 (-592 *4))))
+ (|:| |f3| (-592 (-592 *4))) (|:| |f4| (-592 (-592 (-592 *4))))))
+ (-5 *1 (-1099 *4)) (-5 *3 (-592 (-592 (-592 *4)))))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-931 *3)) (-4 *3 (-160)) (-5 *1 (-741 *3)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-700)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-698)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (|has| *1 (-6 -4255)) (-4 *1 (-215 *3))
+ (-4 *3 (-1020))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-108) *3)) (-4 *1 (-261 *3)) (-4 *3 (-1127)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-856)) (-4 *1 (-218 *3 *4)) (-4 *4 (-977))
+ (-4 *4 (-1127))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-592 (-1091))) (-4 *4 (-160))
+ (-4 *5 (-218 (-3596 *3) (-713)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -3640 *2) (|:| -1864 *5))
+ (-2 (|:| -3640 *2) (|:| -1864 *5))))
+ (-5 *1 (-438 *3 *4 *2 *5 *6 *7)) (-4 *2 (-789))
+ (-4 *7 (-884 *4 *5 (-800 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-878 (-205))) (-5 *1 (-1124)))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1105 *3 *4)) (-4 *3 (-1020))
+ (-4 *4 (-1020)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281))))
+ ((*1 *1 *1) (-4 *1 (-281))) ((*1 *1 *1) (-5 *1 (-798))))
(((*1 *2 *2)
- (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *6 (-990 *3 *4 *5)) (-5 *1 (-574 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-995 *3 *4 *5 *6)) (-4 *2 (-1028 *3 *4 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-517)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-704))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-592 (-713))) (-5 *1 (-902 *4 *3))
- (-4 *3 (-1148 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1017 *3)) (-4 *3 (-1019)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090))))
- (-4 *6 (-735)) (-5 *2 (-592 (-592 (-525))))
- (-5 *1 (-858 *4 *5 *6 *7)) (-5 *3 (-525)) (-4 *7 (-883 *4 *6 *5)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2)))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091)))
+ (-14 *3 (-592 (-1091))) (-4 *4 (-365))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *1 *1) (-4 *1 (-1116))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-308)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-789)) (-5 *1 (-1099 *3)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1091)) (-5 *5 (-1 (-542 *3) *3 (-1091)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1091)))
+ (-4 *3 (-263)) (-4 *3 (-578)) (-4 *3 (-968 (-1091)))
+ (-4 *3 (-408 *7)) (-4 *7 (-567 (-827 (-525)))) (-4 *7 (-429))
+ (-4 *7 (-821 (-525))) (-4 *7 (-789)) (-5 *2 (-542 *3))
+ (-5 *1 (-534 *7 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-787)) (-5 *1 (-282 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 (-135))) (-5 *1 (-132))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-132)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-51))) (-5 *1 (-826 *3)) (-4 *3 (-1019)))))
+ (-12 (-4 *3 (-1020))
+ (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))
+ (-5 *2 (-592 (-1091))) (-5 *1 (-999 *3 *4 *5))
+ (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 (-886 *4))) (-5 *3 (-592 (-1090))) (-4 *4 (-429))
- (-5 *1 (-852 *4)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-565 *3)) (-5 *5 (-1086 *3))
- (-4 *3 (-13 (-408 *6) (-27) (-1112)))
- (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1019))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1086 *3)))
- (-4 *3 (-13 (-408 *6) (-27) (-1112)))
- (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2 (-542 *3)) (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1019)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1148 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-108))
- (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2
- (-3 (|:| |%expansion| (-291 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))))
- (-5 *1 (-398 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1112) (-408 *5)))
- (-14 *6 (-1090)) (-14 *7 *3))))
-(((*1 *2 *3) (-12 (-5 *3 (-157 (-525))) (-5 *2 (-108)) (-5 *1 (-423))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4)
- (-227 *4 (-385 (-525)))))
- (-14 *4 (-592 (-1090))) (-14 *5 (-713)) (-5 *2 (-108))
- (-5 *1 (-478 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-894 *3)) (-4 *3 (-510))))
- ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3)
(-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3))
- (-4 *3 (-995 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))))
+ (-4 *2 (-991 *4 *5 *6)) (-5 *1 (-718 *4 *5 *6 *2 *3))
+ (-4 *3 (-996 *4 *5 *6 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1149 *4)) (-5 *1 (-751 *4 *2 *3 *5))
+ (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2))
+ (-4 *5 (-602 (-385 *2))))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-592 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *6)))
- (-4 *6 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-518 *6 *3)))))
-(((*1 *1 *1) (-4 *1 (-803 *2))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-104)) (-5 *1 (-162)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160))))
+ (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1174)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-812 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1174)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-814 (-1 (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1175)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1175)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1175)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-878 (-205)) (-205) (-205))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1175)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *5 (-592 (-242))) (-5 *2 (-1175)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-817 (-1 (-205) (-205) (-205)))) (-5 *4 (-1015 (-357)))
+ (-5 *2 (-1175)) (-5 *1 (-234))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-273 *7)) (-5 *4 (-1091)) (-5 *5 (-592 (-242)))
+ (-4 *7 (-408 *6)) (-4 *6 (-13 (-517) (-789) (-968 (-525))))
+ (-5 *2 (-1174)) (-5 *1 (-235 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174))
+ (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1174)) (-5 *1 (-238 *3))
+ (-4 *3 (-13 (-567 (-501)) (-1020)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-812 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
+ (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1174))
+ (-5 *1 (-238 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-812 *5)) (-5 *4 (-1013 (-357)))
+ (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1174))
+ (-5 *1 (-238 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-814 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
+ (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1175))
+ (-5 *1 (-238 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-814 *5)) (-5 *4 (-1013 (-357)))
+ (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1175))
+ (-5 *1 (-238 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1175))
+ (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1020)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1013 (-357))) (-5 *2 (-1175)) (-5 *1 (-238 *3))
+ (-4 *3 (-13 (-567 (-501)) (-1020)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-817 *6)) (-5 *4 (-1013 (-357))) (-5 *5 (-592 (-242)))
+ (-4 *6 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1175))
+ (-5 *1 (-238 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-817 *5)) (-5 *4 (-1013 (-357)))
+ (-4 *5 (-13 (-567 (-501)) (-1020))) (-5 *2 (-1175))
+ (-5 *1 (-238 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1174)) (-5 *1 (-239))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1174))
+ (-5 *1 (-239))))
((*1 *2 *3)
- (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1126))
- (-4 *3 (-351 *4)) (-4 *5 (-351 *4)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1090)) (-4 *5 (-567 (-826 (-525))))
- (-4 *5 (-820 (-525)))
- (-4 *5 (-13 (-789) (-967 (-525)) (-429) (-588 (-525))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-528 *5 *3)) (-4 *3 (-578))
- (-4 *3 (-13 (-27) (-1112) (-408 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1090)) (-5 *4 (-782 *2)) (-4 *2 (-1054))
- (-4 *2 (-13 (-27) (-1112) (-408 *5)))
- (-4 *5 (-567 (-826 (-525)))) (-4 *5 (-820 (-525)))
- (-4 *5 (-13 (-789) (-967 (-525)) (-429) (-588 (-525))))
- (-5 *1 (-528 *5 *2)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-357)) (-5 *1 (-988)))))
+ (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *2 (-1174)) (-5 *1 (-239))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-878 (-205)))) (-5 *4 (-592 (-242)))
+ (-5 *2 (-1174)) (-5 *1 (-239))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1175)) (-5 *1 (-239))))
+ ((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1175))
+ (-5 *1 (-239)))))
+(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175))))
+ ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-592 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126)))))
+ (-12 (-5 *2 (-1087 (-385 (-887 *3)))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-697)))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-202 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-4 *1 (-233 *3))))
+ ((*1 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1127)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))
- (-14 *4 (-713)) (-4 *5 (-160))))
- ((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-855)) (-5 *1 (-153 *3 *4))
- (-4 *3 (-154 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-855))))
- ((*1 *2)
- (-12 (-4 *1 (-348 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3))
- (-5 *2 (-855))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-341)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
- (-5 *2 (-713)) (-5 *1 (-492 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6))))
+ (-12 (-4 *1 (-313 *3 *4 *5 *6)) (-4 *3 (-341)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-4 *6 (-320 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -3450 (-391 *4 (-385 *4) *5 *6)) (|:| |principalPart| *6)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-341))
- (-5 *2 (-713)) (-5 *1 (-613 *5))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1149 *5)) (-4 *5 (-341))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -2003 (-385 *6))
+ (|:| |special| (-385 *6))))
+ (-5 *1 (-670 *5 *6)) (-5 *3 (-385 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-831 *3 *4))
+ (-4 *3 (-1149 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-713)) (-4 *5 (-341))
+ (-5 *2 (-2 (|:| -3593 *3) (|:| -3602 *3))) (-5 *1 (-831 *3 *5))
+ (-4 *3 (-1149 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108))
+ (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-994 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108))
+ (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-996 *5 *6 *7 *8)) (-4 *5 (-429))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-994 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108))
+ (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1061 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-592 *9)) (-5 *3 (-592 *8)) (-5 *4 (-108))
+ (-4 *8 (-991 *5 *6 *7)) (-4 *9 (-1029 *5 *6 *7 *8)) (-4 *5 (-429))
+ (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-1061 *5 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-977)) (-4 *2 (-734))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-977))
+ (-14 *4 (-592 (-1091)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-525)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-977) (-789)))
+ (-14 *4 (-592 (-1091)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789))
+ (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-254))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-341)) (-4 *6 (-13 (-351 *5) (-10 -7 (-6 -4255))))
- (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))) (-5 *2 (-713))
- (-5 *1 (-614 *5 *6 *4 *3)) (-4 *3 (-630 *5 *6 *4))))
+ (-12 (-5 *3 (-1087 *8)) (-5 *4 (-592 *6)) (-4 *6 (-789))
+ (-4 *8 (-884 *7 *5 *6)) (-4 *5 (-735)) (-4 *7 (-977))
+ (-5 *2 (-592 (-713))) (-5 *1 (-299 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-856))))
((*1 *2 *1)
- (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-4 *3 (-517)) (-5 *2 (-713))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4))
- (-4 *6 (-351 *4)) (-5 *2 (-713)) (-5 *1 (-631 *4 *5 *6 *3))
- (-4 *3 (-630 *4 *5 *6))))
+ (-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
+ (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-447 *3 *2)) (-4 *3 (-160)) (-4 *2 (-23))))
((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-4 *5 (-517))
- (-5 *2 (-713)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-160)) (-4 *2 (-23)) (-5 *1 (-268 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1148 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4))
+ (-4 *4 (-1149 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-651 *3)) (-4 *3 (-977)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-713))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-840 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-592 *6)) (-4 *1 (-884 *4 *5 *6)) (-4 *4 (-977))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-713)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-884 *4 *5 *3)) (-4 *4 (-977)) (-4 *5 (-735))
+ (-4 *3 (-789)) (-5 *2 (-713))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-654 *3 *2 *4 *5 *6)) (-4 *3 (-160))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *2 (-1148 *3)) (-5 *1 (-655 *3 *2)) (-4 *3 (-976))))
+ (-12 (-4 *1 (-906 *3 *2 *4)) (-4 *3 (-977)) (-4 *4 (-789))
+ (-4 *2 (-734))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-658 *3 *2 *4 *5 *6)) (-4 *3 (-160))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281))))
- ((*1 *1 *1) (-4 *1 (-281)))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797))))
- ((*1 *1 *1) (-5 *1 (-797))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-110)) (-4 *4 (-976)) (-5 *1 (-657 *4 *2))
- (-4 *2 (-594 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-110)) (-5 *1 (-776 *2)) (-4 *2 (-976)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-735)) (-4 *2 (-883 *4 *5 *6)) (-5 *1 (-426 *4 *5 *6 *2))
- (-4 *4 (-429)) (-4 *6 (-789)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-592 *8)) (-5 *3 (-1 (-108) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-990 *5 *6 *7)) (-4 *5 (-517))
- (-4 *6 (-735)) (-4 *7 (-789)) (-5 *1 (-909 *5 *6 *7 *8)))))
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-713))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1135 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1164 *3))
+ (-5 *2 (-525))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1156 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1133 *3))
+ (-5 *2 (-385 (-525)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1190 *3)) (-4 *3 (-341)) (-5 *2 (-775 (-856)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1192 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *2 (-713)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1156 *3 *2)) (-4 *3 (-977))
+ (-4 *2 (-1133 *3)))))
(((*1 *2 *2 *2)
(-12 (-5 *2 (-632 *3))
- (-4 *3 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $)))))
- (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-632 *3))
- (-4 *3 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $)))))
- (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
-(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
- ((*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-98 *3)) (-4 *3 (-1019)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-341)) (-4 *1 (-307 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1172 *3)) (-4 *3 (-1148 *4)) (-4 *4 (-1130))
- (-4 *1 (-320 *4 *3 *5)) (-4 *5 (-1148 (-385 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1172 *4)) (-5 *3 (-1172 *1)) (-4 *4 (-160))
- (-4 *1 (-345 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1172 *4)) (-5 *3 (-1172 *1)) (-4 *4 (-160))
- (-4 *1 (-348 *4 *5)) (-4 *5 (-1148 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1172 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4))
- (-4 *4 (-1148 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-169)) (-5 *1 (-228)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-713)) (-5 *1 (-543 *2)) (-4 *2 (-510))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -3772 *3) (|:| -1600 (-713)))) (-5 *1 (-543 *3))
- (-4 *3 (-510)))))
-(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-108)) (-5 *3 (-886 *6)) (-5 *4 (-1090))
- (-5 *5 (-782 *7))
- (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-4 *7 (-13 (-1112) (-29 *6))) (-5 *1 (-204 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-108)) (-5 *3 (-1086 *6)) (-5 *4 (-782 *6))
- (-4 *6 (-13 (-1112) (-29 *5)))
- (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-204 *5 *6)))))
+ (-4 *3 (-13 (-286) (-10 -8 (-15 -2100 ((-396 $) $)))))
+ (-4 *4 (-1149 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-147 *3 *2))
- (-4 *2 (-408 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1122 *3)) (-4 *3 (-906)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1157 *3 *4 *5)) (-4 *3 (-13 (-341) (-789)))
- (-14 *4 (-1090)) (-14 *5 *3) (-5 *1 (-297 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-357))) (-5 *1 (-969)) (-5 *3 (-357)))))
-(((*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-838 (-525))) (-5 *1 (-851))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-205) (-205) (-205)))
- (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined"))
- (-5 *5 (-1014 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1050 (-205)))
- (-5 *1 (-639)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-5 *2 (-1099 (-592 *4))) (-5 *1 (-1098 *4))
- (-5 *3 (-592 *4)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-565 *1)) (-4 *1 (-281)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-1142 *3 *2))
- (-4 *2 (-1148 *3)))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091)))
+ (-14 *3 (-592 (-1091))) (-4 *4 (-365))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *1 *1) (-4 *1 (-1116))))
(((*1 *2 *1)
- (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *3 (-351 *2)) (-4 *4 (-351 *2))
- (|has| *2 (-6 (-4256 "*"))) (-4 *2 (-976))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-351 *2)) (-4 *5 (-351 *2)) (-4 *2 (-160))
- (-5 *1 (-631 *2 *4 *5 *3)) (-4 *3 (-630 *2 *4 *5))))
+ (|partial| -12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735))
+ (-5 *2 (-108)) (-5 *1 (-920 *3 *4 *5 *6))
+ (-4 *6 (-884 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
- (-4 *5 (-218 *3 *2)) (|has| *2 (-6 (-4256 "*"))) (-4 *2 (-976)))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
+ (-4 *4 (-13 (-1020) (-33))))))
+(((*1 *1 *1) (-4 *1 (-578)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934) (-1113))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-565 *3)) (-4 *3 (-789))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-110)) (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-789))
+ (-5 *1 (-565 *5)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-108)) (-5 *1 (-827 *4))
+ (-4 *4 (-1020)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2 (-2 (|:| -1862 (-110)) (|:| |w| (-205)))) (-5 *1 (-186)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-713)) (-5 *1 (-57 *3)) (-4 *3 (-1126))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-57 *3)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-698)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-135))) (-5 *1 (-132))))
- ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-132)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-697)))))
+ (-12 (-5 *3 (-592 (-525))) (-5 *2 (-525)) (-5 *1 (-461 *4))
+ (-4 *4 (-1149 (-525))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-966)) (-5 *3 (-1091)) (-5 *1 (-246)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1072 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
+(((*1 *1 *1) (-5 *1 (-108))) ((*1 *1 *1) (-4 *1 (-119)))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-223)) (-5 *2 (-525))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-450)) (-5 *2 (-525))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-713))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-856)))))
(((*1 *1) (-5 *1 (-135))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-592
+ (-2 (|:| -3318 (-713))
+ (|:| |eqns|
+ (-592
+ (-2 (|:| |det| *7) (|:| |rows| (-592 (-525)))
+ (|:| |cols| (-592 (-525))))))
+ (|:| |fgb| (-592 *7)))))
+ (-4 *7 (-884 *4 *6 *5)) (-4 *4 (-13 (-286) (-138)))
+ (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)) (-5 *2 (-713))
+ (-5 *1 (-859 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2 (-1072 (-205))) (-5 *1 (-174))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-294 (-205))) (-5 *4 (-592 (-1091)))
+ (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1072 (-205))) (-5 *1 (-279))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1173 (-294 (-205)))) (-5 *4 (-592 (-1091)))
+ (-5 *5 (-1015 (-782 (-205)))) (-5 *2 (-1072 (-205))) (-5 *1 (-279)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1072 *2)) (-4 *2 (-286)) (-5 *1 (-161 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-968 (-525))) (-4 *3 (-13 (-789) (-517)))
+ (-5 *1 (-31 *3 *2)) (-4 *2 (-408 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-1087 *4)) (-5 *1 (-153 *3 *4))
+ (-4 *3 (-154 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-977)) (-4 *1 (-281))))
+ ((*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1087 *3))))
+ ((*1 *2) (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1149 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-993 *3 *2)) (-4 *3 (-13 (-787) (-341)))
+ (-4 *2 (-1149 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-977)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091)))
+ (-14 *3 (-592 (-1091))) (-4 *4 (-365))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *1 *1) (-4 *1 (-1116))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-697)))))
+(((*1 *1 *1 *1) (-4 *1 (-281))) ((*1 *1 *1) (-4 *1 (-281))))
(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-1173))))
+ (-12 (-5 *3 (-713)) (-5 *2 (-1178)) (-5 *1 (-1174))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
+ (-12 (-5 *3 (-713)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-396 *6)) (-4 *6 (-1149 *5))
+ (-4 *5 (-977)) (-5 *2 (-592 *6)) (-5 *1 (-421 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *3))
+ (-4 *3 (-13 (-408 *4) (-934))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525))))
+ (-4 *2 (-160)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-977)) (-4 *4 (-734))
+ (-5 *2 (-592 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-977)) (-4 *4 (-1020))
+ (-5 *2 (-592 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1072 *3)) (-5 *1 (-551 *3)) (-4 *3 (-977))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 *3)) (-5 *1 (-678 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-669))))
+ ((*1 *2 *1) (-12 (-4 *1 (-791 *3)) (-4 *3 (-977)) (-5 *2 (-592 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1164 *3)) (-4 *3 (-977)) (-5 *2 (-1072 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-108)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-632 (-385 (-887 (-525)))))
+ (-5 *2
+ (-592
+ (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525))
+ (|:| |radvect| (-592 (-632 (-294 (-525))))))))
+ (-5 *1 (-962)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-341)) (-4 *3 (-977))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3523 *1)))
+ (-4 *1 (-791 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33))))))
+(((*1 *1 *1) (-4 *1 (-578)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934) (-1113))))))
(((*1 *2 *3 *3 *4)
(-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4))))
- (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4))))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1091)) (-4 *4 (-977)) (-4 *4 (-789))
+ (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1864 (-525))))
+ (-4 *1 (-408 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-110)) (-4 *4 (-977)) (-4 *4 (-789))
+ (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1864 (-525))))
+ (-4 *1 (-408 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1032)) (-4 *3 (-789))
+ (-5 *2 (-2 (|:| |var| (-565 *1)) (|:| -1864 (-525))))
+ (-4 *1 (-408 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-827 *3)) (|:| -1864 (-713))))
+ (-5 *1 (-827 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-884 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-2 (|:| |var| *5) (|:| -1864 (-713))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-977))
+ (-4 *7 (-884 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -1864 (-525))))
+ (-5 *1 (-885 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-341)
+ (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $))
+ (-15 -1512 (*7 $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1091)) (-5 *4 (-887 (-525))) (-5 *2 (-308))
+ (-5 *1 (-310)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-592 *6)) (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5))
+ (-4 *3 (-517)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-817 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))
+ (-5 *2 (-1087 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-4 *3 (-346))
+ (-5 *2 (-1087 *3)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1074)) (-5 *4 (-157 (-205))) (-5 *5 (-525))
+ (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2) (-12 (-5 *2 (-775 (-525))) (-5 *1 (-499))))
+ ((*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-942 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-157 (-205))) (-5 *5 (-525))
+ (-5 *6 (-1074)) (-5 *2 (-966)) (-5 *1 (-701)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525)))))
- (-4 *5 (-1148 *4)) (-5 *2 (-592 (-2 (|:| -2563 *5) (|:| -3755 *5))))
+ (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-4 *5 (-1149 *4)) (-5 *2 (-592 (-2 (|:| -3144 *5) (|:| -1799 *5))))
(-5 *1 (-749 *4 *5 *3 *6)) (-4 *3 (-602 *5))
(-4 *6 (-602 (-385 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525)))))
- (-4 *4 (-1148 *5)) (-5 *2 (-592 (-2 (|:| -2563 *4) (|:| -3755 *4))))
+ (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-4 *4 (-1149 *5)) (-5 *2 (-592 (-2 (|:| -3144 *4) (|:| -1799 *4))))
(-5 *1 (-749 *5 *4 *3 *6)) (-4 *3 (-602 *4))
(-4 *6 (-602 (-385 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525)))))
- (-4 *5 (-1148 *4)) (-5 *2 (-592 (-2 (|:| -2563 *5) (|:| -3755 *5))))
+ (-12 (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-4 *5 (-1149 *4)) (-5 *2 (-592 (-2 (|:| -3144 *5) (|:| -1799 *5))))
(-5 *1 (-749 *4 *5 *6 *3)) (-4 *6 (-602 *5))
(-4 *3 (-602 (-385 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525)))))
- (-4 *4 (-1148 *5)) (-5 *2 (-592 (-2 (|:| -2563 *4) (|:| -3755 *4))))
+ (-12 (-4 *5 (-13 (-341) (-138) (-968 (-385 (-525)))))
+ (-4 *4 (-1149 *5)) (-5 *2 (-592 (-2 (|:| -3144 *4) (|:| -1799 *4))))
(-5 *1 (-749 *5 *4 *6 *3)) (-4 *6 (-602 *4))
(-4 *3 (-602 (-385 *4))))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-690)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-713)) (-5 *4 (-1173 *2)) (-4 *5 (-286))
+ (-4 *6 (-925 *5)) (-4 *2 (-13 (-387 *6 *7) (-968 *6)))
+ (-5 *1 (-391 *5 *6 *7 *2)) (-4 *7 (-1149 *6)))))
+(((*1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1127)) (-4 *2 (-1020))))
+ ((*1 *1 *1) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1020)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1072 *4)) (-5 *3 (-1 *4 (-525))) (-4 *4 (-977))
+ (-5 *1 (-1076 *4)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525)))
+ (-5 *2 (-966)) (-5 *1 (-699)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1060)) (-5 *2 (-108)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1178)) (-5 *1 (-1094))))
+ ((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1094)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-408 *3) (-934))) (-5 *1 (-255 *3 *2))
+ (-4 *3 (-13 (-789) (-517)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091)))
+ (-14 *3 (-592 (-1091))) (-4 *4 (-365))))
+ ((*1 *1) (-5 *1 (-454))) ((*1 *1) (-4 *1 (-1113))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-429))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1087 *6)) (-4 *6 (-884 *5 *3 *4)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *5 (-844)) (-5 *1 (-434 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-844)))))
+(((*1 *2)
+ (-12 (-4 *3 (-977)) (-5 *2 (-892 (-655 *3 *4))) (-5 *1 (-655 *3 *4))
+ (-4 *4 (-1149 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1149 *4)) (-4 *4 (-1131))
+ (-4 *6 (-1149 (-385 *5)))
+ (-5 *2
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-320 *4 *5 *6)))))
(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
(-5 *1 (-698)))))
+(((*1 *1 *1 *1) (-4 *1 (-510))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
+ (-4 *3 (-13 (-341) (-1113) (-934))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1091)) (-5 *3 (-412)) (-4 *5 (-789))
+ (-5 *1 (-1026 *5 *4)) (-4 *4 (-408 *5)))))
+(((*1 *2)
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-592 (-1091)))
+ (-5 *2 (-592 (-592 (-357)))) (-5 *1 (-954)) (-5 *5 (-357))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953)))
+ (-14 *5 (-592 (-1091))) (-5 *2 (-592 (-592 (-955 (-385 *4)))))
+ (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-592 (-1091)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1197 *5 *6 *7))
+ (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1197 *5 *6 *7))
+ (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-108))
+ (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-592 (-592 (-955 (-385 *5))))) (-5 *1 (-1197 *5 *6 *7))
+ (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-887 *4)))
+ (-4 *4 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2 (-592 (-592 (-955 (-385 *4))))) (-5 *1 (-1197 *4 *5 *6))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-592 (-1091))))))
+(((*1 *2)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-5 *2 (-632 (-385 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-856))) (-5 *2 (-839 (-525))) (-5 *1 (-852)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-695)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-5 *2 (-108)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-108))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6))
+ (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1895 *1))))
+ (-4 *1 (-996 *4 *5 *6 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-887 *5))) (-5 *4 (-592 (-1091))) (-4 *5 (-517))
+ (-5 *2 (-592 (-592 (-273 (-385 (-887 *5)))))) (-5 *1 (-712 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-887 *4))) (-4 *4 (-517))
+ (-5 *2 (-592 (-592 (-273 (-385 (-887 *4)))))) (-5 *1 (-712 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-632 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1449 (-592 *6)))
+ *7 *6))
+ (-4 *6 (-341)) (-4 *7 (-602 *6))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1173 *6) "failed"))
+ (|:| -1449 (-592 (-1173 *6)))))
+ (-5 *1 (-755 *6 *7)) (-5 *4 (-1173 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-966)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
+ (-12 (-5 *3 (-1173 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
(-5 *2 (-632 *4))))
((*1 *2)
(-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4))
(-4 *3 (-395 *4))))
((*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-855)) (-5 *4 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1173)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1982 (-525)))))
- (-5 *1 (-339 *3)) (-4 *3 (-1019))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-977)) (-5 *2 (-1173 *4))
+ (-5 *1 (-1092 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-856)) (-5 *2 (-1173 *3)) (-5 *1 (-1092 *3))
+ (-4 *3 (-977)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-884 *3 *4 *2)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)) (-4 *3 (-160))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-517)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1149 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1149 *2)) (-4 *2 (-977)) (-4 *2 (-160)))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-904)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1060)) (-5 *3 (-525)) (-5 *2 (-108)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1516 *3) (|:| |coef2| (-724 *3))))
+ (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-977)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1043 (-525) (-565 (-47)))) (-5 *1 (-47))))
((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1982 (-713)))))
- (-5 *1 (-364 *3)) (-4 *3 (-1019))))
+ (-12 (-4 *3 (-925 *2)) (-4 *4 (-1149 *3)) (-4 *2 (-286))
+ (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-968 *3)))))
((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| -3959 *3) (|:| -1600 (-525)))))
- (-5 *1 (-396 *3)) (-4 *3 (-517))))
+ (-12 (-4 *3 (-517)) (-4 *3 (-789)) (-5 *2 (-1043 *3 (-565 *1)))
+ (-4 *1 (-408 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1043 (-525) (-565 (-468)))) (-5 *1 (-468))))
((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1982 (-713)))))
- (-5 *1 (-761 *3)) (-4 *3 (-789)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1071 *3))) (-4 *3 (-1126)) (-5 *1 (-1071 *3)))))
+ (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4))
+ (-5 *1 (-571 *3 *4 *2)) (-4 *3 (-37 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4))
+ (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-660 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))))
+(((*1 *1 *1) (-4 *1 (-578)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934) (-1113))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-735))
- (-4 *5 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $))))) (-4 *6 (-517))
- (-5 *2 (-2 (|:| -1487 (-886 *6)) (|:| -2351 (-886 *6))))
- (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-883 (-385 (-886 *6)) *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
-(((*1 *1 *2)
+ (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1091))) (-4 *5 (-429))
+ (-5 *2 (-457 *4 *5)) (-5 *1 (-580 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-856)) (-5 *4 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1174)))))
+(((*1 *2)
(-12
(-5 *2
- (-2 (|:| |mval| (-632 *3)) (|:| |invmval| (-632 *3))
- (|:| |genIdeal| (-477 *3 *4 *5 *6))))
- (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-883 *3 *4 *5))
- (-5 *1 (-477 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-415)) (-5 *3 (-1090)) (-5 *1 (-1093))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-415)) (-5 *3 (-1090)) (-5 *1 (-1093))))
- ((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1090))) (-5 *4 (-1090))
- (-5 *1 (-1093))))
- ((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-415)) (-5 *3 (-1090)) (-5 *1 (-1093))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-415)) (-5 *3 (-1090)) (-5 *1 (-1094))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-415)) (-5 *3 (-592 (-1090))) (-5 *1 (-1094)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-713)) (-5 *1 (-522)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-517) (-789) (-967 (-525))))
- (-4 *5 (-408 *4)) (-5 *2 (-396 (-1086 (-385 (-525)))))
- (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1148 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1175))))
- ((*1 *2 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1175)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1090))
- (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3190 "void"))) (-5 *1 (-1093)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)))))
+ (-1173 (-592 (-2 (|:| -3352 (-845 *3)) (|:| -3640 (-1038))))))
+ (-5 *1 (-329 *3 *4)) (-14 *3 (-856)) (-14 *4 (-856))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1173 (-592 (-2 (|:| -3352 *3) (|:| -3640 (-1038))))))
+ (-5 *1 (-330 *3 *4)) (-4 *3 (-327))
+ (-14 *4
+ (-3 (-1087 *3)
+ (-1173 (-592 (-2 (|:| -3352 *3) (|:| -3640 (-1038)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1173 (-592 (-2 (|:| -3352 *3) (|:| -3640 (-1038))))))
+ (-5 *1 (-331 *3 *4)) (-4 *3 (-327)) (-14 *4 (-856)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-713)) (-4 *4 (-327)) (-5 *1 (-197 *4 *2))
+ (-4 *2 (-1149 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-976)) (-4 *5 (-1148 *4)) (-5 *2 (-1 *6 (-592 *6)))
- (-5 *1 (-1166 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-1163 *4)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-592 *9)) (-5 *3 (-1 (-108) *9))
- (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-990 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789))
- (-5 *1 (-909 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1130)) (-4 *5 (-1148 *4))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-385 *5))
- (|:| |c2| (-385 *5)) (|:| |deg| (-713))))
- (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1148 (-385 *5))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-1113 *3))) (-5 *1 (-1113 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *6))
- (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5))))
+ (-12 (-5 *2 (-1093 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
+(((*1 *2 *3) (-12 (-5 *3 (-501)) (-5 *1 (-500 *2)) (-4 *2 (-1127))))
+ ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-501)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-977)) (-4 *3 (-789))
+ (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-592 (-713)))))
((*1 *2 *1)
- (-12 (-5 *2 (-592 (-839 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1019)))))
-(((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1126)))))
+ (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-789))
+ (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-592 (-713))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *3 (-991 *4 *5 *6)) (-5 *2 (-592 *1))
+ (-4 *1 (-996 *4 *5 *6 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177))
- (-5 *1 (-996 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-496 *3)) (-4 *3 (-13 (-669) (-25))))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-592 (-1173 *4))) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
((*1 *2)
- (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177))
- (-5 *1 (-1027 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-713)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-592 (-713)))) (-5 *1 (-838 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))
- (-5 *2 (-965)) (-5 *1 (-691)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1148 *3)) (-4 *3 (-976)) (-5 *2 (-1086 *3)))))
+ (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517))
+ (-5 *2 (-592 (-1173 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1043 (-525) (-565 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1149 *4))
+ (-5 *2 (-1173 *6)) (-5 *1 (-391 *3 *4 *5 *6))
+ (-4 *6 (-13 (-387 *4 *5) (-968 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-977)) (-4 *3 (-789)) (-5 *2 (-1043 *3 (-565 *1)))
+ (-4 *1 (-408 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1043 (-525) (-565 (-468)))) (-5 *1 (-468))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-160)) (-4 *2 (-37 *3)) (-5 *1 (-571 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-669) *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-160)) (-4 *2 (-660 *3)) (-5 *1 (-608 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-669) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1086 (-886 *6))) (-4 *6 (-517))
- (-4 *2 (-883 (-385 (-886 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2))
- (-4 *5 (-735))
- (-4 *4 (-13 (-789) (-10 -8 (-15 -1427 ((-1090) $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-713))) (-5 *3 (-159)) (-5 *1 (-1079 *4 *5))
- (-14 *4 (-855)) (-4 *5 (-976)))))
-(((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4)
- (-227 *4 (-385 (-525)))))
- (-14 *4 (-592 (-1090))) (-14 *5 (-713)) (-5 *2 (-108))
- (-5 *1 (-478 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-990 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-976))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
- (-4 *3 (-990 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4))))))
- (-5 *1 (-993 *6 *7 *8 *3 *4)) (-4 *4 (-995 *6 *7 *8 *3))))
+ (-12 (-5 *3 (-273 (-385 (-887 *5)))) (-5 *4 (-1091))
+ (-4 *5 (-13 (-286) (-789) (-138)))
+ (-5 *2 (-1081 (-592 (-294 *5)) (-592 (-273 (-294 *5)))))
+ (-5 *1 (-1047 *5))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-592 *4))
- (|:| |todo| (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4))))))
- (-5 *1 (-1060 *5 *6 *7 *3 *4)) (-4 *4 (-1028 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-522)) (-5 *3 (-525)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1172 *5)) (-4 *5 (-734)) (-5 *2 (-108))
- (-5 *1 (-784 *4 *5)) (-14 *4 (-713)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-308)))))
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1091))
+ (-4 *5 (-13 (-286) (-789) (-138)))
+ (-5 *2 (-1081 (-592 (-294 *5)) (-592 (-273 (-294 *5)))))
+ (-5 *1 (-1047 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-286))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |rm| (-364 *3))))
+ (-5 *1 (-364 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2370 (-713)) (|:| -3496 (-713))))
+ (-5 *1 (-713))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3)))
+ (-5 *1 (-903 *4 *3)) (-4 *3 (-1149 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1021 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1019))))
+ (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1250 (-525)))))
+ (-5 *1 (-339 *3)) (-4 *3 (-1020))))
((*1 *2 *1)
- (-12 (-5 *2 (-1021 *3)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-735)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789))
- (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))))
-(((*1 *1) (-5 *1 (-135)))
+ (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1250 (-713)))))
+ (-5 *1 (-364 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-2 (|:| -2195 *3) (|:| -1864 (-525)))))
+ (-5 *1 (-396 *3)) (-4 *3 (-517))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1250 (-713)))))
+ (-5 *1 (-761 *3)) (-4 *3 (-789)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-592 *11)) (-5 *5 (-592 (-1087 *9)))
+ (-5 *6 (-592 *9)) (-5 *7 (-592 *12)) (-5 *8 (-592 (-713)))
+ (-4 *11 (-789)) (-4 *9 (-286)) (-4 *12 (-884 *9 *10 *11))
+ (-4 *10 (-735)) (-5 *2 (-592 (-1087 *12)))
+ (-5 *1 (-650 *10 *11 *9 *12)) (-5 *3 (-1087 *12)))))
+(((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1178)) (-5 *1 (-1054))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-1050 (-205))) (-5 *1 (-242)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2))
- (-4 *2 (-1148 (-157 *3))))))
+ (-12 (-5 *3 (-592 (-798))) (-5 *2 (-1178)) (-5 *1 (-1054)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 (-1183 *4 *5 *6 *7)))
- (-5 *1 (-1183 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-592 *9)) (-5 *4 (-1 (-108) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-990 *6 *7 *8)) (-4 *6 (-517))
- (-4 *7 (-735)) (-4 *8 (-789)) (-5 *2 (-592 (-1183 *6 *7 *8 *9)))
- (-5 *1 (-1183 *6 *7 *8 *9)))))
-(((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1090))
- (-4 *6 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-4 *4 (-13 (-29 *6) (-1112) (-892)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -2499 (-592 *4))))
- (-5 *1 (-743 *6 *4 *3)) (-4 *3 (-602 *4)))))
+ (-12 (-5 *3 (-887 *4)) (-4 *4 (-13 (-286) (-138)))
+ (-4 *2 (-884 *4 *6 *5)) (-5 *1 (-859 *4 *5 *6 *2))
+ (-4 *5 (-13 (-789) (-567 (-1091)))) (-4 *6 (-735)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-456)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))
+ ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-878 *3) (-878 *3))) (-5 *1 (-163 *3))
+ (-4 *3 (-13 (-341) (-1113) (-934))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1087 *7)) (-4 *7 (-884 *6 *4 *5)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-977)) (-5 *2 (-1087 *6))
+ (-5 *1 (-299 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *4 (-341)) (-4 *5 (-1149 *4)) (-5 *2 (-1178))
+ (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1149 (-385 *5))) (-14 *7 *6))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1072 *3))) (-4 *3 (-1127)) (-5 *1 (-1072 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1172 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341))
- (-4 *1 (-667 *5 *6)) (-4 *5 (-160)) (-4 *6 (-1148 *5))
- (-5 *2 (-632 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095))))
- ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1095))))
- ((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1095))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1095)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *3 (-1172 (-357))) (-5 *4 (-525)) (-5 *5 (-357))
- (-5 *6 (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))
- (-5 *2 (-1177)) (-5 *1 (-730)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *1 (-1045 *3 *2)) (-4 *3 (-1148 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-592 (-525))) (-5 *3 (-632 (-525))) (-5 *1 (-1029)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-965))
- (-5 *1 (-698)))))
+ (-12 (-5 *3 (-592 (-205))) (-5 *4 (-713)) (-5 *2 (-632 (-205)))
+ (-5 *1 (-284)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1172 (-592 *3))) (-4 *3 (-1148 *4))
- (-4 *4 (-286)) (-5 *2 (-592 *3)) (-5 *1 (-432 *4 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-592 (-385 *7)))
+ (-4 *7 (-1149 *6)) (-4 *6 (-341))
+ (-5 *2
+ (-2 (|:| |mainpart| (-385 *7))
+ (|:| |limitedlogs|
+ (-592
+ (-2 (|:| |coeff| (-385 *7)) (|:| |logand| (-385 *7)))))))
+ (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1149 *5))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
(-5 *2
- (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525))
- (|:| |success| (-108))))
- (-5 *1 (-731)) (-5 *5 (-525)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-694)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-713)) (-5 *1 (-110)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-519 *2)) (-4 *2 (-510)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-281)) (-5 *3 (-1090)) (-5 *2 (-108))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-281)) (-5 *2 (-108)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-826 *4)) (-4 *4 (-1019)) (-5 *2 (-108))
- (-5 *1 (-823 *4 *5)) (-4 *5 (-1019))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1449 (-592 *4))))
+ (-5 *1 (-752 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-826 *5)) (-4 *5 (-1019)) (-5 *2 (-108))
- (-5 *1 (-824 *5 *3)) (-4 *3 (-1126))))
+ (-12 (-5 *3 (-599 (-385 *6))) (-4 *6 (-1149 *5))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-5 *2 (-2 (|:| -1449 (-592 (-385 *6))) (|:| -1484 (-632 *5))))
+ (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *6)) (-5 *4 (-826 *5)) (-4 *5 (-1019))
- (-4 *6 (-1126)) (-5 *2 (-108)) (-5 *1 (-824 *5 *6)))))
-(((*1 *1) (-5 *1 (-205))) ((*1 *1) (-5 *1 (-357))))
+ (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-385 *6)) (-4 *6 (-1149 *5))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1449 (-592 *4))))
+ (-5 *1 (-752 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-600 *6 (-385 *6))) (-4 *6 (-1149 *5))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-5 *2 (-2 (|:| -1449 (-592 (-385 *6))) (|:| -1484 (-632 *5))))
+ (-5 *1 (-752 *5 *6)) (-5 *4 (-592 (-385 *6))))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1020)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-626 *4 *5)) (-4 *4 (-1020))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1091)) (-5 *2 (-294 (-525))) (-5 *1 (-865))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1188 *3 *2)) (-4 *3 (-789)) (-4 *2 (-977))))
+ ((*1 *2 *1) (-12 (-4 *2 (-977)) (-5 *1 (-1194 *2 *3)) (-4 *3 (-785)))))
+(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-809))))
+ ((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735))
+ (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -4216 (-592 *9)) (|:| -1895 *4) (|:| |ineq| (-592 *9))))
+ (-5 *1 (-921 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9))
+ (-4 *4 (-996 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-108)) (-4 *6 (-429)) (-4 *7 (-735))
+ (-4 *8 (-789)) (-4 *9 (-991 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -4216 (-592 *9)) (|:| -1895 *4) (|:| |ineq| (-592 *9))))
+ (-5 *1 (-1027 *6 *7 *8 *9 *4)) (-5 *3 (-592 *9))
+ (-4 *4 (-996 *6 *7 *8 *9)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -1238 (-110)) (|:| |arg| (-592 (-827 *3)))))
+ (-5 *1 (-827 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-110)) (-5 *2 (-592 (-827 *4)))
+ (-5 *1 (-827 *4)) (-4 *4 (-1020)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-592 (-159)))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-735))
+ (-4 *5 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $))))) (-4 *6 (-517))
+ (-5 *2 (-2 (|:| -2017 (-887 *6)) (|:| -3569 (-887 *6))))
+ (-5 *1 (-675 *4 *5 *6 *3)) (-4 *3 (-884 (-385 (-887 *6)) *4 *5)))))
(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-592 *4)) (-4 *4 (-341)) (-5 *2 (-1172 *4))
- (-5 *1 (-756 *4 *3)) (-4 *3 (-602 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-967 (-525))) (-4 *1 (-281)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-157 (-205)) (-157 (-205)))) (-5 *4 (-1014 (-205)))
- (-5 *2 (-1174)) (-5 *1 (-236)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-205))
+ (-12 (-5 *5 (-713)) (-4 *6 (-1020)) (-4 *3 (-835 *6))
+ (-5 *2 (-632 *3)) (-5 *1 (-634 *6 *3 *7 *4)) (-4 *7 (-351 *3))
+ (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4255)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1096))))
+ ((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1096))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1096)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-974 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-953)))
+ (-14 *5 (-592 (-1091)))
(-5 *2
- (-2 (|:| |brans| (-592 (-592 (-877 *4))))
- (|:| |xValues| (-1014 *4)) (|:| |yValues| (-1014 *4))))
- (-5 *1 (-144)) (-5 *3 (-592 (-592 (-877 *4)))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-51)) (-5 *1 (-771)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5)) (-4 *5 (-341))
- (-5 *2 (-2 (|:| -2838 (-385 *6)) (|:| |coeff| (-385 *6))))
- (-5 *1 (-535 *5 *6)) (-5 *3 (-385 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-838 (-525))) (-5 *1 (-851))))
+ (-592 (-2 (|:| -3582 (-1087 *4)) (|:| -3464 (-592 (-887 *4))))))
+ (-5 *1 (-1197 *4 *5 *6)) (-14 *6 (-592 (-1091)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2
+ (-592 (-2 (|:| -3582 (-1087 *5)) (|:| -3464 (-592 (-887 *5))))))
+ (-5 *1 (-1197 *5 *6 *7)) (-5 *3 (-592 (-887 *5)))
+ (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2
+ (-592 (-2 (|:| -3582 (-1087 *5)) (|:| -3464 (-592 (-887 *5))))))
+ (-5 *1 (-1197 *5 *6 *7)) (-5 *3 (-592 (-887 *5)))
+ (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2
+ (-592 (-2 (|:| -3582 (-1087 *5)) (|:| -3464 (-592 (-887 *5))))))
+ (-5 *1 (-1197 *5 *6 *7)) (-5 *3 (-592 (-887 *5)))
+ (-14 *6 (-592 (-1091))) (-14 *7 (-592 (-1091)))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *4 *5 *6)) (-4 *4 (-286))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-424 *4 *5 *6 *2)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-976)) (-5 *1 (-1144 *4 *2))
- (-4 *2 (-1148 *4)))))
+ (-12 (-4 *4 (-13 (-787) (-286) (-138) (-953)))
+ (-5 *2
+ (-592 (-2 (|:| -3582 (-1087 *4)) (|:| -3464 (-592 (-887 *4))))))
+ (-5 *1 (-1197 *4 *5 *6)) (-5 *3 (-592 (-887 *4)))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-592 (-1091))))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1095)) (-5 *1 (-1094)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-525)) (-4 *2 (-408 *3)) (-5 *1 (-31 *3 *2))
+ (-4 *3 (-968 (-525))) (-4 *3 (-13 (-789) (-517))))))
+(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1178)) (-5 *1 (-357))))
+ ((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-357)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-900 *3)) (-4 *3 (-901)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1087 *1)) (-5 *3 (-1091)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1087 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-887 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1091)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-108)) (-5 *1 (-771)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-108)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
+ ((*1 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-242))))
+ ((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))
+ ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
+ (-5 *6 (-108)) (-5 *7 (-632 (-525)))
+ (-5 *8 (-3 (|:| |fn| (-366)) (|:| |fp| (-63 QPHESS))))
+ (-5 *2 (-966)) (-5 *1 (-696)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
+(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1098)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1173 (-294 (-205)))) (-5 *4 (-592 (-1091)))
+ (-5 *2 (-632 (-294 (-205)))) (-5 *1 (-187))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1020)) (-4 *6 (-835 *5)) (-5 *2 (-632 *6))
+ (-5 *1 (-634 *5 *6 *3 *4)) (-4 *3 (-351 *6))
+ (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4255)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3)))))
(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-517) (-789) (-968 (-525)))) (-4 *5 (-408 *4))
+ (-5 *2 (-396 *3)) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1149 *5)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-1161 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
(-12
(-5 *3
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
+ (-2 (|:| |det| *12) (|:| |rows| (-592 (-525)))
+ (|:| |cols| (-592 (-525)))))
+ (-5 *4 (-632 *12)) (-5 *5 (-592 (-385 (-887 *9))))
+ (-5 *6 (-592 (-592 *12))) (-5 *7 (-713)) (-5 *8 (-525))
+ (-4 *9 (-13 (-286) (-138))) (-4 *12 (-884 *9 *11 *10))
+ (-4 *10 (-13 (-789) (-567 (-1091)))) (-4 *11 (-735))
(-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-174)))))
+ (-2 (|:| |eqzro| (-592 *12)) (|:| |neqzro| (-592 *12))
+ (|:| |wcond| (-592 (-887 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1173 (-385 (-887 *9))))
+ (|:| -1449 (-592 (-1173 (-385 (-887 *9)))))))))
+ (-5 *1 (-859 *9 *10 *11 *12)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-341)) (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3)))
+ (-5 *1 (-709 *3 *4)) (-4 *3 (-651 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-341)) (-4 *3 (-977))
+ (-5 *2 (-2 (|:| -2370 *1) (|:| -3496 *1))) (-4 *1 (-791 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-94 *5)) (-4 *5 (-341)) (-4 *5 (-977))
+ (-5 *2 (-2 (|:| -2370 *3) (|:| -3496 *3))) (-5 *1 (-792 *5 *3))
+ (-4 *3 (-791 *5)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-632 *3)) (|:| |invmval| (-632 *3))
+ (|:| |genIdeal| (-477 *3 *4 *5 *6))))
+ (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-884 *3 *4 *5))
+ (-5 *1 (-477 *3 *4 *5 *6)))))
(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-110)))
((*1 *1 *1) (-5 *1 (-159))) ((*1 *1 *1) (-4 *1 (-510)))
- ((*1 *1 *1) (-12 (-5 *1 (-826 *2)) (-4 *2 (-1019))))
- ((*1 *1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-976))))
+ ((*1 *1 *1) (-12 (-5 *1 (-827 *2)) (-4 *2 (-1020))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-977))))
((*1 *1 *1)
- (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33)))
- (-4 *3 (-13 (-1019) (-33))))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-525))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 G)))) (-5 *2 (-965))
- (-5 *1 (-691)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-665)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-669)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-108)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-117 *3)))))
+ (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-967 (-525)))
- (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3))
- (-4 *2
- (-13 (-341) (-281)
- (-10 -8 (-15 -1303 ((-1042 *3 (-565 $)) $))
- (-15 -1312 ((-1042 *3 (-565 $)) $))
- (-15 -1908 ($ (-1042 *3 (-565 $))))))))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-761 *3)) (-4 *3 (-789)) (-5 *1 (-617 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-127)) (-5 *3 (-713)) (-5 *2 (-1177)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-592 *6) "failed") (-525) *6 *6)) (-4 *6 (-341))
- (-4 *7 (-1148 *6))
- (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6)))
- (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
-(((*1 *1 *1) (-5 *1 (-205)))
- ((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *1 *1) (-4 *1 (-1054))) ((*1 *1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-976)) (-5 *2 (-108)) (-5 *1 (-421 *4 *3))
- (-4 *3 (-1148 *4))))
+ (-12 (-5 *2 (-1173 *4)) (-4 *4 (-395 *3)) (-4 *3 (-286))
+ (-4 *3 (-517)) (-5 *1 (-42 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-4 *4 (-341)) (-5 *2 (-1173 *1))
+ (-4 *1 (-307 *4))))
+ ((*1 *2) (-12 (-4 *3 (-341)) (-5 *2 (-1173 *1)) (-4 *1 (-307 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-160)) (-4 *4 (-1149 *3)) (-5 *2 (-1173 *1))
+ (-4 *1 (-387 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-764)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))))
+ (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1149 *4))
+ (-5 *2 (-1173 *6)) (-5 *1 (-391 *3 *4 *5 *6))
+ (-4 *6 (-13 (-387 *4 *5) (-968 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-286)) (-4 *4 (-925 *3)) (-4 *5 (-1149 *4))
+ (-5 *2 (-1173 *6)) (-5 *1 (-392 *3 *4 *5 *6 *7))
+ (-4 *6 (-387 *4 *5)) (-14 *7 (-1173 *6))))
+ ((*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1173 *1)) (-4 *1 (-395 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-856)) (-5 *2 (-1173 (-1173 *4))) (-5 *1 (-495 *4))
+ (-4 *4 (-327)))))
+(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))
+ ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1109))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1109)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-855)) (-5 *1 (-960 *2))
- (-4 *2 (-13 (-1019) (-10 -8 (-15 -4059 ($ $ $))))))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525)))
- (-5 *6 (-205)) (-5 *2 (-965)) (-5 *1 (-694)))))
+ (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-592 *4)) (-4 *4 (-789))
+ (-5 *1 (-1099 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1041 *3 *4 *2 *5)) (-4 *4 (-977)) (-4 *5 (-218 *3 *4))
+ (-4 *2 (-218 *3 *4)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-592 (-1091))) (-4 *4 (-160))
+ (-4 *5 (-218 (-3596 *3) (-713)))
+ (-14 *6
+ (-1 (-108) (-2 (|:| -3640 *2) (|:| -1864 *5))
+ (-2 (|:| -3640 *2) (|:| -1864 *5))))
+ (-4 *2 (-789)) (-5 *1 (-438 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-884 *4 *5 (-800 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-977)))))
(((*1 *2)
(-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
(-4 *3 (-345 *4))))
((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327))
- (-5 *2 (-1172 (-592 (-2 (|:| -3871 *4) (|:| -4185 (-1037))))))
- (-5 *1 (-324 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-592 (-157 *4))) (-5 *1 (-145 *3 *4))
- (-4 *3 (-1148 (-157 (-525)))) (-4 *4 (-13 (-341) (-787)))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1129)))))
+(((*1 *2 *1) (-12 (-4 *1 (-925 *2)) (-4 *2 (-517)) (-4 *2 (-510))))
+ ((*1 *1 *1) (-4 *1 (-986))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-162))) (-5 *1 (-1007)))))
+(((*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-525))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-840 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-993 *4 *3)) (-4 *4 (-13 (-787) (-341)))
+ (-4 *3 (-1149 *4)) (-5 *2 (-525))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4)))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-592 (-157 *4)))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-517) (-138))) (-5 *1 (-502 *3 *2))
- (-4 *2 (-1163 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-4 *4 (-1148 *3))
- (-4 *5 (-667 *3 *4)) (-5 *1 (-506 *3 *4 *5 *2)) (-4 *2 (-1163 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-341) (-346) (-567 (-525)))) (-5 *1 (-507 *3 *2))
- (-4 *2 (-1163 *3))))
+ (|partial| -12
+ (-4 *4 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)) (-429)))
+ (-5 *2 (-525)) (-5 *1 (-1035 *4 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-782 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *6)))
+ (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)) (-429)))
+ (-5 *2 (-525)) (-5 *1 (-1035 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1091)) (-5 *5 (-1074))
+ (-4 *6 (-13 (-517) (-789) (-968 (-525)) (-588 (-525)) (-429)))
+ (-5 *2 (-525)) (-5 *1 (-1035 *6 *3))
+ (-4 *3 (-13 (-27) (-1113) (-408 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-429)) (-5 *2 (-525))
+ (-5 *1 (-1036 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-385 (-887 *6))) (-5 *4 (-1091))
+ (-5 *5 (-782 (-385 (-887 *6)))) (-4 *6 (-429)) (-5 *2 (-525))
+ (-5 *1 (-1036 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-385 (-887 *6))) (-5 *4 (-1091))
+ (-5 *5 (-1074)) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1036 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1110 *3)) (-4 *3 (-977)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -1494 (-592 (-2 (|:| |irr| *10) (|:| -1623 (-525)))))))
+ (-5 *6 (-592 *3)) (-5 *7 (-592 *8)) (-4 *8 (-789)) (-4 *3 (-286))
+ (-4 *10 (-884 *3 *9 *8)) (-4 *9 (-735))
+ (-5 *2
+ (-2 (|:| |polfac| (-592 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-592 (-1087 *3)))))
+ (-5 *1 (-575 *8 *9 *3 *10)) (-5 *4 (-592 (-1087 *3))))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-138)) (-4 *2 (-286)) (-4 *2 (-429)) (-4 *3 (-789))
+ (-4 *4 (-735)) (-5 *1 (-920 *2 *3 *4 *5)) (-4 *5 (-884 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-294 (-525))) (-5 *1 (-1037))))
((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-13 (-517) (-138)))
- (-5 *1 (-1067 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1172 (-592 (-2 (|:| -3871 *4) (|:| -4185 (-1037))))))
- (-4 *4 (-327)) (-5 *2 (-713)) (-5 *1 (-324 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-329 *3 *4)) (-14 *3 (-855))
- (-14 *4 (-855))))
- ((*1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-330 *3 *4)) (-4 *3 (-327))
- (-14 *4
- (-3 (-1086 *3)
- (-1172 (-592 (-2 (|:| -3871 *3) (|:| -4185 (-1037)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-331 *3 *4)) (-4 *3 (-327))
- (-14 *4 (-855)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4))))
- (-5 *1 (-1056 *3 *4)) (-4 *3 (-13 (-1019) (-33)))
- (-4 *4 (-13 (-1019) (-33))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-205) (-205) (-205) (-205))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205) (-205))) (-5 *1 (-242))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-242)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-1095))) (-5 *1 (-1095))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-1095))) (-5 *1 (-1095)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1090)) (-5 *5 (-1014 (-205))) (-5 *2 (-861))
- (-5 *1 (-859 *3)) (-4 *3 (-567 (-501)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1090)) (-5 *2 (-861)) (-5 *1 (-859 *3))
- (-4 *3 (-567 (-501)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-205) (-205))) (-5 *1 (-861))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-205) (-205))) (-5 *3 (-1014 (-205)))
- (-5 *1 (-861)))))
-(((*1 *2 *2 *3)
- (-12
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1096)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-525)) (-5 *3 (-713)) (-5 *1 (-522)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-108)) (-4 *5 (-327))
(-5 *2
- (-2 (|:| |partsol| (-1172 (-385 (-886 *4))))
- (|:| -2499 (-592 (-1172 (-385 (-886 *4)))))))
- (-5 *3 (-592 *7)) (-4 *4 (-13 (-286) (-138)))
- (-4 *7 (-883 *4 *6 *5)) (-4 *5 (-13 (-789) (-567 (-1090))))
- (-4 *6 (-735)) (-5 *1 (-858 *4 *5 *6 *7)))))
+ (-2 (|:| |cont| *5)
+ (|:| -1494 (-592 (-2 (|:| |irr| *3) (|:| -1623 (-525)))))))
+ (-5 *1 (-197 *5 *3)) (-4 *3 (-1149 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1171 *3)) (-4 *3 (-1127)) (-4 *3 (-977))
+ (-5 *2 (-632 *3)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1126))
+ (-12 (-5 *3 (-525)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1127))
(-4 *4 (-351 *2)) (-4 *5 (-351 *2))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4255)) (-4 *1 (-115 *3))
- (-4 *3 (-1126))))
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4256)) (-4 *1 (-115 *3))
+ (-4 *3 (-1127))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4255)) (-4 *1 (-115 *3))
- (-4 *3 (-1126))))
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4256)) (-4 *1 (-115 *3))
+ (-4 *3 (-1127))))
((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1019))
- (-4 *2 (-1126))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1090)) (-5 *1 (-581))))
+ (-12 (|has| *1 (-6 -4256)) (-4 *1 (-267 *3 *2)) (-4 *3 (-1020))
+ (-4 *2 (-1127))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1091)) (-5 *1 (-581))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1139 (-525))) (|has| *1 (-6 -4255)) (-4 *1 (-597 *2))
- (-4 *2 (-1126))))
+ (-12 (-5 *3 (-1140 (-525))) (|has| *1 (-6 -4256)) (-4 *1 (-597 *2))
+ (-4 *2 (-1127))))
((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976))
+ (-12 (-5 *2 (-592 (-525))) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
(-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4255)) (-4 *1 (-941 *2))
- (-4 *2 (-1126))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126))))
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4256)) (-4 *1 (-942 *2))
+ (-4 *2 (-1127))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1127))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1103 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019))))
+ (-12 (-4 *1 (-1104 *3 *2)) (-4 *3 (-1020)) (-4 *2 (-1020))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2))
- (-4 *2 (-1126))))
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4256)) (-4 *1 (-1161 *2))
+ (-4 *2 (-1127))))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4255)) (-4 *1 (-1160 *3))
- (-4 *3 (-1126))))
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4256)) (-4 *1 (-1161 *3))
+ (-4 *3 (-1127))))
((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2))
- (-4 *2 (-1126)))))
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4256)) (-4 *1 (-1161 *2))
+ (-4 *2 (-1127)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-976))
- (-5 *2 (-886 *5)) (-5 *1 (-878 *4 *5)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *5 (-632 (-205)))
- (-5 *2 (-965)) (-5 *1 (-690)))))
-(((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1073)) (-5 *1 (-653)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-205) (-205) (-205)))
- (-5 *4 (-3 (-1 (-205) (-205) (-205) (-205)) "undefined"))
- (-5 *5 (-1014 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1050 (-205)))
- (-5 *1 (-639))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-205)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-639))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1050 (-205))) (-5 *3 (-1 (-877 (-205)) (-205) (-205)))
- (-5 *4 (-1014 (-205))) (-5 *5 (-592 (-242))) (-5 *1 (-639)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-789))
- (-5 *2 (-2 (|:| -1459 (-525)) (|:| |var| (-565 *1))))
- (-4 *1 (-408 *3)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1086 *6)) (-5 *3 (-525)) (-4 *6 (-286)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-883 *6 *4 *5)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734)))))
+ (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-286))
+ (-5 *2 (-385 (-396 (-887 *4)))) (-5 *1 (-972 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-856)) (-5 *1 (-728)))))
+(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1087 (-385 (-525)))) (-5 *1 (-877)) (-5 *3 (-525)))))
+(((*1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-771)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-592 *4)) (-4 *4 (-1020)) (-4 *4 (-1127)) (-5 *2 (-108))
+ (-5 *1 (-1072 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510))
- (-5 *2 (-385 (-525)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510))
- (-4 *3 (-517))))
- ((*1 *2 *1) (-12 (-4 *1 (-510)) (-5 *2 (-385 (-525)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510))
- (-5 *2 (-385 (-525)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510))
- (-4 *3 (-1019))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510))
- (-4 *3 (-1019))))
+ (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *2 (-108))))
((*1 *2 *1)
- (-12 (-4 *1 (-928 *3)) (-4 *3 (-160)) (-4 *3 (-510))
- (-5 *2 (-385 (-525)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-939 *3))
- (-4 *3 (-967 (-385 (-525)))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-855)) (-4 *1 (-687 *3)) (-4 *3 (-160)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-1 (-108) *5 *5))
- (-5 *4 (-592 *5)) (-4 *5 (-789)) (-5 *1 (-1098 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1105)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-153 *3 *4))
- (-4 *3 (-154 *4))))
- ((*1 *2)
- (-12 (-14 *4 (-713)) (-4 *5 (-1126)) (-5 *2 (-713))
- (-5 *1 (-217 *3 *4 *5)) (-4 *3 (-218 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-789)) (-5 *2 (-713)) (-5 *1 (-407 *3 *4))
- (-4 *3 (-408 *4))))
- ((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-509 *3)) (-4 *3 (-510))))
- ((*1 *2) (-12 (-4 *1 (-706)) (-5 *2 (-713))))
- ((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-738 *3 *4))
- (-4 *3 (-739 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-923 *3 *4))
- (-4 *3 (-924 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-713)) (-5 *1 (-927 *3 *4))
- (-4 *3 (-928 *4))))
- ((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-942 *3)) (-4 *3 (-943))))
- ((*1 *2) (-12 (-4 *1 (-976)) (-5 *2 (-713))))
- ((*1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-984 *3)) (-4 *3 (-985)))))
-(((*1 *1 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-985))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090)))
- (-14 *3 (-592 (-1090))) (-4 *4 (-365))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)) (-4 *2 (-985))))
- ((*1 *1 *1) (-4 *1 (-787)))
- ((*1 *2 *1) (-12 (-4 *1 (-928 *2)) (-4 *2 (-160)) (-4 *2 (-985))))
- ((*1 *1 *1) (-4 *1 (-985))) ((*1 *1 *1) (-4 *1 (-1054))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-785)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1173 (-1173 *4))) (-4 *4 (-977)) (-5 *2 (-632 *4))
+ (-5 *1 (-960 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-517) (-789) (-968 (-525))))
+ (-4 *5 (-408 *4)) (-5 *2 (-396 (-1087 (-385 (-525)))))
+ (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1149 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1072 (-385 *3))) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-957 (-782 (-525))))
+ (-5 *3 (-1072 (-2 (|:| |k| (-525)) (|:| |c| *4)))) (-4 *4 (-977))
+ (-5 *1 (-550 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-910 *4 *5 *6 *3)) (-4 *3 (-991 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1087 *9)) (-5 *4 (-592 *7)) (-5 *5 (-592 (-592 *8)))
+ (-4 *7 (-789)) (-4 *8 (-286)) (-4 *9 (-884 *8 *6 *7)) (-4 *6 (-735))
+ (-5 *2
+ (-2 (|:| |upol| (-1087 *8)) (|:| |Lval| (-592 *8))
+ (|:| |Lfact|
+ (-592 (-2 (|:| -2195 (-1087 *8)) (|:| -1864 (-525)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-685 *6 *7 *8 *9)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
+ (-4 *2 (-13 (-408 *3) (-934)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
((*1 *1 *1) (-4 *1 (-263)))
((*1 *2 *3)
(-12 (-5 *3 (-396 *4)) (-4 *4 (-517))
- (-5 *2 (-592 (-2 (|:| -1459 (-713)) (|:| |logand| *4))))
+ (-5 *2 (-592 (-2 (|:| -1655 (-713)) (|:| |logand| *4))))
(-5 *1 (-298 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090)))
- (-14 *3 (-592 (-1090))) (-4 *4 (-365))))
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091)))
+ (-14 *3 (-592 (-1091))) (-4 *4 (-365))))
((*1 *2 *1)
(-12 (-5 *2 (-610 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
- (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855))))
+ (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856))))
((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
(-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-13 (-976) (-660 (-385 (-525)))))
- (-4 *5 (-789)) (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1191 *5 *4))))
+ (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525)))))
+ (-4 *5 (-789)) (-5 *1 (-1187 *4 *5 *2)) (-4 *2 (-1192 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-1190 *3 *4))
+ (-12 (-5 *2 (-713)) (-5 *1 (-1191 *3 *4))
(-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525)))))
- (-4 *2 (-13 (-789) (-21))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-690)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-974)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-713)) (-4 *5 (-517))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-903 *5 *3)) (-4 *3 (-1149 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-632 *5))) (-4 *5 (-286)) (-4 *5 (-977))
+ (-5 *2 (-1173 (-1173 *5))) (-5 *1 (-960 *5)) (-5 *4 (-1173 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-396 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))))
-(((*1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-346)) (-4 *2 (-1019)))))
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-909 *4 *5 *6 *3)) (-4 *4 (-977)) (-4 *5 (-735))
+ (-4 *6 (-789)) (-4 *3 (-991 *4 *5 *6)) (-4 *4 (-517))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-702)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-273 *3))) (-5 *1 (-273 *3)) (-4 *3 (-517))
- (-4 *3 (-1126)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-525))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346)))) (-5 *2 (-965))
- (-5 *1 (-689)))))
-(((*1 *1 *1) (-12 (-4 *1 (-403 *2)) (-4 *2 (-1019)) (-4 *2 (-346)))))
+ (-12 (-5 *2 (-808 (-900 *3) (-900 *3))) (-5 *1 (-900 *3))
+ (-4 *3 (-901)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1065 *3)) (-4 *3 (-1127)) (-5 *2 (-108)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-385 *4)) (-4 *4 (-1149 *3)) (-4 *3 (-13 (-341) (-138)))
+ (-5 *1 (-377 *3 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-856))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *2)) (-5 *4 (-1 (-108) *2 *2)) (-5 *1 (-1127 *2))
- (-4 *2 (-1019))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-1019)) (-4 *2 (-789))
- (-5 *1 (-1127 *2)))))
+ (-12 (-4 *2 (-1149 *4)) (-5 *1 (-749 *4 *2 *3 *5))
+ (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *3 (-602 *2))
+ (-4 *5 (-602 (-385 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1149 *4)) (-5 *1 (-749 *4 *2 *5 *3))
+ (-4 *4 (-13 (-341) (-138) (-968 (-385 (-525))))) (-4 *5 (-602 *2))
+ (-4 *3 (-602 (-385 *2))))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1074)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
+ (-4 *4 (-991 *6 *7 *8)) (-5 *2 (-1178))
+ (-5 *1 (-718 *6 *7 *8 *4 *5)) (-4 *5 (-996 *6 *7 *8 *4)))))
+(((*1 *1 *1) (-5 *1 (-989))))
+(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-305 *3)) (-4 *3 (-1127))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-713)) (-5 *1 (-488 *3 *4)) (-4 *3 (-1127))
+ (-14 *4 (-525)))))
+(((*1 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1176))))
+ ((*1 *2 *2) (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1176)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1091))
+ (-4 *5 (-13 (-517) (-968 (-525)) (-138)))
+ (-5 *2
+ (-2 (|:| -1679 (-385 (-887 *5))) (|:| |coeff| (-385 (-887 *5)))))
+ (-5 *1 (-531 *5)) (-5 *3 (-385 (-887 *5))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 *8)) (-4 *8 (-883 *5 *7 *6))
- (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090))))
- (-4 *7 (-735))
- (-5 *2
- (-592
- (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8))
- (|:| |wcond| (-592 (-886 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1172 (-385 (-886 *5))))
- (|:| -2499 (-592 (-1172 (-385 (-886 *5))))))))))
- (-5 *1 (-858 *5 *6 *7 *8)) (-5 *4 (-592 *8))))
+ (-12 (-5 *3 (-1087 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6))
+ (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 *8)) (-5 *4 (-592 (-1090))) (-4 *8 (-883 *5 *7 *6))
- (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090))))
- (-4 *7 (-735))
- (-5 *2
- (-592
- (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8))
- (|:| |wcond| (-592 (-886 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1172 (-385 (-886 *5))))
- (|:| -2499 (-592 (-1172 (-385 (-886 *5))))))))))
- (-5 *1 (-858 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-632 *7)) (-4 *7 (-883 *4 *6 *5))
- (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090))))
- (-4 *6 (-735))
- (-5 *2
- (-592
- (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7))
- (|:| |wcond| (-592 (-886 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1172 (-385 (-886 *4))))
- (|:| -2499 (-592 (-1172 (-385 (-886 *4))))))))))
- (-5 *1 (-858 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-632 *9)) (-5 *5 (-855)) (-4 *9 (-883 *6 *8 *7))
- (-4 *6 (-13 (-286) (-138))) (-4 *7 (-13 (-789) (-567 (-1090))))
- (-4 *8 (-735))
- (-5 *2
- (-592
- (-2 (|:| |eqzro| (-592 *9)) (|:| |neqzro| (-592 *9))
- (|:| |wcond| (-592 (-886 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1172 (-385 (-886 *6))))
- (|:| -2499 (-592 (-1172 (-385 (-886 *6))))))))))
- (-5 *1 (-858 *6 *7 *8 *9)) (-5 *4 (-592 *9))))
+ (-12 (-5 *3 (-887 *5)) (-4 *5 (-429)) (-5 *2 (-592 *6))
+ (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-341)) (-4 *4 (-13 (-341) (-787))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-909 *3 *4 *5 *6)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *2 (-966)) (-5 *1 (-694)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1074))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-966))
+ (-5 *1 (-693)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-592 *5) *6))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *6 (-1149 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 (-1090))) (-5 *5 (-855))
- (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138)))
- (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735))
- (-5 *2
- (-592
- (-2 (|:| |eqzro| (-592 *9)) (|:| |neqzro| (-592 *9))
- (|:| |wcond| (-592 (-886 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1172 (-385 (-886 *6))))
- (|:| -2499 (-592 (-1172 (-385 (-886 *6))))))))))
- (-5 *1 (-858 *6 *7 *8 *9))))
+ (-12 (-5 *3 (-599 (-385 *7))) (-5 *4 (-1 (-592 *6) *7))
+ (-5 *5 (-1 (-396 *7) *7))
+ (-4 *6 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *7 (-1149 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 *8)) (-5 *4 (-855)) (-4 *8 (-883 *5 *7 *6))
- (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090))))
- (-4 *7 (-735))
- (-5 *2
- (-592
- (-2 (|:| |eqzro| (-592 *8)) (|:| |neqzro| (-592 *8))
- (|:| |wcond| (-592 (-886 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1172 (-385 (-886 *5))))
- (|:| -2499 (-592 (-1172 (-385 (-886 *5))))))))))
- (-5 *1 (-858 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 *9)) (-5 *5 (-1073))
- (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138)))
- (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735)) (-5 *2 (-525))
- (-5 *1 (-858 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-632 *9)) (-5 *4 (-592 (-1090))) (-5 *5 (-1073))
- (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138)))
- (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735)) (-5 *2 (-525))
- (-5 *1 (-858 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 *8)) (-5 *4 (-1073)) (-4 *8 (-883 *5 *7 *6))
- (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090))))
- (-4 *7 (-735)) (-5 *2 (-525)) (-5 *1 (-858 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-632 *10)) (-5 *4 (-592 *10)) (-5 *5 (-855))
- (-5 *6 (-1073)) (-4 *10 (-883 *7 *9 *8)) (-4 *7 (-13 (-286) (-138)))
- (-4 *8 (-13 (-789) (-567 (-1090)))) (-4 *9 (-735)) (-5 *2 (-525))
- (-5 *1 (-858 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-632 *10)) (-5 *4 (-592 (-1090))) (-5 *5 (-855))
- (-5 *6 (-1073)) (-4 *10 (-883 *7 *9 *8)) (-4 *7 (-13 (-286) (-138)))
- (-4 *8 (-13 (-789) (-567 (-1090)))) (-4 *9 (-735)) (-5 *2 (-525))
- (-5 *1 (-858 *7 *8 *9 *10))))
+ (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-592 *5) *6))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *6 (-1149 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-632 *9)) (-5 *4 (-855)) (-5 *5 (-1073))
- (-4 *9 (-883 *6 *8 *7)) (-4 *6 (-13 (-286) (-138)))
- (-4 *7 (-13 (-789) (-567 (-1090)))) (-4 *8 (-735)) (-5 *2 (-525))
- (-5 *1 (-858 *6 *7 *8 *9)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855))
- (-4 *4 (-976)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1014 (-782 (-205)))) (-5 *1 (-284)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
- (-5 *2 (-965)) (-5 *1 (-693)))))
-(((*1 *2) (-12 (-5 *2 (-592 *3)) (-5 *1 (-1005 *3)) (-4 *3 (-127)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160))))
+ (-12 (-5 *3 (-600 *7 (-385 *7))) (-5 *4 (-1 (-592 *6) *7))
+ (-5 *5 (-1 (-396 *7) *7))
+ (-4 *6 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *7 (-1149 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7))))
((*1 *2 *3)
- (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-632 *4)) (-4 *4 (-341)) (-5 *2 (-1086 *4))
- (-5 *1 (-498 *4 *5 *6)) (-4 *5 (-341)) (-4 *6 (-13 (-341) (-787))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-173)) (-5 *3 (-525))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-160))))
+ (-12 (-5 *3 (-599 (-385 *5))) (-4 *5 (-1149 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-396 *6) *6))
+ (-4 *6 (-1149 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *2 (-1086 (-525))) (-5 *1 (-876)) (-5 *3 (-525)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
- (-5 *5 (-1014 (-205))) (-5 *6 (-525)) (-5 *2 (-1122 (-860)))
- (-5 *1 (-296))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
- (-5 *5 (-1014 (-205))) (-5 *6 (-525)) (-5 *7 (-1073))
- (-5 *2 (-1122 (-860))) (-5 *1 (-296))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
- (-5 *5 (-1014 (-205))) (-5 *6 (-205)) (-5 *7 (-525))
- (-5 *2 (-1122 (-860))) (-5 *1 (-296))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
- (-5 *5 (-1014 (-205))) (-5 *6 (-205)) (-5 *7 (-525)) (-5 *8 (-1073))
- (-5 *2 (-1122 (-860))) (-5 *1 (-296)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-1094)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-592 (-1 *6 (-592 *6))))
- (-4 *5 (-37 (-385 (-525)))) (-4 *6 (-1163 *5)) (-5 *2 (-592 *6))
- (-5 *1 (-1165 *5 *6)))))
+ (-12 (-5 *3 (-600 *5 (-385 *5))) (-4 *5 (-1149 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-396 *6) *6))
+ (-4 *6 (-1149 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-341) (-138) (-968 (-525)) (-968 (-385 (-525)))))
+ (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1 (-1071 (-886 *4)) (-1071 (-886 *4))))
- (-5 *1 (-1180 *4)) (-4 *4 (-341)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *5 (-205))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-84 FCN)))) (-5 *2 (-965))
- (-5 *1 (-692)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *3 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-426 *4 *3 *5 *6)) (-4 *6 (-883 *4 *3 *5)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-713)) (-4 *1 (-1148 *3)) (-4 *3 (-976)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 (-565 *5))) (-5 *3 (-1090)) (-4 *5 (-408 *4))
- (-4 *4 (-789)) (-5 *1 (-534 *4 *5)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-1086 *3))
- (-4 *3 (-13 (-408 *6) (-27) (-1112)))
- (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2 (-2 (|:| -2838 *3) (|:| |coeff| *3)))
- (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1019))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-385 (-1086 *3)))
- (-4 *3 (-13 (-408 *6) (-27) (-1112)))
- (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2 (-2 (|:| -2838 *3) (|:| |coeff| *3)))
- (-5 *1 (-521 *6 *3 *7)) (-4 *7 (-1019)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1086 (-385 (-886 *3)))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-716)) (-5 *1 (-51)))))
-(((*1 *1 *1 *1) (-5 *1 (-797))))
-(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
+ (-12 (-4 *4 (-977)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5))
+ (-4 *3 (-1149 *4))
+ (-4 *5 (-13 (-382) (-968 *4) (-341) (-1113) (-263))))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1165 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1091))
+ (-14 *4 *2))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1091))
+ (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3326 "void"))) (-5 *1 (-1094)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1146 *5 *4)) (-4 *4 (-762)) (-14 *5 (-1091))
+ (-5 *2 (-592 *4)) (-5 *1 (-1034 *4 *5)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1019)) (-5 *1 (-1104 *3 *2)) (-4 *3 (-1019)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-592
- (-2 (|:| |scalar| (-385 (-525))) (|:| |coeff| (-1086 *2))
- (|:| |logand| (-1086 *2)))))
- (-5 *4 (-592 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-341)) (-5 *1 (-542 *2)))))
-(((*1 *1) (-5 *1 (-132))))
-(((*1 *1) (-5 *1 (-132))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
+ (-12 (-4 *4 (-341)) (-5 *2 (-592 *3)) (-5 *1 (-880 *4 *3))
+ (-4 *3 (-1149 *4)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1091))
+ (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-536 *4 *2))
+ (-4 *2 (-13 (-1113) (-893) (-1055) (-29 *4))))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-308)))))
+(((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-510))))
+(((*1 *2)
+ (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1149 (-525))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *1 *1 *1) (-5 *1 (-797))))
+ (-12 (-5 *4 (-713)) (-4 *5 (-977)) (-4 *2 (-1149 *5))
+ (-5 *1 (-1167 *5 *2 *6 *3)) (-4 *6 (-602 *2)) (-4 *3 (-1164 *5)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))))
(((*1 *1 *2 *2) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))))
-(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1108)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-808)) (-5 *3 (-592 (-242))) (-5 *1 (-240)))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-592 *3)) (-5 *5 (-855)) (-4 *3 (-1148 *4))
- (-4 *4 (-286)) (-5 *1 (-437 *4 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-414)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-525)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1126))
- (-4 *5 (-351 *4)) (-4 *3 (-351 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-826 *4)) (-4 *4 (-1019)) (-5 *2 (-592 *5))
- (-5 *1 (-824 *4 *5)) (-4 *5 (-1126)))))
+ (-12 (-5 *3 (-1074)) (-5 *2 (-525)) (-5 *1 (-1110 *4))
+ (-4 *4 (-977)))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-745)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4))))
+ (-5 *1 (-997 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-372))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1108)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175))))
+ ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1175)))))
(((*1 *2 *1 *3)
(-12 (-5 *2 (-385 (-525))) (-5 *1 (-113 *4)) (-14 *4 (-525))
(-5 *3 (-525))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-804 *3)) (-5 *2 (-525))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-805 *4)) (-14 *4 (-525))
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-806 *4)) (-14 *4 (-525))
(-5 *3 (-525))))
((*1 *2 *1 *3)
- (-12 (-14 *4 (-525)) (-5 *2 (-385 (-525))) (-5 *1 (-806 *4 *5))
- (-5 *3 (-525)) (-4 *5 (-803 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-943)) (-5 *2 (-385 (-525)))))
+ (-12 (-14 *4 (-525)) (-5 *2 (-385 (-525))) (-5 *1 (-807 *4 *5))
+ (-5 *3 (-525)) (-4 *5 (-804 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-944)) (-5 *2 (-385 (-525)))))
((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-992 *2 *3)) (-4 *2 (-13 (-787) (-341)))
- (-4 *3 (-1148 *2))))
+ (-12 (-4 *1 (-993 *2 *3)) (-4 *2 (-13 (-787) (-341)))
+ (-4 *3 (-1149 *2))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1150 *2 *3)) (-4 *3 (-734))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1908 (*2 (-1090))))
- (-4 *2 (-976)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-682 *3)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-592
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-713)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-735)) (-4 *6 (-883 *4 *3 *5)) (-4 *4 (-429)) (-4 *5 (-789))
- (-5 *1 (-426 *4 *3 *5 *6)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-108))
- (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-4 *3 (-13 (-27) (-1112) (-408 *6) (-10 -8 (-15 -1908 ($ *7)))))
- (-4 *7 (-787))
- (-4 *8
- (-13 (-1150 *3 *7) (-341) (-1112)
- (-10 -8 (-15 -3013 ($ $)) (-15 -3766 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1073)) (|:| |prob| (-1073))))))
- (-5 *1 (-400 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1073)) (-4 *9 (-915 *8))
- (-14 *10 (-1090)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-157 (-205))) (-5 *5 (-525))
- (-5 *6 (-1073)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1145 *5 *4)) (-4 *4 (-429)) (-4 *4 (-762))
- (-14 *5 (-1090)) (-5 *2 (-525)) (-5 *1 (-1033 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1120 *2 *3 *4 *5)) (-4 *2 (-517)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *5 (-990 *2 *3 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1191 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976))
- (-5 *2 (-761 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-785)) (-5 *1 (-1193 *3 *2)) (-4 *3 (-976)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-357))))
- ((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-357)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-592 *3))))
- ((*1 *2 *1)
- (-12 (|has| *1 (-6 -4254)) (-4 *1 (-464 *3)) (-4 *3 (-1126))
- (-5 *2 (-592 *3)))))
-(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4256 "*"))) (-4 *5 (-351 *2)) (-4 *6 (-351 *2))
- (-4 *2 (-976)) (-5 *1 (-99 *2 *3 *4 *5 *6)) (-4 *3 (-1148 *2))
- (-4 *4 (-630 *2 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174))))
- ((*1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-1174)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-592 *3))
- (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-990 *4 *5 *6)) (-4 *4 (-517))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-909 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-592 *7)) (-5 *3 (-1 (-592 *7) (-592 *7)))
- (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *1 (-909 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
- (-5 *2
- (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525))
- (|:| |success| (-108))))
- (-5 *1 (-731)) (-5 *5 (-525)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1126)) (-5 *2 (-592 *1)) (-4 *1 (-941 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-592 (-1079 *3 *4))) (-5 *1 (-1079 *3 *4))
- (-14 *3 (-855)) (-4 *4 (-976)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *2 (-965)) (-5 *1 (-695)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-395 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-761 *4)) (-4 *4 (-789)) (-5 *2 (-108))
- (-5 *1 (-617 *4)))))
+ (-12 (-4 *1 (-1151 *2 *3)) (-4 *3 (-734))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1270 (*2 (-1091))))
+ (-4 *2 (-977)))))
(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
((*1 *2 *2 *2)
(-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
(-4 *2 (-408 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1090))
- (-4 *5 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-592 (-565 *3)))
- (|:| |vals| (-592 *3))))
- (-5 *1 (-256 *5 *3)) (-4 *3 (-13 (-27) (-1112) (-408 *5))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-1029)) (-5 *3 (-525)))))
-(((*1 *1) (-5 *1 (-765))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))))
-(((*1 *1 *1 *1) (-4 *1 (-510))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1126)) (-4 *2 (-1019))
- (-4 *2 (-789)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-357)) (-5 *1 (-988)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-592 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525))))))
- (-5 *2 (-592 (-205))) (-5 *1 (-284)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-160))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-1191 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-976)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
+ ((*1 *1 *1 *1) (-4 *1 (-1055))))
(((*1 *2 *3)
- (-12 (-5 *3 (-632 (-385 (-886 *4)))) (-4 *4 (-429))
- (-5 *2 (-592 (-3 (-385 (-886 *4)) (-1080 (-1090) (-886 *4)))))
- (-5 *1 (-271 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-592 (-294 (-205)))) (-5 *1 (-246)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-1127 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *3) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-522)) (-5 *3 (-525))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1086 (-385 (-525)))) (-5 *1 (-876)) (-5 *3 (-525)))))
+ (-12 (-4 *4 (-977)) (-4 *5 (-1149 *4)) (-5 *2 (-1 *6 (-592 *6)))
+ (-5 *1 (-1167 *4 *5 *3 *6)) (-4 *3 (-602 *5)) (-4 *6 (-1164 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3))
+ (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-351 *3))
(-4 *5 (-351 *3)) (-5 *2 (-108))))
((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976))
+ (-12 (-4 *1 (-980 *3 *4 *5 *6 *7)) (-4 *5 (-977))
(-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))))
-(((*1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-592 (-724 *3))) (-5 *1 (-724 *3)) (-4 *3 (-517))
- (-4 *3 (-976)))))
-(((*1 *2)
- (-12 (-5 *2 (-855)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-855)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))))
-(((*1 *2)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))))
-(((*1 *2) (-12 (-5 *2 (-592 (-855))) (-5 *1 (-1175))))
- ((*1 *2 *2) (-12 (-5 *2 (-592 (-855))) (-5 *1 (-1175)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1073)) (-5 *4 (-157 (-205))) (-5 *5 (-525))
- (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-565 *4)) (-5 *6 (-1086 *4))
- (-4 *4 (-13 (-408 *7) (-27) (-1112)))
- (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-789)) (-5 *1 (-864 *3 *2)) (-4 *2 (-408 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1091)) (-5 *2 (-294 (-525))) (-5 *1 (-865)))))
+(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160))))
+ ((*1 *2 *1) (-12 (-4 *1 (-929 *2)) (-4 *2 (-160)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-921 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-991 *3 *4 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-5 *2 (-108))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-991 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
+ (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-996 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1121 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
+ (-4 *5 (-789)) (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-108)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-565 *4)) (-5 *6 (-1091))
+ (-4 *4 (-13 (-408 *7) (-27) (-1113)))
+ (-4 *7 (-13 (-429) (-968 (-525)) (-789) (-138) (-588 (-525))))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2499 (-592 *4))))
- (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1019))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-565 *4)) (-5 *6 (-385 (-1086 *4)))
- (-4 *4 (-13 (-408 *7) (-27) (-1112)))
- (-4 *7 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1449 (-592 *4))))
+ (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1020)))))
+(((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1042 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-592 (-385 (-887 (-525))))) (-5 *4 (-592 (-1091)))
+ (-5 *2 (-592 (-592 *5))) (-5 *1 (-358 *5))
+ (-4 *5 (-13 (-787) (-341)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 (-525)))) (-5 *2 (-592 *4)) (-5 *1 (-358 *4))
+ (-4 *4 (-13 (-787) (-341))))))
+(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1178)) (-5 *1 (-357)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-856)) (-5 *1 (-963 *2))
+ (-4 *2 (-13 (-1020) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-592 *9)) (-5 *3 (-1 (-108) *9))
+ (-5 *4 (-1 (-108) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-991 *6 *7 *8)) (-4 *6 (-517)) (-4 *7 (-735)) (-4 *8 (-789))
+ (-5 *1 (-910 *6 *7 *8 *9)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -1895 *4))))
+ (-5 *1 (-1057 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
+ (-4 *4 (-13 (-1020) (-33))))))
+(((*1 *2)
+ (-12 (-5 *2 (-892 (-1038))) (-5 *1 (-321 *3 *4)) (-14 *3 (-856))
+ (-14 *4 (-856))))
+ ((*1 *2)
+ (-12 (-5 *2 (-892 (-1038))) (-5 *1 (-322 *3 *4)) (-4 *3 (-327))
+ (-14 *4 (-1087 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-892 (-1038))) (-5 *1 (-323 *3 *4)) (-4 *3 (-327))
+ (-14 *4 (-856)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2499 (-592 *4))))
- (-5 *1 (-521 *7 *4 *3)) (-4 *3 (-602 *4)) (-4 *3 (-1019)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517)))))
+ (-2 (|:| -3352 *4) (|:| -1245 *4) (|:| |totalpts| (-525))
+ (|:| |success| (-108))))
+ (-5 *1 (-731)) (-5 *5 (-525)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7))))
- (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
+ (-12 (-5 *3 (-592 *7)) (-4 *7 (-884 *4 *5 *6)) (-4 *4 (-429))
+ (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1178))
+ (-5 *1 (-426 *4 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-542 *3)) (-4 *3 (-341)))))
+ (-12 (-5 *2 (-592 (-1114 *3))) (-5 *1 (-1114 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-966))
+ (-5 *1 (-699)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-976)) (-4 *4 (-1019)) (-5 *2 (-592 *1))
- (-4 *1 (-360 *3 *4))))
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1020) (-33))) (-5 *1 (-1056 *3 *2))
+ (-4 *3 (-13 (-1020) (-33))))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-341) (-138) (-968 (-525))))
+ (-4 *5 (-1149 *4)) (-5 *2 (-592 (-385 *5))) (-5 *1 (-948 *4 *5))
+ (-5 *3 (-385 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1072 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-695)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1131)) (-4 *5 (-1149 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-385 *5))
+ (|:| |c2| (-385 *5)) (|:| |deg| (-713))))
+ (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1149 (-385 *5))))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-126))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-146)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *2 *1) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-372))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-1108)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-525))
+ (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-884 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7)) (-5 *2 (-108))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
+ (-4 *3 (-991 *5 *6 *7))
+ (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -1895 *4))))
+ (-5 *1 (-1028 *5 *6 *7 *3 *4)) (-4 *4 (-996 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -1679 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-341)) (-4 *7 (-1149 *6))
+ (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6)))
+ (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259))))
+ ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020))))
((*1 *2 *1)
- (-12 (-5 *2 (-592 (-678 *3 *4))) (-5 *1 (-678 *3 *4)) (-4 *3 (-976))
- (-4 *4 (-669))))
+ (-12 (-4 *1 (-1188 *3 *4)) (-4 *3 (-789)) (-4 *4 (-977))
+ (-5 *2 (-108))))
((*1 *2 *1)
- (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-883 *3 *4 *5)))))
+ (-12 (-5 *2 (-108)) (-5 *1 (-1194 *3 *4)) (-4 *3 (-977))
+ (-4 *4 (-785)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735))
- (-5 *2 (-108)) (-5 *1 (-477 *4 *5 *6 *7)) (-4 *7 (-883 *4 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-138))
- (-4 *3 (-286)) (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-909 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-457 *4 *5)) (-14 *4 (-592 (-1090))) (-4 *5 (-976))
- (-5 *2 (-227 *4 *5)) (-5 *1 (-878 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-49 *3 *4)) (-4 *3 (-976))
- (-14 *4 (-592 (-1090)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1163 *3))
- (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1134 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1132 *3))
- (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1155 *3 *4)) (-4 *5 (-915 *4))))
- ((*1 *1 *1) (-4 *1 (-263)))
+ (-12 (-5 *2 (-592 (-1114 *3))) (-5 *1 (-1114 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
+ (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
+ (-4 *7 (-925 *4)) (-4 *2 (-630 *7 *8 *9))
+ (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6))
+ (-4 *8 (-351 *7)) (-4 *9 (-351 *7))))
((*1 *1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090)))
- (-14 *3 (-592 (-1090))) (-4 *4 (-365))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-5 *1 (-576 *3 *4 *5))
- (-14 *5 (-855))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1076 *3))))
+ (-12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-351 *2))
+ (-4 *4 (-351 *2)) (-4 *2 (-286))))
((*1 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-37 (-385 (-525))))
- (-5 *1 (-1077 *3))))
+ (-12 (-4 *3 (-286)) (-4 *3 (-160)) (-4 *4 (-351 *3))
+ (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2))
+ (-4 *2 (-630 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *4 (-13 (-976) (-660 (-385 (-525)))))
- (-4 *5 (-789)) (-5 *1 (-1186 *4 *5 *2)) (-4 *2 (-1191 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-1190 *3 *4))
- (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160)))))
+ (-12 (-5 *2 (-632 *3)) (-4 *3 (-286)) (-5 *1 (-642 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-980 *2 *3 *4 *5 *6)) (-4 *4 (-977))
+ (-4 *5 (-218 *3 *4)) (-4 *6 (-218 *2 *4)) (-4 *4 (-286)))))
+(((*1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1020))
+ (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))
+ (-5 *2 (-592 (-999 *3 *4 *5))) (-5 *1 (-1000 *3 *4 *5))
+ (-4 *5 (-13 (-408 *4) (-821 *3) (-567 (-827 *3)))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *1 *1) (-4 *1 (-1060))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1091))
+ (-4 *4 (-13 (-286) (-789) (-138) (-968 (-525)) (-588 (-525))))
+ (-5 *1 (-404 *4 *2)) (-4 *2 (-13 (-1113) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-1091)) (-4 *5 (-138))
+ (-4 *5 (-13 (-429) (-968 (-525)) (-789) (-588 (-525))))
+ (-5 *2 (-294 *5)) (-5 *1 (-545 *5)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-977))
+ (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3))
+ (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2))
+ (-4 *2 (-630 *3 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1171 *2)) (-4 *2 (-1127)) (-4 *2 (-934))
+ (-4 *2 (-977)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-977)) (-4 *2 (-341)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *6))
+ (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-884 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-341))
+ (-5 *2
+ (-2 (|:| A (-632 *5))
+ (|:| |eqs|
+ (-592
+ (-2 (|:| C (-632 *5)) (|:| |g| (-1173 *5)) (|:| -4216 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-755 *5 *6)) (-5 *3 (-632 *5)) (-5 *4 (-1173 *5))
+ (-4 *6 (-602 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-341)) (-4 *6 (-602 *5))
+ (-5 *2 (-2 (|:| -1484 (-632 *6)) (|:| |vec| (-1173 *5))))
+ (-5 *1 (-755 *5 *6)) (-5 *3 (-632 *6)) (-5 *4 (-1173 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1074))) (-5 *1 (-174))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1074))) (-5 *1 (-279))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-205))) (-5 *2 (-592 (-1074))) (-5 *1 (-284)))))
(((*1 *2 *3)
+ (-12 (-4 *4 (-789)) (-5 *2 (-592 (-592 *4))) (-5 *1 (-1099 *4))
+ (-5 *3 (-592 *4)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-987 (-955 *3) (-1087 (-955 *3))))
+ (-5 *1 (-955 *3)) (-4 *3 (-13 (-787) (-341) (-953))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-525)) (-5 *2 (-1178)) (-5 *1 (-1175))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
+(((*1 *2 *1)
(-12
- (-5 *3
- (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357))
- (|:| |expense| (-357)) (|:| |accuracy| (-357))
- (|:| |intermediateResults| (-357))))
- (-5 *2 (-965)) (-5 *1 (-284)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-341) (-787))) (-5 *1 (-167 *3 *2))
- (-4 *2 (-1148 (-157 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-877 (-205))) (-5 *2 (-1177)) (-5 *1 (-445)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-694)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2838 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-341)) (-4 *7 (-1148 *6))
(-5 *2
- (-3 (-2 (|:| |answer| (-385 *7)) (|:| |a0| *6))
- (-2 (|:| -2838 (-385 *7)) (|:| |coeff| (-385 *7))) "failed"))
- (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1148 *5))
- (-4 *5 (-13 (-341) (-138) (-967 (-525))))
+ (-592
+ (-592
+ (-3 (|:| -3800 (-1091))
+ (|:| |bounds| (-592 (-3 (|:| S (-1091)) (|:| P (-887 (-525))))))))))
+ (-5 *1 (-1095)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -1449 (-592 *1))))
+ (-4 *1 (-345 *3))))
+ ((*1 *2)
+ (|partial| -12
(-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-385 *6)) (|:| |c| (-385 *6))
- (|:| -3787 *6)))
- (-5 *1 (-946 *5 *6)) (-5 *3 (-385 *6)))))
+ (-2 (|:| |particular| (-430 *3 *4 *5 *6))
+ (|:| -1449 (-592 (-430 *3 *4 *5 *6)))))
+ (-5 *1 (-430 *3 *4 *5 *6)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412)))))
+(((*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1127))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1020))
+ (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3))))
+ (-5 *1 (-999 *3 *4 *2))
+ (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1020)) (-5 *1 (-1081 *3 *2)) (-4 *3 (-1020)))))
+(((*1 *2)
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-856))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1173 (-632 *3))))))
+(((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1127)))))
+(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1113)))))
+ ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-798))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-798)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3244 *3)))
- (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))))
+ (-12 (-4 *4 (-977)) (-4 *2 (-630 *4 *5 *6))
+ (-5 *1 (-99 *4 *3 *2 *5 *6)) (-4 *3 (-1149 *4)) (-4 *5 (-351 *4))
+ (-4 *6 (-351 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-977)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1131)) (-4 *5 (-1149 *4))
+ (-5 *2 (-2 (|:| |radicand| (-385 *5)) (|:| |deg| (-713))))
+ (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1149 (-385 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-878 *2)) (-5 *1 (-915 *2)) (-4 *2 (-977)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1074)) (-5 *4 (-1038)) (-5 *2 (-108)) (-5 *1 (-763)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
+ (-5 *2 (-966)) (-5 *1 (-700)))))
+(((*1 *2 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-1127))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1020))
+ (-4 *2 (-13 (-408 *4) (-821 *3) (-567 (-827 *3))))
+ (-5 *1 (-999 *3 *4 *2))
+ (-4 *4 (-13 (-977) (-821 *3) (-789) (-567 (-827 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1020)) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1020)))))
(((*1 *2)
- (|partial| -12 (-4 *4 (-1130)) (-4 *5 (-1148 (-385 *2)))
- (-4 *2 (-1148 *4)) (-5 *1 (-319 *3 *4 *2 *5))
- (-4 *3 (-320 *4 *2 *5))))
+ (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1178))
+ (-5 *1 (-997 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6))))
((*1 *2)
- (|partial| -12 (-4 *1 (-320 *3 *2 *4)) (-4 *3 (-1130))
- (-4 *4 (-1148 (-385 *2))) (-4 *2 (-1148 *3)))))
-(((*1 *1) (-5 *1 (-270))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-108) *7 (-592 *7))) (-4 *1 (-1120 *4 *5 *6 *7))
- (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-990 *4 *5 *6))
- (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-592 *5))) (-4 *5 (-1163 *4))
- (-4 *4 (-37 (-385 (-525))))
- (-5 *2 (-1 (-1071 *4) (-592 (-1071 *4)))) (-5 *1 (-1165 *4 *5)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1037)) (-5 *2 (-1177)) (-5 *1 (-773)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-661 *2)) (-4 *2 (-341)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1148 *6))
- (-4 *6 (-13 (-27) (-408 *5)))
- (-4 *5 (-13 (-789) (-517) (-967 (-525)))) (-4 *8 (-1148 (-385 *7)))
- (-5 *2 (-542 *3)) (-5 *1 (-513 *5 *6 *7 *8 *3))
- (-4 *3 (-320 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-711))
- (-5 *2
- (-2 (|:| -1965 (-357)) (|:| -1310 (-1073))
- (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))))
- (-5 *1 (-526))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-711)) (-5 *4 (-988))
- (-5 *2
- (-2 (|:| -1965 (-357)) (|:| -1310 (-1073))
- (|:| |explanations| (-592 (-1073))) (|:| |extra| (-965))))
- (-5 *1 (-526))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-729)) (-5 *3 (-988))
- (-5 *4
- (-2 (|:| |fn| (-294 (-205)))
- (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
+ (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
+ (-4 *6 (-991 *3 *4 *5)) (-5 *2 (-1178))
+ (-5 *1 (-1028 *3 *4 *5 *6 *7)) (-4 *7 (-996 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1023 *3 *4 *5 *6 *7)) (-4 *3 (-1020)) (-4 *4 (-1020))
+ (-4 *5 (-1020)) (-4 *6 (-1020)) (-4 *7 (-1020)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-592 (-159))))))
+(((*1 *2 *2)
+ (-12
(-5 *2
- (-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))
- (|:| |extra| (-965))))))
+ (-477 (-385 (-525)) (-220 *4 (-713)) (-800 *3)
+ (-227 *3 (-385 (-525)))))
+ (-14 *3 (-592 (-1091))) (-14 *4 (-713)) (-5 *1 (-478 *3 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-762)) (-14 *5 (-1091)) (-5 *2 (-592 (-1146 *5 *4)))
+ (-5 *1 (-1034 *4 *5)) (-5 *3 (-1146 *5 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-780)) (-5 *4 (-989)) (-5 *2 (-966)) (-5 *1 (-779))))
+ ((*1 *2 *3) (-12 (-5 *3 (-780)) (-5 *2 (-966)) (-5 *1 (-779))))
+ ((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357)))
+ (-5 *5 (-592 (-782 (-357)))) (-5 *6 (-592 (-294 (-357))))
+ (-5 *2 (-966)) (-5 *1 (-779))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357)))
+ (-5 *5 (-592 (-782 (-357)))) (-5 *2 (-966)) (-5 *1 (-779))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-729)) (-5 *3 (-988))
- (-5 *4
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (-5 *2
- (-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))
- (|:| |extra| (-965))))))
+ (-12 (-5 *3 (-294 (-357))) (-5 *4 (-592 (-357))) (-5 *2 (-966))
+ (-5 *1 (-779))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-742)) (-5 *3 (-988))
- (-5 *4
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *2 (-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-750))
- (-5 *2
- (-2 (|:| -1965 (-357)) (|:| -1310 (-1073))
- (|:| |explanations| (-592 (-1073)))))
- (-5 *1 (-747))))
+ (-12 (-5 *3 (-592 (-294 (-357)))) (-5 *4 (-592 (-357)))
+ (-5 *2 (-966)) (-5 *1 (-779)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-789)) (-4 *5 (-735))
+ (-4 *6 (-517)) (-4 *7 (-884 *6 *5 *3))
+ (-5 *1 (-439 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-968 (-385 (-525))) (-341)
+ (-10 -8 (-15 -1270 ($ *7)) (-15 -1498 (*7 $))
+ (-15 -1512 (*7 $))))))))
+(((*1 *2) (-12 (-5 *2 (-1051 (-205))) (-5 *1 (-1111)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-991 *3 *4 *5)) (-4 *3 (-517))
+ (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-910 *3 *4 *5 *6)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-592 (-827 *3))) (-5 *1 (-827 *3))
+ (-4 *3 (-1020)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-273 (-775 *3)))
+ (-4 *3 (-13 (-27) (-1113) (-408 *5)))
+ (-4 *5 (-13 (-429) (-789) (-968 (-525)) (-588 (-525))))
+ (-5 *2 (-775 *3)) (-5 *1 (-585 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-750)) (-5 *4 (-988))
- (-5 *2
- (-2 (|:| -1965 (-357)) (|:| -1310 (-1073))
- (|:| |explanations| (-592 (-1073)))))
- (-5 *1 (-747))))
+ (-12 (-5 *4 (-273 (-775 (-887 *5)))) (-4 *5 (-429))
+ (-5 *2 (-775 (-385 (-887 *5)))) (-5 *1 (-586 *5))
+ (-5 *3 (-385 (-887 *5)))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-778)) (-5 *3 (-988))
- (-5 *4
- (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))
- (-5 *2 (-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))))))
+ (-12 (-5 *4 (-273 (-385 (-887 *5)))) (-4 *5 (-429))
+ (-5 *2 (-775 (-385 (-887 *5)))) (-5 *1 (-586 *5))
+ (-5 *3 (-385 (-887 *5))))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-966))
+ (-5 *1 (-694)))))
+(((*1 *2 *1) (-12 (-4 *1 (-286)) (-5 *2 (-713)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-357)) (-5 *1 (-727 *3)) (-4 *3 (-567 (-357)))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-778)) (-5 *3 (-988))
- (-5 *4
- (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205)))
- (|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205))))
- (|:| |ub| (-592 (-782 (-205))))))
- (-5 *2 (-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))))))
+ (-12 (-5 *4 (-856)) (-5 *2 (-357)) (-5 *1 (-727 *3))
+ (-4 *3 (-567 (-357)))))
((*1 *2 *3)
- (-12 (-5 *3 (-780))
- (-5 *2
- (-2 (|:| -1965 (-357)) (|:| -1310 (-1073))
- (|:| |explanations| (-592 (-1073)))))
- (-5 *1 (-779))))
+ (-12 (-5 *3 (-887 *4)) (-4 *4 (-977)) (-4 *4 (-567 (-357)))
+ (-5 *2 (-357)) (-5 *1 (-727 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-780)) (-5 *4 (-988))
- (-5 *2
- (-2 (|:| -1965 (-357)) (|:| -1310 (-1073))
- (|:| |explanations| (-592 (-1073)))))
- (-5 *1 (-779))))
+ (-12 (-5 *3 (-887 *5)) (-5 *4 (-856)) (-4 *5 (-977))
+ (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-385 (-887 *4))) (-4 *4 (-517)) (-4 *4 (-567 (-357)))
+ (-5 *2 (-357)) (-5 *1 (-727 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *1 (-829)) (-5 *3 (-988))
- (-5 *4
- (-2 (|:| |pde| (-592 (-294 (-205))))
- (|:| |constraints|
- (-592
- (-2 (|:| |start| (-205)) (|:| |finish| (-205))
- (|:| |grid| (-713)) (|:| |boundaryType| (-525))
- (|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
- (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073))
- (|:| |tol| (-205))))
- (-5 *2 (-2 (|:| -1965 (-357)) (|:| |explanations| (-1073))))))
+ (-12 (-5 *3 (-385 (-887 *5))) (-5 *4 (-856)) (-4 *5 (-517))
+ (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-832))
- (-5 *2
- (-2 (|:| -1965 (-357)) (|:| -1310 (-1073))
- (|:| |explanations| (-592 (-1073)))))
- (-5 *1 (-831))))
+ (-12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789))
+ (-4 *4 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-832)) (-5 *4 (-988))
- (-5 *2
- (-2 (|:| -1965 (-357)) (|:| -1310 (-1073))
- (|:| |explanations| (-592 (-1073)))))
- (-5 *1 (-831)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
- (-5 *2
- (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525))
- (|:| |success| (-108))))
- (-5 *1 (-731)) (-5 *5 (-525)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-281)) (-4 *2 (-1126))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-565 *1))) (-5 *3 (-592 *1)) (-4 *1 (-281))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *1))) (-4 *1 (-281))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-273 *1)) (-4 *1 (-281)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517)))))
+ (-12 (-5 *3 (-294 *5)) (-5 *4 (-856)) (-4 *5 (-517)) (-4 *5 (-789))
+ (-4 *5 (-567 (-357))) (-5 *2 (-357)) (-5 *1 (-727 *5)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-110)) (-5 *4 (-592 *2)) (-5 *1 (-109 *2))
- (-4 *2 (-1019))))
+ (-12 (-5 *4 (-592 *3)) (-4 *3 (-884 *5 *6 *7)) (-4 *5 (-429))
+ (-4 *6 (-735)) (-4 *7 (-789))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-426 *5 *6 *7 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-592 (-713))) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *1) (-5 *1 (-765))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-205) (-205) (-205)))
+ (-5 *4 (-1 (-205) (-205) (-205) (-205)))
+ (-5 *2 (-1 (-878 (-205)) (-205) (-205))) (-5 *1 (-639)))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-827 *3)) (-4 *3 (-1020)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
+ (-4 *4 (-160))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 (-592 *4))) (-4 *4 (-1019))
- (-5 *1 (-109 *4))))
+ (-12 (-5 *3 (-1091)) (-4 *4 (-13 (-789) (-517))) (-5 *1 (-147 *4 *2))
+ (-4 *2 (-408 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1019))
- (-5 *1 (-109 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-110)) (-5 *2 (-1 *4 (-592 *4)))
- (-5 *1 (-109 *4)) (-4 *4 (-1019))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-976))
- (-5 *1 (-657 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-776 *3)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-408 *3) (-933))) (-5 *1 (-255 *3 *2))
- (-4 *3 (-13 (-789) (-517))))))
-(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -4152 *6) (|:| |sol?| (-108))) (-525)
- *6))
- (-4 *6 (-341)) (-4 *7 (-1148 *6))
- (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6)))
- (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-1029)))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
- ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
- ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *1)) (-4 *1 (-990 *4 *5 *6)) (-4 *4 (-976))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-990 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-108))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-108) *3 *3)) (-4 *1 (-1120 *5 *6 *7 *3))
- (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789)) (-4 *3 (-990 *5 *6 *7))
- (-5 *2 (-108)))))
+ (-12 (-5 *3 (-1013 *2)) (-4 *2 (-408 *4)) (-4 *4 (-13 (-789) (-517)))
+ (-5 *1 (-147 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1013 *1)) (-4 *1 (-149))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-149)) (-5 *2 (-1091))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-442 *2 *3)) (-4 *2 (-160)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-160)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-525)))))
-(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1005 *3)) (-4 *3 (-127)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-698)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-525))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-713)) (-4 *5 (-517))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-902 *5 *3)) (-4 *3 (-1148 *5)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-510))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))))
+ (-12 (-5 *3 (-1074)) (-5 *2 (-195 (-475))) (-5 *1 (-777)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789))
- (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-108)))))
-(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-92)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1172 *5)) (-5 *3 (-713)) (-5 *4 (-1037)) (-4 *5 (-327))
- (-5 *1 (-495 *5)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-886 (-385 (-525)))) (-5 *4 (-1090))
- (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-1090)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-898))) (-5 *1 (-270)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-286)) (-5 *1 (-166 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1095)) (-5 *1 (-48)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-385 (-886 *5)) (-1080 (-1090) (-886 *5))))
- (-4 *5 (-429)) (-5 *2 (-592 (-632 (-385 (-886 *5)))))
- (-5 *1 (-271 *5)) (-5 *4 (-632 (-385 (-886 *5)))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2506 *4)))
- (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-713)) (|:| -3966 *4))) (-5 *5 (-713))
- (-4 *4 (-883 *6 *7 *8)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-426 *6 *7 *8 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1126)) (-4 *2 (-789))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-108) *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1126))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-901 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-976))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1051 *3)) (-4 *3 (-976))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-1079 *3 *4))) (-14 *3 (-855)) (-4 *4 (-976))
- (-5 *1 (-1079 *3 *4))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))))
-(((*1 *2 *1) (-12 (-4 *1 (-739 *2)) (-4 *2 (-160)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-221))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-1177)) (-5 *1 (-221)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-695)))))
+ (-12 (-5 *2 (-592 (-592 (-713)))) (-5 *1 (-839 *3)) (-4 *3 (-1020)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1099 (-592 *4))) (-4 *4 (-789))
- (-5 *2 (-592 (-592 *4))) (-5 *1 (-1098 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1148 (-525))) (-5 *1 (-461 *3)))))
-(((*1 *1) (-5 *1 (-745))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-1051 *3)) (-4 *3 (-976))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-385 *1)) (-4 *1 (-1148 *3)) (-4 *3 (-976))
- (-4 *3 (-517))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-517)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-286))
- (-5 *2 (-713)) (-5 *1 (-432 *5 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-37 (-385 (-525))))
- (-4 *2 (-160)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-4 *1 (-142 *3))))
+ (-12 (-5 *3 (-1091)) (-4 *5 (-1131)) (-4 *6 (-1149 *5))
+ (-4 *7 (-1149 (-385 *6))) (-5 *2 (-592 (-887 *5)))
+ (-5 *1 (-319 *4 *5 *6 *7)) (-4 *4 (-320 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1091)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1131))
+ (-4 *5 (-1149 *4)) (-4 *6 (-1149 (-385 *5))) (-4 *4 (-341))
+ (-5 *2 (-592 (-887 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-4 *1 (-142 *3))))
((*1 *1 *2)
(-12
- (-5 *2 (-592 (-2 (|:| -1600 (-713)) (|:| -2563 *4) (|:| |num| *4))))
- (-4 *4 (-1148 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4))))
+ (-5 *2 (-592 (-2 (|:| -1864 (-713)) (|:| -3144 *4) (|:| |num| *4))))
+ (-4 *4 (-1149 *3)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-5 *3 (-592 (-886 (-525)))) (-5 *4 (-108)) (-5 *1 (-415))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-5 *3 (-592 (-887 (-525)))) (-5 *4 (-108)) (-5 *1 (-415))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-5 *3 (-592 (-1090))) (-5 *4 (-108)) (-5 *1 (-415))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-5 *3 (-592 (-1091))) (-5 *4 (-108)) (-5 *1 (-415))))
((*1 *2 *1)
- (-12 (-5 *2 (-1071 *3)) (-5 *1 (-555 *3)) (-4 *3 (-1126))))
+ (-12 (-5 *2 (-1072 *3)) (-5 *1 (-555 *3)) (-4 *3 (-1127))))
((*1 *1 *1 *1) (-12 (-4 *1 (-583 *2)) (-4 *2 (-160))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4))
@@ -12787,182 +16504,149 @@
(-12 (-5 *2 (-617 *3)) (-4 *3 (-789)) (-5 *1 (-610 *3 *4))
(-4 *4 (-160))))
((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 (-592 *3)))) (-4 *3 (-1019))
+ (-12 (-5 *2 (-592 (-592 (-592 *3)))) (-4 *3 (-1020))
(-5 *1 (-620 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-656 *2 *3 *4)) (-4 *2 (-789)) (-4 *3 (-1019))
+ (-12 (-5 *1 (-656 *2 *3 *4)) (-4 *2 (-789)) (-4 *3 (-1020))
(-14 *4
- (-1 (-108) (-2 (|:| -4185 *2) (|:| -1600 *3))
- (-2 (|:| -4185 *2) (|:| -1600 *3))))))
+ (-1 (-108) (-2 (|:| -3640 *2) (|:| -1864 *3))
+ (-2 (|:| -3640 *2) (|:| -1864 *3))))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-807 *2 *3)) (-4 *2 (-1126)) (-4 *3 (-1126))))
+ (-12 (-5 *1 (-808 *2 *3)) (-4 *2 (-1127)) (-4 *3 (-1127))))
((*1 *1 *2)
- (-12 (-5 *2 (-592 (-2 (|:| -3946 (-1090)) (|:| -2511 *4))))
- (-4 *4 (-1019)) (-5 *1 (-823 *3 *4)) (-4 *3 (-1019))))
+ (-12 (-5 *2 (-592 (-2 (|:| -3423 (-1091)) (|:| -2544 *4))))
+ (-4 *4 (-1020)) (-5 *1 (-824 *3 *4)) (-4 *3 (-1020))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 *5)) (-4 *5 (-13 (-1019) (-33)))
- (-5 *2 (-592 (-1055 *3 *5))) (-5 *1 (-1055 *3 *5))
- (-4 *3 (-13 (-1019) (-33)))))
+ (-12 (-5 *4 (-592 *5)) (-4 *5 (-13 (-1020) (-33)))
+ (-5 *2 (-592 (-1056 *3 *5))) (-5 *1 (-1056 *3 *5))
+ (-4 *3 (-13 (-1020) (-33)))))
((*1 *2 *3)
- (-12 (-5 *3 (-592 (-2 (|:| |val| *4) (|:| -3740 *5))))
- (-4 *4 (-13 (-1019) (-33))) (-4 *5 (-13 (-1019) (-33)))
- (-5 *2 (-592 (-1055 *4 *5))) (-5 *1 (-1055 *4 *5))))
+ (-12 (-5 *3 (-592 (-2 (|:| |val| *4) (|:| -1895 *5))))
+ (-4 *4 (-13 (-1020) (-33))) (-4 *5 (-13 (-1020) (-33)))
+ (-5 *2 (-592 (-1056 *4 *5))) (-5 *1 (-1056 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3740 *4)))
- (-4 *3 (-13 (-1019) (-33))) (-4 *4 (-13 (-1019) (-33)))
- (-5 *1 (-1055 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1895 *4)))
+ (-4 *3 (-13 (-1020) (-33))) (-4 *4 (-13 (-1020) (-33)))
+ (-5 *1 (-1056 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33)))
- (-4 *3 (-13 (-1019) (-33)))))
+ (-12 (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-108)) (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33)))
- (-4 *3 (-13 (-1019) (-33)))))
+ (-12 (-5 *4 (-108)) (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-1019) (-33)))
- (-5 *1 (-1056 *2 *3)) (-4 *2 (-13 (-1019) (-33)))))
+ (-12 (-5 *4 (-592 *3)) (-4 *3 (-13 (-1020) (-33)))
+ (-5 *1 (-1057 *2 *3)) (-4 *2 (-13 (-1020) (-33)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-1055 *2 *3))) (-4 *2 (-13 (-1019) (-33)))
- (-4 *3 (-13 (-1019) (-33))) (-5 *1 (-1056 *2 *3))))
+ (-12 (-5 *4 (-592 (-1056 *2 *3))) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33))) (-5 *1 (-1057 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-1056 *2 *3))) (-4 *2 (-13 (-1019) (-33)))
- (-4 *3 (-13 (-1019) (-33))) (-5 *1 (-1056 *2 *3))))
+ (-12 (-5 *4 (-592 (-1057 *2 *3))) (-4 *2 (-13 (-1020) (-33)))
+ (-4 *3 (-13 (-1020) (-33))) (-5 *1 (-1057 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33)))
- (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1056 *3 *4))))
+ (-12 (-5 *2 (-1056 *3 *4)) (-4 *3 (-13 (-1020) (-33)))
+ (-4 *4 (-13 (-1020) (-33))) (-5 *1 (-1057 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1080 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-1019)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-396 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1148 (-47)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-117 *3)) (|:| |greater| (-117 *3))))
- (-5 *1 (-117 *3)) (-4 *3 (-789))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-542 *4)) (-4 *4 (-13 (-29 *3) (-1112)))
- (-4 *3 (-13 (-429) (-967 (-525)) (-789) (-588 (-525))))
- (-5 *1 (-540 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-542 (-385 (-886 *3))))
- (-4 *3 (-13 (-429) (-967 (-525)) (-789) (-588 (-525))))
- (-5 *1 (-545 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-341))
- (-5 *2 (-2 (|:| -3837 *3) (|:| |special| *3))) (-5 *1 (-670 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1172 *5)) (-4 *5 (-341)) (-4 *5 (-976))
- (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-959 *5))
- (-5 *3 (-592 (-632 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1172 (-1172 *5))) (-4 *5 (-341)) (-4 *5 (-976))
- (-5 *2 (-592 (-592 (-632 *5)))) (-5 *1 (-959 *5))
- (-5 *3 (-592 (-632 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-132)) (-5 *2 (-592 *1)) (-4 *1 (-1059))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-135)) (-5 *2 (-592 *1)) (-4 *1 (-1059)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1073)) (-5 *1 (-1108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-2 (|:| |deg| (-713)) (|:| -1218 *5))))
- (-4 *5 (-1148 *4)) (-4 *4 (-327)) (-5 *2 (-592 *5))
- (-5 *1 (-197 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-2 (|:| -3959 *5) (|:| -2513 (-525)))))
- (-5 *4 (-525)) (-4 *5 (-1148 (-525))) (-5 *2 (-592 *5))
- (-5 *1 (-638 *5)))))
+ (-12 (-5 *1 (-1081 *2 *3)) (-4 *2 (-1020)) (-4 *3 (-1020)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-108)) (-5 *1 (-1080 *3 *4)) (-14 *3 (-856))
+ (-4 *4 (-977)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1074)) (-5 *4 (-525)) (-5 *5 (-632 (-157 (-205))))
+ (-5 *2 (-966)) (-5 *1 (-697)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2) (-12 (-4 *3 (-160)) (-5 *2 (-1172 *1)) (-4 *1 (-345 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1014 (-782 (-357)))) (-5 *2 (-1014 (-782 (-205))))
- (-5 *1 (-284)))))
-(((*1 *1 *1) (-12 (-4 *1 (-408 *2)) (-4 *2 (-789)) (-4 *2 (-517))))
- ((*1 *1 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-908 *4 *5 *3 *6)) (-4 *4 (-976)) (-4 *5 (-735))
- (-4 *3 (-789)) (-4 *6 (-990 *4 *5 *3)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *2 (-965)) (-5 *1 (-695)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1126)) (-4 *3 (-351 *2))
- (-4 *4 (-351 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-558 *3 *2)) (-4 *3 (-1019))
- (-4 *2 (-1126)))))
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933)))
- (-5 *1 (-163 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-290)) (-5 *1 (-771)))))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2) (-12 (-5 *2 (-1178)) (-5 *1 (-1094))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1091)) (-5 *2 (-1178)) (-5 *1 (-1094))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1091)) (-5 *2 (-1178)) (-5 *1 (-1094)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
+ (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-76 FUNCTN))))
+ (-5 *2 (-966)) (-5 *1 (-691)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1087 *2)) (-4 *2 (-884 (-385 (-887 *6)) *5 *4))
+ (-5 *1 (-675 *5 *4 *6 *2)) (-4 *5 (-735))
+ (-4 *4 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $)))))
+ (-4 *6 (-517)))))
(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-160))))
((*1 *1 *2)
- (-12 (-5 *2 (-1172 *3)) (-4 *3 (-341)) (-14 *6 (-1172 (-632 *3)))
- (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-855)) (-14 *5 (-592 (-1090)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1042 (-525) (-565 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1126))))
+ (-12 (-5 *2 (-1173 *3)) (-4 *3 (-341)) (-14 *6 (-1173 (-632 *3)))
+ (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-856)) (-14 *5 (-592 (-1091)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1043 (-525) (-565 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1127))))
((*1 *1 *2)
- (-12 (-5 *2 (-1172 (-317 (-1922 'JINT 'X 'ELAM) (-1922) (-641))))
- (-5 *1 (-59 *3)) (-14 *3 (-1090))))
+ (-12 (-5 *2 (-1173 (-317 (-1279 'JINT 'X 'ELAM) (-1279) (-641))))
+ (-5 *1 (-59 *3)) (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-1172 (-317 (-1922) (-1922 'XC) (-641))))
- (-5 *1 (-61 *3)) (-14 *3 (-1090))))
+ (-12 (-5 *2 (-1173 (-317 (-1279) (-1279 'XC) (-641))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-317 (-1922 'X) (-1922) (-641))) (-5 *1 (-62 *3))
- (-14 *3 (-1090))))
+ (-12 (-5 *2 (-317 (-1279 'X) (-1279) (-641))) (-5 *1 (-62 *3))
+ (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-632 (-317 (-1922) (-1922 'X 'HESS) (-641))))
- (-5 *1 (-63 *3)) (-14 *3 (-1090))))
+ (-12 (-5 *2 (-632 (-317 (-1279) (-1279 'X 'HESS) (-641))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-317 (-1922) (-1922 'XC) (-641))) (-5 *1 (-64 *3))
- (-14 *3 (-1090))))
+ (-12 (-5 *2 (-317 (-1279) (-1279 'XC) (-641))) (-5 *1 (-64 *3))
+ (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-1172 (-317 (-1922 'X) (-1922 '-3938) (-641))))
- (-5 *1 (-69 *3)) (-14 *3 (-1090))))
+ (-12 (-5 *2 (-1173 (-317 (-1279 'X) (-1279 '-3418) (-641))))
+ (-5 *1 (-69 *3)) (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-1172 (-317 (-1922) (-1922 'X) (-641))))
- (-5 *1 (-72 *3)) (-14 *3 (-1090))))
+ (-12 (-5 *2 (-1173 (-317 (-1279) (-1279 'X) (-641))))
+ (-5 *1 (-72 *3)) (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-1172 (-317 (-1922 'X 'EPS) (-1922 '-3938) (-641))))
- (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1090)) (-14 *4 (-1090))
- (-14 *5 (-1090))))
+ (-12 (-5 *2 (-1173 (-317 (-1279 'X 'EPS) (-1279 '-3418) (-641))))
+ (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1091)) (-14 *4 (-1091))
+ (-14 *5 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-1172 (-317 (-1922 'EPS) (-1922 'YA 'YB) (-641))))
- (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1090)) (-14 *4 (-1090))
- (-14 *5 (-1090))))
+ (-12 (-5 *2 (-1173 (-317 (-1279 'EPS) (-1279 'YA 'YB) (-641))))
+ (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1091)) (-14 *4 (-1091))
+ (-14 *5 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-317 (-1922) (-1922 'X) (-641))) (-5 *1 (-75 *3))
- (-14 *3 (-1090))))
+ (-12 (-5 *2 (-317 (-1279) (-1279 'X) (-641))) (-5 *1 (-75 *3))
+ (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-317 (-1922) (-1922 'X) (-641))) (-5 *1 (-76 *3))
- (-14 *3 (-1090))))
+ (-12 (-5 *2 (-317 (-1279) (-1279 'X) (-641))) (-5 *1 (-76 *3))
+ (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-1172 (-317 (-1922) (-1922 'XC) (-641))))
- (-5 *1 (-77 *3)) (-14 *3 (-1090))))
+ (-12 (-5 *2 (-1173 (-317 (-1279) (-1279 'XC) (-641))))
+ (-5 *1 (-77 *3)) (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-1172 (-317 (-1922) (-1922 'X) (-641))))
- (-5 *1 (-78 *3)) (-14 *3 (-1090))))
+ (-12 (-5 *2 (-1173 (-317 (-1279) (-1279 'X) (-641))))
+ (-5 *1 (-78 *3)) (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-1172 (-317 (-1922) (-1922 'X) (-641))))
- (-5 *1 (-79 *3)) (-14 *3 (-1090))))
+ (-12 (-5 *2 (-1173 (-317 (-1279) (-1279 'X) (-641))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-1172 (-317 (-1922 'X '-3938) (-1922) (-641))))
- (-5 *1 (-80 *3)) (-14 *3 (-1090))))
+ (-12 (-5 *2 (-1173 (-317 (-1279 'X '-3418) (-1279) (-641))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-632 (-317 (-1922 'X '-3938) (-1922) (-641))))
- (-5 *1 (-81 *3)) (-14 *3 (-1090))))
+ (-12 (-5 *2 (-632 (-317 (-1279 'X '-3418) (-1279) (-641))))
+ (-5 *1 (-81 *3)) (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-632 (-317 (-1922 'X) (-1922) (-641)))) (-5 *1 (-82 *3))
- (-14 *3 (-1090))))
+ (-12 (-5 *2 (-632 (-317 (-1279 'X) (-1279) (-641)))) (-5 *1 (-82 *3))
+ (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-1172 (-317 (-1922 'X) (-1922) (-641))))
- (-5 *1 (-83 *3)) (-14 *3 (-1090))))
+ (-12 (-5 *2 (-1173 (-317 (-1279 'X) (-1279) (-641))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-1172 (-317 (-1922 'X) (-1922 '-3938) (-641))))
- (-5 *1 (-84 *3)) (-14 *3 (-1090))))
+ (-12 (-5 *2 (-1173 (-317 (-1279 'X) (-1279 '-3418) (-641))))
+ (-5 *1 (-84 *3)) (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-632 (-317 (-1922 'XL 'XR 'ELAM) (-1922) (-641))))
- (-5 *1 (-85 *3)) (-14 *3 (-1090))))
+ (-12 (-5 *2 (-632 (-317 (-1279 'XL 'XR 'ELAM) (-1279) (-641))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1091))))
((*1 *1 *2)
- (-12 (-5 *2 (-317 (-1922 'X) (-1922 '-3938) (-641))) (-5 *1 (-87 *3))
- (-14 *3 (-1090))))
- ((*1 *2 *1) (-12 (-5 *2 (-935 2)) (-5 *1 (-103))))
+ (-12 (-5 *2 (-317 (-1279 'X) (-1279 '-3418) (-641))) (-5 *1 (-87 *3))
+ (-14 *3 (-1091))))
+ ((*1 *2 *1) (-12 (-5 *2 (-936 2)) (-5 *1 (-103))))
((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-103))))
((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125))))
((*1 *1 *2)
@@ -12972,45 +16656,45 @@
(-12 (-5 *2 (-592 *5)) (-4 *5 (-160)) (-5 *1 (-130 *3 *4 *5))
(-14 *3 (-525)) (-14 *4 (-713))))
((*1 *1 *2)
- (-12 (-5 *2 (-1057 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160))
+ (-12 (-5 *2 (-1058 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160))
(-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))))
((*1 *1 *2)
(-12 (-5 *2 (-220 *4 *5)) (-14 *4 (-713)) (-4 *5 (-160))
(-5 *1 (-130 *3 *4 *5)) (-14 *3 (-525))))
((*1 *2 *3)
- (-12 (-5 *3 (-1172 (-632 *4))) (-4 *4 (-160))
- (-5 *2 (-1172 (-632 (-385 (-886 *4))))) (-5 *1 (-171 *4))))
+ (-12 (-5 *3 (-1173 (-632 *4))) (-4 *4 (-160))
+ (-5 *2 (-1173 (-632 (-385 (-887 *4))))) (-5 *1 (-171 *4))))
((*1 *1 *2)
(-12 (-5 *2 (-592 *3))
(-4 *3
(-13 (-789)
- (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $))
- (-15 -1558 ((-1177) $)))))
+ (-10 -8 (-15 -3410 ((-1074) $ (-1091))) (-15 -2868 ((-1178) $))
+ (-15 -3065 ((-1178) $)))))
(-5 *1 (-195 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-935 10)) (-5 *1 (-198))))
+ ((*1 *2 *1) (-12 (-5 *2 (-936 10)) (-5 *1 (-198))))
((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198))))
((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-225 *3)) (-4 *3 (-789))))
((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-225 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1012 (-294 *4)))
- (-4 *4 (-13 (-789) (-517) (-567 (-357)))) (-5 *2 (-1012 (-357)))
+ (-12 (-5 *3 (-1013 (-294 *4)))
+ (-4 *4 (-13 (-789) (-517) (-567 (-357)))) (-5 *2 (-1013 (-357)))
(-5 *1 (-237 *4))))
((*1 *1 *2) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789))))
((*1 *1 *2) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-254))))
((*1 *2 *1)
- (-12 (-4 *2 (-1148 *3)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7))
+ (-12 (-4 *2 (-1149 *3)) (-5 *1 (-268 *3 *2 *4 *5 *6 *7))
(-4 *3 (-160)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 *4 *5 *6)) (-4 *4 (-13 (-27) (-1112) (-408 *3)))
- (-14 *5 (-1090)) (-14 *6 *4)
- (-4 *3 (-13 (-789) (-967 (-525)) (-588 (-525)) (-429)))
+ (-12 (-5 *2 (-1158 *4 *5 *6)) (-4 *4 (-13 (-27) (-1113) (-408 *3)))
+ (-14 *5 (-1091)) (-14 *6 *4)
+ (-4 *3 (-13 (-789) (-968 (-525)) (-588 (-525)) (-429)))
(-5 *1 (-291 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-308))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-308))))
((*1 *2 *1)
(-12 (-5 *2 (-294 *5)) (-5 *1 (-317 *3 *4 *5))
- (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365))))
+ (-14 *3 (-592 (-1091))) (-14 *4 (-592 (-1091))) (-4 *5 (-365))))
((*1 *2 *3)
(-12 (-4 *4 (-327)) (-4 *2 (-307 *4)) (-5 *1 (-325 *3 *4 *2))
(-4 *3 (-307 *4))))
@@ -13019,96 +16703,96 @@
(-4 *3 (-307 *4))))
((*1 *2 *1)
(-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
- (-5 *2 (-1194 *3 *4))))
+ (-5 *2 (-1195 *3 *4))))
((*1 *2 *1)
(-12 (-4 *1 (-352 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
- (-5 *2 (-1185 *3 *4))))
+ (-5 *2 (-1186 *3 *4))))
((*1 *1 *2) (-12 (-4 *1 (-352 *2 *3)) (-4 *2 (-789)) (-4 *3 (-160))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308)))))
(-4 *1 (-361))))
((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-361))))
((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-361))))
((*1 *1 *2) (-12 (-5 *2 (-632 (-641))) (-4 *1 (-361))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308)))))
(-4 *1 (-362))))
((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-362))))
((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-362))))
- ((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1073))))
- ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-4 *1 (-367))))
- ((*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-371 *3)) (-4 *3 (-1019))))
- ((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-372))))
+ ((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1074))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-4 *1 (-367))))
+ ((*1 *2 *3) (-12 (-5 *2 (-372)) (-5 *1 (-371 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-372))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308)))))
(-4 *1 (-374))))
((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-374))))
((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-374))))
((*1 *1 *2)
(-12 (-5 *2 (-273 (-294 (-157 (-357))))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1094))))
+ (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1095))))
((*1 *1 *2)
(-12 (-5 *2 (-273 (-294 (-357)))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1094))))
+ (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1095))))
((*1 *1 *2)
(-12 (-5 *2 (-273 (-294 (-525)))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1094))))
+ (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1095))))
((*1 *1 *2)
(-12 (-5 *2 (-294 (-157 (-357)))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1094))))
+ (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1095))))
((*1 *1 *2)
(-12 (-5 *2 (-294 (-357))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1094))))
+ (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1095))))
((*1 *1 *2)
(-12 (-5 *2 (-294 (-525))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1094))))
+ (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1095))))
((*1 *1 *2)
(-12 (-5 *2 (-273 (-294 (-636)))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1094))))
+ (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1095))))
((*1 *1 *2)
(-12 (-5 *2 (-273 (-294 (-641)))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1094))))
+ (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1095))))
((*1 *1 *2)
(-12 (-5 *2 (-273 (-294 (-643)))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1094))))
+ (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1095))))
((*1 *1 *2)
(-12 (-5 *2 (-294 (-636))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1094))))
+ (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1095))))
((*1 *1 *2)
(-12 (-5 *2 (-294 (-641))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1094))))
+ (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1095))))
((*1 *1 *2)
(-12 (-5 *2 (-294 (-643))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1094))))
+ (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1095))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308)))))
- (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090))
- (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1094))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308)))))
+ (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1091))
+ (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1095))))
((*1 *1 *2)
(-12 (-5 *2 (-592 (-308))) (-5 *1 (-376 *3 *4 *5 *6))
- (-14 *3 (-1090)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1094))))
+ (-14 *3 (-1091)) (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1095))))
((*1 *1 *2)
- (-12 (-5 *2 (-308)) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1090))
- (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3190 "void")))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1094))))
+ (-12 (-5 *2 (-308)) (-5 *1 (-376 *3 *4 *5 *6)) (-14 *3 (-1091))
+ (-14 *4 (-3 (|:| |fst| (-412)) (|:| -3326 "void")))
+ (-14 *5 (-592 (-1091))) (-14 *6 (-1095))))
((*1 *1 *2)
(-12 (-5 *2 (-309 *4)) (-4 *4 (-13 (-789) (-21)))
(-5 *1 (-405 *3 *4)) (-4 *3 (-13 (-160) (-37 (-385 (-525)))))))
@@ -13116,80 +16800,80 @@
(-12 (-5 *1 (-405 *2 *3)) (-4 *2 (-13 (-160) (-37 (-385 (-525)))))
(-4 *3 (-13 (-789) (-21)))))
((*1 *1 *2)
- (-12 (-5 *2 (-385 (-886 (-385 *3)))) (-4 *3 (-517)) (-4 *3 (-789))
+ (-12 (-5 *2 (-385 (-887 (-385 *3)))) (-4 *3 (-517)) (-4 *3 (-789))
(-4 *1 (-408 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-886 (-385 *3))) (-4 *3 (-517)) (-4 *3 (-789))
+ (-12 (-5 *2 (-887 (-385 *3))) (-4 *3 (-517)) (-4 *3 (-789))
(-4 *1 (-408 *3))))
((*1 *1 *2)
(-12 (-5 *2 (-385 *3)) (-4 *3 (-517)) (-4 *3 (-789))
(-4 *1 (-408 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1042 *3 (-565 *1))) (-4 *3 (-976)) (-4 *3 (-789))
+ (-12 (-5 *2 (-1043 *3 (-565 *1))) (-4 *3 (-977)) (-4 *3 (-789))
(-4 *1 (-408 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-412))))
- ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-412))))
- ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-412))))
- ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-412))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1024)) (-5 *1 (-412))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-412))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-412))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-412))))
((*1 *1 *2) (-12 (-5 *2 (-412)) (-5 *1 (-415))))
- ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-415))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-415))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308)))))
(-4 *1 (-417))))
((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-417))))
((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-417))))
- ((*1 *1 *2) (-12 (-5 *2 (-1172 (-641))) (-4 *1 (-417))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1173 (-641))) (-4 *1 (-417))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1094)) (|:| -2958 (-592 (-308)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1095)) (|:| -4070 (-592 (-308)))))
(-4 *1 (-418))))
((*1 *1 *2) (-12 (-5 *2 (-308)) (-4 *1 (-418))))
((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-4 *1 (-418))))
((*1 *1 *2)
- (-12 (-5 *2 (-1172 (-385 (-886 *3)))) (-4 *3 (-160))
- (-14 *6 (-1172 (-632 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-14 *4 (-855)) (-14 *5 (-592 (-1090)))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *1 (-445))))
- ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-445))))
+ (-12 (-5 *2 (-1173 (-385 (-887 *3)))) (-4 *3 (-160))
+ (-14 *6 (-1173 (-632 *3))) (-5 *1 (-430 *3 *4 *5 *6))
+ (-14 *4 (-856)) (-14 *5 (-592 (-1091)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 (-592 (-878 (-205))))) (-5 *1 (-445))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-445))))
((*1 *1 *2)
- (-12 (-5 *2 (-1157 *3 *4 *5)) (-4 *3 (-976)) (-14 *4 (-1090))
+ (-12 (-5 *2 (-1158 *3 *4 *5)) (-4 *3 (-977)) (-14 *4 (-1091))
(-14 *5 *3) (-5 *1 (-451 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-451 *3 *4 *5))
- (-4 *3 (-976)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-5 *2 (-935 16)) (-5 *1 (-462))))
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-451 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-5 *2 (-936 16)) (-5 *1 (-462))))
((*1 *2 *1) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-462))))
- ((*1 *1 *2) (-12 (-5 *2 (-1042 (-525) (-565 (-468)))) (-5 *1 (-468))))
- ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-475))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1043 (-525) (-565 (-468)))) (-5 *1 (-468))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-475))))
((*1 *1 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-341))
+ (-12 (-5 *2 (-592 *6)) (-4 *6 (-884 *3 *4 *5)) (-4 *3 (-341))
(-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6))))
((*1 *1 *2) (-12 (-5 *2 (-125)) (-5 *1 (-559))))
((*1 *1 *2)
(-12 (-4 *3 (-160)) (-5 *1 (-560 *3 *2)) (-4 *2 (-687 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-1126))))
- ((*1 *1 *2) (-12 (-4 *1 (-570 *2)) (-4 *2 (-976))))
+ ((*1 *2 *1) (-12 (-4 *1 (-566 *2)) (-4 *2 (-1127))))
+ ((*1 *1 *2) (-12 (-4 *1 (-570 *2)) (-4 *2 (-977))))
((*1 *2 *1)
- (-12 (-5 *2 (-1190 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
- (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855))))
+ (-12 (-5 *2 (-1191 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
+ (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856))))
((*1 *2 *1)
- (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
- (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-855))))
+ (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-576 *3 *4 *5)) (-4 *3 (-789))
+ (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-14 *5 (-856))))
((*1 *1 *2)
(-12 (-4 *3 (-160)) (-5 *1 (-584 *3 *2)) (-4 *2 (-687 *3))))
((*1 *2 *1) (-12 (-5 *2 (-621 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
((*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
((*1 *2 *1)
- (-12 (-5 *2 (-891 (-891 (-891 *3)))) (-5 *1 (-620 *3))
- (-4 *3 (-1019))))
+ (-12 (-5 *2 (-892 (-892 (-892 *3)))) (-5 *1 (-620 *3))
+ (-4 *3 (-1020))))
((*1 *1 *2)
- (-12 (-5 *2 (-891 (-891 (-891 *3)))) (-4 *3 (-1019))
+ (-12 (-5 *2 (-892 (-892 (-892 *3)))) (-4 *3 (-1020))
(-5 *1 (-620 *3))))
((*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-621 *3)) (-4 *3 (-789))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1019))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1020))))
((*1 *1 *2)
- (-12 (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *2)) (-4 *4 (-351 *3))
+ (-12 (-4 *3 (-977)) (-4 *1 (-630 *3 *4 *2)) (-4 *4 (-351 *3))
(-4 *2 (-351 *3))))
((*1 *2 *1) (-12 (-5 *2 (-157 (-357))) (-5 *1 (-636))))
((*1 *1 *2) (-12 (-5 *2 (-157 (-643))) (-5 *1 (-636))))
@@ -13200,33 +16884,33 @@
((*1 *2 *1) (-12 (-5 *2 (-357)) (-5 *1 (-641))))
((*1 *2 *3)
(-12 (-5 *3 (-294 (-525))) (-5 *2 (-294 (-643))) (-5 *1 (-643))))
- ((*1 *1 *2) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1019))))
- ((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1073)) (-5 *1 (-653))))
+ ((*1 *1 *2) (-12 (-5 *1 (-645 *2)) (-4 *2 (-1020))))
+ ((*1 *2 *3) (-12 (-5 *3 (-798)) (-5 *2 (-1074)) (-5 *1 (-653))))
((*1 *2 *1)
(-12 (-4 *2 (-160)) (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-976)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1148 *3))))
+ (-12 (-4 *3 (-977)) (-5 *1 (-655 *3 *2)) (-4 *2 (-1149 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -4185 *3) (|:| -1600 *4)))
- (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-1019))
+ (-12 (-5 *2 (-2 (|:| -3640 *3) (|:| -1864 *4)))
+ (-5 *1 (-656 *3 *4 *5)) (-4 *3 (-789)) (-4 *4 (-1020))
(-14 *5
- (-1 (-108) (-2 (|:| -4185 *3) (|:| -1600 *4))
- (-2 (|:| -4185 *3) (|:| -1600 *4))))))
+ (-1 (-108) (-2 (|:| -3640 *3) (|:| -1864 *4))
+ (-2 (|:| -3640 *3) (|:| -1864 *4))))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| -4185 *3) (|:| -1600 *4))) (-4 *3 (-789))
- (-4 *4 (-1019))
+ (-12 (-5 *2 (-2 (|:| -3640 *3) (|:| -1864 *4))) (-4 *3 (-789))
+ (-4 *4 (-1020))
(-14 *5
- (-1 (-108) (-2 (|:| -4185 *3) (|:| -1600 *4))
- (-2 (|:| -4185 *3) (|:| -1600 *4))))
+ (-1 (-108) (-2 (|:| -3640 *3) (|:| -1864 *4))
+ (-2 (|:| -3640 *3) (|:| -1864 *4))))
(-5 *1 (-656 *3 *4 *5))))
((*1 *2 *1)
(-12 (-4 *2 (-160)) (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-592 (-2 (|:| -1459 *3) (|:| -4157 *4)))) (-4 *3 (-976))
+ (-12 (-5 *2 (-592 (-2 (|:| -1655 *3) (|:| -3219 *4)))) (-4 *3 (-977))
(-4 *4 (-669)) (-5 *1 (-678 *3 *4))))
((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-706))))
((*1 *1 *2)
@@ -13234,90 +16918,90 @@
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
(|:| |relerr| (-205))))
(|:| |mdnia|
(-2 (|:| |fn| (-294 (-205)))
- (|:| -4162 (-592 (-1014 (-782 (-205)))))
+ (|:| -2990 (-592 (-1015 (-782 (-205)))))
(|:| |abserr| (-205)) (|:| |relerr| (-205))))))
(-5 *1 (-711))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |fn| (-294 (-205)))
- (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205))
+ (|:| -2990 (-592 (-1015 (-782 (-205))))) (|:| |abserr| (-205))
(|:| |relerr| (-205))))
(-5 *1 (-711))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
(|:| |relerr| (-205))))
(-5 *1 (-711))))
- ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-711))))
- ((*1 *2 *3) (-12 (-5 *2 (-716)) (-5 *1 (-715 *3)) (-4 *3 (-1126))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-711))))
+ ((*1 *2 *3) (-12 (-5 *2 (-716)) (-5 *1 (-715 *3)) (-4 *3 (-1127))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
+ (|:| |fn| (-1173 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
(|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
(|:| |abserr| (-205)) (|:| |relerr| (-205))))
(-5 *1 (-750))))
- ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-750))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-750))))
((*1 *2 *1)
- (-12 (-4 *2 (-834 *3)) (-5 *1 (-759 *3 *2 *4)) (-4 *3 (-1019))
+ (-12 (-4 *2 (-835 *3)) (-5 *1 (-759 *3 *2 *4)) (-4 *3 (-1020))
(-14 *4 *3)))
((*1 *1 *2)
- (-12 (-4 *3 (-1019)) (-14 *4 *3) (-5 *1 (-759 *3 *2 *4))
- (-4 *2 (-834 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-766))))
+ (-12 (-4 *3 (-1020)) (-14 *4 *3) (-5 *1 (-759 *3 *2 *4))
+ (-4 *2 (-835 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-766))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205)))
+ (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205)))
(|:| |lb| (-592 (-782 (-205))))
(|:| |cf| (-592 (-294 (-205))))
(|:| |ub| (-592 (-782 (-205))))))
(|:| |lsa|
(-2 (|:| |lfn| (-592 (-294 (-205))))
- (|:| -2279 (-592 (-205)))))))
+ (|:| -3940 (-592 (-205)))))))
(-5 *1 (-780))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -2279 (-592 (-205)))))
+ (-2 (|:| |lfn| (-592 (-294 (-205)))) (|:| -3940 (-592 (-205)))))
(-5 *1 (-780))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-294 (-205))) (|:| -2279 (-592 (-205)))
+ (-2 (|:| |fn| (-294 (-205))) (|:| -3940 (-592 (-205)))
(|:| |lb| (-592 (-782 (-205)))) (|:| |cf| (-592 (-294 (-205))))
(|:| |ub| (-592 (-782 (-205))))))
(-5 *1 (-780))))
- ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-780))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-780))))
((*1 *1 *2)
- (-12 (-5 *2 (-1168 *3)) (-14 *3 (-1090)) (-5 *1 (-794 *3 *4 *5 *6))
- (-4 *4 (-976)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-796))))
+ (-12 (-5 *2 (-1169 *3)) (-14 *3 (-1091)) (-5 *1 (-794 *3 *4 *5 *6))
+ (-4 *4 (-977)) (-14 *5 (-94 *4)) (-14 *6 (-1 *4 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-797))))
((*1 *1 *2)
- (-12 (-5 *2 (-886 *3)) (-4 *3 (-976)) (-5 *1 (-800 *3 *4 *5 *6))
- (-14 *4 (-592 (-1090))) (-14 *5 (-592 (-713))) (-14 *6 (-713))))
+ (-12 (-5 *2 (-887 *3)) (-4 *3 (-977)) (-5 *1 (-801 *3 *4 *5 *6))
+ (-14 *4 (-592 (-1091))) (-14 *5 (-592 (-713))) (-14 *6 (-713))))
((*1 *2 *1)
- (-12 (-5 *2 (-886 *3)) (-5 *1 (-800 *3 *4 *5 *6)) (-4 *3 (-976))
- (-14 *4 (-592 (-1090))) (-14 *5 (-592 (-713))) (-14 *6 (-713))))
- ((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-808))))
+ (-12 (-5 *2 (-887 *3)) (-5 *1 (-801 *3 *4 *5 *6)) (-4 *3 (-977))
+ (-14 *4 (-592 (-1091))) (-14 *5 (-592 (-713))) (-14 *6 (-713))))
+ ((*1 *1 *2) (-12 (-5 *2 (-146)) (-5 *1 (-809))))
((*1 *2 *3)
- (-12 (-5 *3 (-886 (-47))) (-5 *2 (-294 (-525))) (-5 *1 (-809))))
+ (-12 (-5 *3 (-887 (-47))) (-5 *2 (-294 (-525))) (-5 *1 (-810))))
((*1 *2 *3)
- (-12 (-5 *3 (-385 (-886 (-47)))) (-5 *2 (-294 (-525)))
- (-5 *1 (-809))))
- ((*1 *1 *2) (-12 (-5 *1 (-827 *2)) (-4 *2 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-827 *3)) (-4 *3 (-789))))
+ (-12 (-5 *3 (-385 (-887 (-47)))) (-5 *2 (-294 (-525)))
+ (-5 *1 (-810))))
+ ((*1 *1 *2) (-12 (-5 *1 (-828 *2)) (-4 *2 (-789))))
+ ((*1 *2 *1) (-12 (-5 *2 (-761 *3)) (-5 *1 (-828 *3)) (-4 *3 (-789))))
((*1 *1 *2)
(-12
(-5 *2
@@ -13327,4877 +17011,1193 @@
(-2 (|:| |start| (-205)) (|:| |finish| (-205))
(|:| |grid| (-713)) (|:| |boundaryType| (-525))
(|:| |dStart| (-632 (-205))) (|:| |dFinish| (-632 (-205))))))
- (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1073))
+ (|:| |f| (-592 (-592 (-294 (-205))))) (|:| |st| (-1074))
(|:| |tol| (-205))))
- (-5 *1 (-832))))
- ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-832))))
+ (-5 *1 (-833))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-833))))
((*1 *2 *1)
- (-12 (-5 *2 (-1113 *3)) (-5 *1 (-835 *3)) (-4 *3 (-1019))))
+ (-12 (-5 *2 (-1114 *3)) (-5 *1 (-836 *3)) (-4 *3 (-1020))))
((*1 *1 *2)
- (-12 (-5 *2 (-592 (-839 *3))) (-4 *3 (-1019)) (-5 *1 (-838 *3))))
+ (-12 (-5 *2 (-592 (-840 *3))) (-4 *3 (-1020)) (-5 *1 (-839 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-592 (-839 *3))) (-5 *1 (-838 *3)) (-4 *3 (-1019))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-839 *3))))
+ (-12 (-5 *2 (-592 (-840 *3))) (-5 *1 (-839 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1020)) (-5 *1 (-840 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-5 *1 (-839 *3))))
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-385 (-396 *3))) (-4 *3 (-286)) (-5 *1 (-848 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-385 *3)) (-5 *1 (-848 *3)) (-4 *3 (-286))))
+ (-12 (-5 *2 (-385 (-396 *3))) (-4 *3 (-286)) (-5 *1 (-849 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-385 *3)) (-5 *1 (-849 *3)) (-4 *3 (-286))))
((*1 *2 *3)
- (-12 (-5 *3 (-454)) (-5 *2 (-294 *4)) (-5 *1 (-853 *4))
+ (-12 (-5 *3 (-454)) (-5 *2 (-294 *4)) (-5 *1 (-854 *4))
(-4 *4 (-13 (-789) (-517)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-899 *3)) (-4 *3 (-900))))
- ((*1 *1 *2) (-12 (-5 *1 (-899 *2)) (-4 *2 (-900))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-903))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-900 *3)) (-4 *3 (-901))))
+ ((*1 *1 *2) (-12 (-5 *1 (-900 *2)) (-4 *2 (-901))))
+ ((*1 *2 *1) (-12 (-5 *2 (-592 (-525))) (-5 *1 (-904))))
((*1 *2 *1)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525))))
- ((*1 *2 *3) (-12 (-5 *2 (-1177)) (-5 *1 (-963 *3)) (-4 *3 (-1126))))
- ((*1 *2 *3) (-12 (-5 *3 (-290)) (-5 *1 (-963 *2)) (-4 *2 (-1126))))
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-936 *3)) (-14 *3 (-525))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1178)) (-5 *1 (-964 *3)) (-4 *3 (-1127))))
+ ((*1 *2 *3) (-12 (-5 *3 (-290)) (-5 *1 (-964 *2)) (-4 *2 (-1127))))
((*1 *1 *2)
(-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-964 *3 *4 *5 *2 *6)) (-4 *2 (-883 *3 *4 *5))
+ (-5 *1 (-965 *3 *4 *5 *2 *6)) (-4 *2 (-884 *3 *4 *5))
(-14 *6 (-592 *2))))
- ((*1 *1 *2) (-12 (-4 *1 (-967 *2)) (-4 *2 (-1126))))
+ ((*1 *1 *2) (-12 (-4 *1 (-968 *2)) (-4 *2 (-1127))))
((*1 *2 *3)
- (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-972 *3)) (-4 *3 (-517))))
- ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-976))))
+ (-12 (-5 *2 (-385 (-887 *3))) (-5 *1 (-973 *3)) (-4 *3 (-517))))
+ ((*1 *1 *2) (-12 (-5 *2 (-525)) (-4 *1 (-977))))
((*1 *2 *1)
- (-12 (-5 *2 (-632 *5)) (-5 *1 (-980 *3 *4 *5)) (-14 *3 (-713))
- (-14 *4 (-713)) (-4 *5 (-976))))
+ (-12 (-5 *2 (-632 *5)) (-5 *1 (-981 *3 *4 *5)) (-14 *3 (-713))
+ (-14 *4 (-713)) (-4 *5 (-977))))
((*1 *1 *2)
- (-12 (-4 *3 (-976)) (-4 *4 (-789)) (-5 *1 (-1043 *3 *4 *2))
- (-4 *2 (-883 *3 (-497 *4) *4))))
+ (-12 (-4 *3 (-977)) (-4 *4 (-789)) (-5 *1 (-1044 *3 *4 *2))
+ (-4 *2 (-884 *3 (-497 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-976)) (-4 *2 (-789)) (-5 *1 (-1043 *3 *2 *4))
- (-4 *4 (-883 *3 (-497 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-797))))
+ (-12 (-4 *3 (-977)) (-4 *2 (-789)) (-5 *1 (-1044 *3 *2 *4))
+ (-4 *4 (-884 *3 (-497 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1052 *3)) (-4 *3 (-977)) (-5 *2 (-798))))
((*1 *2 *1)
- (-12 (-5 *2 (-632 *4)) (-5 *1 (-1057 *3 *4)) (-14 *3 (-713))
- (-4 *4 (-976))))
- ((*1 *1 *2) (-12 (-5 *2 (-135)) (-4 *1 (-1059))))
+ (-12 (-5 *2 (-632 *4)) (-5 *1 (-1058 *3 *4)) (-14 *3 (-713))
+ (-4 *4 (-977))))
+ ((*1 *1 *2) (-12 (-5 *2 (-135)) (-4 *1 (-1060))))
((*1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1126)) (-5 *1 (-1071 *3))))
+ (-12 (-5 *2 (-592 *3)) (-4 *3 (-1127)) (-5 *1 (-1072 *3))))
((*1 *2 *3)
- (-12 (-5 *2 (-1071 *3)) (-5 *1 (-1075 *3)) (-4 *3 (-976))))
+ (-12 (-5 *2 (-1072 *3)) (-5 *1 (-1076 *3)) (-4 *3 (-977))))
((*1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1081 *3 *4 *5))
- (-4 *3 (-976)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1082 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1087 *3 *4 *5))
- (-4 *3 (-976)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1088 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1088 *3 *4 *5))
- (-4 *3 (-976)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1089 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1145 *4 *3)) (-4 *3 (-976)) (-14 *4 (-1090))
- (-14 *5 *3) (-5 *1 (-1088 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1089))))
- ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1090))))
- ((*1 *2 *1) (-12 (-5 *2 (-1100 (-1090) (-415))) (-5 *1 (-1094))))
- ((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1095))))
- ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1095))))
- ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1095))))
- ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1095))))
- ((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1095))))
- ((*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1095))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1095))))
- ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1095))))
- ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1099 *3)) (-4 *3 (-1019))))
- ((*1 *2 *3) (-12 (-5 *2 (-1107)) (-5 *1 (-1106 *3)) (-4 *3 (-1019))))
- ((*1 *1 *2) (-12 (-5 *2 (-797)) (-5 *1 (-1107))))
- ((*1 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-976)) (-5 *1 (-1121 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1121 *3)) (-4 *3 (-976))))
+ (-12 (-5 *2 (-1146 *4 *3)) (-4 *3 (-977)) (-14 *4 (-1091))
+ (-14 *5 *3) (-5 *1 (-1089 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1090))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1091))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1101 (-1091) (-415))) (-5 *1 (-1095))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1074)) (-5 *1 (-1096))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-1096))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1096))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1096))))
+ ((*1 *2 *1) (-12 (-5 *2 (-205)) (-5 *1 (-1096))))
+ ((*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-1096))))
+ ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-1096))))
+ ((*1 *1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-1096))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1100 *3)) (-4 *3 (-1020))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1108)) (-5 *1 (-1107 *3)) (-4 *3 (-1020))))
+ ((*1 *1 *2) (-12 (-5 *2 (-798)) (-5 *1 (-1108))))
+ ((*1 *1 *2) (-12 (-5 *2 (-887 *3)) (-4 *3 (-977)) (-5 *1 (-1122 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1091)) (-5 *1 (-1122 *3)) (-4 *3 (-977))))
((*1 *1 *2)
- (-12 (-5 *2 (-891 *3)) (-4 *3 (-1126)) (-5 *1 (-1124 *3))))
+ (-12 (-5 *2 (-892 *3)) (-4 *3 (-1127)) (-5 *1 (-1125 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-976)) (-4 *1 (-1134 *3 *2)) (-4 *2 (-1163 *3))))
+ (-12 (-4 *3 (-977)) (-4 *1 (-1135 *3 *2)) (-4 *2 (-1164 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1136 *3 *4 *5))
- (-4 *3 (-976)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1137 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1014 *3)) (-4 *3 (-1126)) (-5 *1 (-1139 *3))))
+ (-12 (-5 *2 (-1015 *3)) (-4 *3 (-1127)) (-5 *1 (-1140 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1168 *3)) (-14 *3 (-1090)) (-5 *1 (-1145 *3 *4))
- (-4 *4 (-976))))
+ (-12 (-5 *2 (-1169 *3)) (-14 *3 (-1091)) (-5 *1 (-1146 *3 *4))
+ (-4 *4 (-977))))
((*1 *1 *2)
- (-12 (-4 *3 (-976)) (-4 *1 (-1155 *3 *2)) (-4 *2 (-1132 *3))))
+ (-12 (-4 *3 (-977)) (-4 *1 (-1156 *3 *2)) (-4 *2 (-1133 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1157 *3 *4 *5))
- (-4 *3 (-976)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1158 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1168 *4)) (-14 *4 (-1090)) (-5 *1 (-1164 *3 *4 *5))
- (-4 *3 (-976)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1169 *4)) (-14 *4 (-1091)) (-5 *1 (-1165 *3 *4 *5))
+ (-4 *3 (-977)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1145 *4 *3)) (-4 *3 (-976)) (-14 *4 (-1090))
- (-14 *5 *3) (-5 *1 (-1164 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1168 *3)) (-14 *3 (-1090))))
- ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1173))))
- ((*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-1173)) (-5 *1 (-1176))))
- ((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-1177))))
+ (-12 (-5 *2 (-1146 *4 *3)) (-4 *3 (-977)) (-14 *4 (-1091))
+ (-14 *5 *3) (-5 *1 (-1165 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1091)) (-5 *1 (-1169 *3)) (-14 *3 (-1091))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1174))))
+ ((*1 *2 *3) (-12 (-5 *3 (-445)) (-5 *2 (-1174)) (-5 *1 (-1177))))
+ ((*1 *2 *1) (-12 (-5 *2 (-798)) (-5 *1 (-1178))))
((*1 *1 *2)
- (-12 (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4))
- (-5 *1 (-1182 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-883 *3 *5 *4))
+ (-12 (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4))
+ (-5 *1 (-1183 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-884 *3 *5 *4))
(-14 *7 (-592 (-713))) (-14 *8 (-713))))
((*1 *2 *1)
- (-12 (-4 *2 (-883 *3 *5 *4)) (-5 *1 (-1182 *3 *4 *5 *2 *6 *7 *8))
- (-4 *3 (-976)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4))
+ (-12 (-4 *2 (-884 *3 *5 *4)) (-5 *1 (-1183 *3 *4 *5 *2 *6 *7 *8))
+ (-4 *3 (-977)) (-4 *4 (-789)) (-4 *5 (-735)) (-14 *6 (-592 *4))
(-14 *7 (-592 (-713))) (-14 *8 (-713))))
- ((*1 *1 *2) (-12 (-4 *1 (-1184 *2)) (-4 *2 (-976))))
- ((*1 *1 *2) (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1185 *2)) (-4 *2 (-977))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1188 *2 *3)) (-4 *2 (-789)) (-4 *3 (-977))))
((*1 *2 *1)
- (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-789))
+ (-12 (-5 *2 (-1195 *3 *4)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-789))
(-4 *4 (-160))))
((*1 *2 *1)
- (-12 (-5 *2 (-1185 *3 *4)) (-5 *1 (-1190 *3 *4)) (-4 *3 (-789))
+ (-12 (-5 *2 (-1186 *3 *4)) (-5 *1 (-1191 *3 *4)) (-4 *3 (-789))
(-4 *4 (-160))))
((*1 *1 *2)
(-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789)) (-4 *4 (-160))
- (-5 *1 (-1190 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-1193 *3 *2)) (-4 *3 (-976)) (-4 *2 (-785)))))
+ (-5 *1 (-1191 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1194 *3 *2)) (-4 *3 (-977)) (-4 *2 (-785)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-525))) (-4 *3 (-976)) (-5 *1 (-94 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-94 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-94 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-525))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-525)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-883 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-426 *4 *5 *6 *2)))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855))
- (-4 *4 (-976)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2))
- (-4 *2 (-630 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-690)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))))
+ (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1020)) (-5 *1 (-840 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-148 *2)) (-4 *2 (-510)))))
+(((*1 *2 *1) (-12 (-5 *2 (-904)) (-5 *1 (-840 *3)) (-4 *3 (-1020)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-567 (-826 *3))) (-4 *3 (-820 *3))
- (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-567 (-826 *3))) (-4 *2 (-820 *3))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-713)) (-4 *2 (-1019))
- (-5 *1 (-622 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1126)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-308))) (-5 *1 (-308)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177))
- (-5 *1 (-996 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1073)) (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-1177))
- (-5 *1 (-1027 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))
- ((*1 *1 *1 *1) (-5 *1 (-797))))
+ (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1119 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-1113))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-385 (-525))) (-5 *1 (-955 *3))
+ (-4 *3 (-13 (-787) (-341) (-953)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-987 *2 *3))
+ (-4 *3 (-1149 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-993 *2 *3)) (-4 *2 (-13 (-787) (-341)))
+ (-4 *3 (-1149 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-525))) (-5 *1 (-974)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1073)) (|:| -1310 (-1073))))
- (-5 *1 (-764)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-108)))))
+ (-12 (-5 *3 (-1173 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160))
+ (-4 *5 (-1149 *4)) (-5 *2 (-632 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-160)) (-4 *5 (-1149 *4)) (-5 *2 (-632 *4))
+ (-5 *1 (-386 *3 *4 *5)) (-4 *3 (-387 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1149 *3))
+ (-5 *2 (-632 *3)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1148 *3)) (-5 *1 (-377 *3 *2))
- (-4 *3 (-13 (-341) (-138))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-110))))
+ (-12 (-4 *1 (-1149 *3)) (-4 *3 (-977)) (-5 *2 (-1087 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1176))))
+ ((*1 *2 *2) (-12 (-5 *2 (-809)) (-5 *1 (-1176)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-97)) (-5 *2 (-108))))
+ ((*1 *1 *1 *1) (-5 *1 (-798))))
+(((*1 *1 *1) (-5 *1 (-989))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-227 *4 *5)) (-14 *4 (-592 (-1091))) (-4 *5 (-977))
+ (-5 *2 (-457 *4 *5)) (-5 *1 (-879 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1074)) (-5 *1 (-110))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1073)) (-4 *4 (-789)) (-5 *1 (-863 *4 *2))
+ (-12 (-5 *3 (-1074)) (-4 *4 (-789)) (-5 *1 (-864 *4 *2))
(-4 *2 (-408 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1090)) (-5 *4 (-1073)) (-5 *2 (-294 (-525)))
- (-5 *1 (-864)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-592 *2) *2 *2 *2)) (-4 *2 (-1019))
- (-5 *1 (-98 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1019)) (-5 *1 (-98 *2)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-713)) (-4 *5 (-341)) (-5 *2 (-385 *6))
- (-5 *1 (-801 *5 *4 *6)) (-4 *4 (-1163 *5)) (-4 *6 (-1148 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1164 *5 *6 *7)) (-4 *5 (-341))
- (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-385 (-1145 *6 *5)))
- (-5 *1 (-802 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-713)) (-5 *4 (-1164 *5 *6 *7)) (-4 *5 (-341))
- (-14 *6 (-1090)) (-14 *7 *5) (-5 *2 (-385 (-1145 *6 *5)))
- (-5 *1 (-802 *5 *6 *7)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1012 (-886 (-525)))) (-5 *3 (-886 (-525)))
- (-5 *1 (-308))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1012 (-886 (-525)))) (-5 *1 (-308)))))
-(((*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175))))
- ((*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1126)) (-5 *1 (-807 *3 *2)) (-4 *3 (-1126))))
- ((*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1071 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-174))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1071 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-279))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1071 (-205))) (-5 *2 (-592 (-1073))) (-5 *1 (-284)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-855)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-242)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-592 (-205)))) (-5 *1 (-860)))))
-(((*1 *2 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1071 (-525))) (-5 *1 (-1075 *4)) (-4 *4 (-976))
- (-5 *3 (-525)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
+ (-12 (-5 *3 (-1091)) (-5 *4 (-1074)) (-5 *2 (-294 (-525)))
+ (-5 *1 (-865)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1019)) (-4 *2 (-834 *5)) (-5 *1 (-634 *5 *2 *3 *4))
- (-4 *3 (-351 *2)) (-4 *4 (-13 (-351 *5) (-10 -7 (-6 -4254)))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1055 *2 *3)) (-4 *2 (-13 (-1019) (-33)))
- (-4 *3 (-13 (-1019) (-33))))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205)))
- (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-61 LSFUN2))))
- (-5 *2 (-965)) (-5 *1 (-696)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-525)) (-5 *1 (-530 *3)) (-4 *3 (-967 (-525)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1022 *3 *4 *2 *5 *6)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-290)) (-5 *1 (-275))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-1073))) (-5 *2 (-290)) (-5 *1 (-275))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-290)) (-5 *1 (-275))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1073)) (-5 *4 (-592 (-1073))) (-5 *2 (-290))
- (-5 *1 (-275)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-724 *2)) (-4 *2 (-517)) (-4 *2 (-976))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) (-4 *2 (-1148 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *3 (-990 *4 *5 *6))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *1))))
- (-4 *1 (-995 *4 *5 *6 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))))
-(((*1 *1 *1 *1) (-4 *1 (-510))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-357)) (-5 *3 (-592 (-242))) (-5 *1 (-240))))
- ((*1 *1 *2) (-12 (-5 *2 (-357)) (-5 *1 (-242)))))
+ (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-966)) (-5 *1 (-701)))))
+(((*1 *2 *1) (-12 (-5 *1 (-957 *2)) (-4 *2 (-1127)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1072 *4)) (-5 *3 (-525)) (-4 *4 (-977))
+ (-5 *1 (-1076 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-525)) (-5 *1 (-1165 *3 *4 *5)) (-4 *3 (-977))
+ (-14 *4 (-1091)) (-14 *5 *3))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-341)) (-4 *6 (-1148 (-385 *2)))
- (-4 *2 (-1148 *5)) (-5 *1 (-196 *5 *2 *6 *3))
- (-4 *3 (-320 *5 *2 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-990 *3 *4 *5)))))
+ (-12 (-5 *3 (-1087 (-887 *6))) (-4 *6 (-517))
+ (-4 *2 (-884 (-385 (-887 *6)) *5 *4)) (-5 *1 (-675 *5 *4 *6 *2))
+ (-4 *5 (-735))
+ (-4 *4 (-13 (-789) (-10 -8 (-15 -2749 ((-1091) $))))))))
+(((*1 *2 *2) (-12 (-5 *2 (-592 (-1074))) (-5 *1 (-375)))))
(((*1 *1 *2)
- (-12 (-4 *3 (-976)) (-5 *1 (-769 *2 *3)) (-4 *2 (-651 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-908 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *2 (-789)) (-4 *5 (-990 *3 *4 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 *1)) (-5 *4 (-1172 *1)) (-4 *1 (-588 *5))
- (-4 *5 (-976))
- (-5 *2 (-2 (|:| -3276 (-632 *5)) (|:| |vec| (-1172 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-632 *1)) (-4 *1 (-588 *4)) (-4 *4 (-976))
- (-5 *2 (-632 *4)))))
-(((*1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1175)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-855)) (-5 *2 (-1086 *4)) (-5 *1 (-335 *4))
- (-4 *4 (-327)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1172 (-1172 (-525)))) (-5 *3 (-855)) (-5 *1 (-443)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
-(((*1 *2)
- (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177))
- (-5 *1 (-996 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177))
- (-5 *1 (-1027 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-510)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-429)) (-5 *2 (-108))
- (-5 *1 (-338 *4 *5)) (-14 *5 (-592 (-1090)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-722 *4 (-799 *5)))) (-4 *4 (-429))
- (-14 *5 (-592 (-1090))) (-5 *2 (-108)) (-5 *1 (-577 *4 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-958 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-976)) (-5 *1 (-958 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-958 *3))))
+ (-12 (-5 *2 (-592 (-525))) (-5 *1 (-49 *3 *4)) (-4 *3 (-977))
+ (-14 *4 (-592 (-1091)))))
((*1 *2 *2)
- (-12 (-5 *2 (-592 (-632 *3))) (-4 *3 (-976)) (-5 *1 (-958 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
- (-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1041 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *1 (-301 *4 *2)) (-4 *4 (-1019))
- (-4 *2 (-126)))))
-(((*1 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175))))
- ((*1 *2 *2) (-12 (-5 *2 (-808)) (-5 *1 (-1175)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-429))
- (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-909 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1022 *3 *2 *4 *5 *6)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-763)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-558 *3 *4)) (-4 *3 (-1019))
- (-4 *4 (-1126)) (-5 *2 (-1177)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1126)) (-5 *1 (-168 *3 *2)) (-4 *2 (-619 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-110)) (-4 *2 (-1019)) (-4 *2 (-789))
- (-5 *1 (-109 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-108)) (-5 *1 (-38 *3)) (-4 *3 (-1148 (-47))))))
-(((*1 *1 *1) (-4 *1 (-578)))
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933) (-1112))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-908 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-592 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-838 (-525))) (-5 *1 (-851))))
- ((*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-713)) (-5 *1 (-725 *2)) (-4 *2 (-37 (-385 (-525))))
- (-4 *2 (-160)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-108)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-357)) (-5 *1 (-988)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-690)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-565 *3))
- (-4 *3 (-13 (-408 *5) (-27) (-1112)))
- (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2 (-2 (|:| -2838 *3) (|:| |coeff| *3)))
- (-5 *1 (-527 *5 *3 *6)) (-4 *6 (-1019)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1019)) (-4 *5 (-1019))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-626 *4 *5)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *3 (-525)) (-5 *5 (-1090))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-592 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2838 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1112) (-27) (-408 *8)))
- (-4 *8 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-592 *4)) (-5 *1 (-945 *8 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-855)) (-5 *2 (-1172 (-1172 (-525)))) (-5 *1 (-443)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-525)) (-4 *5 (-327)) (-5 *2 (-396 (-1086 (-1086 *5))))
- (-5 *1 (-1125 *5)) (-5 *3 (-1086 (-1086 *5))))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-108)) (-5 *5 (-1021 (-713))) (-5 *6 (-713))
- (-5 *2
- (-2 (|:| |contp| (-525))
- (|:| -2203 (-592 (-2 (|:| |irr| *3) (|:| -1591 (-525)))))))
- (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-4 *1 (-1148 *3)) (-4 *3 (-976)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-517)) (-5 *1 (-902 *3 *2)) (-4 *2 (-1148 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-517)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734))
- (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-360 *3 *4)) (-4 *3 (-976)) (-4 *4 (-1019))
- (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-976))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-517)) (-5 *2 (-108)) (-5 *1 (-573 *3 *4))
- (-4 *4 (-1148 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-678 *3 *4)) (-4 *3 (-976))
- (-4 *4 (-669))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1187 *3 *4)) (-4 *3 (-789)) (-4 *4 (-976))
- (-5 *2 (-108)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-877 *5)) (-4 *5 (-976)) (-5 *2 (-713))
- (-5 *1 (-1079 *4 *5)) (-14 *4 (-855))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-713))) (-5 *3 (-713)) (-5 *1 (-1079 *4 *5))
- (-14 *4 (-855)) (-4 *5 (-976))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-713))) (-5 *3 (-877 *5)) (-4 *5 (-976))
- (-5 *1 (-1079 *4 *5)) (-14 *4 (-855)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-294 (-525))) (-5 *4 (-1 (-205) (-205)))
- (-5 *5 (-1014 (-205))) (-5 *6 (-592 (-242))) (-5 *2 (-1050 (-205)))
- (-5 *1 (-639)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1066))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-713))
- (-4 *3 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $)))))
- (-4 *4 (-1148 *3)) (-5 *1 (-472 *3 *4 *5)) (-4 *5 (-387 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933)))
- (-5 *1 (-163 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *2 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-1113 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-886 *5)) (-4 *5 (-976)) (-5 *2 (-457 *4 *5))
- (-5 *1 (-878 *4 *5)) (-14 *4 (-592 (-1090))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-396 *4)) (-5 *3 (-1 (-396 *4) *4)) (-4 *4 (-517))
- (-5 *1 (-397 *4))))
- ((*1 *1 *1) (-5 *1 (-860)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-860))))
- ((*1 *1 *1) (-5 *1 (-861)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1014 (-205))) (-5 *1 (-861))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))
- (-5 *4 (-385 (-525))) (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))
- (-5 *1 (-950 *3)) (-4 *3 (-1148 (-525)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))
- (-5 *4 (-385 (-525))) (-5 *1 (-951 *3))
- (-4 *3 (-1148 (-385 (-525))))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -4138 (-385 (-525))) (|:| -4152 (-385 (-525)))))
- (-5 *1 (-951 *3)) (-4 *3 (-1148 (-385 (-525))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3))
- (-4 *3 (-1148 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1090)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-976))
- (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263)))
- (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-837 *3)) (-4 *3 (-1019)) (-5 *2 (-1021 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1019)) (-5 *2 (-1021 (-592 *4))) (-5 *1 (-838 *4))
- (-5 *3 (-592 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1019)) (-5 *2 (-1021 (-1021 *4))) (-5 *1 (-838 *4))
- (-5 *3 (-1021 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-1021 *3)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-256 *3 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1090))
- (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-256 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-565 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1090)))
- (-4 *2 (-13 (-408 *5) (-27) (-1112)))
- (-4 *5 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1019)))))
-(((*1 *1 *1) (-12 (-5 *1 (-161 *2)) (-4 *2 (-286))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))
- ((*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1126))))
- ((*1 *1 *1) (-4 *1 (-803 *2)))
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1164 *3))
+ (-5 *1 (-257 *3 *4 *2)) (-4 *2 (-1135 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *4 (-1133 *3))
+ (-5 *1 (-258 *3 *4 *2 *5)) (-4 *2 (-1156 *3 *4)) (-4 *5 (-916 *4))))
+ ((*1 *1 *1) (-4 *1 (-263)))
((*1 *1 *1)
- (-12 (-4 *1 (-905 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-734))
- (-4 *4 (-789)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-807 (-899 *3) (-899 *3))) (-5 *1 (-899 *3))
- (-4 *3 (-900)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *6 *5))
- (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090))))
- (-4 *6 (-735)) (-5 *2 (-108)) (-5 *1 (-858 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-886 *4))) (-4 *4 (-13 (-286) (-138)))
- (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-108))
- (-5 *1 (-858 *4 *5 *6 *7)) (-4 *7 (-883 *4 *6 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)) (-4 *2 (-341))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2))
- (-4 *2 (-602 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-154 *2)) (-4 *2 (-160)) (-4 *2 (-1112))))
- ((*1 *2 *1) (-12 (-5 *1 (-309 *2)) (-4 *2 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 *3)) (-5 *1 (-565 *3)) (-4 *3 (-789)))))
-(((*1 *2 *1) (-12 (-5 *2 (-797)) (-5 *1 (-51)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-592 (-1090))) (-14 *5 (-713))
- (-5 *2
- (-592
- (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4)
- (-227 *4 (-385 (-525))))))
- (-5 *1 (-478 *4 *5))
- (-5 *3
- (-477 (-385 (-525)) (-220 *5 (-713)) (-799 *4)
- (-227 *4 (-385 (-525))))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3))
- (-4 *3 (-13 (-341) (-1112) (-933))))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-860)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-558 *2 *3)) (-4 *3 (-1126)) (-4 *2 (-1019))
- (-4 *2 (-789)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-713)) (-5 *4 (-525)) (-5 *1 (-422 *2)) (-4 *2 (-976)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1090)) (-5 *2 (-415)) (-5 *1 (-1094)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-341) (-10 -8 (-15 ** ($ $ (-385 (-525)))))))
- (-5 *2
- (-2 (|:| |solns| (-592 *5))
- (|:| |maps| (-592 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1045 *3 *5)) (-4 *3 (-1148 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1148 (-385 (-525))))
- (-5 *2 (-2 (|:| |den| (-525)) (|:| |gcdnum| (-525))))
- (-5 *1 (-847 *3 *4)) (-4 *4 (-1148 (-385 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1148 (-385 (-525)))) (-5 *2 (-525))
- (-5 *1 (-847 *4 *3)) (-4 *3 (-1148 (-385 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-525)) (-5 *1 (-638 *2)) (-4 *2 (-1148 (-525))))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525))))
- (-5 *4 (-294 (-157 (-357)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525))))
- (-5 *4 (-294 (-357))) (-5 *1 (-308))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525))))
- (-5 *4 (-294 (-525))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-157 (-357)))))
- (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-357)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-525)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-157 (-357)))))
- (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-357)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-525)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-157 (-357)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-357))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-525))) (-5 *1 (-308))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525))))
- (-5 *4 (-294 (-636))) (-5 *1 (-308))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525))))
- (-5 *4 (-294 (-641))) (-5 *1 (-308))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-886 (-525))))
- (-5 *4 (-294 (-643))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-636)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-641)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-294 (-643)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-636)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-641)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-294 (-643)))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-636))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-641))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-1172 (-643))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-636))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-641))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-632 (-643))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-636))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-641))) (-5 *1 (-308))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-294 (-643))) (-5 *1 (-308))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1090)) (-5 *3 (-1073)) (-5 *1 (-308))))
- ((*1 *1 *1 *1) (-5 *1 (-797))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-592 (-2 (|:| |func| *2) (|:| |pole| (-108)))))
- (-4 *2 (-13 (-408 *4) (-933))) (-4 *4 (-13 (-789) (-517)))
- (-5 *1 (-255 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-1090))) (-5 *2 (-1177)) (-5 *1 (-1128))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 (-1090))) (-5 *2 (-1177)) (-5 *1 (-1128)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-920 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-135)))))
-(((*1 *2 *1) (-12 (-4 *1 (-346)) (-5 *2 (-855))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1172 *4)) (-4 *4 (-327)) (-5 *2 (-855))
- (-5 *1 (-495 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1172 (-3 (-445) "undefined"))) (-5 *1 (-1173)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108)) (-5 *1 (-920 *4 *5 *6 *7 *3))
- (-4 *3 (-995 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6)) (-5 *2 (-108))
- (-5 *1 (-1026 *4 *5 *6 *7 *3)) (-4 *3 (-995 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $)))))
- (-4 *4 (-1148 *3))
- (-5 *2
- (-2 (|:| -2499 (-632 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-632 *3))))
- (-5 *1 (-328 *3 *4 *5)) (-4 *5 (-387 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1148 (-525)))
- (-5 *2
- (-2 (|:| -2499 (-632 (-525))) (|:| |basisDen| (-525))
- (|:| |basisInv| (-632 (-525)))))
- (-5 *1 (-710 *4 *5)) (-5 *3 (-525)) (-4 *5 (-387 (-525) *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 *3))
- (-5 *2
- (-2 (|:| -2499 (-632 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-632 *3))))
- (-5 *1 (-917 *4 *3 *5 *6)) (-4 *6 (-667 *3 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-4 *3 (-1148 *4)) (-4 *5 (-1148 *3))
- (-5 *2
- (-2 (|:| -2499 (-632 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-632 *3))))
- (-5 *1 (-1181 *4 *3 *5 *6)) (-4 *6 (-387 *3 *5)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-205))
- (-5 *2 (-965)) (-5 *1 (-694)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-294 (-205))) (-5 *2 (-294 (-385 (-525))))
- (-5 *1 (-284)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-308)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1148 *4)) (-5 *1 (-751 *4 *2 *3 *5))
- (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *3 (-602 *2))
- (-4 *5 (-602 (-385 *2))))))
-(((*1 *1 *1) (-4 *1 (-578)))
+ (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1091)))
+ (-14 *3 (-592 (-1091))) (-4 *4 (-365))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-610 *3 *4)) (-4 *3 (-789))
+ (-4 *4 (-13 (-160) (-660 (-385 (-525))))) (-5 *1 (-576 *3 *4 *5))
+ (-14 *5 (-856))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933) (-1112))))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-632 (-385 (-886 (-525)))))
- (-5 *2
- (-592
- (-2 (|:| |radval| (-294 (-525))) (|:| |radmult| (-525))
- (|:| |radvect| (-592 (-632 (-294 (-525))))))))
- (-5 *1 (-961)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-429))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1086 *6)) (-4 *6 (-883 *5 *3 *4)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *5 (-843)) (-5 *1 (-434 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-843)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-695)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1338 *1) (|:| -1632 *1))) (-4 *1 (-286))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-364 *3)) (|:| |rm| (-364 *3))))
- (-5 *1 (-364 *3)) (-4 *3 (-1019))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1338 (-713)) (|:| -1632 (-713))))
- (-5 *1 (-713))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| -1338 *3) (|:| -1632 *3)))
- (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-877 *3) (-877 *3))) (-5 *1 (-163 *3))
- (-4 *3 (-13 (-341) (-1112) (-933))))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-808))))
- ((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-4 *5 (-408 *4))
- (-5 *2 (-396 *3)) (-5 *1 (-413 *4 *5 *3)) (-4 *3 (-1148 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-592 *4)) (-4 *4 (-789))
- (-5 *1 (-1098 *4)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -2203 (-592 (-2 (|:| |irr| *10) (|:| -1591 (-525)))))))
- (-5 *6 (-592 *3)) (-5 *7 (-592 *8)) (-4 *8 (-789)) (-4 *3 (-286))
- (-4 *10 (-883 *3 *9 *8)) (-4 *9 (-735))
- (-5 *2
- (-2 (|:| |polfac| (-592 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-592 (-1086 *3)))))
- (-5 *1 (-575 *8 *9 *3 *10)) (-5 *4 (-592 (-1086 *3))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-592 *4)) (-4 *4 (-1019)) (-4 *4 (-1126)) (-5 *2 (-108))
- (-5 *1 (-1071 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-396 *3)) (-5 *1 (-848 *3)) (-4 *3 (-286)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1148 *4)) (-5 *1 (-749 *4 *2 *3 *5))
- (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *3 (-602 *2))
- (-4 *5 (-602 (-385 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1148 *4)) (-5 *1 (-749 *4 *2 *5 *3))
- (-4 *4 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *5 (-602 *2))
- (-4 *3 (-602 (-385 *2))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-592 *5) *6))
- (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
- (-4 *6 (-1148 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-599 (-385 *7))) (-5 *4 (-1 (-592 *6) *7))
- (-5 *5 (-1 (-396 *7) *7))
- (-4 *6 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
- (-4 *7 (-1148 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-592 *5) *6))
- (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
- (-4 *6 (-1148 *5)) (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-600 *7 (-385 *7))) (-5 *4 (-1 (-592 *6) *7))
- (-5 *5 (-1 (-396 *7) *7))
- (-4 *6 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
- (-4 *7 (-1148 *6)) (-5 *2 (-592 (-385 *7))) (-5 *1 (-754 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-599 (-385 *5))) (-4 *5 (-1148 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
- (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-599 (-385 *6))) (-5 *4 (-1 (-396 *6) *6))
- (-4 *6 (-1148 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
- (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-600 *5 (-385 *5))) (-4 *5 (-1148 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
- (-5 *2 (-592 (-385 *5))) (-5 *1 (-754 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-600 *6 (-385 *6))) (-5 *4 (-1 (-396 *6) *6))
- (-4 *6 (-1148 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
- (-5 *2 (-592 (-385 *6))) (-5 *1 (-754 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-205)) (-5 *1 (-284)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-286)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1041 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
- (-5 *2 (-965)) (-5 *1 (-695)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-108))
- (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| (-108)) (|:| -3740 *4))))
- (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-1086 (-886 *4))) (-5 *1 (-394 *3 *4))
- (-4 *3 (-395 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-4 *3 (-341))
- (-5 *2 (-1086 (-886 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1086 (-385 (-886 *3)))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))))
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1077 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-37 (-385 (-525))))
+ (-5 *1 (-1078 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-713)) (-4 *4 (-13 (-977) (-660 (-385 (-525)))))
+ (-4 *5 (-789)) (-5 *1 (-1187 *4 *5 *2)) (-4 *2 (-1192 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-713)) (-5 *1 (-1191 *3 *4))
+ (-4 *4 (-660 (-385 (-525)))) (-4 *3 (-789)) (-4 *4 (-160)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
- (-4 *5 (-1148 *4)) (-5 *2 (-592 (-599 (-385 *5))))
- (-5 *1 (-603 *4 *5)) (-5 *3 (-599 (-385 *5))))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-128)))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-764)))))
-(((*1 *2) (-12 (-5 *2 (-1062 (-1073))) (-5 *1 (-369)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789))
- (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-976)) (-4 *3 (-789))
- (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-327)) (-5 *2 (-855))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-314 *4 *5 *6 *7)) (-4 *4 (-13 (-346) (-341)))
- (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5))) (-4 *7 (-320 *4 *5 *6))
- (-5 *2 (-713)) (-5 *1 (-370 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-380)) (-5 *2 (-775 (-855)))))
- ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-976))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-551 *3)) (-4 *3 (-976))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-517)) (-5 *2 (-525)) (-5 *1 (-573 *3 *4))
- (-4 *4 (-1148 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-683 *4 *3)) (-4 *4 (-976))
- (-4 *3 (-789))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-683 *4 *3)) (-4 *4 (-976)) (-4 *3 (-789))
- (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-803 *3)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-838 *3)) (-4 *3 (-1019))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-839 *3)) (-4 *3 (-1019))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-314 *5 *6 *7 *8)) (-4 *5 (-408 *4))
- (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6)))
- (-4 *8 (-320 *5 *6 *7)) (-4 *4 (-13 (-789) (-517) (-967 (-525))))
- (-5 *2 (-713)) (-5 *1 (-845 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-314 (-385 (-525)) *4 *5 *6))
- (-4 *4 (-1148 (-385 (-525)))) (-4 *5 (-1148 (-385 *4)))
- (-4 *6 (-320 (-385 (-525)) *4 *5)) (-5 *2 (-713))
- (-5 *1 (-846 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-314 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-341))
- (-4 *7 (-1148 *6)) (-4 *4 (-1148 (-385 *7))) (-4 *8 (-320 *6 *7 *4))
- (-4 *9 (-13 (-346) (-341))) (-5 *2 (-713))
- (-5 *1 (-949 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1148 *3)) (-4 *3 (-976)) (-4 *3 (-517)) (-5 *2 (-713))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734))))
- ((*1 *2 *1) (-12 (-4 *1 (-1150 *3 *2)) (-4 *3 (-976)) (-4 *2 (-734)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-341)) (-5 *1 (-264 *3 *2)) (-4 *2 (-1163 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797))))
- ((*1 *2 *1)
(-12
- (-5 *2
- (-2 (|:| -2714 (-592 (-797))) (|:| -1487 (-592 (-797)))
- (|:| |presup| (-592 (-797))) (|:| -2807 (-592 (-797)))
- (|:| |args| (-592 (-797)))))
- (-5 *1 (-1090)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-160)) (-5 *1 (-268 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1148 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-654 *2 *3 *4 *5 *6)) (-4 *2 (-160))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-658 *2 *3 *4 *5 *6)) (-4 *2 (-160))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1019)) (-4 *5 (-1019))
- (-4 *6 (-1019)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-627 *4 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-620 *3)) (-4 *3 (-976)) (-4 *3 (-1019)))))
-(((*1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-21)) (-4 *2 (-1126)))))
-(((*1 *1) (-5 *1 (-1004))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-108) (-110) (-110))) (-5 *1 (-110)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *6)) (-5 *4 (-592 (-1071 *7))) (-4 *6 (-789))
- (-4 *7 (-883 *5 (-497 *6) *6)) (-4 *5 (-976))
- (-5 *2 (-1 (-1071 *7) *7)) (-5 *1 (-1043 *5 *6 *7)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *6)) (-5 *4 (-1090)) (-4 *6 (-408 *5))
- (-4 *5 (-789)) (-5 *2 (-592 (-565 *6))) (-5 *1 (-534 *5 *6)))))
-(((*1 *1) (-5 *1 (-415))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-976))
- (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263)))
- (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4))))
- ((*1 *1 *1) (-4 *1 (-510)))
- ((*1 *2 *1) (-12 (-5 *2 (-855)) (-5 *1 (-617 *3)) (-4 *3 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-855)) (-5 *1 (-621 *3)) (-4 *3 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-761 *3)) (-4 *3 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-827 *3)) (-4 *3 (-789))))
- ((*1 *2 *1) (-12 (-4 *1 (-926 *3)) (-4 *3 (-1126)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-1124 *3)) (-4 *3 (-1126))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-933))
- (-4 *2 (-976)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1019)) (-4 *6 (-1019))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-627 *4 *5 *6)) (-4 *4 (-1019)))))
-(((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)) (-4 *2 (-510))))
- ((*1 *1 *1) (-4 *1 (-985))))
-(((*1 *1 *2) (-12 (-5 *2 (-385 (-525))) (-5 *1 (-198)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-886 (-525))) (-5 *3 (-1090))
- (-5 *4 (-1014 (-385 (-525)))) (-5 *1 (-30)))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-937))))
- ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-937)))))
+ (-5 *3
+ (-2 (|:| |var| (-1091)) (|:| |fn| (-294 (-205)))
+ (|:| -2990 (-1015 (-782 (-205)))) (|:| |abserr| (-205))
+ (|:| |relerr| (-205))))
+ (-5 *2 (-108)) (-5 *1 (-279)))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1019)) (-5 *1 (-897 *3 *2)) (-4 *3 (-1019)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-1090))) (-4 *4 (-13 (-286) (-138)))
- (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735))
- (-5 *2 (-592 (-385 (-886 *4)))) (-5 *1 (-858 *4 *5 *6 *7))
- (-4 *7 (-883 *4 *6 *5)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-592 *7)) (-5 *3 (-525)) (-4 *7 (-883 *4 *5 *6))
- (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *1 (-426 *4 *5 *6 *7)))))
+ (-12 (-4 *1 (-909 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-735))
+ (-4 *2 (-789)) (-4 *5 (-991 *3 *4 *2)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-827 *4)) (-4 *4 (-1020)) (-5 *1 (-824 *4 *3))
+ (-4 *3 (-1020)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33)))
- (-4 *4 (-13 (-1019) (-33))))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-108))
- (-5 *6 (-592 (-108))) (-5 *7 (-632 (-205))) (-5 *8 (-632 (-525)))
- (-5 *2 (-965)) (-5 *1 (-697)))))
-(((*1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-221)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-799 *5))
- (-14 *5 (-592 (-1090))) (-4 *6 (-429)) (-5 *2 (-457 *5 *6))
- (-5 *1 (-580 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-457 *5 *6))) (-5 *4 (-799 *5))
- (-14 *5 (-592 (-1090))) (-4 *6 (-429)) (-5 *2 (-457 *5 *6))
- (-5 *1 (-580 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175))))
- ((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-765)) (-5 *1 (-764)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1017 *2)) (-4 *2 (-1019)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-592 *1)) (-4 *1 (-854)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-965)) (-5 *3 (-1090)) (-5 *1 (-246)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-789) (-517))) (-5 *2 (-108)) (-5 *1 (-255 *4 *3))
- (-4 *3 (-13 (-408 *4) (-933))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-341)) (-4 *3 (-976))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1669 *1)))
- (-4 *1 (-791 *3)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-157 (-205))) (-5 *5 (-525))
- (-5 *6 (-1073)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2)
- (-12 (-4 *3 (-976)) (-5 *2 (-891 (-655 *3 *4))) (-5 *1 (-655 *3 *4))
- (-4 *4 (-1148 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-5 *2 (-108)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444))))
- ((*1 *2 *2) (-12 (-5 *2 (-108)) (-5 *1 (-444)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-713)) (-4 *6 (-1019)) (-4 *3 (-834 *6))
- (-5 *2 (-632 *3)) (-5 *1 (-634 *6 *3 *7 *4)) (-4 *7 (-351 *3))
- (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4254)))))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1086 *1)) (-5 *3 (-1090)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-886 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1090)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-789) (-517)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-789) (-517))))))
-(((*1 *1 *1) (-12 (-4 *1 (-351 *2)) (-4 *2 (-1126))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-976)) (-5 *1 (-421 *3 *2)) (-4 *2 (-1148 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1019)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1071 *3)) (-4 *3 (-976)) (-5 *1 (-1075 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2 *1) (-12 (-4 *1 (-787)) (-5 *2 (-525))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-839 *3)) (-4 *3 (-1019))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-992 *4 *3)) (-4 *4 (-13 (-787) (-341)))
- (-4 *3 (-1148 *4)) (-5 *2 (-525))))
- ((*1 *2 *3)
- (|partial| -12
- (-4 *4 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)) (-429)))
- (-5 *2 (-525)) (-5 *1 (-1034 *4 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-782 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *6)))
- (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)) (-429)))
- (-5 *2 (-525)) (-5 *1 (-1034 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1090)) (-5 *5 (-1073))
- (-4 *6 (-13 (-517) (-789) (-967 (-525)) (-588 (-525)) (-429)))
- (-5 *2 (-525)) (-5 *1 (-1034 *6 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *6)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-429)) (-5 *2 (-525))
- (-5 *1 (-1035 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-385 (-886 *6))) (-5 *4 (-1090))
- (-5 *5 (-782 (-385 (-886 *6)))) (-4 *6 (-429)) (-5 *2 (-525))
- (-5 *1 (-1035 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-385 (-886 *6))) (-5 *4 (-1090))
- (-5 *5 (-1073)) (-4 *6 (-429)) (-5 *2 (-525)) (-5 *1 (-1035 *6))))
+ (-12 (-5 *2 (-713)) (-4 *1 (-602 *3)) (-4 *3 (-977)) (-4 *3 (-341))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-713)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341))
+ (-5 *1 (-605 *5 *2)) (-4 *2 (-602 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-290)) (-5 *1 (-275))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1109 *3)) (-4 *3 (-976)))))
-(((*1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-771)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-632 *5))) (-4 *5 (-286)) (-4 *5 (-976))
- (-5 *2 (-1172 (-1172 *5))) (-5 *1 (-959 *5)) (-5 *4 (-1172 *5)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1073)) (-4 *6 (-429)) (-4 *7 (-735)) (-4 *8 (-789))
- (-4 *4 (-990 *6 *7 *8)) (-5 *2 (-1177))
- (-5 *1 (-718 *6 *7 *8 *4 *5)) (-4 *5 (-995 *6 *7 *8 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-976)) (-5 *2 (-525)) (-5 *1 (-420 *4 *3 *5))
- (-4 *3 (-1148 *4))
- (-4 *5 (-13 (-382) (-967 *4) (-341) (-1112) (-263))))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1089)) (-5 *1 (-308)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
- (-5 *2 (-965)) (-5 *1 (-695)))))
-(((*1 *1 *1) (-12 (-5 *1 (-396 *2)) (-4 *2 (-517)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2838 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-341)) (-4 *7 (-1148 *6))
- (-5 *2 (-2 (|:| |answer| (-542 (-385 *7))) (|:| |a0| *6)))
- (-5 *1 (-535 *6 *7)) (-5 *3 (-385 *7)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3))
- (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2))
- (-4 *2 (-630 *3 *5 *6)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-592
- (-592
- (-3 (|:| -1310 (-1090))
- (|:| |bounds| (-592 (-3 (|:| S (-1090)) (|:| P (-886 (-525))))))))))
- (-5 *1 (-1094)))))
-(((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-517))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-909 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2 *1) (-12 (-5 *1 (-956 *2)) (-4 *2 (-1126)))))
-(((*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976))))
+ (-12 (-5 *3 (-592 (-1074))) (-5 *2 (-290)) (-5 *1 (-275))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1074)) (-5 *2 (-290)) (-5 *1 (-275))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1074)) (-5 *4 (-592 (-1074))) (-5 *2 (-290))
+ (-5 *1 (-275)))))
+(((*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-977))))
((*1 *2 *3)
(-12 (-4 *4 (-517)) (-4 *4 (-160)) (-4 *5 (-351 *4))
(-4 *6 (-351 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
(-5 *1 (-631 *4 *5 *6 *3)) (-4 *3 (-630 *4 *5 *6))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-160)) (-4 *2 (-976)) (-5 *1 (-657 *2 *3))
+ (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3))
(-4 *3 (-594 *2))))
((*1 *1 *1)
- (-12 (-4 *2 (-160)) (-4 *2 (-976)) (-5 *1 (-657 *2 *3))
+ (-12 (-4 *2 (-160)) (-4 *2 (-977)) (-5 *1 (-657 *2 *3))
(-4 *3 (-594 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-976))))
- ((*1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-976)))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977))))
+ ((*1 *1 *1) (-12 (-5 *1 (-776 *2)) (-4 *2 (-160)) (-4 *2 (-977)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2)
+ (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
+ (-4 *3 (-345 *4))))
+ ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-232 *3 *4 *2 *5)) (-4 *3 (-977)) (-4 *4 (-789))
+ (-4 *5 (-735)) (-4 *2 (-245 *4)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-595 *2 *3 *4)) (-4 *2 (-1020)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-620 *2)) (-4 *2 (-977)) (-4 *2 (-1020)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-117 *2)) (-4 *2 (-789)))))
+(((*1 *1 *2)
+ (-12 (-4 *3 (-977)) (-5 *1 (-769 *2 *3)) (-4 *2 (-651 *3)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-525)) (-5 *1 (-1110 *3)) (-4 *3 (-977)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-138) (-27) (-968 (-525)) (-968 (-385 (-525)))))
+ (-4 *5 (-1149 *4)) (-5 *2 (-1087 (-385 *5))) (-5 *1 (-568 *4 *5))
+ (-5 *3 (-385 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1149 *5))
+ (-4 *5 (-13 (-138) (-27) (-968 (-525)) (-968 (-385 (-525)))))
+ (-5 *2 (-1087 (-385 *6))) (-5 *1 (-568 *5 *6)) (-5 *3 (-385 *6)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-991 *2 *3 *4)) (-4 *2 (-977)) (-4 *3 (-735))
+ (-4 *4 (-789)) (-4 *2 (-517)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-809))
+ (-5 *5 (-856)) (-5 *6 (-592 (-242))) (-5 *2 (-1174))
+ (-5 *1 (-1177))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-592 (-592 (-878 (-205))))) (-5 *4 (-592 (-242)))
+ (-5 *2 (-1174)) (-5 *1 (-1177)))))
+(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
(((*1 *2 *3)
(-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-883 *4 *5 *6)) (-5 *2 (-592 (-592 *7)))
+ (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-592 (-592 *7)))
(-5 *1 (-425 *4 *5 *6 *7)) (-5 *3 (-592 *7))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-108)) (-4 *5 (-13 (-286) (-138))) (-4 *6 (-735))
- (-4 *7 (-789)) (-4 *8 (-883 *5 *6 *7)) (-5 *2 (-592 (-592 *8)))
+ (-4 *7 (-789)) (-4 *8 (-884 *5 *6 *7)) (-5 *2 (-592 (-592 *8)))
(-5 *1 (-425 *5 *6 *7 *8)) (-5 *3 (-592 *8)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-713))) (-5 *3 (-159)) (-5 *1 (-1080 *4 *5))
+ (-14 *4 (-856)) (-4 *5 (-977)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
+ (-4 *2 (-13 (-408 *3) (-934))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-713)) (-4 *5 (-517))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-903 *5 *3)) (-4 *3 (-1149 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-205)) (-5 *4 (-525))
+ (-5 *5 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -3834)))) (-5 *2 (-966))
+ (-5 *1 (-691)))))
+(((*1 *2)
+ (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131)) (-4 *4 (-1149 *3))
+ (-4 *5 (-1149 (-385 *4))) (-5 *2 (-108)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-916 *2)) (-4 *2 (-1113)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-977)) (-5 *1 (-1076 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1165 *2 *3 *4)) (-4 *2 (-977)) (-14 *3 (-1091))
+ (-14 *4 *2))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-273 *2)) (-4 *2 (-281)) (-4 *2 (-1127))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-592 (-565 *1))) (-5 *3 (-592 *1)) (-4 *1 (-281))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-592 (-273 *1))) (-4 *1 (-281))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-273 *1)) (-4 *1 (-281)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-976) (-789)))
- (-14 *3 (-592 (-1090))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-49 *3 *4)) (-4 *3 (-976))
- (-14 *4 (-592 (-1090)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789)))
- (-14 *4 (-592 (-1090)))))
- ((*1 *1) (-12 (-4 *1 (-307 *2)) (-4 *2 (-346)) (-4 *2 (-341))))
+ (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-977) (-789)))
+ (-14 *3 (-592 (-1091))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-429)) (-4 *3 (-789)) (-4 *3 (-968 (-525)))
+ (-4 *3 (-517)) (-5 *1 (-40 *3 *2)) (-4 *2 (-408 *3))
+ (-4 *2
+ (-13 (-341) (-281)
+ (-10 -8 (-15 -1498 ((-1043 *3 (-565 $)) $))
+ (-15 -1512 ((-1043 *3 (-565 $)) $))
+ (-15 -1270 ($ (-1043 *3 (-565 $))))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-766)))))
+(((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1091)) (-5 *1 (-259))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-313 *3 *4 *5 *2)) (-4 *3 (-341))
- (-4 *4 (-1148 *3)) (-4 *5 (-1148 (-385 *4)))
- (-4 *2 (-320 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713))
- (-14 *4 (-713)) (-4 *5 (-160))))
- ((*1 *1) (-12 (-4 *2 (-160)) (-4 *1 (-667 *2 *3)) (-4 *3 (-1148 *2)))))
+ (-12 (-5 *2 (-3 (-525) (-205) (-1091) (-1074) (-1096)))
+ (-5 *1 (-1096)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-592 (-2 (|:| -2195 (-1087 *6)) (|:| -1864 (-525)))))
+ (-4 *6 (-286)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-525))
+ (-5 *1 (-685 *4 *5 *6 *7)) (-4 *7 (-884 *6 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-429) (-138))) (-5 *2 (-396 *3))
+ (-5 *1 (-95 *4 *3)) (-4 *3 (-1149 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-592 *3)) (-4 *3 (-1149 *5)) (-4 *5 (-13 (-429) (-138)))
+ (-5 *2 (-396 *3)) (-5 *1 (-95 *5 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1178)) (-5 *1 (-764)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-844)) (-5 *2 (-396 (-1087 *1))) (-5 *3 (-1087 *1)))))
(((*1 *2 *3 *2)
(-12
(-5 *2
- (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205))
+ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205))
(|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205))
(|:| |deltaX| (-205)) (|:| |deltaY| (-205))))
(-5 *3 (-592 (-242))) (-5 *1 (-240))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205))
+ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205))
(|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205))
(|:| |deltaX| (-205)) (|:| |deltaY| (-205))))
(-5 *1 (-242))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174))))
+ (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174))))
+ (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175))))
((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-525)) (-5 *4 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174))))
+ (-12 (-5 *3 (-525)) (-5 *4 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175))))
((*1 *2 *1 *3)
(-12
(-5 *3
- (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205))
+ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205))
(|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205))
(|:| |deltaX| (-205)) (|:| |deltaY| (-205))))
- (-5 *2 (-1177)) (-5 *1 (-1174))))
+ (-5 *2 (-1178)) (-5 *1 (-1175))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -2349 (-205))
+ (-2 (|:| |theta| (-205)) (|:| |phi| (-205)) (|:| -3561 (-205))
(|:| |scaleX| (-205)) (|:| |scaleY| (-205)) (|:| |scaleZ| (-205))
(|:| |deltaX| (-205)) (|:| |deltaY| (-205))))
- (-5 *1 (-1174))))
+ (-5 *1 (-1175))))
((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2506 *4)))
- (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *2 (-789))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-735)) (-4 *5 (-976)) (-4 *6 (-883 *5 *4 *2))
- (-4 *2 (-789)) (-5 *1 (-884 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -1908 ($ *6)) (-15 -1303 (*6 $))
- (-15 -1312 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517))
- (-5 *2 (-1090)) (-5 *1 (-972 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976))
- (-5 *2 (-592 (-592 (-877 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-592 (-592 (-877 *4)))) (-5 *3 (-108)) (-4 *4 (-976))
- (-4 *1 (-1051 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 (-877 *3)))) (-4 *3 (-976))
- (-4 *1 (-1051 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-592 (-592 (-592 *4)))) (-5 *3 (-108))
- (-4 *1 (-1051 *4)) (-4 *4 (-976))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-592 (-592 (-877 *4)))) (-5 *3 (-108))
- (-4 *1 (-1051 *4)) (-4 *4 (-976))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-592 (-592 (-592 *5)))) (-5 *3 (-592 (-159)))
- (-5 *4 (-159)) (-4 *1 (-1051 *5)) (-4 *5 (-976))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-592 (-592 (-877 *5)))) (-5 *3 (-592 (-159)))
- (-5 *4 (-159)) (-4 *1 (-1051 *5)) (-4 *5 (-976)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-320 *4 *5 *6)) (-4 *4 (-1130))
- (-4 *5 (-1148 *4)) (-4 *6 (-1148 (-385 *5)))
- (-5 *2 (-2 (|:| |num| (-632 *5)) (|:| |den| *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1073)) (-5 *1 (-284)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1037)) (-5 *1 (-308)))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-919 (-385 (-525)) (-799 *3) (-220 *4 (-713))
- (-227 *3 (-385 (-525)))))
- (-14 *3 (-592 (-1090))) (-14 *4 (-713)) (-5 *1 (-918 *3 *4)))))
+ (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-592 (-385 *6))) (-4 *6 (-1148 *5))
- (-4 *5 (-13 (-341) (-138) (-967 (-525))))
- (-5 *2
- (-2 (|:| |mainpart| (-385 *6))
- (|:| |limitedlogs|
- (-592
- (-2 (|:| |coeff| (-385 *6)) (|:| |logand| (-385 *6)))))))
- (-5 *1 (-529 *5 *6)) (-5 *3 (-385 *6)))))
-(((*1 *2 *3 *1)
- (-12
- (-5 *2
- (-2 (|:| |cycle?| (-108)) (|:| -3759 (-713)) (|:| |period| (-713))))
- (-5 *1 (-1071 *4)) (-4 *4 (-1126)) (-5 *3 (-713)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-525))) (-5 *5 (-108))
- (-5 *6 (-205)) (-5 *7 (-632 (-205))) (-5 *2 (-965)) (-5 *1 (-697)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-976)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1090)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 (-855))) (-4 *2 (-341)) (-5 *1 (-143 *4 *2 *5))
- (-14 *4 (-855)) (-14 *5 (-925 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4))
- (-4 *3 (-13 (-976) (-789))) (-14 *4 (-592 (-1090)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-301 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-126))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1019)) (-4 *2 (-976))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-525)) (-4 *2 (-517)) (-5 *1 (-573 *2 *4))
- (-4 *4 (-1148 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-651 *2)) (-4 *2 (-976))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-976)) (-5 *1 (-678 *2 *3)) (-4 *3 (-669))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 *5)) (-5 *3 (-592 (-713))) (-4 *1 (-683 *4 *5))
- (-4 *4 (-976)) (-4 *5 (-789))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-683 *4 *2)) (-4 *4 (-976))
- (-4 *2 (-789))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-713)) (-4 *1 (-791 *2)) (-4 *2 (-976))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 *6)) (-5 *3 (-592 (-713))) (-4 *1 (-883 *4 *5 *6))
- (-4 *4 (-976)) (-4 *5 (-735)) (-4 *6 (-789))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-883 *4 *5 *2)) (-4 *4 (-976))
- (-4 *5 (-735)) (-4 *2 (-789))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-4 *2 (-883 *4 (-497 *5) *5))
- (-5 *1 (-1043 *4 *5 *2)) (-4 *4 (-976)) (-4 *5 (-789))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-886 *4)) (-5 *1 (-1121 *4))
- (-4 *4 (-976)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-205)) (-5 *2 (-965)) (-5 *1 (-695)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-308))))
- ((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-308)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-967 (-525))) (-4 *3 (-13 (-789) (-517)))
- (-5 *1 (-31 *3 *2)) (-4 *2 (-408 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-1086 *4)) (-5 *1 (-153 *3 *4))
- (-4 *3 (-154 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-976)) (-4 *1 (-281))))
- ((*1 *2) (-12 (-4 *1 (-307 *3)) (-4 *3 (-341)) (-5 *2 (-1086 *3))))
- ((*1 *2) (-12 (-4 *1 (-667 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1148 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-992 *3 *2)) (-4 *3 (-13 (-787) (-341)))
- (-4 *2 (-1148 *3)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1073)) (-5 *4 (-157 (-205))) (-5 *5 (-525))
- (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1090)) (-5 *2 (-1177)) (-5 *1 (-1093))))
- ((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-1093)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-855))) (-5 *2 (-838 (-525))) (-5 *1 (-851)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2506 *3) (|:| |coef2| (-724 *3))))
- (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1126)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-592 (-1172 *4))) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-4 *3 (-517))
- (-5 *2 (-592 (-1172 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-357))))
- ((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-357)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-259)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-1108))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-1108)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-162))) (-5 *1 (-1006)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1086 (-385 (-525)))) (-5 *1 (-876)) (-5 *3 (-525)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-713)) (-4 *5 (-517))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-902 *5 *3)) (-4 *3 (-1148 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-663)) (-5 *2 (-855))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-665)) (-5 *2 (-713)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-1073))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-80 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-366)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-965))
- (-5 *1 (-693)))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1090))
- (-4 *4 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-536 *4 *2))
- (-4 *2 (-13 (-1112) (-892) (-1054) (-29 *4))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| *3) (|:| -3740 *4))))
- (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-797))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-1113 *3))) (-5 *1 (-1113 *3)) (-4 *3 (-1019)))))
-(((*1 *1 *2) (-12 (-5 *2 (-169)) (-5 *1 (-228)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-839 (-525))) (-5 *4 (-525)) (-5 *2 (-632 *4))
- (-5 *1 (-958 *5)) (-4 *5 (-976))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-632 (-525))) (-5 *1 (-958 *4))
- (-4 *4 (-976))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-839 (-525)))) (-5 *4 (-525))
- (-5 *2 (-592 (-632 *4))) (-5 *1 (-958 *5)) (-4 *5 (-976))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-592 (-525)))) (-5 *2 (-592 (-632 (-525))))
- (-5 *1 (-958 *4)) (-4 *4 (-976)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-908 *4 *5 *6 *3)) (-4 *4 (-976)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-4 *4 (-517))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-724 *3)) (-4 *3 (-976))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-896 *3 *2)) (-4 *2 (-126)) (-4 *3 (-517))
- (-4 *3 (-976)) (-4 *2 (-734))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-1086 *3)) (-4 *3 (-976))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-903)) (-4 (-903) (-126)) (-5 *1 (-1092 *3))
- (-4 *3 (-517)) (-4 *3 (-976))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-1145 *4 *3)) (-14 *4 (-1090))
- (-4 *3 (-976)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2) (-12 (-5 *2 (-1062 (-1073))) (-5 *1 (-369)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-110))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-232 *4 *3 *5 *6)) (-4 *4 (-976)) (-4 *3 (-789))
- (-4 *5 (-245 *3)) (-4 *6 (-735)) (-5 *2 (-713))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-232 *3 *4 *5 *6)) (-4 *3 (-976)) (-4 *4 (-789))
- (-4 *5 (-245 *4)) (-4 *6 (-735)) (-5 *2 (-713))))
- ((*1 *2 *1) (-12 (-4 *1 (-245 *3)) (-4 *3 (-789)) (-5 *2 (-713)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-742))
- (-5 *3
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *2 (-965)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-224 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138)))
- (-5 *1 (-1142 *4 *2)) (-4 *2 (-1148 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177))
- (-5 *1 (-920 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-429)) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-1177))
- (-5 *1 (-1026 *3 *4 *5 *6 *7)) (-4 *7 (-995 *3 *4 *5 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3244 (-724 *3)) (|:| |coef2| (-724 *3))))
- (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-2 (|:| -3244 *1) (|:| |coef2| *1)))
- (-4 *1 (-990 *3 *4 *5)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-385 *4)) (-4 *4 (-1148 *3))
- (-4 *3 (-13 (-341) (-138) (-967 (-525)))) (-5 *1 (-529 *3 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-429))
- (-4 *3 (-517)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-909 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *1 (-543 *2)) (-4 *2 (-510)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-713)) (-5 *1 (-795 *2)) (-4 *2 (-160)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-699)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-108)) (-5 *1 (-468)))))
-(((*1 *1 *1) (-12 (-4 *1 (-224 *2)) (-4 *2 (-1126))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789))))
- ((*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)) (-5 *2 (-108))
- (-5 *1 (-919 *3 *4 *5 *6)) (-4 *6 (-883 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-1055 *3 *4)) (-4 *3 (-13 (-1019) (-33)))
- (-4 *4 (-13 (-1019) (-33))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-108))
- (-5 *1 (-477 *3 *4 *5 *6)) (-4 *6 (-883 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-992 *4 *3)) (-4 *4 (-13 (-787) (-341)))
- (-4 *3 (-1148 *4)) (-5 *2 (-108)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-798))))
- ((*1 *2 *3) (-12 (-5 *3 (-797)) (-5 *2 (-1177)) (-5 *1 (-798))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1073)) (-5 *4 (-797)) (-5 *2 (-1177)) (-5 *1 (-798))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-1071 *4))
- (-4 *4 (-1019)) (-4 *4 (-1126)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *1) (-5 *1 (-132))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-108)) (-5 *5 (-632 (-205)))
- (-5 *2 (-965)) (-5 *1 (-698)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-341)) (-5 *1 (-830 *2 *3))
- (-4 *2 (-1148 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-429)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-1172 *5))) (-5 *4 (-525)) (-4 *5 (-341))
- (-4 *5 (-346)) (-4 *5 (-976)) (-5 *2 (-1172 *5)) (-5 *1 (-959 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-787) (-341))) (-5 *2 (-108)) (-5 *1 (-986 *4 *3))
- (-4 *3 (-1148 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-855)) (-5 *2 (-1073)) (-5 *1 (-728)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1157 *3 *4 *5)) (-5 *1 (-297 *3 *4 *5))
- (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1090)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-382)) (-5 *2 (-525))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-396 *3)) (-4 *3 (-517))))
- ((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-641))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1019)) (-5 *1 (-656 *3 *2 *4)) (-4 *3 (-789))
- (-14 *4
- (-1 (-108) (-2 (|:| -4185 *3) (|:| -1600 *2))
- (-2 (|:| -4185 *3) (|:| -1600 *2)))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-157 *5)) (-4 *5 (-13 (-408 *4) (-933) (-1112)))
- (-4 *4 (-13 (-517) (-789)))
- (-4 *2 (-13 (-408 (-157 *4)) (-933) (-1112)))
- (-5 *1 (-554 *4 *5 *2)))))
+ (-12 (-5 *4 (-713)) (-5 *2 (-108)) (-5 *1 (-543 *3)) (-4 *3 (-510)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-592
- (-2 (|:| -2239 (-713))
- (|:| |eqns|
- (-592
- (-2 (|:| |det| *7) (|:| |rows| (-592 (-525)))
- (|:| |cols| (-592 (-525))))))
- (|:| |fgb| (-592 *7)))))
- (-4 *7 (-883 *4 *6 *5)) (-4 *4 (-13 (-286) (-138)))
- (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735)) (-5 *2 (-713))
- (-5 *1 (-858 *4 *5 *6 *7)))))
+ (-477 (-385 (-525)) (-220 *5 (-713)) (-800 *4)
+ (-227 *4 (-385 (-525)))))
+ (-14 *4 (-592 (-1091))) (-14 *5 (-713)) (-5 *2 (-108))
+ (-5 *1 (-478 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1173 *1)) (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1131))
+ (-4 *4 (-1149 *3)) (-4 *5 (-1149 (-385 *4))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-886 (-157 *4))) (-4 *4 (-160))
- (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-886 (-157 *5))) (-5 *4 (-855)) (-4 *5 (-160))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-886 *4)) (-4 *4 (-976)) (-4 *4 (-567 (-357)))
- (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-886 *5)) (-5 *4 (-855)) (-4 *5 (-976))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-385 (-886 *4))) (-4 *4 (-517))
- (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-385 (-886 *5))) (-5 *4 (-855)) (-4 *5 (-517))
- (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-385 (-886 (-157 *4)))) (-4 *4 (-517))
- (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-385 (-886 (-157 *5)))) (-5 *4 (-855))
- (-4 *5 (-517)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357)))
- (-5 *1 (-727 *5))))
+ (-12 (-4 *4 (-844)) (-4 *5 (-735)) (-4 *6 (-789))
+ (-4 *7 (-884 *4 *5 *6)) (-5 *2 (-396 (-1087 *7)))
+ (-5 *1 (-841 *4 *5 *6 *7)) (-5 *3 (-1087 *7))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-294 *4)) (-4 *4 (-517)) (-4 *4 (-789))
- (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-294 *5)) (-5 *4 (-855)) (-4 *5 (-517))
- (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357)))
- (-5 *1 (-727 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-294 (-157 *4))) (-4 *4 (-517)) (-4 *4 (-789))
- (-4 *4 (-567 (-357))) (-5 *2 (-157 (-357))) (-5 *1 (-727 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-294 (-157 *5))) (-5 *4 (-855)) (-4 *5 (-517))
- (-4 *5 (-789)) (-4 *5 (-567 (-357))) (-5 *2 (-157 (-357)))
- (-5 *1 (-727 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-218 *3 *2)) (-4 *2 (-1126)) (-4 *2 (-976))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-797))))
- ((*1 *1 *1) (-5 *1 (-797)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-877 (-205))) (-5 *2 (-205)) (-5 *1 (-1123))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1170 *2)) (-4 *2 (-1126)) (-4 *2 (-976)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1073)) (-5 *3 (-716)) (-5 *1 (-110)))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-419 *3)) (-4 *3 (-1148 (-525))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-920 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-990 *4 *5 *6)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-1026 *4 *5 *6 *7 *8)) (-4 *8 (-995 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *3 (-976)) (-5 *2 (-891 (-655 *3 *4))) (-5 *1 (-655 *3 *4))
- (-4 *4 (-1148 *3)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-965))
- (-5 *1 (-699)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-525)) (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-1174))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-357)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1130)) (-4 *5 (-1148 *4))
- (-5 *2 (-2 (|:| |radicand| (-385 *5)) (|:| |deg| (-713))))
- (-5 *1 (-139 *4 *5 *3)) (-4 *3 (-1148 (-385 *5))))))
-(((*1 *2) (-12 (-5 *2 (-1050 (-205))) (-5 *1 (-1110)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-205) (-205) (-205)))
- (-5 *4 (-1 (-205) (-205) (-205) (-205)))
- (-5 *2 (-1 (-877 (-205)) (-205) (-205))) (-5 *1 (-639)))))
-(((*1 *2 *1) (-12 (-5 *2 (-903)) (-5 *1 (-839 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-602 *3)) (-4 *3 (-976)) (-4 *3 (-341))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-713)) (-5 *4 (-1 *5 *5)) (-4 *5 (-341))
- (-5 *1 (-605 *5 *2)) (-4 *2 (-602 *5)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1019))))
+ (-12 (-4 *4 (-844)) (-4 *5 (-1149 *4)) (-5 *2 (-396 (-1087 *5)))
+ (-5 *1 (-842 *4 *5)) (-5 *3 (-1087 *5)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-364 *2)) (-4 *2 (-1020))))
((*1 *1 *1 *1) (-12 (-5 *1 (-761 *2)) (-4 *2 (-789)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-976)) (-4 *3 (-1148 *4)) (-4 *2 (-1163 *4))
- (-5 *1 (-1166 *4 *3 *5 *2)) (-4 *5 (-602 *3)))))
-(((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175))))
- ((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-1175)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -2838 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1148 *7))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| (-385 *8))
- (|:| |limitedlogs|
- (-592
- (-2 (|:| |coeff| (-385 *8))
- (|:| |logand| (-385 *8)))))))
- (|:| |a0| *7)))
- (-5 *1 (-535 *7 *8)) (-5 *3 (-385 *8)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1038 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-3 (|:| |fn| (-366)) (|:| |fp| (-62 -1346)))) (-5 *2 (-965))
- (-5 *1 (-691)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-592 *5) *6))
- (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *6 (-1148 *5))
- (-5 *2 (-592 (-2 (|:| -3359 *5) (|:| -1881 *3))))
- (-5 *1 (-751 *5 *6 *3 *7)) (-4 *3 (-602 *6))
- (-4 *7 (-602 (-385 *6))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1090))
- (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-174))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-294 (-205))) (-5 *4 (-1090))
- (-5 *5 (-1014 (-782 (-205)))) (-5 *2 (-592 (-205))) (-5 *1 (-279)))))
(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-341)) (-5 *1 (-709 *2 *3)) (-4 *2 (-651 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-132))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-135)))))
-(((*1 *2 *1) (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-5 *2 (-592 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1073)) (-5 *3 (-525)) (-5 *1 (-221)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-98 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-542 *2)) (-4 *2 (-13 (-29 *4) (-1112)))
- (-5 *1 (-540 *4 *2))
- (-4 *4 (-13 (-429) (-967 (-525)) (-789) (-588 (-525))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-542 (-385 (-886 *4))))
- (-4 *4 (-13 (-429) (-967 (-525)) (-789) (-588 (-525))))
- (-5 *2 (-294 *4)) (-5 *1 (-545 *4)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *2 (-789))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-855)) (-5 *2 (-1177)) (-5 *1 (-195 *4))
- (-4 *4
- (-13 (-789)
- (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $))
- (-15 -1558 ((-1177) $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1177)) (-5 *1 (-195 *3))
- (-4 *3
- (-13 (-789)
- (-10 -8 (-15 -3928 ((-1073) $ (-1090))) (-15 -3303 ((-1177) $))
- (-15 -1558 ((-1177) $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-475)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *2 (-517)) (-5 *1 (-902 *2 *4))
- (-4 *4 (-1148 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1172 *4)) (-5 *3 (-525)) (-4 *4 (-327))
- (-5 *1 (-495 *4)))))
-(((*1 *2 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-286)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-477 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
- (-5 *2
- (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525))
- (|:| |success| (-108))))
- (-5 *1 (-731)) (-5 *5 (-525)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-205)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-132))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1059)) (-5 *2 (-135)))))
-(((*1 *2)
- (-12 (-5 *2 (-108)) (-5 *1 (-1104 *3 *4)) (-4 *3 (-1019))
- (-4 *4 (-1019)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-558 *3 *4)) (-4 *3 (-1019)) (-4 *4 (-1126))
- (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-1 (-108) *8))) (-4 *8 (-990 *5 *6 *7))
- (-4 *5 (-517)) (-4 *6 (-735)) (-4 *7 (-789))
- (-5 *2 (-2 (|:| |goodPols| (-592 *8)) (|:| |badPols| (-592 *8))))
- (-5 *1 (-909 *5 *6 *7 *8)) (-5 *4 (-592 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-294 (-205))) (-5 *1 (-192)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-385 *2)) (-4 *2 (-1148 *5))
- (-5 *1 (-749 *5 *2 *3 *6))
- (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525)))))
- (-4 *3 (-602 *2)) (-4 *6 (-602 (-385 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-385 *2))) (-4 *2 (-1148 *5))
- (-5 *1 (-749 *5 *2 *3 *6))
- (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525))))) (-4 *3 (-602 *2))
- (-4 *6 (-602 (-385 *2))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-713)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-395 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-839 *4)) (-4 *4 (-1019)) (-5 *2 (-592 (-713)))
- (-5 *1 (-838 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-398 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1112) (-408 *3)))
- (-14 *4 (-1090)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-4 *2 (-13 (-27) (-1112) (-408 *3) (-10 -8 (-15 -1908 ($ *4)))))
- (-4 *4 (-787))
- (-4 *5
- (-13 (-1150 *2 *4) (-341) (-1112)
- (-10 -8 (-15 -3013 ($ $)) (-15 -3766 ($ $)))))
- (-5 *1 (-400 *3 *2 *4 *5 *6 *7)) (-4 *6 (-915 *5)) (-14 *7 (-1090)))))
-(((*1 *1 *1) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1126)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-811 *2)) (-4 *2 (-1126))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-813 *2)) (-4 *2 (-1126))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-877 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-877 *3))) (-4 *3 (-976)) (-4 *1 (-1051 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-877 *3))) (-4 *1 (-1051 *3)) (-4 *3 (-976)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-4 *7 (-517))
- (-4 *8 (-883 *7 *5 *6))
- (-5 *2 (-2 (|:| -1600 (-713)) (|:| -1459 *3) (|:| |radicand| *3)))
- (-5 *1 (-887 *5 *6 *7 *8 *3)) (-5 *4 (-713))
- (-4 *3
- (-13 (-341)
- (-10 -8 (-15 -1303 (*8 $)) (-15 -1312 (*8 $)) (-15 -1908 ($ *8))))))))
-(((*1 *1) (-5 *1 (-1093))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *8)) (-5 *4 (-592 (-592 *8)))
- (-4 *8 (-883 *5 *7 *6)) (-4 *5 (-13 (-286) (-138)))
- (-4 *6 (-13 (-789) (-567 (-1090)))) (-4 *7 (-735)) (-5 *2 (-108))
- (-5 *1 (-858 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *2 (-592 (-205)))
- (-5 *1 (-445)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3244 (-724 *3)) (|:| |coef1| (-724 *3))))
- (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-2 (|:| -3244 *1) (|:| |coef1| *1)))
- (-4 *1 (-990 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *2 (-357)) (-5 *1 (-187)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-429)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-698)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-976))
- (-4 *2 (-13 (-382) (-967 *4) (-341) (-1112) (-263)))
- (-5 *1 (-420 *4 *3 *2)) (-4 *3 (-1148 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1172 (-294 (-205)))) (|:| |yinit| (-592 (-205)))
- (|:| |intvals| (-592 (-205))) (|:| |g| (-294 (-205)))
- (|:| |abserr| (-205)) (|:| |relerr| (-205))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-357)) (|:| |stabilityFactor| (-357))))
- (-5 *1 (-187)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1090))
- (-4 *4 (-13 (-286) (-789) (-138) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-1112) (-892) (-29 *4))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-108) "failed")) (-4 *3 (-429)) (-4 *4 (-789))
- (-4 *5 (-735)) (-5 *1 (-919 *3 *4 *5 *6)) (-4 *6 (-883 *3 *5 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-286) (-138))) (-4 *5 (-13 (-789) (-567 (-1090))))
- (-4 *6 (-735)) (-4 *7 (-883 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-108)) (|:| |z0| (-592 *7)) (|:| |n0| (-592 *7))))
- (-5 *1 (-858 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-517)) (-4 *3 (-160)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2))
- (-4 *2 (-630 *3 *4 *5)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-823 *5 *3)) (-5 *4 (-826 *5)) (-4 *5 (-1019))
- (-4 *3 (-154 *6)) (-4 (-886 *6) (-820 *5))
- (-4 *6 (-13 (-820 *5) (-160))) (-5 *1 (-165 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-823 *4 *1)) (-5 *3 (-826 *4)) (-4 *1 (-820 *4))
- (-4 *4 (-1019))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-823 *5 *6)) (-5 *4 (-826 *5)) (-4 *5 (-1019))
- (-4 *6 (-13 (-1019) (-967 *3))) (-4 *3 (-820 *5))
- (-5 *1 (-865 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-823 *5 *3)) (-5 *4 (-826 *5)) (-4 *5 (-1019))
- (-4 *3 (-13 (-408 *6) (-567 (-826 *5)) (-820 *5) (-967 (-565 $))))
- (-4 *6 (-13 (-517) (-789) (-820 *5))) (-5 *1 (-866 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-823 (-525) *3)) (-5 *4 (-826 (-525))) (-4 *3 (-510))
- (-5 *1 (-867 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-823 *5 *6)) (-5 *3 (-565 *6)) (-5 *4 (-826 *5))
- (-4 *5 (-1019))
- (-4 *6 (-13 (-789) (-967 (-565 $)) (-567 (-826 *5)) (-820 *5)))
- (-5 *1 (-868 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-819 *5 *6 *3)) (-5 *4 (-826 *5)) (-4 *5 (-1019))
- (-4 *6 (-820 *5)) (-4 *3 (-612 *6)) (-5 *1 (-869 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *2 (-823 *6 *3)) (-5 *4 (-826 *6))
- (-5 *5 (-1 (-823 *6 *3) *8 (-826 *6) (-823 *6 *3))) (-4 *6 (-1019))
- (-4 *8 (-789)) (-4 *3 (-13 (-883 *9 *7 *8) (-567 (-826 *6))))
- (-4 *7 (-735)) (-4 *9 (-13 (-976) (-789) (-820 *6)))
- (-5 *1 (-870 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-823 *5 *3)) (-5 *4 (-826 *5)) (-4 *5 (-1019))
- (-4 *3 (-13 (-883 *8 *6 *7) (-567 (-826 *5)))) (-4 *7 (-820 *5))
- (-4 *6 (-735)) (-4 *7 (-789)) (-4 *8 (-13 (-976) (-789) (-820 *5)))
- (-5 *1 (-870 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-823 *5 *3)) (-5 *4 (-826 *5)) (-4 *5 (-1019))
- (-4 *3 (-924 *6)) (-4 *6 (-13 (-517) (-820 *5) (-567 (-826 *5))))
- (-5 *1 (-873 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-823 *5 (-1090))) (-5 *3 (-1090)) (-5 *4 (-826 *5))
- (-4 *5 (-1019)) (-5 *1 (-874 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *2 (-823 *7 *9)) (-5 *3 (-592 *9)) (-5 *4 (-592 (-826 *7)))
- (-5 *5 (-1 *9 (-592 *9)))
- (-5 *6 (-1 (-823 *7 *9) *9 (-826 *7) (-823 *7 *9))) (-4 *7 (-1019))
- (-4 *9 (-13 (-976) (-567 (-826 *7)) (-967 *8)))
- (-4 *8 (-13 (-976) (-789))) (-5 *1 (-875 *7 *8 *9)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-108) *4 *4)) (-4 *4 (-1126)) (-5 *1 (-1049 *4 *2))
- (-4 *2 (-13 (-558 (-525) *4) (-10 -7 (-6 -4254) (-6 -4255))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-789)) (-4 *3 (-1126)) (-5 *1 (-1049 *3 *2))
- (-4 *2 (-13 (-558 (-525) *3) (-10 -7 (-6 -4254) (-6 -4255)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-525))) (-5 *2 (-1092 (-385 (-525))))
- (-5 *1 (-172)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976)) (-4 *2 (-341)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-592 (-799 *5))) (-14 *5 (-592 (-1090))) (-4 *6 (-429))
- (-5 *2
- (-2 (|:| |dpolys| (-592 (-227 *5 *6)))
- (|:| |coords| (-592 (-525)))))
- (-5 *1 (-448 *5 *6 *7)) (-5 *3 (-592 (-227 *5 *6))) (-4 *7 (-429)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-941 *3)) (-4 *3 (-1126)) (-4 *3 (-1019))
- (-5 *2 (-108)))))
-(((*1 *1 *1 *1) (-4 *1 (-450))) ((*1 *1 *1 *1) (-4 *1 (-704))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *2 (-965))
- (-5 *1 (-690)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1073)) (-5 *1 (-501)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-826 *4)) (-4 *4 (-1019)) (-5 *1 (-824 *4 *3))
- (-4 *3 (-1126))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-826 *3)) (-4 *3 (-1019)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 (-797))) (-5 *1 (-797))))
- ((*1 *1 *1) (-5 *1 (-797))))
-(((*1 *2 *3) (-12 (-5 *3 (-592 (-525))) (-5 *2 (-713)) (-5 *1 (-546)))))
-(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641))))
- ((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-641)))))
-(((*1 *2 *3) (-12 (-5 *2 (-396 *3)) (-5 *1 (-519 *3)) (-4 *3 (-510))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286)) (-5 *2 (-396 *3))
- (-5 *1 (-685 *4 *5 *6 *3)) (-4 *3 (-883 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-286))
- (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-396 (-1086 *7)))
- (-5 *1 (-685 *4 *5 *6 *7)) (-5 *3 (-1086 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-429)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-396 *1)) (-4 *1 (-883 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-789)) (-4 *5 (-735)) (-4 *6 (-429)) (-5 *2 (-396 *3))
- (-5 *1 (-911 *4 *5 *6 *3)) (-4 *3 (-883 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-735)) (-4 *5 (-789)) (-4 *6 (-429))
- (-4 *7 (-883 *6 *4 *5)) (-5 *2 (-396 (-1086 (-385 *7))))
- (-5 *1 (-1085 *4 *5 *6 *7)) (-5 *3 (-1086 (-385 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-396 *1)) (-4 *1 (-1130))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-396 *3)) (-5 *1 (-1151 *4 *3))
- (-4 *3 (-13 (-1148 *4) (-517) (-10 -8 (-15 -3244 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-973 *4 *5)) (-4 *4 (-13 (-787) (-286) (-138) (-952)))
- (-14 *5 (-592 (-1090)))
- (-5 *2
- (-592 (-1061 *4 (-497 (-799 *6)) (-799 *6) (-722 *4 (-799 *6)))))
- (-5 *1 (-1196 *4 *5 *6)) (-14 *6 (-592 (-1090))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7)) (-5 *2 (-592 *4))
- (-5 *1 (-996 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -4152 *7) (|:| |sol?| (-108)))
- (-525) *7))
- (-5 *6 (-592 (-385 *8))) (-4 *7 (-341)) (-4 *8 (-1148 *7))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| (-385 *8))
- (|:| |limitedlogs|
- (-592
- (-2 (|:| |coeff| (-385 *8))
- (|:| |logand| (-385 *8)))))))
- (|:| |a0| *7)))
- (-5 *1 (-535 *7 *8)) (-5 *3 (-385 *8)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33)))
- ((*1 *1)
- (-12 (-5 *1 (-130 *2 *3 *4)) (-14 *2 (-525)) (-14 *3 (-713))
- (-4 *4 (-160))))
- ((*1 *1) (-4 *1 (-669))) ((*1 *1) (-5 *1 (-1090))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-729)) (-5 *2 (-965))
- (-5 *3
- (-2 (|:| |fn| (-294 (-205)))
- (|:| -4162 (-592 (-1014 (-782 (-205))))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-729)) (-5 *2 (-965))
- (-5 *3
- (-2 (|:| |var| (-1090)) (|:| |fn| (-294 (-205)))
- (|:| -4162 (-1014 (-782 (-205)))) (|:| |abserr| (-205))
- (|:| |relerr| (-205)))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-995 *3 *4 *5 *6)) (-4 *3 (-429)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-995 *4 *5 *6 *3)) (-4 *4 (-429)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1172 (-592 (-2 (|:| -3871 *4) (|:| -4185 (-1037))))))
- (-4 *4 (-327)) (-5 *2 (-1177)) (-5 *1 (-495 *4)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1090)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-644 *3 *5 *6 *7))
- (-4 *3 (-567 (-501))) (-4 *5 (-1126)) (-4 *6 (-1126))
- (-4 *7 (-1126))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1090)) (-5 *2 (-1 *6 *5)) (-5 *1 (-649 *3 *5 *6))
- (-4 *3 (-567 (-501))) (-4 *5 (-1126)) (-4 *6 (-1126)))))
-(((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-335 *3)) (-4 *3 (-327)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1090)) (-5 *1 (-620 *3)) (-4 *3 (-1019)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1023)) (-5 *3 (-716)) (-5 *1 (-51)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-224 *2)) (-4 *2 (-1126))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-261 *2)) (-4 *2 (-1126))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-1160 *2)) (-4 *2 (-1126)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-517)) (-4 *2 (-160)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1145 *5 *4)) (-5 *1 (-1088 *4 *5 *6))
- (-4 *4 (-976)) (-14 *5 (-1090)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1145 *5 *4)) (-5 *1 (-1164 *4 *5 *6))
- (-4 *4 (-976)) (-14 *5 (-1090)) (-14 *6 *4))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1023)) (-5 *1 (-259)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-625 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-956 (-782 (-525)))) (-5 *1 (-550 *3)) (-4 *3 (-976)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1086 *4)) (-5 *1 (-495 *4))
- (-4 *4 (-327)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-632 (-294 (-205)))) (-5 *2 (-357)) (-5 *1 (-187)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-728)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-108)) (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-341) (-787))) (-5 *2 (-396 *3))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-515 *2)) (-4 *2 (-13 (-382) (-1112)))))
- ((*1 *1 *1 *1) (-4 *1 (-735))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-877 *4)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855))
- (-4 *4 (-976)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-988)))))
-(((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-702)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1086 (-1086 *4))))
- (-5 *1 (-1125 *4)) (-5 *3 (-1086 (-1086 *4))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-797)))))
-(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-396 *3)) (-4 *3 (-517))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-2 (|:| -3959 *4) (|:| -2513 (-525)))))
- (-4 *4 (-1148 (-525))) (-5 *2 (-713)) (-5 *1 (-419 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-286)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
- (-5 *1 (-1041 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
- (-4 *4 (-13 (-789) (-517))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-762)) (-14 *5 (-1090)) (-5 *2 (-592 (-1145 *5 *4)))
- (-5 *1 (-1033 *4 *5)) (-5 *3 (-1145 *5 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1079 *2 *3)) (-14 *2 (-855)) (-4 *3 (-976)))))
-(((*1 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1194 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-160))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1019))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-761 *3)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-976))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-807 (-899 *3) (-899 *3))) (-5 *1 (-899 *3))
- (-4 *3 (-900)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-565 *3)) (-5 *5 (-592 *3))
- (-4 *3 (-13 (-408 *6) (-27) (-1112)))
- (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1019)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-787) (-341))) (-5 *1 (-986 *2 *3))
- (-4 *3 (-1148 *2)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107)))))
-(((*1 *2 *1) (-12 (-4 *1 (-481 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-789)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-877 (-205)))) (-5 *1 (-1173)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-154 *3)) (-4 *3 (-160)) (-4 *3 (-510))
- (-5 *2 (-385 (-525)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-396 *3)) (-4 *3 (-510))
- (-4 *3 (-517))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-510)) (-5 *2 (-385 (-525)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-739 *3)) (-4 *3 (-160)) (-4 *3 (-510))
- (-5 *2 (-385 (-525)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-775 *3)) (-4 *3 (-510))
- (-4 *3 (-1019))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-782 *3)) (-4 *3 (-510))
- (-4 *3 (-1019))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-928 *3)) (-4 *3 (-160)) (-4 *3 (-510))
- (-5 *2 (-385 (-525)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-385 (-525))) (-5 *1 (-939 *3))
- (-4 *3 (-967 (-385 (-525)))))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1019)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5)) (-5 *2 (-108))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1120 *4 *5 *6 *3)) (-4 *4 (-517)) (-4 *5 (-735))
- (-4 *6 (-789)) (-4 *3 (-990 *4 *5 *6)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-108) *6)) (-4 *6 (-13 (-1019) (-967 *5)))
- (-4 *5 (-820 *4)) (-4 *4 (-1019)) (-5 *2 (-1 (-108) *5))
- (-5 *1 (-865 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-429))) (-5 *1 (-1118 *3 *2))
- (-4 *2 (-13 (-408 *3) (-1112))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-429)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1177))
- (-5 *1 (-426 *4 *5 *6 *3)) (-4 *3 (-883 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1092 (-385 (-525)))) (-5 *1 (-172)) (-5 *3 (-525)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-592 (-592 (-877 (-205))))) (-5 *3 (-592 (-808)))
- (-5 *1 (-445)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
- (-5 *2 (-632 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-632 *4)) (-5 *1 (-394 *3 *4))
- (-4 *3 (-395 *4))))
- ((*1 *2) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1194 *4 *2)) (-4 *1 (-352 *4 *2)) (-4 *4 (-789))
- (-4 *2 (-160))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1187 *3 *2)) (-4 *3 (-789)) (-4 *2 (-976))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-761 *4)) (-4 *1 (-1187 *4 *2)) (-4 *4 (-789))
- (-4 *2 (-976))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-976)) (-5 *1 (-1193 *2 *3)) (-4 *3 (-785)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1090)) (-5 *4 (-886 (-525))) (-5 *2 (-308))
- (-5 *1 (-310)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-565 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1090))) (-5 *5 (-1086 *2))
- (-4 *2 (-13 (-408 *6) (-27) (-1112)))
- (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1019))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-565 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1090)))
- (-5 *5 (-385 (-1086 *2))) (-4 *2 (-13 (-408 *6) (-27) (-1112)))
- (-4 *6 (-13 (-429) (-967 (-525)) (-789) (-138) (-588 (-525))))
- (-5 *1 (-521 *6 *2 *7)) (-4 *7 (-1019)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-632 *2)) (-4 *4 (-1148 *2))
- (-4 *2 (-13 (-286) (-10 -8 (-15 -1510 ((-396 $) $)))))
- (-5 *1 (-472 *2 *4 *5)) (-4 *5 (-387 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1040 *3 *2 *4 *5)) (-4 *4 (-218 *3 *2))
- (-4 *5 (-218 *3 *2)) (-4 *2 (-976)))))
-(((*1 *2 *3) (-12 (-5 *3 (-713)) (-5 *2 (-1177)) (-5 *1 (-357))))
- ((*1 *2) (-12 (-5 *2 (-1177)) (-5 *1 (-357)))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-341)) (-4 *2 (-787)) (-5 *1 (-879 *2 *3))
- (-4 *3 (-1148 *2)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3))
- (-4 *3 (-1148 (-157 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-341) (-787))) (-5 *1 (-167 *2 *3))
- (-4 *3 (-1148 (-157 *2))))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-883 *3 *5 *4)) (-5 *1 (-919 *3 *4 *5 *2))
- (-4 *3 (-429)) (-4 *4 (-789)) (-4 *5 (-735)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-565 *4)) (-5 *1 (-564 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-789)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-592 (-1090))) (-4 *2 (-160))
- (-4 *3 (-218 (-4140 *4) (-713)))
- (-14 *6
- (-1 (-108) (-2 (|:| -4185 *5) (|:| -1600 *3))
- (-2 (|:| -4185 *5) (|:| -1600 *3))))
- (-5 *1 (-438 *4 *2 *5 *3 *6 *7)) (-4 *5 (-789))
- (-4 *7 (-883 *2 *3 (-799 *4))))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 *8)) (-4 *8 (-883 *5 *7 *6))
- (-4 *5 (-13 (-286) (-138))) (-4 *6 (-13 (-789) (-567 (-1090))))
- (-4 *7 (-735))
- (-5 *2
- (-592
- (-2 (|:| -2239 (-713))
- (|:| |eqns|
- (-592
- (-2 (|:| |det| *8) (|:| |rows| (-592 (-525)))
- (|:| |cols| (-592 (-525))))))
- (|:| |fgb| (-592 *8)))))
- (-5 *1 (-858 *5 *6 *7 *8)) (-5 *4 (-713)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-632 (-205))) (-5 *4 (-525)) (-5 *2 (-965))
- (-5 *1 (-698)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1086 *3)) (-4 *3 (-327)) (-5 *1 (-335 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-797))))
- ((*1 *1 *1) (-5 *1 (-797))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-632 *5))) (-5 *4 (-1172 *5)) (-4 *5 (-286))
- (-4 *5 (-976)) (-5 *2 (-632 *5)) (-5 *1 (-959 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-813 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-813 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357)))
- (-5 *2 (-1050 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-877 (-205)) (-205))) (-5 *4 (-1014 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-877 (-205)) (-205))) (-5 *4 (-1014 (-357)))
- (-5 *2 (-1050 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1014 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1014 (-357)))
- (-5 *2 (-1050 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-357)))
- (-5 *2 (-1050 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-816 (-1 (-205) (-205) (-205)))) (-5 *4 (-1014 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1050 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-816 (-1 (-205) (-205) (-205)))) (-5 *4 (-1014 (-357)))
- (-5 *2 (-1050 (-205))) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-813 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242)))
- (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1050 (-205)))
- (-5 *1 (-238 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-813 *5)) (-5 *4 (-1012 (-357)))
- (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1050 (-205)))
- (-5 *1 (-238 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242)))
- (-5 *2 (-1050 (-205))) (-5 *1 (-238 *3))
- (-4 *3 (-13 (-567 (-501)) (-1019)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1012 (-357))) (-5 *2 (-1050 (-205))) (-5 *1 (-238 *3))
- (-4 *3 (-13 (-567 (-501)) (-1019)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-816 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242)))
- (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1050 (-205)))
- (-5 *1 (-238 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-816 *5)) (-5 *4 (-1012 (-357)))
- (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1050 (-205)))
- (-5 *1 (-238 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1071 *3)) (-5 *1 (-161 *3)) (-4 *3 (-286)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-135)))))
-(((*1 *2 *1) (-12 (-5 *2 (-713)) (-5 *1 (-826 *3)) (-4 *3 (-1019))))
- ((*1 *2 *1) (-12 (-4 *1 (-1038 *3)) (-4 *3 (-1126)) (-5 *2 (-713)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789))
- (-4 *3 (-990 *5 *6 *7))
- (-5 *2 (-592 (-2 (|:| |val| (-592 *3)) (|:| -3740 *4))))
- (-5 *1 (-1027 *5 *6 *7 *3 *4)) (-4 *4 (-995 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-713)) (-5 *4 (-1121 *6)) (-4 *6 (-341))
- (-5 *2 (-1 (-1071 (-1121 *6)) (-1071 (-1121 *6))))
- (-5 *1 (-1180 *6)) (-5 *5 (-1071 (-1121 *6))))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1172 (-357))) (-5 *4 (-525)) (-5 *5 (-357))
- (-5 *6 (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))
- (-5 *2 (-1177)) (-5 *1 (-730))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *3 (-1172 (-357))) (-5 *4 (-525)) (-5 *5 (-357))
- (-5 *6 (-1 (-1177) (-1172 (-357)) (-1172 (-357)) (-357)))
- (-5 *2 (-1177)) (-5 *1 (-730)))))
-(((*1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525))))
- ((*1 *1 *1) (-5 *1 (-1037))))
-(((*1 *2 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1073)) (-5 *1 (-284)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525))))
- (-5 *2 (-157 (-294 *4))) (-5 *1 (-170 *4 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 (-157 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-157 *3)) (-5 *1 (-1116 *4 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1019)) (-4 *5 (-13 (-567 (-826 *4)) (-160)))
- (-5 *2 (-826 *4)) (-5 *1 (-158 *4 *5 *3)) (-4 *3 (-154 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-1014 (-782 (-357)))))
- (-5 *2 (-592 (-1014 (-782 (-205))))) (-5 *1 (-284))))
- ((*1 *1 *2) (-12 (-5 *2 (-205)) (-5 *1 (-357))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-797)) (-5 *3 (-525)) (-5 *1 (-372))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1172 *3)) (-4 *3 (-160)) (-4 *1 (-387 *3 *4))
- (-4 *4 (-1148 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3))
- (-5 *2 (-1172 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1172 *3)) (-4 *3 (-160)) (-4 *1 (-395 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-1172 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-396 *1)) (-4 *1 (-408 *3)) (-4 *3 (-517))
- (-4 *3 (-789))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5)) (-4 *3 (-976))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-440 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-501))))
- ((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-1126))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-160)) (-4 *1 (-667 *3 *2)) (-4 *2 (-1148 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 (-826 *3))) (-4 *3 (-1019)) (-5 *1 (-826 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-976)) (-4 *1 (-912 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-987))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-886 *3)) (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5))
- (-4 *5 (-567 (-1090))) (-4 *4 (-735)) (-4 *5 (-789))))
- ((*1 *1 *2)
- (-3309
- (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5))
- (-12 (-2480 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525)))
- (-4 *5 (-567 (-1090))))
- (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)))
- (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5))
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090))))
- (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-886 (-385 (-525)))) (-4 *1 (-990 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090))) (-4 *3 (-976))
- (-4 *4 (-735)) (-4 *5 (-789))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -3740 *8)))
- (-4 *7 (-990 *4 *5 *6)) (-4 *8 (-995 *4 *5 *6 *7)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1073))
- (-5 *1 (-993 *4 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1004))))
- ((*1 *1 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1022 *3 *4 *5 *6 *2)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1022 *3 *4 *5 *2 *6)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *2 (-1019)) (-4 *6 (-1019))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1022 *3 *4 *2 *5 *6)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *2 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1022 *3 *2 *4 *5 *6)) (-4 *3 (-1019)) (-4 *2 (-1019))
- (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1022 *2 *3 *4 *5 *6)) (-4 *2 (-1019)) (-4 *3 (-1019))
- (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-592 *1)) (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019))
- (-4 *4 (-1019)) (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-592 *7)) (|:| -3740 *8)))
- (-4 *7 (-990 *4 *5 *6)) (-4 *8 (-1028 *4 *5 *6 *7)) (-4 *4 (-429))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-1073))
- (-5 *1 (-1060 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1023)) (-5 *1 (-1095))))
- ((*1 *2 *1) (-12 (-5 *2 (-1023)) (-5 *1 (-1095))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-797)) (-5 *3 (-525)) (-5 *1 (-1107))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-797)) (-5 *3 (-525)) (-5 *1 (-1107))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-722 *4 (-799 *5)))
- (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *5 (-592 (-1090)))
- (-5 *2 (-722 *4 (-799 *6))) (-5 *1 (-1196 *4 *5 *6))
- (-14 *6 (-592 (-1090)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-886 *4)) (-4 *4 (-13 (-787) (-286) (-138) (-952)))
- (-5 *2 (-886 (-954 (-385 *4)))) (-5 *1 (-1196 *4 *5 *6))
- (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-722 *4 (-799 *6)))
- (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *6 (-592 (-1090)))
- (-5 *2 (-886 (-954 (-385 *4)))) (-5 *1 (-1196 *4 *5 *6))
- (-14 *5 (-592 (-1090)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1086 *4)) (-4 *4 (-13 (-787) (-286) (-138) (-952)))
- (-5 *2 (-1086 (-954 (-385 *4)))) (-5 *1 (-1196 *4 *5 *6))
- (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090)))))
- ((*1 *2 *3)
- (-12
- (-5 *3 (-1061 *4 (-497 (-799 *6)) (-799 *6) (-722 *4 (-799 *6))))
- (-4 *4 (-13 (-787) (-286) (-138) (-952))) (-14 *6 (-592 (-1090)))
- (-5 *2 (-592 (-722 *4 (-799 *6)))) (-5 *1 (-1196 *4 *5 *6))
- (-14 *5 (-592 (-1090))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1120 *3 *4 *5 *6)) (-4 *3 (-517)) (-4 *4 (-735))
- (-4 *5 (-789)) (-4 *6 (-990 *3 *4 *5))
- (-5 *2 (-2 (|:| -3286 (-592 *6)) (|:| -2396 (-592 *6)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-372))))
- ((*1 *2 *1) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1107)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-713)) (-4 *1 (-211 *4))
- (-4 *4 (-976))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-211 *3)) (-4 *3 (-976))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-213)) (-5 *2 (-713))))
- ((*1 *1 *1) (-4 *1 (-213)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *3 (-13 (-341) (-138))) (-5 *1 (-377 *3 *4))
- (-4 *4 (-1148 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-341) (-138))) (-5 *1 (-377 *2 *3))
- (-4 *3 (-1148 *2))))
- ((*1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 *4)) (-5 *3 (-592 (-713))) (-4 *1 (-834 *4))
- (-4 *4 (-1019))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-834 *2)) (-4 *2 (-1019))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-592 *3)) (-4 *1 (-834 *3)) (-4 *3 (-1019))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-834 *2)) (-4 *2 (-1019)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-2 (|:| |gen| *3) (|:| -1982 *4))))
- (-4 *3 (-1019)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-595 *3 *4 *5)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1090))
- (-4 *5 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-2 (|:| -2838 *3) (|:| |coeff| *3))) (-5 *1 (-518 *5 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *5))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-789) (-517) (-967 (-525)))) (-5 *2 (-385 (-525)))
- (-5 *1 (-411 *4 *3)) (-4 *3 (-408 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-565 *3)) (-4 *3 (-408 *5))
- (-4 *5 (-13 (-789) (-517) (-967 (-525))))
- (-5 *2 (-1086 (-385 (-525)))) (-5 *1 (-411 *5 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-286) (-138))) (-4 *4 (-13 (-789) (-567 (-1090))))
- (-4 *5 (-735)) (-5 *1 (-858 *3 *4 *5 *2)) (-4 *2 (-883 *3 *5 *4)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2506 *3) (|:| |coef1| (-724 *3)) (|:| |coef2| (-724 *3))))
- (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-782 *4)) (-5 *3 (-565 *4)) (-5 *5 (-108))
- (-4 *4 (-13 (-1112) (-29 *6)))
- (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-204 *6 *4)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525))))
- ((*1 *1 *1 *1) (-5 *1 (-1037))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-877 *3)) (-4 *3 (-13 (-341) (-1112) (-933)))
- (-5 *1 (-163 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1073)) (-4 *4 (-13 (-286) (-138)))
- (-4 *5 (-13 (-789) (-567 (-1090)))) (-4 *6 (-735))
- (-5 *2
- (-592
- (-2 (|:| |eqzro| (-592 *7)) (|:| |neqzro| (-592 *7))
- (|:| |wcond| (-592 (-886 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1172 (-385 (-886 *4))))
- (|:| -2499 (-592 (-1172 (-385 (-886 *4))))))))))
- (-5 *1 (-858 *4 *5 *6 *7)) (-4 *7 (-883 *4 *6 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-205)) (-5 *1 (-206))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-157 (-205))) (-5 *1 (-206))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-409 *3 *2))
- (-4 *2 (-408 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1054))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1172 *4)) (-4 *4 (-588 (-525)))
- (-5 *2 (-1172 (-525))) (-5 *1 (-1197 *4)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-1055 *4 *5))) (-5 *3 (-1 (-108) *5 *5))
- (-4 *4 (-13 (-1019) (-33))) (-4 *5 (-13 (-1019) (-33)))
- (-5 *1 (-1056 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-592 (-1055 *3 *4))) (-4 *3 (-13 (-1019) (-33)))
- (-4 *4 (-13 (-1019) (-33))) (-5 *1 (-1056 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1148 *5)) (-4 *5 (-341))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-535 *5 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-380)) (-5 *2 (-713))))
- ((*1 *1 *1) (-4 *1 (-380))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *4 *5)) (-4 *4 (-160))
- (-4 *5 (-1148 *4)) (-5 *2 (-632 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-160)) (-4 *4 (-1148 *3))
- (-5 *2 (-632 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-341) (-138)))
- (-5 *2 (-592 (-2 (|:| -1600 (-713)) (|:| -2563 *4) (|:| |num| *4))))
- (-5 *1 (-377 *3 *4)) (-4 *4 (-1148 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-473 *2)) (-14 *2 (-525))))
- ((*1 *1 *1 *1) (-5 *1 (-1037))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-408 *4)) (-5 *1 (-147 *4 *2))
- (-4 *4 (-13 (-789) (-517))))))
-(((*1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1013 *2)) (-4 *2 (-1126))))
- ((*1 *1 *2) (-12 (-5 *1 (-1139 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-789)) (-4 *5 (-843)) (-4 *6 (-735))
- (-4 *8 (-883 *5 *6 *7)) (-5 *2 (-396 (-1086 *8)))
- (-5 *1 (-840 *5 *6 *7 *8)) (-5 *4 (-1086 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-843)) (-4 *5 (-1148 *4)) (-5 *2 (-396 (-1086 *5)))
- (-5 *1 (-841 *4 *5)) (-5 *3 (-1086 *5)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-713)) (-4 *4 (-13 (-517) (-138)))
- (-5 *1 (-1142 *4 *2)) (-4 *2 (-1148 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-713)) (-4 *1 (-1148 *4)) (-4 *4 (-976))
- (-5 *2 (-1172 *4)))))
-(((*1 *2) (-12 (-4 *2 (-160)) (-5 *1 (-153 *3 *2)) (-4 *3 (-154 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1172 *1)) (-4 *1 (-348 *2 *4)) (-4 *4 (-1148 *2))
- (-4 *2 (-160))))
- ((*1 *2)
- (-12 (-4 *4 (-1148 *2)) (-4 *2 (-160)) (-5 *1 (-386 *3 *2 *4))
- (-4 *3 (-387 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *3 (-1148 *2)) (-4 *2 (-160))))
- ((*1 *2)
- (-12 (-4 *3 (-1148 (-525))) (-5 *2 (-525)) (-5 *1 (-710 *3 *4))
- (-4 *4 (-387 (-525) *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-883 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *2 (-789)) (-4 *3 (-160))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-517)) (-5 *1 (-902 *2 *3)) (-4 *3 (-1148 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1148 *2)) (-4 *2 (-976)) (-4 *2 (-160)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-630 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *2 (-108))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-525)) (|has| *1 (-6 -4245)) (-4 *1 (-382))
- (-5 *2 (-855)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-592
- (-2
- (|:| -3946
- (-2 (|:| |xinit| (-205)) (|:| |xend| (-205))
- (|:| |fn| (-1172 (-294 (-205))))
- (|:| |yinit| (-592 (-205))) (|:| |intvals| (-592 (-205)))
- (|:| |g| (-294 (-205))) (|:| |abserr| (-205))
- (|:| |relerr| (-205))))
- (|:| -2511
- (-2 (|:| |stiffness| (-357)) (|:| |stability| (-357))
- (|:| |expense| (-357)) (|:| |accuracy| (-357))
- (|:| |intermediateResults| (-357)))))))
- (-5 *1 (-745)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-722 *5 (-799 *6)))) (-5 *4 (-108)) (-4 *5 (-429))
- (-14 *6 (-592 (-1090)))
- (-5 *2
- (-592 (-1061 *5 (-497 (-799 *6)) (-799 *6) (-722 *5 (-799 *6)))))
- (-5 *1 (-577 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-385 (-525))) (-5 *1 (-297 *3 *4 *5))
- (-4 *3 (-13 (-341) (-789))) (-14 *4 (-1090)) (-14 *5 *3))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-713)) (-5 *4 (-855)) (-5 *2 (-1177)) (-5 *1 (-1173))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-713)) (-5 *4 (-855)) (-5 *2 (-1177)) (-5 *1 (-1174)))))
+ (-12 (-5 *2 (-1072 *3)) (-4 *3 (-341)) (-4 *3 (-977))
+ (-5 *1 (-1076 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-92)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-357)) (-5 *2 (-1178)) (-5 *1 (-1175)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-525))) (-5 *1 (-935 *3)) (-14 *3 (-525)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-592 *3))) (-4 *3 (-1019)) (-5 *1 (-839 *3)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-345 *2)) (-4 *2 (-160)) (-4 *2 (-517))))
- ((*1 *1 *1) (|partial| -4 *1 (-665))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-396 *3)) (-4 *3 (-517)) (-5 *1 (-397 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1014 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-234))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-205) (-205))) (-5 *4 (-1014 (-357)))
- (-5 *2 (-1173)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-811 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1173)) (-5 *1 (-234))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-811 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357)))
- (-5 *2 (-1173)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-813 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-813 (-1 (-205) (-205)))) (-5 *4 (-1014 (-357)))
- (-5 *2 (-1174)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-877 (-205)) (-205))) (-5 *4 (-1014 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-877 (-205)) (-205))) (-5 *4 (-1014 (-357)))
- (-5 *2 (-1174)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1014 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-205) (-205) (-205))) (-5 *4 (-1014 (-357)))
- (-5 *2 (-1174)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-877 (-205)) (-205) (-205))) (-5 *4 (-1014 (-357)))
- (-5 *2 (-1174)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-816 (-1 (-205) (-205) (-205)))) (-5 *4 (-1014 (-357)))
- (-5 *5 (-592 (-242))) (-5 *2 (-1174)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-816 (-1 (-205) (-205) (-205)))) (-5 *4 (-1014 (-357)))
- (-5 *2 (-1174)) (-5 *1 (-234))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-273 *7)) (-5 *4 (-1090)) (-5 *5 (-592 (-242)))
- (-4 *7 (-408 *6)) (-4 *6 (-13 (-517) (-789) (-967 (-525))))
- (-5 *2 (-1173)) (-5 *1 (-235 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1173))
- (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1019)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1012 (-357))) (-5 *2 (-1173)) (-5 *1 (-238 *3))
- (-4 *3 (-13 (-567 (-501)) (-1019)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-811 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242)))
- (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1173))
- (-5 *1 (-238 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-811 *5)) (-5 *4 (-1012 (-357)))
- (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1173))
- (-5 *1 (-238 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-813 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242)))
- (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1174))
- (-5 *1 (-238 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-813 *5)) (-5 *4 (-1012 (-357)))
- (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1174))
- (-5 *1 (-238 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242))) (-5 *2 (-1174))
- (-5 *1 (-238 *3)) (-4 *3 (-13 (-567 (-501)) (-1019)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1012 (-357))) (-5 *2 (-1174)) (-5 *1 (-238 *3))
- (-4 *3 (-13 (-567 (-501)) (-1019)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-816 *6)) (-5 *4 (-1012 (-357))) (-5 *5 (-592 (-242)))
- (-4 *6 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1174))
- (-5 *1 (-238 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-816 *5)) (-5 *4 (-1012 (-357)))
- (-4 *5 (-13 (-567 (-501)) (-1019))) (-5 *2 (-1174))
- (-5 *1 (-238 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1173)) (-5 *1 (-239))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1173))
- (-5 *1 (-239))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-877 (-205)))) (-5 *2 (-1173)) (-5 *1 (-239))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-877 (-205)))) (-5 *4 (-592 (-242)))
- (-5 *2 (-1173)) (-5 *1 (-239))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-592 (-205))) (-5 *2 (-1174)) (-5 *1 (-239))))
- ((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-592 (-205))) (-5 *4 (-592 (-242))) (-5 *2 (-1174))
- (-5 *1 (-239)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1019))))
- ((*1 *1 *2) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1019)))))
-(((*1 *2 *1) (-12 (-5 *2 (-592 (-1090))) (-5 *1 (-48)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-341)) (-4 *4 (-351 *3)) (-4 *5 (-351 *3))
- (-5 *1 (-492 *3 *4 *5 *2)) (-4 *2 (-630 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-517)) (-4 *5 (-351 *4)) (-4 *6 (-351 *4))
- (-4 *7 (-924 *4)) (-4 *2 (-630 *7 *8 *9))
- (-5 *1 (-493 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-630 *4 *5 *6))
- (-4 *8 (-351 *7)) (-4 *9 (-351 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-630 *2 *3 *4)) (-4 *2 (-976))
- (-4 *3 (-351 *2)) (-4 *4 (-351 *2)) (-4 *2 (-341))))
- ((*1 *2 *2)
- (|partial| -12 (-4 *3 (-341)) (-4 *3 (-160)) (-4 *4 (-351 *3))
- (-4 *5 (-351 *3)) (-5 *1 (-631 *3 *4 *5 *2))
- (-4 *2 (-630 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-632 *2)) (-4 *2 (-341)) (-4 *2 (-976))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1040 *2 *3 *4 *5)) (-4 *3 (-976))
- (-4 *4 (-218 *2 *3)) (-4 *5 (-218 *2 *3)) (-4 *3 (-341))))
- ((*1 *2 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-789)) (-5 *1 (-1098 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-515 *3)) (-4 *3 (-13 (-382) (-1112))) (-5 *2 (-108)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-108)) (-4 *5 (-13 (-341) (-787)))
- (-5 *2 (-592 (-2 (|:| -2203 (-592 *3)) (|:| -1869 *5))))
- (-5 *1 (-167 *5 *3)) (-4 *3 (-1148 (-157 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-341) (-787)))
- (-5 *2 (-592 (-2 (|:| -2203 (-592 *3)) (|:| -1869 *4))))
- (-5 *1 (-167 *4 *3)) (-4 *3 (-1148 (-157 *4))))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-713)) (-4 *3 (-976)) (-4 *1 (-630 *3 *4 *5))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-713)) (-4 *1 (-1170 *3)) (-4 *3 (-23)) (-4 *3 (-1126)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-92)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-364 *3)) (|:| |mm| (-364 *3)) (|:| |rm| (-364 *3))))
- (-5 *1 (-364 *3)) (-4 *3 (-1019))))
- ((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-761 *3)) (|:| |mm| (-761 *3)) (|:| |rm| (-761 *3))))
- (-5 *1 (-761 *3)) (-4 *3 (-789)))))
-(((*1 *2)
- (-12 (-4 *4 (-160)) (-5 *2 (-108)) (-5 *1 (-344 *3 *4))
- (-4 *3 (-345 *4))))
- ((*1 *2) (-12 (-4 *1 (-345 *3)) (-4 *3 (-160)) (-5 *2 (-108)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-990 *4 *5 *6)) (-4 *4 (-517))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *1 (-909 *4 *5 *6 *2)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-525)) (-4 *3 (-160)) (-4 *5 (-351 *3))
- (-4 *6 (-351 *3)) (-5 *1 (-631 *3 *5 *6 *2))
- (-4 *2 (-630 *3 *5 *6)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-110)) (-5 *3 (-592 *1)) (-4 *1 (-281))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-281)) (-5 *2 (-110))))
- ((*1 *1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-565 *3)) (-4 *3 (-789))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-110)) (-5 *3 (-592 *5)) (-5 *4 (-713)) (-4 *5 (-789))
- (-5 *1 (-565 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1090)) (-5 *3 (-592 (-898))) (-5 *1 (-104)))))
-(((*1 *2 *1) (-12 (-5 *2 (-525)) (-5 *1 (-797)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-787) (-286) (-138) (-952)))
- (-5 *2 (-592 (-973 *5 *6))) (-5 *1 (-1196 *5 *6 *7))
- (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-886 *5))) (-5 *4 (-108))
- (-4 *5 (-13 (-787) (-286) (-138) (-952)))
- (-5 *2 (-592 (-973 *5 *6))) (-5 *1 (-1196 *5 *6 *7))
- (-14 *6 (-592 (-1090))) (-14 *7 (-592 (-1090)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-886 *4)))
- (-4 *4 (-13 (-787) (-286) (-138) (-952)))
- (-5 *2 (-592 (-973 *4 *5))) (-5 *1 (-1196 *4 *5 *6))
- (-14 *5 (-592 (-1090))) (-14 *6 (-592 (-1090))))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-592 (-1090)))
- (-4 *2 (-13 (-408 (-157 *5)) (-933) (-1112)))
- (-4 *5 (-13 (-517) (-789))) (-5 *1 (-554 *5 *6 *2))
- (-4 *6 (-13 (-408 *5) (-933) (-1112))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-550 *2)) (-4 *2 (-37 (-385 (-525)))) (-4 *2 (-976)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-429)) (-4 *4 (-517)) (-4 *4 (-789))
- (-5 *2 (-396 (-1086 (-294 *4)))) (-5 *1 (-294 *4))
- (-5 *3 (-1086 (-294 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-843)) (-5 *2 (-396 (-1086 *1))) (-5 *3 (-1086 *1)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-976))
- (-4 *4 (-734))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-49 *3 *4))
- (-14 *4 (-592 (-1090)))))
- ((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1126))
- (-4 *4 (-351 *3)) (-4 *5 (-351 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1126))
- (-4 *6 (-1126)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-130 *5 *6 *7)) (-14 *5 (-525))
- (-14 *6 (-713)) (-4 *7 (-160)) (-4 *8 (-160))
- (-5 *2 (-130 *5 *6 *8)) (-5 *1 (-129 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-157 *5)) (-4 *5 (-160))
- (-4 *6 (-160)) (-5 *2 (-157 *6)) (-5 *1 (-156 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-294 *3) (-294 *3))) (-4 *3 (-13 (-976) (-789)))
- (-5 *1 (-203 *3 *4)) (-14 *4 (-592 (-1090)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-220 *5 *6)) (-14 *5 (-713))
- (-4 *6 (-1126)) (-4 *7 (-1126)) (-5 *2 (-220 *5 *7))
- (-5 *1 (-219 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-273 *5)) (-4 *5 (-1126))
- (-4 *6 (-1126)) (-5 *2 (-273 *6)) (-5 *1 (-272 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1126)) (-5 *1 (-273 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1073)) (-5 *5 (-565 *6))
- (-4 *6 (-281)) (-4 *2 (-1126)) (-5 *1 (-276 *6 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-565 *5)) (-4 *5 (-281))
- (-4 *2 (-281)) (-5 *1 (-277 *5 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-565 *1)) (-4 *1 (-281))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-632 *5)) (-4 *5 (-976))
- (-4 *6 (-976)) (-5 *2 (-632 *6)) (-5 *1 (-283 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-789))
- (-4 *6 (-789)) (-5 *2 (-294 *6)) (-5 *1 (-292 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-314 *5 *6 *7 *8)) (-4 *5 (-341))
- (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-4 *8 (-320 *5 *6 *7))
- (-4 *9 (-341)) (-4 *10 (-1148 *9)) (-4 *11 (-1148 (-385 *10)))
- (-5 *2 (-314 *9 *10 *11 *12))
- (-5 *1 (-311 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-320 *9 *10 *11))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-316 *3)) (-4 *3 (-1019))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1130)) (-4 *8 (-1130))
- (-4 *6 (-1148 *5)) (-4 *7 (-1148 (-385 *6))) (-4 *9 (-1148 *8))
- (-4 *2 (-320 *8 *9 *10)) (-5 *1 (-318 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-320 *5 *6 *7)) (-4 *10 (-1148 (-385 *9)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1126)) (-4 *6 (-1126))
- (-4 *2 (-351 *6)) (-5 *1 (-349 *5 *4 *6 *2)) (-4 *4 (-351 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-360 *3 *4)) (-4 *3 (-976))
- (-4 *4 (-1019))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-396 *5)) (-4 *5 (-517))
- (-4 *6 (-517)) (-5 *2 (-396 *6)) (-5 *1 (-383 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-385 *5)) (-4 *5 (-517))
- (-4 *6 (-517)) (-5 *2 (-385 *6)) (-5 *1 (-384 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-391 *5 *6 *7 *8)) (-4 *5 (-286))
- (-4 *6 (-924 *5)) (-4 *7 (-1148 *6))
- (-4 *8 (-13 (-387 *6 *7) (-967 *6))) (-4 *9 (-286))
- (-4 *10 (-924 *9)) (-4 *11 (-1148 *10))
- (-5 *2 (-391 *9 *10 *11 *12))
- (-5 *1 (-390 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-387 *10 *11) (-967 *10)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160))
- (-4 *2 (-395 *6)) (-5 *1 (-393 *4 *5 *2 *6)) (-4 *4 (-395 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-517)) (-5 *1 (-396 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-976) (-789)))
- (-4 *6 (-13 (-976) (-789))) (-4 *2 (-408 *6))
- (-5 *1 (-399 *5 *4 *6 *2)) (-4 *4 (-408 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1019)) (-4 *6 (-1019))
- (-4 *2 (-403 *6)) (-5 *1 (-401 *5 *4 *6 *2)) (-4 *4 (-403 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-464 *3)) (-4 *3 (-1126))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-481 *3 *4)) (-4 *3 (-1019))
- (-4 *4 (-789))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-542 *5)) (-4 *5 (-341))
- (-4 *6 (-341)) (-5 *2 (-542 *6)) (-5 *1 (-541 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2838 *5) (|:| |coeff| *5)) "failed"))
- (-4 *5 (-341)) (-4 *6 (-341))
- (-5 *2 (-2 (|:| -2838 *6) (|:| |coeff| *6)))
- (-5 *1 (-541 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
- (-4 *5 (-341)) (-4 *2 (-341)) (-5 *1 (-541 *5 *2))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4
- (-3
- (-2 (|:| |mainpart| *5)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
- "failed"))
- (-4 *5 (-341)) (-4 *6 (-341))
- (-5 *2
- (-2 (|:| |mainpart| *6)
- (|:| |limitedlogs|
- (-592 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-541 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-555 *5)) (-4 *5 (-1126))
- (-4 *6 (-1126)) (-5 *2 (-555 *6)) (-5 *1 (-552 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-555 *7))
- (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-555 *8))
- (-5 *1 (-553 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1071 *6)) (-5 *5 (-555 *7))
- (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-1071 *8))
- (-5 *1 (-553 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-555 *6)) (-5 *5 (-1071 *7))
- (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-1071 *8))
- (-5 *1 (-553 *6 *7 *8))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1126)) (-5 *1 (-555 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-592 *5)) (-4 *5 (-1126))
- (-4 *6 (-1126)) (-5 *2 (-592 *6)) (-5 *1 (-590 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-592 *6)) (-5 *5 (-592 *7))
- (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-592 *8))
- (-5 *1 (-591 *6 *7 *8))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-597 *3)) (-4 *3 (-1126))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-976)) (-4 *8 (-976))
- (-4 *6 (-351 *5)) (-4 *7 (-351 *5)) (-4 *2 (-630 *8 *9 *10))
- (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-630 *5 *6 *7))
- (-4 *9 (-351 *8)) (-4 *10 (-351 *8))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-976))
- (-4 *8 (-976)) (-4 *6 (-351 *5)) (-4 *7 (-351 *5))
- (-4 *2 (-630 *8 *9 *10)) (-5 *1 (-628 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-630 *5 *6 *7)) (-4 *9 (-351 *8)) (-4 *10 (-351 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-517)) (-4 *7 (-517))
- (-4 *6 (-1148 *5)) (-4 *2 (-1148 (-385 *8)))
- (-5 *1 (-652 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1148 (-385 *6)))
- (-4 *8 (-1148 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-976)) (-4 *9 (-976)) (-4 *5 (-789))
- (-4 *6 (-735)) (-4 *2 (-883 *9 *7 *5))
- (-5 *1 (-671 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-735))
- (-4 *4 (-883 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-789)) (-4 *6 (-789)) (-4 *7 (-735))
- (-4 *9 (-976)) (-4 *2 (-883 *9 *8 *6))
- (-5 *1 (-672 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-735))
- (-4 *4 (-883 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-678 *5 *7)) (-4 *5 (-976))
- (-4 *6 (-976)) (-4 *7 (-669)) (-5 *2 (-678 *6 *7))
- (-5 *1 (-677 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-678 *3 *4))
- (-4 *4 (-669))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-724 *5)) (-4 *5 (-976))
- (-4 *6 (-976)) (-5 *2 (-724 *6)) (-5 *1 (-723 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160))
- (-4 *2 (-739 *6)) (-5 *1 (-740 *4 *5 *2 *6)) (-4 *4 (-739 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5)) (-4 *5 (-1019))
- (-4 *6 (-1019)) (-5 *2 (-775 *6)) (-5 *1 (-774 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-775 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-775 *5))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *1 (-774 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5)) (-4 *5 (-1019))
- (-4 *6 (-1019)) (-5 *2 (-782 *6)) (-5 *1 (-781 *5 *6))))
- ((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-782 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-782 *5))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-5 *1 (-781 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-811 *5)) (-4 *5 (-1126))
- (-4 *6 (-1126)) (-5 *2 (-811 *6)) (-5 *1 (-810 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-813 *5)) (-4 *5 (-1126))
- (-4 *6 (-1126)) (-5 *2 (-813 *6)) (-5 *1 (-812 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-816 *5)) (-4 *5 (-1126))
- (-4 *6 (-1126)) (-5 *2 (-816 *6)) (-5 *1 (-815 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-823 *5 *6)) (-4 *5 (-1019))
- (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-823 *5 *7))
- (-5 *1 (-822 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-826 *5)) (-4 *5 (-1019))
- (-4 *6 (-1019)) (-5 *2 (-826 *6)) (-5 *1 (-825 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-976))
- (-4 *6 (-976)) (-5 *2 (-886 *6)) (-5 *1 (-880 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-789))
- (-4 *8 (-976)) (-4 *6 (-735))
- (-4 *2
- (-13 (-1019)
- (-10 -8 (-15 -4059 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-713))))))
- (-5 *1 (-885 *6 *7 *8 *5 *2)) (-4 *5 (-883 *8 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-1126))
- (-4 *6 (-1126)) (-5 *2 (-891 *6)) (-5 *1 (-890 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-877 *5)) (-4 *5 (-976))
- (-4 *6 (-976)) (-5 *2 (-877 *6)) (-5 *1 (-913 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-886 *4))) (-4 *4 (-976))
- (-4 *2 (-883 (-886 *4) *5 *6)) (-4 *5 (-735))
- (-4 *6
- (-13 (-789)
- (-10 -8 (-15 -1427 ((-1090) $))
- (-15 -1251 ((-3 $ "failed") (-1090))))))
- (-5 *1 (-916 *4 *5 *6 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-517)) (-4 *6 (-517))
- (-4 *2 (-924 *6)) (-5 *1 (-922 *5 *6 *4 *2)) (-4 *4 (-924 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-160)) (-4 *6 (-160))
- (-4 *2 (-928 *6)) (-5 *1 (-929 *4 *5 *2 *6)) (-4 *4 (-928 *5))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-979 *3 *4 *5 *6 *7))
- (-4 *5 (-976)) (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-979 *3 *4 *5 *6 *7)) (-4 *5 (-976))
- (-4 *6 (-218 *4 *5)) (-4 *7 (-218 *3 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-976)) (-4 *10 (-976))
- (-14 *5 (-713)) (-14 *6 (-713)) (-4 *8 (-218 *6 *7))
- (-4 *9 (-218 *5 *7)) (-4 *2 (-979 *5 *6 *10 *11 *12))
- (-5 *1 (-981 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-979 *5 *6 *7 *8 *9)) (-4 *11 (-218 *6 *10))
- (-4 *12 (-218 *5 *10))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1014 *5)) (-4 *5 (-1126))
- (-4 *6 (-1126)) (-5 *2 (-1014 *6)) (-5 *1 (-1010 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1014 *5)) (-4 *5 (-787))
- (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-592 *6))
- (-5 *1 (-1010 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1012 *5)) (-4 *5 (-1126))
- (-4 *6 (-1126)) (-5 *2 (-1012 *6)) (-5 *1 (-1011 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1015 *4 *2)) (-4 *4 (-787))
- (-4 *2 (-1064 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1071 *5)) (-4 *5 (-1126))
- (-4 *6 (-1126)) (-5 *2 (-1071 *6)) (-5 *1 (-1069 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1071 *6)) (-5 *5 (-1071 *7))
- (-4 *6 (-1126)) (-4 *7 (-1126)) (-4 *8 (-1126)) (-5 *2 (-1071 *8))
- (-5 *1 (-1070 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-976))
- (-4 *6 (-976)) (-5 *2 (-1086 *6)) (-5 *1 (-1084 *5 *6))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1103 *3 *4)) (-4 *3 (-1019))
- (-4 *4 (-1019))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1136 *5 *7 *9)) (-4 *5 (-976))
- (-4 *6 (-976)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1136 *6 *8 *10)) (-5 *1 (-1131 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1090))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5)) (-4 *5 (-1126))
- (-4 *6 (-1126)) (-5 *2 (-1139 *6)) (-5 *1 (-1138 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1139 *5)) (-4 *5 (-787))
- (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1071 *6))
- (-5 *1 (-1138 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1145 *5 *6)) (-14 *5 (-1090))
- (-4 *6 (-976)) (-4 *8 (-976)) (-5 *2 (-1145 *7 *8))
- (-5 *1 (-1140 *5 *6 *7 *8)) (-14 *7 (-1090))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-976)) (-4 *6 (-976))
- (-4 *2 (-1148 *6)) (-5 *1 (-1146 *5 *4 *6 *2)) (-4 *4 (-1148 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1157 *5 *7 *9)) (-4 *5 (-976))
- (-4 *6 (-976)) (-14 *7 (-1090)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1157 *6 *8 *10)) (-5 *1 (-1152 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1090))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-976)) (-4 *6 (-976))
- (-4 *2 (-1163 *6)) (-5 *1 (-1161 *5 *6 *4 *2)) (-4 *4 (-1163 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1172 *5)) (-4 *5 (-1126))
- (-4 *6 (-1126)) (-5 *2 (-1172 *6)) (-5 *1 (-1171 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1172 *5))
- (-4 *5 (-1126)) (-4 *6 (-1126)) (-5 *2 (-1172 *6))
- (-5 *1 (-1171 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-976))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-1193 *3 *4))
- (-4 *4 (-785)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-327)) (-5 *2 (-396 (-1086 (-1086 *4))))
- (-5 *1 (-1125 *4)) (-5 *3 (-1086 (-1086 *4))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-405 *3 *2)) (-4 *3 (-13 (-160) (-37 (-385 (-525)))))
- (-4 *2 (-13 (-789) (-21))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-782 (-205)))) (-5 *4 (-205)) (-5 *2 (-592 *4))
- (-5 *1 (-246)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-594 *3)) (-4 *3 (-976))
- (-5 *1 (-657 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-976)) (-5 *1 (-776 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-592 (-592 *4)))) (-4 *4 (-789))
- (-5 *2 (-592 (-592 *4))) (-5 *1 (-1098 *4)))))
-(((*1 *1) (-5 *1 (-520))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1073)) (-5 *2 (-108)) (-5 *1 (-110)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1086 *3)) (-4 *3 (-976)) (-4 *1 (-1148 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-205)) (-5 *5 (-525)) (-5 *2 (-1122 *3))
- (-5 *1 (-732 *3)) (-4 *3 (-906))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-108))
- (-5 *1 (-1122 *2)) (-4 *2 (-906)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-592 *7) *7 (-1086 *7))) (-5 *5 (-1 (-396 *7) *7))
- (-4 *7 (-1148 *6)) (-4 *6 (-13 (-341) (-138) (-967 (-385 (-525)))))
- (-5 *2 (-592 (-2 (|:| |frac| (-385 *7)) (|:| -1881 *3))))
- (-5 *1 (-751 *6 *7 *3 *8)) (-4 *3 (-602 *7))
- (-4 *8 (-602 (-385 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-396 *6) *6)) (-4 *6 (-1148 *5))
- (-4 *5 (-13 (-341) (-138) (-967 (-525)) (-967 (-385 (-525)))))
- (-5 *2
- (-592 (-2 (|:| |frac| (-385 *6)) (|:| -1881 (-600 *6 (-385 *6))))))
- (-5 *1 (-754 *5 *6)) (-5 *3 (-600 *6 (-385 *6))))))
-(((*1 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1175))))
- ((*1 *2 *2) (-12 (-5 *2 (-592 (-1073))) (-5 *1 (-1175)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4255)) (-4 *1 (-351 *2)) (-4 *2 (-1126))
- (-4 *2 (-789))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-108) *3 *3)) (|has| *1 (-6 -4255))
- (-4 *1 (-351 *3)) (-4 *3 (-1126)))))
-(((*1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)) (-4 *2 (-341)))))
+ (-12 (-4 *3 (-977)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
+ (-4 *1 (-991 *3 *4 *5)))))
(((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-444))))
- ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-861)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1073)) (-5 *4 (-525)) (-5 *5 (-632 (-205)))
- (-5 *6 (-205)) (-5 *7 (-632 (-525))) (-5 *2 (-965)) (-5 *1 (-695)))))
-(((*1 *2 *2) (-12 (-5 *2 (-855)) (|has| *1 (-6 -4245)) (-4 *1 (-382))))
- ((*1 *2) (-12 (-4 *1 (-382)) (-5 *2 (-855))))
- ((*1 *2 *2) (-12 (-5 *2 (-855)) (-5 *1 (-641))))
- ((*1 *2) (-12 (-5 *2 (-855)) (-5 *1 (-641)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-320 *4 *3 *5)) (-4 *4 (-1130)) (-4 *3 (-1148 *4))
- (-4 *5 (-1148 (-385 *3))) (-5 *2 (-108))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4))) (-5 *2 (-108)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789) (-967 (-525)))) (-5 *2 (-108))
- (-5 *1 (-170 *4 *3)) (-4 *3 (-13 (-27) (-1112) (-408 (-157 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-412))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-108)) (-5 *1 (-1116 *4 *3))
- (-4 *3 (-13 (-27) (-1112) (-408 *4))))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-713)) (-4 *3 (-517)) (-5 *1 (-902 *3 *2))
- (-4 *2 (-1148 *3)))))
-(((*1 *2) (-12 (-5 *2 (-775 (-525))) (-5 *1 (-499))))
- ((*1 *1) (-12 (-5 *1 (-775 *2)) (-4 *2 (-1019)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-713)) (-5 *2 (-1 (-357))) (-5 *1 (-969)))))
-(((*1 *1) (-5 *1 (-765))))
-(((*1 *1 *1) (-4 *1 (-578)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-579 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933) (-1112))))))
-(((*1 *2 *2) (-12 (-5 *2 (-525)) (-5 *1 (-522)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-797)))
- ((*1 *1 *1 *1) (-4 *1 (-900))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-385 (-525))) (-5 *4 (-525)) (-5 *2 (-51))
- (-5 *1 (-936)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
- (-5 *2 (-965)) (-5 *1 (-698)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-883 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-341)) (-4 *3 (-735)) (-4 *4 (-789))
- (-5 *1 (-477 *2 *3 *4 *5)) (-4 *5 (-883 *2 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-157 (-205))) (-5 *4 (-525)) (-5 *2 (-965))
- (-5 *1 (-701)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
- (-5 *6 (-632 (-525))) (-5 *2 (-965)) (-5 *1 (-695)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-408 *3) (-933))) (-5 *1 (-255 *3 *2))
- (-4 *3 (-13 (-789) (-517)))))
- ((*1 *1)
- (-12 (-5 *1 (-317 *2 *3 *4)) (-14 *2 (-592 (-1090)))
- (-14 *3 (-592 (-1090))) (-4 *4 (-365))))
- ((*1 *1) (-5 *1 (-454))) ((*1 *1) (-4 *1 (-1112))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-713)) (-4 *4 (-286)) (-4 *6 (-1148 *4))
- (-5 *2 (-1172 (-592 *6))) (-5 *1 (-432 *4 *6)) (-5 *5 (-592 *6)))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-713)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-735)) (-4 *7 (-883 *4 *5 *6)) (-4 *4 (-429)) (-4 *6 (-789))
- (-5 *2 (-108)) (-5 *1 (-426 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1073)) (-4 *1 (-342 *3 *4)) (-4 *3 (-1019))
- (-4 *4 (-1019)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-976))
- (-4 *4 (-734)))))
-(((*1 *1 *1 *1) (-4 *1 (-119))) ((*1 *1 *1 *1) (-5 *1 (-797)))
- ((*1 *1 *1 *1) (-4 *1 (-900))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 (-782 *3))) (-4 *3 (-13 (-27) (-1112) (-408 *5)))
- (-4 *5 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2
- (-3 (-782 *3)
- (-2 (|:| |leftHandLimit| (-3 (-782 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-782 *3) "failed")))
- "failed"))
- (-5 *1 (-585 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-273 *3)) (-5 *5 (-1073))
- (-4 *3 (-13 (-27) (-1112) (-408 *6)))
- (-4 *6 (-13 (-429) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *2 (-782 *3)) (-5 *1 (-585 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 (-782 (-886 *5)))) (-4 *5 (-429))
- (-5 *2
- (-3 (-782 (-385 (-886 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-782 (-385 (-886 *5))) "failed")))
- "failed"))
- (-5 *1 (-586 *5)) (-5 *3 (-385 (-886 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-273 (-385 (-886 *5)))) (-4 *5 (-429))
- (-5 *2
- (-3 (-782 (-385 (-886 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-782 (-385 (-886 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-782 (-385 (-886 *5))) "failed")))
- "failed"))
- (-5 *1 (-586 *5)) (-5 *3 (-385 (-886 *5)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-273 (-385 (-886 *6)))) (-5 *5 (-1073))
- (-4 *6 (-429)) (-5 *2 (-782 (-385 (-886 *6)))) (-5 *1 (-586 *6))
- (-5 *3 (-385 (-886 *6))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1071 *3))) (-4 *3 (-37 (-385 (-525))))
- (-4 *3 (-976)) (-5 *2 (-1071 *3)) (-5 *1 (-1075 *3)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1090))
- (-4 *4 (-13 (-429) (-789) (-138) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-518 *4 *2)) (-4 *2 (-13 (-27) (-1112) (-408 *4))))))
-(((*1 *1) (-5 *1 (-1006))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1073)) (-5 *2 (-592 (-1095))) (-5 *1 (-814)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-592 *6)) (-4 *1 (-883 *4 *5 *6)) (-4 *4 (-976))
- (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-713))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-883 *3 *4 *5)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-789)) (-5 *2 (-713)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-320 *3 *4 *5)) (-4 *3 (-1130)) (-4 *4 (-1148 *3))
- (-4 *5 (-1148 (-385 *4)))
- (-5 *2 (-2 (|:| |num| (-1172 *4)) (|:| |den| *4))))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-592 (-565 *2))) (-5 *4 (-1090))
- (-4 *2 (-13 (-27) (-1112) (-408 *5)))
- (-4 *5 (-13 (-517) (-789) (-967 (-525)) (-588 (-525))))
- (-5 *1 (-256 *5 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-789) (-517))) (-5 *1 (-255 *3 *2))
- (-4 *2 (-13 (-408 *3) (-933))))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-592 (-1090))) (-4 *2 (-160))
- (-4 *4 (-218 (-4140 *5) (-713)))
- (-14 *6
- (-1 (-108) (-2 (|:| -4185 *3) (|:| -1600 *4))
- (-2 (|:| -4185 *3) (|:| -1600 *4))))
- (-5 *1 (-438 *5 *2 *3 *4 *6 *7)) (-4 *3 (-789))
- (-4 *7 (-883 *2 *4 (-799 *5))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-632 *3)) (-4 *3 (-976)) (-5 *1 (-633 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *3)) (-4 *3 (-1019)) (-5 *1 (-89 *3)))))
-(((*1 *1 *1) (-5 *1 (-501))))
-(((*1 *2 *3) (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-937)))))
-(((*1 *2 *1) (-12 (-5 *2 (-108)) (-5 *1 (-899 *3)) (-4 *3 (-900)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-445)) (-5 *4 (-855)) (-5 *2 (-1177)) (-5 *1 (-1173)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 (-839 *3))) (-4 *3 (-1019)) (-5 *1 (-838 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1042 (-525) (-565 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-924 *2)) (-4 *4 (-1148 *3)) (-4 *2 (-286))
- (-5 *1 (-391 *2 *3 *4 *5)) (-4 *5 (-13 (-387 *3 *4) (-967 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-517)) (-4 *3 (-789)) (-5 *2 (-1042 *3 (-565 *1)))
- (-4 *1 (-408 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1042 (-525) (-565 (-468)))) (-5 *1 (-468))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4))
- (-5 *1 (-571 *3 *4 *2)) (-4 *3 (-37 *4))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-160)) (-4 *2 (|SubsetCategory| (-669) *4))
- (-5 *1 (-608 *3 *4 *2)) (-4 *3 (-660 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1155 *3 *2)) (-4 *3 (-976))
- (-4 *2 (-1132 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-104))))
- ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-342 *2 *3)) (-4 *3 (-1019)) (-4 *2 (-1019))))
- ((*1 *2 *1) (-12 (-4 *1 (-367)) (-5 *2 (-1073))))
- ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-416 *3)) (-14 *3 (-1090))))
- ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-565 *3)) (-4 *3 (-789))))
- ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-898))))
- ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-997 *3)) (-14 *3 (-1090))))
- ((*1 *1 *1) (-5 *1 (-1090))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-525)) (-5 *1 (-396 *2)) (-4 *2 (-517)))))
-(((*1 *2 *1) (-12 (-4 *1 (-233 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-385 (-1086 (-294 *3)))) (-4 *3 (-13 (-517) (-789)))
- (-5 *1 (-1047 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1172 *1)) (-4 *1 (-345 *4)) (-4 *4 (-160))
- (-5 *2 (-632 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-395 *3)) (-4 *3 (-160)) (-5 *2 (-632 *3)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)) (-4 *2 (-517)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-592 *6)) (-4 *6 (-789)) (-4 *4 (-341)) (-4 *5 (-735))
- (-5 *1 (-477 *4 *5 *6 *2)) (-4 *2 (-883 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-341)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *1 (-477 *3 *4 *5 *2)) (-4 *2 (-883 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1042 (-525) (-565 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-286)) (-4 *4 (-924 *3)) (-4 *5 (-1148 *4))
- (-5 *2 (-1172 *6)) (-5 *1 (-391 *3 *4 *5 *6))
- (-4 *6 (-13 (-387 *4 *5) (-967 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-976)) (-4 *3 (-789)) (-5 *2 (-1042 *3 (-565 *1)))
- (-4 *1 (-408 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1042 (-525) (-565 (-468)))) (-5 *1 (-468))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-160)) (-4 *2 (-37 *3)) (-5 *1 (-571 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-669) *3))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-160)) (-4 *2 (-660 *3)) (-5 *1 (-608 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-669) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-924 *2)) (-4 *2 (-517)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-565 *3)) (-4 *3 (-789)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-976))))
- ((*1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-422 *3)) (-4 *3 (-382)) (-4 *3 (-976)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-385 (-886 *3))) (-5 *1 (-430 *3 *4 *5 *6))
- (-4 *3 (-517)) (-4 *3 (-160)) (-14 *4 (-855))
- (-14 *5 (-592 (-1090))) (-14 *6 (-1172 (-632 *3))))))
-(((*1 *1 *1) (-12 (-4 *1 (-926 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-357)) (-5 *1 (-187))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-357)) (-5 *3 (-592 (-357))) (-5 *1 (-187)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-592 *2)) (-4 *2 (-1126)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 (-294 (-205)))) (-5 *2 (-108)) (-5 *1 (-246))))
- ((*1 *2 *3) (-12 (-5 *3 (-294 (-205))) (-5 *2 (-108)) (-5 *1 (-246))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789)) (-5 *2 (-108))
- (-5 *1 (-909 *4 *5 *6 *3)) (-4 *3 (-990 *4 *5 *6)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-632 *4)) (-5 *3 (-713)) (-4 *4 (-976))
- (-5 *1 (-633 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-764)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 *2)) (-4 *2 (-510)) (-5 *1 (-148 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-1126)) (-5 *2 (-713)))))
-(((*1 *1) (-5 *1 (-132))) ((*1 *1 *1) (-5 *1 (-135)))
- ((*1 *1 *1) (-4 *1 (-1059))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1019)) (-4 *2 (-834 *4)) (-5 *1 (-634 *4 *2 *5 *3))
- (-4 *5 (-351 *2)) (-4 *3 (-13 (-351 *4) (-10 -7 (-6 -4254)))))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-342 *3 *2)) (-4 *3 (-1019)) (-4 *2 (-1019)))))
-(((*1 *2 *3) (-12 (-5 *3 (-877 *2)) (-5 *1 (-914 *2)) (-4 *2 (-976)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-592 *6)) (-4 *6 (-883 *3 *4 *5)) (-4 *3 (-341))
- (-4 *4 (-735)) (-4 *5 (-789)) (-5 *1 (-477 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-924 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-133 *4 *5 *3))
- (-4 *3 (-351 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-924 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-476 *4 *5 *6 *3)) (-4 *6 (-351 *4)) (-4 *3 (-351 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-632 *5)) (-4 *5 (-924 *4)) (-4 *4 (-517))
- (-5 *2 (-2 (|:| |num| (-632 *4)) (|:| |den| *4)))
- (-5 *1 (-635 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-341) (-138) (-967 (-385 (-525)))))
- (-4 *6 (-1148 *5))
- (-5 *2 (-2 (|:| -1881 *7) (|:| |rh| (-592 (-385 *6)))))
- (-5 *1 (-749 *5 *6 *7 *3)) (-5 *4 (-592 (-385 *6)))
- (-4 *7 (-602 *6)) (-4 *3 (-602 (-385 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-924 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1141 *4 *5 *3))
- (-4 *3 (-1148 *5)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-108)) (-5 *1 (-159)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-1172 (-632 *4))) (-5 *1 (-88 *4 *5))
- (-5 *3 (-632 *4)) (-4 *5 (-602 *4)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-357) (-357))) (-5 *4 (-357))
- (-5 *2
- (-2 (|:| -3871 *4) (|:| -1869 *4) (|:| |totalpts| (-525))
- (|:| |success| (-108))))
- (-5 *1 (-731)) (-5 *5 (-525)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -3740 *9))))
- (-5 *4 (-713)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-995 *5 *6 *7 *8))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1177))
- (-5 *1 (-993 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-2 (|:| |val| (-592 *8)) (|:| -3740 *9))))
- (-5 *4 (-713)) (-4 *8 (-990 *5 *6 *7)) (-4 *9 (-1028 *5 *6 *7 *8))
- (-4 *5 (-429)) (-4 *6 (-735)) (-4 *7 (-789)) (-5 *2 (-1177))
- (-5 *1 (-1060 *5 *6 *7 *8 *9)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -3244 (-724 *3)) (|:| |coef1| (-724 *3))
- (|:| |coef2| (-724 *3))))
- (-5 *1 (-724 *3)) (-4 *3 (-517)) (-4 *3 (-976))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-517)) (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-2 (|:| -3244 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-990 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1126)) (-5 *2 (-713)) (-5 *1 (-168 *4 *3))
- (-4 *3 (-619 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-517)) (-5 *2 (-592 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-395 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-803 *3)) (-5 *2 (-525)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1073)) (-5 *1 (-797)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-976)) (-5 *1 (-1144 *3 *2)) (-4 *2 (-1148 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1071 (-1071 *4))) (-4 *4 (-976)) (-5 *2 (-1071 *4))
- (-5 *1 (-1075 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-976)) (-4 *2 (-341))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-341)) (-5 *1 (-605 *4 *2))
- (-4 *2 (-602 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-242))) (-5 *4 (-1090)) (-5 *2 (-108))
- (-5 *1 (-242)))))
-(((*1 *2 *2) (-12 (-5 *2 (-632 (-294 (-525)))) (-5 *1 (-961)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-713)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855))
- (-4 *4 (-976)))))
-(((*1 *1 *2) (-12 (-5 *2 (-592 *1)) (-4 *1 (-281))))
- ((*1 *1 *1) (-4 *1 (-281))) ((*1 *1 *1) (-5 *1 (-797))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *3 (-205)) (-5 *4 (-157 (-205))) (-5 *5 (-525))
- (-5 *6 (-1073)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-205)) (-5 *4 (-525)) (-5 *2 (-965)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-808))
- (-5 *5 (-855)) (-5 *6 (-592 (-242))) (-5 *2 (-445)) (-5 *1 (-1176))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *2 (-445))
- (-5 *1 (-1176))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-592 (-877 (-205))))) (-5 *4 (-592 (-242)))
- (-5 *2 (-445)) (-5 *1 (-1176)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1126))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-886 (-357))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090)))
- (-14 *4 (-592 (-1090))) (-4 *5 (-365))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-385 (-886 (-357)))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090)))
- (-14 *4 (-592 (-1090))) (-4 *5 (-365))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-294 (-357))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-967 (-357))) (-14 *3 (-592 (-1090)))
- (-14 *4 (-592 (-1090))) (-4 *5 (-365))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-886 (-525))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090)))
- (-14 *4 (-592 (-1090))) (-4 *5 (-365))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-385 (-886 (-525)))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090)))
- (-14 *4 (-592 (-1090))) (-4 *5 (-365))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-294 (-525))) (-5 *1 (-317 *3 *4 *5))
- (-4 *5 (-967 (-525))) (-14 *3 (-592 (-1090)))
- (-14 *4 (-592 (-1090))) (-4 *5 (-365))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-317 *3 *4 *5))
- (-14 *3 (-592 (-1090))) (-14 *4 (-592 (-1090))) (-4 *5 (-365))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-294 *5)) (-4 *5 (-365))
- (-5 *1 (-317 *3 *4 *5)) (-14 *3 (-592 (-1090)))
- (-14 *4 (-592 (-1090)))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-632 (-385 (-886 (-525))))) (-4 *1 (-362))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-632 (-385 (-886 (-357))))) (-4 *1 (-362))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-632 (-886 (-525)))) (-4 *1 (-362))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-632 (-886 (-357)))) (-4 *1 (-362))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-632 (-294 (-525)))) (-4 *1 (-362))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-632 (-294 (-357)))) (-4 *1 (-362))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-385 (-886 (-525)))) (-4 *1 (-374))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-385 (-886 (-357)))) (-4 *1 (-374))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-886 (-525))) (-4 *1 (-374))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-886 (-357))) (-4 *1 (-374))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-525))) (-4 *1 (-374))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-294 (-357))) (-4 *1 (-374))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1172 (-385 (-886 (-525))))) (-4 *1 (-418))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1172 (-385 (-886 (-357))))) (-4 *1 (-418))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1172 (-886 (-525)))) (-4 *1 (-418))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1172 (-886 (-357)))) (-4 *1 (-418))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1172 (-294 (-525)))) (-4 *1 (-418))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1172 (-294 (-357)))) (-4 *1 (-418))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-327)) (-4 *5 (-307 *4)) (-4 *6 (-1148 *5))
- (-5 *2 (-1086 (-1086 *4))) (-5 *1 (-719 *4 *5 *6 *3 *7))
- (-4 *3 (-1148 *6)) (-14 *7 (-855))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-592 *6)) (-4 *6 (-990 *3 *4 *5))
- (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))
- (-4 *1 (-908 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-967 *2)) (-4 *2 (-1126))))
- ((*1 *1 *2)
- (|partial| -3309
- (-12 (-5 *2 (-886 *3))
- (-12 (-2480 (-4 *3 (-37 (-385 (-525)))))
- (-2480 (-4 *3 (-37 (-525)))) (-4 *5 (-567 (-1090))))
- (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735))
- (-4 *5 (-789)))
- (-12 (-5 *2 (-886 *3))
- (-12 (-2480 (-4 *3 (-510))) (-2480 (-4 *3 (-37 (-385 (-525)))))
- (-4 *3 (-37 (-525))) (-4 *5 (-567 (-1090))))
- (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735))
- (-4 *5 (-789)))
- (-12 (-5 *2 (-886 *3))
- (-12 (-2480 (-4 *3 (-924 (-525)))) (-4 *3 (-37 (-385 (-525))))
- (-4 *5 (-567 (-1090))))
- (-4 *3 (-976)) (-4 *1 (-990 *3 *4 *5)) (-4 *4 (-735))
- (-4 *5 (-789)))))
- ((*1 *1 *2)
- (|partial| -3309
- (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5))
- (-12 (-2480 (-4 *3 (-37 (-385 (-525))))) (-4 *3 (-37 (-525)))
- (-4 *5 (-567 (-1090))))
- (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)))
- (-12 (-5 *2 (-886 (-525))) (-4 *1 (-990 *3 *4 *5))
- (-12 (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090))))
- (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-886 (-385 (-525)))) (-4 *1 (-990 *3 *4 *5))
- (-4 *3 (-37 (-385 (-525)))) (-4 *5 (-567 (-1090))) (-4 *3 (-976))
- (-4 *4 (-735)) (-4 *5 (-789)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-908 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *2 (-789)) (-4 *5 (-990 *3 *4 *2)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-915 *2)) (-4 *2 (-1112)))))
-(((*1 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-510)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-632 *2)) (-4 *2 (-160)) (-5 *1 (-137 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-160)) (-4 *2 (-1148 *4)) (-5 *1 (-164 *4 *2 *3))
- (-4 *3 (-667 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 (-385 (-886 *5)))) (-5 *4 (-1090)) (-4 *5 (-429))
- (-5 *2 (-886 *5)) (-5 *1 (-271 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-632 (-385 (-886 *4)))) (-4 *4 (-429)) (-5 *2 (-886 *4))
- (-5 *1 (-271 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-348 *3 *2)) (-4 *3 (-160)) (-4 *2 (-1148 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-632 (-157 (-385 (-525)))))
- (-5 *2 (-886 (-157 (-385 (-525))))) (-5 *1 (-707 *4))
- (-4 *4 (-13 (-341) (-787)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 (-157 (-385 (-525))))) (-5 *4 (-1090))
- (-5 *2 (-886 (-157 (-385 (-525))))) (-5 *1 (-707 *5))
- (-4 *5 (-13 (-341) (-787)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *2 (-886 (-385 (-525))))
- (-5 *1 (-721 *4)) (-4 *4 (-13 (-341) (-787)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-632 (-385 (-525)))) (-5 *4 (-1090))
- (-5 *2 (-886 (-385 (-525)))) (-5 *1 (-721 *5))
- (-4 *5 (-13 (-341) (-787))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1022 *3 *4 *5 *6 *7)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *7 (-1019)) (-5 *2 (-108)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-976)) (-4 *5 (-735)) (-4 *3 (-789))
- (-5 *2 (-2 (|:| -1459 *1) (|:| |gap| (-713)) (|:| -1632 *1)))
- (-4 *1 (-990 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789))
- (-5 *2 (-2 (|:| -1459 *1) (|:| |gap| (-713)) (|:| -1632 *1)))
- (-4 *1 (-990 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-908 *3 *4 *2 *5)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *5 (-990 *3 *4 *2)) (-4 *2 (-789))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *2 (-789)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-108)) (-5 *1 (-550 *3)) (-4 *3 (-976)))))
-(((*1 *2 *1) (-12 (-4 *1 (-619 *3)) (-4 *3 (-1126)) (-5 *2 (-108)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1090))
- (-4 *4 (-13 (-789) (-286) (-967 (-525)) (-588 (-525)) (-138)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-746 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1112) (-892))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1172 (-592 (-2 (|:| -3871 *4) (|:| -4185 (-1037))))))
- (-4 *4 (-327)) (-5 *2 (-632 *4)) (-5 *1 (-324 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1120 *4 *5 *3 *6)) (-4 *4 (-517)) (-4 *5 (-735))
- (-4 *3 (-789)) (-4 *6 (-990 *4 *5 *3)) (-5 *2 (-108))))
- ((*1 *2 *1) (-12 (-4 *1 (-1189 *3)) (-4 *3 (-341)) (-5 *2 (-108)))))
-(((*1 *2 *1) (-12 (-4 *1 (-245 *2)) (-4 *2 (-789))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1090)) (-5 *1 (-799 *3))
- (-14 *3 (-592 (-1090)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-899 *3)) (-4 *3 (-900))))
- ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-921))))
- ((*1 *2 *1) (-12 (-5 *2 (-1090)) (-5 *1 (-1012 *3)) (-4 *3 (-1126))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1150 *3 *4)) (-4 *3 (-976)) (-4 *4 (-734))
- (-5 *2 (-1090))))
- ((*1 *2) (-12 (-5 *2 (-1090)) (-5 *1 (-1168 *3)) (-14 *3 (-1090)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-632 (-205))) (-5 *5 (-632 (-525)))
- (-5 *2 (-965)) (-5 *1 (-697)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 (-886 *6))) (-5 *4 (-592 (-1090)))
- (-4 *6 (-13 (-517) (-967 *5))) (-4 *5 (-517))
- (-5 *2 (-592 (-592 (-273 (-385 (-886 *6)))))) (-5 *1 (-968 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789))) (-5 *2 (-157 *5))
- (-5 *1 (-554 *4 *5 *3)) (-4 *5 (-13 (-408 *4) (-933) (-1112)))
- (-4 *3 (-13 (-408 (-157 *4)) (-933) (-1112))))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-976)) (-14 *3 (-592 (-1090)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-203 *2 *3)) (-4 *2 (-13 (-976) (-789)))
- (-14 *3 (-592 (-1090)))))
- ((*1 *1 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *2 (-976)) (-4 *3 (-1019))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-592 (-1090))) (-4 *3 (-160))
- (-4 *5 (-218 (-4140 *2) (-713)))
- (-14 *6
- (-1 (-108) (-2 (|:| -4185 *4) (|:| -1600 *5))
- (-2 (|:| -4185 *4) (|:| -1600 *5))))
- (-5 *1 (-438 *2 *3 *4 *5 *6 *7)) (-4 *4 (-789))
- (-4 *7 (-883 *3 *5 (-799 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *2 (-1019)) (-4 *3 (-789))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1148 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-976))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-678 *2 *3)) (-4 *3 (-789)) (-4 *2 (-976))
- (-4 *3 (-669))))
- ((*1 *1 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *2 (-789))))
- ((*1 *1 *1) (-12 (-5 *1 (-1193 *2 *3)) (-4 *2 (-976)) (-4 *3 (-785)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-592 (-877 *4))) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855))
- (-4 *4 (-976)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-592 *5)) (-5 *4 (-855)) (-4 *5 (-789))
- (-5 *2 (-592 (-617 *5))) (-5 *1 (-617 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-205)) (-5 *2 (-385 (-525))) (-5 *1 (-284)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-592 *7)) (-4 *7 (-883 *4 *5 *6)) (-4 *6 (-567 (-1090)))
- (-4 *4 (-341)) (-4 *5 (-735)) (-4 *6 (-789))
- (-5 *2 (-1080 (-592 (-886 *4)) (-592 (-273 (-886 *4)))))
- (-5 *1 (-477 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-49 *3 *4)) (-4 *3 (-976))
- (-14 *4 (-592 (-1090)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-108)) (-5 *1 (-203 *3 *4)) (-4 *3 (-13 (-976) (-789)))
- (-14 *4 (-592 (-1090))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-592 (-998 *4 *5 *2))) (-4 *4 (-1019))
- (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4))))
- (-4 *2 (-13 (-408 *5) (-820 *4) (-567 (-826 *4))))
- (-5 *1 (-53 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-592 (-998 *5 *6 *2))) (-5 *4 (-855)) (-4 *5 (-1019))
- (-4 *6 (-13 (-976) (-820 *5) (-789) (-567 (-826 *5))))
- (-4 *2 (-13 (-408 *6) (-820 *5) (-567 (-826 *5))))
- (-5 *1 (-53 *5 *6 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-517)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2506 *4)))
- (-5 *1 (-902 *4 *3)) (-4 *3 (-1148 *4)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-525)) (-5 *2 (-1177)) (-5 *1 (-838 *4))
- (-4 *4 (-1019))))
- ((*1 *2 *1) (-12 (-5 *2 (-1177)) (-5 *1 (-838 *3)) (-4 *3 (-1019)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-713)) (-4 *6 (-1019)) (-4 *7 (-834 *6))
- (-5 *2 (-632 *7)) (-5 *1 (-634 *6 *7 *3 *4)) (-4 *3 (-351 *7))
- (-4 *4 (-13 (-351 *6) (-10 -7 (-6 -4254)))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-525))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-525))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1071 (-592 (-525)))) (-5 *1 (-817)) (-5 *3 (-525)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-990 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-735))
- (-4 *4 (-789)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-592 (-592 (-525)))) (-5 *1 (-903))
- (-5 *3 (-592 (-525))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-976)) (-4 *4 (-735)) (-4 *5 (-789)) (-5 *2 (-592 *1))
- (-4 *1 (-883 *3 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1086 *4)) (-4 *4 (-327))
- (-4 *2
- (-13 (-380)
- (-10 -7 (-15 -1908 (*2 *4)) (-15 -1780 ((-855) *2))
- (-15 -2499 ((-1172 *2) (-855))) (-15 -3192 (*2 *2)))))
- (-5 *1 (-334 *2 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-789))
- (-5 *2
- (-2 (|:| |f1| (-592 *4)) (|:| |f2| (-592 (-592 (-592 *4))))
- (|:| |f3| (-592 (-592 *4))) (|:| |f4| (-592 (-592 (-592 *4))))))
- (-5 *1 (-1098 *4)) (-5 *3 (-592 (-592 (-592 *4)))))))
-(((*1 *2) (-12 (-5 *2 (-838 (-525))) (-5 *1 (-851)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1172 *4)) (-5 *3 (-713)) (-4 *4 (-327))
- (-5 *1 (-495 *4)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-826 *4)) (-4 *4 (-1019)) (-4 *2 (-1019))
- (-5 *1 (-823 *4 *2)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-1073)) (-5 *5 (-632 (-205)))
- (-5 *2 (-965)) (-5 *1 (-690)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-525)) (-5 *4 (-205)) (-5 *5 (-632 (-205)))
- (-5 *2 (-965)) (-5 *1 (-695)))))
-(((*1 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-366)) (-5 *1 (-414)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1194 *3 *4)) (-4 *1 (-352 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-160))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-364 *2)) (-4 *2 (-1019))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-761 *2)) (-4 *2 (-789))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-761 *3)) (-4 *1 (-1187 *3 *4)) (-4 *3 (-789))
- (-4 *4 (-976))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1187 *2 *3)) (-4 *2 (-789)) (-4 *3 (-976)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-734)) (-4 *2 (-976))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-976)) (-5 *1 (-49 *2 *3)) (-14 *3 (-592 (-1090)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-294 *3)) (-5 *1 (-203 *3 *4))
- (-4 *3 (-13 (-976) (-789))) (-14 *4 (-592 (-1090)))))
- ((*1 *2 *1) (-12 (-4 *1 (-360 *2 *3)) (-4 *3 (-1019)) (-4 *2 (-976))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-592 (-1090))) (-4 *5 (-218 (-4140 *3) (-713)))
- (-14 *6
- (-1 (-108) (-2 (|:| -4185 *4) (|:| -1600 *5))
- (-2 (|:| -4185 *4) (|:| -1600 *5))))
- (-4 *2 (-160)) (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *4 (-789))
- (-4 *7 (-883 *2 *5 (-799 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-481 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1019))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-517)) (-5 *1 (-573 *2 *3)) (-4 *3 (-1148 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-976))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-976)) (-5 *1 (-678 *2 *3)) (-4 *3 (-789))
- (-4 *3 (-669))))
- ((*1 *2 *1) (-12 (-4 *1 (-791 *2)) (-4 *2 (-976))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-905 *2 *3 *4)) (-4 *3 (-734)) (-4 *4 (-789))
- (-4 *2 (-976))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-990 *3 *4 *2)) (-4 *3 (-976)) (-4 *4 (-735))
- (-4 *2 (-789)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-592
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-525)))))
- (-5 *1 (-396 *3)) (-4 *3 (-517))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-713)) (-4 *3 (-327)) (-4 *5 (-1148 *3))
- (-5 *2 (-592 (-1086 *3))) (-5 *1 (-471 *3 *5 *6))
- (-4 *6 (-1148 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-797)) (-5 *1 (-368 *3 *4 *5)) (-14 *3 (-713))
- (-14 *4 (-713)) (-4 *5 (-160)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1051 *3)) (-4 *3 (-976)) (-5 *2 (-592 (-877 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7))))
- (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1055 *3 *2)) (-4 *3 (-13 (-1019) (-33)))
- (-4 *2 (-13 (-1019) (-33))))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-797))) ((*1 *1 *1 *1) (-5 *1 (-797)))
- ((*1 *1 *1) (-5 *1 (-797))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-517)) (-4 *5 (-735)) (-4 *6 (-789))
- (-4 *7 (-990 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-592 *7)) (|:| |badPols| (-592 *7))))
- (-5 *1 (-909 *4 *5 *6 *7)) (-5 *3 (-592 *7)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-713)) (-4 *5 (-517))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-902 *5 *3)) (-4 *3 (-1148 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-826 *4)) (-5 *3 (-1 (-108) *5)) (-4 *4 (-1019))
- (-4 *5 (-1126)) (-5 *1 (-824 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-826 *4)) (-5 *3 (-592 (-1 (-108) *5))) (-4 *4 (-1019))
- (-4 *5 (-1126)) (-5 *1 (-824 *4 *5))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-826 *5)) (-5 *3 (-592 (-1090)))
- (-5 *4 (-1 (-108) (-592 *6))) (-4 *5 (-1019)) (-4 *6 (-1126))
- (-5 *1 (-824 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-108) *5)) (-4 *5 (-1126)) (-4 *4 (-789))
- (-5 *1 (-871 *4 *2 *5)) (-4 *2 (-408 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-592 (-1 (-108) *5))) (-4 *5 (-1126)) (-4 *4 (-789))
- (-5 *1 (-871 *4 *2 *5)) (-4 *2 (-408 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1090)) (-5 *4 (-1 (-108) *5)) (-4 *5 (-1126))
- (-5 *2 (-294 (-525))) (-5 *1 (-872 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1090)) (-5 *4 (-592 (-1 (-108) *5))) (-4 *5 (-1126))
- (-5 *2 (-294 (-525))) (-5 *1 (-872 *5))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-592 (-1090))) (-5 *3 (-1 (-108) (-592 *6)))
- (-4 *6 (-13 (-408 *5) (-820 *4) (-567 (-826 *4)))) (-4 *4 (-1019))
- (-4 *5 (-13 (-976) (-820 *4) (-789) (-567 (-826 *4))))
- (-5 *1 (-998 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -3957 *1) (|:| -4241 *1) (|:| |associate| *1)))
- (-4 *1 (-517)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-713)) (-5 *1 (-1079 *3 *4)) (-14 *3 (-855))
- (-4 *4 (-976)))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-976)) (-4 *3 (-734))))
- ((*1 *2 *1) (-12 (-4 *1 (-360 *3 *2)) (-4 *3 (-976)) (-4 *2 (-1019))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-592 (-1090))) (-4 *4 (-160))
- (-4 *6 (-218 (-4140 *3) (-713)))
- (-14 *7
- (-1 (-108) (-2 (|:| -4185 *5) (|:| -1600 *6))
- (-2 (|:| -4185 *5) (|:| -1600 *6))))
- (-5 *2 (-656 *5 *6 *7)) (-5 *1 (-438 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-789)) (-4 *8 (-883 *4 *6 (-799 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-669)) (-4 *2 (-789)) (-5 *1 (-678 *3 *2))
- (-4 *3 (-976))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-905 *2 *3 *4)) (-4 *2 (-976)) (-4 *3 (-734))
- (-4 *4 (-789)))))
-(((*1 *1 *1) (-12 (-5 *1 (-848 *2)) (-4 *2 (-286)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-517) (-789)))
- (-4 *2 (-13 (-408 (-157 *4)) (-933) (-1112)))
- (-5 *1 (-554 *4 *3 *2)) (-4 *3 (-13 (-408 *4) (-933) (-1112))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1073)) (-5 *2 (-357)) (-5 *1 (-728)))))
-(((*1 *2 *2) (-12 (-5 *2 (-592 (-632 (-294 (-525))))) (-5 *1 (-961)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1019) (-33))) (-5 *1 (-1055 *3 *2))
- (-4 *3 (-13 (-1019) (-33))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1022 *3 *4 *5 *6 *2)) (-4 *3 (-1019)) (-4 *4 (-1019))
- (-4 *5 (-1019)) (-4 *6 (-1019)) (-4 *2 (-1019)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-861))
- (-5 *2
- (-2 (|:| |brans| (-592 (-592 (-877 (-205)))))
- (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))))
- (-5 *1 (-144))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-861)) (-5 *4 (-385 (-525)))
- (-5 *2
- (-2 (|:| |brans| (-592 (-592 (-877 (-205)))))
- (|:| |xValues| (-1014 (-205))) (|:| |yValues| (-1014 (-205)))))
- (-5 *1 (-144)))))
-(((*1 *1 *2) (-12 (-5 *2 (-713)) (-5 *1 (-125)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-592
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-525)))))
- (-4 *2 (-517)) (-5 *1 (-396 *2))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-525))
- (|:| -2203 (-592 (-2 (|:| |irr| *4) (|:| -1591 (-525)))))))
- (-4 *4 (-1148 (-525))) (-5 *2 (-396 *4)) (-5 *1 (-419 *4)))))
-((-1203 . 727707) (-1204 . 727655) (-1205 . 727257) (-1206 . 727119)
- (-1207 . 727014) (-1208 . 726941) (-1209 . 726861) (-1210 . 726694)
- (-1211 . 726639) (-1212 . 726001) (-1213 . 725906) (-1214 . 725800)
- (-1215 . 724645) (-1216 . 724464) (-1217 . 724251) (-1218 . 724154)
- (-1219 . 724046) (-1220 . 723833) (-1221 . 723750) (-1222 . 723637)
- (-1223 . 723302) (-1224 . 722142) (-1225 . 721588) (-1226 . 721483)
- (-1227 . 721353) (-1228 . 721225) (-1229 . 721111) (-1230 . 721014)
- (-1231 . 720958) (-1232 . 720721) (-1233 . 720495) (-1234 . 720381)
- (-1235 . 720288) (-1236 . 720192) (-1237 . 719935) (-1238 . 719740)
- (-1239 . 719572) (-1240 . 719442) (-1241 . 719002) (-1242 . 718788)
- (-1243 . 718561) (-1244 . 718487) (-1245 . 718366) (-1246 . 718261)
- (-1247 . 717138) (-1248 . 716953) (-1249 . 716759) (-1250 . 716631)
- (-1251 . 716127) (-1252 . 715916) (-1253 . 715775) (-1254 . 715585)
- (-1255 . 715514) (-1256 . 715426) (-1257 . 715209) (-1258 . 714880)
- (-1259 . 714727) (-1260 . 713642) (-1261 . 713587) (-1262 . 713521)
- (-1263 . 713395) (-1264 . 708864) (-1265 . 708497) (-1266 . 708410)
- (-1267 . 708273) (-1268 . 708161) (-1269 . 708063) (-1270 . 707997)
- (-1271 . 707899) (-1272 . 707722) (-1273 . 707615) (-1274 . 707532)
- (-1275 . 707479) (-1276 . 707424) (-1277 . 707329) (-1278 . 707232)
- (-1279 . 706882) (-1280 . 706382) (-1281 . 706163) (-1282 . 706039)
- (-1283 . 705984) (-1284 . 705115) (-1285 . 704974) (-1286 . 704901)
- (-1287 . 704821) (-1288 . 704668) (-1289 . 704582) (-1290 . 704510)
- (-1291 . 704432) (-1292 . 704379) (-1293 . 704313) (-1294 . 704208)
- (-1295 . 703917) (-1296 . 703858) (-1297 . 703726) (-1298 . 703670)
- (-1299 . 703488) (-1300 . 703411) (-1301 . 703242) (-1302 . 703159)
- (-1303 . 702460) (-1304 . 702189) (-1305 . 701963) (-1306 . 701792)
- (-1307 . 701679) (-1308 . 701623) (-1309 . 701550) (-1310 . 701028)
- (-1311 . 700932) (-1312 . 700255) (-1313 . 700172) (-1314 . 700080)
- (-1315 . 700010) (-1316 . 699942) (-1317 . 699911) (-1318 . 699838)
- (-1319 . 699760) (-1320 . 699467) (-1321 . 699360) (-1322 . 699146)
- (-1323 . 698980) (-1324 . 698739) (-1325 . 698661) (-1326 . 698632)
- (-1327 . 698445) (-1328 . 698310) (-1329 . 696947) (-1330 . 696850)
- (-1331 . 696750) (-1332 . 696651) (-1333 . 696410) (-1334 . 696250)
- (-1335 . 695985) (-1336 . 695809) (-1337 . 695712) (-1338 . 695462)
- (-1339 . 695332) (-1340 . 695236) (-1341 . 695139) (-1342 . 695086)
- (-1343 . 695034) (-1344 . 694890) (-1345 . 694862) (-1346 . 694785)
- (-1347 . 694678) (-1348 . 694572) (-1349 . 694213) (-1350 . 694156)
- (-1351 . 693904) (-1352 . 693686) (-1353 . 693503) (-1354 . 693357)
- (-1355 . 693287) (-1356 . 693079) (-1357 . 692962) (-1358 . 692391)
- (-1359 . 692160) (-1360 . 692094) (-1361 . 692017) (-1362 . 691946)
- (-1363 . 691918) (-1364 . 691800) (-1365 . 691620) (-1366 . 691513)
- (-1367 . 691406) (-1368 . 691287) (-1369 . 691165) (-1370 . 677102)
- (-1371 . 676868) (-1372 . 676783) (-1373 . 676559) (-1374 . 675921)
- (-1375 . 675869) (-1376 . 675789) (-1377 . 675482) (-1378 . 675326)
- (-1379 . 675182) (-1380 . 675024) (-1381 . 674733) (-1382 . 674598)
- (-1383 . 674392) (-1384 . 674046) (-1385 . 673957) (-1386 . 672994)
- (-1387 . 672935) (-1388 . 672822) (-1389 . 668760) (-1390 . 668682)
- (-1391 . 668561) (-1392 . 668478) (-1393 . 668398) (-1394 . 668204)
- (-1395 . 668074) (-1396 . 667851) (-1397 . 667305) (-1398 . 667211)
- (-1399 . 666967) (-1400 . 666258) (-1401 . 666160) (-1402 . 666033)
- (-1403 . 665716) (-1404 . 665541) (-1405 . 665429) (-1406 . 665337)
- (-1407 . 665170) (-1408 . 665099) (-1409 . 664879) (-1410 . 664795)
- (-1411 . 664637) (-1412 . 664327) (-1413 . 664204) (-1414 . 663961)
- (-1415 . 663534) (-1416 . 663435) (-1417 . 663343) (-1418 . 663120)
- (-1419 . 662959) (-1420 . 662802) (-1421 . 662512) (-1422 . 662271)
- (-1423 . 662128) (-1424 . 661299) (-1425 . 661180) (-1426 . 660996)
- (-1427 . 656286) (-1428 . 655961) (-1429 . 655893) (-1430 . 655807)
- (-1431 . 655429) (-1432 . 655247) (-1433 . 655024) (-1434 . 654883)
- (-1435 . 654831) (-1436 . 654757) (-1437 . 652412) (-1438 . 652325)
- (-1439 . 652185) (-1440 . 652101) (-1441 . 652027) (-1442 . 651921)
- (-1443 . 651507) (-1444 . 651441) (-1445 . 651215) (-1446 . 651125)
- (-1447 . 650967) (-1448 . 650674) (-1449 . 650578) (-1450 . 650455)
- (-1451 . 650250) (-1452 . 650153) (-1453 . 650037) (-1454 . 649760)
- (-1455 . 649707) (-1456 . 649622) (-1457 . 649018) (-1458 . 648920)
- (-1459 . 648565) (-1460 . 648306) (-1461 . 648203) (-1462 . 648119)
- (-1463 . 647980) (-1464 . 647871) (-1465 . 647705) (-1466 . 647426)
- (-1467 . 647349) (-1468 . 646523) (-1469 . 646456) (-1470 . 646382)
- (-1471 . 646257) (-1472 . 646162) (-1473 . 645790) (-1474 . 645695)
- (-1475 . 645141) (-1476 . 644910) (-1477 . 644833) (-1478 . 644698)
- (-1479 . 644586) (-1480 . 644456) (-1481 . 644251) (-1482 . 644196)
- (-1483 . 644074) (-1484 . 644024) (-1485 . 643968) (-1486 . 643870)
- (-1487 . 643769) (-1488 . 643507) (-1489 . 643439) (-1490 . 643356)
- (-1491 . 643262) (-1492 . 643176) (-1493 . 643104) (-1494 . 643041)
- (-1495 . 642771) (-1496 . 642692) (-1497 . 642331) (-1498 . 642261)
- (-1499 . 642181) (-1500 . 642111) (-1501 . 641799) (-1502 . 641657)
- (-1503 . 641380) (-1504 . 640975) (-1505 . 640779) (-1506 . 640621)
- (-1507 . 640079) (-1508 . 640026) (-1509 . 639849) (-1510 . 638579)
- (-1511 . 638480) (-1512 . 638406) (-1513 . 638318) (-1514 . 638146)
- (-1515 . 638093) (-1516 . 637990) (-1517 . 637906) (-1518 . 637841)
- (-1519 . 637746) (-1520 . 637496) (-1521 . 637423) (-1522 . 637329)
- (-1523 . 637033) (-1524 . 634746) (-1525 . 634583) (-1526 . 634319)
- (-1527 . 634164) (-1528 . 633990) (-1529 . 633631) (-1530 . 633490)
- (-1531 . 633375) (-1532 . 633264) (-1533 . 632972) (-1534 . 632675)
- (-1535 . 632575) (-1536 . 632351) (-1537 . 632322) (-1538 . 631991)
- (-1539 . 631542) (-1540 . 631486) (-1541 . 630970) (-1542 . 630866)
- (-1543 . 630771) (-1544 . 630363) (-1545 . 630277) (-1546 . 630218)
- (-1547 . 629972) (-1548 . 629874) (-1549 . 629784) (-1550 . 629691)
- (-1551 . 629581) (-1552 . 629528) (-1553 . 629306) (-1554 . 629165)
- (-1555 . 629110) (-1556 . 629013) (-1557 . 628910) (-1558 . 628468)
- (-1559 . 628269) (-1560 . 627961) (-1561 . 627883) (-1562 . 627817)
- (-1563 . 627746) (-1564 . 627672) (-1565 . 627562) (-1566 . 627388)
- (-1567 . 627114) (-1568 . 626861) (-1569 . 626668) (-1570 . 626608)
- (-1571 . 626085) (-1572 . 626012) (-1573 . 625960) (-1574 . 625875)
- (-1575 . 625804) (-1576 . 625703) (-1577 . 625577) (-1578 . 625462)
- (-1579 . 625409) (-1580 . 625343) (-1581 . 625223) (-1582 . 625014)
- (-1583 . 624927) (-1584 . 624856) (-1585 . 624686) (-1586 . 624628)
- (-1587 . 624438) (-1588 . 624286) (-1589 . 624160) (-1590 . 624051)
- (-1591 . 623944) (-1592 . 623561) (-1593 . 623484) (-1594 . 623410)
- (-1595 . 623096) (-1596 . 621242) (-1597 . 620849) (-1598 . 620661)
- (-1599 . 620588) (-1600 . 620107) (-1601 . 620039) (-1602 . 619926)
- (-1603 . 619773) (-1604 . 619662) (-1605 . 619564) (-1606 . 619422)
- (-1607 . 619394) (-1608 . 619328) (-1609 . 619262) (-1610 . 618930)
- (-1611 . 618632) (-1612 . 618523) (-1613 . 618218) (-1614 . 618013)
- (-1615 . 617958) (-1616 . 617849) (-1617 . 617743) (-1618 . 617594)
- (-1619 . 617539) (-1620 . 617377) (-1621 . 617237) (-1622 . 616940)
- (-1623 . 616603) (-1624 . 616473) (-1625 . 616390) (-1626 . 616098)
- (-1627 . 615960) (-1628 . 615524) (-1629 . 615466) (-1630 . 615400)
- (-1631 . 614904) (-1632 . 614698) (-1633 . 614232) (-1634 . 614180)
- (-1635 . 614095) (-1636 . 614061) (-1637 . 613846) (-1638 . 613642)
- (-1639 . 613397) (-1640 . 613289) (-1641 . 613129) (-1642 . 612995)
- (-1643 . 612935) (-1644 . 612826) (-1645 . 612774) (-1646 . 612658)
- (-1647 . 612551) (-1648 . 612351) (-1649 . 612294) (-1650 . 612164)
- (-1651 . 612081) (-1652 . 611962) (-1653 . 611843) (-1654 . 611349)
- (-1655 . 611238) (-1656 . 611065) (-1657 . 609490) (-1658 . 609308)
- (-1659 . 609145) (-1660 . 608802) (-1661 . 608622) (-1662 . 608569)
- (-1663 . 608501) (-1664 . 608317) (-1665 . 607517) (-1666 . 607042)
- (-1667 . 606912) (-1668 . 605572) (-1669 . 604955) (-1670 . 604855)
- (-1671 . 604475) (-1672 . 603896) (-1673 . 603840) (-1674 . 603731)
- (-1675 . 603644) (-1676 . 603573) (-1677 . 603432) (-1678 . 603359)
- (-1679 . 603179) (-1680 . 603023) (-1681 . 602763) (-1682 . 602610)
- (-1683 . 602555) (-1684 . 602419) (-1685 . 602363) (-1686 . 602207)
- (-1687 . 602010) (-1688 . 601861) (-1689 . 601804) (-1690 . 600409)
- (-1691 . 600336) (-1692 . 600256) (-1693 . 600032) (-1694 . 599702)
- (-1695 . 599510) (-1696 . 599411) (-1697 . 599358) (-1698 . 599273)
- (-1699 . 599175) (-1700 . 599068) (-1701 . 598931) (-1702 . 598788)
- (-1703 . 598666) (-1704 . 598595) (-1705 . 598527) (-1706 . 598409)
- (-1707 . 598338) (-1708 . 598237) (-1709 . 597916) (-1710 . 597866)
- (-1711 . 597662) (-1712 . 597539) (-1713 . 597374) (-1714 . 597156)
- (-1715 . 597079) (-1716 . 596983) (-1717 . 596884) (-1718 . 596763)
- (-1719 . 596704) (-1720 . 596605) (-1721 . 596465) (-1722 . 595794)
- (-1723 . 595766) (-1724 . 595623) (-1725 . 595482) (-1726 . 595292)
- (-1727 . 595218) (-1728 . 595189) (-1729 . 595119) (-1730 . 595031)
- (-1731 . 594888) (-1732 . 594228) (-1733 . 594147) (-1734 . 593880)
- (-1735 . 593807) (-1736 . 593725) (-1737 . 591478) (-1738 . 591351)
- (-1739 . 591293) (-1740 . 591241) (-1741 . 591189) (-1742 . 590982)
- (-1743 . 590600) (-1744 . 590547) (-1745 . 590157) (-1746 . 590030)
- (-1747 . 589848) (-1748 . 589723) (-1749 . 589649) (-1750 . 587887)
- (-1751 . 587547) (-1752 . 587474) (-1753 . 587360) (-1754 . 586909)
- (-1755 . 586795) (-1756 . 586647) (-1757 . 586577) (-1758 . 586454)
- (-1759 . 586340) (-1760 . 585905) (-1761 . 585821) (-1762 . 585694)
- (-1763 . 585435) (-1764 . 585382) (-1765 . 585170) (-1766 . 585111)
- (-1767 . 584967) (-1768 . 584799) (-1769 . 584746) (-1770 . 584661)
- (-1771 . 584574) (-1772 . 584467) (-1773 . 584380) (-1774 . 584287)
- (-1775 . 584154) (-1776 . 583255) (-1777 . 582908) (-1778 . 582835)
- (-1779 . 582673) (-1780 . 582529) (-1781 . 582477) (-1782 . 582098)
- (-1783 . 581939) (-1784 . 581748) (-1785 . 578967) (-1786 . 578886)
- (-1787 . 578803) (-1788 . 578525) (-1789 . 578269) (-1790 . 578197)
- (-1791 . 578107) (-1792 . 578012) (-1793 . 577963) (-1794 . 577849)
- (-1795 . 577564) (-1796 . 577513) (-1797 . 577318) (-1798 . 577141)
- (-1799 . 576750) (-1800 . 576655) (-1801 . 576338) (-1802 . 576062)
- (-1803 . 575758) (-1804 . 575386) (-1805 . 575245) (-1806 . 575194)
- (-1807 . 575141) (-1808 . 574062) (-1809 . 573936) (-1810 . 573795)
- (-1811 . 573710) (-1812 . 573611) (-1813 . 573444) (-1814 . 573286)
- (-1815 . 573145) (-1816 . 573103) (-1817 . 572926) (-1818 . 572565)
- (-1819 . 572035) (-1820 . 571769) (-1821 . 571695) (-1822 . 571461)
- (-1823 . 571321) (-1824 . 571236) (-1825 . 570708) (-1826 . 570587)
- (-1827 . 570500) (-1828 . 570229) (-1829 . 570123) (-1830 . 570049)
- (-1831 . 569978) (-1832 . 569872) (-1833 . 569735) (-1834 . 569597)
- (-1835 . 569456) (-1836 . 569312) (-1837 . 569234) (-1838 . 569130)
- (-1839 . 569048) (-1840 . 568924) (-1841 . 568871) (-1842 . 568733)
- (-1843 . 568571) (-1844 . 568470) (-1845 . 568373) (-1846 . 568301)
- (-1847 . 568091) (-1848 . 567779) (-1849 . 567670) (-1850 . 567591)
- (-1851 . 567518) (-1852 . 567256) (-1853 . 567201) (-1854 . 566864)
- (-1855 . 566812) (-1856 . 566738) (-1857 . 566650) (-1858 . 566556)
- (-1859 . 566498) (-1860 . 566243) (-1861 . 566117) (-1862 . 566039)
- (-1863 . 565925) (-1864 . 565762) (-1865 . 565633) (-1866 . 565599)
- (-1867 . 565528) (-1868 . 565080) (-1869 . 564771) (-1870 . 564556)
- (-1871 . 564386) (-1872 . 564278) (-1873 . 564125) (-1874 . 564016)
- (-1875 . 563963) (-1876 . 563864) (-1877 . 563808) (-1878 . 563742)
- (-1879 . 563613) (-1880 . 563362) (-1881 . 563206) (-1882 . 563074)
- (-1883 . 562973) (-1884 . 562805) (-1885 . 562269) (-1886 . 562111)
- (-1887 . 561930) (-1888 . 561679) (-1889 . 561584) (-1890 . 561513)
- (-1891 . 561419) (-1892 . 561335) (-1893 . 561249) (-1894 . 560862)
- (-1895 . 560803) (-1896 . 560747) (-1897 . 560646) (-1898 . 560445)
- (-1899 . 560388) (-1900 . 560288) (-1901 . 560201) (-1902 . 560054)
- (-1903 . 559959) (-1904 . 559864) (-1905 . 559720) (-1906 . 559476)
- (-1907 . 559247) (-1908 . 536055) (-1909 . 535984) (-1910 . 535885)
- (-1911 . 535677) (-1912 . 535479) (-1913 . 535338) (-1914 . 535278)
- (-1915 . 535155) (-1916 . 535053) (-1917 . 534982) (-1918 . 534895)
- (-1919 . 534579) (-1920 . 534515) (-1921 . 533412) (-1922 . 530660)
- (-1923 . 530554) (-1924 . 530436) (-1925 . 530170) (-1926 . 530142)
- (-1927 . 530059) (-1928 . 529947) (-1929 . 529835) (-1930 . 529690)
- (-1931 . 529635) (-1932 . 529103) (-1933 . 528813) (-1934 . 528663)
- (-1935 . 528608) (-1936 . 528535) (-1937 . 528342) (-1938 . 528290)
- (-1939 . 528212) (-1940 . 528129) (-1941 . 528066) (-1942 . 527921)
- (-1943 . 527835) (-1944 . 527719) (-1945 . 527670) (-1946 . 527538)
- (-1947 . 527465) (-1948 . 527428) (-1949 . 527247) (-1950 . 527003)
- (-1951 . 526891) (-1952 . 526822) (-1953 . 526738) (-1954 . 526322)
- (-1955 . 526176) (-1956 . 526089) (-1957 . 525809) (-1958 . 525753)
- (-1959 . 525649) (-1960 . 525049) (-1961 . 524938) (-1962 . 524659)
- (-1963 . 524574) (-1964 . 524355) (-1965 . 521070) (-1966 . 520823)
- (-1967 . 520759) (-1968 . 520688) (-1969 . 520616) (-1970 . 520449)
- (-1971 . 520271) (-1972 . 520243) (-1973 . 519968) (-1974 . 519838)
- (-1975 . 519565) (-1976 . 519235) (-1977 . 519132) (-1978 . 519052)
- (-1979 . 518965) (-1980 . 518863) (-1981 . 518644) (-1982 . 517434)
- (-1983 . 517305) (-1984 . 517128) (-1985 . 516833) (-1986 . 516520)
- (-1987 . 516401) (-1988 . 516188) (-1989 . 516115) (-1990 . 515463)
- (-1991 . 515344) (-1992 . 515229) (-1993 . 515105) (-1994 . 514950)
- (-1995 . 514847) (-1996 . 514794) (-1997 . 514550) (-1998 . 514394)
- (-1999 . 514325) (-2000 . 514259) (-2001 . 514101) (-2002 . 514016)
- (-2003 . 513945) (-2004 . 513857) (-2005 . 513666) (-2006 . 513523)
- (-2007 . 513452) (-2008 . 513345) (-2009 . 513250) (-2010 . 513216)
- (-2011 . 513146) (-2012 . 513118) (-2013 . 513035) (-2014 . 512777)
- (-2015 . 512690) (-2016 . 512447) (-2017 . 512354) (-2018 . 512274)
- (-2019 . 512179) (-2020 . 512058) (-2021 . 511877) (-2022 . 511658)
- (-2023 . 510910) (-2024 . 510809) (-2025 . 510628) (-2026 . 510409)
- (-2027 . 510328) (-2028 . 510212) (-2029 . 510068) (-2030 . 509899)
- (-2031 . 509775) (-2032 . 509639) (-2033 . 509502) (-2034 . 509440)
- (-2035 . 508949) (-2036 . 508710) (-2037 . 508632) (-2038 . 507947)
- (-2039 . 507831) (-2040 . 507708) (-2041 . 507639) (-2042 . 507515)
- (-2043 . 507436) (-2044 . 507382) (-2045 . 507273) (-2046 . 507221)
- (-2047 . 507163) (-2048 . 507129) (-2049 . 507042) (-2050 . 506976)
- (-2051 . 506948) (-2052 . 506920) (-2053 . 506674) (-2054 . 506581)
- (-2055 . 506522) (-2056 . 506434) (-2057 . 506360) (-2058 . 506326)
- (-2059 . 506275) (-2060 . 506088) (-2061 . 505488) (-2062 . 505363)
- (-2063 . 505277) (-2064 . 505130) (-2065 . 505045) (-2066 . 504845)
- (-2067 . 504720) (-2068 . 504549) (-2069 . 504488) (-2070 . 503734)
- (-2071 . 503511) (-2072 . 503365) (-2073 . 503217) (-2074 . 503146)
- (-2075 . 503010) (-2076 . 502923) (-2077 . 502856) (-2078 . 502761)
- (-2079 . 502709) (-2080 . 498549) (-2081 . 498347) (-2082 . 498276)
- (-2083 . 498117) (-2084 . 498016) (-2085 . 497948) (-2086 . 497868)
- (-2087 . 497784) (-2088 . 497684) (-2089 . 497613) (-2090 . 497494)
- (-2091 . 496257) (-2092 . 495760) (-2093 . 494900) (-2094 . 494828)
- (-2095 . 494774) (-2096 . 494631) (-2097 . 494558) (-2098 . 493833)
- (-2099 . 493749) (-2100 . 493589) (-2101 . 493493) (-2102 . 493110)
- (-2103 . 493051) (-2104 . 492904) (-2105 . 492359) (-2106 . 492291)
- (-2107 . 492160) (-2108 . 492034) (-2109 . 490733) (-2110 . 490439)
- (-2111 . 490058) (-2112 . 489914) (-2113 . 489703) (-2114 . 489594)
- (-2115 . 489436) (-2116 . 488957) (-2117 . 488511) (-2118 . 488124)
- (-2119 . 487979) (-2120 . 487821) (-2121 . 487666) (-2122 . 487552)
- (-2123 . 487482) (-2124 . 487429) (-2125 . 487223) (-2126 . 486836)
- (-2127 . 486593) (-2128 . 486522) (-2129 . 486437) (-2130 . 486136)
- (-2131 . 486063) (-2132 . 486011) (-2133 . 485773) (-2134 . 485606)
- (-2135 . 485280) (-2136 . 484789) (-2137 . 484682) (-2138 . 484538)
- (-2139 . 484383) (-2140 . 484180) (-2141 . 484113) (-2142 . 483895)
- (-2143 . 483767) (-2144 . 483574) (-2145 . 483437) (-2146 . 483384)
- (-2147 . 483009) (-2148 . 482885) (-2149 . 482820) (-2150 . 482758)
- (-2151 . 482646) (-2152 . 482427) (-2153 . 482282) (-2154 . 482167)
- (-2155 . 482077) (-2156 . 481968) (-2157 . 481832) (-2158 . 481639)
- (-2159 . 481431) (-2160 . 481272) (-2161 . 481014) (-2162 . 480955)
- (-2163 . 480903) (-2164 . 480488) (-2165 . 480386) (-2166 . 480218)
- (-2167 . 479980) (-2168 . 479828) (-2169 . 479775) (-2170 . 479659)
- (-2171 . 479585) (-2172 . 479029) (-2173 . 478874) (-2174 . 478760)
- (-2175 . 478562) (-2176 . 478489) (-2177 . 478366) (-2178 . 478313)
- (-2179 . 478102) (-2180 . 478025) (-2181 . 477831) (-2182 . 477744)
- (-2183 . 477692) (-2184 . 477355) (-2185 . 477285) (-2186 . 477063)
- (-2187 . 476978) (-2188 . 476745) (-2189 . 476518) (-2190 . 476366)
- (-2191 . 476302) (-2192 . 476189) (-2193 . 476074) (-2194 . 475967)
- (-2195 . 475781) (-2196 . 475711) (-2197 . 475225) (-2198 . 475116)
- (-2199 . 474880) (-2200 . 474828) (-2201 . 474589) (-2202 . 474506)
- (-2203 . 474054) (-2204 . 473961) (-2205 . 473702) (-2206 . 473599)
- (-2207 . 472715) (-2208 . 472499) (-2209 . 472347) (-2210 . 472319)
- (-2211 . 472213) (-2212 . 472103) (-2213 . 471994) (-2214 . 471850)
- (-2215 . 471581) (-2216 . 471186) (-2217 . 471074) (-2218 . 471009)
- (-2219 . 470904) (-2220 . 470684) (-2221 . 470529) (-2222 . 470326)
- (-2223 . 470255) (-2224 . 470161) (-2225 . 469703) (-2226 . 469647)
- (-2227 . 469457) (-2228 . 469405) (-2229 . 468808) (-2230 . 468735)
- (-2231 . 468627) (-2232 . 468575) (-2233 . 468234) (-2234 . 468036)
- (-2235 . 467813) (-2236 . 467643) (-2237 . 467473) (-2238 . 466763)
- (-2239 . 465512) (-2240 . 465455) (-2241 . 465313) (-2242 . 465239)
- (-2243 . 464641) (-2244 . 464518) (-2245 . 464370) (-2246 . 464315)
- (-2247 . 464281) (-2248 . 463933) (-2249 . 463586) (-2250 . 463197)
- (-2251 . 462869) (-2252 . 462790) (-2253 . 462300) (-2254 . 462189)
- (-2255 . 462110) (-2256 . 461977) (-2257 . 461770) (-2258 . 461693)
- (-2259 . 461586) (-2260 . 461549) (-2261 . 461496) (-2262 . 461441)
- (-2263 . 461368) (-2264 . 461181) (-2265 . 461091) (-2266 . 460386)
- (-2267 . 459865) (-2268 . 459762) (-2269 . 459603) (-2270 . 459488)
- (-2271 . 459411) (-2272 . 459118) (-2273 . 458519) (-2274 . 457851)
- (-2275 . 457602) (-2276 . 457370) (-2277 . 457271) (-2278 . 457168)
- (-2279 . 457045) (-2280 . 456936) (-2281 . 456880) (-2282 . 456516)
- (-2283 . 456311) (-2284 . 456255) (-2285 . 455672) (-2286 . 455424)
- (-2287 . 455339) (-2288 . 455244) (-2289 . 455074) (-2290 . 454952)
- (-2291 . 454815) (-2292 . 454494) (-2293 . 453871) (-2294 . 453512)
- (-2295 . 453385) (-2296 . 453314) (-2297 . 453245) (-2298 . 452065)
- (-2299 . 451963) (-2300 . 451825) (-2301 . 451758) (-2302 . 451310)
- (-2303 . 451152) (-2304 . 451043) (-2305 . 450988) (-2306 . 450921)
- (-2307 . 450750) (-2308 . 448798) (-2309 . 448581) (-2310 . 448529)
- (-2311 . 448455) (-2312 . 448389) (-2313 . 448200) (-2314 . 448009)
- (-2315 . 447902) (-2316 . 447829) (-2317 . 447767) (-2318 . 447487)
- (-2319 . 447393) (-2320 . 447253) (-2321 . 447151) (-2322 . 446924)
- (-2323 . 446865) (-2324 . 446523) (-2325 . 446452) (-2326 . 446317)
- (-2327 . 445949) (-2328 . 445920) (-2329 . 445813) (-2330 . 445674)
- (-2331 . 445640) (-2332 . 445587) (-2333 . 445341) (-2334 . 445154)
- (-2335 . 444997) (-2336 . 444945) (-2337 . 444891) (-2338 . 444036)
- (-2339 . 443904) (-2340 . 442186) (-2341 . 442092) (-2342 . 441838)
- (-2343 . 441647) (-2344 . 441619) (-2345 . 441216) (-2346 . 440642)
- (-2347 . 440479) (-2348 . 439864) (-2349 . 439585) (-2350 . 439525)
- (-2351 . 439456) (-2352 . 439400) (-2353 . 439335) (-2354 . 439082)
- (-2355 . 438723) (-2356 . 438626) (-2357 . 438574) (-2358 . 438522)
- (-2359 . 438367) (-2360 . 438220) (-2361 . 438138) (-2362 . 437763)
- (-2363 . 437592) (-2364 . 437471) (-2365 . 437443) (-2366 . 437388)
- (-2367 . 437254) (-2368 . 437143) (-2369 . 437013) (-2370 . 436906)
- (-2371 . 436821) (-2372 . 436718) (-2373 . 436621) (-2374 . 436393)
- (-2375 . 436340) (-2376 . 436275) (-2377 . 436194) (-2378 . 435950)
- (-2379 . 435853) (-2380 . 435733) (-2381 . 435285) (-2382 . 435144)
- (-2383 . 434773) (-2384 . 434739) (-2385 . 434611) (-2386 . 434556)
- (-2387 . 434183) (-2388 . 434087) (-2389 . 434032) (-2390 . 433758)
- (-2391 . 433584) (-2392 . 433288) (-2393 . 433217) (-2394 . 432565)
- (-2395 . 432472) (-2396 . 432298) (-2397 . 432249) (-2398 . 432140)
- (-2399 . 432066) (-2400 . 431934) (-2401 . 431770) (-2402 . 431692)
- (-2403 . 431641) (-2404 . 431588) (-2405 . 430968) (-2406 . 430874)
- (-2407 . 430710) (-2408 . 430639) (-2409 . 430298) (-2410 . 430202)
- (-2411 . 430152) (-2412 . 430031) (-2413 . 429979) (-2414 . 429833)
- (-2415 . 429714) (-2416 . 429629) (-2417 . 429555) (-2418 . 429472)
- (-2419 . 429403) (-2420 . 429318) (-2421 . 429196) (-2422 . 429019)
- (-2423 . 428918) (-2424 . 428101) (-2425 . 427989) (-2426 . 427906)
- (-2427 . 427854) (-2428 . 427181) (-2429 . 427054) (-2430 . 426463)
- (-2431 . 426368) (-2432 . 426284) (-2433 . 426037) (-2434 . 425954)
- (-2435 . 425905) (-2436 . 425666) (-2437 . 425586) (-2438 . 425395)
- (-2439 . 425271) (-2440 . 425040) (-2441 . 424927) (-2442 . 424743)
- (-2443 . 424628) (-2444 . 424548) (-2445 . 424430) (-2446 . 424139)
- (-2447 . 424009) (-2448 . 423563) (-2449 . 423483) (-2450 . 423409)
- (-2451 . 423256) (-2452 . 423197) (-2453 . 423086) (-2454 . 422729)
- (-2455 . 422585) (-2456 . 422346) (-2457 . 422318) (-2458 . 422252)
- (-2459 . 422120) (-2460 . 422046) (-2461 . 421721) (-2462 . 421627)
- (-2463 . 421257) (-2464 . 421159) (-2465 . 420809) (-2466 . 420670)
- (-2467 . 420248) (-2468 . 420175) (-2469 . 419654) (-2470 . 419502)
- (-2471 . 419168) (-2472 . 419045) (-2473 . 418761) (-2474 . 418596)
- (-2475 . 418350) (-2476 . 418226) (-2477 . 417797) (-2478 . 417690)
- (-2479 . 417561) (-2480 . 417444) (-2481 . 417361) (-2482 . 417266)
- (-2483 . 417238) (-2484 . 417103) (-2485 . 416230) (-2486 . 416172)
- (-2487 . 416068) (-2488 . 415725) (-2489 . 415587) (-2490 . 415427)
- (-2491 . 414792) (-2492 . 414742) (-2493 . 414642) (-2494 . 414483)
- (-2495 . 414411) (-2496 . 414273) (-2497 . 414156) (-2498 . 414057)
- (-2499 . 413184) (-2500 . 413133) (-2501 . 413000) (-2502 . 411980)
- (-2503 . 411923) (-2504 . 411745) (-2505 . 411598) (-2506 . 411217)
- (-2507 . 409967) (-2508 . 409861) (-2509 . 409659) (-2510 . 409589)
- (-2511 . 408387) (-2512 . 408308) (-2513 . 406208) (-2514 . 406136)
- (-2515 . 405977) (-2516 . 405540) (-2517 . 404656) (-2518 . 404584)
- (-2519 . 404389) (-2520 . 404242) (-2521 . 404014) (-2522 . 403856)
- (-2523 . 403716) (-2524 . 403660) (-2525 . 403603) (-2526 . 403533)
- (-2527 . 403499) (-2528 . 403253) (-2529 . 403156) (-2530 . 403023)
- (-2531 . 402992) (-2532 . 402892) (-2533 . 402781) (-2534 . 401717)
- (-2535 . 401643) (-2536 . 401037) (-2537 . 400878) (-2538 . 400773)
- (-2539 . 400653) (-2540 . 400215) (-2541 . 400084) (-2542 . 399954)
- (-2543 . 399704) (-2544 . 399572) (-2545 . 399384) (-2546 . 399202)
- (-2547 . 398996) (-2548 . 398928) (-2549 . 398795) (-2550 . 398761)
- (-2551 . 398517) (-2552 . 398467) (-2553 . 398415) (-2554 . 398291)
- (-2555 . 398139) (-2556 . 398023) (-2557 . 397995) (-2558 . 397923)
- (-2559 . 397828) (-2560 . 397327) (-2561 . 397163) (-2562 . 397019)
- (-2563 . 396691) (-2564 . 396631) (-2565 . 396522) (-2566 . 396404)
- (-2567 . 396373) (-2568 . 395991) (-2569 . 395906) (-2570 . 395850)
- (-2571 . 395693) (-2572 . 395558) (-2573 . 393143) (-2574 . 392867)
- (-2575 . 392772) (-2576 . 392655) (-2577 . 391897) (-2578 . 391828)
- (-2579 . 391658) (-2580 . 391576) (-2581 . 391524) (-2582 . 391421)
- (-2583 . 391188) (-2584 . 391074) (-2585 . 391000) (-2586 . 390747)
- (-2587 . 390590) (-2588 . 390386) (-2589 . 390164) (-2590 . 390076)
- (-2591 . 389973) (-2592 . 389920) (-2593 . 389825) (-2594 . 389705)
- (-2595 . 389646) (-2596 . 389579) (-2597 . 389421) (-2598 . 389318)
- (-2599 . 389108) (-2600 . 388761) (-2601 . 388705) (-2602 . 388591)
- (-2603 . 388517) (-2604 . 388451) (-2605 . 388227) (-2606 . 387983)
- (-2607 . 387631) (-2608 . 387368) (-2609 . 387315) (-2610 . 387092)
- (-2611 . 386702) (-2612 . 386598) (-2613 . 386504) (-2614 . 386386)
- (-2615 . 386349) (-2616 . 386110) (-2617 . 385689) (-2618 . 385445)
- (-2619 . 385358) (-2620 . 384870) (-2621 . 384659) (-2622 . 384494)
- (-2623 . 384441) (-2624 . 383578) (-2625 . 383527) (-2626 . 383418)
- (-2627 . 383299) (-2628 . 383222) (-2629 . 383127) (-2630 . 383071)
- (-2631 . 382987) (-2632 . 382497) (-2633 . 382284) (-2634 . 380988)
- (-2635 . 380936) (-2636 . 380496) (-2637 . 380340) (-2638 . 380156)
- (-2639 . 380104) (-2640 . 380031) (-2641 . 379078) (-2642 . 379024)
- (-2643 . 378865) (** . 375766) (-2645 . 375656) (-2646 . 375523)
- (-2647 . 375230) (-2648 . 375149) (-2649 . 374907) (-2650 . 374680)
- (-2651 . 374534) (-2652 . 374354) (-2653 . 374026) (-2654 . 373715)
- (-2655 . 373400) (-2656 . 373207) (-2657 . 373081) (-2658 . 372972)
- (-2659 . 372774) (-2660 . 372743) (-2661 . 372712) (-2662 . 372572)
- (-2663 . 372370) (-2664 . 371746) (-2665 . 370461) (-2666 . 370332)
- (-2667 . 370208) (-2668 . 370102) (-2669 . 370025) (-2670 . 369906)
- (-2671 . 369785) (-2672 . 369566) (-2673 . 369455) (-2674 . 369382)
- (-2675 . 369210) (-2676 . 369091) (-2677 . 368989) (-2678 . 368848)
- (-2679 . 368695) (-2680 . 368607) (-2681 . 368462) (-2682 . 368308)
- (-2683 . 368256) (-2684 . 368093) (-2685 . 367993) (-2686 . 367754)
- (-2687 . 367438) (-2688 . 367142) (-2689 . 367028) (-2690 . 366956)
- (-2691 . 366888) (-2692 . 365883) (-2693 . 365804) (-2694 . 365410)
- (-2695 . 365246) (-2696 . 365133) (-2697 . 364820) (-2698 . 364578)
- (-2699 . 364435) (-2700 . 364328) (-2701 . 364300) (-2702 . 364223)
- (-2703 . 364056) (-2704 . 363983) (-2705 . 363898) (-2706 . 363804)
- (-2707 . 363747) (-2708 . 363638) (-2709 . 363496) (-2710 . 363398)
- (-2711 . 363315) (-2712 . 363259) (-2713 . 363092) (-2714 . 363058)
- (-2715 . 362828) (-2716 . 362501) (-2717 . 362079) (-2718 . 361690)
- (-2719 . 361588) (-2720 . 361493) (-2721 . 361411) (-2722 . 360710)
- (-2723 . 360362) (-2724 . 359876) (-2725 . 359790) (-2726 . 359441)
- (-2727 . 359310) (-2728 . 359282) (-2729 . 359152) (-2730 . 358990)
- (-2731 . 358335) (-2732 . 358252) (-2733 . 358086) (-2734 . 357596)
- (-2735 . 357211) (-2736 . 357096) (-2737 . 356947) (-2738 . 356842)
- (-2739 . 356758) (-2740 . 356636) (-2741 . 356420) (-2742 . 355768)
- (-2743 . 355670) (-2744 . 355536) (-2745 . 355358) (-2746 . 355114)
- (-2747 . 354954) (-2748 . 354829) (-2749 . 354611) (-2750 . 354482)
- (-2751 . 354103) (-2752 . 353996) (-2753 . 353873) (-2754 . 353802)
- (-2755 . 353495) (-2756 . 353353) (-2757 . 353300) (-2758 . 353049)
- (-2759 . 352749) (-2760 . 352639) (-2761 . 352584) (-2762 . 352518)
- (-2763 . 352419) (-2764 . 352349) (-2765 . 352264) (-2766 . 351455)
- (-2767 . 351145) (-2768 . 350990) (-2769 . 350684) (-2770 . 350583)
- (-2771 . 350367) (-2772 . 350272) (-2773 . 350240) (-2774 . 350117)
- (-2775 . 349959) (-2776 . 349869) (-2777 . 349558) (-2778 . 349416)
- (-2779 . 349385) (-2780 . 348387) (-2781 . 348300) (-2782 . 348247)
- (-2783 . 348150) (-2784 . 348084) (-2785 . 347531) (-2786 . 347401)
- (-2787 . 347304) (-2788 . 347225) (-2789 . 347172) (-2790 . 347063)
- (-2791 . 346853) (-2792 . 346110) (-2793 . 346003) (-2794 . 345670)
- (-2795 . 345512) (-2796 . 345178) (-2797 . 345101) (-2798 . 345002)
- (-2799 . 344910) (-2800 . 344502) (-2801 . 344429) (-2802 . 344124)
- (-2803 . 344043) (-2804 . 343756) (-2805 . 343655) (-2806 . 343578)
- (-2807 . 343544) (-2808 . 343380) (-2809 . 343193) (-2810 . 343007)
- (-2811 . 342675) (-2812 . 342563) (-2813 . 342479) (-2814 . 342411)
- (-2815 . 342155) (-2816 . 341991) (-2817 . 341660) (-2818 . 341531)
- (-2819 . 341206) (-2820 . 340980) (-2821 . 340862) (-2822 . 340779)
- (-2823 . 340702) (-2824 . 340597) (-2825 . 340535) (-2826 . 340430)
- (-2827 . 340329) (-2828 . 340246) (-2829 . 340092) (-2830 . 339977)
- (-2831 . 334650) (-2832 . 334547) (-2833 . 334429) (-2834 . 334345)
- (-2835 . 334286) (-2836 . 333994) (-2837 . 333910) (-2838 . 333855)
- (-2839 . 333753) (-2840 . 333568) (-2841 . 333437) (-2842 . 333292)
- (-2843 . 333232) (-2844 . 333129) (-2845 . 332967) (-2846 . 332843)
- (-2847 . 332721) (-2848 . 332532) (-2849 . 332429) (-2850 . 332313)
- (-2851 . 331963) (-2852 . 331897) (-2853 . 331749) (-2854 . 331571)
- (-2855 . 331459) (-2856 . 331382) (-2857 . 331155) (-2858 . 330967)
- (-2859 . 330914) (-2860 . 330636) (-2861 . 330492) (-2862 . 330302)
- (-2863 . 330126) (-2864 . 329795) (-2865 . 329660) (-2866 . 328448)
- (-2867 . 328393) (-2868 . 328242) (-2869 . 328190) (-2870 . 327958)
- (-2871 . 327708) (-2872 . 327635) (-2873 . 327441) (-2874 . 327263)
- (-2875 . 327176) (-2876 . 327106) (-2877 . 326953) (-2878 . 326903)
- (-2879 . 326810) (-2880 . 326714) (-2881 . 326608) (-2882 . 326361)
- (-2883 . 326333) (-2884 . 326259) (-2885 . 326054) (-2886 . 325530)
- (-2887 . 325449) (-2888 . 325331) (-2889 . 324922) (-2890 . 324871)
- (-2891 . 324320) (-2892 . 324180) (-2893 . 323862) (-2894 . 323657)
- (-2895 . 323455) (-2896 . 323394) (-2897 . 323285) (-2898 . 323184)
- (-2899 . 323132) (-2900 . 323038) (-2901 . 322832) (-2902 . 322758)
- (-2903 . 322554) (-2904 . 322436) (-2905 . 322381) (-2906 . 322310)
- (-2907 . 322281) (-2908 . 322207) (-2909 . 322033) (-2910 . 321695)
- (-2911 . 321316) (-2912 . 321229) (-2913 . 320649) (-2914 . 320594)
- (-2915 . 320210) (-2916 . 320111) (-2917 . 320060) (-2918 . 319976)
- (-2919 . 319675) (-2920 . 319626) (-2921 . 319570) (-2922 . 319320)
- (-2923 . 318798) (-2924 . 318701) (-2925 . 309130) (-2926 . 308876)
- (-2927 . 307960) (-2928 . 307810) (-2929 . 307236) (-2930 . 307046)
- (-2931 . 306904) (-2932 . 306720) (-2933 . 306621) (-2934 . 306555)
- (-2935 . 306433) (-2936 . 306169) (-2937 . 306077) (-2938 . 305585)
- (-2939 . 305420) (-2940 . 305302) (-2941 . 305207) (-2942 . 304779)
- (-2943 . 304694) (-2944 . 304515) (-2945 . 304441) (-2946 . 304331)
- (-2947 . 304238) (-2948 . 304167) (-2949 . 304073) (-2950 . 304021)
- (-2951 . 303948) (-2952 . 303808) (-2953 . 303701) (-2954 . 303477)
- (-2955 . 303331) (-2956 . 303303) (-2957 . 303131) (-2958 . 301950)
- (-2959 . 301853) (-2960 . 301737) (-2961 . 301684) (-2962 . 301559)
- (-2963 . 301418) (-2964 . 301104) (-2965 . 301017) (-2966 . 300839)
- (-2967 . 300667) (-2968 . 300468) (-2969 . 300437) (-2970 . 300284)
- (-2971 . 300187) (-2972 . 299646) (-2973 . 299562) (-2974 . 299479)
- (-2975 . 299286) (-2976 . 298753) (-2977 . 298581) (-2978 . 298496)
- (-2979 . 298388) (-2980 . 298141) (-2981 . 297962) (-2982 . 297749)
- (-2983 . 297668) (-2984 . 297498) (-2985 . 297333) (-2986 . 297161)
- (-2987 . 297109) (-2988 . 297030) (-2989 . 296929) (-2990 . 296806)
- (-2991 . 296692) (-2992 . 296264) (-2993 . 296157) (-2994 . 296070)
- (-2995 . 295931) (-2996 . 295813) (-2997 . 295647) (-2998 . 295527)
- (-2999 . 295461) (-3000 . 295381) (-3001 . 295329) (-3002 . 295221)
- (-3003 . 295126) (-3004 . 295049) (-3005 . 294952) (-3006 . 294761)
- (-3007 . 294587) (-3008 . 294501) (-3009 . 294392) (-3010 . 294221)
- (-3011 . 294148) (-3012 . 294023) (-3013 . 291866) (-3014 . 291684)
- (-3015 . 291364) (-3016 . 291274) (-3017 . 291013) (-3018 . 290913)
- (-3019 . 290567) (-3020 . 290336) (-3021 . 290287) (-3022 . 290074)
- (-3023 . 290008) (-3024 . 289583) (-3025 . 288914) (-3026 . 288667)
- (-3027 . 288530) (-3028 . 288496) (-3029 . 288394) (-3030 . 288339)
- (-3031 . 288218) (-3032 . 288119) (-3033 . 288003) (-3034 . 287348)
- (-3035 . 287246) (-3036 . 287103) (-3037 . 286988) (-3038 . 286890)
- (-3039 . 286786) (-3040 . 286668) (-3041 . 286605) (-3042 . 286411)
- (-3043 . 286274) (-3044 . 286173) (-3045 . 285626) (-3046 . 285488)
- (-3047 . 285204) (-3048 . 285124) (-3049 . 284951) (-3050 . 284805)
- (-3051 . 284682) (-3052 . 284485) (-3053 . 284374) (-3054 . 284236)
- (-3055 . 284151) (-3056 . 283994) (-3057 . 283738) (-3058 . 283548)
- (-3059 . 283382) (-3060 . 283187) (-3061 . 283110) (-3062 . 282933)
- (-3063 . 282783) (-3064 . 282635) (-3065 . 282528) (-3066 . 282352)
- (-3067 . 282150) (-3068 . 281614) (-3069 . 281462) (-3070 . 281385)
- (-3071 . 281308) (-3072 . 281117) (-3073 . 281016) (-3074 . 280909)
- (-3075 . 280748) (-3076 . 280605) (-3077 . 280096) (-3078 . 279918)
- (-3079 . 279841) (-3080 . 279784) (-3081 . 279136) (-3082 . 279031)
- (-3083 . 278948) (-3084 . 278588) (-3085 . 278504) (-3086 . 278367)
- (-3087 . 278188) (-3088 . 277800) (-3089 . 277763) (-3090 . 277527)
- (-3091 . 277390) (-3092 . 273395) (-3093 . 273295) (-3094 . 273128)
- (-3095 . 272920) (-3096 . 272793) (-3097 . 272544) (-3098 . 272443)
- (-3099 . 272362) (-3100 . 272200) (-3101 . 272148) (-3102 . 271978)
- (-3103 . 271905) (-3104 . 271573) (-3105 . 271493) (-3106 . 271398)
- (-3107 . 270392) (-3108 . 270262) (-3109 . 270178) (-3110 . 270093)
- (-3111 . 269647) (-3112 . 269430) (-3113 . 268894) (-3114 . 268739)
- (-3115 . 268513) (-3116 . 268318) (-3117 . 268238) (-3118 . 268082)
- (-3119 . 267834) (-3120 . 267768) (-3121 . 267691) (-3122 . 267393)
- (-3123 . 267285) (-3124 . 267176) (-3125 . 267124) (-3126 . 266829)
- (-3127 . 266734) (-3128 . 266681) (-3129 . 266629) (-3130 . 266483)
- (-3131 . 266430) (-3132 . 266272) (-3133 . 266176) (-3134 . 266091)
- (-3135 . 265479) (-3136 . 264183) (-3137 . 263845) (-3138 . 263700)
- (-3139 . 263482) (-3140 . 263203) (-3141 . 263009) (-3142 . 262833)
- (-3143 . 262707) (-3144 . 262545) (-3145 . 262119) (-3146 . 262091)
- (-3147 . 261985) (-3148 . 261592) (-3149 . 260023) (-3150 . 259971)
- (-3151 . 259875) (-3152 . 259292) (-3153 . 259169) (-3154 . 259107)
- (-3155 . 259008) (-3156 . 258915) (-3157 . 258835) (-3158 . 258683)
- (-3159 . 258415) (-3160 . 258028) (-3161 . 257977) (-3162 . 257856)
- (-3163 . 257757) (-3164 . 257419) (-3165 . 257127) (-3166 . 257057)
- (-3167 . 256901) (-3168 . 256728) (-3169 . 256444) (-3170 . 256316)
- (-3171 . 254774) (-3172 . 254594) (-3173 . 254511) (-3174 . 254404)
- (-3175 . 254295) (-3176 . 254238) (-3177 . 253659) (-3178 . 253593)
- (-3179 . 253173) (-3180 . 252587) (-3181 . 252129) (-3182 . 251875)
- (-3183 . 251846) (-3184 . 250736) (-3185 . 250642) (-3186 . 250282)
- (-3187 . 249330) (-3188 . 249193) (-3189 . 248776) (-3190 . 248747)
- (-3191 . 248005) (-3192 . 247703) (-3193 . 247098) (-3194 . 246848)
- (-3195 . 246796) (-3196 . 246372) (-3197 . 246275) (-3198 . 246104)
- (-3199 . 246017) (-3200 . 245940) (-3201 . 245853) (-3202 . 245757)
- (-3203 . 245692) (-3204 . 245623) (-3205 . 244458) (-3206 . 244346)
- (-3207 . 244294) (-3208 . 244223) (-3209 . 244129) (-3210 . 243916)
- (-3211 . 243758) (-3212 . 243675) (-3213 . 243592) (-3214 . 243458)
- (-3215 . 243401) (-3216 . 243314) (-3217 . 243224) (-3218 . 243088)
- (-3219 . 242935) (-3220 . 242817) (-3221 . 242547) (-3222 . 242449)
- (-3223 . 242378) (-3224 . 242323) (-3225 . 242222) (-3226 . 242156)
- (-3227 . 241910) (-3228 . 241836) (-3229 . 241496) (-3230 . 240824)
- (-3231 . 240668) (-3232 . 240522) (-3233 . 240226) (-3234 . 240071)
- (-3235 . 239762) (-3236 . 239602) (-3237 . 239544) (-3238 . 239334)
- (-3239 . 239282) (-3240 . 239181) (-3241 . 238977) (-3242 . 238864)
- (-3243 . 238698) (-3244 . 237594) (-3245 . 236987) (-3246 . 236915)
- (-3247 . 236606) (-3248 . 236475) (-3249 . 236423) (-3250 . 236316)
- (-3251 . 236158) (-3252 . 236098) (-3253 . 236045) (-3254 . 235684)
- (-3255 . 235494) (-3256 . 235142) (-3257 . 235036) (-3258 . 234883)
- (-3259 . 234707) (-3260 . 234679) (-3261 . 234207) (-3262 . 233392)
- (-3263 . 233348) (-3264 . 233238) (-3265 . 232994) (-3266 . 232850)
- (-3267 . 232679) (-3268 . 232440) (-3269 . 232390) (-3270 . 232307)
- (-3271 . 232108) (-3272 . 232023) (-3273 . 231614) (-3274 . 231332)
- (-3275 . 231245) (-3276 . 231141) (-3277 . 231032) (-3278 . 230929)
- (-3279 . 230877) (-3280 . 230843) (-3281 . 230743) (-3282 . 230470)
- (-3283 . 229399) (-3284 . 229263) (-3285 . 229110) (-3286 . 228951)
- (-3287 . 228850) (-3288 . 228653) (-3289 . 228580) (-3290 . 228389)
- (-3291 . 228138) (-3292 . 227739) (-3293 . 227624) (-3294 . 227457)
- (-3295 . 227429) (-3296 . 227292) (-3297 . 227210) (-3298 . 227011)
- (-3299 . 226714) (-3300 . 226617) (-3301 . 226471) (-3302 . 226386)
- (-3303 . 225622) (-3304 . 225485) (-3305 . 225034) (-3306 . 224762)
- (-3307 . 224664) (-3308 . 224561) (-3309 . 224389) (-3310 . 224254)
- (-3311 . 224180) (-3312 . 224061) (-3313 . 223843) (-3314 . 223749)
- (-3315 . 223616) (-3316 . 223472) (-3317 . 223419) (-3318 . 223326)
- (-3319 . 223224) (-12 . 223052) (-3321 . 222608) (-3322 . 222557)
- (-3323 . 222399) (-3324 . 222146) (-3325 . 222075) (-3326 . 222002)
- (-3327 . 221573) (-3328 . 221392) (-3329 . 221108) (-3330 . 221015)
- (-3331 . 220945) (-3332 . 220872) (-3333 . 220819) (-3334 . 220011)
- (-3335 . 219842) (-3336 . 219792) (-3337 . 219739) (-3338 . 219683)
- (-3339 . 219631) (-3340 . 219579) (-3341 . 219063) (-3342 . 219008)
- (-3343 . 218843) (-3344 . 218691) (-3345 . 218638) (-3346 . 218535)
- (-3347 . 217661) (-3348 . 217584) (-3349 . 217531) (-3350 . 217469)
- (-3351 . 217194) (-3352 . 217070) (-3353 . 216917) (-3354 . 216762)
- (-3355 . 216734) (-3356 . 216591) (-3357 . 216357) (-3358 . 216070)
- (-3359 . 215660) (-3360 . 215632) (-3361 . 215580) (-3362 . 215501)
- (-3363 . 215449) (-3364 . 215366) (-3365 . 215229) (-3366 . 215103)
- (-3367 . 214891) (-3368 . 214702) (-3369 . 214370) (-3370 . 214208)
- (-3371 . 214156) (-3372 . 213823) (-3373 . 213496) (-3374 . 213385)
- (-3375 . 212735) (-3376 . 212680) (-3377 . 212464) (-3378 . 212117)
- (-3379 . 212022) (-3380 . 211913) (-3381 . 211839) (-3382 . 211711)
- (-3383 . 211659) (-3384 . 211444) (-3385 . 211186) (-3386 . 211099)
- (-3387 . 210930) (-3388 . 210827) (-3389 . 210778) (-3390 . 210669)
- (-3391 . 210439) (-3392 . 210344) (-3393 . 210200) (-3394 . 210113)
- (-3395 . 209891) (-3396 . 209809) (-3397 . 209753) (-3398 . 209681)
- (-3399 . 209552) (-3400 . 209472) (-3401 . 209358) (-3402 . 209061)
- (* . 204538) (-3404 . 204418) (-3405 . 204262) (-3406 . 204213)
- (-3407 . 204080) (-3408 . 203937) (-3409 . 203888) (-3410 . 203819)
- (-3411 . 203701) (-3412 . 203630) (-3413 . 203466) (-3414 . 203414)
- (-3415 . 203031) (-3416 . 202975) (-3417 . 202837) (-3418 . 202682)
- (-3419 . 202501) (-3420 . 202421) (-3421 . 202292) (-3422 . 202148)
- (-3423 . 202080) (-3424 . 202049) (-3425 . 201890) (-3426 . 201793)
- (-3427 . 201713) (-3428 . 201601) (-3429 . 201494) (-3430 . 201416)
- (-3431 . 201307) (-3432 . 201149) (-3433 . 200874) (-3434 . 200133)
- (-3435 . 199963) (-3436 . 199841) (-3437 . 199773) (-3438 . 199493)
- (-3439 . 199386) (-3440 . 199215) (-3441 . 199181) (-3442 . 198938)
- (-3443 . 198856) (-3444 . 198785) (-3445 . 198538) (-3446 . 198489)
- (-3447 . 198327) (-3448 . 198210) (-3449 . 198085) (-3450 . 197982)
- (-3451 . 197356) (-3452 . 197055) (-3453 . 196948) (-3454 . 196184)
- (-3455 . 195443) (-3456 . 195313) (-3457 . 195170) (-3458 . 195064)
- (-3459 . 194956) (-3460 . 194839) (-3461 . 194780) (-3462 . 194727)
- (-3463 . 194657) (-3464 . 194451) (-3465 . 194179) (-3466 . 193985)
- (-3467 . 193891) (-3468 . 193736) (-3469 . 193593) (-3470 . 193333)
- (-3471 . 193281) (-3472 . 193232) (-3473 . 192577) (-3474 . 192483)
- (-3475 . 192304) (-3476 . 192252) (-3477 . 190473) (-3478 . 190343)
- (-3479 . 189996) (-3480 . 189480) (-3481 . 189385) (-3482 . 189311)
- (-3483 . 186403) (-3484 . 186351) (-3485 . 186239) (-3486 . 186208)
- (-3487 . 184762) (-3488 . 184675) (-3489 . 184453) (-3490 . 184382)
- (-3491 . 184168) (-3492 . 184075) (-3493 . 183948) (-3494 . 183824)
- (-3495 . 183411) (-3496 . 183362) (-3497 . 183239) (-3498 . 183146)
- (-3499 . 183030) (-3500 . 182865) (-3501 . 182793) (-3502 . 182596)
- (-3503 . 182544) (-3504 . 182335) (-3505 . 181371) (-3506 . 181343)
- (-3507 . 181212) (-3508 . 181184) (-3509 . 181153) (-3510 . 181080)
- (-3511 . 180976) (-3512 . 180551) (-3513 . 180495) (-3514 . 180415)
- (-3515 . 179985) (-3516 . 179881) (-3517 . 179642) (-3518 . 179354)
- (-3519 . 179135) (-3520 . 179013) (-3521 . 178864) (-3522 . 178746)
- (-3523 . 178173) (-3524 . 178118) (-3525 . 177839) (-3526 . 177089)
- (-3527 . 176990) (-3528 . 176780) (-3529 . 176721) (-3530 . 176482)
- (-3531 . 176157) (-3532 . 175994) (-3533 . 175914) (-3534 . 175829)
- (-3535 . 175745) (-3536 . 175641) (-3537 . 175557) (-3538 . 174371)
- (-3539 . 174166) (-3540 . 173875) (-3541 . 172387) (-3542 . 172334)
- (-3543 . 172254) (-3544 . 172202) (-3545 . 172087) (-3546 . 172005)
- (-3547 . 171949) (-3548 . 171819) (-3549 . 171700) (-3550 . 171642)
- (-3551 . 171438) (-3552 . 171165) (-3553 . 171050) (-3554 . 170887)
- (-3555 . 170820) (-3556 . 170687) (-3557 . 170621) (-3558 . 170555)
- (-3559 . 170437) (-3560 . 169986) (-3561 . 169379) (-3562 . 169264)
- (-3563 . 169210) (-3564 . 169147) (-3565 . 169119) (-3566 . 169034)
- (-3567 . 168831) (-3568 . 168666) (-3569 . 168583) (-3570 . 168457)
- (-3571 . 168426) (-3572 . 168368) (-3573 . 168230) (-3574 . 168125)
- (-3575 . 167820) (-3576 . 167767) (-3577 . 167631) (-3578 . 167599)
- (-3579 . 167480) (-3580 . 167258) (-3581 . 166942) (-3582 . 166850)
- (-3583 . 166726) (-3584 . 166599) (-3585 . 166486) (-3586 . 166120)
- (-3587 . 166052) (-3588 . 166001) (-3589 . 165902) (-3590 . 165603)
- (-3591 . 165530) (-3592 . 165472) (-3593 . 165417) (-3594 . 165332)
- (-3595 . 165280) (-3596 . 165146) (-3597 . 165009) (-3598 . 164584)
- (-3599 . 164522) (-3600 . 164019) (-3601 . 163505) (-3602 . 163392)
- (-3603 . 163222) (-3604 . 163020) (-3605 . 162927) (-3606 . 162677)
- (-3607 . 162407) (-3608 . 162376) (-3609 . 162132) (-3610 . 161856)
- (-3611 . 161769) (-3612 . 161695) (-3613 . 161643) (-3614 . 161447)
- (-3615 . 161364) (-3616 . 161333) (-3617 . 161178) (-3618 . 161101)
- (-3619 . 160816) (-3620 . 160630) (-3621 . 160561) (-3622 . 160488)
- (-3623 . 160296) (-3624 . 160173) (-3625 . 160082) (-3626 . 159965)
- (-3627 . 159648) (-3628 . 159527) (-3629 . 159404) (-3630 . 159124)
- (-3631 . 159041) (-3632 . 158668) (-3633 . 158616) (-3634 . 158337)
- (-3635 . 158306) (-3636 . 158223) (-3637 . 157840) (-3638 . 157641)
- (-3639 . 157584) (-3640 . 157414) (-3641 . 157283) (-3642 . 157185)
- (-3643 . 157154) (-3644 . 157020) (-3645 . 156968) (-3646 . 156520)
- (-3647 . 156446) (-3648 . 156363) (-3649 . 156245) (-3650 . 156047)
- (-3651 . 155906) (-3652 . 155839) (-3653 . 155683) (-3654 . 155530)
- (-3655 . 155386) (-3656 . 155312) (-3657 . 154788) (-3658 . 154720)
- (-3659 . 154621) (-3660 . 154547) (-3661 . 154431) (-3662 . 154376)
- (-3663 . 153514) (-3664 . 153424) (-3665 . 153231) (-3666 . 152754)
- (-3667 . 152688) (-3668 . 152605) (-3669 . 152206) (-3670 . 152080)
- (-3671 . 152000) (-3672 . 151884) (-3673 . 151743) (-3674 . 151600)
- (-3675 . 151496) (-3676 . 151444) (-3677 . 151226) (-3678 . 151067)
- (-3679 . 150981) (-3680 . 150802) (-3681 . 150739) (-3682 . 150683)
- (-3683 . 150560) (-3684 . 150473) (-3685 . 150414) (-3686 . 150040)
- (-3687 . 149953) (-3688 . 149887) (-3689 . 149785) (-3690 . 149726)
- (-3691 . 149205) (-3692 . 148818) (-3693 . 148749) (-3694 . 148372)
- (-3695 . 148319) (-3696 . 148181) (-3697 . 147621) (-3698 . 147520)
- (-3699 . 147368) (-3700 . 147213) (-3701 . 147136) (-3702 . 146545)
- (-3703 . 146441) (-3704 . 146325) (-3705 . 146273) (-3706 . 146221)
- (-3707 . 146104) (-3708 . 145975) (-3709 . 145883) (-3710 . 145754)
- (-3711 . 145647) (-3712 . 145597) (-3713 . 145444) (-3714 . 145336)
- (-3715 . 145188) (-3716 . 145002) (-3717 . 144729) (-3718 . 144413)
- (-3719 . 144309) (-3720 . 144120) (-3721 . 144025) (-3722 . 143914)
- (-3723 . 143750) (-3724 . 143638) (-3725 . 143585) (-3726 . 143452)
- (-3727 . 143385) (-3728 . 143299) (-3729 . 143192) (-3730 . 143123)
- (-3731 . 142926) (-3732 . 142789) (-3733 . 142669) (-3734 . 142586)
- (-3735 . 142451) (-3736 . 142322) (-3737 . 142207) (-3738 . 142173)
- (-3739 . 142028) (-3740 . 141966) (-3741 . 141842) (-3742 . 141500)
- (-3743 . 141320) (-3744 . 141246) (-3745 . 141190) (-3746 . 141046)
- (-3747 . 141012) (-3748 . 140960) (-3749 . 140869) (-3750 . 140816)
- (-3751 . 140698) (-3752 . 140552) (-3753 . 140482) (-3754 . 140377)
- (-3755 . 140150) (-3756 . 140015) (-3757 . 139500) (-3758 . 139359)
- (-3759 . 139297) (-3760 . 139164) (-3761 . 138990) (-3762 . 138904)
- (-3763 . 138383) (-3764 . 138306) (-3765 . 138155) (-3766 . 131156)
- (-3767 . 130856) (-3768 . 130624) (-3769 . 130561) (-3770 . 130446)
- (-3771 . 130291) (-3772 . 130048) (-3773 . 129672) (-3774 . 128826)
- (-3775 . 128798) (-3776 . 128619) (-3777 . 128473) (-3778 . 128293)
- (-3779 . 128223) (-3780 . 128088) (-3781 . 127966) (-3782 . 127932)
- (-3783 . 127877) (-3784 . 127814) (-3785 . 127687) (-3786 . 127503)
- (-3787 . 127431) (-3788 . 127192) (-3789 . 127037) (-3790 . 126878)
- (-3791 . 126812) (-3792 . 126612) (-3793 . 126559) (-3794 . 125081)
- (-3795 . 124919) (-3796 . 124685) (-3797 . 124486) (-3798 . 124391)
- (-3799 . 124281) (-3800 . 124215) (-3801 . 123832) (-3802 . 123736)
- (-3803 . 123653) (-3804 . 123592) (-3805 . 123485) (-3806 . 123355)
- (-3807 . 123267) (-3808 . 123181) (-3809 . 123074) (-3810 . 122918)
- (-3811 . 122327) (-3812 . 122242) (-3813 . 122172) (-3814 . 121848)
- (-3815 . 121774) (-3816 . 121684) (-3817 . 121434) (-3818 . 121327)
- (-3819 . 121226) (-3820 . 121086) (-3821 . 120959) (-3822 . 120806)
- (-3823 . 120662) (-3824 . 119758) (-3825 . 119256) (-3826 . 119003)
- (-3827 . 118936) (-3828 . 118866) (-3829 . 118715) (-3830 . 118592)
- (-3831 . 118528) (-3832 . 118313) (-3833 . 118186) (-3834 . 118001)
- (-3835 . 117930) (-3836 . 117856) (-3837 . 117779) (-3838 . 117727)
- (-3839 . 117590) (-3840 . 117432) (-3841 . 117359) (-3842 . 117243)
- (-3843 . 116902) (-3844 . 116658) (-3845 . 116205) (-3846 . 116091)
- (-3847 . 115974) (-3848 . 115889) (-3849 . 115810) (-3850 . 115637)
- (-3851 . 115566) (-3852 . 115391) (-3853 . 115300) (-3854 . 115175)
- (-3855 . 115123) (-3856 . 115024) (-3857 . 114941) (-3858 . 114840)
- (-3859 . 114788) (-3860 . 114609) (-3861 . 114441) (-3862 . 114392)
- (-3863 . 114326) (-3864 . 113994) (-3865 . 113924) (-3866 . 113794)
- (-3867 . 113712) (-3868 . 113609) (-3869 . 113450) (-3870 . 113384)
- (-3871 . 113073) (-3872 . 113000) (-3873 . 112932) (-3874 . 112582)
- (-3875 . 112411) (-3876 . 112355) (-3877 . 111553) (-3878 . 111446)
- (-3879 . 111385) (-3880 . 111283) (-3881 . 111110) (-3882 . 110863)
- (-3883 . 110804) (-3884 . 110374) (-3885 . 110167) (-3886 . 110009)
- (-3887 . 109953) (-3888 . 109803) (-3889 . 109603) (-3890 . 109387)
- (-3891 . 109084) (-3892 . 108977) (-3893 . 108367) (-3894 . 107848)
- (-3895 . 107720) (-3896 . 107668) (-3897 . 105538) (-3898 . 105446)
- (-3899 . 105323) (-3900 . 105146) (-3901 . 105078) (-3902 . 104835)
- (-3903 . 104798) (-3904 . 104740) (-3905 . 104478) (-3906 . 104447)
- (-3907 . 104338) (-3908 . 103523) (-3909 . 103418) (-3910 . 103365)
- (-3911 . 102677) (-3912 . 102390) (-3913 . 101756) (-3914 . 101694)
- (-3915 . 101468) (-3916 . 100833) (-3917 . 100677) (-3918 . 100296)
- (-3919 . 99720) (-3920 . 99216) (-3921 . 98612) (-3922 . 98498)
- (-3923 . 98315) (-3924 . 98248) (-3925 . 98150) (-3926 . 98010)
- (-3927 . 96609) (-3928 . 91489) (-3929 . 91415) (-3930 . 91228)
- (-3931 . 90652) (-3932 . 90271) (-3933 . 90152) (-3934 . 90043)
- (-3935 . 89679) (-3936 . 89334) (-3937 . 89172) (-3938 . 88903)
- (-3939 . 88854) (-3940 . 88801) (-3941 . 88714) (-3942 . 88138)
- (-3943 . 88026) (-3944 . 87882) (-3945 . 87815) (-3946 . 87661)
- (-3947 . 87552) (-3948 . 87381) (-3949 . 87142) (-3950 . 86982)
- (-3951 . 86296) (-3952 . 86211) (-3953 . 86098) (-3954 . 86046)
- (-3955 . 85806) (-3956 . 85778) (-3957 . 85589) (-3958 . 85201)
- (-3959 . 79689) (-3960 . 79602) (-3961 . 79334) (-3962 . 79233)
- (-3963 . 78547) (-3964 . 78479) (-3965 . 78085) (-3966 . 77987)
- (-3967 . 77934) (-3968 . 77725) (-3969 . 77337) (-3970 . 76862)
- (-3971 . 76649) (-3972 . 76501) (-3973 . 76209) (-3974 . 75460)
- (-3975 . 75432) (-3976 . 75011) (-3977 . 74855) (-3978 . 74796)
- (-3979 . 74385) (-3980 . 74273) (-3981 . 73820) (-3982 . 73726)
- (-3983 . 73420) (-3984 . 73221) (-3985 . 72647) (-3986 . 72545)
- (-3987 . 72473) (-3988 . 72183) (-3989 . 72072) (-3990 . 71949)
- (-3991 . 71897) (-3992 . 71493) (-3993 . 71146) (-3994 . 71046)
- (-3995 . 70959) (-3996 . 70740) (-3997 . 70564) (-3998 . 70430)
- (-3999 . 69856) (-4000 . 69747) (-4001 . 69545) (-4002 . 69471)
- (-4003 . 69401) (-4004 . 65791) (-4005 . 65196) (-4006 . 65071)
- (-4007 . 64991) (-4008 . 64465) (-4009 . 64252) (-4010 . 64093)
- (-4011 . 63995) (-4012 . 63825) (-4013 . 63251) (-4014 . 63177)
- (-4015 . 63008) (-4016 . 62929) (-4017 . 62777) (-4018 . 62154)
- (-4019 . 61826) (-4020 . 61604) (-4021 . 61505) (-4022 . 61260)
- (-4023 . 60945) (-4024 . 60858) (-4025 . 60788) (-4026 . 60101)
- (-4027 . 59961) (-4028 . 59884) (-4029 . 59799) (-4030 . 59690)
- (-4031 . 59630) (-4032 . 59536) (-4033 . 59128) (-4034 . 58839)
- (-4035 . 58604) (-4036 . 58532) (-4037 . 58261) (-4038 . 57574)
- (-4039 . 57095) (-4040 . 57012) (-4041 . 56952) (-4042 . 56854)
- (-4043 . 56764) (-4044 . 56593) (-4045 . 56313) (-4046 . 56082)
- (-4047 . 55891) (-4048 . 55770) (-4049 . 55083) (-4050 . 54866)
- (-4051 . 54788) (-4052 . 54686) (-4053 . 54561) (-4054 . 54461)
- (-4055 . 54196) (-4056 . 54145) (-4057 . 54042) (-4058 . 53744)
- (-4059 . 52560) (-4060 . 52415) (-4061 . 51840) (-4062 . 51658)
- (-4063 . 51238) (-4064 . 51167) (-4065 . 51087) (-4066 . 50621)
- (-4067 . 50569) (-4068 . 50495) (-4069 . 50356) (-4070 . 49178)
- (-4071 . 48732) (-4072 . 48157) (-4073 . 47827) (-4074 . 47718)
- (-4075 . 47635) (-4076 . 47320) (-4077 . 47292) (-4078 . 47054)
- (-4079 . 45435) (-4080 . 45331) (-4081 . 45260) (-4082 . 43062)
- (-4083 . 42855) (-4084 . 42280) (-4085 . 42246) (-4086 . 42194)
- (-4087 . 42127) (-4088 . 41833) (-4089 . 41778) (-4090 . 41712)
- (-4091 . 41351) (-4092 . 40490) (-4093 . 39298) (-4094 . 39238)
- (-4095 . 39131) (-4096 . 38557) (-4097 . 38462) (-4098 . 38279)
- (-4099 . 38251) (-4100 . 38091) (-4101 . 37723) (-4102 . 37670)
- (-4103 . 37445) (-4104 . 36054) (-4105 . 35279) (-4106 . 35153)
- (-4107 . 34838) (-4108 . 33832) (-4109 . 33737) (-4110 . 33163)
- (-4111 . 32435) (-4112 . 32047) (-4113 . 31981) (-4114 . 31793)
- (-4115 . 31577) (-4116 . 31463) (-4117 . 31378) (-4118 . 31191)
- (-4119 . 31048) (-4120 . 30886) (-4121 . 30312) (-4122 . 30171)
- (-4123 . 30062) (-4124 . 29896) (-4125 . 29822) (-4126 . 29654)
- (-4127 . 29406) (-4128 . 29353) (-4129 . 29058) (-4130 . 28973)
- (-4131 . 28904) (-4132 . 28580) (-4133 . 28006) (-4134 . 27937)
- (-4135 . 27797) (-4136 . 27466) (-4137 . 27414) (-4138 . 27077)
- (-4139 . 26947) (-4140 . 26631) (-4141 . 26553) (-4142 . 26263)
- (-4143 . 26192) (-4144 . 26133) (-4145 . 26034) (-4146 . 25978)
- (-4147 . 25404) (-4148 . 25283) (-4149 . 25094) (-4150 . 24915)
- (-4151 . 24859) (-4152 . 24522) (-4153 . 24415) (-4154 . 24217)
- (-4155 . 24005) (-4156 . 23692) (-4157 . 23419) (-4158 . 23278)
- (-4159 . 22242) (-4160 . 22208) (-4161 . 21991) (-4162 . 21852)
- (-4163 . 21473) (-4164 . 21377) (-4165 . 21322) (-4166 . 21256)
- (-4167 . 21046) (-4168 . 19218) (-4169 . 18421) (-4170 . 18366)
- (-4171 . 18213) (-4172 . 18099) (-4173 . 17928) (-4174 . 17729)
- (-4175 . 17296) (-4176 . 16906) (-4177 . 16765) (-4178 . 16547)
- (-4179 . 15024) (-4180 . 14946) (-4181 . 14893) (-4182 . 14506)
- (-4183 . 14401) (-4184 . 13992) (-4185 . 13665) (-4186 . 12484)
- (-4187 . 12410) (-4188 . 12354) (-4189 . 12130) (-4190 . 11974)
- (-4191 . 11896) (-4192 . 10356) (-4193 . 10104) (-4194 . 9775)
- (-4195 . 9317) (-4196 . 9236) (-4197 . 9184) (-4198 . 9111)
- (-4199 . 9024) (-4200 . 8972) (-4201 . 8869) (-4202 . 8591)
- (-4203 . 8450) (-4204 . 7909) (-4205 . 7838) (-4206 . 7700)
- (-4207 . 7526) (-4208 . 5675) (-4209 . 5490) (-4210 . 5145)
- (-4211 . 4409) (-4212 . 4332) (-4213 . 4117) (-4214 . 3865)
- (-4215 . 3655) (-4216 . 3112) (-4217 . 2960) (-4218 . 2880)
- (-4219 . 2769) (-4220 . 2688) (-4221 . 2527) (-4222 . 2267)
- (-4223 . 1893) (-4224 . 1796) (-4225 . 1730) (-4226 . 1502)
- (-4227 . 1398) (-4228 . 1079) (-4229 . 981) (-4230 . 798)
- (-4231 . 696) (-4232 . 570) (-4233 . 521) (-4234 . 30)) \ No newline at end of file
+ ((*1 *2) (-12 (-5 *2 (-525)) (-5 *1 (-862)))))
+((-1204 . 727935) (-1205 . 727821) (-1206 . 727749) (-1207 . 727698)
+ (-1208 . 727600) (-1209 . 727485) (-1210 . 727189) (-1211 . 727058)
+ (-1212 . 726860) (-1213 . 726770) (-1214 . 725430) (-1215 . 725346)
+ (-1216 . 725293) (-1217 . 725047) (-1218 . 724844) (-1219 . 724689)
+ (-1220 . 724616) (-1221 . 724564) (-1222 . 724263) (-1223 . 724163)
+ (-1224 . 723884) (-1225 . 723713) (-1226 . 723647) (-1227 . 723523)
+ (-1228 . 723358) (-1229 . 723198) (-1230 . 723091) (-1231 . 722968)
+ (-1232 . 722588) (-1233 . 722539) (-1234 . 722259) (-1235 . 722139)
+ (-1236 . 721710) (-1237 . 721627) (-1238 . 721549) (-1239 . 721491)
+ (-1240 . 721226) (-1241 . 721109) (-1242 . 720951) (-1243 . 720898)
+ (-1244 . 720319) (-1245 . 720010) (-1246 . 719801) (-1247 . 719694)
+ (-1248 . 719568) (-1249 . 719358) (-1250 . 718148) (-1251 . 718088)
+ (-1252 . 717877) (-1253 . 717770) (-1254 . 717554) (-1255 . 717498)
+ (-1256 . 717411) (-1257 . 717160) (-1258 . 717031) (-1259 . 717000)
+ (-1260 . 716914) (-1261 . 716813) (-1262 . 716760) (-1263 . 716683)
+ (-1264 . 716350) (-1265 . 716047) (-1266 . 715938) (-1267 . 715867)
+ (-1268 . 715809) (-1269 . 715726) (-1270 . 692534) (-1271 . 692330)
+ (-1272 . 692136) (-1273 . 691946) (-1274 . 691839) (-1275 . 691681)
+ (-1276 . 691594) (-1277 . 691456) (-1278 . 691361) (-1279 . 688609)
+ (-1280 . 688257) (-1281 . 688170) (-1282 . 688093) (-1283 . 687483)
+ (-1284 . 687412) (-1285 . 687242) (-1286 . 687214) (-1287 . 687109)
+ (-1288 . 686914) (-1289 . 685961) (-1290 . 685909) (-1291 . 685803)
+ (-1292 . 685284) (-1293 . 685185) (-1294 . 685044) (-1295 . 684986)
+ (-1296 . 684681) (-1297 . 684009) (-1298 . 683874) (-1299 . 683694)
+ (-1300 . 683614) (-1301 . 683461) (-1302 . 683124) (-1303 . 682815)
+ (-1304 . 682687) (-1305 . 682595) (-1306 . 682522) (-1307 . 682332)
+ (-1308 . 682274) (-1309 . 682221) (-1310 . 682065) (-1311 . 681899)
+ (-1312 . 681829) (-1313 . 681653) (-1314 . 681344) (-1315 . 681292)
+ (-1316 . 680884) (-1317 . 680704) (-1318 . 680552) (-1319 . 680416)
+ (-1320 . 680312) (-1321 . 680064) (-1322 . 679592) (-1323 . 679370)
+ (-1324 . 679297) (-1325 . 679205) (-1326 . 679049) (-1327 . 678923)
+ (-1328 . 678580) (-1329 . 678548) (-1330 . 678482) (-1331 . 678271)
+ (-1332 . 678218) (-1333 . 677403) (-1334 . 677318) (-1335 . 677195)
+ (-1336 . 676890) (-1337 . 676630) (-1338 . 676240) (-1339 . 676102)
+ (-1340 . 675983) (-1341 . 675906) (-1342 . 675862) (-1343 . 675629)
+ (-1344 . 675502) (-1345 . 675421) (-1346 . 675244) (-1347 . 675139)
+ (-1348 . 674986) (-1349 . 674877) (-1350 . 674792) (-1351 . 674632)
+ (-1352 . 674410) (-1353 . 674112) (-1354 . 673954) (-1355 . 673727)
+ (-1356 . 673617) (-1357 . 673549) (-1358 . 673262) (-1359 . 673207)
+ (-1360 . 673025) (-1361 . 672991) (-1362 . 672675) (-1363 . 672040)
+ (-1364 . 671932) (-1365 . 671779) (-1366 . 671535) (-1367 . 671383)
+ (-1368 . 671140) (-1369 . 670455) (-1370 . 670354) (-1371 . 670218)
+ (-1372 . 670093) (-1373 . 669878) (-1374 . 669828) (-1375 . 669736)
+ (-1376 . 669627) (-1377 . 669569) (-1378 . 669505) (-1379 . 669361)
+ (-1380 . 669284) (-1381 . 669247) (-1382 . 669173) (-1383 . 669117)
+ (-1384 . 668913) (-1385 . 668813) (-1386 . 668689) (-1387 . 668637)
+ (-1388 . 668524) (-1389 . 668353) (-1390 . 668295) (-1391 . 668261)
+ (-1392 . 668105) (-1393 . 666343) (-1394 . 666098) (-1395 . 665971)
+ (-1396 . 665812) (-1397 . 665517) (-1398 . 665278) (-1399 . 665163)
+ (-1400 . 664999) (-1401 . 664968) (-1402 . 664771) (-1403 . 664431)
+ (-1404 . 664323) (-1405 . 664210) (-1406 . 664138) (-1407 . 664043)
+ (-1408 . 663936) (-1409 . 663886) (-1410 . 663699) (-1411 . 663590)
+ (-1412 . 663517) (-1413 . 663368) (-1414 . 663208) (-1415 . 661971)
+ (-1416 . 661605) (-1417 . 661467) (-1418 . 661321) (-1419 . 661238)
+ (-1420 . 661052) (-1421 . 660947) (-1422 . 660761) (-1423 . 660647)
+ (-1424 . 660590) (-1425 . 660456) (-1426 . 660388) (-1427 . 660271)
+ (-1428 . 660218) (-1429 . 658917) (-1430 . 658819) (-1431 . 658620)
+ (-1432 . 658550) (-1433 . 658497) (-1434 . 658165) (-1435 . 657714)
+ (-1436 . 656319) (-1437 . 656259) (-1438 . 656160) (-1439 . 656109)
+ (-1440 . 655951) (-1441 . 655866) (-1442 . 655757) (-1443 . 655470)
+ (-1444 . 655358) (-1445 . 655244) (-1446 . 655171) (-1447 . 655062)
+ (-1448 . 654963) (-1449 . 654090) (-1450 . 653994) (-1451 . 653668)
+ (-1452 . 653432) (-1453 . 653023) (-1454 . 652389) (-1455 . 652305)
+ (-1456 . 652157) (-1457 . 652077) (-1458 . 652025) (-1459 . 651726)
+ (-1460 . 651675) (-1461 . 651590) (-1462 . 651308) (-1463 . 651256)
+ (-1464 . 651030) (-1465 . 650962) (-1466 . 650632) (-1467 . 650562)
+ (-1468 . 650446) (-1469 . 650313) (-1470 . 650240) (-1471 . 648944)
+ (-1472 . 648736) (-1473 . 648544) (-1474 . 648305) (-1475 . 648218)
+ (-1476 . 647962) (-1477 . 647327) (-1478 . 647204) (-1479 . 646794)
+ (-1480 . 646687) (-1481 . 646629) (-1482 . 645609) (-1483 . 645271)
+ (-1484 . 645167) (-1485 . 645084) (-1486 . 644928) (-1487 . 644764)
+ (-1488 . 644650) (-1489 . 644551) (-1490 . 644496) (-1491 . 644318)
+ (-1492 . 644173) (-1493 . 643842) (-1494 . 643390) (-1495 . 643281)
+ (-1496 . 642846) (-1497 . 642465) (-1498 . 641766) (-1499 . 641713)
+ (-1500 . 641513) (-1501 . 641428) (-1502 . 641281) (-1503 . 641002)
+ (-1504 . 640882) (-1505 . 640798) (-1506 . 640695) (-1507 . 640191)
+ (-1508 . 640098) (-1509 . 640013) (-1510 . 639884) (-1511 . 639740)
+ (-1512 . 639063) (-1513 . 638933) (-1514 . 638859) (-1515 . 638807)
+ (-1516 . 638426) (-1517 . 638232) (-1518 . 637973) (-1519 . 637921)
+ (-1520 . 637317) (-1521 . 636992) (-1522 . 636894) (-1523 . 636767)
+ (-1524 . 636684) (-1525 . 636550) (-1526 . 635300) (-1527 . 635124)
+ (-1528 . 635005) (-1529 . 634891) (-1530 . 634857) (-1531 . 634754)
+ (-1532 . 634528) (-1533 . 634421) (-1534 . 634162) (-1535 . 633897)
+ (-1536 . 633778) (-1537 . 633722) (-1538 . 633585) (-1539 . 633479)
+ (-1540 . 633353) (-1541 . 633170) (-1542 . 633070) (-1543 . 632186)
+ (-1544 . 632049) (-1545 . 631966) (-1546 . 631913) (-1547 . 631806)
+ (-1548 . 631687) (-1549 . 631485) (-1550 . 631423) (-1551 . 631261)
+ (-1552 . 631163) (-1553 . 630092) (-1554 . 629876) (-1555 . 629732)
+ (-1556 . 629627) (-1557 . 629484) (-1558 . 629272) (-1559 . 629216)
+ (-1560 . 629143) (-1561 . 629073) (-1562 . 628570) (-1563 . 628464)
+ (-1564 . 628342) (-1565 . 628206) (-1566 . 628054) (-1567 . 627992)
+ (-1568 . 627852) (-1569 . 627111) (-1570 . 627052) (-1571 . 626558)
+ (-1572 . 626479) (-1573 . 625965) (-1574 . 625572) (-1575 . 625544)
+ (-1576 . 625272) (-1577 . 625198) (-1578 . 625127) (-1579 . 625022)
+ (-1580 . 624921) (-1581 . 624614) (-1582 . 624470) (-1583 . 624195)
+ (-1584 . 623454) (-1585 . 623284) (-1586 . 623188) (-1587 . 621088)
+ (-1588 . 619519) (-1589 . 619322) (-1590 . 619216) (-1591 . 619029)
+ (-1592 . 618928) (-1593 . 614866) (-1594 . 614698) (-1595 . 614539)
+ (-1596 . 614337) (-1597 . 614285) (-1598 . 614175) (-1599 . 614102)
+ (-1600 . 613721) (-1601 . 613638) (-1602 . 613585) (-1603 . 612897)
+ (-1604 . 612785) (-1605 . 612692) (-1606 . 612255) (-1607 . 612159)
+ (-1608 . 611968) (-1609 . 611859) (-1610 . 611740) (-1611 . 611586)
+ (-1612 . 611349) (-1613 . 611264) (-1614 . 610665) (-1615 . 609781)
+ (-1616 . 609531) (-1617 . 608948) (-1618 . 608804) (-1619 . 608553)
+ (-1620 . 608444) (-1621 . 608329) (-1622 . 608242) (-1623 . 608135)
+ (-1624 . 608083) (-1625 . 608052) (-1626 . 607980) (-1627 . 607857)
+ (-1628 . 607588) (-1629 . 607189) (-1630 . 607086) (-1631 . 606722)
+ (-1632 . 604377) (-1633 . 604270) (-1634 . 604239) (-1635 . 603856)
+ (-1636 . 603535) (-1637 . 603291) (-1638 . 603096) (-1639 . 602997)
+ (-1640 . 602882) (-1641 . 602487) (-1642 . 602403) (-1643 . 602058)
+ (-1644 . 601971) (-1645 . 601894) (-1646 . 601756) (-1647 . 601480)
+ (-1648 . 601333) (-1649 . 601240) (-1650 . 601073) (-1651 . 600961)
+ (-1652 . 600902) (-1653 . 600740) (-1654 . 600647) (-1655 . 600292)
+ (-1656 . 600218) (-1657 . 600131) (-1658 . 599903) (-1659 . 599823)
+ (-1660 . 599393) (-1661 . 599328) (-1662 . 599300) (-1663 . 599251)
+ (-1664 . 598959) (-1665 . 598885) (-1666 . 598727) (-1667 . 598575)
+ (-1668 . 598438) (-1669 . 598333) (-1670 . 598249) (-1671 . 598196)
+ (-1672 . 598063) (-1673 . 598011) (-1674 . 597871) (-1675 . 597603)
+ (-1676 . 597383) (-1677 . 597301) (-1678 . 597214) (-1679 . 597159)
+ (-1680 . 596304) (-1681 . 595405) (-1682 . 595209) (-1683 . 594991)
+ (-1684 . 594886) (-1685 . 594830) (-1686 . 594704) (-1687 . 594317)
+ (-1688 . 594020) (-1689 . 593865) (-1690 . 593753) (-1691 . 593568)
+ (-1692 . 593405) (-1693 . 593058) (-1694 . 592988) (-1695 . 592803)
+ (-1696 . 592720) (-1697 . 592669) (-1698 . 592528) (-1699 . 592324)
+ (-1700 . 592121) (-1701 . 592024) (-1702 . 591893) (-1703 . 591749)
+ (-1704 . 591652) (-1705 . 591579) (-1706 . 591385) (-1707 . 591351)
+ (-1708 . 591320) (-1709 . 591235) (-1710 . 591114) (-1711 . 590968)
+ (-1712 . 590897) (-1713 . 590830) (-1714 . 590685) (-1715 . 590523)
+ (-1716 . 590410) (-1717 . 590164) (-1718 . 590036) (-1719 . 589881)
+ (-1720 . 589782) (-1721 . 589444) (-1722 . 589350) (-1723 . 589265)
+ (-1724 . 589162) (-1725 . 589053) (-1726 . 588956) (-1727 . 588859)
+ (-1728 . 588648) (-1729 . 588571) (-1730 . 588279) (-1731 . 588112)
+ (-1732 . 587654) (-1733 . 587517) (-1734 . 587355) (-1735 . 587184)
+ (-1736 . 587040) (-1737 . 586755) (-1738 . 586614) (-1739 . 586481)
+ (-1740 . 586323) (-1741 . 586253) (-1742 . 586197) (-1743 . 585746)
+ (-1744 . 585507) (-1745 . 585383) (-1746 . 585314) (-1747 . 585214)
+ (-1748 . 585024) (-1749 . 584851) (-1750 . 584710) (-1751 . 584285)
+ (-1752 . 584095) (-1753 . 583823) (-1754 . 583663) (-1755 . 583541)
+ (-1756 . 583468) (-1757 . 583397) (-1758 . 583286) (-1759 . 583002)
+ (-1760 . 582960) (-1761 . 582908) (-1762 . 582805) (-1763 . 582720)
+ (-1764 . 582531) (-1765 . 581931) (-1766 . 580867) (-1767 . 580675)
+ (-1768 . 580587) (-1769 . 580410) (-1770 . 580282) (-1771 . 580169)
+ (-1772 . 580066) (-1773 . 579941) (-1774 . 579867) (-1775 . 579744)
+ (-1776 . 579527) (-1777 . 577985) (-1778 . 577624) (-1779 . 577480)
+ (-1780 . 577364) (-1781 . 577312) (-1782 . 577226) (-1783 . 577110)
+ (-1784 . 576781) (-1785 . 576690) (-1786 . 576084) (-1787 . 575904)
+ (-1788 . 575374) (-1789 . 575163) (-1790 . 574974) (-1791 . 574624)
+ (-1792 . 574477) (-1793 . 574394) (-1794 . 574235) (-1795 . 573918)
+ (-1796 . 573765) (-1797 . 573366) (-1798 . 573100) (-1799 . 572873)
+ (-1800 . 572764) (-1801 . 572698) (-1802 . 572310) (-1803 . 572225)
+ (-1804 . 572151) (-1805 . 571066) (-1806 . 570959) (-1807 . 570885)
+ (-1808 . 570406) (-1809 . 570092) (-1810 . 569944) (-1811 . 569857)
+ (-1812 . 569797) (-1813 . 569597) (-1814 . 569569) (-1815 . 569517)
+ (-1816 . 569447) (-1817 . 569213) (-1818 . 569104) (-1819 . 568658)
+ (-1820 . 568556) (-1821 . 566702) (-1822 . 566601) (-1823 . 566423)
+ (-1824 . 566298) (-1825 . 566181) (-1826 . 566050) (-1827 . 565904)
+ (-1828 . 565849) (-1829 . 565792) (-1830 . 565652) (-1831 . 565265)
+ (-1832 . 564872) (-1833 . 564760) (-1834 . 564692) (-1835 . 564521)
+ (-1836 . 564402) (-1837 . 564374) (-1838 . 564305) (-1839 . 564239)
+ (-1840 . 564154) (-1841 . 563575) (-1842 . 563430) (-1843 . 563242)
+ (-1844 . 563181) (-1845 . 563096) (-1846 . 563065) (-1847 . 562939)
+ (-1848 . 562873) (-1849 . 562345) (-1850 . 562253) (-1851 . 562095)
+ (-1852 . 561980) (-1853 . 561886) (-1854 . 561742) (-1855 . 561669)
+ (-1856 . 560915) (-1857 . 560671) (-1858 . 560597) (-1859 . 560524)
+ (-1860 . 560157) (-1861 . 560036) (-1862 . 559616) (-1863 . 558712)
+ (-1864 . 558231) (-1865 . 558076) (-1866 . 557927) (-1867 . 557843)
+ (-1868 . 557620) (-1869 . 557376) (-1870 . 557272) (-1871 . 557189)
+ (-1872 . 557102) (-1873 . 556516) (-1874 . 556429) (-1875 . 555927)
+ (-1876 . 555540) (-1877 . 555470) (-1878 . 555365) (-1879 . 555297)
+ (-1880 . 555151) (-1881 . 555095) (-1882 . 555026) (-1883 . 554942)
+ (-1884 . 554883) (-1885 . 554830) (-1886 . 554577) (-1887 . 554464)
+ (-1888 . 554316) (-1889 . 554160) (-1890 . 554075) (-1891 . 553938)
+ (-1892 . 553858) (-1893 . 553778) (-1894 . 553744) (-1895 . 553682)
+ (-1896 . 553560) (-1897 . 553493) (-1898 . 553287) (-1899 . 553231)
+ (-1900 . 553078) (-1901 . 552942) (-1902 . 552838) (-1903 . 552716)
+ (-1904 . 552543) (-1905 . 552465) (-1906 . 552395) (-1907 . 552194)
+ (-1908 . 551807) (-1909 . 551591) (-1910 . 551480) (-1911 . 551393)
+ (-1912 . 551154) (-1913 . 550977) (-1914 . 550725) (-1915 . 550579)
+ (-1916 . 550058) (-1917 . 549406) (-1918 . 549163) (-1919 . 549063)
+ (-1920 . 548912) (-1921 . 548814) (-1922 . 548747) (-1923 . 548459)
+ (-1924 . 548358) (-1925 . 548235) (-1926 . 547906) (-1927 . 547808)
+ (-1928 . 547737) (-1929 . 547595) (-1930 . 547508) (-1931 . 547385)
+ (-1932 . 547333) (-1933 . 546516) (-1934 . 546297) (-1935 . 545839)
+ (-1936 . 545642) (-1937 . 545614) (-1938 . 545480) (-1939 . 545395)
+ (-1940 . 545226) (-1941 . 545079) (-1942 . 545015) (-1943 . 540855)
+ (-1944 . 540743) (-1945 . 540621) (-1946 . 540540) (-1947 . 540429)
+ (-1948 . 540128) (-1949 . 539950) (-1950 . 539888) (-1951 . 539793)
+ (-1952 . 539666) (-1953 . 539464) (-1954 . 539412) (-1955 . 539329)
+ (-1956 . 539276) (-1957 . 539127) (-1958 . 538904) (-1959 . 538819)
+ (-1960 . 538724) (-1961 . 538651) (-1962 . 538466) (-1963 . 538342)
+ (-1964 . 538098) (-1965 . 538032) (-1966 . 537961) (-1967 . 537909)
+ (-1968 . 537791) (-1969 . 537718) (-1970 . 537561) (-1971 . 537478)
+ (-1972 . 537318) (-1973 . 537266) (-1974 . 537195) (-1975 . 537051)
+ (-1976 . 536985) (-1977 . 536826) (-1978 . 536253) (-1979 . 536166)
+ (-1980 . 535493) (-1981 . 535237) (-1982 . 533941) (-1983 . 533861)
+ (-1984 . 533766) (-1985 . 533528) (-1986 . 533403) (-1987 . 533159)
+ (-1988 . 533085) (-1989 . 532787) (-1990 . 532686) (-1991 . 532631)
+ (-1992 . 532504) (-1993 . 532314) (-1994 . 532262) (-1995 . 532068)
+ (-1996 . 531839) (-1997 . 531672) (-1998 . 531620) (-1999 . 531402)
+ (-2000 . 531293) (-2001 . 531225) (-2002 . 530475) (-2003 . 530398)
+ (-2004 . 529807) (-2005 . 529641) (-2006 . 529538) (-2007 . 529047)
+ (-2008 . 528917) (-2009 . 528780) (-2010 . 528651) (-2011 . 528580)
+ (-2012 . 528378) (-2013 . 528073) (-2014 . 527449) (-2015 . 527369)
+ (-2016 . 527237) (-2017 . 527136) (-2018 . 526863) (-2019 . 526768)
+ (-2020 . 526669) (-2021 . 526474) (-2022 . 526196) (-2023 . 525525)
+ (-2024 . 525426) (-2025 . 525319) (-2026 . 524940) (-2027 . 524782)
+ (-2028 . 524520) (-2029 . 524463) (-2030 . 524133) (-2031 . 524049)
+ (-2032 . 523839) (-2033 . 523698) (-2034 . 523614) (-2035 . 523437)
+ (-2036 . 523170) (-2037 . 522947) (-2038 . 522840) (-2039 . 522696)
+ (-2040 . 522457) (-2041 . 522402) (-2042 . 522194) (-2043 . 522121)
+ (-2044 . 522021) (-2045 . 521918) (-2046 . 521850) (-2047 . 521603)
+ (-2048 . 521544) (-2049 . 521003) (-2050 . 520853) (-2051 . 520307)
+ (-2052 . 520184) (-2053 . 519642) (-2054 . 519487) (-2055 . 519289)
+ (-2056 . 519173) (-2057 . 519090) (-2058 . 519010) (-2059 . 518939)
+ (-2060 . 518700) (-2061 . 518617) (-2062 . 518546) (-2063 . 518398)
+ (-2064 . 518304) (-2065 . 517963) (-2066 . 517760) (-2067 . 517707)
+ (-2068 . 517636) (-2069 . 517495) (-2070 . 517376) (-2071 . 517282)
+ (-2072 . 517195) (-2073 . 517146) (-2074 . 516821) (-2075 . 516645)
+ (-2076 . 516507) (-2077 . 516263) (-2078 . 515956) (-2079 . 515712)
+ (-2080 . 515645) (-2081 . 515509) (-2082 . 515332) (-2083 . 515272)
+ (-2084 . 515170) (-2085 . 515084) (-2086 . 514587) (-2087 . 514535)
+ (-2088 . 514317) (-2089 . 514154) (-2090 . 513915) (-2091 . 513741)
+ (-2092 . 513539) (-2093 . 512710) (-2094 . 512001) (-2095 . 511864)
+ (-2096 . 511815) (-2097 . 511692) (-2098 . 511239) (-2099 . 511097)
+ (-2100 . 509827) (-2101 . 509608) (-2102 . 509536) (-2103 . 507406)
+ (-2104 . 506546) (-2105 . 506355) (-2106 . 506275) (-2107 . 504424)
+ (-2108 . 503888) (-2109 . 503860) (-2110 . 503732) (-2111 . 503633)
+ (-2112 . 503571) (-2113 . 503518) (-2114 . 503404) (-2115 . 503341)
+ (-2116 . 503269) (-2117 . 502976) (-2118 . 502852) (-2119 . 502767)
+ (-2120 . 502582) (-2121 . 502430) (-2122 . 502332) (-2123 . 502215)
+ (-2124 . 502113) (-2125 . 501622) (-2126 . 501429) (-2127 . 501355)
+ (-2128 . 501104) (-2129 . 501042) (-2130 . 500913) (-2131 . 500643)
+ (-2132 . 500589) (-2133 . 500493) (-2134 . 500409) (-2135 . 500178)
+ (-2136 . 499833) (-2137 . 499756) (-2138 . 499685) (-2139 . 499446)
+ (-2140 . 499358) (-2141 . 499221) (-2142 . 499136) (-2143 . 498836)
+ (-2144 . 498757) (-2145 . 498580) (-2146 . 497179) (-2147 . 497036)
+ (-2148 . 496913) (-2149 . 496800) (-2150 . 496696) (-2151 . 496505)
+ (-2152 . 496428) (-2153 . 496344) (-2154 . 496291) (-2155 . 496213)
+ (-2156 . 496126) (-2157 . 496047) (-2158 . 495875) (-2159 . 495765)
+ (-2160 . 495470) (-2161 . 495397) (-2162 . 495036) (-2163 . 494831)
+ (-2164 . 494647) (-2165 . 494563) (-2166 . 494348) (-2167 . 494247)
+ (-2168 . 494108) (-2169 . 494055) (-2170 . 493882) (-2171 . 493507)
+ (-2172 . 493391) (-2173 . 493075) (-2174 . 493020) (-2175 . 492940)
+ (-2176 . 492364) (-2177 . 492051) (-2178 . 491326) (-2179 . 491165)
+ (-2180 . 491068) (-2181 . 490953) (-2182 . 489767) (-2183 . 489515)
+ (-2184 . 489432) (-2185 . 489309) (-2186 . 489185) (-2187 . 489076)
+ (-2188 . 488901) (-2189 . 488798) (-2190 . 488732) (-2191 . 488668)
+ (-2192 . 488584) (-2193 . 488008) (-2194 . 487889) (-2195 . 482377)
+ (-2196 . 482261) (-2197 . 482118) (-2198 . 482000) (-2199 . 481795)
+ (-2200 . 481252) (-2201 . 481160) (-2202 . 481091) (-2203 . 480925)
+ (-2204 . 480860) (-2205 . 480769) (-2206 . 480670) (-2207 . 480586)
+ (-2208 . 480516) (-2209 . 479940) (-2210 . 479780) (-2211 . 479392)
+ (-2212 . 479115) (-2213 . 478985) (-2214 . 478694) (-2215 . 478185)
+ (-2216 . 478033) (-2217 . 477971) (-2218 . 477901) (-2219 . 477777)
+ (-2220 . 477498) (-2221 . 477186) (-2222 . 477121) (-2223 . 476018)
+ (-2224 . 475893) (-2225 . 475680) (-2226 . 474994) (-2227 . 474541)
+ (-2228 . 474445) (-2229 . 474342) (-2230 . 473896) (-2231 . 473843)
+ (-2232 . 473732) (-2233 . 473554) (-2234 . 473427) (-2235 . 473375)
+ (-2236 . 473298) (-2237 . 473219) (-2238 . 473107) (-2239 . 473022)
+ (-2240 . 472927) (-2241 . 472785) (-2242 . 472099) (-2243 . 471752)
+ (-2244 . 471369) (-2245 . 471316) (-2246 . 471242) (-2247 . 471162)
+ (-2248 . 471081) (-2249 . 471024) (-2250 . 470707) (-2251 . 469881)
+ (-2252 . 469631) (-2253 . 469412) (-2254 . 469313) (-2255 . 468504)
+ (-2256 . 468424) (-2257 . 467675) (-2258 . 467616) (-2259 . 467339)
+ (-2260 . 467254) (-2261 . 466628) (-2262 . 466576) (-2263 . 466423)
+ (-2264 . 466163) (-2265 . 465515) (-2266 . 465403) (-2267 . 465320)
+ (-2268 . 465253) (-2269 . 465108) (-2270 . 465054) (-2271 . 464981)
+ (-2272 . 464671) (-2273 . 464097) (-2274 . 463950) (-2275 . 463545)
+ (-2276 . 462941) (-2277 . 462826) (-2278 . 462767) (-2279 . 462662)
+ (-2280 . 462288) (-2281 . 462121) (-2282 . 462047) (-2283 . 461953)
+ (-2284 . 461838) (-2285 . 461683) (-2286 . 461582) (-2287 . 461008)
+ (-2288 . 460906) (-2289 . 460361) (-2290 . 460072) (-2291 . 459974)
+ (-2292 . 459892) (-2293 . 459781) (-2294 . 459519) (-2295 . 459422)
+ (-2296 . 459339) (-2297 . 459268) (-2298 . 459143) (-2299 . 458964)
+ (-2300 . 458874) (-2301 . 458568) (-2302 . 458272) (-2303 . 457698)
+ (-2304 . 457630) (-2305 . 457434) (-2306 . 457175) (-2307 . 454267)
+ (-2308 . 454211) (-2309 . 453854) (-2310 . 453788) (-2311 . 453428)
+ (-2312 . 453208) (-2313 . 453099) (-2314 . 453004) (-2315 . 452836)
+ (-2316 . 452727) (-2317 . 450440) (-2318 . 450339) (-2319 . 450204)
+ (-2320 . 449517) (-2321 . 449386) (-2322 . 449226) (-2323 . 449082)
+ (-2324 . 448952) (-2325 . 448724) (-2326 . 448640) (-2327 . 448556)
+ (-2328 . 448184) (-2329 . 448021) (-2330 . 447969) (-2331 . 447833)
+ (-2332 . 447767) (-2333 . 447551) (-2334 . 447501) (-2335 . 446814)
+ (-2336 . 446734) (-2337 . 446608) (-2338 . 446505) (-2339 . 446329)
+ (-2340 . 446210) (-2341 . 445971) (-2342 . 445834) (-2343 . 445730)
+ (-2344 . 445572) (-2345 . 445477) (-2346 . 445407) (-2347 . 445214)
+ (-2348 . 445119) (-2349 . 444855) (-2350 . 444304) (-2351 . 443617)
+ (-2352 . 441998) (-2353 . 441704) (-2354 . 441676) (-2355 . 441579)
+ (-2356 . 441521) (-2357 . 441202) (-2358 . 441049) (-2359 . 440870)
+ (-2360 . 440560) (-2361 . 440401) (-2362 . 440367) (-2363 . 440237)
+ (-2364 . 440082) (-2365 . 440050) (-2366 . 439777) (-2367 . 439202)
+ (-2368 . 438341) (-2369 . 437960) (-2370 . 437710) (-2371 . 437431)
+ (-2372 . 437394) (-2373 . 437328) (-2374 . 437242) (-2375 . 437144)
+ (-2376 . 437021) (-2377 . 436467) (-2378 . 436344) (-2379 . 436086)
+ (-2380 . 435912) (-2381 . 435830) (-2382 . 435255) (-2383 . 433864)
+ (-2384 . 433628) (-2385 . 433498) (-2386 . 433383) (-2387 . 433251)
+ (-2388 . 433068) (-2389 . 432996) (-2390 . 432753) (-2391 . 432522)
+ (-2392 . 432463) (-2393 . 432389) (-2394 . 432231) (-2395 . 432072)
+ (-2396 . 431497) (-2397 . 431395) (-2398 . 431299) (-2399 . 431225)
+ (-2400 . 431062) (-2401 . 430984) (-2402 . 430847) (-2403 . 430420)
+ (-2404 . 430343) (-2405 . 429984) (-2406 . 429932) (-2407 . 429866)
+ (-2408 . 429776) (-2409 . 429602) (-2410 . 429028) (-2411 . 428961)
+ (-2412 . 428636) (-2413 . 428583) (-2414 . 428530) (-2415 . 428358)
+ (-2416 . 428309) (-2417 . 428209) (-2418 . 428110) (-2419 . 427975)
+ (-2420 . 427834) (-2421 . 427419) (-2422 . 427346) (-2423 . 427035)
+ (-2424 . 426461) (-2425 . 426367) (-2426 . 425876) (-2427 . 425824)
+ (-2428 . 425691) (-2429 . 425519) (-2430 . 425453) (-2431 . 425286)
+ (-2432 . 425063) (-2433 . 424951) (-2434 . 424849) (-2435 . 424734)
+ (-2436 . 424666) (-2437 . 424524) (-2438 . 423950) (-2439 . 423806)
+ (-2440 . 423436) (-2441 . 423264) (-2442 . 423198) (-2443 . 422990)
+ (-2444 . 422885) (-2445 . 422724) (-2446 . 422556) (-2447 . 422206)
+ (-2448 . 422175) (-2449 . 422064) (-2450 . 421490) (-2451 . 419662)
+ (-2452 . 419564) (-2453 . 419536) (-2454 . 419364) (-2455 . 419298)
+ (-2456 . 419007) (-2457 . 418880) (-2458 . 418723) (-2459 . 418593)
+ (-2460 . 418301) (-2461 . 418063) (-2462 . 417261) (-2463 . 416263)
+ (-2464 . 415689) (-2465 . 414166) (-2466 . 414113) (-2467 . 414007)
+ (-2468 . 413657) (-2469 . 413539) (-2470 . 413407) (-2471 . 413306)
+ (-2472 . 413016) (-2473 . 412864) (-2474 . 412757) (-2475 . 412670)
+ (-2476 . 412597) (-2477 . 411057) (-2478 . 410698) (-2479 . 410559)
+ (-2480 . 410108) (-2481 . 410052) (-2482 . 409890) (-2483 . 409649)
+ (-2484 . 409596) (-2485 . 409299) (-2486 . 409238) (-2487 . 409185)
+ (-2488 . 409032) (-2489 . 408976) (-2490 . 408324) (-2491 . 408267)
+ (-2492 . 408194) (-2493 . 407587) (-2494 . 407535) (-2495 . 407353)
+ (-2496 . 407210) (-2497 . 407094) (-2498 . 406992) (-2499 . 406895)
+ (-2500 . 406486) (-2501 . 406367) (-2502 . 405631) (-2503 . 405379)
+ (-2504 . 405264) (-2505 . 404743) (-2506 . 404666) (-2507 . 404496)
+ (-2508 . 404377) (-2509 . 404303) (-2510 . 404130) (-2511 . 404064)
+ (-2512 . 403987) (-2513 . 403826) (-2514 . 403711) (-2515 . 403528)
+ (-2516 . 403376) (-2517 . 403322) (-2518 . 403153) (-2519 . 403080)
+ (-2520 . 402896) (-2521 . 402343) (-2522 . 402284) (-2523 . 400127)
+ (-2524 . 400003) (-2525 . 399877) (-2526 . 399731) (-2527 . 399668)
+ (-2528 . 399334) (-2529 . 399251) (-2530 . 398919) (-2531 . 398781)
+ (-2532 . 398456) (-2533 . 398026) (-2534 . 397929) (-2535 . 397649)
+ (-2536 . 397438) (-2537 . 397283) (-2538 . 396645) (-2539 . 396575)
+ (-2540 . 396547) (-2541 . 396263) (-2542 . 396183) (-2543 . 395912)
+ (-2544 . 394710) (-2545 . 394631) (-2546 . 394424) (-2547 . 394321)
+ (-2548 . 393161) (-2549 . 392953) (-2550 . 392868) (-2551 . 392703)
+ (-2552 . 392477) (-2553 . 392382) (-2554 . 392314) (-2555 . 392171)
+ (-2556 . 392013) (-2557 . 391960) (-2558 . 391846) (-2559 . 391602)
+ (-2560 . 391485) (-2561 . 391314) (-2562 . 391184) (-2563 . 390806)
+ (-2564 . 390553) (-2565 . 390446) (-2566 . 390390) (-2567 . 390281)
+ (-2568 . 389126) (-2569 . 388970) (-2570 . 388636) (-2571 . 387513)
+ (-2572 . 386942) (-2573 . 386908) (-2574 . 386824) (-2575 . 386453)
+ (-2576 . 386340) (-2577 . 385836) (-2578 . 385654) (-2579 . 385444)
+ (-2580 . 385337) (-2581 . 385187) (-2582 . 384828) (-2583 . 384759)
+ (-2584 . 384528) (-2585 . 384285) (-2586 . 384233) (-2587 . 384177)
+ (-2588 . 384092) (-2589 . 384009) (-2590 . 383786) (-2591 . 379255)
+ (-2592 . 378512) (-2593 . 378312) (-2594 . 378260) (-2595 . 378194)
+ (-2596 . 378076) (-2597 . 378010) (-2598 . 377928) (-2599 . 377530)
+ (-2600 . 377313) (-2601 . 377261) (-2602 . 373266) (-2603 . 373108)
+ (-2604 . 372990) (-2605 . 372938) (-2606 . 372867) (-2607 . 372794)
+ (-2608 . 372258) (-2609 . 372117) (-2610 . 372040) (-2611 . 371955)
+ (-2612 . 371878) (-2613 . 371818) (-2614 . 371663) (-2615 . 371416)
+ (-2616 . 371336) (-2617 . 371181) (-2618 . 371107) (-2619 . 370974)
+ (-2620 . 370853) (-2621 . 370782) (-2622 . 370555) (-2623 . 370484)
+ (-2624 . 370435) (-2625 . 370288) (-2626 . 369842) (-2627 . 369675)
+ (-2628 . 369449) (-2629 . 369230) (-2630 . 369144) (-2631 . 369064)
+ (-2632 . 368832) (-2633 . 368750) (-2634 . 368722) (-2635 . 368560)
+ (-2636 . 368505) (-2637 . 368354) (-2638 . 368243) (-2639 . 368191)
+ (-2640 . 367816) (-2641 . 367545) (-2642 . 367457) (-2643 . 367332)
+ (-2644 . 367162) (-2645 . 367044) (-2646 . 366857) (-2647 . 366783)
+ (-2648 . 366688) (-2649 . 366615) (-2650 . 359616) (-2651 . 359473)
+ (-2652 . 359293) (-2653 . 359102) (-2654 . 358999) (-2655 . 358828)
+ (-2656 . 358722) (-2657 . 358557) (-2658 . 358451) (-2659 . 358423)
+ (-2660 . 358321) (-2661 . 358021) (-2662 . 357720) (-2663 . 357692)
+ (-2664 . 357549) (-2665 . 357428) (-2666 . 357376) (-2667 . 357302)
+ (-2668 . 357140) (-2669 . 356959) (-2670 . 356727) (-2671 . 356586)
+ (-2672 . 356558) (-2673 . 356451) (-2674 . 356344) (-2675 . 356273)
+ (-2676 . 356027) (-2677 . 355948) (-2678 . 355807) (-2679 . 355736)
+ (-2680 . 355523) (-2681 . 355492) (-2682 . 355339) (-2683 . 355183)
+ (-2684 . 355120) (-2685 . 355013) (-2686 . 354249) (-2687 . 353675)
+ (** . 350576) (-2689 . 350475) (-2690 . 350420) (-2691 . 350314)
+ (-2692 . 350205) (-2693 . 350108) (-2694 . 336045) (-2695 . 335900)
+ (-2696 . 335785) (-2697 . 335651) (-2698 . 335485) (-2699 . 335432)
+ (-2700 . 335339) (-2701 . 335209) (-2702 . 335086) (-2703 . 334949)
+ (-2704 . 334841) (-2705 . 334687) (-2706 . 334532) (-2707 . 334418)
+ (-2708 . 334212) (-2709 . 334153) (-2710 . 334058) (-2711 . 333915)
+ (-2712 . 333804) (-2713 . 333666) (-2714 . 333592) (-2715 . 333379)
+ (-2716 . 333207) (-2717 . 333155) (-2718 . 332779) (-2719 . 332351)
+ (-2720 . 332221) (-2721 . 332115) (-2722 . 331867) (-2723 . 331726)
+ (-2724 . 331613) (-2725 . 331408) (-2726 . 331380) (-2727 . 331217)
+ (-2728 . 331042) (-2729 . 330950) (-2730 . 330872) (-2731 . 330765)
+ (-2732 . 330657) (-2733 . 330550) (-2734 . 330497) (-2735 . 330162)
+ (-2736 . 330107) (-2737 . 329928) (-2738 . 329828) (-2739 . 329736)
+ (-2740 . 329632) (-2741 . 329515) (-2742 . 329430) (-2743 . 329334)
+ (-2744 . 329039) (-2745 . 328952) (-2746 . 328893) (-2747 . 328339)
+ (-2748 . 328217) (-2749 . 323507) (-2750 . 323361) (-2751 . 323045)
+ (-2752 . 322932) (-2753 . 322850) (-2754 . 322764) (-2755 . 322705)
+ (-2756 . 322618) (-2757 . 322515) (-2758 . 322416) (-2759 . 322331)
+ (-2760 . 322192) (-2761 . 322087) (-2762 . 322037) (-2763 . 321923)
+ (-2764 . 321743) (-2765 . 321447) (-2766 . 321340) (-2767 . 321219)
+ (-2768 . 320991) (-2769 . 320938) (-2770 . 320869) (-2771 . 320751)
+ (-2772 . 320661) (-2773 . 320531) (-2774 . 320475) (-2775 . 320361)
+ (-2776 . 320291) (-2777 . 320172) (-2778 . 320006) (-2779 . 319947)
+ (-2780 . 319877) (-2781 . 319824) (-2782 . 319700) (-2783 . 319376)
+ (-2784 . 319248) (-2785 . 319150) (-2786 . 319015) (-2787 . 318943)
+ (-2788 . 318891) (-2789 . 318826) (-2790 . 318704) (-2791 . 318635)
+ (-2792 . 318429) (-2793 . 318330) (-2794 . 317226) (-2795 . 317173)
+ (-2796 . 317053) (-2797 . 316939) (-2798 . 316871) (-2799 . 316749)
+ (-2800 . 316638) (-2801 . 316557) (-2802 . 316323) (-2803 . 316183)
+ (-2804 . 315989) (-2805 . 315628) (-2806 . 315488) (-2807 . 315326)
+ (-2808 . 315260) (-2809 . 315163) (-2810 . 315084) (-2811 . 315050)
+ (-2812 . 315022) (-2813 . 314937) (-2814 . 314909) (-2815 . 314665)
+ (-2816 . 314571) (-2817 . 314240) (-2818 . 314160) (-2819 . 314059)
+ (-2820 . 314003) (-2821 . 313948) (-2822 . 313784) (-2823 . 313560)
+ (-2824 . 313463) (-2825 . 313320) (-2826 . 313223) (-2827 . 313068)
+ (-2828 . 313016) (-2829 . 312964) (-2830 . 312738) (-2831 . 312651)
+ (-2832 . 312588) (-2833 . 312475) (-2834 . 311837) (-2835 . 311694)
+ (-2836 . 311574) (-2837 . 311444) (-2838 . 311336) (-2839 . 311093)
+ (-2840 . 311000) (-2841 . 310514) (-2842 . 310387) (-2843 . 310074)
+ (-2844 . 309801) (-2845 . 309749) (-2846 . 309671) (-2847 . 309223)
+ (-2848 . 308963) (-2849 . 308804) (-2850 . 308732) (-2851 . 308637)
+ (-2852 . 308541) (-2853 . 308299) (-2854 . 308115) (-2855 . 307686)
+ (-2856 . 307606) (-2857 . 307554) (-2858 . 307413) (-2859 . 307316)
+ (-2860 . 307026) (-2861 . 306933) (-2862 . 306676) (-2863 . 306533)
+ (-2864 . 306294) (-2865 . 306138) (-2866 . 305767) (-2867 . 305718)
+ (-2868 . 304954) (-2869 . 304763) (-2870 . 304692) (-2871 . 304582)
+ (-2872 . 304475) (-2873 . 304320) (-2874 . 304201) (-2875 . 304057)
+ (-2876 . 304023) (-2877 . 303368) (-2878 . 303309) (-2879 . 303135)
+ (-2880 . 303025) (-2881 . 302948) (-2882 . 302789) (-2883 . 302631)
+ (-2884 . 302537) (-2885 . 302409) (-2886 . 302310) (-2887 . 302224)
+ (-2888 . 302029) (-2889 . 301829) (-2890 . 301756) (-2891 . 301465)
+ (-2892 . 301410) (-2893 . 301231) (-2894 . 301110) (-2895 . 301001)
+ (-2896 . 300833) (-2897 . 300748) (-2898 . 300695) (-2899 . 300045)
+ (-2900 . 298266) (-2901 . 297893) (-2902 . 297704) (-2903 . 297533)
+ (-2904 . 297439) (-2905 . 295961) (-2906 . 295826) (-2907 . 295671)
+ (-2908 . 295575) (-2909 . 295445) (-2910 . 295372) (-2911 . 295193)
+ (-2912 . 295063) (-2913 . 295006) (-2914 . 294844) (-2915 . 294498)
+ (-2916 . 294470) (-2917 . 294415) (-2918 . 294363) (-2919 . 294016)
+ (-2920 . 293891) (-2921 . 293835) (-2922 . 293395) (-2923 . 293161)
+ (-2924 . 293052) (-2925 . 292963) (-2926 . 292689) (-2927 . 292173)
+ (-2928 . 292066) (-2929 . 291884) (-2930 . 291670) (-2931 . 291528)
+ (-2932 . 291329) (-2933 . 290366) (-2934 . 290192) (-2935 . 290097)
+ (-2936 . 290040) (-2937 . 289842) (-2938 . 289522) (-2939 . 289295)
+ (-2940 . 288963) (-2941 . 288758) (-2942 . 288660) (-2943 . 288565)
+ (-2944 . 288487) (-2945 . 288434) (-2946 . 288138) (-2947 . 288064)
+ (-2948 . 287974) (-2949 . 287762) (-2950 . 287688) (-2951 . 287605)
+ (-2952 . 287495) (-2953 . 287443) (-2954 . 287372) (-2955 . 287243)
+ (-2956 . 286930) (-2957 . 286669) (-2958 . 286548) (-2959 . 286357)
+ (-2960 . 285974) (-2961 . 285918) (-2962 . 285797) (-2963 . 285685)
+ (-2964 . 285033) (-2965 . 284933) (-2966 . 284792) (-2967 . 284696)
+ (-2968 . 284662) (-2969 . 283216) (-2970 . 283123) (-2971 . 281635)
+ (-2972 . 280599) (-2973 . 280253) (-2974 . 280170) (-2975 . 279940)
+ (-2976 . 279853) (-2977 . 279804) (-2978 . 279770) (-2979 . 279539)
+ (-2980 . 279212) (-2981 . 279151) (-2982 . 278929) (-2983 . 278820)
+ (-2984 . 278771) (-2985 . 278554) (-2986 . 278447) (-2987 . 278025)
+ (-2988 . 277951) (-2989 . 277880) (-2990 . 277741) (-2991 . 277528)
+ (-2992 . 277398) (-2993 . 277009) (-2994 . 276795) (-2995 . 276663)
+ (-2996 . 276597) (-2997 . 276218) (-2998 . 276116) (-2999 . 276028)
+ (-3000 . 275901) (-3001 . 275737) (-3002 . 275312) (-3003 . 275216)
+ (-3004 . 275121) (-3005 . 275035) (-3006 . 274911) (-3007 . 274833)
+ (-3008 . 274778) (-3009 . 274109) (-3010 . 274002) (-3011 . 273920)
+ (-3012 . 273507) (-3013 . 273456) (-3014 . 273363) (-3015 . 273286)
+ (-3016 . 273220) (-3017 . 272973) (-3018 . 272817) (-3019 . 272116)
+ (-3020 . 272067) (-3021 . 272014) (-3022 . 271877) (-3023 . 271680)
+ (-3024 . 270883) (-3025 . 270535) (-3026 . 269944) (-3027 . 269821)
+ (-3028 . 269201) (-3029 . 268776) (-3030 . 268674) (-3031 . 268619)
+ (-3032 . 268533) (-3033 . 268448) (-3034 . 268354) (-3035 . 268261)
+ (-3036 . 268147) (-3037 . 268092) (-3038 . 267743) (-3039 . 267673)
+ (-3040 . 267586) (-3041 . 267531) (-3042 . 267367) (-3043 . 267251)
+ (-3044 . 267130) (-3045 . 266959) (-3046 . 266821) (-3047 . 266497)
+ (-3048 . 266366) (-3049 . 266269) (-3050 . 266198) (-3051 . 266033)
+ (-3052 . 265834) (-3053 . 265735) (-3054 . 265661) (-3055 . 265633)
+ (-3056 . 265530) (-3057 . 265464) (-3058 . 265347) (-3059 . 265275)
+ (-3060 . 264934) (-3061 . 264818) (-3062 . 264385) (-3063 . 264255)
+ (-3064 . 264165) (-3065 . 263723) (-3066 . 263671) (-3067 . 263575)
+ (-3068 . 263185) (-3069 . 262530) (-3070 . 262421) (-3071 . 262277)
+ (-3072 . 262115) (-3073 . 261865) (-3074 . 261666) (-3075 . 261616)
+ (-3076 . 261407) (-3077 . 261266) (-3078 . 261164) (-3079 . 261057)
+ (-3080 . 260402) (-3081 . 260094) (-3082 . 259130) (-3083 . 259009)
+ (-3084 . 258791) (-3085 . 258687) (-3086 . 258607) (-3087 . 258501)
+ (-3088 . 258418) (-3089 . 258317) (-3090 . 258239) (-3091 . 258161)
+ (-3092 . 258043) (-3093 . 257948) (-3094 . 257799) (-3095 . 257633)
+ (-3096 . 257493) (-3097 . 257427) (-3098 . 257290) (-3099 . 257179)
+ (-3100 . 256792) (-3101 . 256729) (-3102 . 256677) (-3103 . 256624)
+ (-3104 . 256569) (-3105 . 256442) (-3106 . 255952) (-3107 . 255881)
+ (-3108 . 255826) (-3109 . 255203) (-3110 . 254591) (-3111 . 254321)
+ (-3112 . 254216) (-3113 . 254022) (-3114 . 253901) (-3115 . 253739)
+ (-3116 . 253354) (-3117 . 253201) (-3118 . 253138) (-3119 . 252922)
+ (-3120 . 252563) (-3121 . 252137) (-3122 . 252000) (-3123 . 250819)
+ (-3124 . 250679) (-3125 . 250493) (-3126 . 250431) (-3127 . 250257)
+ (-3128 . 249910) (-3129 . 249783) (-3130 . 249638) (-3131 . 249564)
+ (-3132 . 249463) (-3133 . 249116) (-3134 . 248595) (-3135 . 248500)
+ (-3136 . 248226) (-3137 . 248127) (-3138 . 248056) (-3139 . 247509)
+ (-3140 . 247453) (-3141 . 247156) (-3142 . 247100) (-3143 . 246713)
+ (-3144 . 246385) (-3145 . 246132) (-3146 . 246023) (-3147 . 245954)
+ (-3148 . 245670) (-3149 . 245446) (-3150 . 245069) (-3151 . 244955)
+ (-3152 . 244762) (-3153 . 244634) (-3154 . 243454) (-3155 . 243401)
+ (-3156 . 243327) (-3157 . 243171) (-3158 . 243111) (-3159 . 243059)
+ (-3160 . 242957) (-3161 . 242726) (-3162 . 242670) (-3163 . 242532)
+ (-3164 . 242466) (-3165 . 242399) (-3166 . 242184) (-3167 . 241993)
+ (-3168 . 241743) (-3169 . 241183) (-3170 . 240959) (-3171 . 240801)
+ (-3172 . 240278) (-3173 . 239830) (-3174 . 239572) (-3175 . 239355)
+ (-3176 . 238833) (-3177 . 238782) (-3178 . 238681) (-3179 . 238329)
+ (-3180 . 238171) (-3181 . 238084) (-3182 . 237987) (-3183 . 237909)
+ (-3184 . 237838) (-3185 . 237686) (-3186 . 237423) (-3187 . 237371)
+ (-3188 . 237245) (-3189 . 237143) (-3190 . 237034) (-3191 . 236865)
+ (-3192 . 236691) (-3193 . 227120) (-3194 . 226965) (-3195 . 226575)
+ (-3196 . 226196) (-3197 . 226141) (-3198 . 225887) (-3199 . 225784)
+ (-3200 . 225541) (-3201 . 225416) (-3202 . 225312) (-3203 . 225235)
+ (-3204 . 225076) (-3205 . 225009) (-3206 . 224960) (-3207 . 224860)
+ (-3208 . 223944) (-3209 . 223850) (-3210 . 223259) (-3211 . 223142)
+ (-3212 . 222971) (-3213 . 222862) (-3214 . 222712) (-3215 . 222661)
+ (-3216 . 222557) (-3217 . 222439) (-3218 . 222248) (-3219 . 221975)
+ (-3220 . 221745) (-3221 . 219793) (-3222 . 219603) (-3223 . 219500)
+ (-3224 . 219463) (-3225 . 219347) (-3226 . 216566) (-3227 . 216500)
+ (-3228 . 216405) (-3229 . 216188) (-3230 . 215890) (-3231 . 215748)
+ (-3232 . 215696) (-3233 . 215457) (-3234 . 215260) (-3235 . 215179)
+ (-3236 . 215113) (-3237 . 215061) (-3238 . 214974) (-3239 . 214790)
+ (-3240 . 214645) (-3241 . 214611) (-3242 . 214559) (-3243 . 214138)
+ (-3244 . 214057) (-3245 . 213974) (-3246 . 213900) (-3247 . 213678)
+ (-3248 . 213496) (-3249 . 213397) (-3250 . 213268) (-3251 . 213181)
+ (-3252 . 213147) (-3253 . 212869) (-3254 . 212787) (-3255 . 212721)
+ (-3256 . 212655) (-3257 . 212235) (-3258 . 212106) (-3259 . 211618)
+ (-3260 . 211429) (-3261 . 211357) (-3262 . 211286) (-3263 . 211164)
+ (-3264 . 211057) (-3265 . 210846) (-3266 . 210590) (-3267 . 210483)
+ (-3268 . 210403) (-3269 . 210139) (-3270 . 210059) (-3271 . 209860)
+ (-3272 . 209810) (-3273 . 209645) (-3274 . 209572) (-3275 . 209458)
+ (-3276 . 208992) (-3277 . 208900) (-3278 . 208828) (-3279 . 208656)
+ (-3280 . 208503) (-3281 . 208450) (-3282 . 208394) (-3283 . 208114)
+ (-3284 . 207817) (-3285 . 207325) (-3286 . 207273) (-3287 . 207214)
+ (-12 . 207042) (-3289 . 206934) (-3290 . 206071) (-3291 . 205915)
+ (-3292 . 205821) (-3293 . 205656) (-3294 . 205582) (-3295 . 205531)
+ (-3296 . 205383) (-3297 . 205265) (-3298 . 205216) (-3299 . 205076)
+ (-3300 . 204866) (-3301 . 204727) (-3302 . 204618) (-3303 . 204432)
+ (-3304 . 204330) (-3305 . 204018) (-3306 . 203885) (-3307 . 203439)
+ (-3308 . 203344) (-3309 . 203071) (-3310 . 202952) (-3311 . 202809)
+ (-3312 . 202479) (-3313 . 202252) (-3314 . 201824) (-3315 . 201715)
+ (-3316 . 201500) (-3317 . 201184) (-3318 . 199933) (-3319 . 199856)
+ (-3320 . 199675) (-3321 . 199616) (-3322 . 199537) (-3323 . 199488)
+ (-3324 . 199403) (-3325 . 199294) (-3326 . 199265) (-3327 . 199170)
+ (-3328 . 199066) (-3329 . 198999) (-3330 . 198930) (-3331 . 198847)
+ (-3332 . 198505) (-3333 . 198432) (-3334 . 198253) (-3335 . 198197)
+ (-3336 . 198126) (-3337 . 197907) (-3338 . 197718) (-3339 . 197456)
+ (-3340 . 197338) (-3341 . 197267) (-3342 . 196952) (-3343 . 196842)
+ (-3344 . 196747) (-3345 . 196663) (-3346 . 196331) (-3347 . 196303)
+ (-3348 . 196168) (-3349 . 196097) (-3350 . 196042) (-3351 . 195949)
+ (-3352 . 195638) (-3353 . 195527) (-3354 . 195037) (-3355 . 194866)
+ (-3356 . 194118) (-3357 . 193954) (-3358 . 193716) (-3359 . 193348)
+ (-3360 . 193277) (-3361 . 192940) (-3362 . 192727) (-3363 . 192480)
+ (* . 187957) (-3365 . 187793) (-3366 . 187692) (-3367 . 187640)
+ (-3368 . 187588) (-3369 . 187559) (-3370 . 187455) (-3371 . 187361)
+ (-3372 . 187284) (-3373 . 187103) (-3374 . 186981) (-3375 . 186869)
+ (-3376 . 186817) (-3377 . 186743) (-3378 . 186636) (-3379 . 186253)
+ (-3380 . 186201) (-3381 . 186130) (-3382 . 186068) (-3383 . 186015)
+ (-3384 . 185575) (-3385 . 185494) (-3386 . 185421) (-3387 . 185282)
+ (-3388 . 185144) (-3389 . 185056) (-3390 . 184849) (-3391 . 184733)
+ (-3392 . 184600) (-3393 . 184444) (-3394 . 184350) (-3395 . 184316)
+ (-3396 . 184161) (-3397 . 184021) (-3398 . 183987) (-3399 . 183920)
+ (-3400 . 183736) (-3401 . 183555) (-3402 . 183218) (-3403 . 183111)
+ (-3404 . 183058) (-3405 . 183006) (-3406 . 182948) (-3407 . 182862)
+ (-3408 . 182718) (-3409 . 182666) (-3410 . 177545) (-3411 . 177485)
+ (-3412 . 177418) (-3413 . 177288) (-3414 . 177208) (-3415 . 176962)
+ (-3416 . 176707) (-3417 . 176483) (-3418 . 176214) (-3419 . 176141)
+ (-3420 . 176034) (-3421 . 175951) (-3422 . 175825) (-3423 . 175671)
+ (-3424 . 175484) (-3425 . 175355) (-3426 . 175061) (-3427 . 174915)
+ (-3428 . 174861) (-3429 . 174792) (-3430 . 174635) (-3431 . 174567)
+ (-3432 . 174275) (-3433 . 174220) (-3434 . 173980) (-3435 . 173952)
+ (-3436 . 173838) (-3437 . 173701) (-3438 . 173542) (-3439 . 173379)
+ (-3440 . 173241) (-3441 . 173189) (-3442 . 173158) (-3443 . 173092)
+ (-3444 . 172995) (-3445 . 172875) (-3446 . 172765) (-3447 . 172636)
+ (-3448 . 172200) (-3449 . 172141) (-3450 . 172085) (-3451 . 172031)
+ (-3452 . 171872) (-3453 . 171511) (-3454 . 171395) (-3455 . 171312)
+ (-3456 . 171179) (-3457 . 171006) (-3458 . 170934) (-3459 . 170837)
+ (-3460 . 170779) (-3461 . 170745) (-3462 . 170613) (-3463 . 170560)
+ (-3464 . 169368) (-3465 . 169233) (-3466 . 168940) (-3467 . 168850)
+ (-3468 . 167275) (-3469 . 167215) (-3470 . 167135) (-3471 . 167064)
+ (-3472 . 166998) (-3473 . 166928) (-3474 . 165210) (-3475 . 165085)
+ (-3476 . 164883) (-3477 . 164754) (-3478 . 164659) (-3479 . 164578)
+ (-3480 . 164396) (-3481 . 164344) (-3482 . 164232) (-3483 . 164125)
+ (-3484 . 164031) (-3485 . 163535) (-3486 . 163394) (-3487 . 163315)
+ (-3488 . 162867) (-3489 . 162244) (-3490 . 162002) (-3491 . 161887)
+ (-3492 . 161041) (-3493 . 160878) (-3494 . 160829) (-3495 . 160734)
+ (-3496 . 160528) (-3497 . 160421) (-3498 . 160167) (-3499 . 159997)
+ (-3500 . 159683) (-3501 . 159538) (-3502 . 159311) (-3503 . 155701)
+ (-3504 . 155587) (-3505 . 155244) (-3506 . 155164) (-3507 . 155077)
+ (-3508 . 154611) (-3509 . 154533) (-3510 . 154342) (-3511 . 154159)
+ (-3512 . 154051) (-3513 . 153927) (-3514 . 153781) (-3515 . 153496)
+ (-3516 . 153416) (-3517 . 153388) (-3518 . 153336) (-3519 . 153308)
+ (-3520 . 153199) (-3521 . 153046) (-3522 . 152868) (-3523 . 152251)
+ (-3524 . 151923) (-3525 . 151863) (-3526 . 151521) (-3527 . 151470)
+ (-3528 . 151290) (-3529 . 151132) (-3530 . 150729) (-3531 . 150530)
+ (-3532 . 150370) (-3533 . 150261) (-3534 . 150140) (-3535 . 149829)
+ (-3536 . 149649) (-3537 . 149581) (-3538 . 149386) (-3539 . 149263)
+ (-3540 . 148689) (-3541 . 148321) (-3542 . 148151) (-3543 . 148098)
+ (-3544 . 147945) (-3545 . 147752) (-3546 . 147678) (-3547 . 147494)
+ (-3548 . 147317) (-3549 . 146444) (-3550 . 146322) (-3551 . 146269)
+ (-3552 . 145654) (-3553 . 145557) (-3554 . 145458) (-3555 . 145402)
+ (-3556 . 145276) (-3557 . 144885) (-3558 . 144085) (-3559 . 143860)
+ (-3560 . 143792) (-3561 . 143513) (-3562 . 143457) (-3563 . 142916)
+ (-3564 . 142772) (-3565 . 142663) (-3566 . 142568) (-3567 . 142093)
+ (-3568 . 142009) (-3569 . 141940) (-3570 . 141660) (-3571 . 141594)
+ (-3572 . 140819) (-3573 . 140788) (-3574 . 140690) (-3575 . 140638)
+ (-3576 . 140440) (-3577 . 140123) (-3578 . 139994) (-3579 . 139887)
+ (-3580 . 139804) (-3581 . 139748) (-3582 . 139433) (-3583 . 139346)
+ (-3584 . 139280) (-3585 . 139189) (-3586 . 139158) (-3587 . 138882)
+ (-3588 . 138752) (-3589 . 138687) (-3590 . 138436) (-3591 . 138265)
+ (-3592 . 137259) (-3593 . 136922) (-3594 . 136729) (-3595 . 136589)
+ (-3596 . 136273) (-3597 . 136175) (-3598 . 136057) (-3599 . 135917)
+ (-3600 . 135800) (-3601 . 135705) (-3602 . 135368) (-3603 . 135284)
+ (-3604 . 134751) (-3605 . 134650) (-3606 . 134593) (-3607 . 134416)
+ (-3608 . 134270) (-3609 . 132985) (-3610 . 132681) (-3611 . 132608)
+ (-3612 . 132011) (-3613 . 131876) (-3614 . 131708) (-3615 . 131634)
+ (-3616 . 131549) (-3617 . 130821) (-3618 . 130769) (-3619 . 130697)
+ (-3620 . 130473) (-3621 . 130366) (-3622 . 130237) (-3623 . 130132)
+ (-3624 . 129760) (-3625 . 129687) (-3626 . 129613) (-3627 . 129505)
+ (-3628 . 129399) (-3629 . 128863) (-3630 . 128797) (-3631 . 128740)
+ (-3632 . 128657) (-3633 . 128533) (-3634 . 128398) (-3635 . 128257)
+ (-3636 . 128010) (-3637 . 127792) (-3638 . 127684) (-3639 . 127526)
+ (-3640 . 127199) (-3641 . 126785) (-3642 . 126597) (-3643 . 126542)
+ (-3644 . 126491) (-3645 . 126397) (-3646 . 126345) (-3647 . 126164)
+ (-3648 . 125985) (-3649 . 125919) (-3650 . 125703) (-3651 . 125608)
+ (-3652 . 125503) (-3653 . 125382) (-3654 . 125329) (-3655 . 124988)
+ (-3656 . 124855) (-3657 . 124642) (-3658 . 124528) (-3659 . 124433)
+ (-3660 . 124207) (-3661 . 124110) (-3662 . 123990) (-3663 . 123884)
+ (-3664 . 123761) (-3665 . 123603) (-3666 . 123459) (-3667 . 123261)
+ (-3668 . 123176) (-3669 . 123096) (-3670 . 123015) (-3671 . 122944)
+ (-3672 . 122826) (-3673 . 122743) (-3674 . 122393) (-3675 . 121955)
+ (-3676 . 120876) (-3677 . 120653) (-3678 . 120600) (-3679 . 120518)
+ (-3680 . 120387) (-3681 . 120014) (-3682 . 119748) (-3683 . 119648)
+ (-3684 . 119542) (-3685 . 119372) (-3686 . 119279) (-3687 . 119202)
+ (-3688 . 118808) (-3689 . 118678) (-3690 . 118459) (-3691 . 118431)
+ (-3692 . 118379) (-3693 . 118277) (-3694 . 118107) (-3695 . 117883)
+ (-3696 . 117785) (-3697 . 117597) (-3698 . 117473) (-3699 . 117390)
+ (-3700 . 117111) (-3701 . 116861) (-3702 . 116642) (-3703 . 115932)
+ (-3704 . 115538) (-3705 . 115509) (-3706 . 115065) (-3707 . 115012)
+ (-3708 . 114959) (-3709 . 114827) (-3710 . 114772) (-3711 . 114741)
+ (-3712 . 114672) (-3713 . 114560) (-3714 . 114532) (-3715 . 114201)
+ (-3716 . 114144) (-3717 . 114093) (-3718 . 113949) (-3719 . 113740)
+ (-3720 . 113552) (-3721 . 113440) (-3722 . 112571) (-3723 . 112488)
+ (-3724 . 112030) (-3725 . 111581) (-3726 . 111439) (-3727 . 111281)
+ (-3728 . 111091) (-3729 . 110616) (-3730 . 110116) (-3731 . 109975)
+ (-3732 . 109793) (-3733 . 109738) (-3734 . 109355) (-3735 . 109101)
+ (-3736 . 109045) (-3737 . 108792) (-3738 . 108718) (-3739 . 108505)
+ (-3740 . 108329) (-3741 . 108123) (-3742 . 107924) (-3743 . 107392)
+ (-3744 . 107363) (-3745 . 106847) (-3746 . 106249) (-3747 . 106101)
+ (-3748 . 105770) (-3749 . 105699) (-3750 . 105646) (-3751 . 105576)
+ (-3752 . 105261) (-3753 . 104971) (-3754 . 104898) (-3755 . 104830)
+ (-3756 . 104773) (-3757 . 103663) (-3758 . 103540) (-3759 . 103248)
+ (-3760 . 103144) (-3761 . 103071) (-3762 . 101859) (-3763 . 101791)
+ (-3764 . 101621) (-3765 . 101471) (-3766 . 101338) (-3767 . 101244)
+ (-3768 . 101149) (-3769 . 101076) (-3770 . 100895) (-3771 . 100818)
+ (-3772 . 100748) (-3773 . 100600) (-3774 . 100572) (-3775 . 100517)
+ (-3776 . 100429) (-3777 . 100298) (-3778 . 100243) (-3779 . 99999)
+ (-3780 . 99639) (-3781 . 99584) (-3782 . 99300) (-3783 . 99222)
+ (-3784 . 98814) (-3785 . 98695) (-3786 . 98544) (-3787 . 98123)
+ (-3788 . 97118) (-3789 . 97020) (-3790 . 96970) (-3791 . 96897)
+ (-3792 . 95945) (-3793 . 95789) (-3794 . 95703) (-3795 . 95410)
+ (-3796 . 95317) (-3797 . 95265) (-3798 . 95231) (-3799 . 95143)
+ (-3800 . 94621) (-3801 . 94454) (-3802 . 94261) (-3803 . 94137)
+ (-3804 . 94106) (-3805 . 93969) (-3806 . 93895) (-3807 . 93825)
+ (-3808 . 93766) (-3809 . 93659) (-3810 . 93311) (-3811 . 93061)
+ (-3812 . 92650) (-3813 . 92483) (-3814 . 92405) (-3815 . 92253)
+ (-3816 . 92119) (-3817 . 91702) (-3818 . 91605) (-3819 . 91391)
+ (-3820 . 91357) (-3821 . 91304) (-3822 . 91058) (-3823 . 90711)
+ (-3824 . 90638) (-3825 . 90526) (-3826 . 90040) (-3827 . 89924)
+ (-3828 . 89872) (-3829 . 89789) (-3830 . 89692) (-3831 . 88950)
+ (-3832 . 88784) (-3833 . 88690) (-3834 . 88613) (-3835 . 87805)
+ (-3836 . 87416) (-3837 . 87229) (-3838 . 87035) (-3839 . 87007)
+ (-3840 . 86559) (-3841 . 86496) (-3842 . 86194) (-3843 . 86025)
+ (-3844 . 85697) (-3845 . 85599) (-3846 . 85421) (-3847 . 85222)
+ (-3848 . 84981) (-3849 . 84836) (-3850 . 84764) (-3851 . 84681)
+ (-3852 . 84076) (-3853 . 83974) (-3854 . 83895) (-3855 . 83805)
+ (-3856 . 83755) (-3857 . 83668) (-3858 . 83590) (-3859 . 83449)
+ (-3860 . 83354) (-3861 . 83268) (-3862 . 83150) (-3863 . 82900)
+ (-3864 . 82410) (-3865 . 82338) (-3866 . 82285) (-3867 . 82192)
+ (-3868 . 82122) (-3869 . 82093) (-3870 . 81903) (-3871 . 81787)
+ (-3872 . 81589) (-3873 . 81088) (-3874 . 81036) (-3875 . 80980)
+ (-3876 . 80927) (-3877 . 80834) (-3878 . 80723) (-3879 . 80433)
+ (-3880 . 80246) (-3881 . 80215) (-3882 . 80141) (-3883 . 80092)
+ (-3884 . 79951) (-3885 . 79787) (-3886 . 79363) (-3887 . 79311)
+ (-3888 . 79215) (-3889 . 78993) (-3890 . 78914) (-3891 . 78803)
+ (-3892 . 78668) (-3893 . 78538) (-3894 . 78509) (-3895 . 78442)
+ (-3896 . 78310) (-3897 . 78166) (-3898 . 72839) (-3899 . 72742)
+ (-3900 . 72226) (-3901 . 72093) (-3902 . 72041) (-3903 . 71935)
+ (-3904 . 71865) (-3905 . 71712) (-3906 . 71603) (-3907 . 71432)
+ (-3908 . 71377) (-3909 . 71236) (-3910 . 69873) (-3911 . 69666)
+ (-3912 . 69419) (-3913 . 69015) (-3914 . 68927) (-3915 . 68809)
+ (-3916 . 68736) (-3917 . 68592) (-3918 . 68505) (-3919 . 68477)
+ (-3920 . 68312) (-3921 . 68235) (-3922 . 68135) (-3923 . 68035)
+ (-3924 . 67892) (-3925 . 67818) (-3926 . 67781) (-3927 . 67750)
+ (-3928 . 67673) (-3929 . 67599) (-3930 . 67447) (-3931 . 67340)
+ (-3932 . 67121) (-3933 . 67022) (-3934 . 66362) (-3935 . 65980)
+ (-3936 . 65799) (-3937 . 65275) (-3938 . 65188) (-3939 . 64947)
+ (-3940 . 64824) (-3941 . 64787) (-3942 . 64734) (-3943 . 64529)
+ (-3944 . 64353) (-3945 . 64272) (-3946 . 64204) (-3947 . 64119)
+ (-3948 . 63875) (-3949 . 63779) (-3950 . 63726) (-3951 . 63623)
+ (-3952 . 63489) (-3953 . 62965) (-3954 . 62892) (-3955 . 62836)
+ (-3956 . 62737) (-3957 . 62625) (-3958 . 62560) (-3959 . 62505)
+ (-3960 . 61631) (-3961 . 61522) (-3962 . 61441) (-3963 . 61407)
+ (-3964 . 61325) (-3965 . 61168) (-3966 . 61094) (-3967 . 61025)
+ (-3968 . 60948) (-3969 . 60875) (-3970 . 60757) (-3971 . 60683)
+ (-3972 . 60613) (-3973 . 58366) (-3974 . 58231) (-3975 . 58176)
+ (-3976 . 58092) (-3977 . 56927) (-3978 . 56740) (-3979 . 56687)
+ (-3980 . 56534) (-3981 . 56409) (-3982 . 56000) (-3983 . 55873)
+ (-3984 . 55011) (-3985 . 52596) (-3986 . 52484) (-3987 . 52422)
+ (-3988 . 52332) (-3989 . 51806) (-3990 . 51755) (-3991 . 51727)
+ (-3992 . 51637) (-3993 . 51569) (-3994 . 51301) (-3995 . 51025)
+ (-3996 . 50973) (-3997 . 50268) (-3998 . 49993) (-3999 . 49780)
+ (-4000 . 49640) (-4001 . 49557) (-4002 . 49499) (-4003 . 49404)
+ (-4004 . 49286) (-4005 . 49093) (-4006 . 49022) (-4007 . 48898)
+ (-4008 . 48377) (-4009 . 47993) (-4010 . 47675) (-4011 . 47577)
+ (-4012 . 47319) (-4013 . 47267) (-4014 . 46509) (-4015 . 46032)
+ (-4016 . 45961) (-4017 . 45655) (-4018 . 45561) (-4019 . 45458)
+ (-4020 . 45305) (-4021 . 45135) (-4022 . 44930) (-4023 . 44878)
+ (-4024 . 44809) (-4025 . 44708) (-4026 . 44621) (-4027 . 44555)
+ (-4028 . 44342) (-4029 . 44314) (-4030 . 44155) (-4031 . 44081)
+ (-4032 . 43879) (-4033 . 43672) (-4034 . 43589) (-4035 . 43419)
+ (-4036 . 43098) (-4037 . 42939) (-4038 . 42781) (-4039 . 42666)
+ (-4040 . 42523) (-4041 . 42354) (-4042 . 42245) (-4043 . 41863)
+ (-4044 . 41811) (-4045 . 41724) (-4046 . 41598) (-4047 . 41182)
+ (-4048 . 41099) (-4049 . 40806) (-4050 . 40572) (-4051 . 40471)
+ (-4052 . 40319) (-4053 . 40269) (-4054 . 40166) (-4055 . 40020)
+ (-4056 . 39940) (-4057 . 39857) (-4058 . 39826) (-4059 . 39158)
+ (-4060 . 38871) (-4061 . 38543) (-4062 . 38491) (-4063 . 38438)
+ (-4064 . 38297) (-4065 . 38181) (-4066 . 37948) (-4067 . 37744)
+ (-4068 . 37657) (-4069 . 37523) (-4070 . 36342) (-4071 . 36314)
+ (-4072 . 36065) (-4073 . 35971) (-4074 . 35749) (-4075 . 35469)
+ (-4076 . 34874) (-4077 . 34751) (-4078 . 34637) (-4079 . 34496)
+ (-4080 . 33312) (-4081 . 33255) (-4082 . 33023) (-4083 . 32971)
+ (-4084 . 32765) (-4085 . 32666) (-4086 . 32610) (-4087 . 32445)
+ (-4088 . 32302) (-4089 . 32228) (-4090 . 31050) (-4091 . 30960)
+ (-4092 . 30861) (-4093 . 30782) (-4094 . 30708) (-4095 . 30393)
+ (-4096 . 30289) (-4097 . 30036) (-4098 . 29818) (-4099 . 29714)
+ (-4100 . 27516) (-4101 . 27380) (-4102 . 27297) (-4103 . 27194)
+ (-4104 . 27079) (-4105 . 26875) (-4106 . 26805) (-4107 . 26648)
+ (-4108 . 26596) (-4109 . 25996) (-4110 . 25481) (-4111 . 25328)
+ (-4112 . 25191) (-4113 . 25053) (-4114 . 24944) (-4115 . 24804)
+ (-4116 . 24686) (-4117 . 24482) (-4118 . 24264) (-4119 . 24187)
+ (-4120 . 24076) (-4121 . 23958) (-4122 . 23832) (-4123 . 23468)
+ (-4124 . 23330) (-4125 . 23275) (-4126 . 23198) (-4127 . 23113)
+ (-4128 . 22954) (-4129 . 22732) (-4130 . 22462) (-4131 . 22428)
+ (-4132 . 22223) (-4133 . 22138) (-4134 . 22061) (-4135 . 21849)
+ (-4136 . 21571) (-4137 . 21500) (-4138 . 21412) (-4139 . 21326)
+ (-4140 . 21035) (-4141 . 20816) (-4142 . 20718) (-4143 . 19903)
+ (-4144 . 19805) (-4145 . 19728) (-4146 . 19619) (-4147 . 19430)
+ (-4148 . 19374) (-4149 . 19206) (-4150 . 19177) (-4151 . 15892)
+ (-4152 . 15713) (-4153 . 15610) (-4154 . 15539) (-4155 . 15462)
+ (-4156 . 14879) (-4157 . 14547) (-4158 . 14453) (-4159 . 14379)
+ (-4160 . 14132) (-4161 . 13710) (-4162 . 13654) (-4163 . 13601)
+ (-4164 . 13478) (-4165 . 13423) (-4166 . 13175) (-4167 . 12767)
+ (-4168 . 12605) (-4169 . 12217) (-4170 . 12156) (-4171 . 11982)
+ (-4172 . 11887) (-4173 . 11823) (-4174 . 11700) (-4175 . 11599)
+ (-4176 . 11514) (-4177 . 11265) (-4178 . 11213) (-4179 . 10875)
+ (-4180 . 10640) (-4181 . 10567) (-4182 . 10447) (-4183 . 10360)
+ (-4184 . 10289) (-4185 . 10044) (-4186 . 9978) (-4187 . 9590)
+ (-4188 . 9495) (-4189 . 9162) (-4190 . 8156) (-4191 . 8084)
+ (-4192 . 7705) (-4193 . 7653) (-4194 . 7594) (-4195 . 7535)
+ (-4196 . 7463) (-4197 . 7217) (-4198 . 6890) (-4199 . 6720)
+ (-4200 . 6449) (-4201 . 6362) (-4202 . 6277) (-4203 . 6210)
+ (-4204 . 6043) (-4205 . 5669) (-4206 . 5595) (-4207 . 5116)
+ (-4208 . 4536) (-4209 . 4465) (-4210 . 4437) (-4211 . 4279)
+ (-4212 . 4192) (-4213 . 4014) (-4214 . 3674) (-4215 . 3561)
+ (-4216 . 3405) (-4217 . 3190) (-4218 . 2634) (-4219 . 2579)
+ (-4220 . 2496) (-4221 . 2395) (-4222 . 2292) (-4223 . 2017)
+ (-4224 . 1951) (-4225 . 1733) (-4226 . 1577) (-4227 . 1476)
+ (-4228 . 869) (-4229 . 714) (-4230 . 615) (-4231 . 555) (-4232 . 429)
+ (-4233 . 370) (-4234 . 160) (-4235 . 30)) \ No newline at end of file